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Editorial

Solid Surfaces, Defects and Detection

Kechen Song

School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;
songkc@me.neu.edu.cn

In the modern industrial field, particularly in steel and automobile manufacturing,
detecting defects in steel surfaces is crucial to product quality and safety. Due to the com-
plexity of the manufacturing process and the variety of defect types, traditional detection
methods have struggled to meet the demand for efficient, accurate, and real-time detection.
In recent years, the rapid development of deep learning, computer vision, and image pro-
cessing technologies has provided new solutions for steel surface defect detection. These
new technologies not only enhance detection accuracy but also significantly accelerate
detection speed, promoting the advancement of industrial automation.

In their paper, “Steel Surface Defect Recognition: A Survey”, Wen et al. conduct a compre-
hensive review of the development history of steel surface defect recognition technology
and systematically summarize the progression from traditional image processing to deep
learning methods [1]. They compare the differences between traditional and deep learning
methods in terms of detection accuracy, real-time performance, computational complexity,
etc. and summarize the main challenges in the field of steel surface defects detection,
which are insufficient and unbalanced data samples, real-time detection, and small object
detection. Finally, they provide appropriate recommendations for resolving these issues.
By summarizing and comparing a large amount of literature, their paper not only provides
readers with a comprehensive view of the field, but also provides theoretical support and
guidance for subsequent research. The paper has been selected as an ESI highly cited paper
on multiple occasions.

In practical inspection scenarios, due to the blurriness and low resolution of steel defect
images, the features learned by the network suffer from information loss, feature blurring,
and confusion, which makes it difficult to recognize small defects. Guo et al. proposed
using ASENet, an autocorrelation semantic enhancement network, for the classification
of steel surface defects. This network extracts the basic features of an image through
a backbone network, enhances them using a CS attention module, and calculates the
correlation between neighboring features using an autocorrelation module. Finally, the
enhanced features are combined with the basic features via residual linking to obtain
self-attention features, which enhance the semantic information of the image and improve
defect recognition accuracy for low-resolution images [2]. Similarly, X-ray inspection,
an important nondestructive testing method, is utilized for the detection of tiny defects.
Such detection relies on high-resolution imaging techniques. Liu et al. improved the
resolution of X-ray imaging using sub-pixel displacement, which can clearly recognize tiny
defects [3]. Combining this method with deep learning techniques facilitates more accurate
steel surface defect detection. Liu et al. also designed the UNet++ network with a variable
attention mechanism and incorporated a preprocessing method based on the pyramid
model, which further improves the performance and visibility of the extraction of faint
defects, and provides effective high dynamic range compression and defect enhancement
of the 16-bit raw image, improving the detection accuracy of steel surface defects in the
field of nondestructive testing [4].
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Traditional methods for classifying steel surface defects improve accuracy by increas-
ing the depth of the convolutional neural network (CNN) and the number of parameters,
but this approach ignores the memory overhead of large models and the incremental gain
in accuracy decreases as the number of parameters increases. To address this problem, Shao
et al. proposed a multi-scale lightweight neural network (MM), which takes the fusion
coding module as the core and uses a Gaussian difference pyramid to construct a multi-
scale neural network, which realizes the effective extraction of features at different scales
and adapts to a variety of defect types [5]. In resource-constrained industrial scenarios,
this method ensures detection is accurate and efficient. Similarly, to improve the detection
accuracy and efficiency, Huang et al. proposed WFRE-YOLOv8s for steel surface defect
detection based on YOLOv8s [6]. They addressed the data quality imbalance and designed
a new neck module, RFN, which reduces computational overhead and effectively fuses
features from different scales. Finally, through the EMA attention module, valuable features
are more effectively extracted, improving both the detection accuracy and speed of the
model and optimizing steel surface defect detection performance.

During steel surface defect detection, the dataset often suffers from a severe class
imbalance, which degrades the performance of traditional models. Yu et al. proposed a
distribution-preserving undersampling method, which divides all normal samples into
several subgroups through cluster analysis and recombines them into balanced datasets.
This ensures that the normal samples in all balanced datasets have the same distributions as
the original imbalanced dataset, effectively resolving the data imbalance [7]. On the other
hand, He et al. enhanced model training using semi-supervised learning by leveraging a
large amount of unlabeled data in the case of label scarcity. This approach improves defect
detection accuracy for complex surface textures. Although the two papers address different
data challenges, both enhance the generalizability and robustness of the model through
innovative learning strategies [8].

In practice, due to the randomness of defects, their textures and shapes are often very
similar to the background, making defects difficult to recognize. To address this issue, Wan
et al. adopted a dual-stream Swin Transformer network architecture to process local and
global features separately, further improving detection accuracy [9].

In addition to steel surface defect detection, some research has extended defect detec-
tion technology to other industrial fields. Liu et al. proposed a defect detection method
applicable to automobile body-in-white, which can handle the detection of complex surface
features under different working conditions [10]. This study demonstrates the potential for
cross-industry application of defect detection technology, providing a reference for other
industrial fields.
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Abstract: Steel surface defect recognition is an important part of industrial product surface defect
detection, which has attracted more and more attention in recent years. In the development of steel
surface defect recognition technology, there has been a development process from manual detection
to automatic detection based on the traditional machine learning algorithm, and subsequently to
automatic detection based on the deep learning algorithm. In this paper, we discuss the key hardware
of steel surface defect detection systems and offer suggestions for related options; second, we present
a literature review of the algorithms related to steel surface defect recognition, which includes
traditional machine learning algorithms based on texture features and shape features as well as
supervised, unsupervised, and weakly supervised deep learning algorithms (Incomplete supervision,
inexact supervision, imprecise supervision). In addition, some common datasets and algorithm
performance evaluation metrics in the field of steel surface defect recognition are summarized.
Finally, we discuss the challenges of the current steel surface defect recognition algorithms and the
corresponding solutions, and our future work focus is explained.

Keywords: steel; automated defect detection; deep learning; survey

1. Introduction

Steel is one of the most common metal materials in our daily life, where its uses are
numerous, and steel is the perfect material in many fields. Steel is widely used in civil
engineering infrastructure, aerospace, shipbuilding, automotive, machinery manufacturing,
and the manufacture of various household tools. According to the World Steel Association,
the global steel demand is expected to continue to rise by 0.4% in 2022, with annual
production reaching 1840.2 billion tons, more than all the other metals combined [1]. Today,
steel is a key material for manufacturing, infrastructure, and other industries. Since the
quality of steel will directly affect the quality of manufactured products and infrastructure
construction, it is particularly important to control the quality of the steel produced, as this
is the first guarantee of qualified products.

For the recognition of steel surface defects, it mainly includes three functions: detection,
classification, and the location of defects. The detection of defects is to determine whether
the inspection object contains defects; the classification of defects is, as the name implies,
the classification of defect categories; and the location of defects is to determine the location
of defects in the inspection object. The result of this defect location will be different for
different algorithms; most algorithms display a rough anchor frame to locate the defect,
while there are more accurate methods that can directly describe the shape of the defect
down to the pixel level.

However, the recognition of defects on the steel surface is more difficult, and the main
reasons why it is difficult to identify are as follows. First, there is an inter-class similarity
and intra-class diversity of defects on the steel surface [2]. Second, there are many types
of steel surface defects and some of these defects may overlap, while most classification
tasks can only find the defects with the highest confidence level in the defect category,
resulting in imprecise classification results [3]. In the actual production environment,

Coatings 2023, 13, 17. https://doi.org/10.3390/coatings13010017 https://www.mdpi.com/journal/coatings4
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it is very difficult to obtain high quality datasets for training machine learning related
algorithms because defects in steel production are originally small probability events, and
it is very difficult to obtain many samples with various types of defects; the labeling of the
data is also costly and labor intensive [4–7]. Since the classification of defect categories is
based on human subjective classification and there is still no strict classification standard,
these lead to difficulties in the progress of classification work. In addition, in the actual
production environment, the interference of the environment is serious such as uneven
lighting, light reflection, noise, motion blur, the existence of many false defects, and a
low contrast of background clutter, resulting in the recognition effect being often less
than ideal [8]. Although the introduction of more image sensors (depth and thermal
infrared) [9] can effectively reduce the influence of various interference factors, it also
creates a lot of redundant information. The contradiction between accuracy and speed
is also one of the main problems faced by the defect recognition algorithm [10]; in the
actual production environment, the speed of the assembly line is relatively fast, for flat
steel products, the assembly line running speed is about 20 m/s, for long wire, its product
production assembly line running speed is up to 100 m/s. To achieve real-time detection,
the algorithm developed must have a high enough accuracy at the same time, and the
recognition speed is also fast enough. However, these two points are often contradictory in
the design process of the algorithm. In the recognition of some small defects, it can be found
that the defect area is too small in relation to the whole detection object, which leads to the
detection object defect characteristics not being obvious. In addition, the manufacturing
industry may be different for different steel mills, which may lead to different types of
defects in their products, so the generalization of the algorithm will not be ideal, and it will
be more difficult to produce a high-quality general dataset, which needs to go to different
steel mills to collect samples. Finally, the collection of image samples of the inspected
objects is also difficult, because for some steels, multiple planes need to be inspected, which
leads to the need for multiple cameras to ensure complete coverage of the steel surface, so
the collection of images from multiple cameras is also difficult.

The most common steel products include hot/cold rolled strip, bar/wire rod, slab,
billet, and plate, which cover most of the uses of steel as a basic application material. The
study of hot/cold rolled steel strips has received the most attention, mainly because most
of these products are finished products. In terms of shape, the steel surface can be divided
into flat products and long products [11]. Among them, flat products can be subdivided
into slab/billet, steel plate, hot/cold rolled strip, and coated strip. Strip products include
rods/wires, which are made by a hot rolling process with an oxidized surface, and other
products such as rails, angle steel, channel steel, etc., which have a complex cross section,
so the detection is also more complex. The specific division structure of the steel surface
types is shown in Figure 1.

Figure 1. Categories of steel products.
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The existence of different defects on the surface of different types of steel and the
absence of an accepted standard for the classification of defects leads to the possibility
of a certain irrationality in the classification of defects, which adds to the difficulties in
their recognition. In this paper, the defect categories mainly detected in a large amount of
literature are summarized, and the defect catalog published by Verlag Stahleisen GmbH [12]
was used as a basis to summarize the defect categories contained in the steel surface for the
types of the steel surface, and the specific defect categories are shown in Table 1.

Table 1. Statistics of the steel surface defect categories.

Steel Surface Type Defect Category

Slab Crack, pitting, scratches, scarfing defect
Plate Crack, scratch, seam
Billet Corner crack, line defect, scratch

Hot rolled steel strip Hole, scratch, rolled in scale, crack, pits/scab, edge
defect/coil break, shell, lamination, sliver

Cold rolled steel strip Lamination, roll mark, hole, oil spot, fold, dark, heat buckle,
inclusion, rust, sliver, scale, scratch, edge etc.

Stainless steel Hole, scale, scratch, inclusion, roll mark, shell, blowhole
Wire/Bar Spot, dark line, seam, crack, lap, overfill, scratch etc.

The steel surface defect recognition methods go through three stages: manual recog-
nition, the traditional machine learning algorithm, and deep learning algorithm. The
milestones regarding the development of industrial surface defect technology are shown in
Figure 2.

Figure 2. Development process of technologies related to industrial surface defect detection. Viola
Jones [13], HOG [14], DPM [15], AlexNet [16], GAN [17], VGG [18], Google [19], SPPNet [20],
RCNN [21], ResNet [22], Fast RCNN [23], SSD [24], SqueezeNet [25], Faster RCNN [26], YOLO [27],
RetinaNet [28], Cascade RCNN [29], DenseNet [30], MobileNet [31], ShuffleNet [32], CenterNet [33].

The first stage of manual recognition methods refer to the detection of steel surface
defects by quality inspectors, mainly by virtue of manual experience and subjective judg-
ment: there are low efficiency, labor intensity, low precision, poor real-time, and other
defects [34]. In addition, the human eye observation range and speed are limited, generally
requiring that the product width cannot exceed 2 m and the product movement speed
cannot exceed 30 m/s, otherwise the human eye will not be able to make effective obser-
vations [35], so manual defect recognition can no longer meet the increasingly developed
industrial practical production environment. The second is the traditional machine learning
algorithm, which generally needs to manually design the feature extraction rules of the
recognition object, which is extremely dependent on the expert’s knowledge judgment, so
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human experience plays a decisive role in these methods, resulting in poor robustness of
the algorithm and insufficient generalization ability. Traditional machine learning methods
generally combine feature extraction methods with classifiers such as SVM to realize defect
recognition. Such methods are usually sensitive to defect size and noise, and are generally
not end-to-end models that cannot meet the needs of automatic defect recognition [36].
In addition, conventional machine learning methods rely on certain assumptions to be
valid [37], for example, the color depth of the defective part is not the same as the back-
ground part, which limits the scope of application of this type of algorithm. For deep
learning algorithms, with the advancement in computing power, they have gradually
started to become popular in the field of surface defect detection in recent years, and deep
learning methods have gradually been introduced into steel surface defect recognition.
These methods can autonomously extract image features in the dataset through neural
network models, and the characterization capability is more powerful, avoiding the manual
design of feature extraction rules, which can effectively overcome the shortcomings of
traditional machine learning methods. However, deep learning methods also have some
challenges in the actual application environment, as described in Section 5.

The rest of this paper is organized as follows. In Section 2, the key elements of the
hardware architecture of the steel surface defect detection system will be discussed. In
Section 3, the steel surface defect recognition algorithms are classified and summarized. In
Section 4, the datasets and algorithm performance evaluation metrics used in recent papers
are summarized. In Section 5, the existing challenges of the steel surface defect recognition
algorithm are described, and suggestions for their solution are provided. In Section 6, the
entire paper is summarized, and the future directions of our work are described.

2. Key Hardware for Steel Surface Defect Recognition System

A complete steel surface defect recognition system consists of three parts: image
acquisition, defect recognition, and quality control. The image acquisition aims to measure
and capture the image information of the object to be inspected using an optical system
that consists of a camera or analog camera and an illumination system. The camera is
used to capture the image of the object to be detected, while the light source is used to
assist the camera in capturing a higher quality image, which is beneficial for improving the
detection accuracy and training efficiency. The defect recognition process is implemented
by the software algorithm, and the specific description of the defect recognition algorithm
is described in Section 3. The defect recognition section delivers the recognition results to
the quality control section, thus displaying the strengths and weaknesses of the detected
object as well as key information such as the type and location of the defect, etc. The quality
control section only requires the reading and display of the information, so no detailed
description is needed. A diagram of the steel surface defect recognition system is shown in
Figure 3.

2.1. Camera

Industrial cameras can be classified according to the output mode and can be divided
into two categories: analog cameras and digital cameras. As the output signal form of
analog camera is a standard analog video signal, it needs to be equipped with a special
image acquisition card to be converted into digital information that can be processed by a
computer. Analog cameras are generally used in the field of TV cameras and surveillance,
with the characteristics of good versatility and low cost, but generally lower resolution,
slow acquisition speed, and the image transmission is susceptible to noise interference,
resulting in image quality degradation, so it can only be used for machine vision systems
with low requirements for image quality. In contrast, digital cameras are integrated with
internal A/D conversion circuit, which can directly convert the analog image signal into
digital information, which not only effectively avoids the problem of interference in the
image transmission line, but also generates higher quality images. Compared with analog
cameras, digital cameras also have higher resolution and frame rate, smaller size, and less
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power consumption requirements [38]. Therefore, digital cameras are more suitable for
working in fast steel production lines and complex environments in real steel mills than
analog cameras.

Figure 3. Steel surface defect recognition system.

If divided by chip type, industrial cameras can be further divided into two cate-
gories: charge coupled device (CCD) cameras and complementary metal oxide semicon-
ductor (CMOS) cameras. The difference between these two cameras lies in the way that
light is converted into electrical signals. For CCD sensors, light striking the image el-
ement generates an electric charge that is transmitted and converted into the current,
buffer, and signal output through a small number of output electrodes. For CMOS sen-
sors, each image element completes its own charge-to-voltage conversion while generat-
ing digital signals. CCD cameras do not have an absolute advantage over CMOS cam-
eras because CCD sensors can adapt to the brightness range of 0.1–3 lux, which is 3 to
10 times higher than the general CMOS cameras, so the current general CCD cameras have
a higher imaging quality than CMOS cameras. However, because the CMOS sensor has a
photosensitive element, amplifier, A/D converter, memory, digital signal processor, and
computer interface control circuit integrated in a silicon chip, it has a simple structure,
is fast, has a low power consumption, low cost, and other characteristics. With the de-
velopment of technology, the CMOS camera’s poor image quality, small image sensitive
unit size, and other problems have gradually been solved by the emergence of an “active
image sensitive unit”, which increased the ability to resist noise. This means that CMOS
sensors have an almost comparable sensitivity with CCD sensors, the image quality can
be improved, and in terms of power consumption, the processing speed is better than
that of CCD sensors. Therefore, many people believe that CMOS will become the leading
sensor technology for machine vision in the future [39]. In light of the actual production
environment in steel mills, CMOS cameras are more suitable for future defect detection
systems. CMOS sensors do not require complex processing and directly convert the elec-
trons generated by the image semiconductor into a voltage signal, so they are very fast,
an advantage that makes CMOS sensors very useful for high frame cameras, where high
frame speeds can easily reach over a thousand frames at speed, which is very suitable for
high-speed production lines.

In summary, since the steel surface defect recognition process and the capture of
dataset images are generally performed on steel mill production lines, and the actual steel
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mill needs to face the complex and harsh inspection environment of vibration, light, high
temperature, fast, steam and oil, etc., CMOS type digital cameras are recommended as the
actual image capture tool.

2.2. Light Source

As the camera exposure time is relatively short when shooting at high speed, in
order to let enough light into the camera in a short time, proper fill light is essential. A
suitable lighting system can help the camera capture sharper images, thus making the entire
inspection system more efficient and accurate. Light sources often used in machine vision
are fluorescent, incandescent, xenon, and light emitting diode (LED). Among them, the LED
light source is the most widely used in the field of steel defect recognition [40–42]. This is
because the LED lighting cycle is long, can generally be illuminated for up to 100,000 h, and
with its lower heat, low power consumption, uniform and stable brightness, and variety of
colors can be made into a variety of shapes and sizes and can set a variety of irradiation
angles to meet a variety of lighting needs. In addition, the LED light source response is
fast, can reach maximum brightness in 10 microseconds or less, has a power supply with
an external trigger, can be controlled by computer, has fast start, low operating costs, and
long life LED, which will reflect greater advantages in terms of the comprehensive cost and
performance. Guidelines for setting up the LED light source can be found in [43]. Since
some steel surfaces are relatively smooth, specular reflections need to be avoided as much
as possible, so diffusers can be added to the light set to reduce the glare reflected from the
metal samples.

3. Algorithm Classification and Overview

Steel surface defect detection algorithms are classified according to whether deep
learning techniques are applied and can be divided into traditional machine learning-
based algorithms and deep learning-based algorithms. The traditional machine learning
algorithms can be broadly classified into three categories: texture feature-based methods,
color feature-based methods, and shape feature-based methods. The algorithms based on
deep learning can be roughly divided into supervised methods, unsupervised methods,
and weakly supervised methods. Of course, deep learning methods can also be classified
according to the function of the selected neural network, which can be divided into image
classification networks and object detection networks. Among them, image classification
networks such as the classic AlexNet, ResNet, Visual geometry group (VGG), etc., and
object detection networks can be divided into single-stage methods and two-stage methods,
single-stage methods such as the well-known You only look once (YOLO) and Single shot
multibox detector (SSD), and two-stage networks such as Fast R-CNN and Faster R-CNN.

3.1. Defect Recognition Algorithm Based on Traditional Machine Learning

The traditional machine learning approach was an epoch-making advancement from
manual inspection, and usually starts with the manual design of feature extraction rules,
followed by feature extraction, and finally feeds the extracted features into the classifier to
achieve the classification of defects. Because of the reliance on manually designed feature
extraction rules, it leads to poor robustness and generalization ability of the algorithm and is
susceptible to interference and the influence of noise, thus reducing the detection accuracy.
The most traditional methods basically only provide a defect classification function and do
not perform defect localization or segmentation, which is an incomplete defect recognition
process. The machine learning algorithms used for steel surface defect recognition can
be broadly classified into texture feature-based methods, shape feature-based methods,
and color feature-based methods. However, in the field of steel surface defect detection,
since color features mainly refer to grayscale features of the image, and the methods used
to extract grayscale features are statistically based, the color feature-based methods were
classified here under the texture feature-based methods. An illustration of the classification
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based on traditional machine learning methods in the field of steel surface defect recognition
is shown in Figure 4.

 
Figure 4. Classification of traditional machine learning methods.

3.1.1. Texture Feature-Based Methods

Texture feature-based methods are the most common methods in the field of steel
defect detection, which reflects the homogeneity phenomenon in the image and can reflect
the organization and arrangement characteristics of the image surface through the grayscale
distribution of pixels and their nearby spatial neighborhood [44]. As shown in Figure 4,
it can be subdivided into statistical-based methods, filter-based methods, structure-based
methods, and model-based methods. These four methods can be used in combination or in
conjunction with each other to achieve a higher performance. Regarding the literature on
texture-based feature methods, these are shown in Table 2.

Statistical-based methods are used to measure the spatial distribution of pixel values,
usually by using the grayscale distribution of image regions to describe texture features
such as heterogeneity and directionality. Its common statistical methods include histogram,
co-occurrence matrix, local binary patterns, etc. In 2015, Chu et al. [47] proposed a feature
extraction method based on smoothed local binary patterns, which is insensitive to noise
and invariant to scale, rotation, translation, and illumination, so the algorithm can maintain
a high classification accuracy for the identification of strip surface defects. In 2017, Truong
and Kim [48] proposed an automatic thresholding technique, which is an improved version
of the Otsu method with an entropy weighting scheme that is able to detect very small defect
areas. Luo et al. [49] proposed a selective local binary pattern descriptor, which was used
to extract defect features, and then combined it with the nearest neighbor classifier (NNC)
to classify strip surface defects; this algorithm pursued the comprehensive performance
of recognition accuracy and recognition efficiency. The following year, Luo et al. [52]
also proposed an improved generalized complete local binary pattern descriptor and two
improved versions of the improved complete local binary pattern descriptor (ICLBP) and
improved the complete noise-invariant local structure pattern (ICNLP) to obtain the surface
defect features of the hot rolled steel strip, and then used the nearest neighbor classifier to
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achieve defect recognition classification, thus achieving high recognition accuracy. Zhao
et al., in 2018 [51], designed a discriminative manifold regularized local descriptor algorithm
to obtain steel surface defect features and complete matching by the manifold distance
defined in the subspace to achieve the classification of defects in images. In 2019, Liu
et al. [53] proposed an improved multi-block local binary pattern algorithm to extract
the defect features and generate grayscale histogram vectors for steel plate surface defect
recognition, and this work was able to recognize images at 63 FPS with a high detection
accuracy at the same time.

Table 2. Summary of algorithms based on image texture features.

Category Year Ref. Object Function Methods Performance

Statistical Based
Methods

2013 [45] Hot rolled steel strip Defect Classification Local binary pattern SNR = 40,
ACC = 0.9893

2014 [46] Steel strip Defect Classification Co-occurrence matrix ACC = 0.9600
2015 [47] Steel strip Defect Classification Local binary pattern ACC = 0.9005
2017 [48] Steel strip Defect Location Auto threshold -

2017 [49] Hot rolled steel strip Defect Classification Local binary pattern ACC = 0.9762,
FPS = 10

2017 [50] Steel Defect Classification Histogram,
co-occurrence matrix ACC = 0.9091

2018 [51] Steel Defect Classification Local descriptors ACC = 0.9982,
FPS = 38.4

2018 [52] Hot rolled steel strip Defect Classification Local binary pattern
TPR = 0.9856,
FPR = 0.2900,
FPS = 11.08

2019 [53] Plate steel Defect Classification Local binary mode, gray
histogram

ACC = 0.9440,
FPS = 15.87

Filter Based
Methods

2012 [54] Hot rolled steel strip Defect Classification Curved wave transform ACC = 0.9733

2015 [55] Thick steel plate Defect Detection Gabor ACC = 0.9670,
FPR = 0.75

2015 [56] Continuous casting slabs Defect Classification Shearlet ACC = 0.9420
2017 [57] Steel slabs Defect Detection Gabor ACC = 0.9841
2018 [58] Hot rolled steel strip Defect Classification Shearlet ACC = 0.9600

2013 [59] Hot rolled steel strip Defect Detection Wavelet transform G-mean = 0.9380,
Fm = 0.9040

2014 [60] Plate steel Defect Detection Gabor TPR = 0.9446,
FNR = 0.29

2019 [61] Continuous casting slabs Defect Classification Contour wave AP = 0.9787

Structure Based
Methods

2016 [41] Steel rails Defect Location Edge -
2010 [62] Steel strip Defect Location Edge -

2015 [63] Steel strip Defect Detection Morphological
operations

ME = 0.0818,
EMM = 0.3100,
RAE = 0.0834

2016 [64] Steel rails Defect Location Skeleton ACC = 0.9473,
FPS = 1.64

2014 [65] Silicon Steel Defect Segmentation Morphological
operations -

Model Based
Methods

2018 [66] Steel strip Defect Segmentation Guidance template

PRE = 0.9520,
RECALL = 0.9730,

Fm = 0.9620,
FPS = 28.57

2018 [67] Steel sheet Defect Segmentation Low-rank matrix model

AUC = 0.835,
Fm = 0.6060,

MAE = 0.1580,
FPS = 5.848

2019 [68] High strength steel joints Defect Classification Fractal model ACC = 0.8833

2013 [69] Steel strip Defect Segmentation Markov model CSR = 0.9440,
WSR = 0.1880

2019 [70] Hot rolled steel Defect Segmentation Compact model
FPR = 0.088,

FNR = 0.2660,
MAE = 0.1430

* SNR indicates Gaussian noise, ME indicates misclassification error, EMM indicates edge mismatch, RAE indicates
relative foreground area error, CSR indicates correct segmentation rate, WSR indicates wrong segmentation rate,
FNR indicates false negative rate, FPR indicates false positive rate, MAE indicates mean square error, AUC
indicates area under the curve, TPR indicates true positive rate, FPS indicates frames per second.
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Filter-based methods are also called spectrum based methods and can be divided into
spatial domain based methods, frequency domain methods, and space–frequency domain
methods. They aim to treat the image as a two-dimensional signal, and then analyze the im-
age from the point of view of signal filter design. The filter-based methods include curvelet
transform, Gabor filter, wavelet transform, and so on. Xu et al. [54] achieved the multiscale
feature extraction of surface defects of a hot-rolled steel strip by curvilinear wave transform
and kernel locality preserving projections (KLPP), thus generating high-dimensional feature
vectors before dimensionality reduction, and finally, defect classification by SVM. In 2015,
Xu et al. [55] designed a scheme that introduced Shearlet transform to provide effective
multi-scale directional representation, where the metal surface image is decomposed into
multiple directional sub bands by Shearlet transform, thus synthesizing high-dimensional
feature vectors, which were used for classification after dimensionality reduction. Doo-chul
CHOI et al. [57] used a Gabor filter combination to extract the candidate defects and prepro-
cessed them with the double threshold method to detect whether there were pinhole defects
on the steel plate surface. In 2018 [58], the classification of surface defects of a hot-rolled
steel strip was achieved by extracting multidirectional shear wave features from the images
and performing gray-level co-occurrence matrix (GLCM) calculations on the obtained
features to obtain a high-dimensional feature set, before finally using principal component
analysis (PCA) for dimensionality reduction followed by SVM for defect classification. Liu
et al. [61] improved the contour wave transform based on the contour wave transform and
the non-downsampled contour wave transform, and combined the multi-scale subspace of
kernel spectral regression for feature extraction to achieve a relatively good recognition
speed and the algorithm is applicable to a wide range of metallic materials.

The core goal of structure-based methods is to extract texture primitives, followed
by the generalization of spatial placement rules or modeling, which is based on texture
primitive theory. Texture primitive theory indicates that texture is composed of some
minimal patterns (texture primitive) that appear repeatedly in space according to a certain
rule. This method is applicable to textures with obvious structural properties such as
texture primitives such as density, directionality, and scale size. In 2014, Song et al. [65]
used saliency linear scanning to obtain oiled regions and then used morphological edge
processing to remove oil interference edges as well as reflective pseudo-defect edges to
enable the recognition of various defects in silicon steel. In 2016, Shi et al. [41] reduced
the effect of interference noise on defect edge detection by improving the edge detection
Sobel algorithm, thus achieving accurate and efficient localization of rail surface defects.
Liu et al. [63] proposed an enhancement operator based on mathematical morphology
(EOBMM), which effectively alleviated the influence of uneven illumination and enhanced
the details of strip defect images. In 2016, [64] applied morphological operations to extract
features of railway images and used Hough transform and image processing techniques to
detect the track images obtained from the real-time camera to accurately recognize defect
areas and achieve real-time recognition.

Model-based methods construct a representation of an image by modeling multiple
attributes of a defect [71]. Some of the more common model-based approaches in the field of
industrial product surface defect recognition are Markov models, fractal models, Gaussian
mixture models, and low-rank matrix models, etc. In 2013, Xv et al. [69] introduced an
environment-based multi-scale fusion method CAHMT based on the hidden Markov tree
model HMT to achieve multi-scale segmentation of strip surface defects, which greatly
reduced the error rate of fine-scale segmentation and the complexity of the algorithm. In
2018 [67], a saliency detection model of double low-rank sparse decomposition (DLRSD)
was proposed to obtain the defect foreground image. Finally, the Otsu method was used
to segment the steel plate surface defects, which improved the robustness to noise and
uneven illumination. In 2019, [66] detected strip surface defects based on a simple guidance
template. By sorting the gray level of the image, the sorted test image was subtracted from
the guidance template to realize the segmentation of the strip surface defects. In the same
year, Wang et al. [70] constructed a compact model by mining the inherent prior of the
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image, which provided good generalization for different inspection tasks (e.g., hot-rolled
strip, rails) and had good robustness.

A summary of the characteristics of the commonly used texture feature-based methods
is shown in Table 3 for the reference of future researchers.

Table 3. Summary of methods based on the image texture features.

Category Methods Ref. Advantages Disadvantages

Statistical Based Methods

Threshold technology [48] Simple, easy to understand and
implement.

It is difficult to detect defects
that do not differ much from

the background.

Clustering [49] Strong anti-noise ability and high
computational efficiency

Vulnerable to pseudo defect
interference.

Grayscale feature statistics [50] Suitable for processing low
resolution images.

Low timeliness, no automatic
threshold selection.

Co-occurrence matrix [46]
The extracted image pixel space

relationship is complete and
accurate.

The computational complexity
and memory requirements are

relatively high.

Local binary pattern [47]
Discriminative features with rotation

and gray scale invariance can be
extracted quickly.

Weak noise immunity,
pseudo-defect interference.

Histogram [53]
Suitable for processing images with a

large grayscale gap between the
defect and the background.

Low detection efficiency for
complex backgrounds, or

images with defects similar to
the background.

Filter Based Methods

Gabor filter [55]
Suitable for high-dimensional

feature spaces with low
computational burden.

Difficult to determine optimal
filter parameters and no

rotational invariance.

Wavelet filters [59]

Suitable for multi-scale image
analysis, which can effectively

compress images with less
information loss.

Vulnerable to correlation of
features between scales.

Multi-scale geometric
analysis [56]

Optimal sparse representation for
high-dimensional data, capable of
handling images with strong noise

background.

The problem of feature
redundancy exists.

Curvelet transform [54]
High anisotropy with good ability to
express information along the edges

of the graph.

Complex to implement and
less efficient.

Shearlet and its variants [58]
Multi-scale decomposition and the

ability to efficiently capture
anisotropic features.

Difficult to retain original
image detail information.

Structure Based Methods
Edge [41]

It is suitable for extracting some
low-order features of the image and

is easy to implement.

Vulnerable to noise and only
suitable for low resolution

images.

Skeleton [64]
Almost distortion less representation

of the geometric and topological
properties of objects.

Unsatisfactory image
processing for complex

backgrounds.

Morphological operations [63] Great for random or natural textures,
easy to calculate.

Only for non-periodic image
defects.

Model Based Methods

Gaussian mixture model [66] Correlation between features can be
captured automatically.

Large computational volume
and slow convergence,

sensitive to outliers.

Fractal model [68]
The overall information of an image

can be represented by partial
features.

Unsatisfactory detection
accuracy and limitation for

images without self-similarity.

Low-rank matrix model [67] Strong discriminatory ability and
adaptive nearest neighbor.

Unsatisfactory detection
accuracy.

MRF model [69]

Can combine statistical and spectral
methods for segmentation

applications to capture local texture
orientation information.

Cannot detect small defects.
Not applicable to global

texture analysis.
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3.1.2. Shape Feature-Based Methods

Shape feature-based methods are also very effective defect detection methods. These
methods obtain image features through shape descriptors, so the accuracy of the shape
description becomes the key to the merit of the image defect recognition algorithm. A
good shape descriptor should have the characteristics of geometric invariance, flexibility,
abstraction, uniqueness, and completeness. The commonly used shape descriptors can be
divided into two categories: one is the contour shape descriptor, which is used to describe
the outer edge of the object area, and the other is the area shape descriptor, which is used to
describe the whole object area. The common methods based on contour shape descriptors
are Fourier transform and Hough transform, etc. For the method using Fourier transform,
it mainly uses the closure and periodicity of the region boundary to convert the two-
dimensional problem into a one-dimensional problem. For example, Yong-hao et al [72]
enables the detection of longitudinal cracks on the surface of the continuous casting plate
in a complex background by calculating the Fourier magnitude spectrum of each sub-band
to obtain features with translational invariance. In addition, Hwang et al. [73] used linear
discriminant analysis using short-time Fourier transform pixel information generated from
ultrasound guided wave data to achieve defect detection on 304SS steel plates. The Hough
transform methods use the global features of the image to connect the edge pixels to form a
regionally closed boundary. For example, Wang et al. in 2019 [74] achieved the detection
of product surface defects by using the fast Hough transform in the region of interest
(ROI) extraction stage to detect the boundary line of the light source. Regional shape
features include the length and width, elongation, area ratio, and other aggregate shape
parameter methods, which is a simple shape expression method. In addition, moments are
a more reliable and complex region shape feature including geometric moments, central
moments, etc. As Hu invariant moments [75], moment expressions are commonly used
to describe the shape of steel surface defect regions. As Hu et al. [76] used both Fourier
descriptors and moment descriptors to extract the shape features of steel strip surface
defect images, in addition to the grayscale features and geometric features of the images,
and finally support vector machine (SVM) was used to classify the defects in the steel
strip surface images. For shape feature extraction, it must be built on image segmentation
and is extremely dependent on the accuracy of image segmentation. For both methods,
based on texture features and shape features, they can also be used in combination. For
example, Hu et al. [77] proposed a classification model based on the hybrid chromosome
genetic algorithm (HCGA) and combined geometric, shape, texture and grayscale features
to identify and classify steel strip surface defects.

3.2. Defect Recognition Algorithm Based on Deep Learning

With the increase in computing power and the excellent performance of deep learning
methods, many researchers have applied deep learning methods to various industrial
inspection scenarios, and they have become the mainstream defect detection methods.
Compared with traditional machine learning methods, deep learning methods can extract
deeper and more abstract image features through operations such as convolution and
pooling, and thus have more powerful characterization capabilities and do not require
human-designed feature extraction rules, allowing for end-to-end model design. Convolu-
tional neural networks use convolutional operations to extract features from input images,
which can capture different levels of semantic information, thus effectively learning feature
representations from a large number of samples and making the model have more powerful
generalization capabilities. In addition, CNNs using pooling layers and sparse connections
can reduce the model parameters while ensuring the efficiency of computational resources
and network performance [78]. A detailed classification based on deep learning methods is
shown in Figure 5.
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Figure 5. Defect recognition algorithm based on deep learning.

3.2.1. Supervised Methods

Supervised methods of deep learning require well-labeled training sets and test sets
to verify the performance of the methods, which are generally more stable and accurate
than other types of methods. However, the quality of the training set directly affects the
performance of the algorithm and in a real industrial defect detection scenario, it is very
difficult to produce a well-labeled and large dataset. Fu et al. [79] proposed a fast and robust
lightweight network model based on SqueezeNet, which emphasizes the learning of low-
level features and adds an MRF module, thus achieving accurate recognition of defect types
using a small number of defect samples, and it is worth mentioning that the recognition
efficiency of this work exceeded 100 fps. The classification-first framework proposed by He
et al. [80] in 2019 consists of two networks: the classification network MG-CNN and YOLO,
where the MG-CNN is used to detect defect categories, and then the set of feature maps
with defects present is fed to the YOLO network to determine the defect locations based
on the results of the classification. In 2020, Ihor et al. [81] verified through experiments
that the pre-trained model ResNet50 was the best choice as a classification network for
detecting steel surface defects and used binary focus loss to alleviate the problem of data
sample imbalance to realize the recognition of steel surface defects. Li et al. [82] designed
a scheme combining domain adaptive and adaptive convolutional neural networks, DA-
ACNN, for the identification of steel surface defects. In 2021, Feng et al. [83] adopted a
scheme combining the RepVGG algorithm and spatial attention mechanism to realize the
recognition of surface defects of a hot rolled strip. A new defect dataset X-SDD for a hot
rolled strip was proposed. However, the recognition efficiency was not high because of the
large number of parameters. In the same year, [4] trained Unet and Xception separately
as classifiers to detect surface defects on rolled parts using synthetic datasets, and the
normal dataset training was used as a reference to verify the feasibility and effectiveness of
manually generated datasets. In 2021, Wang et al. [35] improved the VGG19 model, which
is shown in Figure 6, and the scheme was divided into two parts: online detection and
offline training. The online part extracts the ROI regions of the defect images using the
improved grayscale projection algorithm, and then detects the strip surface defects using
the improved VGG19 model; the offline part adds the extracted ROI regions to the defect
dataset and performs ROI image augmentation, adds the results to the balanced mixed
dataset, and then uses the mixed dataset training to improve the performance of VGG19,
thus effectively solving the problem of few samples or an unbalanced dataset.
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Figure 6. Model outline diagram [35].

Pan, Y et al. [37] incorporated the dual-attention module into DeepLabv3+, and
Xception was selected as the network to achieve accurate to pixel-level defect localization
segmentation. The edge-aware multilevel interaction network proposed by Zhou et al.
in 2021 [84] used the ResNet network as the base backbone and adopted a U-shaped
architecture composed of encoder decoders to recognize strip surface defects. In 2022,
Liu et al. [85] designed the lightweight network CASI-Net, whose structure is shown in
Figure 7. The network uses a lightweight feature extractor to extract image features, and
then uses a collaborative attention mechanism and self-interaction module based on a
biological vision to modify the features. Finally, multilayer perceptron (MLP) was used to
classify the surface defects of the steel strip.

 

Figure 7. Overview of the CASI-Net framework [85].

3.2.2. Unsupervised Methods

Unsupervised methods, as opposed to supervised methods, do not require their train-
ing sets to be labeled, or are even just trained with enough defect-free samples, making
up for the disadvantage that supervised methods have difficulty in producing datasets.
However, in contrast, the detection accuracy of unsupervised methods is generally lower
than that of supervised methods, and there is instability in the training results. The com-
monly used unsupervised methods include autoencoder, GAN, deep belief network [86,87],
and self-organizing graph [88], etc. In 2017, Liu et al. [89] used an anisotropic diffusion
model to eliminate the interference of pseudo-defects, then proposed a new HWV unsu-
pervised model to characterize the texture distribution of each local block in the image,
and finally invoked the adaptive thresholding technique to achieve the segmentation of
the defects and background. Mei et al. (2018) [90] also used only defect-free samples to
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train the model, and the method was constructed based on the convolutional denoising
autoencoder (CDAE) architecture of Gaussian pyramids to distinguish between defective
and defect-free parts. In 2019, [91] proposed a single classification method based on GAN
for steel strip surface defect detection, which could only detect the presence or absence of
defects and cannot distinguish the categories. In the same year, [92] used convolutional
autoencoder convolutional autoencoder (CAE) and sharpening processing to extract the
defect features of the missing input image, and finally used Gaussian blurring and thresh-
olding as post-processing to clarify the defects to achieve the segmentation of defects. In
2020, Niu et al. [93] proposed a global low-rank non-negative reconstruction algorithm
with background constraints to fuse the detection results of 2D significant maps and 3D
contour information to achieve the detection of rail surface defects.

3.2.3. Weakly Supervised Methods

Weakly supervised methods between supervised and unsupervised methods, which
have three categories, namely, incomplete supervision, inexact supervision, and imprecise
supervision [94]. The first two of these methods have both been well validated in the field
of surface defect detection. Among them, inexact supervision refers to the use of a small
amount of labeled data mixed with a large amount of unlabeled data for training, so that
a more desirable accuracy can be obtained while avoiding the difficulty of producing a
large number of labeled datasets. Uncertain supervision is the use of a small amount of
fully labeled data (pixel-level labeling) mixed with a large amount of weakly labeled data
(image-level or box-level), which showed a performance almost as good as that of fully
supervised methods and reduced the trouble of producing fully labeled datasets. Finally,
inaccurate supervision means that the given data samples may contain partially incorrect
labeling information. The scheme proposed by He et al. [95] in 2019 combined a convo-
lutional autoencoder with a semi-supervised GAN and introduced a passthrough layer
in the CAE to extract fine-grained features, resulting in excellent recognition accuracy. In
2019, the Google Institute [96] designed a new algorithm MixMatch by unifying the current
mainstream semi-supervised algorithms, and conducted extensive detection experiments
using this algorithm, which will have a significant performance improvement compared
with other weakly supervised methods. He et al. [97] proposed a multiple learning algo-
rithm based on the GAN and ResNet18 networks, which could generate data samples by
itself and provide labels for the samples, enabling the expansion of the dataset, thus further
enhancing the recognition of defects with few samples. Jong et al., 2020 [98] proposed a
new convolutional variational autoencoder, convolutional variational autoencoder (CVAE),
which was used to generate defect images and then used these images to train the proposed
CNN classifier to achieve high accuracy defect detection. The model designed by Jakob
et al. (2021) [99] had two sub-network architectures [100,101], a segmentation sub-network
that learns from pixel-level labels, and a classification sub-network that learns from weak
image-level labels and combines these two networks to achieve hybrid supervision, and ex-
perimentally demonstrated that hybrid supervised training with only a few fully annotated
samples added to weakly labeled image samples could yield comparable performance
to the fully supervised model. Zhang et al. [102] proposed a weakly supervised learning
method named CADN, which was implemented by extracting the category perception spa-
tial information from the classification pipeline, only used weak image labels for training,
and could simultaneously realize image classification and defect localization.

To facilitate the understanding of the characteristics of the three deep learning methods,
a pipeline diagram of the deep learning methods is summarized in Figure 8 and the
characteristics of the deep learning methods are shown in Table 4.
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Figure 8. Diagram of the outline of the deep learning methods.

Table 4. Summary of the features of deep learning methods.

Category Advantages Disadvantages

Supervised methods
High precision, good

adaptability, wide range of
applications.

Dataset annotation is heavy
and difficult to make.

Unsupervised methods
It can be trained directly using

label-free data with simple
techniques.

Relatively low precision,
unstable training results are
easily affected by noise and

initial parameters.

Weakly supervised methods
It has the advantages of both
supervised and unsupervised

methods.

The training process is tedious
and the technical

implementation is
complicated.

3.3. Object Detection Methods

The counterpart of the image classification network is the object detection network,
which mainly contains single-stage methods and two-stage methods, each of which has
its own advantages and disadvantages. The main difference between the single-stage and
two-stage methods is whether there is a clear candidate box generation stage within the
algorithm. The single-stage object detection algorithm directly calculates the image to
generate the detection result, which is fast, but the detection accuracy is relatively low;
the two-stage object detection algorithm first extracts the candidate box from the image,
and then conducts the secondary correction based on the candidate region to obtain the
detection point result, which has a higher detection accuracy, but slower detection speed.
Therefore, what needs to be done in the field of object detection is to continuously optimize
the mainstream object detection algorithms to achieve the best balance of detection accuracy
and speed.

3.3.1. Single-Stage Methods

The most popular single-stage algorithms include SSD [24], YOLO [27], RetinaNet [28],
CenterNet [33], etc. Li et al. [103] used a fully convolutional YOLO network to achieve
the classification and localization of surface defects in steel strip with high recognition

18



Coatings 2023, 13, 17

accuracy and speed. Yang et al. [104] proposed a deep learning algorithm for the defect
detection of tiny parts based on a single short detector network SSD and speed model
with a maximum detection accuracy of 99%. In 2021, Cheng et al. [105] proposed a steel
surface defect recognition scheme based on RetinaNet with differential channel attention
and adaptive spatial feature fusion (ASFF). Kou et al. [106] proposed an end-to-end defect
detection model based on YOLO-V3 and combined it with anchor free feature selection to
reduce the computational complexity of the model. However, this work could only detect
defects in the normal size range, and very small defects in high-resolution images could not
be detected. In 2022, Chen et al. [107] proposed a real-time surface defect detection method
based on YOLO-V3 with a lightweight network MobileNeV2 selected for its backbone
network, an extended feature pyramid network (EFPN) was proposed to detect multi-
size objects, a feature fusion module was also designed to capture more regional details,
and the scheme achieved high detection speed and accuracy. Tian et al. [108] proposed a
steel surface defect detection algorithm called DCC-CenterNet, which not only focused
on the center of the defect, but also extracted the overall information without drawing
false attention.

3.3.2. Two-Stage Methods

In the field of industrial defect detection, common two-stage classical methods include
RCNN [21], SPPNet [20], Fast RCNN [23], Faster RCNN [26], and Cascade RCNN [29],
etc. The method proposed by Rubo et al. in 2020 [109] was based on Faster R-CNN and
proposed three important improvements of weighted ROI pooling, FPN-based multi-scale
feature extraction network, and strict-NMS to achieve more accurate defect recognition.
Wang et al. in 2021 [36] proposed a combination of ResNet50 and an improved Faster
R-CNN algorithm to detect steel surface defects and proposed three important improve-
ments to the Faster R-CNN with spatial pyramid pooling (SPP), enhanced feature pyramid
network (FPN), and matrix NMS algorithm to achieve higher detection accuracy. Zhao
et al. [110] proposed an improved Faster R-CNN based network model, whose model
structure is shown in Figure 9, where ResNet50 is used as the feature extraction network.
First, the ResNet-50 network is reconstructed using deformable convolution. Second, the
feature pyramid network is used to fuse multi-scale features and replace the fixed region of
interest pooling layer with a variable pooling layer. Finally, the soft non-maximum value
suppression algorithm (SNMS) is used to suppress detection frames that have significant
overlap with the highest score detection frames, thereby enhancing the network’s ability
to identify defects. The method proposed by Li et al. [8] in 2022 is based on the improved
YOLOV5 and Optimized-Inception-ResNetV2 models, where the first stage is to locate
defects with the improved YOLOV5, and the second stage is to extract defect features and
classify them with Optimized-Inception-ResNetV2. A summary of deep learning-based
methods for identifying steel surface defects is shown in Table 5.

 

Figure 9. The improved method of Faster R-CNN [110].
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Table 5. Summary of deep learning-based algorithms.

Category Year Ref. Methods Object Function Performance

Supervised
Methods

2017 [111] CNN Metal Defect Classification ACC = 0.9207

2017 [112] Decay Multi-Type Defect Detection ACC = 0.9400, FPS = 17,
EE = 0.2100

2019 [113] VGG + LSTM Steel plate Defect Detection ACC = 0.8620
2019 [114] Du-Net Metal Defect Segmentation ACC = 0.8345
2019 [115] InceptionV4 Hot rolled Steel Defect Classification RR = 0.9710

2019 [79] SqueezeNet Steel Defect Classification ACC = 0.9750, FPS = 100, Model
size = 3.1 MB

2019 [80] MG-CNN Hot rolled Steel Defect classification and
Location CR = 0.9830, DR = 0.9600

2020 [81] ResNet50 Steel Defect Classification PRE = 0.8160, ACC = 0.9670,
F1 = 0.6610, RECALL = 0.5670

2021 [82] DA-ACNN Steel Defect Classification ACC = 0.9900

2021 [83] RepVGG Hot rolled steel
strip Defect Classification

ACC = 0.9510,
RCALL = 0.9392, PRE = 0.9516,
F1 = 0.9325, Params = 83.825 M

2021 [4] Unet + Xception Rolled piece Defect Classification and
Segmentation

PRE = 0.8400, RECALL = 0.9000,
Dice score = 0.5950

2021 [35] VGG19 Steel strip Defect Classification ACC = 0.9762, FPS = 52.1

2021 [37] DAN-DeepLabv3+ Steel Defect Precise Segmentation mIoU = 0.8537, PRE = 0.9544,
RECALL = 0.9071, F1 = 0.9297

2021 [84] ResNet34 Steel strip Defect Precise Seg-mentation
MAE = 0.0125, WF = 0.9200,
OR = 0.8380, SM = 0.9380,

PFOM = 0.9120, FPS = 47.6

2022 [85] CASI-Net Hot rolled steel
strip Defect Classification ACC = 0.9583, Params = 2.22 M

Unsupervised
Methods

2020 [93] GLRNNR Steel rails Defect Detection and
Segmentation

MAE = 0.0900, AUC = 0.9400,
PRE = 0.9481, RECALL = 0.8066,

Fm = 0.8716

2017 [90] MSCDAE Multi-Type Defect Detection and
Segmentation

RECALL = 0.6440, PRE = 0.6400,
FA = 0.6380

2019 [92] CAE Hot rolled steel
strip Defect Segmentation –

2018 [116] FCAE Multi-Type Defect Segmentation PRE = 0.9200, FPS = 12.2

2019 [91] GAN Steel strip Defect Detection PRE = 0.9410, RECALL = 0.9380,
Fm = 0.9390

2017 [89] HWV Steel Defect Segmentation FPS = 19.23, PRE = 0.9570,
RECALL = 0.9680, Fm = 0.9620

Weakly
Supervised

Methods

2019 [40] GAN Multi-Type Defect Classification and
Segmentation

RECALL = 0.8710,
ACC = 0.9920, AUC = 0.9140

2019 [95] CAE + GAN Steel Defect Classification CR = 0.9650

2019 [117] D-VGG16 Multi-Type Defect Classification and
Segmentation

AP = 0.9913, PR = 0.9836,
TPR = 0.9967, FPR = 0.0164,

FNR = 0.0033
2019 [97] GAN + ResNet18 Steel Defect Classification ACC = 0.9507

2020 [102] CAND Multi-Type Defect Classification and
Segmentation

ACC = 0.8910, PRE = 0.5510,
RECALL = 0.9200, F1 = 0.6900,

mAP = 0.6120
2020 [98] CVAE Metal Defect Classification ACC = 0.9969, F1 = 0.9971

2021 [99] Dual network
model Steel Defect Classification and

Segmentation AP = 0.9573

Single-stage
Methods

2018 [103] YOLO Steel strip Defect Classification and
Location

ACC = 0.9755, FPS = 83,
mAP = 0.9755, RECALL = 0.9586

2020 [118] YOLOV3-Dense Steel strip Defect Classification and
Location

mAP = 0.8273, FPS = 103.3,
F1 = 0.8390

2021 [105] RetinaNet Steel Defect Classification and
Location

mAP = 0.7825, FPS = 12,
FLOPs = 105.3, Params = 42.2

2021 [106] YOLOV3 Steel strip Defect Classification and
Location mAP = 0.7220, FPS = 64.5

2022 [107] YOLOV3 Hot rolled steel
strip

Defect Classification and
Location

PRE = 0.9837, RECALL = 0.9548,
F1 = 0.9690, mAP = 0.8696,

FPS = 80.96

2022 [108] Center
Net Steel Defect Classification and

Location mAP = 0.7941, FPS = 71.37
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Table 5. Cont.

Category Year Ref. Methods Object Function Performance

Two-stage
Methods

2020 [119] SSD + Resnet Steel Defect Classification and
Location

PRE = 0.9714, RECALL = 0.9214,
Fm = 0.9449

2020 [109] Faster RCNN Steel Defect Classification and
Location DR = 0.9700, FDR = 0.1680

2021 [36] Faster RCNN Steel Defect Classification and
Location

ACC = 0.9820, FPS = 15.9,
F1 = 0.9752

2021 [110] Faster RCNN +
FPN Steel Defect Classification and

Location mAP = 0.7520

2022 [8]

YOLOV5 +
Optimized-
Inception-
ResNetV2

Hot rolled steel
strip

Defect Classification and
Location

mAP = 0.8133, FPS = 24,
Param = 37.7, RECALL = 0.7630

* RR indicates recognition rates, CR indicates classification rate, DR indicates detection rate, OR indicates
overlapping ratio, FDR indicates false detection rate.

4. Datasets and Performance Evaluation Metrics

4.1. Datasets

Datasets are the basis of research work on steel surface defect recognition. A good
dataset is more conducive to problem identification, thus facilitating problem solving.
With the improvements at the industrial manufacturing level, the number of defective
products is becoming smaller and smaller, so it is very challenging to create a high-quality
dataset for the training of aa defect recognition algorithm. In addition, the labeling of data
samples is also more labor-intensive. A high-quality dataset is very important for the defect
recognition algorithm, which will directly affect the final performance of the algorithm.
Therefore, the commonly used publicly available datasets have been summarized in the
field of steel surface defect recognition. Most of the selected datasets were steel surface
defect datasets, but they also contain some texture datasets of various materials for future
researchers. A summary of the datasets in the field of industrial product defect detection is
shown in Table 6.

Table 6. Summary of the datasets.

Dataset Object Description Link

NEU [45] Hot rolled steel strip

1800 grayscale images of
hot-rolled strip containing six
types of defects, 300 samples

of each.

http://faculty.neu.edu.cn/songkc/
en/zdylm/263265 (accessed

on 9 November 2022)

Micro Surface Defect Database [120] Hot rolled steel strip
Microminiature strip defect data,

with defects only about
6 × 6 pixels in size.

http://faculty.neu.edu.cn/songkc/
en/zdylm/263266 (accessed

on 9 November 2022)

X-SSD [83] Hot rolled steel strip 7 typical defects of hot-rolled steel
strip, with 1360 defect images.

https://github.com/Fighter2009239
2/X-SDD-A-New-benchmark

(accessed on 9 November 2022)

Oil Pollution Defect Database [65] Silicon Steel Oil-disturbed silicon steel surface
defects dataset

http://faculty.neu.edu.cn/songkc/
en/zdylm/263267 (accessed

on 9 November 2022)

Severstal: Steel Defect Detection Steel plate

There are 12,568 grayscale images
of steel plates of size 1600 × 256
in the training dataset, and the

images are divided into
4 categories.

https://www.kaggle.com/c/
severstal-steel-defect-detection/data

(accessed on 9 November 2022)

UCI Steel Plates Faults Data Set [121] Steel strip

This dataset contains 7 types of
strip defects. This dataset is not

image data, but data of 28 features
of strip defects.

https://archive-beta.ics.uci.edu/
dataset/198/steel+plates+faults

(accessed on 2 May 2022)
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Table 6. Cont.

Dataset Object Description Link

SD-saliency Steel strip

Contains a total of 900 cropped
images containing 3 types of

defects, each with a resolution
of 200 × 200.

https://github.com/SongGuorong/
MCITF/tree/master/SD-saliency-90

0 (accessed on 9 November 2022)

GC10-DET [122] Steel strip

The dataset contains 2257 images
of steel strip with 10 defect types

and an image resolution
of 4096 × 1000

https://github.com/lvxiaoming201
9/GC10-DET-Metallic-Surface-

Defect-Datasets (accessed
on 2 May 2022)

RSDDs Dataset [123] Steel rails
Two types of orbital surface

images (67 images and
128 images)

http://icn.bjtu.edu.cn/Visint/
resources/RSDDs.aspx (accessed

on 2 May 2022)

DAGM [124] Multi-Type

Includes 10 different
computer-generated grayscale
images of surfaces containing

various defects.

https://hci.iwr.uni-heidelberg.de/
node/3616 (accessed on 2 May 2022)

KolektorSSD2 [99] Multi-Type

This dataset training set test set
contains a total of 3335 color
images, more than 5 kinds

of defects.

https://www.vicos.si/resources/
kolektorsdd2/ (accessed

on 2 May 2022)

Kylberg Texture Dataset [125] Multi-Type
The dataset contains 28 texture
classes, each with 160 unique

texture patches.

http:
//www.cb.uu.se/~gustaf/texture/

(accessed on 2 May 2022)

4.2. Defect Recognition Algorithm Performance Evaluation Metrics

The performance evaluation metrics of defect recognition algorithms were used to
measure the performance of the designed algorithms, and the selection of the algorithm
performance evaluation metrics should be comprehensive because the selection of different
evaluation metrics may present different results. This paper summarizes some of the
algorithm performance evaluation metrics commonly used in the field of steel defect
detection, which can be broadly divided into two categories: the precision class metrics
and the efficiency class metrics.

4.2.1. The Precision Class Metrics

The precision class evaluation metrics were used to evaluate the precision of the
relevant algorithms for the classification of defect categories and the precision of the defect
localization segmentation.

The first and most basic evaluation metrics are TP, TN, FP, and FN, where TP indicates
the true positive, the number of correctly classified positive samples; TN indicates the
true negative, the number of correctly classified negative samples; FP indicates the false
positive, the number of negative samples classified as positive; and FN indicates the false
negative, the number of positive samples classified as negative. Based on the above four
basic evaluation metrics, evaluation metrics such as PRE, RECALL, ACC, false escape
rate, and false alarm rate evolved. Among them, PRE represents the ratio of the number
of correctly predicted positive samples to the number of predicted positive samples, the
classification precision of the algorithm, with the following equation:

PRE =
TP

TP + FP
, (1)

A higher PRE means a smaller random error, a smaller variance, describing the
perturbation of the prediction results. RECALL indicates the ratio of the number of correctly
predicted positive samples to the number of actual positive samples, which is given by the
following formula:

RECALL =
TP

TP + FN
, (2)
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A higher value of RECALL means that the algorithm is more capable of detecting the
object algorithm. ACC indicates the proportion of the total number of correctly predicted
samples to the total number of samples, which is given by the following formula:

ACC =
TP + TN

TP + TN + FP + FN
, (3)

A higher value of ACC represents a smaller systematic error, a smaller deviation, and
describes the degree of deviation of the predicted result from the actual value. For the error
escape rate, EE is defined as the number of negative samples judged to be positive as a
proportion of the total number of negative samples in the sample, calculated as follows:

EE =
FP

TN + FP
, (4)

For the false alarm rate, FA is defined as the ratio of the number of positive samples
incorrectly determined as negative to the number of all positive samples, calculated as follows:

FA =
FN

TP + FN
, (5)

It should be noted that the above metrics, if the values of the evaluation metrics of a
single category are calculated in the multi-classification algorithm, it is necessary to take
any of the classes in the multi-classification as a positive sample and combine the other
classes into one class as a negative sample, so that the TP, TN, FP, and FN of each class
can be calculated separately, and thus the other evaluation metrics of each class can be
calculated. The formula of PRE and RECALL shows that the higher the PRE indicator, the
higher the accuracy of predicting positives, but this indicator does not take into account the
wrong prediction of negative samples, while the RECALL indicator is exactly the opposite
situation, that is, it does not take into account the wrong prediction of positive samples,
so it is possible that there is an algorithm with very high and very low PRE and RECALL
metrics. A good algorithm also needs to have both a high PRE and RECALL. Therefore,
a metric that integrates PRE and RECALL is needed, and the F-measure can meet this
requirement with the following formula:

F−measure =
(

1 + β2
) PRE ∗ RECALL

β2PRE + RECALL
, (6)

When β = 1, the F-measure is the F1-score. The evaluation metric WF is the weighted
F-measure, which is calculated as follows:

WF =
(

1 + β2
) PREw × RECALLw

β2PREw + RECALLw , (7)

For the AP and mAP metrics, they are also calculated based on PRE and RECALL,
where the AP average precision is defined by calculating the area under the P–R curve, and
by changing different confidence thresholds, multiple pairs of PRE and RECALL, values
can be obtained where the P–R curve is defined by putting the RECALL value on the X-axis
and the PRE value on the Y-axis, resulting in a PRE–RECALL curve, referred to as the P–R
curve. For the AP calculation method, the average accuracy calculation method is generally
calculated by 11-point interpolation, and the calculation formula is as follows:

AP =
1

11
×∑i∈{0,0.1,...,1} APr(i), (8)

23



Coatings 2023, 13, 17

Once the AP for all categories have been calculated, the value of the average precision
mAP for all categories can be calculated with the following formula:

mAP =
∑K

i=1 APi

K
, (9)

where K refers to the number of categories. Similar to the AP calculation is the AUC, which
means the area under the ROC curve, and a higher value of AUC means a better effect
of the corresponding classifier. The ROC curve is also called the perceptivity curve, and
the horizontal coordinate of the curve is the FPR, which is the false positive rate, and the
vertical coordinate is the TPR, which is the true positive rate. The AUC calculation formula
is as follows:

AUC =
∑i∈positiveclass ranki − M×(M+1)

2

M× N
, (10)

where ∑i∈positiveclass ranki refers to the summation of each positive sample serial number
located in the position after the subtraction operation (according to the probability of the
score from the small to reach the ranking, ranked in the rank position); M and N are
the number of positive and negative samples, respectively. MAE and MSE represent the
average absolute error and mean square error, respectively, and when both two-evaluation
metrics are smaller, it represents the better performance of the algorithm, where the MAE
is calculated as follows:

MAE =
1
n ∑n

i=1|ŷi − yi|, (11)

The MSE calculation formula is as follows:

MSE =
1
n ∑n

i=1(ŷi − yi)
2, (12)

where ŷi indicates actual value and yi indicates the predicted value.
For the object detection algorithm, PRE and RECALL are defined in a different way to

that in the above statement. The PRE in the object detection algorithm is the percentage of
the ratio of the overlapping area size of Ground Truth and the actual localization result to
the area size of the actual localization result. RECALL is the percentage of the ratio of the
overlapping area size of Ground Truth and the actual localization result to the area size of
Ground Truth. The calculation process is shown in Figure 10.

 
Figure 10. Calculation of PRE and RECALL in the object detection algorithm.
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In addition, the calculation of MAE and MSE is slightly different from the above description,
but the meaning is the same, so the MAE and MSE calculation formulae are as follows:

MAE =
1

W × H ∑W×H
i=1 |S(i)− GTs(i)|, (13)

MSE =
1

W × H ∑W×H
i=1 (S(i)− GTs(i))

2 (14)

where W and H denote the height and width of the localized segmentation area, respec-
tively; S denotes the area of the localized segmentation area; and GTS denotes the actual
defect area. The Dice coefficient, IoU, is also used as an evaluation metric in the object de-
tection algorithm. The Dice coefficient is used to compare the pixel consistency between the
predicted segmentation results and their corresponding GTS, and is calculated as follows:

Dice(X, Y) =
2× |X �Y|
|X|+ |Y| , (15)

IoU, which reflects the detection effect of the predicted detection frame and the real
detection frame, has a very good characteristic of scale invariance, that is, it is scale
insensitive, and the calculation formula is as follows:

IoU =
|X ∩Y|
|X ∪Y| , (16)

where X denotes the segmentation result and Y denotes GTS. SM [126] can evaluate the
structural similarity between the saliency map S and GTs by considering both the values of
region perception Sr and object perception So, which can be defined as:

SM = α× So + (1− α)× Sr, (17)

where α denotes the balance parameters, which are typically set to 0.5. Finally, PFOM [127]
visualizes the boundary quality of the segmentation result, which is commonly used in the
edge detection region and can be defined as:

PFOM =
1

max(NG, NS)∑NS
k=1

1
1+αd2

k

, (18)

where NG denotes the number of ideal edge points extracted from the GTS and NS denotes
the actual number of edge points of the segmentation result. α denotes the scaling constants
that are typically set to 0.1 or 1/9; dk denotes the Euclidean distance between the kth true
edge point and the detected edge point.

4.2.2. The Efficiency Class Metrics

The efficiency metric is used to evaluate the speed of the relevant algorithm to rec-
ognize defects, which can directly reflect whether the algorithm can achieve the ability
to identify the product surface defects in real-time on the production line as well as the
complexity of the algorithm design.

Commonly used efficiency class metrics include training duration, testing duration,
parameters Params, Inference Time, FPS, FLOPs, etc. Among them, training duration and
testing duration are the most easily to obtain and intuitive data in the process of algorithm
experiments. However, due to the different hardware environment of each work, even if
the same method is used, the length of time measured is also different when training and
testing on different hardware conditions, which needs to be considered by other efficiency
evaluation metrics. Params refers to the number of parameters involved in the calculation of
the designed method. This index reflects the amount of memory occupied by the designed
method, and its unit is generally represented by M. The Inference Time and FPS are the
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corresponding evaluation metrics. The former refers to the time spent to detect an image,
the unit of which is generally MS; the latter is the number of images that can be detected
within one second, also known as the number of frames. FLOPs represents the computing
complexity, which describes the complexity of the algorithm and reflects the hardware
requirement of the designed algorithm. The unit of FLOPs is usually denoted by B.

5. Challenges and Solutions

This section presents four challenges in the field of steel surface defect detection: the
problem of insufficient data samples, the problem of unbalanced data samples, the problem
of real-time detection, and the problem of small object detection, and gives appropriate
recommendations for solving them.

5.1. The Problem of Insufficient Data Samples

In terms of deep learning algorithms, generally the deeper the level, the better the
performance of deep neural networks, but they require a large amount of data for training,
otherwise they are prone to overfitting due to the high number of parameters in very
deep networks. However, the quality of datasets in the real environment is generally
not high and the number of types is not complete, resulting in deep neural networks not
being able to give full play to their performance when performing defect detection. To
address this problem, there are four effective solutions that can be used in combination
with the following. The first is the use of transfer learning methods, which use transfer
learning techniques to migrate pre-trained models (e.g., ResNet, VGG, etc.) that have
been trained in large datasets to the object detection problem (which usually has a smaller
training dataset). Transfer learning relaxes the assumption that the training data must
be independent and identically distributed with the test data [128], but it may affect the
final algorithm performance because the initial training dataset of the pre-trained model
has a large gap with the images for defect detection. Next, unsupervised or weakly
supervised methods can be chosen as a way to alleviate the problem of an insufficient and
incomplete number of defect samples in the dataset. Detailed descriptions of unsupervised
and weakly supervised methods can be found in Sections 3.2.2 and 3.2.3 in this paper.
Data augmentation techniques can also be used to expand the dataset to alleviate the
problem of insufficient dataset. Data augmentation techniques are very flexible and can
be used in the preparation phase of the dataset prior to training or can be performed
automatically during training [129]. Common methods of data augmentation include
performing image transformation operations such as random cropping, scaling, color
shifting, flipping, mirroring, and scaling to pre-process the original image for the purpose
of extending the original dataset. Finally, the problem of insufficient data samples is solved
by optimizing the network structure such as the proposed GAN network model, which
generates the image closest to the test image by continuously optimizing the parameters of
the iterative generator G. Then, the defect recognition algorithm is trained based on this, so
in the field of surface defect recognition, there are many methods based on GAN networks
for image defect recognition methods such as in [130,131].

5.2. The Problem of Unbalanced Data Samples

In deep learning-based defect detection algorithms, when performing model training,
the required dataset usually requires the number of sample sets of each category in the
dataset to be almost the same. However, the actual situation is that the number of defect-
free samples in the dataset is the largest, and the defective samples only account for a small
portion, or the number of samples in the defective samples is very unevenly distributed
among the various defective categories, and the number of easily collected defective
samples accounts for the majority, a situation known as data sample imbalance. This
imbalance exists in supervised learning methods, which will directly lead the algorithm
to put more attention on the categories with more sufficient samples in the dataset and
less recognition ability for the categories with smaller data volume, thus affecting the
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recognition ability of the algorithm for each type of defect. To address the problem of data
sample imbalance, the following methods can be used to solve it. First, at the dataset level,
data augmentation, data resampling [132], and GAN networks can be used to change the
sample distribution of the training set to a balanced state. Second, at the model level, the
attention to small samples can be adjusted by assigning appropriate weights to each sample
in the training set, assigning higher weights to a smaller number of sample categories, and
lower weights to a larger number of sample categories, and then the objective function can
be optimized by increasing the loss term for small classes of misclassified samples in the
objective function. In addition, the anomaly detection algorithm can be referred to build
a single classifier for anomalies (categories with small sample size) to detect them, thus
solving the data sample imbalance problem.

5.3. Real-Time Detection of Problems

In many real industrial scenarios of defect detection tasks, real-time detection is
required such as online analysis and online monitoring, which requires a millisecond
response speed. Therefore, the ability to perform real-time detection is a very important
consideration for the practicality of the algorithm, but the defect recognition algorithm
still faces the contradiction of accuracy and speed. For the time being, increasing the
detection efficiency of the model can be considered from two aspects: the algorithm and
hardware. In terms of algorithms, there is an option to use and develop some lightweight
detection algorithms such as SqueezeNet [25], MobileNet [31], and ShuffleNet [32], etc.
by trying to improve the recognition speed of the two-stage algorithm or the recognition
accuracy of the single-stage algorithm, aiming to achieve the lowest balance between the
lowest computational cost and the highest accuracy. In addition, model acceleration can be
performed by using optimized convolutional operations or by using distillation, pruning
and dropout techniques. On the hardware side, GPUs, FPGAs, DSPs, and Google’s TPUs
can be used to speed up the model computation.

5.4. The Problem of Small Object Detection

For small object detection, there are two definitions: first, the absolute size is small, and
it is generally considered that the object size to be detected is smaller than 32 × 32 pixels
will be recognized as small; the other is the relative size is small, that is, the ratio of the
object size to the original image size to be detected is less than 0.1, and it will be recognized
as small. The problem of small object detection can be optimized from the following
aspects: first, feature fusion technology can be used to fuse deep semantic information
into shallow feature maps, while using the rich semantic information of deep features
and shallow features to achieve the detection of small objects. Second, one can choose
to set the input size of the image by scaling the input image to an appropriate scale and
then inputting it into the network for detection. Context information can also be used to
establish a connection between the object and its context. Finally, one can also choose to
reduce the downsampling rate of the network to reduce the loss of detection objects on the
feature map; this reduction in the loss of information is beneficial to the detection of small
objects, and common methods are to reduce the pooling layer and use the null convolution.

6. Summary and Future Work

Steel is the core material of the world’s industrial production, and the development
of steel surface defect recognition technology promotes the high-quality production of
steel. Therefore, the research on steel surface defect recognition technology is of great
importance worldwide. The various types of defect recognition methods summarized in
Section 3 of this paper have been published in the last 10 years, and most of them have
been published in the last 5 years and represent the best performance methods in this field.
First, this paper summarized the difficulties of steel surface defect recognition, and then
counted the surface types of steel and the corresponding surface defect categories. Second,
we presented a detailed comparison of the key hardware of the surface defect detection
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system. This paper presented a systematic classification of steel surface defect recognition
algorithms, a literature review for each category, and a summary of the characteristics of
each technique. Since there is a lack of large and uniform datasets in the field of steel surface
defect recognition, and many methods have different performance evaluation metrics,
several commonly used public datasets were summarized and more than 20 performance
evaluation metrics were aggregated. Finally, the challenges faced by the current steel
surface defect recognition technology are summarized and corresponding solutions are
proposed. The goal of this paper was to facilitate the future research efforts of those
studying steel surface defect recognition techniques.

In future work, we aim to create a public algorithm performance evaluation platform
for steel surface defect recognition, where researchers can make a fair and comprehensive
comparison of various steel surface defect recognition algorithms, which will greatly
contribute to the development of steel surface defect recognition technology. The platform
will provide a complete steel surface defect dataset, a code based on current mainstream
public algorithms, a comprehensive set of algorithm performance evaluation metrics,
and a software toolkit and interface for researchers to upload new algorithm codes for
testing on their own. In addition to building an algorithm evaluation platform, we will
design a weakly supervised learning algorithm. We believe that the weakly supervised
learning algorithm will become the mainstream algorithm for steel defect recognition
in the future because it maintains a similar accuracy and stability of training results to
the supervised learning algorithm while significantly reducing the demanding dataset
requirements. We will focus our research on weakly supervised learning algorithms in two
directions: reducing the algorithm complexity and improving the defect detection efficiency.
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Abstract: The measurement and monitoring of the dimensional characteristics of the body-in-white
is an important part of the automobile manufacturing process. The process of using key point
regression technology to perform online detection of complex features on body-in-white currently
faces a bottleneck problem, namely limited training samples. Under the condition that the number of
labeled normal map samples is limited, this paper proposes a framework for domain-independent
self-supervised learning using a large number of original images. Under this framework, a self-
supervised pre-order task is designed, which uses a large number of easily accessible unlabeled
original images for characterization learning as well as a domain discriminator to conduct adversarial
training on the feature extractor, so that the extracted representation is domain-independent. Finally,
in the key point regression task of five different complex features, a series of comparative experiments
were carried out between the method in this paper and benchmark methods such as supervised
learning, conventional self-supervised learning, and domain-related self-supervised learning. The
results show that the method proposed in this paper has achieved significant performance advantages.
In the principal component analysis of extracting features, the representation extracted by the method
in this paper does not show obvious domain information.

Keywords: body-in-white; complex features; detection; self-supervised learning; the training sample

1. Introduction

The rapid development of the automobile industry makes it occupy an important
position in the global manufacturing industry and also makes automobile manufacturers
put forward higher requirements for product quality. Accurately measuring and monitor-
ing all kinds of dimensional features of an automobile body-in-white, especially complex
features, is an important means to improve the quality control of automobile manufac-
turing. Figure 1 shows the comparison between simple features and complex features.
Conventional 3D measurement technology is based on surface point cloud registration,
which can better capture the surface information of complex features, but it is difficult to
perform high-precision 3D reconstruction of these complex features [1–3]. This problem
can be solved by using the keypoint regression method [4,5]. However, the core algorithm
of this method is to regress keypoint coordinates from a two-dimensional normal map,
and its training process requires a large number of normal maps with keypoint location
labels. For industrial inspection and keypoint regression using surface normal maps, there
is currently no database available in the industry. The acquisition of the normal map
requires taking a large number of complex feature photos under multiple light sources
and using photometric stereo technology to reconstruct the surface normal vector. Key
point location calibration needs to go through relative position measurement of key points,
camera calibration and coordinate transformation, which leads to a considerable cost to
obtain the training data. Therefore, the question concerning how to complete the key point
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regression task based on normal map under the condition of limited number of labeled
samples has become a challenging topic in complex feature detection.

Figure 1. Comparison of simple features and complex features.

At present, the research on the key point regression problem is generally based on the
deep learning technology of convolutional neural network, most of which are supervised
learning [6]. The training process of supervised learning often requires a large amount of
labeled data. In order to reduce the dependence of the keypoint regression method on the
labeled training data, scholars try to use unlabeled data for self-supervised learning [7].
Inspired by self-supervised learning, Doersch et al. [8] proposed to learn high-level image
representations by using predicting the relative positions of image patches as a pre-order
task of self-supervised learning. This work has spawned research on patch-based visual
representations for self-supervised learning, where Noroozi et al.’s model predicts the
arrangement of “jigsaw puzzles” created from complete pictures [9]. Others generate well-
designed image-level classification tasks in contrast to chunking-based methods. Caron
et al. [10] used image clustering to create class labels, with classification tasks as pre-
tasks. There are other pre-tasks for these methods such as image inpainting [11], image
colorization [12], motion segmentation prediction [13] and spatial output tasks with high
density. However, none of the above algorithms are applicable to the normal map-based
keypoint regression problem.

Many scholars have studied the use of original images for self-supervised learning,
and downstream tasks are also performed on the original images, but the representation
of complex features under the original images is not obvious. The key point regression
problem based on the original images is difficult to achieve satisfactory accuracy [14].
Research [15] shows that normal maps of complex features contain richer information than
raw images. If self-supervision is performed in the original image and downstream tasks
are performed in the normal map, the representation extracted by self-supervised learning
will contain domain information, that is, the domain gap between the two images makes
the representation learned by self-supervision in the poor performance in downstream
tasks [16].

To address this challenge, this study proposed a highly data-efficient domain-invariant-
self-supervised learning method (DISS). The model used by this method consists of two
parts: a feature extractor and a regressor. Feature extraction used a jig-saw-based self-
supervised pre-task (also translated as agent task) for training with both labeled and
unlabeled data. In order to eliminate the domain distance between the original image
and the surface normal map, this algorithm used a discriminator to assist training, and
reduced the “KL” divergence between the probability distribution of the original image
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and the surface normal map through adversarial training. The training of the regressor was
performed entirely using labeled data.

This paper was divided into four parts. Part 1 was the introduction. Part 2 elaborated
the framework of domain-independent self-supervised learning, including training data
and problem description, self-supervised pretext-task training, network architecture, and
training process. Part 3 was the experimental results and analysis, including the acquisition
of data sets, complex feature key point regression experiments, and principal component
analysis of extracted features. Part 4 was the conclusion.

2. Domain-Independent Self-Supervised Learning Framework

2.1. Training Data and Problem Description

Given a small amount of labeled normal map Dt =
{
(xt

i , yt
i)
}mt

i=1, in which mt repre-
sented the number of surface normal map, xt

i represented the surface normal map, and
yt

i represented the corresponding label. Given a large amount of unlabeled raw image
Ds =

{
(xs

i )
}ms

i=1, in which ms represented the amount of raw image, xs
i represents the raw

image. According to the assumptions of the question in this paper, there was ms � mt.
Given a test set Dv =

{
(xv

i , yv
i )
}mv

i=1, in which mv represented the number of test data, xv
i

represented the surface normal map, and yv
i represented the corresponding label. The goal

of DISS was to use only Dt and Ds for training and to minimize the error on the test set
Dv. The DISS training process was divided into two stages: training on the pre-task of the
feature extractor, and training on the downstream task of the regressor.

2.2. Pre-Task Training

In self-supervised learning, pseudo-labels are usually obtained from unlabeled data
to form pre-tasks. The design of the pre-task must meet two conditions: it can make the
neural network converge, and at the same time, it must learn useful knowledge. Typical
pre-tasks include: jig-saw puzzle, image rotation, image colorization, image completion, etc.
In this problem, the jig-saw puzzle works best. Since the surface normal map was obtained
from the original image through the photometric stereo algorithm, each normal map in
the dataset Dt corresponded to at least one original image, and these original images were
formed into a dataset Dr =

{
(xr

i , yr
i )
}mt

i=1. Given training dataset Dt, Dr and Ds, in which xs
i ,

xr
i and xt

i were divided into mp jig-saw pieces. The nine pictures were randomly shuffled in
order, and the shuffled different sequences were one-hot encoded to form pseudo-labels ys∗

i ,

yr∗
i and yt∗

i . They formed new data sets D∗t =

{
(xt

i,j, y∗t
i )

mp

j=1

}mt

i=1
, D∗r =

{
(xr

i,j, y∗r
i )mp

j=1

}mt

i=1

and D∗s =

{
(xs

i,j, y∗s
i )mp

j=1

}ms

i=1
, which were used to train the pre-task. Figure 2 simplified

the acquisition of the pre-order task using a four-piece puzzle. If the feature extractor can
correctly distinguish the order of the puzzles, the features extracted by the extractor must
also contain some kind of representation of the relationship between different parts of the
object.

 

Figure 2. Schematic diagram of jigsaw pre-order task.
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2.3. Network Architecture

The neural network architecture was shown in Figure 3. The network was divided
into four parts: feature extractor E, sorter S, domain discriminator C and regressor R. As
shown in the Figure 3, the training of DISS was divided into three stages. In the first stage
of pre-task training, the features extracted by the feature extractor were sent to the sorter
and the domain discriminator respectively. The target features extracted by the feature
extractor had domain-independent variability through adversarial learning. During the
regressor training process in the second stage, the parameters in the feature extractor were
frozen, and only the parameters of the regressor were updated in the network. In the
final fine-tuning stage, the parameters in the feature extractor and regressor were trained
simultaneously.

 

Figure 3. Network architecture.

The role of the feature extractor was to extract representations from the input that was
useful for downstream tasks. The feature extractor consisted of 3 convolutional layers and
a maxpooling layer, where the convolutional layers all used small convolution kernels.

The sorter was used for the pre-task. It sorted the features extracted by the feature
extractor, and extracted the information of the object structure by forcing the feature
extractor through learning. The sorter used a fully connected layer and a softmax layer as a
classifier to predict the shuffled order of the jig-saw puzzle in the pre-task. The total number
of categories of the pre-order task is equal to the factorial of the number of jig-saw puzzle
pieces, which will lead to very many classification categories, and too many categories
will cause training difficulties. Therefore, a small amount of all possible out-of-order
combinations was usually extracted, and then one-hot encoding was performed. In this
problem, 50 different out-of-order combinations were taken.

A large number of unlabeled samples in the training dataset came from the original
image dataset, whose data distribution had a domain distance from the surface normal
map dataset used for testing. The introduction of domain discriminator and adversarial
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training, on the one hand, was used to discriminate whether the extracted features were
from Dt or Ds, on the other hand, it could reduce the domain distance between the features
extracted from the original image domain and the surface normal map domain.

The regressor was used to estimate the complex feature keypoint locations through the
extracted features, which consisted of three convolutional layers and one fully connected
layer.

2.4. Training Process

The training process of DISS was divided into three stages: a pre-task stage, training
regressor stage, and fine-tune stage.

In the pre-task stage, the data sets D∗t =

{
(xt

i,j, y∗t
i )

mp

j=1

}mt

i=1
, D∗r =

{
(xr

i,j, y∗r
i )mp

j=1

}mt

i=1

and D∗s =

{
(xs

i,j, y∗s
i )mp

j=1

}ms

i=1
were used to train the feature extractor, domain discriminator

and sorter, and the process was shown in Figure 4. To simplify the description, the example
in Figure 4 was the case of a four-piece puzzle. The surface normal map xt

i was decomposed
into four small pictures, and four one-dimensional feature vectors were obtained through
the feature extractor E. The four vectors were shuffled in order y∗t

i and concatenated into
one dimension to form the representation:

f ∗t
i = Cat(

{
E(xt

i,j)
}mp

j=1
) (1)

where Cat( ) represented the vector concatenation operation. Did the same with D∗r and
D∗s to get the representation:

f ∗s
i = Cat(

{
E(xs

k,j)
}mp

j=1
), f ∗s

i = Cat(
{

E(xs
k,j)

}mp

j=1
) (2)

Figure 4. Data flow in the pre-task stage.

After the features were extracted, the sorter needed to sort them. The representation
f ∗t
i was input to the sorter:

p∗t
i = S( f ∗t

i ), p∗s
i = S( f ∗s

i ), p∗r
i = S( f ∗r

i ) (3)
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The domain discriminator needed to determine which domain (original image or sur-
face normal map) it came from, then the features were input into the domain discriminator
to get:

q∗r
i = C( f ∗r

i ), q∗t
i = C( f ∗t

i ) (4)

The ranking loss function Lp was defined as:

Lp =
ms

∑
i=1

Ce(p∗r
i , y∗r

i ) + Ce(p∗t
i , y∗t

i ) + Ce(p∗s
i , y∗s

i ) (5)

where Ce( ) was the cross entropy loss function.
Defined the discriminative domain loss function Ld

q :

Ld
q =

ms

∑
i=1
− log(1− q∗r

i )− log(q∗t
i ) (6)

Defined the extractor domain loss function Lg
q :

Lg
q =

ms

∑
i=1
− log(1− q∗t

i ) (7)

When training the pre-order task, the feature extractor and the sorter were trained
simultaneously, and the domain discriminator was trained alternately with the other two
neural networks. The pseudocode of an epoch training process was shown in Algorithm 1.
Among them, λ was the learning rate, θE, θC, and θS were the neural network parameters
of the feature extractor, the domain discriminator, and the domain sorter, respectively.

Algorithm 1 Pre-task training algorithm

Input: D∗t =

[(
xt

ij, y∗t
j

)mp

j=1

]mt

i=1
; D∗r =

[(
xr

ij, y∗r
j

)mp

j=1

]mt

i=1
; D∗s =

[(
xs

ij, y∗s
j

)mp

j=1

]ms

i=1
; λ

Initialize weights θE, θC, θS
for i = 1 → ms do

Extract features f ∗t
i , f ∗s

i , f ∗r
i according to formula (1) and (2)

if mod(i, 10) < 5 then
Calculate q∗r

i , q∗t
i according to formula (4)

Calculate the discriminative domain loss function Ld
q according to formula (6)

Calculate the extractor domain loss function Lg
q according to formula (7)

Update θC ← θC − λΔLd
q

else
Calculate the sort prediction p∗r

i , p∗t
j , p∗s

j according to formula (3)
Calculate the ranking loss function Lp according to formula (5)
Update θE ← θE − λΔ(Lg

q + Lp)

Update θS ← θS − λΔLp
end if

end for

The training of downstream tasks was divided into two stages: training the regressor
and fine-tuning the model.

Regression training used only the dataset Dt =
{
(xt

i , yt
i)
}mt

i=1. The normal map in the
dataset was input into the pre-task trained extractor to get the representation:

fi = E(xt
i ) (8)

The features were fed into the regressor to get the predicted coordinates of the keypoints:

ŷi = R( fi) (9)
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The regression loss was calculated:

Lr =
mt

∑
i=1

MSE(ŷi, yt
i) (10)

Training process contained a total of δ epochs. The first δ f epochs were the training
regressor stage, which froze the model parameters of the feature extractor. After the δ f th
epoch, the fine-tuning stage was entered, and the feature extractor and regressor were
trained at the same time. The pseudocode of the training process was shown in Algorithm 2.

Algorithm 2 Regression task training algorithm

Input: D∗t = [(xt
i , yt

i )]
mt
i=1, λr, τ, δ, δ f

Initialize weights θR, θE
for j = 1 → δ do

for i = 1 → mt do
Extract features f t

i according to formula (8)

Extract features
∧
yi according to formula (9)

Calculate Lr
end for
if j < δ f then

Update θR ← θR − λrΔLr
else

Update θR ← θR − λrΔLr
Update θE ← θE − λrΔLr

end if
if mod(j, τ) == 0 then

λr ← λr/2
end if

end for

3. Experimental Results and Analysis

3.1. Acquisition of Datasets

In order to evaluate the performance of the DISS framework proposed in this study,
a series of experiments were carried out in this paper. The experiment used the complex
feature database proposed by Liu et al. [15], in which the labels of the original image data
were completely hidden, and the labels of the normal map part were partly hidden, so as
to simulate the situation of missing data labels. Figure 5 described the process of obtaining
the four datasets used in this paper.

Figure 5. The datasets used in the experiment.
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Liu‘s dataset contains raw images, surface normal maps, labels, and was referred to
here as the original dataset. The mt sets of data containing the surface normal map and the
label were taken from the original dataset to form the normal map with labels dataset Dt.
The mr sets of data containing the original image and label were taken from this dataset to
form the original image with labels dataset Dr. Note that the Dt and Dr were aligned, so
they can use the same label data.

The ms sets of raw image data were taken from the original dataset to form the original
image dataset Ds. According to the hypothesis of the research question, there was mt � ms.
Finally, the mv sets of data containing the surface normal map and the label were taken
from the original dataset to verify the accuracy of the algorithm.

3.2. Complex Feature Keypoint Regression Experiments

The methods proposed in this paper were compared with the benchmark methods SL
(supervised learning), RSS (raw images self-supervised), and NRSS (normal maps and raw
images self-supervised). The SL adopted the direct regression method, which only used
labeled data for training. The RSS employed a Jig-saw-based self-supervised method, using
unlabeled data for pre-task training. The NRSS method did not use adversarial training
with a domain discriminator. The benchmark methods used for comparison were described
in detail in Table 1.

Table 1. Comparison of different methods in the experiment.

Method
Peculiarity

Use the Original Image Surface Normal Diagram Self-Supervision Confrontation Training

SL not Yes not not
RSS Yes Yes not not

NRSS Yes Yes Yes not
DISS Yes Yes Yes Yes

Here is a brief introduction to the difference between supervised learning and self-
supervised learning. Training samples for supervised learning must be labeled sample data.
Supervised learning is to train a model (learn a function) from a given labeled training data
sets. When new test data is input, the result can be predicted according to the function. Self-
supervised learning mainly uses proxy tasks to mine its own supervision information from
large-scale unlabeled data, and trains the network through the constructed supervision
information, so that it can learn valuable representations for downstream tasks.

Define the ratio of labeled data to unlabeled data,

α = mt/ms (11)

The ratio of unlabeled data to labeled data would affect how much the performance
improvement brought by self-supervised method would be. This parameter was proposed
for two reasons: First, it was to clarify the number of labeled data. Second, we could
analyze the impact of changes in the number of labeled samples on DISS by changing the
value of this parameter.

α = 5% was adopted in Experiment 1, and the results were shown in Table 2.
In the experiments, the DISS proposed in this paper had the lowest average error.

For the four complex features of N, P, S, and T types, DISS has the lowest error. For
complex features of B type, the error of the DISS method was also very close to the
lowest value. The experimental results fully reflected the advantages of DISS. Through
self-supervised training, DISS was able to learn useful information about the geometric
features of complex features in the pre-task using a large amount of unlabeled data, thereby
gaining an advantage in the downstream task. Compared with RSS and NRSS, which
also used self-supervised learning, DISS still had significant advantages. This was due to
the fact that although RSS used self-supervised learning, the input data for the pre-task
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and downstream tasks came from different domains, and this inter-domain bias resulted
in that self-supervision could only improve the final performance to a limited extent.
Comparing RSS and NRSS, it could be found that without using the domain discriminator
and adversarial training, adding the normal map to training dataset did not improve the
performance of the network on downstream tasks. This is due to the fact that although
the discriminator was able to rank the input data from two different domains correctly in
pre-tasks, there was no guarantee that the same representations were extracted from the
input data from the two different domains. The structure information of complex feature
learned by the feature extractor in the pre-task was mixed with different information from
the two domains. This made it impossible to ensure that useful information can be extracted
from input data from a single domain in downstream tasks.

Table 2. The average error of the proposed method and the three benchmark methods on five complex
features in Experiment 1.

The Characteristic Type Feature Recognition
Average Error (in Pixels)

DISS (Our Method) SL RSS NRSS

N-type features nut bolt 9.22 11.88 10.82 11.12
P-type features flat bolt 9.87 12.42 10.61 10.79
S-type features standard bolt 8.23 9.33 8.88 8.94
T-type features t-bolt 8.55 8.87 8.75 8.76
Type B features Ball-stud 7.43 7.42 7.44 7.56

average - 8.66 9.98 9.30 9.43

Compared with the SL method, DISS had more obvious advantages in N-type, P-
type and S-type features. The reason was that these three kinds of complex features were
relatively large in size and had rich texture and geometric features. In contrast, T-type
and B-type features were smaller in size and had centrosymmetric shapes. In the pre-
task, complex features with larger volume and richer surface information are easier to
distinguish, while complex features with small volume and centrosymmetric shape are
difficult to distinguish.

Experiment 2 was carried out when α takes three different values. Table 3 presented
the results of Experiment 2. For the sake of brevity, only the average error of all kinds of
complex features was shown here.

Table 3. The mean value of errors under different values of α.

α Value
Average Error (in Pixels)

DISS (Text Method) SL RSS NRSS

5% 8.66 9.98 9.30 9.43
10% 7.69 9.07 8.23 8.20
20% 5.88 6.38 6.40 6.48
40% 4.52 4.68 6.62 6.59

The results of experiment 2 showed that as the amount of labeled data increased,
the advantage of DISS over SL gradually decreased. This was due to the fact that the
fourth stage of DISS had the same effect as the last few epochs of SL. When the number of
labeled samples gradually increased, the effect of self-supervision was gradually masked
by supervised learning.

3.3. Principal Component Analysis of Extracted Features

In order to further analyze the influence of DISS on the feature extractor, a principal
component analysis (primary components analysis, PCA) experiment of extracted features
was carried out in this paper. The images xi in one dataset were imported into the fea-
ture extractor to get the representation of all samples, which were then expanded into
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n-dimensional vectors
→
f i
′ ∈ R

n×1, and all of the extracted features were represented as a
matrix:

F′ = [ f1
′ , f2

′ , . . . , fm
′ ] (12)

To normalize the data:

fi,j =
f ′ i,j − f i

′
√si,i

, i = 1, 2, . . . , n, j = 1, 2, . . . , m (13)

In which fi,j represented the elements in the normalized matrix F. To calculate its
sample correlation matrix as:

R =
1

n− 1
FFT (14)

The eigenvalues and eigenvectors of R were calculated to acquire two eigenvectors
corresponding to the largest two eigenvalues. The matrix combined by the two eigenvectors
was multiplied by the original normalized matrix:[

x̃
ỹ

]
=

[
α1
α2

]
F (15)

In which x̃, ỹ ∈ R
1×m were the abscissa and ordinate of all dimensionality-reduced

data, respectively. The original image and the surface normal map in the dataset were input
into the feature extractor separately to get:

→
f

s

i,
→
f

r

i ∈ R
n×1, i = 1, 2, . . . , mp (16)

The two vectors were stitched into a matrix:

Fa = [
→
f

s

1,
→
f

s

2, . . . ,
→
f

s

i,
→
f

r

1,
→
f

r

2, . . . ,
→
f

r

i] ∈ R
n×2mp , i = 1, 2, . . . , mp (17)

Principal component analysis was performed on Fa according to the above method to
obtain dimensionality-reduced representations from different domains. Figure 6 showed
the results for different kinds of complex features.

It was easy to find from the experimental results that the features from the normal
map extracted by the DISS method are more indistinguishable from the features from the
original image. On the contrary, the features extracted by RSS and NRSS methods carried
obvious domain information. For example, the features from the normal map extracted
by the RSS and NRSS methods were clustered together, compared with the features from
the original image were more divergent. The features extracted by the DISS method did
not have this characteristic. Besides, the features extracted from the normal map by the
RSS and NRSS methods had a smaller abscissa, while the features of the original image
had a larger abscissa. This pattern was not obvious in the features extracted by the DISS
method. Overall, the feature distributions extracted by the DISS method for inputs from
the two domains were more similar. In contrast, the features extracted by RSS and NRSS
carry obvious domain information. In the training of the pre-task, the amount of original
image data was much larger than the amount of normal map data. How to effectively
utilize the features extracted from the original image was the key issue of self-supervised
learning in this research. The features extracted by the DISS method did not carry obvious
domain information, which enabled the features learned from raw images to be used in
downstream tasks using normal maps as well. The features extracted by the RSS and NRSS
methods had obvious domain information, and the distribution of the extracted features in
the two domains had obvious distance, which made the features learned from the original
image difficult to be used by downstream tasks.

43



Coatings 2022, 12, 614

Figure 6. Principal component analysis of extracted features from two inputs.

4. Conclusions

Aiming at the limited training samples of the complex feature detection technology of
body-in-white, the few-shot learning technique based on solving the domain gap problem
in this paper can effectively reduce the dependence of the complex feature measurement
system on the labeled normal map. The proposed self-supervised learning and domain-
adaptive learning method had 1.32 pixels lower error than the supervised learning method
using normal maps, 0.64 pixels lower than the self-supervised learning method using
the original image, and 0.51 pixels lower than the self-supervised learning method using
normal maps. In extracting feature principal component analysis, the representations
extracted by our method do not exhibit obvious domain information, which proves the
effectiveness of our method. The results of this paper are of great significance for improving
the data efficiency of complex feature detection methods and reducing implementation
costs.

Detection of fusion of complex features and simple features is the direction of fur-
ther research. There may be simple features with complex features in areas other than
automobile body-in-white dimension control. For example, it only has complex geometry,
but no complex reflection properties. How to use this characteristic to develop a higher
performance and lower cost detection system is a topic worthy of further study.
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Abstract: In this paper, we describe a new method for non-destructive testing (NDT) X-ray image
defect segmentation by introducing a variable attention nested UNet++ network. To further enhance
the performance of the faint defect extraction and its clear visibility, a pre-processing method based
on pyramid model is also added to the proposed method to effectively perform high dynamic range
compression and defect enhancement on the 16-bit raw image. To illustrate its effectiveness and
efficiency, we applied the proposed algorithm to the X-ray image defect segmentation problem and
carried out extensive experiments. The results support that the proposed method outperforms the
existing representative techniques in extracting defect for real X-ray images collected directly from
industrial lines, which achieves the better performance with 89.24% IoU, and 94.31% Dice.

Keywords: defect segmentation; X-ray image; variable attention; UNet++

1. Introduction

A variety of non-destructive testing (NDT) methods are used in industrial production,
to detect the internal defects of objects, among which NDT methods based on X-ray imaging are
most widely used, mainly because of their intuitive imaging and high spatial resolution of imaging,
especially for the detection of small defects in complex structural products [1–3]. At present, the
use of industrial film is still very large. Its disadvantages include slow imaging and being
not environmentally friendly, and the process of preliminary preparation, exposure, film
processing, interpretation, etc. is very time-consuming. For complex workpieces, it takes
several hours of inspection time to complete the whole process, and most importantly, it
is difficult to digitize, which brings difficulties to the storage and retrieval of film. With
the development of industrialization, a large number of products need full inspection. The
previous use of film imaging for random inspection can no longer meet the current pace of
inspection, and so the industry of NDT X-ray imaging has an urgent need for digitalization
and automation.

Early digital X-ray imaging technology uses an image intensifier (I.I.) as the imaging
device, which can output a digital image of up to 12-bits, using the intensifier to output an
analog signal and then a digital camera to enhance and digitize the analog signal. Spatial
resolution and contrast sensitivity are the most important imaging indicators in X-ray
imaging. However, these two indicators of the image intensifier imaging system are not
up to the level of film imaging; coupled with the lack of relevant testing standards to
support, its application in the field of industrial inspection is limited. In actual industrial
applications, large-scale use of image intensifiers for defect detection occurs only in two
fields: automotive wheel castings [4,5] and some electronic devices, and small-scale use
of the field of welding seams [6] and cylinder inspection [7]. Other areas with strict
requirements for detection choose to use film imaging.

The latest X-ray imaging technology uses digital flat panel detectors as imaging
devices, which can output 16-bit digital X-ray images with contrast sensitivity indexes
that can exceed film imaging. In recent years, the price of flat-panel detector hardware
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has been reduced to a level generally accepted by industry, and the development of deep
learning-based correlation segmentation and identification algorithms has made automated
X-ray imaging-based detection possible. However, the diversity of inspected products and
their respective complex structures, as well as small and ambiguous defect structures, make
automatic defect detection on 16-bit image data extremely complex and challenging.

Defect detection can be roughly divided into three steps: (a) locating and segmenting
defects on the X-ray digital image of the inspected product, (b) identifying and quantita-
tively analyzing the segmented defects, and (c) judging whether the product is qualified
according to the relevant analysis data combined with the inspection process requirements.
Step (a) is the most difficult one, and it is very important to accurately and completely
segment the defects from the image containing the complex structure of the inspected
product for later quantitative analysis.

In general, methods for automatic defect segmentation can be divided into two cate-
gories: unsupervised and supervised. A variety of unsupervised techniques are used to
extract target defects from complex backgrounds [8,9], including matched filtering, mor-
phological processing, defect tracking, etc. One advantage of unsupervised segmentation
methods is that no sample annotation is required; however, the practical performance of
these methods is not good, especially for small-sized defects with more blurred edges [10].
However, most of the methods in unsupervised learning are based on traditional image
processing algorithms, which are not ideal for detection when encountering various com-
plex and variable practical applications, because it is difficult to extract effective features
and summarize prediction rules. For example, in the paper [3], the authors used tradi-
tional image processing algorithms, mainly median filter and morphological processes
for segmentation of defects. The experimental part of the data is relatively small and
does not work well on images with slightly complex backgrounds. In [11,12] the authors
used the SDD segmentation algorithm to segment ventricles in MRI images and cells or
nanoparticles in microscopic images, which have the best performance among the listed
single-threshold segmentation methods. However, due to the complicated structure of
the workpieces, the grayscale distribution of image background is not uniform. It can
be inferred that methods in [11,12] are not very applicable for the industrial X-ray defect
segmentation tasks. For supervised methods, the sample image first needs to be manually
labeled to mark the defects in it [13], and then the features are separated into background
and defects using a trainable classifier. In most cases, the supervised methods perform
better than the unsupervised based methods [14,15]. A recent review of deep learning for
general object detection can be found in [16], where the authors provide a comprehensive
survey of the recent achievements about deep learning for generic object detection.

In recent years, with the rise of deep learning research, several researchers have
introduced supervised methods based on deep learning to the task of defect segmentation
in X-ray images [17,18]. A very basic fully convolutional network (FCN) for weld defect
identification is presented in [19], in which the author illustrates some inspection results on
the GDXray database, but comparisons to other deep learning methods and more in-depth
tests are lacking. The U-Net algorithm is built on an FCN, consisting of an encoder and a
decoder, and the shape of the network resembles a “U” shape, hence the name “U-Net”.
U-Net is very different from other common segmentation networks in that U-Net uses a
completely different feature fusion method: splicing, where U-Net splices features together
in the channel dimension to form thicker features [20–22].

Subsequently, the better-performing UNet++ was developed based on U-Net [23].
UNet++ improves segmentation accuracy through a series of nested, dense jump paths that
meet the high accuracy requirements for defect detection [24]. The redesigned jump paths
make it easier to optimize feature mapping with semantically similar features. Dense jump
connections improve segmentation accuracy and improve gradient flow. Deep supervision
allows model complexity tuning to balance speed and performance optimization.

UNet++ has been widely used in biological image segmentation, such as retinal
vascular segmentation, liver CT image segmentation [25], lung CT image segmentation [26],
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ultrasound medical image segmentation [27], COVID-19 infection localization [28], heart
CT image segmentation [29], etc., and has achieved good results. There are also applications
in other scientific and industrial fields, such as the detection of impact craters on the lunar
surface [30], road detection [31], etc.

In recent years, there are also some other excellent deep learning network structures
for detecting objects in a variety of application scenarios. Vgg16 is a CNN network that
simply superimposes convolutional or fully connected layers with weights to 16 layers. As
the size of the input image is limited to 224 × 224 × 3, it is difficult to detect smaller defects
at the pixel level, and only locates out with boxes for weld defects, with no quantitative
output [32]. A spatial attention bilinear convolutional neural network (SA-BCNN) was
introduced and tested against other CNN based methods [33]. Faster R-CNN is recog-
nized to have better performance and much research has been done by many scholars.
Based on a basic Faster R-CNN system, Feature Pyramid Network (FPN) shows signifi-
cant improvement as a generic feature extractor in several applications [34]. It achieved
state-of-the-art single-model results on the COCO detection benchmark without bells and
whistles, surpassing all existing single-model entries including those from the COCO 2016
challenge winners at the time. A method based on Feature Pyramid Network (FPN) and its
subsequent improvements was used to detect defects in radiographic images of casting
aluminum parts [35,36]. The experimental results outperformed Faster R-CNN; it was an
instance segmentation method that could not segment the defects at pixel level and thus
could not produce quantitative defect detection results. A very similar pyramid approach
is used in networks for deep learning [37], wherein the spatial pyramid pooling is used
to remove the uniform limitation on the size of the input image; the pyramid method is
a common and useful tool for adapting to different resolutions and scales. Mask R-CNN
is introduced through extending Faster R-CNN by adding a branch for predicting an
object mask in parallel with the existing branch for bounding box recognition so that it
can efficiently detects objects in an image while simultaneously generating a high-quality
segmentation mask for each instance, which means it is more suitable for quantitative
defect detection [38].

There is no available large-scale defects database of X-ray images, and many scholars
use Generative Adversarial Networks (GAN) to generate more defect data for learning
in networks such as CNN. A CNN-based method for X-ray prohibited item recognition
has been proposed [39], and additionally, generative adversarial networks (GANs) are
used for data augmentation. In another CNN-based casting defect detection work [40],
the author builds the dataset by using synthetic defects, which are simulated using 3D
ellipsoidal models and Generative Adversarial Networks (GAN). This is done not only for
X-ray images: in [41] the authors also use GAN to generate more visible defect images to
improve defect detection.

In this paper, we propose a novel variable attention-based nested segmentation net-
work that improves the lower segmentation accuracy of the standard UNet++ network
using fixed perceptual field convolution. It can automatically adjust the perceptual field of
the network by the attention mechanism to more effectively utilize the spatial information
extracted at different scales and introduces an attention mechanism between the nested
convolutional blocks so that features extracted at different levels can be selected for merging
relevant to the segmentation task, as a way to improve the defect segmentation effect of the
whole network on sample images with complex background structures. In addition, a new
image pre-processing algorithm based on the pyramid model is proposed in this paper,
which effectively performs high dynamic range compression and defect enhancement
on the original 16-bit images. The grayscale distribution of the processed image is more
balanced, and the faint defects that are not easily detected by human eyes are clearly visible,
which is convenient for manual labeling.

We further describe the comparison between the proposed method and other related
typical methods involved, and to see the advantages and disadvantages of each method
more clearly, we summarize them in a table as follows in Table 1.
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Table 1. The comparison between the proposed method and other industrial X-ray defect detec-
tion methods.

Types
Methods and Brief

Description
Advantages Disadvantages

Unsupervised

Median and
morphological filters,

Ref [12]
Very easy to implement.

Does not work well on
images with slightly

complex backgrounds.
Defect detection

based on traditional
algorithms, Ref [4]

Better performance than
simple morphological

and threshold.

Poor results on complex
background images.

Supervised

LBP descriptor with
an SVM-linear

classifier, Ref [16]

Simple features and
framework structure.

Not a pixel-level defect
segmentation.

U-Net, Ref [21] Thicker features, defect
fusion at different scales.

The evaluation score of
80% indicates that the

system needs
modification for better

performance.

Proposed method

Developed HDR
pre-processing to

enhance more details,
large quantity and huge

variety of images for
training

A little bit
time-consuming; it is still
acceptable for practical

applications.

The experimental results show that after combining the image pre-processing algo-
rithm, the variable attention-based nested UNet++ network proposed in this paper has
better detection effect and higher accuracy for X-ray image defects than the other selected
network. It was observed that the proposed segmentation method exhibits the top segmen-
tation performance, which holds the leading position with 89.24% IoU, and 94.31% Dice.

2. Methods Section: Algorithm

Using the Pytorch deep learning framework, a variable attention-based nested segmen-
tation network with selective kernel convolution was built. The structure of the proposed
network in this paper is based on the U-Net++ network with a nested architecture. For
the convolutional module in the network, an improved SK module was used instead of
the traditional ordinary convolutional module, and an attention mechanism is introduced
between the nested convolutional blocks of the network so that features extracted at dif-
ferent levels can be selectively merged to improve the efficiency of propagating semantic
information through jump connections. The proposed network suppresses background
regions that are irrelevant to the segmentation task, while having the ability to increase the
weight of the target region, which in turn improves the accurate segmentation of defects.

The flow chart of the entire defect detection method is shown in Figure 1, the main
important process is divided into: input image, pre-processing, automatic defect detection,
and output detection result. The detailed description of each module will be detailed in the
subsequent part of this chapter.
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Figure 1. The flow chart of the entire defect detection method.

2.1. Image Pre-Processing

The original image acquired by the X-ray flat-panel detector is a 16-bit grayscale
image with a large dynamic range, and the difference between the grayscale values of the
defects themselves and those of the background is small, and the grayscale distribution
of the background is not uniform due to the inherent X-ray beam-hardening imaging
characteristics. We propose a new image pre-processing algorithm based on the pyramid
model to effectively perform high dynamic range compression and defect enhancement on
the 16-bit raw image. The grayscale distribution of the processed image is more balanced,
and the faint defects that are not easily detected by human eyes are clearly visible, which is
convenient for manual labeling.

The core idea of our proposed pre-processing algorithm is to decompose the image
into pixels representing individual details of the image, then do enhancement on these
pixels, and finally perform inverse reconstruction. We choose the Laplace pyramid function
for image decomposition, which meets the following two basic conditions: (1) it must
include all levels to represent the structure of any size, and (2) it must be continuous
without interruption. The effect of pre-processing is shown in Figure 2. On the left is the
original image, and on the right is the pre-processed image, where the faint porosity defects
in the weld are clearly visible after processing.

2.1.1. Image Decomposition and Reconstruction

The basic idea of Laplace pyramid function decomposition is that first, the original
image is low-pass filtered to reduce the closeness of the pixel-to-pixel connection, interval
sampling compresses the image data, which means the image sample density is reduced,
then interpolation is performed, and finally the resulting image is subtracted from the
original image as the first layer in the Laplace pyramid. Repeating the above operations
based on this layer of images expands into a pyramid-shaped multi-scale data structure.

Laplace pyramid is built on Gaussian pyramid and consists of a series of L0, L1, L2,
L3, L4, etc. As shown in Figure 3, each L is the set of differences between two adjacent
Gaussian pyramids, i.e.,

L (t) = G (t) − expand (G (t + 1)), (1)
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Figure 2. (a) Original casting image, (b) pre-processed image of (a), (c) original weld image, (d) pre-
processed image of (c).

Figure 3. Laplace Pyramid Structure. G0, G1, G2, G3 are the Gaussian pyramid images. In a Gaussian
pyramid, subsequent images are weighted down using a Gaussian average and scaled down. L0, L1,
L2 are the Laplace pyramid images which save the difference image of the Gaussian images between
each levels.

In the image decomposition process, each image is reduced by half (i.e., reduced to
one-half of the original sample density) from the previous one, at which point the whole
process presents a pyramid data structure. During image reconstruction, the Gaussian
pyramid needs to be scaled up and added to the Laplace pyramid of a lower level, i.e.,

G (t) = L (t) + expand (G (t + 1)), (2)
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2.1.2. Image Detail Enhancement

The main purpose is to enhance the details of the image by adjusting the spatial
frequency characteristics of the image to highlight the subtle defective features in the image,
specifically to achieve

Y = X + a × B (X) × (X − X1), (3)

where Y, X, and X1 represent the pixel values of the resultant image, the original image, and
the image after low-pass filtering, (X − X1) represents the high-frequency part of the image,
and the coefficient a determines the degree of enhancement of the high-frequency part.

First, the original image is low-pass filtered, that is, smoothed to obtain a smooth im-
age, and then the difference between the original image and the smoothed image to obtain
the difference image. The difference image represents the high-frequency information part
of the image, usually the edge and detail information part of the image, according to the
different data density parts of the image for the corresponding degree of image enhance-
ment, where the coefficient a, function B (X) is given in advance. Here, the coefficient a
and function B (X) are given in advance, and will vary according to the image type, image
effect requirements, and image data density distribution. The image data density distri-
bution in the algorithm is particularly important, because in the later algorithm Laplace
pyramid decomposition, hierarchical enhancement coefficients are related to the density of
the image data.

2.1.3. Reduced Dynamic Range

The dynamic range of the image is reduced in the low-frequency part, and the density
compensation of the region of interest is implemented:

Y = X + a × (A − X1) (4)

where X denotes the original image, X1 denotes the smoothed and filtered image, a is the
correction factor where a < 1 (used to control the degree of dynamic compression), and A is
a constant.

Firstly, the original image is smoothed by low-pass filtering to obtain a smoothed
image, then the difference is made with the given A to obtain a difference image, and then
multiplied with the given coefficient a. The meaning is to perform dynamic compression
of image data density, i.e., the low frequency part of the image is removed and the high
frequency part is retained, because the important detail information of the image often
exists in the high frequency. The final image obtained is compared with the original image.
The final image is obtained by summing with the original image.

2.2. Defect Segmentation Network

The Pytorch deep learning framework is used to build this network, and the structure
of the proposed convolutional neural network in this paper is shown in Figure 4, which
is based on the UNet++ network and uses a nested architecture to integrate U-Net of
different depths.

The network designed in this paper nests four layers of U-Net as the basic network
framework, where encoders and decoders are symmetrically distributed on both sides of
the network. All layers of U-Net share one feature extractor so that we only need to train
one encoder. A modified SK block is used to replace the traditional convolutional block
in the network, and a convolution with a perceptual field of 5 is generated by using two
3 × 3 convolutions in series in the SK block, which both improves the depth of the network
and reduces the computation and number of parameters, as shown in Figure 5. By using
the SK block, the perceptual field can be automatically adjusted to make more efficient use
of the feature information extracted at different scales. The encoder has a total of five layers,
each of which consists of two modified SK blocks + Relu. Each layer undergoes a maximum
pooling of size 2 × 2 with a step size of 2 after feature extraction. Each subsequent layer of
the structure is down-sampled in the same order.
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Figure 4. Schematic diagram of the structure of the proposed defect segmentation network. SK block
is adopted instead of convolutional block with an attention gate.

Figure 5. Schematic diagram of the structure of the improved SK module. The SK block consists of
two branches. The first one utilizes one conventional 3 × 3 convolutions, while the second one uses
two 3 × 3 convolutions to generate a perceptual field of 5.

To focus on features related to the target or goals, we add a simple but effective
attention gate to the nested architecture, as shown in Figure 6. This attention gate has two
inputs: an up-sampled feature Fg in the decoder and a feature Fx of equal depth in the
encoder. The selected signal Fg in the attention gate selects the more useful features from
the encoded feature Fx and sends them to the upper decoder.

The contextual information extracted by the encoder is propagated to the decoder of
the corresponding layer through a dense jump connection, thus allowing the extraction
of more efficient layered features. In the case of dense jump connection, the input of
each convolutional block in the decoder consists of two equal-scale feature maps: (1) the
intermediate feature map from the output of the previous potential gate along the same
depth of the jump connection; and (2) the final feature map from the output of a deeper
deconvolution block operation. After receiving and concatenating all the to-be-feature
maps, the decoder recovers the image in a bottom-up manner.
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Figure 6. Schematic diagram of the structure of the attention gate. Encoder features are scaled with
attention coefficients calculated in the attention gate.

We define the feature mapping to represent the output of the convolutional block,
where i represents the depth of the feature in the network and j represents the sequence of
convolutional blocks in layer i connected along the jump, as follows.

Xi,j =

{
φ[Xi−1,j] j = 0

φ
[
∑

j−1
k=0 Ag(Xi,k), UP(Xi+1,j−1)

]
j > 0

, (5)

where φ[] denotes the concatenated merging of convolutional blocks. UP[] and Ag[] denote
up-sampling and attention gate selection, respectively.

Deep supervision is introduced in the network structure by attaching a 1 × 1 con-
volution with a C kernel and a sigmoid activation function to the outputs of nodes X0_1,
X0_2, X0_3 and X0_4, where C is the number of classes in which a given dataset is available.
A hybrid segmentation loss is then defined for each semantic scale, including pixel-level
cross-entropy and Dice coefficient loss. The hybrid loss can take advantage of the two loss
functions: smooth gradients and class imbalance handling. It is defined as follows.

L(Y, P) = − 1
N

C

∑
c=1

N

∑
n=1

(yn,c log pn,c +
2yn,c pn,c

y2
n,c + p2

n,c
), (6)

of which yn,c ∈ Y and pn,c ∈ P denote the target labels and predicted probabilities for class
c and n pixels in a batch, and N denotes the number of pixels in a batch.

Because the output of each sub-network is already the segmentation result of the
image during deep supervision, we can cut out those redundant parts if the output result
of the smaller sub-networks is already good enough.

The main advantages of the defect segmentation method proposed in this paper
include the following:

1. The traditional convolutional blocks are replaced by SK blocks, and the convolutional
blocks with a perceptual field of 5 in the SK blocks are replaced by two 3x3 convolu-
tions in series, which not only improve the depth of the network but also reduce the
computation and the number of parameters. By using the SK block, the perceptual
field can be automatically adjusted to utilize the feature information extracted at
different scales more effectively.

2. Adding attention gates between nested convolutional blocks enables increase of the
weight of the target region while suppressing background regions that are not relevant
to the segmentation task.

3. It enables model pruning during testing by introducing deep supervision, which can
reduce a large number of model parameters and thus speed up the model segmentation.
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3. Experimental Section

In this section, both quantitative and qualitative results are reported with an extensive
set of comparative evaluations for defect segmentation.

3.1. Experimental Equipment and Database

Unlike the vast database of publicly available medical X-ray images, currently, the
only publicly accessible X-ray imaging database for industrial NDT is GDXray, which was
published by D. Mery in 2015 [42]. The database includes five groups of X-ray images:
castings, welds, baggage, natural objects, and settings. However, the image number of
GDXray’s database is too small, with only 2727 images from different angles on 67 samples
of castings, and only 88 images from different positions on three samples of welds. In
addition, most of the images were taken with the Image Intensifier (I.I.) and saved in 8-bit
BMP or JPG format. Thus, the image quality and spatial resolution were not high enough,
and could not be adapted to the contemporary needs of industrial inspection. Figure 7
shows almost 40 images generated at different shooting angles from one single aluminum
casting wheel in GDXray’s database. Therefore, we needed to build our own database.

Figure 7. Selected images from GDXray’s database [42].

We have cooperated with Deepsea Precision Co. Ltd. (Shenzhen, China) [43], a
manufacturer specializing in X-ray inspection equipment, to collect a large amount of high-
quality, high-resolution X-ray image data from actual production lines and laboratories
over a period of three years. As shown in Figure 8, this is industrial X-ray inspection
equipment from Deepsea Precision Co. Ltd., and our database was collected from this
equipment and more than a dozen other similar machines. The basic configuration of the
core imaging chain components from this typical X-ray inspection equipment of Figure 8a
is shown in Table 2.

Table 2. The basic configuration of the core imaging chain components from the X-ray inspection
equipment of Figure 8a.

Device Name Brand/Model Basic Configuration

X-ray emission device
(macro-focus) Gulmay/CF500 500 kV, focus size 0.4/1.0 mm

X-ray emission device
(micro-focus) WorX/XWT-225-CT 225 kV, focal size 5 μm

X-ray receiver device
(flat panel detector) Deepsea/DS4343HR 430 mm ∗ 430 mm, pixel size

139 μm
Workstation Software Deepsea/DeepVISION GPU-based architecture

The database we created is named DSXImage, and its architecture is shown in Table 3.
It is divided into two main types, castings and welds, and the image format is fully
compliant with the industrial NDT standard ASTM E2339-15 [44] and is saved in 16-bit
DICONDE format. The breakdown within each main category is as follows.
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Figure 8. Some typical X-ray inspection equipment from Deepsea. (a) A 500 kV X-ray inspection
machine, steel weld sample; (b) a 225 kV X-ray inspection machine, aluminum casting sample from a
bicycle; (c) a 225 kV X-ray inspection machine, aluminum casting sample from automobile.

Table 3. DSXImage database architecture.

Types Sample Name Amount

Castings

engine cylinder heads 10,500
steering knuckles 8602
shock absorbers 15,610

valves 9500
power supply housings 6500
3C products and others 18,805

Welds

rocket engine ducts 12,655
aircraft seat bases 5431

gas pipe welds 25,820
steel welds from 3C and others 12,907

1. Most of the castings are aluminum alloy parts for automobiles, such as engine cylinder
heads, steering knuckles, shock absorbers, valves, power supply housings, etc. A
small portion are magnesium alloy parts for 3C products, such as Bluetooth headset
metal frames, laptop bezels, etc.

2. Welds are stainless steel/titanium alloy, collected from rocket engine ducts, aircraft
seat bases, gas pipe welds, etc. A small portion are steel welds from 3C.

The DSXImage database is still in continuous improvement; however, the existing size
of the database is sufficient for training and evaluation of deep learning networks. The
database may be released to the public at the right time.
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The project team worked with Deepsea to generate the DSXImage training dataset
using the open-source labeling tool Labelme., which is a graphical image annotation tool
inspired by MIT. The user can use it to easily implement image annotation work for vision
tasks such as classification, detection, and segmentation, etc. The annotation result of one
sample consists of three images and two label files. The architecture is summarized in
Table 4. The image annotation work is a time-consuming and labor-intensive task that took
nearly a year to label the entire database. The specific annotation process and output are
summarized roughly as follows.

Table 4. The architecture of one annotation result, basic configuration of the core imaging chain
components from the X-ray inspection equipment of Figure 7a.

The Original Image The Label Image The Label Visualization Image

1. Open the image, perform manual annotation, outline each defect and save it as a json
label file.

2. Open a json file and convert the json into a mask label image.
3. After the conversion is completed, a label folder is generated, including the original

image img.png, label image label.png, label visualization image label_viz.png, txt file
of label name, and yaml format label name file.

The design principle of the database is to conform to the current mainstream image
specifications and try to take into account the previous image specifications so that not only
can previous algorithms use the database, but future algorithms can also be adapted by
simple expansion and upgrade of the current database.

1. Image bits. Most modern flat panel detectors output 16-bit images, older detectors are
12 or 14 bit, and earlier image intensifiers are 8 or 10 bit. The database uses the original
16-bit image with the addition of a pre-processed 16-bit image and an 8-bit image.

2. Image resolution. Depending on the specifications of the flat panel detector, there is
no uniform specification for the resolution of the images in the database. The pixel
sizes of most images are 3072 × 3072, 1536 × 1536, 2000 × 2000, which users can
choose according to their needs and can even be freely cropped if necessary.

3. Image format. The 10-bit, 12-bit, 14-bit, and 16-bit images in the database use the
industry standard image format, i.e., DICONDE format, and also keep a copy in TIFF
format. 8-bit images are saved in PNG format.

3.2. Experimental Setup

The defect segmentation task was conducted over the DSXImage dataset comprising
126,330 sample X-ray images with corresponding image annotation. In all our experiments,
we assumed an 80/20 split for train and test purposes respectively. Besides, 20% of training
data was used as a validation set for model selection and to avoid overfitting. PyTorch
library with Python 3.7 was used to train and evaluate the variable attention nested UNet++
network, running on a PC with Intel® Core™ i9-9900KF CPU at 3.6 GHz (Santa Clara, CA,
USA), with 64 GB RAM, and with a 12 GB NVIDIA GeForce GTX 2060 GPU card (Santa
Clara, CA, USA) [45,46].

Some of the original images in the DSXImage datasets are shown in Figure 9.
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Figure 9. Some of the original images in the DSXImage dataset.

3.3. Segmentation Evaluation Metrics

The performance of the defect segmentation networks was evaluated using two
evaluation metrics, namely, Dice (Dice Similarity Coefficient) and IoU (Intersection over
Union) [28]. The corresponding equations are as follows.

Dice = 2 ∗ TP/(2 ∗ TP + FP + FN), (7)

IoU = TP/(TP + FP + FN), (8)

Here, TP, TN, FP, FN represent the true positive, true negative, false positive, and false
negative, respectively. Both IoU and Dice are statistical measures of spatial overlap between
the binary ground-truth and the predicted segmentation masks, where the main difference
is that Dice considers double weight for TP pixels (true defect predictions) compared to IoU.

3.4. Segmentation Results

The performance of the all the selected segmentation methods over the test set is
tabulated in Table 5. We have selected some classical and recent deep-learning-based
segmentation algorithms with better performance. For all models, it was observed that the
proposed segmentation method exhibits the top segmentation performance, holding the
leading position with 89.24% IoU, and 94.31% Dice. Some examples of segmentation results
obtained by different methods listed in Table 5 are shown in Figures 10 and 11. Figure 12
shows more examples of the segmentation results of the proposed method. Furthermore,
the proposed method has been customized for different applications as illustrated in
Figure 13.

Table 5. The performance of the all the selected segmentation method over the test set—DSXImage database.

Models IoU Dice #Parameters Time per Epoch

Median and morphological filters, Ref [3] 0.3012 0.4630 – –
Defect detection based on traditional algorithms, Ref [4] 0.4155 0.5871 – –

Mask R-CNN 0.7360 0.8479 25.3 M 38 s
U-Net 0.7251 0.8406 32.5 M 16 s

Standard UNet++ 0.7629 0.8656 35.6 M 39 s
Proposed Method 0.8924 0.9431 36.8 M 42 s
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Figure 10. A typical example of defect segmentation: (a) the original image, (b) ground-truth image,
(c) result of median and morphological filters, Reference [3], (d) result of a traditional defect detection
algorithm, Reference [4], (e) result of Mask R-CNN, (f) result of UNet, (g) result of standard UNet++,
(h) result of proposed method.

Figure 11. Another example of defect segmentation: (a) the original image, (b) ground-truth image,
(c) result of median and morphological filters, Reference [3], (d) result of a traditional defect detection
algorithm, Reference [4], (e) result of Mask R-CNN, (f) result of UNet, (g) result of standard UNet++,
(h) result of proposed method.
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Figure 12. Segmentation examples of proposed method. (a–d) are the original images; (e–h) are the
ground-truth images; (i–l) are the corresponding segmentation results.

Figure 13. Cont.
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Figure 13. Applications of proposed method: (a) automatic welding defect detection, (b) automatic
casting defect detection.

4. Discussion

In this section, we will discuss the results obtained by the proposed defect detection system
as well as other methods including some deep learning models and conventional defect detection
methods. The segmentation results accordingly are shown in Figures 10 and 11. According to our
experimental results, deep learning methods provide better segmentation performance in
comparison to conventional image processing methods. In general, conventional methods
generate high false positive rate due to the characteristics of industrial X-ray images.

Figure 12 shows that our model performs well on complex images and is able to
detect different kind of defects. The performance of the proposed model and some other
models are evaluated in Table 5. Mask R-CNN and U-Net showed similar accuracy in
the experiments. In addition, the proposed modified UNet++ model outperformed the
standard UNet++. Due to the improvement of image quality through proposed pre-
processing, our defect segmentation method achieves 89.24% and 94.31% in terms of IoU
and Dice, respectively.

Although the overall performance of the proposed method has been demonstrated,
there are still some missed detections in the experiments. This is mainly because some thin
defects are slightly stronger than the background, increasing the difficulty of detection.
Moreover, some incorrect detections were also observed due to the similarity between the
edges or holes of the parts and the defects.

5. Conclusions

In this paper, we describe a new method for X-ray image defect segmentation by
introducing a variable attention nested UNet++ network. In comparison with the existing
techniques, the proposed algorithm has the following features: (i) a pre-processing method
based on pyramid model is proposed to further enhance the performance of the faint defect
extraction and its clear visibility; (ii) the traditional convolutional blocks are replaced by SK
blocks, and adding attention gates between nested convolutional blocks enables increase in
the weight of the target region while suppressing background regions that are not relevant
to the segmentation task; (iii) it enables model pruning during testing by introducing deep
supervision, which can reduce a large number of model parameters and thus speed up
the model segmentation. Moreover, the proposed segmentation method proved reliable in
localizing defects from the DSXImage database, achieving IoU and Dice values of 89.24%
and 94.31%, respectively.
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In the future, we plan to explore robust quantization and model compression tech-
niques to further reduce the model complexity and accelerate the inference process. More-
over, the current proposed defect detection system is developed to identify the defects
without classification. In the future work, this system will be modified and improved to
identify different types of defects such as gas holes, gas porosity, and shrinkage cavity.

We will continue to push forward in the construction of the database, and with
the consent of Deepsea, we hope to make the database public in the near future so that
more people can participate in the work, continue to improve the defect segmentation
performance, and make the algorithms better serve the industry.
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Abstract: In this paper, we describe a novel sub-pixel shift (SPS)-based X-ray flat panel detector
(FPD), which can achieve high resolution while maintaining a high SNR (signal-to-noise ratio). In the
proposed architecture, an XY precision shift stage is applied to complete the sub-pixel shift process.
In addition, image acquisition and high-resolution image composition are integrated in the FPD
hardware. According to the relevant standards for detector image quality evaluation, we tested
and evaluated some image quality indicators. The results show that the proposed FPD with SPS
outperforms the original FPD without SPS technology. More specifically, the measured pixel size of
the proposed FPD was reduced from 162 to 140 μm for 2 × 2 sub-pixel shift mode, and 132 μm for
4 × 4 sub-pixel shift mode, that is, the basic spatial detector resolution was improved by 13.6% for the
simplest 2 × 2 sub-pixel shift mode, and by 18.5% for 4 × 4 sub-pixel shift mode. With this method,
a lower-price FPD is elevated both in resolution and SNRn to meet imaging quality requirements.

Keywords: X-ray flat panel detector; high resolution; sub-pixel shift

1. Introduction

The X-ray flat panel detector (FPD) [1,2] is a photographic element used in digital
radiography. In the same way that a normal digital camera uses a CMOS sensor to receive
light passing through a lens and converts it into an image, a flat panel detector converts
X-rays passing through the object into a digital image.

X-ray flat panel detectors have been widely used in security, industrial, and medical
applications in place of conventional image intensifiers (I.I.) [2] and imaging plates (IP) [3].
The dynamic range of FPD is greater than that of I.I., and the images can be viewed in real
time, without the need to remove the plate and extract the images, as with IP. The main
applications of FPD in the industrial field are X-ray and CT non-destructive inspection,
including casting and welding inspection, 3D printing inspection, SMT (surface-mounted
technology) and semiconductor inspection, new energy battery inspection, security check,
and so on; in the medical field, the main applications cover almost all X-ray equipment,
including DR (digital radiography), DRF (dynamic DR), DM (digital mammography),
CBCT (dental CT), DSA (digital subtraction angiography), C-arm X-ray systems, and so on.

The first flat-panel detector DR systems based on amorphous silicon [4] and amor-
phous selenium [5] were introduced in 1995. Subsequently, major medical imaging equip-
ment companies conducted preliminary research on the technology. In the late 1990s, GE
and Perkin Elmer in cooperation, Thales, Siemens, Philips in co-investment with Trixell,
Varex, Canon Medical, and other companies developed amorphous silicon flat panel detec-
tors [6]. Around 2010, amorphous silicon flat panel detector technology further proliferated,
and traditional film giants Carestream, Fujifilm, Konica, and Agfa also developed flat panel
detectors. Meanwhile, South Korea’s Viewworks and Rayence and China’s PZImaging,
KangZhong, and i-Ray also launched their own amorphous silicon flat panel detectors [7].
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Several kinds of FPDs have been developed over the past few decades [8]. Existing
FPDs are divided into two types: indirect conversion detectors and direct conversion detec-
tors [9]. The principle of indirect conversion FPDs is that X-ray irradiation is first converted
to visible light through the scintillator; then, the digital image is read out using the principle
of visible light cameras. Its basic structure includes the following: scintillator, sensor and
readout circuit, and peripheral control circuit. The scintillator and sensor are the core
part and determine the main performance of the FPD. Amorphous silicon (a-Si), CMOS,
IGZO [10], and flexible FPD are all indirect conversion detectors. In contrast, direct conver-
sion FPDs do not require scintillators. They convert X-rays into electrical signals directly
after the X-rays are collected by the photoconductive semiconductor material. Therefore,
the basic structure of the direct conversion FPD includes the following: sensor and readout
circuit, peripheral control circuit, and the sensor (photoconductive semiconductor), which
is the core part.

The technologies used by different types of detectors and their main application areas
are shown in Table 1.

Table 1. The technologies used by different types of detectors and their main application areas.

Major Categories Types Detector Technology Main Application Areas

Indirect conversion detectors

a-Si FPD Scintillator + a-Si + TFT DR/DRF, radiotherapy,
industrial

IGZO FPD Scintillator + a-Si + IGZO DR/DRF, intervention

CMOS FPD Scintillator + CMOS Dental, mammograph,
surgical, industrial

flexible FPD Scintillator + a-Si + TFT Mobile healthcare

Direct conversion detectors
a-Se FPD a-Se + TFT Mammograph

photon counting FPD CdTe/CZT +CMOS CT, breast CT

The two most important metrics to evaluate the imaging quality of FPDs are the signal-
to-noise ratio (SNR) [11] and spatial resolution (SR) [12]. FPDs have different SNR and SR
due to different materials, structures, and processes. SNR affects the ability to distinguish
density differences in different tissues (i.e., high SNR means high density resolution), and
SR affects the ability to distinguish fine spatial structures of tissues. To improve the spatial
resolution, the pixel size of the detector needs to be made smaller. However, too small
a pixel size leads to a decrease in SNR. As a direct consequence, the density resolution
decreases, the image signal-to-noise ratio deteriorates, and the image becomes unusable. It
is generally necessary to find a balance between these two imaging indexes. There is no
FPD on the market that performs well in both SNR and spatial resolution.

In the medical field, the target of DR equipment is to observe and distinguish the
density of different tissues in the chest and lungs. Therefore, the requirements for density
resolution (SNR) are relatively high, while the pixel size of FPDs are larger, generally
139 μm, to easily obtain images with higher contrast. Accordingly, amorphous silicon FPDs
are generally selected, which are more conducive to diagnosis. For the examination of
extremity joints and breast, better imaging of structural spatial details is needed, so the
pixel size of the FPD should be small, generally 50 to 76 μm, in order to obtain high-spatial-
resolution images. Generally, amorphous selenium or CMOS FPDs are selected for these
types of applications. The main reason for the higher requirement of spatial resolution in
the industrial field than in the medical field is the continuous improvement of product
quality control requirements. Defects that need to be detected are getting smaller and
smaller as the result of the process upgrading. At present, film imaging is still used in a
large number of industrial inspection scenarios, mostly on weld and casting inspection. In
addition to regulatory factors, the main reason why users choose film over FDPs is that the
actual spatial resolution of FPDs cannot reach the film imaging level. The industry expects
that the spatial resolution could be further improved without decreasing SNR.
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The resolution of the original image can be improved by pure software methods,
which some people call super-resolution. Currently, there are three methods to achieve
image super-resolution by software: interpolation-based methods, reconstruction-based
methods, and learning-based methods.

Interpolation-based methods try to increase image resolution by filling in the cor-
responding pixel values on the empty spots after zooming in. However, these methods
are efficient but ineffective [13,14]. Reconstruction-based methods align multiple low-
resolution images of the same scene with sub-pixel accuracy on the space, obtaining the
motion offsets between high- and low-resolution images and constructing the spatial mo-
tion parameters in the observation model to obtain a high-resolution image [15–19]. The
core idea of reconstruction-based super-resolution methods is to trade temporal bandwidth
(acquiring multiple image sequences of the same scene) for spatial resolution. With the
significant development of deep learning technology, image super-resolution technology
does have a wide range of practical applications in the fields of games, movies, medical
imaging, and so on. Learning-based methods adopt the end-to-end mapping function
of low-resolution images to high-resolution images by neural networks. Using the prior
knowledge acquired by the model to obtain high-frequency details of the image, they are
considered the best way to enhance image resolution at present. The mainstream algorithms
are SRCNN, SRGAN, ESRGAN, and so on. Among them, the SRCNN method [20,21] has
the simplest network structure, using only three convolutional layers, and the framework
is flexible in choosing parameters and supports customization. The disadvantage is that
the details are not sufficiently represented, and the results obtained are too smooth and un-
realistic when the magnification exceeds four. The SRGAN method [22] generates realistic
textures for a single image to complement the lost details but introduces high-frequency
noise at the same time. The ESRGAN output image has better image quality with more real-
istic and natural textures, and it tops the PIRM2018-SR challenge [23]. In the experimental
section, we will cite the results of ESRGAN as a part of the comparison data.

The spatial resolution of FPDs is mainly determined by the pixel size, and a smaller
pixel size leads to a higher spatial resolution. However, as a result of various factors
such as process, cost, imaging quality, and imaging field of view, the pixel size cannot
be reduced indefinitely at the actual product level. The common pixel size of amorphous
silicon detectors is generally 100, 139, and 200 μm. The actual measured spatial resolution
is worse than the theoretical spatial resolution corresponding to the pixel size. Types of
scintillators (CSI, GdOS, etc.), scintillator thickness, and vapor deposition process will
affect the actual spatial resolution. The measured spatial resolution of the detector with a
nominal pixel size of 139 μm is typically between 150 to 190 μm.

We have developed a novel high-resolution X-ray FPD based on sub-pixel shift (SPS)
technology, which can improve the inherent spatial resolution of the detector without
degrading the image quality. We designed and implemented the underlying hardware and
software for sub-pixel acquisition based on an amorphous silicon glass substrate, and users
can easily control the sub-pixel acquisition accuracy of the detector through commands.
Experiments show that the measured pixel size of this new high-resolution detector is
reduced from 162 to 132 μm, that is, the basic spatial resolution of the detector is improved
by 18.5%.

2. Evaluation Metrics

2.1. Basic Spatial Detector Resolution

“ISO-19232-5-2018, Non-destructive testing—Image quality of radiographs—Part 5:
Determination of the image unsharpness and basic spatial resolution value using duplex
wiretype image quality indicators” specifies a method of determining the total image
unsharpness and basic spatial resolution of radiographs and radioscopic images [12]. The
most important metric in this standard relevant to this work is SRimage

b (basic spatial
detector resolution), which is determined from the smallest number of the duplex wire pair.
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The basic spatial detector resolution is measured with the duplex wire IQI (image quality
indicator) directly placed on the detector without object.

The duplex wire IQI with up to 13 wire pairs can be used effectively with tube voltages
up to 600 kV, and the specification of duplex wire-type IQI can be seen in Figure 1.

Figure 1. Specification of duplex wire-type IQI.

Measurement and calculation procedure for SRdetector
b : The duplex wire IQI should

be placed directly on the detector with an angle between 2◦ and 5◦ to the rows/columns
of the detector. No image processing shall be used other than gain/offset and bad pixel
corrections.

If digital images are evaluated with a profile function, the element with the smallest
wire number of the duplex wire pair, which is separable by a profile function with less than
20% modulation depth, is taken as the limit of discernibility for digital radiography. The
profile function shall be evaluated from linearized pixel profiles. The measurement shall be
done with the profile function of image-processing software across the middle area of the
IQI image, integrating along the wires of about 30% to 60% of the duplex wires’ length in
order to obtain a robust repeatable value, but shall use a minimum of an 11-pixel width
line profile to avoid variability along the length of the wires.

2.2. Image Quality Evaluation

“EN 12681-2:2017 Founding—Radiographic testing, part 2: Techniques with digital
detectors” [24] specifies the recommended procedure for detector selection and radio-
graphic practice, and the requirements for digital radiographic testing by either computed
radiography (CR) or radiography with digital detector arrays (DDA) of castings. Three
metrics are selected for the image quality evaluation of the proposed high-resolution X-ray
flat panel detector: contrast sensitivity, SRimage

b (basic spatial resolution of a digital image),
and SNRn (normalized signal-to-noise ratio).

2.2.1. Contrast Sensitivity

Unless otherwise agreed, the contrast sensitivity of digital images shall be verified by
use of IQIs, in accordance with EN ISO 19232-1 or EN ISO 19232-2. A single wire IQI is
shown in Figure 2.
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Figure 2. A schematic diagram of single wire IQI, in which, l: length of the wires, s: wire centerline
spacing, a: space for identification marking.

The single wire IQI system is based on a series of 19 wires of different diameters,
which are specified in Table 2 together with the relevant tolerances and the wire numbers.
This series of wires has been subdivided into four overlapping ranges of seven consecutive
wire numbers: W1 to W7, W6 to W12, W10 to W16, and W13 to W19. The seven wires in an
IQI are arranged parallel to each other. The lengths of the wires (l) are 10, 25, or 50 mm.
The single wire IQI shall be placed on the source side of the test object.

Table 2. Minimum image quality requirements for the visibility of wire IQIs for class A or B.

Penetrated Thickness (mm)
Minimum Wire IQI Value

for Class A
Minimum Wire IQI Value

for Class B

Lower Thickness Limit Upper Thickness Limit IQI at Source Side IQI at Source Side

- 1.2 W18 -
>1.2 for Class A and 0 for Class B 2 W17 W18

>2 3.5 W16 W17
>3.5 5 W15 W16
>5 7 W14 W15
>7 10 W13 W14
>10 15 W12 W13
>15 25 W11 W12
>25 32 W10 W11
>32 40 W9 W10
>40 55 W8 W9
>55 85 W7 W8
>85 150 W6 W7

>150 200 W5 W6
>200 250 W4 W5
>250 380 W3 W4
>380 - W2 W3

2.2.2. Basic Spatial Resolution of a Digital Image

SRimage
b (basic spatial resolution of image) corresponds to the effective pixel size and

indicates the smallest geometrical detail that can be resolved in a digital image. For this
measurement, the duplex wire IQI should be placed on the object (source side).

2.2.3. Normalized Signal-to-Noise Ratio

SNR (signal-to-noise ratio) is the ratio of mean value of the linearized gray values to
the standard deviation of the linearized gray values (noise) in a given region of interest
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in a digital image. SNRN (normalized signal-to-noise ratio) is normalized by the basic
spatial resolution SRimage

b as measured directly in the digital image and/or calculated from
measured SNRmeasured.

SNRN = SNRmeasured ×
(

88.6 μm/SRimage
b

)
, (1)

2.2.4. Minimum Image Quality Values

The radiographic techniques for film replacement are divided into two classes in EN
12681-2:2017:

– Class A: basic techniques
– Class B: improved techniques

Tables 2–4 show the minimum image quality requirements accordingly.

Table 3. Minimum image quality requirements for the visibility of duplex wire IQIs for class A or B.

Penetrated Thickness (mm) Minimum DW Value for Class A Minimum DW Value for Class B
Lower Thickness Limit Upper Thickness Limit IQI at Source Side IQI at Source Side

- 2 D12 D13+
>2 5 D10 D13
>5 10 D9 D12
>10 24 D8 D11
>24 40 D7 D10
>40 55 D7 D9
>55 85 D6 D9
>85 150 D6 D8

>150 200 D5 D8
>200 250 D5 D7
>250 380 D4 D7
>380 150 D4 D6

Table 4. Minimum SNRN values for the digital radiography of aluminum, magnesium, and zinc.

Radiation Source Minimum SNRN for Class A Minimum SNRN for Class B

≤150 kV 70 120
150 to 250 kV 70 100
250 to 500 kV 70 100

3. High-Resolution Flat Panel Detector Design

3.1. The Proposed Image Detector Architecture

An indirect detector contains a layer of scintillating material that converts the X-rays
into visible photons (light). Behind the scintillator, an array of photodiodes converts
the light into an electrical signal. The array of photodiode pixels is similar in concept
to a camera’s image sensor: a high density of pixels creates a high-resolution image in
which small features are clearly and sharply rendered. The stored charge of each pixel is
proportional to the intensity of the incident X-rays. Under the action of the control circuit,
the stored charge of each pixel is scanned and read out, and the digital signal is output
after A/D conversion and transmitted to the computer for image processing to form a
digital X-ray image. A based architecture demonstration of the indirect FPD is illustrated
in Figure 3 [25].

The entire architecture of the proposed novel detector is shown in Figure 4, using
CSI scintillator as the sensor; a-Si-based TFT as the converter; data operation part with
integrated read, select, and pack; and a main state machine to control multiple modules and
operation modes. Command passing through cmd process, buffer, and synchronization are
designed. Udp/ip protocol stack and 1000 M wired network are used for all the command
and data transfer.
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Figure 3. A based architecture demonstration of the indirect FPD.

Figure 4. The entire architecture of our novel detector.

A circuit design diagram of some basic hardware modules of the detector is shown in
Figure 5, which includes: (a) AD chip interface, (b) gate driver chip interface, (c) network
interface, and (d) main control board.

3.2. Sub-Pixel Shift Design

Due to process and other constraints, the pixel size of the detector panel is limited. We
use a sub-pixel shift design that allows each pixel to be spatially displaced in a controlled
and precise sub-pixel scale in the XY direction, thus realizing pixel interpolation at the
physical hardware level to improve the spatial resolution of the detector.

The procedure of sub-pixel shift is illustrated in Figure 6. It shows the four acquired
original images and the high-resolution image composed.

In Figure 6, the resolution of the original image is S × S. Assuming that the inherent
pixel size of the detector is L, then the distance between each two adjacent pixel centroids
is L as well. Divide L equally into N parts to get the step size of each precise displacement.
image a is the original image acquired at the original position (0, 0), image b is the original
image acquired after moving L/2 distance to the right (X direction), image c is the original
image acquired after moving L/2 distance to the bottom (Y direction), and image d is the
original image acquired after moving L/2 distance to the right (X direction) and to the
bottom (Y direction). Image e is the generated higher-resolution image with a resolution of
2S × 2S. In practice, when 2 × 2 mode is selected, first of all, the memory space inside the
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detector is initialized with 4 times size of the original required, and all the pixel values are
set to zero. Then, the pixel values of the four individual images are realigned to create a
high-resolution image, as illustrated in Figure 6.

Figure 5. The circuit design diagram of some basic hardware modules of the detector: (a) AD chip
interface, (b) gate driver chip interface, (c) network interface, and (d) main control board.

Figure 6. How high-resolution images are created by combining the pixels of individual native-
resolution images. (a–d) are four acquired original images, and (e) is 2× 2 mode higher-resolution image.
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For modes other than 2 × 2, the operation is similar. We found in the actual test that
the improvement of spatial resolution is limited after N > 4.

At the hardware level, we use an XY precision shift stage to fix the detector panel
on it and complete the sub-pixel shift process. Image acquisition and image stitching are
realized through integrated control and acquisition commands. The precision shift stage is
shown in Figure 7. It uses noncontact optical encoders to measure the position directly at
the platform with the greatest accuracy and achieves unidirectional repeatability to 0.05 μm
and incremental linear encoder with 1 nm resolution. There are a variety of acquisition
modes integrated in the main control board. In the application side, through the commands,
the users can directly select different modes of precision for the high-resolution acquisition.
Now, it supports a total of four modes: 1 × 1, 2 × 2, 3 × 3, and 4 × 4. The core parameters
of the proposed sub-pixel shift FPD are shown in Table 5.

Figure 7. The XY precision shift stage.

Table 5. The core parameters of the proposed sub-pixel shift FPD.

Parameter Value

Type a-Si
Scintillator CSI

Number of rows 3072
Number of columns 3072

Pixel pitch (μm) 139
Imaging area (mm2) 430 × 430

A/D bit 16
Frame per second (fps) 6 (1 × 1), 20 (2 × 2)
Sub-pixel shift modes 1 × 1, 2 × 2, 3 × 3, 4 × 4

4. Experiments

4.1. Experimental Environment

We have cooperated with Deepsea Precision Co., Ltd. [26], a manufacturer specializing
in X-ray inspection equipment, to test the FPD and collect all the images from an actual
X-ray environment. Figure 8 is a piece of industrial X-ray inspection equipment from
Deepsea Precision Co., Ltd., with our FPD integrated into this testing system.

The basic configuration of the core imaging chain components from this typical X-ray
inspection equipment of Figure 8 is shown in Table 6.
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Figure 8. The industrial X-ray inspection equipment from Deepsea Precision Co., Ltd.

Table 6. The basic configuration of the core imaging chain components from the X-ray inspection
equipment of Figure 8.

Device Name Brand/Model Basic Configuration

X-ray emission device
(macro-focus) Gulmay/CF500 500 kV, focus size 0.4/1.0 mm

X-ray receiver device
(flat panel detector) Our sub-pixel shift FPD 430 mm × 430 mm, pixel size 139 μm

Workstation software Deepsea/DeepVISION GPU-based architecture

4.2. Experimental Data
4.2.1. Basic Spatial Detector Resolution Testing

The basic spatial detector resolution SRdetector
b was tested according to ISO-19232-5-

2018 under the following conditions: SDD (source detector distance) = 1000 mm,
voltage = 90 kV, current = 1.3 mA. In our experiments, a software named DeepVision
was used, and least squares curve fitting was adopted to calculate the SRb value in this
software. The measuring procedure was carried out according to ISO-19232-5. We im-
proved measurement precision by averaging the testing values of repeated measurements.
Test results are shown in Table 7, and more detailed test images and data are shown in
Figure 9. The results show that the basic spatial resolution of the novel detector proposed
in this paper is greatly improved. The basic spatial detector resolution of the original image
without any sub-pixel shift is 162 μm, the basic spatial detector resolution of the image
after 2 × 2 sub-pixel shift is 140 μm, and the basic spatial detector resolution of the image
after 4 × 4 sub-pixel shift is 132 μm. To summarize, the basic spatial detector resolution
was improved by 13.6% after 2 × 2 shift and 18.5% after 4 × 4 sub-pixel shift.

Table 7. Test results of the basic spatial detector resolution SRdetector
b .

The Basic Spatial Resolution
of the Detector

Original Image 2 × 2 Sub-Pixel Shift Image 4 × 4 Sub-Pixel Shift Image

SRdetector
b 162 μm (D8) 140 μm (D9) 132 μm (D9)
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Figure 9. The basic spatial detector resolution SRdetector
b : (a) original image, (c) 2 × 2 sub-pixel shift

image, (e) 4 × 4 sub-pixel shift image; (b,d,f) are the corresponding local enlargement of the boxed
areas of the duplex wire IQI.
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4.2.2. Image Quality Testing

According to the standard EN 12681-2:2017, the duplex wire IQI and single wire
IQI are fixed on a step wedge for image quality testing. The step wedge is aluminum,
and the thinnest layer is 10, then 20, 40 mm, and so on. The testing was conducted
at 20 mm thickness. The test condition is: SDD (source detector distance) = 1000 mm,
voltage = 140 kV, current = 1.5 mA. A total of three tests are conducted: single wire IQI,
duplex wire IQI, and SNR/SNRn.

Test 1: Single Wire IQI Result
The test results are shown in Figure 10. The visibility levels of the single wire IQI on

the original image and the resolution-enhanced image after sub-pixel shift are the same,
both being W14. This result indicates that the proposed sub-pixel-shift-based method does
not cause a decrease in contrast sensitivity.

 
   

(a) (b) (c) (d) 

Figure 10. Test results of the contrast sensitivity: (a) experimental device, (b) original image, (c) 2 × 2
Sub-Pixel Shift Image, (d) 4 × 4 Sub-Pixel Shift Image.

Test 2: Duplex Wire IQI Result
For the image basic spatial resolution test, the duplex wire IQI should be attached to

the step wedge with a certain magnification to evaluate the spatial resolution performance
when imaging the actual object. Test results are shown in Table 8, and more detailed test
images and data are shown in Figure 11.

Table 8. Test results of the image spatial resolution SRimage
b of the detector.

The Basic Spatial Resolution
of the Detector

Original Image 2 × 2 Sub-Pixel Shift Image 4 × 4 Sub-Pixel Shift Image

SRimage
b 159 μm (D8) 137 μm (D9) 132 μm (D9)

The results show that the image spatial resolution of the novel detector proposed in
this paper is greatly improved. The image spatial resolution of the original image without
any sub-pixel shift is 159 μm (D8), which does not meet the minimum image requirement
according to Table 3. In contrary, the image spatial resolution of the image after 2 × 2
sub-pixel shift is 137 μm, and the image spatial resolution of the image after 4 × 4 sub-pixel
shift is 132 μm. That is to say, the image quality achieved by the proposed sub-pixel shift
method has been improved to meet the requirements for Class A.
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Figure 11. The image spatial resolution SRimage
b of the detector: (a) original image, (c) 2 × 2 sub-pixel

shift image, (e) 4 × 4 sub-pixel shift image; (b,d,f) are the corresponding local enlargement images of
the boxed areas of the duplex wire IQI.

Test 3: SNR/SNRn Result
According to the standard, SNR/SNRn is calculated in different grayscale distribution

areas, and an SNR/SNRn graph is generated, as shown in Figure 12 with the average
grayscale value of the selected area in the horizontal coordinate and the SNR/SNRn value
in the vertical coordinate. It can be concluded that the proposed sub-pixel-shift-based

77



Coatings 2022, 12, 921

high-resolution FPD in this paper improves slightly in SNR and significantly in SNRn due
to the great improvement in spatial resolution.

Figure 12. The SNR/SNRn of the detector: (a) SNR, (b) SNRn.

4.2.3. Comparison with Software Interpolation Methods

Some of the software-based super-resolution methods have been discussed pre-
viously, among which the ESRGAN algorithm is currently considered to be the most
effective method. We compared the results of the ESRGAN algorithm with ours, as
shown in Figure 13. ESRGAN improves the overall spatial resolution, but introduces
local artifacts and noise, which can seriously affect the inspection results and is therefore
not applicable. The arrows indicate artifacts produced by ESRGAN algorithm. In the
proposed method, an XY precision shift stage is adopted to move the detector. The FPD
frame rate is 6 FPS, which means 6 frames per second. The shift stage moves the detector
to the next position during each image readout time. In other words, the movement
of detector does not occupy extra time. In general, for 2 × 2 mode, the total time for
generating a high-resolution image is less than 1 s. For 4 × 4 mode, the total time is
about 3 s. For ESRGAN method, the total time for upsampling a 3072 × 3072 image to
6144 × 6144 is about 800 ms in our experiments.
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(a) Original Images (b) ESRGAN Results (c) 4 × 4 Sub-Pixel Shift Image Results 

Figure 13. The results of the ESRGAN algorithm and ours on real object images. ESRGAN improves
the overall spatial resolution but introduces local artifacts and noise. The arrows indicate artifacts
produced by ESRGAN algorithm.

5. Conclusions

In this paper, we describe a novel sub-pixel shift (SPS)-based X-ray flat panel detector
(FPD) that can achieve high resolution while maintaining high SNR. In comparison with the
existing techniques, the proposed high-resolution FPD has the following features: (i) a sub-
pixel-shift-based acquisition and data composition strategy are integrated in the detector;
(ii) the pixel size of the detector was reduced from 162 to 132 μm, that is, the basic spatial
detector resolution was improved by 13.6% in the simplest 2 × 2 sub-pixel shift mode, and
by 18.5% in 4 × 4 sub-pixel shift mode; (iii) for X-ray images, the test results show a great
improvement in image spatial resolution, as well as high SNRn.

The main goal of X-ray image processing is to avoid introducing artifacts. This is
especially important for X-ray non-destructive testing. Image super-resolution by software
algorithms, including interpolation methods, reconstruction-based methods, and deep
learning methods, have been proposed and studied for many years. Some of them can
achieve great performance on visible light images. However, they have poor performance
on X-ray images with high dynamic range and internal noise. Some may cause severe image
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distortion and artifacts, while others may enlarge the image noise. The poor performance of
these high-resolution methods might lead to false alarms for X-ray non-destructive testing.
The proposed method has been applied to the testing system, and the performance has
been demonstrated by experiments. The results show that our method is effective. Both
spatial resolution and SNRn have been improved without introducing artifacts.

In the future, we plan to apply the methodology in this work to other types of X-
ray detectors. In addition, we will try to increase the frame rate of the detector using a
10 Gigabit network or fiber optic interface, which allows the sub-pixel acquisition process
to be done faster.
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Abstract: Defect inspection is a key step in guaranteeing the surface quality of industrial products.
Based on deep learning (DL) techniques, related methods are highly effective in defect classification
tasks via a supervision process. However, collecting and labeling many defect samples are usually
harsh and time-consuming processes, limiting the application of these supervised classifiers on
various textured surfaces. This study proposes a semi-supervised framework, based on a generative
adversarial network (GAN) and a convolutional neural network (CNN), to classify defects of a
textured surface, while a novel label assignment scheme is proposed to integrate unlabeled samples
into semi-supervised learning to enhance the overall performance of the system. In this framework,
a customized GAN uses limited labeled samples to generate unlabeled ones, while the proposed
label assignment scheme makes the generated data follow different label distributions in such a
way that they can participate in training with labeled data. Finally, a CNN is proposed for semi-
supervised training and the category identification of each defect sample. Experimental results
show the effectiveness and robustness of the proposed framework even if original samples are
limited. We verify our approach on four different surface defect datasets, achieving consistently
competitive performances.

Keywords: deep learning (DL); generative adversarial network (GAN); label assignment; semi-
supervised learning

1. Introduction

Defect classification is a fundamental industrial inspection task, the aim of which
is to identify the category of a defective image. It is commonly performed on textured
surfaces of many industrial products, such as metal [1], wood [2], and fabrics [3–5]. This
process is crucial to guarantee product quality but is always executed manually in practice.
Aiming at replacing this human-involved operation, there are many approaches using
machine learning or deep learning techniques in automatic defect classification. However,
these methods are mainly based on a supervised scenario, where all the data must be
labeled. Unfortunately, the defect samples not only are hard to collect in large numbers
but also need to be labeled by experts. Supervised approaches have no ability to handle
unlabeled samples, which can lead to defect misclassification. This work introduces a
semi-supervised learning (SSL) approach that can generate and handle unlabeled defect
data in such a way that outperforms the supervised ones which only deal with labeled
data. Therefore, the SSL approach can achieve reliable accuracy with limited samples,
and the heavy and complicated manual sample collection and label allocation work can
be alleviated.

To achieve automatic defect classification, the previous work on addressing this prob-
lem can be categorized into traditional shallow network learning (SNL)-based approaches
and deep network learning (DNL)-based approaches. For simplicity, they are called SNL-
based and DNL-based approaches, respectively.
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SNL-based methods: In [6], Zhang et al. extracted the features based on Fisher distance
and principal component analysis (PCA), and used the support vector machine (SVM)
classifier for defect detection on an aluminum alloy surface. Yunwon and Kweon [7]
proposed a neighboring difference filter algorithm to extract the foreground defective
regions and used a random forest for defect classification. In [8], a guidance template-based
algorithm using the statistical characteristic of textures is proposed for defect classification
of strip steel surface. In [9], the combination of the completed local binary pattern (CLBP)
features and the nearest-neighbor classifier are used to perform defect classification tasks.
It is noteworthy that studies [7–9] are the combination of a hand-crafted feature extractor
and a typical ML classifier, which highly rely on human experience.

DNL-based methods: Zhou et al. [10] used a simple sequential structured CNN for
feature extraction and fed the representation tensors into a softmax layer for classifica-
tion. Hossain et al. [11] proposed a light model of a six-layer CNN for fruit classification.
Huang et al. [12] designed a small FCN network a quarter of the size of the original net-
work [13]. These methods usually had to use tiny CNN structures because of limited
industrial data. Except for the self-designed networks, some approaches adopted various
baseline CNNs for defect classification via transfer learning. Through pre-training on the
large dataset ImageNet, large baseline CNNs with dozens of layers, such as AlexNet [14],
VGG [15], Inception [16], and ResNet [17], can be applied to specific tasks and avoid over-
fitting. In [11], the classification system used not only a tiny model but also fine-tuned
a pre-trained VGG16 model. Studies [18,19] directly used pre-trained models for repre-
sentation learning and then fine-tuned them by their own data for defect classification.
The approach presented in [18] used the ZFNet to classify various textured surface defects
and gave further evidence that ImageNet pre-trained models can be applied in industrial
inspection tasks, whereas the distributions of textured defect data differ from those of
ImageNet data. Yang et al. in [19] presented the transfer learning method for surface defect
classification of flat panel displays. The study used AlexNet as the backbone and reduced
one fully connected layer for online training. Using large models can achieve higher preci-
sion but also cost more computation sources because of many model parameters, especially
in the last fully connected layers. Therefore, some approaches combined the DL and ML
techniques, which regarded the convolutional part as a feature extractor, with the aim to
replace hand-crafted features, and then are fed into a typical ML classifier. Studies [12,20]
combined the transferred CNN features and various ML classifiers in pursuit of a more
economical inspection system. Natarajan et al. in [20] used a combination of the VGG [15]
model and the SVM classifier for metal surface defect classification, where VGG was em-
ployed to extract feature maps which were then used as input to SVM. In [12], hierarchies
of features were extracted by FCN models and a two-stream algorithm was proposed to
classify defects, which can only be applied on single-class image. The combination-like
strategy aims to replace hand-crafted features with CNN features, which have a higher
abstract level and stronger robustness [21]. However, this also resulted in poor generaliza-
tion and an extra training process for the ML classifier. The main drawback of the previous
approaches is that they highly depend on supervised learning, which requires enough
defect samples and can only process labeled ones. The above approaches, whether based
on fully supervised learning or transfer learning, all fail to provide correct classification in
the presence of unlabeled samples.

Therefore, this study attempts to establish an SSL defect classification system, which
can handle both labeled and unlabeled samples. Indeed, for an SSL scheme, the first
consideration is the acquisition of unlabeled samples. As in other fields [22–24], the semi-
supervised or weakly supervised learning methods can work on enough unlabeled samples
that have become available on the Internet. However, it seems impossible to collect the
same scale of defect data due to the rare occurrence of defects and the privatization of
available data. Therefore, it is a better choice to consider how to generate valuable samples
instead of taking much time to collect real ones. In this paper, a standard generative
adversarial network (GAN) architecture is customized to fit defect data and then used to
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generate unlabeled samples [25]. Based on original defect samples, the GAN can generate
new ones through a competitive training process involving a pair of networks.

When there are enough unlabeled samples, the second problem is how to include
them in training. Different from transfer learning that trains labeled and unlabeled samples
alternately, the SSL system needs to train both simultaneously. The unlabeled samples
are often assigned to weak or pseudo labels for SSL, which is not a good choice for GAN
samples. The unlabeled samples they used, such as in studies [23,26], are real but GAN
samples are fake data generated by training. The existing methods of processing GAN
samples are too rough, treating them the same way during training—the GAN samples are
regarded as an extra class [27] or placed directly into existing classes [28].

We consider that all the GAN samples cannot be regarded as identical; the high-quality
ones should be used to expand the original dataset and the low-quality ones can boost
the learning process but not affect its optimization direction. This study proposes the
label assignment for the unlabeled samples (LAUS) algorithm, which makes different
assumptions for the unlabeled samples. The high-quality samples regarded as real images
are assigned the corresponding ground-truth class distributions, and the low-quality ones are
assigned a uniform label distribution over all the ground-truth classes, which assumes that
these samples do not belong to a specific class. In this way, labeled and unlabeled samples
can be mixed together for training. Moreover, since there are enough samples for training,
the CNNs used in defect classification will not be subject to tiny networks [10–12] or large
baseline networks [14,15,17], and hence can be designed more flexibly and scientifically.
This study designed a new CNN used as the classifier, named all learning lightweight
network (ALLnet), which focuses on industrial gray images, the layers of which are all
learnable. Compared with the CNNs used in previous works, this designs a suitable
trade-off between model power and size.

To address these two challenges, this paper introduces an SSL approach to classify
defects of textured surfaces with very few labeled samples. This method uses a GAN for
sample generation, a label assignment algorithm for semi-supervised training, and a CNN
for representation learning. Unlike the previous supervised ones, our SSL method can
generate unlabeled samples by itself and has the ability to handle labeled and unlabeled
samples simultaneously, and thereby achieves higher accuracy and robustness. To verify
our approach, we carried out extensive experiments on four different defect datasets. The
main contributions of this work are summarized as follows:

(1) An SSL framework that integrates a customized GAN to generate new samples is
proposed to classify defects under limited labeled samples.

(2) A label assignment algorithm that includes the unlabeled samples generated by GAN
into training together with labeled ones is proposed.

(3) A detailed analysis on the CNNs used in defect inspection and the network ALLnet is
designed for representation learning that is used in our SSL pipeline.

2. Unlabeled Samples Generation

2.1. Standard GAN

GANs are the recent emerging deep architectures for both semi-supervised and un-
supervised learning [25]. Unlike other DL networks, the GAN learns around two sub-
networks, a generator G and a discriminator D, and thus it can be characterized by training
these two networks in competition with each other. In each training step, G produces a
sample from a random noise z, with the aim of fooling the D. The D receives the generated
samples as well as the real data x to classify them as “real” or “fake”. Subsequently, G
is devoted to producing more realistic images and D works to improve the “distinguish-
ability”. Both networks are updated repeatedly, and the iteration stops when they reach a
Nash equilibrium. In more detail, D and G are competitors in a minimax game with the
following function.

min
G

max
D

V(G, D) = Epdata(x) log D(x) + Epz(z) log[1− D(G(z))] (1)
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where E is the empirical estimate of the expected value of the probability. G transforms z
into G(z), which is sampled from a noise distribution pz, and the ideal pz should converge
to the real data distribution pdata.

2.2. The Customized GAN

As already mentioned, the GAN has two sub-networks, a generator and a discrim-
inator, which can be multi-layer perceptron [25], auto-encoders [29], or CNNs [30]. The
customized GAN in our system uses CNNs as a backbone and is designed to be applicable
to industrial gray images.

The GAN architecture is shown in Figure 1. For the generator, we feed into a 100 d
random noise vector and reshape it to 4 × 4 × 8 using a linear function (because the mini-
batch size is 64, the actual input size is 4 × 4 × 512 for each past). To enlarge the tensors,
four deconvolutional layers are used with a kernel size of 5 × 5 and a stride of 2, denoted
as {D1, D2, D3, D4}. Each deconvolutional layer follows a BN layer and a ReLU function,
except the D4, which uses the tanh function. Finally, a sample that is 64 × 64 × 1 in size
can then be generated. The discriminator receives the generated samples and real images
as input. Similar to the generator, we use four convolutional layers to classify whether the
input image is real or fake. These layers are also 5 × 5 in size with a stride of 2, denoted as
{C1, C2, C3, C4}, each of which is equipped with a BN layer and a LeakyReLU function.
The settings of output activation functions are followed by the outstanding conclusions
in [27]. We add two fully connected layers to receive the last convolution feature maps and
then feed them into a sigmoid output.

Figure 1. The architecture of the customized GAN.

For all the datasets, we train the GAN on the same hyper-parameters. We use stochastic
gradient descent (SGD) to train the models in the GAN with a mini-batch size of 64. All
the weights are initialized from a normal distribution; the variance is 0 and the standard
deviation is 0.02. The slope of leak is set to 0.2 in the LeakyReLU function. For each dataset,
the GAN will be trained with a learning rate of 0.0001 for 600 epochs.

3. Methodology

3.1. Overview of the SSL Framework

Figure 2 shows an overview of the proposed SSL framework, which consists of three
parts: the customized GAN, the LAUS, and the ALLnet. In a single pass, the GAN receives
labeled samples and noise as input and then generates unlabeled samples. Next, using
the LAUS algorithm, it processes the generated samples in such a way that they can be
included into labeled ones as training data. Finally, the ALLnet is trained on the mixed
samples and thus has high defect classification ability.
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Figure 2. The proposed SSL framework. “L” and “U” represent labeled samples and unlabeled samples.

3.2. LAUS Algorithm

In order to train with labeled samples, an SSL system makes a reasonable assumption
on unlabeled samples and assigns them “labels”—often not the real labels. There are
two assumptions that are commonly used for unlabeled samples. One is the “another
label”, which creates an extra class label for the unlabeled samples [27]. The other is the
“pseudo label”, which assigns each generated sample a ground-truth label according to the
prediction output [28]. Both methods are effective, but their assumptions are too rough. For
the unlabeled samples generated by GAN, “another label” considers that they have poor
quality and places them into a new class outside existing ones, whereas “pseudo label”
considers their quality as good as real samples and as belonging to the existing classes.
In truth, however, the image quality produced by GAN is unpredictable, and the ratio of
high-quality samples to low-quality samples in each category is also different.

Instead of creating a new class or pseudo labels, the proposed LAUS aims to isolate
the whole GAN sample and assign them to different label distributions. Through the model
that was trained on original samples, each GAN sample can obtain the corresponding
class probability vector, the maximum of which will be treated as its class score. The
high-score samples are assigned to their corresponding ground-truth class distributions.
These samples join the existing classes, act as real data, and extend the labeled samples.
The low-score samples are assigned to a uniform label distribution over all the existing
classes. These samples, therefore, belong to neither the existing classes nor a new class (see
Figure 3). After the LAUS process, the GAN samples that share common knowledge with
the real samples can be included in training and not affect the learning direction towards
unknown or fake classes. With this strategy, we can train powerful models on enough
defect data and avoid the risk of over-fitting.
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Figure 3. The label distributions for different generated samples.

First of all, a CNN is supervised trained (i.e., the ALLnet in our pipeline) on real
samples Sr, and the output feature maps can be written as:

zj = ∑
i∈Mj

σ(wi, bi) (2)

where w and b are the weights and bias of the i-th neuron in the j-th convolutional layer,
and Mj is the set of input feature maps of the j-th convolutional layer. σ(·) represents the
activation function. After the training is completed, this model Ms is used to obtain the
class score of the GAN sample. The output of the ALLnet is the softmax function that is
defined as:

θj =
ezj

∑k∈C ezk
(3)

For the GAN-generated samples (SGAN), the class score τ of each SGAN is the
maximum prediction probability, τ = argmax (θ1, . . . , θj), j∈C, where C is the number of
ground-truth classes. According to τ, the SGAN are distributed into two sets of training
data: labeled samples Sl and unlabeled samples Su. The generated samples with high
scores join Sl and receive the ground-truth class label “y”, corresponding to the maximum
score. They are assigned the ground-truth class distribution qGC as well as the Sr, and the
qGC can be written as:

qGC =

{
0, k �= y
1, k = y

(4)

The rest of the generated samples are assigned the uniform label distribution qUL that
can be written as:

qUL =
1
C

(5)

Furthermore, if the real samples are so few that the start model Ms experiences serious
over-fitting, the generated images would be regarded as unlabeled samples and assigned
to the uniform label distribution. Finally, the LAUS transforms all the GAN samples into
trainable data, and the details of it appear in Algorithm 1.
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Algorithm 1: LAUS Algorithm

Input: GAN samples SGAN , real samples Sr, and ground-truth class labels θgt.
1: Train ALLnet on {Sr,θgt} => startup model MS.
2: for i in SGAN :
3: if no MS:
4: Label SGAN as a uniform label distribution Luni f orm.
5: Su←SGAN, Sl←Sr.
6: break

7: end if

8: use MS on S(i)
GAN=> class scores τ(i).

9: if τ(i) ≥ τthreshold:
10: label S(i)

GAN as Lgt according to τ(i).
11: Su←Su + S(i)

GAN .
12: else:

13: label SGAN as Luni f orm.
14: Sl←Sl + S(i)

GAN ..
15: end if

16: Sl←Sr.
17: Training data ST←Su + Sl .
18: end for

19: Return ST

3.3. ALLnet

The baseline CNNs have become the common solution to deal with the representation
learning on big data. These heavyweight networks, although they can achieve adequate
results, may be unsuitable for some industrial scenes. For industrial inspection tasks, there
are not many categories in one defect dataset in general, and therefore, we neither have
enough defect data to train large networks nor need a network with so many neurons. In
this context, we propose a novel network, ALLnet, as the representation learning machine
of the semi-supervised pipeline. There are four blocks in ALLnet, denoted as {B1, B2,
B3, B4}. Each block consists of three learnable layers: a 3 × 3 conv with a stride of 1, a
3 × 3 conv with a stride of 2, and a BN layer. We stack the layers with small 3 × 3 conv
kernels, which can enhance the model capacity and complexity in fewer parameters [15].
The spatial pooling layer is replaced with stride convolution that lets the network learn
how to down-sample, and the fully connected (fc) layers on top of convolutional features
are replaced with a global average pooling (GAP) layer which has nearly zero parameters.

By the LAUS, we mixed the labeled and unlabeled samples into training data. Then,
they are fed into the ALLnet for SSL until the maximum iteration is reached.

3.4. Training
3.4.1. Loss Function

In this paper, we use the cross-entropy loss for the SSL system. Let k∈{1, 2,..., C} be the
predicted class, where C is the number of ground-truth classes. The cross-entropy loss can
be formulated as:

L = −
C

∑
k=1

log(p(k))q(k) (6)

where p(k) is the prediction probability that an input sample belongs to class k. It is derived
from the softmax function, which normalizes the output of the previous fully connected
layer. q(k) is the ground-truth class distribution. Let y be the corresponding ground-truth
class, and q(k) can be defined as:

q(k) =
{

0 k �= y
1 k = y

(7)
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Therefore, if we only consider the non-zero term, (6) can be equivalent to:

L = − log(p(y)) (8)

As in Algorithm 1, the GAN samples have different assumptions. The high-score
samples are assigned to ground-truth class distribution, whereas the low-score samples are
assigned to a uniform label distribution qLAUS(k), which is uniformed over the ground-truth
classes. Let τ be the threshold of class score, and qLAUS(k) can be defined as:

qLAUS(k) =

{
q(k) p(k) ≥ τ

1
C p(k) < τ

(9)

where the q(k) in the upper part is denoted in (7).
For the real images and the high-score samples, the cross-entropy loss is equivalent to

(8), but for low-score samples, (6) can be equivalent to:

L = − 1
C

C

∑
k=1

log(p(k)) (10)

Combining (8), (10), and (6), the cross-entropy loss for our SSL framework can be
rewritten as:

L = −(1−ω) log(p(y))− α(n)
ω

C

C

∑
k=1

log(p(k)) (11)

If the input image is labeled, ω = 0. If the input image is unlabeled, ω = 1. Since there
are more labeled samples than unlabeled ones in training data, a penalty function α(n) is
incorporated into the unlabeled item, which can avoid making the learning tend to rapid
deterioration when too many GAN samples are added. α(n) can be written as:

α(n) =

⎧⎪⎪⎨⎪⎪⎩
0 n < N1

n−N1
N2−N1

αt N1 ≤ n < N2

αt N2 ≤ n

(12)

where n is the number of generated samples and αt is the threshold, which is set to 0.8 in
this paper. For SSL, the number of unsupervised samples should not be less than that of
the supervised ones. Let Nreal be the number of real training images, N1 is equal to Nreal,
and N2 is five times the value of Nreal.

3.4.2. Implementation

We train the SSL model to minimize the loss function in (11). All the input images,
consisting of real and GAN ones, are resized as 64 × 64 × 1 and randomly mixed in
training data. The mini-batch size of each input is 128. We train the models with the
Adam optimizer [31] with the exponential decay parameters β1 and β2 set to 0.9 and 0.99,
respectively. We train the model with a learning rate of 0.0001 for 100,000 mini-batch
iterations. All the experiments were run in Python with Tensorflow packages on an Intel
Core i7, 3.3 GHz with 64-GB RAM and a NVIDIA TITAN Xp GPU workstation.

4. Experiments

4.1. Defect Datasets

The proposed method is evaluated on four types of defect datasets, namely the wood
defect dataset KNOTS [2], the textile dataset Fabrics [3], the steel plate defect dataset
NEU-CLS-64 [32], and the magnetic tile defect dataset MT [33]. NEU-CLS-64 is improved
on the defect dataset NEU-CLS, which contains 1800 images of six defect classes. The
motive to recreate the NEU-CLS-64 is that multiple and even unknown defects exist in
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an image. So, we extended the NEU-CLS in terms of quantity and category. In more
detail, every image was resized to 192 × 192 and center-cropped into nine 64 × 64 images.
Then, we discarded the following cropped images: the ones with heavily occluded defects,
edge-truncated defects, and no defect. Finally, the updated dataset NEU-CLS-64 assembles
approximately 7000 tiny images with nine defect classes, i.e., crazing (Cr), grooves and
gouges (GG), inclusion (In), patches (Pa), pitted surface (PS), rolling dust (RD), rolled-in
scale (RS), scratches (Sc), and spots (Sp). The details of the NEU-CLS-64 and three other
defect datasets are summarized in Table 1, and the examples of each dataset are shown
in Figure 4. In this section, we mainly report results on the NEU-CLS-64, which is a
relatively large-scale dataset; the other three datasets serve as auxiliary datasets for further
verification. All the datasets use the same train/test ratio in experiments, and the ratio is
7:3 in this study.

Table 1. Details of four defect datasets.

Datasets (Num.) Defect Type and Num.

NEU-CLS-64 (7226) Cr (1210), GG (296), In (775), Pa (1148), PS (797), RD (200),
RS (1589), Sc (773), SP (438).

KNOTS (425) Dry (69), Edge (65), Encased (30), Horn (35), Leaf (47),
Sound (179).

Fabrics (1173) Cotton (588), Denim (162), Nylon (57), Polyester (226),
Silk (50), Wool (90).

MT (392) Blowhole (115), Break (85), Crack (57), Fray (32), Uneven (103).

 
Figure 4. Examples of the real images and the GAN samples of the four defect datasets. In each
group, the top row shows real images and the bottom row shows GAN samples. (a) NEU-CLS-64,
(b) KNOTS, (c) Fabrics, (d) MT.
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4.2. GAN Results

We first need to ensure that most samples generated by GAN are available. The
examples of GAN samples are shown in Figure 4. For most types of defects, GAN samples
cannot be intuitively distinguished from real images by human eyes. However, several
images of some defect categories are fuzzy, such as the “crazing” in the NEU-CLS-64 (see
the first column in Figure 4a). Next, we want to prove that the unlabeled GAN samples
can boost the classification performance. Since unlabeled samples are relatively easy to
obtain, we hope that these generated samples have similar semantic information to the
real samples, and thereby can assist or replace the labeled samples that are too difficult to
collect. In order to verify this, we added different numbers of GAN samples generated
on the NEU-CLS-64 into training, and the results are given in Table 2. From this table,
we can safely conclude that the unlabeled GAN samples can share common knowledge
with the labeled ones, and by the addition of GAN samples, there is a significant increase
in classification accuracy. As we discussed in Section 3, LAUS makes a more reasonable
assumption for GAN samples and therefore achieves the best results. The classification
accuracy is improved by approximately three points when 1 × GAN samples are added
compared to the original samples. As the number of GAN samples increases, classification
accuracy increases gradually, and it reaches the peak when 3 × GAN samples are added.
Since the low-score samples are much more abundant than the high-score ones, the accuracy
would tend to deteriorate if too many GAN samples are added, but even so, adding 5×GAN
samples still gives a 3.73% improvement in accuracy over the baseline.

Table 2. Comparing LAUS with related algorithms.

SGAN:Sreal
LAUS Another Label Pseudo Label

acc. (%) acc. (%) acc. (%)

0 (baseline) 96.24 96.24 96.24
1× 98.04 98.19 98.39
2× 98.40 98.60 98.55
3× 99.37 98.92 98.41
4× 99.13 99.04 97.90
5× 98.97 99.02 97.61

We evaluated the GAN samples for each category of the NEU-CLS-64 in detail, and
the results are shown in Figure 5. We wanted to explore how unlabeled samples contribute
to overall accuracy when they are trained along with labeled samples. From Figure 5, we
observe that the addition of GAN samples can lead to a consistent decrease in error rate
for all the defect classes. Unsurprisingly, the ratio of high-score and low-score samples
produced on each class is quite different. The class with a higher error rate seems to produce
fewer high-score samples, but enough low-score samples can still reduce the error rate.
Like the Cr, although it only has only 2% high-score samples of the GAN samples, the
Top-1 error rate of Cr dropped dramatically by approximately 5%.

4.3. Comparison with Other Label Assignment Algorithms

We compare the LAUS with the “another label” and “pseudo label”, which can also
be used in the semi-supervised framework. The experimental results on the NEU-CLS-64
are also listed in Table 2. In this table, we observe that both methods are effective and
the LAUS can also exceed them by 1~2 points when they all reach the peak. We consider
the reason for this is that LAUS’s assumption for GAN samples is more reasonable. The
“another label” makes a coarse assumption for the GAN samples that are all considered as
low-score ones. So, as the number of GAN samples increases, the accuracy rises gradually.
The “pseudo label” gives an over-optimistic evaluation of the GAN samples and puts them
all in the ground-truth classes. It causes the accuracy to peak before many GAN samples
are added, and then drops sharply due to too many low-score samples making the learning
process deteriorate. Unlike the onefold assumptions of the “another label” and “pseudo

91



Coatings 2022, 12, 1707

label”, the LAUS performs different assignments for the GAN samples, which may be the
reason why the LAUS has a superior performance.

 
(a) 

(b) 
Figure 5. The effects of adding GAN samples on each defect class of NEU-CLS-64. (a) The Top-1 error
rate comparison between no GAN samples added (baseline) and adding 3 × GAN samples. (b) The
percentage of high-score samples and low-score samples of each defect class in the 3 × GAN samples.

4.4. Comparison with Baseline CNNs

We replace the ALLnet with other baseline CNNs to evaluate its effect in a semi-
supervised framework. Since baseline CNNs require a great amount of training data, we
enlarged the training set for a fair comparison, where 3 × GAN samples are added. The
input size and weight parameters of CNNs used in experiments are different, and hence we
use different training epochs and minibatch sizes for them. The time of a float operation is
used as the measure of runtime. The AlexNet and VGG16 are trained with a minibatch size
of 64 for 300 epochs, and the InceptionV3 and ResNet101 with a minibatch size of 32 for
600 epochs. The training configuration for ALLnet is defined in Section 3. The results on
NEU-CLS-64 are listed in Table 3. It is no surprise that the strong baseline CNNs obtained
adequate results—the accuracy exceeds 99%. However, a large input size requires enough
memory and redundant parameters and has excessive computation costs, which can slow
down the convergence and increase the computation time. By comparison, the ALLnet
not only achieved the same level of accuracy as the large networks, but also has a simpler
structure and less computing time. Furthermore, we also make a detailed assessment of
the internal structure of the ALLnet, mainly to judge the impact of the number of blocks
and input size on the model. We observe that each additional block in the ALLnet brings
an approximately 1% increase in the overall accuracy, and this trend will continue until
there are four blocks in the model. Another finding is that expanding input size can hardly
increase accuracy but can greatly reduce computational speed. According to the above
results, we can conclude that the ALLnet with four blocks achieved the best trade-off
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between speed and precision, and a large network seems to be unnecessary for industrial
inspection tasks.

Table 3. Comparison with baseline CNNs.

Models Input Size Parameters Accuracy (%) Runtime (ms/Float)

AlexNet 224 × 224 5.8×107 99.10 42.1
VGG16 224 × 224 13×107 99.62 66.2

InceptionV3 299 × 299 2.4×107 99.29 21.0
ResNet101 224 × 224 4.0×107 99.47 29.7
ALLnet(2B) 64 × 64 0.2×106 97.50 6.9
ALLnet(3B) 64 × 64 0.7×106 98.44 8.4

ALLnet(4B) * 64 × 64 2.9×106 99.37 8.6
ALLnet(4B) 128 × 128 2.9×106 99.37 21.0
ALLnet(5B) 64 × 64 12×106 99.38 10.2

* represents that this model is used in our semi-supervised framework. “B” indicates the block of the ALLnet,
which consists of two conv layers and a BN layer.

4.5. Comparison with Other Defect Classifiers

We compare our SSL method with state-of-the-art defect classifiers based on super-
vised learning or transfer learning. The methods selected for comparison include the
supervised ones by Zhou et al. [12] and Hossain et al. [13], and the transfer learning-based
ones are Decaf [14] and MVM-VGG [16]. For simplicity, we call these four methods S1,
S2, T1, and T2, respectively. These methods are reproduced by Tensorflow as our method
for fair comparison. The contrast experiments were carried out on the four aforemen-
tioned defect datasets by adding different numbers of GAN samples. These GAN samples
were added in two ways: one is to compensate the difference between classes to restore a
dataset into a balanced one (balance mode, “B” for short); the other is to follow the original
inter-class ratio (unbalance mode, “U” for short). The results are shown in Table 4.

Table 4. Comparison with other defect classifiers on four defect datasets.

Dataset NEU-CLS-64 KNOTS

Methods S1 S2 T1 T2 Ours S1 S2 T1 T2 Ours

0 (baseline) 87.50 88.14 92.87 97.00 96.24 79.69 73.44 80.21 73.81 80.38

1 × GANs
B 93.25 92.04 96.84 97.87 98.04 84.38 89.06 85.28 89.31 89.06
U 93.64 91.16 95.66 96.87 97.86 78.91 84.38 82.09 85.29 86.72

2 × GANs
B 95.62 95.40 97.76 98.58 98.40 90.63 89.84 88.69 92.30 91.14
U 94.72 93.25 95.89 98.00 98.79 87.50 85.90 83.56 88.69 90.63

3 × GANs
B 97.94 97.11 99.10 99.34 99.37 94.53 94.01 96.62 97.49 97.49
U 96.63 95.16 97.60 98.89 98.87 93.49 91.41 92.20 94.62 95.31

4 × GANs
B 97.26 95.81 98.55 99.12 99.13 92.97 92.96 93.02 97.00 95.00
U 96.13 94.28 96.16 92.87 98.36 88.80 90.89 90.55 92.37 94.53

5 × GANs
B 96.65 95.66 97.75 98.13 98.87 91.41 93.49 92.37 96.53 94.68
U 84.90 - 91.34 90.43 84.91 88.67 91.46 86.32 93.02 83.33

Datasets Fabrics MT

0 (baseline) - - 73.47 82.33 65.42 96.88 90.31 92.60 59.32 92.19

1 × GANs
B 67.71 73.70 83.33 90.55 80.02 91.41 92.19 94.88 66.87 96.09
U 69.27 - 79.93 88.22 77.60 89.84 91.41 92.90 64.62 95.31

2 × GANs
B 86.91 85.32 90.10 91.70 88.93 92.58 - 97.51 79.62 97.40
U 79.84 82.34 86.40 91.09 84.21 94.53 96.88 92.33 64.99 92.19

3 × GANs
B 90.94 91.99 91.90 93.07 93.80 95.31 - 99.09 82.84 99.22
U 90.00 90.04 89.01 92.80 90.31 99.22 98.18 96.68 81.63 97.65

4 × GANs
B 87.30 89.55 91.04 91.61 91.40 97.92 - 98.82 82.77 98.17
U 88.09 86.33 88.64 91.54 90.09 97.66 97.66 95.31 82.59 97.39

5 × GANs
B 85.68 89.50 87.99 92.98 90.04 96.61 - 97.79 83.82 98.88
U 83.33 82.50 87.50 91.15 86.98 97.40 97.27 95.01 85.77 94.27
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In the four defect datasets, our method achieves 3.13%, 17.11%, 28.38%, and 7.03%
improvements in accuracy compared to the baseline, respectively. Meanwhile, our method
at the point of 3 × GANs consistently obtained the best results and is superior to other
methods for each dataset. For each dataset, our method can work well even if the original
data are limited, which also shows that our method performs better than other methods
in terms of generalization and robustness. Moreover, our method can easily correct the
original unbalanced defect dataset into a balanced one, which brings an improvement
in accuracy.

5. Conclusions

In this paper, we propose a semi-supervised learning method that mainly deals with
data-limited defect classification tasks. This method has no need for extra collection of
defect data but uses a customized GAN to generate samples. Through the proposed
LAUS, the GAN samples can be trained with the limited original samples simultaneously.
We also designed the ALLnet, which is trained on these samples in a semi-supervised
manner. Extensive experiments on four different defect datasets have shown that under
the semi-supervised learning framework, we obtained substantial accuracy improvements
that range from 3.13% to 28.38%. Our method can be more precise and robust than the
previous state-of-the-art transfer learning and supervised learning methods, and is effective
for defect classification when the original samples are limited.
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4. Kahraman, Y.; Durmuşoğlu, A. Deep learning-based fabric defect detection: A review. Text. Res. J. 2022. [CrossRef]
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Abstract: The detection of no-service rail surface defects is important in the rail manufacturing
process. Detection of defects can prevent significant financial losses. However, the texture and form
of the defects are often very similar to the background, which makes them difficult for the human eye
to distinguish. How to accurately identify rail surface defects thus poses a challenge. We introduce
salient object detection through machine vision to deal with this challenge. Salient object detection
locates the most “significant” areas of an image using algorithms, which constitute an integral part
of machine vision inspection. However, existing saliency detection networks suffer from inaccurate
positioning, poor contouring, and incomplete detection. Therefore, we propose an innovative deep
learning network named Two-Stream Swin Transformer Network (TSSTNet) for salient detection of
no-service rail surface defects. Specifically, we propose a two-stream encoder—one stream for feature
extraction and the other for edge extraction. TSSTNet also includes a three-stream decoder, consisting
of a saliency stream, edge stream, and fusion stream. For the problem of incomplete detection, we
innovatively introduce the Swin Transformer to model global information. For the problem of unclear
contours, we expect to deepen the understanding of the difference in depth between the foreground
and background through the learning of contour maps, so the contour alignment module (CAM)
is created to deal with this problem. Moreover, to make the most of multimodal information, we
suggest a multi-feature fusion module (MFFM). Finally, we conducted comparative experiments with
10 state-of-the-art (SOTA) approaches on the NRSD-MN datasets, and our model performed more
competitively than others on five metrics.

Keywords: no-service rail surface defect; salient object detection; two-stream encoder; transformer;
contour information

1. Introduction

Rail quality inspection is very important in the rail production process in steel mills,
and one of the most critical aspects is the detection of rail surface defects. Earlier detection
of no-service rail surface defects can prevent economic losses and safety accidents from
occurring in time.

The rails to be inspected are divided into the in-service and no-service rails, which
usually have different defect maps. Images of in-service rail defects often have bright
backgrounds, prominent weaknesses, and distinct contours. However, no-service rail
defect maps often have dark backgrounds, uneven lighting, and impurities of various
origins interfering with identification, which can easily cause different shapes of rail surface
defects during the processing:

(1) When the rail is heated, due to unreasonable technology and techniques, thermal
stresses are created in the rail material, forming cracks on the surface;
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(2) If the billet is not cleaned or is cleaned improperly, the impurities attached to the billet
remain on the surface of the finished rail after heating and rolling deformation. This
is known as scarring;

(3) The presence of linear or curved grooves of varying depths on the surface of the rails,
either continuously or intermittently distributed on the local surface, is known as
a scratch. This is usually caused by improper installation of equipment during the
rolling process.

The cracks, scarring, and scratches have different contours and defect depths, making
the detection of no-service rail surface defects much more difficult than detecting in-service
rail surface defects. Specific comparison pictures [1,2] are shown in Figure 1, where defects
are marked with a red dotted line.

(a) (b) (c) (d)

Figure 1. (a) Surface view of an in-service rail with defects [1]. (b) Surface view of an in-service
rail [1]. (c) Surface view of a no-service rail with defects [2]. (d) Surface view of a no-service rail [2].

Today, more and more researchers from different fields are willing to work in this area,
and they are proposing various solutions. Xu et al. [3] came up with a multi-frequency
electromagnetic system to detect surface defects with different characteristics using electro-
magnetic waves of different frequencies. Hao et al. [4] proposed a new adaptive Canny
algorithm without manually setting the parameters. Cao et al. [5] built a machine vision de-
tection system using an improved least-squares method. Hao et al. [6] proposed a method
to enhance the signal using improved Shannon entropy to reduce the noise generated by
the track at high speeds. However, these methods can only detect superficial features, such
as the color and texture of the defect.

As research into machine vision progresses, neural networks are becoming mainstream
in the field of image classification and identification. Convolutional neural networks
(CNNs) learn relationships between pixels using a series of operations such as convolution,
pooling, etc., and can perceive differences in the depth gradient between the foreground
and background of the image. As a result, research on CNN-based neural networks has
become a hot topic. Shakeel et al. [7] proposed an adaptive multiscale attention module to
align the feature maps. Zhang et al. [2] proposed MCNet using pyramid pooling to focus
on a variety of contextual information. Baffour et al. [8] proposed a self-attention module
working on the spatial locations. Among the many detection tasks, salient object detection
(SOD) [9] locates the most noteworthy areas of a picture using vision algorithms such as
human visual attention. SOD is important because it is often used as the first step of other
vision tasks to focus on the most useful information in an image. In the current SOD deep
learning networks, CNNs are often designed as the backbone of the network to abstract
characteristics hierarchically. They tend to perform well on natural scene datasets because
objects in natural scenes often have distinct contours, allowing the network to distinguish
clearly between the foreground and background. At the same time, the network does not
need to focus on long-range information, which also corresponds to the characteristics of
CNNs’ locality. However, in the field of rail surface defect detection, complex textures,
the irregular outlines of defects, along with their blurred and dark edges, make CNNs’
backbone produce incomplete defect recognition. Thus, we attempted to introduce a more
competitive backbone into the field of rail defects detection—that is, the transformer [10].

In the past few years, the proposal of ViT [10] has made transformer a topic of interest
in computer vision. ViT is famous for its ability to model global long-range dependency
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features. It uses a pure attention mechanism of computation, which reduces training time
considerably compared to CNNs. Swin Transformer [11] has a CNN-like hierarchical
feature structure comparable to that of ViT [10], and it calculates self-attention in a non-
overlapped local window. It suggests connections between different local windows through
an ingenious shifted window design. Swin Transformer [11] absorbs the locality, translation
invariance, and hierarchical merits of CNNs, allowing it to be competent in visual tasks.

In view of these advantages of Swin Transformer [11], we introduced it to our network
as the backbone. However, this does not solve all of the problems. The foreground and
background textures of the rail surface are very similar, making it impossible for a single
Swin Transformer [11] to locate defects accurately, and the resulting inspection map often
has blurred edges. The experimental results are displayed in Figure 2.

(b)

(d)(c)

(a)

Figure 2. (a) Rail defect map. (b) Single Swin Transformer saliency map. (c) Ground truth (d) TSSTNet
saliency map.

To deal with this problem, the existing network uses the first few stages for auxil-
iary tasks, such as boundary detection, and the last few for the main task, i.e., saliency
detection [12–15]. However, in the experiments, we found that when multitasking with
traditional single-stream encoders, the auxiliary tasks interfere with the primary task.
Meanwhile, different layers for different tasks also result in missing information for the
main task in the low-level stage. Therefore, we propose a two-stream encoder for two tasks
and align the saliency maps with the contour maps, using attention mechanisms to enhance
and refine the contours of the saliency maps. Figure 3 shows the edge maps obtained from
TSSTNet learning compared with CTDNet [12].

In summary, the main contributions of this paper are as follows:

(1) For the SOD of no-service rail surface detection, we propose a supervised deep
learning network named TSSTNet and innovatively introduce the transformer as the
backbone of the network;

(2) A two-stream encoder and a three-stream decoder are proposed to eliminate the
adverse effects between tasks;

(3) A contour alignment module is presented to connect multitasking and reduce the
noise at the edges of the saliency maps;

(4) A multi-feature fusion module is proposed to converge the feature maps in the three
different streams of the decoder;

(5) We conducted a comparison experiment on the NRSD-MN [2] dataset with 10 SOTA
methods [13,14,16–23]. The results indicate that our network performs better than the
other networks on five metrics.
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(a) (d)(c)(b)

Figure 3. (a) No-service rail surface defects. (b) Edge ground truth. (c) Contour maps of TSSTNet.
(d) Contour maps of CTDNet [12].

2. Related Works

2.1. Detection of Rail Defects

Rail defect detection is an integral part of the rail production process. Conventional
non-destructive detection methods include magnetic particle detection, radiographic detec-
tion, eddy current detection, and ultrasonic detection. Antipov et al. [24] performed 3D
computer simulations of magnetic flux leakage around transverse cracks in the rail head to
detect the main characteristics of defects. Jian et al. [25] came up with an AE-signal-based
detection system to detect defects by comparing the time intervals of AE wavelets. Mehel-
Saidi et al. [26] proposed a method using a non-contact eddy current sensor to identify
the different noises at the defect. Shi et al. [27] proposed a guided wave mode selection,
which locates defects based on the different sensitivity of different modes to defects at
various locations.

Meanwhile, neural-network-based vision algorithms are also popular in the field
of rail defect detection. Zhang et al. [28] proposed a dual-stream neural network—one
stream for generating samples and the other for classification. Zhang et al. [29] proposed
an improved single-shot multibox detector (SSD) and You Only Look Once version 3
(YOLOv3), implementing the use of two networks to identify three different types of
defects in parallel. Meng et al. [30] proposed a neural network framework for multitask
learning to aid in track crack detection through track object detection.

2.2. Saliency Detection in RGB Images

Saliency detection, as the first step of many visual tasks, is growing in importance. It
uses a computer vision algorithm and neural network learning to locate the most “remark-
able” areas of the image. It helps people to highlight the areas of the image that should
receive the most focus.

U-Net [31] effectively combines multilevel features using its unique U-shaped structure
and skipping connection, making it the basic structure of most networks. EGNet [32]
incorporates a model that obtains boundary information using low-level and high-level
features, and then models the boundary information and target information. PiCANet [33]
consists of an attention mechanism using pixel-wise contextual messages to learn location
information for each pixel. Pyramid-Feature-Attention Network [34] consists of a context-
aware pyramid feature extraction approach. U2Net [35] consists of a two-level nested
U-structure and a residual U-block to capture more contextual information from different
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scales. ASNet [36] consists of an attention mechanism to imitate human visual attention
mechanisms. CAGNet [37] consists of a feature guidance network to reduce the impacts
of “salient like” appearance. PoolNet [38] consists of a global guidance module using
different-sized pooling kernels to capture local and global information.

2.3. Contour Information Learning

Contour information as a separator between the foreground and background is im-
portant in saliency detection. Adding contour information to the network can significantly
increase the effectiveness of saliency detection. The contour map can also refine the pixel
distribution between the foreground and background. Contour detection is also increas-
ingly being studied as a separate task.

CTDNet [12] consists of a trilateral decoder with spatial, semantic, and boundary paths.
C2SNet [13] tries to graft a new branch onto a well-trained contour detection network and
combines the contour task with the saliency task. PsiNet [14] consists of a structure with
three parallel encoders, and one of them is used to perform the auxiliary tasks of contour
detection. ENFNet [39] consists of a novel edge-guided structure to solve the problem of
blurred edges caused by pooling operations.

2.4. Transformer

Bahdanau et al. [39] first applied an attention mechanism to the field of NLP.
Vaswani et al. [40] first proposed a pure transformer, completely abandoning network
structures such as traditional RNNs and CNNs. The transformer contains only the at-
tention mechanism but achieves good results. After that, ViT [10] was proposed to use
attention in the field of image processing. This approach splits the input image into sev-
eral patches and sends them to transformer-like word vectors. Today, more and more
transformers are being proposed to solve image classification, semantic segmentation and
so on.

T2T [41] introduced tokens to tokens, enabling it to perform better on small datasets.
DeiT [42] distills knowledge based on tokens, enabling it to perform better without pre-
training on large datasets. Swin Transformer [11] consists of a multi-head self-attention
mechanism based on shifted windows. PVT [43] consists of a shrinking pyramid and can
contribute to downstream tasks, similar to the ResNet [44] backbone. CvT [45] combines the
advantages of CNNs and transformers. It has both the dynamic attention mechanism and
global modelling capabilities of transformers and the local capture capabilities of CNNs.

3. Methodology

3.1. Overview of the TSSTNet Framework

The proposed network TSSTNet is displayed in Figure 4. It comprises a two-stream
encoder and a three-stream decoder. A contour alignment module (CAM) and a contour
enhancement module (CEM) are proposed to use contour information learned by the edge
stream to assist with saliency detection tasks. A feature fusion module (FFM) and a multi-
feature fusion module (MFFM) are proposed to incorporate multi-model features. The
details of the above four modules are showcased in Figure 5.

Specifically, the images are fed into two separately trained encoders after preprocess-
ing, i.e., the edge stream and the saliency stream. Afterwards, the obtained features are
fed into three different decoders—namely, the edge stream, the saliency stream, and the
fusion stream—and the features from the three decoders are finally fused and output by
the MFFM. The details are presented below.

100



Coatings 2022, 12, 1730

 

Pa
tc

h 
Pa

rti
tio

n

Li
ne

ar
 E

m
be

dd
in

g

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Swin 
Transformer 

Block
2

Swin 
Transformer 

Block
 18

Swin 
Transformer 

Block
2

Pa
tc

h 
Pa

rti
tio

n

Li
ne

ar
 E

m
be

dd
in

g

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Pa
tc

h 
M

er
gi

ng

Swin 
Transformer 

Block
2

Swin 
Transformer 

Block

Swin 
Transformer 

Block
2

UpCBR

UpCBR

MFFM

Edge Label Edge Map

Rail Surface Defect

Feature MapGround Truth

Edge StreamUp

Element-wise 
Addition

Up-sample×2

Pa
tc

h 
M

er
gi

ng

Swin 
Transformer 

Block
2

Pa
tc

h 
M

er
gi

ng

Swin 
Transformer 

Block
2

UpCBR

UpCBR

UpCBR

UpCBR

Swin Transformer Block

LN

W-MSA

LN

MLP

LN

SW-MSA

LN

MLP

CBR Conv3 3 + BN 
+ ReLU

Fusion Stream

Saliency Stream

Supervision

Supervision CAMCAM CAM CAM

Input Separate Training

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Decoder 3

Integration Features Output

Flowchart

Figure 4. Structural diagrams of our proposed network TSSTNet.
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3.2. Two-Stream Encoder and Three-Stream Decoder

In our experiments, we found that when using a single-stream encoder to perform
multitask learning, the secondary task may interfere with the primary mission. Therefore,
in our network, we propose a two-stream decoder—one stream for extracting features, and
the other for boundary information. Separate training parameters are used for the two
streams. The experimental results prove that the two-stream encoder works better than the
single-stream encoder.

We propose a three-stream decoder consisting of a saliency stream (SS), edge stream
(ES), and fusion stream (FS). It makes full use of the extracted multilevel feature maps.
Features from stage i can be denoted as {Si}4

i in the SS, {Ei}4
i in the ES, and {Fi}4

i in the FS.
The features in the SS and ES are then fused hierarchically by upsampling, convolution
with a 3 × 3 kernel, batch normalization, and the ReLU activation function. At the same
time, the CAM transfers the edge information learned from the ES to the SS by calculating
the spatial position relationships, resulting in a precise contour. The three-stream decoder
can be described as follows: {

Si = CBR(Up(Si−1)) + Si
Ei = CBR(Up(Ei−1)) + Ei

(1)

Fi = CAM(Si, Ei) + Fi−1 (2)

Result = MFFM(S4, E4, F4) (3)

where CBR denotes the 3 × 3 convolution, batch normalization, and ReLU function, while
Up represents upsampling × 2.

3.3. Swin Transformer Backbone

Transformers increasingly perform better than CNNs on a wide range of visual tasks.
Swin Transformer [11] not only retains the advantages of the ViT [10]—such as versatility,
the ability to model the global long-range dependency features, and parallel process-
ing capability—but also incorporates CNNs’ advantages of translational invariance and
localization. Meanwhile, Swin Transformer [11] effectively solves the problem of heavy cal-
culation caused by the self-attention operation. The contents of the Swin Transformer [11]
are presented in Figure 4.

Specifically, Swin Transformer [11] firstly divides the RGB image into some non-
overlapping patches via a patch partition operation, and then it applies a linear embedding
layer on the patches, which transforms the data to a specific channel using a fully connected
layer. After that, the patches are put into two successive Swin Transformer [11] blocks
to extract multilevel features. The structure of the blocks is illustrated in Figure 4. With
the network growing deeper, patch merging layers perform downsampling operations
and reduce the resolution. Finally, we can capture the feature maps with the size of H/32,
W/32, where H × W is the shape of the defect pictures. We chose Swin-B [11] as the
pre-trained model in our network. Specifically, the fully connected layer converts the
number of channels in the input patches to 128, while the number of repetitions of Swin
Transformer [11] blocks is {2, 2, 18, 2}.

3.4. Multi-Feature Fusion Module

At the end of the network, we present a multi-feature fusion module (MFFM) that
combines the features from the SS, ES, and FS two by two. For the multi-model maps
in different streams, it contains three different models. These allow the network to learn
boundary information while retaining the global context learned by the SS. The exact
structures of the modules are described in more detail below, and the diagram of the
structure of all modules is shown in Figure 5.

102



Coatings 2022, 12, 1730

3.4.1. Contour Alignment Module

To use edge information to calibrate saliency detection, we propose a contour align-
ment module (CAM). We transform the edge map into probabilities of corresponding
positions using the sigmoid function. Then, we align the edges of the rail defects by multi-
plying the saliency maps and the contour maps to deepen the image edges and reduce the
noise between the background and foreground.

Specifically, we first merge the edge and the saliency maps by addition to form the
fusion maps, and then we calculate the contour attention using a 1 × 1 convolution and
sigmoid function. Then, we multiply and add the contour attention and the fusion map.
Finally, two CBR functions are used to increase the learnability and complexity. Through
contour attention, we expect the network to be more attentive to the edges of rail defects
so as to achieve higher accuracy. The overall framework is shown in Figure 5. It can be
formulized as follows:

CBR2(x) = CBR(CBR(x)) (4)

CGM(Si, Ei) = CBR2[Sig(Cov1(Ei)) ∗ (Ei + Si) + (Ei + Si)] (5)

where Cov1 denotes 1 × 1 convolution, Sig represents the sigmoid function, * denotes
element-wise multiplication, and CBR2 denotes two consecutive CBR functions.

3.4.2. Contour Enhancement Module and Feature Fusion Module

To combine the features in the ES and FS, we propose a contour enhancement module.
Considering that the CAM aligns the contour maps to the saliency maps, we expect to let
the edge maps guide the fine-tuning of the fusion maps through channel attention. Channel
attention can improve the feature presentation of feature maps, while simultaneously
reducing the noise at the edges of the feature maps due to the blurring of the edge maps.
CEM can be presented as follows:

fi = Ei + Fi (6)

CEM( fi) = CBR2
[
CBR2(CMax( fi) + CAvg( fi)) ∗ fi

]
(7)

where CMax represents the global max pooling operation along the channels, CAvg repre-
sents the global average pooling along the channels, and fi is an intermediate feature. In
this model, the contour on the feature is enhanced again.

Inspired by [46], we propose FFM by combining channel attention and spatial attention.
However, we remove the bottleneck structure of the MLP in order to reduce the amount
of computation in the network. We expect the fusion maps to pass contour information
to saliency maps, while the saliency maps can retain semantic context information in the
fusion maps. FFM can be denoted as follows:

S_A = Sig(CBR(GMax(Si + Fi) + GAvg(Si + Fi))) ∗ (Si + Fi) (8)

FFM( fi) = Sig(CBR(Cat(CMax(S_A), CAvg(S_A)))) ∗ S_A (9)

where GMax denotes the global max pooling operation along the axis, GAvg denotes the
global average pooling operation along the axis, S_A represents spatial attention, and Cat
represents concatenation.

3.5. Training

We chose the NRSD-MN [2] dataset to train, validate, and test our network. The input
size was processed to 384 × 384 × 3. This also corresponds to the input size of Swin-B.
We enhanced the data using random flipping, rotation, and border clipping. Swin-B was
chosen to initialize the parameters of the network. The batch size was programmed to 8,
and the training epochs were set at 50. An Adam optimizer was introduced to train our
network. The learning rate was initialized to 5 × 10−5, and then it decayed to 5 × 10−6

when the number of training epochs reached 30. We set the gradient clipping margin to 0.5.
TSSTNet was trained on a machine with a single NVIDIA RTX 3090 and 24 GB graphics
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memory, and the approximate training time was 6 h. All code was implemented in the
PyTorch framework.

4. Experimental Section

4.1. Datasets

To train TSSTNet, we selected the NSRD-MN [2] dataset. Zhang et al. [2] built a filming
system consisting of a binocular color line-array camera, two light sources with a linear
shape, and a motion transmission system. The color line-array camera reduces the light
requirement to linear, uniform light. We used two linear light sources to provide linear
uniform light. The camera cannot capture the entire surface of the rail at once, so a moving
platform located underneath the rail carries the rail in slow motion. The specific structure
is shown in Figure 6. The binocular line-array camera takes on the task of photographing.
After the shoot, it manually annotates the images under the guidance of professionals from
steel-testing companies. Then, we transform the annotations of the training and validation
photos into edge annotations using the Canny [47] algorithm.

Binocular 
Color Line 

Array Camera

Two strip light 
sources

Rail

Transport 
platform

Manual 
Labelling

Canny 
Algorithm

TSSTNet

Training

Supervision

Supervision

Photographing

NSRD-MN dataset image acquisition process

NSRD-MN dataset labelling 
process

Figure 6. The process of creating the NSRD-MN dataset.

In summary, we obtained 3936 craft images of no-service rail surface defects (NRSDs),
including 2158 images aged by a rust-promoting reagent, 1778 unaged pictures, and
165 natural NRSD photos. The natural set includes 115 highly similar and imitative images
and 50 real images without any processing. They use metal to create scratches on the
surface of the rails or use rust-promoting reagents on the surface of the metal to cause the
metal to age and rust, making the manmade dataset look very similar to the natural one.
The craft images were split into groups of 2086, 885, and 965 for training, validation, and
testing, respectively, and the natural images were used as the test set.

4.2. Evaluation Metrics and Loss Function

To assess the capability of TSSTNet, we used five evaluation metrics commonly utilized
in the field of SOD. Firstly, we chose the mean absolute error (MAE) [48] as our key metric,
which visually shows the error between the predicted and true values. The formula is
shown below:

MAE =
1

H ×W

H

∑
j=1

W

∑
k=1
|S(j, k)− G(j, k)| (10)

where S is the saliency map, G is the ground truth (GT), j, k is the location of the pixel, and
H ×W is the size of the entry image.
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The mean F-measure (mFβ) [49] was used to demonstrate the performance of the
model by calculating Precision and Recall. The weighted F-measure (wFβ) was used to
evaluate the positional accuracy of the salient results. Conventionally, we set β2 to 0.3.

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

Fβ =
(1 + β2)× Precision× Recall

β2 × Precision× Recall
(13)

where TP means the true positive, FP means the false positive, and FN means the false
negative in the contradiction matrix.

Structure-measure (Sα) [50] was used to measure the structural similarities between
the predicted images and the annotations. There, we set α to 0.5.

Sα = α ∗ So + (1− α) ∗ Sr (14)

Enhanced-alignment measure (Eξ) [51] focuses on the link between image-level data
and local pixels by combining global pixel averages and local pixels. Finally, we also drew
precision–recall (PR) and F-measure curves to show all information.

We choose binary cross-entropy loss (BCELoss) and intersection-over-union loss (IouLoss)
as our loss functions. For training the edge maps, BCELoss was adopted as the edge stream
loss (Le).

Le(P, G) = − 1
H ×W

H

∑
j=1

W

∑
k=1

[G(j, k) ∗ log(P(j, k)) + (1− G(j, k) ∗ log(1− P(j, k))] (15)

where G denotes the ground truth map, P denotes the prediction map, and j, k denotes the
location of the pixel.

For training of the saliency maps, an integrated loss function (Ls) was introduced. In
accordance with CTDNet [12], we set β to 0.6.

Liou = 1−

H
∑

j=1

W
∑

k=1
G(j, k)P(j, k)

H
∑

j=1

W
∑

k=1
[G(j, k) + P(j, k)− G(j, k)× P(j, k)]

(16)

Ls = β× Le + Liou (17)

As with the F-measure, we also chose PR curves to represent the relationship between
precision and recall in the network results. Specifically, the precision and recall expressions
indicate the percentage of true positives in the confusion matrix. The PR curve represents
the relationship between precision and recall, and it is usually a convex curve. The higher
the curve is to the right, the more effective the network. If two PR curves intersect, the
further to the right the point is when P = R, the better the network.

4.3. Comparison of Method Performance

We compared the performance of 10 SOTA deep learning neural networks widely
used in SOD tasks on the NRSD-MN dataset (i.e., BASNet [44], BSANet [45], C2FNet [46],
CTDNet [12], EGNet [24], F3Net [47], PFPN [48], PiCANet [25], PoolNet+ [49], and
TRACER [51]). The results are shown in Figure 7, and we have marked the experimental
results of TSSTNet with a dashed box. It can be clearly seen that the salient detection
results obtained by our model are more accurate. Meanwhile, we compared the net-
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works with similar test results in more detail. The comparative diagram is shown in
Figure 8. In the diagram, we compare the visualization results in terms of detection com-
pleteness and edge refinement, using different-colored rectangular boxes to box them
out. Benefiting from the edge stream, contour alignment module (CAM), and multi-
feature fusion module (MFFM), we obtained a clearer contour. The code is available at
https://github.com/VDT-2048/TSSTNet, which is accessed on 1 October 2022.

In terms of specific evaluation results, our network shows an improved effect com-
pared to the latest proposed network TRACER [51], in the following ways: 0.6% lower
MAE, 2.6% higher mFβ, 2.8% higher wFβ, 2.0% higher Sα, and 0.8% higher Eξ on the natural
surface defects dataset (Real); and 0.3% lower MAE, 3.7% higher mFβ, 3.6% higher wFβ,
1.4% higher Sα, and 1.2% higher for Eξ on the manmade surface defects dataset (Craft).
Other comparative results are illustrated in Table 1.

The experimental results show that our network is highly competitive in saliency
detection. Benefiting from the Swin Transformer [11] backbone and the two-stream multi-
tasking encoder, our network is more accurate in feature extraction. At the same time, the
CAM helps the network to distinguish between ambiguous foregrounds and backgrounds
very well.

We drew PR curves and F-measure curves to show the relationship between precision
and recall, as shown in Figures 9 and 10, respectively. From the PR curve analysis, we can
infer that TSSTNet performs much better than the other comparison networks on the real
dataset. On the craft dataset, several networks achieved similar results, but TSSTNet was
still superior to the other networks.

Image GT BASNet BSANet C2FNet CTDNet Edge GT TSSNet 
Edge

TSSTNet EGNet F3Net PFPN PoolNet+ Tracer CTDNet 
Edge

PiCANet

Figure 7. Visualized saliency maps of no-service rail surface defect detection compared with
10 other networks.

106



Coatings 2022, 12, 1730

BSANetTSSTNetGT TRACER

Completeness Comparison Edge Comparison

Image

Figure 8. Visual comparison of the two networks with the most similar test results from detection of
completeness and edge refinement.

Table 1. Comparison with 10 other common SOD networks; ↑means the higher the better, ↓means
the lower the better. The best two results are tagged in red and green, respectively. MAE is the
key metric.

Methods

NRSD-MN Dataset

Real Craft

MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑ MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑
BASNet 0.065 0.748 0.730 0.797 0.830 0.021 0.802 0.775 0.866 0.944
BSANet 0.064 0.761 0.740 0.808 0.837 0.017 0.844 0.820 0.884 0.958
C2FNet 0.063 0.761 0.705 0.805 0.850 0.021 0.817 0.738 0.859 0.949
CTDNet 0.068 0.734 0.708 0.779 0.828 0.020 0.808 0.779 0.865 0.948
EGNet 0.063 0.746 0.723 0.798 0.840 0.019 0.814 0.797 0.872 0.948
F3Net 0.060 0.771 0.754 0.822 0.847 0.018 0.824 0.799 0.879 0.950
PFPN 0.059 0.759 0.742 0.819 0.857 0.019 0.798 0.793 0.871 0.940

PiCANet 0.076 0.679 0.633 0.749 0.826 0.031 0.718 0.695 0.819 0.901
PoolNet+ 0.061 0.760 0.740 0.811 0.839 0.017 0.825 0.805 0.875 0.953
TRACER 0.058 0.772 0.753 0.819 0.859 0.019 0.825 0.805 0.875 0.953

Ours 0.052 0.798 0.781 0.839 0.867 0.016 0.841 0.816 0.883 0.958
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Figure 9. PR curves for the real NRSD-MN dataset.

Figure 10. PR curves for the craft NRSD-MN dataset.

4.4. Ablation Experiments

To verify our conjecture about the benefits of two-stream networks, and to evaluate
the advantages and disadvantages of the proposed modules, we conducted several ablation
experiments. We used upsampling operations and element-wise addition to merge the
hierarchical features to form a U-shaped structure. We also removed the MFFM and the FS
separately using the control variable method. In the experiments to eliminate the MFFM,
we used element-wise addition instead of the MFFM to fuse the ES, SS, and FS. The results
of the investigation are displayed in Table 2.

The experimental results indicate that the two-stream encoder can indeed solve the
problem of the auxiliary task interacting with the main task in the single-stream encoder.
Furthermore, the combination of the three-stream features extracted by the two-stream
encoder through the MFFM can solve the problem of conflict when different features
are fused.
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Table 2. Results of the ablation experiments; ↑ means the higher the better, ↓ means the lower the
better. The best two results are tagged in red and green, respectively. MAE is the key metric.

Swin
Transformer

Backbone

Two-
Stream
Encoder

Three-
Stream

Decoder
MFFM

NRSD-
MN

Dataset
MAE ↓ mFβ ↑ wFβ ↑ Sα ↑ Eξ ↑

Test1
√

Real

0.056 0.787 0.767 0.825 0.856
Test2

√ √
0.053 0.805 0.776 0.820 0.874

Test3
√ √ √

0.099 0.705 0.359 0.732 0.835
TSSTNet

√ √ √ √
0.052 0.798 0.781 0.839 0.867

Test4
√

Craft

0.017 0.831 0.807 0.880 0.955
Test5

√ √
0.020 0.833 0.810 0.860 0.954

Test6
√ √ √

0.062 0.761 0.389 0.771 0.921
TSSTNet

√ √ √ √
0.016 0.841 0.816 0.883 0.958

5. Conclusions

In this paper, we present a multi-stream neural network named Two-Stream Swin
Transformer Network (TSSTNet) to meet the challenge of blurring the edges of rail sur-
face defects and distinguishing the foreground from the background. TSSTNet uses two
separately trained encoders to extract saliency features and edge features, which is a good
solution to the problem of inter-task interference when a single-stream encoder is working
on multiple tasks. This also makes TSSTNet highly capable of edge refinement. At the
same time, we propose a contour alignment module (CAM) to use spatial attention to
fuse features from different streams, which calibrates the edges of the saliency detection
map, reduces noise at the foreground–background junction, and helps the network to
locate defects. Moreover, a multi-feature fusion module (MFFM) is proposed to solve the
problem of conflicting features at different levels of the three-stream decoder, which is able
to reduce the variability in the fusion of features learned from different streams. However, a
dual-stream decoder with separately trained parameters would result in a larger model and
more computational effort. In subsequent studies, we will remove the less important parts
of the network by pruning, compression, and other operations to lighten the network. In
addition to this, we will commit to the use of multimodal information—including RGB-D
and RGB-T images [51]—for the detection of no-service rail surface defects.
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Abstract: Data imbalance is a crucial factor that limits the performance of automatic defect recognition
systems in castings. The bias and deterioration of the model are generated by massive normal samples
and minor defect samples. Traditional re-sampling methods randomly change the data distribution
and ignore the significant intra-class difference among all normal samples. Therefore, this paper
proposes a distribution-preserving under-sampling method for imbalance defect-recognition in
castings. In detail, our method divides all normal samples into several sub-groups by cluster analysis
and reassembles them into some balance datasets, which makes the normal samples in all balance
datasets have an identical distribution with the original imbalance dataset. Finally, experiments on
our dataset with 3260 images indicate that the proposed method achieves a 0.816 AUC (area under
curve) score, which demonstrates significant advantages compared to cost-sensitive learning and
re-sampling methods.

Keywords: castings defect recognition; imbalance classification; distribution-preserving

1. Introduction

Casting is an important forming means to achieve high-efficiency and low-cost man-
ufacture and is an irreplaceable process for metal parts with complex structure. A large
number of core components are formed by the casting process in the high-end manufactur-
ing industry. Unfortunately, castings inevitably have different internal defects because of
casting materials and processes. These internal defects will seriously affect the mechanical
properties of castings, even directly leading to scrap.

To obtain the internal information of castings, digital radiography (DR) technology
is utilized and gradually became the first choice for nondestructive testing. DR utilizes
X-ray to penetrate the castings and directly produces a digital image through the digital
detector array (DDA). Then, the inspectors judge whether there is a defect in the casting by
observing the change of gray level in the digital image. However, manual visual inspection
not only is laborious and inefficient but also easy to be affected by the ability and experience
of the inspectors. Consequently, automatic defect recognition (ADR) has collected much
attention and became one of the research hot points. Early research about ADR mainly
focused on handcrafted feature extraction and traditional machine learning. Mery et al. [1]
utilized a single filter to track potential defects in image sequences. Hernandez et al. [2]
used the neuro-fuzzy method to classify the defect and normal samples. Zhao et al. [3]
proposed a defect recognition framework for automobile wheels, which employed the gray
arranging pairs method to segment the defects, then their randomly distributed triangle
features were extracted and fed into a sparse representation classifier to achieve defect
classification. Overall, these approaches heavily rely on the handcrafted features designed
by experts. Unfortunately, the handcrafted features usually have poor robustness, which
fails to adapt to the change of position, structure, and ray intensity.
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As deep learning develops, current ADR systems in casting mainly realize defect recog-
nition through a convolutional neural network (CNN). Du et al. [4] used the Faster-RCNN [5]
with feature pyramid networks (FPN) [6] to locate the defect. Yu et al. [7] proposed an adaptive
CNN model to realize multi-class defect segmentation. A variable attention nested UNet++
network [8] was introduced for defect segmentation in the X-ray image.

The above research aims to achieve end-to-end defect location and segmentation,
which can provide more comprehensive information about the defect. However, they also
have a slow detection speed. In actual detection, the number of images without defects
is far more than the number of images with defects. Thus, the image-level recognition
method can be deployed at the front of the entire detection process to improve detection
efficiency. Mery et al. [9] extensively tested the combined performance of multiple features
and classifiers in the GDX-ray [10] dataset. This work crops the original image into
enormous, small patches (32 × 32). Because of low resolution, deep learning methods
perform worse than traditional machine learning. Subsequently, Mery [11] used GAN and
physical simulation methods to produce more virtual defect images and boost accuracy.
Tang et al. [12] combined spatial attention mechanisms and bi-linear pooling into a CNN
model to increase the representation power. Similar to [12], Hu et al. [13] presented a
two-stage training procedure, which firstly forces the network to classify the casting type
and then to classify the defect and normal samples. Jiang et al. [14] presented the mutual-
channel loss and an attention-guided data augmentation method to boost the original
VGG network.

Regrettably, the above research is dedicated to designing higher performance CNN
on balance datasets and sidestepping the fact of class imbalance that significantly impacts
the recognition accuracy. At present, there are two main solutions to solve the imbalance
classification: the re-weighting and the re-sampling method. The re-weighting method is
also called cost-sensitive learning. It adopts re-weighting strategies to adjust the loss of
minor class samples. Weighted cross-entropy loss is the simplest way whose weight is the
inverse class frequencies. Seesaw loss [15] adaptively re-balances gradients of minor-class
and major-class samples with mitigation factor and the compensation factor. Focal loss [16]
is proposed to solve the class imbalance in object detection. It inversely re-weights classes
by prediction probabilities, so that it can give higher weights to the minor classes but lower
weights to the major classes. The re-sampling method [17,18] directly changes the data
distribution and forms some balance datasets by randomly over-sampling the minority
class or under-sampling the majority class.

However, the random re-sampling method ignores the intra-class difference in defect
recognition. As shown in Figure 1, these normal samples are different in gray level,
texture, and so on. In Figure 1a, this kind of image is brighter than others. In Figure 1b,
such images have some false defects because of the concave-convex surface of castings.
Figure 1c stands for the rest of the samples whose background lacks detail. Based on the
previous analysis, the random under-sampling method will change the original distribution
information in all normal samples and lead to the variability of balance datasets generated
by re-sampling. It will break the important assumption in deep learning: independent
identical distribution. Considering this, a distribution-preserving under-sampling method
is proposed for imbalance defect recognition in castings. By cluster analysis, we divide all
normal samples into several groups and reassemble them into some balance datasets. The
normal samples in these balance datasets follow a similar distribution to the original data.
Benefitting from the above improvement, our methods achieve a better accuracy under
imbalanced data.
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(a) (b) (c) 

Figure 1. Three typical normal samples. (a): brighter normal samples (b): normal samples with false
defects (c): normal samples with missing details.

2. Methods

2.1. Overview

In this section, we present our method for imbalance defect recognition. Our method
firstly extracts the image features of normal samples by a pre-trained network, and then
clusters them into some groups based on k-means++ [19] approach. Some normal samples
belonging to each group are selected and recombined to form several new subsets. Each new
subset is combined with all defect samples, resulting in some balance training datasets. We
train our deep learning model by each training dataset and obtain some network weights.
Through model fusion, our method produces better performance under an imbalanced
dataset. The details are shown in Figure 2.

2.2. Distribution-Preserving Under-Sample

Assume that a class-imbalanced dataset D = {Dn ∪ Dd} includes normal samples (Dn)
and defect samples (Dd). The numbers of the Dn, Dd are Nn, Nd. Nn is far larger than Nd.
Our goal is to build some balanced datasets through under-sample methods for relieving
the imbalance.

Traditional under-sample methods select some samples randomly. However, this
method will change the prior distribution information in the normal class because of large
intra-class differences. We believe that the subsets obtained after under-sampling should
maintain the same distribution as the original dataset. Motivated by this, a distribution-
preserving under-sample method is proposed to acquire multiple subsets that are identically
distributed with the original normal class.

For our method, a ResNet18 [20] pre-trained by ImageNet [21] is first employed to
extract the high-dimension features of normal samples because it has been proven to be a
good feature extractor. These features are then PCA-reduced to 128 dimensions, whitened,
and L2-normalized. K-means++, a standard clustering approach, is widely used and can be
regarded as a baseline clustering method. It takes the reduced dimension features as input
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and clusters them into K distinct groups (G1, G2, . . . , Gk) based on an Euclidean distance.
Each group represents the sub-class of the normal sample.

Figure 2. The pipeline of the proposed method.

To ensure the same distribution between each subset and the original dataset, we
randomly select p% of the samples from each group and repeat t times, so several sub-
groups (G11, G12, . . . , G1t, . . . , Gkt) are formed. Finally, t balanced datasets (BD1, BD2, . . . ,
BDt) are aggregated by:

BDi = {G1i ∪ G2i ∪, . . . , Gki ∪ Dd}, i = 1, 2, . . . , t, (1)

The number of normal samples in each BD can be computed as follows:

NBD = Nn × p%, (2)
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In general, CNN does not need a totally balanced dataset, so we set the NBD slightly
larger than Nd by adjusting p.

2.3. Network

CNN has demonstrated impressive ability in many computer vision tasks. It can
automatically extract general and robust features from the input data by back-propagation.
CNN is usually composed of convolution, activation functions, and fully connected layers.
Through careful designing of network architecture, a multiple classical CNN model is
proposed. In this work, we consider the network performance and inference time compre-
hensively; ResNet18 and MobileNetV2 [22] are selected for defect recognition.

ResNet is used to solve the gradient disappearance with the increase in network depth.
The main idea of ResNet is to introduce a residual block that forces the network to learn
identity mapping rather than fitting ground truth directly. Through stacking some residual
blocks, multiple versions of ResNet are produced, such as ResNet18, ResNet50 ResNet101,
and so on. MobileNetV2 is improved based on ResNet to make it lighter, which proposed
the inverted residual block. Different from the residual block, this module first expands the
channel of input features to a high dimension and filters it with a lightweight depth-wise
convolutional layer. The features are subsequently projected back to a low dimension with
a 1× 1 convolution. The details of the residual block and inverted residual block are shown
in Figure 3.

  
(a) (b) 

Figure 3. (a): residual block (b): inverted residual block, n means channel numbers.

In this study, ResNet18 and MobileNetV2 are modified to adapt to this task. We
employ the pre-trained weight from ImageNet as an initialization and remove their all fully
connected layers. Then, a new fully connected layer is added to the network. The softmax
layer transfers the output of the fully connected layer into a probability distribution. Finally,
we train t CNN models based on t balanced datasets.
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2.4. Model Fusion

Although our under-sample method can produce several balanced and identically
distributed datasets, it just includes part of the whole normal samples. The model trained
by different datasets must have some bias which is harmful to generalization performance.
Thus, we employ the model fusion strategy to solve it. Suppose fi is the CNN model
trained by BDi, θi is the parameter of it. fi(x, θi) stands for the CNN output of the sample x.
By averaging the output of multiple CNN, the result y without bias can be obtained.

y =
t

∑
i=1

fi(x, θi) (3)

3. Experimental Setup

3.1. Datasets

We collect 3260 X-rays whose resolution is 480 × 480 of aluminum alloy castings from
the line for evaluating our method. There are 630 defective samples and 2630 normal
samples in the total dataset. The training dataset is imbalanced to keep consistent with the
actual task for defect recognition. The evaluation and test datasets are balanced for a better
comparison. Table 1 shows the detailed number. Figure 4 shows some typical normal and
defect samples.

Table 1. The number of samples in this dataset.

Dataset Normal Defect Total

Train 2430 430 2860
Validation 100 100 200

Test 100 100 200

(a) (b) 

Figure 4. (a): normal samples (b): defect samples.

3.2. Implementation Details

The computation platform used in this work was Intel Core i9-9920X, 64G memory, and
TITAN-RTX with 24G GPU memory. All the models were implemented by the MindSpore
frame framework. The optimizer is Adam. The batch size and the learning rate were 16 and
0.001, respectively.
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3.3. Evaluation Metric

Accuracy is usually used for evaluating the balance classification task. However, the
tolerance for normal samples to be detected as defective samples is far greater than that for
defective samples to be detected as normal samples. So, accuracy is not entirely suitable for
evaluating it. In this task, AUC (area under curve) score is the main evaluation metric. AUC
score is obtained by calculating the area under the ROC (receiver operating characteristic)
with multi-thresholds. When the threshold is 0.5, precision and recall are also reported.
The specific calculation formula of precision and recall are as follows:

Presicion =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

TP and FN are the numbers of defect samples classified correctly or not. FP represents
the number of normal samples classified incorrectly.

4. Results and Discussion

4.1. Compare with Other Methods

In order to illustrate the advancement of our method, we compare it to other methods
of imbalance classification including cost-sensitive learning and re-sampling method. At
the same time, we test our method under two different backbone networks to prove its
generalization. Every method is tested five times and the results are shown in Table 2.
The baseline is the CNN model trained with standard cross-entropy loss. The baseline
considers all samples as normal samples and produces the worst result due to extreme
imbalance. Cost-sensitive learning improves it by giving less weight to normal samples.
Simple weight cross-entropy loss performs better than focal and seesaw loss. Re-sampling
methods also achieve higher accuracy. When ResNet18 is used as the backbone network,
the over-sample method performs better than the under-sample, but when the backbone
network is MobileNetV2, under-sample performs better than the over-sample method.
In general, re-sampling methods are more suitable for our dataset than cost-sensitive
learning. Our method achieves the best result under different backbone networks, especially
MobileNetV2. The AUC score of our method is 3.8% higher than the under-sample method,
which proves the effectiveness of our approach.

Table 2. The quantification results of different methods towards class-imbalance classification.

Backbone Method Precision Recall AUC

ResNet18

CE loss 0.5005 ± 0.001 0.996 ± 0.008 0.5509 ± 0.0735
WCE loss 0.668 ± 0.0333 0.846 ± 0.0301 0.7437 ± 0.0291
Focal loss 0.538 ± 0.0571 0.494 ± 0.2463 0.5613 ± 0.0435

Seesaw loss 0.668 ± 0.0098 0.89 ± 0.0482 0.74 ± 0.0232
Over-sample 0.6534 ± 0.0163 0.824 ± 0.0508 0.7797 ± 0.0202

Under-sample 0.6537 ± 0.0757 0.75 ± 0.1838 0.7408 ± 0.035
Ours 0.6326 ± 0.0227 0.84 ± 0.0562 0.7891 ± 0.0168

MobileNetV2

CE loss 0.5 ± 0.0 1 ± 0 0.5101 ± 0.075
WCE loss 0.709 ± 0.0256 0.846 ± 0.0287 0.7864 ± 0.0355
Focal loss 0.529 ± 0.0208 0.598 ± 0.0838 0.5408 ± 0.0194

Seesaw loss 0.675 ± 0.037 0.868 ± 0.0343 0.7656 ± 0.0236
Over-sample 0.6712 ± 0.0316 0.84 ± 0.0701 0.7786 ± 0.0153

Under-sample 0.6674 ± 0.0203 0.8224 ± 0.0528 0.7859 ± 0.0069
Ours 0.6398 ± 0.0155 0.9080 ± 0.0192 0.8158 ± 0.0160
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4.2. The Influence on Different Imbalance Ratios

To prove the robustness of our method, a further experiment is conducted under
different imbalance ratios (normal sample/defect sample). We gradually reduce part of
the defect samples in the training dataset for simulating the more imbalanced situation.
MobileNetV2 is utilized as the backbone network and part of the cost-sensitive learning
methods and re-sampling methods are employed to make a comparison with our approach
based on the results in 4.1. We also adjust the weight factors according to the imbalance
ratios for WCE and seesaw loss methods. Figure 5 shows the AUC scores of different
methods when the number of defect samples reduces to 1/2, 1/4, 1/8, and 1/16 of the
original. It is consistent with the intuition that the experimental performance of most
comparison methods significantly decreases as the number of defect samples decreases.
Overall, the tolerance of cost-sensitive learning methods is worst for imbalanced datasets.
When the defect samples are only 1/8 of the original, the AUC of seesaw loss reduces by
27.45%. This is because these methods cannot essentially deal with the issue of lacking
information, particularly on limited data amounts. Re-sampling methods perform better
than cost-sensitive learning methods, especially the under-sampling method. However,
it still has a big gap with our method. As the number of defect samples decreases, the
AUC score of our method is still optimal. It demonstrates that our method has significant
advantages in tolerance for imbalance.

Figure 5. The AUC scores under different imbalance ratios.

4.3. The Influence on Cluster Number K

Cluster number K is an important parameter for the k-means++ algorithm. Different
K will lead to a different cluster result. We set a series of K (3, 5, 7) and observe the impact
on the result in Figure 6. Experiments show that our method is not sensitive to the choice
of cluster number K. Different K can achieve similar performance. Although the number of
clusters is different, our method has the same sampling proportion in different sub-groups,
which ensures the distribution consistency between each balanced dataset and the original
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dataset. This mechanism makes our method more robust on hyper-parameter, that is, the
cost of applying this method is low.

 
Figure 6. The results of the proposed method under different cluster number.

5. Conclusions

Data imbalance is very common in casting defect recognition. This paper proposes a
distribution-preserving under-sampling method for reducing the uncertainty of traditional
re-sampling methods. Our method divides all normal samples into several sub-groups by
k-means++ and reassembles them into some balance datasets, which makes the normal
samples in all balance datasets have an identical distribution with the original imbalance
dataset. Experiments on our dataset illustrate that the proposed method achieves significant
advantages compared to the state-of-the-art methods for data imbalance. At the same time, our
method is more resistant to extreme data imbalance and not sensitive to the hyper-parameter.
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Abstract: Defect classification is an important aspect of steel surface defect detection. Traditional
approaches for steel surface defect classification employ convolutional neural networks (CNNs)
to improve accuracy, typically by increasing network depth and parameter count. However, this
approach overlooks the significant memory overhead of large models, and the incremental gains
in accuracy diminish as the number of parameters increases. To address these issues, a multi-scale
lightweight neural network model (MM) is proposed. The MM model, with a fusion encoding
module as its core, constructs a multi-scale neural network by utilizing the Gaussian difference
pyramid. This approach enhances the network’s ability to capture patterns at different resolutions
while achieving superior model accuracy and efficiency. Experimental results on a dataset from a
hot-rolled strip steel plant demonstrate that the MM network achieves a classification accuracy of
98.06% in defect classification tasks. Compared to networks such as ResNet-50, ResNet-101, VGG,
AlexNet, MobileNetV2, and MobileNetV3, the MM model not only reduces the number of model
parameters and compresses model size but also achieves better classification accuracy.

Keywords: surface defect detection; defect classification; deep learning; lightweight network

1. Introduction

Defect classification is an important industrial inspection task where defect images
are analyzed and identified to determine their corresponding defect types [1]. Manual
defect detection is commonly used to classify steel surface defects in traditional industries.
It is an essential component of the industrial defect detection process. To replace manual
operations, it is desired that machines can automatically detect steel surface defects using
computer vision technology [2].

The task of classifying defects on steel surfaces using computer vision techniques
poses a significant challenge due to the effects of illumination and material variations
on defect images [3]. In addition, the appearance of defects varies dramatically not only
within categories of steel surfaces but also between categories, thus further complicating
the classification process. Therefore, designing an accurate and reliable defect classification
algorithm to take these complexities into account is an ongoing research topic in the field
of computer vision [4]. Current image classification methods are mainly of two types:
traditional machine learning image classification algorithms and deep learning methods
based on convolutional neural networks [5]. Traditional image classification algorithms
are mainly implemented using two major steps of feature extraction and classifier design,
such as the K-Nearest Neighbor algorithm [6], Support Vector Machine [7], and neural
networks [8], which are widely used in computer vision. Various complex situations
are faced in practical defect classification applications, and it is difficult to achieve the
requirements in terms of accuracy using traditional image processing methods [9].
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The identification of surface defects in steel undergoes three processes: manual human
detection, prediction using machine learning algorithms, and automatic detection through
deep learning [10]. In recent years, deep learning-based image classification methods
have achieved good results, such as VGGNet (Visual Geometry Group Network) [11] and
ResNet (Residual Network) [12]. U-Net is employed for the task of detecting and classi-
fying welding defects using X-ray images, artificial neural networks, and image analysis
methods [13,14]. We introduced a novel deep learning-based approach for detecting and
classifying surface defects that occur during the steel production process. This method
enhances classification performance through parallel training of residual and attention
structures. LSHADE-SVC-PCD proposes an intelligent method for automatic detection
of pitting corrosion by employing LSHADE metaheuristics, SVM machine learning, and
image processing techniques [15,16]. We proposed a defect detection algorithm based on
deformable networks combined with a multi-scale feature fusion algorithm leveraging a
deformable convolutional neural network. However, state-of-the-art CNNs require bil-
lions of floating-point operations, which makes them unusable for mobile or embedded
devices. For example, ResNet-101 has a complexity of 7.8 × 109 FLOPs (floating-point
operations per second), which makes real-time detection impossible even with powerful
GPUs. Considering the huge computational cost of modern CNNs, lightweight neural
networks have been proposed to be deployed on mobile or embedded devices. For exam-
ple, MobileNetV1 [17] and MobileNetV2 [18] use depth-separable convolution to build
lightweight networks. ShuffleNet [19] uses grouped convolution and depth-separable
convolution to build lightweight networks. SqueezeNet [20] uses the core module Fire to
compress the model parameters, reduce the depth of the network, and decrease the size
of the model. SENet (Squeeze-and-Excitation Network) [21] proposes the SE module as a
lightweight attention mechanism to adaptively calibrate the feature map by learning the
channel importance; however, the SE module only focuses on the influence of the channel
aspect of the feature map and ignores the importance of the spatial dimension.

Lightweight networks [22] can achieve relatively high accuracy with limited computa-
tional budgets. However, existing lightweight networks tend to use “sparsely connected”
convolution, such as deep convolution and group convolution, rather than the standard
“fully connected” convolution. This “sparsely connected” convolution, while reducing the
number of parameters, can to some extent hinder the exchange of information between
groups, resulting in a degradation of network performance. Since a practical steel defect
classification algorithm needs to be deployed on CPUs or even embedded systems, an
algorithm with low computational complexity and high classification accuracy that can
avoid intergroup information loss is needed.

In this paper, a novel multiscale neural network model (MM) is proposed to build a
multiscale neural network model with a fusion coding module as the core and a Gaussian
difference pyramid to obtain better model accuracy and efficiency while improving the net-
work’s ability to capture patterns of different resolutions. The feasibility and effectiveness
of the model and method are verified through experiments on the surface defect detection
of steel sheet products in a factory. By comparing the results with other methods, it can
be concluded that the multiscale neural network model avoids the loss of information
between groups, further reduces the number of parameters and computational effort, and
significantly improves classification accuracy.

Our main contributions can be summarized as follows:

(1) We propose a method that utilizes the Gaussian difference pyramid to construct a scale
space by iteratively building a pyramid structure at different scales and effectively
detecting key points in images through a scale-invariant feature transform.

(2) We employ the multi-kernel fusion approach to capture both blurred and fine-grained
features at different resolutions, enhancing the accuracy and efficiency of the model.

(3) By integrating the fusion encoding and matching transformation of keypoints with
the original network, we address the challenges of exchanging information, avoiding
information loss, and improving performance in multi-scale space.
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(4) The proposed Multi-Scale Lightweight Neural Network (MM) achieves better classifi-
cation accuracy while reducing model parameters and compressing model size.

The structure of this paper is as follows: Section 1 presents an overview of the pro-
posed model’s overall structure. Section 2 discusses the method employed to address
the overfitting issue. In Section 3, the dataset and evaluation of the proposed model are
presented in detail, followed by a discussion of the results. Finally, Section 4 concludes
the paper.

2. Construction of a Multi-Scale Neural Network Model

The problem of compression and acceleration of neural networks has become a hot
research topic in the field of deep learning due to the large computational volume and
model capacity of deep neural networks. As the demand for high-quality deep neural
networks running on embedded devices increases, researchers are exploring the design
of lightweight network models to reduce computational costs. These models often use
“sparsely connected” convolutions, which can lower computational demands but may also
inhibit information exchange between different groups within the network. In this paper,
we propose a multiscale neural network by borrowing the idea of the Gaussian difference
pyramid [23] and adding a fusion coding module [24]. The network improves classification
accuracy while decreasing the computational cost.

2.1. Constructing Key-Point Feature Sets Based on Scale Space

In the steel slice dataset, the representation of images is represented at multiple scales.
To effectively capture these features at different scales, we propose a method to construct
the scale space using Gaussian [25] difference pyramids. In the scale space construction
module, we construct the scale space by Gaussian blurring the image and calculating the
difference between adjacent Gaussian blurred images. This process is iterated over different
scales (i.e., the size or resolution of the image), forming a kind of pyramid structure. In
this structure, each layer of the image is more blurred compared to the previous layer,
and the resolution is reduced accordingly. By using this scale-space building block, we
are able to effectively detect key points in the image during the scale-invariant feature
transform (SIFT).

Gaussian differential pyramids provide an effective scale-space representation that
captures the features of an image at different scales [26]. This is important for dealing with
real-world image problems, as real-world objects can appear at a variety of different scales.
In addition, the Gaussian difference pyramid offers the advantage of precise localization of
feature points in images and provides multi-scale image information for analysis and pro-
cessing. Furthermore, the downsampling of images in the pyramid reduces computational
complexity, thereby enhancing computational efficiency. These characteristics make the
Gaussian difference pyramid widely utilized in the fields of image processing, computer
vision, and pattern recognition.

2.2. Convolution of Key-Point Features

The traditional convolutional layer in convolutional neural networks (CNNs) pre-
serves global spatial information during the convolution process but may overlook crucial
details. Due to the lack of explicit focus on key points, traditional convolutional layers
may not be as effective as key-point feature convolution in extracting important features.
Additionally, traditional convolutional layers do not specifically handle key points, lead-
ing to a lower sensitivity for accurately capturing significant key points in images. This
limitation can restrict the performance of models on tasks related to key points. Key-point
feature convolution is a group convolution of each key-point feature set into a separate
set, which reduces the number of parameters and computational cost [27]. Using the idea
of multi-core combination, convolution using different key point feature sets can enhance
the model’s ability to adapt to varying levels of detail. The network needs both fuzzy
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key-point features to capture high-resolution patterns and fine key-point features to capture
low-resolution patterns for better model accuracy and efficiency.

2.3. Key-Point Feature Set Mapping Fusion Module

The key-point feature set mapping fusion module has an advantage over traditional
convolutional layers in convolutional neural networks (CNNs) as it explicitly focuses on
key points and integrates their important information into the network, thereby enhancing
the perception and utilization of crucial details in images and improving the robustness
and accuracy of the model. On the other hand, traditional convolutional layers exhibit
drawbacks in handling key details and tasks related to key points, such as disregarding fine
details, a limited receptive field, and a lack of explicit attention to key points. To address
issues related to information exchange, loss, and performance degradation of key-point
features in multi-scale space [28], The paper suggests using key points to map and encode
information from different scales, then combining it with the original network through
matching transformations in order to enhance the discriminative features.

Key-point feature mapping fusion aims to combine essential feature points and incor-
porate information about their varying scales in order to create a comprehensive feature
map, the process is shown in Figure 1. On top of the original feature map F ∈ RC × H ×W
generated by the Gaussian difference pyramid, the fusion module performs the fusion
encoding transformation TF: RC × H × W → RCM × H × W to achieve the purpose of
aggregating all key-point features. Where: C is the key-point feature of the original feature
map; H and W are the width and height of the original feature map; CM is the key-point
feature of the fused feature map.

The image is decomposed by a Gaussian differential pyramid to produce N different
resolution images, and the Gaussian differential pyramid consists of multiple groups
of pyramids, where each group of pyramids contains several layers, and the Gaussian
differential pyramid consists of layer orders constructed on the basis of the Gaussian
pyramid [29]. The process of decomposing a Gaussian image into its differential pyramid
involves:

Step 1. Initialize i = 0;
Step 2. Standard image I(x,y) is sampled to obtain the first layer of the first set of

Gaussian pyramid images g0,0;
Step 3. Initialize j = 0 and x = 0;
Step 4. The Gaussian kernel Gx is convolved with image gi,0 [30]:

Gx(x, y, σx) =
1

2πσ2
x

e
(x−x0)

2+(y−y0)
2

2σx2 (1)

gi,j+1(x, y) = gi,j(x, y)⊗ Gx(x, y, σx) (2)

where σx is the smoothing parameter.
Step 5. Differentiate the Gaussian image from the Gaussian image to obtain the

Gaussian difference image [31]:

di,x(x, y) = gi,j(x, y)− gi,j+1(x, y) (3)

Step 6. j = j + 1 and x = x + 1, iterate Steps 4 and 5, and when j > n − 1 and x > n − 2,
perform Step 7;

Step 7. Downsample the image to get the Gaussian image of layer i + 1. When i = I + 1,
go to Step 3, and the decomposition process ends when i > m − 1 is satisfied.
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Relu1
Pooling1

Figure 1. Key-point feature convolution and mapping fusion.

2.4. MM Network Construction

Based on Section 2.1 “Constructing Key-Point Feature Sets Based on Scale Space”,
Section 2.2 “Convolution of Key-Point Features” and Section 2.3 “Key-Point Feature Set
Mapping Fusion Module”, the MM network is proposed in this paper. The MM network
is shown in Figure 2. The network consists of three branches from bottom to top: the
standard branch, the dimension reduction branch, and the fusion branch. The standard
branch directly maps the original feature map. The dimension reduction branch reduces
computational costs and then performs Section 2.1 “Constructing Key-Point Feature Sets
Based on Scale Space” operations to construct a set of key-point features. The fusion
branch utilizes mixed convolutional kernels to obtain more stable feature maps at different
resolutions, where the large convolutional kernel in the mixed convolution retains more
feature information. It serves as a bridge connecting the dimension reduction branch and
the fusion branch by combining the processed feature maps from the fusion branch. The
final single-point group convolution is used to restore the channel dimension to match the
standard branch. The fusion branch performs fusion encoding on the network and combines
with the dimension reduction branch using element-wise multiplication before the single-
point group convolution, which helps to reduce the loss of inter-group information during
the convolution process. In this figure, “GC” represents Group Convolution, “Conv”
represents Convolution, and “BN” represents Batch Normalization.

126



Coatings 2023, 13, 1202

K
ey

po
in
tf
ea
tu
re

se
ts

Key point feature sets
mapping fusion module

Figure 2. MM network construction.

3. Solving the Overfitting Problem

To avoid overfitting problems, We perform batch normalization of the network as
well as Dropout operations on the last two fully connected layers of the network [32].
Unlike L1 and L2 normalization, Dropout does not rely on the modification of the cost
function; in Dropout, the network itself is changed. Assuming training data x and a
corresponding target output y, the contribution to the gradient is normally determined by
forward propagating x in the network and then back-propagating. However, using the
Dropout operation, this paper starts by randomly removing half of the hidden neurons in
the network while leaving the neurons in the input and output layers unchanged, after
which the input x is forward propagated and the contribution to the gradient is determined
by modifying the network, back-propagating the result, and repeating the process. The
overall execution process is: first reset the neurons of Dropout; then select a new random
subset of hidden neurons for deletion; and finally, update the weights and biases by
estimating the gradient for a different small batch of data before determining.

Batch normalization is a normalization technique applied in hidden layers that nor-
malizes the inputs of each layer by subtracting the batch mean and dividing by the batch
standard deviation. This normalization process helps stabilize the distribution of activation
values in the network, reducing the range of gradient variations, thereby accelerating
training and improving the generalization ability of the network.

In practice, batch normalization not only improves training effectiveness but also has
a certain regularization effect. By introducing randomness in each batch, it reduces reliance
on dropouts. This is because the introduced randomness in batch normalization reduces
the dependence of the network on individual neurons, thus reducing the risk of overfitting.
Therefore, in networks with batch normalization, lower dropout rates can typically be used,
or dropout operations may not be necessary at all.

Batch normalization plays a significant role in reducing dropout rates. By standard-
izing the inputs and stabilizing the distribution of activation values in the network, the
reliance on Dropout operations is alleviated. This allows for a better balance between
model capacity and the risk of overfitting, thereby improving the generalization ability and
training effectiveness of the model.

4. Experiment

This section first describes the system that utilizes a CCD camera to capture images
of the surface of hot-rolled steel strips, which are then subjected to normalization pre-
processing. A sliding window approach is employed to extract image patches, which
are used to construct a dataset of standard defect images. The dataset consists of six
defect categories, including transverse cracks, wrinkles, longitudinal cracks, edge cracks,
seams, and water stains. The training and validation of the system are performed using
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a multi-scale lightweight neural network model, and the performance of the model is
evaluated and analyzed. Experimental results demonstrate that the proposed model
achieves high accuracy and efficiency in detecting surface defects in hot-rolled steel strips.
Compared to other classical and lightweight neural network models, the proposed model
exhibits superior capability in detecting minor defects with high classification accuracy and
performance.

4.1. Common Defects and Detection Process

The defect images are acquired based on a machine vision technology acquisition
system, using a system consisting of CCD cameras as well as a deep neural network server.
The images of the hot rolled strip surface are obtained through CCD cameras, and then the
image data are received and transmitted to process the defect images of the hot rolled strip
surface obtained within the cameras. The defect images are acquired based on a machine
vision technology acquisition system, using a system consisting of CCD cameras as well
as a deep neural network server. The images of the hot rolled strip surface are obtained
through CCD cameras, and then the image data are received and transmitted to process
the defect images of the hot rolled strip surface obtained within the cameras [33]. The data
sets used in this paper are obtained through such image acquisition units, taken from a
hot-rolled strip mill specializing in the production of cover hot-rolled strip surfaces, with
more than 20,000 original sample images taken from different production batches.

There are gaps in the images of hot-rolled strip steel surface defects acquired under
different light intensities, light directions, etc. Therefore, the original images are normalized
and pre-processed. In this paper, a sliding window of 128 × 128 pixels is used to intercept
the whole CCD-captured hot-rolled strip surface defect images, and the complete defect as
well as defect-free images are selected to establish a standard image dataset of hot-rolled
strip surface defects, which reaches more than 60,000 standard sample images. This paper
artificially augments the standard image dataset by adding rotated images to enhance
model training quality, reaching a total of more than 120,000 standard sample images,
which contain horizontal cracking, pleats, Side Splits, seams, vertical cracks, and water
stains (as seen in Figure 3).

Horizontal Cracking Pleats

Side Splits Seams

Vertical Cracks Water Stains

Figure 3. Example defect image and corresponding label.

Among them, horizontal cracking has the greatest impact on the quality of hot-rolled
strip and is the biggest safety hazard, while the effects of folds, pleats, side splits, seams,
vertical cracks, and water stains decrease in order. The obtained standard sample image
dataset was divided into 3 parts: partitioning the data into subsets based on a specific
proportion (as shown in Table 1).
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Table 1. Standard defect image data set.

Dataset Horizontal Cracking Pleats Vertical Cracks Side Split Seams Water Stains Total

Training set 20,000 20,000 15,000 15,000 15,000 15,000 100,000
Validation set 2000 2000 1500 1500 1500 1500 10,000
Test set 2000 2000 1500 1500 1500 1500 10,000

The dataset faces three main challenges: (1) defects within classes vary greatly in
appearance; (2) defects between classes have similar aspects, and (3) the grayscale of defect
images between classes can change due to the effect of defect images on illumination and
material variations.

For the content and criteria of common defects on the surface of a hot-rolled strip of
cover, this paper uses the constructed multi-scale convolutional neural network model to
experimentally validate the detection of defects on the surface of a hot-rolled strip, and the
main process is as follows:

Step 1. Selection of the Pytorch open-source framework for deep learning as the
experimental environment for building multi-scale convolutional neural network models.

Step 2. While constructing the experimental environment, the CCD camera acquires
image data of the surface of the hot rolled strip, and the images of the defects on the surface
of the hot rolled strip obtained within the camera are processed and displayed on the
monitor.

Step 3. Intercept the images of defects on the surface of the hot-rolled strip obtained in
the camera, select the complete defective and defect-free images, normalize the detection
of “defective images”, obtain the image size of 128 × 128, establish the defective standard
image data set, and form the experimental sample.

Step 4. Training and validation of the samples based on a multiscale convolutional
neural network model labeled with six types of defects.

Step 5. Randomly selected images from each category in the standard sample image
dataset become the test samples, and the classification results and accuracy of the model to
detect surface defects in images of hot-rolled strip steel are analyzed.

The whole process is shown in Figure 4.

Establishing a Defect 
Standard Image Dataset

Perform classification 
and identification

MCNN+Softmax/SVM 
detection model

6 types of glass 
defect data

Analysis of outcome 
evaluation

Figure 4. Detection process.
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4.2. Model Training

The MM models experimentally designed in this paper are performed based on the
open-source framework of Pytorch deep learning, which provides a complete toolkit for
training, testing, fine-tuning, and developing models. The models and corresponding
optimizations are given in textual form rather than in code.

Steps during model training tests:
Step 1. Interception of the entire CCD-captured image of the hot-rolled strip surface

defects using a sliding window of 128 × 128 pixels, selection of the complete defects, image
normalization to obtain a standard defect picture, and collation into a standard defect
data set.

Step 2. SIFT extraction of Gaussian differential pyramidal images from standard defect
images to obtain a dataset for training a multi-scale convolutional neural network.

Step 3. The obtained multi-resolution image training data set is directly input to the
network, and the four multi-scale images are divided by the slice layer and convolved
separately to extract features. Initialize the network weights with “Gaussian”, where the
bias is set to “Constant”.

Step 4. Select a batch training sample from the training set and input it into the
network.

Step 5. Samples are propagated forward through the mapping between layers until
Concat for feature merging, and then continue to propagate forward until the output layer
to obtain the actual output vector.

Step 6. Calculates the error between the actual output vector and the label, and if the
error is less than a predetermined threshold (or if the number of training iterations reaches
a predetermined threshold), the network training is stopped; otherwise, the network
continues.

Step 7. Tuning the weight parameters of the whole network model by backpropagation
according to the principle of minimum error cost.

Step 8. Revert to Step 4 and continue the training.
Step 9. A randomly selected test dataset is fed into the trained model (convolutional

kernel set, network weight parameters, etc.) for recognition detection.
The multi-scale defect image detection models constructed in this paper are all su-

pervised training methods, and their training image sets are composed of vector pairs of
(defect image, category label), where “defect image” is a normalized image, and the size
of the image obtained after normalization is 128 × 128. The “category labels” represent
the classification labels of the input defect images, which are divided into six categories:
horizontal cracks, folds, vertical cracks, edge cracks, seams, and water stains.

In training, the experiments were conducted on the Ubuntu 20.04.2 LTS operating
system, using the PyTorch deep learning framework and Python as the programming
language. The CPU utilized was an Intel Core i7-9700F, while the GPU employed was an
NVIDIA GeForce RTX 2080Ti. The images in the input layer are fixed-size 128 × 128 RGB
images, and for the training set, the preprocessing is performed to subtract the average RGB
value per pixel. The training network parameters are set as follows: The network uses the
AdamW [34] optimization algorithm in the training phase to iteratively update the weights
of the neural network based on the training data and the selected small batch training size;
each batch contains 64 images. The weight decay is 0.005, the memory factor is 0.9, the
learning rate is 0.001, and the learning strategy is STEP. The normalization factor is used
to accelerate the training process in GPU mode, and the maximum number of training
iterations is 1000.

4.3. Analysis of Results

The Figure 5 illustrates the training process of the MM model network, including
the curves for accuracy, training loss, and validation loss. It can be observed from the
graph that with the increase in the number of iterations, the model’s accuracy on the
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validation set continues to rise while its loss decreases continuously. The model exhibits
good convergence and achieves an accuracy of around 98.4% after 700 iterations.

Figure 5. Defective image recognition accuracy and loss curves.

To evaluate the performance of our classification model, we have introduced a con-
fusion matrix, which serves as a valuable tool for assessing prediction accuracy. The
confusion matrix is a square matrix that represents the relationship between actual and
predicted classes. Rows of the matrix correspond to the true classes, while columns denote
the predicted classes. Each element in the matrix represents the count of instances classified
into a specific combination of true and predicted classes. As shown in Table 2.

Table 2. Confusion matrices.

Prediction of
Horizontal
Cracking

Prediction
of Pleats

Prediction of
Vertical Cracks

Prediction of
Side Split

Prediction
of Seams

Prediction of
Water Stains

Actual Horizontal
Cracking 1984 5 3 3 2 3

Actual Pleats 10 1987 1 1 0 1
Actual Vertical Cracks 6 5 1486 2 1 0

Actual Side Splits 4 4 1 1488 1 2
Actual Seams 5 2 1 2 1490 0

Actual Water Stains 2 0 0 1 3 1494

The first row represents the samples with the true label “horizontal cracking”. Among
these samples, 1984 were correctly predicted as “horizontal cracking”, 5 were wrongly
predicted as “pleats”, 3 were wrongly predicted as “vertical cracks “, 3 were wrongly
predicted as “side splits”, 2 were wrongly predicted as “seams”, and 3 were wrongly
predicted as “water stains”.

The second row represents the samples with the true label “pleats”. Among these
samples, 10 were wrongly predicted as “horizontal cracking”, 1987 were correctly predicted
as “pleats”, 1 was wrongly predicted as “vertical cracks”, 1 was wrongly predicted as “side
splits”, 0 were wrongly predicted as “seams”, and 1 was wrongly predicted as “water
stains”.
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The following rows follow the same pattern, representing the remaining labels. This
confusion matrix helps us understand the performance of the MM model for each defect
type and the possible misclassification of the model situation.

To verify the impact of different modules on network performance, five evaluation
indices were introduced in this article: computing power, which refers to the number
of floating-point operations executed per second (FLOPs), feature memory, recall, F1
score, and accuracy. The MM network was compared with four popular classical networks
(ResNet-101, ResNet-50, VGG, and AlexNet) as well as the new lightweight neural networks
MobileNetV2 and MobileNetV3. Table 3 shows the detailed comparison results.

Table 3. Comparison of the comprehensive performance of different networks.

Models Precision
Feature

Memory

Number of
Floating-Point

Operations (FLOPs)
Recall F1

Resnet-50 89.7% 60 MB 10 GFLOPs 87.2% 0.92
ResNet-101 97.38% 155 MB 8 GFLOPs 92.6% 0.93

VGG 93.56% 96 MB 15.5 GFLOPs 93.7% 0.90
AlexNet 91.30% 300 MB 0.72 GFLOPs 91.6% 0.92

MobileNetV2 94.6% 57 MB 0.98 GFLOPs 94.6% 0.95
MobileNetV3 96.7% 52 MB 0.76 GFLOPs 95.4% 0.97

MM 98.06% 50 MB 0.67 GFLOPs 98.7% 0.99

After 1000 iterations, AlexNet, ResNet-50, and VGG achieved classification accuracies
of 91.30%, 89.7%, and 93.56%, respectively, while ResNet-101, MobileNetV2, and Mo-
bileNetV3 achieved slightly better accuracies of 97.38%, 94.6%, and 96.7%, respectively.
Compared to Resnet50, MM increased the accuracy by 8.36 percentage points, by 0.38 per-
centage points compared to ResNet-101, by 4.5 percentage points compared to VGG, by
6.76 percentage points compared to AlexNet, by 3.46 percentage points compared to Mo-
bileNetV2, and by 1.36 percentage points compared to MobileNetV3. Additionally, MM
had a faster decrease in training loss compared to the other models, with a final loss value
approaching zero as shown in Figure 6. Moreover, MM had smaller feature memory and
fewer floating-point computations, while its recall and F1 metrics were relatively higher.
These results fully demonstrate that the key-point feature convolutional operation reduces
the number of network parameters and that the key-point feature set mapping fusion oper-
ation promotes information exchange between key points, making it effective in reducing
performance losses.

From the comprehensive analysis of the experiments above, MM has the best per-
formance in all indicators. Resnet-50, ResNet-101, VGG, AlexNet, MobileNetV2, and
MobileNetV3 models lack the ability to detect small defects on the surface of steel. The
MM proposed in this paper, with the fusion encoding module as the core, constructs a
multiscale neural network model through the Gaussian difference pyramid. It not only
improves the network’s capture ability for different resolution modes but also achieves
better model accuracy and efficiency. The recognition accuracy on the steel surface defect
dataset is the best. The recognition accuracy of various neural network models for different
types of defects is shown in Table 4.
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(a) Veri cation of the accuracy curve.

(b) Training loss curves

Figure 6. Performance comparison of different models.

Table 4. Accuracy of different networks for defect recognition in various categories.

Transverse Crack ResNet-50 ResNet-101 VGG AlexNet MobileNetV2 MobileNetV3 MM

Horizontal Cracking 92.4% 91.6% 86.2% 92.1% 91.2% 92.6% 99.2%
Pleats 72.6% 98.2% 82.9% 97.2% 97.7% 97.2% 99.3%

Side Splits 93.2% 97.2% 92.6% 92.2% 98.6% 98.6% 99.2%
Seams 81.7% 98.9% 93.5% 93.2% 95.8% 93.5% 99.3%

Water Stains 91.2% 99.7% 92.4% 95.2% 96.6% 99.2% 99.6%
Vertical cracks 93.9% 93.2% 97.9% 96.2% 94.2% 98.7% 99.0%

5. Conclusions

To address the issues of increasing parameter count and computational cost in convolu-
tional neural networks as well as the challenge of preserving key-point feature information
in existing lightweight networks, this paper proposes a novel lightweight network, referred
to as MM. The core of this model is a fusion encoding module that leverages Gaussian
difference pyramids to construct a multi-scale neural network model. By enhancing the
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network’s ability to capture patterns at different resolutions, the proposed model achieves
higher model accuracy and efficiency. Experimental results show that the network avoids
the loss of feature information at key points, improves the classification accuracy, and signif-
icantly improves the overall performance compared with other networks, which provides
strong support for the mobile classification task of steel surface defects. It provides strong
support for the mobile deployment of steel surface defect classification tasks. In the future,
we plan to improve the model’s ability to perform well on new data and optimize it to
meet the requirements for commercialization. Furthermore, the proposed model can be
applied to real-time object detection and tracking tasks, mobile device applications, and
image super-resolution reconstruction. These directions leverage the lightweight nature
and multi-scale capabilities of MM, offering possibilities for real-time image analysis, edge
computing, and enhanced image processing in various domains.
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Abstract: During the production of steel, in view of the manufacturing engineering, transportation,
and other factors, a steel surface may produce some defects, which will endanger the service life
and performance of the steel. Therefore, the detection of defects on a steel surface is one of the
indispensable links in production. The traditional defect detection methods have trouble in meeting
the requirements of high detection accuracy and detection efficiency. Therefore, we propose the
WFRE-YOLOv8s, based on YOLOv8s, for detecting steel surface defects. Firstly, we change the loss
function to WIoU to address quality imbalances between data. Secondly, we newly designed the
CFN in the backbone to replace C2f to reduce the number of parameters and FLOPs of the network.
Thirdly, we utilized RFN to complete a new neck RFN to reduce the computational overhead and,
at the same time, to fuse different scale features well. Finally, we incorporate the EMA attention
module into the backbone to enhance the extraction of valuable features and improve the detection
accuracy of the model. Extensive experiments are carried out on the NEU-DET to prove the validity
of the designed module and model. The mAP0.5 of our proposed model reaches 79.4%, which is 4.7%
higher than that of YOLOv8s.

Keywords: surface defect detection; YOLOv8; WIoU; CFN; deep learning

1. Introduction

Steel is one of the most important industrial materials and is widely applied in the
manufacture of various industrial products; therefore, quality inspection of steel is essential.
During the smelting process, steel is susceptible to various defects caused by various
external factors, which can affect the performance and life of the steel [1–3]. Traditional
surface defect detection methods contain electromagnetic acoustic transducers, ultrasonic
testing, and X-ray inspection. However, this method is inefficient, and it could result
in less reliable results due to the experience of the inspector. Therefore, with the rapid
advancement of machine vision, the industry is beginning to introduce machine vision
technology into the detection of steel surface defects, which replaces the traditional surface
defect detection method. However, conventional machine learning depends heavily on
manual design algorithms in feature extraction. This could result in defect detection
methods that lack versatility and robustness [4].

Recently, deep learning-based object detection algorithms are developing rapidly, and
a great deal of excellent target detection models have emerged. More and more researchers
try to use target detection models to detect different defect types, not only steel surface
defects but also PCB solder joints [5–7], automotive paint detection [8,9], and so on. Deep
learning-powered defect detection methods are separated into one-stage algorithms and
two-stage algorithms. The one-stage algorithms solve the object detection as a regres-
sion problem, mainly SSD [10], YOLOv1 [11], YOLOv2 [12], YOLOv3 [13], YOLOv4 [14],
YOLOv5 [15], YOLOv6 [16], YOLOv7 [17], and so on. The two-stage algorithms utilize
selective search algorithms or region suggestion networks for object detection, such as
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R-CNN [9], Fast R-CNN [18], Faster R-CNN [19], R-FCN [20], and so on. They have the
advantage of high accuracy and the disadvantage of being slow. In contrast, one-stage
algorithms have the advantage of achieving a balance between accuracy and speed. They
are easier to deploy on embedded devices.

In this study, a new steel surface defect detector, called WFRE-YOLOv8s, for detecting
steel surface defects, which is based on YOLOv8s, is proposed. WFRE-YOLOv8s redesigns
the backbone by utilizing the CFN module and EMA attention to reduce the number of
parameters while enhancing the capability of the feature extraction. Besides that, the neck
is improved by proposing a new module, RFN, to better fuse features at different scales.
The main work is as follows:

1. The WIoU is employed as the loss function of WFRE-YOLOv8s. It effectively balances
the gap between high-quality and low-quality data in steel surface defect datasets.

2. We have developed a CFN module that replaces the C2f module in the backbone,
enhancing network detection accuracy and detection speed. Additionally, it minimizes
the number of parameters and FLOPs within the entire network.

3. We have newly designed a neck, named RFN, to reduce the computational over-
head. It can fuse different scale features, thus improving the accuracy of the whole
detection network.

4. We have incorporated the EMA into the backbone to optimize the capacity for the
extraction of valuable features for steel surface defects. This enhancement has been in-
troduced without any additional load on the network, resulting in increased accuracy
in defect detection.

5. We carry out a series of experiments primarily on NEU-DET and GC10-DET. The
experimental outcomes demonstrated that our proposed methodology yields superior
detection results.

2. Related Works

The defect detection methods have been comprehensively divided into conventional
machine learning methods and deep learning-powered methods.

2.1. Conventional Machine Learning Methods

Machine learning has played an essential role in defect detection, and there are still
many organizations that use machine learning methods to inspect their products. Franz [21]
proposed using a Bayesian network classifier to detect surface defects on rough steel
blocks. This method can effectively classify the defects, and the accuracy can reach 98%.
Yun [22] proposed using the undecimated wavelet transform and vertical projection profile
for detecting vertical line defects. Song et al. [23] proposed a new detection method
incorporating saliency linear scanning morphology. This involved extracting visual saliency
to eliminate background clutter and applying morphology edge processing to eliminate oil
pollution edges.

Tian et al. [24] devised an enhanced ELM machine learning algorithm, incorporating a
genetic algorithm, which they employed to detect surface defects on hot-rolled steel plates.
Wang et al. [25] presented an improved random forest algorithm with the optimal multi-
feature set fusion (OMFF-RF algorithm) for distributed defect recognition on steel surfaces.
Gong et al. [26] proposed a novel multi-hypersphere support vector machine (MHSVM+)
with additional information for multi-class steel surface defect classification. Chu et al. [27]
developed multi-informative twin support vector machines (MTSVMs) based on binary
twin support vector machines to detect steel surface defects. Zhang et al. [28] proposed a
method that involves merging the Gaussian function, which is fitted to the histogram of the
testing image, with the membership matrix to identify and diagnose defects. Ji et al. [29]
proposed an MGH, a hybrid method utilizing machine learning and genetic algorithms, for
assessing the quality of hot-rolled steel strips in production systems.
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2.2. Deep Learning Approaches

The advancement of deep learning has led to the use of convolutional neural networks
for target detection tasks that cannot be handled by machine learning. Object detection
algorithms based on deep learning have been categorized as one-stage algorithms and
two-stage algorithms. The majority of defect detection networks rely on target detection
networks, while only a small portion utilize segmentation algorithms.

Bulnes [30] developed a novel defect detection technique utilizing a genetic algorithm
to optimize configuration parameters. Additionally, a neural network is used for defect
classification. Guan et al. [31] used VGG19 for pre-training, SVM (support vector machine),
and decision trees to assess feature images’ quality. Then they adjusted the parameters and
structure of VGG19, thus obtaining a new VSD network for classifying steel surface defects.
Xiao et al. [32] developed an image pyramid convolutional neural network (IPCNN) model
based on Mask-R CNN to detect surface defects in images. Zhao et al. [33] used deformable
convolution in Faster R-CNN and introduced a feature pyramid network to obtain an
improved Faster R-CNN network for steel surface defect detection.

Zhao et al. [34] proposed a variant of YOLOv5L, called RDD-YOLO, to identify steel
surface defects. It changed the original backbone component to Res2Net based on YOLOv5
and designed a dual feature pyramid network (DFPN) to deepen the network. Additionally,
this approach utilizes a decoupling header to separate the regression and classification
to improve the precision. Wang et al. [35] proposed a variant of YOLOv5s, called multi-
scale-YOLOv5, to complete the detection of steel surface defects. Li et al. [36] proposed
a variant of YOLOv4 for detecting defects on steel strip surfaces, which improves the
precision of detection by incorporating the CBAM, where the SPP module is replaced
with the RFB module. Liu et al. [37] proposed a DLF-YOLOF for defect detection on steel
plate surfaces, which uses an anchorless detector to reduce the hyperparameters, utilizes
a deformable convolutional network and a local spatial attention module to expand the
contextual information in the feature maps, and employs a soft non-maximal suppression
to improve the detection accuracy. Wang et al. [38] proposed a unique method, which is
based on YOLOv7, to improve the accuracy of detecting strip steel surface defects. The
ConvNeXt module has been integrated into the backbone while the attention mechanism
has been incorporated into the pooling layer to enhance the ability of YOLOv7 to extract
features and identify small features. Shao et al. [39] proposed a steel surface defect detection
model based on a multi-scale lightweight network. This network can effectively reduce the
number of parameters while achieving better model accuracy and efficiency. Inspired by
YOLOv8, we propose a model named WFRE-YOLOv8s to improve detection accuracy and
reduce the number of parameters and FLOPs. Compared with YOLOv8s, WFRE-YOLOv8s
significantly improves prediction accuracy and identifies a wider range of defects.

3. Methods

3.1. The YOLOv8 Algorithm
3.1.1. YOLO Algorithm

The YOLO is a one-stage object detection algorithm that not only focuses on accuracy
but also speed. YOLO consists of four parts: input, backbone, neck, and head. Whether it is
YOLOv3, YOLOv4, or even the latest YOLOv8, their overall architecture is similar without
much change. The specific detection and recognition process of YOLOv8 for the object is
shown in Figure 1. The image is scaled to the appropriate size, then it is input into the CNN.
The location, size, and class of the detector are obtained through backbone, neck, and head,
and the loss function is utilized to calculate the gap between the predicted frame and the
real frame. The gradient descent iteration is used to narrow the gap between the predicted
frame and the real frame. Finally, the weight matrix and deviation at the minimum loss
function in the total number of iterations are taken to get the prediction information of the
object to be detected.
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Figure 1. YOLOv8s structure. The w is the width of network and r is the ratio. (a–c) represent the
structure of YOLOv8s. (d–g) represent the structure of Detect, SPPF, CBS, and C2f.

3.1.2. The Structure of YOLOv8

The YOLO algorithm has been iterated for several versions, and on 10 January 2023,
Ultralytics, Inc. released YOLOv8, which is another upgrade to the many YOLO algo-
rithms that preceded it. The YOLOv8 algorithm is similar to the YOLOv3 and YOLOv5
algorithms. It contains five versions, namely YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
and YOLOv8x, and among these five models, YOLOv8n is the smallest and YOLOv8x is
the largest. The performance differences of these models are shown in Table 1 below.

Table 1. The performance comparison of different models of YOLOv8.

Model
Size

(Pixels)
mAP

(0.5:0.95)
Parameters

(M)
FLOPs

(G)
Speed
(ms)

YOLOv8n 640 × 640 37.3 3.2 8.7 0.99
YOLOv8s 640 × 640 44.9 11.2 11.2 1.20
YOLOv8m 640 × 640 50.2 25.9 25.9 1.83
YOLOv8L 640 × 640 52.9 43.7 43.7 2.39
YOLOv8x 640 × 640 53.9 68.2 68.2 3.53

From Table 1, it is evident that YOLOv8n has the fastest detection speed among these
five models. Additionally, it has the lowest amount of FLOPs and number of parameters. In
contrast, YOLOv8x has the slowest detection speed among these five models and a higher
amount of FLOPs and number of parameters. The difference between the models is due to
their sizes. The YOLOv8 algorithm mainly consists of input, backbone, neck, and head.
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The structure of YOLOv8s is shown in Figure 1:

1. The backbone is utilized for feature extraction and consists of the CBS, C2f, and
SPPF modules. The CBS makes a convolution operation on the input information,
applies batch normalization, and activates the information stream by SiLU activation.
C2f module replaces the C3 module in YOLOv5 for residual feature learning, which
enriches the information stream of the feature extraction network while maintaining a
lighter weight compared to C3. The SPPF module is the same as in YOLOv5, which
converts arbitrary feature maps into fixed-size feature vectors.

2. The neck adopts the structure of FPN + PAN to realize the fusion between multi-scale
information. Compared to YOLOv5, C3 was updated to C3.

3. The head is utilized to output the coordinates of the predicted box and the confidence
of each category. Compared with YOLOv5, this part adopts a more advanced decou-
pled head (decoupled head). The decoupled head makes use of two independent
branches to complete the task of object classification and location prediction and uses
different loss functions in these two branches.

3.2. Improvement of YOLOv8s Network

In the pursuit of greater precision in detecting steel surface defects, we propose our
novel model called WFRE-YOLOv8s, which is delineated in detail in Figure 2. The backbone
mainly consists of CBS, SPPF, the newly proposed CFN module in this paper, and the EMA.
The CFN module is a new module specially designed to replace the C2f module for steel
inspection tasks. It has the advantage of using fewer parameters and less computation
than the C2f module. The neck part adopts Unsample, CBS, and the RFN module in
this paper. The head part is unchanged, and the WIoU is adopted as the loss function of
WFRE-YOLOv8s. The RFN module is also utilized to design a new neck for the first time,
which gives the model faster detection speed and higher accuracy.

Figure 2. WFRE-YOLOv8s structure. CFN and RFN are proposed for the first time. The EMA is
introduced into the backbone for the first time.
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3.2.1. Improvement of the Loss Function

YOLOv8 utilizes a blend of DFL [40] and CIoU (Complete-IoU) [41] for the regression
loss. However, CIoU does not take into account the balance between complex and easy
samples. It also ignores the discrepancies between the bounding box and the ground truth
bounding box when the penalty factor is equal to aspect ratio of the bounding box and the
ground truth bounding box. As a result, CIoU boosts the computational complexity of the
model. Formulas (1) and (2) illustrate the expression for the CIoU and the bounding box
loss function, respectively.

CIoU = IoU−
ρ2
(

b, bgt
)

c2 −av (1)

LCIOU= 1− IoU+
ρ2
(

b, bgt
)

c2 + av (2)

In Formulas (1) and (2), IoU denotes the intersection and concatenation ratio between
the bounding box and the ground truth bounding box; b, bgt denotes the centroid of the
ground truth bounding box and the centroid of the bounding box; a is a parameter for
balancing proportionality, and v is utilized for measuring the proportionality consistency
between the widths and heights of the bounding box and the ground truth bounding box.

There are frequent instances of inferior samples within the dataset of steel surface
defects. This paper introduces WIoU (Wise-IoU) [42] to replace the CIoU combined with
DFL to form the regression loss of the WFRE-YOLOv8s algorithm. WIoU utilizes the
dynamic non-maximum suppression to assess overlap between the predicted bounding box
and the ground truth bounding box. This loss function effectively improves the imbalance
between the high-quality and low-quality data in dataset and the accuracy of the object
detection algorithm. The calculation formula of WIoU is shown in Formulas (3) and (4):

LWIoU= RWIoU × (1−IoU) (3)

RWIoU= exp
(x− xgt)

2 + (y− ygt)
2

(Wg2 + Hg2)∗
(4)

In Formula (4), x and y represent the coordinates of the centroid of the bounding box,
xgt and ygt represent the coordinates of the centroid of the ground truth bounding box,
and wg and hg represent the width and height of the minimum bounding box, respectively.
* represents the separation operation.

3.2.2. Improvement of the Backbone

The C2f is newly proposed in YOLOv8 to replace the C3 in YOLOv5. The C2f is designed
with reference to C3 and the ELAN concept to ensure that YOLOv8 is able to acquire gradient
flow information efficiently while maintaining its light weight. However, the module contains
more convolutional layers, which require many convolution operations, resulting in increased
computation and slowing down the model’s inference speed to some extent.

Chen et al. [43] proposed a novel convolution PConv, exploiting the redundancy of
the feature map to optimize costs. PConv was also utilized in the FasterNet Block and
FasterNet. PConv utilizes a standard convolutional operation to extract spatial features
from a subset of the input channel while keeping the residual channels. This method
has the benefit of reducing computational redundancy and memory access at the same
time. The structure of PConv, FasterNet Block, and FasterNet are shown in Figure 3. The
FasterNet Block comprises a PConv, 1 × 1 Conv, and 1 × 1 Conv. Formula (5) explains how
to calculate the FLOPs of PConv.

FLOPsPConv = h× w× k× k× cp × cp (5)
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FLOPsConv = h× w× k× k× c× c (6)

Figure 3. The structure of FastNet, FasterNet Block, and PConv. (a–c) represent the structure of
FastNet, Pconv, and FastNet Block, respectively. * represent the convolution.

Formula (6) demonstrates how to calculate the FLOPs of Conv. When the ratio of cp to
the number of input feature channels c is 1/4, the FLOPs of PConv decrease to only 1/16
of those required for conventional convolution. This leads to the conclusion that PConv
reduces both the FLOPs of the network and the number of parameters.

The design of a CFN module was inspired by the C3 module and FasterNet Block,
illustrated in Figure 4. CFN is composed of FasterNet Block, CBS, and Concat. It differs
from the traditional C3 structure in that the BottleNeck is replaced with FasterNet Block.
The FasterNet Block replaces the BottleNeck in C3. Compared to the BottleNeck, this
substitution improves the efficiency of feature extraction and compresses the network
volume. Consequently, we replaced the C2f with the CFN to reconstruct the backbone. This
approach results in a decrease in the number of parameters, FLOPs, and model size that
effectively improves the model's inference speed.

 
Figure 4. The structure of CFN. CFN is proposed for the first time in this paper, composed of the CBS,
FastNet Block, and Concat. The core of CFN is FastNet Block; it can effectively reduce the number of
FLOPs and parameters.

3.2.3. Improvement of the Neck

The neck of YOLOv8s is still a continuation of the neck structure in YOLOv5, where
the FPN + PAN structure is used to complete the integration of features extracted by the
backbone at varying stages to enhance the model’s ability to identify features at varying
scales. More and more structures about neck have been proposed to enhance the neck for
full integration between multi-scale information, but also increase the computational cost
simultaneously. In our study, we opted not to design novel neck modules to circumvent
additional connections and fusions among feature pyramids. DAMO-YOLO [44] proposed
a new EfficientRepGFPN based on GFPN, which significantly improves the accuracy of
the model by utilizing various scales of feature maps for different channel dimensions in
feature fusion.
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The RFN is illustrated in Figure 5. Input is composed of three layers, and 1 × 1 Conv
adjusts the number of channels on two parallel branches after Concat. Multiple Rep 3 × 3
Conv and 3 × 3 Conv form the efficient layer aggregation network (ElAN) [16]. RepConv is
a model re-referencing technique that improves the efficiency and performance of models
by merging multiple computational modules into one during the inference phase. ELAN
fuses features from different layers by introducing a multi-scale feature fusion module.
This can make full use of different levels of semantic information to enhance the ability to
demonstrate the model's features. Due to the RFN incorporating RepConv and ELAN, the
RFN can achieve much higher precision without bringing an extra computational burden.

 
Figure 5. The structure of RFN.

Inspired by RFN, we redesigned the neck in WFRE-YOLOv8s based on the design idea
of the DAMO-YOLO network and replaced the C2f with RFN in the neck part of the initial
network, which brings the higher accuracy and real-time detection of the whole detection
network. The improved neck is shown in Figure 6.

 
Figure 6. The improved neck.

3.2.4. Integration of EMA

Attention is widely used in computer vision, and incorporating attention into a net-
work enables it to pay close attention to different regions of the feature map to some extent,
leading to better accuracy in target identification. Attention can be mainly classified into
channel attention, spatial attention, and channel spatial attention.

Due to the complexity of steel surface defects and the low pixel size of the dataset
utilized, some defects are not detected or are inaccurately detected. In this paper, we will
incorporate attention into the backbone to achieve higher detection accuracy. Notably,
usual attention mechanisms used include CBAM [45], SE [46], ECA [47], SA [48], CA [49],
and others. However, the attention models using channel dimensionality reduction to
model cross-channel relationships may bring some side effects when extracting deep
visual representations. Nonetheless, an efficient multi-scale attention (EMA) [50] module
based on coordinate attention (CA) is proposed to better address this issue. It encodes
global information to recalibrate the channel weights in each parallel branch while further
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aggregating the output features of the two parallel branches through cross-dimensional
interaction to capture the pixel-level pairwise relationship, achieving the goal of reducing
computational overhead while preserving the information of each channel. CA attention
first divides the input information according to the two directions of width and height,
thus obtaining the feature information of width and height. The global average pooling
formulas for both are shown in Formulas (7) and (8).

zh
c (h) =

1
W ∑

0≤i≤W
xc(h, i) (7)

zw
c (w) =

1
W ∑

0≤i≤H
xc(j, w) (8)

Next, the feature maps of the global perceptual field in both the width and height
directions are spliced, and feature transformations are performed using 1 × 1 convolution,
batch normalization algorithm, and nonlinear activation. Immediately after that, the feature
transformation is achieved by 1 × 1 convolution and Sigmoid activation function so that its
dimension is the same as the input X vector, and then the attentional weights gh and gw
are computed for the achieved feature maps in the width direction and height direction.
Finally, the output gh and gw are combined into a weight matrix by weighted multiplication
computation on the original feature maps, and the result is shown in Formula (9). CA is
shown in Figure 7a.

(a) (b) 

Figure 7. CA and EMA. This figure illustrates the difference in structure between CA and EMA. The
structure of CA and EMA is shown in (a,b).

EMA borrows the idea of CA and designs three parallel routes to extract the attention
weight descriptors of grouped feature maps. The two routes on the left, similar to CA, are
named 1 × 1 branches and the rightmost route is named 3 × 3 branch.

yc(i, j)= xc(i, j)× gh
c (i)× gw

c (j) (9)
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In the 1 × 1 branch, similar to CA attention, the X and Y global average pooling
module is used to extract feature information in the width and height directions, the feature
information is spliced, and 1 × 1 convolution is used to prevent dimensionality reduction.
The 3 × 3 branch utilizes the 3 × 3 convolution to capture local cross-channel interactions
to expand the feature space.

In the cross-space learning module, the global spatial information in the output of the
1 × 1 branch is first encoded using global average pooling, after which a Softmax function
is fitted to the linear transform to ensure efficient computation. Finally, the output of the
parallel processing is multiplied by the matrix dot product operation to obtain the first
spatial attention map.

Then, the second spatial attention map retaining the exact spatial location information
is obtained by employing global average pooling and fitting a linear transformation with
the Softmax function at the 3 × 3 branch. Finally, the output feature maps for each group
are calculated by summing the two spatial attention weight values that were generated
using the sigmoid function. The global average pooling operates as shown in Formula (10).

zc(h) =
1

H ×W

H

∑
j

W

∑
i

xc(i, j) (10)

As shown in Figure 8, the EMA attention is incorporated prior to the spatial pyramid
pooling module of the YOLOv8s backbone network. This integration boosts the accuracy of
WFRE-YOLOv8s for identifying surface flaws in steel. Additionally, this enhancement is ac-
complished without placing additional computational burden on the network infrastructure.

Figure 8. EMA module added to the backbone network. This figure shows where EMA is located in
the backbone network.

4. Experiments

4.1. Experimental Introduction
4.1.1. Experimental Setup

The running environment of the experiment is as follows: the operating system is
Windows 10 Professional, the CPU is Intel I5-12490F, the GPU is NVIDIA GeForce RTX3060
12 G, and the RAM is 16 G. Some specific functions may be missing between versions
causing the environment to crash. The version of Python and the version of Torch, CUDA,
and CUDNN must match, or else the model will not start running. Therefore, the Python
environment is based on Anaconda’s Python 3.8, the Pytorch version is 1.9, the CUDA
version is 11.5, and the CUDNN version is 8005.

The specific training parameters are set as follows: the image size is 640 × 480, the
initial learning rate is 0.01, the number of iterations is 200, the batch size is 16, Num_Workers
is 2, and the mosaic enhancement is turned off after 190 epoch.
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4.1.2. Evaluation Indicators

In this study, mAP (mean average precision), recall, precision, parameters, and FLOPs
were used to evaluate the performance of the improved algorithm. The formula for
calculating the mean values of recall, precision, and mAP are shown:

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

AP =
∫ 1

0
P(R)dR (13)

mAP =
1
N ∑N

i=1 APi (14)

where TP represents the number of road objects predicted correctly, FP represents the
number of road objects predicted incorrectly, and FN represents the number of road objects
missed. P(R) represents the value of precision under the point recall.

4.1.3. Dataset

Due to the fact that the images in the NEU-DET dataset are derived from the real
steelmaking process, its defects are closer to the actual situation; this is the reason why
we use the NEU-DET to validate the effectiveness of WFRE-YOLOv8s. GC10-DET con-
tains a wider variety of metal surface defects, it can help validate the model's versatility
and robustness across a broader range of defect categories. We applied mosaic image
enhancement to the NEU-DET and GC10-DET. NEU-DET [51] was proposed by the team
of Kechen Song at Northeastern University in 2022. NEU-DET includes six types of steel
surface defects, namely, patches (pa), silvering (cr), inclusions (in), roll marks (rs), scratches
(sc), and pitting surfaces (ps). The number of images per defect category is 300 and the
resolution of each image is 200 × 200. The ratio of the training set to the validation set of
NEU-DET is set as 9:1, which means there are 1620 images for training and 180 images for
validation. GC10-DET [52] was proposed by the team of Xiaoming Lv in 2020. GC10-DET
consists of ten types of metallic surface defects, namely, water spot (ws), punching (pu),
silk spot (ss), crescent gap (cg), oil spot (os), waist folding (wf), inclusion (in), rolled pit
(rp), crease (cr), and weld line (wl). The GC10-DET has 2294 images, and the resolution of
each image is 2048 × 1000. The ratio of the training set to the validation set of GC10-DET is
set as 9:1, which means there are 2064 images for training and 230 images for validation.

4.1.4. Experimental Datum Processing

After completing training for each model, a result folder is generated, and a new folder
for organizing experimental data is created on the computer. Subclass folders are then
created based on different models. To ensure data authenticity, we conducted 20 training
sessions for each model and uniformly stored the results in the subclass folder. The final
experimental result is determined as the closest result to the average.

4.2. Comparisons with Related Methods
4.2.1. Comparisons with Prevailing Methods on NEU-DET

To evaluate the effectiveness of WFRE-YOLOv8s, we compare our method with several
mainstream methods. The YOLO algorithms are now commonly used in various fields. At
present, most researchers have also adopted the YOLO algorithm to design steel defect detec-
tors. Furthermore, WFRE-YOLOv8s is based on YOLOv8, so in order to ensure the objectivity
of the experiments, we chose these algorithms as the comparative objects. These methods
include YOLOv3s, YOLOv4, YOLOv5s, YOLOv7, YOLOv8s, YOLOv8m, and YOLOv8L.

It is evident from the data presented in Figure 9b and Table 2 that the model introduced
in this study outperforms others in terms of mAP0.5 and mAP0.95. Compared to YOLOv8s,
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the mAP0.5 and mAP0.95 have increased by 4.7% and 2.3%, respectively, while the number
of parameters and FLOPs have only increased by 20% and 13%. Compared to YOLOv8L,
which has the highest accuracy among other models, WFRE-YOLOv8s is 1.2% and 1.4%
higher on mAP0.5 and mAP0.95, respectively, and the number of parameters and the
FLOPs in WFRE-YOLOv8s are 68.5% and 80.3% lower than in YOLOv8L. Compared to the
well-known YOLOv3s and YOLOv5, our proposed WFRE-YOLOv8s is higher than these
two models by 27.5% and 20.7% and 9.9% and 7.7% on mAP0.5 and mAP0.95, respectively.
Furthermore, WFRE-YOLOv8s outperforms YOLOv4 and YOLOv7 in terms of mAP0.5
and mAP0.95 while utilizing significantly fewer parameters and FLOPs. Additionally, the
mAP0.5 of WFRE-YOLOv8s is 10% higher than that of YOLOv4 and 5.7% higher than
that of YOLOv7. Therefore, the WFRE-YOLOv8s proposed in this paper can achieve good
accuracy and maintain good detection results with the average number of parameters and
computational effort.

 
(a) 

 
(b) 

Figure 9. Comparison of detection results on NEU-DET. (a) YOLOv8s recognition effect. (b) Improved
recognition of WFRE-YOLOv8s. (a) shows the detection results of YOLOv8s on NEU-DET. (b) shows
the detection results of WFRE-YOLOv8s on NEU-DET.
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Table 2. Comparison of different network performances on NEU-DET. This table illustrates the
experimental results of the different methods on NEU-DET. (The indicator of focus is mAP (0.5)).

Model
mAP
(0.5)

mAP
(0.5:0.95)

Recall Precision Parameters
FLOPs

(G)

YOLOv3s 51.9% 21.8% 45.4% 49.5% 9322387 23.4
YOLOv4 69.4% 33.8% 79.3% 53.1% 63964611 142

YOLOV5s 69.5% 34.8% 72.7% 60.8% 7026307 15.8
YOLOv7 73.7% 34.4% 68.6% 66.3% 37223526 105.2

YOLOv8s (baseline) 74.7% 39.4% 69.0% 69.1% 11127906 28.4
YOLOv8m 76.7% 41.1% 69.2% 74.5% 25843234 78.7
YOLOv8L 78.2% 41.1% 71.0% 75.8% 43611234 164.8

WFRE-YOLOv8s (ours) 79.4% 42.5% 75.9% 73.6% 13775472 32.6

4.2.2. Comparisons with Prevailing Methods on GC10-DET

For further exploration of the effectiveness of WFRE-YOLOv8s, we conducted some
experiments on GC10-DET. The results of detection are shown in Table 3. We can still
observe a 3.8% increase of mAP0.5 in favor of WFRE-YOLOv8s over YOLOv8s, indicating
that WFRE continues to outperform YOLOv8s. Meanwhile, the number of parameters and
FLOPs have only increased by 23.8% and 14.3%. Compared to YOLOv3s and YOLOv5s,
WFRE-YOLOv8s is still superior to both models in terms of mAP0.5 and mAP0.95. The
mAP0.5 of WFRE-YOLOv8s is 8.9%, 5.2%, 2.4%, and 0.8% higher than YOLOv4, YOLOv7,
YOLOv8m, and YOLOv8L, respectively. From the above data, WFRE-YOLOv8s is not only
effective for detecting the six types of defects in NEU-DET but also has good effectiveness
for detecting the ten types of defects in GC10-DET.

Table 3. Comparison of different network performances on GC10-DET. This table illustrates the
experimental results of the different methods on GC10-DET. (The indicator of focus is mAP (0.5)).

Model
mAP
(0.5)

mAP
(0.5:0.95)

Recall Precision Parameters
FLOPs

(G)

YOLOv3s 55.0% 27.3% 58.0% 51.4%% 9333175 23.4
YOLOv4 60.5% 30.4% 68.0% 46.1% 8081831 20.6
YOLOv5s 63.3% 33.0% 54.7% 69.2% 7037095 15.8
YOLOv7 64.2% 32.1% 57.8% 69.3% 37245102 105.3

YOLOv8s (baseline) 65.6% 34.9% 61.6% 29.9% 11129454 28.5
YOLOv8m 67.0% 35.0% 55.5% 81.0% 25845550 78.7
YOLOv8L 68.6% 36.5% 73.0% 60.7% 43637550 165.48

WFRE-YOLOv8s (ours) 69.4% 35.7% 62.6% 64.8% 13775472 32.6

4.2.3. Experimental Comparison on Different Datasets

For further exploration of the versatility and robustness of WFRE on different classes of
defects, we also conducted experiments on the Lv-DET [53] and PKU-Market-PCB datasets [54],
and the specific experimental results as well as the performance are shown in Table 4.

Table 4. Comparison of experimental results for different datasets. This table shows a comparison of
the experimental results of YOLOv8s and WFRE-YOLOv8s on different defective datasets.

Model Model mAP (0.5) mAP (0.5:0.95)

NEU-DET
YOLOv8s 74.7% 39.4%

WFRE-YOLOv8s 79.4% 42.5%

GC10-DET
YOLOv8s 65.6% 34.9%

WFRE-YOLOv8s 69.4% 35.7%

Lv-DET
YOLOv8s 56.4% 34.5%

WFRE-YOLOv8s 59.2% 35.4%

PCB
YOLOv8s 82.0% 42.7%

WFRE-YOLOv8s 85.3% 44.0%
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From Table 4, we can find that WFRE-YOLOv8s outperforms YOLOv8s on different
datasets. On NEU-DET and GC10-DET, the mAP0.5 of WFRE-YOLOv8s is 4.7% and 3.8%
higher than YOLOv8s. On the other hand, our models have achieved excellent results in the
detection of non-steel defects. In aluminum defect detection, the mAP0.5 of WFRE-YOLOv8
is 2.8% higher YOLOv8s. In pcb defect detection, the mAP0.5 of WFRE-YOLOv8s is 3.3%
higher than YOLOv8s. From the above comparative experimental results, our proposed
model has good versatility and robustness.

4.3. Ablation Experiments

To verify whether our proposed method is stable and effective, we conducted ablation
experiments on the NEU-DET, and the specific experimental comparison results are shown
in Table 5 and Figure 9. The YOLOv8s model is the baseline model. Firstly, in order to
validate the effectiveness of the WIoU loss function in the model proposed in this paper,
the WIoU loss function is used to replace the CIoU loss function, and the model is named
W-YOLOv8s. Secondly, the CFN module proposed in this paper is utilized to replace
the C2f module in the backbone, and the model is named WF-YOLOv8s. Thirdly, the
RFN module is introduced into the neck, and the module is utilized to replace the C2f
module, and the model is named WFR-YOLOv8s. Finally, an EMA attentional mechanism
is incorporated into the WFR-YOLOv8s. The addition of EMA improves the extraction of
valuable features and overall detection accuracy of the whole model. The model resulting
from this adjustment is dubbed WFRE-YOLOv8s.

Table 5. Ablation experiments. This table illustrates the experimental results of the different stages of
the improved methodology. (The indicator of focus is mAP (0.5)).

Model
mAP
(0.5)

mAP
(0.5:0.95)

Recall Precision Parameters
FLOPs

(G)

YOLOv8s 74.7% 39.4% 69.0% 69.1% 11127906 28.4
W-YOLOv8s 75.6% 40.6% 70.7% 69.8% 11127906 28.4

WF-YOLOV8s 76.6% 41.2% 71.4% 71.1% 9434466 23.5
WFR-YOLOv8s 78.1% 41.8% 72.8% 73.2% 13644386 32.2

WFRE-YOLOv8s 79.4% 42.5% 75.9% 73.6% 13775472 32.6

4.3.1. The Performance of WIoU

As shown in Table 5, after we improve the original loss function CIoU to WIoU, the
mAP0.5 of the model reaches 75.6%, which is an improvement of 0.9% compared to the
original model. The number of parameters for the network and the amount of computation
do not change, which shows that the WIoU loss function effectively solves the imbalance
between high-quality and low-quality data in the steel surface defects dataset.

4.3.2. The Performance of RFN

As can be seen from Table 5, after replacing the original C2f module with the proposed
CFN module in W-YOLOv8s, the mAP0.5 is increased from 75.6% to 76.6%. The number
of parameters and FLOps are decreased by 15% and 18%, respectively. This dramatically
proves that the CFN module proposed in this paper has a strong compression effect on the
number of parameters and FLOPs of the model. At the same time, it can also improve the
detection accuracy of the model.

4.3.3. The Performance of CFN

As can be seen in Table 5, after replacing the C2f in the neck with our proposed RFN
module in WF-YOLOv8s, the mAP0.5 improves by 1.5% to 78.1%, which indicates that the
RFN structure can effectively enhance the detection accuracy of the network.
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4.3.4. The Performance of EMA Attention

From Table 5, it can be seen that WFRE-YOLOv8s, compared to WFR-YOLOv8s,
incorporates the EMA attention module in the network’s backbone to enhance the network’s
ability to extract features of defects in low-pixel images to improve the model’s detection
accuracy without increasing the network’s computational burden too much. The mAP0.5
increased by 1.3% to reach 79.4%, and the number of parameters and computation of the
model only increased by 0.9% and 1.2%.

4.4. Comprehensive Performance of the Proposed Model

The results of detecting defects in NEU-DET using YOLOv8s and WFRE-YOLOv8s are
illustrated in Figure 9. The results include predicted boxes, defect classes, and confidence
scores. The results of detecting each type of defect using YOLOv8s and YOLOv7 are shown
in Table 6.

Table 6. Comparison of detection results of improved algorithms.

Model mAP (0.5) Crazing Inclusion Patches Pitted Surface Rolled-in Scale Scratches

YOLOv8s (baseline) 74.7% 43.6% 82.2% 94.0% 78.1% 66.8% 83.3%
WFRE-YOLOv8s (ours) 79.4% 60.0% 81.4% 93.8% 82.5% 73.8% 84.8%

From Figure 9, it is evident that our WFRE-YOLOv8s can detect crazing, patches,
and rolled-scale defect targets more accurately than YOLOv8s, which missed one defect
target. The target missed by YOLOv8s is well-detected, and our detection accuracy is
also improved based on YOLOv8s. On the two defective targets of inclusion and pitted
surface, the detection accuracy of WFRE-YOLOv8s is improved compared to YOLOv8s,
and the accuracy of the same target is improved by 30% and 20%. On the defective target
of scratches, the original YOLOv8s had the problem of misidentification in the detection
result. However, WFRE-YOLOv8s solved this problem by accurately identifying the defects
of the two scratches on this image. Figure 9 and Table 6 show that the WFRE-YOLOv8s
proposed in this paper is more advanced and accurate compared to the YOLOv8s, which
have better results.

4.5. Discussion
4.5.1. Findings

In our study, we found that the design of the backbone network is crucial, and the
backbone network of WFRE-YOLOv8s can be reconfigured by CFN and EMA to be much
more efficient than the detection of YOLOv8. The design of the neck cannot only focus on the
design of the feature pyramid structure but also on the feature fusion effect of the model.

From Tables 2–5, and Figure 9, we can find that WFRE-YOLOv8s is not only better
than the original model in terms of detection metrics, but also in terms of actual detection
results. The newly added EMA attention better focuses on the features that would be
missed by the original model, improving the model's overall detection results.

According to the experimental results, in our opinion, as much as possible, it is
important to design a unique structure to focus on those features that are easily overlooked.
It is also necessary to try to keep the detection network as efficient as possible, rather
than trying to increase the accuracy of the network by designing more parameter-heavy
structures, only to result in increased redundancy in the network. In steel production,
crazing and rolled-in scale are two types of defects that are easily overlooked, so these
two types of features are needed in the design of the network for the design of a targeted
feature extraction structure. In terms of datasets, the current size of datasets is still far from
enough; we need to increase the expansion of datasets, enrich the samples of various types
of defects, and improve the quality of datasets.
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4.5.2. Limitations and Future Works

Compared to existing methods, WFRE-YOLOv8s is a highly competitive steel defect
detector that has performed well on NEU-DET. However, the limitations of WFRE-YOLOv8s
are still apparent in Figure 9 and Table 6, as evidenced by the results of detecting defects.
According to the results of detecting the crazing and rolled-in scale, we can find that its
accuracy is still not as good as the other categories. This suggests that WFRE-YOLOv8s is not
yet adequate in identifying these two defects and has substantial scope for improvement. It
appears that the lower resolution of the dataset images and the indistinctive characteristics of
these two defects may be responsible for the issue at hand. Regarding data preprocessing, it
may be beneficial to employ certain image preprocessing techniques and increase the number
of datasets to enhance the model's ability to detect crazing and other categories of defects.

Additionally, Table 3 reveals that while the computational effort and FLOPs of WFRE-
YOLOv8s are lower compared to most YOLO models, the WFRE-YOLOv8s model still
requires compression due to its use in industrial production. It is clear from Table 3 that
WFRE-YOLOv8s currently has a significant number of parameters. Despite being effi-
cient on devices with higher arithmetic capabilities, it poses a challenge when running on
edge terminal devices. Given that industrial production necessitates a large number of
steel defect detection sensors, increasing the deployment of high-performance computing
equipment would lead to higher expenses. Thus, it is necessary to compress the number
of parameters in WFRE-YOLOv8s to enhance algorithmic efficiency and lower the pro-
duction costs of businesses. WFRE-YOLOv8s could benefit from being optimized further
through the implementation of a lightweight convolutional backbone network, pruning,
and distillation.

5. Conclusions

In response to the steel used in the production process, manual quality inspection
is inefficient, the traditional machine learning quality inspection method generalization
and robustness is poor, and so on. In this paper, we propose a novel one-stage detector
named WFRE-YOLOv8s for steel surface defect detection, which is based on YOLOv8s
with improvements in the backbone, neck, loss function, and integration of the current
better EMA attention module. To solve the problem of imbalance between high-quality
and low-quality data in the steel dataset, we introduce the WIoU loss function to replace
the CIoU loss function. In order to reduce the amount of computation and the number
of parameters in the model and keep the accuracy from being degraded, we adopt the
CFN module as the main component of the backbone of WFRE-YOLOv8s. In the neck, we
adopt the RFN module to reduce the computational overhead while fusing different scale
features well, resulting in improved detection accuracy and real-time detection speed of
the network. In addition, we also incorporate the EMA attention module in the backbone
part of the play network, which can enhance the extraction of adequate feature information
and thus enhance the detection accuracy of the network and solve the problem of some
defects being missed and wrongly detected in the solution process. In order to validate our
proposed WFRE-YOLOv8s, we conducted a series of experiments on NEU-DET and not
only ablation experiments but also a comparison with other SOTA target detection models.
The ablation experiments proved the effectiveness of our proposed improved module,
and the comparison experiments with other SOTA models proved the effectiveness of our
proposed model. In comparison with other methods, WFRE-YOLOv8s achieved better
performance than other models, with higher scores than others in mAP0.5 and mAP0.95.

For WFRE-YOLOv8s, with crazing and rolled-in scale, there is still the problem that
detection accuracy is lower than other categories. Additionally, there is still room for
compression in terms of the number of model parameters and FLOPs. Moving forward,
we will focus on enhancing the ability of the model to detect defects in all categories and
designing a more lightweight model.
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Abstract: Aiming at the problems of low-resolution steel surface defects imaging, such as defect type
confusion, feature blurring, and low classification accuracy, this paper proposes an autocorrelation
semantic enhancement network (ASENet) for the classification of steel surface defects. It mainly
consists of a backbone network and an autocorrelation semantic enhancement module (ASE), in which
the autocorrelation semantic enhancement module consists of three main learnable modules: the CS
attention module, the autocorrelation computation module, and the contextual feature awareness
module. Specifically, we first use the backbone network to extract the basic features of the image
and then use the designed CS attention module to enhance the basic features. In addition, to
capture different aspects of semantic objects, we use the autocorrelation module to compute the
correlation between neighborhoods and contextualize the basic and augmented features to enhance
the recognizability of the features. Experimental results show that our method produces significant
results, and the classification accuracy reaches 96.24% on the NEU-CLS-64 dataset. Compared with
ViT-B/16, Swin_t, ResNet50, Mobilenet_v3_small, Densenet121, Efficientnet_b2, and baseline, the
accuracy is 9.43%, 5.15%, 4.87%, 3.34%, 3.28%, 3.01%, and 2.72% higher, respectively.

Keywords: surface defects; convolutional neural network; autocorrelation enhancement; attention
mechanism

1. Introduction

In industrial production, steel is one of the basic materials for the manufacture of
various mechanical equipment and components, and it plays an irreplaceable role in the
aerospace industry, automobile manufacturing, shipbuilding, construction, the energy in-
dustry, and other fields [1]. However, the steel production process involves the coordinated
operation of multiple pieces of equipment and complex procedures. If the equipment
parameters are not set correctly or fail, it may lead to defects on the steel surface, such as
oxidized skin, plaques, cracks, pitting, inclusions, scratches, and so on. These defects not
only affect the appearance of steel but may also indicate that the steel has been damaged
internally, seriously affecting the mechanical properties and corrosion resistance, which
leads to a decline in product quality and even causes safety accidents [2]. Therefore, timely
detection of steel surface defects and real-time adjustment of production equipment is
essential to ensure steel quality and reduce production losses.

In the past, manual inspection sufficed to meet the demands of product output at rela-
tively slower production speeds. However, with the escalation of production levels and the
burgeoning market, manual review has become sluggish, inefficient, and labor-intensive.
Prolonged hours of labor increase the chances of worker misdetection, while defect identifi-
cation heavily relies on the inspector’s experience. Furthermore, disparities exist in each
worker’s detection standards, making it arduous to fulfill production requirements.
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Developing an accurate automatic detection solution using machine vision technology
becomes imperative to overcome these challenges. Machine vision offers a non-contact
and automated solution for surface defect detection [3–5]. However, it faces limitations
in complex industrial environments, such as limited equipment universality, light-source
requirements, and high costs. This hampers the efficiency of detection tasks.

With the development of computer vision technology, convolutional-neural-network-
based detection has achieved wide application [6–9]. However, deep learning architectures
have become larger and larger, resulting in an increasing number of parameters and
requiring a large amount of computational resources [10,11]. Moreover, due to the fuzzy
imaging and low resolution of steel defect images, the features learned by the network will
suffer from information loss, feature blurring, as well as the problem of easy confusion. For
this reason, ASENet, an autocorrelation-based semantic enhancement network for steel
surface defects classification, is proposed, which mainly consists of a backbone network
and an ASE module. Specifically, we first extract the basic features of the image through
the backbone network, then use the CS attention module to enhance the basic features, and
then use the autocorrelation module to compute the correlation between neighbors. Finally,
we connect the enhanced features with the base features by residual concatenation to obtain
self-attention features to capture different aspects of the semantic object. Experimental
results show that our approach achieves state-of-the-art results on NEU-CLS-64 [12].

Our contributions are as follows:

• This paper proposes a new autocorrelation semantic enhancement method (ASE),
which enhances the base features and extracts important local area features through
CS attention and autocorrelation modules.

• By combining the backbone network and the autocorrelation semantic enhancement
module, our model ASENet can solve the problems of information loss, feature ambi-
guity, and confusion that traditional neural network models would have when dealing
with low-resolution steel defect images.

• Significant classification accuracies are achieved on the NEU-CLS-64 and CIFAR-100
datasets, and comparisons with several benchmark models demonstrate the effective-
ness and superiority of the method.

2. Related Work

2.1. Classification of Steel Defects

Conventional methods for identifying defects on steel surfaces mainly use the wavelet
transform [13,14] double-threshold binarization [15,16], and decision trees [17,18] to analyze
and detect images. In addition to this, Mukhopadhyay et al. used multi-scale morphological
segmentation of gray-scale images to process surface image data [19]; Podulka et al. used
surface topographic image (STI) processing to characterize selected features from the
surface texture [20]; and Ravimal et al. used the intensity of the near-field contrast image
after reflecting light and reflective mirrors, as well as photometric stereoscopic techniques
to recover the normal of the surface mapping for automated surface inspection [21]. By
adopting these techniques, great strides have been made in optimizing productivity and
improving product quality. However, these traditional methods have limitations. An
obvious disadvantage is the relatively slow detection speed and the limited applicability.
The algorithms used in these technologies often require substantial redesign for different
application scenarios. This requirement not only increases the complexity of the process
but also poses a significant obstacle to its widespread application. Another limiting factor
is the high image quality requirement. When the input image is of low resolution, due
to the small number of pixels in the low-resolution image, many details and information
cannot be expressed in the picture, resulting in a decrease in detection accuracy.
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Some recent approaches use convolutional neural networks for steel defect detection.
These techniques are particularly effective in natural scenes, where they have gained
substantial research support. For instance, Li et al. utilized coordinate attention and self-
interaction to identify hot-rolled strip surface defects [22] effectively. Furthermore, Hao
et al. proposed a novel two-stream neural network with sample generation and transfer
learning for classifying steel strip surface defects [23]. Zhang et al. contributed to this
growing research by proposing a novel approach for accurately classifying strip surface
defects using generative adversarial networks and attention mechanisms [24]. Li et al. took
a different approach by submitting a hybrid network architecture (CNN-T) that merged the
CNN and Transformer encoders, achieving significant results on the NEU-CLS dataset [25].
However, these methods also require high-quality defect images.

Therefore, we proposed the ASENet network for low-resolution steel surface defect
images to solve the problems of blurred edges and contours of low-resolution defect images,
which lead to information loss, blurred features, and easy confusion.

2.2. Attention Mechanism

The purpose of the attention mechanism is to let the system learn to focus on areas of
interest or high value from a large amount of information. It has now been successfully
applied to various tasks [26–29]. For example, the self-attention mechanism used in the
Transform model in 2017 has become a significant turning point in developing large-scale
models [10]. Furthermore, SENet [30] introduces a channel attention block for image clas-
sification; it assigns attention weights to different input channels, allowing the network
to focus on the most informative channels. Building upon this, the ECANet [31] further
improved upon the SENet’s strategy by proposing an adequate channel attention (ECA)
block for convolutional neural networks (CNNs), successfully enabling cross-channel inter-
action. CBAM introduces the channel and spatial attention modules to establish the dual
mechanism of channel and spatial attention [32]. While computing image autocorrelation,
conventional approaches often rely on neighborhood correlation [33,34]. However, this
approach is computationally intensive and adds complexity to the model.

In contrast, the ASE module proposed in this paper achieves contextual feature aware-
ness through simple connections after enhancing basic features, eliminating the need for
many redundant parameters. This module allows the model to capture dependencies
between adjacent elements in the input, enhancing contextual understanding.

3. Our Approach

In this section, we focus on the specific implementation of ASENet. Figure 1 shows
the overall architecture of the network. ASENet mainly consists of a backbone network
and ASE modules. The ASE modules consist of three main learnable modules: the CS
attention module, the autocorrelation computation module, and the contextual feature-
aware module, as shown in Figure 2.

3.1. Overall Architecture

Given a set of steel defect sample images, we extract basic features Z ∈ R
H×W×C

using a backbone network. Subsequently, we augment these basic features by the CS
attention module to obtain the augmented feature representation F ∈ R

H×W×C. The
autocorrelation is then computed on the augmented feature F to obtain the autocorrelation
tensor DinRH×W×C1 (C1 = U × V × C) and contextualized with the base feature Z to
produce the self-attention feature A ∈ R

H×W×Cg (Cg = C′ + C). Finally, the resulting
features are passed through two output convolutional layers to recover the number of
channels and residual to derive the final output G ∈ R

H×W×C from the basic features.
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Figure 1. The overall architecture of ASENet.

Figure 2. (a) ASE modules, (b) CS attention module, and (c) autocorrelation calculation.

3.2. CS Attention Module

We devised a CS attention method to enhance the channel and spatial information
in the basic features. This method consists of two complete modules: the channel and
spatial attention modules, as shown in Figure 2b. These modules collaborate to generate
the attention weights, which are essential for determining the importance of each track and
its spatial location in the feature.
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We calculate each channel’s attention weight within the channel attention module,
denoted as Mc. Specifically, we begin by processing the foundational features using average
pooling, followed by their refinement through a convolutional block. We subsequently map
the final result to an output range between 0 and 1, achieved via a Sigmoid function, thereby
obtaining the channel attention weight Mc. This weight effectively mirrors the importance
of each channel in capturing pertinent information. We can prioritize the channels with
information-rich content by assigning higher weights to channels housing valuable insights
and lower weights to those contributing less.

Similarly, within the spatial attention module, we generate attention weights, denoted
as Ms, for each spatial location within the feature. In this case, we employ a convolutional
block to directly learn the features and subsequently map the results to an output range
constrained between 0 and 1, once again utilizing a Sigmoid function. This process yields
the spatial attention weight Ms, which signifies the significance of each pixel location
in capturing meaningful insights. We can effectively concentrate on the pivotal spatial
positions that drive understanding and context by attributing higher weights to areas that
substantially contribute to the overall comprehension of the data and lower consequences
to those of lesser informative value. Through the weights obtained by Mc and Ms, we can
get the final enhanced feature F ∈ R

H×W×C.

F = Z×Mc ×Ms (1)

Unlike previous approaches [32], we have not utilized global max pooling to capture
weights in channel and spatial dimensions or employed MLP (multi-layer perceptron)
for feature extraction. Instead, we have used a convolutional approach to extract feature
information. Additionally, in our CS attention module, we employed a single branch
to learn the relationship between channel and spatial positions. Our experiments have
revealed that lightweight attention modules are more suitable for low-resolution and blurry
image processing tasks while avoiding unnecessary computations.

3.3. Autocorrelation Computation Calculation

To capture the self-similarity of neighborhoods in the image, we employ a calculation
method that involves the Hadamard product. This product is performed between the
C-dimensional vectors at each position x in the enhanced feature F ∈ R

H×W×C and their
corresponding values in the neighborhood. The resulting products are then collected
into a self-correlation tensor denoted as D ∈ R

H×W×C1 . The self-correlation tensor D.
represents the relationships between different positions in the image. It allows us to
identify patterns and similarities within local neighborhoods. We can obtain a tensor that
expresses these relationships by calculating the Hadamard product and accumulating the
results into D. The dimensionality of D is represented by C1, corresponding to the channel
of output vectors.

D(x, p) =
Z(x)
‖Z(x)‖ �

F(x + p)
‖F(x + p)‖ (2)

where p ∈ [−dU , dU ]× [−dV , dV ] corresponds to the relative positions in the neighborhood
window. Here, dU and dV represent the maximum displacement in the horizontal and
vertical directions, respectively. The window size is determined by U = 2dU + 1 and
V = 2dV + 1, which includes the center position. Our experiments use a sliding window of
(U, V) ∈ (1, 1). Unlike previous work [35], we do not keep the dimension of U ×V, but
consider it as part of the channel features so that we can obtain the new channel dimension
C1 = U ×V × C′.

3.4. Contextual Feature Perception

Even though autocorrelation computing may determine how similar two images are
to one another, it lacks the local semantic cues that the original convolutional features
provided. We use a straightforward fusion step to create a contextual feature-aware se-
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mantic representation to capture various properties of the semantic objects. We specifically
sew Z and D together to make the contextual semantic characteristics A ∈ R

H×W×Cg , as
shown below.

A(i,j) =
[

ZT
(i,j), DT

(i,j)

]T
(3)

To analyze the contextual relationships in A, convolution and bulk normalization
operations are performed through the first convolutional layer to extract more semantically
meaningful feature information. The extracted feature tensor is then subjected to a re-
convolution operation to reduce the number of feature channels to the number of input
channels to obtain a more compact feature representation. The convolution kernels for
the two above convolutions’ blocks are both of size 1 × 1. The convolution block h()
learns contextual relationships without padding and aggregates local correlation patterns,
restoring the channel dimension to C, ensuring that the output h(h(A)) is the same size as
Z. We then combine these two representations to generate the final feature representation
G ∈ R

H×W×C.

G = h(h(A)) + Z (4)

Using an autocorrelation semantic enhancement network to augment the basic features
helps to locate the essential regions of the target object. It enhances the recognizability of
the features, which better achieves accurate classification in low-resolution images and
improves the network’s performance.

4. Experimental Results

In this section, we evaluate the performance of ASENet on the NEU-CLS-64 and
CIFAR-100 datasets and compare it to other methods. In addition, we perform ablation
studies and compare them with other attention methods to validate the effectiveness of the
autocorrelation semantic enhancement networks. Figure 3 shows the test results of different
models running 100 epochs on the NEU-CLS-64 dataset under the same experimental setup.
Figure 4 shows the loss curves for the other models.

Figure 3. Test results of different models running 100 epochs on the NEU-CLS-64 dataset.
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Figure 4. Loss curves of different models running on the NEU-CLS-64 dataset for 100 epochs.

4.1. Dataset

In the Northeastern University (NEU) Surface Defect Database [12], six typical surface
defects of hot-rolled steel strips are collected, namely rolling scale (RS), patches (Pa), cracks
(Cr), pitting surface (PS), inclusions (In), and scratches (Sc). The NEU-CLS-64 dataset
used in this experiment includes an additional three defects: oil stains (Sp), pits (Gg), and
rust (Rp). Furthermore, compared to the NEU dataset, all images in the NEU-CLS-64
dataset are of a fixed size of 64 × 64 pixels. The number of images per category varies
(for instance, the pits (Gg) category has 296 images, while the oil stains (Sp) category
has 438 images), as shown in Figure 5. CIFAR-100 is a widely used dataset in computer
vision research. It consists of 60,000 color images, each of size 32 × 32 pixels, belonging to
100 different classes. The dataset is divided into two sets: a training set with 50,000 images
and a test set with 10,000 images. This lower-resolution imagery undoubtedly poses more
significant challenges for accurate classification by the neural network.

Figure 5. Sample images of 9 typical surface defects in the NEU-CLS-64 dataset.
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4.2. Experimental Details

This study conducted experiments using the PyTorch 1.8 deep learning framework
on a system equipped with an NVIDIA 2080Ti GPU and an Intel i7 9700K CPU. The NEU-
CLS-64 dataset is divided into training and test sets in the ratio of 80:20, where 80% of
the data is used for training, and the remaining 20% is used for testing, and CIFAR-100
uses 500 images of each class as the training set and 100 images as the test set. In these
experiments, the NEU-CLS-64 input image size is 64 × 64 pixels, CIFAR-100 input image
size is 32 × 32 pixels, ConvNet-4 is used for the backbone network, and 3 × 3 convolution
kernels are used for each convolutional block. The number of channels in each Conv block
increased to 64-160-320-640 to capture more semantic information in the feature maps. For
optimization, the SGD (stochastic gradient descent) optimizer was used with a momentum
of 0.9. The initial learning rate was set at 0.01, with a decay factor of 0.05. The training
was performed on the NEU-CLS-64 dataset for 100 epochs, with a batch size of 64 samples.
Learning rate annealing was applied after the 80th and 90th epochs by reducing the learning
rate by 0.1.

4.3. Results

Table 1 shows that on the NEU-CLS-64 dataset, the proposed method outperforms all
other methods in terms of accuracy, achieving an impressive 96.24%. Compared to ViT-
B/16, Swin-t, ResNet50, MobileNetV3 Small, DenseNet121, and EfficientNetB2, it achieves
an improvement of 9.43%, 5.15%, 4.87%, 3.34%, 3.28%, and 3.01%, respectively. Figure 3
clearly illustrates that ASENet consistently maintains a high correct rate throughout the
testing process. In contrast, ViT-B/16 exhibits a relatively smoother but substantially lower
correct rate compared to the other models. Turning our attention to the loss curve, it
becomes evident that ASENet achieves the lowest loss among the seven different model
types and exhibits the smoothest loss curve, as depicted in Figure 4. Our method also
achieved the best results on the CIFAR-100 dataset, showing that ASENet performs better
even on a 32 × 32 pixel dataset. When considering the parameter size, our method stands
out with only 3.04 MB, which is significantly smaller compared to other approaches. This
implies that our method is more efficient in terms of memory usage.

Table 1. Comparison results with other methods on the NEU-CLS-64 and CIFAR-100 dataset.

Method NEU-CLS-64 CIFAR-100 Params Size (M) FLOPs (G)

ViT-B/16 [36] 86.81 56.19 326.74 MB 93.09 GFLOPs

Swin_t [37] 91.09 58.24 71.94 MB 47.33 GFLOPs

ResNet50 [38] 91.37 61.08 89.75 MB 21.59 GFLOPs

Mobilenet_v3_small [39] 92.90 59.44 5.83 MB 0.38 GFLOPs

Densenet121 [40] 92.96 66.30 31.01 MB 15.13 GFLOPs

Efficientnet_b2 [41] 93.23 60.32 34.75 MB 3.74 GFLOPs

ASENet (Ours) 96.24 71.66 3.04 MB 17.61 GFLOPs

It is worth noting that the latest ViT and Swin models exhibited the worst performance
during the experiments. These two models have the most complex computations and
parameters and deliver the poorest results. This can be attributed to the fact that when the
input image size is small, the divided sub-patches are relatively tiny, containing limited in-
formation in each sub-patch. This limitation hinders the classifier from capturing sufficient
information, thus affecting the model’s performance. Additionally, Transformer encoders
have difficulty handling local features effectively. Therefore, traditional convolutional
neural network (CNN) models perform better when dealing with low-resolution images.
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4.4. Ablation Studies

To evaluate the effectiveness of ASENet, we created a baseline model (ConvNet-4)
without any additional modules. We performed ablation experiments on the NEU-CLS-
64 dataset. As shown in Table 2, we compare the three learnable modules in two-by-
two combinations with the baseline model and ASENet. In scenario (b), where only
autocorrelation computation and contextual features are used, the accuracy achieved is
95.30%. Adding the CS attention module in method (c) slightly increases the accuracy
to 95.47%. Similarly, including autocorrelation computation in scenario (d) with the CS
attention module but without contextual features results in an accuracy of 95.68%. However,
the most impressive improvement in accuracy is observed in scenario (e), where all three
modules are used concurrently. An accuracy of 96.24% is achieved, the highest among all
the methods.

Moreover, to analyze the impact of different values of the sliding window (U, V)
on the network’s autocorrelation computation, we conducted a comparison between
(U, V) ∈ (1, 1), (U, V) ∈ (3, 3), and (U, V) ∈ (5, 5), which we named as A, B, and C,
respectively. It is important to note that (U, V) ∈ (1, 1), referred to as A, represents the
sliding window used by ASENet. From Figure 6, it can be seen that as the value of (U, V)
increases gradually, the network performance decreases, which is due to the small size
of the defective image, though the backbone-network-extracted feature maps are also
relatively small, so a larger sliding window will lead to the loss of important information
in the extraction process.

Figure 6. The impact of U and V values on the network.
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Table 2. Adding the effects of different modules.

Id CS Attention Autocorrelation Computation Contextual Feature Accuracy (%)

(a) × × × 93.52
(b) × � � 95.30
(c) � × � 95.47
(d) � � × 95.68

(e) � � � 96.24

4.5. Comparison with Other Attention Modules

Table 3 compares the accuracy, number of parameters, and computational complexity
of the autocorrelation semantic enhancement modules (ASE) and other attention modules.
According to the study results, ASE outperforms other attention modules on NEU-CLS-64
by 2.72% over the baseline model. Although ASE performs well in accuracy, it is not the
lightest in model parameter size. Regarding parameter size, ShuffleAttention is optimal
at only 0.05 MB, while ASE has 1.27 MB of parameters. However, a slight parameter
increase compared to performance may be acceptable, especially if computational resources
allow it. Regarding computational complexity, our method is comparable mainly to the SE
module, achieving the highest accuracy while maintaining competitive parameter sizes
and computational complexity. This demonstrates the effectiveness of our approach in
capturing important features and improving classification accuracy.

Table 3. Comparison results with other attention modules.

Method Accuracy (%) Params Size (M) FLOPs (G)

Baseline 93.52 0 MB 0 GFLOPs

TripletAttention [42] 95.03 0.06 MB 0.14 GFLOPs

ShuffleAttention [43] 95.37 0.05 MB 0.01 GFLOPs

PSA [44] 95.44 0.78 MB 10.10 GFLOPs

CoTAttention [45] 95.45 1.08 MB 18.56 GFLOPs

MobileViTv2Attention [46] 95.51 1.17 MB 20.14 GFLOPs

Coord_attention [47] 95.65 0.07 MB 0.13 GFLOPs

SE [30] 95.68 0.08 MB 1.39 GFLOPs

CBAM [32] 95.76 0.10 MB 0.02 GFLOPs

ASE (Ours) 96.24 1.27 MB 1.32 GFLOPs

4.6. Visualisation

Figure 7 showcases heatmap visualizations of various models [48]. The illustration
reveals that the attention patterns in both the ViT and Swin models exhibit a more dispersed
distribution. Conversely, the approach advocated in this paper, enhanced by the autocorre-
lation semantic enhancement module, effectively sieves out extraneous regions, channeling
attention towards more pivotal image characteristics. Particularly for defects such as Cr,
In, Pa, Rp, and Rs, it adeptly pinpoints their locations with superior accuracy compared
to alternative methods. Furthermore, ASENet amalgamates features across diverse scales,
rendering it more adept at discerning valuable features in intricate settings.
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Figure 7. Results of different model visualizations.

5. Conclusions

In this study, we propose the autocorrelation semantic enhancement network (ASENet)
to address the challenge of imaging defects on low-resolution steel surfaces. ASENet consists
of a backbone network and an ASE module, where the ASE contains a CS attention module,
an autocorrelation computation module, and a contextual feature-aware module. The ASE
module captures different aspects of feature semantics and enhances feature recognizability
by augmenting the underlying features and computing correlations between neighboring
domains. Experimental results on NEU-CLS-64 datasets show that the proposed ASENet
can effectively solve the problems of defect type confusion, feature ambiguity, and low
classification accuracy in low-resolution steel surface defect imaging. Compared with the
existing models, the enhanced feature recognition capability of ASENet gives it superior
performance, making it a promising method for steel surface defect classification.
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