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Abstract: A multibeam water column image (WCI) can provide detailed seabed information and is
an important means of underwater target detection. However, gas plume targets in an image have
no obvious contour information and are susceptible to the influence of underwater environments,
equipment noises, and other factors, resulting in varied shapes and sizes. Compared with traditional
detection methods, this paper proposes an improved YOLOv7 (You Only Look Once vision 7) network
structure for detecting gas plume targets in a WCI. Firstly, Fused-MBConv is used to replace all
convolutional blocks in the ELAN (Efficient Layer Aggregation Networks) module to form the
ELAN-F (ELAN based on the Fused-MBConv block) module, which accelerates model convergence.
Additionally, based on the ELAN-F module, MBConv is used to replace the 3 × 3 convolutional
blocks to form the ELAN-M (ELAN based on the MBConv block) module, which reduces the number
of model parameters. Both ELAN-F and ELAN-M modules are deep residual aggregation structures
used to fuse multilevel features and enhance information expression. Furthermore, the ELAN-F1M3
(ELAN based on one Fused-MBConv block and three MBConv blocks) backbone network structure
is designed to fully leverage the efficiency of the ELAN-F and ELAN-M modules. Finally, the
SimAM attention block is added into the neck network to guide the network to pay more attention
to the feature information related to the gas plume target at different scales and to improve model
robustness. Experimental results show that this method can accurately detect gas plume targets in a
complex WCI and has greatly improved performance compared to the baseline.

Keywords: multibeam water column image; gas plume; target detection; YOLOv7; deep residual
aggregation structure; SimAM block

1. Introduction

Multibeam echo sounding (MBES) is a high-precision underwater data measurement
technique [1]. Compared with the traditional single-beam echo sounding technique, MBES
uses multiple transmitters and receivers to collect echo signals in multiple directions
simultaneously, obtaining more precise water depth and water body data. This technique
has been widely applied in marine resource exploration [2], underwater pipeline laying [3],
and underwater environmental monitoring [4]. The water column image (WCI) formed
by water body data is an important means of underwater target detection, and the gas
plumes in the water may be an indication of the presence of gas hydrates in the nearby
seabed sediment layers [5]. Development and excavation of these resources will play a
crucial role in alleviating current global issues such as energy scarcity and environmental
degradation. Therefore, how to detect and locate gas plumes quickly and accurately has
become an important research topic.
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In traditional WCI target detection, the processing steps are image denoising, feature
extraction, and target classification, in that order. Due to the influence of the working
principle of MBES, some sidelobe beams are produced around the main lobe beam during
transmission. When receiving the echo signal, the echo information of these sidelobe beams
is mistaken for real signals, causing significant arc noise in the image [6], which is the main
factor affecting image quality. In addition, the image also includes multisector noise and
environmental noise. To make the collected raw data more accurate, [7] used weighted
least squares to estimate the optimal beam incidence angle and corrected the difference
in echo intensity under different water depths, thus obtaining normalized echo data. To
effectively remove noise in the image, the image masking method was used to eliminate
static noise interference in [8], and artificial thresholding was used to remove environmental
noise. In [9], the data that fell within the minimum slant range were considered valid and
used in the analysis, and the noise was removed by using the average echo intensity as
the threshold. The second step in WCI target detection is to extract features from the
denoised image. Feature extraction aims to obtain distinctive and representative image
features, such as edges, morphology, and texture, to reduce data dimensions for subsequent
classification. In [10], the authors used a clustering algorithm to extract information about
regions containing gas plumes and then used feature histograms for feature matching to
identify them. In [11], gas plume features were extracted using intensity and morphological
characteristics to distinguish them from the surrounding environment. In [12], multiple
features, such as color, gradient, and direction, were used for feature extraction, obtaining
a set of feature vectors that can effectively distinguish between textures and nontextures.
The final step is target classification. Based on the principle of feature invariance, the
extracted features are input into a classifier for training. Commonly used classifiers include
SVM (Support Vector Machine), Adaboost (Adaptive Boosting), and Random Forest. Then
the training results are evaluated and optimized to achieve the high-precision detection
of targets in the image. Traditional target detection methods for a WCI are complex,
with human factors having a significant impact on image denoising and feature extraction
algorithms being unable to extract representative features in complex images. The classifiers
used in target classification are strongly influenced by lighting, angle, and noise, making it
easy to miss or misidentify targets. Overall, target detection using traditional methods in a
WCI is highly limited.

Convolutional neural networks (CNN) have proven effective for solving various visual
tasks [13–15] in recent years, thus providing a new solution for multibeam WCI target
detection. Compared to various machine learning classifiers, CNN not only automatically
extracts image features, reducing human intervention, but can also learn more complex
features, improving the model’s robustness. In addition, the end-to-end advantage and
the introduction of transfer learning [16] have increased the efficiency and accuracy of the
model, and it has been applied to different scenarios and tasks. CNN detectors can be
divided into one-stage and two-stage, which differ mainly in the order of detection and
classification. One-stage detectors refer to the prediction of target category and position
directly from feature maps, such as YOLO (You Only Look Once) [17–21], SSD (Single-Shot
Multi-Box Detector) [22], RetinaNet [23], and EfficientDet [24]. Among them, YOLO adopts
a multiscale feature map and anchor mechanism, which can detect multiple targets simul-
taneously. SSD adopts feature maps of different scales and multiple detection heads, which
can detect targets of different sizes. The focal loss function is used in RetinaNet to reduce
the effect of target class imbalance and has achieved excellent detection results. EfficientDet
adopts a scalable convolutional neural network structure based on EfficientNet [25] and
performs well in speed and accuracy. In [26], to adapt to the particularity of the underwater
environment, the author introduced the CBAM (Convolutional Block Attention Module)
based on YOLOv4 to help find attention regions in object-dense scenes. In [27], the author
established direct connections between different levels of feature pyramid networks to
better utilize low-level feature information, thereby increasing the capability and accuracy
of feature representation. To make the model smaller, in [28], by pruning and fine-tuning
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the EfficientDet-d2 model, the author achieved a 50% reduction in model size without sacri-
ficing detection accuracy. Two-stage detector initially generates candidate frames and then
uses them for classification and position regression, such as Faster R-CNN (Region-based
Convolutional Neural Network) [29], Mask R-CNN [30], and Cascade R-CNN [31]. Among
them, Faster R-CNN uses the RPN (Region Proposal Network) to generate candidate boxes
and then uses RoI (Region of Interest) pooling to extract features for classification and
regression. Mask R-CNN extends Faster R-CNN by incorporating segmentation tasks,
enabling it to perform target detection and instance segmentation simultaneously. Cascade
R-CNN enhances the robustness and accuracy of the detector through a cascaded classifier.
Wang [32] enhanced the Faster R-CNN algorithm by implementing automatic selection
of difficult samples for training, thereby improving the model’s ability to perform well
and generalize on difficult samples. In [33], Song proposed Boosting R-CNN, a two-stage
underwater detector featuring a new region proposal network for generating high-quality
candidate boxes.

These methods have shown good improvements in their respective tasks but may
not be applicable to gas plume object detection. This is because a gas plume generally
consists of numerous bubbles, which are close together and interfere with each other.
Compared to other objects, the reflection intensity of the gas plume is weaker, and the
edges of the bubbles are not easily distinguishable. In addition, gas plumes in water
often experience fracturing as they rise, which makes them difficult to accurately locate.
This paper demonstrates through extensive experiments that the proposed method offers
a viable solution to address the issues related to gas plume target detection. The main
contributions are as follows:

1. ELAN-M and ELAN-F modules are designed to reduce model parameters, speed up
model convergence, and alleviate the problem of insignificant accuracy gains in deep
residual structures.

2. An ELAN-F1M3 backbone network structure is designed to fully utilize the efficiency
of the ELAN-F and ELAN-M modules.

3. To reduce the effect of noise, the SimAM module is introduced to evaluate the weights
of the neurons in each feature map of the neck network.

4. Extensive experiments show that the new model can accurately detect plume targets
in complex water images, far outperforming other models in terms of accuracy.

2. Related Work

2.1. Data Augmentation

Data augmentation is a powerful technique used in neural networks to enhance the
quantity and diversity of the training data by applying random transformations. By doing
so, the model becomes more robust and better equipped to generalize to unseen data. This
can alleviate the overfitting problem to some extent. Common augmentation methods
include geometric transformations and color transformations. Geometric transformations
include flipping, translation, rotation, scaling, etc., which have small changes in the original
content. Color transformations include brightness, saturation, color inversion, histogram
equalization, etc., which have significant changes in the original content and high diversity.
In addition, there are a number of unique approaches being used to augment data. Some
scholars have proposed data augmentation methods based on multisample interpolation,
such as Sample Pairing [34], Mixup [35], Mosaic [36], etc. Sample Pairing randomly selects
two images from the training set, averages the pixel values to synthesize a new sample,
and uses one of the image labels as the correct label for the synthesized image; Mixup is
an extension of Sample Pairing, which performs linear interpolation on both images and
labels; Mosaic combines four training images in a way that is randomly scaled, cropped,
and arranged to improve its ability to identify small targets. Some examples of WCI data
augmentation are shown in Figure 1.
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Figure 1. Partial results of data augmentation. (a) Original image. (b) Color transformation. (c) Grayscale
transformation. (d) Random occlusion. (e) Blurring. (f) Mixup.

2.2. YOLOv7

The YOLOv7 model in the one-stage detector is another great achievement in the
YOLO family, integrating E-ELAN (Extended Efficient Layer Aggregation Networks),
structural reparameterization [37], positive and negative sample allocation strategies [17,18],
and a training method with auxiliary heads, once again balancing the contradictions
between the number of parameters, computational complexity, and performance. YOLOv7
has seven different versions, including YOLOv7-tiny, YOLOv7, YOLOv7x, YOLOv7-w6,
YOLOv7-d6, YOLOv7-e6, and YOLOv7-e6e. Among them, YOLOv7-tiny, YOLOv7, and
YOLOv7-w6 are the basic models of the network, and the other models are obtained by
model scaling.

As shown in Figure 2, the YOLOv7 network structure consists of an input module, a
backbone network, a neck network, and a head network.

Figure 2. Structure of the YOLOv7.

2.2.1. Input Module

The input end of YOLOv7 continues to use the improvement points of YOLOv5, mainly
utilizing the mosaic high-order data augmentation strategy to increase data diversity and
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reduce the computation cost of training. In addition, YOLOv7 uses an adaptive image
adjustment strategy to calculate the input size of images. After calculating, the image
is adaptively padded on all sides to obtain the final input image, thereby reducing the
problem of increased inference time caused by excessive invalid information introduced by
conventional image scaling and padding.

2.2.2. Backbone Network

The backbone network of YOLOv7 mainly consists of three types of modules: CBS,
ELAN [38], and MPConv1. The CBS module includes Convolution (Conv), Batch Nor-
malization (BN), and an SiLU activation function (k and s represent the size and stride
of the convolution kernel). The ELAN module is a multibranch structure that effectively
reduces the number of neurons in the network through multilayer aggregation, reducing
computational and storage overheads, and by controlling the shortest and longest gradient
paths to accelerate gradient propagation. Except for the first two 1 × 1 convolution kernel
sizes of the CBS module, which achieve channel compression, the number of input and
output channels of the remaining CBS modules is kept consistent, which has been proven
to be an efficient network design principle in Shufflenet v2 [39]. The E-ELAN structure
proposed in YOLOv7 is a grouped convolution of two ELAN structures with a group
number of two, and the output results are concatenated in the channel direction. The
MPConv1 structure is a two-branch structure composed of MaxPool (MP) and CBS, where
one branch implements spatial downsampling through MP, and the other branch uses a
3 × 3 convolution with a stride of 2 to complete the downsampling. Finally, an enhanced
version of the downsampling function is implemented through the connection operation.
Both ELAN and MPConv1 are a sublimation of feature reuse, making the network better at
capturing relationships between data.

2.2.3. Neck Network

The neck network of YOLOv7 introduces the SPPCSPC (Spatial Pyramid Pooling and
Cross-Stage Partial Connection) module, which expands the receptive field and achieves
multiscale feature fusion through MP operations with different pooling kernels. Imme-
diately afterward, the enhanced feature extraction network structure of Feature Pyramid
Network (FPN) + Pyramid Attention Network (PAN) is still adopted. The FPN + PAN
architecture improves target discrimination at different scales by combining bottom-up
feature extraction with top-down feature fusion. The ELAN-W and MPConv2 modules
used here are similar to the ELAN and MPConv1 modules used in the backbone network.
ELAN-W is simply an extension of ELAN, with the addition of two outputs in one of its
branching structures for later concatenation; MPConv2 uses the same input and output
channel numbers in the CBS module.

2.2.4. Head Network

The prediction part of YOLOv7 uses the reparameterization technique of RepVGG [37].
During model training, the REP structure consists of a 3 × 3 convolution branch for
feature extraction, a 1 × 1 convolution branch for smoothing features, and an identity
transformation branch. The three branches are combined through connection operation,
improving network performance. In the inference stage, the REP structure is reparametrized
into a 3 × 3 convolution operation to reduce model parameters and accelerate inference
speed. In the prediction stage, the auxiliary head is used to supervise the output of the
intermediate layer features so that the intermediate layer can more accurately represent the
information in the input data, thus improving the expressiveness of the model.

3. Method

3.1. MBConv and Fused-MBConv Block

To achieve higher detection accuracy, we typically use deeper network models to
capture more complex feature information. However, this often leads to longer train-
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ing times, overfitting, gradient vanishing, and gradient exploding problems. Although
residual connections [40] effectively solve these problems, the entire network model still
requires significant resources. Therefore, a lightweight model has always been the goal of
many researchers.

MobileNetV2 [41] introduces two modules: the linear bottleneck and the inverted
residual. The linear bottleneck is a bottleneck block that removes the last activation function
to avoid the loss of feature information; the inverted residual is used to form sparse
features and reduce loss by first up-dimensioning and then down-dimensioning operations
and then reducing model parameters and extracting high-dimensional features using
depthwise convolution (DWConv). The combination of the two is called MBConv in other
applications [42–44], and in later applications, channel attention [45] was also added. In
Figure 3, the MBConv is composed of an expand convolution with BN and SiLU activation
function, a DWConv with BN and SiLU activation function for parameter reduction, a
channel attention block for calculating channel weights, a low-rank project convolution
with BN, and a dropout layer. The channel attention block (Figure 4) consists of two
operations: squeeze and excitation (SE). The squeeze operation uses Global Average Pooling
(GAP) to compress the size of the feature map from H × W × C to 1 × 1 × C. This
process compresses the height and width of each channel into a real number with global
information, allowing the overall model to significantly reduce its number of parameters
while preserving global features. The excitation operation first applies a fully connected
(FC) layer to compress the channels (r denotes the compression ratio) to reduce the number
of channels to further reduce the computational complexity; then after activation using the
Relu activation function, the number of channels is restored to the original dimension by a
second FC, followed by the Sigmoid activation function to obtain the final weight (different
colors represent different weight values) to distinguish the importance of different channels.
Finally, the total number of output features is obtained by multiplying the output weight
coefficients on the branch with the original feature values of the model.

Figure 3. Structure of the MBConv.

Figure 4. Structure of the squeeze and excitation operation.

Based on MBConv, Fused-MBConv is proposed. The authors of EfficientNet v2 [44]
found that although DWConv can theoretically reduce the number of model training
parameters, in practice it is slow to use on shallow networks, does not achieve the desired
state, and does not fully utilize existing accelerators. Therefore, in the structure of MBConv,
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the DWConv block is removed. When channel expansion is not performed, a 3 × 3 ordinary
convolution is used to replace the original expand convolution block, the SE block, and
the low-rank project convolution block. When channel expansion is performed, only the
original SE block is removed. The structural diagram of Fused-MBConv is shown in
Figure 5.

Figure 5. Structure of the Fused-MBConv: (a) the structure without channel expansion; (b) the
structure with channel expansion.

3.2. ELAN-F and ELAN-M Module

To maximize the advantages of the MBConv block, Fused-MBConv block, and YOLOv7
itself, this paper embeds the MBConv and Fused-MBConv blocks into the ELAN structure
of the backbone network and constructs the ELAN-F (ELAN based on the Fused-MBConv
block) acceleration convergence module and the ELAN-M (ELAN based on the MBConv
block) parameter reduction module (In Figure 6, c represents the number of channels). In
the ELAN-F module, the original CBS block is replaced by the Fused-MBConv block, while
the ELAN-M module is based on the ELAN-F, where the convolution kernel size of 3 × 3 is
replaced by the MBConv block. In EfficientNet v2, the authors set the convolutional kernel
sizes of both Fused-MBConv and MBConv to 3 × 3, while in the ELAN structure of this
paper, the remaining 1 × 1 convolutional kernels of the CBS block are replaced by the Fused-
MBConv block without channel expansion. The aim is to speed up model convergence
and improve network accuracy without increasing the number of network parameters.
Both the ELAN-F module and ELAN-M module are multibranch deep residual aggregation
structures. After replacing the Fused-MBConv and MBConv blocks, the network depth is
greatly increased, and deep semantic information is extracted through multiple residual
connections. However, in general, as the depth of the network increases, the residual
become less and less effective. In this paper, these two residual structures are added to the
multilayer aggregation structure of ELAN, and the neurons of different layers are connected
again through cross-layer connections to achieve information sharing, which alleviates the
problem of deep residuals and enables the network to perform with better accuracy thanks
to the combination of residual connections and multilayer aggregation.
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Figure 6. Structure of the ELAN-F and ELAN-M: (a) ELAN-F, (b) ELAN-M.

3.3. SimAM Attention Block

Many researchers [46–48] have demonstrated the effectiveness of attention mecha-
nisms in helping models understand important features in images, reducing noise interfer-
ence, and improving model robustness. As a plug-and-play block, it can be quickly applied
at different positions in different networks, demonstrating its simplicity. SimAM is an
attention block proposed by Yang [49] that has three-dimensional (3D) weights, as shown
in Figure 7. By simultaneously considering the relationship between space and channels,
the 3D weights of the neurons are generated and are assigned to the original feature map.

Figure 7. Structure of the SimAM attention block with 3D weights.

In neuroscience, neurons with important information often exhibit a different firing
pattern than surrounding neurons and suppress the activity of surrounding neurons. Based
on this, Yang defines an energy function for each neuron in the feature map to distinguish
the target neuron from other neurons. The function (1) is shown below:

et(wt, bt, y, xi) = (yt − t̂)2 +
1

M − 1

M−1

∑
i=1

(y0 − x̂i)
2 (1)

8
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where t and xi are the target neurons and other neurons in a single channel in the input
feature map X. t̂ and x̂i are obtained by a linear transformation of t and xi with the
transformation equations t̂ = wit+ bt and xi = wtxi + bt, where i is the index on the spatial
dimension and M = H × W is the number of neurons on that channel, and wt and bt are
the weights and biases of the transformations. By solving for the minimum of (1), the
linear separability of the target neuron t from all other neurons in the same channel can
be obtained. For yt and y0, using binary labels and adding the regularizer λwt

2 to (1), the
transformed energy expression is

et(wt, bt, y, xi) =
1

M−1

M−1
∑

i=1
(−1 − (wtxi + bt))

2

+(1 − (wtt + bt))
2 + λwt

2
(2)

Equation (2) is a closed-form solution concerning wt and bt. The analytic equations
for wt and bt are

wt = − 2(t − ut)

(t − ut)
2 + 2σt2 + 2λ

(3)

bt = −1
2
(t + μt)wt (4)

Assuming that all pixels in each channel follow the same distribution and that the mean
μt = (1/(M − 1))∑M−1

1 xi and variance σt
2 = (1/(M − 1))∑M−1

i (xi − μt)
2 are known for

all neurons except t, the minimizing neuron energy function is

e∗t =
4(σ̂2 + λ)

(t − μ̂)2 + 2σ̂2 + 2λ
(5)

where μ̂ = (1/M)∑M
i=1xi and σ̂2 = (1/M)∑M

i=1 (xi − μ̂)
2
. When e∗ is smaller, it means that

neuron t is more distinct from peripheral neurons and that neuron t is more important and
should be given a higher weight. Thus, the importance of each neuron can be obtained
by 1/et

∗. Finally, feature refinement is carried out through the sigmoid function, and the
entire refinement phase is

X̃ = sigmoid(
1
E
)� X (6)

where E denotes the grouping of all et
∗ in the spatial and channel dimensions, and �

indicates the multiplication operation.
The SimAM attention block obtains the 3D weights of each neuron by optimizing the

energy function, avoiding the structural tuning work of other similar attention blocks. In
addition, its parameter-free nature results in a minimal computational overhead.

3.4. YOLOv7 Neck Network with SimAM

In Figure 8, The CBS modules are replaced by SimAM in two downsampling blocks
of the neck network. The SimAM module reduces feature loss during downsampling by
re-evaluating each neuron in the feature map. Moreover, MPConv2 is located in the PAN
structure of the neck network, which includes feature maps of multiple scales. Different
scales of feature maps contain information about objects of different scales. The SimAM
attention block can enhance the interaction and weight adjustment between different scales
of feature maps, thus better capturing the features of target areas.

After replacing the ELAN-F, ELAN-M, and SimAM modules in YOLOv7, the proposed
YOLOv7-FMS network structure is obtained. In the target detection task for gas plumes,
which have scarce information and unclear contours, the YOLOv7-FMS network can fully
use the extracted features and reduce feature loss during the feature extraction process,
enabling the network to quickly and accurately locate useful regions in complex images
and improve detection accuracy.
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Figure 8. Structure of the SimAM module in MPConv2.

4. Experiments and Discussion

4.1. Preliminary Preparation
4.1.1. Dataset Preparation

This paper uses the Kongsberg EM710 multibeam bathymetry system to make in situ
measurements in a marine area, obtaining a total of 320 images containing gas plume
targets. During the data augmentation process, relevant studies [50,51] have shown that
if the overall dataset is augmented first, the augmented data of the same image may
be split into the training and validation sets during data splitting. This could cause
the model to become overconfident and degrade its generalization ability. Therefore,
this paper first divided the dataset in an 8:1:1 ratio, and then data augmentation was
performed. The augmented dataset consisted of 1920 images, with 1536, 192, and 192 images
used for training, validation, and testing. The dataset is labeled in YOLO format using
LabelImg software.

4.1.2. Experimental Environment

This study was conducted on an Ubuntu 20.04 operating system with an Intel Xeon
Platinum 8255C processor and an RTX 3090 (24 GB) graphics card. The GPU acceleration
environment was created using CUDA 11.3, and the network framework was built using
Python 3.8 and PyTorch 1.11.0. The development platform was Visual Studio Code 1.75.1.

4.1.3. Hyperparameter Setting

All experiments were performed with the same hyperparameters, which are listed in
Table 1, to demonstrate the effectiveness of our method.

Table 1. Hyperparameter configuration.

Hyperparameter Configuration

Initial learn rate 0.01
Optimizer SGD

Weight decay 0.0005
Momentum 0.937
Image size 320 × 320
Batch size 16

Epochs 400

4.2. Model Evaluation Metrics

This study used parameters, computational complexity, FPS (Frames Per Second), F1,
and mAP (mean Average Precision) to evaluate the performance of each model. Parameters
and computational complexity measure the spatial and temporal complexity of a model,
representing the number of learnable parameters and floating point operations, respectively;
FPS refers to how many images the model can detect per second. F1 is a single score that
evaluates the model and is a weighted average that considers precision and recall. Precision
and recall indicate the proportion of false detections and missed detections in the dataset,
respectively. Average precision (AP) indicates the performance of the model in a single
category. mAP is the mean of AP for all categories, and we only studied the detection
of gas plume, so AP is equal to mAP. mAP50 represents the mAP calculated using an
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IoU (Intersection over Union) threshold of 0.50; mAP50:95 represents a set of mAP values
calculated using multiple IoU thresholds from 0.50 to 0.95 and then averaged to full
evaluation of model performance. The formulae are as follows, where TP (True Positive),
FP (False Positive), and FN (False Negative) indicate the number of gas plume targets
detected correctly, incorrectly, and not detected in the water column image.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 × Precision × Recall

Precision + Recall
(9)

AP =
∫ 1

0
Precision(Recall)dRecall (10)

4.3. Experimental Analysis

To verify the effectiveness of the YOLOv7-FMS model, a series of comparison and
ablation experiments was conducted, and the results were compared in detail using the
previously defined evaluation metrics.

4.3.1. The Selection of the Baseline Network

In the YOLOv7 model architecture, the three network structures selected for compari-
son were YOLOv7-tiny, YOLOv7, and YOLOv7x. From Table 2, it can be seen that although
YOLOv7-tiny has a smaller number of parameters, a higher number of FLOPs, and a higher
FPS, its accuracy is minimal and cannot meet the testing requirements. Although YOLOv7x
has similar accuracy to YOLOv7, it consumes more resources and has the slowest inference
speed. After comparing these models, YOLOv7 was chosen as our baseline network for
further improvements.

Table 2. Performance Comparison of Different Models of YOLOv7 Network.

Method Params. (M) FLOPs (G) F1 (%) mAP50 (%) mAP50:95 (%)
FPS

Batch_Size = 1

YOLOv7-tiny 6.0 13.0 82.9 83.0 38.2 128.2
YOLOv7x 70.8 188.9 89.1 90.8 44.1 78.4
YOLOv7 36.5 103.2 90.8 91.0 46.8 84.7

4.3.2. Design of Backbone Network Based on ELAN-F and ELAN-M

The backbone of YOLOv7 contains four ELAN modules, which are replaced by the
ELAN-F and ELAN-M modules. The new backbone network is designed in Figure 9, and
the performance is shown in Table 3. The YOLOv7 backbone network with ELAN-F1M3
has the highest accuracy, with F1, mAP50, and mAP50:95 increasing by 3.6, 6.7, and 8.4%,
respectively, compared to the baseline. Furthermore, the numbers of parameters and FLOPs
are reduced by 16.7 and 14.2%. However, the inference speed of 57.8 is the slowest because
the ELAN-M module uses DWConv, which wastes some time on reading and writing data
from memory, and the GPU’s computing power is not fully utilized. Moreover, even the
worst YOLOv7-F2M2 has nearly the same accuracy as the YOLOv7 baseline network. To
verify the accelerated convergence function of the model, Figure 10 shows the mAP50
change curve of these network structures throughout the training process. The curve
results show that YOLOv7-F1M3 can achieve high accuracy in fewer batches and gradually
become stable. This indicates that using the ELAN-F module only in the shallow layers of
the network can achieve the best results, which is consistent with the conclusion of Efficient
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v2 obtained through NAS (Neural Architecture Search), where the Fused-MBConv module
is used only in the shallow layers of the network.

Figure 9. Comparison of Backbone Networks with Different Combinations. (a) One Fused-
MBConv block and Three MBConv blocks (i.e., ELAN-F1M3). (b) Two Fused-MBConv blocks and
Two MBConv blocks (i.e., ELAN-F2M2). (c) Three Fused-MBConv blocks and One MBConv block
(i.e., ELAN-F3M1).

Table 3. Performance Comparison of Backbone Networks with Different Configurations.

Method Params. (M) FLOPs (G) F1 (%) mAP50 (%) mAP50:95 (%)
FPS

Batch_Size = 1

YOLOv7-F1M3 30.4 88.5 94.4 97.7 55.2 55.6
YOLOv7-F2M2 30.9 95.1 89.5 91.5 46.2 62.9
YOLOv7-F3M1 33.1 101.6 90.7 93.6 52.2 68.5

Figure 10. Comparison of the mAP curves of backbone networks under different configurations.

4.3.3. Experimental Analysis of the Proposed Method and Other Advanced
Lightweight Networks

Table 4 shows the comparative results of the YOLOv7-F1M3 model and other lightweight
networks such as MobileNet v3 [52], ShuffleNet v2 [39], GhostNet v2 [53], PP-LCNet (Po-
sitional Pyramid-based Lightweight Convolutional Network) [54], and MobileOne [55] by
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replacing the backbone network of the baseline. Although lightweight networks reduce the
numbers of parameters and FLOPs, the corresponding feature representation capacity is
reduced, resulting in a significant decrease in accuracy. Among them, MobileOne achieves
the same lowest number of parameters and highest detection speed by implementing a
branch-free network structure through reparameterization in the inference process. Although
the YOLOv7-F1M3 has relatively high number of parameters and FLOPs, it has the highest
detection accuracy, outperforming the second-placed GhostNet v2 by 3.1, 6.6, and 10.2% on
F1, mAP50, and mAP50:95, respectively.

Table 4. Performance Comparison of Different Advanced Lightweight Networks in the Backbone
Network.

Method Params. (M) FLOPs (G) F1 (%) mAP50 (%) mAP50:95 (%)
FPS

Batch_Size = 1

YOLOv7-MobileNetv3 24.8 36.9 80.1 82.5 35.7 22.6
YOLOv7-ShuffleNetv2 23.3 37.9 83.0 84.6 35.7 74.1
YOLOv7-GhostNetv2 29.6 75.2 91.3 91.1 45.0 38.5

YOLOv7-PPLCNet 28.9 63.9 83.9 86.1 43.5 63.3
YOLOv7-MobileOne 23.3 40.1 87.6 89.4 39.5 90.9

YOLOv7-F1M3 30.4 88.5 94.4 97.7 55.2 55.6

4.3.4. Experimental Analysis of the Proposed Method and Other Attention Blocks

In Table 5, the performance of SimAM in the baseline neck network is compared with
other attention mechanisms, including SE [45], ECA (Efficient Channel Attention) [46],
CBAM [47], and CA (Coordinate Attention) [48]. Compared to the baseline, the detection
accuracy improves after the integration of ECA and SimAM. ECA, an improved version of
SE, computes channel weights through a learnable 1D convolution kernel, avoiding the
use of GPA, which does not capture long-range dependencies in the feature map well. The
same GPA is used in CBAM, so it exhibits a relatively low detection accuracy. CA calculates
attention weights based on the coordinate information of the target, whereas the gas plume
target is randomly distributed in the sea and is often fractured and drifting in the water,
making it difficult to detect accurately during the test. However, SimAM achieves the
greatest improvement by directly considering the 3D weight relationship of the neurons
through the energy function, with F1, mAP50, and mAP50:95 increasing by 2.0, 5.3, and
8.5%, respectively, compared to the baseline, with the same lowest number of FLOPs at an
intermediate detection speed, In addition, this module does not require any parameters.

Table 5. Performance Comparison of Different Attention Mechanisms in the Neck Network.

Method Block Params. FLOPs (G) F1 (%) mAP50 (%) mAP50:95 (%)
FPS

Batch_Size = 1

YOLOv7-SE 163,840 102.9 77.0 78.7 33.2 79.4
YOLOv7-ECA 2 102.7 91.1 94.5 52.4 56.5

YOLOv7-CBAM 772 102.7 86.8 89.5 45.6 45.9
YOLOv7-CA 247,680 103.4 83.3 85.8 38.6 41.8

YOLOv7-SimAM 0 102.7 92.8 96.3 55.3 53.5

4.3.5. Ablation Study Based on YOLOv7

In previous sections, a series of horizontal comparisons among various improvements
in the YOLOv7-FMS network have been conducted to demonstrate its superiority over
other methods. In Table 6, a longitudinal comparison of the ablation experiments is made,
where the model shows some improvement over the baseline in all metrics after adding
the ELAN-F1M3 module, the SimAM module, or both. Compared to the SimAM module,
the ELAN-F1M3 module, a multibranch deep residual aggregation structure, can learn
more useful information and has a greater impact on model enhancement. Moreover, the
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YOLOv7-FMS reduces its number of parameters and FLOPs by 17.0 and 14.5% and increases
F1, mAP50, and mAP50:95 by 4.4, 7.4, and 10.7%, respectively. However, due to the increase
in network depth, the side-connection span between the FPN and the three valid feature
maps increases, and the dependency between the data is stronger, leading to a decrease
in detection speed again. We also compared the performance of the improved module
at different network locations. YOLOv7-F1M3 (Neck) refers to the replacement of four
ELAN-W modules in the neck network with ELAN-M modules based on YOLOv7-F1M3.
The test results show that the detection accuracy decreases significantly with the large
reduction in parameters and computational complexity. In addition, the excessive use
of DWConv modules slows down the detection speed of the network. YOLOv7-SimAM
(Backbone) refers to the insertion of the SimAM attention module at the connection between
the backbone network and the neck network. The detection results are slightly lower than
YOLOv7, indicating that the SimAM module in the neck network can better capture the
relationship between data and improve network performance.

Table 6. Ablation Study Based on YOLOv7.

Method Params. (M) FLOPs (G) F1 (%) mAP50 (%) mAP50:95 (%)
FPS

Batch_Size = 1

YOLOv7 36.5 103.2 90.8 91.0 46.8 84.7
YOLOv7-F1M3 (Neck) 27.0 81.8 63.4 62.3 21.2 37.5

YOLOv7-F1M3 30.4 88.5 94.4 97.7 55.2 55.6
YOLOv7-SimAM (Backbone) 35.4 102.3 87.7 89.2 44.5 51.0

YOLOv7-SimAM 36.3 102.7 92.8 96.3 55.3 53.5
YOLOv7-FMS 30.3 88.2 95.2 98.4 57.5 44.6

In Figure 11, the CAM (Class Activation Mapping) feature visualization technique is
used to generate a weighted heat map for the various attention mechanisms to help us better
understand and compare the detection performance and decision-making processes of
different attention networks. In Figure 11b, the baseline network of YOLOv7 focuses more
on the sidelobe noise and the seabed region and too little on the gas plume target. After
adding attention to the network, the weights assigned to the gas plume target in the feature
map are enhanced, and the coverage and attention of the region are significantly improved
after adding SimAM (Figure 11g) compared with the other four mainstream attention
mechanisms. Additionally, it effectively suppresses the sidelobe noise and irrelevant
features in the image. This suggests that the model has better robustness with the addition
of SimAM.

Figure 11. Comparison of heat map under different attention mechanisms. (a) Original image.
(b) YOLOv7. (c) YOLOv7-SE. (d) YOLOv7-ECA. (e) YOLOv7-CBAM. (f) YOLOv7-CA. (g) YOLOv7-
SimAM.
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4.3.6. Experimental Analysis of the Proposed Method and Other CNN Methods

To further validate the performance of the proposed YOLOv7-FMS model, we selected
YOLOv5 [17], YOLOX [18], YOLOv6 [19], SSD [22], RetinaNet [23], and EfficientDet [24],
all of which are similarly sized detection models, for comparison experiments. Table 7
shows that as the number of model parameters increases, the accuracy of the model also
increases. Although the lightweight YOLOv7-FMS model is still at a relatively high level in
terms of parameters and computational complexity, in the accuracy metrics of F1, mAP50,
and mAP50:95, our approach outperforms the second-ranked YOLOv6-m by 0.8, 0.8, and
7.5%, respectively, indicating that this method has good detection performance even at
high detection confidence. The detection accuracy of SSD, RetinaNet, and EfficientDet is
relatively low. This is because SSD requires separate prediction of the object’s location
and category at multiple scales during detection, which may result in some gas plume
targets being missed or misclassified, whereas YOLOv7 uses the FPN + PAN structure, as
in previous generations, to enable information sharing across multiple scales and pathways.
RetinaNet uses focal loss to reduce the weight of easily classified samples in multiclass
detection, but it cannot address the problem of size imbalance within the same class
of objects. The D4 version of EfficientDet is similar in scale to other models, but its
default image input size is 1024, resulting in larger feature map sizes generated during
training. This requires more convolution and pooling operations during forward and
backward propagation, resulting in increased FLOPs and inference time. In addition, we
also trained Faster RCNN [29] and DETR (DEtection TRansformer) [56] on our dataset, but
their accuracy was extremely low. The main reason for this is that Faster R-CNN uses too
many anchors to generate candidate boxes with RPN, which can easily lead to redundancy.
Moreover, for gas plume targets in multibeam water column images, their shapes and
features differ greatly from those of other typical targets, making it difficult for RPN to
generate sufficiently accurate candidate boxes, which may not be able to adapt to small
targets in the gas plumes. Then, due to the relatively small size of the self-built dataset used
in this paper and the limited computing resources available, it is difficult to fully leverage
the performance of DETR, resulting in difficulty in optimizing the training results.

Table 7. Performance Comparison of the Proposed Method and other SOTA Models.

Method
Params.

(M)
FLOPs

(G)
F1 (%) mAP50 (%) mAP50:95 (%)

FPS
Batch_Size = 1

YOLOv5-m 21.1 12.7 92.0 96.4 50.2 70.4
YOLOX-m 25.3 18.4 92.3 95.1 48.2 48.7
YOLOv6-m 34.8 21.4 94.4 97.6 50.0 67.4

SSD300 23.7 68.4 74.7 78.2 29.2 149.8
RetinaNet (resnet34) 29.9 38.3 19.8 22.5 6.1 53.6

EfficientDet-D4 20.5 104.9 69.3 71.5 23.1 12.6
Ours 30.3 88.2 95.2 98.4 57.5 44.6

4.3.7. Result of Detection and Recognition of Gas Plume Targets in WCI

Finally, we test the proposed YOLOv7-FMS model against the original YOLOv7 model
on some representative images. Figure 12 shows a clear WCI of the target, where the
YOLOv7 FMS bounding box can fit the gas plume target more closely and with better
detection accuracy. Figure 13 shows an unclear WCI of the target, where YOLOv7 FMS still
detects the target well. In Figure 14, there is an overlapping of targets. The two bounding
boxes of YOLOv7-FMS can thus be closer and better represent the morphological of the
gas plume target. In Figure 15, the WCI is greatly affected by sidelobe noise, resulting
in YOLOv7 missing half of the gas plume targets. Figure 16 shows the phenomenon of
gas plume targets fracturing during their upward motion due to the presence of internal
waves on the seabed. After detection using YOLOv7, one gas plume target is missed, and
two of the targets are mistakenly detected as a single target, whereas YOLOv7-FMS correctly
detects all four gas plume targets. The detection results demonstrate that the improved
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method can accurately identify gas plume targets in WCI with high noise levels, blurred
contours, and complex seabed environments, thereby enhancing the application of the WCI.

Figure 12. Detection and recognition results of the WCI with clear gas plume target: (a) original
image, (b) YOLOv7, (c) YOLOv7-FMS.

Figure 13. Detection and recognition results of the WCI with unclear gas plume target: (a) original
image, (b) YOLOv7, (c) YOLOv7-FMS.

Figure 14. Detection and recognition results of the WCI with overlapping gas plume targets:
(a) original image, (b) YOLOv7, (c) YOLOv7-FMS.

Figure 15. Detection and recognition results of the WCI affected by high noise levels: (a) original
image, (b) YOLOv7, (c) YOLOv7-FMS.

Figure 16. Detection and recognition results of the WCI with fractured gas plume targets: (a) original
image, (b) YOLOv7, (c) YOLOv7-FMS.

5. Conclusions

In this paper, a YOLOv7-FMS model based on the YOLOv7 network structure was
proposed. First, in the backbone network, we replaced the ELAN module with the ELAN-F
and ELAN-M module and generated the ELAN-F1M3 backbone network, which reduces
the numbers of parameters and FLOPs and accelerates the model convergence. The ELAN-
F and ELAN-M modules are both internal residual and external aggregation structures.
By repeatedly forming cross-layer connections, the model learns more complex mapping
functions and reduces information loss. Then, by aggregating the outputs of the internal
layers through a multilevel aggregation approach, the feature representation is enriched,
and the expressiveness of the model is improved. In addition, the ELAN-M module uses the
SE block to enable interaction between channels and enhance feature extraction. Next, we
added the SimAM module to the neck network to evaluate the importance of each neuron
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in the multiscale feature maps, guided the network to focus on key features, and improved
the robustness of the model. Experimental results show that the method outperforms other
improvement points of the same type, it can adapt well to the morphological characteristics
of the gas plume target, accurately locating the target’s position, and that it has a strong
anti-interference ability during the detection process. However, due to the significant
increase in depth and complexity of the model in the improved network, the detection
speed during the detection process has decreased. In future work, we will optimize the
network structure through methods such as model pruning and distillation to improve
detection speed and efficiency and achieve model deployment.
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Abstract: Water depth estimation is paramount in various domains, including navigation, environ-
mental monitoring, and resource management. Traditional depth measurement methods, such as
bathymetry, can often be expensive and time-consuming, especially in remote or inaccessible areas.
This study delves into the application of machine learning techniques, specifically focusing on the
Baidu Easy DL model for water depth estimation leveraging satellite imagery. Utilizing Sentinel-2
satellite data over Rushikonda Beach in India and processing it into remote sensing reflectance using
ACOLITE software, this research compares the performance of several machine learning algorithms,
including the Stumpf model, Log-Linear model, and the Baidu Easy DL model, for accurate depth
estimation. The results indicate that the Easy-DL model outperforms traditional methods, particularly
excelling in the 0–11 m depth range. This study showcases the substantial potential of machine
learning in remote sensing, offering robust water depth estimates, even in complex coastal environ-
ments. Furthermore, it underscores the critical role of comprehensive training datasets and ensemble
learning techniques in enhancing accuracy. This research opens avenues for the further exploration
of machine learning applications in remote sensing and highlights the promising prospects of online
model APIs when streamlining remote sensing data processing.

Keywords: big model; machine learning; Baidu Easy-DL; water depth; satellite-based bathymetry

1. Introduction

Water depth is an important parameter for a wide range of applications, including nav-
igation, resource management, and environmental monitoring [1]. Accurate and up-to-date
information on water depth is essential for ensuring safe navigation, managing fisheries
and other aquatic resources, and monitoring changes in the environment [2]. Remote
sensing is a powerful tool that allows us to gather information about the Earth’s surface
without physically being there. It involves the use of satellites, aircraft, or drones to collect
data on the environment using sensors that detect reflected or emitted electromagnetic
radiation [3,4]. One of the many applications of remote sensing is water depth inversion,
which is the process of estimating the depth of a body of water based on the characteristics
of reflected light [5,6].

Traditionally, water depth inversion has been performed using methods such as
bathymetry, which involves physically measuring the depth of a body of water using sonar
or other instruments [7,8]. However, these methods can be time-consuming and expensive
and may not always be feasible in remote or inaccessible areas. Remote sensing offers a
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more efficient and cost-effective alternative, allowing us to estimate water depth over large
areas quickly and accurately [9].

In recent years, machine learning has emerged as a powerful tool for data analysis,
with applications in a wide range of fields. Machine learning algorithms can learn from data
to make predictions or decisions without being explicitly programmed to perform this [10].
This makes them well-suited for tasks such as water depth inversion, where traditional
methods may be inadequate. Machine learning is a rapidly growing field that has seen
many advances in recent years, particularly with the availability of online resources [11].
These resources, such as online courses, tutorials, and documentation, have made it easier
for individuals and organizations to learn about and apply machine-learning techniques to
various fields, including remote sensing bathymetry [12,13].

Large models, particularly large language models, have seen rapid development in
recent years. These models are trained on vast amounts of data and have a large number
of parameters, allowing them to generate human-like text and perform a wide range of
tasks. Some examples of large language models include GPT-3, Megatron-Turing NLG,
and Gopher [14]. Large models have also been applied to the field of remote sensing
data processing. Remote sensing involves the collection and analysis of data regarding
the Earth’s surface using satellites, aircraft, or drones. The amount of data generated by
remote sensing is increasing dramatically, creating challenges for storage, analysis, and
visualization [15]. To address these challenges, researchers have developed frameworks and
systems that process remote sensing big data using large models and parallel processing.
These frameworks provide scalability, flexibility, and generalization without dependency
on specific data or processing techniques [15,16]. They also provide reasonable results to
quality criteria, such as the response time, efficiency, and performance development of large
models, which have had a significant impact on many fields, including remote sensing data
processing. These models offer new capabilities for analyzing and understanding large
amounts of data, leading to new insights and discoveries [15,16].

Some people are currently using online remote sensing platforms to conduct some
remote sensing research, such as using the Google Earth Engine [17]. However, the appli-
cation of online AI remote sensing is limited by the confidentiality of field data and the
legal review of countries where scientists are located. Baidu Easy-DL is a zero-threshold AI
development platform that provides a simple and easy way to customize and deploy AI
models. One of its features is table data prediction, which helps users discover potential
patterns from tabular data through machine learning techniques, thereby creating machine
learning models, processing new data based on machine learning models, and generating
predictive results for business applications [18].

DL’s easily structured data supports one-click customization, automatically processes
data, generates machine learning models, and can achieve scenarios such as table data
prediction. This feature can be used to solve binary classifications, multi-classification,
regression, and other problems and is suitable for scenarios such as customer churn predic-
tion, fraud detection, and price prediction. The Baidu Easy DL platform provides a simple
and easy way to customize and deploy AI models, where the prediction feature of table
data can help users quickly mine hidden patterns in data and generate predictive results
for business applications.

This article employs Baidu Easy-DL to construct a water depth inversion model.
Initially, satellite data were transformed into tabular data. Subsequently, the structured
data processing platform developed by Baidu Easy DL was utilized for data prediction,
culminating in the acquisition of predicted water depth values. While Baidu Easy DL’s
structured data prediction does not strictly qualify as a large model platform, it offers
valuable insights for future remote sensing large model platforms when processing remote
sensing data.

The objective of this paper is to explore the potential of online general artificial intelli-
gence models in handling remote sensing tasks. The structure of this paper is as follows:
an introduction, followed by “Section 2”, which presents data “Section 3”, which outlines
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the methodology “Section 4”, which discusses the results “Section 5”, which engages in
a discourse about these findings, and finally Section 6. This structure allows readers to
gain a clear understanding of the experimental setup, execution, and results and facilitates
discussion on potential future research directions.

2. Experimental Data Collection

2.1. The Study Areas and Sentinel-2 Imagery

We acquired bathymetric data (https://github.com/wuzhenghan2022/ESAY-DL.git,
accessed on 5 October 2023) using a modified jet ski with an acoustic survey system at
Rushikonda Beach, a scenic c-shaped bay on the east coast of India, located approximately
between Chennai and Kolkata (see Figure 1) [19]. The coastal area is mainly composed of
fine sand with a median grain size of 0.45–0.5 mm [19]. Moreover, some parts of the beach
have submerged and protruding rocky outcrops. Notably, Rushikonda Beach was selected
as one of the 12 pilot beaches in India for the “Blue Flag Certification” by the Ministry
of Environment, Forest and Climate Change (MoEF and CC). Therefore, the continuous
monitoring of nearshore processes is important for tourism activities and safety.

Figure 1. The general workflow of the proposed system for bathymetry from Sentienel-2 images.

In our study, we used data obtained on 24 November 2018. We processed the images
into remote sensing reflectance (Rrs or Rw) [17,18] using the latest ACOLITE software
(Python 20190326.0 version) provided by the Royal Belgian Institute of Natural Sciences
(RBINS) [20,21]. ACOLITE provides Rrs data (sr-1) for all visible and near-infrared bands,
which are resampled to a 10 m spatial resolution [19]. We predicted the bathymetry map
based on the image data of multiple spectral reflectance bands (bands 1, 2, 3, 4, 5, 6, 8, and
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10) from Sentinel-2 [19]. All spectral images were resampled to a resolution of 10 × 10
m. Finally, we mitigated the sun glint effect by resampling with an S2 view in ACOLITE
software (Version 20210802.0) (Figure 2).

Figure 2. The geographical location of the study area (a); Data collection area where different colors
represent variations of in situ depth data (b).

2.2. In-Situ Data

We conducted two acoustic surveys on 23–24 October 2018 at Rushikonda using a
modified jet ski to obtain bathymetric data. The jet ski was equipped with a 200 kHz
CEESCOPETM echosounder and a 10 Hz Novatel OEMStar L1/L2 GNSS receiver, both
provided by CEE Hydro systems. The echosounder had a high accuracy, with a vertical
error of 1 cm ± 0.1% for the depth. The GNSS receiver had a horizontal error of about
±0.5 m. To improve the quality of data, the echosounder also had an inertial motion unit
(IMU) sensor to record the three-dimensional motion. The IMU sensor had impressive
accuracy, including roll and pitch angles ±0.1◦ (over 360◦), heading angle ±1◦, and heave
distance ±5 cm. We applied wave correction to the echosounder depth data using heave
data from the IMU sensor, following the method of Dugan et al. [22]. We applied a tidal
correction to depth data using the tide gauge data located near Visakhapatnam Harbor
(17◦40′60”N, 83◦16′60”E).

3. Proposed Machine Learning Algorithms for Bathymetry Mapping

3.1. Stumpf Model

In order to avoid the situation where the radiance received by the optical remote
sensor and the radiance in the deep water was negative, Stumpf et al. [23]. proposed a
model based on the log conversion ratio:

Z = m1
ln[nR(λi)]

ln[nR(λi)]
+ m0

where m0 and m1 are the regression coefficients; n is a fixed constant, usually taken as 1000;
R (λi) and R (λj) are the remote sensing reflectance of the blue band i and the green band j.
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3.2. Log-Linear Model

The dual-band log-linear model formula is as follows [5,6,24]:

Z = a1ln[L(λi)− L∞(λi)] + a2ln
[
L
(
λj
)− L∞

(
λj
)]

+ a3

Here, a1, a2, and a3 are the regression coefficients; L (λi) and L (λj) are the radiance of
the blue band i and the green band j; L∞(λi) and L∞(λj) are the radiance of each band in
deep water.

3.3. Baidu Easy DL Model

Easy-DL is an AI development platform for developers and data scientists, which
was designed to help them quickly build high-quality AI models and implement their
commercial applications. Its table prediction feature is an important part of the platform,
used for predictions based on a given data table.

The table prediction feature consists of the following steps:

(a) Data preparation: Upload or import the data table that is to be used for prediction.
Easy-DL supports multiple data formats, such as CSV, Excel, JSON, etc.

(b) Model selection: select a suitable pre-trained model for prediction based on the
characteristics of the table data and the prediction requirements.

(c) Data preprocessing: preprocess the table data, including data cleaning, feature selec-
tion, data enhancement, and table format conversion, to improve the training effect of
the model.

(d) Model training: Based on the uploaded table data and the selected model, Easy-DL
automatically performs model training. During the training process, you can monitor
the training progress and view performance indicators during training.

(e) Model evaluation: after the model training is complete, Easy-DL provides a series of
evaluation indicators, such as accuracy, precision, and recall, to evaluate the perfor-
mance of the model.

(f) Model deployment: After model evaluation is complete, the trained model can be
deployed to the production environment. Easy-DL provides multiple deployment
options, such as API, SDK, and a custom code, to meet different application needs.

(g) Prediction: The deployed model can be applied to actual scenarios for prediction.
Through the API or SDK provided by Easy-DL, the prediction of the table can be
easily performed.

The table prediction feature allows developers to build and apply AI models for
prediction without in-depth knowledge of AI technology and algorithms. It is suitable
for various scenarios, such as commercial prediction, disease prediction, recommendation
systems, etc. By using Easy-DL’s table prediction feature, developers can quickly and
efficiently implement the development and deployment of AI applications.

3.4. Accuracy Evaluation Methods

The accuracy evaluation indexes of water depth accuracy are the mean absolute error
(MAE), the mean relative error (MRE), and the root mean square error (RMSE), and the
corresponding formula areas are as follows [7]:

MAE =
∑n

i=1

∣∣∣Zi − Z’
i

∣∣∣
n

MRE =
∑n

i=1

∣∣∣(Zi − Z’
i

)
/Z’

i

∣∣∣
n

RMSE =

√√√√∑n
i=1

(
Zi − Z’

i

)2

n
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where zi is the estimated water depth; Z’
i is the actual water depth; and n is the number of

water depth points.

3.5. Bathymetry Mapping

Satellite-derived bathymetry (SDB) is a technique that uses remote sensing data to
estimate water depth in shallow areas. One of the key factors that affect the accuracy of
SDB is the selection of water depth control points, which are used to calibrate and validate
the SDB models. Usually, about 1000 control points are selected from a single image of the
study area, though this method may introduce variability in the SDB results depending on
the number and locations of these control points.

In this study, we propose a comprehensive and robust process for water depth retrieval
using SDB. The first step of our process is to select a high-quality remote sensing image
that matches the timing of the scene and measured data. We then perform atmospheric
correction and remove sunlight effects to obtain accurate reflectance data. Next, we applied
various bathymetry algorithms to estimate water depth from the reflectance data and then
corrected for tide effects to obtain consistent water depth values. Finally, we created a
topographic map by integrating the estimated water depths. Our process consists of two
stages for water depth estimation. In the first stage, we converted both remote sensing
data and water depth data into a tabular format and used them for training purposes.
In the second stage, we used Sentinel-2 data, which were also converted into the tabular
format, for depth prediction. To evaluate the performance of our proposed SDB method,
we compared the predicted depths with in situ depth values. We found that our method
utilized water depth control point information effectively, reducing depth estimation errors
and improving the accuracy of water depth inversion.

4. Experimental Setup and Results

In this comprehensive study, we meticulously explore the precision of water depth
estimation through the application of machine learning algorithms and multiple training
datasets derived from Sentinel-2 images. Our training dataset is extensive, comprising a
total of 2000 data points.

The first phase involved the utilization of 1000 points for the initial estimation of
water depth. This was followed by the application of an additional 1000-point training
set for inversion, which facilitated the acquisition of preliminary values. Remote sensing
reflectance data, corresponding to identical geographical coordinates as water depth data,
were collected and systematically organized into a tabular format. The primary column
represents water depth, while the subsequent columns correspond to data from various
bands, specifically bands 1, 2, 3, 4, 5, 6, 8, and 10.

The process of water depth retrieval was initiated based on control points associated
with one of the 1000-point training sets. This training set was subsequently employed for
inversion to derive the final depth of results. The final results obtained through online
prediction were utilized to compute the key evaluation metrics. These included the Mean
Absolute Error (MAE), Mean Relative Error (MRE), Root Mean Square Error (RMSE), and
the coefficient of determination (R2).

Three models were selected for this study: the Stumpf model, the Log-Linear model,
and the Baidu Easy-DL model. Each model was trained using remote sensing reflectance
values from various bands as the input variables. The dataset was split using spatial random
sampling to ensure a diverse range of data points for model training and verification.

Quality checks were conducted throughout the process to ensure the accuracy and
reliability of our results. Possible branching was also considered in our study design. For
instance, depth mapping was conducted within a certain range along the coast.

This rigorous approach ensured a comprehensive understanding of water depth
estimation using machine learning algorithms and Sentinel-2 images. It provides valuable
insights that could be used to further refine these techniques and improve their accuracy in
future studies.
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All data format conversions and experiments were carried out within the Matlab
environment. For training points and verification points, we used a random sampling
method to extract the samples. Our approach involved the random selection of calibration
samples in accordance with the depth distribution. For each sample, we computed the
MAE, MRE, RMSE, and R2 values by comparing the estimated water depth values with
ground-truth measurements. The ultimate results were presented as the mean values across
all samples.

The results of water depth estimation exhibited significant variations among the
different bathymetry algorithms employed. Notably, the accuracy of the Easy-DL model
stood out as the highest among the three algorithms, followed by the Log-Linear model in
second place, while the Stumpf model lagged behind in terms of accuracy (refer to Figure 3).
These conclusions are substantiated by examining parameters such as the correlation
coefficient, R2, MAE, MRE, RMSE.

Figure 3. Correlation between the in situ depths and depth results based on different bathymetry
methods: (a) Stumpf model; (b) Log-Linear model (c) Easy-DL model.

For the Easy-DL model, the water depth inversion results closely align with the 1:1
line, with fewer discrete data points. By contrast, the Stumpf model exhibited the lowest
accuracy, characterized by a higher degree of data discreteness in the water depth inversion.
Following this trend, the Log-Linear model fell in between the other two algorithms in
terms of accuracy.

Notably, within the depth range of 0–3 m, the Easy-DL model demonstrated a high
degree of alignment with actual measurements, resulting in a noticeably higher accuracy
compared to the other two models. However, when the water depth exceeded 10 m in the
Easy-DL model, the retrieved values started to decrease slightly, deviating marginally from
the measured water depth values. Obviously, within the range of 10 m in the study area,
the water depth inversion results given by the Baidu Easy-DL platform were the best, while
the MAE, MRE, RMSE, and R2 values performed better (Refer to Figure 3).

Figure 4 presents a comprehensive map of estimated water depths across the study
area, spanning depths from 0 to 15 m. The results highlight variations in accuracy, notably
showcasing lower accuracies in shallow depths (<0.5 m) and deeper depths (>15 m) within
the study area, particularly in their proximity to the shoreline.

The topographic map derived from the Easy-DL model exhibited less noise, and the
inversion results from shallow to deep waters closely mirrored the actual conditions. An
examination of the scatter map reveals a noticeably superior accuracy in the inversion of
water depth compared to the other two models. When compared to the measured data, the
topographic map derived from satellite data effectively captures the general trend of water
depth variability, albeit with some minor discrepancies in the finer details.

In the 0–5 m depth range, the inversion results of the three algorithms exhibit a similar
trend, albeit with some localized variations. For instance, in specific areas, the Stumpf
model manages to mitigate the influence of seabed geological heterogeneity on water depth
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inversion results, a feat not achieved by the Log-Linear algorithm. However, even though
the Easy-DL model boasts high accuracy, it does exhibit errors in these regions.

Figure 4. The water depth map estimated based on satellite image data and a different bathymetry
method (a) Stumpf model; (b) Log-Linear model (c) Easy-DL model.

Yet, it is worth noting that the Stumpf model shows pronounced error bands in
nearshore areas, which could potentially be attributed to wave-related factors. In the depth
range of 6–10 m, the water depth changed trends, appearing consistent across models;
however, the Stumpf model contained more noise points in a triangular region compared
to the smoother results from the Easy-DL model.

In locations exceeding 10 m in depth, such as the circular section, data from the
Easy-DL model tended to underestimate water depth inversion results, which is consistent
with the scatter plot observations. Collectively, these results underscore the reliability of
satellite-based water depth estimation. However, it is noteworthy that when the water
depth in the Easy-DL model exceeded 10 m, the inverted water depth values began to
exhibit a slight decline, deviating marginally from the measured water depth values.

5. Discussion

5.1. The Performance of Water Depth Inversion Model

As illustrated in the scatterplot presented in Figure 3, our proposed method exhibits
a remarkably high level of accuracy in water depth inversion. This becomes particularly
evident when compared to two classical algorithms: the Stumpf and Log-Linear algorithms.
To comprehensively assess the bathymetry results across various water depth ranges, we
calculated the root-mean-square errors (RMSE) for both the classical methods and our
proposed online deep-learning method (see Table 1).

These methods enable precise water depth estimation under diverse conditions, en-
compassing factors such as human activities, pollution, and sediment accretion. Notably,
our proposed online deep learning method consistently outperforms all other methods in
terms of overall accuracy, boasting an RMSE that is 0.24 m less than the closest RMSE value
among all other methods.

Moreover, the proposed online deep learning method excels in overall accuracy and
demonstrates superior performance in the inversion accuracy of specific water depth ranges.
Notably, within the 6–9 m range, our method achieved remarkable accuracy, with an RMSE
as low as 0.23 m. In the case of the Stumpf algorithm, similar conclusions were obtained,
where the RMSE was 0.94 m, albeit slightly lower than the overall accuracy. Conversely,
the Log-Linear algorithm exhibited its smallest error in the 3–6 meter water depth range,
with an RMSE of 1.01 m.

However, it is important to acknowledge that when the water depth exceeded 9 m,
all algorithms tended to experience an increase in accuracy deviation and RMSE values,
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surpassing the overall results. This phenomenon can be attributed to the comprehensive
approach employed in our method, where various machine learning algorithms were
integrated to perform depth inversion. This enabled optimal depth estimation overall,
yielding superior results in localized estimations as well.

Given that the study area encompasses an open coast, it is susceptible to significant
influences from various environmental factors. Remote sensing images reveal valuable
insights into the seabed quality of the nearshore sea, suggesting relatively high water
transparency in this region.

As depicted in Figure 5, the results obtained through the approach proposed in this
paper exhibit substantial improvements compared to those obtained through traditional
methods. These improvements are noticeable across the entire depth range under consid-
eration, which spanned from 0 to 15 m, with a particularly noteworthy enhancement at a
depth of four meters.

Table 1. A comparison of the RMSE errors for different water depths and different bathymetry
methods.

Training
Method

RMSE

0–3 m
(580 Points)

3–6 m
(214 Points)

6–9 m
(200 Points)

>9 m
(95 Points)

Overall
(1089 Points)

Stumpf 1.12 1.01 0.94 1.19 1.08
Log-Linear 0.59 0.58 0.66 0.89 0.63

Easy-DL 0.43 0.29 0.23 0.39 0.39

Figure 5. The histogram map of the residual error obtained from different methods.

Additionally, it is worth highlighting that the histogram depicting the residuals was
limited to ±1 m in comparison to the previous method. In this context, the distributions
observed for all three methods appeared to follow a normal pattern (see Figure 5). This
reaffirms the feasibility and effectiveness of the method proposed in this paper.

5.2. The Uncertainty and Implications of Baidu Easy-DL Model

Obviously, within the range of 10 m in the study area, the water depth inversion
results given by the Baidu Easy-DL platform were the best, while the MAE, MRE, RMSE,
and R2 values performed better. However, in the work of remote sensing for the inversion
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of water depth in turbid water bodies using the online artificial intelligence platform Baidu
Easy-DL, there were certain uncertainties and impacts:

(a) Model Selection: The choice of the model may affect the accuracy of the inversion
results. Although machine learning models generally have higher robustness than
traditional semi-empirical, bio-optical, and semi-analytical models2, different machine
learning models may produce different results. For example, a study found that the
Genetic Algorithm Optimized Extreme Learning Machine (GA-ELM) had a more
compact network structure and better generalization ability than the Extreme Learning
Machine (ELM).

(b) Input Variables: The choice of input variables may also affect the results. For example,
using remote sensing reflectance values at different bands as input variables may lead
to different inversion results.

(c) Data Quality: The quality of remote sensing data also affects the inversion results.
For example, if remote sensing data contain noise or are affected by factors such as
atmosphere and water turbidity, it may lead to inaccurate inversion results.

The methodology provided in this study holds significant implications for various
research areas:

(a) Depth Inversion: This work is of paramount importance for depth inversion, offering
valuable support for marine engineering, shipping, and maritime military security.

(b) Environmental Monitoring: This methodology can also be utilized for environmental
monitoring, such as monitoring the water quality of inland bodies of water.

(c) Scientific Advancement: This work can propel scientific progress in related fields,
such as enhancing the accuracy and robustness of remote sensing inversion models.

These implications underscore the practical application and scientific research value
of this study, demonstrating its potential to contribute significantly to both practice and
research in these areas.

In summary, despite certain uncertainties, the remote sensing inversion of turbid water
depth using Baidu Easy DL still has important practical and scientific value. In future work,
we can reduce uncertainty and improve the accuracy of inversion results by improving
models, optimizing input variable selection, and improving the quality of data. At the
same time, we need to pay attention to the various impacts that this work may bring in
order to better utilize its application potential in practice and research.

6. Conclusions

This paper presents an online water depth estimation method that employs a compre-
hensive approach. This method uses a general large model, combining remote sensing data
with measured training datasets, and incorporates multiple machine learning algorithms.
The results achieved with this approach in water depth inversion have been promising.
Moreover, using the online ensemble learning algorithm clearly shows different water
depth estimations. In comparison, ensemble learning techniques can be further integrated
with these algorithms to improve depth estimation accuracy, often resulting in a halving
of the RMSE. Within the experimental area, our proposed method demonstrated supe-
rior precision, lower RMSE values, and higher R2 values when compared to the classical
Stumpf and Log-linear algorithms. The experimental results indicate that this method
can effectively improve depth estimation within the range of 0 to 11 m, with an RMSE of
0.39 m. Remarkably, for water depths less than 9 m, the inversion accuracy is consistently
high. The reduction in performance for depths exceeding 9 m may be attributed to similar
water quality conditions and a substantial water depth, which might challenge the accurate
reflection of depth changes through remote sensing reflectivity data.

It is worth noting that while the quantity of training samples significantly impacts
the performance of depth estimation, this paper’s algorithms are all based on a large
volume of training data. Importantly, this method has the potential to be extended to
estimate other physical parameters based on remote sensing image analysis, such as water
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turbidity and chlorophyll concentration. In summary, the method proposed in this paper
effectively estimates the water depth from satellite images by leveraging the synergy
between publicly available large-scale models and remote sensing depth retrieval. This
method outperforms traditional remote sensing depth retrieval approaches. Due to the
non-parametric nature of machine learning methods, it successfully achieves relatively high
coherence and consistency from observed satellite images compared to depth estimation
through acoustic methods.

Looking ahead, with the continuous advancement of large models, the method pre-
sented here, which involves invoking network online model APIs for remote sensing image
processing, represents a promising direction in remote sensing applications. While many
scholars have used remote sensing APIs for specific tasks in remote sensing image process-
ing, the lack of an API for Satellite-based bathymetry is a challenge. Converting the formats
of remote sensing data into the import and export formats of common online learning
algorithms is crucial for future research and the widespread application of remote sensing
online data processing.
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Abstract: Mangrove forests play a vital role in maintaining ecological balance in coastal regions.
Accurately assessing changes in the ecosystem service value (ESV) of these mangrove forests requires
more precise distribution data and an appropriate set of evaluation methods. In this study, we
accurately mapped the spatial distribution data and patterns of mangrove forests in Guangxi province
in 2016 and 2020, using 10 m spatial resolution Sentinel-2 imagery, and conducted a comprehensive
evaluation of ESV provided by mangrove forests. The results showed that (1) from 2016 to 2020,
mangrove forests in Guangxi demonstrated a positive development trend and were undergoing a
process of recovery. The area of mangrove forests in Guangxi increased from 6245.15 ha in 2016 to
6750.01 ha in 2020, with a net increase of 504.81 ha, which was mainly concentrated in Lianzhou
Bay, Tieshan Harbour, and Dandou Bay; (2) the ESV of mangrove forests was USD 363.78 million
in 2016 and USD 390.74 million in 2020; (3) the value of fishery, soil conservation, wave absorption,
and pollution purification comprises the largest proportions of the ESV of mangrove forests. This
study provides valuable insights and information to enhance our understanding of the relationship
between the spatial pattern of mangrove forests and their ecosystem service value.

Keywords: mangrove forests; spatial distribution pattern; ecosystem service value; remote sensing;
Guangxi

1. Introduction

Mangrove forests, which are found in intertidal zones in tropical and subtropical
regions, are among the most valuable and productive ecosystems on the earth [1]. They
provide unique ecosystem services such as wave energy reduction, coastal erosion preven-
tion, water purification, and biodiversity protection [2,3]. Mangrove forests also contribute
to poverty alleviation and food security, including the provision of food and raw mate-
rial provision, offering recreation and tourism opportunities, and moderating extreme
events [4]. Thus, they are enormously relevant to sustainable development goals [5]. To
better understand the services and benefits mangrove forests provide to people and how
their services change under different scenarios, it is necessary to assess the economic value
of mangrove forests as natural capital [6]. The valuation of the forests’ ecosystem services
is also a quantitative tool for decision-makers and conservation advocates in assessing the
extent of recovery or degeneration [2].

Ecosystem valuation is an approach to assign monetary values to an ecosystem accord-
ing to its key ecosystem goods and services, generally referred to as its Ecosystem Service
Value (ESV) [7]. This approach can improve knowledge for informed decision-making
to raise awareness of blue forest ecosystems and foster cooperation among blue forest
stakeholders [8]. There are numerous studies on the ESV of coastal ecosystems [9–11].

Remote Sens. 2024, 16, 494. https://doi.org/10.3390/rs16030494 https://www.mdpi.com/journal/remotesensing32



Remote Sens. 2024, 16, 494

In analyzing gains and losses in ecosystem services values (ESVs) in the coastal zones of
Zhejiang Province during rapid urbanization, Cao et al. [9] found that changes in land use
patterns, specifically disordered land-use changes from forestland and farmland to urban
construction land, were a major cause of ESV loss. Ligate et al. [10] assessed temporal land
cover and land-use changes, underlying socioeconomic drivers, and dynamics of ESV in the
coastal zone of Tanzania, and identified population pressure and socioeconomic activities
as key factors contributing to the degradation of coastal ecosystems. Yang et al. [11] pro-
posed a detailed “donor-side” accounting approach based on the energy method, providing
a “supply-side” evaluation of coastal and marine ecosystem services values (ESVs) that
captures dynamic ecological processes and applies unified metrics.

However, three reasons make it challenging to accurately measure mangrove forests’
ESV. The obstacles limiting mangrove measurements include deficiencies in global-scale
assessment methods, previous studies focusing on case studies in specific regions, and
a lack of attention to the spatial pattern of forests. Firstly, while global-scale assessment
methodologies [12,13] can provide useful insights into the overall trends and patterns of
ecosystem services, they may cause variability and inconsistencies in local-scale assessment
due to differences in the ecological and socioeconomic contexts of each individual region.
It is important to note that global-scale ESV assessment methods and results may not
always be suitable for those at a local scale [14]. By considering the specific characteristics
of the ecosystem, local-scale assessments can provide more accurate and comprehensive
evaluations of ecosystem services. Secondly, previous studies on ESV in mangrove forests
primarily focused on a nature reserve [15]. They provided a comprehensive valuation of
ecosystem services of mangroves in a natural reserve. However, they tended to emphasize
the linkages between land use/land cover and ESV change in a natural reserve [7,16], rather
than focus specifically on the mangrove forests. Thirdly, the spatial pattern of these forests
was often overlooked in previous studies. The ESV may be underestimated when their
spatial structure and pattern are neglected [17]. According to Luke M. Brander [13], an
increase in the abundance of mangroves within a region can lead to higher unit productivity.
Furthermore, it is worth noting that most ecosystem services require certain minimum area
thresholds to be achieved. Even if two habitats have similar total areas, the distribution
and fragmentation of the patches can lead to significant differences in their ecological
value [18]. As such, the importance of mangrove forests as ecosystem service providers is
highly dependent on their spatial patterns.

Spatial distribution and landscape pattern are essential for accurately assessing the ESV
of mangrove forests [13,18,19]. Conducting traditional surveys of mangroves can be a highly
challenging and time-consuming task due to their muddy intertidal zone environment [20].
Remote sensing has been widely used to acquire spatial information about mangrove
forests due to its unparalleled advantages in terms of multiscale capabilities [21,22]. To
date, the Landsat series imagery is a widely used dataset for assessing the ESV in mangrove
forests [7], since the images have a 30 m resolution and have been consistently available
every 16 days since 1984 [23]. However, there are several shortcomings in the studies that
have generated mangrove maps. First, it is difficult to obtain images during the low tide
period due to the coarse temporal resolution (over 16 days). Second, landscape patterns of
smaller mangrove forest patches might not be accurately discriminated with a 30 m spatial
resolution. Thus, Sentinel-2 imagery, with its free access, 10 m resolution bands (Bands 2, 3,
4, and 8), and dense temporal resolution (2–5 days), is a better choice [24]. Particularly when
combined with the computing capability provided by Google Earth Engine, a high-quality
Sentinel image with more details can be obtained [25]. However, no mangrove forest ESV
assessment has been conducted based on Sentinel-2 derived spatial data.

To address the above-mentioned issues, we assessed the ESV of mangrove forests
based on the criterion of the MA and the precise spatial distribution of mangrove forests in
Guangxi province derived from high spatial resolution Sentinel-2 imagery. The objectives
of this study are to (1) obtain the spatial distribution and pattern of mangrove forests
from 2016 to 2020 based on Sentinel-2 imagery; (2) construct a comprehensive evaluation
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system by drawing on the Millennium Ecosystem Assessment (MA) to estimate the ESV of
mangrove forests based on their spatial patterns; and (3) analyze the ESV changes from
2016 to 2020 along the coasts of Guangxi, China.

2. Materials and Methods

2.1. Study Area

As illustrated in Figure 1, the study area is located in the southwest portion of mainland
China and the northern region of the Beibu Gulf (21◦24′–22◦01′N and 107◦56′–109◦47′E).
The mean annual temperature and precipitation vary from 22 ◦C to 23 ◦C and from 1500 mm
to 2000 mm, respectively. It belongs to the tropical monsoon oceanic climate zone with
high temperatures and rainy conditions. Tides across the study area are diurnal, with an
average range of 2.24 m [26].

 

Figure 1. Location of the study area. (a) Beilun Eastuary National Mangrove Nature Reserve;
(b) Maowei Sea Mangrove Reserve; (c) Shankou National Mangrove Nature Reserve (including C-1

and C-2).

Along the coasts of Guangxi, there are two national mangrove reserves (Shankou Na-
tional Mangrove Nature Reserve and Beilun Estuary National Mangrove Nature Reserve)
and one provincial mangrove reserve (Maowei Sea Mangrove Reserve). Seven species
of mangrove forests live along the coasts, among which Aegiceras comiculatum, Avicen-
nia marina, Kandelia candel, and Aegiceras comiculatum occupy over 90% of the total
area of mangrove forests [27]. Other species, such as Rhizophora stylosa and Bruguiear
gymnorrhza, are sparsely distributed [28]. Mangrove forests distributed in Lianzhou Bay,
Maowei Bay, and Zhenzhu Bay are typical estuary mangrove forests, which are found in
the intertidal zone of estuaries where freshwater and seawater mix and create conditions
with varying salinity levels. Qinzhou Bay has a unique island group of mangroves. The
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largest urban mangroves and sandy mangroves of China are distributing along the coasts
of Beihai.

2.2. Sentinel-2 Data Acquisition and Pre-Processing

In this study, Sentinel-2 images were chosen to obtain information on mangrove forest
distribution in Guangxi from 2016 to 2020. The Sentinel-2 mission has two polar-orbiting
satellites (Sentinel-2A and Sentinel-2B) that provide high-resolution optical imagery. These
satellites revisit the same place every 2–5 days. They both carry a MultiSpectral Instrument
(MSI) sensor that offers 13 spectral bands. Only four bands (Bands 2, 3, 4, and 8) with a
10 m spatial resolution were employed, identifying, in particular, mangrove forest patches
with small areas or narrow shapes [26].

In high-tide images, some low-lying mangroves may be submerged by water bodies,
making mangrove forests difficult to identify and extract. To facilitate the extraction of ac-
curate information on the regional extent and spatial pattern of mangroves, low-tide period
and cloud-cover images were acquired in November and December of 2016 and 2020. The
Level-2A product of the Sentine-2 Multispectral Instrument (MSI) images was downloaded
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus (accessed on
13 June 2022)). The Level-2A product underwent radiometric, geometric, orthorectified,
and atmospheric corrections. It can provide per-pixel radiometric measurements of surface
reflectance [29]. In order to ensure consistency throughout the study and obtain accurate
mangrove extraction ranges, we manually drew coastline data from 2016 to 2020 using
Google Earth Pro software (version 7.3.6), using artificial embankments as reference points.
Lastly, each image was clipped using a 5 km buffer zone along the coastline.

2.3. Field Investigation and Other Data

Three field investigations were conducted during the periods of 1–15 November 2016,
13–25 September 2019, and 17–27 December 2020. The ground survey work was conducted
along designated walkways, and each field point’s location was established by Real-Time
Kinematic (IRTK5) with a global positioning system accurate to within 1 m, which can be
affected by the number of available satellites and prevailing weather conditions. Aerial
photographs were also taken with unmanned aerial vehicles during low tide. Given that
much of the mudflat areas where the mangrove forests were located were inaccessible,
some sample points were selected using Google Earth and unmanned aerial vehicles.

We collected 961 sample points in each of the years 2016 and 2020. Out of these,
200 mangrove and 200 non-mangrove points, respectively, were collected as training
samples during the classification process. The remaining 224 mangrove points and 337 non-
mangrove points were used for image validation in 2016 and 2020.

2.4. Classification Methods and Accuracy Assessment

In this study, object-based image analysis and the Random Forest classification method
were applied, in conjunction with visual modification, to classify the mangrove and non-
mangrove in 2016 and 2020, respectively.

Object-based image analysis involves setting certain homogeneous standard param-
eters according to the spectral information and shape information of the image [30]. It
also segments the remote sensing image to form an image object. Image segmentation can
directly influence the efficiency and accuracy of classification results [31]. The classification
results avoid salt-and-pepper noise, have good integrity, and have a high classification
accuracy [32].

In this study, multi-scale segmentation, which is one of the most useful segmentation
algorithms, was selected, and the eCognition software (version 9.0) was used as the oper-
ating platform [33]. Through visual judgement and by systematically adjusting different
segmentation scales and segmentation parameters until the mangrove forests regions were
separated from water [24,30], the segmentation scale, segmentation shape, and tightness
parameters were established as 20, 0.2, and 0.8, respectively.
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Random Forest is an ensemble learning algorithm based on decision trees, that has
demonstrated its usefulness and robustness in image classification [34]. It includes two
critical parameters: the number of decision trees (ntree), which is established by randomly
selecting samples from the training dataset, and the number of predictive variables (mtry),
which defines the best partition in each node of decision trees and is determined as the
square root of the number of input features [35].

When using a Random Forest classifier model, a wide range of features can be used
as input variables. Compared to pixel-based methods, object-based image analysis can
provide more spatial features. In this study, 15 spectral, spatial, and vegetation index
features were used as input variables. A detailed list of these features is presented in
Table 1.

Table 1. Features used in Random Forest classification.

Feature Type Classification Feature

Spectral feature Mean value of band 2 3 4 8, Standard deviation of band 2 3 4 8
Spatial feature Shape index, Compactness index, Border index, Homogeneity, Contrast

Vegetation index Normalized Difference Vegetation Index, Normalized Difference Water Index

In this study, Random Forest was also run in eCognition (version 9.0). After segment-
ing the image into multi-scale segmentation, we set the parameter ntree to 150 and the
parameter mtry to 4. After obtaining the initial interpretation results, we inspected the re-
sults and adjusted the omitted or incorrect mangrove forest objects via visual modification.

To validate mapping accuracies, the accuracy of the classification results of 2016 and
2020 was assessed by the sample points (described in Section 2.3). The overall accuracy
represents the proportion of correctly mapped points compared to ground points. The
Kappa coefficient, a harmonic mean of user’s accuracy and producer’s accuracy, represents
the classification performance of a single class.

2.5. Spatial Pattern of Mangrove Forests

In this study, combined with the spatial pattern of mangrove forest distribution in
Guangxi [36], the indices shown in Table 2 were used to describe the spatial pattern of
mangrove forests. On a landscape scale, the spatial pattern of mangrove forests refers to
their spatial distribution pattern within regions (such as bays, etc.), including the spatial
distribution and combination of mangrove forest patches with different sizes, shapes, and
attributes. Cultivating a good spatial pattern and realizing its maximum comprehensive
value is the goal of mangrove forest protection, management, and development. Abundance
of mangrove refers to the area of mangroves per unit length of coastline in a bay or
region. The number of patches is positively correlated with landscape fragmentation.
Mangrove shoreline refers to the coastline effectively protected by mangroves. Finally,
the relatively ideal distribution of mangroves highlights the contribution of mangroves to
ecosystem services.

Table 2. Spatial pattern of mangrove.

Indices Description

Abundance of mangrove The area of mangroves per unit length of coastline (ha/km).
Number of patches The number of mangrove patches.
Average patch area The average area of all mangrove patches (ha).
Mangrove shoreline Shoreline with mangroves (km)

Coastwards mangrove Mangroves with a minimum distance between the landward boundary and the
coastline less than 30 m.

Ideally distributed mangrove Shoreline mangrove with a patch width ≥ 100 m and coverage ≥ 0.4
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2.6. Assessment of Ecosystem Service Value

In this study, the ecosystem services of Guangxi’s mangrove forests were organized
into four categories and 10 types based on the criterion of the MA, as shown in Table 3. To
ensure the accuracy of the ESV assessments for 2016 and 2020, the reference values of the
evaluation indices and results were standardized to a common metric of 2016 USD per ha
per year. Given that the reference values for the selected indicators came from different
years, we used the GDP deflators to adjust them to 2016 [37], and then converted them to
2016 USD. This approach ensured that the reference values were comparable and consistent,
which was necessary for accurate and meaningful ESV assessments.

Table 3. Indicators, calculation criterion, and data source for evaluating ESV of mangrove.

Category Type Evaluation Index Equation

Provisioning
service

Material
production value

Wood production Vwood = G × P × (A1 × d1 + A2 × d2)

Fishery VFishery = Pf × (A1 × d1 + A2 × d2)

Regulating service

Soil
conservation value

Soil
conservation VSoil = (A1 × d1 + A2 × d2)× (X1 − X2)× P1/Pb

Fertilizer
conservation VF = (A1 × d1 + A2 × d2)× SNPK × d × Pb × P

wave
absorbing revetment

Mangrove
shoreline Vwave = (L1 × d1 + L2 × d2)× (C1 + C2)

Climate
regulation

CO2 VCO2 = (A1 × d1 + A2 × d2)× T × C

O2 VO2 = (A1 × d1 + A2 × d2)× M × P0

CH4 VCH4 = (A1 × d1 + A2 × d2)× Q × 21 × T

Pollution
purification

Degrade
pollutants VPurification = (A1 × d1 + A2 × d2)× S

Water
conservation Water VWater = A × R × Pw

Supporting
service

Biodiversity Conservation Habitat VHabitat = (A1 × d1 + A2 × d2)× Ph

Nutrient
accumulation Nutrient VNutrient = (A1 × d1 + A2 × d2)× St × P

Cultural
service

Cultural
Scientific
Research

and education
VScience = A × Ps

Recreation Recreation VRecreation = A × Pr

To analyze and compare the ecological values and services provided by mangrove
forests, we divided them into two categories: ideally distributed mangroves and remaining
mangroves. We assigned weight values of 0.7 and 1 to the remaining mangroves and
ideally distributed mangrove categories, respectively [38,39], which enabled us to conduct
a more comprehensive analysis of their respective ecosystem service values. The following
is a description of the 10 types of ESV that were selected for evaluation. Note that all the
reference values provided in the description below have been adjusted to reflect the 2016
values using GDP deflators.

(1) Material production value
The material production function refers to the various products that can obtained

from the ecosystem, including fresh water, food fuel, medical supplies, and so on. The
material production function is closely related to human activity, and the shortage of these
products can have direct or indirect adverse effects on human well-being. This study
mainly considers the wood production value and natural aquatic product output value of
mangrove forests.

1© Wood production
In Guangxi, logging of mangroves is not allowed in mangrove reserves, and it is

subject to strict supervision and restrictions in other areas. Therefore, the value of wood
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production is calculated based on the growth of living standing trees, and the market value
method is used to calculate the value of wood production. The value of the growth of
mangrove forests’ living trees can be expressed as follows [40,41]:

Vwood = G × P × (A1 × d1 + A2 × d2) (1)

where Vwood is the value of the wood production service, A1 is the area of ideally distributed
mangroves, A2 is the area of the remaining mangroves; di is the weighting factor (0.7–1.0)
(here, we define the values of d1 and d2 as 1.0 and 0.7, respectively), G is the annual volume
growth of standing trees (4.98 m3/(ha*a)), and P is the market price (USD 110.52/(ha*a) in
2016 and USD 92.22/(ha*a) in 2020).

2© Fishery
Mangrove forests can provide a wealth of aquatic products, mainly including Sipun-

culus, Phascolosma esculenta, Ostrea rivularis, Meretrix meretrix, and other fishes. Aqua-
culture is generally widely distributed on tidal flats. Considering the availability of data,
we used the fishery output value per unit area to calculate the fishery value provided by
mangrove forests. The equation for calculating the fishery value is as follows [42]:

VFishery = Pf × (A1 × d1 + A2 × d2) (2)

where VFishery is the fishery value, and Pf is the value of mangrove fishery per unit area
(USD 19,945.15/(ha*a)).

(2) Soil conservation value
Soil conservation has the most directly positive effect on the growth and development

of trees and the control of soil erosion. It mainly refers to reducing soil erosion and
maintaining soil. The value of soil consolidation can be calculated based on the alternative
engineering method. Fertilizer conservation mainly refers to protecting the soil from the
fertility loss caused by soil erosion. It can be measured by multiplying the sum of the total
amount of N, P, and K in the topsoil (0–31 cm). The conservation value of the soil can be
expressed as follows [38,39]:

VSoil = (A1 × d1 + A2 × d2)× (X1 − X2)× P1/Pb (3)

VFertilization = (A1 × d1 + A2 × d2)× SNPK × d × Pb × P (4)

where VSoil and VFertilization are the values of the soil consolidation and fertilizer conserva-
tion, X1 is the erosion index of bare soil (74.06 t/ha), X2 is the erosion index of woodland
(47.69 t/ha), P1 is the cost of excavating earthwork (USD 0.57/m2), Pb is the density of the
topsoil (0.77 t/m3), SNPK is the contents of N, P, and K (1.39%), d is the topsoil thickness
(0.31 m), and P is the price of the fertilizer (USD 391.43/t).

(3) Wave absorbing revetment
Mangrove forests can absorb a large amount of tidal energy and significantly slow

down water flow. They have unique morphological characteristics and develop root
systems that form a stable network system, which enables mangrove forests to grow more
firmly on the tidal flat and form a tight fence on the beach. The value of wave-absorbing
revetment can be estimated by applying the shadow engineering method. The equation for
calculating the value of wave-absorbing revetment is as follows [28,39]:

Vwave = (L1 × d1 + L2 × d2)× (C1 + C2) (5)

where Vwave is the total value of the wave-absorbing revetment, L1 is the length of the
ideally distributed mangrove shoreline, L2 is the length of the two remaining mangrove
shorelines, C1 is the ecological benefits provided by mangrove forests per unit distance per
year (USD 13,300/km), and C2 is the cost of repairing the dam.

(4) Climate regulation
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The climate regulation of mangrove forests has both positive and negative effects. The
positive effect mainly refers to their carbon fixation and oxygen release function, that is,
the function of absorbing CO2 in the atmosphere through photosynthesis and releasing O2.
Additionally, the negative effect mainly refers to their emission of greenhouse gas CH4. In
this study, the afforestation cost and carbon tax method were used to evaluate the value of
climate regulation. The equation is as follows [42,43]:

VCO2 = (A1 × d1 + A2 × d2)× T × C (6)

VO2 = (A1 × d1 + A2 × d2)× M × P0 (7)

VCH4 = (A1 × d1 + A2 × d2)× Q × 21 × T (8)

VClimate = VCO2 + VO2 − VCH4 (9)

where T is the carbon tax (USD 182.82/t in 2016 and USD 195.58/t in 2020), C is the average
annual carbon sequestration in mangrove forests (14.139 t/(ha*a)), M is the average annual
oxygen release from mangrove forests (30.31 t/(ha*a)), Po is the industrial oxygen price
(USD 63.27/t in 2016 and USD 91.23/t in 2020), Q is the annual emission flux of mangrove
methane per unit area (USD 0.0077/t), and 21 is the warming potential value of methane.

(5) Pollution purification
The pollution purification value service refers to the value generated by the decom-

position of and reduction in various invasive harmful substances in mangrove forests.
Mangrove forests and understory soil have the ability to absorb and purify various pollu-
tants, purify water quality, and reduce red tides [34]. The pollution prevention cost method
was used to evaluate the value of pollution purification. The equation is as follows [41,42]:

VPurification = (A1 × d1 + A2 × d2)× S (10)

where VPurification is the value of the pollution purification, and S is the purification value
of mangrove forest pollution per unit area (USD 6151.66/ha).

(6) Water conservation
Mangrove forests can accumulate excess precipitation and release it slowly, so that

precipitation can be redistributed in time and space. The water conservation of mangrove
forests provides water for residents in the form of shallow groundwater, so its value can
be calculated by storing the same amount of water in the reservoir. The shadow price
method was chosen to calculate the value of surface water resources. The equation is as
follows [44,45]:

VWater = A × R × Pw (11)

where VWater is the water conservation value, A is the area of mangrove forests, R is the
water storage capacity of mangrove forests per unit area (8100 m3/ha), and Pw is the cost
of unit water storage capacity (USD 0.39/t).

(7) Habitat
Mangrove forests provide ideal living environments for various marine organisms,

benthos, and seabirds. They are rich in biological species, playing an important role in
ecosystem succession and biological evolution. Therefore, the protection value of biodi-
versity is crucial and cannot be ignored. The outcome reference method was used in this
paper to calculate the value of the habitat. The equation is as follows [45,46]:

VHabitat = (A1 × d1 + A2 × d2)× Ph (12)

where VHabitat is the value of the habitat, and Ph is the value of biodiversity per unit area
(USD 1791.44/ha).
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(8) Nutrient accumulation
Mangrove forests are characterized by their strong ability to cycle and recycle nutrients

within the ecosystem. This high productivity is an essential feature of mangrove forests
that supports their ecological functions and ESV. The accumulation of nutrients is mainly
the accumulation of N, P, and K, so their value can be calculated with the same amount of
fertilizer. The value of nutrient accumulation can be expressed as follows [40]:

VNutrient = (A1 × d1 + A2 × d2)× St × P (13)

where VNutrient is the value of the nutrient accumulation, St is the total nutrient retention in
mangrove forests (0.291 t/ha), and P is the price of the fertilizer (USD 91.43/t).

(9) Scientific research and education
Mangrove forests have attracted experts and scholars from different fields to conduct

research due to their viviparous phenomena, rich species diversity, high biomass, and
productivity. However, the necessary research funds and time investments are difficult to
obtain, and their values are difficult to quantify. Therefore, the outcome reference method
was used in this paper to calculate the scientific research and education value. The equation
is as follows [47]:

VScience = A × Ps (14)

where VScience is the scientific research and education value, A is the area of the mangroves,
and Ps is the scientific and educational value of mangrove forests per unit area (USD
474.90/ha).

(10) Recreation
The rich animal and plant resources of the mangrove forests provide good conditions

for the development of tourism activities. Calculating the tourism value of mangrove
forests is challenging due to various factors. In Guangxi, most of the scenic spots are
located within nature reserves, and access is free to the public. Therefore, we took research
results from previous studies as a reference to calculate the value generated by recreation.
The calculation equation is as follows [46]:

VRecreation = A × Pr (15)

where VRecreation is the recreation value, A is the area of the mangrove forests, and Pr is the
recreation value per unit of wetland area in Guangxi (USD 1076.68/ha in 2016 and USD
1118.08/ha in 2020).

3. Results

3.1. Accuracy Assessment of Mangrove Forests Map

Based on the verification points, two confusion matrices were generated to assess the
accuracy of the 2016 and 2020 mangrove forest classification results (Table 4). The overall
accuracies all exceeded 90%, and the Kappa coefficients all exceeded 0.8. In 2016, the man-
grove forests map had a user accuracy and producer accuracy of 94% and 89%, respectively.
In 2020, the mangrove forests map had a user accuracy and producer accuracy of 96% and
93%, respectively. The accuracy assessment results indicated that the classification results
and the verification data have good consistency.

Table 4. Confusion matrix of mangrove classification results.

Year Actual Type Mangrove
Non-

Mangrove
Total

User’s
Accuracy

Producer’s
Accuracy

Overall
Accuracy

Kappa
Coefficient

2016
mangrove 210 14 224 93.75% 89.36%

93.05% 0.86non-mangrove 25 312 337 92.58% 95.71%

2020
mangrove 215 9 224 95.98% 92.67%

95.37% 0.90non-mangrove 17 320 337 94.96% 97.26%
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3.2. Spatial Distribution and Pattern of Guangxi’s Mangrove Forests

We obtained the spatial distribution and pattern of mangrove forests from 2016 to 2020
based on Sentinel-2 imagery. The spatial distribution of mangrove forests in Guangxi is
shown in Figure 2. The mangrove forests are mainly concentrated in Zhenzhu Harbour,
Fangcheng Bay, Maowei Sea, the Dafeng River, Lianzhou Bay, Tieshan Harbour, and
Dandou Bay. Additionally, the area of mangrove forests has increased by 8% from 6245.15 ha
in 2016 to 6750.01 ha in 2020. This increase was mainly concentrated in Lianzhou Bay,
Tieshan Harbour, and Dandou Bay. In addition, we compared our mangrove forests map
with the Guangxi mangrove forests maps created by Zhang et al. [24] and Hu et al. [48].
Our result was close to the result of Hu et al. (7089 ha) and much lower than the area
of Zhang et al. (7528 ha). Hu used 30 m spatial resolution Landsat images, which led to
mixed pixels in the mangrove forests and reduced the precision of the analysis. Zhang
used one-meter spatial resolution Gaofen-2 imagery, which allowed for the identification
of numerous small mangrove forests.

Figure 2. (A) Spatial dynamics of mangrove forests along the coasts of Guangxi in 2016 and 2020.
(The data from 2020 for mangrove forests were superimposed on the data from 2016 and subfigures
(a–e) show the areas of concentrated or highly dynamic changes).
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The spatial patterns of mangrove forests in Guangxi from 2016 to 2020 are presented
in Table 5. From 2016 to 2020, based on the changes in coastlines and mangrove forests,
the corresponding mangrove shorelines and coastward mangroves increased by 3.19% and
4.69%, respectively. The abundance of mangroves increased by 5.71%, and the number of
patches increased by 4.13%. The average area of mangrove patches increased by 3.8%, and
ideally distributed mangroves increased by 4.20%. The Guangxi coastline increased slightly
from 1686.66 km to 1724.48 km from 2016 to 2020.

Table 5. Changes in spatial pattern during 2016–2020.

Spatial Indices Year of 2016 Year of 2020
Proportion
of Changes

Abundance of mangrove (ha/km) 3.70 3.91 5.71%
Number of patches (pcs) 1018 1060 4.13%
Average patch area (ha) 6.14 6.37 3.80%
Mangrove shoreline (km) 578.90 597.37 3.19%
Coastwards mangrove (ha) 5436.97 5692.19 4.69%
Ideally distributed mangrove (ha) 5114.972 5201.398 4.20%

3.3. Variations in ESV

Table 6 shows the value changes for different ecosystem services. The total service
value of mangrove forests changed from USD 363.78 million in 2016 to USD 390.74 million
in 2020. The proportion of each service is obtained by dividing its own value by the total
service value. This allows us to determine the relative contribution of each ecosystem
service to the overall value of mangrove forests. As illustrated in Figure 3, the provisioning
service value accounted for more than 33% of the total value, which proportionately
constituted a decrease. The value of fishery remained at about 32.1%, but the value of wood
decreased. The main reason is that the decline in the market price of logs in Guangxi has
exceeded the increase in the areas of mangrove forests. Provisioning services accounted
for 33.30% of the total value in 2016, and their proportion in 2020 decreased by 0.45%
in comparison.

Table 6. Changes in ESV during 2016–2020 (unit: million USD).

Service
2016 2020

Value Proportion Value Proportion

Wood 3.25 0.89% 2.89 0.74%
Fishery 117.89 32.41% 125.47 32.11%
Soil consolidation 0.11 0.03% 0.12 0.03%
Fertilizer conservation 76.71 21.09% 81.63 20.89%
Wave absorbing revetment 54.20 14.90% 55.60 14.23%
Carbon fixation 24.45 6.72% 25.75 6.59%
Oxygen release 11.33 3.11% 17.38 4.45%
Methane release −1.24 −0.34% −1.32 −0.34%
Pollution purification 36.33 9.99% 38.66 9.89%
Water conservation 19.80 5.44% 21.40 5.48%
Habitat 10.58 2.91% 11.70 2.99%
Nutrient accumulation 0.67 0.18% 0.72 0.18%
Scientific research 2.97 0.82% 3.21 0.82%
Recreation 6.72 1.85% 7.55 1.93%

Total 363.78 390.74

The proportion of regulating services remained at 60%, only slightly increasing from
2016 to 2020. Among the regulating services, fertilizer conservation and wave-absorbing
revetment remained the main service functions, which indicates that mangrove forests
have unique ecosystem services. The reason for the increase in oxygen release is that the
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average price of the Chinese oxygen market in 2020 (USD 91.23) increased significantly,
compared with 2016 (USD 63.27), reaching 44.2%. In 2016, the value of regulating services
accounted for 60.94% of the total services value; in 2020, it increased to 61.22%.

 

Figure 3. Spatial dynamics of ecosystem ESV in Guangxi, 2016–2020 (in blue color, USD million).

The cultural service and supporting service values accounted for only 2.7% and 3.1%
of the total value, respectively. The reason for the increase in habitat and recreation is
that the value of ecosystem services per unit area in China in 2020 (USD 236.38) increased,
compared with 2016 (USD 227.63), by up to 3.9%. Due to the significant increase in the area
of mangrove forests, the net change in the ESV was found to be positive. However, the
annual ESV changed slightly, decreasing from USD 58,250 to 57,886.

4. Discussion

4.1. Factors Driving Changes in Spatial Pattern

To improve the protection and management of mangroves, optimize their spatial
layout, and realize their ecological and environmental value, in-depth research on their
spatial pattern on a landscape scale is essential [49]. In addition to the three basic landscape
pattern indices—mangrove area, patch number, and patch area—this study also analyzes
shoreline mangroves, ideally distributed mangroves, and mangrove abundance.

Table 5 illustrates that, over the five-year period from 2016 to 2020, the mangrove
area was widely used as the most basic spatial indicator in spatial structure analysis. Due
to the joint efforts of local governments and the Chinese government, a series of laws
and regulations have been formulated and implemented. The mangroves have shown a
steady increasing trend, indicating a positive condition between development and recovery.
Additionally, the average patch area of mangroves has increased, which further supports
our observations of positive growth and recovery in mangrove forests.

The change in the abundance of mangroves can be attributed to two main reasons.
Firstly, the continued increase in mangrove area, and, secondly, the construction of various
infrastructures, such as reclamation projects, salt pans and breeding ponds, seawalls, urban
development, and port and terminal construction, has extended the length of the coastline.
The increase in abundance provides a more intuitive indicator of mangrove growth in
comparison to measuring their number by area, which can lead to vague and incomparable
results at the scale of bays or protected areas. The relative abundance not only facilitates
the comparison of mangroves in different regions during the same period but also of
mangroves in the same region with significant differences in different periods.
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Since mangroves are often distributed along the coastline, the length of the coast-
line can serve as an indicator of mangrove distribution. The reasons for the increase in
mangrove shorelines are multifaceted and can be attributed to several factors. One of the
primary reasons is the construction of many breeding ponds on the tidal flats between the
original natural shorelines and mangroves. This has brought the mangroves closer to the
shoreline. Additionally, other factors, such as the artificial afforestation of new areas and the
destruction of existing mangroves, can lead to changes in the extent of mangrove shorelines.

In addition to an increase in mangrove area, the number of shoreline mangroves has
also increased. The proportion of shoreline mangroves to total mangrove area has remained
at 85%, indicating that the vast majority of mangroves are located close to the shore and
have good wave dissipation and shoreline protection characteristics. Furthermore, the
ratio of ideally distributed mangrove areas to total mangrove area remains at 80%. This
suggests that the mangroves are primarily clustered rather than evenly distributed across
the area. The causes of changes in mangrove patch patterns are similar to those of mangrove
shorelines. These include a large shift in the spatial location of the coastline, the expansion
of mangrove patches, and damage to mangroves caused by natural evolution.

The measurement of coastwards mangroves and ideally distributed mangroves pro-
vides a more intuitive depiction of the spatial scale and ecological value of mangroves.
For instance, the efficacy of mangroves in wave-absorbing revetment is related to char-
acteristics such as the stand structure, the distance from the embankment, and the patch
width [36]. From this perspective, it is easy to understand why certain indicators were
selected to indicate a more ideal spatial distribution of mangroves and how the spatial
structure impacts the ecological value of mangroves.

4.2. The Rationality and Existing Problems of Selecting Evaluation Index

In our study, we built an evaluation system for mangrove forest ESV by incorporating
spatial pattern analysis and the Millennium Ecosystem Assessment framework. Our
approach involved categorizing ecosystem services into four main types: provisioning
services, regulating services, supporting services, and cultural services. Following the
principles of scientific, representative, comprehensive, concise, and operational criteria,
we selected 10 indicators for the quantitative evaluation of ecosystem services. Each
of these 10 indicators was chosen to fulfill the evaluation objectives while also being
appropriate and relevant to the evaluation of mangrove ecosystems [50]. Moreover, each
indicator is independent from the others to prevent any double-counting of data caused by
information overlap.

Due to significant differences in regional and local contexts, environmental factors,
and social dynamics that can affect the provision and valuation of ecosystem services in
different locations, local-scale reference values can provide a more accurate and suitable
basis for estimating mangrove ESV and informing management and policy decisions. To
account for the challenges related to data collection and time constraints in the evaluation
process, the result–reference method has been used for some parameters (fisheries, pollu-
tion purification, habitat, recreation, scientific research, and education) in this study. This
method considers the similarity between the evaluated object and the reference object. The
higher the similarity, the better the result. However, according to Lautenbach et al. [51],
errors in the valuation of ecosystems can arise due to their diversity and spatial hetero-
geneity. For instance, the coastal area of Guangxi has a significant number of aquaculture
ponds, making it challenging to assess the value of mangroves in terms of their contribution
to fisheries in the corresponding area. Despite the inclusion of fishery as an indicator of
mangrove ecosystem service value, the direct impact of mangroves on aquaculture cannot
be fully measured [52]. Research has shown that the presence of mangroves in coastal areas
may increase the survival rate of coastal shrimp farming by 15–35% compared to areas
without mangroves [53]. Thus, the calculated results in this regard are most likely lower
than the actual value.
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The relationship between the size of mangroves and their value per unit area is
complex. On the one hand, increasing the area of mangroves may lead to reduced marginal
returns, while, on the other hand, most ecosystem services require a threshold area for good
functioning, implying that value increases with size [13]. These factors must be considered
in more detailed research in the future. Furthermore, there is a general trend that larger
mangrove patches can provide a greater ecosystem service supply compared to smaller
fragmented patches. Future research using appropriate methods and parameters will be
necessary in order to further assess the practical value of mangrove ecosystems.

4.3. Threatened Situations

The protection, management, and restoration of wetlands have become important
global issues to be addressed. The issues surrounding wetlands’ protection, management,
and restoration are still evident [54]. These include disease and insect pest risks from
single-community structures, as well as biological hazards such as barnacles. Additionally,
invasive alien species like non-native plants can pose threats to wetlands. Furthermore,
human factors such as coastal development, excessive pollution, overuse, and seawall
construction also contribute to the challenges currently facing wetlands.

Over the time scale of this study, the impact of human socioeconomic activities on the
land use types and landscape structures of mangrove wetland ecosystems in Guangxi was
evident. In China, during the early 1990s, the ecological and economic values of mangrove
ecosystems began to gain widespread recognition and public acknowledgement. As a
result, a series of relevant laws and regulations were formulated during this period to
protect mangrove resources. In 1982, the “Marine Environmental Protection Law of the
People’s Republic of China” was adopted [55], which clearly stated that “destroying coastal
protection forests, mangroves, and coral reefs is prohibited”. Since 2002, the State Forestry
Administration has launched a series of mangrove protection and restoration projects. Most
recently, in 2020, the Chinese government launched the “Special Action Plan for Red Forest
Protection and Restoration (2020–2025)”.

The protective measures have played a positive role in the conservation of mangroves
in China, and according to Jia et al. [30], the area of mangroves in China has increased from
22,674.22 ha in 2016 to 23,420.34 ha in 2020. With the findings of this study, we have reason
to believe that the ESV of mangroves in China is continuously rising. However, on a global
scale, the situation is still not optimistic. According to the Global Mangrove Watch, the area
of global mangroves decreased from 802,419 ha in 2016 to 775,337 ha in 2020. This once
again reminds us of the need to strengthen the protection of mangroves globally to ensure
the sustainable growth of the area and the effective protection of the ecosystem.

5. Conclusions

During the period from 2016 to 2020, the mangrove area in Guangxi increased from
6245.15 ha to 6750.01 ha, with a net increase of 504.81 ha, which was mainly concentrated
in Lianzhou Bay, Tieshan Harbour, and Dandou Bay. This study aims to explore the spatial
distribution and structural changes in mangroves in Guangxi from the perspectives of man-
grove abundance, mangrove coastline, ideally distributed mangroves, and other related
factors. The results indicate that the average area of mangroves, ideally distributed man-
groves, mangrove coastline, and mangrove abundance in Guangxi all increased, suggesting
that the mangrove ecosystem in Guangxi is developing well and undergoing a process of
recovery. Moreover, the fragmentation degree of the mangrove ecosystem has reduced.

In this study, the ESV of Guangxi mangrove forests were evaluated for the period
from 2016 to 2020. The total ESV of mangroves increased from USD 363.78 million to USD
390.74 million. The fishery value, soil conservation value, wave-absorbing revetment, and
pollution purification occupy the largest proportion; in addition to the increase in the area
of mangrove forests, people’s awareness of its ecological value is also an important reason
for these changes and trends. The proposed approach and present results of this study
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could contribute significantly to a better understanding of the relationship between the
spatial pattern and distribution of mangroves in Guangxi and their ecological value.
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Abstract: Sea–land segmentation (SLS) is a crucial step in coastline extraction. In CNN-based ap-
proaches for coastline feature extraction, downsampling is commonly used to reduce computational
demands. However, this method may unintentionally discard small-scale features, hindering the
capture of essential global contextual information and clear edge information necessary for SLS.
To solve this problem, we propose a novel U-Net structure called Deformable Attention Edge Net-
work (DAENet), which integrates edge enhancement algorithms and a deformable self-attention
mechanism. First of all, we designed a multi-scale transformation (MST) to enhance edge feature
extraction and model convergence through multi-scale transformation and edge detection, enabling
the network to capture spatial–spectral changes more effectively. This is crucial because the de-
formability of the Deformable Attention Transformer (DAT) modules increases training costs for
model convergence. Moreover, we introduced DAT, which leverages its powerful global modeling
capabilities and deformability to enhance the model’s recognition of irregular coastlines. Finally,
we integrated the Local Adaptive Multi-Head Attention-based Edge Detection (LAMBA) module
to enhance the spatial differentiation of edge features. We designed each module to address the
complexity of SLS. Experiments on benchmark datasets demonstrate the superiority of the proposed
DAENet over state-of-the-art methods. Additionally, we conducted ablation experiments to evaluate
the effectiveness of each module.

Keywords: coastline; deep learning; adaptive edge detection; global modeling; deformable features

1. Introduction

The coastline holds significant importance in topographic maps and maritime charts
and has been officially recognized as one of the 27 terrestrial features by the International
Geographic Data Committee [1–3]. Since the 20th century, economic hubs in coastal nations
globally have progressively migrated toward coastal regions [4,5]. The natural attributes of
coastlines have rapidly diminished due to the proliferation of coastal development projects,
substantial population growth, rapid economic expansion, and escalating geographical
significance. The original productive capacities and ecological functions of coastlines have
undergone substantial changes [6,7], leading to severe challenges for the natural ecological
environment in coastal areas [8,9]. Coastal regions have become some of the areas with the
most frequent and intense human activities [10–12]. In light of this, the objective analysis of
the temporal and spatial evolution characteristics of coastlines, as well as the quantitative
assessment of their impacts and dynamic responses to human interventions, has emerged
as a core concern in the academic community.

Coastal-related information is crucial across multiple applications, including coastal
management [13], ship detection [14], and water resource management [15,16]. With the
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introduction of satellites equipped with visible light and infrared sensors [17], remote sens-
ing imagery has become a viable alternative for coastline extraction, replacing laborious
techniques such as photogrammetry and GPS field surveys [1,18,19]. Nevertheless, the
extraction process faces obstacles primarily due to challenges in effective SLS. These chal-
lenges encompass irregular band intensity, complex land textures, and a restricted contrast
between sea and land [20]. From an image classification perspective, these methods mainly
rely on object-oriented and pixel-oriented classification [21]. Pixel-based segmentation
methods [3,22–24] exacerbate these issues by dealing with mixed pixels, leading to noisy
classification results and undermining the accuracy of coastline extraction. Moreover, the
complexity of rules within the object-oriented methodology poses additional challenges.
Currently, developing models tailored explicitly for intricate coastal structures remains a
significant challenge [25–27]. Consequently, there is an urgent need to explore innovative
approaches for intelligent analysis and extraction of coastlines in complex environments.

Given that deep learning aims to assign each pixel in the input image to fixed cate-
gories in semantic segmentation tasks, its objectives align closely with those of sea–land
segmentation. In recent years, researchers have endeavored to integrate deep learning
techniques into coastline extraction. Liu et al. [28] utilized convolutional neural networks
(CNNs) for SLS, leading to enhanced image segmentation accuracy. Following this ad-
vancement, several effective SLS networks based on CNNs have emerged. These include a
deep convolutional neural network (DeepUNet) [29], squeeze and excitation rank faster
R-CNN [30], fully convolutional DenseNet (FC-DenseNet) [31], a multi-scale sea–land
segmentation network (MSRNet) [32], a more comprehensive range of batch sizes network
(WRBSNet) [33], and a deep learning model based on the U2-Net deep learning model [34].
For example, WRBSNet [33] integrates a broader range of batch sizes to enhance perfor-
mance. MSRNet [32] integrates squeeze and attention modules to bolster features across
different scales, thereby reinforcing weak sea–land boundary information. Furthermore,
many researchers also take into account the semantic and edge characteristics of sea–land
segmentation and have devised networks for coastline extraction, such as dual-branch
structures [35], multi-scale transformation [36], and edge-semantic fusion [37]. Recent
studies primarily focus on optimizing and innovating based on CNNs. During the feature
extraction process, CNN-based models frequently down-sample features to reduce compu-
tational requirements, potentially resulting in the loss of small-scale features [38–40]. Land
objects from various semantic categories may share similar sizes, materials, and spectral
characteristics, thereby posing challenges in their differentiation. Furthermore, occlusions
within the network model frequently result in semantic ambiguities. Consequently, there is
an urgent requirement for more comprehensive global contextual information and refined
spatial features to serve as cues for semantic reasoning [41].

Recently, transformers have demonstrated significant benefits in natural language
processing and computer vision, exhibiting outstanding performance across numerous
tasks. The first introduction of transformers in this domain was by Yang et al. [42]. They
first introduced transformers into this domain by experimenting with the pure Transformer
architecture SETR [43], achieving performance comparable to existing CNN methods in
land-sea segmentation. Another hybrid approach, SegFormer [44], which combines CNNs
and transformers, surpassed state-of-the-art CNN methods and exhibited strong robustness.
This illustrates the capability of Transformer architectures in the field of SLS. Subsequently,
Yang et al. [45] employed a Transformer model to forecast alterations in the coastline of
Weitou Bay, China. Zhu et al. [46] perform parallel feature extraction using both the Swin
Transformer and ResNet branches concurrently. However, research in the field of SLS has
been relatively limited. With the continuous evolution of Transformer structures, numerous
attention-based variant structures [47–54] have emerged. Among these approaches, Swin
Transformer [50] utilizes window-based local attention to confine attention within local
windows, whereas Pyra-mid Vision Transformer (PVT) [51] decreases the resolution of
key and value feature maps to reduce computation. Although effective, hand-crafted
attention patterns are agnostic to data and may not be optimal. Relevant keys/values may
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be dropped, while less important ones are retained. Ideally, the candidate key/value set for
a given query should be flexible and capable of adapting to each individual input, thereby
alleviating issues with hand-crafted sparse attention patterns. In fact, in CNN literature,
learning a deformable receptive field for convolution filters has been demonstrated to
effectively focus on more informative regions based on data [52]. The coastline frequently
displays irregular shapes. Additionally, due to the typically indistinct boundary between
the ocean and land, its demarcations often appear blurred in remote sensing images. Con-
sequently, coastline extraction requires both more global contextual information and clear
edge information. Currently, there is a scarcity of results from such studies. To address
this issue, our research investigates integrating a self-attention mechanism into sea–land
segmentation to emphasize more global contextual information. Meanwhile, considering
the linear characteristics of coastlines, our study aims to utilize edge enhancement algo-
rithms and integrate the Deformable Attention Transformer mechanism [55], leading to the
development of a Deformable Attention Edge Network (DAENet). The core structure of
this network comprises an encoder, decoder, bottleneck region, and skip connections. Ex-
perimental results demonstrate that our network structure can accurately extract coastline
features, closely matching the actual coastline. The main contributions of this study can be
summarized as follows:

(1) Introduction of the multi-scale edge detection module: Upon image input, we intro-
duced the multi-scale transformation (MST) module, applying canny edge detection
across multiple spatial scales and stacking them as input channels. This not only
enhances the model’s robustness but also facilitates faster convergence.

(2) Construction of an adaptive edge detection module: During training, we developed
a Local Adaptive Multi-Head Attention-based Edge Detection (LAMBA) module to
enhance the disparities in edge features in the spatial dimension, thus reducing se-
mantic ambiguities that may arise from similar features among objects across different
semantic categories.

(3) Exploration of the Deformable Attention (DAT) Application: In order to enhance
DAENet’s receptive field, we incorporated deformability into the U-shaped structure.
This integration serves to alleviate constraints imposed by the fixed convolutional
kernel in CNNs and the conventional patch generation in Transformers. Additionally,
edge maps are utilized to compute an edge-aware loss, optimizing a novel edge loss
function and accelerating model convergence.

2. Methods

2.1. Overall Framework

To tackle the complexities of SLS environments, our proposed DAENet incorporates a
series of specialized modules, each designed to address specific features of SLS. The MST
in DAENet is strategically designed for use in SLS. MST enhances edge feature extraction
and model convergence through multi-scale transformation and edge detection, enabling
the network to more effectively capture spatial–spectral changes and ensuring accurate
depiction of SLS with varying spatial–spectral characteristics. Specifically, the core principle
of multi-scale edge detection involves step-by-step downsampling of a two-dimensional
image and applying edge detection to capture edge information at various scales. This is
crucial because the deformability of DAT modules leads to significant training costs for
model convergence. Our MST module filters the information for validity before it enters
the DAT module. After the filtered information enters DAT, the relationships between tags
are modeled, sampled, and projected, guided by important regions in feature mapping,
obtaining the keys and values after deformation. The exchange of information between
edge details at different scales, captured by MST, and the global context, captured by the
converter, is enhanced using standard multi-head attention that focuses on sampling keys
and aggregating features. This is achieved by calculating attention weights that reflect the
importance of each feature in the context of the entire image, enabling the model to make
informed predictions based on both local and global features.
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Finally, in the output generation phase, we integrated the LAMBA module to improve
the spatial differentiation of edge features, consequently decreasing semantic ambiguities
resulting from similarities among features from disparate semantic categories. Specifically,
we use gradient information and a multi-head self-attention mechanism to generate a pro-
jection function. This function calculates the relationship between the current pixel and its
surrounding pixels. Weight parameters are introduced to compute comprehensive features,
ensuring consideration of local characteristics and rotation invariance. Furthermore, our
study utilizes skip connections to combine multi-scale features from the encoder with
upsampled features, concatenating shallow and deep features to reduce spatial information
loss caused by downsampling. During network training, the edge-aware loss is calculated
using the binary Dice Loss function, thereby improving the model’s performance. These
design choices are based on our understanding of the spectral, spatial, and edge charac-
teristics of SLS. Together, they enable DAENet to excel in the challenging task of semantic
segmentation in SLS.

As shown in Figure 1, the proposed deep learning network model, D DAENet, a
hybrid of DAT and UNet, inherits the robust structure of UNet. DAENet employs skip
connections between encoders and decoders, forming an encoder–decoder structure with
MST, LAMBA, and DAT.

Figure 1. DAENet network structure.

2.2. Multi-Scale Transformation Module

To address the complexity and variability of SLS, capturing both edge and semantic
information is crucial for generating informative features. To achieve this goal, we de-
signed the multi-scale transformation (MST). The fundamental principle of multi-scale
edge detection involves analyzing the image at different scales to capture edge information
of various granularities. Specifically, this approach utilizes the concept of scale-space and
is implemented through a Gaussian pyramid. We use a linear Gaussian kernel to construct
the image scale to add another dimension to the 2D image without introducing noise. The
input image is convolved with a Gaussian filter with an increasing standard deviation.
After generating a series of smoothed images, edge detection is performed on each image
using the Canny algorithm to capture edge information at different scales. The detailed
structure of this module is illustrated in Figure 2.

Figure 2. Multi-scale transformation module.
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In the first instance, with regard to a specific image I(x, y), its spatial representation
within the Gaussian scale-space is:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (1)

Here, L denotes the scale-space representation, G is the Gaussian function with a
variance of σ2, and ∗ signifies the convolution operation.

When transitioning across scales, the Difference of Gaussians (DoG) can be
expressed as:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2)

In this equation, k is a constant multiplier, typically greater than 1.
This module builds upon the principles of differential Gaussians, which encompass a

range of scales. It utilizes the summation of cross-scale disparities to integrate information
across these scales. The governing expression is elaborated as follows:

A(x, y) = ∑σ
D(x, y, σ) (3)

In this equation, A(x, y) denotes the cumulative response.

2.3. Deformable Attention Transformer

Xia et al. [55] used the Vision Transformer with a Deformable Attention module to
create a robust pyramid skeleton network called DAT, suitable for image classification and
various dense prediction tasks. Unlike Deformable Convolutional Networks (DCN), which
learn different offsets for different pixels across the entire feature map, this module learns a
set of offsets independent of the query. These offsets direct the keys and values towards
significant areas, as shown in Figure 3a. This design retains linear spatial complexity and
introduces a Deformable Attention pattern to the Transformer backbone. Each attention
module initially generates reference points as a uniform grid, which remains consistent
across the input data. Subsequently, an offset network uses the query features as input to
generate corresponding offsets for all the reference points. As a result, the candidate keys
and values are shifted towards essential regions, enhancing the flexibility and efficiency
of the original self-attention module to capture richer information features. The detailed
structure of this module is described as follows:

Figure 3. An illustration of our Deformable Attention mechanism. (a) presents the information flow
of Deformable Attention. In the left part, a group of reference points is placed uniformly on the
feature map, whose offsets are learned from the queries by the offset network. Then, the deformed
keys and values are projected from the sampled features according to the deformed points, as shown
in the right part. Relative position bias is also computed by the deformed points, enhancing the
multi-head attention, which outputs the transformed features. We show only four reference points
for a clear presentation; there are many more points in real implementation de facto. (b) Reveals the
detailed structure of the offset generation network, marked with sizes of feature maps.
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Firstly, as illustrated in Figure 3a, given an input feature map x ∈ R
H×W×C, a uniform

grid composed of points p ∈ R
HG×WG×2 is generated as a reference. Specifically, the grid size

is downsampled by a factor of r from the input feature map, so that the grid dimensions are r,
HG = H/r, WG = W/r. The reference points are linearly spaced two-dimensional coordinates
ranging from { (0, 0), . . . , (HG − 1, WG − 1)}. These coordinates are then normalized to lie
within the range [−1,+1], based on the grid shape HG ×WG, where (−1,−1) represents the
top–left corner and (+1,+1) signifies the bottom–right corner.

Subsequently, to obtain the offset for each reference point, the feature map is linearly
projected to the query tokens as q = xWq. Then, the feature map is fed into a lightweight
sub-network θo f f set(·) generate the offsets 	p = θo f f set(q). To stabilize the training process,
we scale the amplitude of 	p by some predefined factor s to prevent the offset from
becoming too large, i.e., 	p ← stanh(	p) . Next, the features are sampled at the positions
corresponding to the deformed points, serving as both keys and values, and subsequently
processed using projection matrices:

q = xwq, k̃ = x̃Wk, ṽ = x̃Wv (4)

with 	 p = θoffset(q), x̃ = ϕ(x; p +	p) (5)

The symbols k̃ and ṽ represent the deformed keys and values embeddings, respec-
tively. Specifically, the sampling function φ(·; ·) made differentiable by translating it into a
bilinear interpolation.

φ
(

z;
(

px, py

))
= ∑

(rx,ry)

g(px, rx)g
(

py, ry

)
z
[
ry, rx, :

]
(6)

The function g(a, b) = max(0, 1 − |a − b|), and
(
rx, ry) index all the positions on

z ∈ RHG×WG×2. Given that g is non-zero only at the four integral points closest to
(

px, py) ,
it simplifies Equation (5) to the weighted average of these four positions. In line with
established methodologies, multi-head attention is employed, along with the adoption of
relative position offsets. The resulting attention-head output can be formulated as follows:

z(m) = σ(
q(m) k̃(m)T

√
d

+ ϕ
(

B̂; R
)
v̂(m) (7)

Here ϕ
(
B̂; R

)
εRHW×HGWG .

In conclusion, the Deformable Multi-Head Attention (DMHA) has a computational
cost that is analogous to that of the Pyramid Vision Transformer (PVT) or the Swin Trans-
former. The sole additional overhead is attributed to the subnetwork designated for offset
generation. The computational complexity of the entire module can be encapsulated by the
following equation:

Ω(DMHA) = 2HWNSC + 2HWC2 + 2NSC2 +
(

k2 + 2
)

NSC (8)

Here, NS = HGWG = HW
r2 denotes the number of sampling points.

2.4. Local Adaptive Multi-Head Attention-Based Edge Detection Module

The fundamental principle of LAMBA is to adapt to different image features by
comprehensively considering gradients, textures, and intensity. Unlike most self-attention
mechanisms, in the initial stages of the task, we employ local binary pattern (LBP) features
and adaptive edge detection to capture local texture and edge information, guiding the
multi-head self-attention mechanism to focus on various directional information, thereby
enhancing the model’s ability to extract coastlines. In LAMBA, the spatial information of
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pixels is leveraged to integrate multi-directional feature modules. The following section
outlines the detailed steps Figure 4:

Figure 4. Local Adaptive Multi-Head Attention-based Edge Detection Module.

Initially, the input image undergoes prediction to generate the model’s output image.
Let the prediction result be denoted as P (x, y), where (x, y) represents pixel coordinates.
The Sobel convolution kernel is utilized to compute horizontal and vertical gradients, and
the gradient information, along with the multi-head self-attention mechanism, is employed
to adjust the projection direction.

∇xI(x, y) = Sobelx ∗ P(x, y)
∇yI(x, y) = Sobely ∗ P(x, y)

(9)

Aij = Concat(Attention1(∇I), Attention2(∇I), . . . , AttentionK(∇I)) (10)

where Sobelx and Sobely represent the Sobel convolution kernels, and Aij denotes the
projection adjustment function.

Next, for each pixel, compute its local binary pattern (LBP):

LBP(x, y) =
P−1

∑
p=0

s
(
Ip − I(x, y)

) · 2p (11)

where Ip represents the grayscale value of the neighborhood points with the current pixel
as the center, P is the number of neighborhood points, and s(x) is the step function.

Consider dynamically adjusting high and low thresholds based on local image proper-
ties and calculating the average intensity value within the local window.

W(x, y) =
1
N

x+Wx

∑
i=x−Wx

y+Wy

∑
j=y−Wy

P(i, j) (12)

Thigh(x, y) = khigh · avg(W(x, y)) (13)

Tlow(x, y) = klow · avg(W(x, y)) (14)

Finally, we introduce weight parameters and combine LBP, adaptive edge detection,
and self-attention mechanisms to compute comprehensive features.

F(x, y) = δ · LBP(x, y) + γ · avg(W(x, y)) + (1 − γ − δ) · DA (15)
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DA
(∇I, Aij

)
= α · ∇xI + (1 − α) · Aij, β ×∇yI + (1 − β)× Aij (16)

where LBP(x, y) represents the LBP feature for each pixel, avg(W(x, y)) is the average
intensity value within the local window, DA

(∇I, Aij
)

is the function obtained after adjust-
ing the projection direction using gradient information and the multi-head self-attention
mechanism, where α, δ, γ and β are weight parameters.

Perform pixel labeling based on the threshold values.⎧⎪⎨⎪⎩
StrongEdge F(x, y) ≥ Thigh(x, y)
PotentialEdge Tlow(x, y) ≤ F(x, y) < Thigh(x, y)
NonEdge F(x, y) < Tlow(x, y)

(17)

2.5. Auxiliary Loss Function

For adaptive thresholds, the threshold is not static but is determined based on the
local attributes of the image. Consequently, we have redesigned the auxiliary function.
This involves the incorporation of edge information to further modify the Dice Loss.
The underlying principle is that the edges or boundaries of objects within an image are
particularly crucial in many segmentation tasks. By incorporating these boundaries into
the loss function, the network can be directed toward generating enhanced segmentations,
particularly along the edges of objects. The formulation is as follows:

L = LD + k × lE (18)

LD is computed between the prediction and the ground truth.
lE represents the Dice Loss calculated between the predicted edge map (obtained

through canny edge detection) and the ground truth.
k is a hyperparameter employed to determine the degree of emphasis on the edge

Dice Loss within the final loss value.
In this paper, numerical stability is maintained by introducing the ‘smooth’ parameter.

In instances where both the prediction and the ground truth lack discernible features, the
Dice Loss may assume an indeterminate form of 0/0. By adding a small “smooth” value to
both the numerator and the denominator, such scenarios are circumvented, ensuring the
stability of the loss value.

In summary, this enhanced Dice Loss leverages both global segmentation information
and local edge details to yield superior segmentation outcomes, especially around object
boundaries. Incorporating an edge-weighted term in the loss function is anticipated to
guide the model to better handle boundaries and provide more accurate segmentation.

3. Experiment

3.1. Study Area

China, located in the southeastern part of the Asian continent, borders the North-
west Pacific Ocean. With nearly 3 million square kilometers of maritime territory and
a coastline stretching over 32,000 km, China ranks sixth in the world. This coastline is
bifurcated into mainland coastlines and island coastlines, with the former accounting for
18,000 km [56–58]. From 1980 to 2015, China’s coastline expanded by 3000 km. However, its
natural coastline decreased by approximately 50% during the same period [57,59,60]. This
transformation can be attributed to various factors, including monsoonal waves, tectonic
uplift and subsidence, and human activities. Notably, the coastal regions, known for their
rich resources and transportation convenience, accommodate only 40% of the country’s
population but contribute 70% to China’s GDP, showcasing one of the most robust economic
activities globally.

This study primarily examines the mainland coastline of China, as illustrated in
Figure 5. The study area extends from the Yalu River Estuary in the north, situated
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on the China–North Korea border, to the Beilun Estuary in the south, which marks the
China–Vietnam border. It encompasses four seas: the Bohai, Yellow, East, and South China
Seas. It spans across 14 primary provinces, municipalities, and autonomous regions, cutting
through three climatic zones: temperate, subtropical, and tropical. Based on geological and
geomorphic features, coastlines can primarily be categorized into four types: sandy coasts,
bedrock coasts, muddy coasts, and artificial coasts. From this, it is evident that China’s
coastline is elongated and intricate, making extraction quite challenging.

Figure 5. Study area of China and its adjacent maritime regions.

Due to substantial topographical differences between northern and southern China,
we chose datasets from Fujian Province, Guangxi Province, and Shandong Province to be
the test set for evaluating our model’s generalizability comprehensively. The datasets from
the other provinces were randomly divided into training and validation sets at a 4:1 ratio.
The validation set adjusts model hyperparameters and monitors model performance during
training. After each training epoch, the model is evaluated on the validation set to assess its
ability to generalize to unseen data. The test set, consisting of data not encountered during
training and validation, is used for the model’s final performance evaluation. It assesses
the model’s ability to generalize to real-world data and evaluates the overall performance
of the model. The experimental data in this study come from 103 multispectral images of
the mainland China coastal zone captured by the “Landsat 8” satellite in 2020 [61,62].

After acquiring the images, various preprocessing steps were undertaken. These
steps encompass orthorectification, image fusion, mosaicking, and cropping. A standard
false-color composite image composed of Band 5, Band 4, and Band 3 was chosen for
a more precise capture of coastline features. It was ensured that each selected image
exhibited diverse coastline characteristics. Ground truth maps for land–sea segmentation
of these images were created through expert visual interpretation. Following cropping
of the preprocessed remote sensing images to create samples measuring 256 × 256 pixels,
a total of 65,389 sample images were obtained. However, given the extensive scale of
the data and the high costs associated with training, this study additionally employed
a threshold method and expert visual recognition to filter out images containing solely
a single landform feature. Within each remote sensing image, pixel values in the binary
label map are set to 0 and 255. The threshold segmentation algorithm removes label maps
with uniform gray values of 0 or 255, along with their original remote sensing images.
Moreover, black borders in downloaded remote sensing images may misinterpret label
images containing 0 and 255 gray values during screening, requiring manual scrutiny of
the original image. Only images that concurrently showcased both land and sea features
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were retained. After this selection process, the final training set consisted of 4637 samples,
the validation set contained 989 samples, and the test set had 1922 samples.

3.2. Coastline Dataset

Extracting coastlines through deep learning necessitates the creation of precise remote-
sensing image labels, constituting a pivotal step in the process. Ensuring accuracy in label
creation is imperative for effectively enabling deep networks to discern terrain features
during the training phase. In the past, when extracting coastlines from satellite remote
sensing images, the instantaneous water boundary observed during satellite passes has
frequently been regarded as the accurate coastline [63,64]. This differs significantly from
the definition of the actual coastline as the sea–land boundary at the moment of the average
high tide over several years. In order to objectively and accurately extract coastlines that
closely resemble the actual coastline, this study utilizes the five coastal-type (Table 1)
remote sensing interpretation markers proposed by Sun Weifu to construct a deep learning
dataset [65].

Table 1. Five types of coastline.

Coastline Sample Interpretation Signs Location

Bedrock Coastline
Distinct concave-convex

and mountainous
texture features

The evident
land–water boundary

Silty Coastline Appears grey or white with
a smooth texture

A boundary that is
located in an estuary,

delta, or low-lying area
and has a marked

contrast in
vegetation density

Sandy Coastline Clear dividing line between
white and other colors

Beach ridges and lack of
beach ridges, the beach is

directly adjacent to the
cliffs of the

bedrock shoreline

Biogenic Coastline Red tones, darker textures,
and irregular shapes

It is mainly distributed in
Guangdong, Guangxi,

Fujian, Taiwan, and parts
of Hainan Island

Artificial Coastline

Bright and white structures,
smooth textures and

narrow stretches, regular
layouts, and colors ranging

from light beige to tan or
even white

A man-made coastline
exhibits a multitude of

features, which are often
intricate and require

thorough analysis
and consideration

3.3. Implementation Details

The experiments were conducted on a computer equipped with an NVIDIA RTX 3060
GPU with 12 GB of VRAM and running the Ubuntu 18 operating system. All models were
trained and tested using the PyTorch framework. During the training process, the Adam
optimizer was employed to minimize the loss. The initial learning rate was set to 1 × 10−3,
with the number of iterations set at 100 epochs and a batch size of 8.
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3.4. Evaluation Metrics

In this study, we utilize Intersection over Union (IoU), mean Intersection over Union
(MioU), Frequency Weighted Intersection-over-Union (FWIoU), and Overall Accuracy
(OA) to evaluate the performance of the model. These five evaluation metrics are de-
rived from the confusion matrix, which comprises true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). Below are the computational formulas for
each metric.

For each class, IoU is defined as the ratio of the intersection to the union of the
predicted and true values. The formula is as follows:

IoU =
TP

TP + FP + FN
(19)

The MIoU represents the average result of the IoU for each class. Its calculation is
given by:

MIoU =
∑n

i IoU
n

(20)

FWIoU assigns weights based on the frequency of occurrences for each class. The
weight is multiplied by the IoU for each class and then summed up. The formula for this is
as follows:

FWIoU =
TP + FN

TP + FP + TN + FN
× TP

TP + FP + FN
(21)

The F1-Score (F1) takes into account both precision and recall, aiming for a balance
that maximizes both. The formula for the F1 or each class is as follows:

F1 = 2 × precision × recall
precision + recall

(22)

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

Accuracy (ACC) indicates the proportion of correctly predicted samples among all
samples. This includes both true positive and true negative predictions. The calculation for
accuracy is as follows:

Accuracy =
TP + FN

TP + FP + TN + FN
(25)

4. Results

4.1. Performance of Daenet

This paper contrasts the performance of DAENet with several existing methods,
including Segmenter [66], Mask2Former [67], and Swin-UNet. All three methods are built
upon the Transformer architecture. Specifically, Mask2Former is a hybrid structure based
on Mask R-CNN and Transformer, while Swin-UNet constitutes a UNet structure formed
purely from Swin Transformer modules. The three methods, PIDNet [68], DDRNet [69],
and SegNeXt [70], are state-of-the-art models established based on CNN. This study will
analyze the accuracy and adaptability of the DAENet model from two perspectives:

(1) Conducting an analysis using evaluation metrics and results to ascertain and
validate its accuracy.

The results for the Shandong Province dataset are presented in Table 2, which show-
cases the numerical outcomes for each semantic segmentation method. The findings
indicate that DAENet outperforms other techniques in metrics such as IoU, MIoU, FWIoU,
and overall OA.
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Table 2. Comparison of segmentation accuracy on the Shandong Province dataset.

Method
IoU(%) F1 (%) Evaluation Index

Ocean Land Ocean Land MioU (%) OA (%) FWIoU (%)

Segmenter 90.49 94.09 92.28 92.21 85.61 92.25 85.61
SegNeXt 95.67 93.84 94.71 94.77 90.01 94.74 90.01
PIDNet 91.74 92.06 95.69 95.86 91.90 95.78 91.90

DDRNet 92.18 92.48 95.93 96.09 92.33 96.66 92.33
Swin-UNet 88.59 88.33 93.95 93.80 88.46 93.88 88.46

Mask2Former 88.53 88.44 93.91 93.86 88.48 93.89 88.48

DAENet 93.85 94.04 96.82 96.93 93.94 96.88 93.94

For the Mask2Former model, which has achieved SOTA results in semantic, instance,
and panoptic segmentation as a unified segmentation structure, Tables 2–4 reveal its perfor-
mance on coastline data extraction is not especially commendable. As a comprehensive,
large-scale model designed to incorporate a wide array of features, it unavoidably sacrifices
precision when isolating specific ones. Consequently, it loses its SOTA edge when extracting
the requisite edge information for coastline detection.

Table 3. Comparison of segmentation accuracy on the Fujian Province dataset.

Method
IoU (%) F1 (%) Evaluation Index

Ocean Land Ocean Land MioU (%) OA (%) FWIoU (%)

Segmenter 82.03 84.20 89.90 91.16 83.12 90.82 83.16
SegNeXt 83.71 85.64 91.13 92.26 84.68 91.13 84.72
PIDNet 84.99 86.89 91.88 92.98 85.94 92.47 85.97

DDRNet 85.43 87.30 92.14 93.22 86.37 93.53 86.40
Swin-UNet 83.22 85.29 90.84 92.06 84.25 91.49 83.30

Mask2Former 82.08 84.68 90.16 91.70 83.38 91.00 83.44

DAENet 87.28 88.84 93.20 94.09 88.06 93.68 88.09

Table 4. Comparison of segmentation accuracy on the Guangxi Province dataset.

Method
IoU (%) F1 (%) Evaluation Index

Ocean Land Ocean Land MioU (%) OA (%) FWIoU (%)

Segmenter 69.28 77.90 81.85 87.58 73.59 85.25 74.28
SegNeXt 69.70 77.88 82.14 87.56 73.79 85.34 74.45
PIDNet 72.03 81.63 83.74 89.88 77.68 87.53 77.68

DDRNet 72.72 82.02 84.20 90.12 77.37 87.84 78.16
Swin-UNet 74.54 82.88 85.41 90.63 78.71 88.59 79.38

Mask2Former 71.20 81.21 83.18 89.63 76.21 87.17 77.01

DAENet 76.39 84.91 86.61 91.84 80.65 89.86 81.33

In reference to the Swin-UNet, predominantly employing the Swin Transformer mod-
ule for semantic segmentation, the model, despite its superior global modeling capability,
necessitates revision when configured according to the Swin-UNet design for remote
sensing imagery [58]. This deficiency becomes apparent in Figures 6–8, illustrating frag-
mented semantic segments in boundary extraction, a common issue stemming from am-
biguity in edge information. However, upon integrating the LAMBA and MST modules
into our DAENet, Figures 6–8 demonstrate more accurate edge extraction and the ab-
sence of fragmented semantic segments, thereby reinforcing the model’s robustness in
edge detection.
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Figure 6. Examples of semantic segmentation results on the Shandong Province dataset.
(a–d,f–h) artificial coastline; (e) sandy coastline.

With regard to the straightforward, efficient, and durable semantic segmentation
model, Segmenter, our assessments have indicated that its functionality is marginally
inadequate. As depicted in Figure 6 (Segmenter. e), although it capably handles simple
linear coastlines with minimal discrepancies, its proficiency significantly decreases when
confronting complex feature patterns, as exemplified in sections a, f, and g of the same
Figures 6–8. In comparison, DAENet’s performance remains superior for dense and
intricate terrestrial entities, as evident in Figures 6–8.

(2) Conducting analysis across diverse regions to assess the adaptability of the model:
First, China’s coastlines can be primarily classified into three types based on geological

and geomorphic characteristics: sandy coasts, bedrock coasts, and artificial coasts. As
depicted in Figure 6b,c for artificial coasts and Figure 7 for sandy and bedrock coasts,
the coastline morphologies extracted by our DAEnet demonstrate superior performance
compared to other methods.

Secondly, we also analyzed results from other types of coastlines. During the gener-
ation of estuary labels, especially in manual labeling processes, if narrow rivers extend
over a considerable distance, our usual approach involves capturing either a segment of
the estuary shoreline or rectifying the shoreline directly. Nevertheless, when confronted
with images containing incomplete labeling (see Figure 7h) or featuring coastlines marked
by aquaculture ponds (see Figure 6a,h), as well as other complex coastal types, we are
nonetheless able to accurately discern the correct shoreline.
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Figure 7. Examples of semantic segmentation results on the Fujian Province dataset. (a,g) artifi-
cial coastline & bedrock coastline; (b) bedrock coastline; (c) bedrock coastline & sandy coastline;
(e) artificial coastline & biogenic coastline; (d,f,h) artificial coastline.

Lastly, as illustrated in Figure 7, the coastline of Fujian Province is notably intricate,
winding its way in an exceptionally complex manner, making it the most complex coast-
line in mainland China. Despite this challenging topography, our DAENet consistently
performs at a high level, with all performance metrics exceeding 84%, establishing it as
a leading method in the industry. Additionally, we predicted the coastline of Guangxi
Province using the DAENet model, with extracted results demonstrating superior perfor-
mance compared to other models, confirming the reliability of DAENet. With sufficient
data, we will be fully equipped to extract coastlines from across the country and monitor
their dynamic changes.
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Figure 8. Examples of semantic segmentation results on the Guangxi Province dataset. (a,b) silty
coastline; (c,d) artificial coastline & silty coastline; (e–h) artificial coastline.

4.2. Ablation Study

To evaluate the performance of the proposed network architecture and its three crucial
modules, we utilized UNet as the foundational network for conducting an ablation study
on the dataset. Furthermore, we explored the impact of the loss function on the proposed
network. The subsequent comparison results indicate that the integration of the proposed
MST, LAMBA, and DAT modules yields significant performance enhancements in detection
(Figure 9).

(1) Impact of the Deformable Self-Attention Module: As presented in Table 5, introduc-
ing the Deformable Attention Transformer (DAT) effectively augments the segmentation
performance of the UNet structure. There is an improvement ranging from 5.69% to 6.45%
in the IoU accuracy metric relative to the original baseline model. The enhancement in
accuracy ranges from 9.42% to 10.28%, providing substantial evidence for the effectiveness
of integrating DAT. This enhancement is attributed to the feature maps first undergoing
processing via window-based local attention, facilitating local information aggregation.
Subsequently, the Deformable Attention block models the global relationships among the
locally enhanced tokens. This alternative attention block design, equipped with local and
global receptive fields, aids the model’s learning process.

(2) The incorporation of the multi-scale transformation module (MST) into the Swin-
UNet + LAMBA and Dat-UNet + LAMBA models yields significant results. As illustrated
in Table 5, the integration of the multi-scale deformable edge detection module significantly
enhances the segmentation performance of the UNet architecture. Relative to the original
model, there is an improvement of 1.28% to 1.93% in the IoU accuracy metric. For the
accuracy metric, the enhancement ranges from 1.01% to 1.72%. These outcomes under-
score that integrating the MST module facilitates the model by capturing a richer set of
feature information.

(3) Impact of the LAMBA Module: The LAMBA module was, respectively, integrated
into the Swin-UNet and Dat-UNet models. As depicted in Table 5, the adaptive edge detec-
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tion module’s introduction bolsters the segmentation performance of the UNet structure.
Compared to the original model, there is a boost of 1.03% to 2.67% in the IoU accuracy
metric. Regarding the accuracy metric, the uplift spans from 1.07% to 1.45%. These find-
ings highlight that introducing the LAMBA module amplifies the model’s proficiency in
edge delineation.

Figure 9. Examples of semantic segmentation results on the Ablation experiment: (a) Image,
(b) U-Net, (c) Swin-UNet, (d) Dat-UNet, (e) Dat-UNet + MST, and (f) Dat-UNet + MST + LAMBA.

Table 5. Comparison of ablation results.

Method
IoU (%) F1

Ocean Land Ocean Land

U-Net 83.21 83.87 90.84 91.23

Swin-UNet 88.59 88.33 93.95 93.80
Swin-UNet + LAMBA 88.93 88.65 94.14 93.98

Swin-UNet + MST 89.16 89.34 94.11 94.01
Swin-UNet + LAMBA + MST 90.21 90.14 94.85 94.81

Dat-UNet 89.66 89.76 94.55 94.60
Dat-UNet + LAMBA 92.33 92.41 96.01 96.06

Dat-UNet + MST 92.89 92.42 95.98 96.04
Dat-UNet + LAMBA + MST 93.85 94.04 96.82 96.93

5. Conclusions

In this study, we propose DAENet, a deep learning model that combines semantic seg-
mentation networks with edge detection to address inaccuracies in coastline extraction and
localization. To enhance the model’s feature representation, we introduce the multi-scale
transformation (MST) module, which incorporates canny edge detection across multiple
spatial scales as input channels. By integrating MST into the U-shaped network structure,
our model gains improved global modeling capability compared to traditional CNNs and
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patch-based Transformers. Additionally, our novel LAMBA module focuses on capturing
edge features in the spatial dimension to mitigate semantic ambiguity caused by unclear
object boundaries. We refine the binary Dice Loss function to expedite convergence and
compute an edge-perceptive loss utilizing Canny edge maps to augment performance on
edges further. Experimental results demonstrate that DAENet outperforms traditional mod-
els like Segmenter, SegNeX, PIDNet, DDRNet, Swin-UNet, and Mask2Former. Compared
to the traditional model, Swin-UNet, DAENet shows a 5% improvement in MIoU.

To our knowledge, the proposed DAENet model is the first to apply the DAT block
for remote sensing sea–land segmentation. It addresses the limitations of pure CNNs
and enhances segmentation accuracy. The proposed network model can be effectively
applied to precise positioning tasks for various complex coastal types in different regions,
demonstrating its potential for coastal dynamic management and planning. Furthermore,
the unique dataset created in this study allows the extracted results to approximate the
actual coastline closely.

However, our model has several limitations. (1) DAENet extensively uses the De-
formable Attention module, resulting in a larger parameter set and slightly longer training
durations than other methods. This may limit DAENet’s use in compact mobile devices,
but it still offers valuable insights into the roles of Deformable Attention in remote sensing
semantic segmentation. In future research, we will design more accurate geometric prior
models and loss functions for SLS segmentation features or generate multi-scale features
through style transfer to accelerate model convergence. (2) DAENet still requires improve-
ments in object boundary extraction. The deficiencies mainly appear in the segmentation
results, where we aim to explore advanced encoding techniques for boundary features
to overcome this limitation. Augmented outcomes deviate from the actual shape of the
objects and show slight noise. Additionally, we will prioritize implementing model com-
pression methods to enhance inference efficiency. Overall, the goal is to accelerate model
convergence while retaining its deformable characteristics.
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Abstract: In this study, we investigate the feasibility of using historical remote sensing data to predict
the future three-dimensional subsurface ocean temperature structure. We also compare the perfor-
mance differences between predictive models and real-time reconstruction models. Specifically, we
propose a multi-scale residual spatiotemporal window ocean (MSWO) model based on a spatiotem-
poral attention mechanism, to predict changes in the subsurface ocean temperature structure over the
next six months using satellite remote sensing data from the past 24 months. Our results indicate
that predictions made using historical remote sensing data closely approximate those made using
historical in situ data. This finding suggests that satellite remote sensing data can be used to predict
future ocean structures without relying on valuable in situ measurements. Compared to future pre-
dictive models, real-time three-dimensional structure reconstruction models can learn more accurate
inversion features from real-time satellite remote sensing data. This work provides a new perspective
for the application of artificial intelligence in oceanography for ocean structure reconstruction.

Keywords: temperature structure prediction; temperature structure reconstruction; spatiotemporal
window ocean; satellite observations; spatiotemporal attention mechanism

1. Introduction

The ocean plays a critical role in regulating the stability of the Earth’s system by
absorbing a significant portion of global heat. Temperature, as one of the most fundamental
marine physical quantities, is intricately linked to the density structure of the ocean [1,2].
This relationship influences not only the flow field but also biological activities and chemical
reactions within the marine environment [3]. Recent studies have demonstrated a notable
upward trend in the heat content of the upper ocean over the past few decades [4]; such
increases in ocean temperature are associated with the potential for meteorological disasters,
including typhoons and storm surges [5]. Consequently, investigating and understanding
changes in ocean temperature structure are essential for promoting marine environmental
awareness, ecological protection, and disaster prevention.

Numerical simulation is a traditional method employed to obtain the three-dimensional
structure of the ocean and predict its dynamic processes. Various models exhibit distinct
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advantages, for instance, the Hybrid Coordinate Ocean Model (HYCOM) [6] features a
significant vertical hierarchical structure, establishing a practical hybrid vertical coordi-
nate system. The Finite-Volume Coastal Model (FVCOM) [7] accurately fits the coastline
boundary and seabed topography using specific conservation equations. Despite their
utility, these models rely on dynamic simplification processes and settings of various model
parameters, such as bottom friction coefficient and eddy viscosity coefficients. They thus
may not capture the full complexity and variability of the real ocean. As a result, the
accuracy of numerical simulation data can be limited [8]. Additionally, the high com-
putational overhead associated with these simulations poses a significant challenge. To
address these limitations, numerous research institutions employ various instruments such
as subsurface mooring, large buoys, drifting buoys, and gliders for real-time observation of
the three-dimensional ocean structure [9–11]. However, field measurement methods face
inherent challenges, including high sampling costs, difficulty in data acquisition, and low
spatiotemporal resolution [12,13]. Satellite remote sensing offers high resolution, large-scale
coverage, and long-term continuity but is restricted to detecting surface information due to
transmission media limitations [14,15]. To overcome this, researchers have proposed data-
driven deep learning strategies to reconstruct subsurface ocean structures from satellite
data, a process termed deep ocean remote sensing (DORS) [16,17]. Recent years have seen
DORS emerge as an efficient and innovative approach to obtaining the three-dimensional
structure of the ocean.

There are currently four major schemes for DORS work (Figure 1). Figure 1a shows the
use of known satellite remote sensing data of the ocean surface to predict future changes at
the ocean surface. For instance, Zhang et al. [18] employed the Long Short-Term Memory
(LSTM) method to forecast sea surface temperature in offshore China, He et al. [19] devel-
oped the DSL method for predicting sea surface temperature, Zhang et al. [20] devised a
U-Net method for time series prediction of sea surface salinity in the Western Pacific Ocean,
Xu et al. [21] combined Memory in Memory (MIM) and Variational Mode Decomposition
(VMD) to propose the VMD-MIM model, which further enhances the prediction perfor-
mance of sea surface temperature. These approaches primarily focus on predicting surface
changes, whereas subsurface data are often more valuable to researchers [22].

Figure 1b depicts the use of historical subsurface three-dimensional structure data to
forecast future subsurface changes. For example, Sun et al. [23] proposed a 3D U-Net model,
utilizing the past 12 months of subsurface data to predict the subsurface structure for the
next 12 months. Yue et al. [24] introduced the SA-PredRNN model, based on SA-ConvLSTM
and PredRNN, to achieve similar predictions using historical subsurface data. Although
these predictive models are valuable, they rely on extensive measured data as input, which
poses practical limitations due to the data’s scarcity and acquisition challenges.

Figure 1c represents the most extensively studied approach, focusing on the reconstruc-
tion of subsurface ocean structures using remote sensing data. Su et al. [25] explored the
reconstruction of subsurface temperature and salinity anomalies using machine learning
methods such as Random Forest (RF) and Extreme Gradient Boosting (XGBoost), while
Meng et al. [26] achieved high-resolution subsurface reconstruction through Convolutional
Neural Networks (CNNs). Xie et al. [27] implemented subsurface reconstruction in the
South China Sea region using a U-Net model based on convolutional neural networks.
Recently, the introduction of the Transformer framework and attention mechanisms has
facilitated the efficient reconstruction of subsurface structures by learning from historical
data. For instance, Zhang et al. [28] developed a discrete point historical time series model
to invert subsurface structures by capturing temporal changes, while Su et al. [29] utilized
the Transformer framework to sample and extract spatial features from images of different
scales, reducing computational costs and enabling efficient reconstruction of subsurface
density fields. These methods, however, are focused on reconstruction and do not predict
future subsurface structures.

Figure 1d illustrates the relatively novel approach of using historical remote sensing
data to predict future subsurface changes in the ocean. In 2024, Liu et al. [22] introduced
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an artificial intelligence model that employed historical remote sensing images to forecast
future subsurface ocean structures, training the model with satellite remote sensing and
numerical simulation data, and achieving notable results in the South China Sea region.

 
Figure 1. (a) Surface ocean prediction using remote sensing images. (b) Subsurface ocean prediction
using measured profile data. (c) Subsurface ocean reconstruction using satellite remote sensing
images. (d) Subsurface ocean prediction using satellite remote sensing images.

By comparing these DORS methods, we identify several pertinent questions for further
exploration: (1) Is there a performance difference between using historical remote sensing
data to predict future subsurface ocean profile structures and using historical subsurface
ocean profile structures for the same purpose? (2) What is the relationship between the
reconstruction of subsurface structures that combines historical and real-time data, and the
prediction of subsurface structures using only historical data?

In this paper, we propose the multiscale spatiotemporal window ocean (MSWO)
model, which combines the features of the spatiotemporal series network SimVP [30] and
the computer vision Swin Transformer [31] network. The MSWO model employs a window
attention mechanism in the spatiotemporal dimension to achieve low computational-load
attention effects. Additionally, it extracts the nonlinear spatiotemporal relationships in the
data through multi-scale residuals. To better represent the spatial and temporal charac-
teristics of the data, we introduce global location coding during information extraction
and use the channel attention mechanism to extract key feature information from remote
sensing images. The model was validated against measured Argo grid data in the Central
South Pacific. Historical remote sensing data from the past 24 months were used to pre-
dict the subsurface temperature structure trends in the Central South Pacific for the next
6 months. Furthermore, we explored the effect of using measured profile structures from
the past 24 months to predict the subsurface structure for the next 6 months, comparing
the reconstructed results with the predicted results on the test dataset. The results indi-
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cate that our model achieves the highest inversion accuracy in both reconstruction and
prediction processes. This method presents a promising new approach for transparent
ocean observation.

2. Related Work

Both the reconstruction of ocean subsurface structures and the prediction of future
subsurface changes can be accomplished using spatiotemporal series models. With the
development of artificial intelligence, more and more remote sensing images are used to
reconstruct ocean subsurface structures and begin to invert historical data as one of the
input factors [28,29].

Spatiotemporal series models have their origins in single-element time series predic-
tion models, with the most traditional method being the recurrent neural networks (RNNs).
The LSTM [32] subsequently improved the model’s efficiency in learning temporal patterns.
In 2015, Shi et al. [33] advanced this field by introducing the ConvLSTM model, which
replaced the fully connected layer with a convolutional layer in the FC-LSTM, marking
a transition from time series models to spatiotemporal series models. This innovation
extended LSTM input data to multidimensional images, maintaining the fundamental prin-
ciples of LSTM and other recurrent neural networks. The prediction for the next time point
is achieved by iterating through the forgetting gate, output gate, and memory cell. In 2017,
Wang et al. [34] proposed PredRNN, based on ConvLSTM, which introduced a long-term
memory module to enhance the accuracy of spatiotemporal series prediction tasks.

The introduction of the attention mechanism and the Transformer framework [35] in
2017 revolutionized natural language-processing research. Researchers discovered that the
attention mechanism’s ability to capture global changes was superior to that of convolu-
tional neural networks, leading to its application in computer vision. Various Transformer
framework variants [31,36–38] have since achieved remarkable success in object detection,
image classification, and semantic segmentation. The attention mechanism’s capability to
capture global information has also been applied to time series prediction tasks [39,40].
In 2020, Lin et al. [41] incorporated the self-attention module into the ConvLSTM model,
resulting in the SA-ConvLSTM model, which can capture global spatiotemporal correla-
tions. However, with higher-resolution image inputs, spatiotemporal series prediction
models faced similar computational cost challenges as those in computer vision. The Swin
Transformer [31] improved model performance while significantly reducing computational
complexity. Consequently, in 2023, Tang et al. [42] replaced the convolutional layer in
ConvLSTM with the Swin Transformer, achieving optimal results on video prediction
datasets such as Moving MINST.

However, the iterative RNN-based spatiotemporal series models have inherent flaws.
As illustrated in Figure 2a, the prediction for the current time step in an iterative model is
influenced by the previous time step’s prediction, leading to error accumulation over time.
Additionally, this process tends to make the model overly reliant on immediate past context
information, hindering long-term information learning [43]. To address this issue, various
generative models have been developed to generate all prediction results by capturing
global information in a single step [39,44], as shown in Figure 2b. In 2023, Tan et al. [30] pro-
posed the SimVP model, which uses an Encoder–Decoder architecture for feature extraction
and large-kernel convolution to simulate a global attention mechanism, achieving excellent
results in spatiotemporal prediction. With the advent of a new generation of satellites,
remote sensing images now feature larger scales and higher resolutions. Consequently,
the primary objective of this paper is to design an efficient artificial intelligence model
that supports high-resolution images to predict the future three-dimensional structure of
the ocean.
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Figure 2. (a) Flow chart of RNN iterative framework on spatiotemporal prediction tasks. (b) Flow
chart of the generative framework for spatiotemporal prediction tasks.

3. Method

3.1. Overall Architecture

The MSWO model aims to design an autoencoder architecture suitable for spatiotem-
poral sequence prediction tasks, and predicts future images based on the learning of past
temporal related frames. Different from the traditional iterative RNN, the MSWO model
uses a generative strategy. The traditional automatic encoder generates a single step frame
in static time and minimizes the difference between the true probability distribution Px and
the predicted probability distribution P′

x = Gθ(X ) by mapping Gθ : X → Ŷ . The optimal
parametric neural network is as follows:

θ∗ = argmin
θ

Div
(

Px, P′
x
)
, (1)

where Div represents a specific loss function. Similarly, MSWO encodes the frames of
the entire historical time dimension, decodes the future prediction time dimension, and
minimizes the difference between the predicted and true probability distributions by
mapping Fθ : X t,T → Ŷ t+1,T′

. The optimal parametric neural network is:

θ∗ = argmin
θ

t+1+T′

∑
t+1

Div
(

Pxi , P′
xi

)
(2)

In the experiment, we choose the L2 loss function to minimize the error between
this mapping:

θ∗ = argmin
θ

t+1+T′

∑
t+1

‖ Y i −Fθ

(
X i

)
‖2

(3)

3.2. MSWO Module

Assuming that the size of the input remote sensing image is H × W × C in T times, H
represents the length of the image, W represents the width of the image, and C represents
the number of channels of the image, the entire input can be represented by a tensor
X ∈ R

T×H×W×C. As shown in Figure 3, the input shape is B × T × C × H × W, where B
represents batch size. The whole MSWO model consists of three parts: spatial encoder,
window attention, and spatial decoder.
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Figure 3. Flow diagram of MSWO using satellite remote sensing data to predict subsurface ocean
temperature structure. 4-D represents the xyz axis in the time dimension and space.

The spatial encoder consists of two subsampled convolution layers, the convolutional
block attention module (CBAM) [45], global attention coding [46], and residual concatena-
tion. By stacking convolution layers, high-dimensional satellite remote sensing images are
encoded into the low-dimensional potential space as follows:

z = δ(Norm(Conv(z))), (4)

where δ represents the activation function used to extract nonlinear variations from features,
and Norm is the normalization layer. CBAM includes a channel attention module and a
spatial attention module, which use average pooling and max pooling methods to extract
useful channel information and spatial information, helping the model to better learn
critical information and enhance sensitivity, thereby improving the overall performance of
the model.

After spatial encoder, we reshape the dimensions of the tensor as B× (T × C)× H∗ × W∗.
The purpose of this is to stack the single frame images at different times along the time
axis and update the channel of the image to the combination of the doped time dimension.
The tensor is then entered into the window attention module. For large-scale and high-
resolution spatiotemporal series prediction tasks, the computational complexity of global
attention is generally Ω(MSA)1 = 4HWCT2 + 2(HWC)2T, and the spatial complexity

is O
(
(HWC)2

)
. Such square-level computational complexity causes a very large load

on intensive prediction tasks [36]. By stacking time dimension and channel dimension,
MSWO controls the matrix multiplication operation in smaller dimensions. The overall
computational complexity of the model is Ω(MSA)2 = 4HW(CT)2 + 2(HW)2CT, and

the space complexity becomes O
(
(HW)2

)
, which greatly reduces the overhead of the

model. In addition, inspired by the Swin Transformer [35] and SwinLSTM [40] models,
we designed SWO and MSWO options in the window attention section, as shown in Fig-
ure 4c,d. SWO includes general window segmentation and a sliding window module.
By dividing the whole image and performing attention calculation in the window, the
computing overhead is further reduced. At this time, the whole image is divided into
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H
M × W

M window matrices of M × M size, and the computational complexity is reduced to

Ω(MSA)2 = HW
M2 ×

(
4M2

(
CT)2 + 2M4CT

)
= 4HW(CT)2 + 2M2HWCT , and the space

complexity is O
(

M4). In MSWO, we use patch merging to acquire multi-scale image data,
and through the residual joining operation, we can focus on a larger sensory field in the
M × M size window.

Figure 4. Details in the MSWO process. (a) The process of tensor dimension change in the whole
process. (b) Window segmentation and attention calculation diagram. (c) SWO model flow chart.
(d) MSWO model flow chart.

The Swin transformer cell is divided into two modules. The first module captures the
token relationship inside the window through the window-multi-head attention mechanism
(W-MHA); the second module is the same as the first module, only the W-MHA is replaced
by the shift window-multi-head attention (SW-MHA) to capture the token relationship
between adjacent windows. Finally, the decoding process also needs to reshape the tensor
shape into (B × T)× C × H∗ × W∗ to extract the information of a single image, and map
the subsampled spatiotemporal data back to the original size through a deconvolution
operation as follows:

z = δ(Norm(ConvTrans(z))) (5)

4. Experiments

In the experimental part, we introduce the whole experimental design of the model,
including data sources, processing methods, parameters of the training model, evaluation
indexes of the model results, and the design of the ablation experiment.

4.1. Data

In this study, we utilized globally available datasets, including sea surface temperature
(SST), absolute dynamic topography (ADT), sea surface salinity (SSS), and Argo-measured
datasets. The temporal resolution for all data is monthly averages, and the spatial resolution
was interpolated to 1◦ × 1◦ using interpolation methods. During the training and testing
phases, satellite remote sensing data were integrated as input variables, and Argo profile
data served as output variables. As detailed in Table 1, SST data were sourced from the
National Oceanic and Atmospheric Administration (NOAA)’s OISST dataset, ADT data
from Aviso, and SSS data from SMOS satellite’s Level 3 data. The study area encompassed
the Central South Pacific, spanning from 44.5◦S to 18.5◦N and 116.5◦W to 179.5◦W. The
input dimensions for the remote sensing images were 64 × 64 pixels. The temporal sequence
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of the dataset ranged from January 2011 to December 2019, encompassing 108 months.
The time series data were divided into training, validation, and testing sets in a 7:1:1 ratio,
employing a sliding window method [39]. The input time series covered 24 months, with
predictions extending 6 months into the future. Argo depth selection focused on the upper
250 m of the ocean, divided into 10 depth layers (10, 20, 30, 50, 75, 100, 125, 150, 200, and
250 m). Outlier data were processed and optimally interpolated, and the following method
was used for data normalization:

Xnorm =
X −Xmin

Xmax −Xmin
(6)

The MSWO model was implemented using the PyTorch framework. The training
process utilized the L2 loss function and the Adam optimizer with a learning rate of 0.001.
The model was trained for 1000 epochs, with an early stopping criterion set at 50 epochs,
and a batch size of 2. To ensure robustness of the final results, all experiments were repeated
three times on an Nvidia Tesla V100 GPU, with the mean and standard deviation of these
repetitions reported as the final results.

Table 1. Data sources and resolutions used in present study.

Data Data Source Spatial Resolution

Argo http://apdrc.soest.hawaii.edu/projects/Argo/ (accessed on 1 May 2024) 1◦, monthly
ADT https://www.aviso.altimetry.fr/en/data/products/ (accessed on 1 May 2024) 0.25◦, monthly

SST https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-high-resolution-02
5x025-blended-analysis-daily-sst-and-ice-oisstv2 (accessed on 1 May 2024) 0.25◦, monthly

SSS https://www.catds.fr/Products/Catalogue-CPDC/Catds-products-from-Sextant#
/metadata/0f02fc28-cb86-4c44-89f3-ee7df6177e7b (accessed on 1 May 2024) 25 km, monthly

4.2. Evaluation Indicator

We used three evaluation metrics to evaluate the performance of the predicted results
against the measured results, which are mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE). These three indicators are used to measure the
correlation between two data vectors, and the calculation process is as follows:

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2, (7)

RMSE =
√

MSE, (8)

MAE =
1
m

m

∑
i=1

|(yi − ŷi)|, (9)

where, yi and ŷi represent the true value and reconstructed value, respectively, and m
represents the number of samples. The three indicators approaching zero means that the
predicted results are closer to the measured results.

5. Result and Discussion

In this study, we primarily explored the performance of the MSWO model and its
capability to predict future changes in ocean subsurface structures using remote sensing
satellite images. Under limited training data conditions, the MSWO achieved optimal
prediction accuracy. Furthermore, we compared the prediction model with the ocean
subsurface structure reconstruction model. Over the 12 months of the test dataset, the
prediction and reconstruction models exhibited complementary trends in model accuracy,
which may offer new insights for future research.
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5.1. Results of Ablation Experiment

The selection of different modules or methods can significantly impact the perfor-
mance of the MSWO model. In the ablation study section, we investigated the performance
of the SWO and MSWO models when incorporating global encoding and the shift window
mechanism. Compared to the SWO model, the MSWO model employs the same down-
sampling and up-sampling mechanisms as the SwinLSTM model, capturing larger-scale
spatial processes by resizing the entire image. Additionally, unlike the spatial relative
position encoding used in the window attention mechanism, the global encoding is intro-
duced before the window attention layer. This global encoding allows elements within each
small window to not only focus on elements within the same window but also to consider
the global context. The shift window mechanism supplements the attention relationships
between adjacent independent windows, aligning with the approach proposed by the
Swin Transformer. The results of all ablation experiments are shown in Table 2. Overall,
using down sampling to capture large-scale spatial information and introducing global
spatiotemporal encoding enhances model accuracy. The best SWO model achieved an
average MSE of 0.661, RMSE of 0.757, and MAE of 0.528 on the test dataset, while the best
SWO-D model achieved an average MSE of 0.648, RMSE of 0.749, and MAE of 0.516 on
the test dataset. For convenience, the SWO and MSWO models referred to in the following
sections are the best-performing models.

Table 2. The results of ablation experiments are recorded, and the Model includes SWO and MSWO;
Global represents whether global encoding of space-time was introduced, and Shifted represents
whether a shifted window mechanism was used. The bold part represents the group with the best
performance in the SWO and MSWO models.

Model Global Shifted MSE RMSE MAE

SWO × × 0.842 ± 0.106 0.835 ± 0.049 0.567 ± 0.026
SWO

√ × 0.661 ± 0.045 0.757 ± 0.027 0.528 ± 0.023
SWO × √

0.737 ± 0.051 0.798 ± 0.033 0.547 ± 0.031
SWO

√ √
0.788 ± 0.104 0.820 ± 0.051 0.557 ± 0.027

MSWO × × 0.737 ± 0.074 0.803 ± 0.047 0.558 ± 0.035
MSWO

√ × 0.648 ± 0.047 0.749 ± 0.026 0.516 ± 0.012
MSWO × √

0.804 ± 0.104 0.838 ± 0.058 0.595 ± 0.032
MSWO

√ √
0.676 ± 0.075 0.766 ± 0.044 0.523 ± 0.023

5.2. Model Comparison

In the field of spatiotemporal prediction, numerous advanced artificial intelligence
models have been proposed for tasks such as video prediction and weather forecasting.
Similar to these works, we utilized these established spatiotemporal sequence models as
baseline models to evaluate the performance of the MSWO model. The baseline models
include ConvLSTM, PredRNN, SwinLSTM, EarthFormer, SA-ConvLSTM, and SimVP. The
input and output formats for MSWO were kept consistent with these baseline models, and
the accuracy of the predictions was evaluated using MSE, RMSE, and MAE metrics. To
further reduce the likelihood of random events, all experiments were repeated three times,
with the mean and the standard deviation recorded for each experiment. Each training and
testing session was conducted on an Nvidia Tesla V100 GPU. The average results obtained
from all baseline models are presented in Table 3. The overall mean MSE for ConvLSTM,
PredRNN, SwinLSTM, EarthFormer, SA-ConvLSTM, SimVP, and our MSWO model was
0.829, 1.007, 1.074, 0.789, 0.935, 0.768, 0.661, and 0.648, respectively. The overall mean RMSE
was 0.858, 0.925, 0.963, 0.834, 0.891, 0.813, 0.757, and 0.749, respectively. The overall mean
MAE was 0.580, 0.634, 0.648, 0.596, 0.610, 0.575, 0.528, and 0.516, respectively. The MSWO
model achieved the best predictive accuracy among all the compared models, indicating its
advantage in predicting changes in ocean subsurface structures. This demonstrates that the
MSWO model has superior predictive performance in this domain.
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Table 3. Comprehensive prediction comparison results between the SWO model and other baseline
models on the test dataset, where Size represents the size of the image in the calculation process, and
EarthFormer and MSWO perform multi-resolution sampling operations, respectively. The bold part
represents the group with the best performance in different model experiments.

Method Size (H = W) MSE RMSE MAE Cite

ConvLSTM 16 0.829 ± 0.105 0.858 ± 0.060 0.580 ± 0.048 [33]
PredRNN 16 1.007 ± 0.143 0.925 ± 0.062 0.634 ± 0.043 [34]

SwinLSTM 16 1.074 ± 0.156 0.963 ± 0.064 0.648 ± 0.031 [42]
EarthFormer 16/8 0.789 ± 0.091 0.834 ± 0.054 0.596 ± 0.046 [46]

SA-ConvLSTM 16 0.935 ± 0.105 0.891 ± 0.054 0.610 ± 0.034 [41]
SimVP 16 0.768 ± 0.067 0.813 ± 0.035 0.575 ± 0.023 [30]

SWO (ours) 16 0.661 ± 0.045 0.757 ± 0.027 0.528 ± 0.023 -
MSWO (ours) 16/8 0.648 ± 0.047 0.749 ± 0.026 0.516 ± 0.012 -

To illustrate the variations in predictive accuracy over space and time, we have plotted
Figures 5 and 6. Figure 5 presents the performance metrics of different models at various
depths within the upper 250 m of the ocean, while Figure 6 shows the performance metrics
across different months. All models exhibited a trend where the prediction error initially
increases and then decreases, with the maximum error occurring around the 100 m depth.
This corresponds to the thermocline, a transitional layer between warmer surface water
and cooler deep water, characterized by a steep vertical temperature gradient. The ther-
mocline significantly affects the ocean’s density and acoustic fields. Numerous previous
studies [22,29,47,48] have highlighted the challenges artificial intelligence models face in
accurately reconstructing subsurface structures due to the presence of the thermocline, pos-
ing a considerable challenge for all predictive tasks. For the study area, another challenge
is the irregular variations in ocean structure caused by the El Niño–Southern Oscillation
(ENSO) phenomenon. The limited availability of measured data hampers the ability of AI
models to learn long-term decadal variations, thus obstructing accurate future predictions.
Figure 6 shows how model errors change over time, with almost all models displaying
an increase in error as the prediction horizon extends. This error increase is due to both
the declining correlation between the output results and the real satellite data inputs, as
well as the accumulation of errors from the recursive process. Overall, the MSWO model
achieved the best predictive performance among all compared models, with the lowest
error increase over time. This demonstrates that the MSWO model has broad application
potential in the field of spatiotemporal sequence prediction.
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Figure 5. Evaluation index results of different models at different depths. (a) MSE, (b) RMSE,
(c) MAE.

Figure 6. Evaluation index results of different models in the predicted 6-month period. (a) MSE,
(b) RMSE, (c) MAE.

5.3. Compare with P2P Schemes

In this study, we introduce a method for predicting future subsurface ocean tempera-
ture structures using historical satellite remote sensing images. However, we pose a new
inquiry: How does the performance of using satellite remote sensing imagery as input for
prediction compare to using historical profile data? Employing satellite remote sensing
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image for predicting future ocean structures is more convenient due to its lower cost of
acquisition, wider coverage, and longer available period. Hence, we replaced historical
satellite remote sensing data with historical measured Argo data as input, employing the
MSWO model for training and testing. The experiments were replicated three times on
an Nvidia Tesla V100 GPU, utilizing MSE, RMSE, and MAE as evaluation metrics. The
performance of the model across depths is depicted in Figure 7.

In Figure 7, S2P (surface to profile) and P2P (profile to profile) represent predictions
of future profile structures using historical satellite remote sensing and historical profile
data, respectively. Unexpectedly, compared to using solely satellite remote sensing data,
employing larger volumes of historical profile data did not result in a significant increase
in predictive accuracy; the predictive errors of P2P remained largely comparable to those
of S2P. A comparison between the S2P and P2P modes reveals the superior performance of
S2P in the upper layers of the ocean and the relatively better results around 100 m depth
for P2P. This suggests that variations captured by satellite remote sensing data exhibit more
relevant features in the prediction process for upper ocean layers. As the inversion depth in-
creases, the introduction of historical profile data may lead to improved inversion outcomes.
Overall, the comprehensive performance of S2P and P2P modes in this experiment did not
demonstrate significant differences. This finding may be attributed to the fact that changes
in the upper 250 m of ocean structure are largely influenced by surface ocean dynamics, and
the variations captured by historical satellite remote sensing data are already sufficiently
comprehensive. Despite being influenced by dataset limitations and variations related to
ENSO phenomena in the study area, predictive models still have considerable room for
improvement in accuracy. Nevertheless, this discovery underscores the efficacy of utilizing
historical satellite remote sensing data for predicting future subsurface ocean structures,
with an accuracy comparable to using historically measured data for forecasting future
ocean profiles. This facilitates the direct utilization of satellite remote sensing imagery for
large-scale, long-term prediction forecasts in practical applications.

Figure 7. Evaluation index results of historical satellite remote sensing predicting future profile
structure (S2P) and historical profile predicting future profile structure (P2P) models at different
depths. (a) MSE, (b) RMSE, (c) MAE.

The task of predicting the next 6 months using the preceding 24 months differs
from the reconstruction task, where the input comprises the preceding 12 months’ data
alongside the known 6 months’ data to reconstruct the subsurface ocean temperature
structure. In contrast to future prediction tasks, reconstruction tasks benefit from the
utilization of real-time satellite remote sensing data, enabling them to better capture real-
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time changes while learning historical patterns. To examine the similarities and differences
in the inversion results between the two approaches, we conducted a comparative analysis
between the prediction and reconstruction results. Specifically, we divided the test set
into 12 months, which were then categorized into four seasons based on the Northern
Hemisphere’s months (with December to February categorized as spring, March to May as
summer, June to August as autumn, and September to November as winter), as depicted in
Figure 8. Figure 8a represents the prediction results for the 12 months of 2019 obtained by
different models using the prediction method, with the line graph illustrating the RMSE
between predicted and actual values. Figure 8c depicts the reconstruction results for the
12 months of 2019 obtained by different models using the reconstruction method, with
the line graph showing the RMSE between reconstructed and actual values. Figure 8b,d
showcase the seasonal variation in errors across different models.

From Figure 8, it is evident that the prediction models generally exhibit higher errors
compared to the reconstruction models. Interestingly, we observe an inverse trend in
inversion errors between the prediction and reconstruction models on the test dataset
(highlighted in the yellow box in the figure). We attribute this phenomenon to the prediction
models primarily learning regularities on the temporal scale, lacking input of real-time
spatial change data. In contrast, the reconstruction task for subsurface ocean structure
better addresses this gap, optimizing inversion results further by incorporating real-time
satellite remote sensing data onto the foundation of spatiotemporal sequence prediction.
This holds practical significance, particularly for real-time forecasting endeavors.

Figure 8. (a) RMSE changes of different baseline models on the 12-month prediction task of the test
dataset. (b) Seasonal RMSE bar chart of different benchmark models on the prediction task of the test
dataset. (c) RMSE changes for different baseline models on 12-month reconstruction tasks of the test
dataset. (d) Seasonal RMSE histogram for different benchmark models on the reconstruction task of
the test dataset.

5.4. Section Cutting Comparison

To further validate the consistency between the three-dimensional subsurface ocean
structure predicted by MSWO and the measured data, we selected four latitudinal and
three longitudinal transects for cross-sectional plotting. As shown in Figure 9, along the
latitude direction, we selected four transects at 15.5◦N (A1), 0.5◦N (A2), 15.5◦S (A3), and
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40.5◦S (A4), while along the longitude direction, we chose three transects at 169.5◦W (B1),
139.5◦W (B2), and 119.5◦W (B3). We present the measured Argo profiles, predicted profiles,
and their differences plotted along these transects using the MSWO model on the test
dataset for January 2019, as illustrated in Figures 10 and 11.

Figure 9. Section selection diagram.

Observing the relationship between the measured and true profiles in Figure 10, it is
evident that near the equator, warm water driven by the easterly winds converges into the
western Pacific warm pool before sinking, leading to a gradient distribution in subsurface
temperatures and shallower thermoclines in the eastern Pacific and deeper thermoclines
in the western Pacific. Compared to the measured data, the predicted results from the
MSWO model also reflect these gradient changes. Similarly, examining the relationship
between the measured profiles in Figure 11, it is observed that the subsurface temperatures
in the warm pool region near the equator are higher than those in the eastern Pacific, and
subsurface temperatures in the low latitudes of the South Pacific are higher than those in
the North Pacific. This distribution correlates strongly with the South Equatorial Current
(SEC), Equatorial Under Current (EUC), North Equatorial Counter Current (NECC), and
North Equatorial Current (NEC) [49], indicating that MSWO can effectively predict changes
in subsurface water masses within the ocean.

Figure 10. Profile diagram of the January 2019 test dataset drawn at A1–A4 cross sections.
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Figure 11. Profile diagram of the January 2019 test dataset drawn at B1–B3 cross sections.

5.5. Planar Error and Density Scatter

The planar error facilitates an understanding of the distribution of errors between
the predicted results and the measured data, while the density scatter plot evaluates the
correlation between the measured values and the model’s predicted results, as well as
the robustness of the model’s performance. Thus, we generated planar error maps and
density scatter plots for all baseline models in July 2019, focusing on the upper 100 m of the
ocean. As depicted in Figure 12, significant errors were observed near the equator across
all models, with the eastern Pacific displaying underestimations and the western Pacific
showing overestimations, a pattern closely associated with the 2019 El Niño event. Overall,
MSWO exhibited favorable performance advantages in predicting the development and
changes in subsurface oceanic structures. Furthermore, compared to other baseline models,
MSWO demonstrated the best robustness and most concentrated inversion effects in the
density scatter plot.

Figure 12. All baseline models were compared with the MSWO model for planar error plots and
density scatter plots.
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6. Conclusions

With the advancement of human science, the development of artificial intelligence
technology has gradually provided new methods and perspectives for realizing the strat-
egy of transparent oceans. In this paper, we proposed the MSWO model and employed
it to predict the subsurface temperature structure for the next six months in the Central
South Pacific region using satellite remote sensing data from the past 24 months. MSWO
introduces a global positional encoding to enrich the spatiotemporal relationship features
among the data and utilizes channel attention mechanisms to extract crucial information.
Subsequently, MSWO employs multiscale residual operations and window attention mech-
anisms to extract spatiotemporal correlations within the input data, facilitating predictions
of future subsurface oceanic structures. In comparative experiments, MSWO achieved
the best predictive performance, benefiting from the attention mechanism’s extraction of
global spatiotemporal information and its efficient utilization. Additionally, we explored
the impact of using either satellite remote sensing data alone or profile data alone as inputs
on future predictions. Surprisingly, the results from both strategies were similar, indicating
that we can directly predict and forecast future oceanic changes using satellite remote
sensing methods, which are more practically applicable compared to profile prediction
models that require scarce measured data. Furthermore, we compared the performance of
MSWO in prediction tasks and reconstruction tasks. The experimental results show that
the error trends of prediction models and reconstruction models exhibited complementary
characteristics across the 12 months of the test dataset. The incorporation of remote sensing
images as inputs in reconstruction models further complements the real-time features
missing in prediction models, thereby improving inversion accuracy.

However, there are still many opportunities for further development in this research.
For instance, the lack of measured datasets limits the model’s ability to capture long-term
decadal changes, and the monthly and spatial resolutions lead to the loss of many small and
medium-scale change processes. The impact of the ENSO process on the model cannot be
avoided, and the extent of its influence is currently unclear. The design of the MSWO model
supports high-resolution satellite remote sensing images and large-scale spatiotemporal
process forecasting. In future work, we will explore higher-resolution ocean reconstruction
and forecasting.
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Abstract: Ocean fog, a meteorological phenomenon characterized by reduced visibility due to tiny
water droplets or ice particles, poses significant safety risks for maritime activities and coastal regions.
Accurate prediction of ocean fog is crucial but challenging due to its complex formation mechanisms
and variability. This study proposes an advanced ocean fog prediction model for the Yellow Sea
region, leveraging satellite-based detection and high-performance data-driven methods. We used
Himawari-8 satellite data to obtain a lot of spatiotemporal ocean fog references and employed
AutoML to integrate numerical weather prediction (NWP) outputs and sea surface temperature
(SST)-related variables. The model demonstrated superior performance compared to traditional
NWP-based methods, achieving high performance in both quantitative—probability of detection of
81.6%, false alarm ratio of 24.4%, f1 score of 75%, and proportion correct of 79.8%—and qualitative
evaluations for 1 to 6 h lead times. Key contributing variables included relative humidity, accumulated
shortwave radiation, and atmospheric pressure, indicating the importance of integrating diverse data
sources. The study emphasizes the potential of using satellite-derived data to improve ocean fog
prediction, while also addressing the challenges of overfitting and the need for more comprehensive
reference data.

Keywords: data-driven; Himawari-8; LDAPS; CALIPSO; ASOS; shortwave radiation; variable contribution

1. Introduction

Ocean fog, also known as sea fog or marine fog, is a meteorological phenomenon
that causes fog to form over the ocean. Ocean fog consists of tiny water droplets or ice
particles formed by the condensation of water vapor [1–3]. Due to the Mie scattering
process, the presence of these tiny particles causes a substantial reduction in visibility
to an extent of 1 km or less. Low visibility raises safety concerns not only for shipping,
fishing, and maritime activities but also for traffic controls in coastal regions when ocean fog
extends inland [4–6]. Such ocean-fog-caused accidents often lead to socio-economic losses,
including human fatalities, and thus, it is crucial to predict ocean fog in a timely manner.

To predict fog over the land, including ocean fog intrusion, ground observation time
series have been frequently used. Various approaches have been adopted to predict low
visibility at ground stations, including ordinary classification [7] and long short-term
memory networks [8]. Nevertheless, relying solely on field observations is not a practical
method for directly predicting ocean fog, as they are inherently aspatial, resulting in poor
expandability to areas without in situ data.
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Given the complex interaction between the ocean and atmosphere, people frequently
use numerical weather prediction (NWP) to predict the occurrence of ocean fog because
it provides visibility predictions for both the land and the ocean. However, the accuracy
of NWP visibility forecasts over the ocean is relatively low because the optimization of
microphysics and boundary layers for simulating ocean fog varies greatly with time and
location [9–11]. Several studies have attempted to enhance NWP forecasts in order to
accurately simulate ocean fog by coupling multiple models or adopting additional param-
eters [12,13]. However, the intricate nature of ocean fog phenomena poses a significant
challenge to accurately forecasting ocean fog.

Data from satellite scatterometers are consistently assimilated with NWP wind vectors
over the ocean, leading to relatively high accuracy in wind forecasts, potentially enabling
the use of satellite-detected ocean fog for predicting its movement [14]. Although this
method accurately predicted the centroids of ocean fog patches, it failed to simulate the
shapes and sizes of ocean fog due to the assumption that the initial shape of the detected
ocean fog must remain constant over time.

Other NWP outputs, such as pressure (P), air temperature (Ta), and relative humidity
(RH), have systematic errors due to the difficulties of obtaining observational data for data
assimilation over the ocean [15–17]. These systematic errors limit the effectiveness of NWP
models in directly predicting ocean fog. Therefore, to overcome these limitations, the use of
data-driven modeling techniques, such as machine learning, could be an attractive solution
to predict ocean fog from NWP forecast outputs. Furthermore, using data related to sea
surface temperatures (SSTs), such as a simulated SST product or accumulated incoming
solar radiation, which is strongly linked to the formation of ocean fog [18,19], can improve
the performance of ocean fog prediction when combined with NWP data [12,20,21].

To use such data-driven techniques, it is necessary to have diverse ocean fog reference
cases on various spatial and temporal domains. While in situ data are typically obtained
at limited locations (generally on the land), satellite-based ocean fog detection may be an
attractive approach for collecting a wide range of ocean fog samples in terms of space
and time. As ocean fog has distinct optical characteristics, many algorithms for detecting
daytime ocean fog were proposed using satellite visible channels as input features [22–27].
However, at night, ocean fog also exhibits distinct radiative characteristics in the short
and long infrared wavelength channels, leading to the proposal of such channel-based
algorithms for nighttime ocean fog detection [28,29]. Daytime and nighttime ocean fog de-
tection models have been combined to produce operational, continuous ocean fog detection.
However, inconsistent detection results have often been observed during the transitional
period, such as at dawn and dusk, when solar influence changes. To mitigate such an
inconsistency, Sim and Im (2023) suggested an algorithm that detects ocean fog continu-
ously, regardless of the time of day, by solely utilizing infrared brightness temperature
from geostationary satellite data, resulting in good performance even during transitional
periods [6]. As a result, using works of Sim and Im (2023) allows for spatiotemporally
diverse and highly reliable ocean fog detection examples [6]. It can also reflect more diverse
characteristics of ocean fog than in situ observations, which are limited in both space and
time, and help develop generalized algorithms.

Therefore, this study proposed an ocean fog prediction model that considered the
spatial and temporal diversity of ocean fog in the Yellow Sea region. Specifically, the aims
were to achieve the following: (1) collect ocean fog samples from various locations using
satellite-based ocean fog detection; (2) overcome systematic errors in NWP using AutoML,
a high-performance data-driven method; and (3) confirm high performance by utilizing
SST-related variables with atmospheric variables.

2. Study Area and Data

2.1. Study Area

The study area is the Yellow Sea in Northeast Asia, located between the Korean
Peninsula and China. The shallow depth of the Yellow Sea allows the mixing layer to
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expand downward until it reaches the cold-water layer at the bottom, resulting in abnormal
SST drops during warm seasons. This leads to the formation of cold SST zones, even in the
summer. The predominant type of fog over the ocean is advection fog, which is primarily
formed when warm air passes over a cold surface. Therefore, we selected the Yellow Sea as
the study region of focus due to the frequent reports of ocean fog occurrences there [30].
However, the coverage area of the Local Data Assimilation and Prediction System (LDAPS)
used in this study is restricted to the Korean peninsula and its surrounding seas. Therefore,
the study area was set on the eastern part of the Yellow Sea, extending from 35–40◦N to
121.5–127.5◦E (Figure 1).

Figure 1. Study area, indicated by the blue box, with the location of automated surface observing
system stations located in Baeknyeongdo and Heuksando, which measure various meteorological
variables including visibility.

2.2. Himawari-8

Himawari-8 is a geostationary meteorological satellite equipped with a multispectral
sensor called the Advanced Himawari Imager (AHI), operated by the Japan Meteorological
Agency [31]. This sensor collects data on 16 distinct wavelength channels every 10 min,
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covering the region of East Asia. The ocean fog detection model developed by Sim and Im
(2023) utilizes the infrared channels of Himawari-8 to obtain spatially extensive ocean fog
references [6]. Furthermore, when the ocean is unobstructed by clouds or fog, it absorbs
solar radiation and accumulates thermal energy. We can estimate the total accumulated
solar energy that reaches the ocean by taking into account factors such as the sun’s angle and
cloud obstructions. Incoming solar radiation raises SSTs, which might restrict the formation
and/or maintenance of ocean fog [32–34]. Therefore, we used features that accumulated
the hourly level-3 downward shortwave radiation (SWR) product of Himawari-8 from the
previous 24 h, 12 h, 9 h to 6 h from the targeting time, the previous day’s total accumulation,
and cooling hours as input variables for estimating the short-term heat content of the water
mass (Table 1) [18,35].

Table 1. Summary of input variables used in the ocean fog prediction model.

Source Variable Name Description

Himawari-8

SWR_6to9h Accumulated shortwave radiation from −9 to −6 h
SWR_6to12h Accumulated shortwave radiation from −12 to −6 h
SWR_6to24h Accumulated shortwave radiation from −24 to −6 h
SWR_preday Accumulated shortwave radiation in previous day

cooling_H Cooling hours without shortwave radiation (hours)

LDAPS

Ta Air temperature (◦C)
RH Relative humidity (%)
U u-vector wind (m/s)
V v-vector wind (m/s)

WS Wind speed (m/s)
P Pressure (Pa)

VIS Visibility (m)

HYCOM SST Sea surface temperature (◦C)

LDAPS & HYCOM TD Temperature difference between sea surface and air (◦C)

2.3. Field Reference Data

In order to evaluate predicted ocean fog, ocean fog occurrence data from the cloud
aerosol lidar and infrared pathfinder satellite observation (CALIPSO) and the automated
surface observing system (ASOS) were used. CALIPSO is a satellite with a sun-synchronous
orbit equipped with a cloud-aerosol lidar and an orthogonal polarization sensor. As
CALIPSO provides data across the ocean with a wide spatial range, it could be utilized
to assess the spatial reliability of predicted ocean fog [36]. CALIPSO uses two distinct
laser beams with wavelengths of 532 and 1064 nm to analyze the vertical distribution of
atmospheric particle components. The vertical feature mask (VFM) product provides the
categorized class profile, which consists of 545 vertical layers. While there is no specific
classification for ocean fog, clouds that are located close to the ocean surface or on unusually
high ocean surfaces can be considered to be ocean fog. Consequently, the instances of ocean
fog were utilized as reference cases after conducting the quality assessment procedure
described in Wu et al. (2015) [5].

ASOS is a meteorological and weather measuring system consisting of field-installed
measurements on the land. Currently, 103 ASOS stations are operational in South Korea,
providing meteorological and weather information on an hourly basis. Among the ASOS
data, visibility information of less or equal to 1 km, which has undergone quality checks
based on cloud amount and weather information, can be utilized as ocean fog reference
data for coastal locations. Baekneoung-do and Heuksan-do stations, respectively located in
38◦N to 124.7◦E and 34.4◦N to 125.3◦E, were selected for this study based on their closeness
to the coast and the frequency that the ocean fog was reported. Unfortunately, as cloud and
weather information are determined through visual inspection by the administrator, it is
essential to use the data after careful quality control.
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2.4. LDAPS

LDAPS is an NWP model developed by the Korea Meteorological Administrator
(KMA) based on the unified model (UM) of the United Kingdom Met Office [37]. LDAPS
assimilates surface and upper air observation data via quality assurance processes, resulting
in reduced forecasting errors. LDAPS provides data on 70 vertical profiles with a spatial
resolution of 1.5 km around the Korean peninsula eight times per day. The forecast data
for a time span of up to 36 h, referred to as ‘anal6h’, are produced at 00, 06, 12, and 18
UTC. Similarly, the forecast data for a time span of up to 3 h, designated as ‘anal3h’,
along with analysis data, are produced at 03, 09, 15, and 21 UTC. Among LDAPS outputs,
surface products highly related to ocean fog occurrence, i.e., air temperature (Ta), relative
humidity (RH), pressure (P), u-vector (U), v-vector (V), wind speed (WS), and visibility
(VIS), were used as input variables for the ocean fog prediction model [17,38] (Table 1).
LDAPS identifies ocean fog when VIS is less than or equal to 1km, called ‘V1KM’, and we
used it as a control model.

2.5. HYCOM SST

The hybrid coordinate ocean model (HYCOM) is a comprehensive global ocean re-
analysis system that incorporates various data sources, including field observations from
instruments like Argo floats, buoys, and ship-based equipment, as well as satellite observa-
tions of SST and ocean surface winds. The HYCOM generates outputs of 40 vertical layers
that extend to a depth of 5000 m with a horizontal resolution of 1/12◦ × 1/12◦. HYCOM
has been extensively studied to assess its reliability in measuring various ocean parameters,
including surface salinity and ocean currents [39,40]. The literature has consistently demon-
strated that HYCOM performs well in capturing mesoscale ocean phenomena. Regrettably,
as HYCOM does not provide a repository of forecast data, the analysis data of the global
ocean forecasting system 3.1 version, serving data at 3 h intervals were used under the
assumption that the forecast data were closely aligned with the analysis data. Therefore, in
this study, the HYCOM SST analysis product was used as an input variable for the ocean
fog prediction model after the hourly interpolation of the product (Table 1). We used the
temperature difference between SST and LDAPS-derived air temperature (TD) as an input
variable in addition to SST, which theoretically indicates the condensation potential of the
water vapor [41].

3. Methodology

This study proposed an ocean fog prediction model focusing on the Yellow Sea region,
which used Himawari-derived ocean fog data [6], LDAPS outputs, and SWR accumulations
with machine learning (Figure 2). Because ocean fog mechanisms and behaviors are com-
plex and LDAPS outputs contain systematic errors, an advanced ensemble-based machine
learning model known as automatic machine learning (AutoML) was used. Among the
2019–2022 study period, samples from 2020, which had stable and large ocean fog patches
suitable for qualitative assessment, were used for testing the model, including quantitative
and qualitative assessments, while samples from the other periods were used to train
the model. In addition to validation, the variable contributions of input variables to the
AutoML model were investigated. CALIPSO and ASOS data, as well as Himawari-derived
ocean fog data, were used in the assessment.
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Figure 2. Process flow diagram proposed in this study.

3.1. Extraction of Ocean Fog Reference Data

Satellite-based ocean fog detection is highly useful, but its accuracy may be restricted to
specific circumstances due to variations in the optical thickness of atmospheric obstructions,
leading to potential missed or misclassified ocean fog occurrences [6,23,24]. Therefore,
in order to identify ocean fog locations that are consistently stable and reliable, areas
where ocean fog has been observed for more than three hours were designated as highly
reliable ocean fog areas. Similarly, we designated areas with consistently clear skies for
more than three hours as high-reliability clear sky references. We used the ocean fog
detection algorithm by Sim and Im (2023), which has been optimized to identify ocean
fog in the study area, the Yellow Sea [6] (Table 2). This algorithm demonstrated consistent
performance regardless of time and space; thus, it guaranteed stable spatial references by
properly filtering out ocean fog and clear skies.

Table 2. Number of ocean fog reference cases derived from Himawari-8. The number of clear sky
reference cases is equal to that of the ocean fog cases.

Purpose Year Data Type Number of Ocean Fog Cases

Training
2019 Analysis 3001
2021 Analysis 1987
2022 Analysis 912

Test 2020

Analysis 2187
Forecast +1 h 2170
Forecast +2 h 2300
Forecast +3 h 2008
Forecast +4 h 624
Forecast +5 h 767
Forecast +6 h 1111

3.2. Modeling

In order to predict the occurrence and persistence of ocean fog in complex and diverse
instances with numerical weather data and satellite-based SWR accumulation data, Au-
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toML, a massive modeling technique in the form of an ensemble, was used. Specifically,
this study used AutoGluon, an open-source AutoML package developed by Amazon Web
Services [42]. AutoGluon uses the sequential stacking of multiple machine learning models
with repeating n-fold cross validation to achieve the best performance while mitigating
overfitting issues. It also optimizes computational resources through hyperparameter
sharing, allowing for highly accurate ocean fog prediction results with limited computing
resources [43,44]. It is a model that automatically optimizes for optimal performance and
requires no hyperparameters other than the number of sequences, folds to cross-validate,
and machine learning tasks to run.

In this study, AutoGluon with four sequences was employed (Figure 3). In the first
sequence, known as a base layer, various types of machine learning models (e.g., random
forest, extremely randomized trees, k-nearest neighbors, light gradient boosting, catboost,
extreme gradient boost, and neural network) were utilized to predict ocean fog using the
original input variables. In the second sequence, the same machine learning models used in
the first layer were trained to predict ocean fog using the base layer’s results and the original
input variables. Following that, the third layer used the same machine learning models
as the first layer to predict ocean fog, but only with the second layer’s results. To reduce
computing costs, the hyperparameters of each model were shared across these sequences.
Finally, in the last sequence, the meta-learning model was trained by concatenating the
results from the previous sequence. AutoGluon tuned and fit the hyperparameters and
models by repeating the procedure until the user-specified time limit. We used 10-fold
cross validation with a time limit of 2 h. The random permutation-based contribution of the
input variables used in the modeling was also provided in the form of variable importance,
and it was used to estimate how input variables contribute to the model [44,45]. This study
utilized samples from LDAPS analysis data for model training and forecast data for model test
due to their consistent performance when compared to forecast data. The study period spans
from 2019 to 2022; the samples of 2020 were utilized to test the model for both quantitative
and qualitative evaluations and the remaining data were used to train the model.

 

Figure 3. The structure of AutoGluon used in this study.
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3.3. Evaluation

The model produced binary output, which was either the presence or absence of ocean
fog. The model output can be arranged into a 2 × 2 contingency table using the reference
data (Table 3). Four accuracy metrics—probability of detection (POD), false alarm ratio
(FAR), F1 score (F1), and proportion correct (PC)—were calculated from the table. POD
indicates ocean fog prediction performance, which is the proportion of actual ocean fog
cases that are correctly classified (Equation (1)), whereas FAR indicates the proportion of
cases predicted to be ocean fog that are incorrectly classified (Equation (2)). The F1 reflects
how well POD and FAR perform in all aspects (Equation (3)), whereas PC is the proportion
of correctly classified cases out of all cases, which represents overall accuracy (Equation (4)).
The evaluation was carried out on a case-by-case basis, with each ocean fog and non-fog
patch case containing a collection of multiple pixel samples divided into classes based on
the majority of the classified area.

POD =
TT

TT + TF
× 100% (1)

FAR =
FT

TT + FT
× 100% (2)

F1 = 2 × POD × (100% − FAR)
POD + (100% − FAR)

(3)

PC =
TT + FF

TT + FT + TF + FF
× 100% (4)

Table 3. Contingency table for ocean fog classification. A capitalized “T” means true (ocean fog), and
“F” means false (non-fog), with the label of the reference coming first and the label of the predicted
result coming last.

Reference

Ocean fog Non-fog

Predicted
Ocean fog TT FT

Non-fog TF FF

In addition to the quantitative evaluation, a qualitative evaluation based on the spatial
distribution of predicted ocean fog was conducted. The spatial reliability of the prediction
was assessed using the CALIPSO data, which provide extensive spatial references for ocean
fog. We also evaluated the temporal reliability of the model using the ASOS data, which
provide temporally continuous ocean fog references.

4. Results and Discussion

4.1. Quantitative Assessment

The proposed AutoGluon model performed well, resulting in a POD of 80.0%, FAR
of 23.5%, F1 of 78.2%, and PC of 80.9% for the analysis data, whereas V1KM had a POD
of 14.3%, FAR of 1.6%, F1 of 24.9%, and PC of 63.1% (Figure 4). AutoGluon outperformed
V1KM for most accuracy metrics, but V1KM exhibited outstanding performance for FAR
(Figure 4). It was because the V1KM classified the majority of the samples as non-fog,
resulting in a lower FAR, as evidenced by the significantly higher PC compared to the lower
F1. Prior research utilizing LDAPS data has demonstrated a tendency for overestimating
the visibility of LDAPS [37,46,47], suggesting that the V1KM’s accuracy in predicting
ocean fog may be compromised due to this factor. Both Autogluon and V1KM exhibited
comparable results in terms of prediction accuracy when compared to the analysis data.
As the lead time increased to 6 h, performance metrics decreased slightly, but AutoGluon
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still outperformed V1KM (Figure 4). It is notable that AutoGluon demonstrates superior
performance in predicting ocean fog with a lead time of 4 and 5 h (Figure 4). By examining
the local time (KST: UTC+9 h, CST: UTC+8 h) of those particular moments, it becomes
evident that they correspond to the periods of dawn and dusk. When there is thin ocean fog
during that time of day, the detection result may be inconsistent because of solar radiation.
However, ocean fog samples that were consistently detected for more than 3 h can be
considered to be relatively intense ocean fog cases. The selection of only intense ocean fog
cases can be deduced for the purpose of improving the quality of accuracy assessment.
While the performance of this study was not validated using the same geographical area
and data, the performance metrics from the present study were higher than Kamangir
et al. (2021) that had a POD of 65% and FAR of 40% based on deep learning methods with
operational NWP results [17] (Figure 4).

Figure 4. Quantitative performances of AutoGluon and LDAPS V1KM models for hindcast samples
of analysis and forecast data with lead times ranging from +1 to +6 h in 2020. Performance metrics
such as the probability of detection, false alarm ratio, F1, and proportion correct are displayed
in order.

4.2. Variable Contribution Analysis

The relative contribution of the input variables was assessed using the random per-
mutation method (Figure 5). RH was the most contributing variable among the 14 input
variables, followed by SWR_preday, P, VIS, cooling_H, and SWR_6to9h. RH is used to
compute the aerosol extinction coefficient and the dry air aerosol mass-mixing ratio [37].
VIS is determined by the inverse of the total of the extinction coefficients of clear air and
aerosol [37]. In other words, RH is more useful than VIS for simulating ocean fog, domi-
nated by condensed droplets, because VIS simulations use other variables [4,48,49]. Even
though there was a high correlation with visibility, the value distributions for ocean fog
and non-fog samples were similar, with median values of 89.0% and 88.1%, respectively.
This suggests that RH, while making a valuable contribution, did not solely determine the
prediction of ocean fog, but interacted with other variables.

While SST and TD were anticipated to be essential components in the ocean fog for-
mation mechanism [20], those ranked 9th and 13th because the SWR-related variables (i.e.,
SWR_preday, cooling_H, and SWR_6to9h) posed more contributing variables (Figure 5).
The sun’s shortwave radiation heats the ocean’s surface, but when there are clouds or a
sunset, the shortwave warming is blocked and the ocean’s longwave radiation becomes
the primary driver, resulting in the cooling of the ocean surface [32,50–52]. Simply put, a
reduction in SWR accumulation results in greater cooling of ocean water, which promotes
the formation and persistence of ocean fog [12,44]. Hence, the notable contribution of
SWR_preday in this model suggests that it could be valuable for predicting ocean fog
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when there is a low amount of overall solar energy accumulated in the preceding day. The
variable cooling_H denotes the importance of determining the precise timing of persistent
cooling in order to predict ocean fog. Moreover, the variable SWR_6to9h serves as an indi-
cator that the recent utilization of solar energy distribution can be valuable in predicting
ocean fog. This is trustworthy because the variable SWR_6to9h varies over time, enabling
us to pinpoint the exact location of either ocean fog or non-fog.

Figure 5. Variable contributions of input variables identified by the AutoGluon model.

Wind is known to significantly influence the development of ocean fog [53,54]. Specifi-
cally, gentle breezes are considered crucial for the formation of ocean fog, with advection
fog serving as the primary mechanism. However, the evaluation of the ocean fog prediction
model revealed minimal influence of U, V, and WS. This can be inferred from the charac-
teristics of the Himawari-derived ocean fog sample used for training; in order to enhance
the accuracy of detecting ocean fog, only cases of ocean fog lasting for more than 3 h were
chosen, indicating a preference for stable ocean fog instances that have already formed
rather than those in the early stages of development. In short, this refers to a situation in
which ocean fog samples have been predominantly used at a point where the influence
of wind has become insignificant. Furthermore, the P parameter, which serves to indicate
a state of macroscopic atmospheric stability, exhibits a high value of model contribution.
At lower P, the stability of the atmosphere decreases, leading to an increase in turbulent
exchange, a decrease in the stratification of moisture, and a decrease in the presence of
liquid water [9,55–57]. These conditions are not favorable for the existence of ocean fog.
Conversely, high levels of P are advantageous for the formation of both ocean fog and clear
skies. It will be incorporated with other factors in ocean fog prediction models.

4.3. Evaluation of Spatial Distribution

The spatial distribution of the predicted ocean fog was compared to the CALIPSO
data in the region characterized by abundant clear skies and ocean fog areas (Figure 6).
According to the CALIPSO observation, ocean fog with the unknown class was most
prevalent from 34◦N to 36◦N, clear skies from 36◦N to 40◦N, and clouds partially with
ocean fog from 32◦N to 34◦N (Figure 7).

We first conducted a comparison between the spatial distribution of the Himawari-
derived ocean fog and the predicted ocean fog. According to the results from CALIPSO,
the Himawari-derived ocean fog exhibited a mixture of ocean fog and clouds or unknowns
below latitudes of 36◦N, while the skies were clear in the higher latitudes. All ocean fog
prediction models accurately predicted the absence of ocean fog in the clear sky region
(Figures 6 and 7). In the ocean fog-dominant region, both AutoGluon using anal3h and
anal6h predicted the presence of ocean fog. However, the predicted region was smaller
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than the detected ocean fog, with the model using anal3h, classifying a smaller area as
ocean fog compared to anal6h. Conversely, the results obtained by V1KM indicated a
complete lack of prediction for ocean fog in the given region. Despite the presence of
clouds, the AutoGluon models predicted the occurrence of ocean fog in the region from
32◦N to 34◦N. Even though we assume that there is ocean fog beneath clouds, there is no
consistent pattern in the distribution of detected and predicted ocean fog. Therefore, we
compared the spatial distribution of the input variables that contributed to the prediction
of ocean fog in AutoGluon.

Figure 6. Detected and predicted ocean fog maps and highly contributing input variables for the
AutoGluon model in the Yellow Sea at 06 June 2020 05:00 UTC with CALIPSO-based ocean fog
observations acquired at 06 June 2020 05:20 UTC. AutoGluon anal3h and anal6h indicate the ocean
fog prediction results using the forecast data produced at 03UTC and 00UTC as input, respectively. TT
indicates correctly classified ocean fog, TF indicates missed ocean fog, FT indicates falsely classified
ocean fog, and FF indicates correctly classified non-fog (refer to Section 3.3).
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Figure 7. Ocean fog results from the detection and prediction models along with CALIPSO obser-
vations on 6 June 2020, at 05:20 UTC. The unknown class includes cases with two or more of the
following composite characteristics: ocean fog, clear sky, and cloud.

The RH values were predominantly low in the non-fog areas and high in the areas
where significant ocean fog was detected (Figure 6). When comparing the RH to the ocean
fog prediction based on AutoGluon, it was found that some areas with a high RH (~100%)
were predicted to have ocean fog. Further, Figure 6 shows a majority of agreement between
areas predicted to have non-fog and those with a low RH value (<95%). This indicates
that RH plays a crucial role in categorizing non-fog conditions. Regarding variable P, even
though it exhibits lower spatial resolution compared to other variables, the distribution
of high p values and detected ocean fog locations were found to be similar, as reported
in the literature [9,47]. A high level of P, located between 35◦N and 36◦N and 122◦E and
124◦E, corresponds to the predicted location of ocean fog (Figure 6). This confirms that P is
a valuable factor for identifying the presence of ocean fog on a large scale.

The coastal regions located between 34◦N–37◦N and 126◦E–127◦E demonstrate re-
duced VIS levels that correspond to the detected presence of ocean fog. However, in other
regions where ocean fog was detected, there was a consistent tendency to overestimate VIS
levels > 20 km. Hence, it is clear that VIS has drastically decreased in the area between
37◦N and 40◦N, where there were clear skies, compared to the area between 32◦N–36◦N
and 122◦E–125◦E, where there was ocean fog. After analyzing the patterns of the predicted
ocean fog based on AutoGluon and VIS, it was determined that there were no similarities
(Figure 6). Therefore, it can be concluded that VIS was not used to predict ocean fog in this
particular ocean fog case.

While SWR_preday and SWR_6to9h were not provided for the target time, inter-
estingly, these variables showed notable similarities to the detected ocean fog distribu-
tion based on their historical accumulation data. The SWR_6to9h data exhibited low
values (<500 W/m2) that closely corresponded to the detected pattern of ocean fog at
locations 35◦N–36◦N and 122◦N–124◦N (Figure 6). Furthermore, it was discovered that the
SWR_6to9h data exhibited similar patterns to the predicted ocean fog area from AutoGluon
(Figure 6). AutoGluon identified the region between 32◦N–34◦N and 122◦E–126◦E, which
has low values of SWR_preday, as an area of ocean fog. However, because the region
was classified as cloudy by the ocean fog detection model, a reliable verification could
not be performed. Nevertheless, the SWR_6to9h variable in the region of 37◦N–38◦N,
123◦E–126◦E exhibits a low value, despite being classified as clear skies by the ocean fog
detection model. This suggests that the prediction of ocean fog is not exclusively influenced
by the SWR_6to9h variable but rather by a combination of several rules.

Specifically, we compared the CAPLIPSO-based ocean fog case to the ocean fog
detection and prediction results (Figure 7). At 32–34◦N, where there was a mixture of
ocean fog and clouds; the ocean fog detection results were similar to CALIPSO, but the
AutoGluon predicted the area as mostly ocean fog. Even though clouds can obscure the
presence of ocean fog, the area identified as a mixture of ocean fog and clouds by both
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CALIPSO and ocean fog detection indicated a high likelihood of ocean fog beneath clouds.
In the 34–36◦N region, which was a mixture of ocean fog and the unknown class, the ocean
fog detection model classified the region mostly as ocean fog, while the AutoGluon model
predicted it as a mixture of ocean fog and non-fog (Figure 7). RH and P were favorable
for ocean fog in this area, but the SWR accumulation variables, which were the primary
influences in this case, did not show strong favorable patterns for this location, leading
to the speculation that only a small area was predicted to be ocean fog. V1KM made no
predictions for ocean fog in this region. The 36–40◦N region, which had clear skies, was
identified as non-fog in both ocean fog detection and prediction models (Figure 7). These
results confirm that the AutoGluon-based ocean fog prediction model can predict ocean fog
over cloudy areas and be sensitive to the distribution of the SWR accumulation variable.

4.4. Evaluation of Spatiotemporal Distribution

To assess the spatiotemporal continuity and stability of ocean fog prediction models,
we chose cases with low cloud cover. First, we investigated the case of ocean fog detected
at 37–39◦N 124–126◦E on 20 June 2020, at 12:00 UTC (Figures 8 and 9). The detected ocean
fog was large and persistent, with no cloud contamination, movement, or size variation.
However, the ocean fog prediction results demonstrated a different trend, with AutoGluon
not classifying any ocean fog at 12:00 UTC, then predicting an ocean fog patch, which
grew until the lead time reached 3 h, after which it consistently predicted a similar size
patch for the 37–39◦N 124–126◦E location until the lead time reached 6 h. V1KM did not
show noticeable ocean fog areas until the 2 h lead time, and it predicted an ocean fog
patch at the 3 h lead time, with the size of the patch increasing until the 6 h lead time.
Because AutoGluon as well as V1KM went from undetected to detected and expanded
in size for the ocean fog patch, which did not change in size or location, it was assumed
that the contribution of LDAPS input variables to AutoGluon’s prediction in this case
was significant. To investigate the reasons for the prediction trend of ocean fog patches,
we examined the spatial distribution of variables with high contributions in AutoGluon
(Figure 9). The time series distribution of the input variables demonstrated that RH and VIS
followed a similar pattern for the detected ocean fog patches, as did SWR_preday starting
at the lead time of 3 h.
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Figure 8. Timeseries mapping results of ocean fog detection, prediction, and LDAPS V1KM on
20 June 2020, from 12:00 UTC to 18:00 UTC. Analysis indicates the use of analysis data for input
variables, and forecast indicates predicted results with lead times.

In terms of RH, areas with higher levels seemed to be similar to ocean fog areas
determined by Himawari satellite data throughout the observation period. The AutoGluon
and Himawari-derived ocean fog distributions exhibited high similarity after the lead time
of 3 h, but the earlier time periods showed low similarity, even with extremely high RH
values. Specifically, the highest RH value recorded at 12:00 UTC was only at 95%, indicating
that the underestimated RH in LDAPS during the analysis and early lead time periods may
have contributed an impact in the delayed prediction of ocean fog by AutoGluon. Vis has
a similar distribution of low values to RH, but Vis below 1 km becomes noticeable at 3 h
lead time, explaining V1KM’s failure to predict ocean fog at 2 h lead time. Furthermore,
Vis’s low value area is very small in comparison to the AutoGluon-predicted patches of
ocean fog, implying that Vis played no significant role in predicting ocean fog in this case.
The SWR_preday, which represents the previous day’s SWR accumulation, is used as the
same value by all predictions of AutoGluon on that day. Although low values favor the
presence of ocean fog, the spatial distribution differed considerably across all lead times
compared to detected ocean fog cases found at 37–39◦N 124–126◦E. However, there is a
line-shaped region at 34.5◦N with low SWR_preday values, which AutoGluon predicted
as ocean fog with a 2 h lead time. Although it was expected that it would not be used to
contribute to the detailed spatial distribution because it is a static variable, it was discovered
to have a high contribution at certain moments and is used to predict the detailed spatial
distribution of ocean fog based on changes in the contribution degree as the value of other
input variables changes.
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Figure 9. Timeseries mapping results of relative humidity, pressure, visibility, accumulative short-
wave radiance of previous day and from −6 h to −9 h on 20 June 2020, from 12:00 UTC to 18:00 UTC.
Analysis indicates the use of analysis data for input variables, and forecast indicates the data with the
lead times.

We examined trends in ocean fog detection and predictions at Baekneoung-do ASOS
location from 20 June 2020, 13:00 UTC to 21 June 2020, 05:00 UTC, including the period
covered in Figure 8 when ocean fog was reported (Figures 1 and 10). Ocean fog was
observed continuously from 20 June 2020, 13:00 UTC to 21 June 2020, 00:00 UTC, followed
by a 2 h increase in measured VIS, and then non-fog was observed beginning 21 June
2020, 03:00 UTC. More than 80% of the area around Baekneoung-do ASOS was correctly
classified as ocean fog until 20 June 2020, 20:00 UTC, but the Himawari-derived ocean fog
results were unstable between 20 June 2020, 22:00 UTC and 21 June 2020, 00:00 UTC. This
is due to cloud contamination, and as the clouds cleared at 01:00 UTC on 21 June 2020,
the percentage of ocean fog detections decreased in favor of non-fog, consistent with the
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observations. At the time, the AutoGluon prediction model performed well in classifying
the majority of the area around Baekneoung-do ASOS as ocean fog until 21 June 2020, 01:00
UTC in both anal3h and anal6h, after which the percentage of space predicted as ocean
fog gradually declined. However, the dissipation of ocean fog was delayed by about 3 h
compared to the ASOS results, indicating a gap in the different views of ocean fog in the
assessment values. This is an unavoidable error when comparing the observed presence
of ocean fog in one ASOS region to the percentage of ocean fog in a 100 km2 area. Similar
to the results in Figure 8, the predicted area of ocean fog gradually increased from 0% to
100% at 19:00 UTC on 20 June 2020, and then decreased, resulting in a non-fog forecast
around the Baekneoung-do station beginning at 22:00 UTC on 20 June 2020. These results
show that the AutoGluon-based ocean fog prediction model is stable and performs well
regardless of cloud cover.

Figure 10. Timeseries of measured visibility, weather report, and ocean fog detection and prediction
from 20 June 2020, 13:00 UTC to 21 June 2020, 05:00 UTC at the Baekneoung-do ASOS station.
The ocean fog ratio is the proportion of ocean fog coverage within a 100 km2 surrounding area of
the station.

We investigated the case of ocean fog detected at 34–39◦N on 17 August 2020, at 00:00
UTC (Figures 11 and 12). This ocean fog was stationary, unobstructed, yet changing in
size. The temporal progression of the Himawari-derived ocean fog indicates a reduction
in the overall extent of the foggy conditions between 00:00 UTC and 06:00 UTC, with
particular emphasis on the fog along the coastline at 34–37◦N and 125–126◦E. It is shortly
after sunrise in the local time zone (KST: UTC+9h, CST: UTC+8h); therefore, the fog slowly
disperses from the eastern direction as the sun ascends [6]. Unlike the decreasing fog
that was observed, the AutoGluon prediction indicates a sudden and significant decrease
in fog area between 02:00 UTC and 03:00 UTC. Additionally, the V1KM prediction fails
to predict any ocean fog at all. In order to determine the cause of the discontinuity and
lack of predicted ocean fog, the spatial distribution of the variables that have a significant
impact on AutoGluon was examined. Following 03:00 UTC, when the ocean fog patch
predicted by AutoGluon has a consistently organized appearance, ocean fog areas resemble
the distribution of regions with high values of RH. In addition, the predicted fog’s areas
at that time overlaps with the high P regions, demonstrating adherence to the theoretical
basis, and low values of SWR_6to9h. The low VIS values correspond to the predicted ocean
fog locations, but the area is relatively small and concentrated along the coast. Furthermore,
VIS consistently predicts visibility over 40 km regardless of the time of day, implying that

102



Remote Sens. 2024, 16, 2348

VIS overestimates offshore areas and, thus, V1KM may not be a good predictor of ocean
fog offshore.

Figure 11. Timeseries mapping results of ocean fog detection, prediction, and LDAPS V1KM on 17
August 2020, from 00:00 UTC to 06:00 UTC. Analysis indicates the use of analysis data for input
variables, and forecast indicates predictions with the lead times.

In a whole periodic view, since this period is shortly after sunrise, the time series
distribution of SWR_6to9h, where the accumulated SWR value is 0 until 02:00 UTC, exhibits
a comparable pattern to the time series discontinuity observed in the AutoGluon prediction.
It appears that the AutoGluon model excessively depends on the SWR_6to9h variable,
leading to a discontinuity in the time series. This outcome alone might give the perception
that the model is overfitting at a specific time. However, areas with persistent ocean
fog or clouds lasting more than 3 h also have lower values (~0) for SWR_6to9h. This is
reasonable because the cooling effect of longwave radiation creates an optimal condition
for the formation of ocean fog [43,50,51]. Nevertheless, the issue of time series discontinuity
can pose a challenge; it can be mitigated by increasing the number of training cases in
subsequent iterations.
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Figure 12. Timeseries mapping results of relative humidity, pressure, visibility, accumulative short-
wave radiance of previous day and from −6 h to −9 h on 17 August 2020, from 00:00 UTC to 06:00
UTC. Analysis indicates the use of analysis data for input variables, and forecast indicates the data
with the lead times.

As the presence of ocean fog was also recorded at the ASOS station situated on the
Heuksan-do, the time period from 16 August 2020, 19:00 UTC to 17 August 2020, 12:00 UTC
was examined (Figures 1 and 13). This period included the dissipation and formation of
ocean fog. At the Heuksan-do ASOS station, the ocean fog lasted until 16 August 2020, 22:00
UTC, when it transitioned from ocean fog to mist to non-fog with a significant increase in
visibility (Figure 13). Subsequently, the weather conditions remained unchanged, and there
was a significant decrease in measured VIS starting on 17 August at 09:00 UTC (Figure 13).
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Figure 13. Temporal ocean fog related results of measured visibility, weather report, and ocean
fog detection and prediction from 16 August 2020, 19:00 UTC to 17 August 2020, 13:00 UTC at the
Heuksan-do ASOS station. The ocean fog ratio is the proportion of ocean fog coverage within a
100 km2 surrounding area of the station.

The AutoGluon ocean fog predictions indicate that the dissipation occurs after 03:00
UTC on 17 August from both the anal3h and anal6h data, which is likely caused by the
overfitting of the SWR_6to9h variable on the map (Figure 13). Subsequently, the ocean fog
was rediscovered at 11:00 UTC, and prediction for the ocean fog aligned with the ASOS
observations and persisted until 12:00 UTC. At that moment, the lead time for predicting
the occurrence of ocean fog was 5 to 6 h, indicating that the AutoGluon model is effective
in accurately predicting ocean fog conditions within a 6 h timeframe.

5. Conclusions

Although predicting ocean fog is important, it remains a challenging subject for
numerical simulation due to the complexity of the favorable environment. Consequently,
data-driven approaches have been utilized for predicting ocean fog, but they have shown
limited performance and generality due to a lack of field data that reflected spatial and
temporal variability. In this study, we constructed ocean fog cases based on reliable
ocean fog detection results reflecting spatial and temporal variability for the Yellow Sea
region and used automated machine learning to predict ocean fog with a lead time of
up to 6 h. Based on quantitative and qualitative evaluations, the proposed approach
outperformed the operational numerical forecasting model’s visibility-based ocean fog
prediction results. Even though it only occurred in a few cases, the proposed model
accurately predicted ocean fog under cloud cover. This demonstrated its future potential
for removing cloud contamination from ocean fog detection results. According to the
theoretical basis, sea surface temperature and the difference between it and air temperature
were considered important input variables, but it was confirmed that the cumulative values
of past shortwave radiance contributed more to the prediction of ocean fog, demonstrating
the utility of satellite observation data for predicting ocean fog. However, there was a
tendency to overfit satellite-derived variables or numerical model outputs during certain
periods, which deserves to be further explored in the future. We eliminated all winter ocean
fog events as they did not meet the criteria, i.e., lasting more than three hours. In the future,
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if the quality control of satellite-based ocean fog sample extraction is further improved
or differentiated by season, more generalized ocean fog predictions may be possible. In
addition, a more accurate sampling of ocean fog cases can be obtained by conducting a
thorough analysis of the uncertainty and bias of satellite data. Furthermore, training the
model to distinguish not only advection fog but also ocean fog cases caused by cloud
lowering is expected to result in more precise and interpretable ocean fog forecasts, which
will contribute to operational ocean fog forecasts.
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41. Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine Fog: A Review. Atmos. Res. 2014, 143,
142–175. [CrossRef]

42. AutoGluon. AutoGluon Official Web Page. Available online: https://auto.gluon.ai/stable/index.html (accessed on 22 June 2024).
43. Erickson, N.; Mueller, J.; Shirkov, A.; Zhang, H.; Larroy, P.; Li, M.; Smola, A. Autogluon-tabular: Robust and accurate automl for

structured data. arXiv 2020, arXiv:2003.06505.
44. Raj, R.; Kannath, S.K.; Mathew, J.; Sylaja, P.N. AutoML Accurately Predicts Endovascular Mechanical Thrombectomy in Acute

Large Vessel Ischemic Stroke. Front. Neurol. 2023, 14, 1259958. [CrossRef] [PubMed]
45. Song, Y.; Xu, Y.; Chen, B.; He, Q.; Tu, Y.; Wang, F.; Cai, J. Dynamic Population Mapping with AutoGluon. Urban Inform. 2022, 1, 13.

[CrossRef]

107



Remote Sens. 2024, 16, 2348

46. Kim, D.J.; Kang, G.; Kim, D.Y.; Kim, J.J. Characteristics of LDAPS-Predicted Surface Wind Speed and Temperature at Automated
Weather Stations with Different Surrounding Land Cover and Topography in Korea. Atmosphere 2020, 11, 1224. [CrossRef]

47. Kim, B.Y.; Cha, J.W.; Chang, K.H.; Lee, C. Visibility Prediction over South Korea Based on Random Forest. Atmosphere 2021,
12, 552. [CrossRef]

48. Gultepe, I.; Milbrandt, J.; Zhou, B.B. Visibility parameterization for forecasting model applications. In Proceedings of the 5th
International Conference on Fog, Fog Collection and Dew, Münster, Germany, 25–30 July 2010.

49. Elias, T.; Dupont, J.C.; Hammer, E.; Hoyle, C.R.; Haeffelin, M.; Burnet, F.; Jolivet, D. Enhanced Extinction of Visible Radiation Due
to Hydrated Aerosols in Mist and Fog. Atmos. Chem. Phys. 2015, 15, 6605–6623. [CrossRef]

50. Nakanishi, M. Large-Eddy Simulation of Radiation Fog. Bound.-Layer Meteorol. 2000, 94, 461–493. [CrossRef]
51. Wærsted, E.G.; Haeffelin, M.; Dupont, J.C.; Delanoë, J.; Dubuisson, P. Radiation in Fog: Quantification of the Impact on Fog

Liquid Water Based on Ground-Based Remote Sensing. Atmos. Chem. Phys. 2017, 17, 10811–10835. [CrossRef]
52. Guo, L.; Guo, X.; Luan, T.; Zhu, S.; Lyu, K. Radiative Effects of Clouds and Fog on Long-Lasting Heavy Fog Events in Northern

China. Atmos. Res. 2021, 252, 105444. [CrossRef]
53. da Rocha, R.P.; Gonçalves, F.L.T.; Segalin, B. Fog Events and Local Atmospheric Features Simulated by Regional Climate Model

for the Metropolitan Area of São Paulo, Brazil. Atmos. Res. 2015, 151, 176–188. [CrossRef]
54. Penov, N.; Stoycheva, A.; Guerova, G. Fog in Sofia 2010–2019: Objective Circulation Classification and Fog Indices. Atmosphere

2023, 14, 773. [CrossRef]
55. Guo, L.J.; Guo, X.L.; Fang, C.G.; Zhu, S.C. Observation Analysis on Characteristics of Formation, Evolution and Transition of a

Long-Lasting Severe Fog and Haze Episode in North China. Sci. China Earth Sci. 2015, 58, 329–344. [CrossRef]
56. Li, X.N.; Huang, J.; Shen, S.H.; Liu, S.D.; Lu, W.H. Evolution of liquid water content in a sea fog controlled by a high-pressure

pattern. J. Trop. Meteorol. 2010, 16, 409.
57. Yang, L.; Liu, J.W.; Ren, Z.P.; Xie, S.P.; Zhang, S.P.; Gao, S.H. Atmospheric Conditions for Advection-Radiation Fog Over the

Western Yellow Sea. J. Geophys. Res. Atmos. 2018, 123, 5455–5468. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

108



Citation: Wang, S.; Li, X.; Zhu, X.; Li,

J.; Guo, S. Spatial Downscaling of Sea

Surface Temperature Using Diffusion

Model. Remote Sens. 2024, 16, 3843.

https://doi.org/10.3390/rs16203843

Academic Editor: Andrea Storto

Received: 30 August 2024

Revised: 14 October 2024

Accepted: 14 October 2024

Published: 16 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Spatial Downscaling of Sea Surface Temperature Using
Diffusion Model

Shuo Wang †, Xiaoyan Li †, Xueming Zhu *, Jiandong Li and Shaojing Guo

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences,
Sun Yat-sen University, Zhuhai 519082, China; wangsh557@mail2.sysu.edu.cn (S.W.);
lixiaoyan@sml-zhuhai.cn (X.L.); lijd36@mail2.sysu.edu.cn (J.L.); guoshj9@mail2.sysu.edu.cn (S.G.)
* Correspondence: zhuxueming@sml-zhuhai.cn
† These authors contributed equally to this work and should be regarded as co-first authors.

Abstract: In recent years, advancements in high-resolution digital twin platforms or artificial intel-
ligence marine forecasting have led to the increased requirements of high-resolution oceanic data.
However, existing sea surface temperature (SST) products from observations often fail to meet re-
searchers’ resolution requirements. Deep learning models serve as practical techniques for improving
the spatial resolution of SST data. In particular, diffusion models (DMs) have attracted widespread
attention due to their ability to generate more vivid and realistic results than other neural networks.
Despite DMs’ potential, their application in SST spatial downscaling remains largely unexplored.
Hence we propose a novel DM-based spatial downscaling model, called DIFFDS, designed to obtain
a high-resolution version of the input SST and to restore most of the meso scale processes. Experi-
mental results indicate that DIFFDS is more effective and accurate than baseline neural networks, its
downscaled high-resolution SST data are also visually comparable to the ground truth. The DIFFDS
achieves an average root-mean-square error of 0.1074 ◦C and a peak signal-to-noise ratio of 50.48 dB
in the 4× scale downscaling task, which shows its accuracy.

Keywords: spatial downscaling; diffusion model; sea surface temperature; deep learning

1. Introduction

The sea surface temperature (SST) is a crucial climate variable that contributes to
Earth’s climate [1]. SST influences marine ecosystems, ocean–atmosphere interactions, and
oceanic currents. Recent advances in high-resolution digital twin platforms or artificial
intelligence marine forecasting, such as Earth-2 (with kilometer-scale resolution), have led
to an increased demand for high-resolution oceanic data. High-resolution SST data can
reveal more meso- or small-scale dynamic processes, enabling neural networks to learn
more complex patterns.

However, due to the limitations of current observation technology, the resolution
of existing satellite remote sensing SST products often fails to meet researchers’ needs.
This severely restricts the potential applications of SST data in various fields, like deep
learning-based oceanographic models.

To mitigate this issue, oceanographers have begun to use spatial downscaling tech-
niques to obtain higher-resolution SST datasets. By establishing mapping relationships
between low- and high-resolution data, spatial downscaling can generate high-resolution
versions of input low-resolution SST. The downscaled high-resolution outcomes can re-
veal more detailed marine dynamic features, providing a higher spatial resolution for
subsequent applications.

Downscaling techniques can be categorized into dynamic downscaling, statistical
downscaling, and deep learning-based downscaling methods. Dynamic downscaling is
conducted by nesting regional models into low-resolution global models to produce high-
resolution information. For instance, Huang et al. [2] used a variable-resolution option
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within the community earth system model to simulate California’s climate, demonstrating
competitive utility for studying high-resolution regional climatology compared to the
weather research and forecast model. Dynamic downscaling can produce reliable results
because it uses physical equations to describe dynamic processes, but it often entails high
spatial-temporal complexity. In addition to dynamic downscaling, statistical downscaling
methods are also widely employed to establish empirical relationships between large-scale
variables and local-scale parameters to produce high-resolution data [3]. For instance,
Jorge et al. [4] proposed a weather-type downscaling method for multivariate ocean wave
climate based on a statistical downscaling framework. Statistical downscaling faces chal-
lenges in accurately establishing statistical relationships in areas with complex terrain or
unique climate zones, and the quality of the input data affects the precision of the result.

Deep learning has shown impressive prospects in various tasks within marine sci-
ence, including downscaling, prediction, and reconstruction of oceanic elements. Deep
learning-based downscaling originates primarily from super-resolution (SR) technology in
computer vision. Dong et al. [5] proposed the first super-resolution convolutional neural
network (SRCNN). Subsequently, many CNN-based SR models were created, and their
performance improved further [6–10]. The emergence of SR generative adversarial models
such as enhanced SR generative adversarial network (ESRGAN) [11], and SR transformer
models [12,13], also represent significant advances in SR.

Deep learning methods can generate accurate high-resolution data. They can also
automatically learn feature representations from oceanic data, allowing for more effective
feature extraction. These characteristics have prompted many oceanographers to explore
deep-learning downscaling methods. Some researchers use interpolation algorithms, such
as bicubic interpolation or nearest neighbor interpolation, to obtain a low-resolution SST
from a high-resolution SST. They then employ these low-resolution SSTs as the input and the
original high-resolution SST as the target to train neural networks for the spatial downscal-
ing tasks. For instance, Aurelien and Ronan [14] utilized bicubic interpolation to generate
low-resolution input from the operational sea surface temperature and sea ice analysis
(OSTIA) dataset and then employed SRCNN to generate high-resolution targets. Simi-
larly, Khoo et al. developed an SN-ESRGAN neural network to downscale low-resolution
SST into high-resolution ones [15], wherein the nearest neighbor algorithm was used for
generating input data from OSTIA SST. These approaches highlight the efficacy of deep
learning-based spatial downscaling techniques in addressing SST downscaling challenges.
In other scenarios, high-resolution infrared SST data and low-resolution microwave SST are
used to train deep learning models. Izumi et al. trained a CNN-based network with 125 km
resolution input and 25 km resolution ground truth, achieving high-quality results [16].
Zou et al. designed a transformer-based model to obtain a resolution output of 0.02◦, using
the 0.25◦ advanced microwave scanning radiometer 2 SST as input [17].

Recently, diffusion models (DM) have gained significant attention along with the rise
of text-to-image generation models such as Imagen [18] and DALL-E2 [19]. Unlike other
deep neural networks, DMs excel at producing more vivid samples and circumventing
issues like mode collapse, which can be seen in GANs. These advantages have led to their
broad application across various computer vision domains. In SR, diffusion model-based
approaches, exemplified by works such as [20–22] have achieved remarkable results. Nev-
ertheless, studies and practical applications focusing on DM-based SST downscaling are
noticeably scarce. To explore whether the generative capabilities of DM can be harnessed
to restore missing details and processes in low-resolution SSTs, we propose a novel spatial
downscaling method DIFFDS based on diffusion model for image restoration (DIFFIR) [23].
In comparison to the original DIFFIR, DIFFDS redesigns the transformer block by introduc-
ing cross-attention and channel-attention mechanisms. This refinement results in fewer
abnormal textures and more mesoscale details, making DIFFDS more suitable for SST spa-
tial downscaling. We conducted 4× scale downscaling experiments to reveal the superior
performance of DIFFDS over several existing methods, offering a fresh perspective for the
SST downscaling field.
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Our contributions can be summarized as follows:

1. We extended the application of DM to address SST spatial downscaling problems.
The proposed DIFFDS method leveraged the robust distribution fitting and gener-
ation capabilities of DM to reconstruct high-resolution SSTs. Experimental results
demonstrate its effectiveness.

2. To ensure greater consistency between the downscaling results and the original high-
resolution SSTs and to mitigate incorrect texture anomalies in the results, we restruc-
tured the transformer block in DIRformer. This enhancement allows DIFFDS to fully
consider the underlying structure in low-resolution data, thereby resulting in a more
reasonable reconstruction of high-resolution SST contents.

3. DIFFDS outperforms the commonly used CNN, GAN, and regression methods on
most evaluation metrics and closely approximates the visual fidelity of high-resolution
ground truth. This substantiates its superiority over other models.

2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area

As shown in Figure 1, the study sea area extends from 6◦N to 22◦N, 107◦E to 123◦E.
It encompasses the South China Sea, the Luzon Strait, and the Sulu Sea. This domain
experiences a prevailing tropical maritime monsoon climate characterized by warm temper-
atures, seasonal monsoons, and significant rainfall. These conditions induce complex SST
distributions and multi-scale dynamical processes, such as upwelling, mesoscale eddies,
and oceanic fronts.

Figure 1. The study area used in this paper.

2.1.2. SST Data

The SST data employed in this study comes from operational sea surface temperature
and sea ice analysis reprocessed (OSTIA-REP) [24–26] SST dataset, which is a group for high-
resolution sea surface temperature (GHRSST) generated by using optimal interpolation
(OI) on a global 0.05◦ degree grid. As a sister product to the near real-time counterpart
(OSTIA-NRT), the OSTIA-REP distinguishes itself by assimilating satellite data from more
than 25 distinct SST sensors, along with in situ observations sourced from drifting and
moored buoys.

The original data resolution in the study region is 320 × 320 pixels (0.05◦). To ensure
a more acceptable training speed, we resized the original SST data by using the nearest
neighbor downsampling algorithm to obtain a lower-resolution version of the data. The
downsampled 48 × 48 pixels ( 1

3
◦) SST data and 192×192 pixels ( 1

12
◦) SST data are then con-

sidered as the low-resolution input and the corresponding high-resolution target in the 4×
downscaling experiments.
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In order to distinguish the land and sea points, the SST values over the land points
are first set to 0. Then, since all SST values in the dataset are less than 35, the original SST
values are normalized to SST’ within the data range [−1, 1), according to Equation (1). This
normalization preprocessing is conducted to ensure fairness in the comparison between
the proposed DIFFDS method and other algorithms in the experimental results:

SST′ = 2 × (
SST
35

)− 1 (1)

The period of the experiment dataset covers from 1990 to 2021. Data from 1990 to
2019 are used as the training set, data within 2020 are the validation set, and the data from
March 2021 to February 2022 serve as the test set.

2.2. Diffusion Model

Generative models, such as GANs and variational autoencoders (VAEs), are commonly
used to produce highly realistic samples but inherently come with limitations. GANs, for
instance, can encounter challenges in training stability and sampling diversity unless
carefully designed optimization strategies are employed. In addition, these GAN methods
may easily suffer from mode collapse [27]. This phenomenon often occurs in the training
process of producing similar or identical samples, which fails to capture the full diversity
of the data distribution. It typically happens when the model converges to a limited set of
data patterns, ignoring the variety of the actual data, which will decrease the generalization
ability of the model and affect its practical application effect. The results generated by VAE
may lack detailed information, often leading to blurred results [28].

In contrast, recent advancements in diffusion models (DMs) have demonstrated that
employing principled probabilistic diffusion modeling can yield high-quality mapping from
randomly sampled Gaussian noise to complex target distribution, without suffering from
mode collapse or instabilities. The foundations of the diffusion model can be traced back to
the pioneering work in 2015 [29], which was inspired by nonequilibrium thermodynamics.
This concept has been further developed and popularized in subsequent works, such
as denoising diffusion probabilistic models (DDPM) [30], improved denoising diffusion
probabilistic models (IDDPM) [31] and denoising diffusion implicit models (DDIM) [32].

Taking DDPM as an example, DMs typically encompass two processes: the forward
diffusion process and the reverse diffusion process, as shown in Figure 2, both of which are
characterized by a T-step Markov chain.

Figure 2. The forward and reverse diffusion processes of diffusion model, where q(xt|xt−1) means the
forward process that transforms distribution q(xt−1) to q(xt) and pθ(xt−1|xt) represents the reverse
process that transforms distribution pθ(xt) to pθ(xt−1).
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The forward diffusion process transforms the start data distribution into a final Gaus-
sian distribution. Firstly, the initial data x0 are defined, and then Gaussian noise is pro-
gressively added in each timestep until it reaches pure Gaussian noise xT ∼ N (0, I)
at timestep T by T iterations. During each mid-timestep t, noisy data xt are generated
with the same shape as x0. The noise incorporated in the diffusion process is specified
by a predefined sequence of β1:T ∈ (0, 1]T . Denote αt = 1 − βt, αt = ∏T

n=1 αn, and
β1 < β2 < . . . < βt(t ∈ [1, T]), each iteration of the forward diffusion process can be
described as follows:

q(xt|xt−1) = N (xt;
√

αtxt−1, βtI) (2)

where the process that transforms distribution q(x0) to q(xt) can be condensed into one
single step:

q(xt|x0) = N (xt;
√

αtx0, (1 − αt)I) (3)

Thus, xt can be directly sampled as follows:

xt =
√

αtx0 +
√
(1 − αt)ξ, ξ ∈ N (0, I) (4)

Meanwhile, the reverse process focuses on learning the inverse of the forward diffusion
process and generating a distribution that resembles real data distribution. The reverse
diffusion process first samples a random noise xT ∈ N (0, I) and then gradually denoises it
until it reaches a high-quality output x0. Define pθ(xt) as the data distribution at timestep t
in the reverse process, and a neural network εθ(xt, t) is involved in predicting the uncertain
variables, where θ represents the network parameters. Each iteration of the reverse diffusion
process can be described as follows:

pθ(xt−1|xt) = N (xt−1; μθ(xt, t), σ2
t I) (5)

where μθ(xt, t) is the mean value computed using Equation (6):

μθ(xt, t) =
1√
αt
(xt − εθ

1 − αt√
1 − αt

) (6)

and σ2
t is the variance value calculated using Equation (7):

σ2
t =

1 − αt−1

1 − αt
βt (7)

In addition, there is only one unknown variable that should be learned in the reverse
process. DMs use a neural network εθ(xt, t) to estimate it. To train the model of εθ(xt, t), a
timestep t and a noise ε ∈ N (0, I) are randomly sampled to generate noisy data xt with
the given real data x0, according to Equation (2). Then, the entire network parameters are
optimized by the following loss function:

Loss = Ex0,ε,t

[∥∥ε − εθ(xt, t)
∥∥2

2

]
(8)

Substituting xt, i.e., Equation (4) into Equation (8), yields the following:

Loss = Ex0,ε,t

[∥∥ε − εθ(
√

αtx0 +
√
(1 − αt)ξ, t)

∥∥2
2

]
(9)

In the DMs designed for single-image SR, some models directly generate high-resolution
images in the image domain [20], carrying out the forward and reverse diffusion process on
the input pixel space. These models demand excessive iteration steps (about 100–1000 steps)
on large-scale denoising models to precisely capture data details, which consumes massive
computational resources [23]. Furthermore, directly conducting the diffusion process in a
high-dimensional data space requires a large amount of GPU memory and training times.
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Other models conduct diffusion processes in the latent space. DMs are utilized to
generate low-dimensional latent variables. These latent variables are then employed for
SR reconstruction, like [33] and DIFFIR. These models offer efficiency advantages by
circumventing diffusion processes in high-dimensional data spaces. For the sake of training
resources and efficiency, we selected DIFFIR as the base architecture model.

2.3. DIFFDS Method

Computer vision SR tasks focus mainly on the diversity of visual perception. However,
when using DMs for SST spatial downscaling, the focus is more on accurately generating
meso- or small-scale dynamic SST processes than on their diversity. This is crucial because
the downscaled high-resolution SST data may later be used for other downstream tasks
like forecasting. In such cases, inaccurate processes can negatively impact the validity of
task results.

However, applying the original DIFFIR to SST spatial downscaling can lead to in-
authentic details in the downscaled results, resulting in poor subjective and objective
evaluations. To ensure that the downscaled results are more consistent with the destination
high-resolution SST data and to enhance the accuracy of the reconstructed data, the DIFFDS
method is proposed.

DIFFDS consists of three stages: the first stage, training a dynamic IRformer (DIRformer)
and a compact prior extraction network (CPEN); the second stage, training the denoising net-
work and finally, the third stage, also the inference stage, where the trained networks are used
for the downscaling task. The workflow (illustrated in Figure 3) of DIFFDS employs DDPM
to generate a guidance vector called compact IR prior representation (IPR) and then utilizes
IPR to direct the DIRformer in the downscaling process. During the training phase, CPEN
and DIRformer are first trained. The trained CPEN is integrated into the forward diffusion
process of DDPM to train the denoising network. Once the denoising network is trained, the
IPR can be predicted through the reverse sampling process of DDPM. Subsequently, guided
by the predicted IPR, the pre-trained DIRformer performs the downscaling process.

Figure 3. (a) illustrates the first training stage, detailing the training processes of CPEN and DIRformer.
(b) depicts the second training stage, which is also the forward process of DDPM. The 3rd stage
(c) shows the inference process of DIFFDS.
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In DIFFDS, we redesign the structure of the transformer block in DIRformer by incor-
porating cross-attention and channel-attention mechanisms. Channel attention focuses on
increasing the weight of certain significant feature channels [34] while suppressing others
within the data. This selective enhancement allows DIFFDS to maintain some SST texture
anomalies. Additionally, cross-attention enables DIFFDS to learn the underlying distri-
bution structures in low-resolution SSTs. This ensures that the produced high-resolution
SST closely aligns with the original data, minimizing deviations. These adjustments have
markedly improved the performance of the model. Specifically, DIFFDS has primarily
modified the transformer block, while keeping the rest of the network framework consistent
with DIFFIR. Figure 4 depicts the entire architecture.

Figure 4. Architecture details of DIFFDS. (a) CPEN, (b) Denoising network, (c) DIRformer, (d) Trans-
former block.

2.3.1. CPEN

With the input of high-resolution SSTs, CPEN learns to generate a low-dimensional
IPR, which can guide the DIRformer in the SST downscaling process.

As described in Figure 4a, the CPEN is constructed by a series of residual blocks,
convolution layers, and linear layers. First, the original high-resolution SST training data are
processed by a pixel unshuffle layer to facilitate training speed. Then, a 3 × 3 convolution
layer and a Leaky ReLU are applied to extract the feature map. After that, multiple residual
blocks are utilized to calculate and refine feature representations from the current feature
map. Finally, IPR is produced through the transformation of an adaptive pooling layer and
several linear and Leaky ReLU layers. The CPEN process can be described as follows.

IPR = CPEN(SSTHR) (10)

2.3.2. DIRformer

Under the guidance of IPR, DIRformer accepts the input low-resolution SST and
then generates the corresponding high-resolution versions (as shown in Figure 3a). The
DIRformer is constructed by stacking transformer blocks in a U-Net structure. Each of
these transformer blocks comprises a modified dynamic multi-head transposed attention
(DMTA) part and a dynamic gated feed-forward network (DGFN) module (Figure 4d).
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After the CPEN process, IPR information is obtained, denoted as X0. As provided for
dynamic modulation parameters, X0 is designed into the DMTA of DIRformer to integrate
the current feature map with the high-resolution SST feature information and guide the
downscaling process of the DIRformer. As shown in Equation (11), F is the input feature
map of DMTA:

F′ = W1
l X0 � Norm(F) + W2

l X0 (11)

where � indicates element-wise multiplication, Norm denotes layer normalization, Wl
represents linear layer, and F′ are the output feature map, respectively.

Next, the original DIRformer employs a transposed multi-head attention mechanism
(a kind of efficient muti-head attention [35]) to process F′, so the DMTA process of DIFFIR
is as follows:

F̂ = TransposedAttn(F′) + F (12)

To improve its performance, a 3 × 3 depth-wise convolution layer is introduced to
capture more intricate and detailed spatial features. The extracted feature map is then
separately fed into a channel-attention layer and a cross-attention layer. In practice, the
channel attention layer is utilized to enhance the representational power of neural networks
by emphasizing informative features in vital channels while suppressing incorrect or noisy
information channels, allowing DMTA to facilitate more effective utilization of the guidance
information generated by the DDPM. Meanwhile, the cross-attention layer is added to fuse
low-resolution SST context information and the current feature map. This enhancement
can make the results more consistent with the original SST structure, and avoid generating
abnormal dynamical processes. Finally, the results are integrated using a 1 × 1 convolution
layer. The DMTA process of DIFFDS can be described as follows:

F′′ = TransposedAttn(F′) (13)

F̂ = Wc(CrossAttn(W1
d (F′′)) + ChannelAttn(W2

d (F′′))) + F (14)

where Wc and Wd are the convolution layer and the depth-wise convolution layer.
In the DGFN process, the same feature map F′ can be obtained by Equation (11), which

integrates IPR information with the DGFN’s input feature map F. Then, a 1 × 1 convolution
unit is exploited to aggregate information from different channels. Next, a 3 × 3 depth-wise
convolution unit is added to aggregate information from spatially neighboring pixels.
Besides, the gating mechanism is adopted to enhance information encoding. The overall
process of DGFN is defined in Equation (15), F̂ is the output of DGFN.

F̂ = GELU(W1
d W1

c F′)� W2
d W2

c F′ + F (15)

2.3.3. Denoising Network

The structure of the denoising network consists of multiple stacked linear layers and
Leaky ReLU layers (Figure 4b). It concatenates the noisy IPR and the reference conditional IPR
in the channel dimension as inputs and then produces the previous timestep noise as output.

2.3.4. Training and Inference

The training of DIFFDS incorporates two phases: the first phase trains CPEN and
DIRformer, and the second phase is the forward diffusion process of DDPM, which trains
the denoising network.

In the first stage, as listed in Algorithm 1, CPEN and DIRformer are trained together,
which can make CPEN learn to transform high-resolution SST data into IPR and force
DIRformer to reconstruct high-resolution SST guided by IPR. For each pair of low- and
high-resolution SST data, the high-resolution SST is sent to CPEN to obtain IPR, after which
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IPR and low-resolution SST are sent to the DIRformer to generate downscaled SST. The
training loss function in phase 1 is defined as:

Loss1 =
∥∥SSTHR − SSTSR

∥∥
1 + Ladv(SSTHR, SSTSR) (16)

where SSTHR and SSTSR are the ground-truth and downscaled high-resolution data, respec-
tively.

∥∥ · ∥∥1 denotes the L1 norm, and Ladv is the adversarial loss used in Real-ESRGAN [36].

Algorithm 1 Training CPEN and DIRformer

Input: low-resolution SST SSTLR and high-resolution SST SSTHR
1: for SSTLR, SSTHR do
2: X0 = CPEN(SSTHR)
3: SSTSR = DIR f ormer(X0, SSTLR)
4: Calculate and optimize Loss1
5: end for if Loss1 converges
Output: Trained CPEN and DIRformer

Phase 2 (as shown in Algorithm 2) is the forward diffusion process of DDPM. In this
stage, the denoising network is trained to predict noise. After preparing parameters like αt
and αt, for each pair of low- and high-resolution SST data, the pre-trained CPEN extracts
IPR X0 from high-resolution SSTs. Then, Xt is sampled by the forward diffusion equation,
according to Equation (4). After substituting variables X0 and Xt into Equation (4), the
formula is obtained as follows:

Xt =
√

αtX0 +
√
(1 − αt)ξ, ξ ∈ N (0, I) (17)

where the αt is the same parameter in Equation (4), and ξ is a Gaussian noise sampled from
N (0, I).

Algorithm 2 Training DDPM

Input: Trained CPEN, β1:T ∈ (0, 1]T , low-resolution SST SSTLR and high-resolution SST SSTHR
1: Init: αt = 1 − βt, αt = ∏t

n=1 αn
2: for SSTLR, SSTHR do
3: X0 = CPEN(SSTHR)
4: Sample a t ∈ [1, T]
5: Sample Xt
6: Xc = CPEN(Bicubic(SSTLR))
7: Calculate and optimize Loss2
8: end for if Loss2 converges
Output: Trained Denoising network

Using bicubic interpolation, the SSTLR data are upsampled to the same resolution as
SSTHR, after which it is sent to CPEN to earn condition IPR Xc. This IPR Xc functions as
conditional information, facilitating the denoising network’s capability to accurately forecast
noise patterns. Finally, the parameters of the denoising network can be updated according to
the DDPM loss function. In Loss Equation (18), εθ is the denoising network, ε is the Gaussian
noise sampled from N (0, I), and t is the timestep, Concat is the concatenation step:

Loss2 =
∥∥ε − εθ(Concat(Xc, Xt), t)

∥∥2
2 (18)

For the inference process as illustrated in Algorithm 3, a random noise sample is
initialized. Eventually, the reverse diffusion process Equation (19) is deprived of the
predicted IPR X0, which contains the corresponding high-resolution SST information.

Xt−1 =
1√
αt
(Xt − εθ(Concat(Xc, Xt), t)

1 − αt√
1 − αt

) + ξ

√
1 − αt−1

1 − αt
βt (19)
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where βt, αt, αt are the same parameters in Equations (6) and (7), t is the sampled timestep,
and εθ is the denoising network.

Subsequently, X0 and the low-resolution SST input are passed to the pre-trained
DIRformer for spatial downscaling, and then the DIRformer outputs the spatially down-
scaled high-resolution SST data.

Algorithm 3 Inference

Input: Trained CPEN, DIRformer, εθ , β1:T ∈ (0, 1]T , low-resolution SST SSTLR
1: Init: αt = 1 − βt, αt = ∏t

n=1 αn
2: for SSTLR do
3: Xc = CPEN(Bicubic(SSTLR))
4: Sample Xt ∈ N (0, I)
5: for t = T, . . . , 1 do
6: Sample ξ ∈ N (0, I) if t > 1 else ξ = 0
7: Update Xt−1 by Equation (19)
8: end for
9: SSTSR = DIR f ormer(X0, SSTLR)
10: end for
Output: Downscaled results SSTSR

2.4. Evaluation Metrics

To thoroughly evaluate the quality and accuracy of the proposed DIFFDS method as
well as other baseline models, we have selected a comprehensive set of objective evaluation
metrics, including root mean square error (RMSE), mean absolute error (MAE), Bias, peak
signal-to-noise ratio (PSNR) and temporal correlation coefficient (TCC). These metrics
will measure the differences between spatial resolution improved SST values and actual
high-resolution SST values.

In this paper, after obtaining the downscaling results, the data are first denormalized
from the range (−1, 1) back to the normal range. RMSE, Bias, MAE, and TCC are calculated
directly using these denormalized data. To calculate the PSNR, the data are first normalized
to (0, 1) by dividing by 35.

3. Experiments and Results

3.1. Experiments Design

Based on the dataset in Section 2.1.2, we conduct 4× scale downscaling experiments.
For comparison, the selected baseline models include Lasso regression, Bicubic, RCAN,
ESRGAN and DIFFIR. All models were trained on the aforementioned OSTIA dataset.
Since the SST high-resolution results obtained by Bicubic interpolation do not completely
align with the edges of the ground truth, we calculate the metrics related to Bicubic using
only the overlapping portion of the Bicubic results and the ground truth.

Regarding DIFFDS, in training stage 1, we set the number of transformer blocks per layer
in DIRformer to [4, 6, 6, 8], and the number of attention heads per layer to [1, 2, 4, 8]. The
number of resblocks in CPEN is set to 6. In training stage 2, the reverse sampling steps of
DDPM are set to 200, with a beta scheduler configured to linear, and beta start and beta
end values (the β1 and βT in Section 2.2) set to 0.0001 and 0.02, respectively. The timestep
spacing algorithm is set to leading [37]. The learning rate for both stage 1 and stage 2
starts at 5 × 10−5, with a cosine scheduler for the learning rate, and the batch size is 16 for
both phases.

For the training of DIFFDS, we utilized an NVIDIA RTX 4070Ti graphics (Lenovo,
Beijing, China) card equipped with 12 GB of memory. Under these specific hardware
conditions, the training process necessitated a total of 400 epochs. Each epoch required
approximately 4 min to complete. Upon the completion of the training phase, the model’s
inference time for performing downscaling operations was recorded to be around 1.8 s.
While this setup was sufficient to accomplish training objectives, we observed that training
speeds could be further optimized. Based on our practical experience, we recommend
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employing a graphics card with at least 16 GB of memory. This would likely result in more
efficient training processes and a reduced overall training time.

3.2. Results
3.2.1. Metrics Evaluation

As listed in Table 1, the proposed DIFFDS method outperforms other models across
various objective evaluation metrics. It achieves an average RMSE of 0.1074 ◦C, an average
Bias of −0.0043 ◦C, an average MAE of 0.0654 ◦C, an average PSNR of 50.48 dB and a TCC
of 0.9610, demonstrating high precision and effectiveness.

With respect to RMSE, DIFFDS excels in all aspects, including average, maximum, and
minimum values. RCAN, ESRGAN, and DIFFIR followed with a 0.02 ◦C gap. Bicubic per-
forms worse than the above models. The Lasso regression method shows poor performance
with a mean of 0.3347 ◦C, which shows a noticeable gap compared to other models. This
highlights the effectiveness of deep learning models in addressing downscaling problems.

For MAE, DIFFDS again takes the lead in average, maximum, and minimum values,
followed by RCAN. The differences among the remaining deep learning models are rela-
tively insignificant. Lasso regression and Bicubic show a significant disparity compared
to deep learning models on this metric. Regarding Bias, DIFFIR achieves the best average
value of −0.0003 ◦C, ESRGAN performs the best in maximum values at 0.0008 ◦C, and
RCAN performs the best in minimum values at −0.0023 ◦C, respectively.

As for PSNR, DIFFDS consistently delivers the best results in average, maximum, and
minimum values, demonstrating that the downscaling results have very low noise. It is
followed by ESRGAN, RCAN, and DIFFIR, while Lasso regression and Bicubic lag behind.

In terms of TCC, DIFFIR achieves the highest value of 0.9634, indicating that the
downscaled results exhibit good temporal consistency compared to the true values. DIFFDS,
ESRGAN, RCAN and Lasso have lower TCC values than DIFFIR, at 0.9610, 0.9536, 0.9444
and 0.9615, respectively. Bicubic displays the lowest TCC, around 0.88. Although DIFFDS
shows a slightly reduced TCC compared to DIFFIR, it still outperforms other benchmark
models. An obvious fact is that Lasso regression’s TCC is comparable to most deep
learning models, indicating that Lasso has lower accuracy regarding reconstruction error
and reconstruction quality, but has stronger temporal correlation and can capture the
temporal sequence characteristics of SST. Deep learning models, on the other hand, have
higher accuracy in reconstructing SSTs in the spatial dimension but have weaker temporal
correlation, which may be because deep learning models focus more on capturing spatial
features and, to some extent, neglect the information in the temporal dimension.

In general, the improved DIFFDS presents further performance improvements in most
metrics, highlighting its superiority over DIFFIR and other baseline models.

Figure 5a shows that DIFFDS surpasses other neural networks in terms of the maxi-
mum value, min value, median and upper and lower quartiles. This is consistent with the
results presented in Table 1.

The evaluation in Figure 5b,c is largely similar to that in Figure 5a, showing the
consistency of DIFFDS across different metrics.

For the Bias box plot in Figure 5d, DIFFIR and DIFFDS outperform other models
in terms of the median, and the upper and lower quartiles. ESRGAN performs best in
maximum values, while RCAN excels in minimum values. Regarding the data distribution
between the maximum and minimum values, and the interquartile, Lasso, DIFFDS, and
DIFFIR take the lead. RCAN and ESRAGN have relatively poor performance, whereas
Bicubic displays the largest fluctuations. As for DIFFDS, with its modified network archi-
tecture, although it is slightly inferior to DIFFIR, it still outperforms most of the comparison
models. In the TCC plot, DIFFIR surpasses the other models in maximum, minimum,
and median values. DIFFDS and Lasso follow closely, showing only minor differences
from DIFFIR. This indicates these models’ results have good temporal consistency with
the ground truth and are capable of accurately capturing SST change trends over time.
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ESRGAN has relatively poor TCC distributions, while RCAN and Bicubic perform the
worst in terms of minimum and median values.

Figure 5. The maximum, minimum, median, both upper and lower quartiles of each metric, (a) RMSE,
(b) MAE, (c) PSNR, (d) Bias, for each method. (e) is the TCC plot for each point in the experiment
sea area.

Table 1. The average/maximum/minimum value of RMSE, MAE, Bias, PSNR, and the value of TCC.

Model RMSE (◦C) MAE (◦C) Bias (◦C) PSNR (dB) TCC

Lasso 0.3347/0.3644/0.3196 0.1506/0.1692/0.1405 0.0113/0.0155/0.0056 40.60/41.19/39.69 0.9615

Bicubic 0.1891/0.1750/0.0762 0.1206/0.1645/0.0753 −0.0039/0.0264/−0.0282 45.44/50.06/42.50 0.8858

ESRGAN 0.1259/0.1824/0.0819 0.0763/0.1109/0.0474 −0.0138/0.0008/−0.0312 48.99/52.61/45.67 0.9536

RCAN 0.1224/0.1875/0.0747 0.0735/0.1136/0.0442 0.0139/0.0329/−0.0023 49.39/53.41/45.42 0.9444

DIFFIR 0.1269/0.1750/0.0761 0.0770/0.1105/0.0495 −0.0003/0.0040/−0.0066 48.77/53.04/45.82 0.9634

DIFFDS 0.1074/0.1734/0.0567 0.0654/0.1027/0.0331 −0.0043/0.0023/−0.0145 50.48/55.87/46.10 0.9610

3.2.2. Analysis of Temporal Trends

The temporal variations in the metrics reveal similar general trends across deep
learning models. In particular, neural network models tend to perform relatively poorly
during spring and summer, while their performance improves in autumn and winter. This
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seasonal pattern may be attributed to the influence of the East Asian monsoon in the study
area. During the spring and summer, the ocean–atmosphere interaction intensifies and
is more active than in autumn and winter. Factors such as heat flux, evaporation, and
advection processes on the sea surface can cause rapid changes in SST. Additionally, warm
seasons are often accompanied by stronger solar short-wave radiation and convective
activities, resulting in larger SST fluctuation. These fluctuations pose a challenge for model
representations, contributing to the relatively poor performance of neural network models
during this period.

Unlike spring and summer, SST changes in autumn and winter are relatively stable and
exhibit simpler textures. This makes it easier for deep learning models to capture accurate
SST representations and features, resulting in better performance during these seasons.

The Lasso regression method exhibits a relatively stable trend without showing signif-
icant seasonal variations, compared with other methods. This stability may be attributed to
its regularization property, which reduces model complexity and results in more consistent
performance across different seasons.

The results for DIFFIR are not ideal due to the lack of specialized adjustments for
SST spatial downscaling tasks (Figure 6a). Specifically, DIFFIR performs worse during the
summer period compared to other models, as SST fluctuations are more significant during
this time, making it more challenging for DIFFIR to learn. In such cases, the unmodified
network architecture is more prone to generate some erroneous content, resulting in larger
RMSE values. For ESRGAN, its RMSE is slightly smaller than that of DIFFIR. This is because
ESRGAN has a relatively simple generator architecture, and incorporates adversarial and
perceptual losses. These factors compel GAN to balance different losses during the training
process. Consequently, the generated content may contain more detailed textures, but
the RMSE remains relatively high. RCAN, which utilizes a channel-attention mechanism,
performs better than ESRGAN and DIFFIR in terms of RMSE. However, its relatively simple
network structure limits its performance.

The performance of DIFFDS stands out, as it achieves the lowest average, maximum,
and minimum RMSE values. The overall RMSE curve reveals that DIFFDS consistently
achieves the lowest RMSE on most dates. However, during the latter part of autumn and
winter (November 2021–March 2022), RCAN tends to perform better. This suggests that
during periods of relatively stable SST variations and simple SST distribution structures,
the downscaling performance of DIFFDS is not as pronounced. Other models can also
achieve similar results.

DIFFDS generally exhibits lower error than DIFFIR, suggesting that the improved
network structure effectively corrects the downscaling results. For ESRGAN, its RMSE
gap during the autumn and winter seasons is relatively higher than that of other models,
differing from the performance of RCAN. This discrepancy may be attributed to its inherent
characteristics, making it less sensitive to data variations in these seasons.

The results for MAE (Figure 6b,c) are similar to RMSE: DIFFDS achieves the best
results on most dates. However, in autumn and winter, the differences between DIFFDS
and other models tend to be small or even reverse, suggesting that the performance gap
narrows during these seasons. The Lasso regression method consistently performs the
worst on these metrics.

In terms of Bias variations (Figure 6d), DIFFIR shows the most stable trend, closely
followed by DIFFDS and Lasso. This indicates that the predictions of these methods are
statistically close to the true values, without systematic overestimation or underestimation
of SST over long-term averages. The errors are balanced in both positive and negative
directions, resulting in a very small overall error trend. In contrast, RCAN, ESRGAN and
Bicubic exhibit greater fluctuations in Bias variation, and their numerical values for Bias
are comparatively poorer.
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Figure 6. The time series variations for each metric, (a) RMSE, (b) MAE, (c) PSNR, (d) Bias, from
March 2021 to February 2022. The text highlighted in blue marks the date of the dotted line. The
results of these two dates will be used in the discussion section.

3.2.3. Correlation Analysis

Analysis of the correlation distribution across all data points revealed that the results
from these neural network models closely approximate the true values (Figure 7). The
fitting curves of baseline models almost coincide with the 1:1 line, except for Lasso, which
exhibits a relatively noticeable deviation. This suggests that the vast majority of data
point predictions from the aforementioned models are accurate, and the deep learning
spatial downscaling methods can effectively correct the deviation between low- and high-
resolution SST points. Notably, DIFFDS achieves a correlation coefficient of 0.9981, which
is the closest to 1, reflecting the highest degree of consistency between its results and the
ground truth SST values. The other baselines follow closely, with correlation coefficients
very similar to that of DIFFDS, indicating their excellent performance as well.

For Bicubic and Lasso regression methods, the distribution of data points (especially
between 22 ◦C and 32 ◦C) shows a more pronounced deviation compared to other methods.
This is because these methods do not adequately consider the spatial distribution relation-
ship of each data point with its surrounding data points during the downscaling process,
resulting in larger errors. For other deep learning models, the distribution of data points
between 28 ◦C and 30.5 ◦C shows a noticeable deviation, while those above 30.5 ◦C align
well. This could be because SST data points above 30.5 ◦C make up a smaller proportion,
specifically 4 percent of the total data points according to our computation. Additionally,
SST data points above 30.5 ◦C tend to occur in more homogeneous regions (e.g., consistently
warm waters), which are easier for the neural network to learn. In contrast, data points
in the 28–30.5 ◦C range constitute a larger portion, accounting for 64 percent of the total
data points. These SST points are often significantly impacted by monsoons, exhibiting
distinct fluctuations during different periods, making reconstruction quite challenging.
Consequently, the number of points where the downscaling results do not match the true
values is relatively higher, leading to greater discrepancies in the scatter plot.
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Figure 7. (a–f) The density scatter plots of each model.

Furthermore, we randomly selected a 100-day sample subset from the test set to
calculate the correlation coefficient, repeating this process 100 times. As shown in the
following Table 2, the correlations are similar to those discussed above. Although the
correlation coefficient differences between our DIFFDS method and other algorithms are
relatively small, it obviously demonstrates that these methods can reserve the large-scale
structure from the LR inputs. The reconstruction quality of small-scale structures can
evaluate the effectiveness of different algorithms in terms of RMSE, MAE, and PSNR
metrics, as shown in Table 1.

Table 2. The correlation coefficient test results.

Model Mean Correlation Standard Deviation

Lasso 0.9821 0.0269
Bicubic 0.9942 0.0019

ESRGAN 0.9973 0.0012
RCAN 0.9974 0.0010
DIFFIR 0.9978 0.0011
DIFFDS 0.9981 0.0008

4. Discussion

4.1. Specific Samples Examination

In this section, several samples are selected to analyze the downscaling results and
to compare the differences among those models. The first sample is on 29 June 2021,
belonging to the summer season (Figure 8). The SST distribution during this period is
relatively complex, with many dynamic processes. As shown in the previous time series
variations in metrics, summer samples tend to accentuate the differences between models.
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Figure 8. The SST distribution on 29 June 2021 of each model, these eight subplots individually
display the high-resolution SST, low-resolution SST, and the downscaled results of each model along
with their RMSE (◦C).

Firstly, in terms of RMSE, DIFFDS and ESRGAN emerge as the top two models, with
the others trailing behind. From Figure 8, we can find that all methods can reconstruct the
basic patterns of high-resolution SSTs. However, upon closer inspection, RCAN exhibits
relatively blurry and smooth SST structures, similar to Bicubic, whereas ESRGAN, DIFFIR,
and DIFFDS reveal more complex reconstructed SST structures. This disparity can be
attributed to the fact that models using single L1 loss as a loss function may perform
well in metrics such as RMSE and PSNR. However, L1 loss tends to erase high-frequency
information [38] during training, making the final downscaled high-resolution SST appear
like the smoothed version of ground truth.

In contrast, ESRGAN uses additional adversarial and perceptual losses during training,
which enables the generation of richer information while suppressing RMSE and other
metrics. The results of the Lasso regression also exhibit relatively complex patterns, but
they are not consistent with the true values because the Lasso method does not adequately
consider the spatial distribution relationship of each data point with its surrounding data
points during the downscaling process, resulting in a higher RMSE.
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Generative diffusion models such as DIFFIR, and DIFFDS utilize their distribution
fitting capabilities to produce realistic high-resolution SST samples. These models are easier
to train than GANs. As a result, they perform better across various metrics in the final
downscaled results, showing their potential to generate high-quality SST samples.

Based on the Bias map (Figure 9), the relatively low errors observed in all deep
learning models across most marine regions underscore their ability to tackle spatial
downscaling problems. However, an acute bias area emerges near the land, specifically
between 107◦E–114◦E and 10◦N–17◦N, where the models’ performance is compromised.
As seen in Figure 8, the SST variation in this region is large, indicating a higher level of
downscaling complexity compared to other areas. This leads to large deviations in the
downscaled results. For Lasso regression, because it did not reconstruct the high-resolution
SST features well, its bias regions are relatively larger compared to those of the deep learning
model. Compared to Bicubic, deep learning models demonstrate greater accuracy across
most areas due to their complex structure and powerful learning capabilities, resulting in
lower bias.

Figure 9. (a–f) The absolute Bias map between ground truth and each deep learning model on 29
June 2021. The red box displays the intense Bias area.

As shown in Figure 10, the region from 10◦N to 18◦N and 107◦E to 115◦E is selected to
examine at a basin scale. Although some discrepancies exist, the DIFFDS-generated results
more accurately capture most of the dynamic processes, yielding superior downscaled
results. This improvement can be attributed to the adjusted network architecture, which
leverages the guidance information provided by the diffusion model while also considering
the overall SST distribution structure inherent in low-resolution SSTs.

The original DIFFIR without cross-attention primarily focuses on the guidance infor-
mation from DDPM, somewhat neglecting the overall SST structure. This oversight results
in poor SST structures. For the DIFFIR results (Figure 10), erroneous SST content is shown
in the red-boxed area of Figure 10g. These textures cannot be found in the red-boxed area of
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the input low-resolution SSTs (Figure 10a). Conversely, the corresponding area in DIFFDS
is corrected with no obvious anomalous textures. This enhanced structural effectiveness
can be directly attributed to the introduction of channel-attention and cross-attention. For
ESRGAN, although it generates rich details in downscaled high-resolution SSTs, it still fails
to recover certain features, such as the high-temperature area in the block box of subplot
Figure 10e.

Figure 10. The results on 29 June 2021 zoomed from 9◦N–17◦N and 108◦E–116◦E. The red box and
black box areas display erroneous SST contents.

Next, we analyze another sample on 1 August 2021. The overall SST pattern on this
day is relatively simpler, so the reconstruction task for all deep learning models is less
challenging. However, the downscaled results of the Lasso regression show a considerable
discrepancy compared to the deep learning methods, with an RMSE of 0.3284 ◦C, which is
higher than that of neural networks. As illustrated in Figure 11, the performance differences
among neural networks are further reduced. Their downscaling results are quite similar,
effectively restoring SST patterns in this region. This similarity in performance can also be
found in their Bias maps (Figure 12). Except for Lasso regression, the bias distribution of
these models in this sea area is relatively uniform, with no highly concentrated error regions.
This indicates that deep learning models can recover most of the mesoscale dynamic
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processes in the SST downscaling task, but they still have some difficulty capturing certain
small-scale processes.

Figure 11. The SST distribution on 1 August 2021 of each model, these eight subplots individually
display the high-resolution SSTs, low-resolution SSTs, and the downscaled results of each model
along with their RMSE (◦C).

The absence of previously significant bias in the 107◦E–114◦E area, 10◦N–17◦N area
(red box in Figure 9) is likely due to the relatively stable fluctuations in SST in that region.
Regarding RMSE, all deep learning models show a noticeable decrease compared to the sample
on 29 June 2021, indicating further improvements in the plain SST structure environments. In
this context, DIFFDS achieves the lowest RMSE at 0.0735 ◦C, reflecting the precision of the
reconstructed high-resolution SSTs compared to other baselines. The RMSEs of DIFFIR and
RCAN are close to those of DIFFDS. As shown in Figure 13, the results from deep learning
models show visually minor differences (in the black box area) but are closer to the true SST
distribution compared to the Bicubic and Lasso regression methods.
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Figure 12. (a–f) The absolute Bias map between ground truth and each deep learning model on 1
August 2021.

4.2. Further Comparison of DIFFDS and DIFFIR

In the preceding sections, we analyzed the improvements in DIFFDS over the original
DIFFIR using various metrics and specific downscaling results. In this section, to further
illustrate the performance differences between these two models, we selected a case study
from 27 June to 1 July 2021, in regions where coastal upwelling in Vietnam can be found.

In Figure 14, the coastal upwelling phenomenon in the HR exhibits a continuous variation
process, which can be observed from the shape of the red 27 ◦C isotherms. However, this
is not evident in the low-resolution SST data. As seen in the figures, the coastal upwelling
morphology (the shape of red isotherms) in the low-resolution SST data over these five days
shows almost no differences and fails to reflect a continuous morphological change. For
DIFFIR, the downscaled results can not accurately represent this variability across those days.
Its upwelling results are similar to those from Bicubic, being merely a simple magnification of
the low-resolution data. If there are no significant changes in the upwelling morphology in
the LR data, then the results also show no significant changes.

Based on the results of DIFFIR on 27 June, the upwelling morphology is relatively
close to the true SST values. However, its upwelling morphology showed little change in
the following days, remaining essentially the same as the previous day. It cannot exhibit a
noticeable variation, as observed in the ground truth. This contributes to the suboptimal
performance of DIFFIR’s downscaling results.
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Figure 13. The results on 1 August 2021 zoomed from 10◦N–18◦N to 107◦E–115◦E. The black box
area displays complex SST contents.

In contrast, the downscaled coastal upwelling from the DIFFDS displays a more
pronounced variation over these five days, closely mirroring the ground truth. Additionally,
the daily upwelling patterns produced by the DIFFDS are more aligned with the ground
truth. This indicates that an improved network structure is more effective at learning the
inherent SST distribution patterns in low-resolution SSTs by incorporating channel attention
and cross-attention. It captures and reflects the subtle variations within the low-resolution
SST data, and then translates them into high-resolution SSTs accurately. Consequently, the
final downscaled results are more consistent with the ground truth, making the DIFFDS
more suitable for SST spatial downscaling tasks.

In Figure 15, we present an analysis of the spatial distribution RMSE for both DIFFIR
and DIFFDS on the test set. The figure clearly illustrates that DIFFDS consistently exhibits
a lower RMSE across a majority of the examined regions when compared to DIFFIR.
This trend is particularly pronounced within the area highlighted by the red box. In this
specific region, DIFFIR demonstrates a significantly higher RMSE, indicating a poorer
performance. However, the corresponding region in DIFFDS shows a markedly improved
RMSE, highlighting the correction and enhancement achieved by our method.
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Figure 14. Variations in the low, ground truth, DIFFIR, and DIFFDS SST data over a continuous
five-day period. Red isotherms are used to highlight the boundary of the upwelling currents.

Figure 15. The spatial distribution of RMSE for DIFFIR and DIFFDS on the test set. The red boxed
area highlights the significant difference between DIFFIR and DIFFDS.

The improvements observed underline the advantages of the enhanced DIFFDS
method over the original DIFFIR approach. The reduction in RMSE across various spatial
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zones suggests that DIFFDS not only improves overall accuracy but also corrects specific
areas of high error, making it a more reliable and robust solution.

4.3. Challenges with High Variability

In Section 3.2.2, we found that the intense fluctuations in SSTs during spring and
summer pose a significant challenge to the model’s downscaling capabilities. This can
ultimately affect the accuracy of the downscaled results. Despite utilizing nearly three
decades of data for training, DIFFDS has yet to effectively capture underlying SST patterns
under conditions of high variability. We attribute this limitation to several factors. Firstly,
recent years have witnessed abnormal changes in weather systems that may not be fully
represented in the historical data used for training. Past experiences may not always apply
to current or future situations, thereby restricting the model’s performance in such cases.
Additionally, the inherent limitations of our model’s architecture and the complexity of the
ocean system may also contribute to this shortcoming. Moreover, relying solely on SSTs as
an input variable has its limitations.

When the region is more homogeneous, it is economically feasible to obtain the
downscaling reconstruction using simple interpolation (usually Bicubic interpolation).
However, the real-world system is very complicated, for instance, extreme ocean events
and large changes in ocean elements (high variability situations). Therefore, there is an
urgent need for efficient and effective downscaling algorithms that can respond extremely
well to real-world systems, which is also the goal of our future work. All of the downscaling
methods, including Bicubic interpolation, can greatly preserve the large-scale structure
from the low-resolution inputs in terms of correlation coefficient differences. Additionally,
the visual results and the corresponding zoomed-in regions, as well as several quantitative
metrics (as shown in the figures and tables above), mainly evaluate the reconstruction
quality of small-scale processes among different algorithms. On dates with high variability,
or during periods when SST variability is relatively stable, our DIFFDS model surpasses
the baseline models in most of these metrics, demonstrating that DIFFDS can effectively
reconstruct more high-resolution activities under various conditions.

To improve downscaling results during periods of high variability, incorporating other
oceanic factors, such as salinity, and atmospheric factors, like surface wind speed, into the
neural network is essential. This approach could enable the model to capture a more compre-
hensive representation of the underlying dynamics and enhance its downscaling capabilities.

5. Conclusions

This study proposes a novel spatial downscaling model (DIFFDS) and applies it to SST
spatial downscaling to explore its potential possibility and relieve the growing demand for
high-resolution oceanic data. The results of our experiment demonstrate its effectiveness for
spatial downscaling of SSTs. The proposed DIFFDS can restore some meso-scale processes
that disappeared in low-resolution SSTs, generating accurate results.

To enhance the consistency and accuracy of the downscaled results, we designed a
modified DMTA layer by introducing channel-attention and cross-attention mechanisms.
The redesign enables the model to extract precise and effective information from the
guidance IPR provided by the diffusion model, while also considering the overall SST
distribution structure inherent in low-resolution SST data. This approach allows the model
to suppress abnormal SST textures in the downscaled results, resulting in more realistic
and accurate outputs.

Furthermore, we compared the performance of DIFFDS with commonly used CNN,
GAN, and regression methods, to highlight its superiority over other models. Experimental
results indicate that DIFFDS achieves an average RMSE of 0.1074 ◦C and PSNR of 50.48 dB
in the 4× scale downscaling task. Meanwhile, the generated content is comparable to the
raw high-resolution SST data, such as the coastal upwelling along Vietnam.

Future work will focus on refining this method by incorporating other oceanic or
atmospheric elements or integrating physical mechanisms into the model. This will further
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improve the interpretability and effectiveness of the DIFFDS, enabling more accurate and
reliable SST spatial downscaling.
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Abstract: The timely and accurate monitoring of high-seas fisheries is essential for effective manage-
ment. However, efforts to monitor industry fishing vessels in the central-eastern North Pacific have
been hampered by frequent cloud cover and solar illumination interference. In this study, enhanced
fishing extraction algorithms based on computer vision were developed and tested. The results
showed that YOLO-based computer vision models effectively detected dense small fishing targets,
with original YOLOv8 achieving a precision (P) of 89% and a recall (R) of 79%, while refined versions
improved these metrics to 93% and 99%, respectively. Compared with traditional threshold methods,
the YOLO-based enhanced models showed significantly higher accuracy. While the threshold method
could identify similar trend changes, it lacked precision in detecting individual targets, especially
in blurry scenarios. Using our trained computer vision model, we established a dataset of dynamic
changes in fishing vessels over the past decade. This research provides an accurate and reproducible
process for precise monitoring of lit fisheries in the North Pacific, leveraging the operational and
near-real-time capabilities of Google Earth Engine and computer vision. The approach can also be
applied to dynamic monitoring of industrial lit fishing vessels in other regions.

Keywords: nighttime lights; fishing monitoring; deep learning; VIIRS DNB

1. Introduction

Due to the convergence of the Kuroshio and Oyashio currents (Figure 1), the North
Pacific has become a significant fishing ground, especially renowned for its long-standing
tradition of light-based fisheries [1,2]. Despite a noted decline in recent years, the lit fishing
industry continues to make a substantial contribution to the distant-water fishery [3]. The lit
fisheries of the North Pacific are primarily concentrated in two regions: the west stock and
the central-east stock (Figure 1). Approximately 600 fishing vessels using lights operate in
the North Pacific. These vessels can be categorized into three main types: around 280 using
stick-held dip nets to catch Pacific saury, 260 employing jiggers to catch squid, and 60 purse
seiners primarily targeting chub mackerel, spotted mackerel, and Japanese sardines. In
the western stock, all three types of gear are utilized, whereas fishing in the central-east
stock is predominantly conducted by squid vessels from China and Japan. These vessels
operate from mid-May to early August, with peak activity occurring in June and July,
during which nearly all vessels are actively engaged in fishing [3–5]. Although the fishing
industry in the North Pacific has generally shown a downward trend, the central-east stock
has experienced growth [4]. Comprehensive and efficient monitoring of these vessels is
instrumental for the effective management of distant-water fisheries. Additionally, with
the recent drastic climate changes, the precise dynamics of fishing movements combined
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with ecological environments could also aid in understanding the factors influencing the
dynamics of fishing grounds, thereby providing a scientific basis for forecasting distant-
water fishery conditions [6–8]. However, monitoring efforts for such lit fisheries in the high
seas have been hindered by the lack of effective vessel monitoring data. Precise monitoring
methods and long-term surveillance data for such fisheries remain insufficient.

Figure 1. Study region of the lit fishing grounds in the North Pacific (central-east stock, 176E–165W,
35N–48N), overlaid with the average sea surface temperature from the summer fishing season of 2020.
The top global map shows the location of the study area, overlaid with the average cloud fraction
from the summer fishing season of 2020. The cloud fraction data are sourced from GlobColour
(http://globcolour.info), which has been developed, validated, and distributed by ACRI-ST, France.
The sea surface temperature data come from the Copernicus Marine Service (https://data.marine.
copernicus.eu), which is the marine component of the Copernicus Programme of the European Union.

In recent years, nighttime remote sensing technology has been widely used for moni-
toring fishing vessels using lights and analyzing dynamic changes [9–12]. Among the most
prominent sources of nighttime remote sensing imagery are the Defense Meteorological
Satellite Program’s Operational Linescan System (DMSP-OLS) and the Visible Infrared
Imaging Radiometer Suite’s Day/Night Band (VIIRS-DNB), which are valued for their
global coverage and long time series [13,14]. Lit fishing vessels typically appear as small
bright spikes in nighttime imagery, and traditional detection methods have primarily
relied on visual interpretation, followed by the application of various threshold-based
methods [15–17]. Elvidge et al. [9] analyzed the spike features in VIIRS DNB data collected
during moonless and cloudless nights and developed an algorithm that detected vessels by
evaluating the sharpness of the light spikes. They also established a comprehensive process
for filtering out land-based and gas flare sources. The results of the detection process were
validated through vessel position data, confirming the algorithm’s effectiveness. Building
on this workflow, the Earth Observation Group (EOG) has further developed and refined
the automated fishing vessel extraction process. They have designed an adaptive thresh-
old method to accommodate varying weather conditions and released the corresponding
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dataset: VIIRS Boat Detection (VBD) [https://eogdata.mines.edu/products/vbd/]. How-
ever, the improved algorithm’s effectiveness in extracting lit fishing vessels diminishes
significantly under complex weather conditions [18,19]. During the central-east stock fish-
ing season, which overlaps with summer, the VIIRS DNB nighttime imagery is significantly
impacted by strong solar illumination and cloud cover (Figure 1). This affects the relia-
bility of VBD products in the region, necessitating further comparison and validation. To
achieve more accurate monitoring and advance related research, there is an urgent need
not only to develop more suitable extraction algorithms but also to supplement long-term
monitoring data. In recent years, advances in computer technology have enabled computer
vision algorithms to excel in detecting small, obscured, or blurred targets, demonstrating
great potential for vessel detection in nightly imagery impacted by clouds [20–23]. These
methods automatically learn target features and have been successfully applied across
various scenarios. Therefore, leveraging computer vision technology could significantly
enhance the ability to extract and monitor lit fishing vessels in complex and cloudy weather
conditions, which is crucial for advancing relevant research.

In this study, we initially established a dataset of nighttime remote sensing images of
fishing vessels operating in the central-east stock, spanning various meteorological condi-
tions from 2012 to 2022, along with corresponding labeled vessel targets. By leveraging
this image database and the You Only Look Once (YOLO) architecture, we refined the
network’s sensitivity to small objects and developed improved methods for extracting
fishing vessels under varying cloud conditions [20–24]. The effectiveness of these methods
was evaluated by comparing visual inspection, VBD threshold extraction, and YOLO-based
models using data from the 2020 fishing season. We also extracted dynamic information on
fishing vessels in the study area over the past decade, focusing on peak activity in June and
July. Finally, a discussion is provided to explore the advantages, limitations, necessity, and
future development directions of nighttime remote sensing-based fishing vessel extraction
and monitoring methods.

2. Data and Method

2.1. Data
2.1.1. Nighttime Light Imagery and Cloud Condition Data

The VIIRS provides comprehensive global data across both the visible and the in-
frared spectra [25]. Specifically, the VIIRS Day/Night Band (DNB) offers daily global
measurements of nighttime illumination in these spectra, making it particularly well suited
for tracking fishing vessels that utilize lights. In addition to the DNB, VIIRS includes
long-wave infrared channels, which are crucial for assessing sea surface temperature and
distinguishing cloud formations. In our study, we employed a Level 3 VIIRS product from
the Suomi NPP (VNP46A1), a daily radiance product that captured nighttime brightness at
the sensor level, referred to as the VIIRS/NPP Daily Gridded Day Night Band 15 arc-second
Linear Lat/Lon Grid Night [26]. This product, available since January 2012, was derived
from VIIRS sensors and was processed daily within 3–5 h post-acquisition, supporting both
near-real-time applications and long-term monitoring. For our research, we utilized Google
Earth Engine (GEE) to filter and obtain VNP46A1 data for the North Pacific central-east
stock during the fishing seasons (June–July) from 2012 to 2023 [27]. In addition to using
DNB radiance as nighttime light imagery for detecting fishing vessels using lights, we
also incorporated the M16 band brightness temperature to account for cloud reflections in
our analysis.

2.1.2. VIIRS Boat Detection Data

The VIIRS Boat Detection (VBD) data product captures illuminated pixels of fish-
ing boats in a VIIRS DNB image for a single night. The basic VBD algorithms were
described by Elvidge et al. [10]. The VBD data files provide detailed information, in-
cluding the geo-location of illuminated pixels, radiance values, satellite overpass times,
satellite viewing zenith angles, and various threshold parameters used to differentiate
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potential light sources from fishing vessels and other sources [28]. In this study, nightly
VBD data from the 2020 fishing seasons in the study area were utilized to compare and
evaluate the performance of deep learning methods for detecting lit fishing activities
(https://eogdata.mines.edu/products/vbd/). We extracted only VBD points with quality
flags 1 (strong boat detection), 2 (weak boat detection), 3 (blurry boat detection), and
10 (weak and blurry lights), which corresponded to radiance spikes more likely to have
originated from marine vessels. Additionally, for VBD points in overlapping satellite
images, only a selected portion corresponding to GEE filtered parts were used, and pixels
with radiance values below 10 were excluded from the analysis [29].

2.1.3. Satellite AIS Data

AIS data for the study area during the 2020 fishing season were obtained from
the satellite service provider ORBCOMM (https://www.orbcomm.com/en/solutions/
maritime/ais-data) to evaluate the performance of deep learning methods for detecting
illuminated fishing activities [30]. We filtered information from AIS message types 1
(scheduled position report), 2 (assigned scheduled position report), 3 (special position
report responding to an interrogation), 18 (standard Class B equipment position report),
19 (extended Class B equipment position report), and 27 (long-distance message), all of
which included a timestamp, longitude and latitude, MMSI number, speed, and course.
Squid fishing vessels authorized to operate in the central to east Pacific were listed by the
North Pacific Fisheries Commission (NPFC). This list was downloaded from the NPFC
(https://www.npfc.int/compliance/vessels) and used to filter and extract the relevant
vessels from the AIS data based on their unique MMSI numbers.

2.2. Method
2.2.1. Selection and Annotation of Nighttime Light Imagery

To develop a more accurate algorithm for detecting illuminated fishing vessels in
nighttime imagery, we first compiled a dataset of labeled images containing these vessels.
The nighttime images from the study area, obtained through GEE, were preprocessed
by being logarithmically transformed and normalized between 0 and 1. These images
were then resized to a uniform dimension of 640 × 640 pixels, and those without any
vessels were discarded. The remaining images were categorized into three classes: clearly
visible and distinguishable (Figure 2A); not clearly visible but locatable and distinguishable
(Figure 2B); and not clearly visible, locatable but indistinguishable (Figure 2C). For the first
two categories, accurate quantification and location determination were feasible, whereas
the third category did not allow for precise numerical differentiation but permitted the
identification of the operational location. The images from the first two categories were
annotated using LabelImg (1.8.2). Ultimately, we obtained a dataset comprising 541 images
with 10,837 vessels. This dataset has been uploaded to an online repository, and it is
available to the scientific community on demand.

2.2.2. Development and Test of Computer Vision Models

Detecting small and dense objects presents inherent challenges. Over time, numer-
ous improvements have been introduced to object detection frameworks to enhance the
accuracy of detecting [23]. In our research, we developed a computer vision model using
YOLOv8 (Figure 3), which consisted of a backbone for feature extraction, a neck for com-
bining multi-scale features, and a head for object detection. YOLOv8 improved detection
performance with its efficient architecture, combining CSPNet and PANet for better feature
propagation and localization accuracy. This allowed it to perform real-time detection
while maintaining high precision across varying object scales. To address the challenge
of detecting dense clusters of small fishing vessels, we employed two key optimization
modifications: (1) We integrated multi-scale feature fusion to combine low-level feature
maps, which provide detailed positional information, with high-level feature maps, rich
in semantic context. This integration was key to improving the detection performance,
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particularly for small targets like dense clusters of fishing vessels (Figure 3, YOLO-P2). (2)
We replaced strided convolution and/or pooling layers, which often lead to fine-grained
information loss, with a CNN building block called SPD-Conv to create a more effective
model [31] (Figure 3, YOLO-SPD).

Figure 2. Typical nighttime remote sensing images observed by VIIRS-DNB with squid jiggers:
(A) Clearly identifiable and distinguishable lit fishing vessels. (B) Blurry but distinguishable and
locatable lit fishing vessels. (C) Obscured lit fishing vessels, only locatable.

Figure 3. The overall framework of the original YOLOv8, YOLO-P2, and YOLO-SPD networks. In
the YOLO-SPD model, SPD-Conv is integrated into the YOLOv8 backbone to enhance performance.
Meanwhile, YOLO-P2 retains the YOLOv8 backbone but adds a P2 detection head to improve small
target detection.
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Labeled images from the year 2020 were selected for comparative testing, while
the remaining images were randomly allocated, with 90% used for training and 10% for
validation. Due to the nature of dense small targets, the criterion for a true positive was
adjusted to an intersection over union threshold of 10%. The training parameters were
configured as follows: a batch size of 16, a total of 500 iterations, and an input image
resolution of 640 × 640 pixels. All other parameters were kept at their default settings. The
experimental setup is outlined in Table 1.

Table 1. Setup of the experiment environment.

Item Value

CPU Intel(R) Xeon(R) E5-2686 v4 @ 2.30 GHz
RAM 60 GB
GPU NVIDIA RTX A4000

Operating system Ubuntu 20.04
Cuda CUDA 11.3

Data processing Python 3.9
Deep learning framework Pytorch 1.12.1

In the experiment, computer vision models were evaluated using several metrics,
including precision, recall, accuracy, F1 score, mean average precision (mAP), frames per
second (FPS), and giga floating point operations per second (GFLOPS). The formulas for
these key metrics are as follows:

Precision (P) : P = TP
TP+FP

Recall (R) : R = TP
TP+FN

F1 Score : F1 = 2 × P×R
P+R

The definitions of the parameters in the formulas are as follows: true positive (TP)
represents the samples correctly identified as positive, false positive (FP) represents the
samples incorrectly identified as positive, false negative (FN) represents the samples in-
correctly identified as negative, and true negative (TN) represents the samples correctly
identified as negative. Additionally, mAP (mean average precision) measures the average
area under the precision–recall curve for each target across all images, providing a com-
prehensive assessment of the precision and recall performance. FPS is the inverse of the
total time required to process a single frame, encompassing both the inference time and
the non-maximum suppression time. GFLOPS (giga floating point operations per second)
represents the computational cost of performing the forward pass (inference) in billions of
floating point operations per second.

3. Results

3.1. Fishing Detection with YOLO-Based Computer Vision Methods

Three computer vision-based models were trained for the extraction and detection of
central-east stock lit fishing vessels. For the validation set, YOLOV8 achieved its highest
F1 score at a very low confidence (Conf) threshold, with a value of Conf = 0.004, resulting
in an F1 score of 0.947. The two improved YOLO models exhibited a parabolic variation
in their F1 scores. Specifically, the model designated as YOLO-SPD reached its peak F1
score at a confidence threshold of Conf = 0.182, while YOLO-P2 achieved its maximum at
Conf = 0.247, with respective F1 scores of 0.977 and 0.964.

Labeled images from 2020 served as the test set for evaluating the performance of these
three models. The confidence thresholds for the test data were derived from the validation
results at the point where the F1 scores peaked. Table 2 illustrates the performance parame-
ters of the three detection models. The model validation outcomes demonstrated that both
YOLOv8 and its enhanced counterparts were adept at efficiently filtering and extracting
results under complex meteorological conditions, with high accuracy rates. YOLOv8 it-
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self achieved an accuracy of 89%, while the precision of both enhanced YOLOv8 models
improved by approximately 5%, reaching around 93%. Representative nighttime imagery
confirmed that all models were capable of fully and effectively detecting lit fishing vessels
in the North Pacific under clear skies (Figures 4, A1 and A2).

Table 2. The overall test results for YOLO and tiny targets improved models.

Model P R F1 Confidence

YOLOV8 0.886 0.79 0.947 0.031
YOLO-SPD 0.932 0.987 0.977 0.182
YOLO-P2 0.928 0.989 0.964 0.247

Figure 4. Typical nighttime imagery and detection results from different methods: (A) Original
nighttime image. (B) Detection results by YOLO, where missed targets are denoted by red arrows.
(C) Detection results by YOLO-P2. (D) Detection results by YOLO-SPD.

Comparatively, the original YOLOv8 model’s performance in filtering is marginally
less effective than its improved counterparts, particularly evident in a lower recall rate,
leading to a higher likelihood of missed detections (Figures 4 and A1). In the test set,
the original YOLOv8 architecture had a 21% omission rate for dense fishing boat targets.
However, the integration of a small target detection head (YOLO-P2) and the Space-to-
Depth (YOLO-SPD) model both significantly improved their performance in detecting
fishing vessels, resulting in an effective increase in monitoring precision. The recall rate
saw a notable increase, with both models improving by about 18%. Both enhancements
effectively compensated for the original YOLOv8’s tendency to miss detections. Regarding
computational speed, the original YOLO architecture boasted the FPS. While the FPS of
the improved models increased, the addition of the SPD model led to a more substantial
enhancement compared with the addition of the detection head. Computational require-
ments followed a similar pattern, with YOLO having the lowest demand and YOLO-SPD
significantly exceeding that of YOLO-P2 (Table 3).
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Table 3. Parameters, mAP, FPS, and GFLOPS of improved YOLO models at different scales.

Model Size Parameters (MB) mAP FPS (s) GFLOPS

YOLO-P2

n 2.92 0.970 138.89 12.2
s 10.63 0.971 107.53 36.6
m 25.03 0.965 49.75 97.9
l 42.82 0.968 45.05 204.7
x 66.56 0.969 30.67 316.1

YOLO-SPD

n 2.86 0.973 73.53 45.1
s 10.54 0.957 39.84 164.7
m 24.85 0.949 21.55 423.9
l 42.29 0.953 13.11 843.3
x 66.07 0.956 8.32 1317

Beyond the n scale version, we also evaluated models of varying sizes for the improved
YOLO models (Table 3). Contrary to expectations, the performance accuracy from the
training results of the s, m, l, and x versions did not improve with the increase in model size.
Instead, there was a notable escalation in the number of parameters and computational
demands, accompanied by a significant drop in FPS. Hence, for the central-east stock of the
North Pacific, there was no necessity to opt for larger models in training. The n-version
model, characterized by minimal parameters and swift computation, was sufficient to yield
excellent outcomes.

3.2. Comparision of Different Fishing Detection Methods

In this section, we conducted a comparative analysis of fishing monitoring using
visual examination, the VBD algorithm, and computer vision techniques. During the peak
fishing season (June and July) of 2020, visual inspection successfully identified operational
fishing vessels over a span of 60 days. Only one day (4th June) yielded unrecognizable
images (Figure 5, type 3). On 29 days, the imagery allowed for the identification and
precise location of most fishing vessels (Figure 5, type 1). However, on the remaining
31 days, although fishing vessels were visually confirmed, their exact positions could not
be determined, or some vessels were entirely obscured (Figure 5, type 2, and Figure A3).

We then analyzed the results obtained from both the VBD threshold algorithm and
computer vision models. Even though these light-based high-seas fishing vessels operated
daily throughout the fishing season, a consistent pattern of variation emerged across
the VBD algorithm and the three computer vision models (Figure 5). The highest vessel
counts detected by all three methods corresponded with clear visual images, while lower
counts were associated with blurred images. These high counts were also comparable to
the AIS-derived ground truth, with maximum vessel numbers reaching approximately
80 (Figure 5). Utilizing the M16 parameter as an indicator of meteorological conditions,
the findings further demonstrated that fluctuations in the number of detected fishing
vessels corresponded with changes in M16 (Figure 5). In terms of overall counts, the VBD
algorithm detected approximately 2000 vessels throughout the fishing season, while the
YOLO-based and related computer vision algorithms observed a 25% increase, identifying
around 2500 vessels.

In cases where location and identification were largely feasible, we conducted a
comparative analysis of various methods against the results of visual inspection (Figure 6).
The validation findings revealed that the VBD algorithm produced the least accurate results
compared with the visually derived ground truth (R2 = 0.64). In contrast, the regression
consistency between the YOLO methods and visual inspection was stronger than that of the
VBD algorithm. YOLOv8 and its improved versions showed significant correlation, with
YOLOv8 demonstrating slightly lower precision (R2 = 0.82), while the two refined models
achieved comparable and superior results (R2 = 0.97). For clearly visible targets, the results
of the VBD algorithm closely aligned with those of the computer vision models (Figure A1).
However, in instances where the targets were indistinct but still locatable, computer vision
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outperformed the VBD threshold algorithm, effectively extracting these more ambiguous
instances (Figure A2). Further detailed analysis showed that both the YOLO-P2 and YOLO
models produced more false detections from the background compared with YOLO-SPD,
with SPD demonstrating overall better performance.

Figure 5. Changes in the number of vessels during the summer fishing season in the North Pacific
central-east stock obtained using AIS, VBD, YOLO, and improved YOLO algorithms (with P2 repre-
senting YOLO-P2 and SPD representing YOLO-SPD) (A) and changes in M16 brightness temperature
during the fishing season (B). The background colors in both subplots represent visual classification
categories: yellow (type 1) for cases where most light fishing vessels can be located and distinguished,
green (type 2) for cases where a significant portion of the vessels are blurred or partially obscured,
and red (type 3) for cases where all vessels are completely obscured.

Although the VBD and computer vision methods differed in their precision of ex-
traction, the monthly distribution results revealed a consistent trend across both methods
(Figure 7). Despite variations in the number of detections, with computer vision identifying
a greater quantity than VBD, the distribution patterns from the different methods showed
a notable correlation, indicating a shared pattern in the data collected by each technique.
Additionally, the false detections produced by the YOLO-P2 and YOLOv8 models were
observable in the horizontal distribution, particularly in scattered operational points that
were distant from the dense fishing hot spots (Figure 7).
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Figure 6. Regression fit between visual observations (Eye) and results from VBD, YOLO, and
improved YOLO models under conditions where most lit fishing vessels can be visually distinguished.
(A) Visual observations vs. VBD. (B) Visual observations vs. YOLO. (C) Visual observations vs.
YOLO-P2. (D) Visual observations vs. YOLO-SPD.

3.3. Decadal Variation of Fishing Vessels in the Central-East Stock

Based on the optimal computer vision model (YOLO-SPD) we developed, fishing
vessels using lights during the fishing season (June to July) in the study area from 2012
to 2023 were extracted. The results indicated that the area with the highest concentration
of fishing activity, which showed considerable variation in distribution and was located
between 180◦W and 168◦W longitude and 39◦N and 43◦N latitude, maintained a consistent
pattern of change, with significant differences between June and July (Figure 8A). In
June, the center of activity was generally situated farther south, while in July, it shifted
approximately 2 degrees northward, demonstrating a clear seasonal variation in fishing
activity concentration.

Regarding the number of vessels, there was a noticeable increase from around 30 fish-
ing vessels in 2012–2016 to a peak of approximately 70 in 2017–2020 (Figure 8B). However,
from 2021 to 2023, the number of fishing vessels declined, likely due to the impact of
the COVID-19 pandemic. This decline reflected the broader economic and operational
challenges faced by the fishing industry during this period.
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Figure 7. Monthly density scatter plots of lit fishing vessels during the summer fishing season in
the North Pacific central-east stock, obtained using VBD, YOLO, and their improved algorithms.
(A) Distribution in June. (B) Distribution in July.
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Figure 8. Dynamic changes in the centroid position of fishing vessels (A) and the number of operating
vessels (B) during the summer fishing seasons from 2012 to 2023 in the central-east stock of the
North Pacific.

4. Discussion

4.1. The Need for Fishing Vessel Monitoring with Nighttime Remote Sensing

The effective management of fishing vessels hinges on precise monitoring. Compared
with coastal regions, obtaining comprehensive, effective, and accurate data on the operating
locations of fishing vessels in the open ocean is significantly more challenging [32]. Cur-
rently, most commercial fishing companies operating on the high seas are equipped with
vessel monitoring systems, AIS (Automatic Identification System), and fishing logbooks.
While vessel monitoring systems and AIS can record vessel positions, the frequency of
position updates is limited, sometimes providing only one or two locations per day [31–33].
This makes it difficult to accurately pinpoint the operating locations of light fishing vessels
based solely on monitoring data, especially during transition of different fishing grounds
(Figure A4). Furthermore, illegal, unreported, and unregulated (IUU) fishing vessels often
deliberately disable their monitoring systems, resulting in untrackable positions [33]. The
overlay of typical nighttime remote sensing imagery with AIS data reveals discrepancies
between the monitored positions and the actual operating locations of vessels (Figure A4).
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On the other hand, the coverage of vessel monitoring data was sparse in earlier years,
with AIS satellite coverage also being low. As equipment coverage increased and satellite
constellations were established, data coverage has become more comprehensive in recent
years [34,35]. Only after 2018 did the data coverage become sufficient to allow for a good
match with nighttime remote sensing imagery. This discrepancy means that data from
vessel monitoring systems cannot be used for long-term quantitative studies, as the cover-
age in earlier years was comparatively low, whereas nightly remote sensing data can be
used for long-term continuous comparative studies, as they adhere to a unified standard.
Fishing logbooks not only record operational locations but also contain rich information on
yields [28]. However, they lack near-real-time capabilities. Moreover, acquiring data from
vessel monitoring systems, AIS, and fishing logbooks is challenging, especially in fishing
grounds jointly developed by multiple countries and regions, where data sharing between
different countries is often difficult.

Nighttime remote sensing offers a publicly accessible and comprehensive coverage
technology for monitoring light fishing vessels. To date, research on the dynamic changes in
fishing grounds in the study area has primarily relied on the integration of positional data
from Japanese commercial fishing vessels’ logbooks with ecological and environmental
factors [4,6,7,36]. Fishing vessels from different countries and regions often operate in the
same areas, and having comprehensive operational information from multiple nations
could significantly enhance the ability to forecast fishing ground conditions. Using night-
time light remote sensing, we observed that the number of fishing vessels operating in
the central-east North Pacific during 2020 peaked at around 80 vessels, which is closely
aligned with the vessel counts recorded by the NPFC. Similarly, AIS data also reported ap-
proximately 80 active vessels, further supporting the reliability of the nighttime light-based
observations. This strong consistency between remote sensing and AIS-derived ground
truth demonstrates the effectiveness of nighttime light remote sensing as a complementary
monitoring tool for fishing activities. However, a daily comparison between AIS and
nighttime light remote sensing revealed that AIS reported significantly higher vessel counts
under cloudy conditions, whereas in moonless conditions, nighttime light remote sensing
was able to detect nearly all active vessels. This suggests that when extracting and inter-
preting fishing vessel data from nighttime light imagery, special attention must be given
to the meteorological conditions in specific fishing grounds. Adverse weather conditions
may limit the accuracy of nighttime light remote sensing, preventing it from fully reflecting
real-world vessel activity. It is also important to note that while nighttime light remote
sensing offers an effective supplementary method for monitoring lighted fishing vessels, it
is insufficient for identifying the vessels’ identities. Nighttime light imagery can confirm
the presence of vessels but cannot determine their nationality or whether they are engaging
in illegal, unreported, and unregulated (IUU) fishing. To accurately identify these vessels
and assess their compliance with regulations, AIS data and the NPFC’s list of registered
vessels permitted to operate must be integrated.

Additionally, with the launch of the VIIRS satellite series (including NPP, JPSS1, and
JPSS2), the frequency of observations further increased, allowing for even more detailed
monitoring [37,38]. Therefore, it is of critical importance to continue developing precise
and efficient monitoring methods and processes for light fishing vessels based on nighttime
remote sensing. This advancement will provide significant support for the accurate and
comprehensive monitoring of light fisheries on the high seas, ensuring better management
and sustainability of these vital resources.

4.2. Opportunities for High-Seas Lit Fishing Detection with Computer Vision

Maritime lights captured in nightly imagery may be influenced by cloud cover and
lunar phases [39]. Particularly when both cloud cover and moonlight exposure are at play,
small-power maritime lights can be easily obscured [11]. However, under conditions of thin
cloud cover, the bright lights of industry lit fishing vessels can still be effectively located and
distinguished (Figure 2). Our visual observations indicate that during the fishing season,
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these very bright squid fishing vessels can still be effectively located and distinguished
under thin cloud conditions (Figure 2). Nevertheless, the visual detection method is both
time-consuming and labor-intensive and is susceptible to subjective judgments. Achieving
automated accurate identification to a level of interpretability comparable to visual results
is the main challenge in extracting and monitoring these industry fishing vessels. Under
cloudless and moonless conditions, the threshold method performs exceptionally well in
extraction and recognition [10,17]. However, under thin cloud conditions, a fixed threshold
may not be effective for extraction and recognition. To extend the applicability of the
threshold method, EOG has proposed an adaptive threshold approach to address issues
under various meteorological conditions. Yet, to avoid false detections caused by moonlit
clouds, the threshold is set relatively high, which may result in some situations that are still
observable under visual conditions being unable to be extracted by traditional threshold
methods. Our research findings demonstrate the advantages of computer vision technology
over traditional methods, effectively enhancing the accurate extraction capability of indus-
try fishing vessels under thin cloud conditions. The robust capabilities and swift progress
in computer vision technology present a wealth of opportunities for the precise extraction,
monitoring, and study of fishing vessels using lights. Visual interpretation adeptly decodes
the majority of lighting images within the research area. Cloudy conditions, despite their
challenges, cannot obscure the discernible anomalies in nightly imagery, which still offer a
broad evaluation of the operational zones and vessel positions (Figure A3). In many cases,
the dynamics and shifts within fishing grounds do not require a count of the fishing vessels;
pinpointing the operational areas is itself a crucial piece of information for such studies.
Nonetheless, current methodologies fall short in interpreting these images, highlighting
a notable challenge for the future of automated extraction and monitoring in designated
research fishing zones. Additionally, in the South Atlantic Anomaly region, another high-
seas lit fishing “hot spot”, the interference of high-energy particles can lead the standard
maritime imagery threshold method astray, misidentifying these particles as fishing vessels
and thus generating a significant number of false positives [40]. The differentiation between
high-energy particles and genuine fishing vessels is beyond the scope of threshold methods
alone [41]. Computer vision, leveraging its formidable prowess in classification, extraction,
and recognition, offers the potential to significantly bolster the capabilities for extracting
and monitoring light fishing vessels in this region.

4.3. Optimized Procedure for Monitoring Localized High-Seas Fishing Vessels

EOG’s VBD vessel extraction algorithm offers a comprehensive workflow for extract-
ing and distributing fishing vessel data. This process begins with downloading extensive
raw VIIRS-DNB data, followed by vessel extraction using the threshold method, and ends
with public distribution (Figure 9). By providing ready-to-use CSV files with vessel loca-
tion information, researchers are spared the challenges of handling massive raw imagery
and can focus directly on monitoring and analyzing the dynamics of lit fishing vessels.
However, this approach has limitations. Currently, the VBD data are produced in near-real
time, with nightly records dating back to April 2012 for Asia and 2017 for other regions [42].
Reproducing the VBD algorithm to extract long-term time series data for specific fishing
grounds outside Asia remains challenging for most researchers. Additionally, our study
shows that the high adaptive threshold used in the VBD data product reduces the effi-
ciency of detecting industry lit fishing vessels under cloudy conditions. To address these
issues, we propose an improved extraction method tailored for specific “hot spots”, using
the north-central western Pacific fishing grounds as a case study. This method leverages
GEE for near-real-time selection of VNP46A1 data, which outputs DNB imagery reflecting
faint light (Figure 9). An enhanced YOLOv8 model then accurately extracts vessels in the
targeted areas. Compared with the massive raw nighttime imagery, VNP46A1 has been
preprocessed, reducing the data volume to 40 MB per file [26], and GEE allows for precise
regional selection, enabling focused analysis.
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Figure 9. Comparison of VBD and our data flow for high-seas lit fishing monitoring.

Our procedure could also include daily meteorological parameters for specific study
area, such as cloud cover extent and intensity, which are crucial for accurate vessel count
comparisons. Weather conditions significantly affect the detection of industry lit vessels
on the high seas (Figure 5). Since not all daily data are usable, determining the number
of analyzable images is vital for comparing different months and years. Our approach
first filters data based on weather conditions, then enhances the quantitative accuracy
by considering interannual and monthly weather variations. In summary, we propose a
more reproducible procedure for extracting and monitoring lighted fishing vessels using
nighttime remote sensing. This method simplifies the process for personalized monitoring
and research of localized industry lit fishing vessels in the high seas.

5. Conclusions

This study introduced an advanced methodology for monitoring and extracting in-
dustry lit fishing vessels in specific fishing grounds, particularly under cloudy conditions,
using computer vision techniques and nightly imagery. By leveraging the YOLO model
and its enhanced variants, the proposed approach demonstrated a high accuracy in de-
tecting fishing vessels in the central-east stock of the North Pacific, with improvements
in precision and recall achieved through the small target detection enhancements model.
The machine learning methods outperformed conventional threshold-based algorithms
(VBD), particularly in handling blurred images affected by thin cloud cover, with the SPD
model proving to be the most effective, closely aligning with visual inspection results
and minimizing false detections. This research provides a reproducible framework that
enhances the recognition of vessels in challenging conditions and offers valuable insights
into the cloud cover characteristics of specific fishing grounds. Additionally, the study
contributes a decade-long dataset for the North Pacific central-east stock fishing grounds,
offering a valuable resource for further research and fisheries management.
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Appendix A

Figure A1. Typical clear nightly images (A–C) and detections using various automated fishing
extraction methods, (D–F) nightly images with detections by YOLO, (G–I) nightly images with
detections by YOLO-P2, (J–L) nightly images with detections by YOLO-SPD, and (M–O) nightly
images with detections by VBD.
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Figure A2. Typical blurry nightly images (A–C) and detections using various automated fishing
extraction methods, (D–F) nightly images with detections by YOLO, (G–I) nightly images with
detections by YOLO-P2, (J–L) nightly images with detections by YOLO-SPD, and (M–O) nightly
images with detections by VBD.
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Figure A3. Cont.
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Figure A3. Satellite AIS-derived fishing vessels overlaid with typical obscured nightly images.
While fishing locations can be roughly identified, the exact number of vessels cannot be determined.
Panels (A,C,E,G) display typical obscured nightly remote sensing images, and panels (B,D,F,H) show
AIS-derived fishing activity locations overlaid on nightly images.
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Figure A4. A typical scenario where discrepancies exist between AIS vessel positions and actual
fishing locations during fishing ground transitions. (A) Nightly remote sensing images, (B) AIS
vessel positions overlaid on nightly images, and (C) vessel positions extracted using machine vision
algorithms, also overlaid on nightly images.
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Abstract: Satellite-retrieved sea-surface skin temperature (SSTskin) is essential for many Near-Real-
Time studies. This study aimed to assess the potential to improve the accuracy of satellite-based
SSTskin retrieval in the Caribbean region by using atmospheric correction algorithms based on
four readily available machine learning (ML) approaches: eXtreme Gradient Boosting (XGBoost),
Support Vector Regression (SVR), Random Forest (RF), and the Artificial Neural Network (ANN).
The ML models were trained on an extensive dataset comprising in situ SST measurements and
atmospheric state parameters obtained from satellite products, reanalyzed datasets, research cruises,
surface moorings, and drifting buoys. The benefits and shortcomings of various ML methods were
assessed through comparisons with withheld in situ measurements. The results demonstrate that the
ML-based algorithms achieve promising accuracy, with mean biases within 0.07 K when compared
with the buoy data and ranging from −0.107 K to 0.179 K relative to the ship-derived SSTskin data.
Notably, both XGBoost and RF stand out for their superior correlation and efficacy in the statistical
results of validation. The improved SSTskin derived using the ML-based algorithms could enhance
our understanding of vital oceanic and atmospheric characteristics and have the potential to reduce
uncertainty in oceanographic, meteorological, and climate research.

Keywords: sea surface skin temperature; atmospheric correction algorithms; machine learning

1. Introduction

Infrared imaging radiometers onboard geostationary or polar orbiting satellites have
been used to measure sea surface skin temperature (SSTskin) for more than 60 years [1]. For
over two decades, the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors
on both the Terra and Aqua satellites have been consistently providing data with an unprece-
dented spectral resolution [2,3]. It is important to improve the accuracy of SSTskin retrievals,
including in challenging situations, and to quantify its errors and uncertainties [4,5] as
this facilitates the appropriate use of fields in all applications, especially in forecast model
assimilation schemes.

The areas where the impact of accurate SSTskin fields delivered in Near-Real Time (NRT)
is the greatest are weather forecasting [6] and operational oceanography [7]. The accurate
forecasting of severe storms, especially landfalling Atlantic hurricanes, typhoons and cy-
clones in other oceans [8], and extra-tropical storms [9], requires the accurate and timely
determination of the SSTskin around the storm and along the forecast trajectory [10–13]. A
well-known example is the rapid intensification of Hurricane Katrina in the Gulf of Mexico in
2006 as it passed over the northern edge of the Loop Current, and then again over a warm
eddy in the northern Gulf shortly before landfall. Providing local authorities with timely
information on likely hurricane intensification or dissipation is of great value in implementing
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measures to reduce injuries and the loss of lives. The recent Atlantic hurricanes have caused
record property damage, disruptions to communities, and losses of lives [14,15], and these
are expected to grow in future years [16]. Recent analyses have shown that the rate of peak
intensification of Atlantic hurricanes has increased significantly in the last fifty years as a
result of global warming [17], and the global occurrence of tropical cyclones that undergo
multiple rapid intensification events has nearly doubled in the last two decades [18]. This
study focuses on improving SSTskin retrieval in the Caribbean Sea and the surrounding region,
which are vulnerable to hurricane formation and intensification, and from which we have an
extensive and representative in situ SST dataset.

In this study, we applied several readily available machine learning (ML) methods
capable of Near-Real-Time (NRT) application to assess the potential to improve the accuracy
of atmospheric correction algorithms for MODIS SSTskin retrieval. This work compared
the performance of the widely used existing ML algorithms with that of the NLSST (Non-
Linear SST) of Walton, et al. [19], which is the basis of the standard atmospheric correction
algorithm applied to cloud-free MODIS measurements [20] as a precursor to identifying
where research into improvements can be focused. To achieve this goal, we need a sufficient
number of factors in the training dataset used in ML to realize a statistically meaningful
model. In situ oceanic and atmospheric data measured by ships, surface buoys, and drifters
were used in the study to train the model and assess the accuracy of the derived SSTskin
field. Some of the variables used in the development of the ML algorithms are from
reanalysis products.

1.1. Atmospheric Corrections for MODIS SSTskin Retrieval

As a prelude to the ML approaches, we first discuss the standard atmospheric correc-
tion algorithms for SSTskin retrieval. The SSTskin can be retrieved from relatively transparent
“atmospheric windows” with a minimum effect caused by water vapor and other gases at
wavelengths ~4 μm and 10–13 μm. It is worth noting that a shorter wavelength window
~4 μm can only be used during nighttime due to the contamination by reflected sunlight
within the atmosphere and at the surface.

According to the MODIS SSTskin R2019 Algorithm Theoretical Basis documents (from
Goddard Space Flight Center (GSFC [21]); accessed on 21 June 2021), the existing MODIS
SSTskin retrieval method is based on the NLSST algorithm adapted for MODIS measurements:

SSTskin = aij0 +aij1BT11μm + aij2
(

BT11μm − BT12μm
)× Ts f c + aij3(sec(θ)− 1)× (

BT11μm − BT12μm
)

+aij4 × M + aij5(θ) + aij6(θ)
2

where BT11μm and BT12μm indicate the brightness temperatures in the MODIS 11 and
12 μm bands. M represents the two sides of the paddle-wheel scan mirror to correct
for small differences in spectral reflectivity between the two sides. Tsfc is a preliminary
estimation of the SST, which is reliant on two sources, SST4 (derived from measurements at
λ = 3.95 and 4.05 μm [20]) when available for nighttime data, and otherwise, the Canadian
Meteorological Center Global Foundation SST [22]. θ is the satellite zenith angle. aij0–6
are coefficients derived by the regression of match-ups between the in situ and satellite
measurements and vary by month in several latitude bands [20] to account for regional and
seasonal variations in the properties of the atmosphere.

An example of the limitations of the NLSST algorithm to compensate for anomalous
atmospheres, such as Saharan dust aerosols, is given by Luo, et al. [23], who introduced an
additional index from other MODIS IR channels to provide correction to nighttime SSTskin
retrieval in aerosol-contaminated regions, with significant improvements in accuracy. The
ability to improve SSTskin retrievals through aerosol-containing and dry layers is important
as these conditions are known to inhibit the development of Atlantic hurricanes [24]. Ac-
curate SSTskin retrieval depends on a good understanding of the uncertainties caused by
controlling parameters, such as aerosol distributions [25–27], dry layers [28], and air–sea
temperature differences [29]. As it is not straightforward to derive explicit functional forms
between satellite brightness temperature measurements and the associated surface and at-
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mospheric factors, we will apply the ML methods to attempt to improve the MODIS SSTskin
atmospheric correction algorithms. The incorporation of multiple sources of information
on atmospheric state in an algorithm optimized by ML may improve SSTskin retrieval.

1.2. Machine Learning Applications

An early application of ML to satellite oceanography was developing algorithms to es-
timate the air–sea exchanges of CO2 from satellite data. Given that CO2 in the atmosphere is
well mixed, this problem is dominated by the variability in CO2 fugacity in the upper ocean,
which is temperature-dependent. At that time, the best estimation of air–sea exchanges of
CO2, derived by Olsen, et al. [30] from the regression of ship-based measurements, was
a linear expression of temperature, latitude, and longitude. However, the geographical
variables could be proxies for other factors. Using an ML method, Genetic Algorithm
Discovery, on measurements taken from repeated tracks around the Caribbean Sea of the
Explorer of the Seas [31], Wickramaratna, et al. [32] derived sets of functions of SST and
surface pressure clustered into five regions, in each of which the ML equations were more
accurate than those of Olsen, Triñanes and Wanninkhof [30]. Reassuringly, the areas of the
clustered algorithms fell into those of major ocean surface currents in the region.

A subsequent study using similar techniques on the global Terra MODIS Match-
Up Data Base (MUDB; [20]) “rediscovered” the formulation of the NLSST atmospheric
correction algorithm [19]. When the ML technique was tasked with deriving NLSST algo-
rithms without the Tsfc term, a set of regionally dependent equations and coefficients was
found. The boundaries between the regions were primarily zonal, indicating dependence
on the general nature of the water vapor distribution related to large-scale atmospheric
circulation [33].

A cloud mask is necessary to identify and remove the cloud-contaminated pixels for
MODIS SSTskin retrieval. Kilpatrick, et al. [34] developed an improved cloud-screening
algorithm using boosted Alternating Decision trees (ADtrees). Compared to the binary
tests forming the previous decision tree cloud mask, the ADtrees approach better identifies
cloud types and improves the retention of SST gradients; it also provides confidence levels
of the clear sky determination for each pixel.

Subsequently, RF and Cubist Decision Trees were used to represent and predict the
errors and uncertainties in MODIS SSTskin retrieval [5]. Both the methods performed
well, but the Cubist method was explored further to gain an insight into the sources of
inaccuracies in retrieval, identifying seven Rule Sets with different error distributions. Each
Rule Set occupied different, but overlapping volumes in the parameter space.

In addition to these early studies related to SST, different kinds of ML method have
been used to derive other remote sensing products; a scalable end-to-end gradient-boosting
tree (XGBoost; [35]) approach has been used to process non-linear satellite product esti-
mations such as Chlorophyll-a [36,37], insolation at the sea surface [38], and urban heat
storage [39]. The Support Vector Machine (SVM) and Artificial Neural Network (ANN)
approaches were used in atmospheric correction for satellite ocean color sensors [36,40],
water quality retrieval [41], and oceanic particulate organic carbon concentrations [42].
Overall, these preliminary studies demonstrate the potential of using ML to produce accu-
rate geophysical variables and provide new insight into the errors of satellite-derived fields
in different measurement conditions.

Here, our goal is to assess the ability of four ML approaches to improve on the currently
used NLSST algorithms for the derivation of MODIS SSTskin.

2. Data

This study involves the joint analysis of variables derived from the measurements of
satellite sensors, in situ instruments, and reanalysis data to generate a training dataset for
ML development. Table 1 lists the relevant variables and data sources for this study.
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Table 1. Relevant variables and data sources.

Variable Satellite or Reanalysis Data In Situ Source

SSTskin MODIS M-AERI
IR brightness temperatures of 11 μm and 12 μm
bands, solar zenith angle, satellite zenith angle MODIS

In situ SST --- Buoys and drifters
Near surface air-temperature MERRA-2 M-AERI; Ship

Near-surface humidity MERRA-2 Ship
Near-surface winds MERRA-2 Ship

First guess SST OSTIA, Canadian Meteorological Center’s
reanalysis of SST

Latitude, months --- ---

2.1. Satellite Data

The SSTskin data are available from MODIS starting from 2000 [20]. The newest
version of MODIS SSTskin retrieval (R2019) generated at NASA GSFC has some significant
improvements, including applying the ADtrees cloud screening algorithm [43]; newly-
derived high-latitude coefficients for areas north of 60◦N [44]; and nighttime dust aerosol
corrections [23]. Our research uses the Level 1B brightness temperatures of the infrared
Channels 20 (λ = 3.75 μm), 29 (λ = 8.55 μm), 31 (λ = 11.03 μm), and 32 (λ = 12.02 μm). The
satellite data can be downloaded from different sources, primarily the NASA PO.DAAC
(Physical Oceanography Distributed Active Archive Center) at the JPL (Jet Propulsion
Laboratory) and the Langley Atmospheric Science Data Center.

2.2. In Situ Data Measurements from Ships

This study used in situ and remotely sensed data from research ships and from the
Royal Caribbean Group (RCG) cruise ships. All the ships were equipped with infrared
radiometers to derive the SSTskin. Three ships of the RCG, Celebrity Equinox, Allure of
the Seas, and Adventure of the Seas, have become a major source of measurements in the
Caribbean area. Figure 1 (top) illustrates the positions of the RCG ships where the SSTskin
measurements have been included in the MODIS MUDBs.

Self-calibrating radiometers on ships facilitate the more direct evaluation of the accu-
racy of satellite-derived SSTskin. A hyperspectral interferometric ship-board radiometer, the
Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), is a dependable and accu-
rate seagoing Fourier-transform infrared spectroradiometer mounted on ships to derive the
spectra originating from the marine atmosphere and sea surface to derive the SSTskin [45]
and near-surface air temperature [46]. M-AERIs include two internal black body cavities
with SI-traceable calibration to provide the real-time at-sea calibration of infrared spectra.

Another important factor in SSTskin retrieval is the air–sea temperature difference
(air–sea δT), which is not explicit in the NLSST algorithms, but which can introduce large
errors in SSTskin retrieval, as shown by Luo and Minnett [47] for GOES ABI (Geostationary
Operational Environmental Satellite Advanced Baseline Imager) and by Luo, et al. [48]
for Sentinel-3 SLSTR (Sea and Land Surface Temperature Radiometer). Utilizing the
measurements of the emission of CO2 in the M-AERI spectra produces a highly accurate
retrieval of the near-surface air temperature used in the determination of air–sea δT, which
can be used in ML model analyses.
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Figure 1. (Top): The routes of the RCG vessels equipped with M-AERIs providing the data for this
investigation. The colors are the SSTskin derived from M-AERI measurements, as shown in the scale
on the right in K. Note that the cruise ships repeat the same tracks multiple times, and so there
are many more measurements than those that appear here. (Bottom): The drifting buoy-measured
subsurface SSTs which have been matched to satellite SSTskin retrievals in the study region.

2.3. In Situ Data Measurements from Buoys

The National Oceanic and Atmospheric Administration (NOAA) took a significant
step in the validation process of satellite-derived SSTskin products through the development
of the in situ SST Quality Monitor (iQuam), which provides quality-assured data from
various sources, including drifters, moored buoys, and marine vessels [49,50]. The drifters
in the iQuam have a surface float and a subsurface drogue. At about 20 cm depth, the
surface floats are equipped with thermometers [51,52], but it is worth mentioning that
the exact thermometer depth can be influenced by surface wave conditions with potential
occurrences of the float being momentarily fully immersed. The data are transmitted to
land via satellite communication in NRT. The iQuam database is significant in our study
because the distribution of drifters is extremely widespread, as shown in Figure 1 (bottom),
for multiple years, thereby enhancing data analyses.

161



Remote Sens. 2024, 16, 4555

2.4. Reanalysis Fields

This study used the atmospheric state vectors from the NASA MERRA-2 (Modern-Era
Retrospective Analysis for Research and Applications, Version 2) database [53]; these rean-
alyzed data guarantee internal consistency and present an array of geolocated and derived
geophysical factors, such as wind, atmospheric temperature, and humidity recorded at
72 pressure levels (accessed on 21 June 2021). The role of the MERRA-2 repository is to
furnish a detailed depiction of the atmospheric conditions at the time when both the in
situ and satellite data were recorded. MERRA-2 has accurate SST values, with average
differences of less than 0.1 K [54]. This, in turn, assists in the precise simulation of satellite
radiometer measurements and offers inputs to the ML models.

3. Methods

3.1. Overview

Four ML methods were adopted initially to improve the atmospheric correction
algorithms for MODIS SSTskin retrievals: eXtreme Gradient Boosting (XGBoost), Support
Vector Regression (SVR), the Artificial Neural Network (ANN), and Random Forest (RF).
Figure 2 shows the overall flow diagram of this study. Introductions of the four ML models
are summarized here:

 

Figure 2. The overall framework of this study.
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XGBoost stands as a contemporary variant of the gradient-boosting decision trees proposed
by Chen and Guestrin [35]. XGBoost applies the entire training dataset with many regression
trees rather than resampling partial samples to construct a strong predictor. The workflow of
XGBoost commences with an equal weight allocation to training samples during inaugural
iteration to formulate the initial tree. As the process progresses, these weights undergo adjust-
ment, finely tuning them in accordance with the performance demonstrated by alignment with
the training dataset. Subsequently, each tree assimilates a designated weight, influenced by
observed fitting errors. To deduce the ultimate class allocated to an observation, the collective
outputs of all trees are synthesized, with individual tree outputs being proportionally scaled by
their respective weights. This methodology leverages gradient optimization to fine-tune cost
functions through the least squares technique, thereby minimizing variance and precluding the
possibility of overfitting.

RF constructs a forest of standard recursive partitioning trees and optimizes binary
splits based on atmospheric and environmental variables by minimizing the mean squared
error in the target variable at each split, thereby facilitating efficient data partitioning. Not
only does this approach ensure higher predictive accuracy, as introduced by Breiman [55],
but it also offers robustness against potential data fluctuations, a trait highlighted in the
studies by Roy and Larocque [56]. The cumulative impact of this ensemble technique
significantly mitigates the errors likely from single tree prediction, reducing variance, while
maintaining a small bias, thereby promising not just an improved accuracy, but also a
robust defense against overfitting issues in the data retrieval processes. Thus, the RF
approach heralds a potential revolution in the fields of meteorological and marine science
research, fostering enhanced accuracy and reliability in MODIS SSTskin retrieval accuracy
assessment [5], Aerosol Optical Depth (AOD) retrieval [57], land cover [58], etc.

The ANN was devised as a network of interconnected artificial neurons assembled
in a layered configuration [59]. Neurons in the input layer represent the various input
variables that describe atmospheric conditions, radiative transfer properties, and other
relevant parameters. For SSTskin retrieval, these neurons include the parameters listed
in Table 1. At its core, an ANN encompasses a minimum of three tiers, the input layer,
an intermediary or hidden layer, and the output layer, each being a nexus of intricately
interconnected neurons. This multi-layered structure facilitates complex computational
operations, enabling sophisticated analyses and predictions. Gross, et al. [60] used the ANN
method to retrieve chlorophyll pigments from SeaWiFS (Sea-viewing Wide Field-of-view
Sensor) ocean color measurements; they showed the advantages of the ANN in performing
the bio-optical inversion, non-linear complexity, and noise filtering compared to those of
the classical polynomial inverse methods.

SVR functions as a supervised learning algorithm grounded in kernel-based principles,
which are used to transform input data into a higher-dimensional space to handle the non-
linear relationships and complexities for SSTskin retrieval. Initially, the training dataset
undergoes a transformation, projected into a higher-dimensional space via a kernel function.
The optimization process then focuses on identifying the ideal hyperplane that aligns well
with the training dataset, as described by Drucker, et al. [61]. Mountrakis, et al. [62]
discussed the applications of SVR in remote sensing, showing it can provide a non-linear
fitting ability between input variables and the target variable. Su, et al. [63] studied
Subsurface Temperature Anomalies (STAs) in the Indian Ocean, utilizing SVR to analyze
a compilation of satellite-derived data, including SST, sea surface elevation, and salinity.
This analysis underscored the proficiency of SVR in delineating deeper oceanic thermal
configurations and enhancing the precision of STA estimation. Furthermore, SVR has
exhibited a remarkable aptitude in data categorization and regression analysis, coupled
with an adeptness in pattern recognition, and thus its main contribution here is to identify
the regions where atmospheric anomalies introduce large inaccuracies in SSTskin retrieval,
and consequently require a different set of algorithms.
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3.2. Match-Up Process

A comprehensive MUDB has been developed to facilitate the comparison between
the MODIS SSTskin fields and the iQuam in situ measurements and the M-AERI data.
The term ‘match-up’ in this context refers to a data vector comprising both in situ and
satellite-derived variables, including attributes such as brightness temperatures from
various MODIS infrared bands, captured as a 5 × 5 pixel array centered on each match-up
location. Moreover, it incorporates other supplementary data, including preliminary SST
estimates, in situ SST, meteorological variables, latitude and longitude, satellite zenith
angle, and time stamps. Each MUDB record comprises 145 variables.

These match-ups are also synchronized between the satellite and in situ data within
a 30 min window and within a geographical radius of 10 km [20,64]. In this study, we
utilized data records extracted from the SST MUDB for the MODIS onboard NASA’s Aqua
satellite. We conducted a rigorous filtration process for MODIS Aqua match-up, selectively
incorporating the MODIS data that met quality levels of 0, 1, or 2. Quality level 0 data are
of the best quality, being confidently cloud-free with a satellite zenith angle of <55◦; quality
level 1 data are also confidently cloud-free, but have satellite zenith angles >55◦. Quality
level 3 data are also likely to be good, but with a risk of some degradation; they were
included in this study to explore the ability of the ML algorithms to deal with less-than-
perfect data. Removing the data from this study with quality level 3 prevented potential
inaccuracies arising from significant cloud interference or other underlying factors that
could compromise analyses. Despite the broad geographical scope encompassed by these
match-ups, our study predominantly focused on the Caribbean area, a decision driven by
the abundance of available M-AERI measurements in that region (Figure 1).

3.3. Machine Learning Model Setup

In this research, the configuration and validation of the model were conducted using
the Scikit-learn library (v0.24) in Python (v3.9). We used the grid search methodology
facilitating the comprehensive exploration of potential parameter values for a chosen
estimator. This process, fundamental to the identification of optimal parameters, operates
on the principles of a cross-validation system, meticulously examining every possible
combination of parameters within this framework. Our strategy used the k-fold method,
a robust approach that segments the entire sample pool into k equally sized subsets,
commonly referred to as ‘folds’. This procedure fosters a learning environment where the
predictive function is cultivated utilizing data from k − 1 folds, reserving the remaining
fold exclusively for testing purposes. We used k = 4 to balance computational efficiency
and analytical accuracy.

Data collected between 2014 and 2020 within the region from 11◦N to 28◦N latitude
and 57◦W to 90◦W longitude were selected, covering the Caribbean area. Using iQuam as
the in situ data source, a total of 123,612 samples were available after filtering. Of these,
75% were used as the training set, and the remaining 25% (30,903 samples) were allocated
to the testing set.

To assess the accuracy of each ML model, several parameters were calculated, in-
cluding the mean differences between the ML-predicted SST and the in situ measured
SST, median, standard deviation (STD), robust standard deviation (RSD), and runtime to
validate the model’s performance. STD serves as an indicator of the model’s statistical
dispersion, reflecting the deviation between the predicted and actual values. RSD is less
sensitive to outliers. Smaller STD and RSD values signify a smaller deviation, indicating
the higher capability of the model. The runtime parameter was analyzed to determine the
ML models’ computational costs.

Aiming to enhance the atmospheric correction algorithms for MODIS SSTskin retrievals
using ML, the partition of training and test datasets aids in constructing robust ML models
trained with a substantial number of samples to recognize complex patterns and correlations.
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4. Results

It is widely acknowledged that the SSTskin is generally cooler than the water beneath
the thermal skin layer, a phenomenon resulting from upward heat flux from the ocean
to the atmosphere caused by a combination of factors, including net longwave radiation
and sensible and latent heat fluxes at the air–sea interface. The characterization of the
upper-ocean vertical temperature structure has been outlined by the Science Team of the
Group for High-Resolution Sea Surface Temperature (GHRSST) using schematic profiles [4].

To facilitate the more accurate representation of the SSTskin, it becomes necessary to
adapt buoy measurements, which are typically obtained approximately 0.2 m beneath the
surface [51,52], to align with the SSTskin. This represents the temperature of the thermally
conductive skin layer, typically ranging between 10 μm and 100 μm in thickness, and which
is approximated by the measurements of infrared radiometers. The previous studies have
addressed this discrepancy by applying a fixed adjustment of −0.17 K to buoy SST measure-
ments to approximate the SSTskin [5,65,66], representing the global mean skin–subsurface
temperature difference. However, such static corrections can introduce systematic biases,
particularly when training ML models, as they fail to account for the dynamic variability
in cool skin and diurnal heating effects due to changes in the environmental conditions,
such as wind speed, solar radiation, and surface fluxes. Accurately modeling the cool
skin and warm layer (diurnal heating) effects presents a significant challenge, prompting
numerous refinements to the existing parameterizations and models [25,29,67–69]. In this
study, we use the Coupled Ocean Atmosphere Response Experiment (COARE; Fairall,
et al. [70]) model to more accurately account for both the cool skin and diurnal warming
effects in buoy SST measurement. The COARE model dynamically corrects these processes
by incorporating meteorological and oceanographic variables, such as air–sea fluxes, solar
radiation, and wind speed, allowing for the more accurate estimation of the SSTskin. By
applying these corrections, we generate a more accurate in situ SSTskin dataset, which
serves as a reliable basis for training and validating ML models.

We compared the ML models’ performance against that of the currently implemented
NLSST atmospheric correction algorithm to establish any improvements.

4.1. Comparison with iQuam

In Figure 3, the scatter plots illustrate the correlation between the NLSST-retrieved
SSTskin and the ML predictions and the in situ measured SST from iQuam, converted to
SSTskin using the COARE model, in which the dashed line represents one-to-one agreement,
indicating a perfect match between the predictions and the observations. The outputs from
RF show the best correspondence with the in situ SSTs, having a linear regression equation
of y = 1.00x + 0.03. In comparison, the slopes for XGBoost and ANN are approximately
equal to 0.99, whereas it is 0.95 for the SVR method. The central panels of Figure 3 show
histograms of the ML-derived SSTskin and the iQuam SST data, providing a visualization
of the frequency of occurrence of different temperatures. The ML models were found
to surpass the conventional NLSST algorithm in multiple metrics. Specifically, NLSST
presented a mean bias of −0.319 K and an STD of 0.547 K. When focusing on mean bias as
a performance indicator, the XGBoost model demonstrated superior accuracy, recording
a negligible mean bias of 0.0012 K. This was followed by RF (−0.0103 K), SVR (0.0133 K),
and the ANN (−0.0762 K) in this respective order. In relation to STD and RSD, a consistent
performance was shown among XGBoost, RF, and the ANN. The ANN displayed the
lowest STD of 0.243 K, with those of RF and XGBoost at 0.247 K and 0.252 K, respectively.
However, SVR was slightly inferior, with the highest ML STD of 0.341 K. The distribution
of SST predicted by the ANN best fits that of iQuam SST.
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Figure 3. Diagnostic plots illustrating the performance of the standard NLSST atmospheric correction
in the study area with the SSTskin derived from the ML approaches. The buoy SSTs have been adjusted
to the SSTskin using the COARE model. Left column: scatter plots of the predicted and buoy SSTskin;
the dashed line is a one-to-one correspondence, while the red line represents the linear least-squares
fit. Center column: histograms of the predicted SSTskin and those from iQuam. Right column: maps
of the disparities between the predicted SSTskin and those from iQuam using a color-coded scheme to
show the magnitudes in degrees, given on the right.
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An additional aspect of the evaluation was the computational efficiency of these ML
models. In the dataset comprising 30,903 match-ups, the ANN delivered results in only
12 s. XGBoost and RF demonstrated comparable computational efficiency, taking around
40 s to process the same dataset. SVR fell behind significantly, taking 931 s due to its high
computational complexity when dealing with large datasets. XGBoost, RF, and the ANN
can handle high-dimensional feature spaces efficiently through their network topology;
geospatial variables, such as longitude, latitude, and various atmospheric parameters, can
be easily accommodated. The traditional non-linear relationships between these factors are
optimized by using XGBoost’s and RF’s decision trees and the ANN’s activation functions
and multiple layers, while SVR requires calculating the distances in this feature space and
uses different kernel functions, which can be computationally intensive. Furthermore,
XGBoost, RF, and the ANN are parallelized across multiple CPU cores, making them highly
efficient for analyzing big datasets. SVR has a computational complexity ranging from
O(N2) to O(N3), depending on the choice of kernel and other settings, and this complexity
makes SVR less efficient for large-scale problems. To sum up, among the ML algorithms,
XGBoost and RF appear to offer the most reliable and efficient approaches for improving
the accuracy of MODIS SSTskin retrieval, outperforming both the ANN and SVR.

The right column of Figure 3 shows maps of the discrepancies between NLSST retrieval
and the ML predictions and the in situ SST measurements after correction for the warm
layer and cools skin effects; the color bars illustrate the temperature differences in Kelvin.
The ML models yielded more-accurate spatial distribution patterns with respect to iQuam
SST than those from the NLSST. However, notable discrepancies were observed in the SVR
model’s predictions. Specifically, SVR tended to underestimate the SST in the southwestern
regions, while overestimating in the northern parts of the study area. One of the intricacies
of using SVR is its reliance on kernel functions to model the non-linear relationships in
data. Selecting and fine-tuning the appropriate kernel for SVR is challenging, especially
when dealing with high-dimensional geospatial datasets.

Figure 4 shows the discrepancies between NLSST retrievals and the ML predictions
and the buoy-derived SSTskin values varying with various environmental factors, including
wind speed, 2 m air temperature, geographic latitude, in situ SSTskin values, the month,
and specific humidity. Each subplot includes error bars to highlight the variability in
temperature differences, while the dots signify the mean discrepancy associated with each
parameter. Grey histograms depict the data distributions in the parameters.

The vertical gradients of the SST in the near-surface ocean layer are controlled by
multiple factors, including solar radiation absorption, the vertical diffusion of heat, and
mixing due to wind turbulence [29,67,71]. We used the OSTIA surface temperature, Ts f c,
as the initial guess of the SST. This was then used as the input for the ML models and in
the NLSST algorithm. As shown in Figure 4A, the observational SST data and the ML
model-predicted SST showed a good agreement with 10 m wind speeds (U10) ranging
from 3 m/s to 8 m/s, where the U10 values were concentrated, having a minimal bias
below 0.1 K. At very low wind speeds, both the SVR and NLSST exhibited pronounced
inaccuracies. For U10 > 10 m/s, there is a larger bias in the predicted SSTskin, especially
for the SVR method. Ideally, all ML algorithms should not exhibit a large bias at high
wind speeds because the SSTskin relationship with subsurface temperature shows very little
variation due to wind-driven turbulence mixing. In high-dimensional spaces, especially
when the sample size is small, the risk of overfitting is high. Therefore, SVR’s performance
might be affected more in such conditions without proper regularization.

The effect of surface air temperature on these ML schemes is shown in Figure 4B. The
temperature difference between the SSTskin and the overlying air influences the effect of
the atmosphere on the propagation of the sea surface emission to satellite height [72–74].
Within the air temperature range from 24 to 29 ◦C, the SSTskin simulated by the ML models
is close to the observed values. However, the deviations for SVR become distinct at air
temperatures below 22 ◦C or above 30 ◦C, with an average bias up to 2 K.
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Figure 4. The discrepancies between the ML and NLSST outputs and the buoy-determined SSTskin

influenced by various environmental parameters: wind speed (A), air temperature at 2 m above sea
level (B), geographic latitude (C), SSTskin (D), the month (E), and specific humidity at 2 m (F). Each
subplot includes error bars, denoting the STD in the temperature differences, with a dot representing
the mean discrepancy. The grey histograms illustrate the data distribution of parameters on the x-axis.
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The coefficients used in the NLSST algorithm are dependent upon both the latitude
and the month [21]. The latitude- and month-based variations in the NLSST-derived SSTskin
discrepancies are apparent in Figure 4C,E. The SVR ML model displays a negative bias
reaching up to 0.25 K, while the other ML models exhibit a positive bias for latitudes
below 13◦N. The scarcity of buoy measurements south of 13◦N, as depicted in Figure 1
(bottom), results in inadequate training data for the ML algorithms, contributing to such
large biases. No significant seasonal impact was found on the different ML models, but
the NLSST shows a pronounced bias during summer. Furthermore, between 11◦N and
20◦N, the NLSST reveals a significant bias of −0.5 K, which indicates that the coefficients
or the formulation of the NLSST algorithm derived at this latitude range for the entire
range of longitudes require further refinement and optimization for this region, particularly
in summer.

Figure 4D illustrates the biases across different SST values. All the ML models exhibit
pronounced positive biases for colder SSTs and negative biases under warmer SSTs, with a
paucity of input training the data for these conditions. It is essential to understand that
an abundant dataset is important for ML models to reduce the risk of overfitting and to
enable the successful identification and depiction of the underlying patterns and tendencies
within the data. These, in turn, enhance the robustness of ML algorithms and the accuracy
of the derived SSTskin.

Water vapor has a profound impact on the atmospheric absorption and emission
of infrared radiation. Consequently, fluctuations in specific humidity directly alter the
atmospheric transmittance of radiation originating from the sea surface [75], leading to
potential inaccuracies in the satellite-derived SSTskin [27,28,76,77]. As depicted in Figure 4F,
a distinct trend of SST biases relative to specific humidity emerges for the NLSST; as specific
humidity increases, the bias becomes increasingly negative. Regarding the ML models, all
exhibit negative biases when the specific humidity exceeds 20 g/kg, but this is found in
a small proportion of the conditions represented in the MUDBs. To address this issue, a
more-extensive atmospheric dataset to capture a wider range of environmental conditions
is needed.

The patterns of the SSTskin biases presented in Figure 3 (right) do not reveal temporal
changes. Figure 5 presents Hovmöller diagrams that outline both the temporal and spatial
evolution of SSTskin biases using the NLSST and the four ML algorithms. Such visualization
aids in understanding spatio-temporal variations and identifying patterns. There is a
significant data gap between July 2019 and January 2020 resulting from a lack of available
in situ SST measurements from iQuam. Prominent negative biases in the NLSST retrievals
in the study area from July to October are apparent.

From the Hovmöller diagrams, substantial seasonal fluctuations, especially in July
each year, and notable latitudinal variations are found in the SSTskin biases for all the ML
models used. Despite the presence of large and negative biases at the lower latitudes,
the ML models demonstrated a superior performance compared to that of the SSTskin
derived from the standard NLSST algorithm. Specifically, the XGBoost and RF models
exhibited enhanced robustness to noise, a characteristic of their ensemble nature, which
aggregates predictions from multiple trees, thereby reducing the risk of overfitting and
noise sensitivity.
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Figure 5. Hovmöller diagrams show the time and latitude evolutions of the biases from NLSST
retrievals and four ML predictions compared with iQuam SSTs for 2018 to 2020. Since the in-situ data
from July 2019 to Jan 2020 were not available, a gap exists between them. The color indicates SST
difference in K, according to the scale on the right.

4.2. Comparisons with M-AERI SSTskin

To further assess each ML method’s ability to predict accurate SSTskin, the SSTskin data
derived from the M-AERIs mounted on ships were utilized as the reference. This approach
is well established, with several published studies using the M-AERI SSTskin to assess
the accuracy of retrievals from MODIS [20], GOES-ABI [47], and Sentinel-3 SLSTR [48],
and also from the MERRA-2 and ERA-5 fields [54,78]. The ML-derived SSTskin was also
compared with the current NLSST retrieved SSTskin [79] using the MUDBs to quantify
accuracy improvements and to understand under which conditions improvements are
minimal or absent, and thus direct further algorithm development.
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Figure 6 includes scatter plots, histograms, and maps of differences of the NLSST
retrievals and the four ML predictions against M-AERI SSTskin in the Caribbean region.
Figure 6 has the same structure as Figure 3, but using SSTskin derived from M-AERIs
mounted on ships to assess the performance of the NLSST SSTskin and ML algorithms.
Such ship-based, self-calibrating radiometers provide data for a like-with-like SSTskin
comparison, thereby avoiding the need for corrections of the diurnal heating and thermal
skin layer effects.

 

Figure 6. Like Figure 3, but utilizes the SSTskin values derived from the M-AERIs mounted on ships
as comparisons for the assessment of the NLSST retrievals and ML prediction errors.
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The left panel of Figure 6 presents scatter plots showing the correlation between
NLSST retrieval and the ML predictions and the SSTskin derived by using the ship-mounted
M-AERIs. The dashed line indicates an ideal one-to-one correspondence, the central panel
histograms show the distribution of both the satellite- and M-AERI-derived SSTskin data.
The NLSST algorithm exhibits an average discrepancy of −0.123 K, with an STD of 0.563 K.
The ML models present varying performance metrics. Specifically, the XGBoost and RF
models produce mean biases of −0.117 K and −0.107 K, with STDs of 0.303 K and 0.309 K,
respectively. However, larger mean discrepancies of −0.173 K and −0.180 K are found in
the ANN and SVR results. Notably, the SVR model demonstrates the highest STD of the
ML results at 0.426 K. The right panel provides a visualization of the spatial distribution
of temperature differences between the satellite-derived SSTskin and the M-AERI data; the
NLSST and SVR models SSTskin values show pronounced discrepancies from the M-AERI
data in specific regions. Such significant biases contribute to larger STDs, emphasizing
the need for the refinement in those methods. Overall, validation with the M-AERI data
demonstrates the potential of using ML approaches to produce accurate atmospheric
corrections for SSTskin retrieval and gain new insight into the source of inaccuracies in the
MODIS-derived SSTskin fields under different conditions.

Figure 7 displays the discrepancies between NLSST retrievals and the ML predic-
tions and the M-AERI-determined SSTskin under various environmental factors, similar to
Figure 4. The satellite-derived SSTskin data align favorably at U10 spanning from 3 to 8 m/s
or at surface air temperature between 24 and 29 ◦C, maintaining a small bias below 0.2 K.
In extreme conditions, such as strong wind speeds and high air temperatures, there are
pronounced inaccuracies in both the SVR and NLSST outputs. Ideally, all the SSTskin values
should exhibit negligible wind speed and air temperature dependences; however, the per-
formance of SVR is highly impacted at air temperatures poorly represented in the data. As
shown in Figure 7C, the influence of latitude on the NLSST algorithm and the ML models
is evident; the SVR and the NLSST display a discernible negative bias of up to −0.75 K
south of 15◦N, likely due to the sparsity of M-AERI data, as illustrated in Figure 1. The lack
of comprehensive data lowers the ML models’ training efficacy. Note that the behavior at
latitudes south of 15◦N is more extreme than when validating that of the NLSST and ML
outputs with the iQuam in situ SST. The deviations in all the ML models increasing with
the rise in SSTskin, as shown in Figure 7D, is primarily attributed to the lack of sufficient
training data at a warmer SSTskin. As the ML models heavily rely on the patterns present in
the training data, the dataset we used for model training has more SSTskin values in the
range of 24 ◦C to 30 ◦C compared to those at a warmer SSTskin, which limits the ability of
the ML models to accurately learn and predict patterns when SSTskin > 31 ◦C. The monthly
variations shown in Figure 7E indicate a larger training dataset is needed, especially for the
SVR algorithm for summertime conditions. The ML models display significant variance at
low humidity and high temperatures, underscoring potential data inadequacies for those
specific conditions.

Considering that the M-AERIs provide SSTskin data, there is a need to improve the
subsurface-temperature-to-SSTskin conversion when using the iQuam SST from drifting
buoy measurements taken at depth to derive the coefficients for the NLSST algorithm.
There is also a need for better optimization for regional applications.
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Figure 7. As Figure 4, but for NLSST and ML SSTskin values compared with M-AERI SSTskin data.

5. Summary

This paper reports the application of four ML models, XGBoost, RF, the ANN, and
SVR, in enhancing the accuracy of SSTskin retrieval from the MODIS onboard NASA Aqua
satellite. Research demonstrates the ML methods compared well with the conventional
NLSST algorithm in retrieving SSTskin in the Caribbean region. The ML models were
trained using an extensive MUDB containing both satellite and in situ measurements and
related meteorological variables. The NLSST algorithm coefficients were derived from very
large datasets in latitude bands that span the entire range of longitudes. The NLSST SSTskin
values were taken from NASA data servers. The primary sources of validation data for the
NLSST- and ML-derived SSTs were iQuam and M-AERI datasets. When the outputs from
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the various models were assessed against M-AERI SSTskin, XGBoost and RF demonstrated a
superior performance, while SVR fell behind due to issues, including overfitting and higher
computational requirements. Some factors, such as wind speed, surface air temperature,
latitude, and specific humidity, were found to influence the accuracy of the ML models’
SSTskin predictions. There were larger discrepancies in the ML models' retrievals under
conditions, which were often associated with sparse training data.

The ML models, especially XGBoost, provides a promising avenue for improving the
accuracy and robustness of SSTskin retrieval, with mean differences of −0.001 K compared
with iQuam SST and −0.117 K compared with M-AERI SSTskin, suggesting potential
benefits over the current NLSST algorithm. Overall, this research advocates for the further
investigation of ML models to refine the atmospheric correction processes for SSTskin; this
research also emphasizes the need for more comprehensive datasets by sampling the global
range of marine conditions and meticulous validation to ensure the optimal performance
of the NLSST algorithm and ML models and the confident assessment of the accuracies of
the derived SSTskin values on a global basis.

Future work should focus on reducing the discrepancies observed, particularly in
regions or temperature ranges that challenge the current atmospheric correction algorithms,
including high latitudes [76,77], equatorial and tropical conditions with a high water
vapor content, aerosol-burdened atmospheres, and coastal regions influence by terrestrial
atmospheres. The focus of the research reported here was primarily in the Caribbean region;
this was a choice driven by the abundant in situ data available in this area. As we continue
to gather more data for training and validating these algorithms, we plan to broaden the
scope of our study to encompass larger geographical regions. Moreover, applying the
ML techniques to data from newer satellite sensors, such as the VIIRS on the Suomi-NPP,
and subsequent NOAA satellites [80], and the SLSTR onboard the Copernicus Sentinel-3
satellites [48], should be explored.
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Abstract: Shallow water bathymetry is essential for maritime navigation, environmental monitoring,
and coastal management. While traditional methods such as sonar and airborne LiDAR provide
high accuracy, their high cost and time-consuming nature limit their application in remote and
sensitive areas. Satellite remote sensing offers a cost-effective and rapid alternative for large-scale
bathymetric inversion, but it still relies on significant in situ data to establish a mapping relationship
between spectral data and water depth. The ICESat-2 satellite, with its photon-counting LiDAR,
presents a promising solution for acquiring bathymetric data in shallow coastal regions. This study
proposes a rapid bathymetric inversion method based on ICESat-2 and Sentinel-2 data, integrating
spectral information, the Forel-Ule Index (FUI) for water color, and spatial location data (normalized
X and Y coordinates and polar coordinates). An automated script for extracting bathymetric photons
in shallow water regions is provided, aiming to facilitate the use of ICESat-2 data by researchers.
Multiple machine learning models were applied to invert bathymetry in the Dongsha Islands, and
their performance was compared. The results show that the XG-CID and RF-CID models achieved
the highest inversion accuracies, 93% and 94%, respectively, with the XG-CID model performing best
in the range from −10 m to 0 m and the RF-CID model excelling in the range from −15 m to −10 m.

Keywords: ICESat-2; Sentinel-2; satellite-derived bathymetry; shallow water

1. Introduction

Shallow bays and areas around islands and reefs are hotspots for human marine
activities, and information on bathymetry is crucial for the study of these shallow seas.
With the growth of the ocean economy and the increasing demand for the exploitation of
resources such as fisheries, oil and gas, and marine tourism, knowledge of bathymetry is
essential for safe navigation, harbor planning, and fishery resource assessments. These
areas are also often important components of ecosystems, such as coral reefs and seagrass
beds, and accurate bathymetric data can help to study their distribution and growth [1,2].
In addition, changes in bathymetry are closely linked to climate change, with rising sea
levels due to global warming raising concerns about coastline retreat. Monitoring changes
in bathymetry can also help to predict the extent of natural disasters such as tsunamis
and hurricanes, supporting the mitigation of potential damage. The in-depth study of
bathymetric information in shallow waters has significant scientific, economic, and social
value [3–5].

Traditional shallow water bathymetric methods are divided into five main categories.
(1) Sonar echo sounding techniques based on shipboard systems: These include single-
beam echo sounding (SBES [6]) and multibeam echo sounding (MBES [7,8]). The former has
a small coverage and low spatial resolution, while the latter provides detailed underwater
topography through complete insonification of the area. (2) Bathymetry using airborne
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LiDAR data from non-imaging active remote sensing and satellite radar altimetry (e.g.,
SEASAT altimetry), with the former obtaining accurate measured depths in near-shore
waters and the latter being suitable for only coarse, large-scale monitoring of seafloor
topography changes. (3) Synthetic Aperture Radar (SAR) based on imaging active remote
sensing for bathymetric inversion: When extracting seafloor features, this technique only
identifies features with wavelengths similar to those of the local swell. If there is a large
gap between the scale of the seabed topographic features and the wavelength of the waves,
the effectiveness of the SAR technique will be limited [3]. (4) Bathymetric techniques
based on imaging passive remote sensing: The use of satellite remote sensing images
to establish bathymetric inversion models is divided into statistical and physics-based
methods. Physics-based methods usually have higher accuracy, but need to consider
complex optical properties; statistics-based methods analyze the relationship between
spectral properties and depth through regression [9–16]. (5) Bathymetric inversion based
on photogrammetry: This technique uses high-resolution satellite or airborne imagery to
extract submerged features through advanced photogrammetric techniques. By applying
stereo-matching and disparity estimation, this method reconstructs three-dimensional
underwater topography. However, accurate refraction correction is essential for precise
bathymetric data, and the technique is primarily applicable to shallow and ultra-shallow
waters with depths up to 10 m [17–21]. Sonar and airborne LiDAR bathymetry are expensive
and have limitations in remote and sensitive areas that are difficult to reach by ships and
drones [22]. Photogrammetry can achieve high-resolution shallow water topography, but
its depth capability is limited (typically up to 10 m). Satellite bathymetry allows for fast
and cost-effective large-scale bathymetric inversion.

The research of satellite-derived empirical-based bathymetry (SDB) can be traced back
to the 1970s and 1980s, when Polcyn et al. [23–25] proposed the SDB algorithm based on
the band ratio, which gradually enabled the estimation of shallow water depths up to 5
m. Lyzenga et al. [26–28] simplified the classical radiative transfer equation to establish
a quantitative relationship between the surface radiant energy and the water depth, thus
simplifying the multispectral bathymetric inversion model and successfully estimated the
water depth up to 15 m. Subsequently, Lyzenga et al. [29] proposed a multi-band linear
model to correct optical attenuation and bottom reflection changes by log-transforming
the blue and green band radiance combinations to improve the bathymetry accuracy,
and Stumpf et al. [30] proposed an empirical ratio formula with only two unknown pa-
rameters, improving upon previous bathymetry inversion models. Experimental results
demonstrated that the dual-band ratio model not only requires fewer parameters, but
also performs well for low bottom depths and low reflectivity conditions. This model has
become one of the classical approaches and forms the basis for many current studies. In
recent years, scholars have made significant progress on the basis of these classical models.
Pacheco et al. [31] improved the linear transformation algorithm of Lyzenga and inverted
the nearshore SDB maps from Landsat 8 imagery. Hedley et al. [32] compared the ability of
Sentinel-2 and Landsat 8 imagery in shallow water bathymetry and seabed mapping. With
the development of machine learning technology, many researchers applied it to bathymet-
ric inversion. Sandidge et al. [33] proposed a BP neural network for bathymetric inversion
for the first time, and the effect exceeded traditional linear regression. Manessa et al. [34]
used the random forest algorithm to carry out the bathymetric inversion of shallow coral
reefs based on WorldView-2 imagery. Wang L et al. [35] used IKONOS-2 imagery and
airborne LiDAR samples to implement bathymetric inversion by support vector machine
model, while Wang Y et al. [5] improved the inversion accuracy by integrating spectral
and spatial features through multilayer perceptron. Leng Z et al. [36] used the GRU deep
learning model to carry out segmented bathymetric inversion of turbidity in Liaodong Bay.
Ji X et al. [9] proposed an adaptive empirical method for different substrate types based
on WorldView-2 imagery and multibeam echo sounding, airborne laser bathymetry (ALB)
system. Knudby A et al. [12] compared five SDB models and discussed the importance of
local neighborhood information for optimizing the effectiveness of bathymetric inversion.
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These studies have promoted the continuous development and application of SDB field,
but satellite bathymetry still needs a large amount of in situ measured data to construct the
mapping relationship between spectra and depth.

ICESat-2 (Ice, Cloud, and land Elevation Satellite 2) [22,37–41] was launched in Septem-
ber 2018 with the first on-board photon-counting lidar system, known as ATLAS (Advanced
Topographic Laser Altimeter System). As a novel source of a priori bathymetry data, it
makes up for the shortcomings of traditional satellite bathymetry that requires a large
amount of measured data, and has been widely used in the field of Satellite-Derived
Bathymetry (SDB) in recent years. Parrish et al. [42] successfully achieved 40 m bathymetry
in clear waters using ICESat-2 data. Hsu H J et al. [43] combined ICESat-2 and Sentinel-2
data to achieve shallow water bathymetry of six islands in the South China Sea based
on a semi-empirical model [30]. Chen Y et al. [44] proposed a photon-counting LIDAR
bathymetry method based on adaptive variable ellipsoid filtering (AVEBM) and verified the
accuracy in Yongle Atoll and Chilianyu Archipelago. Xie C et al. [45] applied the density
clustering algorithm (DBSCAN) to remove noise from ICESat-2 raw photons and combined
them with Sentinel-2 data to perform bathymetric inversion, demonstrating the potential
of combining data from multiple sources. Peng K et al. [46] proposed a physically assisted
convolutional neural network (PACNN) model based on convolutional neural networks
(CNNs) by linking Sentinel-2 and ICESat-2 data for shallow water bathymetry. Guo X
et al. [47] performed bathymetric inversion by integrating ICESat-2 and Sentinel-2 data
using a BP neural network model, which effectively enhanced the bathymetric inversion
results. Xie C et al. [11] fused ICESat-2 and Sentinel-2 data and incorporated a radiative
transfer-based model into a convolutional neural network (CNN) for bathymetric inver-
sion, significantly improving inversion accuracy and further validating the effectiveness of
multi-source data fusion.

This study aims to propose a simple and convenient method for shallow water depth
inversion based on satellite datasets, enhancing the performance of the water depth inver-
sion model through the integration of various types of information. First, the feasibility of
applying ICESat-2 data in shallow water bathymetry is explored and improved. To this
end, we developed a fully automated script capable of extracting water depth photons,
where users only need to define the study area and select high-quality ICESat-2 data tracks
and dates. Second, this study uses the information from the red, green, and blue bands of
Sentinel-2 data as spectral feature information, the Forel-Ule index (FUI) [48–50] as water
color information, and normalized latitude and longitude coordinates, along with polar
coordinates, as spatial information. These are combined with the extracted ICESat-2 water
depth point data to train the traditional Stumpf model, Polynomial Regression model,
Random Forest model, Gradient Boosting model, and XGBoost model for water depth in-
version. Through a comprehensive analysis of the accuracy and applicability of each model
in shallow water bathymetry, this study provides new perspectives and methodologies for
the effective application of ICESat-2 and Sentinel-2 data in shallow water depth inversion.

2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area and In Situ Bathymetric Data

The first study area is located in the shallow coastal regions of Clearwater Bay, Haitang
Bay, and Yalong Bay (Lingshui-Sanya Bay) in Hainan Province, China, situated in the
southeastern part of the province within a low-latitude coastal zone, as shown in Figure 1a.
The in situ data consist of 24 bathymetric points collected in 2020, which are used to
evaluate the bathymetric capability of ICESat-2 data. The locations of these measurement
points are indicated by red dots in Figure 1c.

The second study area is located in the Dongsha Islands (Figure 1b), a group of islands
and reefs in the northern part of the South China Sea. It consists of 11 coral reefs and
35 islands with a total area of about 0.57 km2. The Dongsha Islands are the furthest group
of islands in the South China Sea from Hainan, about 350 km from Hainan Island and
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about 460 km from the Leizhou Peninsula in Guangdong Province. These islands consist
mainly of coral reefs and sandy islands with low reliefs and small islands. The natural
environment of the Dongsha Islands remains relatively pristine, with a well-preserved
ecosystem. Covering a total sea area of approximately 5000 km2, the Dongsha Islands
feature a comprehensive topography that includes unique natural formations such as reef
flats, lagoons, sandbars, shoals, channels, and islands, making it a quintessential example
of an atoll landform.

Figure 1. Map of the study area for this study. (a) Location of the study area for this study. (b) Sentinel-
2 image map of Dongsha Islands. (c) Sentinel-2 image map of Lingshui-Sanya Bay; the red dots are
the actual measurement points of water depth.

2.1.2. ICESat-2 Data

ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) is an Earth observation satellite
launched by NASA in September 2018, designed to accurately measure changes in surface
elevation through laser altimetry to support global environmental monitoring and climate
change research. ICESat-2 carries the Advanced Topographic Laser Altimeter System (AT-
LAS), one of the most advanced laser altimeters in Earth’s orbit to date. ICESat-2’s primary
mission includes assessing volumetric changes in the polar ice caps in order to establish
an active monitoring system related to sea level change and ocean circulation impacts. In
addition, ICESat-2 is used to measure global vegetation characteristics, land topography,
and the backscattering properties of molecules, clouds, and aerosols in the atmosphere.
These data are critical to understanding global change and supporting environmental pro-
tection [51–58]. The ATLAS uses six laser beams divided into three pairs, each consisting
of a strong beam and a weak beam. The strong beam has four times the energy of the
weak beam, a design that helps to obtain stable data under varying albedo conditions. The
distance between each pair of laser pulses is 90 m, while the distance between each pair
and the next is 3.3 km. This spatial configuration strikes a balance between high-resolution
sampling and wide area coverage, enabling ICESat-2 to capture detailed altimetry data
across diverse global surfaces with improved accuracy.

ICESat-2 provides a variety of data products, and the Level 2 data of ICESat-2, ATL03
(Global Geopositioning Photonics Data), was used in this study (as shown in Table 1). The
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ATL03 dataset consists of all the raw photon data recorded in six different trajectories (three
strong beams and three weak beams), each with unique latitude, longitude, and elevation
angles based on the WGS84 ellipsoidal datum with unique latitude, longitude, and elevation
angles. The dataset is corrected for atmospheric delays, solid tides, and systematic pointing
biases, but does not correct for bathymetric errors such as water surface fluctuations, tilted
surfaces, and water column effects. Although the ATL03 dataset provides detailed photon
data, due to the high sensitivity of the detector, the data contain a large number of noise
photons, especially in the daytime solar background. In order to distinguish between signal
and noise photons, the ATL03 dataset introduces a ‘confidence’ parameter ranging from 0
to 4, where the higher the confidence, the more likely the photon is a signal. However, due
to attenuation and scattering effects in the water column, the distributions of signal and
noise photons are different from those in the atmosphere, resulting in poor performance of
the confidence parameter in undersea signal photon detection [42]. Therefore, this study
proposes a density-based signal detection algorithm to filter the photons and identify the
water depth signal photons.

Table 1. Data table of ICESat-2 and Sentinel-2 in the study area.

Site Lingshui-Sanya Bay Dongsha Islands

Latitude 18◦3.84′N–18◦33.3′N 20◦34.75′N–20◦47.20′N
Longitude 109◦17.1′E–110◦7.8′E 116◦41.34′E–116◦55.61′E

ICESat-2 Data

ATL03_20200130213819_05370607_006_01
ATL03_20200427052044_04840701_006_02
ATL03_20200430171804_05370707_006_02
ATL03_20200530034826_09870701_006_01
ATL03_20200727010031_04840801_006_01
ATL03_20200828232813_09870801_006_01
ATL03_20200901112535_10400807_006_02
ATL03_20200930100134_00950907_006_02
ATL03_20210502234906_05981107_006_01
ATL03_20210524103607_09261101_006_01
ATL03_20210524103607_09261101_006_01
ATL03_20220624154329_00421601_006_01
ATL03_20220628034053_00951607_006_01
ATL03_20220829004446_10401607_006_01

ATL03_20190129144159_04910207_006_02
ATL03_20190730060118_04910407_006_02
ATL03_20191021135212_03770501_006_02
ATL03_20191029014115_04910507_006_01
ATL03_20200420051144_03770701_006_02
ATL03_20200427170047_04910707_006_02

Sentinel-2 Data
S2A_MSIL2A_20201203T031109_N0500_R075_

T49QCA_20230303T030821
S2A_MSIL2A_20240222T023721_N0510_R089_

T50QMH_20240222T061746

2.1.3. Sentinel-2 Data

Sentinel-2 [59] is a key satellite in the European Space Agency’s (ESA) Copernicus
program, designed to monitor the Earth’s surface through high-resolution optical imaging.
The Sentinel-2 satellites, comprising Sentinel-2A and Sentinel-2B, were launched in June
2015 and March 2017, respectively. Sentinel-2’s L2A-level data are radiometrically cali-
brated and atmospherically corrected surface reflectance images specifically designed for
detailed surface analyses. The L2A class data are processed from the original Level-1C data
(geometrically corrected orthophotos). It is characterized by high spatial resolution and
multi-spectral coverage. Sentinel-2 L2A level data provides resolutions of 10, 20, and 60 m.
The resolution varies by band, with the 10-meter resolution band being suitable for detailed
surface analysis. Coverage of 13 spectral bands, ranging from visible to near-infrared
(VNIR) and short-wave infrared (SWIR), provides rich spectral information to support a
wide range of applications.

The Sentinel-2 L2A level data for this study was obtained from the European Space
Agency’s (ESA) Copernicus Open Access Hub. The data are projected using the UTM/WGS84
(Universal Transverse Mercator/World Geodetic System 84) projection, which facilitates its
use in conjunction with other Geographic Information System (GIS) data (data table shown
in Table 1).
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2.2. Methodology

The main work of this study involves the following aspects: First, bathymetric mea-
sured data from Lingshui-Sanya Bay, as well as ICESat-2 data and Sentinel-2 images from
both Lingshui-Sanya Bay and Dongsha Islands, were obtained. Second, Sentinel-2 images
of the two study areas were preprocessed, and ICESat-2 bathymetric photon signals were
extracted using a fully automated script. In the Lingshui-Sanya Bay area, ICESat-2 bathy-
metric photon data were matched with measured bathymetric data in terms of coordinates
to evaluate the feasibility of ICESat-2 data for bathymetric applications. Subsequently,
ICESat-2 bathymetric photon data from Dongsha Islands were resampled to a 10 m resolu-
tion and matched with Sentinel-2 images to obtain the red, green, and blue band reflectance
values of the ICESat-2 bathymetric points. Additionally, the dataset was augmented with
the FUI to represent water color information and spatial information, including normalized
latitude and longitude coordinates as well as polar coordinates (radius and angle). Using
this comprehensive dataset, the Stumpf model, Polynomial Regression model, Random
Forest model, Gradient Boosting model, and XGBoost model were trained to invert the
bathymetry of the Dongsha Islands. Finally, the accuracy and applicability of each model
were comparatively evaluated. Figure 2 illustrates the technical workflow of this study.

 
Figure 2. The technical flowchart of this study. The blue dashed box illustrates the key steps in the
ICESat-2 bathymetric photon extraction process.

2.2.1. Lingshui-Sanya Bay Measured Data Acquisition

On 15–16 August 2020, our team carried out a field collection of seawater depths in
Lingshui-Sanya Bay. This study used the bathymetric rod method, which measures the
distance from the seafloor to the water surface by inserting a bathymetric rod vertically into
the seawater and measuring the distance from the seafloor to the water surface through the
scale marked on the rod. The bathymetric rod detection method is widely used in marine
scientific research because of its simplicity and practicality. We used this method to detect a
total of 24 discrete points of seawater bathymetry data in Lingshui-Sanya Bay, and tidally
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corrected the measured data by checking the tide tables of the harbors near the measured
points, as shown in Table 2.

Table 2. In situ bathymetry data sheet.

Longitude Latitude
Distance from

Shore (m)
Measured Water

Depth (m)
Tide-Corrected

Water Depth (m)
Time

110.07672 18.45667 23.7 0.1 0.5 11:49
110.07676 18.45665 27.4 0.6 1 11:49
110.07686 18.45660 39.1 1.1 1.5 11:52
109.91875 18.41580 57.8 0.1 1.02 16:50
109.91877 18.41569 70.5 0.46 1.38 16:50
109.91878 18.41562 78.1 1.1 2.02 16:53
109.91078 18.41475 85.8 0.1 1.02 17:12
109.91079 18.41464 97.5 0.4 1.32 17:13
109.91082 18.41454 109.4 1.1 2.02 17:15
109.73072 18.31802 11.8 0.1 0.78 18:24
109.73077 18.31799 18.9 0.4 1.08 18:25
109.73118 18.31777 67.4 1.1 1.78 18:30
109.72836 18.31361 32.1 0.1 0.78 18:41
109.72848 18.31354 46.1 0.4 1.08 18:42
109.72884 18.31329 93.2 1.1 1.78 18:47
109.65143 18.23303 15.2 0.1 0 10:17
109.65143 18.23300 18.5 0.5 0.4 10:18
109.65144 18.23284 36.4 1 0.9 10:22
109.51883 18.22201 15.8 0.1 0.97 14:24
109.51884 18.22172 48.2 0.3 1.17 14:25
109.51886 18.22095 133.9 0.9 1.77 14:32
109.48227 18.26732 40.2 0.1 1.01 15:07
109.48217 18.26719 57.2 0.4 1.31 15:08
109.48197 18.26691 95.5 1 1.91 15:13

2.2.2. ICESat-2 Data Preprocessing

Our main objective was to extract the bathymetric photon signals from ICESat-2
satellites and compare them with the measured data of Sanya Bay, and then to evaluate
the accuracy and reliability of the extraction method of ICESat-2 data bathymetric photon
signals used in this study, taking into account the hydrographic characteristics of Sanya Bay.
The specific data processing steps include data acquisition, signal filtering, land photon
removal, water surface and seafloor extraction, refraction correction, and the exportation of
bathymetric data, as shown in the blue box in Figure 2.

In this study, we referred to the methodology provided by the 2023 ICESat-2 Hack-
week (https://icesat-2-2023.hackweek.io/tutorials/bathymetry/bathymetry_tutorial.html
(accessed on 24 February 2024)) [60] to write a script that automatically extracts water
depths in batch based on the date and orbit number of ICESat-2 data within the study
area. Before running the script, we just needed to determine the study area extent and filter
out the orbits and dates with good data quality. Using OpenAltimetry ICESat-2 Webpage
(https://openaltimetry.earthdatacloud.nasa.gov/data/icesat2/ (accessed on 24 February
2024)), we could select the region of interest. By modifying the date and orbit number, we
could select photon data orbits with good quality, density, and regular point clouds. By
inputting the selected orbit, date, and the latitude and longitude of the study area into the
script and running it, the water depth signal photons for the study area were automatically
filtered. The following describes the main workflow and theoretical methods of the script.

Our study utilized the Python library “Sliderule” and an EarthData account to down-
load the ATL03 data corresponding to specific latitude, longitude, date, and orbit numbers
of the study area. ICESat-2, equipped with a laser altimeter system, conducts high-precision
measurements of the Earth’s surface, generating point cloud data that include ground and
water surface elevations. To ensure that the ICESat-2 orbital data acquired covers the target
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area’s laser detection information, we employed the distribution preview feature of the
ATL08 dataset to identify orbits that potentially contain high-quality signals. After the data
was downloaded, we proceeded with the filtering of photon signals. The ATL03 product
provided by ICESat-2, along with the “Sliderule” tool, encompasses a variety of photon
signal measurement and processing techniques. In this study, we utilized the YAPC (Yet
Another Photon Classifier) algorithm, which was developed by NASA researchers [61].
The YAPC algorithm is a density-based signal detection method that identifies valid signals
by analyzing the spatial distribution of photon signals. Compared to traditional photon
classification approaches, YAPC exhibits heightened sensitivity to environmental variations,
enabling it to adapt more accurately to the characteristics of diverse water bodies. Utilizing
the YAPC algorithm, we filtered and identified effective photon signals. Taking the process-
ing of ATL03_20190129144159_04910207_006_02 data as an example, Figure 3a presents a
photon signal density confidence map based on the YAPC algorithm, illustrating the spatial
distribution of photon signals along the track. Different colors in the figure represent pho-
ton signals of varying density levels, with signals of higher confidence indicated by more
prominent colors. To determine the minimum threshold for valid signals, we employed the
Otsu [62] thresholding method for automatic acquisition (Figure 4a). Photons with YAPC
signal scores above this threshold are considered valid signals. Subsequently, we excluded
land photons from the valid signals. To achieve this, we constructed a histogram to tally
the frequency of photon occurrences across various height intervals, ranging from −50 m
to 50 m with a step size of 0.1 m. By identifying the height value with the highest frequency
in the histogram (i.e., the most common photon height), we estimated the water surface
height. To account for the effects of waves or surface undulations, we added a 1 m buffer
to this height. The vertical black line in Figure 4b represents the estimated water surface
height; photons above this height were considered land photons and were removed, while
valid photons below this height were classified as water area photons (Figure 3b). Building
on this foundation, we extracted the water surface and seafloor from the remaining water
area photons. We performed binning on the spatial distribution of photon signals, setting
the resolution along the track to 20 m. Based on the distribution of photon density, we
adaptively adjusted the height resolution and generated a two-dimensional histogram.
The binning operation aimed to divide the photon data into multiple intervals along both
the height and track dimensions, facilitating the analysis of photon height distribution
characteristics. To enhance the detection of signal peaks, we applied adaptive filtering
to the generated two-dimensional histogram. The filtering strength was dynamically ad-
justed based on local variance to smooth the signal and reduce the impact of noise, thereby
highlighting the main peaks of the signal. Subsequently, based on the peak values of
each waveform, we assumed that the topmost return signal represents the water surface.
After removing the water surface peak, we selected the prominent peak as an indicator of
seafloor depth, extracting water surface and seafloor return information from the photon
height histogram. After acquiring the water surface and seabed depth, we proceeded
with refraction correction based on the research outcomes of Parrish et al. [42] in 2019,
which effectively enhances the precision of bathymetric measurements. Subsequently, we
iteratively traversed each waveform, extracted the water surface and seabed information,
applied refraction correction (Figure 5), calculated the water depth, and compiled the
ICESat-2 bathymetric signal extraction results for the area.

Suitability assessment of processed ICESat-2 bathymetric data. The bathymetric per-
formance of the ICESat-2 satellite data were evaluated by matching and comparing with the
existing Lingshui-Sanya Bay bathymetry data. Firstly, the bathymetric real measurements
were coordinate-matched with the extracted Lingshui-Sanya Bay ICESat-2 bathymetry
data. For each measured point, the K Nearest Neighbours algorithm (KNN) was used
to find the five nearest ICESat-2 data points, and the difference in bathymetry between
these points and the measured points was computed, using the Root Mean Squared Error
(RMSE), MeanDepthDiff, Variance of Depth Difference (VarDepthDiff), and Mean Squared
Error (MSE) to quantify the differences to assess the consistency and error of the data.
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Additionally, the average distance to the five nearest ICESat-2 points was calculated to
further assess the spatial distribution and proximity of the ICESat-2 points relative to the
measured locations.

Figure 3. Noise and land photons were filtered using the YAPC algorithm. The right panel shows
a zoomed-in view of the rectangular area in the image. (a) Photon signal density confidence map
based on the YAPC algorithm, with red areas indicating high-confidence regions. (b) Water signal
estimation map, where the red dots represent valid photon signals from the water surface and below.

Figure 4. Reference lines for filtering noise and land photons. (a) The Otsu threshold method is used
to automatically determine the minimum threshold for valid photon signals, with the red vertical
line representing the threshold line for valid photon signals. (b) The estimated water surface height
is obtained based on the histogram statistics of valid photon signals along the track, with the vertical
black line indicating the estimated water surface height.
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Figure 5. Water depth map after refraction correction. The gray points represent uncorrected photon
data, while the black points indicate refraction-corrected photon data. The blue points denote
estimated water surface photons, and the red line represents the estimated seafloor.

2.2.3. Sentinel-2 Image Preprocessing

Pre-processing the Sentinel-2 L2A data was an important step in constructing models
for remote sensing analyses. Although the L2A data have been atmospherically corrected to
generate surface reflectance data, there are still some necessary preprocessing steps before
specific analyses can be performed.

Sentinel-2 L2A data were acquired from the Copernicus Open Access Hub (https:
//dataspace.copernicus.eu/ (accessed on 24 February 2024)), selecting high-quality imagery
with minimal cloud cover. After resampling to 10 m resolution using SNAP, the images
were cropped to the study area. Water bodies were extracted using a mask based on the
near-infrared band (B8) with the formula (If B8 > 0.05, then NaN, else 1) [63]. Sunglint
correction [64] was applied using the Deglint processor in the Sen2Cor plugin to reduce
surface reflections, enhancing water body analysis accuracy.

Finally, consistency between ICESat-2 bathymetric data and Sentinel-2 imagery was
ensured. To achieve spatial consistency, the ICESat-2 bathymetric data points were first
mapped to the nearest grid cell in a 10 m resolution raster coordinate system. Data cleaning
was then performed to ensure consistency: each RGB combination was checked against its
corresponding depth value to ensure a unique depth value for each RGB combination. Ad-
ditionally, it was verified that each depth value corresponded to a unique RGB combination,
preventing the association of a single depth value with multiple RGB combinations. This
process ensured that each raster cell was associated with only one depth value, providing a
consistent data foundation for subsequent analysis.

2.2.4. Bathymetric Inversion Model for the Dongsha Islands

With the development of satellite remote sensing technology, bathymetric inversion us-
ing satellite images has become a fast and economical alternative to traditional bathymetry.
Machine learning algorithms are good at learning complex nonlinear relationships from
large amounts of data, which can significantly improve the accuracy of bathymetric inver-
sion. This section describes the use of four machine learning methods, Random Forest,
Gradient Boosting, XGBoost, and Polynomial regression, to train bathymetric inversion
models based on spectral feature information, water body color information, and spatial
location data. The performance of these models is compared with the improved logarithmic
band ratio algorithm proposed by Stumpf et al. [30] in 2003 to explore the application of
machine learning in satellite-derived bathymetry.
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Creation of a Comprehensive Information Dataset

In the previous section, we obtained the ICESat-2 bathymetric dataset after data
consistency processing. The ICESat-2 bathymetric points were matched with Sentinel-2
imagery, and the reflectance values of the red, green, and blue bands corresponding to
each bathymetric point were extracted. These reflectance values were used as spectral
feature information.

The Forel-Ule Index (FUI) is a classic index used to characterize the color of water
bodies, primarily assessing the optical properties and water quality. In this study, we
adopted the FUI algorithm developed by Van der Woerd H. J. and Wernand M. R. in 2018
for Sentinel-2 imagery [48], using the obtained FUI values as water color information.

Previous studies [5,65] have shown that incorporating spatial location information
can improve the accuracy of bathymetric inversion using machine learning. However,
these studies typically considered only the X and Y coordinates of the pixels, without
accounting for polar coordinates. Polar coordinates provide additional spatial features,
such as distance and angle, which are more sensitive to areas with non-uniform data
distribution. In this study, spatial location information was enhanced by introducing polar
coordinates alongside the traditional normalized pixel coordinates (X, Y). Specifically, for
each pixel’s normalized coordinates, the distance (R) and angle (θ) from the bottom left
corner of the image were calculated.

The integrated dataset includes the three aforementioned components of feature
information. Before model training, data standardization [Equation (1)] was applied to
address potential issues arising from discrepancies in the scale and range of different
features. Without standardization, features with larger numerical ranges could dominate
the training process, overshadowing other important variables. Additionally, significant
differences in feature scales could impede the convergence of gradient-based optimization
algorithms, ultimately reducing training efficiency. This standardization ensured consistent
value ranges across the different features, thereby improving the training performance and
predictive accuracy of the model.

Xstandardized =
X − μ

σ
(1)

where X is the original data, μ is the mean of the feature, σ is the standard deviation of the
feature, and Xstandardized is the standardized data. Through this standardization process,
the data distribution is adjusted to a normal distribution with a mean of 0 and a standard
deviation of 1.

Model Training

In this study, we use the integrated information as features and the ICESat-2 depth
values as labels for model training. The dataset is divided into 80% for training and 20%
for testing. During the hyperparameter optimization process, we employ the FLAML
framework for automated tuning. In this process, FLAML defines a hyperparameter space
for each model and utilizes a Bayesian optimization algorithm to search for the optimal
combination of hyperparameters. At each step of Bayesian optimization, FLAML evaluates
the performance of each hyperparameter combination using ten-fold cross-validation.
Specifically, we partition the 80% training data into 10 subsets, using 9 subsets for training
and 1 subset for validation, repeating this process 10 times to comprehensively assess the
model’s performance. This method allows us to calculate performance metrics for each
hyperparameter combination, including Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), R2 score, and Explained Variance Score. The mean and standard deviation
of these metrics demonstrate the stability of the model across different folds and help us
assess its fitting ability and predictive performance. After hyperparameter optimization,
FLAML returns the best hyperparameter configuration, and, based on this configuration,
the final model is trained on the entire training set to maximize performance. The five
models used in this study are described in detail below:
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(1) Random Forest algorithm: Random Forest [66] is an integrated learning algorithm
that performs classification and regression tasks by constructing multiple decision trees
and combining their predictions. Its core idea is to use diversity by randomly sampling
data with replacement to obtain a training subset and randomly selecting some of the
features when training each decision tree, so as to introduce diversity and reduce the risk of
overfitting. In the regression task, it gives the final prediction by taking the average value
[Equation (2)]. Random Forest has the advantages of high prediction accuracy, resistance to
overfitting, handling high-dimensional data, and strong robustness to noise and outliers.

ŷ =
1
B

B

∑
b=1

hb(x) (2)

where ŷ is the predicted value obtained by averaging the predictions from B decision
trees, hb(x) is the prediction function of the b-th tree for the input data, and B is the total

number of decision trees in the random forest model. The summation
B
∑

b=1
indicates the

accumulation of the prediction results from all B trees, and dividing by B gives the average
prediction, which is the final predicted value ŷ.

(2) Gradient Boosting algorithm: Gradient Boosting [67] is a commonly used machine
learning method for classification and regression tasks. It constructs a high-performance
predictive model by iteratively combining multiple weak learners, typically decision trees.
The algorithm starts with an initial model to predict the target variable [Equation (3)]. Then,
new weak learners are trained to fit the residuals of the current model [Equations (4) and (5)],
progressively optimizing the model’s performance. The predictions of the new learner are
weighted and added to the current model to form the updated model [Equation (6)]. This
process aims to minimize the loss function, using gradient descent to guide each optimization
step. The final model is the weighted sum of multiple weak learners.

F0(x) = argmin
γ

N

∑
i=1

L(yi, γ) (3)

where F0(x) is the initial model obtained by minimizing the loss function L over all samples,
L(yi, γ) is the loss function that measures the difference between the predicted value γ and
the actual value yi, and γ is the parameter of the initial model that we aim to optimize. The

summation
N
∑

i=1
indicates the accumulation of the loss over all N samples, and the argument

of the minimum argmin
γ

tells us the value of γ that minimizes this total loss.

rim = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fm−1(x)

(4)

where rim is the residual for the i-th observation at the m-th iteration of the Gradient
Boosting algorithm. The true value for the i-th observation is denoted by yi. The predicted
value generated by the model for the i-th observation is represented by F(xi). The model’s
predictions at the end of the (m − 1)-th iteration for all observations are given by Fm−1(xi).
The partial derivative

[
∂L(yi ,F(xi))

∂F(xi)

]
is the rate at which the loss function L changes with

respect to the predicted value F(xi), evaluated at the current model Fm−1(xi). The residual
rim is calculated as the negative of this partial derivative and is used to guide the training
of the next weak learner in the Gradient Boosting process.

hm(x) = argmin
h

N

∑
i=1

(rim − h(xi))

2

(5)
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where hm(x) is the weak learner function that is being optimized during the m-th iteration
of the Gradient Boosting algorithm. The goal is to find a function h that minimizes the sum
of the squared differences between the residuals rim and the predictions of the weak learner
h(xi) across all N training samples. The residual rim represents the difference between the
true value yi and the prediction of the model from the previous iteration Fm−1(xi). The
notation argmin

h
indicates that we are looking for the function h (a weak learner, typically a

decision tree) that results in the smallest possible sum of squared errors.

Fm(x) = Fm−1(x) + v · hm(x) (6)

where Fm(x) represents the predictive model function after the m-th iteration of the Gradient
Boosting algorithm. This updated model is obtained by adding the contribution of the
newly trained weak learner hm(x), scaled by the learning rate, to the predictive function
from the previous iteration Fm−1(xi). The weak learner hm(x) is typically a decision tree that
has been optimized to predict the residuals from the previous iteration. The learning rate v
is a hyperparameter that controls the impact of each weak learner on the final prediction.

(3) Polynomial Regression algorithm: Polynomial Regression is an extended regres-
sion analysis method for modeling nonlinear relationships between dependent variables
and multiple independent variables. Unlike multivariate linear regression, Polynomial
Regression captures complex patterns in the data by introducing higher-order and inter-
action terms for the independent variables. The core idea is to use polynomial functions
to describe the relationship between dependent and independent variables [Equation (7)].
To balance the model’s expressive power and generalization, we select a second-order
polynomial as the model form. This choice effectively captures nonlinear relationships
while reducing model complexity to mitigate the risk of overfitting.

y = β0 +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j=1

βijxixj + ε (7)

where y is the dependent variable, β0 is the intercept, βi is the coefficient for the independent
variable xi, βij is the coefficient for the interaction term between the independent variables
xi and xj, and ε is the error term.

(4) XGBoost algorithm: XGBoost [68] (Extreme Gradient Boosting) is an efficient
machine learning algorithm widely used for classification and regression tasks. It en-
hances traditional gradient boosting methods through several key optimizations aimed
at improving model performance and computational efficiency. XGBoost introduces L1
and L2 regularization to control model complexity and reduce overfitting, and utilizes
second-order gradient information (Hessian matrix) to accelerate convergence and improve
precision. The algorithm supports column sampling and optimized tree splitting, which
randomly selects feature subsets to train decision trees, thereby increasing computational
efficiency and mitigating overfitting. Parallelization is also employed to speed up the train-
ing process, making XGBoost particularly effective for large datasets. These optimizations
lead to significant improvements in both model performance and training speed compared
to traditional Gradient Boosting algorithms.

(5) Stumpf logarithmic band ratio algorithm: The improved logarithmic band ratio
algorithm proposed by Stumpf et al. [30] is widely used in satellite bathymetric inversion
(SDB). The method is based on the differential absorption and scattering properties of
various wavelengths of light in the water column. In general, short-wavelength blue light
penetrates deeper, while long-wavelength green light penetrates shallower. However, this
relationship can vary depending on water quality, such as turbidity and other factors.
In clear shallow water areas, the reflectance ratio between blue and green wavelengths
changes with increasing depth. This nonlinear relationship is linearized by applying a
logarithmic transformation to the reflectance of each band, enabling the development of
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a mathematical model to describe water depth. The model’s constant parameters can be
determined through regression analysis of known depth data.

Z = m1
ln(nRrs(λi))

ln
(
nRrs

(
λj
)) − m0 (8)

where Z represents the water depth, Rrs(λi) and Rrs
(
λj
)

are the reflectances of the respec-
tive bands i and j, and m1 and m0 are the constants derived from the regression analysis of
calibration data. The constant m1 is used to scale the ratio of the band reflectances to the
water depth, while m0 represents the offset at a depth of 0 m (Z = 0). The variable n is a
predetermined fixed value that ranges between 500 and 1500, ensuring that the logarithmic
ratio is always positive and varies linearly with depth.

3. Results

3.1. ICESat-2 Bathymetric Photon Extraction Results and Bathymetric Performance Evaluation

The ICESat-2 bathymetric photon data of Lingshui-Sanya Bay and Dongsha Islands
were extracted using the fully automated bathymetric photon extraction algorithm con-
structed in this study (shown in Figure 6). Among them, 11,144 ICESat-2 bathymetry points
were extracted from Lingshui-Sanya Bay and 10,581 bathymetry points were extracted
from Dongsha Islands. In order to evaluate the accuracy of the ICESat-2 bathymetry data,
we coordinate-matched the measured bathymetry data of Lingshui-Sanya Bay with the
ICESat-2 bathymetry data. During the matching process, the K Nearest Neighbour (KNN)
algorithm was used to search for the five nearest ICESat-2 bathymetry points around
each measured point. The average distance to the five nearest ICESat-2 points from each
measured point was calculated to be 38.88 m. Using this method, we obtained a total of
120 data pairs and calculated the depth difference of each pair. In order to show the data
differences more intuitively, different colors were used to classify the data points according
to the absolute value of the depth differences, and a difference distribution map (shown in
Figure 7) was drawn to visualize the error distribution between the measured bathymetry
and the ICESat-2 bathymetry. The statistical analysis results are shown in Table 3, where
MeanDepthDiff represents the mean depth difference and VarDepthDiff represents the
variance of depth differences. Overall, the ICESat-2 bathymetry data are slightly higher
compared to the measured data, and the fluctuation of the bathymetry difference is small,
the error is more stable, and all of them are within the acceptable range. This indicates that
ICESat-2 data can obtain high-precision shallow water bathymetry data, which has good
potential for bathymetric applications.

Figure 6. Plot of ICESat-2 bathymetric photon extraction data results. (a) Lingshui-Sanya Bay.
(b) Dongsha Islands.
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Figure 7. Difference distribution map showing the distribution of depth differences between the
measured points and the nearest ICESat-2 bathymetry points. The X-axis represents the sequence
number of the measured points.

Table 3. Comparison of ICESat-2 bathymetry data with in situ measurements.

MeasuredPointIndex MeanDepthDiff (m) VarDepthDiff (m) MSE (m) RMSE (m)

1 0.50 0.14 0.36 0.60
2 0.00 0.14 0.11 0.33
3 −0.50 0.14 0.36 0.60
4 0.55 0.14 0.41 0.64
5 0.19 0.14 0.15 0.39
6 −0.45 0.14 0.32 0.57
7 0.40 0.06 0.20 0.45
8 0.10 0.06 0.06 0.24
9 −0.60 0.06 0.41 0.64
10 0.98 0.13 1.06 1.03
11 0.68 0.13 0.57 0.75
12 −0.02 0.13 0.10 0.32
13 0.94 0.03 0.90 0.95
14 0.64 0.03 0.43 0.65
15 −0.06 0.03 0.03 0.17
16 1.49 0.00 2.23 1.49
17 1.09 0.00 1.19 1.09
18 0.59 0.00 0.35 0.59
19 0.52 0.01 0.28 0.53
20 0.32 0.01 0.11 0.33
21 −0.22 0.02 0.06 0.24
22 0.62 0.02 0.39 0.63
23 0.32 0.02 0.11 0.34
24 −0.28 0.02 0.09 0.31

ALL 0.32 0.33 0.43 0.65

3.2. Bathymetric Inversion Based on Sentinel-2 Data

Through the preprocessing of Sentinel-2 imagery over the Dongsha Islands (Figure 1),
we extracted the spectral characteristics of the region and performed data consistency
processing, ultimately obtaining 9562 ICESat-2 bathymetry points. Using the computed
FUI (shown in Figure 8k), we extracted the corresponding FUI values for the ICESat-
2 bathymetry points and calculated the spatial information for each bathymetry point.
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Based on these data, we constructed a comprehensive information dataset and used it for
model training. The trained model was then applied to perform bathymetry inversion for
the Dongsha Islands (Figure 8). The inversion results from all machine learning models
exhibited similar overall trends and were consistent with previous bathymetry inversion
results for this region [43,69]. Therefore, our automated script for extracting ICESat-2
bathymetry points demonstrates good feasibility in shallow, clear-water areas, providing
effective support for rapid bathymetric inversion.

Figure 8. Plot of inversion results based on four models for Dongsha Islands, where ‘-Bands’ rep-
resents bathymetric images inverted using spectral characteristic information, and ‘-CID’ repre-
sents bathymetric images inverted using comprehensive information. (a) Random Forest-Bands.
(b) Gradient Boosting-Bands. (c) Polynomial Regression-Bands. (d) XGBoost-Bands. (e) Random
Forest-CID. (f) Gradient Boosting-CID. (g) Polynomial Regression-CID. (h) XGBoost-CID. (i) Stumpf-
BG. (j) Stumpf-BR. (k) Forel-Ule Index.

3.3. Evaluation of Model Accuracy

The trained models were evaluated on a 20% test set to assess their generalization.
Scatter plots comparing predicted water depth with ICESat-2 depth values were gener-
ated to visually demonstrate the model’s prediction performance (as shown in Figure 9).
Additionally, the R2 and RMSE for each model were calculated on the test set to quantify
the correlation between the predicted and true values, providing further validation of the
model’s performance. The results indicate that the bathymetric inversion models using
integrated features significantly improved R2 and reduced RMSE compared to models
with single features. When only spectral information was used as the input feature, the
prediction performance of Random Forest, Gradient Boosting, and XGBoost models was
similar. However, after incorporating water color information and spatial data, the Random
Forest model performed the best, achieving an R2 of 0.94 and an RMSE of 0.84 m.
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Figure 9. Scatter plots, residual plots, and deviation distributions of predicted bathymetry versus
ICESat-2 bathymetry values. (a) Random Forest-Bands. (b) Gradient Boosting-Bands. (c) Polyno-
mial Regression-Bands. (d) XGBoost-Bands. (e) Random Forest-CID. (f) Gradient Boosting-CID.
(g) Polynomial Regression-CID. (h) XGBoost-CID. (i) Stumpf-BG. (j) Stumpf-BR.

4. Discussion

4.1. The Rationality of Feature Selection

In this study, we selected spectral information, spatial data (including normalized X
and Y coordinates, as well as polar coordinates), and water color information (Forel-Ule
Index, FUI) as model features. Spectral information is the core variable for bathymetric
inversion, as water depth directly influences the absorption and scattering properties of
light within the water column. Despite minimal changes in water quality within the study
area, FUI, as a proxy for water color, provides complementary optical features. In clear
waters, FUI assists in capturing subtle optical characteristics of the water, thereby enhancing
the model’s ability to detect depth-related variations. The inclusion of spatial information,
particularly normalized X and Y coordinates and polar coordinates, effectively captures
spatial patterns in bathymetric distribution. The use of polar coordinates simplifies spatial
calculations and improves the model’s ability to learn depth variations. By integrating
these features, the model comprehensively accounts for optical, spatial, and water-related
characteristics, ultimately improving the accuracy of bathymetric inversion and enhancing
model performance in clear water environments.
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4.2. Model Evaluation

To further evaluate the predictive performance of the models, residual and bias dis-
tribution plots were generated (as shown in Figure 9). Statistical analysis was performed
for three depth ranges: from −5 m to 0 m, from −10 m to −5 m, and from −15 m to
−10 m. The root mean square error (RMSE), mean absolute error (MAE), bias average
(BIAS_AVG), and bias standard deviation (BIAS_STD) for each depth range were calculated
(as shown in Table 4). Additionally, bar charts of the performance evaluation metrics for
each model across different depth ranges were plotted (as shown in Figure 10) to provide a
comprehensive comparison of model performance at various depth intervals. RMSE and
MAE reflect the predictive accuracy of the models, with lower values indicating smaller
prediction errors within the depth ranges. BIAS_AVG and BIAS_STD reveal the bias in
model predictions, with a lower BIAS_AVG indicating predictions closer to the true water
depths and a smaller BIAS_STD suggesting higher stability in the model’s performance
across different depth ranges.

Table 4. Statistics for different depth bands for different models.

Model Segment N RMSE MAE BIAS_AVG BIAS_STD

RF-Bands

−5~0 m 1006 0.82 0.46 −0.22 0.79
−10~−5 m 727 1.23 0.86 −0.08 1.23
−15~−10 m 179 2.20 1.88 1.75 1.34

GB-Bands

−5~0 m 1006 0.82 0.46 −0.18 0.79
−10~−5 m 727 1.26 0.89 −0.12 1.26
−15~−10 m 179 2.07 1.77 1.58 1.33

PR-Bands

−5~0 m 1006 1.30 0.91 −0.41 1.23
−10~−5 m 727 1.12 0.83 −0.01 1.12
−15~−10 m 179 2.65 2.37 2.32 1.28

XG-Bands

−5~0 m 1006 0.84 0.48 −0.18 0.82
−10~−5 m 727 1.23 0.87 −0.11 1.23
−15~−10 m 179 2.15 1.81 1.60 1.43

RF-CID

−5~0 m 1006 0.68 0.35 −0.13 0.66
−10~−5 m 727 0.89 0.55 −0.05 0.89
−15~−10 m 179 1.51 1.15 0.94 1.18

GB-CID

−5~0 m 1006 0.70 0.36 −0.13 0.69
−10~−5 m 727 1.00 0.67 −0.05 1.00
−15~−10 m 179 1.74 1.37 1.15 1.31

PR-CID

−5~0 m 1006 1.19 0.78 −0.34 1.15
−10~−5 m 727 1.07 0.77 −0.01 1.07
−15~−10 m 179 2.36 1.91 1.81 1.52

XG-CID

−5~0 m 1006 0.66 0.31 −0.12 0.65
−10~−5 m 727 0.88 0.53 −0.04 0.88
−15~−10 m 179 1.54 1.12 0.79 1.32

Stumpf-BG
−5~0 m 998 1.45 1.10 0.21 1.44

−10~−5 m 737 1.56 1.10 −0.35 1.51
−15~−10 m 175 2.06 1.54 0.99 1.81

Stumpf-BR
−5~0 m 998 2.32 2.05 0.87 2.16

−10~−5 m 737 3.34 2.89 −1.92 2.73
−15~−10 m 175 4.65 4.18 4.17 2.05

The analysis indicates that incorporating comprehensive information as input features
improves model accuracy across all depth intervals. In the range from −15 m to −10 m,
prediction errors were significantly reduced, suggesting that the inclusion of comprehensive
information enhances the accuracy of predictions for the deeper segments of the shallow
water zone (from −15 m to −10 m). The XGBoost model with Comprehensive Information
(XG-CID) as input features performed best across all depth intervals, especially in the
range from −10 m to 0 m, where both RMSE and MAE remained low. The Random Forest
model with Comprehensive Information (RF-CID) inputs followed closely, demonstrating
stable performance across all depth intervals, particularly maintaining strong predictive
capability in the range from −15 m to −10 m.
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Figure 10. The bar charts of performance evaluation metrics for each model across different depth ranges.

However, in the range from −15 m to −10 m, all models exhibited systematic positive
bias, with prediction errors generally exceeding 1 m. This bias is likely related to the sparse
data in this depth range. The ICESat-2 data in this region is relatively sparse, which limits
the model’s ability to accurately capture the complex variation in water depth, leading to
an overestimation of the water depth and resulting in positive bias.

Furthermore, to gain deeper insights into the contribution of each feature to the
model’s predictions, we employed SHAP (Shapley Additive Explanations) plots to analyze
the impact of each feature on the model’s outputs across different depth intervals. SHAP
values were calculated for each feature, highlighting their importance in the model’s pre-
dictions for various depth ranges (Figure 11). The results indicate that spectral information
contributed the most to the model’s depth predictions. Despite the relatively minor changes
in water quality, the Forel-Ule Index (FUI), which represents water color, played a signifi-
cant role in capturing the optical properties of the water. Additionally, spatial information
also contributed to the model’s predictions. Through these analyses, we gained a clearer
understanding of the model’s behavior, which provides a basis for further optimization.

 
Figure 11. SHAP analysis of feature contributions across depth intervals. The leftmost plot in
each group represents the overall analysis, covering feature contribution analysis across all depth
intervals, while the remaining plots correspond to different depth intervals. (a) Random Forest-CID.
(b) Gradient Boosting-CID. (c) XGBoost-CID.
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4.3. Limitations and Directions for Improvement

Due to practical limitations, the in situ water depth data in Lingshui-Sanya Bay in
this study reached a maximum depth of only 2 m. This depth restriction hindered a more
in-depth analysis of the script’s ability to extract water depth photons in deeper waters,
and as a result, a comprehensive validation of the script’s performance in deeper regions
was not possible. However, the water depth inversion results obtained in this study align
with previous experimental findings, indicating that the water depth photon extraction
script can still effectively provide water depth information in shallow areas, thus offering
a convenient tool for water depth inversion in shallow waters. It is worth noting that the
portability of this script requires further investigation, particularly in regions with complex
water characteristics, which will be a key focus for future research improvements. Further
validation of ICESat-2’s performance in deeper waters will require more extensive and
deeper in situ data.

Additionally, ICESat-2 faces certain technical limitations in ultra-shallow water areas,
particularly in regions where the water depth is less than 2 m. Due to the similarity
between the water surface and seabed echo signals, the lidar system struggles to effectively
distinguish between the reflections from the water surface and the seabed, thereby affecting
depth measurement accuracy. Consequently, the depth accuracy of ICESat-2 in this depth
range is relatively low, limiting its application potential in ultra-shallow water zones.

Furthermore, the water depth photon data provided by ICESat-2 has relatively low
spatial resolution, leading to data sparsity and uneven distribution in certain areas. The
discontinuity of the data may impact the accuracy of water depth inversion, especially in
regions where water body characteristics are complex or data are sparse. Future research
could optimize the inversion process by improving data fusion methods, integrating
additional high-resolution remote sensing data, and considering factors such as water
depth spatial distribution and water body environments. This could enhance the accuracy
and applicability of the model.

5. Conclusions

This study proposes a rapid bathymetric inversion method based on ICESat-2 and
Sentinel-2 data, integrating spectral information, the Forel-Ule Index (FUI) as water color
information, and spatial location data (normalized X and Y coordinates and polar coor-
dinates). Building upon previous work, an automated script for extracting bathymetric
photon data was developed, enabling users to easily obtain the required photon data by
simply inputting the study area, photon orbit number, and date. This aims to facilitate the
use of ICESat-2 data for a wider range of researchers.

Although the in situ water depth data in Sanya Bay only reached 2 m, the bathymetric
inversion results for the Dongsha Islands in this study are consistent with previous research,
validating the script’s effectiveness in shallow water regions. The performance evaluation
of several machine learning models showed that the XGBoost model with comprehensive
input features (XG-CID) performed best across all depth intervals, particularly in the
range from −10 m to 0 m, where its prediction accuracy was especially notable. The
Random Forest model with comprehensive input features (RF-CID) also demonstrated
strong predictive capability in the range from −15 m to −10 m.

Through SHAP analysis, this study enhanced the model’s interpretability, visually
illustrating the influence of each feature on the predictions across different depth intervals.
Spectral information contributed the most to the depth predictions, while FUI and spatial
data also played a significant role in improving prediction accuracy.

Future research will focus on improving the extraction of bathymetric photons, incor-
porating higher-resolution remote sensing data, and considering additional factors such as
spatial distribution of water depths and water body environment to further enhance the
accuracy and applicability of the model.
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Abstract: As a ubiquitous mesoscale phenomenon, ocean eddies significantly impact ocean energy
and mass exchange. Detecting these eddies accurately and efficiently has become a research focus
in ocean remote sensing. Many traditional detection methods, rooted in physical principles, often
encounter challenges in practical applications due to their complex parameter settings, while effective,
deep learning models can be limited by the high computational demands of their extensive parame-
ters. Therefore, this paper proposes a new approach to eddy detection based on the altimeter data,
the Ghost Attention Deeplab Network (GAD-Net), which is a lightweight and efficient semantic seg-
mentation model designed to address these issues. The encoder of GAD-Net consists of a lightweight
ECA+GhostNet and an Atrous Spatial Pyramid Pooling (ASPP) module. And the decoder integrates
an Efficient Attention Network (EAN) module and an Efficient Ghost Feature Integration (EGFI) mod-
ule. Experimental results show that GAD-Net outperforms other models in evaluation indices, with
a lighter model size and lower computational complexity. It also outperforms other segmentation
models in actual detection results in different sea areas. Furthermore, GAD-Net achieves detection
results comparable to the Py-Eddy-Tracker (PET) method with a smaller eddy radius and a faster
detection speed. The model and the constructed eddy dataset are publicly available.

Keywords: eddy detection; deep learning; semantic segmentation; lightweight; ghost attention
deeplab network (GAD-Net)

1. Introduction

Ocean eddies, a significant component of the oceanic mesoscale phenomenon, are
characterized by irregular egg-shaped contours in the ocean [1]. The eddies have a large
spatial extent, ranging from tens of kilometers to hundreds of kilometers, and a long
lifetime, ranging from a few days to a few years [2]. Based on the rotational direction,
ocean eddies can be categorized as cyclonic eddies and anticyclonic eddies [3,4]. Cyclonic
eddies are distinguished by their outward water displacement from the central eddy, which
promotes the ascent of colder, deeper waters to the surface. This phenomenon results
in lower temperatures in the eddy’s center than in the surrounding waters. In contrast,
the anticyclonic eddies flow inward, drawing warmer surface water to the depths, thus
keeping the temperature at the eddy’s center higher than the surrounding waters. These
vertical mixing and diffusion movements from the surface to the depths influence energy
exchange, mass transfer, and climate change [5–9]. Consequently, how to detect ocean
eddies accurately and efficiently has become a hot topic in ocean remote sensing. Satellite
remote sensing is characterized by all-weather monitoring, large-area coverage, and time-
continuous acquisition, so this technique has become one of the preferred approaches to
ocean eddy detection [10,11].

Over the past decades, ocean eddy detection has mainly relied on traditional physical
principles. These traditional methods are the mainstay of ocean eddy detection and consist
of four main principles: temperature anomaly detection, material motion tracking, rotating
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flow field analysis, and closed topology checking [12]. Temperature anomaly detection
leverages sea surface temperature data as a foundation for detection [13]. It operates by
calculating the gradient of satellite temperature data or sea surface temperature imagery,
thus accurately recognizing the classification, size, and intensity of eddies [14,15]. Material
tracking is a technique for eddy detection that utilizes the rotation and migration patterns of
matter such as chlorophyll and plankton [16]. This method utilizes the natural movement of
ocean constituents to track and detect oceanic eddies, which provides great help in marine
ecological studies. The basic principle of the rotating flow fields method is to distinguish
the eddy center and boundary based on the geometric characteristics of seawater flow
velocity [17,18]. The closed topography method determines the boundaries of ocean eddies
by analyzing closed profiles in altimeter data [19]. This technique is highly regarded for its
accuracy and efficiency in eddy detection and has been widely used [20,21].

With the emergence of artificial intelligence, this technology has gradually entered
into ocean remote sensing [22], and scholars have begun to use deep learning models in
detecting ocean eddies. Lguensat et al. [23] proposed EddyNet by adopting the model
structure of UNet [24]. This innovative model allows for pixel-level eddy species classifica-
tion based on sea surface height (SSH) data. Similarly, Sun et al. [25] introduced a novel
convolutional neural network using sea surface height (SSH) data. The model structure is
very similar to Deeplabv3+ [26] and demonstrates strong detection capabilities in practical
applications. After that, Xu et al. [27] used PSPNet [28], Deeplabv3+, and BiSeNet [29] for
ocean eddy detection, respectively, and compared the number, size, and lifetime of these
eddies. From the results, PSPNet detected more ocean eddies and BiSeNet detected eddies
with larger sizes. Santana et al. [30] upgraded their REDN1 model [31] to its successor
model, REDN2, both of which are based on the UNet architecture. Compared to the RDEN1
model, authors optimized the model’s structure and reconstructed the residual module.
These improvements give the REDN2 stronger detection capabilities and better results in
different areas. The following year, Saida et al. [32] proposed a new model based on eddy
features. In this model, the authors proposed an attention mechanism module, a feature
enhancement module, and a serial Atrous Spatial Pyramid module. These modules greatly
enhance the eddy feature extraction. In the same year, Hammoud et al. [33] used ResNet50-
FCN [34] and UNet-PPM [24,28] for eddy detection in the Arabian Sea and investigated
the various factors affecting the model training results.

Currently, deep learning models designed for eddy detection often have excessive
parameters and complex computational processes. For example, the deep framework
model [25] has a high parameter size of 157.36 MB and its Giga Floating-point Operations
Per Second (GFLOPS) is 87.93 G, while the automatic eddy detection model [35] has a
parameter size of 90.14 MB, corresponding to the GFLOPS of 61.86 G. Due to the large
number of parameters, these models consume a large amount of computational resources
and require more advanced computer hardware support. Consequently, this situation, to a
certain extent, impacts the practical application for everyday users. Moreover, the more
complex the computational process, the longer the detection time required, which also
reduces the detection efficiency of the model. In these regards, we propose a lightweight
deep learning model, the Ghost Attention Deeplab Network (GAD-Net), for eddy detection
based on sea level anomaly (SLA) data. This model provides a more concise and efficient
way for eddy detection, greatly reducing the actual cost for users. GAD-Net uses the
encoder–decoder framework, which can efficiently extract eddy features by concatenating
low-level and high-level features. The encoder consists of an ECA+GhostNet network and
an Atrous Spatial Pyramid Pooling (ASPP) module. Among them, ECA+GhostNet is a
lightweight backbone network mainly used for eddy feature extraction, while the ASPP
module is used for eddy feature enhancement. Considering the inadequacy of lightweight
backbone networks for feature extraction, GAD-Net proposes two new modules in the
decoder: Efficient Attention Network (EAN) module and Efficient Ghost Feature Integration
(EGFI) module. These designed modules increase the depth of the network, which, in
turn, enhances the eddy feature extraction and integration. Moreover, to make the training
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process more balanced, the model uses the Dice loss [36] and the Focal loss [37] as the loss
functions. The main work of our study can be summarized as follows:

• We built an ocean eddy dataset, which was constructed from manually labeled SLA
data. This dataset covers the ocean area from 10° to 30°N latitude and 120° to 150°E
longitude, providing an eddy data spanning the years 2017 to 2020.

• We proposed a lightweight eddy detection model, GAD-Net, which uses an encoder–
decoder model architecture. The encoder consists of the ECA+GhostNet network and
ASPP module. The decoder mainly comprises the EAN, EGFI, and upsampling modules.

• We compared the detection results of GAD-Net with other deep learning models.
The results show that GAD-Net exhibits better advantages in model lightness, accuracy,
and efficiency. And we compared the detection results of GAD-Net with the Py-Eddy-
Tracker (PET) [21] method. The results show that both methods have a similar eddy
detection performance, but GAD-Net detects smaller eddy radius and detects faster.

2. Methodology

2.1. Overall Model Structure

Following the encoder–decoder model framework, this paper proposes GAD-Net to
implement accurate eddy detection for SLA data. The encoder is mainly responsible for
downsampling and eddy feature extraction and is mainly composed of an ECA+GhostNet
network and an ASPP. The decoder focuses on upsampling and integrating eddy features,
which is primarily achieved by the EAN module, EGFI module, and upsampling module.
The complete model structure of GAD-Net is shown in Figure 1. This model can detect
ocean eddies in L4-level SLA data from altimetry satellites.

In the encoder phase, GAD-Net first receives dataset images, which are input into the
ECA+GhostNet for eddy feature extraction. Next, ECA+GhostNet outputs two layers with
different eddy feature layers: shapes of (40, 40, 112) and (20, 20, 160). In this case, the feature
layer of (40, 40, 112) represents the low-level eddy feature information and is transmitted
to the decoder. The feature layer of (20, 20, 160) is the high-level eddy feature layer and
is transmitted to the ASPP module. And to enhance the characterization of the small-size
eddies, we set the ASPP to small dilation rates of 2, 3, and 4. After ASPP feature enhancement,
the encoder performs feature integration and channel tuning through a 1 × 1 convolution
and passes the feature layer to the decoder. At this point, the encoder’s work is complete.

The decoder receives the high-level eddy feature layer from the encoder and uses
an upsampling module to scale up the feature size for concatenation with the low-level
feature layer. When the low-level feature layer is input to the decoder, the model uses
a 1 × 1 convolution for channel tuning to ensure that it can be fused with the high-level
feature layer. Then, these two eddy feature layers are input into the EAN module to
calculate their importance weights. After the calculation, the decoder concatenates different
feature layers according to these weights. And these concatenated features are input into
the EGFI module for further enhancement. Finally, the decoder performs the final channel
tuning using a 1 × 1 convolution and upsampling module.

In addition, to make the training process more stable and balanced, GAD-Net uses
Dice loss combined with Focal loss as the loss function.

Overall, the model takes SLA data as input and employs a convolutional neural net-
work (CNN) to extract multi-level and multi-scale data features. Subsequently, the model
learns from the annotated label information based on these data features, including the
labeled positions, shapes, and directions of eddies. Finally, through continuous learning
and correction via the loss function, the model achieves ocean eddy detection in SLA data.
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Figure 1. GAD-Net’s overall structure.

2.2. ECA+GhostNet

When the model extracts image feature extraction, the traditional convolution pro-
duces much redundant feature information, which greatly reduces the efficiency of the
model operation. GhostNet [38] provides an efficient and lightweight solution that effec-
tively alleviates this problem by using the Ghost module. Specifically, the Ghost module
first builds a base feature layer using a 1 × 1 convolution. Next, it transforms the base
feature layer into a linear feature layer by linear transformation. Then, it generates a
convolutional feature layer using multiple depth-wise convolutions for the base feature
layer. Finally, the two generated feature layers are concatenated and output. Its structure is
shown in Figure 2.

Figure 2. Ghost module’s structure.

The Ghost bottleneck, as the basic module for feature extraction, is formed by stacking
two Ghost modules. And, for different downsampling steps, the Ghost bottleneck is
realized by adding a depth-wise convolution, as shown in Figure 3. Moreover, to improve
the computational efficiency, the Ghost bottleneck add the residual block [39] are used.
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Figure 3. Ghost bottleneck with different step sizes.

GhostNet utilizes the attention mechanism to enhance its feature extraction. The initial
Squeeze-Excitation Network (SENet) [40] had more parameters that reduce the efficiency.
For this reason, we choose the Efficient Channel Attention Plus network (ECA+Net) [41] as
an alternative, which is an upgraded version of the Efficient Channel Attention network
(ECA-Net) [42] and provides a more comprehensive channel attention. The structure of
ECA+Net is shown in Figure 4.

Figure 4. ECA+Net’s structure.

As shown above, ECA+Net first performs global average pooling and global maximum
pooling respectively. Second, it uses a one-dimensional convolution with a convolution
kernel of K to learn the channel information. This design greatly improves the processing
efficiency and running speed. And the convolution kernel K is the same as ECA-Net
with an adaptive size. After that, ECA+Net sums up the learning results and uses a
sigmoid function for importance weight calculation. Finally, these importance weights
are multiplied with the input feature layer. The adaptive size convolutional kernel K and
sigmoid function are calculated as follows:

K =

∣∣∣∣ log2 (C)
γ

+
b
γ

∣∣∣∣odd (1)

Sigmoid(x) =
1

1 + e−x (2)

where C is the input channel number, |x|odd is the odd number closest to x, and b and γ are
the relationship coefficients. Referring to the ECA-Net structure, we set b to 1 and γ to 2.

The composition of ECA+GhostNet is shown in Table 1.
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Table 1. Composition of ECA+GhostNet.

#exp 1 #out 2 ECA+Net Stride

Conv 2d 3 × 3 - 16 - 2
G-bneck 3 16 16 - 1
G-bneck 48 24 - 2
G-bneck 72 24 - 1
G-bneck 72 40 1 2
G-bneck 120 40 1 1
G-bneck 240 80 - 2
G-bneck 200 80 - 1
G-bneck 200 80 - 1
G-bneck 184 80 - 1
G-bneck 184 80 - 1
G-bneck 480 112 1 1
G-bneck 672 112 1 1
G-bneck 672 160 1 2
G-bneck 960 160 - 1
G-bneck 960 160 1 1
G-bneck 960 160 - 1
G-bneck 960 160 1 1

1 “#exp” is the expansion channel size. 2 “#out” is the output channel size. 3 “G-bneck” is the Ghost bottleneck.

2.3. EAN Module

For more effective eddy feature fusion of different levels, this paper proposes a
lightweight and efficient attention mechanism, the EAN module, as shown in Figure 5. This
attention mechanism can calculate attention in channel and spatial dimensions, realizing
more comprehensive eddy feature fusion. Therefore, the EAN module is mainly composed
of two parts: the channel feature extraction part and the spatial feature extraction part.

Figure 5. EAN module’s structure.

In the channel feature extraction part, the EAN module uses one-dimensional con-
volution to learn channel features. Specifically, the EAN module first performs average
channel pooling and maximum channel pooling on the input feature layer and sums the
pooling results. Then, the EAN module uses one-dimensional convolution to learn the
cross-channel feature information. The convolution kernel of this one-dimensional convo-
lution is the same as that of ECA-Net, which is also an adaptive-size. After that, the EAN
module outputs the learned channel features and fuses them with the spatial features.

In the spatial feature extraction part, the EAN module references the Convolutional
Block Attention Module (CBAM) [43], which also uses convolution to extract spatial features.
The EAN module’s spatial feature extraction is performed as follows: first, perform spatial
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average pooling and spatial maximum pooling on the input feature layer, and concatenate
these pooled results. Then, extract the spatial features through a regular 3 × 3 convolution.
Finally, fuse the spatial feature layer obtained by convolution with the channel features.

The EAN module employs the feature fusion approach similar to the Bottleneck At-
tention Module (BAM) [44]. It sums the channel features and spatial features in three
dimensions to effectively fuse the different kinds of feature information. This computa-
tional process not only improves the extraction of channel features, but also improves the
understanding of spatial information.

2.4. EGFI Module

The original model’s decoder design was relatively simple compared to the encoder,
leading to suboptimal performance in fusing eddy features. Consequently, this study
proposes a lightweight feature integration module, the EGFI module, as shown in Figure 6.

Figure 6. EGFI module’s structure.

The EGFI module is mainly composed of three Ghost modules and two ECA+Nets.
In this configuration, the Ghost modules are dedicated to eddy feature integration, while
the ECA+Nets provide supplementary support. To enhance the fusion of eddy features,
the EGFI module uses three Ghost modules with different functions. The first is the
channel expansion Ghost module, which aims to increase the feature channel number to
capture richer eddy information. The second is the channel contraction Ghost module,
which realizes a more compact and diverse eddy feature extraction by reducing the feature
channel numbers. The third is the channel adjustment Ghost module, which adjusts the
feature channel numbers to the output channel numbers, ensuring that the model can be
concatenated to the shortcut.

Specifically, the EGFI module first inputs the eddy feature layer into the channel
expansion Ghost module for eddy feature integration. At this point, the feature channels
are twice as many as the number of output channels. Then, the EGFI module continues
the eddy feature integration using an ECA+Net and a channel contraction Ghost module.
At this time, the number of feature channels is half the number of output channels. Finally,
the EGFI module uses a channel adjustment Ghost module to match the feature channels to
the output channels and concatenates this feature layer to the shortcut. By stretching and
shrinking the feature channel number to integrate the eddy features, more comprehensive
and diverse eddy feature information can be obtained, which, in turn, improves the model
feature fusion performance.

2.5. Loss Function

For a more stable and balanced training process, GAD-Net uses Dice loss and Focal
loss as the loss function. By using Focal loss, the training imbalance caused by the different
numbers of different eddy annotations can be effectively mitigated. Using Dice loss can
better compensate for the large difference in the number of pixel points between the eddy
and background, making the training process more balanced. The loss function of GAD-Net
is calculated as follows:

Loss = LDice + LFocal (3)

where LDice denotes the Dice loss and LFocal denotes the Focal loss. The Dice loss solves the
problem of an unbalanced sample distribution using the Dice coefficient, a function that
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measures the similarity of samples and is used to assess the degree of overlap between two
samples. Its value is between 0 and 1 and is calculated as follows:

Dice coefficient =
2|X ∩ Y|
|X|+ |Y| (4)

where X is the ground truth, and Y is the predicted pixel. Therefore, the formula for Dice
loss is as follows:

Dice loss = 1 − 2|X ∩ Y|
|X|+ |Y| (5)

The Focal loss balances the training process by increasing the weight of difficult-to-
classify samples and reducing the weight of easy-to-classify samples. It reduces the sample
imbalance of different eddies, and the calculation formula is as follows:

Focal loss = −αt(1 − pt)
γ log(pt) (6)

where αt is the weight balancing factor that can control the contribution of positive and
negative samples to the loss. And the (1 − pt)γ is the modulating factor that can be used to
control the difficulty of sample classification. When γ = 0, the Focal loss is the cross-entropy
function, and when γ > 0, the loss function reduces the calculation of the easy-to-classify
sample and increases the calculation of the hard-to-classify sample, which, in turn, makes
the training process more balanced.

3. Datasets and Evaluation Index

3.1. Eddy Dataset

In this study, the 2017–2020 L4-level SLA data in the 10°–30°N and 120°–150°E ocean
areas were selected as the dataset data, as shown in the black box in Figure 7. The data
are published by the Copernicus Marine Environment Monitoring Service (CMEMS) (https:
//marine.copernicus.eu/, accessed on 5 November 2024) and encompass a variety of SLA
information across different years and seasons. These data were obtained through optimal
interpolation, which amalgamates L3-level along-track measurements from diverse altime-
ter missions. Additionally, a segment of this processing is specifically calibrated for the
Global Ocean.

To highlight the eddy morphology features, we plotted the raw gridded data as color
contour images. We used the Labelme software to accurately and manually label these
1461 SLA images, with cyclonic eddy labeled as “CE” and anticyclonic eddy labeled as
“AE”. Following this, experts reviewed and validated the annotated eddies in conjunction
with the velocity data within the annotated areas. Any incorrectly annotated eddies were
manually removed. The labeled labels contained information such as the position, shape,
and direction of eddies, which can provide data support for deep learning models. After
expert validation, the dataset was divided in the ratio of 8:1:1, resulting in 1169 training
images, 146 validation images, and 146 testing images. The training images were used
for model training. The validation images were used for model hyperparameter tuning.
The testing images were used to judge the model’s generalizability.
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Figure 7. The dataset area is shown in a black box (10°N−30°N, 120°E−150°E).

3.2. Model Evaluation Index

In this study, we used Recall, Precision and Mean Intersection over Union (MIoU) as
model evaluation indices. Recall is the ratio of correct pixel points detected by the model to
all correct pixel points. Precision is the ratio of correct pixel points detected by the model
to all pixel points detected by the model. And MIoU is the average of the intersection and
concatenation ratios between the true and predicted values for each category, which is
a key index for measuring the generalizability of the segmentation model. The specific
calculation process for each index is as follows:

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(9)

where TP is the number of correct pixels detected as correct, FN is the number of incorrect
pixels detected as incorrect, and FP is the number of incorrect pixels detected as correct.

In addition, this study evaluated the efficiency of model eddy detection by calculating
the GFLOPS, which is an important measure of the model’s computational complexity.
In general, the larger the GFLOPS value, the higher the model complexity, and the lower
the detection efficiency.

4. Experiment

4.1. Ablation Experiment

To assess the influence of each enhancement on model performance, we utilized
Deeplabv3+ with GhostNet as our base model and performed a sequential ablation study.
The model was initialized with a learning rate of 1 × 10−3 and a minimum learning rate
of 1 × 10−5. We used the Adamw [45] optimizer, which is widely recognized for its
effectiveness in training deep neural networks. The momentum parameter was configured
at 0.9 to enhance the stability of the optimization process, while the weight decay was set to
1 × 10−2 to prevent overfitting. To further refine the learning dynamics, a cosine annealing
learning rate [46] was implemented. The training was conducted for 100 epochs to ensure
thorough model convergence.
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Given the relatively small size of the eddy in the image, we chose the larger input size of
640× 640 pixels to capture more detailed features. Additionally, considering the important
role of batch size in model training [47], we set the batch size to 8 to balance computational
efficiency and model performance. Table 2 presents the ablation experiment results.

Table 2. Ablation experiment results.

Model ECA+GhostNet EAN EGFI MIoU (%) Params Size (MB) GFLOPS (G)

DeepLabv3+ (GhostNet) - - - 74.50 20.35 7.68
DeepLabv3+ (GhostNet) √ - - 75.29 14.61 7.68
DeepLabv3+ (GhostNet) - √ - 74.70 20.35 7.68
DeepLabv3+ (GhostNet) - - √ 75.73 16.11 4.14
DeepLabv3+ (GhostNet) - √ √ 76.01 16.11 4.14
DeepLabv3+ (GhostNet) √ - √ 76.29 10.38 4.13
DeepLabv3+ (GhostNet) √ √ - 75.65 14.61 7.68
DeepLabv3+ (GhostNet) √ √ √ 76.46 10.38 4.13

First, using ECA+GhostNet increased the MIoU by 0.79% and reduced the parameter
size by 5.74 MB compared to the base model. This improvement resulted in a lighter model
with better detection performance without affecting the segmentation efficiency. Using the
EAN module independently improved the MIoU by 0.2% without increasing the parameter
size. The addition of the EGFI module to the model resulted in a 1.23% increase in MIoU,
a 4.24 MB reduction in parameter size, and a 3.54 G reduction in GFLOPS. Using the EGFI
module greatly increased detection performance, reduces parameter size, and improves
computational efficiency.

Second, the combination of the ECA+GhostNet with the EAN module resulted in a
1.15% increase in MIoU and a 5.74 MB reduction in parameter size. The combination of the
EAN module with the EGFI module not only increased the MIoU by 1.51% but also reduced
parameter size by 4.24 MB and GFLOPS by 3.54 G. Additionally, the incorporation of the
EGFI module with the ECA+GhostNet led to a 1.79% enhancement in MIoU, a 9.97 MB
decrease in parameter size, and a 3.55 G reduction in GFLOPS. In summary, these findings
suggest that the pairing of any two modules can improve the model’s performance while
simplifying the model structure.

Compared to the base model, the MIoU increased by 1.96%, the parameter size reduced
by 9.97 MB, and the GFLOPS decreased by 3.55 G.

To better evaluate the impact of each module on the model, we systematically calcu-
lated the confusion matrix for each model as each module was integrated into the model,
as shown in Figure 8.

Incorporating ECA+GhostNet led to a comprehensive enhancement in model perfor-
mance, reducing the eddy misdetection. Using the EAN module significantly decreased
the background misidetected as eddies, thereby achieving more balanced results. No-
tably, the addition of the EGFI module greatly mitigated the situation where eddies were
misidetected as background. Compared to the base model, GAD-Net demonstrated im-
provements in various aspects, including the detection accuracy, the misdetection of eddies
as background, and the misdetection of background as eddies. Consequently, the eddy
detection performance of the model was significantly enhanced.

Therefore, integrating ECA+GhostNet, the EAN module, and the EGFI module en-
hanced the eddy detection performance while concurrently simplifying the model’s archi-
tecture and improving its detection efficiency.
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Figure 8. Confusion matrix calculations for the models. (a) Base model. (b) Base model integrating
ECA+GhostNet. (c) Base model integrating ECA+GhostNet and EAN module. (d) GAD-Net.

In addition, spatial information loss, an issue that cannot be overlooked in deep learning
models, prompted us to conduct ablation studies. In this experiment, we analyzed each step
aimed at reducing spatial information loss, including the selection of the input size 640 × 640,
the use of an ASPP module with small dilation rates, and the incorporation of the EGFI
module. The results of this experiment are shown in Figure 9. In Figure 9, the red regions
denote anticyclonic eddies, while the blue regions denote cyclonic eddies. The white box
represents an eddy that is not detected relative to the ground truth, whereas the yellow box
represents an eddy that is detected more than the ground truth.

Figure 9. Results of ablation experiments with the spatial information loss. Red regions are anticy-
clonic eddies and blue regions are cyclonic eddies. White boxes are undetected eddies and yellow
boxes are more detected eddies. (a) Input. (b) Ground truth. (c) GAD-Net with the input size of
640 × 640. (d) GAD-Net with the input size of 480 × 480. (e) GAD-Net without the ASPP module.
(f) GAD-Net without the EGFI module.
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Comparing detection results with different input sizes, it is observed that employing
a large input size of 640 × 640 effectively mitigates spatial information loss in the model.
Moreover, models with larger input sizes also exhibit smoother delineation of eddy bound-
aries. Subsequently, the models without the ASPP module and without the EGFI module
both tend to miss the detection of small-size eddies, indicating a certain degree of spatial
information loss. With the addition of these two modules, this problem is significantly
improved; GAD-Net has no missed eddies and detects more eddies on the ground truth
basis. Thus, GAD-Net has good spatial information extraction capability.

4.2. Comparison Experiment

To evaluate the eddy detection capabilities of GAD-Net, we conducted a comparison
experiment. In this experiment, we trained a series of contemporary models and computed
their performance indexes. In addition, the powerful ResNet and lightweight GhostNet
were equipped with UNet, PSPNet, and Deeplabv3+ models, respectively, to emphasize the
high performance and efficiency of the models. And the lightweight LR-ASPP [48], the high-
performance HRNetv2 [49], and Segformer [50] were also included in the comparison
experiment. Table 3 presents the results of this comparison experiment.

Table 3. Comparison experiment results.

Model Recall (%) Precision (%) MIoU (%) Params Size (MB) GFLOPS (G)

UNet (ResNet) 83.24 86.56 74.71 167.31 226.61
UNet (GhostNet) 82.56 83.94 72.46 16.70 25.74
PSPNet (ResNet) 84.07 86.61 75.37 178.17 184.98

PSPNet (GhostNet) 83.77 84.02 73.40 10.07 4.46
DeepLabv3+ (ResNet) 84.63 87.07 76.09 154.53 176.78

DeepLabv3+ (GhostNet) 83.57 85.85 74.50 20.35 7.68
LR-ASPP 83.51 84.14 73.28 9.47 3.81
HRNetv2 85.07 86.02 75.69 37.56 58.33
Segformer 83.80 87.49 75.74 52.18 41.40
GAD-Net 85.40 86.77 76.46 10.38 4.13

In terms of Recall, GAD-Net reached the highest value of 85.40%. This is 0.33% higher
than HRNetv2, 0.77% higher than Deeplabv3+ with ResNet, and 1.33% higher than PSPNet
with ResNet. And the Recall of GAD-Net was also 1.89% higher than that of LR-ASPP.
These comparisons show that the Recall of GAD-Net is significantly better than that of
the high-performance and lightweight models. Therefore, compared with other models,
GAD-Net can effectively alleviate missed eddy detection.

The Precision of GAD-Net was 86.77%, which was 0.72% lower than Segformer and
0.3% lower than Deeplabv3+ with ResNet. Notably, there was a 3.69% difference between
Recall and Precision for Segfomer, and this imbalance may affect the model’s performance.
Nevertheless, GAD-Net maintained a good advantage in terms of Precision compared
to other lightweight models. Specifically, GAD-Net’s Precision was 2.63% higher than
LR-ASPP, 0.92% higher than Deeplabv3+ with GhostNet, and 2.75% higher than PSPNet
with GhostNet.

As for MIoU, GAD-Net was better than the other models. Specifically, the MIoU
of GAD-Net exceeded that of Deeplabv3+ with ResNet by 0.37%, Segformer by 0.72%,
and HRNetv2 by 0.77%. The advantage of GAD-Net over lightweight models was even
more obvious, as its MIoU was 1.96% higher than that of Deeplabv3+ with GhostNet, 3.06%
higher than that of PSPNet with GhostNet, and 3.18% higher than that of LR-ASPP. In con-
clusion, these comparisons show that GAD-Net has a strong comprehensive performance.

Regarding model complexity and computational efficiency, GAD-Net exhibited the
characteristics of a lightweight model with a concise computational process. Although GAD-
Net’s parameter size and GFLOPS were slightly higher than those of LR-ASPP, its per-
formance in eddy detection was considerably better. Moreover, compared with other
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high-performance models, the parameters and GFLOPS of GAD-Net were significantly
reduced. These results demonstrate that GAD-Net effectively balances model complexity
and detection performance.

Therefore, GAD-Net outperforms the other models in eddy detection performance,
while also having a lighter model structure and a more efficient computational process.
Figure 10 shows the eddy detection results of all models in the comparison experiment.

Figure 10. Eddy detection results of the comparison experiment. Red regions are anticyclonic eddies
and blue regions are cyclonic eddies. White boxes are undetected eddies and yellow boxes are
more detected eddies. (a) Input. (b) Ground truth. (c) UNet with ResNet. (d) UNet with GhostNet.
(e) PSPNet with ResNet. (f) PSPNet with GhostNet. (g) Deeplabv3+ with ResNet. (h) Deeplabv3+
with GhostNet. (i) LR-ASPP. (j) HRNetv2. (k) Segformer. (l) GAD-Net.

As in Figure 9, in Figure 10, the red ones are anticyclonic eddies, the blue ones are
cyclonic eddies, the white boxes are undetected eddies, and the yellow boxes are more
detected eddies. We can see that GAD-Net has no white boxes and three yellow boxes,
which indicates that the eddy detection of GAD-Net matches very well with the ground
truth and can detect more eddies. Compared with other models, the actual eddy detection
result of GAD-Net is better.

4.3. Detection Experiment

In this experiment, we aimed to assess the practicality of GAD-Net through eddy
detection experiments. To achieve this, we selected four distinct model architectures for a
comparative analysis: UNet with ResNet, DeepLabv3+ with ResNet, Segformer, and GAD-
Net. By comparing the actual detection results of these models, we evaluated GAD-Net’s
detection capability.

Initially, we performed eddy detection on SLA images from different periods and seasons
in our dataset, and the results are shown in Figure 11. Consistent with our comparison
experiment, the white boxes in the figure represent the undetected eddies relative to the
ground truth, while the yellow boxes indicate the extra detected eddies based on the ground
truth. It is evident that GAD-Net has fewer white boxes compared to the other three models.
This indicates a lower missed detection rate and better coincidence with the ground truth.
Furthermore, GAD-Net has more yellow boxes than other models, indicating that it can detect
more eddies based on the ground truth and performs better. And GAD-Net also exhibits a
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high accuracy and balance in eddy detection for different times and different sea conditions.
Interestingly, the eddy boundaries determined by UNet and Segformer are smoother than
the other models. This phenomenon may be related to the different structures between these
models. Specifically, the symmetry structure of UNet and the multi-scale fusion module of
Segformer may facilitate the smoothing of the eddy boundaries. But in general, GAD-Net still
has better detection performance within the dataset.

Figure 11. Eddy detection results within the dataset. Red regions are anticyclonic eddies and blue
regions are cyclonic eddies. White boxes are undetected eddies and yellow boxes are more detected
eddies. (a) Input. (b) Ground truth. (c) UNet with ResNet. (d) Deeplabv3+ with ResNet. (e) Segfomer.
(f) GAD-Net.

To evaluate the performance of GAD-Net in detecting eddies on images of varying
sparsity, we conducted eddy detection experiments on SLA images outside of the dataset.
We assessed the eddy detection performance of the model based on the detection results
from different sea areas and varying eddy sparsity levels. We performed eddy detection
on SLA images in the Pacific Ocean (10°–30°N, 120°–150°W), Atlantic Ocean (20°–40°N,
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10°–40°W), and Indian Ocean (10°–30°N, 50°–80°E) areas. Figure 12 shows the detection
results for 1 January 2021.

Figure 12. Eddy detection results outside the dataset. Red regions are anticyclonic eddies and blue
regions are cyclonic eddies. Yellow boxes are more detected eddies. (a) Input. (b) UNet with ResNet.
(c) Deeplabv3+ with ResNet. (d) Segfomer. (e) GAD-Net.

First and foremost, overall, GAD-Net has better eddy detection results, exhibiting
good detection capabilities across images of varying sparsity. And the eddy boundaries
detected by UNet and Segformer remain smoother. Compared to other models, GAD-Net
is able to detect more small-size eddies, as shown in the yellow boxes in Figure 12. This
indicates that GAD-Net has less spatial information loss and has good spatial feature
extraction capability. Additionally, by observing the yellow boxes’ positions in the Atlantic
and Indian Ocean areas, it is found that GAD-Net’s performance in detecting eddies around
continents is superior to that of other models. It is noteworthy that the sparsity level around
continental areas is significantly different from that of pure oceanic areas. Yet, GAD-Net
still exhibits good detection performance, detecting more eddies than other models. Thus,
GAD-Net possesses strong generalization capabilities, enabling it to detect ocean eddies in
SLA data of varying sparsity levels.

Consequently, GAD-Net can reliably and accurately detect ocean eddies from SLA
data under various sea conditions.
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4.4. Validation Experiment

In this section, we conducted validation experiments to fully evaluate the eddy detection
performance of GAD-Net. We performed eddy detection using the PET method [21] in areas
outside the dataset and compared the results with those of GAD-Net. For areas where the
two methods detected differently, we validated the method using manual discrimination of
geostrophic flows. The PET method is a commonly used and advanced physical detection
method for ocean eddies. This method employs SLA data and detects eddies by identifying
closed sea surface height contour lines. Specifically, the PET method initially applies a
Gaussian filter to the SLA data to remove large-scale noise and highlight the inherent features
of eddies. Subsequently, the PET method scans the data to locate closed contour lines, which
correspond to the boundaries of eddies. Furthermore, for each detected eddy, the PET method
calculates a shape error to ensure that the detected features are consistent with those of eddies.
The validation experiment results are shown in Figure 13.

Figure 13. Validation experiment results. Red regions are anticyclonic eddies and blue regions are
cyclonic eddies. Yellow boxes are more detected eddies, green boxes are incorrectly detected eddies,
and the arrows indicate the regional geostrophic flow. (a) Input. (b) PET. (c) GAD-Net. (d) Regional
geostrophic flow.

In Figure 13, the yellow boxes indicate more correct eddies detected than the other
method, and the green boxes indicate incorrectly detected eddies. Comparing the detection
results, it is observed that the eddies detected by GAD-Net exhibit smoother boundaries,
and the eddies detected by PET are relatively larger in size. The count of yellow boxes for
GAD-Net is slightly higher than that of the PET method, while the number of green boxes
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for both methods is equal. Overall, these observations indicate that GAD-Net and PET have
comparable levels of performance in eddy detection, and both can detect ocean eddies stably.

Comparing the eddies in the yellow boxes, it is found that the eddies detected more by
the PET method are mostly atypical elliptical eddies with larger sizes and small amplitude
eddies. The lack of detection of atypical elliptical eddies by GAD-Net may be due to the
fact that the manual labeling process is almost exclusively for typical elliptical eddies,
leaving the model with a lack of data samples for atypical elliptical eddies. The reason for
GAD-Net’s missed detection of small-amplitude eddies is that the SLA data contours are
not sufficiently plotted. These SLA images fail to plot closed contours that match the eddy
features, resulting in the model’s missed detection. In contrast, eddies detected more by
GAD-Net are mostly elliptical eddies with small sizes. It can be seen that using the ASPP
and EGFI modules improves the feature extraction capability of GAD-Net for small targets,
giving the model better small-size eddy detection performance.

Comparing the incorrect eddies in the green boxes, it can be seen that the reason for
these errors is similar for both methods, as sea surface anomalies that are not generated
by eddies are detected as eddies. As shown in areas 1–8 in Figure 13, the complex sea
conditions cause a strong opposite flow or other phenomena that create pseudo-eddies,
producing eddy-like sea surface anomalies, which, in turn, lead to errors in eddy detection
by both methods.

In addition, we applied the GAD-Net and PET methods to detect eddies in the dataset
images from December 2020 and statistically counted the radii of the eddies, as shown in
Figure 14. The comparison revealed that GAD-Net detected a higher proportion of eddies
with a radius of less than 80 km than the ground truth and PET. Conversely, PET detected a
higher proportion of eddies with a radius larger than 80 km. This observation, once again,
demonstrates that GAD-Net exhibits good performance in detecting small-size eddies.

Figure 14. Distribution of eddy radius detected by GAD-Net and PET.

Regarding detection speed, GAD-Net detects one area in 0.04 s, which is much faster
than the 2 s required by PET. Overall, GAD-Net’s accuracy is comparable to that of the PET
method, and it also has smaller eddy sizes with a faster detection speed.

5. Conclusions

This paper aims to detect ocean eddies in a lightweight and efficient way. To this end,
we conducted in-depth research on constructing a lightweight and efficient deep learning
model for ocean eddy detection. Initially, we established a novel ocean eddy dataset based
on SLA data. This dataset encompasses ocean eddy information from 10°N to 30°N and
120°E to 150°E between 2017 and 2020. Subsequently, we developed a new lightweight
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eddy detection model, termed GAD-Net. For this model, we proposed and implemented
ECA+GhostNet, the EAN module, and the EGFI module. The incorporation of these
modules not only enhances the model’s eddy detection performance, but also renders
the model more lightweight and efficient. Thereafter, we employed GAD-Net to detect
eddies in SLA images at different times and areas. Compared to other models, GAD-Net
exhibits superior eddy detection capabilities, fewer model parameters, and more efficient
computational processes. In addition, we compared GAD-Net with the traditional physical
PET method. The results indicate that both methods have comparable eddy detection
performance, although the eddy radius detected by GAD-Net is smaller, and the detection
speed is faster. In general, the GAD-Net model is capable of detecting ocean eddies stably
and efficiently, making it a lightweight and stable deep learning eddy detection model.

Although GAD-Net possesses accurate and efficient capabilities for eddy detection,
the model is based on altimeter data for eddy detection. We did not conduct an in-depth
exploration of the potential issues that may arise when detecting eddies using other types
of data. Therefore, we will initiate research on ocean eddy detection using different datasets
in the future. For instance, in L1-level SAR datasets, eddy samples are extremely scarce.
We will investigate whether using our altimeter dataset as pre-trained weights can alleviate
the issue of limited SAR data. Alternatively, we will consider what aspects need attention
and improvement when constructing an eddy detection model specifically for L1-level
SAR data. Additionally, we will explore whether we can develop a multimodal data eddy
detection model to address the issue of pseudo-eddies in single altimeter data. These
questions will be the focus of our future research.
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Abstract: The remote sensing-based inversion of sound speed profile (SSP) enables the
acquisition of high-spatial-resolution SSP without in situ measurements. The spatial
division of the inversion grid is crucial for the accuracy of results, determining both the
number of samples and the consistency of inversion relationships. The result of our research
is the introduction of a physics-inspired self-organizing map (PISOM) that facilitates SSP
inversion by clustering samples according to the physical perturbation law. The linear
physical relationship between sea surface parameters and the SSP drives dimensionality
reduction for the SOM, resulting in the clustering of samples exhibiting similar disturbance
laws. Subsequently, samples within each cluster are generalized to construct the topology
of the solution space for SSP reconstruction. The PISOM method significantly improves
accuracy compared with the SOM method without clustering. The PISOM has an SSP
reconstruction error of less than 2 m/s in 25% of cases, while the SOM method has none.
The transmission loss calculation also shows promising results, with an error of only
0.5 dB at 30 km, 5.5 dB smaller than that of the SOM method. A physical interpretation of
the neural network processing confirms that physics-inspired clustering can bring better
precision gains than the previous spatial grid.

Keywords: sound speed profile; self-organizing map; physics-inspired clustering

1. Introduction

Despite formidable challenges, the relentless pursuit of more precise information
regarding the ocean’s sound speed profile (SSP) remains unabated. On the one hand,
the spatiotemporal distribution of SSPs plays a pivotal role in oceanic observations, en-
abling the exploration of phenomena ranging from global climate change to micro-scale
turbulence through SSP inversion [1,2]. On the other hand, as a critical parameter in
underwater waveguides, the SSP’s distribution profoundly influences underwater sound
propagation [3].

The most accurate way to obtain SSP is through direct measurement using sound
speed profilers or conductivity–temperature–depth (CTD) instruments. However, this
method only provides data for one measuring point and can be time-consuming and
labor-intensive, making it economically impractical to acquire wide-area, synchronous
SSPs. After the introduction of acoustic thermometry of ocean climate (ATOC) by Munk [4],
various frameworks for acoustic inversion techniques have been developed, including
matched field processing [5], compressed sensing [6], and deep learning [7]. By introducing

Remote Sens. 2025, 17, 132 https://doi.org/10.3390/rs17010132
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environmental parameters into the optimization process, matching field processing can
significantly enhance inversion accuracy. Compressed sensing enhances the real-time
performance of SSP inversion by expressing it as an underdetermined linear problem
and applying regularization through a least-squares cost function. This deep learning
approach optimizes the inversion model via a data-driven method, substantially increasing
the upper limit of inversion accuracy. As the acoustic signal is directly influenced by the
SSP, the acoustic inversion method can provide precise and timely inversion results, and
these acoustic inversions have enabled the retrieval of wide-area sound speed profiles.
However, it is important to note that the acoustic signal is typically considered an integrated
probe, reflecting the cumulative refraction effects along the sound propagation path. As a
result, reconstructed SSPs reflect averaged effects along the propagation path. In typical
application scenarios, the SSP obtained through acoustic inversion reflects the average SSP
over a distance ranging from several to tens of kilometers between the transmitter and
receiver, potentially limiting its spatial resolution.

To address the need for wide-area, high-resolution, quasi-real-time SSPs, satellite
remote sensing stands out as the sole quasi-real-time global ocean observation platform,
demonstrating considerable potential in SSP inversion. Theoretically, remote sensing-based
inversion can achieve a spatial resolution for SSPs comparable to that of sea surface param-
eters, providing spatial variation information at scales finer than several hundred meters.
Utilizing satellite remote sensing to acquire ocean surface parameters, a novel approach has
emerged, inferring the correlation between surface parameters and SSP disturbances based
on historical profiles and sea surface conditions. According to the principle of thermal
expansion, Carnes initially validated a nearly linear correlation between sea level anomalies
(SLAs) and the amplitudes of empirical orthogonal function (EOF) of temperature profiles
through an analysis of extensive historical data [8]. Subsequently, experiments conducted
in the northwestern Pacific and northwestern Atlantic utilized sea surface temperature
anomalies (SSTAs) and SLAs as inputs to infer subsurface profiles based on a single empiri-
cal orthogonal function-based regression (sEOF-r) [9]. The effectiveness of this approximate
linear physical relationship for subsurface profile inversion has been confirmed, and its
applicability to global SSPs has been validated by Chen [10]. While it is impractical to
describe complex air–sea dynamical systems using physical equations, a series of “physical”
methods, such as sEOF-r, has demonstrated that reasonable results can be achieved through
approximate physical expressions.

Contrastingly, recent advancements in machine learning algorithms have led to the
emergence of data-driven approaches. Hjelmervik employed gradient descent algorithms
to infer temperature and salinity profiles based on sea surface remote sensing data [11,12].
Chapman proposed self-organizing maps (SOMs) to reconstruct subsurface current pro-
files [13]. Su improved the inversion of global ocean salinity profiles by combining extreme
gradient boosting with gradient-boosting decision trees [14]. Ali adopted artificial neural
networks to invert SSP and discussed the error distribution at different depths [15]. Ou
applied neural networks for multivariate regression to enhance inversion results for SSP
using various sea surface parameters [16]. Due to their unrestricted nature in uncovering
implicit nonlinear relationships between multiple parameters, data-driven methods have
demonstrated clear advantages in precision over “physical” methods and have become
mainstream in designing inversion methodologies. Based on the powerful data-mining
capabilities of data-driven methods, the implicit relationships between input parameters
and SSPs can be further utilized. Chen incorporated input data from an echo sounder and
the maximum layer depth, in addition to remote sensing parameters, to estimate SSPs [17].
With the advantage of merging multi-source information, the inversion accuracy showed a
significant improvement. Qu compared the applicability of SOM and sEOFr in the South
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China Sea. By analyzing the entire solution process, they found that enhancing the consis-
tency of the SSP basis function significantly improves the inversion accuracy [18]. Building
on remote sensing parameters, Li introduced surface sound speed, measured by a surface
velocimeter, as an additional solution condition [19]. Although this algorithm increased the
cost of in situ measurements, it enabled the inversion of full-depth SSPs. Zhao employed
long short-term memory neural networks to model the relationship between sea surface
parameters and SSPs [20]. This algorithm capitalizes on the strong temporal correlation in
SSP perturbations, achieving high-precision SSP predictions with limited samples within a
confined spatial range.

The success of any inversion method, whether driven by physical equations or data,
relies on the assumption that all samples adhere to the similar disturbance laws of the SSPs.
Therefore, when conducting SSP inversion from remote sensing data, it is common to divide
the ocean area into a 1◦ or 2◦ grid and process the samples within each grid cell separately.
However, the ocean is a complex system influenced by various factors such as time, local-
ization, monsoon, and circulation dynamics. These factors can hinder statistical consistency
across the geographical grid and introduce errors in inversion results. Decreasing grid sizes
may improve statistical consistency but will significantly reduce the sample size and pose
challenges for applying machine learning algorithms. Conversely, expanding the grid can
increase the sample size, but ensuring statistical consistency becomes challenging.

This study proposes an enhanced SSP inversion method from remote sensing data,
utilizing a physics-inspired self-organizing map (PISOM). By employing the dimensional-
ity reduction and generalization techniques of the SOM method, a PISOM can effectively
cluster the physical relationships between sea surface parameters and profile parameters,
overcoming spatial grid limitations and ensuring statistical consistency in the disturbance
laws of SSP samples during inversion. Training is conducted using Argo data from the
South China Sea spanning from 2007 to 2019, along with remote sensing data, to deduce the
SSPs of 2020. This PISOM method significantly considers both sample statistics consistency
and sample size, leading to improved effectiveness in inversion results. Furthermore,
guided by physical mechanisms, neural network processing is analyzed. The findings
demonstrate that the statistical consistency in inversion relationships strongly correlates
with seasons rather than spatial positions, indicating a need for further improvement
in conventional spatial grid processing. Our main contributions can be summarized as
follows: (1) We introduce a new PISOM algorithm that enhances inversion accuracy by in-
corporating physical mechanism constraints into the neural network algorithm. This novel
method clusters the inversion relationships of SSPs according to their physical expressions.
Consequently, by utilizing the clustered training set, the neural network algorithm can
more effectively delineate the perturbation features of SSPs and the relationship between
the input–output parameters; (2) Recognizing that the spatial division of the inversion
grid fails to ensure statistical consistency, clustering based on physical constraints reveals
the significant influence of seasonal factors on inversion relationships. Consequently, we
present a grid-free sample-clustering method that accounts for both the consistency of
statistical rules and the adequacy of sample sizes; (3) We incorporate transmission loss
to assess the validity of the inversion results at the application level, revealing that the
improved method significantly enhances the accuracy of sound field calculations and can
provide suitable SSP information for these applications.

2. Data

The key to using remote sensing data to obtain SSPs lies in establishing the inversion
relationship between sea surface parameters and SSPs based on historical samples. By
training historical SSPs alongside SLAs and SSTAs, we can establish this relationship.
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During the final inversion process, only an SLA and an SSTA are required as inputs to
obtain the corresponding SSP.

2.1. SSP Samples

Argo floats are the primary means of obtaining global ocean SSP samples. This study
primarily focuses on addressing the challenge of initial grid division for inversion, which is
particularly prominent in the South China Sea. The South China Sea is the largest marginal
sea in the western Pacific, with an average depth of 1212 m. The central part has an average
depth exceeding 4000 m, reaching a maximum of 5559 m. Due to the intricate topography
and basin-scale circulation influences, SSPs within the South China Sea exhibit non-gradual
spatial variations unlike those observed in open oceans. Profiles in a range of 8–24◦N and
109–121◦E were selected for testing inversion. All the Argo data were obtained from the
Global Ocean Argo Collection [21].

Due to political and economic factors, the availability of SSP samples is severely
limited, posing challenges in implementing conventional geographic grid division methods.
To address this issue, our primary focus was on profiles within a depth range of 10 to
1000 m, which can account for both the main disturbance depth of SSPs and the number of
retained samples. For training purposes, data from 2007 to 2019 were utilized, resulting in
7200 profiles. Validation was conducted using profiles from 2020 (132 in total). All profiles
were linearly interpolated to conform with the standard depth levels defined by the World
Ocean Atlas 2023 (WOA23). This approach ensures consistent sampling and facilitates
error comparison with other methodologies.

During SSP processing using empirical orthogonal function (EOF) analysis, the back-
ground profile from WOA23 (https://www.ncei.noaa.gov/products/world-ocean-atlas,
accessed on 23 July 2024.) was utilized. The WOA23 data were chosen as annual averages
for the 2005–2017 period, with a spatial resolution of 0.25◦. Similar to Argo, tempera-
ture and salinity profiles were transformed into sound speed profiles using Del Grosso’s
empirical formulas [22].

All the SSPs are illustrated in Figure 1, revealing significant differences between
the South China Sea and the open ocean. In particular, disturbances in sound speed
surpassing 20 m/s pose a significant challenge to SSP inversion. The disturbances primarily
occur within the uppermost 300 m, gradually diminishing in intensity as they extend
deeper. Notably, the presence of complex internal waves, fronts, and turbulence causes
non-monotonic disturbances with large amplitudes at several depths, providing the main
source of inversion errors in daily temporal resolution inversion.

Figure 1. SSP samples and background profile.
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2.2. Remote Sensing Data

SLA and SSTA data have been extensively validated as the most effective variables
for SSP inversion, as demonstrated in numerous studies. All remote sensing data were
obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) [23,24].
The SLA data were derived by merging data from various altimetry missions and were
processed using optimal interpolation, achieving a spatial resolution of 0.25◦. The SSTA
data were estimated by the Group for High-Resolution Sea Surface Temperature (GHRSST)
project in conjunction with in situ observations, utilizing a spatial resolution of 0.05◦. All
remote sensing data had a daily temporal resolution. The establishment of a one-to-one
correspondence between the remote sensing data and the same-day Argo SSPs was based
on the spatial proximity principle.

3. Methods

Physics-driven methods involve specifying physical equations, providing valuable
constraints on inversion results. However, due to the complex nature of the air–sea dynam-
ical system, using approximate physical expressions inevitably introduces errors. While
data-driven methods offer the advantage of avoiding approximate expressions, they often
yield unrealistic results due to the absence of physical constraints. In this study, we pro-
pose a combination of physics-based expressions and statistical neural networks. Given
the difficulty in precisely establishing inversion relationships between parameters using
physical expressions and the challenge of ensuring the statistical consistency of all samples
for inversion, we propose a clustering approach based on approximate physics formulas.
This approach guarantees high statistical consistency among physics-inspired samples,
enhancing their accuracy.

3.1. Dimensionality Reduction in SSPs

The disturbance of SSPs can be mathematically represented as a three-dimensional
matrix. Here, each element in the column corresponds to a sampling point along the depth
dimension, while the other two dimensions represent sequences of time and space. When
addressing the inversion problem associated with an SSP, it is crucial to consider that the
inversion’s complexity is significantly impacted by the number of unknowns involved.
Hence, it becomes necessary to reduce the dimensionality of SSPs. An SSP, c(z), can be
expressed as follows [25]:

c(z) = c0 + ∑m
n=0 anψn, (1)

where z is the sampling point along the depth, ψ is the basis function describing the
disturbance mode of SSPs, a is the projection coefficients of the basis function, and n is
the order of the basis function. Due to the influence of the barotropic mode, the inversion
of SSPs using remote sensing parameters includes a zeroth-order mode with the same
amplitude across all depths. In inverse problems, a higher-order basis does not necessarily
provide better approximations to the true values due to the presence of noise. Typically,
using m = 3 strikes a balance between effectively capturing disturbances and avoiding
noise introduced by higher-order modes. In the following experiment, m = 3 yields the
best inversion accuracy. The EOF is the most classical basis function of SSPs, involving
extracting principal components from samples. Assuming the SSP samples form an m × n
matrix, where m represents the number of depth sampling points and n represents the
number of samples, we can obtain the anomaly matrix, X, by subtracting the background
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profile from the sample matrix. The eigenvalues of this matrix can be used to calculate the
disturbance modes in sound speed [26]:

XXT

N
K = KE, (2)

where K is the eigenvector and E is the diagonal matrix of the eigenvalues. In practical ap-
plications, K is the modal function of each order of the EOF. The accuracy and effectiveness
of EOFs are contingent on the consistency of the disturbance laws among the samples. A
crucial objective in employing the EOF is to cluster profiles with consistent disturbance
laws and inversion relationships, yielding more precise and effective EOFs, along with
their projection coefficients.

3.2. Physics-Driven SOM

According to a regression analysis of many historical samples, an approximate linear
relationship was observed between sea surface parameters and the EOF projection coef-
ficients of SSPs. Based on this linear relationship, Carnes proposed the sEOF-r method,
which can be expressed as follows [9]:

an = An,0 + An,1 × SLA + An,2 × SSTA + An,3 × SLA × SSTA, (3)

where An,m is the m-th linear fitting parameter for the n-th projection coefficients, an. In the
training phase, based on historical samples, an and their corresponding SLA and SSTA can
be utilized to calculate three approximate linear fitting parameters A. During the solving
phase, these coefficients and remote sensing parameters can be directly employed to derive
projection coefficients for reconstructing the SSP. To avoid confusion, in the subsequent clus-
tering process, the EOF coefficient derived directly from the SSP is denoted as an, whereas
bn represents the EOF coefficient calculated using the physical expression (3). Although
Equation (3) does not provide an exact analytical representation, it exhibits consistent
fitting coefficients when the disturbance law of the profiles is maintained, resulting in
inversion results with a reasonable level of precision. These identical fitting parameters
indicate consistency in heat and energy transfer, as well as sound speed disturbance modes
resulting from air–sea interactions. Given the absence of precise physical formulations for
air–sea interactions and SSP disturbances, conventional physics-informed neural networks
(PINNs) incorporating partial differential equations to enforce physical constraints are
not applicable in SSP inversion. To address this limitation, we propose a novel approach
that combines physics-driven principles with data-driven techniques, integrating physical
relationships into neural network inversion based on clustering statistically consistent
samples according to Equation (3).

A flowchart of the proposed method is shown in Figure 2. Initially, clustering is
conducted based on disturbance modes to process SSPs exhibiting consistent disturbances.
Subsequently, the clustered samples are utilized to train an SOM to establish a generalized
neural network structure. Then, by employing the input remote sensing parameters, the
best-matching neuron (BMU) can be found in the neural network. Finally, extracting
the projection coefficient elements from the BMU yields the inversion result. The SOM
inversion process can be described as follows:

1. Clustering: To circumvent the conventional approach of employing spatial grids for
classification, we propose a method utilizing an SOM network to cluster based on
the correlation between remote sensing parameters and SSPs to achieve dimension-
ality reduction. Based on linear initialization, raw training samples are projected
onto the linear subspace formed by three parameter types: remote sensing param-
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eters (SLA; SSTA), EOF projection coefficients of the historical samples (an), and
linearly reconstructed SSP projection coefficients (bn) obtained from all sample data
using the sEOF-r method. The first two parameter types rely on data-driven tech-
niques to establish statistical relationships between surface and profile parameters.
The third parameter type incorporates Equation (3) as a constraint to capture the
approximate linear relationship, thereby clustering with the first and second pa-
rameter types based on deviations from this physical relationship. Dimensionality
reduction for the samples is achieved by configuring a small number of neurons
in the SOM network. Classification is performed on the clustering networks using
the nearest neuron based on Euclidean distance. Training samples are classified
according to their disturbance laws while retaining the first and second parameter
types as clustering training samples. Importantly, after clustering, each cluster
represents distinct disturbance laws. This requires a separate recalculation of EOFs
and their coefficients for each cluster;

2. Generalization: Based on clustered samples, disturbance-consistent samples are re-
input into the SOM network to generate a generalized network and form a solution
topology. The cluster of samples closest to the solving profile’s time is selected as
the clustering training sample. Actual testing has shown that setting the number
of neurons in the SOM network to three times the number of input samples during
generalization maintains inversion accuracy. Training with the SOM network gener-
ates a generalized neural network, which is derived under Equation (3)’s near-linear
relationship constraint. The ensemble of these neurons constitutes the network struc-
ture, which describes the SSP that may be formed under the disturbance law of the
training sample;

3. Matching: Based on the input parameters, the BMU is determined on the general-
ized SOM network. The BMU is defined as the neuron that exhibits the minimum
Euclidean distance to the input parameters within the generalized neural network.
The input actually constitutes an incomplete neuron, and Chapman derived a func-
tion to calculate the truncated distance with the complete neuron on the neural
network [27]:

dp(x, up) = ∑i∈avail

(
1 + ∑j∈missing (corc

ij)
2
)
× (xi − up

i ), (4)

where d is the Euclidean distance, p represents the number of the neuron on the
generalized network, u is the neuron vector, set avail represents the existing ele-
ments of the incomplete neuron, and set missing is the element to be solved for SSP
reconstruction. The truncated distance of each neuron on the generalized network
can be calculated through an exhaustive search. The smallest distance represents
the BMU, indicating the closest match between the air–sea relationship and the
input parameters;

4. Extraction: The inversion result can be obtained from the missing part of the BMU,
i.e., the corresponding coefficients, an, of the SSP. By combining these coefficients with
the EOFs derived from the principal component analysis of this cluster, Equation (1)
can be utilized to reconstruct the sound SSP.
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Figure 2. Flow chart of the physics-inspired SOM inversion. The black italicized variable represents
the input parameters extracted from the training samples; the blue italicized variable denotes the
input parameters utilized for solution information; and the red italicized variable signifies the output
parameters serving as the reconstruction coefficients of the SSP.

4. Results

The proposed method involves pre-classification to ensure the statistical consistency
of the samples. Thus, the number of clusters plays a crucial role in determining the results.
Table 1 presents the inversion errors for different numbers of clusters. It is evident that
classification significantly enhances inversion accuracy, with post-clustering inversion
results outperforming non-clustered ones. The highest accuracy is achieved with two
clusters, and as the number of clusters increases, there is only a minimal change in accuracy.
This can be attributed to further clustering potentially amplifying noise during inversion
and reducing the number of training samples, resulting in slightly lower accuracy than the
optimal cluster numbers. For subsequent analysis, we focus on examining results obtained
using two clusters, as this represents an optimal choice and provides evidence of physical
mechanisms behind optimal clustering. The root-mean-squared error (RMSE) was used to
quantify the SSP reconstruction error.

Table 1. Errors in different cluster numbers.

1 Cluster 2 Clusters 3 Clusters 4 Clusters 5 Clusters

RMSE (m/s) 3.78 3.63 3.71 3.70 3.68

4.1. SSP Reconstruction Error

An error comparison between the SOM and PISOM inversion methods is illustrated in
Figure 3. At most points, the SOM method with clustering has significantly higher accuracy
than the simple SOM method. The average error of the SSPs obtained through the PISOM
is 3.63 m/s, whereas for the SOM, it is 3.78 m/s. The SOM’s performance is enhanced by
incorporating a pre-clustering procedure. The classic SOM method encounters significant
anomalies in the region, leading to limited accuracy with almost no cases of error below
2 m/s. By contrast, the PISOM demonstrates an error rate below 2 m/s for approximately
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one-fourth of the cases. The PISOM method can handle the features carried by disturbances
more effectively by simply clustering the disturbance characteristics. Although the reduc-
tion in mean error between the two methods is not statistically significant, the inversion
results can still be regarded as a great improvement. The main source of large errors arises
from notable anomalies in SSPs caused by dynamic factors such as fronts and water masses,
which pose challenges for accurate representation using EOFs. In cases where significant
anomalies are absent in the samples, the reconstructed SSP more consistently aligns with the
disturbance principal components, resulting in more pronounced improvements in error.
Among the 47 samples exhibiting reconstruction errors below three, the PISOM method
demonstrates an approximately 20% decrease in error compared with the SOM method.

Figure 3. Errors in reconstruction for different sample numbers.

Figure 4 shows the errors at different depths. In most depths, the PISOM method
outperforms the SOM method, with the surface layer showing the most significant im-
provement in inversion accuracy. This is because the core of the method lies in establishing
a relationship between SSPs and surface remote sensing parameters, which are closely
associated with the surface part of the SSP. The deep sea below 600 m is the least improved
part, primarily because this section is less affected by surface remote sensing parameters
and has relatively consistent sound speeds with minimal disturbances. Notably, the maxi-
mum error occurs around 300 m. Typically, due to the daily resolution of remote sensing
inversion methods, diurnal variations in the mixed layer often become the primary source
of inversion error. In the data presented here, significant errors can be observed at depths
of approximately 300 m, 500 m, 750 m, and 1000 m. These errors mainly arise from random
large gradient disturbances at specific depths in a small subset of the sample, resulting in a
sharp increase in mean error. Since capturing such random large anomalies during inver-
sion poses challenges, these data exhibit high error values specifically due to anomalies
at certain depths, highlighting the difficulty in representing these conditions accurately
through SSP inversion techniques. Furthermore, this reveals the highly challenging nature
of SSP inversion in the South China Sea.

To explain the sources of error, Figure 5 presents two representative examples. In
the example of high-precision reconstruction on the left, the PISOM method has a clear
improvement in accuracy compared with the SOM method, particularly showcasing its
performance advantage closer to the sea surface. Random disturbances caused by water
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masses change the smooth variation trend of the sound speed gradient at depths around
250 m and 500 m. While data-driven methods relying on the main statistical characteris-
tics struggle to represent such random disturbances, the PISOM method still effectively
describes these disruptions better than the SOM method. In the high-error example on
the right, similar to the error distribution shown in Figure 4, random errors at depths
around 300 m, 500 m, 750 m, and 1000 m constitute most of the mean reconstruction errors.
Both methods suffer severe performance degradation in the presence of intense random
disturbance. However, the PISOM method is still closer to the actual measured profile. The
precise representation of these outlier points constitutes a significant challenge for nearly
all SSP inversion techniques. This is primarily because the infrequent appearance of these
outlier points in the samples does not constitute the primary component of the disturbance
features in the training data; thus, the basis functions cannot reconstruct these outlier
points. Additionally, the input parameters used for inversion are insufficient to deduce
these outlier points. Sea surface parameters solely encompass sea surface information,
while in acoustic inversion, acoustic propagation signals reflect the averaged effects along
the propagation path. Neither of these inputs provides detailed structural information
about the SSP at specific depths.

Figure 4. Errors in reconstruction for different depths.

Figure 5. Examples of sound speed profile reconstruction.
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4.2. Validation of Transmission Loss

The primary objective of SSP inversion is to conduct calculations on the sound field,
and the most direct way to verify the effectiveness of the results is to perform sound field
calculations. We performed validation to forecast transmission loss using the normal mode
model KRAKENC based on the reconstructed SSP. Figure 6a shows that the errors in the
PISOM and SOM, and the results were 2.62 m/s and 2.81 m/s, respectively. Considering
the reconstructed depth of the SSP is 1000 m, characterized by minimal disturbances below
this threshold, the inversion results below 600 m exhibit a high level of consistency with
the measurements, and we extrapolated the depth profiles down to 4000 m based on
WOA23 data. The sound source and receiver were positioned at a depth of 50 m. The
frequency used was 100 Hz, and the seabed had a density of 1.73 g/cm3 with a sound
speed of 1541 m/s. Additionally, we considered an attenuation coefficient of 0.09 dB/λ and
a water depth of 4000 m. A comparison of the calculated transmission loss is presented
in Figure 6b. Significant transmission loss errors are caused by inaccuracies in the SSP
reconstruction in the direct wave part before the first convergence zone. However, both
inversion methods accurately capture the interference structure of the sound field in
the first two convergence zones, indicating that the inversion method utilizing remote
sensing parameters, which can achieve a globally high-spatial-resolution estimation of SSP,
effectively meets the precision requirements for sound field calculations. With increasing
propagation distance, the error in the sound field calculation accumulates due to the SSP
inversion error. In the fifth convergence zone, the position predicted using the SOM method
for the convergence zone deviates at longer distances, causing a significant deviation in
the interference structure, with a transmission loss error of 6 dB at 30 km; conversely, the
PISOM method can still predict the sound field’s interference structure reasonably well,
with a sound field calculation error of approximately 0.5 dB. From the perspective of sound
field prediction, without conducting in situ measurements, the SSP inversion based on
remote sensing parameters can indeed provide SSP information suitable for sound field
calculation applications, and the PISOM method can effectively enhance the applicability
of this method without introducing additional models or heavy computational burden.

Figure 6. Transmission loss calculated using different SSPs, (a) SSPs, (b) Transmission loss.

4.3. Interpretation of Neural Network Processing

Due to the incorporation of physical linear relationship constraints, the neural network
architecture becomes more interpretable, enabling us to gain insights into the underlying
processes and mechanisms governing the SOM. Figures 7 and 8 depict the spatial and tem-
poral distribution of all samples. The spatial distribution analysis reveals that the influence
of spatial position on establishing the inversion relationship between surface parameters
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and SSPs is negligible. Within the South China Sea region, both clusters exhibit a uniform
distribution, unaffected by their spatial positions. Despite the presence of intricate and
intense mesoscale phenomena such as eddies, internal solitary waves, fronts, and Pacific
exchange water masses that can significantly impact SSPs and complicate SSP inversion
procedures, their effect on establishing the inversion relationship remains inconspicuous.
The temporal distribution reveals a uniform spread of samples across all twelve months of
the year, and subsequent clustering analysis demonstrates the significant influence of sea-
sonal factors in establishing inversion relationships. Cluster 1 predominantly occurs from
April to October, while Cluster 2 mainly occupies December to February, with March and
November acting as transitional periods between these two clusters. During the summer,
the strong influence of the southwest monsoon and intense sea surface irradiance result
in a negative sound speed gradient at the surface. Conversely, in winter, the northeast
monsoon leads to the formation of a robust mixed layer on the sea surface. These distinct
sound speed distributions give rise to different barotropic and baroclinic modes within
the ocean, characterized by varying relationships between the sea surface and the SSPs.
Consequently, two inversion clusters are formed, demonstrating that previous spatial grid
methods lack effectiveness in statistically clustering consistent samples.

Figure 7. Spatial distribution of two sample clusters.

Figure 8. Temporal distribution of two sample clusters.

5. Conclusions

Sea surface parameters primarily influence SSPs through energy and matter transfers
dominated by barotropic and baroclinic modes. This complex physical relationship can
be approximated as a linear equation (Equation (3)). In this study, parameters adhering
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to this physical mechanism were incorporated as elements in the SOM clustering process,
enhancing sample consistency in perturbation laws and improving inversion accuracy. The
effectiveness of this PISOM was validated through SSP inversion experiments conducted
in the South China Sea and compared with the simple SOM inversion.

The experiments confirmed that applying PISOM significantly enhanced the preci-
sion of SSP inversion. When samples from 2020 were used as the test set, many samples
exhibited random large disturbances caused by water masses, posing a challenge for nearly
all SSP inversion methods due to the difficulty in accurately representing such rare and
intense disturbances with EOFs derived from a principal component analysis. When only
profiles without abnormal disturbances were considered, the PISOM method demonstrated
an approximate 20% reduction in error. Despite encountering notable errors near the depth
between the mixed layer and thermocline due to limited information and temporal resolu-
tion, remote sensing-based SSP inversion methods validate their ability to provide globally
high-spatial-resolution SSP information without requiring any in situ measurements, bene-
fiting sonar system applications. The PISOM method enables reasonable transmission loss
calculations while reducing errors by approximately 5.5 dB at 30 km compared with the
SOM method.

After analyzing the clustering results inspired by the physical linear relationship, we
discovered that seasonality plays a crucial role in determining the consistency of inversion
relationships. In our South China Sea inversion experiment, samples mainly clustered
around the summer and winter seasons. This finding demonstrates the limitations of
previous spatial grid processing methods. Therefore, incorporating the proposed clustering
process during preprocessing can effectively enhance inversion performance.
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Abstract: Underwater pile foundation detection is crucial for environmental monitoring
and marine engineering. Traditional methods for detecting underwater pile foundations are
labor-intensive and inefficient. Deep learning-based image processing has revolutionized
detection, enabling identification through sonar imagery analysis. This study proposes an
innovative methodology, named the AquaPile-YOLO algorithm, for underwater pile foun-
dation detection. Our approach significantly enhances detection accuracy and robustness
by integrating multi-scale feature fusion, improved attention mechanisms, and advanced
data augmentation techniques. Trained on 4000 sonar images, the model excels in delin-
eating pile structures and effectively identifying underwater targets. Experimental data
show that the model can achieve good target identification results in similar experimental
scenarios, with a 96.89% accuracy rate for underwater target recognition.

Keywords: AquaPile-YOLO; multi-scale feature fusion; deep learning; sonar image;
underwater target recognition; attention mechanism

1. Introduction

The detection of underwater pile foundations is important for harbor channel opera-
tions and marine engineering [1]. Traditionally, visual examinations by divers have been
the main method for identifying underwater pile foundations, but this has limitations in-
cluding poor safety, high cost, and low efficiency [2,3]. The development of high-resolution
sonar imaging technology has opened new possibilities for underwater target detection
by offering advantages such as long-range detection capabilities and real-time imaging [4].
However, due to the imaging principles of sonar technology and the impact of underwater
environments, sonar images often exhibit high noise, poor contrast, and structural distor-
tions, making the accurate detection and identification of underwater targets difficult [5,6].

The development of underwater pile foundation detection technology has garnered
significant attention in the realms of maritime engineering and environmental monitor-
ing. Over the past few decades, underwater target detection using high-resolution sonar
imaging has progressed significantly. Early methods focused on feature extraction and
enhancement techniques, such as mathematical morphology and level-set methods, to
address the inherent noise and resolution issues of sonar imagery. With the advent of
deep learning, innovations like the Mask R-CNN and improved YOLO frameworks have
emerged, offering enhanced accuracy and robustness. Despite these advancements, key
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challenges remain, including the detection of small and densely packed targets under
varying environmental conditions. This study addresses these challenges by integrating
multi-scale feature fusion and attention mechanisms into the AquaPile-YOLO framework.
These enhancements are pivotal for the real-time detection and precise identification of
underwater pile foundations, enabling significant improvements in sonar image analysis.

Early research on sonar image processing primarily focused on feature extraction and
image enhancement [5,7]. For instance, Lu et al. provided a comprehensive review of
feature extraction technology for underwater targets using active sonar technology, estab-
lishing theoretical foundations for sonar image processing [2]. Subsequently, Calder et al.
presented a novel concept for underwater identification of side-scan sonar images—a
Bayesian approach to target detection. These early investigations established foundations
for understanding and interpreting sonar images [3]. The application of computer vision
technologies has enhanced sonar image processing. Foresti et al. proposed an underwater
image target recognition method based on a computer vision system, employing computer
vision analysis of sonar data [4]. Liu et al. investigated the application of mathematical
morphology in acoustic image processing, proving the utility of morphological approaches
for image enhancement and edge identification [6].

Deep learning has revolutionized sonar image processing, replacing older methods
such as level sets [8], Markov random fields (MRFs) [9], and Curvelet transform [10].
Intelligence in sonar image processing has emerged as the most significant development
trend [11]. Intelligence has improved target identification accuracy and efficiency under
complex underwater situations [12,13]. Advances in image resolution and quality have
made forward-looking sonar broadly applicable in engineering applications [14] like seabed
sediment classification [15] and mine target detection [16,17]. Valdenegro-Toro et al. applied
convolutional neural networks to target detection and recognition in forward-looking sonar
images, initiating deep learning applications in sonar image processing [18]. Zhu et al.
addressed the challenge of limited sonar data by proposing a deep network classification
algorithm for identifying small bottom targets in high-resolution underwater sonar images,
demonstrating the effectiveness of deep learning in small target detection [19].

Most deep learning-based sonar image detection methods rely on sliding window
feature extraction, employing various computer vision techniques such as boosted classi-
fiers [20], machine learning classifiers [21–24], and template matching [25,26]. However,
these methods often perform poorly outside of the training set, especially in challenging
scenarios like underwater tiny target recognition [14–16,27]. Recent research has proposed
numerous innovations to address these challenges. For instance, Fan et al. [28] introduced
an improved Mask R-CNN method for underwater object detection in forward-looking
sonar images, achieving high accuracy. Zhang et al. [29] emphasized the importance of
sonar image registration and proposed an improved CNN for learning similarity functions,
significantly enhancing model performance. Additionally, Xie et al. [30] released a multi-
beam forward-looking sonar image dataset, providing a benchmark for target detection.
By integrating traditional methods’ strengths with deep learning advancements, ongoing
research aims to address these challenges, focusing on improving model generalization,
efficiency, and robustness for sonar image processing applications.

Building on previous research, Zhang et al. proposed an improved YOLOv5 network
for forward-looking sonar images [31], incorporating transfer learning and optimized
clustering algorithms. Gaspar et al. have developed unsupervised methods for feature-
based place recognition in poor visibility conditions [32], while Jiao et al. proposed the
PLUD (Push the right Logit Up and the wrong logit Down) approach to improve sonar
image feature representation for open-set and long-tail recognition challenges [33]. Li et al.
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introduced TransYOLO, a new forward-looking sonar image target detector based on a
TFFN feature fusion network with a transformer stack structure [34].

Leveraging these advancements, this paper proposes an underwater pile foundation
detection approach for forward-looking sonar images named AquaPile-YOLO, which is an
enhancement of the YOLOv5 algorithm. The AquaPile-YOLO algorithm is designed to over-
come the aforementioned challenges by integrating multi-scale feature fusion and attention
mechanisms. These enhancements are particularly beneficial for detecting small targets
within sonar images. Additionally, the application of data augmentation techniques serves
to bolster the model’s robustness and generalization capabilities. The training dataset,
comprising 4000 sonar images, underwent a series of augmentations including random
cropping, rotation, and the introduction of noise to improve the model’s adaptability across
diverse environmental conditions.

This study proposes AquaPile-YOLO, an advanced algorithm for detecting underwater
pile foundations in forward-looking sonar images. By integrating multi-scale feature fusion
and attention mechanisms, the proposed method aims to improve detection accuracy and
robustness for real-time applications. The ultimate goal is to overcome existing limitations
in sonar-based target detection, enabling more reliable and efficient underwater engineering
and environmental monitoring applications.

2. Methods

2.1. Forward-Looking Sonar

A forward-looking sonar is an imaging sonar that uses transducers to emit and receive
sound waves, forming images from the intensity of sound wave reflections off of under-
water targets [26]. Like an optical camera, a forward-looking sonar generates images, but
sonar images typically show an overhead view rather than the frontal perspective of an
optical camera. Figure 1 illustrates the imaging principle, depicting the 2D reconstruction
of a 3D underwater target by a forward-looking sonar.

  
(a) (b) 

Figure 1. A diagram of a 2D reconstruction of an underwater 3D target using a forward-looking
sonar: (a) A schematic of the FLS operational principle in an underwater environment, depicting the
acoustic imaging process; (b) An illustration of the 2D reconstruction process, transforming 3D target
data into a planar representation as captured by the sonar.
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The equipment used in the experiments for this paper is the HY1645 model forward-
looking sonar, manufactured by Haiying Marine in Wuxi, China [35]. The sonar utilizes
two-dimensional acoustic imaging technology to obtain real-time, high-resolution images
of underwater targets (including bearings and distances) for the autonomous recognition
and transmission of information. It can meet the needs of autonomous detection in complex,
low-visibility, shallow water environments. To meet engineering demands for portability,
the device incorporates a novel sparse array design for multibeam imaging sonar sys-
tems, reducing the number of transducers while preserving imaging performance. This
minimizes the number of transducers in the array while maintaining multibeam imaging
performance [36]. A schematic diagram of the fan-scan function for detecting underwater
pile foundation targets by a forward-looking sonar is shown in Figure 2.

 

Figure 2. A schematic diagram of the underwater detection capabilities of a forward-looking sonar.

The system primarily consists of an underwater transducer, a transmitter/receiver
module, a data acquisition processor, and acquisition software, among other components.
Figure 3 illustrates a photo of the HY1645 imaging sonar transducer and its on-site instal-
lation. In the photo, the black part of the transducer is responsible for the reception and
transmission of underwater acoustic signals, while the white part encloses the receiver and
transmitter modules along with their associated circuitry. The entire assembly is encap-
sulated in waterproof housing for integrated packaging and communicates and receives
power from the exterior through a single cable.

 
(a) (b) 

Figure 3. The composition of the HY1645 forward-looking sonar system: (a) The wet end of the sonar,
designed for underwater acoustic signal emission and reception; (b) The dry end components of the
HY1645 sonar, including the data processing unit and associated cabling.
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The main technical parameters and performance indicators of the HY1645 forward-
looking sonar are presented in Table 1. A significant characteristic of forward-looking
sonars is that, in most cases, the distance and bearing of objects can be directly read from
the sonar data, but the elevation of underwater targets is lost. As a result, the image
information from forward-looking sonars is typically challenging to interpret. For instance,
during the detection of an underwater stepped structure at a hydropower station using
the HY1645 forward-looking sonar, Figure 4a shows the surface photo of the stepped
structure, while Figure 4b displays the corresponding underwater sonar data collected by
the two-dimensional imaging sonar.

Table 1. Technical specifications of HY1645 forward-looking sonar.

Parameter Value

Operating Frequency 450 kHz
Field of View 90◦ × 20◦

Maximum Range 100 m
Beam Width (Horizontal × Vertical) 1◦ × 20◦

Number of Beams 538
Beam Spacing 0.17◦

Range Resolution 2.5 cm
Maximum Sampling Rate 15 Hz

 
(a) (b) 

Figure 4. Sonar scanning experiment of the underwater ladder structure: (a) Photos of the above-
water part of the ladder underwater structure sonar scanning experiment; (b) Forward-looking
underwater ladder scanning experimental sonar data.

Acoustic imaging cannot capture the true color of detected objects, yielding purely
grayscale initial data. Yellow sonar images are pseudo-colored, enhanced in contrast
via software processing. The HY1645 imaging sonar can scan both static and dynamic
underwater targets, like divers. Figure 5 illustrates the use of an imaging sonar to simulate
the monitoring of a diver in a swimming pool.
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(a) (b) 

Figure 5. Sonar scanning experiment of the diver’s pool: (a) The forward-looking sonar scanning
diver swimming pool experiment; (b) The forward-looking sonar scans the sonar image data of the
diver’s pool experiment.

2.2. AquaPile-YOLO Network

The YOLO (You Only Look Once) network [37] is a revolutionary real-time object detection
system that can predict the positions and categories of objects in an image through a single
forward propagation. YOLOv5 is an efficient object detection algorithm renowned for its speed
and superior performance. Figure 6 illustrates the structure of the AquaPile-YOLO network. In
recent years, through continuous updates and iterations [38,39], the YOLO network has been
widely applied in engineering projects due to its stability. However, forward-looking sonar
images present unique challenges, requiring adaptations for effective detection. This study aims
to enhance the performance of AquaPile-YOLO in underwater pile foundation detection tasks
by introducing a series of innovative improvements. These enhancements were designed to
adapt to the particularities of forward-looking sonar images and increase the detection accuracy
of underwater pile foundation targets.

(a) (b) 

Figure 6. The AquaPile-YOLO network structure pipeline diagram: (a) This panel presents an overview
of the AquaPile-YOLO’s architecture, illustrating the comprehensive workflow from input to output, and
highlighting the integration of multi-scale feature fusion, attention mechanisms, and other key components
that facilitate the detection of underwater pile foundations; (b) This panel zooms in on specific modules
within the AquaPile-YOLO network, detailing the internal structure and connectivity of the components,
such as the C3 Module with CBAM Attention, MPConv Module, and C3N Module, which are crucial for
enhancing the network’s performance in processing forward-looking sonar images.
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2.2.1. Data Augmentation

To enhance the model’s generalization and robustness, data augmentation techniques
were employed. Operations such as rotation, scaling, flipping, and adding noise to the
training images simulate the complexity of underwater environments, effectively increasing
the diversity of the training data.

It was assumed that the sonar image dataset is divided into groups of four sub-images
I1, I2, I3, and I4, each of a size of H × W. Through random cropping and flipping operations,
each sub-image can generate a new sub-image I1′, I2′, I3′, and I4′. These sub-images were
then concatenated into a larger image Imosaic of size 4H × 4W. The concatenation operation
can be expressed as follows:

Imosaic(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I′1(x − 2H, y − 2W) if x ∈ [0, 2H) and y ∈ [0, 2W)

I′2(x − H, y − 2W) if x ∈ [2H, 3H) and y ∈ [0, 2W)

I′3(x − 2H, y − H) if x ∈ [0, 2H) and y ∈ [2W, 3W)

I′4(x − H, y − H) if x ∈ [2H, 3H) and y ∈ [2W, 3W)

(1)

where (x,y) represents the coordinate position in Imosaic.

2.2.2. Transfer Learning Strategy

Considering the scarcity of sonar image data, a transfer learning strategy was adopted.
A pre-trained AquaPile-YOLO model, initially trained on a large dataset like ImageNet,
served as the starting point. Then, by fine-tuning AquaPile-YOLO on the limited sonar im-
age data, the model’s performance was quickly enhanced. The transfer learning strategy by
Huo et al. [40] for side-scan sonar image classification and target recognition is referenced.

Let the source domain be Ds = {χ,P(X)} and the target domain be Dt = {χ′,P(X′)},
where χ and χ′ represent the feature spaces, and P(X) and P(X′) represent the marginal
probabilities. The task T is defined by the label space y and the target prediction function
f(x). The goal of transfer learning is to improve the performance of the prediction function
ft for the target task Tt by discovering and transferring knowledge from Ds and Ts.

During the pre-training phase, a deep network F was trained on the source domain to
learn general feature representations.

F∗ = argminFL(F(Xs), Ys) (2)

where L is the loss function, Xs and Ys are the input and label of the source domain,
respectively, and F* is the pre-trained network.

In the transfer phase, the pre-trained network F* was transferred to the target domain
and adapted to the target task through fine-tuning.

F′ = arg minF L
(
F
(
Xt), Yt) (3)

where Xt and Yt are the inputs and labels for the target domain, respectively.

2.2.3. Multi-Scale Feature Fusion

Multi-scale feature fusion techniques were introduced into the AquaPile-YOLO to
address the variability in target sizes within forward-looking sonar images. This strategy
enhanced the model’s ability to recognize targets of various scales by integrating feature
maps at different resolutions. A Feature Pyramid Network (FPN) structure was employed
to effectively combine deep semantic information with shallow detail information, thereby
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improving the detection accuracy of small targets. The feature fusion can be expressed
as follows:

Ffuse = Fupsample(Fd)⊕ Fdownsample(Fc) (4)

where Fd represents the deep-layer feature map and Fc represents the shallow-layer feature
map. Fupsample and Fdownsample denote the upsampling and downsampling operations,
respectively, while the symbol ⊕ signifies the operation of feature fusion.

The upper-level feature maps contain stronger semantic information due to the deeper
network layers, while the lower-level features suffer less loss of positional information due
to fewer convolutional layers. The FPN structure performs top–down upsampling to ensure
that the bottom-level feature maps contain stronger semantic information (the backbone in
Figure 6). Conversely, the PAN (Path Aggregation Network) structure performs bottom–up
downsampling, enabling the top-level features to retain positional information (neck in
Figure 6). The fusion of these two features ensures that feature maps of different scales
contain both semantic and spatial information, thereby facilitating accurate predictions for
images of various sizes.

Fine-tuning further trained the network on the target domain data, adjusting the
network parameters to improve performance.

θ′ = θ− η∇θL
(
F
(
Xt; θ

)
, Yt) (5)

where θ is the network parameter, η is the learning rate, and ∇ stands for the gradient.

2.2.4. Attention Mechanism

The AquaPile-YOLO network incorporates advanced attention mechanisms to enhance
the model’s ability to focus on salient regions within the image, particularly in complex
underwater environments characterized by noise and occlusions. This was achieved
through the integration of the Convolutional Block Attention Module (CBAM) into the
YOLOv5 network architecture. In this section, we will discuss the role of the C3 module
(CSP Bottleneck with 3 convolutions) [41], MPConv, and the C3N module in enhancing the
attention mechanisms of the AquaPile-YOLO network.

(1) C3 Module with CBAM Attention

An attention mechanism called CBAM was incorporated into the AquaPile-YOLO
network to enhance the model’s focus on key areas within the image. This mechanism
comprises spatial and channel attention modules that adaptively adjust the weights of
the feature maps, enhancing the model’s response to target areas, especially in complex
underwater environments with noise and occlusions.

For example, the channel attention for an input feature map Fattn is given by
the following:

Fattn = ∑
c

Ac · Fc (6)

where Ac is the attention weight of the c channel, typically calculated using learnable
parameters and an activation function σ as follows:

Ac= σ(W·Fc + b) (7)

where W and b are the weight parameters and bias parameters in the deep network, respectively.
The C3 module comprises a main branch (primary path) and a shortcut branch (skip

connection), which are merged at the output [41]. The main branch typically includes
multiple Bottleneck layers, sequentially stacked to increase the network’s depth and rep-
resentational capacity. By replacing the default Bottleneck layers in the C3 module with
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CBAM modules and iteratively creating multiple CBAM Bottleneck layers, the integra-
tion of CBAM attention mechanisms within the C3 module was achieved (C3-CBAM in
Figure 6). The C3-CBAM module retains the advantages of the C3 module, such as effi-
cient feature extraction and partial gradient flow sharing, while significantly enhancing
feature representation through the CBAM’s channel and spatial attention mechanisms. This
synergistic combination endowed YOLOv5 with higher accuracy and robustness in object
detection tasks, thereby improving the overall model performance on sonar objects.

(2) MPConv Module

The MPConv (Multi-Path Convolution) module is a novel architectural component
introduced in the AquaPile-YOLO network to address the challenges posed by the diverse
scales and orientations of underwater targets in sonar images. MPConv is designed to
capture a rich set of features by processing the input data through multiple parallel convolu-
tional paths with different kernel sizes and aspect ratios [42]. Each path is tailored to capture
specific spatial hierarchies, allowing the network to represent a wide range of underwater
structures effectively. The outputs from these parallel paths are then concatenated, forming
a comprehensive feature representation that encapsulates both local and global contextual
information. This multi-path processing approach enabled the AquaPile-YOLO network to
achieve superior performance in detecting targets of varying sizes and complexities within
sonar imagery.

(3) C3N Module

The C3N module, building on the strengths of the C3 module, introduces an innova-
tive structure combining depth-separable convolution with a novel inverted Bottleneck
design, inspired by the ConvNeXt architecture [43,44]. The C3N module consists of three
convolutional layers followed by multiple ConvNeXt blocks, enabling efficient parameter
utilization and enhanced feature correlation capture while mitigating information loss
during dimensionality compression. The inverted Bottleneck structure of the C3N module,
with a wider central section and narrower endpoint, empowers effective feature correlation
capture and efficient feature space transformation processing. This results in robust feature
extraction capability, particularly beneficial for detecting small, densely packed targets in
sonar images, despite the imaging limitations of sonar technology.

By integrating these advanced modules—C3 with CBAM, MPConv, and C3N—the
AquaPile-YOLO network achieved a heightened level of attention and discrimination,
enabling it to excel in the detection of underwater pile foundation targets within forward-
looking sonar images [45].

2.2.5. Loss Function Optimization

The loss function plays a crucial role in object detection tasks. The loss function
for AquaPile-YOLO was optimized based on the characteristics of sonar image targets,
employing a composite loss function that guides model training more comprehensively
through classification loss Lcls, regression loss Lreg, and objectness loss Lobj.

The total loss function is given by the following:

Lsonar =
1

Npos

(
Lcls + Lreg + Lobj

)
(8)

where Npos is the number of positive samples, I{·} is the indicator function, LFocal is the
focal loss for classification, LIoU is the IoU loss for regression, and LBCE is the binary
cross-entropy loss for objectness.
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2.2.6. Soft-NMS (Soft-Non-Maximum Suppression)

In this study, the Soft-NMS algorithm [46] was used to improve the object detection
process of AquaPile-YOLO. Soft-NMS adjusts the scores of detection boxes using a Gaussian
function for continuous decay instead of simply setting the scores of overlapping detection
boxes to zero, thereby improving the accuracy and robustness of small target detection.

In traditional NMS, given a set of detection boxes B = {b1,. . .,bN} and corresponding
scores S = {s1,. . .,sN}, the algorithm first selects the box with M the highest score, then
removes all other boxes with an overlap higher than the threshold of Nt with M. This
process is then recursively applied to the remaining boxes. Soft-NMS proposes a different
approach by adjusting the score si of the detection box bi using the following Formula (9):

s′i = si · e−IOU(M,bi)
2/σ∀bi /∈ D (9)

where IOU(M,bi) represents the Intersection over Union between the detection boxes M
and bi, and σ is a parameter controlling the speed of score decay.

3. Experiments

3.1. Experimental Design

The purpose of this experiment was to validate the effectiveness of the proposed
AquaPile-YOLO algorithm for underwater pile foundation detection using HY1645 forward-
looking sonar images. The experimental environment was a designated section of a lake
field test site, characterized by water depths ranging from 2 m to 20 m and a substrate
primarily composed of sand and gravel, providing a controlled yet representative setting
for underwater sonar testing.

The HY1645 forward-looking sonar was installed on a vessel using a lateral straddle
mount, as shown in Figure 7, which illustrates the field experiment vessel with the sonar
installed. Two devices were fixed onto an installation pole. Due to the weight of the
equipment, the structure was designed to grip the vessel’s edge from both sides beneath
the bow. The installation pole was fixed to the side of the vessel, with the detection sonar
located approximately 0.5 m below the water surface.

  
(a) (b) 

Figure 7. HY1645 forward-looking sonar field test installation; Forward-looking sonar installation
angle (a) and target (underwater pile foundation) distribution (b) diagram.
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To prevent interference from the side lobes of the forward-looking sonar touching the
water surface and causing noise, the emission direction of the detection sonar was set to
a 30◦ downward tilt from the water surface, based on the scanning direction of the sonar
beam opening angle. The sonar installation angle (left) and the distribution of the target
(underwater pile foundation) (right) are shown in Figure 8.

(a) (b) 

Figure 8. Forward-looking sonar installation angle (a) and target (underwater pile foundation)
distribution (b) diagram.

3.2. Data Collection

During the data collection phase, we conducted field experiments at one lake in Wuxi
City from November 26th to 27th, 2020. The trials involved multi-distance, multi-directional
sonar detection of pre-set targets (track racks) at varying speeds (13 km/h, 15 km/h, and
18 km/h, equivalent to approximately 7, 8, and 10 knots, respectively). Utilizing a gimbaled
mount, the sonar was adjusted to an optimal operational attitude to ensure the acquisition
of target sonograms in real-time. Data were recorded in the AVI video format and were
saved as JPEG/PNG/BMP snapshots for subsequent analysis and algorithm validation.

Data annotation was performed for underwater pile foundation targets in sonar
images by conducting continuous long-term detection and comparing them with human
observations and mapping charts. The dataset includes two category labels, ”l” and ”r”,
using the YOLO format. To construct the training dataset, 4000 sonar images were collected
in the field experiment, covering various underwater environments and target conditions.
The image data were preprocessed, including grayscaling, noise removal, and contrast
enhancement, to improve the accuracy of subsequent target detection.

Due to the scarcity of sonar data, scholars in the field of sonar images have mostly used
simulated datasets as the sample space, while actual measured datasets barely exceeded
a few hundred images. This paper collected 4000 sonar images on-site as the dataset for
deep learning training, which to some extent compensates for the lack of data in previous
research in this field.

The original data collected by the HY1645 imaging sonar were in a custom format
of acoustic signal data, with “.hca” and “.son” being the two formats. The HAICA.EXE
executable program provided by the system is required to read them. The original acoustic
signals were transformed into image data in the “.bmp” format. Using the original acoustic
data collected by the HY1645 in the field experiment, 4000 two-dimensional sonar images
with a pixel resolution of 848 × 600 were generated.
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3.3. Experimental Procedure

This study employs a comprehensive dataset, containing a total of 4000 field-measured,
forward-looking sonar data images, which were meticulously preprocessed to augment
model detection capabilities. In the experiment, the dataset was divided into a training set
(3000 images) and a validation set (1000 images). The experimental steps incorporate several
key stages: data augmentation, model training, performance evaluation, and systematic
recording of results. The data augmentation phase plays a crucial role in enhancing model
adaptability across diverse environments, achieved through an array of techniques such
as random cropping, rotation, and the strategic introduction of noise. The model training
phase was executed within a strictly defined, controlled environment, where parameters
including the learning rate and batch size were rigorously monitored.

The experiment was conducted on a system equipped with a high-performance CPU
and GPU to ensure efficient operation. The CPU is Intel(R) Xeon(R) Gold 6130, and the
GPU is Tesla V100-PCIE-32GB, with 32 GB of video memory. The operating system used is
Ubuntu 18.04.5 LTS, and the deep learning framework is torch-2.0.0, as shown in Table 2
for the detailed experimental environment configuration.

Table 2. Experimental environment configuration.

Parameter Setup

Ubuntu 18.04.5 LTS
Pytorch 2.0.0
Python 3.8
CUDA 11.8
GPU Tesla V100-PCIE-32GB
CPU Intel(R) Xeon(R) Gold 6130

In order to enhance the persuasiveness of the experiments, this study conducted
a series of parameter adjustments based on the AquaPile-YOLO model and performed
multiple experimental tests, ultimately selecting the hyperparameter settings as shown in
Table 3.

Table 3. Hyperparameters during training.

Parameter Setup

Epoch 300
Batch 32

NMS IoU 0.6
Initial Learning Rate 0.01
Final Learning Rate 0.01

Momentum 0.937
Weight Decay 0.0005

The formulas are as follows. Regular evaluations were undertaken using a validation
set to ensure the model’s performance was accurately gauged. Key metrics like preci-
sion, recall, and mAP were systematically recorded during this stage. The formulas are
as follows.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =
∫ 1

0
P(R)dR (12)
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mAP =
1
N

n

∑
i=1

APi (13)

where TP is the number of correctly predicted positive samples, FP is the number of
negative samples incorrectly predicted as positive, and FN is the number of positive samples
incorrectly predicted as negative. Moreover, average precision (AP) is the calculation of the
area under the accuracy–response rate curve for a certain category. mAP is an auxiliary
to the AP of all categories and can be used to evaluate the model’s detection performance
for all categories. In Formula (13), n is the number of categories; AP(j) is the AP of the
jth category.

To ensure methodological rigor and reproducibility, all experimental settings and
parameters were painstakingly documented. Furthermore, the entire experiment was
repeated multiple times in order to confirm the consistency and reliability of the results
obtained. Potential biases and errors that could arise during the course of the study were
identified and discussed, along with the corresponding mitigation strategies proposed.
This thorough experimental procedure aimed to provide a transparent and replicable guide
for scholars seeking to replicate the study’s setup, as well as to harness the enhanced
capabilities of the AquaPile-YOLO model within their own research endeavors.

4. Results

4.1. Ablation Studies

In order to analyze the influence of different improvement strategies on the per-
formance of model detection, three groups of experiments were designed to complete
the training and testing under the premise of ensuring the same data set and training
parameters and the experimental results are shown in Table 4.

Table 4. Results of ablation experiments.

Multi-Scale
Feature
Fusion

CBAM Sonar Loss Soft-NMS Precision Recall mAP50 mAP50-95

× × × × 0.886 0.76 0.789 0.517
� × × × 0.9 0.764 0.8 0.521
× � × × 0.912 0.764 0.808 0.524
� � × × 0.919 0.771 0.811 0.525
� � � × 0.896 0.785 0.819 0.528
� � � � 0.888 0.798 0.821 0.529

When only CBAM was enabled, the precision further increased to 0.912, while the recall
remained at 0.764. The mAP50 improved to 0.808, and the mAP50-95 increased to 0.524.
This demonstrates the significant effect of the CBAM on enhancing model performance. By
combining MSFF and the CBAM, the performance continued to improve, with precision
reaching 0.919, recall increasing to 0.771, mAP50 rising to 0.811, and mAP50-95 reaching
0.525. This combination clearly outperforms the use of MSFF or CBAM alone.

After introducing Sonar Loss, the precision slightly decreased to 0.896, but the recall
improved to 0.785. The mAP50 increased to 0.819, and the mAP50-95 reached 0.528. This
indicates that Sonar Loss is helpful in improving the recall rate and overall performance of
the model, although it may slightly impact accuracy.

Finally, with all improvements (including Soft-NMS) enabled, the precision was 0.888,
recall increased to 0.798, mAP50 reached 0.821, and mAP50-95 also increased to 0.529.
Despite a slight decrease in accuracy, the improvements in recall and mAP values reflect
the enhancement of overall detection performance.
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In conclusion, by combining techniques such as multi-scale feature fusion, CBAM,
Sonar Loss, and Soft-NMS, AquaPile-YOLO achieved improvements in various perfor-
mance metrics, particularly in mAP, the most convincing indicators. These enhancements
effectively enhance the detection capabilities of YOLOv5.

4.2. Comparisons

After ablation studies, the AquaPile-YOLO model was tested by comparative experi-
ments. The test results showed that the model achieved an identification accuracy rate of
96.89% for underwater targets, confirming the effectiveness and reliability of the proposed
method in actual underwater pile foundation detection.

This experiment compared the performance of five object detection algorithms, SSD300,
YOLOv3, Faster R-CNN, Cascade R-CNN, and AquaPile-YOLO, on sonar images. The test
results for each algorithm are shown in Table 5. Additionally, we compared our results with
the recently published Underwater Acoustic Target Detection (UATD) dataset. This dataset
includes identification results for underwater objects such as a ball, cube, tire, sc (square
cage), and cc (circle cage). As shown in Table 6, the AquaPile-YOLO model performed
superiorly across these categories, further validating its efficacy in various underwater
detection scenarios.

Table 5. Comparison of AquaPile-YOLO with other models.

Model Precision Recall mAP@50 Params/M FPS

SSD300 0.238 0.403 0.670 23.88 9.1
YOLOv3 0.364 0.455 0.783 61.52 46.7

Faster R-CNN 0.328 0.429 0.760 41.35 19.4
Cascade R-CNN 0.333 0.438 0.752 69.15 15.5
AquaPile-YOLO 0.888 0.798 0.821 46.60 111.1

Table 6. Detection results of underwater targets with different scenarios.

Model AP (Ball) AP (Cube) AP (Tyre) AP (sc) AP (cc) AP (Pile)

Faster-RCNN (Resnet-18) 0.869 0.717 0.847 0.547 0.666 -
Faster-RCNN(Resnet-50) 0.870 0.686 0.889 0.621 0.538 0.328
Faster-RCNN(Resnet-101) 0.865 0.697 0.840 0.572 0.491 0.333

YOLOv3 (Darknet-53) 0.860 0.669 0.874 0.470 0.519 -
YOLOv3 (MobilenetV2) 0.868 0.573 0.738 0.518 0.498 0.364

AquaPile-YOLO - - - - - 0.888

As shown in Figure 9a, the comparative analysis indicates that AquaPile-YOLO
outperforms other state-of-the-art object detection models, including YOLOv3, Faster
R-CNN, Cascade R-CNN, and SSD300, in terms of both precision and recall. Precision,
which quantifies the proportion of true positive detections among all detected samples, and
recall, which measures the model’s ability to detect all actual positive instances, are critical
metrics for object detection systems. AquaPile-YOLO achieves a precision of 0.888 and a
recall of 0.798, with a mAP@50 score of 0.821, indicating its exceptional ability to identify
underwater pile foundations while minimizing false positives accurately. This high level
of precision and recall suggests that AquaPile-YOLO is particularly robust in scenarios
requiring reliable underwater detection.

Figure 9b provides a detailed comparison of recall performance among the same
set of object detection models, further emphasizing AquaPile-YOLO’s superiority. With
a recall value of 0.821, AquaPile-YOLO demonstrates its effectiveness in detecting all
instances of underwater targets, outperforming YOLOv3 (0.783), Faster R-CNN (0.760),
Cascade R-CNN (0.752), and SSD300 (0.670). This superior recall performance indicates
that AquaPile-YOLO is more reliable in identifying underwater targets, making it highly
suitable for applications where high recall is essential for operational success. The high
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recall rate is particularly crucial in underwater environments, where missing a target could
have significant consequences, thus highlighting AquaPile-YOLO as the preferred model
for critical detection tasks.

 

(a) (b) 

Figure 9. (a) Bar chart comparison of precision–recall for different models; (b) Comparison of object
detection models.

Figure 10a presents a compelling comparison of F1 performance for pile foundation
detection using forward-looking sonar images across various algorithms. The F1 score, a
balanced metric harmonizing both precision and recall, is depicted at varying confidence
thresholds. This composite score provides a comprehensive measure of a model’s exactness
and completeness in detection. AquaPile-YOLO exhibits notably high F1 scores, signifying
its ability to balance precision and recall. Notably, at a confidence threshold of 0.155,
AquaPile-YOLO achieves an F1 score of 0.84, indicating robustness in accurately detecting
pile foundations.

 
(a) (b) 

Figure 10. (a) F1 performance comparison of different algorithms for pile foundation detection by
forward-looking sonar images; (b) F1 performance curve for AquaPile-YOLO.

Figure 10b depicts the F1 performance curve for the AquaPile-YOLO model, illus-
trating how the model’s F1 score fluctuates at different confidence thresholds. The curve
represents the interplay between precision and recall, with each point reflecting the preci-
sion at various levels of recall. This visualization is instrumental in assessing the model’s
performance across the entire spectrum of detection confidence. The curve underscores
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AquaPile-YOLO’s consistently high performance, even at lower confidence thresholds,
thereby validating its reliability and effectiveness in real-world applications. The “All
classes” average F1 score encapsulates the model’s overall efficacy in detecting a diverse
range of underwater targets, further solidifying AquaPile-YOLO as a superior choice for
sonar-based object detection tasks.

Figure 11 is a heatmap comparison, demonstrating the comprehensive performance of
different algorithms on the target detection task. AquaPile-YOLO achieved a high score
of 0.93 on this indicator. A comparison of the original image and detection results for
each algorithm’s heatmap indicates the model’s strong comprehensive performance for
detecting underwater pile foundation targets under various scenarios. Simultaneously, it
shows the model performs well in sonar image target detection tasks, meeting real-time
detection speed requirements and significantly improving accuracy. These results support
the model in this paper as the preferred algorithm for sonar image target detection.

Raw Data 

   

SSD 

   

Faster 
R-CNN 

   

Cascade R-CNN 

   

YOLOv3 

   

AquaPile-YOLO 

   

Heatmap Colorbar 

Figure 11. A heatmap comparison of different algorithms for pile foundation detection by forward-
looking sonar images. The heatmap illustrates the performance comparison of various detection
algorithms, with the red box highlighting the area of interest where the pile foundation targets are
detected. Within this box, the intensity of the color indicates the confidence level of the detection,
with warmer tones (reds and yellows) signifying higher confidence in the presence of a target.

5. Discussion

This study introduces AquaPile-YOLO, an advanced underwater pile foundation
detection method utilizing forward-looking sonar imagery. The proposed method offers
several advantages, including significantly improved detection accuracy achieved by the
AquaPile-YOLO algorithm. The algorithm effectively captures underwater targets of vary-
ing sizes and enhances the detection of small targets, representing a critical advancement
in the field.
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The principal contributions of this study comprise the following: (1) the development
and proposal of the AquaPile-YOLO algorithm, an innovative method for underwater pile
foundation detection, which builds upon the foundational architecture of YOLOv5 and
incorporates multi-scale feature fusion and attention mechanisms to achieve significantly
improved detection accuracy; (2) the application of data augmentation techniques to
improve model generalization and robustness; (3) the collation and use of 4000 sonar
images as a training dataset, offering plentiful data for model training and validation;
and (4) experimental results underscoring the considerable practical application value in
detecting underwater pile foundation targets within sonar images.

Specifically, this study addresses the critical challenge of real-time, fast, and accurate
template recognition and the detection of underwater pile foundations in sonar images.
Key innovations include the following:

• Multi-scale Feature Fusion: By incorporating a multi-scale feature fusion scheme, this
study effectively captures underwater targets of varying sizes, thereby improving
small target detection accuracy.

• Enhanced Attention Mechanism: The attention mechanism is improved by combining
Normalized Weighted Distance (NWD) and Intersection over Union (IOU), enhancing
the model’s ability to distinguish small targets and reducing scale sensitivity. This en-
hancement is complemented by structural modifications within the YOLOv5 network,
allowing for a more nuanced focus on critical image regions.

• Application of Soft-NMS: Rather than traditional NMS, Soft-NMS better handles occlu-
sions and overlapping targets, limiting missed and false detections in complex scenes.

• Data Augmentation Strategy: The model’s generalization and adaptability to diverse
environmental conditions are bolstered through data augmentation techniques like
rotation, random cropping, and noise addition.

In addition to the aforementioned innovations, this study significantly contributed
to the dataset by collecting 4000 real-measured sonar images from field experiments as a
training dataset. This collection provides substantial data support for model training and
validation and serves as a vital supplement to existing research datasets. This includes
raw acoustic data from forward-looking sonar technology, sonar images, and video data,
thereby facilitating further research and collaboration within the academic community.

Despite the promising results, our study has limitations. The AquaPile-YOLO algo-
rithm has primarily been tested in controlled environments with specific water conditions,
and its performance in more variable natural settings remains to be explored. Additionally,
the model’s computational requirements may pose challenges for real-time applications in
resource-constrained environments.

The proposed AquaPile-YOLO method exhibits high applicability in marine engineering
and environmental monitoring. Its ability to accurately detect underwater pile foundations
can significantly enhance the efficiency and safety of harbor operations and underwater
construction projects. Furthermore, the model’s robustness to environmental variations makes
it a promising tool for the long-term monitoring of underwater infrastructure.

Building on the foundation of the AquaPile-YOLO algorithm, future research will
focus on refining and expanding capabilities for underwater pile foundation detection. The
following five aspects outline the trajectory for future research and development:

• Algorithm Optimization: While the AquaPile-YOLO algorithm has demonstrated high
accuracy, there is a need to continue optimizing the model structure. Reducing compu-
tational resource consumption and improving detection speed are essential to meet the
demands of real-time detection, particularly in resource-constrained environments.

• Multimodal Data Fusion: To further improve detection accuracy and robustness,
exploring the combination of sonar images with other sensor data, such as optical
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images or LiDAR data, is a promising avenue. Multi-modal data fusion could provide
a more comprehensive understanding of the underwater environment and enhance
the algorithm’s capabilities.

• Broader Environmental Adaptability: Assessing the model’s performance across
a broader range of underwater environments is crucial. Testing the algorithm in
various water qualities, lighting conditions, and underwater structures will en-
hance the model’s generality and adaptability, ensuring its effectiveness in diverse
marine settings.

• Automation and Intelligence: The development of an automated sonar image col-
lection system, integrated into underwater robots or autonomous underwater vehi-
cles (AUV/USV/ROV/UUV), is essential for achieving fully autonomous underwa-
ter detection tasks. This advancement would increase the efficiency and safety of
underwater operations.

• Engineering Application Deployment: Integrating the AquaPile-YOLO model into
existing underwater monitoring systems for long-term deployment and performance
evaluation is vital. Such integration will provide insights into the model’s practi-
cal performance and longevity, facilitating its adoption in marine engineering and
environmental monitoring projects.

Through these future directions, we expect to enhance the performance of underwater
pile foundation detection technology and promote its application in the fields of marine
engineering and environmental monitoring.

6. Conclusions

This paper proposes an underwater pile foundation detection method for forward-
looking sonar images based on the AquaPile-YOLO algorithm. By introducing modules
such as multi-scale feature fusion, attention mechanisms, and Soft-NMS, the model’s
detection accuracy for underwater pile foundation targets is significantly improved. The
experimental results show that the AquaPile-YOLO model achieves an accuracy rate of
96.89% in underwater target identification tasks, demonstrating its efficiency and reliability
in practical applications.
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