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Preface

Entropy is publishing a Special Issue in honor of the twentieth anniversary of Kaniadakis

entropy’s introduction. This then-new entropy is one of the most viable candidates for explaining the

experimentally observed power-law-tailed statistical distributions in various physical, natural, and

artificial complex systems. In this reprint, readers can find information about the recent applications

of Kaniadakis entropy in mechanical statistics, high-energy physics, cosmology, information

geometry, biology, and economic sciences. We hope that the papers gathered in this Special Issue

may inspire the reader and encourage them to continue the development of this expanding field of

statistical physics.

Entropy, introduced in statistical physics at the end of the 19th century, remains an important

but enigmatic concept. Over the past century, several particularly intriguing and powerful

extensions of the classical Shannon–Boltzmann–Gibbs entropic form have been proposed. Among

these, Kaniadakis entropy offers a new perspective on systems with complex dynamics and

non-extensive behavior exhibiting power-law statistical distributions. Its applications span cover

varied fields, ranging from statistical mechanics to complex systems, including cosmology and

quantum mechanics.

This Special Issue of Entropy commemorates two decades of developments related to Kaniadakis

entropy. In the editorial, we discuss the introduction of entropy, beginning with the Kaniadakis

deformation of Napier’s number compared to the well-known Euler deformation. We then

introduce Kaniadakis’ exponential and logarithmic functions and emphasize the axiomatic structure

of Kaniadakis’ statistical mechanics. The Editorial also includes a list of over 250 papers written

in the past twenty-five years up to January 2025 by various authors from around the world, which

focus on the foundations, mathematical formalism, and applications of this theory. This compilation

should not be considered a complete bibliography on Kaniadakis statistics since it includes works that

explicitly refer to the subject in the title or abstract. This list will be accessible through the SCOPUS

and Web of Science-Clarivate databases.

Dionissios T. Hristopulos, Sergio Luiz E. F. da Silva, and Antonio M. Scarfone

Guest Editors
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Editorial

Twenty Years of Kaniadakis Entropy: Current Trends and
Future Perspectives

Dionissios T. Hristopulos 1,2, Sérgio Luiz E. F. da Silva 3,4,* and Antonio M. Scarfone 4

1 School of Electrical and Computer Engineering, Technical University of Crete, 73100 Chania, Greece;
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Natal 59078-970, RN, Brazil
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Applicata e Tecnologia del Politecnico di Torino, 10129 Torino, Italy; antoniomaria.scarfone@cnr.it
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Napier’s number e = 2.7182818284 . . . can be introduced as the limit of a numerical
sequence e = limn→∞ en. There are infinite sequences that lead to e, the simplest of which
was proposed by Euler of the form eE

n = (1 + 1/n)n. Euler’s sequence converges very
slowly and only reaches Napier’s number to two decimal places for n = 500. Among the
infinite sequences that converge to e, there is only one that has the property e−n = en. This
new numerical sequence converging toward Napier’s number e emerges naturally within
Kaniadakis formalism, proposed in a seminal paper from 2001 [1], and has the form

eK
n =

(√
1 +

1
n2 +

1
n

)n

. (1)

The Kaniadakis sequence converges very quickly to the Napier number, which is
already calculated correctly for n = 10 to the first two decimal places, while for n = 500,
the first five decimal places have been obtained correctly.

Starting from the two numerical sequences that lead to the Napier number, it is possi-
ble to construct the corresponding sequences of functions that converge to the exponential
function. The Euler sequence of functions leading to the exponential function is very simple
and is given by expn(x) = (1 + x/n)n. This sequence represents a one-parameter deforma-
tion of the ordinary exponential function, with n being the deformation parameter. This
deformed exponential of Euler’s function expn(x) has been used in statistical mathematics
to construct the Student distribution, which has been employed to study astrophysical plas-
mas since the end of the 1960s. This distribution is also known as the κ distribution, and the
plasmas described by this distribution are called κ plasmas. The name is derived from the
fact that instead of the deformation parameter n, parameter κ is historically used so that
in the κ → ∞ limit, the κ distribution reduces to the corresponding ordinary exponential
distribution. Since the late 1980s, Euler deformation with the new parameter q = (1+ n)/n
has been used instead of n in the development of non-extensive statistical mechanics.

Given the impact of the Euler deformation in plasma physics, in statistical physics,
and more generally in statistical sciences, in 2001, Kaniadakis introduced a deformation of
the exponential function, which now bears his name. The new deformed function captures
properties of the ordinary exponential function. The starting point is the property of the self-
duality of the ordinary exponential function, that is, exp(x) exp(−x) = 1. The deformation
parameter is denoted by κ, and the deformed exponential is defined by

Entropy 2025, 27, 247 https://doi.org/10.3390/e27030247
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expκ(x) =
(√

1 + κ2x2 + κx
)1/κ

. (2)

In contrast with the homonymous parameter of κ plasmas, for the new deformed
exponential expκ(x), the range of κ is 0 < κ < 1. The ordinary exponential is obtained in
the limit limκ→0 expκ(x) = exp(x). Like the ordinary exponential function, the Kaniadakis
exponential is self-dual, that is, expκ(x) expκ(−x) = 1.

All properties of the ordinary exponential function exp(x) are transferred in an identi-
cal form to the function expκ(x), accordingly generalized by the parameter κ. This makes
the function expκ(x) particularly interesting for the construction of a statistical theory in
analogy to the standard statistical theory of Boltzmann–Gibbs–Maxwell, which is based on
the function exp(x). Kaniadakis showed in 2001 [1] that κ-statistical mechanics preserve
important features of classical statistical mechanics. The most interesting difference be-
tween the two theories is the behavior of the tails of the associated statistical distributions:
while the ordinary theory leads to exponential tails, in κ-statistical mechanics, such tails are
described by Pareto power laws.

It is noteworthy that power-law tails are also present in Euler’s deformed exponential
function and in the related statistical theory. The main difference between the two statistical
theories is that Kaniadakis theory arises in the framework of special relativity, as shown
in papers from 2002 and 2005 [2,3]. The Kaniadakis deformation is therefore a relativistic
effect, which thus provides a robust physical basis for κ-statistical theory.

In the three seminal papers mentioned above, Kaniadakis introduced influential
concepts that have transformed our understanding of the physics of complex systems. His
pioneering work laid the foundation for what is now known as Kaniadakis entropy or
κ-entropy. This concept emerged as a relativistic generalization of the classical Boltzmann–
Shannon entropy, marking a significant advance in the framework of special relativity and
statistical mechanics. Kaniadakis entropy is defined according to the following:

Sκ = −∑
i

fi lnκ( fi) = ∑
i

fi lnκ(1/ fi) , (3)

where fi represents the probability distribution function (probability mass function), while
lnκ( f ) is the Kaniadakis logarithm, defined as the inverse of the expκ(x) function. The sum-
mation is over all the states of the system. In the continuum case, the summation is replaced
by integration, and fi is replaced by the probability density function f (x).

The κ-deformed logarithm satisfies the scaling property d
d f [ f lnκ( f )] = 1

γκ
lnκ(eκ f ),

where γκ and eκ are two scaling constants. The maximization of the entropy Sκ , subject
to available moment constraints, leads to a maximum entropy probability distribution ex-
pressed univocally in terms of the expκ(x) function. This extends the exponential maximum
entropy distributions obtained by maximizing Shannon’s entropy.

Interestingly, the above scaling property is common to the following three functions:
the ordinary logarithm, the Euler-deformed logarithm, and the κ-deformed logarithm. Of
course, different scaling constants apply to the three logarithms. However, the self-duality
property is only present for the ordinary and κ-deformed functions. The property of self-
duality for exp(x) and expκ(x), i.e., expκ(x) = 1/ expκ(−x), can also be expressed for the
inverse functions. If we define f = expκ(x) and operate with lnκ on both sides of the self-
duality equation, we obtain lnκ(1/ f ) = − lnκ( f ) and, in the κ → 0 limit, ln(1/ f ) = − ln f .
The above self-duality property allows us to interpret the entropy Sκ as the mean value of the
function − lnκ( fi) or equivalently that of lnκ(1/ fi); thus, κ-entropy extends the definition
of Boltzmann entropy while maintaining the self-duality property.

Ordinary statistical mechanics are based on the Boltzmann–Gibbs–Shannon (BGS)
entropy or logarithmic entropy. The uniqueness of BGS entropy is derived from the

2
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four Khinchin–Shannon axioms, namely continuity (the entropy changes continuously
with changes in the probability distribution), maximality (it is maximized by the uniform
distribution), expansibility (adding a zero-probability event does not change the entropy),
and strong additivity (the entropy of the sum of two independent variables is the sum of the
individual entropies). In this Special Issue, Kaniadakis proposes that the Boltzmann–Gibbs–
Shannon entropy be introduced by retaining the first three Khinchin–Shannon axioms
while replacing the fourth axiom with two new axioms: the so-called scaling and self-duality
axioms that arise naturally in special relativity. The new set of axioms allows for the
introduction of ordinary entropy without using the concepts of additivity or statistical
independence. Kaniadakis also shows that the new set of axioms is uniquely satisfied
by κ-entropy in addition to ordinary entropy; the latter is obtained from κ-entropy in the
classical limit κ → 0. The emergence of Kaniadakis entropy in special relativity allows
us to revisit relativistic thermodynamics problems, providing evidence for the Einstein–
Planck proposal of relativistic temperature reduction in a moving frame (see Kaniadakis’
contribution in this Special Issue).

The scientific community has embraced and expanded on the innovative framework of
Kaniadakis entropy since its introduction. Hence, the mathematical and practical implica-
tions of κ-statistics have been the subject of over 260 papers published by more than 200 sci-
entists. For a comprehensive list of these works, please refer to the References section. The
applications of Kaniadakis entropy extend over a wide range of disciplines [1–48], including
kinetic theory [49–64], thermodynamics [65–71], astrophysics [72–78], cosmology [79–104],
dark energy models [105–127], quantum gravity [128–139], information geometry [140–147],
information theory and optimization [148–150], classical statistics [151–169], quantum statis-
tics [170–175], artificial intelligence [176–178], dynamical systems [179–189], econophysics,
sociophysics and network theory [190–212], geophysics and geomechanics [213–223], ge-
nomic analysis [224–227], nuclear physics [228–236], and plasma physics [237–263], among
other topics. The versatility and applicability of κ-entropy highlight its profound impact
on theoretical foundations and practical applications across scientific fields.

This Special Issue aims to capture the current trends and future perspectives of Kani-
adakis entropy and its applications:

• Tan et al. (2022) [253] investigate the dispersion and Landau damping of Langmuir
and ion acoustic waves in a κ-deformed Kaniadakis distributed plasma system. Their
analysis shows that dispersion increased with increasing κ, while Landau damping
was suppressed. These results could provide insights into plasma particle trapping
and energy transport.

• Biró (2022) [42] explores the use of generalized exponentials in particle–hole symmetry,
demonstrating that the Kaniadakis κ-approach is compatible with the Kubo–Martin–
Schwinger (KMS) relation, and discusses potential further generalizations.

• De Lima et al. (2022) [226] study the distribution of plant DNA lengths in three
Cucurbitaceae species (gourd family). Using Bayesian analysis, they find that the sum
of two κ-exponential distributions provides the best fit (among other models) to the
empirical distribution curves.

• Hristopulos and Baxevani (2022) [220] introduce a nonlinear normalizing transforma-
tion and its inverse based on deformed logarithmic and exponential functions; the
transformed pair is useful in the analysis of skewed data, and its inverse is stable,
unlike the commonly used Box-Cox transform pair. They also discuss the connection
between the heavy-tailed κ-Weibull distribution and the weakest-link scaling theory,
showing that the former is suitable for modeling mechanical strength distributions
of materials. The paper also introduces the κ-lognormal probability distribution,

3
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which has a flexible right tail and can be used to model fluid permeability in random
porous media.

• De Abreu et al. (2022) [234] review the application of Kaniadakis entropy to nuclear
reactor physics. In particular, they focus on the Doppler broadening effect on neutron
cross-sections if the Maxwell–Boltzmann distribution is replaced with the Kaniadakis
distribution (which uses the deformed exponential). The authors claim more accurate
radiative capture cross-section calculations using the Kaniadakis distribution.

• Guha (2022) [61] uses the Calogero–Leyvraz Lagrangian framework to construct
2D Lotka–Volterra replicator equations and N = 2 relativistic Toda lattice systems.
The kinetic energy term is deformed using the κ-deformed logarithm, resulting in new
formulations of the above systems.

• Luciano (2022) [89] explores recent advances and future challenges of Kaniadakis
statistics in gravity and cosmology. He focuses on implications of κ-entropy on
cosmological theories and Big Bang nucleosynthesis and uses observational evidence
to constrain the κ-parameter.

• Wada and Scarfone (2023) [44] present applications of Kaniadakis distributions to
various topics in statistical physics and natural science such as Gompertz functions,
the Bloch equation for thermal states, contact density dynamics, and the law of large
numbers under κ-addition.

• Martinez and de Abreu (2023) [236] present a review on the use of Kaniadakis entropy
in nuclear reactor physics. They generate simulated nuclear data under non-thermal
equilibrium conditions using the Kaniadakis distribution to address the limitations of
the traditional Maxwell–Boltzmann statistics.

• da Silva et al. (2023) [223] introduce a novel objective function for full-waveform
inversion problems, incorporating the Kaniadakis κ-Gaussian distribution and optimal
transport theory, to mitigate non-Gaussian noise and phase ambiguity in seismic
wave analysis.

• Pistone and Shoaib (2023) [147] propose using a specific case of the Kaniadakis loga-
rithm for the exploratory analysis of compositional data. They show that the affine
information geometry derived from Kaniadakis’ algorithm provides a consistent
framework for the geometric analysis of compositional data. Moreover, they propose
a particular functional form of the κ-divergence.

• Clementi (2023) [211] discusses the application of the κ-generalized distribution in the
statistical analysis of income data, highlighting the distribution’s analytical properties,
and relationships with other distributions. The paper also comments on the very good
agreement of the κ-generalized distribution with empirical data.

• Evangelista and Lenzi (2023) [64] use the H-theorem to examine the dynamics of a
system composed of two subsystems that obey nonlinear Fokker–Planck equations.
They focus on the behavior of the entropy of the entire system considering subsystems
that have (i) identical and (ii) different dynamics.

• Scarfone and Wada (2024) [45] demonstrate that Kaniadakis entropy can become
multi-additive under a suitably defined constraint, that is, under the composition of
two identically distributed probability distributions.

• Kaniadakis (2024) [46] highlights the importance of κ-entropy in statistical theory,
identifying five axioms in κ-statistical theory that provide a solid foundation for
understanding entropy in complex systems. This study sheds light on the physical
origins of κ-entropy, emphasizing the self-duality and scaling axioms as fundamental
elements. Kaniadakis also emphasizes the emergence of κ-entropy in Einstein’s special
theory of relativity and introduces relativistic statistical mechanics based on the new
entropy. Finally, Kaniadakis shows that the new formalism allows us to re-discuss

4
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in a modern way some remaining open problems of relativistic thermodynamics
introduced by Planck concerning the transformation law of temperature and entropy.

The interdisciplinary collaboration of experts in different fields has substantiated the
theoretical foundations of Kaniadakis entropy and established practical applications of the
κ-entropy as well as other κ-deformed functions in various scientific fields. This Special
Issue celebrates the insightful contributions of Giorgio Kaniadakis and the work of scholars
who have significantly advanced the field of κ-statistics.

In addition to presenting a tribute to past achievements and accomplishments, this
Special Issue aims to provide motivation and directions for future research. In this spirit,
this introduction includes an extensive list of published research on κ-statistics and their
applications. The list of references is organized in sections according to the scientific field
of application. We believe that this information will be useful for researchers entering the
field of κ-statistics.

Papers published in this Special Issue

• Biró, T.S. Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution, Entropy 2022,
24 (9), 1217. (Ref. [42])

• Clementi, F. The Kaniadakis Distribution for the Analysis of Income and Wealth Data,
Entropy 2023, 25(8), 1141. (Ref. [211])

• da Silva, S.L.E.F.; de Araújo, J.M.; de la Barra, E.; Corso, G. A Graph-Space Optimal
Transport Approach Based on Kaniadakis κ-Gaussian Distribution for Inverse Problems Related
to Wave Propagation, Entropy 2023, 25, 990. (Ref. [223])

• de Abreu, W.V.; Maciel, J.M.; Martinez, A.S.; Gonçalves, A.D.C.; Schmidt L. Doppler
Broadening of Neutron Cross-Sections Using Kaniadakis Entropy, Entropy 2022, 24(10),
1437. (Ref. [234])

• de Lima, M.M.F.; Anselmo, D.H.A.L.; Silva, R.; Nunes, G.H.S.; Fulco, U.L.; Vasconcelos,
M.S.; Mello, V.D A Bayesian Analysis of Plant DNA Length Distribution via κ-Statistics,
Entropy 2022, 24, 1225. (Ref. [226])
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• Hristopulos, D.T.; Baxevani A. Kaniadakis Functions beyond Statistical Mechanics: Weakest-
Link Scaling, Power-Law Tails, and Modified Lognormal Distribution, Entropy 2022, 24(10),
1362. (Ref. [220])

• Kaniadakis, G. Relativistic Roots of κ-Entropy. Entropy. 26, 406 (2024). (Ref. [46])
• Luciano G.G. Gravity and Cosmology in Kaniadakis Statistics: Current Status and Future

Challenges, Entropy 2022, 24(12), 1712. (Ref. [89])
• Martinez A.S.; de Abreu W.V. The Scientific Contribution of the Kaniadakis Entropy to

Nuclear Reactor Physics: A Brief Review, Entropy 2023, 25(3), 478. (Ref. [236])
• Pistone G.; Shoaib M. Kaniadakis’s Information Geometry of Compositional Data, Entropy

2023, 25(7), 1107. (Ref. [147])
• Scarfone A.M., Wada T. Multi-Additivity in Kaniadakis Entropy, Entropy 2024, 26(1), 77.

(Ref. [45])
• Tan, L.; Yang, Q.; Chen, H.; Liu S. The Longitudinal Plasma Modes of κ-Deformed Kani-

adakis Distributed Plasmas Carrying Orbital Angular Momentum, Entropy 2022, 24 (9),
1211. (Ref. [253])

• Wada T., Scarfone A.M. On the Kaniadakis Distributions Applied in Statistical Physics
and Natural Sciences, Entropy 2023, 25(2), 292. (Ref. [44])

5



Entropy 2025, 27, 247

Author Contributions: Conceptualization, D.T.H., S.L.E.F.d.S. and A.M.S.; writing—original draft
preparation, D.T.H., S.L.E.F.d.S. and A.M.S.; writing—review and editing, D.T.H., S.L.E.F.d.S. and
A.M.S.; supervision, D.T.H., S.L.E.F.d.S. and A.M.S. All authors have read and agreed to the published
version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kaniadakis, G. Non-linear kinetics underlying generalized statistics. Phys. A 2001, 296, 405–425. [CrossRef]
2. Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [CrossRef]
3. Kaniadakis, G. Statistical mechanics in the context of special relativity II. Phys. Rev. E 2005, 72, 036108. [CrossRef]
4. Kaniadakis, G. H-theorem and generalized entropies within the framework of nonlinear kinetics. Phys. Lett. A 2001, 288, 283–291.

[CrossRef]
5. Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Phys. A 2002, 305, 69–75.
6. Naudts, J. Deformed exponentials and logarithms in generalized thermostatistics. Phys. A 2002, 316, 323–334. [CrossRef]
7. Naudts, J. Continuity of a class of entropies and relative entropies. Rev. Math. Phys. 2004, 16, 809–822. [CrossRef]
8. Kaniadakis, G.; Scarfone, A.M. Lesche stability of κ-entropy. Phys. A 2004, 340, 102–109. [CrossRef]
9. Abe, S.; Kaniadakis, G.; Scarfone, A.M. Stabilities of generalized entropy. J. Phys. A Math. Gen. 2004, 37, 10513. [CrossRef]
10. Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Deformed logarithms and entropies. Phys. A 2004, 40, 41–49. [CrossRef]
11. Kaniadakis, G.; Lissia, M.; Scarfone, A.M. Two-parameter deformations of logarithm, exponential, and entropy: A consistent

framework for generalized statistical mechanics. Phys. Rev. E 2005, 71, 046128. [CrossRef]
12. Scarfone, A.M. Canonical quantization of nonlinear many-body systems. Phys. Rev. E 2005, 71, 051103-15. [CrossRef]
13. Kaniadakis, G. Towards a relativistic statistical theory. Phys. A 2006, 365, 17–23. [CrossRef]
14. Silva, R. The relativistic statistical theory and Kaniadakis entropy: An approach through a molecular chaos hypothesis. Eur. Phys.

J. B 2006, 54, 499–502. [CrossRef]
15. Silva, R. The H-theorem in κ-statistics: Influence on the molecular chaos hypothesis. Phys. Lett. A 2006, 352, 17–20. [CrossRef]
16. Kaniadakis, G. Relativistic Entropy and related Boltzmann kinetics. Eur. Phys. J. A 2009, 40, 275–287. [CrossRef]
17. Kaniadakis, G. Maximum Entropy Principle and power-law tailed distributions. Eur. Phys. J. B 2009, 70, 3–13. [CrossRef]
18. Kaniadakis, G. Relativistic kinetics and power-law-tailed distributions. Europhys. Lett. 2010, 92, 35002. [CrossRef]
19. Oikonomou, T.; Bagci, G.B. A completeness criterion for Kaniadakis, Abe, and two-parameter generalized statistical theories. Rep.

Math. Phys. 2010, 66, 137–146. [CrossRef]
20. Stankovic, M.S.; Marinkovic, S.D.; Rajkovic, P.M. The deformed exponential functions of two variables in the context of various

statistical mechanics. Appl. Math. Comput. 2011, 218, 2439–2448. [CrossRef]
21. Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [CrossRef]
22. Kaniadakis, G. Power-law tailed statistical distributions and Lorentz transformations. Phys. Lett. A 2011, 375, 356–359. [CrossRef]
23. Santos, A.P.; Silva, R.; Alcaniz, J.S.; Anselmo, D.H.A.L. Kaniadakis statistics and the quantum H-theorem. Phys. Lett. A 2011,

375, 352–355. [CrossRef]
24. Kaniadakis, G. Physical origin of the power-law tailed statistical distribution. Mod. Phys. Lett. B 2012, 26, 1250061. [CrossRef]
25. Kaniadakis, G. Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions. Entropy

2013, 15, 3983–4010. [CrossRef]
26. Deossa Casas, D.E. Sobre Funciones Exponenciales y Logaritmicas Deformadas Segun Kaniadakis. Master’s Thesis, Universidad

EAFIT, Medellin, Colombia, 2011. Available online: http://hdl.handle.net/10784/156 (accessed on 21 February 2025).
27. Vigelis, R.F.; Cavalcante, C.C. On ϕ-Families of probability distributions. J. Theor. Probab. 2013, 26, 870–884. [CrossRef]
28. Wada, T.; Suyari, H. The κ-generalizations of stirling approximation and multinominal coefficients. Entropy 2013, 15, 5144–5153.

[CrossRef]
29. Scarfone, A.M. Entropic Forms and Related Algebras. Entropy 2013, 15, 624–649. [CrossRef]
30. Ourabah, K.; Tribeche, M. Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics. Phys. Rev. E 2014,

89, 062130. [CrossRef]
31. Souza, N.T.C.M.; Anselmo, D.H.A.L.; Mello, V.D.; Silva, R. Analysis of fractal groups of the type d − (m, r)—Cantor within the

framework of Kaniadakis statistics. Phys. Lett. A 2014, 378, 1691–1694. [CrossRef]
32. Bento, E.P.; Viswanathan, G.M.; Da Luz, M.G.E.; Silva, R. Third law of thermodynamics as a key test of generalized entropies.

Phys. Rev. E 2015, 91, 022105. [CrossRef] [PubMed]
33. Kalogeropoulos, N. Entropies from coarse-graining: Convex polytopes vs. ellipsoids. Entropy 2015, 17, 6329–6378. [CrossRef]
34. Scarfone, A.M. On the κ-deformed cyclic functions and the generalized Fourier series in the framework of the κ-algebra. Entropy

2015, 17, 2812–2833. [CrossRef]

6



Entropy 2025, 27, 247

35. Scarfone A.M. κ-deformed Fourier transform. Phys. A 2017, 480, 63–78. [CrossRef]
36. Kaniadakis, G.; Scarfone, A.M.; Sparavigna, A.; Wada, T. Composition law of κ-entropy for statistically independent systems.

Phys. Rev. E 2017, 95, 052112. [CrossRef] [PubMed]
37. da Costa, B.G.; Gomez, I.S.; Portesi, M. κ-Deformed quantum and classical mechanics for a system with position-dependent

effective mass. J. Math. Phys. 2020, 61, 082105. [CrossRef]
38. da Silva, J.L.E.; da Silva, G.B.; Ramos, R.V. The Lambert-Kaniadakis Wκ function. Phys. Lett. 2020, 384, 126175. [CrossRef]
39. Kaniadakis, G. New power-law tailed distributions emerging in κ-statistics(a). Europhys. Lett. 2021, 133, 10002. [CrossRef]
40. Scarfone, A.M. Boltzmann configurational entropy revisited in the framework of generalized statistical mechanics. Entropy 2022,

24, 140. [CrossRef]
41. Guha, P. The κ-deformed entropic Lagrangians, Hamiltonian dynamics and their applications. Eur. Phys. J. Plus 2022, 137, 932.

[CrossRef]
42. Biró, T.S. Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution. Entropy 2022, 24, 1217. [CrossRef] [PubMed]
43. Alves, T.F.A.; Neto, J.F.D.S.; Lima, F.W.S.; Alves, G.A.; Carvalho, P.R.S. Is Kaniadakis κ-generalized statistical mechanics general?

Phys. Lett. B 2023, 843, 138005. [CrossRef]
44. Wada, T.; Scarfone, A.M. On the Kaniadakis Distributions Applied in Statistical Physics and Natural Sciences. Entropy 2023,

25, 292. [CrossRef]
45. Scarfone, A.M.; Wada, T. Multi-Additivity in Kaniadakis Entropy. Entropy 2024, 26, 77. [CrossRef]
46. Kaniadakis, G. Relativistic Roots of κ-Entropy. Entropy 2024, 26, 406. [CrossRef] [PubMed]
47. Nascimento, H.J.B.; Soura, P.R.M.; da Silva, J.L.E. Radial basis function network using Lambert–Kaniadakis Wκ function. Commun.

Nonlinear Sci. Numer. Simul. 2025, 142, 108539. [CrossRef]
48. da Costa, B.G.; Gomez, I.S.; Portesi, M. κ–Deformed quantum mechanics: Information entropies for the Mathews–Lakshmanan

oscillator. Phys. A 2025, 661, 130407. [CrossRef]
49. Kaniadakis, G.; Quarati, P.; Scarfone, A.M. Kinetical foundations of non-conventional statistics. Phys. A 2002, 305, 76–83.

[CrossRef]
50. Rossani, A.; Scarfone, A.M. Generalized kinetic equations for a system of interacting atoms and photons: Theory and Simulations.

J. Phys. A 2004, 37, 4955–4975. [CrossRef]
51. Biró, T.S.; Kaniadakis, G. Two generalizations of the Boltzmann equation. Eur. Phys. J. B 2006, 50, 3–6. [CrossRef]
52. Silva, J.M.; Silva, R.; Lima, J.A.S. Conservative force fields in non-Gaussian statistics. Phys. Lett. A 2008, 372, 5754–5757. [CrossRef]
53. Wada, T.; Scarfone, A.M. Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical

mechanics. Eur. Phys. J. B 2009, 70, 65–71. [CrossRef]
54. Wada, T. A nonlinear drift which leads to kappa-generalized distributions. Eur. Phys. J. B 2010, 73, 287–291.
55. Guo, L.N.; Du, J.L. The two parameters (κ, r) in the generalized statistics. Phys. A 2010, 389, 47–51. [CrossRef]
56. Guo, L.N. Physical meaning of the parametres in the two-parameter (κ, ζ) generalized theory. Modern Phys. Lett. B 2012,

26, 1250064. [CrossRef]
57. Casas, G.A.; Nobre, F.D.; Curado, E.M.F. Entropy production and nonlinear Fokker-Planck equations. Phys. Rev. E 2012, 86, 061136.

[CrossRef] [PubMed]
58. Kaniadakis, G.; Hristopulos, D. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle. Entropy 2018, 20, 426.

[CrossRef]
59. Soares, B.B.; Barboza, E.M., Jr.; Abreu, E.M.C.; Neto, J.A. Non-Gaussian thermostatistical considerations upon the Saha equation.

Phys. A 2019, 532, 121590. [CrossRef]
60. Silva, M.V.D.; Martinez, A.S.; Gonçalves, A.C. Effective medium temperature for calculating the Doppler broadening function

using Kaniadakis distribution. Ann. Nucl. Energy 2021, 161, 108500. [CrossRef]
61. Guha, P. The κ-Deformed Calogero-Leyvraz Lagrangians and Applications to Integrable Dynamical Systems. Entropy 2022,

24, 1673. [CrossRef]
62. Hirica, I.-E.; Pripoae, C.-L.; Pripoae G.-T.; Preda, V. Lie Symmetries of the Nonlinear Fokker-Planck Equation Based on Weighted

Kaniadakis Entropy. Mathematics 2022, 10, 2776. [CrossRef]
63. Gomez I.S.; da Costa B.G.; dos Santos M.A.F. Inhomogeneous Fokker–Planck equation from framework of Kaniadakis statistics.

Commun. Nonlin. Sci. Num. Sim. 2023, 119, 107131. [CrossRef]
64. Evangelista, L.R.; Lenzi, E.K. Nonlinear Fokker–Planck Equations, H-Theorem and Generalized Entropy of a Composed System.

Entropy 2023, 25, 1357. [CrossRef]
65. Yamano, T. On the laws of thermodynamics from the escort average and on the uniqueness of statistical factors. Phys. Lett. A

2003, 308, 364–368. [CrossRef]
66. Kaniadakis, G.; Lissia, M. Editorial on News and expectations in thermostatistics. Phys. A 2004, 340, 15–19.
67. Wada, T. Thermodynamic stabilities of the generalized Boltzmann entropies. Phys. A 2004, 340, 126–130. [CrossRef]

7



Entropy 2025, 27, 247

68. Wada, T. Thermodynamic stability conditions for nonadditive composable entropies. Contin. Mechan. Thermod. 2004, 16, 263–267.
[CrossRef]

69. Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl.
2006, 162, 45–52. [CrossRef]

70. Lucia, U. Maximum entropy generation and kappa-exponential model. Phys. A 2010, 389, 4558–4563. [CrossRef]
71. Lourek, I.; Tribeche, M. Thermodynamic properties of the blackbody radiation: A Kaniadakis approach. Phys. Lett. A 2017,

381, 452–456. [CrossRef]
72. Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; De Medeiros, J.R. Power law statistics and stellar rotational velocities in the

Pleiades. Europhys. Lett. 2008, 84, 59001. [CrossRef]
73. Carvalho, J.C.; do Nascimento, J.D., Jr.; Silva, R.; De Medeiros, J.R. Non-gaussian statistics and stellar rotational velocities of main

sequence field stars. Astrophys. J. Lett. 2009, 696, L48–L51. [CrossRef]
74. Carvalho, J.C.; Silva, R.; do Nascimento jr, J.D.; Soares, B.B.; De Medeiros, J.R. Observational measurement of open stellar clusters:

A test of Kaniadakis and Tsallis statistics. Europhys. Lett. 2010, 91, 69002. [CrossRef]
75. Bento, E.P.; Silva, J.R.P.; Silva, R. Non-Gaussian statistics, Maxwellian derivation, and stellar polytropes. Phys. A 2013, 392,

666–672. [CrossRef]
76. Curé, M.; Rial, D.F.; Christen, A.; Cassetti, J. A method to deconvolve stellar rotational velocities. Astron. Astrophys. 2014,

565, A85–A87. [CrossRef]
77. Kolesnichenko, A.V. Chandrasekhar’s integral equilibrium theorems modified in the context of non-Gaussian kappa statistics for

a spherically symmetric protostar cloud. Sol. Syst. Res. 2022, 56, 43–53. [CrossRef]
78. Shu C.-H.; Zhang K.-X.; He K.-R.; Chen H.; Liu S.-Q. Gravitational instability of dark-baryonic matter systems in f (R) gravity.

Phys. Scr. 2023, 98, 105213. [CrossRef]
79. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M., Jr.; Nunes, R.C. Holographic considerations on non-gaussian statistics and gravothermal

catastrophe. Phys. A 2016, 441, 141–150. [CrossRef]
80. Nunes, R.C.; Barboza, E.M., Jr.; Abreu, E.M.C.; Neto, J.A. Probing the cosmological viability of non-Gaussian statistics. J. Cosmol.

Astropart. Phys. 2016, 2016, 051. [CrossRef]
81. Yang, W.-H.; Xiong, Y.-Z.; Chen, H.; Liu, S.-Q. Jeans gravitational instability with κ-deformed Kaniadakis distribution in

Eddington-inspired Born-Infield gravity. Chin. Phys. B 2020, 29, 110401. [CrossRef]
82. Lymperis, A.; Basilakos, S.; Saridakis, E.N. Modified cosmology through Kaniadakis horizon entropy. Eur. Phys. J. C 2021,

81, 1037. [CrossRef]
83. Abreu, E.M.C.; Ananias Neto, J. Black holes thermodynamics from a dual Kaniadakis entropy. EPL 2021, 133, 49001. [CrossRef]
84. Nojiri, S.; Odintsov, S.D.; Paul, T. Modified cosmology from the thermodynamics of apparent horizon. Phys. Lett. B 2022,

835, 137553. [CrossRef]
85. Moradpour, H.; Javaherian, M.; Namvar, E.; Ziaie, A.H. Gamow Temperature in Tsallis and Kaniadakis Statistics. Entropy 2022,

24, 797. [CrossRef] [PubMed]
86. Luciano, G.G. Modified Friedmann equations from Kaniadakis entropy and cosmological implications on baryogenesis and 7Li

-abundance. Eur. Phys. J. C 2022, 82, 314. [CrossRef]
87. Abreu, E.M.C.; Neto, J.A. Statistical approaches on the apparent horizon entropy and the generalized second law of thermody-

namics. Phys. Lett. B 2022, 824, 136803. [CrossRef]
88. Abreu, E.M.C.; Neto, J.A. Statistical approaches and the Bekenstein bound conjecture in Schwarzschild black holes. Phys. Lett. B

2022, 835, 137565. [CrossRef]
89. Luciano, G.G. Gravity and Cosmology in Kaniadakis Statistics: Current Status and Future Challenges. Entropy 2022, 24, 1712.

[CrossRef] [PubMed]
90. Sadeghnezhad, N. Entropic gravity and cosmology in Kaniadakis statistics. Int. J. Mod. Phys. D 2023, 32, 2350002. [CrossRef]
91. Luciano, G.G.; Saridakis, E.N. P-v criticalities, phase transitions and geometrothermodynamics of charged AdS black holes from

Kaniadakis statistics. J. High Energy Phys. 2023, 2023, 114. [CrossRef]
92. Lambiase, G.; Luciano, G.G.; Sheykhi, A. Slow-roll inflation and growth of perturbations in Kaniadakis modification of Friedmann

cosmology. Eur. Phys. J. C 2023, 83, 936. [CrossRef]
93. Sheykhi, A. Corrections to Friedmann equations inspired by Kaniadakis entropy. Phys. Lett. B 2024, 850, 138495. [CrossRef]
94. Yarahmadi, M.; Salehi, A. Using the Kaniadakis horizon entropy in the presence of neutrinos to alleviate the Hubble and S8

tensions. Eur. Phys. J. 2024, 84, 443. [CrossRef]
95. Raoa, B.; Mohantyb, D.; Adityac, Y.; Prasanthid, U. Cosmological Evolution Of Bianchi Type-V I0 Kaniadakis Holographic Dark

Energy Model. East Eur. J. Phys. 2024, 2024, 43–54. [CrossRef]
96. Xia, J.; Ong, Y. Upper Bound of Barrow Entropy Index from Black Hole Fragmentation. Universe 2024, 10, 177. [CrossRef]
97. Prasanthan, P.; Nelleri, S.; Poonthottathil, N.; Sreejith, E.K. Emergence of Cosmic Space and Horizon Thermodynamics from

Kaniadakis Entropy. arXiv 2024, arXiv:2405.03592. [CrossRef]

8



Entropy 2025, 27, 247

98. Santos, F.F.; Boschi-Filho, H. Black branes in asymptotically Lifshitz spacetimes with arbitrary exponents in κ-Horndeski gravity.
Phys. Rev. D 2024, 109, 064035. [CrossRef]

99. Kumar, N. Relativistic correction to black hole entropy. Gen. Relativ. Gravit. 2024, 56, 47. [CrossRef]
100. Vijaya Prasanthi, A.; Suryanarayana, G.; Aditya, Y.; Divya Prasanthi, U.Y. Cosmological Dynamics of Anisotropic Kaniadakis

Holographic Dark Energy Model in Brans-Dicke Gravity. East Eur. J. Phys. 2024, 2, 10–20. [CrossRef]
101. Alsaedi, R.H.; Azizi, T.; Sadeghi, J. Nonextensive Statistical Mechanics and Black Hole Thermodynamics: Tsallis and Kaniadakis

Entropies. J. Hologr. Appl. Phys. 2024, 4, 3.
102. Ribeiro, B.W.; Macêdo, I.M.; Carvalho, F.C. Generalized inflation in the context of κ-deformed theories. arXiv 2024,

arXiv:2409.07678.
103. Shokri, M. Bekenstein bound on black hole entropy in non-Gaussian statistics. Phys. Lett. B 2025, 860, 139193. [CrossRef]
104. Bhattacharjee, A.; Phukon, P. BTZ Black Hole In The Non-Extensive Generalizations of Gibbs Entropy. Prog. Theor. Exp. Phys.

2025, 2025, 023E01. [CrossRef]
105. Moradpour, H.; Ziaie, A.H.; Zangeneh, M.K. Generalized entropies and corresponding holographic dark energy models. Eur.

Phys. J. C 2020, 80, 732–737. [CrossRef]
106. Jawad, A.; Sultan, A.M. Cosmic Consequences of Kaniadakis and Generalized Tsallis Holographic Dark Energy Models in the

Fractal Universe. Adv. High Energy Phys. 2021, 2021, 5519028. [CrossRef]
107. Rani, S.; Jawad, A.; Sultan, A.M.; Shad, M. Cosmographic and thermodynamic analysis of Kaniadakis holographic dark energy.

Int. J. Mod. Phys. D 2022, 31, 2250078. [CrossRef]
108. Ghaffari, S. Kaniadakis holographic dark energy in Brans-Dicke cosmology. Mod. Phys. Lett. A 2022, 37, 2250152. [CrossRef]
109. Sharma, U.K.; Dubey, V.C.; Ziaie, A.H.; Moradpour, H. Kaniadakis holographic dark energy in nonflat universe. Int. J. Mod. Phys.

D 2022, 31, 2250013. [CrossRef]
110. Nojiri, S.; Odintsov, S.D.; Faraoni, V. From nonextensive statistics and black hole entropy to the holographic dark universe. Phys.

Rev. D 2022, 105, 044042. [CrossRef]
111. Nojiri, S.; Odintsov, S.D.; Paul, T. Early and late universe holographic cosmology from a new generalized entropy. Phys. Lett. B

2022, 831, 137189. [CrossRef]
112. Drepanou, N.; Lymperis, A.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis holographic dark energy and cosmology. Eur. Phys. J.

C 2022, 82, 449. [CrossRef]
113. Korunur, S. Kaniadakis holographic dark energy with scalar field in Bianchi type-V universe. Int. J. Mod. Phys. A 2022, 37, 2250214.

[CrossRef]
114. Hernandez-Almada, A.; Leon, G.; Magana, J.; Garcia-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K.; Millano, A.D.

Observational constraints and dynamical analysis of Kaniadakis horizon-entropy cosmology. Mon. Not. R. Astron. Soc. 2022, 512,
5122–5134. [CrossRef]

115. Hernandez-Almada, A.; Leon, G.; Magana, J.; Garcia-Aspeitia, M.A.; Motta, V.; Saridakis, E.N.; Yesmakhanova, K. Kaniadakis-
holographic dark energy: Observational constraints and global dynamics. Mon. Not. R. Astron. Soc. 2022, 511, 4147–4158.
[CrossRef]

116. Blasone, M.; Lambiase, G.; Luciano, G.G. Kaniadakis entropy-based characterization of IceCube PeV neutrino signals. Phys. Dark
Universe 2023, 42, 101342. [CrossRef]

117. Sania, A.N.; Rani, S.; Jawad, A. Cosmic and Thermodynamic Consequences of Kaniadakis Holographic Dark Energy in Brans-
Dicke Gravity. Entropy 2023, 25, 576. [CrossRef] [PubMed]

118. Dubey, V.C.; Kumar, M.; Sharma, L.K.; Sharma, U.K. Some features of Kaniadakis holographic dark energy model. Int. J. Geom.
Meth. Mod. Phys. 2023, 20, 2350036. [CrossRef]

119. Jawad, A.; Ul Abideen, Z.; Rani, S. Study of cosmic acceleration in modified theories of gravity through Kaniadakis holographic
dark energy. Mod. Phys. Lett. A 2023, 38, 2350037 [CrossRef]

120. Singh, B.K.; Sharma, U.K.; Sharma, L.K.; Dubey, V.C. Statefinder hierarchy of Kaniadakis holographic dark energy with composite
null diagnostic. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2350074. [CrossRef]

121. Kumar, P.S.; Pandey, B.D.; Sharma, U.K.; Pankaj. Holographic dark energy through Kaniadakis entropy in non flat universe. Eur.
Phys. J. C 2023, 83, 143. [CrossRef]

122. Sharma, U.K.; Kumar, P.S.; Pankaj. Quintessence scalar field of Kaniadakis holographic dark energy model with statefinder
analysis. Int. J. Geom. Meth. Mod. Phys. 2023, 20, 2450004. [CrossRef]

123. Sadeghi, J.; Gashti, S.N.; Azizi, T. Complex quintessence theory, Tsallis and Kaniadakis holographic dark energy and Brans-Dicke
cosmology. Mod. Phys. Lett. A 2023, 38, 2350076. [CrossRef]

124. Kumar, P.S.; Pandey, B.D.; Pankaj; Sharma, U.K. Kaniadakis agegraphic dark energy. New Astr. 2024, 105, 102085. [CrossRef]
125. Sultana, S.; Chattopadhyay, S. Intermediate inflation through Nojiri–Odintsov holographic dark fluid with the cosmological

settings of Kaniadakis. Int. J. Geom. Meth. Mod. Phys. 2024, 21, 2450133. [CrossRef]

9



Entropy 2025, 27, 247

126. Chokyi, K.K.; Chattopadhyay, S. Cosmology of Tsallis and Kaniadakis holographic dark energy in Saez-Ballester theory and
consideration of viscous van der Waals fluid. Ann. Phys. 2024, 463, 169611. [CrossRef]

127. Sadeghi, J.; Afshar, M.A.S.; Alipour, M.R.; Gashti, S.N. Phase transition dynamics of black holes influenced by Kaniadakis and
Barrow statistics. Phys. Dark Universe 2025, 47, 101780. [CrossRef]

128. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Jeans instability criterion from the viewpoint of Kaniadakis statistics. EPL
2016, 114, 55001. [CrossRef]

129. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity
formalism. Int. J. Mod. Phys. 2017, 32, 1750028. [CrossRef]

130. Chen, H.; Zhang, S.X.; Liu, S.Q Jeans gravitational instability with kappa-deformed Kaniadakis distribution. Chin. Phys. Lett.
2017, 34, 075101. [CrossRef]

131. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A. Tsallis and Kaniadakis statistics from a point of view of the holographic
equipartition law. EPL 2018, 121, 45002. [CrossRef]

132. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A.; de Paula, R.M. Cosmological considerations in Kaniadakis statistics. EPL
2018, 124, 30003. [CrossRef]

133. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Soares, B.B. On incomplete statistics and the loop quantum gravity Immirzi parameter.
EPL 2019, 127, 10006. [CrossRef]

134. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; de Paula, R.M. Loop quantum gravity Immirzi parameter and the Kaniadakis statistics.
Chaos Sol. Fractals 2019, 118, 307–310. [CrossRef]

135. Yang, W.; Xiong, Y.; Chen, H.; Liu, S. Jeans instability of dark-baryonic matter model in the context of Kaniadakis’ statistic
distribution. J. Taibah Univ. Sci. 2022, 16, 337–343. [CrossRef]

136. He, K.-R. Jeans analysis with κ-deformed Kaniadakis distribution in f (R) gravity. Phys. Scr. 2022, 97, 025601. [CrossRef]
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The Longitudinal Plasma Modes of κ-Deformed Kaniadakis
Distributed Plasmas Carrying Orbital Angular Momentum
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Abstract: Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and
ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the
κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of
the investigated subjects relied on the deformation parameter κ and OAM parameter η. For both
Langmuir and ion-acoustic waves, dispersion was enhanced with increased κ, while the Landau
damping was suppressed. Conversely, both the dispersion and Landau damping were depressed by
OAM. Moreover, the results coincided with the straight propagating plane waves in a Maxwellian
plasma system when κ = 0 and η → ∞. It was expected that the present results would give more
insight into the trapping and transportation of plasma particles and energy.

Keywords: orbital angular momentum; Langmuir waves; ion-acoustic waves; κ-deformed Kaniadakis
distribution function

PACS: 52.20.-j; 52.25.Dg; 52.35.Fp

1. Introduction

In 1990, Tamm et al. produced a Laguerre–Gaussian (LG)-mode laser beam with
helical wave fronts that can drive molecules and neutral atoms [1]. Allen et al. subsequently
demonstrated that the angular momentum carried by a laser beam with azimuth phase
distribution was unrelated to the state of the polarized photons, and that the missing parts
of the angular momentum of photons are to be found in twisted electromagnetic beams or
optical vortices [2]. It is well recognized that the angular momentum of electromagnetic
radiation has two distinct components. The first is the intrinsic part associated with
wave polarization, or spin; the second is an extrinsic part related to the orbital angular
momentum (OAM) that depends on the spatial radiation distribution [3]. Hence, the laser
beams, as depicted by the LG function that satisfies the basic orthogonal condition, possess
spin and angular momentum as well as OAM, which lays the foundation for numerous
important scientific applications because of its inherent orthogonality and production
techniques that have matured in the laboratory [4–8]. For example, owing to the special
helical phase and hollow light field of the OAM beam, OAM can be applied to micro-control
technologies in the microscopic world, such as optical tweezers and micromotors [9]. As an
independent degree of freedom for wireless and quantum communications, OAM can be
used to achieve a higher communication capacity through the simultaneous transmission
of multiple orthogonal OAM mode vortex beams [10–13]. It has even been suggested that
telescopes equipped with OAM diagnostic instruments can be made to detect rotating black
holes [14,15].

The energy, momentum and angular momentum of laser beams can be transferred
to matter by interacting with it. Moreover, the propagation of an OAM beam in plasma is
associated with the excitation of a plasma wave, which may likewise carry OAM. In recent
years, related research carried out on OAM in plasma has attracted much attention, and the
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significance of collective plasma oscillations with OAM has been recognized in different
contexts. For instance, Mendonça et al. first employed the concepts of photon OAM states
in plasma systems to investigate the stimulated Raman and Brillouin backscattering of
collimated beams [16]. It was shown that the exchange of OAM between electromagnetic
and electrostatic waves occurred in stimulated Raman and Brillouin backscattering, which
implied that plasmon and phonon states carried OAM. The idea opened the door for
various studies on OAM in plasma. By using two fluid models and Ampere’s law in
a magnetized plasma, Shukla indicated that three-dimensional modified-kinetic Alfvén
waves can propagate in the shape of Alfvénic tornadoes featuring plasma density whirls
or magnetic flux ropes with OAM [17]. Vieira et al. confirmed the existence of LG modes
in particle-in-cell (PIC) simulations of intense laser–plasma interactions, and revealed
the mechanism of high OAM harmonic generation and amplification through stimulated
Raman backscattering in plasma [18,19]. Ali et al. calculated the quasistatic axial magnetic
field generated during laser propagation in plasma by taking into account both the spin
and OAM of the laser pulse [20,21]. The fluid theory of electron-acoustic waves in a two-
temperature electron plasma was considered by Shahzad et al., who derived the OAM
density of electron-acoustic waves [22]. Ali et al. subsequently presented dust oscillons
with distinct OAM states in a collisionless unmagnetized self-gravitating dusty plasma [23].

The OAM modes in plasma also introduced other significant effects such as single-
electron level twisted photon emission [24], toroidal shaped plasma turbulence in radio-
pumping [25], and a helical plasma accelerator [26].

Moreover, the quasistatic axial magnetic field generated by OAM beams in plasma
also has prospective applications in deep resource exploration, atmospheric science, and
underwater communications [27].

In the study of the interplay between light beams and plasma, wave-particle interaction
plays a pivotal role in particle acceleration, wave mixing, and the nonlinear decay of laser
beams with OAM, for which a kinetic framework is necessary. Relying on the plasma
kinetic description, Mendonça derived the dispersion relation and Landau damping of
helical electron plasma waves with OAM in cylindrical geometry under the paraxial
approximation. It was shown that the vertical velocity component of a helical Langmuir
wave also contributes to Landau resonance [28,29]. Following the work of Mendonça,
Khan et al. extended the theory to ion-acoustic plasma vortices with OAM and indicated
that the azimuthal component of an electric field produces optical torque on the medium,
which results in increased OAM of the plasma vortex [30]. Rehman et al. studied the
propagation characteristics of an electronic acoustic wave in a two-electron component
plasma. The results showed that the electronic acoustic wave carrying OAM was strongly
damped at large and intermediate wavelengths, whereas it was weakly damped at small
wavelengths [31]. Recently, Khan et al. described the helical structure of electrostatic
plasma waves carrying OAM by introducing a variable transformation. The proposed
idea improved the method of accessing wave damping [32]. The kinetic theory for these
OAM-carrying plasma waves were investigated in a Maxwellian distributed plasma system.
However, during solar wind or flares, pulsars and other complex environments, plasma
systems with superheated electrons exhibit energetic tails in particle velocity or energy
distribution; therefore, the Maxwellian distribution is not applicable [33].

To process some emerging physical problems in complex environments, attempts were
made to generalize statistical mechanics on conventional Boltzmann–Gibbs (BG) entropy.
In this context, Rényi proposed the non-extensive generalization of BG entropy [34], which
was later also suggested by Tsallis [35], whose non-extensive entropy was in excellent
agreement [36] with experimental data [37,38]. Afterwards, Kaniadakis put forward a
new so-called κ-deformed distribution in 2001 [39], which has been widely applied to the
kinetics of interaction atoms and photons [40], nonlinear kinetics [41–43], cosmic rays [33],
blackbody radiation [44], quantum entanglement [45], quark–gluon plasma formation [46],
and even financial systems [47,48] and epidemiology [49]. The κ-deformed distribution
arising from Kaniadakis entropy covers both nonextensive and the classical Maxwell–
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Boltzman distributions [39]. In subsequent studies, Beck and Cohen proposed that this
κ-deformed distribution can be regarded as the result of more generalized statistics known
as superstatistics [50]. Ourabah et al. also verified that the nonthermal and suprathermal
empirical distributions can be recovered from Beck–Cohen superstatistics [51]. The κ-
deformed distribution can be represented as a more universal form of the distribution
functions mentioned in the above work. Consequently, many studies have been revisited
under the κ-deformed distribution, such as longitudinal plasma modes [52] and Jeans
gravitational instability [53–55]. The κ-deformed distribution as a generalized statistic may
be able to characterize plasma waves in a fusion device. The power density of the OAM
beam highly localized away from the propagation axis could be an efficient device for
transferring concentrated heating power, which could be used to heat the fusion plasma at
certain locations. The OAM state may also act as a potential plasma diagnostic technique
since it can be modulated by various anisotropic and nonuniform structures in plasma [56].

To explore the effects of OAM and the κ-deformed Kaniadakis distribution function on
the dispersion and Landau damping of longitudinal plasma waves in this paper, longitudi-
nal plasma modes carrying OAM were considered in κ-deformed Kaniadakis distributed
plasmas based on kinetic theory. This manuscript is organized in the following fashion.
In Section 2, linear kinetic theory is employed to derive a dielectric function for the lon-
gitudinal plasma waves in κ-deformed Kaniadakis distributed plasmas. Sections 3 and 4
describe the linear dispersion relation and the damping rate of Langmuir and ion-acoustic
waves, respectively. The numerical results and a brief summary are given in Section 5.

2. The Longitudinal Dielectric Function

According to plasma kinetic theory, the dispersion relation and Landau damping of
electrostatic waves in an unmagnetized collisionless isotropic plasma are determined by

Re ε l(ω, k) = 0, (1)

and

γ(ω, k) = − Im ε l(ω, k)
∂/∂ω Re ε l(ω, k)

, (2)

respectively, where Re ε l(ω, k) and Im ε l(ω, k) are real and imaginary parts of the plasma
longitudinal dielectric function ε l(ω, k). To investigate the novel properties of finite OAM
carried by electrostatic waves in a κ-deformed Kaniadakis distributed plasma system,
the LG function is used to describe the perturbed electrostatic potential and distribution
function, which followed the same method as mentioned in Refs. [29–31]. Then the
dielectric function was obtained by the linearized Vlasov–Poisson equation [28] given by

ε l

(
ω, qe f f

)
= 1+ ∑

α

ω2
pα

k2

∫ qe f f · ∂ fα/∂v

ω− qe f f · v
dv. (3)

Here, ωpα is the plasma frequency; α represents plasma species (α = i for ion, α = e for
electron, respectively); and qe f f = −iqr êr + lqθ êθ + (k− iqz)êz. More details about the
relevant parameters are given in Refs. [29–31]). The κ-deformed Kaniadakis distribution
function is written as [39]

fα(v) = Aκexpκ

(
− v4

4τ4

)
, (4)

with

expκ(x) =
(√

1 + κ2x2 + κx
) 1

κ , (5)

where τ = kBTα/mα in relation to the thermal velocity vTα =
√

kBTα/mα ; and Aκ is the
normalized constant given by
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Ak =
nα0

(2π)
3
2 τ3
|2κ| 3

2

(
1 +

3
4
|2κ|

) Γ
(

1
|2κ|+

3
4

)
Γ
(

1
|2κ| −

3
4

) . (6)

Compared to the Maxwellian case, the effective temperature of the superstatistics depends
on the deformation parameter κ, which was explicitly given in Ref. [53], as

Tα(e f f ) =
1
|2κ|

1 + 3
4 |2κ|

1 + 5
4 |2κ|

Γ
(

1
|2κ| −

5
4

)
Γ
(

1
|2κ| +

5
4

) Γ
(

1
|2κ| +

3
4

)
Γ
(

1
|2κ| −

3
4

) , (7)

In Equation (6), κ represents the strength of the deformation and the symbol Γ pinpoints
the gamma function. To obtain Ak, the following integral was used [33,57]

∫ ∞

0
xr−1expκ(−x)dx =

|2κ|−r

1 + r|κ|
Γ
(

1
2|κ| −

2
r

)
Γ
(

1
2|κ| +

2
r

)Γ(r). (8)

When κ → 0, it is important to note that the Kaniadakis distribution function is reduced to
the Maxwellian distribution with lim

κ→0
expκ(x) ≡ exp(x) [33].

The use of the κ-deformed Kaniadakis distribution results in the dielectric function of
longitudinal waves carrying OAM which correlated strongly with the azimuthal velocity
contribution, as

ε l(ω, k) = 1 + ∑
α

ω2
pα

Ckk2v2
Tα

[Bk − Z(ξα
z )− Z(ξα

θ )], (9)

where

Bk =
|2κ|− 1

2 Γ
(

1
|2κ| −

1
4

)√
π

1 + 1
4 |2κ|Γ

(
1
|2κ| +

1
4

) ,

Ck =
|2κ|− 3

2 Γ
(

1
|2κ| −

3
4

)√
π

1 + 3
4 |2κ|Γ

(
1
|2κ| +

3
4

) ,

Z(ξα
s ) is the modified plasma dispersion function that includes both axial and azimuthal

contributions with ξα
z = ω/

√
2kvTα and ξα

θ = ω/
√

2lqθvTα, respectively, in the presence of
the κ-deformed Kaniadakis distribution function, which can be written as

Z(ξα
s ) =

∫ ∞

−∞

ξα
s

x− ξα
s

(√
1 + κ2x4 − κx2

) 1
κ dx. (10)

By making use of the Plemelj formula [58] and integrating for Equation (10), one can
obtain the modified dispersion functions under the limitation ξα

z,θ � 1 and ξα
z,θ
� 1, as

Z(ξα
z ) + Z(ξα

θ ) = Bk +
1

2(ξα
z )

2 Ck +
3

4(ξα
z )

4 Dk +
1

2
(
ξα

θ

)2 Ck +
3

4
(
ξα

θ

)4 Dk

− iπ
[
ξα

z expκ

(
−(ξα

z )
2
)
+ ξα

θ expκ

(
−(ξα

θ )
2
)]

,

(11)

and
Z(ξα

z ) + Z(ξα
θ ) = −i

√
πξα

z − i
√

πξα
θ , (12)

respectively, with

Dk =
|2κ|− 5

2 Γ
(

1
|2κ| −

5
4

)√
π

1 + 5
4 |2κ|Γ

(
1
|2κ| +

5
4

) ,

18



Entropy 2022, 24, 1211

which were given by Chen [53].

3. The Disperation and Landau Damping of Langmuir Waves

It is generally acknowledged that the existence of a Langmuir wave requires that
ω
k � vTe, namely, ξe

z,θ � 1, and then from Equations (9) and (11) the real part of the
longitudinal dielectric function for an electron can be given by

Re εe
l(ω, k) = 1− 1

k2λ2
De

k2v2
Te + (lqθ)

2v2
Te

ω2 − 3Dk
Ck

ω2
pe

k2
k4v2

Te + (lqθ)
4v2

Te
ω4 , (13)

which, in combination with Equation (1), gives rise to the dispersion relation for Langmuir
waves with OAM as

ω2 = ω2
pe

(
1 +

1
η2

)
+

3Dk
Ck

k2v2
Te

(
1 + 1

η4

)
(

1 + 1
η2

) . (14)

In the above expression, η = k
lqθ

is the dimensionless parameter showing the helical phase
structure involving the plasma oscillations which are directly associated with OAM. Here,
it was obvious that the kinetic dispersion relation was similar to ordinary plane waves in
form. Nevertheless, it should be pointed out that the dispersion of a Langmuir wave in an
OAM state relies on the deformation parameter κ and OAM parameter η. Moreover, when
the azimuthal wave number approached zero (η → ∞), Equation (14) ultimately recovered
the following plane wave dispersion relation

ω2 = ω2
pe +

3Dk
Ck

k2v2
Te, (15)

which was consistent with the results of Langmuir waves in the κ-deformed Kaniadakis
distributed plasma system studied by Chen [53].

In the limit κ → 0, one has Dk/Ck → 1, and then Equation (14) readily reduces to the
result of the Langmuir waves with OAM derived in Maxwellian plasma [29],

ω2 = ω2
pe

(
1 +

1
η2

)
+ 3k2v2

Te

(
1 + 1

η4

)
(

1 + 1
η2

) . (16)

The expression for the imaginary part of the dielectric function was obtained from
Equations (9) and (11)

Im εe
l(ω, k) =

π

Ckk2λ2
De

[
ξe

zexpκ

(
(ξe

z)
2
)
+ ξe

θexpκ

(
(ξe

θ)
2
)]

. (17)

Then, the Landau damping for Langmuir waves carrying OAM with Equation (2) yielded

γ = − ω4π

2
√

2Ckk3v3
Te

(
1 + 1

η2

)[expκ

(
− ω2

2k2v2
Te

)
+ ηexpκ

(
− ω2η2

2k2v2
Te

)]
. (18)

Here λDe is the electron Debye length. Note that the inclusion of the azimuthal velocity
component led to the existence of an OAM parameterv η. Equation (18) shows that the
Landau damping of Langmuir waves in a κ-deformed Kaniadakis distributed plasma
system was significantly modified by the OAM parameter η and the parameter κ of the
distribution function. Again by setting the OAM parameter η → ∞, the Landau damping
eventually arrived at the simplified expression
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γ = − ω4π

2
√

2Ckk3v3
Te

expκ

(
− ω2

2k2v2
Te

)
, (19)

which was obtained in the absence of the Landau damping OAM in conventional κ-
deformed Kaniadakis distributed electron plasma [53].

In Equation (18), when κ = 0, the coefficient Ck → π, and the Landau damping for
Langmuir waves with OAM was reduced to the form of a Maxwellian case [29]:

γ = −
√

π

8
ωpe

ω3
pe

k3v3
Te

(
1 +

1
η2

)[
exp

(
−ω2/2k2v2

Te

)
+ η exp

(
−η2ω2/2k2v2

Te

)]
. (20)

4. The Disperation and Landau Damping of Ion-Acoustic Waves

Under the ion-acoustic time scale ξe
z,θ � 1 and ξ i

z,θ � 1, one has the ion-dielectric
function for low-frequency longitudinal modes from Equations (9) and (11),

εi
l(ω, k) = 1−

ω2
pi

Ckk2v2
Ti

[
Ck
2

(
1(

ξ i
z
)2 +

1(
ξ i

θ

)2

)
+

3Dk
4

(
1(

ξ i
z
)4 +

1(
ξ i

θ

)4

)]
+

i
π

Ckk2λ2
Di

[
ξ i

zexpκ

(
−
(

ξ i
z

)2
)

+ξ i
θexpκ

(
−
(

ξ i
θ

)2
)]

.

(21)

Substituting Equations (13) and (21) into the relational expression ε l(ω, k) = 1 +
[
εe

l − 1
]
+[

εi
l − 1

]
along with Equation (1), the dispersion equation yielded

Re ε l = 1 +
ω2

pe

Ckk2v2
Te

Bk −
ω2

pi

Ckk2v2
Ti

[
Ck
2

(
1

(ξ i
z)

2 +
1

(ξ i
θ)

2

)
+ 3Dk

4

(
1

(ξ i
z)

4 +
1

(ξ i
θ)

4

)]
= 0. (22)

Then we arrived at the dispersion relation for ion-acoustic waves carrying OAM, as

ω2 = ω2
pi

(
1 +

1
η2

)⎡⎢⎣ k2λ2
De

Ck
Bk

k2λ2
De

Ck
Bk

+ 1
+

3Dk
Ck

k2λ2
Di

1 + 1
η4(

1 + 1
η2

)2

⎤⎥⎦, (23)

where λDi is the ion Debye length. In the limit η → ∞, Ck/Bk → 1, and the Equation (23)
was reduced to the same dispersion relation for planar ion-acoustic waves in the κ-deformed
Kaniadakis distributed plasma system [53], as

ω2 = ω2
pi

k2λ2
DeCk/Bk

k2λ2
DeCk/Bk + 1

. (24)

In addition, the Maxwellian limit of Equation (23) can essentially be recovered by setting
κ = 0:

ω2 = ω2
pi

(
1 +

1
η2

)
k2λ2

De
k2λ2

De + 1
+ 3k2λ2

Di

1 + 1
η4

1 + 1
η2

. (25)

Likewise, according to Equations (2) and (21), the Landau damping for ion-acoustic waves
in an OAM state can easily be derived as follows:

γ =
ω4π

2
√

2Ckk3v3
Ti

(
1 + 1

η2

)[expκ

(
− ω2

2k2v2
Ti

)
+ ηexpκ

(
− ω2η2

2k2v2
Ti

)]
. (26)

Similarly, in Equation (26), by taking η → ∞ and κ = 0, the Landau damping for ion-
acoustic waves carrying OAM was then reduced to the standard result in a Maxwellian
plasma system:
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γ = −
√

π

8
ω

ω3

k3v3
Te

exp
(
−ω2/2k2v2

Ti

)
. (27)

5. Discussion and Conclusions

For graphical illustration, we analyzed the dispersion relation and Landau damping of
Langmuir waves and ion-acoustic waves with OAM in a κ-deformed Kaniadakis distributed
plasma. How the dispersion and the damping rate of Langmuir waves varied with wave
number, for various values of the deformation parameter κ while retaining the OAM
parameter η = 1 are graphically displayed in Figures 1 and 2.

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

k De

/ pe =0=0.15=0.2=0.25=0.35

Figure 1. Variation in the normalized wave frequency ω/ωpe of Langmuir waves with the normalized
wave number kλDe for the deformation parameter κ = 0 (black), κ = 0.15 (dashed blue), κ = 0.20
(dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (solid red), respectively, with the OAM
parameter η = 1.
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Figure 2. Variation of the Landau damping rate γ/ωpe of Langmuir waves with the normalized
wave number kλDe for deformation parameter κ = 0 (black), κ = 0.15 (dashed blue), κ = 0.2 (dashed
green), κ = 0.25 (dashed purple) andκ = 0.35 (solid red), respectively, with the OAM parameter
η = 1.

In Figure 1, the dashed blue, green, purple and solid red curves correspond to κ = 0.15,
κ = 0.20, κ = 0.25 and κ = 0.35, respectively, and were acquired through solving Equa-
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tion (14) numerically, whereas the solid black curve corresponding to κ = 0 was obtained
by solving the analytically derived Equation (16). It is clear that as the κ increased, so did
the phase velocity, which indicated that increasing the deformation parameter κ enhanced
Langmuir wave dispersion.

In Figure 2, the dashed blue, green, purple and solid red curves, corresponding
to κ = 0.15, κ = 0.20, κ = 0.25 and κ = 0.35, respectively, were obtained by solving
Equation (20), whereas the solid black curve corresponding to κ = 0 was acquired through
the numerical solution of Equation (18). Interestingly, the amplitude of the Landau damping
declined drastically as κ increased, which demonstrated that the Landau damping was
intensely depressed in the κ-deformed Kaniadakis distributed plasma system compared to
the Maxwellian.

Next, to illustrate the effect of OAM on the Langmuir waves, we showed the dispersion
variation and Landau damping with different values of the OAM parameter η while
keeping κ fixed. The results are shown in Figures 3 and 4. From Figure 3, it cqn be seen
that the Langmuir wave dispersion shrank as the curves moved away from each other
for higher wave number values. In addition, Figure 3 shows that increasing values of
η resulted in a narrowing of Langmuir wave dispersion. In particular, the dispersion
was very sensitive to the OAM parameter values that varied in the range 0.4 ≤ η ≤ 1
while there was little change beyond 1. This behavior was realized by looking at the term
1 + 1/η2 in Equation (14), which increased sharply in the range 0 ≤ η ≤ 1. In Figure 4,
as η increased within the range 0.4 ≤ η ≤ 1, the Landau damping diminished. Conversely,
when η increased within the range 1 ≤ η ≤ ∞, the Landau damping was enhanced at
small and diminished at large wave numbers. Similarly, it was enhanced with the increased
value of 1 + 1/η2 as the wave number gradually increased, which can be understood more
naturally from Equation (18).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0
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Figure 3. Variation of the normalized wave frequency ω/ωpe of Langmuir waves with the normalized
wave number kλDe for OAM parameter η = 0.4 (solid red), η = 0.5 (dashed blue), η = 0.7 (dashed
green), η = 1 (dashed purple), and η = ∞ (solid black), with the deformation parameter κ = 0.2.

With the value of the OAM parameter η fixed, the dispersion variation and Landau
damping of ion-acoustic waves with varying values of the deformation parameter κ are
illustrated in Figures 5 and 6. We solved Equation (23) numerically and plotted the Figure 5
with dashed blue, green, purple, and solid red curves corresponding to κ = 0.15, κ = 0.20,
κ = 0.25 and κ = 0.35, respectively, while the solid black line corresponded to κ = 0
according to the numerical solution to Equation (25).
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Figure 4. Variation of the Landau damping rate γ/ωpe of Langmuir waves with the normalized
wave number kλDe for OAM parameter η = 0.4 (solid red), η = 0.5 (dashed blue), η = 0.7 (dashed
green), η = 1 (dashed purple) and η = ∞ (solid black) with the deformation parameter κ = 0.2.
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Figure 5. Variation of the normalized wave frequency ω/ωpi of ion-acoustic waves with the nor-
malized wave number kλDe for deformation parameter κ = 0 (soild black), κ = 0.15 (dashed blue),
κ = 0.2 (dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (soild red) with OAM parameter
η = 1.

From Figure 5, a very slight change was seen in the dispersion of ion-acoustic waves
carrying OAM with increased κ, but the dispersion increased overall. The Landau damping
of ion-acoustic waves with OAM was calculated primarily from Equation (26). In Figure 6,
the dashed blue curve for κ = 0.15 is clearly above the solid black line where κ = 0
(Maxwellian case). Therefore, it was evident from the figure that the Landau damping
rate of the non-Maxwellian ion-acoustic waves was smaller compared to the Maxwellian.
The Figures 7 and 8 show how the dispersion relation and the damping rate of ion-acoustic
waves were affected by the presence of the OAM parameter η while keeping κ fixed.
In Figure 7, the dispersion of ion-acoustic waves diminished as the OAM parameter η
increased. From Figure 8, the Landau damping rate for ion-acoustic waves shifted to
smaller negative values with increased η. In the case of the fixed deformation parameter κ,
both dispersion and damping for ion-acoustic waves were suppressed by the OAM effect.
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Figure 6. Variation of the Landau damping rate γ/ωpi of ion-acoustic waves with the normalized
wave number kλDe for deformation parameter κ = 0 (solid black), κ = 0.15 (dashed blue), κ = 0.2
(dashed green), κ = 0.25 (dashed purple) and κ = 0.35 (solid red) with OAM parameter η = 1.

Physically, the thermal motion of particles gave rise to the dispersion of the longi-
tudinal plasmon collective mode; the Landau damping was attributed to the resonance
interaction between the plasma wave and the particles that had a velocity close to the
phase velocity; therefore, the damping rate depended on the number of resonant particles.
When the value of η was fixed, owing to Equations (14) and (23), the dispersion of Lang-
muir waves and ion-acoustic waves was viewed as being approximately proportional to√

Te f f /me and
√

Te f f /mi, respectively. From Figure 1 of Ref. [53], as the κ increased, so
did the effective temperature of the κ-deformed Kaniadakis distributed plasma system.
Since me � mi, the significant enhancement of Langmuir wave dispersion and the slight
enhancement of ion-acoustic wave dispersion with increasing κ in Figures 1 and 5 can
be explained. Gougam showed that in the κ-deformed Kaniadakis distributed plasma
system, the presence of high-energy states became more plausible as κ increased [57],
which indicated an increase in the number of fast particles or a decrease in the number of
slow particles with respect to the Maxwellian case. As a result, with increasing κ for both
Langmuir and ion-acoustic waves, the phase velocity was skewed toward the trailing part
of the distribution function; thus, the Landau damping amplitude diminished. When the κ
value was fixed, the decline in η, namely, the rise in 1 + 1/η2, provoked the dissipation of
Langmuir and ion-acoustic waves, the intensity of which was related to the magnitude of
the OAM. This was due to the participation of partially resonant particles in the resonance
of the wave OAM, which allowed a relative increase in the number of resonances obtaining
energy from the wave, thereby leading to enhanced wave damping.

To summarize, electrostatic waves carrying OAM were first considered in a κ-deformed
Kaniadakis plasma system by keeping kinetic theory in view. Statistically, the κ-deformed
Kaniadakis distribution function was the product of superstatistics, which are perceived as
a more generalized statistic in contrast to non-generalized and the traditional Boltzman–
Gibbs statistics. Because it served the same purpose as the κ of the suprathermal distribution
and the parameter q of the non-extensive distribution, the parameter κ of the κ-deformed
Kaniadakis distribution function also measured the derivation from the Maxwellian dis-
tribution function, so the collective mode features of the associated plasma system were
modified. The analytical expressions were derived for the dispersion relation and the
Landau damping of both the Langmuir and ion-acoustic waves. It was shown that the
presence of the κ-deformed Kaniadakis distribution function and OAM modified the prop-
agation properties of the Langmuir and ion-acoustic waves. For both, the dispersion was
enhanced with increased κ, while Landau damping was suppressed. Conversely, both the
dispersion and Landau damping were depressed by the OAM effect. As expected, when
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κ = 0 and η → ∞, the results coincided with the straight propagating plane waves in
a Maxwellian plasma system. It was also expected that the results of this study would
offer more insight into the trapping and transportation of plasma particles and energy in
a κ-deformed Kaniadakis distributed plasma system. In addition, the results may also
provide a reference for studying its nonlinearity.
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Figure 7. Variation of the normalized wave frequency ω/ωpi of ion-acoustic waves with the nor-
malized wave number kλDe for OAM parameter η = 0.5 (solid red), η = 1 (dashed blue), η = 1.5
(dashed green), η = 2 (dashed purple) and η = ∞ (solid black) with deformation parameter κ = 0.2.

0 2 4 6 8 10

-1.4
-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0

k De

/ pi =0.5=1=1.5=2=
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Abstract: We discuss generalized exponentials, whose inverse functions are at the core of generalized
entropy formulas, with respect to particle–hole (KMS) symmetry. The latter is fundamental in field
theory; so, possible statistical generalizations of the Boltzmann formula-based thermal field theory
have to take this property into account. We demonstrate that Kaniadakis’ approach is KMS ready
and discuss possible further generalizations.

Keywords: Kaniadakis entropy; kappa statistics; Tsallis distribution; KMS relation

1. Introduction

Remembering when statistical physics passed the “classical” Boltzmann–Gibbs dis-
tribution view of exponential dependence on individual energies, one ought to formulate
a few general statements. Certainly, a generalization [1,2], in addition to including the
original classical formulas in some limits, can be infinite. In physics, however, nature
gives us several clues as to which generalization is more useful, moving beyond a pure
mathematical construction.

Generalizations of entropy formulas replace the logarithm with another function, and the
change from an exponential function in the equilibrium or in other way stationary distributions
to something else are the inverse operation to this. Informatics studies were pioneering
in generalizing the entropy formula of Boltzmann in the 1950s and 1960s [3,4], while the
thermodynamical consequences have been more vividly studied since the 1980s [5–7]. Here
the power-law tailed distribution, originally considered an approximation to the exponential
by Euler and in particle physics by Hagedorn as a “cut power-law”, in the beginning did not
have any physics rationale aside from its aimed application.

Another widespread nonexponential distribution, also extrapolating to power-law
tails is given in the kappa statistics initiated by Kaniadakis. It is motivated by relativistic
kinetics in plasmas, and its most renowned applications are also related to plasmas. While
it can be mapped to an exponential of the rapidity, replacing the energy variable by a
rapidity-like one as the argument, its high energy tail seems to show remarkable success in
application to real world data. A general presentation of kappa statistics basics can be read
in [8]. The relation to special relativity is discussed in [9], and to the Boltzmann equation
in [10]. Fractional statistics in kappa statistics are dealt with in [11], nonlinear kinetics
in [12], and a general review about the physical origins in [13].

In this paper we point out that based on a particular property of the mathematical
formula appearing in kappa statistics, this form is able to reflect particle–hole symmetry,
an important ingredient in field theory and particle physics. The underlying concept in
field theory namely assumes a symmetry between particles and antiparticles, called CPT
symmetry, changing charges, parity, and time direction to its opposites. The physical laws
should not change in an antimatter world relative to the original one. The mathematical
formulation of the time-dependent expectation values for elements of statistical ensembles
in field theory is related to the use of a statistical operator. Whenever the exponential
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function of energy is generalized in the statistics, the corresponding statistical operator
is also no more the Boltzmann–Gibbs exponential of the Hamiltonian operator. Still, the
CPT reflection should not change the physical conclusions. Therefore, it is essential that
the generalization of the exponential function shows similar reflection properties to the
original Euler number-based function.

2. Kaniadakis’ Generalized Exponential

There are several generailzed entropy formulas and corresponding canonical distri-
butions [1–14]. At their core, they can be viewed as the generalization of the logarithm
and exponential functions while keeping their inverse roles. However, the inverse relation
between the exponential of x and −x is, in general, lost.

The Boltzmann–Gibbs energy distribution at a fixed temperature utilizes the Euler
exponential function, which has the property, exp(−x) = 1/ exp(x). Accordingly, its
inverse, the logarithmic function, satisfying both ln(exp(x)) = x and exp(ln(x)) = x,
also satisfies

ln
1
x

= − ln x. (1)

This is important in the use of the Boltzmannian entropy formula [15],

S/kB = ∑
i

pi ln
1
pi

= −〈ln pi〉 (2)

with the probability pi of being in the i-th state, a real number between and including zero
and one. The above formula is valid only if the probability set is normalized, i.e.,

∑
i

pi = 1. (3)

Otherwise, the leading order terms while applying the Stirling formula [16–19] to the
permutation entropy [20–23] would not cancel. These basic features of this construction
lead to an overall nonnegative entropy and to its concavity property [24–28].

When generalizing, such as in some axiomatic approaches, the properties have to be
saved, while much less attention is paid to the ln(1/x) = − ln x relation. In fact, some of
the suggested extensions to the exponential and logarithm function satisfy such a relation,
others do not. Let us review a few of them.

The Kaniadakis’ κ-exponential [8],

eκ(x) =
(

κx +
√

1 + κ2x2
)1/κ

, (4)

satisfies the relation
eκ(−x) = 1/eκ(x). (5)

On the other hand, the Tsallis q-exponential [5], designed to have a power-law tail relying
on Euler’s approximating formula for the exponential for n = 1/(q− 1),

eq(x) = (1 + (q− 1)x)
1

q−1 , (6)

behaves differently when reflecting the argument:

eq(−x) =
1

e2−q(x)

= 1

eq(x)
. (7)

Here lim
κ→0

eκ(x) = ex and lim
q→1

eq(x) = ex are the limits leading back to the traditional

exponential.
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It is easy to construct another class of functions based on a symmetric use of the Tsallis
exponentials, which satisfies the product formula searched for in [29].

ẽq(x) =
eq(x/2)

eq(−x/2)
(8)

namely delivers

ẽq(−x) =
eq(−x/2)
eq(x/2)

=
1

ẽq(x)
. (9)

This works only with the halved argument ratio definition.
The above sketched relation between the Kaniadakis’ exponential and a symmetric

ratio of Tsallis exponentials can be generalized. We construct a k-exponential class based on
a general function, fk(x) = ak(x) + kxbk(x), with both ak(x) and bk(x) being even functions
of x. Then,

ek(x) = fk(x)1/k = (ak(x) + kxbk(x))1/k (10)

with its reflected pendant

ek(−x) = (ak(−x)− kxbk(−x))1/k = (ak(x)− kxbk(x))1/k (11)

satisfies
ek(x) · ek(−x) = 1 (12)

only if
a2

k(x) = 1 + k2x2b2
k(x). (13)

Furthermore, having the traditional exponential in the k → 0 limit, both a0 and b0 have
to converge to unity. This leads to the following class of Kaniadakis type of deformed
exponentials:

ek(x) =

(√
1 + k2x2b2

k(x) + kxbk(x)
)1/k

. (14)

For a nontrivial bk(x) even function, we may consider an example:

bk(x) =
1√

1− k2x2
. (15)

In this case, one obtains

ek(x) =

(√
1 + kx
1− kx

)1/k

=
eq(x/2)

eq(−x/2)
, (16)

with a power-law tail for an expression relating to the relativistic Doppler factor. On
the other hand, this is equal to a symmetrized ratio at the half argument of Tsallis type
deformed exponentials exactly with q = 2k + 1. In this interpretation, the bk(x) function is
the Lorentz factor, with kx = v/c = tanh η being a velocity in units of the light speed. At
the same time, ek(x) = eη/k. Hence, the rapidity variable η is additive due to the product of
traditional exponential functions, and therefore, this delivers the mapping to the logarithm
of the formal group: to the additive quantity belonging to the nonadditive rules generated
by the deformed exponentials [22].

This additive variable, η, can also be constructed in the general case. Setting kxbk(x) =
sinh η and kx = g(η) as a general function, one has

bk(x) =
sinh η

g(η)
(17)

leading to ek(x) = eη/k. In our previous example, we had g(η) = tanh η.
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After reviewing examples and generalization paths, we turn to the question of why it
is so important to have the property ek(x) · ek(−x) = 1 in high energy physics and field
theory in the next section. Further applications of Kaniadakis’ exponential [30–32] and a
general approach to group entropy [33] provide the reader with further information on
generalizing the exponential function and its use in data processing and interpretation.

3. Particle–Hole Symmetry

The Kubo–Martin–Schwinger (KMS) relation is central in thermal field theory [34–36].
Physically, it reflects the reinterpretation of negative energy states of a quantum particle as
the corresponding positive energy state of an antiparticle. A hole in the negative energy
continuum is a positive energy propagating particle with opposite momentum and charges.

In this paper, we briefly review a somewhat generalized version of the KMS rela-
tion, in order to make it clear that its validity extends beyond thermal equilibrium. This
presentation is based on Ref.[37].

Quantum packages of energy and charge do propagate according to field theory as
solutions to the field equation Green functions, i.e., propagators. Such propagators have
a few subtypes according to retarded and advanced options in their causality structure,
reflected in pole positions on the complex energy plane. Since an interacting particle in a
finite time can never have an energy which would exactly follow from the solution of the
classical free field equation, quoted as the dispersion relation between the frequency and
wave number vector, the off-mass-shell behavior is a mirror of its quantum nature. This
deviation from the special relativistic energy–momentum formula for a free point particle
is well comprised in the spectral function.

Spectral functions can be defined and investigated generally among two quantum field
operators, say Â and B̂, in the presence of a statistical operator, ρ̂, by a time-Fourier transform,

SAB(ω) =
∫

dt e−iωtTr
(
ρ̂
[
Â(t), B̂(0)

])
. (18)

The operators are taken in a time distant t from each other, utilizing the Heisenberg
picture in field theory. The above definition tacitly assumes that the statistical operator, the
statistical weight of states related to the Hamiltonian, is stationary. Whenever it contains a
temperature parameter, such as β = 1/T, or further parameters, such as κ or q, the spectral
function will be also parametrized by them.

In a stationary state including but not restricted to thermal equilibrium, the time
reversal and energy reversal properties of the AB-generalized spectral function should be
studied. Indeed, in the definition Equation (18) the time-shift invariance is also assumed,
which is equivalent to the conservation of the total energy. Meanwhile, the operators Â
and B̂ can be evaluated on the observed subsystem, whose spectral function we consider.

When the operators, correlated by the selected spectral function, are also time-shift
invariant and Hermitean, then the following symmetry properties are ensured:

S∗AB(ω) = SB† A†(ω), SAB(−ω) = −SBA(ω). (19)

Both properties utilize the time-shift invariance of the trace,

Tr
(
ρ̂Â(t)B̂(0)

)
= Tr

(
ρ̂Â(0)B̂(−t)

)
. (20)

The Wigner transform of the [A, B] = AB− BA commutator’s statistical expectation value
in a given quantum state shows similar properties. The Wigner function definition

SAB(x, p) =
∫

dq e
i
h̄ p·q 〈

[
Â(x− q/2), B̂(x + q/2)

]
〉, (21)
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extends the above concept from a simple time coordinate to the spacetime coordinates x
and corresponding four-momenta p. The dot in the exponent denotes the Minkowski scalar
product, p · q = Eq0−�p ·�q. Now, in the 8-dimensional phase space, one has the properties:

S∗AB(x, p) = SB† A†(x, p), SAB(x,−p) = −SBA(x, p). (22)

Analogous to the Wigner (spectral) function, a Keldysh function is defined, but it is based
on the symmetric commutator (denoted by {A, B} = AB + BA):

iKAB(x, p) =
1
2

∫
dq e

i
h̄ p·q 〈{Â(x− q/2), B̂(x + q/2)}〉. (23)

As a consequence, the Keldysh function properties by inverting the energy and momentum
in its argument are as follows:

iK∗AB(x, p) = −iKB† A†(x, p), iKAB(x,−p) = iKBA(x, p). (24)

The behavior of the statistical expectation values of the number of particles, which is a
particular case of using the creation and annihilation operators instead of A and B, follows
some rules derived from the above. Considering bosons, for example, one uses Hermitean
and scalar operators, B = B† = A = A†, twice. We commonly denote them by Φ. In
this case,

S∗ΦΦ(x, p) = SΦΦ(x, p), SΦΦ(x,−p) = −SΦΦ(x, p). (25)

So, the spectral Wigner function is real and antisymmetric for the change in the sign of the
four-momentum. This quantity counts negative energy states as minus.

To translate this result to the particle number (occupation number) quantities, we
utilize the general relation between the commutator and anti-commutator. In the special
case of A = a† and B = a fulfilling elementary commutation relations, we have for the
bosons 2iK ∼ {a†, a} = 2n̂ + 1 and S ∼ [a†, a] = 1, while for the fermions, we have 2iK ∼ 1
and S ∼ 2n̂− 1. Based on this, we generalize the definition of occupation numbers by
the relations

iKAB(x, p) =

(
nAB(x, p)± 1

2

)±1
SAB(x, p). (26)

with the plus sign for bosons and the minus sign for fermions. One obtains the sought
relation between the quantum field occupations of negative and positive energy states
based on this as follows:

nAB(x,−p) = ∓1− nBA(x, p). (27)

This is the particle–hole symmetry for bosons (upper sign) and fermions (lower sign).
Complex conjugation leads to another relation,

n∗AB(x, p) = nB† A†(x, p). (28)

This defined occupation number is real as long as (AB)† = B† A† = AB, i.e., the operator
product AB is Hermitean. For the traditional quantum counting operator, A = a†, B = a,
this is the case.

When the two operators coincide, A = B, then the particle–hole symmetry is expressed
by containing the same quantity on the left and right hand side of the equation:

nAA(x,−p) = ∓1− nAA(x, p). (29)

The antiparticle numbers are defined accordingly as

nAB(x, p) = ∓nBA(x,−p), (30)

in order to interpret the negative energy states.
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Now comes the statistical part: we associate an exponential, eventually a generalized
exponential function, to the ratio of particle and hole (antiparticle) states. The argument of
the generalized exponential in a kinetic approach is usually the β · p = βuμ pμ Minkowski
product for relativistic systems. The Jüttner distribution is generalized then by the ratio of
our generalized occupation numbers:

nAB(x, p)
nAB(x, p)

=
nAB(x, p)

1± nAB(x, p)
= ek(−β · p). (31)

On the other hand, applying the same relation to a negative energy and opposite momen-
tum state, the above formula by replacing pμ with −pμ reads as

nAB(x,−p)
nAB(x,−p)

=
1± nBA(x, p)

nBA(x, p)
= ek(+β · p). (32)

For the case A = B, self-correlation of an operator, this is only possible if

ek(−β · p) ek(β · p) = 1. (33)

From Equation (31), it follows a given generalization of the Bose and Fermi distributions:

nAB(x, p) =
ek(−β · p)

1∓ ek(−β · p)
. (34)

From its energy-momentum mirrored version, Equation (32), it follows another:

nBA(x, p) =
1

ek(β · p)∓ 1
. (35)

Again, these definitions coincide only if the deformed exponential, which is used to replace
the original exponential function, fulfills the special product rule Equation (33).

This result underlines the fact that the particle–hole (in the vacuum particle–antiparticle)
symmetry applies not only to the Boltzmannian statistics but is also a basic requirement
for the generalized occupation number functions of energy, describing the statistics of
elementary particles or other types of quantum excitations.

In conclusion, we selected a very particular property of Kaniadakis’ generalized
exponential function, namely its reciprocial property upon reflection of its argument,
Equation (33), and emphasized its relation to the particle–hole symmetry, known in quan-
tum field theory and reflected in the KMS relation. We also presented a generalization of
this function class maintaining this special property and related it to another construction
based on the Tsallis type generalization of the exponential function. By doing so, a slight
generalization of the phase space occupation number density statistics revealed that more
general correlation functions also satisfy a KMS-type relation, when taking into account
the change in the order of non-identical operators.
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Abstract: We report an analysis of the distribution of lengths of plant DNA (exons). Three species of
Cucurbitaceae were investigated. In our study, we used two distinct κ distribution functions, namely,
κ-Maxwellian and double-κ, to fit the length distributions. To determine which distribution has the
best fitting, we made a Bayesian analysis of the models. Furthermore, we filtered the data, removing
outliers, through a box plot analysis. Our findings show that the sum of κ-exponentials is the most
appropriate to adjust the distribution curves and that the values of the κ parameter do not undergo
considerable changes after filtering. Furthermore, for the analyzed species, there is a tendency for the
κ parameter to lay within the interval (0.27; 0.43).

Keywords: DNA; cucurbitaceae; non-additive statistics

1. Introduction

There are 15 tribes in the family Cucurbitaceae [1]. The tribe Cucurbitae, which
has an almost completely American distribution, consists of 11 genera, including the
genus Cucurbita. The genus Cucurbita (Cucurbitaceae) has five major domesticated species:
Cucurbita moschata, Curcurbita pepo, Cucurbita maxima, Cucurbita argyrosperma, and Cucurbita
ficifolia [2,3].

The first three species cited are the most economically important as a popular food
resource [4]. The fruits of the species are incredibly diverse, differing greatly in shape, sur-
face topography, color, size, and color pattern [5]. Among them, C. pepo is the genus’ most
phenotypically variable species and has eight cultivar groups with edible fruits (groups) [6].
The second most diversified species in the genus is thought to be C. moschata [7].

All Cucurbita species have 20 pairs of chromosomes (2n = 2x = 40), making them all
diploid. The theory that Cucurbiteae underwent one whole-genome duplication as a result
of their high chromosome number has gained traction [8,9]. The tribe Cucurbiteae plant
species, including the zucchini (C. pepo), pumpkin (C. moschata and C. maxima), and silver-
seed gourd (C. argyrosperma), all suffered whole-genome duplication events, according to a
number of studies [9–11].

There are few estimates of genome size in the genus Cucurbita. However, studies have
shown relatively small genome sizes. The genome sizes of C. maxima and C. moschata were
estimated to be 271.40 and 269.90 Mb, respectively, [9], while the genome size in C. pepo was
estimated to be 263.0 Mb [10]. Concerning the number of genes, the estimated values for C.
maxima, C. moschata, and C. pepo were 32.076; 32.205 [9]; and 27.868 genes [10], respectively.

On the other hand, numerous models based on statistical physics consistently attempt
to represent statistical features, such as long-range and short-range correlations, in light of
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the large DNA sequence data. Some approaches used statistical tools in connection with
random-walk simulations [12–14], wavelet transforms [15,16], 1D Ising models [17] (see
e.g., [18] and references therein), and Tsallis’ statistics together with Machine Learning [19].
Many live creatures’ coding and non-coding sequence length distributions have been stud-
ied by some models in relation to long- and short-range correlations [20–23]. Non-additive
entropy-based statistical physics methods have recently been actively advocated for use in
complex system research [24,25]. In this case, the Kaniadakis entropy yields a power-law
distribution rather than an exponential one and depends on a free parameter (the κ param-
eter) [26–28]. The κ-statistics arose as a useful statistical tool for many systems (see [29]
and references therein). For problems associated with human DNA, see e.g., [30,31].

Additionally, the Bayesian inference has been effectively applied as a useful tool to
investigate a number of issues in physics [32] and biophysics [33]. Which DNA models
should be valid from the perspective of Bayesian inference is an intriguing subject. Ad-
ditionally, the challenge in the context of this work would be to investigate an expansion
of a model from Ref. [31], but this time in the context of other living structures, such
as vegetables.

More recently in [34], statistical models of the Tsallis type provided the distribution
of nucleotide chain lengths, successfully capturing the statistical correlations between
the parts of the plant (for both coding and non-coding) DNA strands for two species
of the Cucurbitaceae family. We expand the paradigm proposed in [31] in the context
of vegetables in this article. We especially evaluate the distribution of nucleotide chain
lengths measured in base pairs for Cucurbita maxima, Cucurbita moschata, and Cucurbita pepo
utilizing κ-deformed statistics in light of the social and economic significance of cucurbits.
The most practical model is then chosen using a Bayesian statistical analysis based on the
κ-distributions. To the best of our knowledge, this is the first time the size distribution of
plant DNA has been realized using a κ-statistical analysis.

2. Materials and Methods

We use the κ-statistics, developed by Kaniadakis [26–28], to analyze the correlations
between the DNA length distributions of some species of the Cucurbitaceae family. There
are some works in this direction using the Tsallis q-statistics [34–36]. The κ-entropy and
power-law distribution functions naturally arise from the kinetic foundations of κ-statistics.
Formally, the κ-framework is based on the κ-exponential and κ-logarithm functions (see
Ref. [26]), defined as

expκ(x) =
[√

1 + κ2x2 + κx
] 1

κ (1)

lnκ(x) =
xκ − x−κ

2κ
. (2)

The parameter κ is restricted to values belonging to the range |κ| < 1; for κ = 0,
these expressions reduce to the usual exponential and logarithmic functions. From the
optimization of entropy Sκ (see Ref. [37]),we can obtain the probability distributions (Pκ,1(l))
associated with the quantities of base pairs (bp) for each of the chromosomes of Cucurbita
maxima, Cucurbita moschata, and Cucurbita pepo. Mathematically, the Kaniadakis entropy Sκ

is given by

Sκ(l) = −
1

2κ

∫
κ

[
1

1 + κ
Pκ(l)(1+κ) − 1

1− κ
Pκ(l)(1−κ)

]
dl. (3)

The optimization process is well described in Refs. [26,37–41] and gives us Pκ,1(l)

Pκ,1(l) = (1− κ2)β expκ [−βl]. (4)
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Rewriting (4) with the explicit form of expκ(−βl) given by (1), and using constraints
as in Ref. [41], we get

Pκ,1(l) =
(1− κ2)

Lκ

⎡⎣√1 + κ2
(
− l

Lκ

)2
+ κ

(
− l

Lκ

)⎤⎦
1
κ

. (5)

Here, Lκ is an adjustable parameter that is related to the mean value of the length
distribution, κ is the model’s free parameter which measures the interaction between the
nucleotides in the sample, and l is the chain of nucleotides’ length, expressed in number of
base pairs.

We employ the cumulative probability distribution because the probabilities for
lengthy lengths l of the nucleotide chain are subject to significant fluctuations.

We employ the cumulative probability distribution because the probabilities for
lengthy lengths l of the nucleotide chain are subject to significant fluctuations, (5) can
be found by solving Φ(l) = p(l′ < l) =

∫ l
0 p(l′)dl′, which provides

Φκ,1(l) = 1− 1
2
[
G+

κ (l) + G−κ (l)
]
, (6)

where

G±κ (l) = (1± κ) exp1∓κ
κ

(
− l

Lκ

)
. (7)

Here, Φ(l) denotes the probability of finding the sizes of the bases between 0 and
l. In Ref. [34], it was proposed a comparison between the q-exponential and a sum of
q-exponentials to explain the DNA length distribution of two species of cucurbits, Cucumis
melo and Cucumis sativus. Based on this work, we propose an analysis of the same type but
using the κ-statistics. We assume that the sum of Kaniadakis-type generalized probabilities
(already normalized) is given by

Pκ,2(l) = (1− κ2)

[
γ1γ2

γ1 + γ2

]
[expκ(−γ1l) + expκ(−γ2l)], (8)

where κ, γ1, and γ2 are adjustable parameters and l is the length of the nucleotides,
respectively. By employing the identical steps as those leading to (6), the cumulative
probability distribution is found to be

Φκ,2(l) = 1−
[

1
γ1

F1,κ(l) +
1

γ2
F2,κ(l)

]
, (9)

where

Fj,κ(l) =
γ1γ2

γ1 + γ2

[
exp1−κ

κ (−γjl)
1− κ

+
exp1+κ

κ (−γjl)
1 + κ

]
, j = 1, 2. (10)

Initial analyses indicate that, as occurred for the Tsallis’ q-statistics [34], the κ-exponential
sum model best fits the DNA length distributions of the species studied here. Therefore, we
chose to make a comparison between the sum of κ-exponentials (9) and the κ-Maxwellian
model (11) below, proposed in [31] to explain the length distribution of human DNA.

Φκ,3(l) = 1− expκ

(
− l2

σ2
κ

)[√
1 + κ2 l4

σ4
κ
+ κ2 l2

σ2
κ

]
. (11)

The best model to describe the length distributions of the nucleotides for three species
of the Cucurbitaceae family is obtained by comparing, via Bayesian analysis, the distributions
Φκ,2(l) and Φκ,3(l), which are represented by Equations (9) and (11), respectively.
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3. Results

We use the public database of the National Center for Biotechnology Information
(NCBI) [42] and the Comparative Genomics (CoGe) [43]. They are databases that give users
access to genetic and biological data. In our analysis, we considered only the coding bases
(exons). We define a nucleotide sequence’s length in terms of the l (bp) base pairs. All
graphical and data modeling was written in R, a free statistical software [44].

By plotting the cumulative probability distribution function (CDF) and a box plot
for chromosome 02 of one of the species studied here (Figure 1), we can see that some
points are very far from the distribution and can be considered outliers. There are various
techniques for defining, spotting, and dealing with outliers [45]. In this work, we decided
to use the box plot approach. Outliers in this approach are points that are below the region
Q1− 1.5× IQR and above Q3 + 1.5× IQR, where Q1, Q2, and Q3 are first, second, and
third quartile, respectively, and IQR is the interquartile region defined as IQR = Q3−Q1.
To prevent these points from influencing the behavior of the proposed models, we decided
to remove them. The cut was made around 1% of the cumulative distribution, designated
by the hatched square in the lower right corner of Figure 1a. A similar approach has been
proposed in [46] to analyze the length distribution of human DNA. Table A1 describes the
statistical characteristics of some chromosomes of the three species of Cucurbitaceae after
removing these outliers.

l (bp)

1 
− 

C
D

F

(a)

0 1000 2000 3000 4000

l (bp)

(b)

Figure 1. (a) Cumulative probability distribution function (CDF) and (b) box-plot for chromosome 02
of the species Cucurbita maxima. A similar analysis was performed for all chromosomes of the three
species of cucurbitaciae studied in this paper.

We decided to analyze the impact this action had on the value of κ, taking into account
the cumulative distribution functions (9) and (11). In Tables A2 and A3, we have the
number of nucleotides (N) and the best fit values per κ. The subscripts 0 and f represent
the values before and after the outliers are removed, and (RD) represents the relative
difference between them. The values of RD are smaller than the errors associated with the
values of κ in Tables A4–A6. This work deals with a statistical analysis of the distribution
of DNA lengths in plants. Possible biological effects caused by removing nucleotides with
large amounts of base pairs were not taken into account.

In Figures 2–4, we show the cumulative distributions, for exons, for some chromo-
somes of Cucubita maxima, Cucurbita moschata, and Cucubita pepo, with the other chromo-
somes behaving similarly. To get the best fit values for κ, the distribution functions (9)
and (11) were fitted to the lengths (l). Tables A4–A6 show all numerical results for the
parameters κ, γ1 and γ2 for distribution (9) in addition to κ and σκ for distribution (11).
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Chromosome numbers are displayed in the first column (CHR), and the number of nu-
cleotide chains is displayed in the second column (N) (exons). The correlations between the
values of l are measured by the values of κ [26–28,39]. According to [36,47], the coding part
of human DNA tends to present short-range correlations. The same behavior for plant DNA
can be observed in [34]. This implies κ values close to zero. It is worth remembering that in
the limit κ → 0, we return to the well-known Boltzmann–Gibbs–Shannon statistics [26].

Figure 2. Best fit analysis for the exons of Cucurbita maxima. We can observe the adjustments for chro-
mosomes (CHR) 02, 03, 04, 07, 11, and 15. The blue and red curves are, respectively, the distributions (9)
and (11). The other chromosomes follow the same pattern.

The models that fit the length distribution Φ(l) the best are determined via Bayesian
statistics. By taking into account the probability distribution of the hypotheses, conditioned
on the evidence, Bayesian inference describes the relationship between the model and the
data, and enables a rational and effective selection of one or more hypotheses [48]. The
Bayes’ theorem,

P(Φ|D, M) =
L(D|Φ, M) · P(Φ|M)

E(D|M)
, (12)

offers us the likelihood that, given the data D, a posterior model Φ will be correct. For
this, the probability of the prior model P(Φ|M) is multiplied by the likelihood function
L(D|Φ, M) and divided by the Bayesian evidence E(D|M). Here, we assume the pattern
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χ2 = (P(lobs)− P(lthe))2/σ2
obs for the likelihood function, where P(lobs), P(lthe) and σobs

are the cumulative probabilities associated with the observed and the theoretical nucleotide
lengths, and observed errors, respectively.

The input parameters used in the prior uniform distribution were obtained from the
best fit found by the R-code. This approach, which defines the model parameters’ potential
range and significantly affects the Bayesian evidence, is a crucial phase in the study. This
condition ensures that the parameters will fall inside the previously identified optimal
adjustment range.

Figure 3. Best fit analysis for the exons of Cucurbita Moschata. We can observe the adjustments
for chromosomes (CHR) 02, 11, 13, 15, 18, and 19. The blue and red curves are, respectively, the
distributions (9) and (11). The other chromosomes follow the same pattern.

In Table A4, we have the parameter ranges for Cucubita maxima. Considering all
chromosomes (CHR), κM ∼ U(0.64, 0.69), σκ ∼ U(91, 105), for cumulative distribution (11),
and κS ∼ U(0.24, 0.39), γ1 ∼ U(0.0041, 0.0087) and γ2 ∼ U(0.0045, 0.0088) for cumulative
distribution (9). The process is repeated for the species Cucubita moschata in Table A5 and
Cucubita pepo in Table A6. The MULTINEST algorithm, a Bayesian inference tool that
computes the evidence E(D|M) with an associated error estimate, is thus put into practice
for each species and each model. It generates posterior samples from distributions that can
contain multiple modes and pronounced degeneracy (curves) in high dimensions. More
details can be seen in [49–53].
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Figure 4. Best fit analysis for the exons of Cucurbita Pepo. We can observe the adjustments for
chromosomes (CHR) 01, 07, 09, 12, 13, and 16. The blue and red curves are, respectively, the
distributions (9) and (11). The other chromosomes follow the same pattern.

In order to compare the models, we make use of the Bayes factor, which is given by

Bij =
Ei
Ej

. (13)

Here, Ej is the evidence of the base model, which is used as a reference. In our case,
this is the distribution (9), and Ei is the evidence of the model we want to compare, given
by distribution (11). We employ the Bayes factor interpretation provided by Jeffrey’s
theory [35,54–56] to measure whether a model has favorable evidence in comparison to the
base model. Table A7 contains the findings for each chromosome.

The Bayesian analysis is performed from each model’s range of definite parameters.
Therefore, the better we understand the behavior of the parameters, the more accurate
our analysis will be, and we can guarantee that the evidence found will represent the
curve with the best fit [48]. In Figures 5–7, we have scatter plots for the parameters of the
models (9) (a) and (11) (b). For all chromosomes of all species analyzed here, we found
strong correlations between the parameters γ1 and γ2 present in the distribution (9). This
was expected, as this model appears as a variation of the model (6), as carried out in [34].
These two adjustable constants together (γ1 and γ2) have an inverse role to what Lκ has in
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the distribution (6), and when γ1 = γ2, we obtain the model (6) again. This implies that
these parameters are related to the κ parameter in the same way, resulting in similar images
for scattering but with different ranges. This behavior was repeated for all chromosomes.

The κS parameter (that is, the κ value that provides the best fit, when using the sum of
κ-exponentials, Equation (9)) in Tables A4–A6, measures the correlation between lengths l,
and belongs to the range (0.27(4); 0.37(2)) in the case of Cucubita maxima, (0.28(3); 0.40(4))
for Cucubita moschata, and (0.32(3); 0.43(3)) for Cucubita pepo. It can be seen in Figure 8
that the values of κ, for different species, seem to specify a universal behavior. Therefore,
all of these findings lead us to the conclusion that for all the species under study, the
model (9) (sum of κ-exponentials) is strongly preferred over the distribution model (11)
(κ-Maxwellian).

Figure 5. Bayesian analysis for the (9) (a) and (11) (b) distributions, using chromosomes 01, 02, 03, 04,
and 05 of the coding part of Cucurbita maxima DNA. The rest of the sample follows a similar pattern.

Figure 6. The same as Figure 5, but for chromosomes 01, 03, 06, 10, and 11 of the Cucurbita moschata
species.
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Figure 7. The same as Figure 5, but for chromosomes 01, 02, 05, 07 and 08 of the Cucurbita pepo species.

Figure 8. κ values, from the best fit model, Equation (9), for different species. In red, blue, and black,
we have, respectively, Cucurbita maxima, Cucurbita moschata, and Cucurbita pepo.

4. Conclusions

A statistical model based on non-additive statistics was developed to describe the size
distribution of nucleotide chains in the DNA of species belonging to the Cucurbitaceae family,
namely Cucurbita maxima, Cucurbita moschata, and Cucurbita pepo [26–28,31]. Specifically, the
proposed distribution, Equation (9), expands on a distribution studied in [41] through the
sum of the κ-exponentials, which added the parameters γ1 and γ2 to capture the statistical
correlations between the DNA strands. Another model investigated was the κ-Maxwellian
distribution, Equation (11), proposed in [31] for human DNA. We tested the statistical
feasibility of models, as well as methods based on Bayesian statistical analysis using the
NCBI project database. The cumulative distribution function (9) best fitted the nucleotide
base for all chromosomes, of the three species, with the parameter κ belonging to the
range (0.27(4); 0.37(2)) for Cucurbita maxima, (0.28(3); 0.40(4)) for Cucurbita moschata, and
(0.32(3); 0.43(3)) in the case of Cucurbita pepo. It can be seen in Figure 8 that the values of κ
for different species of the coding parts (exons) of the DNA appear to be within a common
and relatively narrow range.

Regarding the Bayesian analysis, we compared the κ-exponential-sum distribution
with the κ-Maxwellian model. We demonstrated that the first has solid and favorable
evidence compared to the κ-Maxwellian distribution. This was reasonably expected given
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that the distribution (9) has a free parameter for potential future adjustments. A general
task should be to expand the model presented in this study to include additional species,
determining whether they fall within the same range of κ for exons (0.35± 0.08) discovered
for the species investigated here.
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Appendix A

Table A1. Statistical characteristics of the data after outliers are removed. The first column indicates
the chromosome, the second the number of exons, the third and fourth the minimum and maximum
lengths. Finally, the quartiles Q1, Q2, and Q3 are in the fifth, sixth, and seventh columns, respectively.
In the later columns, we have indicated the same parameters for the other species of cucurbitaceae.

CHR
Cucurbita maxima Cucurbita moschata Cucurbita pepo

N lmin lmax Q1 Q2 Q3 N lmin lmax Q1 Q2 Q3 N lmin lmax Q1 Q2 Q3

1 662 1 2034 166 350 738 667 1 1965 168 357 737 802 3 2049 208 451 833
2 666 1 2229 168 362 710 653 1 2169 165 363 741 663 3 1854 173 380 755
3 641 1 2316 162 352 744 610 1 2207 155 333 740 661 4 1804 172 381 721
4 790 1 2049 198 424 815 851 1 2070 214 458 871 572 4 2004 159 350 687
5 596 1 1967 151 321 650 605 1 1997 154 324 670 623 3 1953 162 352 685
6 654 1 1981 164 343 677 657 1 2147 165 369 747 503 4 1899 146 313 635
7 568 1 2127 143 309 692 608 1 2148 153 343 771 538 3 1917 145 315 650
8 534 2 1857 135 296 587 513 1 1932 130 284 609 578 4 1815 151 339 631
9 610 1 2361 153 320 647 599 1 2363 154 38 753 539 3 1866 152 330 647
10 532 1 2096 134 285 598 616 1 2346 157 342 701 529 4 1995 146 330 703
11 665 1 2001 167 353 753 714 1 2146 179 399 803 588 3 1773 158 337 618
12 557 1 2265 141 302 622 556 1 2133 141 293 610 570 3 1776 150 329 602
13 549 3 2037 141 307 675 605 1 2136 155 338 750 563 3 2092 153 329 606
14 723 1 2181 182 391 786 740 3 2382 188 410 832 534 3 1896 143 311 589
15 601 1 2121 152 325 675 630 1 2190 159 338 673 486 4 1896 137 321 603
16 597 1 2153 150 318 657 601 1 2188 155 333 660 512 3 1872 137 302 649
17 583 2 2052 148 312 614 641 2 1968 164 341 672 507 3 1782 140 333 695
18 574 1 2178 145 320 635 580 1 2016 146 317 624 445 4 2052 129 313 611
19 539 1 2124 137 301 648 555 1 2049 141 310 641 514 3 1884 151 347 697
20 564 1 2212 142 298 628 572 1 2427 145 300 683 501 4 1914 143 316 650
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Table A2. Values of κ before and after removing outliers for model (9). (N) represents the number of
nucleotides. κ are the best fit values. The subscripts 0 and f represent the values before and after
the outliers are removed, (RD) represents the relative difference between them. This behavior is
repeated for all chromosomes.

CHR
Cucurbita maxima Cucurbita moschata Cucurbita pepo

N0 κ0 Nf κ f |RD| N0 κ0 Nf κ f |RD| N0 κ0 Nf κ f |RD|
1 687 0.3324 662 0.3336 0.0012 693 0.3455 667 0.3455 0.0000 834 0.4061 802 0.4073 0.0012
2 688 0.3532 666 0.3546 0.0014 675 0.3742 653 0.3749 0.0007 683 0.3812 663 0.3836 0.0024
3 661 0.3749 641 0.3747 0.0002 630 0.3641 610 0.3650 0.0009 682 0.4057 661 0.4076 0.0019
4 828 0.3576 790 0.3330 0.0246 893 0.3677 851 0.3680 0.0003 587 0.4004 572 0.4015 0.0011
5 615 0.2827 596 0.2835 0.0008 623 0.3127 605 0.3123 0.0004 643 0.3661 623 0.3673 0.0012

Table A3. The same as Table A2, but for model (11).

CHR
Cucurbita maxima Cucurbita moschata Cucurbita pepo

N0 κ0 Nf κ f |RD| N0 κ0 Nf κ f |RD| N0 κ0 Nf κ f |RD|
1 687 0.6589 662 0.6590 0.0002 693 0.6648 667 0.6649 0.0001 834 0.6929 802 0.6930 0.0001
2 688 0.6704 666 0.6707 0.0003 675 0.6810 653 0.6811 0.0001 683 0.6919 663 0.6922 0.0003
3 661 0.6760 641 0.6762 0.0000 630 0.6733 610 0.6734 0.0001 682 0.6909 661 0.6911 0.0002
4 828 0.6588 790 0.6592 0.0096 893 0.6633 851 0.6633 0.0000 587 0.7067 572 0.7071 0.0004
5 615 0.6455 596 0.6459 0.0002 623 0.6555 605 0.6556 0.0001 643 0.6881 623 0.6885 0.0004

Table A4. The average of the best fit parameters for the Cucurbita maxima species. The sub-index S
and M represent the κ-exponential sum function (9) and the κ-Maxwellian function (11), respectively.
σκ , γ1, and γ2 are free parameters related to the length of the nucleotide chain. The numbers in
parenthesis denote the calculated errors.

CHR N κM σκ κS γ1 γ2

1 662 0.65(1) 97(2) 0.33(3) 0.0067(13) 0.0057(07)
2 666 0.67(1) 101(3) 0.35(2) 0.0054(09) 0.0062(14)
3 641 0.67(1) 95(3) 0.37(2) 0.0069(15) 0.0057(08)
4 790 0.65(1) 94(2) 0.33(2) 0.0067(13) 0.0056(08)
5 596 0.64(1) 102(3) 0.27(4) 0.0054(13) 0.0062(18)
6 654 0.64(1) 96(2) 0.28(4) 0.0056(08) 0.0069(15)
7 568 0.67(1) 92(3) 0.35(2) 0.0059(09) 0.0071(17)
8 534 0.65(1) 94(3) 0.30(5) 0.0060(18) 0.0066(23)
9 610 0.66(1) 103(2) 0.31(3) 0.0051(07) 0.0061(12)
10 532 0.66(1) 99(3) 0.30(4) 0.0053(08) 0.0066(16)
11 665 0.67(1) 96(3) 0.36(2) 0.0069(14) 0.0057(08)
12 557 0.66(1) 90(3) 0.33(3) 0.0059(09) 0.0072(16)
13 549 0.67(1) 95(3) 0.36(2) 0.0067(15) 0.0055(08)
14 723 0.66(1) 96(2) 0.36(2) 0.0068(13) 0.0057(07)
15 601 0.68(1) 91(2) 0.36(2) 0.0068(13) 0.0058(08)
16 597 0.65(1) 98(3) 0.30(4) 0.0067(16) 0.0055(08)
17 583 0.65(1) 102(3) 0.29(4) 0.0051(07) 0.0062(14)
18 574 0.67(1) 93(3) 0.34(3) 0.0070(17) 0.0057(09)
19 539 0.65(1) 98(3) 0.29(4) 0.0065(14) 0.0053(08)
20 564 0.66(1) 101(3) 0.31(3) 0.0052(08) 0.0063(13)
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Table A5. The same as Table A4, but for the Cucurbita moschata species. The numbers in parenthesis
denote the calculated errors.

CHR N κM σκ κS γ1 γ2

1 667 0.66(1) 95(2) 0.35(3) 0.0069(14) 0.0057(08)
2 653 0.68(1) 97(2) 0.37(3) 0.0054(07) 0.0066(14)
3 610 0.67(1) 96(2) 0.37(3) 0.0068(14) 0.0056(08)
4 851 0.66(1) 96(2) 0.37(3) 0.0071(13) 0.0059(07)
5 605 0.65(1) 103(3) 0.31(2) 0.0052(08) 0.0063(14)
6 657 0.68(1) 97(2) 0.38(4) 0.0065(14) 0.0055(08)
7 608 0.67(1) 92(3) 0.37(3) 0.0074(19) 0.0059(09)
8 513 0.67(1) 88(3) 0.36(2) 0.0074(18) 0.0060(09)
9 599 0.69(1) 96(2) 0.40(4) 0.0054(07) 0.0064(12)
10 616 0.66(1) 98(3) 0.35(3) 0.0068(17) 0.0055(08)
11 714 0.68(1) 99(2) 0.38(2) 0.0054(06) 0.0064(11)
12 556 0.64(1) 99(3) 0.28(3) 0.0054(09) 0.0066(17)
13 605 0.67(1) 104(3) 0.36(3) 0.0051(07) 0.0062(14)
14 740 0.67(1) 95(2) 0.38(3) 0.0059(08) 0.0070(14)
15 630 0.67(1) 90(2) 0.37(4) 0.0070(13) 0.0059(07)
16 601 0.65(1) 107(3) 0.30(3) 0.0049(07) 0.0058(12)
17 641 0.64(1) 105(3) 0.28(3) 0.0061(13) 0.0051(08)
18 580 0.66(1) 99(3) 0.33(4) 0.0064(14) 0.0052(07)
19 555 0.67(1) 99(2) 0.34(3) 0.0051(07) 0.0062(12)
20 572 0.65(1) 110(2) 0.29(2) 0.0047(07) 0.0057(12)

Table A6. The same as Table A4, but for the Cucurbita pepo species. The numbers in parenthesis
denote the calculated errors.

CHR N κM σκ κS γ1 γ2

1 802 0.69(1) 88(2) 0.41(2) 0.0072(16) 0.0059(08)
2 663 0.69(1) 97(3) 0.38(2) 0.0053(07) 0.0062(12)
3 661 0.69(1) 84(3) 0.41(2) 0.0064(09) 0.0077(17)
4 572 0.70(1) 95(2) 0.40(2) 0.0062(14) 0.0051(07)
5 623 0.68(1) 96(3) 0.37(2) 0.0061(13) 0.0053(09)
6 503 0.70(1) 75(2) 0.43(3) 0.0070(13) 0.0091(31)
7 538 0.69(1) 87(3) 0.39(3) 0.0059(09) 0.0074(20)
8 578 0.70(1) 94(3) 0.39(2) 0.0061(12) 0.0052(08)
9 539 0.69(1) 77(2) 0.41(3) 0.0088(29) 0.0068(12)
10 529 0.70(1) 94(3) 0.39(2) 0.0063(14) 0.0051(08)
11 588 0.67(1) 109(3) 0.32(3) 0.0045(06) 0.0053(09)
12 570 0.67(1) 96(3) 0.32(3) 0.0063(16) 0.0053(10)
13 563 0.69(1) 92(3) 0.35(3) 0.0053(08) 0.0064(13)
14 534 0.67(1) 95(2) 0.32(4) 0.0053(09) 0.0067(17)
15 486 0.69(1) 88(2) 0.36(3) 0.0066(17) 0.0053(08)
16 512 0.69(1) 90(3) 0.38(3) 0.0055(08) 0.0067(16)
17 507 0.69(1) 94(3) 0.38(2) 0.0065(14) 0.0053(07)
18 445 0.71(1) 77(3) 0.43(3) 0.0074(27) 0.0065(12)
19 514 0.71(1) 93(3) 0.41(2) 0.0065(14) 0.0051(07)
20 501 0.69(1) 106(3) 0.35(2) 0.0045(06) 0.0053(09)
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Table A7. Bayesian analysis for exons of each chromosome. The column ln(E) gives us the Baysian
evidence for each of the models, Equation (11) for (i) and (9) for (j). The indices max, mos, and
pep represent, respectively, the species Cucurbita maxima, Cucurbita moschata, and Cucubita pepo. The
numbers in parenthesis indicate the calculated errors.

CHR
κ-Maxwellian Sum κ-Exponentials Bayes Factor

ln(Emax
i ) ln(Emos

i ) ln(E pep
i ) ln(Emax

j ) ln(Emos
j ) ln(E pep

j ) ln(Bmax
ij ) ln(Bmos

ij ) ln(Bpep
ij )

1 −147.17(1) −142.12(1) −170.98(1) −135.34(1) −128.84(2) −152.95(6) −11.83(1) −13.28(2) −18.03(6)
2 −144.46(1) −137.10(1) −130.95(1) −133.29(3) −125.46(6) −117.92(1) −11.17(3) −11.64(6) −13.03(1)
3 −138.97(1) −127.36(1) −133.76(1) −128.22(3) −116.33(1) −118.96(6) −10.75(3) −11.03(1) −14.80(6)
4 −187.07(1) −197.18(1) −107.60(1) −172.44(7) −180.54(1) −97.81(1) −14.63(7) −16.64(1) −9.79 (1)
5 −128.49(1) −126.69(1) −121.06(1) −117.14(3) −115.10(4) −108.52(2) −11.35(3) −11.59(4) −12.54(2)
6 −146.70(1) −137.90(1) −94.60 (1) −133.68(2) −126.53(1) −83.70(5) −13.02(2) −11.37(1) −10.90(5)
7 −120.97(1) −131.00(1) −104.27(1) −111.31(3) −119.85(2) −93.34(3) −9.66 (3) −11.15(2) −10.93(3)
8 −112.37(1) −103.10(1) −105.71(1) −102.26(2) −93.35(2) −94.89(2) −10.11(2) −9.75 (2) −10.82(2)
9 −129.29(1) −120.78(1) −104.51(1) −119.07(2) −111.31(3) −92.33(1) −10.22(2) −9.47 (3) −12.18(1)
10 −110.92(1) −132.10(1) −100.74(1) −101.87(1) −120.77(2) −91.92(3) −9.05 (1) −11.33(2) −8.82 (3)
11 −146.58(1) −152.99(1) −108.48(1) −135.32(1) −140.62(1) −97.11(3) −11.26(1) −12.37(1) −11.37(3)
12 −116.96(1) −114.18(1) −110.76(1) −106.53(3) −102.74(2) −98.23(6) −10.43(3) −11.44(2) −12.53(6)
13 −114.54(1) −125.34(1) −105.07(1) −105.62(2) −115.35(3) −93.44(3) −8.92 (2) −9.99 (3) −11.63(3)
14 −163.94(1) −163.55(1) −103.71(1) −151.50(4) −150.13(3) −92.43(1) −12.44(4) −13.42(3) −11.28(1)
15 −126.73(1) −129.25(1) −90.10 (1) −116.28(1) −116.91(2) −80.08(2) −10.45(1) −12.34(2) −10.02(2)
16 −130.03(1) −124.87(1) −96.78 (1) −119.19(3) −114.18(1) −87.58(1) −10.84(3) −10.69(1) −9.20 (1)
17 −121.57(1) −135.30(1) −98.24 (1) −111.25(2) −122.31(5) −89.39(1) −10.32(2) −12.99(5) −8.85 (1)
18 −121.37(1) −117.42(1) −84.51 (1) −111.18(2) −106.33(1) −76.01(2) −10.19(2) −11.09(1) −8.50 (2)
19 −114.09(1) −110.97(1) −95.81 (1) −104.59(1) −101.15(1) −87.73(1) −9.50 (1) −9.82 (1) −8.08 (1)
20 −117.37(1) −116.36(1) −91.77 (1) −108.02(1) −106.56(2) −83.96(1) −9.35 (1) −9.80 (2) −7.81 (1)
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Abstract: Probabilistic models with flexible tail behavior have important applications in engineering
and earth science. We introduce a nonlinear normalizing transformation and its inverse based on the
deformed lognormal and exponential functions proposed by Kaniadakis. The deformed exponential
transform can be used to generate skewed data from normal variates. We apply this transform to a
censored autoregressive model for the generation of precipitation time series. We also highlight the
connection between the heavy-tailed κ-Weibull distribution and weakest-link scaling theory, which
makes the κ-Weibull suitable for modeling the mechanical strength distribution of materials. Finally,
we introduce the κ-lognormal probability distribution and calculate the generalized (power) mean
of κ-lognormal variables. The κ-lognormal distribution is a suitable candidate for the permeability
of random porous media. In summary, the κ-deformations allow for the modification of tails of
classical distribution models (e.g., Weibull, lognormal), thus enabling new directions of research in
the analysis of spatiotemporal data with skewed distributions.

Keywords: Kaniadakis exponential; modified lognormal distribution; earthquake recurrence times;
Weibull distribution; power-law tail; precipitation; flow in random media; tensile strength

PACS: 02.50.Fz; 02.60.Ed; 89.60.-k; 92.60.Ry; 05.10.Ln
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1. Introduction

Several physical processes exhibit asymmetric probability distributions which de-
viate from the Gaussian law (e.g., the exponential, gamma, Weibull, lognormal, Pareto,
and generalized Pareto models) [1–8]. Skewed probability distributions describe various
geophysical variables, including the amount and duration of precipitation over a certain
time window [9–12], the waiting times (recurrence or interevent times) between consecutive
earthquakes occurring over a given area [6–8], the fluid permeability of geological porous
media [13–16], as well as the mechanical strength distribution of the earth’s crust [17,18]
and various technological brittle materials [19–22].

A feature of particular interest is the behavior of the tail(s) of a probability distribution,
because the tails define the probabilities of extreme events. Distributions are characterized
as sub-exponential (if their tail decays slower than the exponential) and super-exponential
in the opposite case. The same function (e.g., the Weibull model) may exhibit transitions
from sub-exponential to super-exponential by changing the value of a key parameter; in
the Weibull case this is the modulus m: m < 1 leads to a sub-exponential and m > 1 to a
super-exponential tail. Sub-exponential models are called heavy-tailed if the asymptotic
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behavior of the probability for large events decays algebraically, i.e., P(X > x) ∼ x−α,
where α > 0.

In particular, probability distributions with power-law tails are ubiquitous in natural
phenomena [23,24]. Such power laws can be generated by means of different physical
mechanisms as described in ([23], Chap. 14). Multiple mechanisms including (but not
limited to) phase transitions, self-organized criticality, optimization, multiplicative pro-
cesses, and interdependence in complex systems [25–29] lead to power laws. This fact
explains, to some extent, the omnipresence of power laws in physics, biology, earth science,
cosmology, ecology, finance, and other disciplines. In addition, the detection of power-law
distributions in data has significant impact on statistical analysis and forecasting [30].

Approximately twenty years ago, Kaniadakis introduced the κ-deformed exponential
and κ-deformed logarithmic functions [31–34]. These functions provide a springboard for
the construction of generalized, flexible probability distributions whose tails are controlled
by the deformation parameter κ. Based on the deformed functions, extensions of the known
generalized gamma, Weibull, generalized logistic, and exponential models can be con-
structed which exhibit power-law tails; explicit expressions for the probability functions of
these models are given in [35]. The Kaniadakis functions have found applications in plasma
physics [36,37], gravitational systems [38], income analysis [39–41], epidemiology [42],
and other fields (see [35] for a more comprehensive list of applications). In particular,
κ-statistical theory uses the κ-exponential function to generalize the Maxwell–Boltzmann
distribution, leading to distributions with power-law tails. Distribution models with flexi-
ble tails are also needed in earth science, where datasets often exhibit tail behavior that is
not adequately captured by classical distribution models [43–45].

The motivation for this work is the need for flexible statistical models that can adapt
to the diversity of earth science data and also provide physical intuition. Our objective
is to explore the possibilities created by the parameter κ which appears in the deformed
exponential and logarithmic functions. This investigation leads to novel applications
of the Kaniadakis functions in geostatistics, material fracture, precipitation, and fluid
flow modeling.

The main contributions of this paper are as follows.

• We show (Section 3) that the κ-deformed exponential and logarithmic functions (hence-
forth, κ-exponential and κ-logarithm) can be used to define normalizing transforms
for non-Gaussian data, which extend the well-known (in statistics) Box–Cox family of
transformations [46].

• We formulate an autoregressive, intermittent precipitation model based on the κ-
modified Box–Cox transform in Section 3.3. We show that the resulting precipitation
time series has higher “peaks” than those obtained with the Box–Cox transform with
the same parameter value.

• We review the κ-Weibull distribution focusing on its connection with weakest-link
theory (Section 4). This demonstrates that the κ-Weibull is a physically motivated
generalization of the classical Weibull distribution for the mechanical strength of brittle
materials, unlike modified Weibull distributions which fail to satisfy the weakest-
link principle.

• We show that for several physical quantities, including the thickness of magmatic sheet
intrusions, the tensile strength of steel, earthquake waiting times, and precipitation
amounts the κ-Weibull distribution provides a better fit than the Weibull according to
model selection criteria.

• We introduce the κ-lognormal distribution, which provides a deformation of the
lognormal with lighter tails than the latter in Section 5. The κ-lognormal can be used to
model asymmetric data distributions which concentrate more probability mass around
the median than the lognormal. We discuss the importance of the generalized mean
(power mean) of the lognormal distribution for estimating the effective permeability
of heterogeneous porous media, and we calculate the generalized mean of the κ-
lognormal distribution.

52



Entropy 2022, 24, 1362

2. Mathematical Preliminaries

Let (Ω,F , P), where Ω is the sample space, F is a σ-field of subspaces of Ω, and P is
a probability measure, define a probability space. A real-valued, scalar random variable
X(ω) is defined by the mapping X : Ω → R, where R is the set of real numbers [47].
Furthermore, a stochastic process X(t; ω) indexed by the time t ∈ R is defined by the
mapping X : R × Ω → R. In the following, the dependence on the state index ω is
suppressed for convenience. In addition, the random variable X represents a load or
the waiting time between consecutive “failure” events (e.g., earthquakes), or some other
asymmetrically distributed variable.

The function F(x) : P(X ≤ x) : R→ [0, 1] defines the cumulative distribution function
(CDF) of X, or the marginal CDF of a stationary stochastic process {X(t)}. The expectation
of X, assuming it is mathematically well defined, is given by means of E [X] =

∫
dF(x) x.

Assuming that F(x) is at least once differentiable, the probability density function
(PDF) is given by the first derivative of the CDF, i.e., f (x) = dF(x)/dx.

The CDF is related to the so-called survival function, also known as the reliability
function, which is given by S(x) = 1− F(x). Whereas F(x) is a monotonically increasing
function, S(x) is monotonically decreasing. The term “survival function” comes from
reliability engineering: if X represents the strength or critical loading of a given system,
F(x) is the probability that the system fails at loading level X ≤ x; then, S(x) is respectively
the probability that the system remains intact (survives) at this loading level.

The quantile function, Q(p), where p ∈ [0, 1], returns the value xp ∈ R such that
F(xp) = p. Hence, Q(·) is the inverse of the CDF.

The hazard rate, also known as the hazard function, h(x) represents the conditional
probability that the system fails for X ∈ (x, x + δx] where δx � 1, conditioned on the
survival of the system for X ≤ x. Let A denote the event that the system survives at level
x and B denote the event of system failure in the interval [x, x + δx]. Then, by using the
definition of conditional probabilities, h(x) = P(B|A) = P(B ∩ A)/P(A), the hazard rate is
given by the following ratio:

h(x) = lim
δx→0

P(x < X ≤ x + δx)
S(x) δx

=
f (x)δx
S(x)δx

=
f (x)
S(x)

. (1)

The asymptotic behavior of the hazard rate determines the probability of system
failure with increasing load. The hazard rate for x → ∞ is determined by the tail of the
probability functions f (x) and S(x). For certain probability models, e.g., the exponential
and the gamma, h(x) tends to a constant as x → 0; for the Weibull model with modulus
m > 1, h(x) tends to zero, whereas for models with power-law tails, the lognormal, and the
Weibull model with m < 1, h(x) diverges as x → ∞. The hazard rate is an important factor
in seismic risk assessment [48].

2.1. The κ-Exponential Function

The κ-generalized exponential is a one-parameter generalization of the exponential
function, proposed by Kaniadakis [31,34]:

expκ(x) =
(√

1 + x2κ2 + xκ
)1/κ

, (2)

with 0 ≤ κ < 1 and x ∈ R. The first few terms of the Taylor expansion of expκ(x), reported
in [49], are given by

expκ(x) = 1 + x +
x2

2
+ (1− κ2)

x3

3!
+ (1− 4κ2)

x4

4!
+ . . . . (3)

The emerging pattern persists for higher orders, i.e., terms of O(x3) consist of the ordinary
exponential expansion and a κ-dependent correction. The κ-exponential is expressed as the
following power series [49]:
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expκ(x) =
∞

∑
n=0

ξn(κ)
xn

n!
. (4)

The functions {ξn(κ)}∞
n=0 are polynomials of κ defined by the recurrence relations

ξ0(κ) = ξ1(κ) = 1, n = 0, 1, (5)

ξn(κ) =
n−1

∏
j=1

[1− (2j− n)κ] = ξn−2(κ)
[
1− (n− 2)2κ2

]
, n > 1. (6)

The polynomials ξn(κ) for the first seven orders are given by

ξ0(κ) = ξ1(κ) = ξ2(κ) = 1, (7)

ξ3(κ) = 1− κ2, (8)

ξ4(κ) = 1− 4κ2, (9)

ξ5(κ) = (1− κ2)(1− 9κ2), (10)

ξ6(κ) = (1− 4κ2)(1− 16κ2). (11)

It follows from Equation (3) that when x → 0 or κ → 0, expκ(x) converges to the
ordinary exponential, i.e.,

expκ(x) ∼
x→0

exp(x), (12)

expκ(x) ∼
κ→0

exp(x). (13)

Equation (2) shows that the asymptotic behavior of expκ(x) as x → ±∞ follows a power
law [34,49], i.e.,

expκ(x) ∼
x→±∞

∣∣ 2κ x
∣∣±1/κ . (14)

Based on the above, for x → +∞ the modified exponential exhibits a heavy tail, i.e.
expκ(−x) ∼ (2κx)−1/κ . Hence, expκ(x) can be used to model subexponential probability
distributions which are suitable for heavy-tailed data.

The κ-exponential can also be introduced as the solution of a linear, first-order ordinary
differential equation (ODE) with time-dependent rate [42]. Consider the ODE

d f (x)
dx

= −r(x) f (x), with initial condition f (0) = 1, (15)

where r(x) is the following x-dependent rate function

r(x) =
β√

1 + κ2β2x2
. (16)

The solution of the ODE (15) is given by the function f (x) = expκ(−βx). In case κ = 0,
then r(x) = β, and the rate equation is solved by the standard exponential function
f (x) = exp(−βx).

2.2. The κ-Logarithm Function

The inverse of the κ-exponential is the κ-logarithm, defined by the following function
for x > 0:

lnκ(x) =
xκ − x−κ

2κ
. (17)
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The κ-logarithm satisfies the equation lnκ expκ(x) = x. In addition, it respects the
κ-symmetry property lnκ(x) = ln−κ(x). A Taylor expansion of xκ and x−κ around κ = 0
leads to

lim
κ→0

lnκ(x) = ln x . (18)

The first and second derivatives of the κ-logarithm are respectively given by

d lnκ(x)
dx

=
1
2

(
xκ−1 + x−κ−1

)
, (19a)

d2 lnκ(x)
dx2 =

κ − 1
2

xκ−2 − κ + 1
2

x−κ−2 . (19b)

Based on Equation (19a), the first derivative of the κ-logarithm is positive; there-
fore lnκ(x) is a monotonically increasing function. Based on Equation (19b), the second
derivative of lnκ(x) is negative for 0 < κ < 1; therefore, lnκ(x) is a concave function for
κ ∈ (0, 1).

3. Nonlinear Transformation of Data Based on the κ-Logarithm

Nonlinear, monotonic transformations are often applied to non-Gaussian data in order
to restore normality [50–52]. This procedure, known as Gaussian anamorphosis, enables
the use of data processing methods that are based on Gaussian assumptions. Various
transforms are used in practice, including the Box–Cox [46] and Yeo–Johnson [53]. Such
transforms can be generalized by means of the Kaniadakis functions. Below we focus on
Box–Cox but the same arguments can be used for other transforms.

3.1. Box–Cox Transform and the Replica Trick

A widely used normalizing transformation in statistics is the so-called Box–Cox trans-
form (BCT) [46]; the one-parameter version of BCT is given by the monotonic function

gBC(x) =
xλ − 1

λ
, where λ ∈ R, x > 0. (20)

The BCT is applied to skewed (non-Gaussian) data so that the transformed variable
y = gBC(x) is better approximated by the Gaussian distribution. The BCT is applied
to both time series and spatial data [52].

It is interesting to note that if λ < 0, gBC(x) takes positive (negative) values for x < 1
(x > 1), whereas if λ > 0, the gBC(x) takes positive (negative) values for x > 1 (x < 1).
The BCT value for λ = 0 can be obtained by using either l’Hopital’s rule or the Taylor
expansion. The Taylor expansion of xλ around λ = 0 shows that xλ = 1 + λ ln x +O(λ2).
Therefore,

lim
λ→0

xλ − 1
λ

= ln x . (21)

Equation (21) shows that the logarithmic transform is a special case of the BCT for λ = 0.
The inverse BCT is given by hBC(y) � g−1

BC(y) = (λy + 1)1/λ.
In a different context, Edwards and Anderson [54] introduced the famous replica

trick, which is also based on Equation (21), to study spin glasses. The replica trick is used
to calculate the ensemble average (over the magnetic disorder) of the logarithm of the
spin glass partition function, i.e., ln Z. By using the replica trick, ln Z is calculated by first
evaluating gBC(Z), with λ = n ∈ N denoting the number of replicas (identical copies of the
system), and then taking the limit n → 0.
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3.2. The κ-Logarithmic Transform

The κ-logarithm transform (KLT) is a nonlinear, monotonic transformation from
R+ → R. Therefore, it can be used like the BCT for the Gaussian anamorphosis of positive-
valued data. The KLT takes the form

gKL(x) = lnκ(x) =
xκ − x−κ

2κ
, κ ∈ R, x > 0. (22)

Equation (18) shows that the logarithmic transform is a special case of the KLT for
κ → 0, as it is a special case of the BCT. To understand how the transformation works,
consider the special cases κ = λ = 1 shown in Figure 1. The choice λ = 1 for the
BCT is a simple linear shift of x to x − 1, whereas setting κ = 1 in the KLT leads to the
nonlinear transformation x2−1

2x . The latter tends to the linear transformation x/2 for x � 1.
Figure 2 shows the two transformations for different values of λ = κ. Notice that the KL
transformation is symmetric with respect to κ �→ −κ. The inverse of the KLT is given by
hKL(y) = expκ(y).

Figure 1. Plots of the Box–Cox and κ-logarithmic transform for λ = κ = 1 (λ is the Box–Cox
parameter and κ is the deformation parameter of the Kaniadakis logarithm).

Figure 2. Plots of the Box–Cox (left) and κ-logarithmic (right) transform for different values of λ = κ

(λ is the Box–Cox parameter and κ is the deformation parameter of the Kaniadakis logarithm).

3.3. Application to Precipitation Modeling

Autoregressive (AR) models are used for different meteorological processes which
exhibit memory. AR models exhibit short-term memory: the present depends on the past
via the p most recent values of the process

yt = m +
p

∑
i=1

φi (yt−i −m) + σε εt, (23)
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where m = E [yt] is the expectation of yt, the set {φi}p
i=1 comprises the real-valued

auto-regressive coefficients, {εt} is the innovation process, and σε is its standard devi-
ation. The innovation is typically considered to be standard Gaussian white noise, i.e.,
εt ∼ N (0, 1), leading to a normally distributed time series {yt}T

t=1.
Daily precipitation usually displays intermittency (i.e., intervals of zero precipitation)

in addition to temporal variability of its intensity. These features can be modeled by using
a censored autoregressive time series model [55]. Then, the amount of daily precipitation
is given by xt = yt θ(yt − yc), where θ(·) is the unit step function and yc is a censoring
threshold. The threshold is selected so that Fy(yc) = p0, where p0 is the probability of
observing a dry day. The censored AR model leads to a truncated normal distribution for
xt. Because this distribution does not adequately reflect the extreme values of precipita-
tion, in practice the daily precipitation is given by means of the following censored and
transformed autoregressive process,

xt = h[ yt θ(yt − yc)]− h(0), (24)

where h(·) : R → R is a monotonically increasing transform. The application of h(·)
introduces skewness and increases the weight in the right tail of the distribution. The sub-
tracted term h(0) restores the zero precipitation values after application of the trans-
form. The function h(·) could, for example, represent the inverse BC or KL transforms,
i.e., h(y) = (λy + 1)1/λ or h(y) = expκ(y), respectively.

Figure 3 presents six realizations of the censored AR(1) model of Equation (24) using
both the inverse BCT and KLT as the nonlinear transformation h(·), with equal values of
κ and λ in each frame. The AR(1) model of Equation (24) is applied with φ1 = 0.5 and
σε = 0.6. The time series exhibit intermittent behavior due to censoring. The difference
between BCT and KLT is negligible for small values of κ = λ. For κ ≈ 0, both transforms
yield a censored lognormal process, because hKL(y) and hBC(y) converge to the normal
exponential for κ = λ → 0. The KLT peaks become progressively higher compared to the
BCT peaks as κ (and λ) increase. This behavior is due to the following inequality between
the inverse transforms

hKL(y) =
(√

1 + κ2 y2 + κy
)1/κ

> hBC(y) = (1 + κy)1/κ , κ > 0.

Figure 3. Realizations of six time series generated by the censored and transformed AR(1) model of
Equation (24) with φ1 = 0.5 and σε = 0.6. The nonlinear transform uses BCT (blue, continuous lines)
and KLT (red, broken lines) for κ = λ ∈ {0.001, 0.2, 0.4, 0.6, 0.8, 0.95}.
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The increase in the relative height of KLT-based versus BCT-based peaks with increas-
ing κ should not be confused with the fact that the peaks of xt are highest for κ = λ = 0,
i.e., when h(·) is the exponential function (herein κ = 0 implies the limit κ → 0). This
behavior is due to the inequality expκ(y) < exp(y) for all y ≥ 0 and for 0 < κ ≤ 1, e.g., [49].

4. The κ-Weibull Distribution and Its Applications

Complex systems involve collections of interacting units and often exhibit probability
distributions with power-law tails [23]. A long (power-law) right tail of the PDF implies
that the occurrence probability for extreme events decays slowly.

One mechanism that can lead to the emergence of long tails is due to limited size of the
observation window as illustrated in Figure 4. Consider an observation domain (indicated
by the square domain in the center) which is part of a larger interconnected system (denoted
by the oval-shaped area). Let us assume that in the entire system, the failure events occur
at times t1 < t2 < t3 < t4. Furthermore, assume that the interevent times t2 − t1, t3 − t2,
and t4 − t3 follow a distribution which does not necessarily have a heavy tail. However,
since the observed system involves only the square domain, the observed interevent times
are t2− t1 and t4− t2; the latter results by adding the true interevent times t3− t2 and t4− t3,
leading to a larger period of quiescence than if the entire system were taken into account.
The repeated occurrence of events outside the observed domain can thus inflate waiting
times and transfer probability weight from the low and middle range of the probability
distribution to the right tail.

Figure 4. Schematic illustrating how long tails can emerge if the observation window (blue square)
is a nested insider a larger, interacting system (see text for explanation). Blue stars indicate events
inside the observation window, while the red star refers to an event outside the window.

In such cases, the classical Weibull distribution may not be adequate because it has
a right tail which decays at best (i.e., for m < 1) as a stretched exponential. In contrast,
the κ-Weibull distribution has a flexible power-law tail with exponent equal to −m/κ.

4.1. κ-Weibull Probability Functions

The Weibull distribution is most simply defined in terms of its survival function
S(x) = exp

[
−(x/xs)

m], for x ≥ 0, where xs > 0 is the scale parameter and m> 0 is the
shape parameter or Weibull modulus. The Weibull distribution is used in many applica-
tions such as modeling the distributions of mechanical strength of materials [17,20,21,56],
earthquake interevent times [1,2,6–8,57–61], and precipitation amounts [62–64].

The κ-Weibull distribution is a deformation of the Weibull model introduced in [39,40]
to model the distribution of income in economy. The κ-Weibull has a power-law right tail
which captures the observed Pareto law followed by income distributions. The κ-Weibull
distribution was later applied to model the mechanical strength of materials and earthquake
interevent times [43,44].

58



Entropy 2022, 24, 1362

The κ-Weibull model admits explicit expressions for the main probability functions
which are given by the following expressions [44]:

Fκ(x) = 1− expκ

(
−[x/xs]

m) , (25a)

Sκ(x) = expκ

(
−[x/xs]

m) , (25b)

fκ(x) =
m
xs

(
x
xs

)m−1 expκ

(
−[x/xs]

m)√
1 + κ2(x/xs)2m

, (25c)

hκ(x) =
m
xs

(x/xs)
m−1√

1 + κ2(x/xs)2m
, (25d)

Qκ(p) =
1
xs

[
lnκ

(
1

1− p

)]1/m
. (25e)

Note that due to the asymptotic behavior of the κ-exponential given by (14), the survival
function Sκ(x) of the κ-Weibull follows a power law with tail exponent −m/κ:

Sκ(x) ∼
x→∞

2κ (x/xs)
−m/κ . (26)

The power-law tail gives the κ-Weibull an advantage over the classical Weibull distribution
for systems with algebraic decay of the right tail of the distribution. Figure 5 compares the
tails of the survival functions for the Weibull and κ-Weibull models. Note that Sκ(x) for
κ = 0.1 is practically indistinguishable from the Weibull survival function.

Figure 5. Survival functions for the Weibull and κ-Weibull distributions for different values of κ and
xs = m = 1.

4.2. Connection with Weakest-Link Scaling Theory

Weakest-link scaling theory underlies the classical Weibull distribution. Weakest-link
scaling was proposed by Gumbel [65] and Weibull [66] in their works on the statistics of
extreme values. This section provides (i) a brief review of weakest-link scaling in connection
with the Weibull model and (ii) a demonstration that the κ-Weibull is also based on the
same principle.
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Weakest-link scaling treats a disordered system as a chain of critical clusters, also
known as links or representative volume elements (RVEs). The term “weakest-link scaling”
emphasizes the idea that the strength of an entire system is determined by the strength
of its weakest link [67]. The concept of links implies the presence of critical subsystems.
The failure of one such subsystem is presumably sufficient to cause failure of the entire
system [21]. Thus, weakest-link scaling implies that the survival probability of the system
is equal to the product of the link survival probabilities, i.e.,

SNeff(x) =
Neff

∏
i=1

S(i)
1 (x), (27)

where Neff is the number of links, SNeff(x) is the system survival function, and S(i)
1 (x) is

the survival function of the i-th link, where i = 1, . . . , Neff. The above dependence of
the survival function is characteristic of brittle fibers and ceramic materials [19,20,22] and
justifies the use of the Weibull strength distribution. It has also been shown that if the
strength of the earth’s crust follows the Weibull distribution, then the latter is also justified
for the distribution of recurrence times between earthquakes under the conditions specified
in [18].

Assuming a uniform link survival function S1(x), the system’s survival function,
Equation (27), becomes

SNeff(x) = [S1(x)]Neff . (28)

The number of links can also be expressed as the ratio of the system’s volume, V over the
link volume, V0, i.e., Neff = V/V0.

To obtain the classical Weibull distribution, the link’s survival function is assumed to
have the exponential form S1(x) = exp[−(x/xl)

m], where xl is the link’s scale parameter
and m > 0 is the Weibull modulus or shape parameter [66]. This leads to the system
survival function SNeff(x) = exp[−(x/xs)m], where xs = xl/N1/m

eff is the scale parameter
for the entire system.

The κ-Weibull distribution can be obtained by simply replacing the exponential in the
Weibull survival function with the deformed κ-exponential. However, this mathematically
valid operation does not provide physical motivation for the κ-Weibull. The latter emerges
in the framework of weakest-link scaling by using a modified link survival function. More
precisely, let us assume that the link survival function depends on the parameter κ as shown
in [43,44], i.e., that it satisfies

S1(x) =

√
1 +

(
xm

x̃m
l

)2
−
(

x
x̃l

)m
, (29)

where x̃m
l = xm

l /κ. The parameter κ can be viewed as the inverse number of effective links,
that is, Neff = 1/κ. The link survival S1(x) thus depends on the number of links, which
implies a degree of interactivity in the system. In addition, the asymptotic behavior of
S1(x) for x → ∞ is given by a power law, i.e., S1(x) ∼ Neff (2x/xl)

−m.
The link survival function for different system sizes Neff is plotted in Figure 6 against

the variable z(x) = xm/x̃m
l . The graphs exhibit the power-law asymptotic decline

S1(x) ∼ 1/z(x) as well as slower decrease of S1(x) for increasing Neff.
Finally, the weakest-link scaling relation (28) in view of the link survival function (29)

and the κ-exponential definition (2) leads to an SNeff(x) which is given by the κ survival
function (25b).
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Figure 6. Link survival function for different effective system sizes. The horizontal axis denotes the
variable z(x) = xm/x̃m

l . Larger values of Neff correspond to slower decay of S1(x).

4.3. κ-Weibull Plot for Graphical Testing

If we define the function Φκ(x) = ln lnκ(1/Sκ(x)), it follows from Equation (25b) that
Φκ(x) = m ln(x/xs). This relation suggests a graphical approach to test if a given dataset
{xn}N

n=1 follows the κ-Weibull distribution: it suffices to test if the scatter plot of Φκ(xn)
versus ln xn (for n = 1, . . . , N) is concentrated around a straight line with slope equal to
m. This property allows a quick visual test of the fit between the data and the κ-Weibull
distribution which is analogous to the widely used Weibull plot [68].

The linear dependence of Φκ(x) on ln x is illustrated in the κ-Weibull plots of Figure 7.
The graphs represent estimates of Φκ(x) derived from six samples of 500 random numbers;
the latter are generated from the κ-Weibull distribution by using the inverse transform
sampling method [43]. The samples are drawn from κ-Weibull distributions with xs = 10,
m = 0.9 and with xs = 10, m = 2; the samples with the same m value differ with respect
to κ which takes values in {0.1, 0.5, 0.9}. The function Φκ(x) is estimated by means of
Φ̂κ̂(x) = ln lnκ̂ [1/Ŝ(x)], where Ŝ(x) is the estimated survival function using the empirical
staircase estimate of the CDF from the data, and κ̂ is the maximum likelihood estimate of κ.

Although the use of graphical tools for estimating the tail exponent has an intuitive
appeal, these tools can also be misleading. Thus, in the next section maximum likelihood
estimation is used to determine the κ-Weibull parameters including the tail exponent.
Statistical testing methods (e.g., Kolmororov–Smirnov test) can also be used to validate
the hypothesis of a particular probability distribution model. Note that if the distribution
parameters are not known a priori, but instead are estimated from the data (as is typically
done in practice), Kolmororov–Smirnov testing must be implemented by using a Monte
Carlo resampling approach as described in [27]. This testing approach was applied to
probability models for earthquake recurrence times in [43].
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Figure 7. Plots of estimated Φκ(x) obtained from κ-Weibull synthetically generated samples with
different values of the Weibull modulus m and the deformation parameter κ.

4.4. Application to Real Data

We investigate the κ-Weibull as an alternative to the Weibull distribution for differ-
ent data. These include a dataset comprising measurements of tensile strength of carbon
fibres [69], daily averaged wind speed in Cairo (Egypt) [70], thickness of magmatic sheet
intrusions (dykes) for different tectonic settings [71], tensile strength of steel [72], and earth-
quake recurrence times [73,74].

The aforementioned datasets are fitted to the Weibull and κ-Weibull distributions
by using maximum likelihood estimation. The Matlab code used to estimate the model
parameters is publicly available [75]. The results of the fits are presented in Table 1.
The entries include the maximum likelihood estimates of the model parameters as well
as the optimal negative log-likelihood (NLL) values for each fit. The lower the NLL of
a given distribution model is, the better its fit to a particular dataset. For all the cases
listed in Table 1, the NLL is lower for the κ-Weibull than for the Weibull distribution.
However, the κ-Weibull involves three parameters whereas the Weibull model involves
only two parameters. To account for the different number of parameters, the selection
of the optimal model can be performed by means of the Akaike information criterion
(AIC) [76], i.e., AIC = 2k + 2NLL, where k is the number of free parameters for each model
(k = 2 for the Weibull and k = 3 for the κ-Weibull). The best model has the lowest AIC
value. Because AICκW −AICW = 2(1 + NLLκW −NLLW), AIC favors the κ-Weibull only
if NLLκW −NLLW < −1. This condition is satisfied for all but the first two datasets.

A more stringent condition is provided by the Bayesian information criterion,
BIC = k log N + 2NLL, where N is the data size [77]. For N > 8, the BIC imposes a
bigger penalty on model complexity than AIC. The difference in BIC values for the κ-
Weibull and the Weibull models is given by BICκW − BICW = log N + 2(NLLκW −NLLW).
Thus, under the BIC the κ-Weibull is optimal if NLLκW −NLLW < −(log N)/2. The BIC
condition also favors the κ-Weibull distribution for the datasets 3–9. In order to allow easier
comparison, the values of AIC and BIC (divided by the number of sample points) for both
the Weibull and κ-Weibull distributions are listed for each dataset in Table 2.
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Table 1. Results of maximum likelihood estimated fits to the Weibull and κ-Weibull distribution. 1.
Tensile strength of carbon fibers. 2. Daily averaged wind speeds from 1 January 2009 to 4 October
2009 for Cairo, Egypt. 3–6. Thickness of magmatic sheet intrusions for different tectonic settings. 7.
Tensile strength of low-alloy steels. 8. Recurrence times of aftershocks (A.R.T.) from 25 October 2018
until 31 May 2019, following the major Mw 6.9 Zakynthos earthquake (Greece). 9. Recurrence times
of foreshocks (F.R.T.) preceding the Zakynthos earthquake (from 1 January 2014 until 25 October
2018). For more information regarding the data see the relevant sources. N, sample length; xs, scale
parameter; m, shape parameter; κ, Weibull deformation parameter. Values are rounded off to the
second decimal digit. NLL, Negative log-likelihood.

Weibull κ-Weibull

Data N xs m NLL xs m κ NLL

1. C fibers (GPa) [69] 100 2.94 2.79 141.53 2.90 2.98 0.285 141.23
2. Wind (mph) [70] 100 8.05 2.78 240.21 7.63 3.28 0.56 239.32
3. Dyrfjöll (m) [71] 487 0.90 1.26 378.05 0.84 1.46 0.42 368.40
4. Geitafell (m) [71] 546 0.57 1.02 233.88 0.52 1.17 0.43 225.62
5. Tenerife (m) [71] 550 1.83 1.02 875.18 1.65 1.18 0.45 867.38
6. La Palma (m) [71] 2093 0.43 1.14 206.51 0.37 1.53 0.66 83.98
7. Steel (MPa) [72] 915 548.58 1.98 6194.22 524.26 4.81 0.52 5753.13
8. A.R.T. (days) [74] 7822 0.027 0.94 −20207 0.024 1.19 0.49 −20374
9. F.R.T. (days) [74] 4731 0.28 0.68 −692.60 0.27 0.70 0.17 −698.37

Table 2. Measures of fit to the Weibull and κ-Weibull distributions for the datasets listed in Table 1.
NLL, negative log-likelihood; AIC’, value of Akaike information criterion value per sample point,
i.e., AIC’ = AIC/N = 2(k + NLL)/N; BIC’, value of Bayesian information criterion per sample point,
i.e., BIC’ = BIC/N = (k log N + 2 NLL)/N.

Weibull κ-Weibull

Data N NLL AIC’ BIC’ NLL AIC’ BIC’

1. C fibers (GPa) 100 141.53 2.8706 2.9227 141.23 2.8846 2.9628
2. Wind (mph) 100 240.21 4.8842 4.8963 239.32 4.8464 4.9246
3. Dyrfjöll (m) 487 378.05 1.5608 1.5780 368.40 1.5253 1.5511
4. Geitafell (m) 546 233.88 0.8640 0.8798 225.62 0.8374 0.8611
5. Tenerife (m) 550 875.18 3.1897 3.2054 867.38 3.1650 3.1885
6. La Palma (m) 2093 206.51 0.1992 0.2046 83.98 0.0831 0.0912
7. Steel (MPa) 915 6194.22 13.5437 13.5542 5753.13 12.5817 12.5975
8. A.R.T. (days) 7822 −20207 −5.1662 −5.1644 −20374 −5.2086 −5.2060
9. F.R.T. (days) 4731 −692.60 −0.2919 −0.2892 −692.60 −0.2940 −0.2899

5. The κ-Lognormal Distribution

The lognormal distribution is often used to model long-tailed processes [23]. In this
section we derive a generalization of the lognormal which is based on the κ-deformation
of the exponential function. Let us assume that the random variable Y follows the normal
distribution with marginal PDF given by

fy(y) =
1√
2πσ

e−(y−m)2/2σ2
. (30)

We then define the random variable X = gκ(Y) by means of the κ-exponential transformation

x = gκ(y) � expκ(y) =
(√

1 + κ2y2 + κy
)1/κ

. (31)

To determine the PDF of the random variable X we use the standard integral relation for
the PDF under the nonlinear transformation gκ(y)
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fx(x; κ) =
∫ ∞

−∞
δ(x− gκ(y)) fy(y)dy .

Because the nonlinear transform is monotonic and therefore invertible, the PDF of X is
given by means of the following mapping [47,52]:

fx(x; κ) = fy

(
y = g−1

κ (x)
) ∣∣∣∣dg−1

κ (x)
dx

∣∣∣∣.
Taking into account the normal PDF of Equation (30), the inverse transform which is given
by g−1

κ (x) = lnκ(x), and the first derivative of lnκ(·) which is given by Equation (19), it
follows that the PDF of the κ-lognormal distribution is given by

fx(x; κ) =
1√

2πσ x
e−(lnκ x−m)2/2σ2

(
xκ + x−κ

2

)
. (32)

It is clear that fx(x; κ = 0) recovers the lognormal distribution because limκ→0 lnκ(x) = ln x
and limκ→0

(
xκ+x−κ

2

)
= 1. Moreover, the κ-lognormal PDF given by Equation (32) is

symmetric with respect to κ.
The Box–Cox transform of the Gaussian PDF can be similarly obtained by means of

the PDF transformation under a change of variables. The resulting PDF is given by

fx(x; λ) =
xλ−1
√

2πσ
e−[(xλ−1)/λ−m]

2
/2σ2

. (33)

The κ-lognormal PDF given by Equation (32) has heavier tails than the PDF in Equation (33)
resulting from the Box–Cox transform of the Gaussian. This is confirmed by the parametric
plots of the two parametric PDF families shown in Figure 8 for different values of λ = κ.
Notice that for λ = 0 (left frame in Figure 8), and κ = 0 (right frame in Figure 8) the PDFs
tend to the lognormal PDF.

Figure 8. Probability density functions resulting from the κ-logarithmic (left) and Box–Cox (right)
transformations of the standard normal distribution, given by Equations (32) and (33) respectively.
The curves correspond to different values of λ = κ (λ is the Box–Cox parameter and κ is the
deformation parameter of the Kaniadakis logarithm).

In order to compare the tails of the κ-lognormal with the tails of the lognormal distri-
bution, let us define the PDF ratio R f (x; κ):

R f (x; κ) � fx(x; κ)

fx(x; κ = 0)
= e−{(lnκ x−m)2−(ln x−m)2}/2σ2

(
xκ + x−κ

2

)
. (34)

First, we show that for κ > 0 and for x > 1 it holds that lnκ(x) > ln x. Let us define
the function u(x) = lnκ(x)− ln x. (i) It holds that u(1) = lnκ(1)− ln 1 = 0. It suffices to
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show that u(x) is a monotonically increasing function for x > 1. (ii) The derivative of u(x)
is du(x)/dx = (xκ + x−κ − 2)/(2x), and it is positive if xκ + x−κ > 2. By multiplying both
sides with xκ (xκ > 0) and setting xκ = y, the inequality xκ + x−κ > 2 becomes equivalent
to (y− 1)2 > 0, which is true for any y ∈ R. Hence, it holds that limx→∞ R f (x; κ) = 0,
and thus the κ-lognormal has a lighter right tail than the lognormal distribution.

The proof of monotonicity of u(x) also holds for x < 1: by replacing x with x′ = 1/x
where x′ > 1, it holds that xκ + x−κ = (x′)−κ + (x′)κ , and therefore du(x)/dx > 0; that
is lnκ(x) > ln x for x < 1. Therefore, limx→0 R f (x; κ) = 0, and thus the left tail of the
κ-lognormal is also lighter than the lognormal’s tail. Hence, the κ-lognormal concentrates
more density in the middle of the distribution than the lognormal. The relative transfer of
density from the tails to the body of the distribution is controlled by κ and becomes more
pronounced as κ increases. This is confirmed by the parametric plots of R f (x; κ) shown in
Figure 9 (bottom panel) for different values of κ.

Figure 9. Parametric plots (versus x) of the κ-lognormal PDF defined in Equation (32) (top) and
the ratio function R f (x; κ) defined in Equation (34); the latter compares the tails of the κ-lognormal
relative to the lognormal distribution for different values of the deformation parameter κ (bottom).

5.1. Effective Permeability of Random Media

Single-phase, incompressible, steady-state flow in saturated random media is gov-
erned by the partial differential equation

∇ · K(s)∇P(s) = 0, with suitable boundary conditions, (35)

where s ∈ Rd is the position vector, P(s) is the pressure, and ∇P(s) the pressure gradient,
a · b denotes the inner product of the vectors a and b, and K(s) is the fluid permeability.
The latter is assumed to be a scalar random field, i.e., a random function over the domain
D ⊂ Rd; (in the case of anisotropic media K becomes a tensor). Equation (35) is the
continuity equation which expresses the conservation of mass.

In the case of slow viscous flow through random media, the fluid velocity is given
by Darcy’s law, i.e., V(s) = −K(s)∇P(s)/μ where μ is the fluid viscosity [78], and thus
the continuity equation becomes ∇ ·V(s) = 0. The local variations of the velocity do not
usually matter for the macroscopic flow behavior, i.e., for the average fluid velocity through
a large domain. The macroscopic velocity is often determined in terms of an effective
permeability; the latter connects the average pressure gradient to the average fluid velocity
by means of E [V(s)] = −Ke f f E [∇P(s)]. The ensemble average here is evaluated over the
joint probability distribution of K(s), which represents the local variations (microstructure)
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of the medium. Similarly, effective measures can be defined for other properties (e.g.,
elasticity) of porous media by means of averages over the microstructural disorder [79–81].

The generalized mean 〈K〉α with α = 1− 2/d, also known as the power-law mean, is
used to estimate the effective flow permeability (for single-phase, saturated flow), Ke f f of
random porous media with lognormal disorder and short-range correlations [16]. For a
given power-law exponent α, the generalized mean is defined by means of the following
expectation (assuming that it is well-defined mathematically):

〈K〉α � {E [Kα]}1/α, −1 ≤ α ≤ 1. (36)

For α = −1, Equation (36) yields the harmonic mean, whereas for α = 0 the geometric
mean, KG = exp[E(ln K)], is obtained as the limit limα→0〈K〉α.

Furthermore, assuming that K = g(Y) where Y ∼ N
(
m, σ2) is a normally distributed

random variable. In general, both Y and K can be random fields with spatial correlations.
However, this does not affect the calculation of the generalized mean, which is a point
(marginal) property. The generalized mean of K = g(Y) is now given by

〈K〉α � {EY[gα(Y)]}1/α, −1 ≤ α ≤ 1. (37)

Thus, if K follows the lognormal distribution, namely, K = exp(Y), it holds that

〈K〉α = {EY[exp(αY)]}1/α = em+ α
2 σ2

, −1 ≤ α ≤ 1. (38)

This equation, known as the Landau–Lifshitz–Matheron (LLM) ansatz, was first proposed
for the dielectric permittivity of random dielectric mixtures [82]. In the case of electromag-
netism, the continuity equation is embodied in Gauss’s law; for zero free charge density
the latter becomes ∇ ·D(s) = 0, where D(s) = −ε(s)∇φ(s) is the dielectric displacement
field, φ(s) is the applied electric potential, and ε(s) is the dielectric permittivity of the
medium. Notation differences aside, the mathematical form of the electrostatic equations is
identical to those of the fluid flow problem; in both cases the continuity principle results
in an elliptic partial differential equation with suitable boundary conditions. This reason
underlies LLM’s applicability to both fluid permeability and dielectric permittivity; as
Richard Feynman wrote ([83], Chap. 12.1): “there is a most remarkable coincidence: The
equations for many different physical situations have exactly the same appearance”.

For d = 1 (e.g., for pipe flows), LLM yields the harmonic mean KH = 1/E [K−1];
in this case the flow is cut off if the permeability vanishes at a single point. For d = 2,
Ke f f = 〈K〉0 yields the geometric mean, KG = exp(E [ln K]), which coincides with the
exact solution in two dimensions [84]. Finally, in d = 3 the expression 〈K〉1/3 follows from
perturbative renormalization group analysis [16]. The LLM equation implies that the effect
of disorder (as measured by the log-permeability variance σ2) is reduced as the embedding
dimension of the medium increases. The physical meaning of this dependence is that
three-dimensional media include more permeable paths than one- or two-dimensional
random media, thus enabling the bypass of flow bottlenecks.

5.2. Generalized Mean of the κ-Lognormal Distribution

This section focuses on the calculation of the generalized mean when K follows the
κ-lognormal distribution. In this case, the respective ensemble average over the normal
variable Y ∼ N

(
m, σ2), defined by Equation (37), is given by

〈K〉α;κ =
{
EY

[{
expκ(Y)

}α
]}1/α

=
{
EY
[
expκ/α(αY)

]}1/α, −1 ≤ α ≤ 1, (39)

where in deriving the last equality above we used the identity

[expκ(Y)]
α = expκ/α(αY) = expκ′(αY), where κ′ = κ/α. (40)
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Note that for κ = 0 Equation (39) is equivalent to Equation (38) because the κ-exponential
is reduced to the standard exponential.

If, on the other hand, κ > 0, it holds that κ′ 
= 0. The expectation in Equation (39)
can then be calculated by using the Taylor series expansion of expκ/α(αY) around exp(αY);
according to Equation (4), the expansion is given by

expκ′(αy) = exp(αy) +
∞

∑
n=0

[
ξn(κ

′)− 1
] (αy)n

n!
, where κ′ = κ/α ∈ R, (41)

and the polynomials ξn(·) are defined in Equation (5).
The power series in Equation (41) represents the correction of expκ′(αy) with respect

to exp(αy). Based on Equation (7), it holds that expκ′(αy) = exp(αy) +O(κ′2). Notice that
ξn(κ′)− 1 = 0 for n = 0, 1, 2, whereas ξn(κ′)− 1 < 0 for n = 3, 4. Hence,

expκ′(αy) = exp(αy) +
∞

∑
n=3

[
ξn(κ

′)− 1
] (αy)n

n!
. (42)

Hence, the expectation of the above is given by means of the following expression:

EY[expκ′(αY)] = EY[exp(αY)] +
∞

∑
n=3

[
ξn(κ

′)− 1
] αn

n!
EY[Yn], κ′ = κ/α. (43)

The expectation EY[Yn] is given by means of the following expression by using the fluctua-
tion Y′ = Y−m and Newton’s binomial formula:

EY[Yn] = EY
[
(m + Y′)n] = n

∑
j=0

(
n
j

)
mn−j EY′

[
Y′j

]
.

The expectation over the fluctuations can be calculated by using the Wick–Isserlis
theorem [52] EY′

[
Y2�

]
= (2�)! σ2�/(2��!), and EY

[
Y2�+1

]
= 0 for � ∈ N.

Therefore the difference between the generalized mean of the κ-lognormal and the
generalized mean of the lognormal (for the same value of α) is given by an infinite power
series (correction factor), where δj,2� is the Kronecker delta, as follows:

EY[expκ′(αY)] = EY[exp(αY)] +
∞

∑
n=3

αn[ξn(κ
′)− 1

] n

∑
j=0

mn−j σj δj,2�

2j/2(n− j)!(j/2)!
. (44)

Finally, returning to Equation (39) and using Equation (44) the generalized mean of
the κ-lognormal distribution is given by

〈K〉α;κ = 〈K〉α

⎡⎢⎣1 +
∑∞

n=3 ∑n
j=0 αn[ξn(κ/α)− 1]

mn−j σj δj,2�

2j/2(n−j)! (j/2)!

〈K〉αα

⎤⎥⎦
1/α

. (45)

The convergence of the power series in Equation (45) should be further investigated
mathematically. To gain some insight into Equation (45), consider the case α = 1, which
corresponds to the arithmetic (linear) mean. Then, the arithmetic mean of the κ-lognormal,
i.e., Kκ � 〈K〉α=1;κ is given by

Kκ = K

[
1 +

1
K

∞

∑
n=3

n

∑
j=0

[ξn(κ)− 1] δj,2�
mn−j σj

2j/2(n− j)! (j/2)!

]
. (46)

Hence, the arithmetic mean of the κ-lognormal is given by the standard arithmetic
mean plus a correction factor which involves a double power series. Notice that when
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κ = 0, according to Equation (5) it holds ξn(κ = 0) = 1 for all n ∈ N; hence, Equation (46)
recovers the arithmetic mean when κ = 0 because the double power series vanishes.

On a more practical note, a numerical calculation of the generalized mean shows
that the infinite series in 〈K〉α;κ converges for −1 ≤ α ≤ 1 and 0 < κ < 1. Figure 10
shows parametric plots of the generalized mean obtained by a numerical evaluation of
Equation (39). The expectations (for different α and κ) are calculated by using an ensemble
of 104 random variates drawn from the standard normal distribution, i.e., Y ∼ N(0, 1).

Figure 10. Parametric plots of the generalized mean versus κ for different values of the averaging
exponent α (left) and the generalized mean versus α for different values of the deformation parameter
κ (right).

The plots on the left of Figure 10 display the generalized mean as a function of κ for
different values of the averaging exponent α. As evidenced in these plots, the difference
between the harmonic mean (α = −1) and the arithmetic mean (α = 1) is reduced as κ
increases. This behavior is due to the smaller tail weight of the κ-lognormal PDF for κ ↑.
It is also observed that the geometric mean (α = 0) is independent of κ (for numerical
reasons we use α = 0.001 instead of α = 0). This is also understood in light of Equation (39).
Finally, the arithmetic mean (more generally, the generalized mean for α > 0) decays with
increasing κ whereas the harmonic mean (more generally, the generalized mean for α < 0)
increases. This behavior is due to the fact that the arithmetic mean reflects the diminishing
right tail of the κ-lognormal as κ increases. On the other hand, the harmonic mean is
more strongly influenced by the lower part of the distribution; according to Figure 9 the
κ-lognormal has higher density in the left tail (except for values very close to zero) for
higher values of κ.

The plots on the right of Figure 10 display the generalized mean as a function of
α for different values of κ. All the curves exhibit an increase of the generalized mean
with increasing α. This reflects the progression from the harmonic to the arithmetic mean
according to the well-known ordering KH ≤ KG ≤ K. All the curves intersect at α = 0,
marking the independence of the generalized geometric mean on κ. Finally, the slope of
the curves is reduced with increasing κ due to the respective shrinking of the tails of the
κ-lognormal.

6. Discussion

Section 3 introduced and investigated the properties of a nonlinear normalizing trans-
form which is based on the κ-logarithm. The proposal generalizes the Box–Cox transform,
and it can be used for normalizing skewed data before geostatistical methods are applied.
An application to precipitation time series modeling was presented. Note that the non-
linear κ-logarithm transform could also be used in spatial models of precipitation in the
framework of the censored latent Gaussian field approach [10]. At fine spatiotemporal
scales, the correlations of dry/wet spells as well as storm autocorrelation patterns can be
better captured by means of two-state models that use copulas to simulate the dependence
structure [85]. We believe that the κ-Weibull and κ-lognormal distributions discussed herein
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will be useful in the framework of two-state models as well, e.g., for modeling the intensity
of wet spells.

Section 4 shows that the κ-Weibull model, which is a deformation of the classical
Weibull with a power-law right tail, also respects the principle of weak-link scaling. Various
extensions of the Weibull model have been proposed in the scientific literature, e.g., [86,87].
However, some of these models provide deformations of the Weibull expression that fail the
weakest scaling equation (see Equation (28)) as pointed out by Zok [22]. Such modifications,
although mathematically permissible, lack the physical justification of the classical Weibull
model which is based on weakest-link scaling. Moreover, we established that the link
statistical properties depend on the number of links in the system. This feature indicates a
strongly interacting system; alternatively, it shows that the observed system is a part of a
larger system.

The asymmetric κ-lognormal distribution introduced in Section 5 has lighter tails
than the lognormal distribution. The deviation from the lognormal is controlled by the
parameter κ. Smaller values of κ ≈ 0 imply small deviations, whereas larger values of
κ ≈ 1 signify thinner tails than the lognormal. The κ-lognormal can be used as a model
of fluid permeability for random porous media. We believe that the stochastic theory of
single-phase, saturated fluid flow in κ-lognormal media can be derived, at least in the
framework of perturbation analysis, and expressions for the effective permeability can
be likewise obtained. An interesting question is how the parameter κ which controls tail
behavior will impact flow properties.

We have reviewed the generalized mean for the lognormal distribution and its appli-
cation in the estimation of the effective permeability of random media. We then studied the
generalized mean for the κ-lognormal distribution. Note that our calculations do not prove
that the effective permeability of random media with κ-lognormal disorder is given by the
generalized mean. This intriguing hypothesis should be further explored in the framework
of the stochastic theory of flow and transport [80].

7. Conclusions

We presented applications of the Kaniadakis κ-exponential and κ-logarithm functions
in the modeling of mechanical strength and in earth science problems. In particular, we
focused on κ deformations of classical distribution models such as the Weibull and the
lognormal. The κ-Weibull distribution has a power-law tail which is useful for the modeling
of mechanical strength, earthquake recurrence times, and properties of geological structures,
among other applications. On the other hand, the κ-lognormal model has a tail lighter than
the lognormal; this feature is of interest for skewed distributions which decline faster than
the lognormal. The methodological applications of the Kaniadakis functions presented
include the following:

• The modified Box–Cox transform given by Equation (22).
• Application of the modified Box–Cox transform to an autoregressive, intermittent

model of precipitation as described in Section 3.3.
• Connection between the κ-Weibull probability model with the theory of weakest-link

scaling as shown in Section 4.2.
• The study of the κ-lognormal distribution which is a generalization of the lognormal

model with lighter tails. The PDF of this new model is given by Equation (32).
• The calculation of the power-mean (generalized mean) of the κ-lognormal as shown

in Section 5.2.

Further study of probability models based on the deformed exponential and log-
arithmic functions will lead to significant advances in different fields of earth science.
The most obvious applications at this time include (i) modeling the mechanical strength
of technological materials and geologic media, earthquake recurrence times, wind speed,
and precipitation amounts, (ii) nonlinear transforms used for Gaussian anamorphosis in
geostatistical and ensemble Kalman filtering applications [88], and (iii) the permeability of
random porous media.
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AR Autoregressive
AIC Akaike Information Criterion
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CDF Cumulative distribution function
KLT κ-logarithm transform
LLM Landau-Lifshitz-Matheron (ansatz)
NLL Negative log-likelihood
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Abstract: In the last seven years, Kaniadakis statistics, or κ-statistics, have been applied in reactor
physics to obtain generalized nuclear data, which can encompass, for instance, situations that lie
outside thermal equilibrium. In this sense, numerical and analytical solutions were developed for
the Doppler broadening function using the κ-statistics. However, the accuracy and robustness of the
developed solutions contemplating the κ distribution can only be appropriately verified if applied
inside an official nuclear data processing code to calculate neutron cross-sections. Hence, the present
work inserts an analytical solution for the deformed Doppler broadening cross-section inside the
nuclear data processing code FRENDY, developed by the Japan Atomic Energy Agency. To do
that, we applied a new computational method called the Faddeeva package, developed by MIT, to
calculate error functions present in the analytical function. With this deformed solution inserted in
the code, we were able to calculate, for the first time, deformed radiative capture cross-section data
for four different nuclides. The usage of the Faddeeva package brought more accurate results when
compared to other standard packages, reducing the percentage errors in the tail zone in relation to the
numerical solution. The deformed cross-section data agreed with the expected behavior compared to
the Maxwell–Boltzmann.

Keywords: Kaniadakis; κ-statistics; neutron cross-section; Doppler broadening function; Faddeeva
function

1. Introduction

Over the last 20 years, the Kaniadakis entropy [1] and its power-law tailed statistical
distributions have been applied in many different fields, such as finance [2], astrophysics [3–6],
game theoretical equilibrium [7], gravitational physics [8,9], dusty plasma [10] and so
many others.

In nuclear reactor physics, 2015 marked the first idealization of applying the κ-
deformed statistics, intending to describe situations in non-thermal equilibrium inside a
nuclear reactor, with the first article on this being published in 2017 [11]. The Doppler
broadening function is utilized to represent the thermal nuclear movement. This function
is commonly considered with a medium in thermal equilibrium with a temperature of
T and using the Maxwell–Boltzmann distribution to describe the random velocities of
the nuclei. However, to comprehend situations that lie outside the thermal equilibrium,
Guedes et al. [11] proposed a very new expression for a deformed Doppler broadening
function considering the Kaniadakis statistics:

ψκ(ξ, x) =
ξ

2
√

π
B(κ)

∫ +∞

−∞

1
1 + y2 i expκ

[
−ξ2(x− y)2

4

]
dy, (1)
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where,

x ≡ 2
Γ
(E− E0); (2)

ξ ≡ Γ(
4E0KBT

A

) 1
2

; (3)

κ is a deviation parameter that measures the deviation concerning the Maxwell–Boltzmann
distribution [1,12], kB is the Boltzmann constant, E0 is the resonant energy, E is the energy
of the incident neutron, A is the mass number, and Γ is the total width of the resonance as
measured in the laboratory coordinates. Furthermore,

y ≡ 2
Γ
(ECM − E0); (4)

B(κ) = (2|κ|)
3
2

(
1 +

1
2

3|κ|
)Γ

(
1

2|κ| +
3
4

)
Γ
(

1
2|κ| −

3
4

) . (5)

i expκ(z) ≡
(√

1 + κ2z2 − κ2z
1− κ2

)
expκ(z); (6)

z =
−ξ2(x− y)2

4
(7)

and expκ is the deformed exponential function, first introduced by Kaniadakis [1]:

expκ(x) ≡
(√

1 + κ2x2 + κx
) 1

κ . (8)

However, the numerical calculation of Equation (1) can represent a considerable ad-
ditional amount of computer processing time, especially when inserted in nuclear data
processing codes. In order to surpass this issue, Abreu et al. [13] proposed an analytical
solution based on obtaining a differential equation and its solution to represent the de-
formed Doppler broadening function using the Kaniadakis distribution [14]. This analytical
solution proved to be up to five times faster than the numerical one [14]. Analytical so-
lutions were also successfully applied in order to obtain faster methods for the Doppler
broadening function considering the standard Maxwell-Boltzmann statistics [15] and Tsallis
statistics [16].

The validation of the applicability of the Kaniadakis statistic can be performed in
other areas through observational data, e.g., cosmic ray flux [12], stellar-residual-radial-
velocities [6] and Stellar rotational velocities [4]. However, this kind of approach is not
directly applicable to nuclear reactor physics, given the impossibility of observing and
measuring the distribution of relative velocities between neutrons and nuclei in a nuclear
reactor. Therefore, one of the possible ways to validate the use of κ-statistics is through
numerical simulations, similar to in other scientific topics, e.g., relativistic plasmas under
the effect of wave-particle interactions [3], non-extensive random matrix theories [17] and
Jeans instability of self-gravitating systems [18].

Nevertheless, the accuracy and robustness of the developed solutions contemplating
the κ distribution can only be appropriately verified if it is applied in a nuclear data
processing code, e.g., FRENDY [19,20], NJOY [21], PREPRO [22] and NECP-Atlas [23].
These systems can process official evaluated nuclear data libraries such as ENDF [24],
CENDL [25], JEFF [26] or JENDL [27]. Until the present work, the only results that have
been presented for neutron cross-sections considering the Kaniadakis distribution were
calculated without doing this [28,29].
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Thus, this study’s purpose is to calculate deformed neutron cross-sections of radioac-
tive capture—in the resolved region—for the first time using the Kaniadakis distribution
through an analytical solution inside a nuclear data processing code: the FRENDY.

Additionally, this work aims to apply an alternative numerical methodology to cal-
culate the challenging error functions (with complex arguments) present in the analytical
solution of the deformed Doppler broadening function.

2. Methodology

The Japan Atomic Energy Agency (JAEA) developed the nuclear data processing code
FRENDY (From Evaluated Nuclear Data Library to any application) to treat the most recent
nuclear data format, such as the evaluated nuclear library JENDL [27], also developed
by JAEA. It was built using the object-oriented language C++ because of its modularity,
maintainability, flexibility and portability [30].

Moreover, the FRENDY also intends to work in the future with the recent nuclear data
format Generalized Nuclear Data Structure (GNDS), which the current processing codes
cannot treat without a considerable amount of format revision [30].

To calculate neutron cross-sections in reactor physics, one can use different formalisms
such as single-level Breit-Wigner (SLBW), Multi-level Breit-Wigner (MLBW), Adler–Adler
and Reich-Moore [30]. To develop the integral formulation for the deformed Doppler
broadening function, Equation (1), Guedes et al. [11] used the Single-level one, even though
it is not the most recent method. According to the authors, that choice was made because it
is easy to implement, it can use published resonance parameters, and it can be Doppler-
broadened analytically. It also can be used in reactor physics calculations [11]. Furthermore,
the SLBW is the only representation available, for instance, for the ENDF-6 format in the
unresolved region [30,31].

2.1. Calculating Standard Neutron Cross-Sections with FRENDY

The FRENDY code, by default, uses the Kernel broadening method to more accurately
calculate the Doppler-broadened cross-sections in the resolved resonance considering the
standard Maxwell-Boltzmann distribution [30]. However, this method demands high
computational effort, increasing computational time [30]. Considering this and the fact that
the deformed Doppler broadening function using the Kaniadakis statistics adds an extra
level of complexity and, consequently, higher computational times, the present work aims
to use the single-level Breit-Wigner to calculate the deformed neutron cross-sections in the
resolved region.

One of the advantages of the SLBW method is the possibility of using the ψ − χ
method. Through this method, one can represent the standard radiative neutron cross-
sections by [30]:

σγ(E, T) =
4π

k2 ∑j gJ ∑r Γnr
Γγr

Γr2 ψ(ξ, x), (9)

σγ is the radiative capture cross-section, Γr the total width, Γγr the radiative capture width,
Γnr the neutron widths, k the neutron wave number, gJ a spin statistical factor and E an
incident neutron energy.

To calculate the standard Doppler broadening function, ψ(ξ, x), inside the FRENDY,
Tada, Kunieda and Nagaya [30] adopted the four-pole Padé approximation to reduce the
calculation time. By using this method, the expression for the standard Doppler broadening
function is represented by:

ψ(s, x) ∼= ξ
√

π

2
Re[w(z)], (10)

where,

s =
ξ

2
(x− y). (11)
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w(z) represents a scaled complex complementary error function, commonly known as the
Fadeeva or Krump function [32]. It is defined by [33]:

w(z) = e−z2
[1− er f (−iz)] (12)

er f (z) ≡ 2√
π

∫ z

0
e−t2

dt, (13)

z = u + ih (14)

u = (ξ/2)·x (15)

h = ξ/2 (16)

2.2. Calculating Deformed Neutron Cross-Sections with FRENDY

As mentioned earlier, the analytical solution of the Doppler broadening function using
the Kaniadakis statistics, proposed by Abreu et al. [13] is obtained through a differential
equation and its respective resolution [14], given by:

ψk(ξ, x) = Λ(x, ξ)
[
D(ξ, x) + Ωg(ξ, x)

]
, (17)

where,

Λ(ξ, x) = exp
(

ξ2 − ξ2x2

4

)
· ξ
√

πB(κ)
4

; (18)

D(ξ, x) ≡ [Δ(ξ)·cos(Θ)]; (19)

Ωg(ξ, x) ≡ Π(x, ξ)·[iΩ1(ξ, x) + Ω2(ξ, x)]; (20)

Δ(ξ) =
2− 2er f

(
ξ
2

)
1− κ2 . (21)

Π(ξ, x) =

√
ξ4 − 2ξ2κ2

−ξ2 + 2κ2 · exp
(−κ2

2

)
; (22)

Ω1(ξ, x) = sin(Θ)·
[
er f (P1)κ

2 − er f (P1) + er f (P2)κ
2 − er f (P2)

]
; (23)

Ω2(ξ, x) = cos(Θ)·
[
2er f (P3)κ

2 − 2er f (P3)− er f (P1)κ
2 + er f (P1) + er f (P2)κ

2 − er f (P2)
]
; (24)

P1(ξ, x) =
−iξ2x +

√
ξ4 − 2ξ2κ2

2ξ
; (25)

P2(ξ, x) =
−iξ2x−

√
ξ4 − 2ξ2κ2

2ξ
; (26)

P3(ξ, x) =

√
ξ4 − 2ξ2κ2

2ξ
; (27)

Θ(ξ, x) =
x
2

√
ξ4 − 2ξ2κ2; (28)

To calculate the deformed cross-sections using the Kaniadakis distribution, one needs
to substitute the real part of the Faddeeva function for the analytical solution, Equation (17),
in the definition of cross-sections in the code, represented by Equation (9), so that:

σγ(E, T) =
4π

k2 ∑j gJ ∑r Γnr
Γγr

Γr2 ψκ(ξ, x), (29)
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One of the main challenges in calculating the deformed analytical solution considering
the Kaniadakis distribution is calculating the error functions with complex arguments
represented in Equations (23) and (24).

The so-called Gaussian error function, er f (x), is defined as follows [33]:

er f (x) =
2√
π

∫ x

0
e−t2

dt. (30)

Though these error functions only mean relevance in the tails of the cross-section
curves—far from the resonance peak—it is of great significance to implement suitable
methodologies to elevate this region’s precision. These regions—due to lower absolute
values—usually present the most significant percentual errors.

The previous works that used the analytical solution implemented the default error
functions present in the “special” module of the “scipy” library (Disponible in:
https://docs.scipy.org/doc/scipy/reference/special.html accessed on 7 July 2022). How-
ever, one cannot find until the date of publishing this manuscript a similar module inside
C++; i.e., there is not a unit that directly calculates error functions with complex arguments.

Therefore, the present paper implemented a new methodology to calculate these
complex error functions to overcome this problem. The chosen method was the Faddeeva
method, developed by Steven Johnson [34]. This methodology has the advantage of using
different algorithms to calculate the erf function, Equation (26), according to the value of
z. For sufficiently large values of |z|, the package uses a continued-fraction expansion for
w(z), analogous to those described by Gautschi [35] and Pope and Wijers [36]. Meanwhile,
for smaller values of |z| or for z close to the real axis [34], Johnson used the algorithm 916,
developed by Zaghloul and Ali [34]. According to Johnson, “algorithm 916 is competitive
and faster for smaller values of |z| and also has better relative accuracy in Re[z] for some
regions near the real-z-axis” [34].

In fact, by using the Faddeeva method to calculate the complex error functions inside
the deformed analytical Doppler broadening function, ψκ(ξ, x), presented more accurate
results in the tail region. In the next section, these results will be shown.

After conducting this modification, we used the FRENDY to calculate the deformed
radiative capture neutron cross-section. Initially, we calculated the deformed cross-sections
using the same adopted range of energy in the JENDL-4.0 library [27]. After that, two
different resonance peaks were selected in order to compare with the results considering
the Maxwell–Boltzmann distribution. Four nuclides in JENDL-4.0 are considered. The
major calculation conditions are summarized as follows:

• Method: single-level Breit-Wigner;
• Nuclides: Pu238, Tc99, Gd155 and Gd157;
• Temperatures (K): 1500, 2000 and 2500;
• Maximum number of points (h_max): 10,000;
• Range of energy: 10−2 to 107 eV;
• Deformation in relation to the MB distribution: κ = 0.1.

3. Results and Discussion

Calculating the numerical deformed Doppler broadening function using the Kani-
adakis entropy can be very computationally costly. In fact, in a recently published pa-
per [14], the analytical solution provided by Equation (9) was approximately 4.6 times
faster than the numerical one.

However, the analytical solution represented by Equation (9) presents higher values of
percentual errors to the curve’s tail, far from the resonance peak. These higher values are
linked to the small values in these regions and the fact that the error functions, including
those for P1 and P2, Equations (25) and (26), tend to present a more significant influence in
these specific regions, as one can see in Figures 1 and 2.
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(a) 

 
(b) 

Figure 1. The imaginary part of the error function for P1, P2 and P3 considering two different values
of ξ: (a) = 0.05 and (b) = 0.15. The real part of these error functions is close to zero (∼= 10−18 ) and,
consequently, presents little relevance.
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Figure 2. Deformed Radiative capture cross-section for Plutonium 238 considering 1500 K and k = 0.1.

Consequently, the application of a new, more robust method for the calculation of
these functions could present an improvement to the deformed Doppler broadening func-
tions. In fact, the Faddeeva package results showed better numbers, as seen in Tables 1–3,
representing the percentual error of the analytical solution in relation to the numerical one.

Table 1. The percentual errors of the analytical solution in relation to the numerical one using the
Numpy package (Python) to calculate the included error functions.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40

0.05 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.06 0.67
0.10 0.04 0.04 0.04 0.04 0.05 0.05 0.06 0.09 0.73 12.55
0.15 0.06 0.06 0.06 0.06 0.07 0.11 0.17 0.32 3.77 10.39
0.20 0.08 0.08 0.08 0.09 0.12 0.21 0.44 0.85 9.60 4.48
0.25 0.10 0.09 0.10 0.11 0.19 0.41 0.90 1.89 10.91 3.08
0.30 0.11 0.11 0.12 0.15 0.29 0.71 1.67 3.50 6.89 3.17
0.35 0.13 0.13 0.15 0.19 0.44 1.16 2.78 5.46 5.00 4.84
0.40 0.15 0.15 0.17 0.23 0.63 1.75 4.09 7.04 4.09 3.23
0.45 0.17 0.18 0.19 0.29 0.87 2.51 5.42 7.64 3.82 3.23
0.50 0.19 0.20 0.22 0.36 1.18 3.37 6.41 7.32 3.49 3.28
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Table 2. The percentual errors of the analytical solution in relation to the numerical one using the
Faddeeva package (C++) to calculate the included error functions.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40

0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.67
0.10 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.08 0.68 10.61
0.15 0.06 0.06 0.06 0.06 0.07 0.09 0.15 0.26 3.40 8.00
0.20 0.08 0.08 0.08 0.08 0.10 0.17 0.34 0.71 8.17 3.08
0.25 0.10 0.10 0.10 0.10 0.15 0.31 0.73 1.59 8.89 2.55
0.30 0.11 0.11 0.12 0.13 0.22 0.55 1.37 2.96 5.73 2.41
0.35 0.13 0.13 0.14 0.16 0.32 0.89 2.28 4.55 3.72 2.34
0.40 0.15 0.15 0.16 0.19 0.45 1.37 3.36 5.82 2.97 2.30
0.45 0.17 0.17 0.18 0.23 0.63 1.97 4.42 6.28 2.68 2.28
0.50 0.19 0.19 0.20 0.27 0.85 2.63 5.18 5.92 2.54 2.26

Table 3. The percentual difference between Tables 1 and 2.

ξ x = 0 x = 0.5 x = 1 x = 2 x = 4 x = 6 x = 8 x = 10 x = 20 x = 40

0.05 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.10 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.05 1.94
0.15 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.38 2.39
0.20 0.00 0.00 0.00 0.01 0.02 0.04 0.09 0.14 1.44 1.40
0.25 0.00 0.00 0.00 0.01 0.04 0.09 0.17 0.30 2.01 0.53
0.30 0.00 0.00 0.00 0.02 0.07 0.16 0.30 0.54 1.16 0.77
0.35 0.00 0.00 0.01 0.03 0.12 0.26 0.50 0.90 1.28 2.50
0.40 0.00 0.00 0.01 0.04 0.18 0.38 0.73 1.21 1.12 0.92
0.45 0.00 0.01 0.02 0.06 0.24 0.55 1.01 1.37 1.14 0.95
0.50 0.00 0.01 0.02 0.09 0.33 0.73 1.23 1.40 0.95 1.02

By analyzing Table 3, it is possible to note the lower values of percentual error when
one uses the Faddeeva method to calculate the existing error functions in the deformed
analytical solution of the Doppler broadening function using the Kaniadakis entropy. The
maximum percentual reduction was 2.5%.

Deformed Cross-Sections with FRENDY

After implementing the deformed analytical solution for the Doppler broadening func-
tion inside FRENDY’s test module, we were able to generate data for the deformed radiative
cross-sections for different elements. Considering the adopted method for calculating these
quantities (SLBW), FRENDY’s default package offers the calculation of cross-sections for
two important elements: Plutonium 238 and Technetium 99. The former element (Pu238) is
of crucial importance, for instance, to space exploration [37] and Mars colonization [38,39].
In addition, 80% of the scans performed in nuclear medicine departments are made from
the latter element [40]. Both can be produced in research nuclear reactors, such as the High
Flux Isotope Reactor in the United States [41] and the Moly project of the recent Research
Reactor Jules Horowitz (JHR), still under construction in France [40].

Additionally, the present work generated data for the isotopes 155 and 157 (Figures 2–5)
of gadolinium, which is widely used for medical applications [42], radiation shielding [43],
and also space exploration [44].
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Figure 3. Deformed Radiative capture cross-section for Technetium 99 considering 1500 K and k = 0.1.

 

Figure 4. Deformed Radiative capture cross-section for Gadolinium 155 considering 1500 K and k = 0.1.
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Figure 5. Deformed Radiative capture cross-section for Gadolinium 157 considering 1500 K and k = 0.1.

In order to see more closely and compare the standard Maxwell-Boltzmann behavior
with the Kaniadakis, we selected two different resonance peaks—apart from each other—
at three different temperatures (Figures 6–13) to confirm the expected curve attenuation
illustrated in previous works [13,14,29,45]:

 

Figure 6. Deformed Radiative capture cross-section for Plutonium 238 considering k = 0.1 and the
9.98 eV peak.
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Figure 7. Deformed Radiative capture cross-section for Plutonium 238 considering k = 0.1 and the
320 eV peak.

 

Figure 8. Deformed Radiative capture cross-section for Gadolinium 155 considering k = 0.1 and the
69.4 eV peak.
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Figure 9. Deformed Radiative capture cross-section for Gadolinium 155 considering k = 0.1 and the
95.7 eV peak.

 

Figure 10. Deformed Radiative capture cross-section for Gadolinium 157 considering k = 0.1 and the
2.83 eV peak.
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Figure 11. Deformed Radiative capture cross-section for Gadolinium 157 considering k = 0.1 and the
239.6 eV peak.

 

Figure 12. Deformed Radiative capture cross-section for Technetium 99 considering k = 0.1 and the
5.58 eV peak.
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Figure 13. Deformed Radiative capture cross-section for Technetium 99 considering k = 0.1 and the
1457 eV peak.

As one can see, the deformed curves presented the expected behavior since there is
an attenuation of the resonance curves, especially on the peaks, compared to the standard
neutron radiative cross-section using the Maxwell–Boltzmann entropy. In fact, the relative
error between the Maxwell–Boltzmann and Kaniadakis peaks is around 1%, which is the
same order of magnitude (~1%) obtained in previous works for the calculations of deformed
Doppler broadening functions using the Kaniadakis entropy.

4. Concluding Remarks

After 20 years of development of the Kaniadakis entropy and seven years of its
application in nuclear reactor physics, this work presents for the first-time results for
deformed neutron cross-sections considering the κ statistics using an official nuclear data
processing code, FRENDY, and, consequently, official nuclear data (JENDL 4.0). This
work was carried out by implementing the analytical solution for the deformed Doppler
function using the Kaniadakis statistics, ψκ , inside the single-level Breit–Wigner module
in the FRENDY. We used MIT’s Faddeeva method to calculate the error functions inside
the analytical solution. This implementation showed a percentual error reduction when
compared to the numerical solution of ψκ .

With the implementation of ψκ inside FRENDY, it was possible to calculate deformed
radiative capture cross-sections for four relevant nuclides: Pu238, Gd 155, Gd 157 and
Tc99. Next, we selected two different resonance peaks of each nuclide to compare the data
with the standard Maxwell-Boltzmann curves generated by the FRENDY code. The results
agreed with previous calculations conducted out of a nuclear data processing code and
without official nuclear data libraries.

Different from other areas, the evaluation of the viability of Kaniadakis entropy in
the area of the nuclear reactor physics cannot be conducted observationally. Therefore,
it is of great relevance to implement this methodology in nuclear data processing codes
where it is possible to deal with accurate data. Thus, the present work can be interpreted as
an essential step in validating the applicability of the Kaniadakis entropy in the nuclear
fission area.

86



Entropy 2022, 24, 1437

Author Contributions: Conceptualization, W.V.d.A., A.S.M., J.M.M. and A.d.C.G.; methodology,
W.V.d.A., A.S.M., J.M.M. and A.d.C.G.; software, W.V.d.A., A.S.M., J.M.M. and L.S.; validation
W.V.d.A. and J.M.M.; formal analysis, W.V.d.A., A.S.M., J.M.M. and A.d.C.G.; writing—original
draft preparation, W.V.d.A.; writing—review and editing, W.V.d.A., A.S.M., J.M.M. and A.d.C.G.;
supervision, A.S.M.; project administration, W.V.d.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Fundação Carlos Chagas Filho (FAPERJ/Pós-doutorado
Nota 10), grant number E-26/204.444/2021, registration number 2021.00898.8 and by the Conselho
Nacional de Desenvolvimento Científico e Tecnológico, grant number CNPq/304.580/2019-8.

Institutional Review Board Statement: Not applicable.

Acknowledgments: All authors thank Kenichi Tada (JAEA) for the support and contribution during
the research. The first author thanks FAPERJ for his post-doctoral grant. The second author thanks
FAPERJ and CNPq for the support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kaniadakis, G. Non-Linear Kinetics Underlying Generalized Statistics. Phys. A Stat. Mech. Its Appl. 2001, 296, 405–425. [CrossRef]
2. Trivellato, B. Deformed Exponentials and Applications to Finance. Entropy 2013, 15, 3471–3489. [CrossRef]
3. Lapenta, G.; Markidis, S.; Marocchino, A.; Kaniadakis, G. Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle

Interactions. Astrophys. J. 2007, 666, 949–954. [CrossRef]
4. Carvalho, J.C.; do Nascimento, J.D.; Silva, R.; Medeiros, J.R. Non-Gaussian statistics and stellar rotational velocities of main-

sequence field stars. Astrophys. J. 2009, 696, L48–L51. [CrossRef]
5. Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Medeiros, J.R. Power Law Statistics and Stellar Rotational Velocities in the

Pleiades. EPL (Europhys. Lett.) 2008, 84, 59001. [CrossRef]
6. Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Soares, B.B.; Medeiros, J.R. Observational Measurement of Open Stellar Clusters:

A Test of Kaniadakis and Tsallis Statistics. EPL (Europhys. Lett.) 2010, 91, 69002. [CrossRef]
7. Topsøe, F. Entropy and Equilibrium via Games of Complexity. Phys. A Stat. Mech. Its Appl. 2004, 340, 11–31. [CrossRef]
8. Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis Statistics from the Viewpoint of Entropic Gravity

Formalism. Int. J. Mod. Phys. A 2017, 32, 1750028. [CrossRef]
9. Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A.; de Paula, R.M. Cosmological Considerations in Kaniadakis Statistics.

EPL (Europhys. Lett.) 2018, 124, 30003. [CrossRef]
10. Lourek, I.; Tribeche, M. Dust Charging Current in Non Equilibrium Dusty Plasma in the Context of Kaniadakis Generalization.

Phys. A Stat. Mech. Its Appl. 2019, 517, 522–529. [CrossRef]
11. Guedes, G.; Gonçalves, A.C.; Palma, D.A. The Doppler Broadening Function Using the Kaniadakis Distribution. Ann. Nucl. Energy

2017, 110, 453–458. [CrossRef]
12. Kaniadakis, G. Statistical Mechanics in the Context of Special Relativity. Phys. Rev. E 2002, 66, 56125. [CrossRef]
13. de Abreu, W.V.; Gonçalves, A.C.; Martinez, A.S. Analytical Solution for the Doppler Broadening Function Using the Kaniadakis

Distribution. Ann. Nucl. Energy 2019, 126, 262–268. [CrossRef]
14. de Abreu, W.V.; Martinez, A.S.; do Carmo, E.D.; Gonçalves, A.C. A Novel Analytical Solution of the Deformed Doppler

Broadening Function Using the Kaniadakis Distribution and the Comparison of Computational Efficiencies with the Numerical
Solution. Nucl. Eng. Technol. 2022, 54, 1471–1481. [CrossRef]

15. Mamedov, B.A. Analytical Evaluation of Doppler Functions Arising from Resonance Effects in Nuclear Processes. Nucl. Instrum.
Methods Phys. Res. 2009, 608, 336–338. [CrossRef]

16. Antunes, A.J.M.; Gonçalves, A.C.; Martinez, A.S. Analytical Solution for the Doppler Broadening Function Using the Tsallis
Distribution. Prog. Nucl. Energy 2022, 144, 104071. [CrossRef]

17. Abul-Magd, A.Y. Nonextensive Random-Matrix Theory Based on Kaniadakis Entropy. Phys. Lett. A 2007, 361, 450–454. [CrossRef]
18. He, K.-R. Jeans Analysis with κ-Deformed Kaniadakis Distribution in f (R) Gravity. Phys. Scr. 2022, 97, 025601. [CrossRef]
19. Tada, K.; Nagaya, Y.; Kunieda, S.; Suyama, K.; Fukahori, T. Frendy: A New Nuclear Data Processing System Being Developed at

JAEA. EPJ Web Conf. 2017, 146, 2028. [CrossRef]
20. Tada, K.; Nagaya, Y.; Kunieda, S.; Suyama, K.; Fukahori, T. Development and Verification of a New Nuclear Data Processing

System FRENDY. J. Nucl. Sci. Technol. 2017, 54, 806–817. [CrossRef]
21. Macfarlane, R.; Muir, D.W.; Boicourt, R.M.; Kahler, I.A.C.; Conlin, J.L. The NJOY Nuclear Data Processing System, Version 2016;

Los Alamos National Laboratory: Los Alamos, NM, USA, 2017.
22. Cullen, D.E. PREPRO 2010-2010 ENDF-6 Pre-Processing Codes; International Atomic Energy Agency: Vienna, Austria, 2010.
23. Zu, T.; Xu, J.; Tang, Y.; Bi, H.; Zhao, F.; Cao, L.; Wu, H. NECP-Atlas: A New Nuclear Data Processing Code. Ann. Nucl. Energy

2019, 123, 153–161. [CrossRef]

87



Entropy 2022, 24, 1437

24. Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.E.; Danon, Y.; Kahler, A.C.; Smith, D.L.; Pritychenko, B.; Arbanas, G.;
Arcilla, R.; et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields
and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [CrossRef]

25. Zhuang, Y.; Liu, T.; Zhang, J.; Liu, P. CENDL-3–Chinese Evaluated Nuclear Data Library, Version 3. J. Nucl. Sci. Technol. 2002, 39, 37–39.
[CrossRef]

26. Nuclear Energy Agency Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library. Available online: https://www.oecd-
nea.org/dbdata/jeff/ (accessed on 5 July 2022).

27. Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N.; Ichihara, A.; Kunieda, S.; Chiba, S.; Furutaka, K.; Otuka, N.; Ohsawa, T.;
et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol. 2011, 48, 1–30. [CrossRef]

28. de Abreu, W.V. Solução Analítica Da Função de Alargamento Doppler Usando a Distribuição de Kaniadakis; Universidade Federal do
Rio de Janeiro: Rio de Janeiro, Brazil, 2020; p. 130. [CrossRef]

29. de Abreu, W.V.; Gonçalves, A.C.; Martinez, A.S. New Analytical Formulations for the Doppler Broadening Function and
Interference Term Based on Kaniadakis Distributions. Ann. Nucl. Energy 2020, 135, 106960. [CrossRef]

30. Tada, K.; Kunieda, S.; Nagaya, Y. Nuclear Data Processing Code FRENDY Version 1; Japan Atomic Energy Agency: Tokai, Japan, 2018.
31. National Nuclear Data Center. ENDF-6 Formats Manual; Trkov, A., Herman, M., Brown, D.A., Eds.; Brookhaven National

Laboratory: Upton, NY, USA, 2018.
32. Lehtinen, N.G. Error Functions. 2010. Available online: http://nlpc.stanford.edu/nleht/Science/reference/errorfun.pdf (accessed

on 18 September 2022).
33. Arfken, G.B.; Weber, H.J.; Harris, F.H. Mathematical Methods for Physicists, 7th ed.; Academic Press: Cambridge, MA, USA; Elesvier:

Amsterdam, The Netherlands, 2013; ISBN 978-0-12-384654-9.
34. Johnson, S.G. Faddeeva Package. Available online: http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package (accessed on 11

July 2022).
35. Gautschi, W. Efficient Computation of the Complex Error Function. SIAM J. Numer. Anal. 1970, 7, 187–198. [CrossRef]
36. Poppe, G.P.M.; Wijers, C.M.J. More Efficient Computation of the Complex Error Function. ACM Trans. Math. Softw. 1990, 16, 38–46.

[CrossRef]
37. Gusev, V.V.; Pustovalov, A.A.; Rybkin, N.N.; Anatychuk, L.I.; Demchuk, B.N.; Ludchak, I.Y. Milliwatt-Power Radioisotope

Thermoelectric Generator (RTG) Based on Plutonium-238. J. Electron. Mater. 2011, 40, 807–811. [CrossRef]
38. Werner, J.; Lively, K.; Kirkham, D. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for Mars 2020. In

Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 7 March 2017; IEEE: Piscataway, NJ, USA; pp. 1–6.
39. Clarke, E.; Giglio, J.; Wahlquist, K.; Dees, C.; Gates, A.; Birch, J.; Davis, S.; Horkley, B.; Rich, L. Multi-Mission Thermoelectric

Generator Fueling Testing and Integration Operations for Mars 2020. Nucl. Technol. 2022; ahead of print. [CrossRef]
40. Antony, M.; Coulon, J.-P.; Gay, S.; Bourrelly, F.; Tarabelli, D.; Drapeau, D.; Chapuis, C.; Derasse, F.; Aymard, N.; Mallet, R.

Moly Production in the Jules Horowitz Reactor: Capacity and Status of the Development; IGORR: Sydney, Autralia, 2017.
41. Collins, E.D.; Morris, R.N.; McDuffee, J.L.; Mulligan, P.L.; Delashmitt, J.S.; Sherman, S.R.; Vedder, R.J.; Wham, R.M. Plutonium-238

Production Program Results, Implications, and Projections from Irradiation and Examination of Initial NpO2 Test Targets for
Improved Production. Nucl. Technol. 2022; ahead of print. [CrossRef]

42. Toupin, S.; Pezel, T.; Bustin, A.; Cochet, H. Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical
Applications. J. Magn. Reson. Imaging 2022, 55, 967–987. [CrossRef] [PubMed]

43. Ozturk, S. Radiation Shielding Properties of Gadolinium-Doped Water. Phys. Scr. 2021, 96, 055402. [CrossRef]
44. Mani, V.; Prasad, N.S.; Kelkar, A. Ultra High Molecular Weight Polyethylene (UHMWPE) Fiber Epoxy Composite Hybridized with

Gadolinium and Boron Nanoparticles for Radiation Shielding; Hughes, G.B., Ed.; SPIE: Bellingham, WA, USA, 2016; p. 99810D.
45. da Silva, M.V.; Martinez, A.S.; Gonçalves, A.C. Effective Medium Temperature for Calculating the Doppler Broadening Function

Using Kaniadakis Distribution. Ann. Nucl. Energy 2021, 161, 108500. [CrossRef]

88



Citation: Guha, P. The κ-Deformed

Calogero–Leyvraz Lagrangians and

Applications to Integrable Dynamical

Systems. Entropy 2022, 24, 1673.

https://doi.org/10.3390/e24111673

Academic Editors: Dionissios T.

Hristopulos, Sergio Luiz E. F. da Silva

and Antonio M. Scarfone

Received: 14 September 2022

Accepted: 26 October 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

The κ-Deformed Calogero–Leyvraz Lagrangians and
Applications to Integrable Dynamical Systems

Partha Guha

Department of Mathematics, Khalifa University of Science and Technology,
Abu Dhabi P.O. Box 127788, United Arab Emirates; partha.guha@ku.ac.ae

Abstract: The Calogero–Leyvraz Lagrangian framework, associated with the dynamics of a charged
particle moving in a plane under the combined influence of a magnetic field as well as a frictional
force, proposed by Calogero and Leyvraz, has some special features. It is endowed with a Shannon
“entropic” type kinetic energy term. In this paper, we carry out the constructions of the 2D Lotka–
Volterra replicator equations and the N = 2 Relativistic Toda lattice systems using this class of
Lagrangians. We take advantage of the special structure of the kinetic term and deform the kinetic
energy term of the Calogero–Leyvraz Lagrangians using the κ- deformed logarithm as proposed by
Kaniadakis and Tsallis. This method yields the new construction of the κ-deformed Lotka–Volterra
replicator and relativistic Toda lattice equations.

Keywords: entropic kinetic energy; Lotka–Volterra; replicator equation; relativistic Toda lattice;
Kaniadakis logarithm; Tsallis deformation; κ-deformed Lagrangian
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1. Introduction

Recently, Calogero and Leyvraz [1,2] demonstrated a time-independent Hamiltonian
description of the motion of a charged particle moving in a two dimensional space under
the influence of a magnetic field perpendicular to the plane of motion and a frictional force
proportional to the velocity. This motion may be viewed as a dynamics of cyclotron motion
with friction; this model arises through the coupling of a particle to a large number of
external degrees of freedom. The most interesting feature of this Lagrangian is the kinetic
energy term—entropic type kinetic energy. This makes the Lagrangian a nonstandard one.
We have explored the applications of this class of Lagrangians in our earlier papers [3,4].

It is worth noting that some physical systems cannot be described by the Boltzmann–
Gibbs statistical mechanics, for example, systems such as long-range interactions, long-time
memory and multifractal or hierarchical structures are some of them. To overcome at least
some of these difficulties, Tsallis [5,6] proposed a generalized entropic form based on a
κ-deformed logarithm. Later, an example of self-dual κ-deformed logarithmic functions
is found in the work of Kaniadakis [7–11]. Over the last decade or so, scientists have
observed that many physical and social phenomena often follow the so-called power law
distributions (see for example, [12–15]). We demonstrated that many (generalized) power
law distribution equations can be derived from Calogero–Leyvraz Lagrangian formalism
using κ-deformation theory.

These are the two popular ways to deform logarithmic and exponential terms in
physics. We propose a new Lagrangian where the logarithm term appearing in Calogero–
Leyvraz is replaced by a deformed logarithmic function, and study the dynamics. The alge-
braic structures arising in this κ-deformed framework have been carefully grafted by Scar-
fone in [16]; in fact, the concept of generalized algebras has been employed constructively
to study entropic forms in [16,17]. It is worth noting that the generalized entropies [18]
play an important role in generalized distribution theory in complex systems [19] and they
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have been studied extensively from the information geometric point of view in [20,21]. The
aim of this work is to carry out the formulation of the κ-deformed well-known dynami-
cal systems, namely, the Lotka–Volterra replicator equation and N = 2 relativistic Toda
lattice system.

Among ecological models, the Lotka–Volterra equation for predator–prey systems [22–24]
has played a significant role in dynamical systems. It is known that the solutions to this
conservative system in phase space are level curves of the energy function. In the mathe-
matical investigations of ecological models, conservative dynamics are often very useful
from the (geometrical) mechanics point of view. It is known that the replicator equation in
the evolutionary game theory [25] is closely related to the Lotka–Volterra equation. The
replicator equation is the first and most important game dynamics studied in connection
with evolutionary game theory. It was originally developed for symmetric games with
finitely many strategies. Evolutionary game theory [26] studies the behavior of large pop-
ulations of agents who repeatedly engage in strategic interactions. Note that changes in
behavior in these populations are driven either by natural selection via differences in birth
and death rates, or by the application of myopic decision rules by individual agents.

The Hamiltonian of the two-dimensional motion of electrons in the presence of the
periodic potential and the magnetic field perpendicular to the two-dimensional plane is
described by:

HHo f = eiq + e−iq + eip + e−ip [q, p] = ih̄. (1)

The spectrum of this system yields a butterfly like structure, known as Hofstadter’s butter-
fly [27]. In a completely independent line of research, the string community investigated a
system associated to Hamiltonian,

H = eq + e−q + ep + e−p, (2)

when q and p are restricted to be purely imaginary; this equation reduces to Hofstadter’s
Hamiltonian (1). In general, q and p are complex coordinates, hence the equation determines
a real two-dimensional Riemann surface, or equivalently a complex one-dimensional
curve, whose shape is parameterized by the value of H [28,29]. This appears when mirror
symmetry is applied to a non-compact Calabi–Yau geometry known as the local P1 × P1
geometry. This curve is connected to the Seiberg–Witten curve, encoding the information
on instantons in N = 2 supersymmetric pure SU(2) gauge theory [30–32].

The system known nowadays as the relativistic Toda lattice (RTL) was invented by
S.N.M. Ruijsenaars—the Hamiltonian of the periodic relativistic Toda lattice with just N = 2
particle, after removing the center-of-mass mode. We can illustrate this as follows [28,29].
The Ruijsenaars Hamiltonian [33] of N = 2 quantum Toda lattice is given by:

HRT = eRp1 + eRp2 + R2(eq1−q2+Rp1 + eq2−q1+Rp2). (3)

Let us consider center of mass frame p1 + p2 = 0 and define

p := Rp1, q := q1 − q2 + Rp1,

which yields an one parameter family of (2),

HRToda = ep + e−p + R2(eq + e−q). (4)

Results of the paper The Calogero–Leyvraz Lagrangian has some interesting features; it
is endowed with the Shannon entropic [34] kinetic energy term. The Legendre transform
of this Lagrangian yields a Hamiltonian with the exponential momentum term. We have
seen that the Calogero–Leyvraz Lagrangian/Hamiltonian allows us to formulate several
features related to deformed dynamical systems, balanced loss–gain systems and gener-
alized rate equations [3,4]. In particular, most of the power law distributions and rate
equations can be manufactured from this class of Lagrangian. It has been explored that
the Calogero–Leyvraz theory of cyclotron-friction motion is closely related to the “curl
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force” theory as proposed by Berry and Shukla [35,36], although the latter is a totally
position-dependent nonconservative force with a nonvanishing curl, whereas the former is
totally velocity dependent.

In this paper, we present a different formulation of the celebrated Lotka–Volterra
equation [22,24] using the Calogero–Leyvraz Lagrangian. We also give a new derivation of
the replicator equation using the Calogero–Leyvraz type Lagrangian. The final example
is related to the N = 2 relativistic Toda lattice system. We formulate the latter equation
using a different type of entropic Lagrangian; this entropic kinetic energy is described
via a cross-entropy term, which yields a new formulation of the N = 2 relativistic Toda
lattice system.

Since the kinetic energy term of the Calogero–Leyvraz Lagrangian involves a log-
arithmic term, we deform this logarithmic term using the Kaniadakis method [17] and
obtain κ-deformed Lotka–Volterra, replicator and N = 2 relativistic Toda Lattice equations.
In fact, the entire reason to shift the usual formalism to Calogero–Leyvraz formalism is
to formulate κ-deformed integrable models. We also formulate these deformed equations
using the Tsallis logarithm.

In the introductory section, we review a κ -deformed Liénard equation which satisfies
the Chiellini integrability condition. This condition allows us to integrate the Liénard type
equation using the Abel equation of the first kind. In general, the Liénard equation does
not give a Lagrangian formulation, but with the imposition of the Chiellini condition, it
yields a Lagrangian formulation.

This paper is organized as follows. In Section 2, we review the Calogero–Leyvraz
Lagrangians and Hamiltonians and their applications. In particular, we also describe
the κ-deformed Liénard type equation using Kaniadakis and Tsallis type deformation of
the kinetic energy term and demonstrate that this Liénard equation admits the Chiellini
integrability condition [37]. This integrability condition plays an important role in the
formulation of Lagragian and solutions of the integrable class of the Liénard equation. A
nonexhaustive list of applications includes, among others, those in [38–40]. After giving
a gentle introduction to the Calogero–Leyvraz method, we apply this scheme for the
construction of the Lotka–Volterra, replicator and N = 2 relativistic Toda lattice systems in
Section 3. Our Section 4 is dedicated to the construction of κ-deformed equations. We give
a formulation of the deformed Lotka–Volterra, replicator and N = 2 relativistic Toda lattice
equations using the Kaniadakis and Tsallis methods.

2. Review of Calogero–Leyvraz’s Lagrangian and Hamiltonian Formulation of the
Dynamics of Cyclotron with Friction System

The Hamiltonian of the free particle moving against friction is given by:

H(p, z) = ep + cz, (5)

according to the Newtonian equation of motion z̈ = −ż. The corresponding Lagrangian
description of this system is given by:

L = ż ln ż− cz. (6)

A minor modification of the Hamiltonian H(p, z) = ep + λp
c + cz yields the dynamics

of a particle moving against friction in a constant force field λ.
Legendre transformation of Calogero–Leyvraz Lagrangian: Let us recall the Calogero–

Leyvraz method first; the Lagrangian is given as L = −γq + v ln v, where v = q̇. The
equation of motion q̈ + γq̇ = 0 yields a constant of motion

C = v + γq, where v = q̇. (7)
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The corresponding momentum

p =
∂L
∂v

= (ln v + 1) ⇒ v = ep−1.

Substituting this in the Legendre transformation,

FL(L) = vp− L = v(1 + ln v)− L = v + γq; (8)

thus we obtain the Calogero–Leyvraz Hamiltonian,

HCL = ep + γq, (9)

where we have scaled the momentum to ignore the constant term. Hence we establish
the connection between the Calogero–Leyvraz Lagrangian and Hamiltonian via Legen-
dre transformation. This construction can be extended to Lagrangian involving a time-
dependent coefficient.

2.1. Calogero–Leyvraz Hamiltonian and Planar Systems

Calogero and Leyvraz straight-forwardly generalized this motion by complexification
to describe motions taking place in a plane. Physically, this is connected to the motion
against friction of a charged particle in the presence of a perpendicular constant magnetic
field, or a constant electric field lying in that plane, or both these forces. If we set c = γ + iω
and go to the complex plane, the following pair of Poisson commuting Hamiltonians
are obtained:

HR = epx cos py + γx−ωy, HI = −epx sin py + ωx + γy.

At first we consider a minor change; coefficients are considered to be time dependent.
The two-dimensional Calogero–Leyvraz model is given by the following Hamiltonian:

H = epx cos py + γ(t)x−ω(t)y, (10)

where γ(t), ω(t) are parameters, (x, y) are coordinates and (px, py) are corresponding
momenta. Here we note that the potential energy is a linear function of coordinates while
the kinetic energy Ψ = epx cos py. The Hamiltonian (10) yields the following equations
of motion:

ẍ = −γ(t)ẋ + ω(t)ẏ, ÿ = −γ(t)ẏ−ω(t)ẋ. (11)

Calogero and Leyvraz reformulated (11) in a 3-dimensional context by introducing the
3-vector r = (x, y, 0) in the xy-Cartesian plane and the unit vector ẑ = (0, 0, 1) orthogonal
to that plane; this yields:

r̈ = −γ(t)ṙ + ω(t)ṙ× ẑ. (12)

We obtain the sister (or mirror) equations of (11) if we consider a different K.E., viz.,
Φ(px, py) = epx sin py, with the same potential energy γx−ωy, this is given by:

ẍ = −γ(t)ẋ + ω(t)ẏ, ÿ = γ(t)ẏ−ω(t)ẋ. (13)

It is easy to check both (11) and (13).
The linear equation can be generalized to a nonlinear equation from the Calogero–

Leyvraz Hamiltonian using generalized potential energy. Suppose we consider

H = epx cos py + γ(t)φ(x, y)−ω(t)ψ(x, y), (14)

where φ and ψ are some functions of x and y. This yields

ẍ = −γ(t)φx(x, y)ẋ + ω(t)ψy(x, y)ẏ, ÿ = −γ(t)φx(x, y)ẏ−ω(t)ψy(x, y)ẋ. (15)
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The complex kinetic energy is given by:

Kc = Ψ + iΦ = epx cos py + iepx sin py = epx+ipy = eP, P = px + ipy. (16)

If we consider the (complex) potential energy Uc = Γ(t)z, then the equation of motion
resulting from the Hamiltonian H = eP + Γz is

z̈ = Γ(t)ż. (17)

Suppose Re(P) = p and Re(z) = a(t)x, then the Hamiltonian becomes HR = ep + q
and this yields ẍ = −a(t)ẋ. Note that a nonlinear potential energy with the same K.E.
yields nonlinear equations, for example, H1 = ep + a(t) ln x and H2 = ep + a(t)xn yield
the following equations of motion: viz

xẍ + a(t)ẋ = 0, ẍ + na(t)xn−1 ẋ = 0. (18)

respectively.
Equation (17) admits, for constant Γ, a Lagrangian:

L(z, ż) = −z + Γ−1ż log ż, (19)

with (17) following from the associated Euler–Lagrange equation.

2.2. Illustration: Generalized Liénard Equation and the Calogero–Leyvraz Lagrangian

We have seen that the Calogero and Leyvraz construction yields interesting sets of
dynamical equations. In this section, we formulate a nonlinear ODE belonging to the
Liénard class of equations.

The Liénard type ordinary second order nonlinear differential equation is given by:

q̈ + f (q)q̇ + g(q) = 0. (20)

f and g are two continuously differentiable functions on R. Since the Liénard equation
itself is also an autonomous differential equation, the substitution, y = dq

dt or q =
∫

y(t)dt,
leads the Liénard equation to become a first order differential,

y
dy
dq

+ f (q)y + g(q) = 0, (21)

which belongs to the Abel equation of the second kind. This can also be expressed in terms
of the Abel equation of the first kind, which we use later.

Let us define the following generalization of the Calogero–Leyvraz Lagrangian:

L = (q̇ + f (q)) ln(q̇ + f (q))− f (q). (22)

The Euler–Lagrange equation yields:

q̈ + f ′ q̇ + f ′ ln(q̇ + f (q)) = 0. (23)

For small values of (q̇ + f (q)), the above equation reduces to the well-known nonstan-
dard Lagrangian,

q̈ + 2 f ′ q̇ + f f ′(q) = 0. (24)

For different choices of f we get different types of equations. Let f (q) = λqn, then n = 1;
this becomes a damped oscillator equation, n = 2; this maps to a second Riccati or modified
Emden–Fowler equation. The corresponding Lagrangian is given by:

LR = ln(q̇ + f (q)). (25)
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2.3. Deformations of Calogero–Leyvraz Lagrangians and κ-Deformed Oscillator Equations

The most attractive feature of the Calogero–Leyvraz Lagrangian is the involvement
of a logarithmic term. We grab this opportunity and deform the (entropic) kinetic energy
term. We use primarily Kaniadakis and Tsallis logarithms. At first we deform (22) using
the Tsallis logarithm.

Let us introduce the Tsallis logarithm. We assume q > 0 for practical purposes.
The Tsallis q-logarithm and q-exponential functions are defined by:

lnq(x) =
x1−q − 1

1− q
, expq(x) =

(
1 + (1− q)x

) 1
1−q , (26)

where q 
= 1 and 1 + (1− q)x 
= 0. For q → 1(
1 +

x
N
)N ≈ ex, N

(
x

1
N − 1

)
≈ ln x.

Proposition 1. Let lnκ(q̇ + f (q)) be the Tsallis κ-deformed logarithm. The Euler–Lagrange equa-
tion of the Lagrangian

L = (q̇ + f (q)) lnκ(q̇ + f (q))− μ f (q), −1 < κ < 1, (27)

yields

(κ + 1)
(
(q̈ + f ′ q̇)− 1

κ
f ′(q)(q̇ + f (q))

)
− 1

κ
Λ f ′(q)(q̇ + f (q))1−κ = 0, (28)

where Λ = μ κ
κ+1 − 1.

Proof. By direct computation we obtain:

d
dt
(∂L

∂q̇
)
= (κ + 1)2(q̈ + f ′ q̇

)
(q̇ + f (q)

)κ ,

∂L
∂q

= f ′(q)
(
(1 + κ)(q̇ + f (q))κ1 + lnκ(q̇ + f (q)

)
+ μ f ′(q)

=
κ + 1

κ
f ′(q)

(
(1 + κ)

(
q̇ + f (q)

)κ − 1 + μ
κ

κ + 1

)
.

Here, we have tacitly used the formula of lnκ x.

Corollary 1. Suppose μ = κ + 1
κ . The Euler–Lagrange equation of the Lagrangian

L = (q̇ + f (q)) lnκ(q̇ + f (q))− κ + 1
κ

f (q), −1 < κ < 1, (29)

yields the

q̈ +
κ − 1

κ
f ′(q)q̇− 1

κ
f ′ f = 0. (30)

Let us demonstrate this with a couple of examples. Suppose we take κ = 1
2 , then (28)

reduces to
3
2
(
q̈− f ′(q)q̇− 2 f ′ f (q))− 2Λ f ′(q)

√
(q̇ + f (q)) = 0. (31)

If we take f (q) = a
q

2, then Equation (30) yields the second-order Riccati ( also known as the
modified Emden ) equation,

q̈ + a
κ − 1

κ
qq̇− 1

κ
a2q3 = 0. (32)

94



Entropy 2022, 24, 1673

2.4. Kaniadakis κ-Deformed Lagrangian, Liénard Equation and Chiellini Integrability Condition

We wish to repeat this calculation using the Kaniadikis κ-deformed logarithm. We
obtain the following result. Let lnκ q = 1

2κ (q
κ − q−κ) be the Kaniadikis logarithm.

Proposition 2. The Euler–Lagrange equation for the Lagrangian L = (q̇+ f (q)) lnκ(q̇+ f (q))−
μ f (q), yields

(
q̈ + f ′ q̇− κ

κ + 1
f ′(q)

)
− κ − 1

κ + 1
(
q̈ + f ′ q̇

− κ

κ − 1
f ′(q)

)
(q̇ + f (q))−2κ +

2κμ

κ + 1
f ′(q)(q̇ + f (q))−κ+1 = 0.

(33)

Suppose we take κ = 1
2 and f (q) = 3

2 q2, then (33) reduces to

q̈ + 3qq̇− q +
(
q̈ + 3qq̇ + 3q)(q̇ +

3
2

q2)−1 + 2q

√
q̇ +

3
2

q2 = 0. (34)

Consider the κ-deformed Lagrangian without the potential μ term.

Corollary 2. The Euler–Lagrange equation corresponding to the Lagrangian Lκ yields a one
parameter family of second-order equations,

(1 + κ)(q̈ + f ′(q)q̇) + (1− κ)(q̈ + f ′(q)q̇)(q̇ + f (q))−2κ

− f ′(q)
κ

(q̇ + f (q))
(
(1 + κ)− (1− κ)(q̇ + f (q))−2κ

)
= 0.

(35)

This equation is a fractional damped system except for κ = ± n
2 , where n ∈ Z.

The Liénard type ordinary second order nonlinear differential equation can be mapped
to the first kind first order Abel differential equation,

dy
dq

= f (q)y3 + g(q)y2. (36)

This Abel equation allows us to find some exact general solutions of the Liénard type
equations by using the integrability conditions of the Abel equation.

Lemma 1. A first kind Abel type differential equation of the form (36) can be exactly integrated if
the functions q(x) and p(x) satisfy the condition:

d
dq

( g(q)
f (q)

)
= μ f (q), μ = constant, μ 
= 0. (37)

Claim 1. Equation (35) reduces to the Liénard equation for κ = −1,

q̈ +
1
2

f ′(q)q̇− 1
2

f ′(q) f (q) = 0, (38)

which satisfies the Chiellini condition.

One can also readily verify that for κ = −1/2, Equation (35) satisfies the generalized
Liénard equation,

F(q, q̇)q̈ + 2 f ′(q)q̇− f ′ f (3 f + 2) = 0, (39)

where F(q, q̇) = (1 + q̇ + 3 f (q)).
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3. Entropic Lagrangian and Integrable Class of Systems

In this section, at first we give a new derivation of Lotka–Volterra and replicator
equations using Calogero–Leyvraz Lagrangians endowed with the “Shannon entropic” [34]
type kinetic energy terms. Then, using the cross entropy type kinetic energy term, we
derive the N = 2 relativistic Toda lattice equation.

3.1. Calogero–Leyvraz Lagrangian and Lotka–Volterra Equation

We start with the derivation of the Lotka–Volterra equation. Consider the following
logarithmic Lagrangian endowed with an entropic kinetic term:

L = (1− q̇) ln (1− q̇)− aq− ae−q. (40)

The Euler–Lagrange equation yields:

q̈
1− q̇

+ 1− e−q = 0. (41)

Let us write this equation as a system of first-order equations. Define:

1− q̇ = z, e−q = y. (42)

Then (41) equation can recasted as:

ẏ = (zy− y), ż = a(z− zy). (43)

This is a standard form of the celebrated 2D Lotka–Volterra equation in non-dimensionalized
form [23].

In the standard formalism of the Lotka–Volterra equation (43), the Hamiltonian is
given by:

H = z− ln z + ay− a ln y. (44)

The nonstandard Hamiltonian form,(
ẏ
ż

)
=

(
0 yz
−yz 0

)( ∂H
∂y

∂H
∂z ,

)

yields Equation (43). The two Hamiltonians can be connected easily through exponen-
tial mapping.

3.2. Replicator Equation

In 1978, Taylor and Jonker [41] introduced a system of differential equations which
were designated later on as the replicator equation. This equation plays an important
role in evolutionary game theory. The replicator equation models the frequency evolution
of certain strategic behaviors within a biological population. Hofbauer [25] unveiled an
equivalence relation between the Lotka–Volterra equation and the replicator equation.

Consider the first population where individuals interact with each other according to
a set of n + 1 pure strategies E0, · · · , En with relative frequencies x0, · · · , xn, and the second
population plays different m + 1 pure strategies F0, · · · , Fm with frequencies y0, · · · , ym.
After a contest Ei versus Fj, the payoff for the first player is aij whereas for the second
player it is bji. Let A = (aij) be the matrix consisting of these aij and so also B, then for such
games the evolutionary dynamics is given by:

ẋi = xi
(
(Ay)i − xȦy

)
, i = 0, · · · , n (45)

ẏj = yj
(
(Bx)j − yḂx

)
, j = 0, · · · , m. (46)
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Adding or multiplying a (positive) constant to each column of A or B does not alter
the dynamics.

In the case of n = m = 1, the above equations simplify to:

ẋ = x(1− x)
(
a− (a + b)y

)
, ẏ = y(1− y)

(
− c + (c + d)x

)
. (47)

We will use the Calogero–Leyvraz type Lagrangian to derive the planar replicator type equation.

Calogero–Leyvraz Lagrangian and Replicator Equation

We define the Lagrangian of the coupled system as:

L = q̇i ln q̇i + (1− q̇i) ln (1− q̇i) + λq̇1q2 − μq̇2q1 + aq1 − cq2, i = 1, 2. (48)

It is straight forward to see that the Lagrangian (48) yields:

q̈1 = q̇1(1− q̇1)
(
a− (λ + μ)q̇2

)
, q̈2 = q̇2(1− q̇2)

(
− c + (λ + μ)q̇1

)
. (49)

Let us define:
q̇1 = x, q̇2 = y. (50)

We obtain the replicator equation from (49):

ẋ = x(1− x)
(
a− (λ + μ)y

)
, ẏ = y(1− y)

(
− c + (λ + μ)x

)
. (51)

3.3. Logarithmic Lagrangian Formulation of N = 2 Relativistic Toda Lattice Equation

In this example, we consider a Lagrangian with the cross entropic type kinetic energy
term,

L = q̇ ln (q̇ +
√

q̇2 + 1)−
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1)− cosh q. (52)

Proposition 3. The Euler–Lagrange equation, the Lagrangian (52), yields:

q̈√
q̇2 + 1

= − sinh q. (53)

Proof. After an elaborate calculation from the entropic K. E. term (L1), it yields:

∂L1

∂q̇
= ln (q̇ +

√
q̇2 + 1) +

q̇√
q̇2 + 1

,

and the second K.E. term
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1) = L2 yields:

∂L2

∂q̇
=

q̇√
q̇2 + 1

.

These two expressions lead to a magical cancellation of the term q̇√
q̇2+1

. Using the Euler–

Lagrange equation we obtain the equation.

The Ruijsenaars Hamiltonian is given by:

H =
N

∑
n=1

(
1 + q−1/2R2eqn−qn+1

)
eRpn , (54)

where q = eiRh̄.
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For N = 2 case this equation reduces to:

H2 = eRp1 + eRp2 + R2(eq1−q2+Rp1 + eq2−q1+Rp2
)
. (55)

Consider the centre of mass frame p1 + p2 = 0. Let us define:

p := Rp1, q := q1 − q2 + Rp1. (56)

We express H2 as:
Ĥ2 = ep + e−p + R2(eq + e−q); (57)

for practical purposes we scaled R = 1.
Let us express Hamiltonian (57) in terms of cosine hyperbolic function

H = cosh p + cosh q, (58)

where we drop the factor 2. The Hamiltonian equation yields:

q̇ =
∂H
∂p

= sinh p, ṗ = −∂H
∂q

= − sinh p, (59)

which reduces to Equation (53).

3.3.1. Connection to Calabi–Yau Manifold

We must note that the energy function E = ep + e−p + eq + e−q can be expressed as:

X + X−1 + Y + Y−1 = E. (60)

This defines a genus one Riemann surface. The complex 3D space V = X + X−1 + Y +
Y−1 − E describes a Calabi–Yau manifold. This sets up a connection with the Calabi–
Yau manifold. The Riemann surface has enough information to describe this Calabi–
Yau manifold. The energy function E(p, q) considered to be Hamiltonian appears in the
string theory.

Mirror symmetry states that a CY manifold has its mirror dual. The Kähler structure
of the original CY is mapped to the complex structure of the mirror CY, and vice versa.
In our case, the mirror curve is given by:

ep + μ1e−p + eq + μ2e−q = 1, (61)

where μ1 and μ2 are the complex moduli of the mirror CY.
The new equation is in the same form as the Lagrangian of the N = 2 relativistic Toda

lattice equation. Our case is similar to the case of the quantized mirror curve for the local
P1 × P1, which is related to the quantum eigenvalue problem of the relativistic Toda lattice
with just two particles.

3.3.2. Calogero–Leyvraz Type Lagrangian with Coupling Constant and Mirror Map

Consider the following map:

L = q̇ ln (q̇ +
√

q̇2 + 1)−
(
(q̇ +

√
q̇2 + 1)−

(
q̇ +

√
q̇2 + 1)−1)− γ−1 cosh q, (62)

where γ−1 is a coefficient ( or coupling ) parameter. The corresponding Hamiltonian or
energy function is given as:

E = (ep + e−p) + γ−1(eq + e−q). (63)
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This yields:
1
E
=

1
E2 (e

p + e−p) +
1

γE
(eq + e−q).

Let us change the variable,

ep �→ ep

E
, eq �→ γ−1

E
eq. (64)

4. The κ-Deformed 2D Lotka–Volterra, Replicator and Relativistic Toda
Lattice Equations

By deforming the natural logarithm and exponential functions we present κ-deformed
2D Lotka–Volterra and relativistic Toda lattice equations in this section. We will use both
Kaniadakis and Tsallis deformations to derive new sets of κ-deformed systems.

4.1. The κ Deformation of 2D Lotka–Volterra Equation

We describe two types of κ-deformed systems, semi-deformation and full deformation.
In the first case we only deformed the kinetic part, whereas in the second case we consider
both the kinetic energy (K.E.) and potential energy (P.E.) parts of the deformations.

Case 1: (deforming only K.E) Consider the following κ-deformed Lagrangian:

Lκ = (1− q̇) lnκ (1− q̇)− q− e−q. (65)

Proposition 4. The Euler–Lagrange equation of the deformed Lagrangian (65) reads:

q̈
1− q̇

Expκ ln(1− q̇) + 1− e−q = 0. (66)

Proof. It is easy to see that:

∂Lκ

∂q̇
= − lnκ (1− q̇)− 1

2
(
(1− q̇)κ + (1− q̇)−κ

)
,

= −1
κ

sinh κ ln(1− q̇)− cosh κ ln(1− q̇).

Thus we obtain:

d
dt
(

∂Lκ

∂q̇
) =

q̈
1− q̇

(
cosh κ ln(1− q̇) + κ sinh κ ln(1− q̇)

)
=

q̈
1− q̇

Expκ ln(1− q̇),

where the generalized κ deformed exponential is given by

Expκx = cosh κx + κ sinh κx. (67)

The final result follows from the remaining part of the calculation.

It is clear that when κ → 0 we recover the ordinary Lotka–Volterra equation.

Case 2: (deforming both K.E. and P.E.) In this case we also deformed the exponential
term e−q in the potential. We take the following Lagrangian:

Ld
κ = (1− q̇) lnκ (1− q̇)− q− expκ(−q). (68)

Thus we obtain the following result from the straightforward computation.

Proposition 5. The Euler–Lagrange equation of the deformed Lagrangian Ld
κ yields:

q̈
1− q̇

Expκ ln (1− q̇) + 1− 1√
1 + κ2q2

expκ(−q) = 0. (69)
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4.1.1. Expressing κ-Deformed Equation

The inverse of the generalized κ deformed exponential Expκ(x) is given by:

Expκ(x)−1 = Exp− 1
κ
(x) = cosh κx− 1

κ
sinh κx. (70)

We now express Equation (66) in a standard form. Let us define:

1− q̇ = z, y = e−q. (71)

Thus we obtain:

ẏ = −e−qq̇ = −y(z− 1),
−ż
z

Expκ ln z + 1− y = 0.

This can be expressed as:

ẏ = y− zy, żExpκ ln z = z− yz. (72)

We recover the original equation when κ → 0.
Let w = ln z or z = ew. Then the second equation becomes

ẇw = Exp− 1
κ
(w)(1− y). (73)

A further change of variable p = 1
2 w2 yields a modified set of deformed Lotka–Volterra

equations:

q̇ = (e
√

2p − 1), ṗ = d(1− e−q), where d = Exp− 1
κ
(
√

2p). (74)

Hence we express the deformed Lotka–Volterra equation in a standard form using the
generalized κ deformed exponential function.

4.1.2. Tsallis Logarithm and Deformed Lotka–Volterra System

In section we express the Tsallis logarithm and exponential in terms of κ, which are
given as:

lnκ(q) =
qκ − 1

κ
, expκ(q) =

(
1 + κq)

1
κ . (75)

We now deform the Lotka–Volterra Lagrangian using the κ-deformed Tsallis logarithm
and exponential. It is defined as:

LT
κ = (1− q̇) lnκ (1− q̇)− q− expκ(−q), (76)

with

lnκ (1− q̇) =
(1− q̇)κ − 1

κ
, expκ(−q) =

(
1− κq)

1
κ , (77)

where 1− κq > 0.

Proposition 6. The Euler–Lagrange equation associated with the Tsallis deformed Lagrangian LT
κ

yields:

q̈(1 + κ)(1− q̇)κ−1 + 1− expκ(−q)
(1− κq)

= 0. (78)

Proof. Using the properties of the Tsallis logarithm and exponential functions we arrive at
our desired result.
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One can readily check that, when κ → 0, Equation (79) reduces to the usual Lotka–
Volterra equation. If we assume only the deformation of the kinetic term using the Tsallis
logarithm, then Equation (79) reduces to:

q̈(1 + κ)2(1− q̇)κ−1 + 1− exp(−q) = 0. (79)

4.2. The κ-Deformed Replicator Equation

We can deform the Lagrangian of the replicator Equation (48) using the Kaniadakis or
Tsallis deformation of logarithm term. Using Kaniadakis deformation we obtain:

L = q̇i lnκ q̇i + (1− q̇i) ln (1− q̇i) + λq̇1q2 − μq̇2q1 + aq1 − cq2, i = 1, 2. (80)

Proposition 7. With the Euler–Lagrange equation related to the deformed Lagrangian (80), we
obtain the Kaniadakis deformed coupled equation:

q̈1
(
(1− q̇1) cosh κ ln q̇1 + q̇1 cosh κ ln (1− q̇1)

)
= q̇1(1− q̇1)

(
a− (λ + μ)q̇2

)
, (81)

q̈2
(
(1− q̇2) cosh κ ln q̇2 + q̇2 cosh κ ln (1− q̇2)

)(
− c + (λ + μ)q̇1

)
. (82)

Corollary 3. The Kaniadakis κ deformed replicator equation is given by:

ẋ
(
(1− x) cosh κ ln x + x cosh κ ln (1− x)

)
= x(1− x)

(
a− (λ + μ)y

)
, (83)

ẏ
(
(1− y) cosh κ ln y + y cosh κ ln (1− y)

)
= y(1− y)

(
− c + (λ + μ)x

)
, (84)

where x = q̇1 and y = q̇2.

One can readily see when κ → 0 the deformed replicator Equations (83) and (84)
reduces to the original replicator equation.

We can repeat the same procedure using Tsallis deformation of the logarithm. The cou-
pled equations are given by:

(1 + κ)q̈1
(
q̇κ−1

1 + (1− q̇1)
κ−1) = a− (λ + μ)q̇2, (1 + κ)q̈2

(
q̇κ−1

2 + (1− q̇2)
κ−1) = −c + (λ + μ)q̇1, (85)

which leads to the Tsallis deformed replicator equation,

(1 + κ)ẋ
(
xκ−1 + (1− x)κ−1) = a− (λ + μ)y, (1 + κ)ẏ

(
yκ−1 + (1− y)κ−1) = −c + (λ + μ)x. (86)

This again reduces to the original replicator equation for κ → 0.

4.3. The κ-Deformed N = 2 Relativistic Toda Lattice System

In this section, at first we also modify the entropic kinetic energy term, keeping all
other terms unchanged. The Kaniadakis κ-deformed Lagrangian for the N = 2 relativistic
Toda lattice system is defined as:

L1κ = q̇ lnκ(q̇ +
√

q̇2 + 1)− 1
2
(
q̇ +

√
q̇2 + 1) +

1
q̇ +

√
q̇2 + 1

)
− γ−1 cosh q. (87)

Proposition 8. The Euler–Lagrange equation corresponding to the κ-deformed Lagrangian L1κ

yields:
q̈√

1 + q̇2
cosh κ ln (q̇ +

√
1 + q̇2) +

d
dt

( q̇√
1 + q̇2

(
cosh κ ln( q̇ +

√
1 + q̇2)− 1

))
+ γ−1 sinh q = 0. (88)

Proof. This proof follows from the direct computation.

One can readily check that for κ → 0 (89) reduces to the ordinary N = 2 relativistic
Toda lattice equation.
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For the most general case, we deform the potential term cosh q too, which yields the
following Lagrangian:

L =1κ= q̇ lnκ(q̇ +
√

q̇2 + 1)− 1
2
(
q̇ +

√
q̇2 + 1) +

1
q̇ +

√
q̇2 + 1

)
− γ−1 coshκ q.

We obtain κ-deformed N = 2 relativistic Toda lattice equation,

q̈√
1 + q̇2

cosh κ ln (q̇ +
√

1 + q̇2) +
d
dt

( q̇√
1 + q̇2

(
cosh κ ln (q̇ +

√
1 + q̇2)− 1

))
+

1√
1 + q̇2

γ−1 sinhκ q = 0. (89)

This yields the most general Kaniadakis κ-deformation of the N = 2 relativistic Toda lattice
equation which reduces to the original one when κ goes to zero.

Tsallis Deformed N = 2 Relativistic Toda Lattice Equation

In this section we present the deformation of the the N = 2 relativistic Toda lattice
equation using Tsallis deformation. Let the entropic part of the kinetic term be given by:

LKE = q̇ lnκ (q̇ +
√

q̇2 + 1) = q̇
(q̇ +

√
q̇2 + 1)κ − 1

κ
.

We now compute the equation of motion using the Tsallis deformed kinetic energy.

Proposition 9. The Euler–Lagrange equation of the Tsallis κ-deformed Lagrangian

LRT
κ = q̇ lnκ (q̇ +

√
q̇2 + 1)− 1

2
(
q̇ +

√
q̇2 + 1 +

1
q̇ +

√
q̇2 + 1

)
− γ−1 cosh q (90)

yields

q̈√
q̇2 + 1

(q̇ +
√

q̇2 + 1)κ +
( q̇√

q̇2 + 1
(q̇ +

√
q̇2 + 1)κ − 1

)
+ γ−1 sinh q = 0. (91)

5. Outlook

In this paper we considered a special class of Lagrangians proposed by Calogero
and Leyvraz with an “exotic” kinetic energy term. This term has a close resemblance to
the Shannon entropy function, q̇ ln q̇. Using this new type of Lagrangian, we derived the
celebrated Lotka–Volterra and replicator equation. We then generalized the construction
of Calogero and Leyvraz and considered a different type of kinetic energy term based on
cross entropy. We then manufactured an N = 2 relativistic Toda lattice system. We also
discussed the significance of this equation in modern physics. Different avatars of this
equation appeared in string theory and theoretical high energy physics—purely imaginary
position and momentum coordinates lead to the Hofstadter model.

The main goal is to express all these celebrated equations in terms of logarithmic kinetic
energy using the deformation of the entropic kinetic energy term. We used the Kaniadakis
κ-deformed logarithm and exponential functions to deform these Calogero–Leyvraz type
Lagrangians to give a new formulation of κ -deformed Lotka–Volterra, replicator equation
and N = 2 relativistic Toda lattice system. We also extended this deformation to the Tsallis
class and derived Tsallis-deformed equations. All the original equations can be recovered
from the deformed systems when κ → 0.

In a nutshell, this paper elucidated the strength of the Calogero–Leyvraz formalism
based on entropic kinetic terms. It would be interesting to derive more known and not so
well known systems using this method. The predator–prey models are one of the best places
to apply our scheme. We may try to apply this scheme to planar generalized Lotka–Volterra
(GLV) equations; for example, consider two interacting populations with densities x > O
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and y > O with the simplest formal description of interaction with the linear dependence
of the growth rates ẋ/x and ẏ/y. This yields the following GLV equation:

ẋ = x
(
a + bx + cy

)
, ẏ = y

(
d + ex + f y).

We can generalize this construction and check whether we can manufacture this new
equation using the Calogero–Leyvraz formalism. We then implement the κ - deformation
of such equations and study their dynamics.

It would be worth investigating the Calabi–Yau manifold connected to the κ-deformed
Hamiltonian of the N = 2 relativistic Toda lattice equation.
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Abstract: Kaniadakis statistics is a widespread paradigm to describe complex systems in the rela-
tivistic realm. Recently, gravitational and cosmological scenarios based on Kaniadakis (κ-deformed)
entropy have been considered, leading to generalized models that predict a richer phenomenol-
ogy comparing to their standard Maxwell–Boltzmann counterparts. The purpose of the present
effort is to explore recent advances and future challenges of Gravity and Cosmology in Kaniadakis
statistics. More specifically, the first part of the work contains a review of κ-entropy implications
on Holographic Dark Energy, Entropic Gravity, Black hole thermodynamics and Loop Quantum
Gravity, among others. In the second part, we focus on the study of Big Bang Nucleosynthesis in
Kaniadakis Cosmology. By demanding consistency between theoretical predictions of our model and
observational measurements of freeze-out temperature fluctuations and primordial abundances of
4He and D, we constrain the free κ-parameter, discussing to what extent the Kaniadakis framework
can provide a successful description of the observed Universe.

Keywords: Kaniadakis entropy; relativistic theory; gravity; cosmology; big bang nucleosynthesis

1. Introduction

In the last several decades, several approaches of statistical mechanics have been
used in high energy physics to analyze cosmological models [1], particle interactions [2],
Lorentz-violating extensions of the Standard Model [3], black holes and other gravitational
systems [4–6]. Despite the different contexts, a common thread among all of these studies is
the adoption of Boltzmann–Gibbs–Shannon (BGS) entropy, which conducts the celebrated
Maxwell–Boltzmann exponential distribution according to the Jaynes maximum entropy
principle. However, it is well-known that Boltzmann–Gibbs formalism exhibits severe
restrictions when applied to many complex systems, such as out-of-equilibrium, long-
interacting and thermally fluctuating systems [7]. This motivates the introduction of a more
general setting that contains the Maxwell–Boltzmann distribution measure as a special case.

Among the most popular generalizations, evidence from relativistic particle systems [8,9]
has suggested a non-exponential distribution function with power tails that originated
from Kaniadakis entropy [10–12]

Sκ = −∑
i

ni lnκ ni (1)

where the κ-deformed logarithm is defined by (here, and henceforth, we use natural units
kB = � = G = c = 1:)

lnκ x ≡ xκ − x−κ

2κ
− 1 < κ < 1 (2)

and the generalized Boltzmann factor for the i-th level of the system takes the form

ni = α expκ [−β(Ei − μ)]. (3)
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Here, the κ-deformed exponential is given by

expκ(x) ≡
(√

1 + κ2 x2 + κ x
)1/κ

(4)

while
α = [(1− κ)/(1 + κ)]1/2κ 1/β =

√
1− κ2 T . (5)

As shown in [11], the statistical model developed from the generalized functions (2)
and (4) emerges naturally and unequivocally within the framework of special relativity.
Notice that the κ parameter is not fixed by the theory and should be constrained via
theoretical and/or observational analyses. It is straightforward to check that the classical
κ → 0 limit reproduces the ordinary (Maxwell–Boltzmann) statistical mechanics, thus
making Equation (1) a self-consistent relativistic generalization of BGS entropy formula.

By using the definition of microcanonical ensemble, it has been argued that, for the
case of black holes, the κ-entropy (1) can be rewritten in the form [13,14]

Sκ =
1
κ

sinh(κ SBH) (6)

where SBH = A/(4) is the standard Bekenstein–Hawking entropy, which is still recovered
for κ → 0. Since Sκ = S−κ , in what follows, we can restrict to the κ ≥ 0 case without a loss
of generality.

While being expressly formulated for black holes, Equation (6) can also be used within
the cosmological framework in the lines of gravity-thermodynamic conjecture. For instance,
in [15], Drepanou et al. have shown that Holographic Dark Energy based on Kaniadakis
entropy (6) leads to interesting cosmological behavior, retracing the standard thermal
history of the Universe in good agreement with observations [16,17]. Similarly, in [18,19]
(and references therein), Kaniadakis statistics has been used in gravity scenarios to address
the Jeans instability and simulate dark matter-like effects, respectively. Applications of
κ-entropy can also be found in plasma physics, astrophysics, information theory, fluid
dynamics and other fields (see [20] for a recent review). All of this makes Kaniadakis
statistics a very flexible framework that can potentially adapt to the diversity of relativistic
physical contexts where Maxwell–Boltzmann distribution fails, thus motivating a careful
analysis of the subject.

In passing, we mention that, besides Kaniadakis formulation, there exist many other
generalized entropies which are relevant and commonly used in physics, for instance Tsallis,
Abe, Landsberg–Vedral, Sharma–Mittal, Rény and Barrow entropies, among others (see [21]
for a detailed review), all containing the classical BGS entropy as a special case. While
exhibiting some mathematical similarities with κ-deformation, these entropy measures
are better suited to describe statistical properties of long-interacting, dissipative or large-
scale fluctuating systems, but do not work properly in the relativistic realm, which is
the framework of this review. Clearly, one could in principle extend the present study
to the above family of generalized entropies to see how temperature fluctuations, non-
extensive (Tsallis-like) or quantum gravity (Barrow-like) corrections affect ensuing scenarios
in comparison with Kaniadakis conjecture. Some of these research lines have already been
explored in literature [22–26]. However, a systematic investigation of these aspects goes
beyond the scope of the present review and will be considered elsewhere.

Starting from the above premises, in the present manuscript, we focus on the study
of Kaniadakis statistics applied to Gravity and Cosmology. The structure of the work can
be basically divided into two parts: the first one (Section 2) contains a review of recent
advances in the literature. Special care is devoted to examine:

• implications on open stellar clusters: such systems are physically related group of stars
held together by the mutual gravitational attraction. Since their constituents typically
have similar age and chemical composition, they provide very important laboratories
where stellar properties compared to isolated field stars can be studied. In [22], Car-
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valho et al. have shown that the characteristic relaxation mechanism associated with
radial orbital instability cannot be understood in the classical Maxwell–Boltzmann
framework, emphasizing the need of non-Gaussian (Kaniadakis-like) statistics to fit
the distribution of stellar residual radial velocity in some baseline stellar open clusters.

• Jeans instability and gravitational collapse: the dynamical stability of a self-gravitating
system can be described by the Jeans criterion, which states that, if the wavelength
of a density fluctuation inside the system is greater than a certain threshold given
by the Jeans wavelength, then the density will grow in time exponentially, and the
system becomes gravitationally unstable. In [27], this criterion has been revisited
in the context of Kaniadakis statistics, obtaining a κ-deformed critical wavelength
larger than the standard expression. Similar studies have also been developed in
Eddington-inspired Born–Infeld [28] and f (R) [29] gravity, and the dark-baryonic
matter model [30], among others.

• Holographic Cosmology: Holographic Dark Energy (HDE) is a theoretical framework
that arises from the attempt of applying the holographic principle to the dark energy
problem [31]. A crucial ingredient in the construction of this model is the relationship
between the entropy of the Universe (conceived as a thermodynamic system) and its
geometrical properties, such as its radius. The standard HDE scenario is built upon
Bekenstein–Hawking entropy, which arises as the black hole application of the BGS
one. However, in [13–15,32], a generalized HDE based on Kaniadakis entropy has
been investigated along with its implications on the cosmic evolution and thermal
properties of the Universe (see also [23,24,33–35] for further applications). Remarkably,
it has been shown that Kaniadakis dark energy exhibits peculiar features that do not
have any correspondence in the traditional HDE, potentially providing a way to
alleviate the Hubble tension.

• Entropic gravity: Verlinde’s conjecture of entropic gravity [36] presents gravitational
force as an emergent (rather than fundamental) force caused by changes in the in-
formation associated with the positions of material bodies. Starting from this idea,
an effective gravitational constant can be derived and used to introduce Kaniadakis
statistics, the ensuing method being a simpler alternative to the usual procedure
employed in non-Gaussian statistics. In [25], such a formalism has been applied to
infer Kaniadakis-induced corrections to the Jeans criterion for self-gravitating systems,
as well as to establish a connection with deviations of Newton’s law arising in a
submillimeter range (for the sake of transparency, it must be said that the issue of
whether Newton’s law exhibits deviations from inverse square behavior in submil-
limeter regime is quite controversial. For instance, in [37], it has been found that there
are still no deviations in separation down to O(102) μm.) [38].

• Black hole thermodynamics: inspired by a dual Rény entropy [39,40], in [41], Abreu et al.
have suggested and applied a dual Kaniadakis entropy to black hole thermodynamics.
In this way, a generalized equipartition theorem has been derived, leading to a κ-
modified black hole temperature and heat capacity. In addition, it has been argued
that black holes in Kaniadakis statistics could exhibit a thermally stable phase, thus
opening new glimpses into the study of black hole thermodynamics at both theoretical
and phenomenological levels [41].

• Loop Quantum Gravity (LQG): this is a well-known non-perturbative and background
independent theory of gravity which aims to merge Quantum Mechanics and General
Relativity [42]. One of the characteristic parameters of LQG is the so-called Immirzi
parameter [43], which is an arbitrary number that measures the size of the quantum
of area in Planck units. By using Kaniadakis statistics, Abreu et al. have derived a
non-trivial relation between the Immirzi parameter, the κ deformation parameter and
the area of a punctured surface [44], which is a topological two-sphere with defects
carrying spin quantum numbers endowed by the edges of the spin network that
represents the bulk quantum geometry. The question arises as to whether Kaniadakis
statistics might play any role in the context of quantum gravity.
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On the other hand, the second part of the manuscript (Section 3) provides the original
contribution of this work. Here, we study consequences of Kaniadakis Holographic Dark
Energy (KHDE) on Big Bang Nucleosynthesis (BBN). Specifically, we constrain the defor-
mation κ-parameter by requiring consistency between theoretical predictions of our model
and observational data of primordial abundances and freeze-out temperature fluctuations,
which only allow for very tiny deviations from General Relativity. Finally, in Section 4,
we summarize results and discuss some possible future challenges of Kaniadakis statis-
tics aimed at both broadening the current research lines and opening novel prospects in
this field.

2. Gravity and Cosmology in Kaniadakis Statistical Theory: Recent Advances

In this section, we discuss some recent findings pertaining to Gravity and Cosmology
in Kaniadakis statistics. Our aim is to highlight the advantages of Kaniadakis model
in describing some phenomena which are not well framed (or not even understood) in
Maxwell–Boltzmann theory.

2.1. Open Stellar Clusters

Open stellar clusters are a type of star cluster made of up to a few thousand stars that
have roughly the same age and composition, being formed from the same giant molecular
cloud. The knowledge of the different properties of these clusters, such as the distribution
of dispersion velocity and phase density, is needed to establish the statistical laws and the
relaxation mechanisms that rule their evolution.

There are essentially three main mechanisms: collisional relaxation, which is char-
acterized by a Maxwell-like distribution; the Lynden–Bell relaxation, leading to a Fermi
distribution; and a relaxation associated with radial orbit instability that attains a non-
monotonic distribution. While the first two mechanisms are well described by the standard
statistical mechanics, the last one is not well-understood yet.

The above issue has been examined in [22] in the background of Kaniadakis statis-
ticsSpecifically, Carvalho et al. have investigated the effects of non-Gaussianity on the
distribution of stellar residual radial velocity in some open clusters’ samples. The general-
ized κ-distribution function they find for the radial velocity vr has the form

φκ(vr) = Aκ

⎡⎣√1 + κ2
(

v2
r

σ2
κ

)2

− κ
v2

r
σ2

κ

⎤⎦1/κ

= Aκ expκ

(
− v2

r
σ2

)
, (7)

where Aκ is a constant, and σκ denotes the characteristic distribution width. In the second
step, we have used the definition (4). For κ → 0, this expression reduces to the standard
Gaussian distribution

φ(vr) = A exp
(
− v2

r
σ2

)
, (8)

as expected.
By using the Kolmogorov–Smirnov statistical test, the best φκ(vr) has been obtained

for each observed cumulative distribution of the residual radial velocities. As a result, it
has been shown that the generalized Kaniadakis distribution fits data much better than the
standard Gaussian does, provided that one allows the κ parameter to be varying with the
stellar-cluster ages. Below, we will show that a similar running behavior is supported by
completely independent arguments in the framework of Kaniadakis Cosmology.
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2.2. Jeans Instability and Gravitational Collapse

Jeans criterion provides a condition to establish whether a self-gravitating system
is stable under the effects of its internal gas pressure. The so-called Jeans length that
represents the watershed between stable and unstable systems is given by [45]

λJ =

√
πT

μmHρ0
(9)

where T is the temperature, μ the mean molecular weight, mH the hydrogen atomic mass
and ρ0 the equilibrium mass density of the system, respectively.

According to Jeans instability, if the wavelength λ of a density perturbation is higher
than λJ , then the density grows exponentially, giving rise to an unstable system. Otherwise,
stability is kept. The same criterion can also be expressed in terms of a critical mass for
self-gravitating systems (see Section 2.4).

The condition (9) follows from the canonical equipartition theorem in Maxwell–
Boltzmann statistics. Nevertheless, motivated by relativistic considerations, in [27], Abreu
et al. have shown that the critical density λJ gets non-trivially modified in the context of
Kaniadakis statistics. In particular, by using the κ-generalized equipartition theorem

Eκ =
1
2

N
(
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ − 1

4

) T (10)

and Verlinde formalism of entropic gravity [36], the following expression for the κ-deformed
critical wavelength has been exhibited

λκ
c =

√√√√√ (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ − 1

4

) λJ (11)

where Γ is the Gamma function. From this equation, we infer that Jeans instability is
modified in such a way that:

- for κ = 0 =⇒ λκ
c = λJ , i.e., the classical criterion is restored;

- for 0 < κ < 2/3 =⇒ λκ
c > λJ ;

- for κ → 2/3− =⇒ λκ
c → ∞, which means that the self-gravitating systems are

always stable (notice that for κ ≥ 2/3 the modified equipartition law based on
Kaniadakis statistics diverges, thus making the derivation of the generalized Jeans
criterion meaningless.).

Apart from the limit case κ = 0, we then see that the modified critical wavelength
is always larger than the corresponding Maxwell–Boltzmann value. In other terms, Ka-
niadakis statistics predicts self-gravitating systems to be more stable compared to the
classical scenario.

Furthermore, one can show that the κ-deformed entropy also affects the physical
temperature of gravitating systems and the velocity of the propagation of sound inside
them. The resulting expressions are [27]

Tκ =

(
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ − 1

4

) T vs
κ =

√
Tκ

m
. (12)

These results have been tested considering 16 galaxy clusters. It has been found that
Boltzmann–Gibbs statistics are consistent with data, although non-Gaussian effects cannot
be completely ruled out, constraining 0 ≤ κ ≤ 0.034 at the 2σ confidence level.
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It is worth mentioning that Jeans criterion in Kaniadakis statistics has also been
addressed in other different contexts. For instance, in [28], Jeans instability has been re-
visited in the framework of Eddington-inspired Born–Infeld gravity, showing that the
κ-deformed distribution may have non-negligible effects on the Jeans modes of the colli-
sionless Eddington-inspired Born–Infeld gravitational systems. In a similar fashion, the
influence of the κ-generalized Jeans criterion has been examined in [29] in f (R) gravity for
both high and low frequency density perturbations. As a result, it has been proven that
the range of the unstable modes and the growth rates decrease with increasing values of κ.
A further step forward has been taken in [30], where implications of Kaniadakis statistics
have been explored on gravitational systems composed also by dark and baryonic matter.
The analysis of the κ-modified dispersion equation for such systems has pointed out that
Jeans instability is suppressed comparing to the standard case, implying that Kaniadakis
corrections oppose the gravitational collapse. Clearly, all of the above outcomes disclose
a new class of phenomena and/or mechanisms, which potentially allow us to highlight
signatures of Kaniadakis statistics in gravitational systems.

2.3. Holographic Dark Energy

Holographic Dark Energy is a dynamical model of dark energy built on the usage
of the holographic principle and Bekenstein–Hawking area law. Although cosmological
applications of HDE have been extensively considered in the past literature [46–48], its
shortcomings in reproducing the thermal history of the Universe have motivated some
tentative changes over the years [14,15,49–53]. Among these generalizations, promising
results have been provided by HDE based on Kaniadakis entropy (Kaniadakis Holographic
Dark Energy, KHDE). Several models of KHDE have been proposed: here, we refer to the
approach of [14], which correctly reduces to the usual HDE in the κ → 0 limit and does not
involve large deviations from standard entropy to describe the Universe evolution, as it
should be according to Equation (2). For other possible extensions, see also [13,32,33].

Starting from the entropy (6) and using the gravity-thermodynamic conjecture, in [14],
Lymperis et al. have derived modified Friedmann equations ruling the evolution of a
homogeneous and isotropic Friedmann–Robertson–Walker (FRW) geometry filled with
matter and dark energy fluids and bounded by the apparent horizon (see Section 3). In
turn, these equations allow for computing characteristic cosmic parameters, such as the
Equation of State (EoS) parameter, the deceleration parameter, the squared speed of sound
and the Hubble parameter, to be compared with the theoretical predictions of the Λ-CDM
model of Cosmology. A more detailed experimental analysis of KHDE has been carried out
in [15–17], showing that KHDE predictions do agree with observational data and might
contribute to alleviate the H0 tension too. In particular, concerning the dark energy EoS
parameter, it has been found to exhibit a phenomenology richer than standard HDE, being
quintessence-like, phantom-like, or experiencing the phantom-divide crossing in the past
or in the future. In addition, observations from Supernovae type Ia and Baryon Acoustic
Oscillations data enable constraining the Kaniadakis parameter around the vanishing value,
consistently with the expectation of small deviations from Gaussian-like statistics in nature.

2.4. Entropic Gravity

In the entropic gravity formalism by Verlinde [36], gravitational force is conceived as
an entropic force caused by changes in the information associated with the positions of
material bodies. This conjecture combined with the generalized Kaniadakis’ equipartition
law gives an effective gravitational constant in the form [25]

Gκ =

(
1 + 3

2 κ
)
2κ(

1 + κ
2
) Γ

(
1

2κ + 3
4

)
Γ
(

1
2κ − 1

4

)
Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)G (13)

where here we have restored the gravitational constant G for the sake of clarity.
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In the same spirit as Section 2.2, Equation (13) can be used to describe Kaniadakis
statistics effects on Jeans mass criterion in self-gravitating systems. Specifically, Abreu et al.
have derived an expression for the modified Jeans critical mass as [25]

Mκ
J =

⎡⎣ (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ − 1

4

)
⎤⎦3/2

MJ , (14)

where

MJ =

(
5 T
m

)3/2( 3
4πρ

)1/2
(15)

is the usual Jeans mass in Maxwell–Boltzmann framework, while all other quantities are
defined as in Section 2.2. As before, one can distinguish three possible regimes given by:
(i) κ = 0, which implies instability for M > Mκ

J = MJ ; (ii) 0 < κ < 2/3, which entails
M > Mκ

J > MJ ; and (iii) κ → 2/3−, in which Mκ
J → ∞, giving rise to an always stable

gravitational system. This confirms the previous result that Kaniadakis entropy opposes
gravitational collapse.

Another important physical quantity considered in [25] is the free fall time

tFF =

√
3

2πρ
, (16)

which is defined as the time necessary to the system to finally collapse. In the case of
Kaniadakis statistics, this turns out to be modified as [25]

tκ
FF =

⎡⎣ (
1 + κ

2
)(

1 + 3
2 κ
)
2κ

Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

)
Γ
(

1
2κ + 3

4

)
Γ
(

1
2κ − 1

4

)
⎤⎦1/2

tFF . (17)

which indicates that tκ
FF > tFF, except for the κ = 0 case, where equality is recovered. Thus,

the self-gravitating system in Kaniadakis scenario takes more time to collapse comparing
to the Gaussian framework.

As a further application, in [25], a connection has been studied between the modifica-
tions of Newton’s law induced by the generalized gravitational constant (13) and possible
deviations arising in a submillimeter range, which are parameterized by [38]

G(r) = G
[
1 + α

(
1 +

r
λ

)
e−r/λ

]
, (18)

where α is a dimensionless parameter and λ gives the energy (or length) scale at which
departures of Newton’s law from the standard inverse square behavior should occur.

In so doing, Abreu et al. have obtained a relationship between α and the Kaniadakis
parameter in the form

α =

(
1 + 3

2 κ
)
2κ(

1 + κ
2
) Γ

(
1

2κ + 3
4

)
Γ
(

1
2κ − 1

4

)
Γ
(

1
2κ − 3

4

)
Γ
(

1
2κ + 1

4

) − 1 . (19)

This result opens up the tantalizing possibility of probing Kaniadakis-like devia-
tions from Gaussianity via tests of the gravitational inverse square law in experimentally
accessible regions.
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2.5. Black Hole Thermodynamics

Inspired by a novel type of Rény entropy proposed in [40], Abreu et al. have introduced
a dual Kaniadakis entropy in the form [41]

S∗κ =
1
κ

log
(

κ SBH +
√

1 + κ2 S2
BH

)
= log[expκ(SBH)], (20)

where SBH is the Bekenstein–Hawking entropy defined below Equation (6).
Based on the above equation, one can derive a modified Hawking temperature and

heat capacity of black holes as [41]

T =

√
1 + 16κ2π2M4

8πM
(21)

CBH = −8πM2(1 + 16κ2π2M4)1/2

1− 16κ2π2 M4 (22)

where M denotes the black hole mass. Notice that both of the above expressions reproduce
the semiclassical Hawking results

T = 1/(8πM) CBH = −8πM2 (23)

in the κ → 0 limit, as it should be.
Remarkably, from Equation (22), we see that CBH takes negative (positive) values for

M < [2(κπ)1/2]−1 (M > [2(κπ)1/2]−1), leading to a thermally unstable (stable) black hole.
Such a result implies that it is possible for a phase transition to occur in the dual Kaniadakis
statistics framework—a result which has no correspondence in the Maxwell–Boltzmann
scenario. This points out the potential relevance of dual Kaniadakis entropy in the analysis
of black hole thermodynamics.

2.6. Loop Quantum Gravity

Implications of Kaniadakis statistics have also been analyzed in Loop Quantum Grav-
ity, which arises from the effort to grasp what quantum spacetime is at the fundamental
level. More specifically, this formalism is characterized by quantum operators for areas and
volumes that exhibit discrete spectra.

One of the peculiar parameters of LQG is the so-called Immirzi parameter, which is a
free dimensionless quantity that provides the size of a quantum of area in Planck units. A
way to compute this parameter is by counting the number of microstates of a given system
in LQG. For black holes, this is typically accomplished by use of the Bekenstein–Hawking
entropy area law, which roots its origin in the BGS entropy. As a result, one obtains [43]:

γ =
log 2
π
√

3
. (24)

This expression can be straightforwardly generalized to the background of Kaniadakis
statistics by using the κ-deformed entropy in the microcanonical ensemble. Calculations
have been carried out in [44] for a generic system of surface area A, leading to

γκ = γ
κA
4

log
[

κA
4 +

√
1 + κ2 A2

16

]

= γ
A
4

log
[
expκ

(
A
4

)] (25)
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which correctly reduces to γ for κ → 0. Since the extra factor appearing in the above
relation is greater than unity, we have γκ > γ, resulting in a larger size of the quantum of
area in Planck units.

The outlined κ-dependence of the Immirzi parameter reveals a non-trivial interplay
between LQG and Kaniadakis statistics. Hence, much effort is needed to better understand
the potential rôle of Kaniadakis entropy within the framework of quantum gravity.

3. Big Bang Nucleosynthesis in Kaniadakis Statistics

In physical Cosmology, Big Bang Nucleosynthesis (BBN) refers to the sequence of
nuclear processes which synthesized primordial light elements, such as Hydrogen H,
Deuterium D, Helium isotopes 3He and 4He and Lithium isotope 7Li [54]. Clearly, since
BBN drives the whole evolution of Universe’s chemical composition, BBN parameters
must be very tightly constrained to be consistent with current observations. Therefore, this
phenomenon provides an unparalleled arena to test cosmological models and constrain
related parameters with great accuracy.

An interesting issue to address is how relativistic degrees of freedom of the early
Universe affect BBN when described in the more proper framework of Kaniadakis statistics.
To solve the problem, let us first derive modified Friedmann equations in Kaniadakis
Cosmology. For this purpose, we mainly refer to [14,15], though we feature κ-induced
corrections in a slightly different way.

Consider a homogeneous and isotropic FRW flat geometry of metric

ds2 = −dt2 + a2(t)
(

dr2 + r2dΩ2
)

, (26)

where a(t) is the scale factor and t the cosmic time. In addition, we assume that the Universe
is filled up with with a matter perfect fluid of equilibrium mass density ρ0 and pressure
p0 = wρ0, where −1 ≤ w ≤ 1/3 is the EoS parameter.

Invoking the gravity-thermodynamic conjecture, we can think of our Universe as a
thermodynamic system bounded by an apparent horizon ra = 1/H = a/ȧ and endowed
with a temperature and entropy obeying the same rules as for black holes (in our notation,
the dot indicates a derivative with respect to the cosmic time) [55]. In this scenario, by
using the energy–momentum tensor of matter content, the continuity equation and BH
entropy area law, we are led to the canonical Friedmann equations

−4π (ρ0 + p0) = Ḣ (27)

8π

3
ρ0 = H2 (28)

where cosmological constant effects have been neglected.
The question now arises as how Equations (27) and (28) get modified when using the

κ-deformed entropy (6) instead of BH entropy. Following the same recipe as above, one
arrives to the Kaniadakis–Friedmann equations [14]

−4π(ρ + p) = cosh
(

κ
π

H2

)
Ḣ (29)

8π

3
ρ = cosh

(
κ

π

H2

)
H2 − κπ shi

(
κ

π

H2

)
, (30)

where ρ and p now denote the total energy density and pressure including Kaniadakis
corrections, and

shi(x) ≡
∫ x

0

sinh(x′)
x′

dx′ . (31)

Notice that the classical scenario is easily recovered for κ → 0.
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To make the κ-dependence of the l.h.s. in Equations (29) and (30) explicit, let us recast
the total energy density and pressure as

ρ = ρ0 + δρκ (32)

p = p0 + δpκ (33)

where we have separated out Kaniadakis-induced corrections δρκ and δpκ , respectively.
We then expand cosh(x) and shi(x) in Equations (29) and (30) for small κ, which is

indeed the case, since departures from Maxwell–Boltzmann statistics are expected to be
small. We obtain the leading order

−4π(ρ0 + p0 + δρκ + δpκ) � Ḣ
(

1 +
π2

2
κ2

H4

)
, (34)

8π

3
(ρ0 + δρκ) � H2 − π2

2
κ2

H2 (35)

which gives [56]

δρκ � − 9
128

κ2

ρ0
, (36)

δpκ � 21
128

κ2

ρ0
. (37)

For our next purposes, it is now convenient to rewrite the modified Friedmann
Equation (35) in the equivalent form

H(ρ) ≡ H(ρ0) Zκ(ρ) (38)

where H(ρ0) is the unmodified Hubble parameter obeying Equation (28) and

Zκ(ρ) ≡ 1 +
9

256
κ2

ρ2 . (39)

This can be further manipulated by resorting to Equations (32) and (36) and expressing
the equilibrium energy density ρ0 as a function of the temperature according to

ρ0(T) =
π2 g(T)

30
T4 (40)

where g(T) denotes the effective number of degrees of freedom of the Universe at temper-
ature T. Since in the following we shall focus on the radiation dominated epoch, we can
roughly set g(T) � 10. In so doing, we obtain

H(ρ)→ H(T) =
2π

3

√
π g(T)

5
T2 Zκ(T) (41)

where

Zκ(T) ≈ 1 +
2025
64 π4

κ2

g2(T)T8 . (42)

Before going further, we point out that, in the ordinary Cosmology based on GR and
BH entropy, the Z function takes unit value, as it can be seen by considering the κ → 0 limit.
In general, departures of Z− 1 from zero could emerge from either extended formulations
of gravity, including alternative geometric frameworks and/or different entropic scenarios,
or by introducing extra particle degrees of freedom in the standard theory. Since in the
present work we are interested in effects induced by Kaniadakis statistics, we focus on the
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first setting, neglecting corrections brought about by exotic particles. A similar analysis has
been recently proposed in [57,58] in the context of Tsallis statistics and generalizations of
the Heisenberg principle induced by gravity, respectively.

3.1. Freeze-Out Mechanism

According to the BBN model, the current abundances of the first very light atomic
nuclei were already nearly defined few minutes after the initial Big Bang, when the energy
and number density were still dominated by relativistic degrees of freedom—leptons and
photons [59]. Owing to their continuous and repeated collisions, such particles were in
thermal equilibrium. In turn, protons and neutrons were kept in equilibrium through
the reactions

(a) νe + n ←→ p + e− (43a)

(b) e+ + n ←→ p + ν̄e (43b)

(c) n ←→ p + e− + ν̄e . (43c)

In this scenario, neutron abundance can be estimated by computing the rate of conver-
sion λpn(T) of protons into neutrons and its inverse

λnp(T) = e−Q/Tλpn(T) (44)

where Q = mn −mp � 1.29 MeV, with mn(p) being the neutron (proton) mass. The rate
λnp(T) is given by the sum of the three rates for the processes (a), (b) and (c), i.e.,

λnp(T) = λa(T) + λb(T) + λc(T) . (45)

The reactions (43) went on until the decreasing temperature and density content
of the Universe caused them to become too slow, at about the freeze-out temperature
T0 f � 0.6 MeV. In compliance with [59], we require that T during the freeze-out period
was low enough compared to the typical energy scale for the processes (43). In addition, we
assume to neglect the electron mass me with respect to the electron and neutrino energies.
Under these hypotheses, one obtains [59]

λa(T) � qT5 +O
(Q

T

)
= λb(T) (46)

where q � 10−10 GeV−4. On the other hand, λc(T) is roughly three orders of magnitude
lower than λa(T) and can in principle be neglected.

Let us now observe that the 4He mass fraction of the total baryonic mass is [60]

Yp ≡ γ
2x(t f )

1 + x(t f )
(47)

where
γ = e−(tn−t f )/τ � 1. (48)

Here, t f � 1 s and tn � 20 s are the freeze-out and nucleosynthesis times, respectively, while
τ � 877 s is the neutron mean lifetime. Moreover, we have denoted the neutron-to-proton
equilibrium ratio by x(t f ) = e−Q/T(t f ).

Fluctuations of Yp are related to variations of the freeze-out temperature δTF by
(see [57] and references therein)

δYp = Yp

[(
1− Yp

2γ

)
log

(
2γ

Yp
− 1

)
−

2t f

τ

]
δTf

Tf
. (49)
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Observational measurements from 4He emission lines in extragalactic HII regions
enable estimating [61]

Yp = 0.2449 |δYp| � 10−4 . (50)

By plugging these values into Equation (49) and solving for δTf , we are led to the
following variation of the freeze-out temperature∣∣∣∣∣ δTf

Tf

∣∣∣∣∣ � 10−4 . (51)

We now have all the ingredients to constrain the Kaniadakis parameter. Indeed,
following [57], we can evaluate the freeze-out temperature in the Kaniadakis framework
by imposing that the interaction rate (45) is of the same order as (or small than) the Hubble
rate (41), and setting δTf = Tf ,κ − T0 f = Tf ,κ − 0.6 MeV, where we have denoted by Tf ,κ
the Kaniadakis-corrected freeze-out temperature. The resulting equation has the form

y T11
f ,κ = κ2 x + z T8

f ,κ (52)

where

y ≡ 384
√

5π4 g2 q (53)

x ≡ 4050π3/2√g (54)

z ≡ 128π11/2 g5/2 . (55)

Equation (52) cannot be solved analytically. However, we can infer an upper bound on
the Kaniadakis parameter by resorting to numerical evaluation. In order for Tf ,κ to satisfy
Equation (51), we must have

|κ| � 10−92 (56)

which shows that the Kaniadakis parameter must be tightly constrained around zero to be
consistent with experimental measurements of freeze-out temperature. More comments on
the obtained result can be found at the end of the next subsection.

3.2. Primordial Abundances of 4He and Deuterium D

Based on the previous considerations, let us now investigate implications of Kani-
adakis statistics on the primordial abundances of Helium isotope 4He and Deuterium D.
To this aim, we recall that the sequence of nuclear processes leading to the generation of
these elements is

n + p → D + γ (57)

D + D → 3He + n (58)

D + D → T + p . (59)

In the final stage, Deuterium and Tritium T or Deuterium and Helium isotope 3He
combine to give

D + T → 4He + n (60)

D + 3He → 4He + p . (61)

From [62], we know that the primordial 4He abundance is constrained by the numerical
best fit to the value

Yp = 0.2485± 0.0006 + 0.0016[(η10 − 6) + 100(Z− 1)], (62)
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where the baryon density number is given by η10 ≡ 1010ηB � 6, with ηB being the baryon-
to-photon ratio [62]. Of course, here we have to consider Z equal to Equation (42) to study
Kaniadakis entropy effects on 4He abundance. For Z = 1 (standard GR value), we get back
Yp = 0.2485± 0.0006, according to the predictions of the traditional BBN model.

Now, as shown in [57], the requirement of consistency between Equation (62) and
observational measurements of 4He abundance gives

δZ ≡ Z− 1 � O(10−2) . (63)

By taking Z = Zκ , the above equation allows us to constrain the κ deformation parameter to

|κ| � 10−88 (64)

where we have considered T � 10 MeV.
We can repeat the same considerations as above for the case of D abundance. The best

numerical fit from [63] gives in this case

yDp = 2.6(1± 0.06)
(

6
η10 − 6(Z− 1)

)1.6
(65)

which still leads to the standard BBN prediction yDp = 2.6± 0.16 for η10 = 6 and Z = 1.
Observational measurements of D abundance combined with Equation (65) set again
δZ � O(10−2) [57,64], thus leading to the same bound as in Equation (64).

It is worth noting that the constraint (64) is less tight than both the bound in Equation (56)
and than results obtained in [16] via cosmic chronometers/Supernovae type Ia (|κ| � 10−124)
and Baryon Acoustic Oscillations (|κ| � 10−125) measurements. Although not contem-
plated in the original formulation by Kaniadakis, such an apparent incompatibility could
be understood by allowing Kaniadakis parameter to be running in time. This scenario
would not be surprising in Kaniadakis Cosmology: in fact, it is legitimate to expect that the
Universe degrees of freedom encoded by holographic entropy may evolve from an initial
description obeying relativistic (Kaniadakis-like) laws to a classical (Boltzmann-like) picture
at present time, just as it happens for matter–energy degrees of freedom. In this framework,
departures from the standard BGS entropy would be quantified by a time-dependent, or
equivalently, temperature-dependent parameter κ ≡ κ(t) ≡ κ(T), such that κ substantially
differs from zero at high T (early stages of the Universe), while it recovers the classical
κ → 0 behavior as the Universe cools down. This would justify why the bound (56), which
has been derived for the phase of the Universe corresponding to T � 0.6 MeV, is more
stringent than that in Equation (64), associated with T = 10 MeV.

We emphasize that the possibility of a running κ has already been discussed in [56].
Here, we have found further confirmation of this hypothesis. In addition, we point out
that a similar proposal has been recently put forward in the context of Tsallis generalized
statistics in [65–69], among others.

4. Discussion and Conclusions

In this work, we have discussed recent advances of Gravity and Cosmology in Kani-
adakis statistical theory. Special care has been devoted to review effects of generalized κ
entropy on open stellar clusters, Jeans instability and gravitational collapse, Holographic
Dark Energy, Entropic Gravity formalism, Black hole thermodynamics and Loop Quan-
tum Gravity. For each of these frameworks, we have shown that Kaniadakis statistics
manifests through non-trivial modifications of characteristic theoretical predictions, such
as the distribution of residual radial velocity of open clusters (Equation (7)) [22], the
critical Jeans wavelength/mass (Equations (11) and (14)) [27], the gravitational constant
(Equation (13)) and free fall time (Equation (17)) [25], the black hole temperature and
heat capacity (Equation (21)) [41] and the Immirzi parameter (Equation (25)) [43]. The

117



Entropy 2022, 24, 1712

ensuing κ-dependent expressions unveil potential mechanisms to test Kaniadakis-induced
deviations from Boltzmann statistics in Gravity and Cosmology scenarios.

On the other hand, we have focused on the study of Holographic Dark Energy in Kani-
adakis Cosmology. Although this model is well-established in literature at both theoretical
and observational levels [13–17], here we have followed an alternative procedure to treat
the κ-modified Friedmann equations ruling the evolution of the Universe in Kaniadakis
Cosmology (see Equations (34) and (35)). These equations have been used to analyze BBN
and, in particular, the freeze-out mechanism and the generation of primordial elements. By
demanding consistency between theoretical predictions of our model and observational
constraints on freeze-out temperature fluctuations and abundances of 4He and D, we have
constrained departures from BGS entropy, showing that the κ parameter must be tightly
bounded around the vanishing value to be consistent with phenomenology. Remarkably,
it has been found that different stages of the Universe evolution correspond to different
upper bounds on κ (see Equations (56) and (64)). This result opens up the possibility that
a realistic description of the history of the Universe in Kaniadakis Cosmology is allowed,
provided that one considers a running κ. Clearly, in order to substantiate this paradigm,
the above analysis should be carried out by assuming an ab initio time- (or temperature-)
dependent κ. This requires further investigation and will be presented elsewhere.

Other aspects are to be explored. Here, we present a list of some possible future challenges:

- as a first extension of the above analysis, it would be interesting to search for signatures
of inflationary perturbations propagated during the hypothetical Kaniadakis cosmic
epoch in present/upcoming experiments on primordial gravitational waves, such as
VIRGO, LIGO or LISA. This work is already in progress.

- It has been recently argued that Holographic Dark Energy construction might alleviate
the H0 tension [70], the reason being that it could lead to the phantom regime for dark
energy. Since KHDE has been shown to exhibit this feature [15], it is worth going more
deeply into the problem to understand whether KHDE may provide a good candidate
toward a solution to the H0 tension.

- In [58], BBN has been studied by using the Generalized Uncertainty Principle (GUP),
which emerges from the phenomenological attempt to embed gravity corrections in
quantum mechanics so as to predict a minimal length at Planck scale (see [71–73]
and references therein). Specifically, it has been shown that GUP enters Friedmann
equations through a deformation of the entropy area law, which in turn modifies
the density/temperature dependence of Hubble constant. Primordial abundances
evaluated in this way exhibit a non-trivial dependence on the GUP deformation
parameter. Given the formal analogies between such a result and those obtained in
the present context, the question naturally arises as to whether any kind of connection
between Kaniadakis statistics and GUP can be established at a more fundamental level.
We expect that this study could also pave the way toward formulating a relativistic
model of GUP.

- As argued in Section 2.5, the analysis of black holes thermodynamics from a dual
Kaniadakis entropy reveals a possible thermally stable phase in Kaniadakis statistics,
a fact that cannot be noticed when working in Boltzmann theory. This shows that
κ-deformed entropy not only generalizes standard results, but also predicts features
that do not have any correspondence in the ordinary black hole thermodynamics.
Without a doubt, a thorough examination of this framework is needed to find out all
peculiarities of black holes in Kaniadakis statistics.

- In the recent study of [30], effects of Kaniadakis statistics on the Jeans instability
have been analyzed for gravitational systems composed by dark and baryonic matter.
As a result, it has been found that instability is suppressed in comparison with the
background of Maxwell distribution and, thus, opposes the gravitational collapse
of such systems. An appealing extension of this work is to consider Kaniadakis
implications on Jeans instability of partially ionized dusty plasma and discuss their
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relevance in the formation of planetesimals and collapse of interstellar clouds in star
forming regions.

- Based on the quantum tunnelling concept and Boltzmann statistics, one can derive the
critical Gamow temperature TG at which the star-burning process occurs. The problem
has been recently addressed in the context of Kaniadakis statistics [26], showing
that Gamow temperature decreases with respect to the standard value. Therefore,
stars whose burning temperature differs from TG might be signals of deviations from
Gaussian statistics in stellar sciences. This provides a challenging framework where to
test the Kaniadakis theory experimentally.

- In [34], Abreu et al. have derived a κ-modified version of the Tully–Fisher relation,
which connects the rotation velocity of galaxies to their mass. In contrast to the
classical formula, this new relation contains a dependence on the distance of the star
to the center of the galaxy. By virtue of this result, it would then be interesting to study
whether Kaniadakis statistics can shed any new light on the dark-matter problem.

- Kaniadakis entropy has also been applied to the context of quantum information. In
particular, in [74], it has been found to exhibit suitable properties to be a candidate
for a generalized quantum information theory. Along this direction, a demanding
perspective is to explore the possible relevance of Kaniadakis information theory
in solving some puzzles arising in quantum gravity scenarios, such as the black
hole information paradox and the firewall paradox (see [75] for a recent review on
the topic).

The investigation of these and other issues will be performed in separate projects.
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Abstract: Constitutive relations are fundamental and essential to characterize physical systems. By
utilizing the κ-deformed functions, some constitutive relations are generalized. We here show some
applications of the Kaniadakis distributions, based on the inverse hyperbolic sine function, to some
topics belonging to the realm of statistical physics and natural science.
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1. Introduction

The κ-exponential function [1–3] is defined by:

expκ(x) ∶= (κx +√1+ κ2x2) 1
κ = exp[1

κ
arsinh(κx)], (1)

for a real deformation parameter κ. The inverse function, i.e., the κ-deformed logarithmic
function, is defined by:

lnκ x ∶= xκ − x−κ

2κ
= 1

κ
sinh[κ ln x]. (2)

Both κ-deformed functions are important ingredients of the generalized statistical physics
based on κ-entropy [1–3]. This influences a wide range of scientific fields, and, based
on the κ-deformed functions (Appendix A), several basic fields developed over two
decades. Kaniadakis [4] provided the theoretical foundations and mathematical formal-
ism generated by the κ-deformed functions, and some references, including many fields
of applications. Recently, the usefulness of the κ-statistics was demonstrated for the
analysis [5] of epidemics and pandemics.

Constitutive relations are fundamental and essential to characterize physical systems.
They are combined with the other equations of the physical laws in order to solve physical
problems. There are well-known examples of linear constitutive relations, such as the
following: Hooke’s law F = ksx, for the tensile, or compressive, force F of a spring with a
spring constant ks against the change in its length x; Ohm’s law V = RI for the voltage V of
an electrical conductor with resistance R under an electric current I, and so on. However,
as a real spring deviates from Hooke’s law, we know that any linear constitutive relation
describes an idealized situation, and it is merely a linearized- and/or approximated-
relation to describe some real physical properties. Hence, in general, non-linearity plays a
crucial role to describe more realistic physical systems.
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Entropy 2023, 25, 292

The κ-exponential function (1) can be regarded as a useful tool (or device) to make
such non-linear constitutive relations for a better description of real physical systems. For
example, consider the following κ-deformation of Hooke’s law:

Fκ ∶= ks ln[expκ(x)] = ks

κ
ln(κx +√1+ κ2x2), (3)

which reduces to the original Hooke’s law F = ksx in the limit of κ → 0. For any linear
constitutive relation, we can apply this type of the κ-deformation. For example, Ohm’s law
can be cast into the following form: V = RI = R ln[exp(I)]. By changing the exponential
function with the κ-exponential function, we obtain the κ-deformed version of Ohm’s law:
Vκ = R ln[expκ(I)]. In this research, we focused on this type of the κ-deformation of a
physical quantity (say A), i.e.,

A ⇒ ln[expκ(A)] = 1
κ

arsinh(κA). (4)

Throughout this paper, we call this κ-deformation the arsinh-type deformation of a physical
quantity A.

Another type of the κ-deformation can be:

A ⇒ lnκ[exp(A)] = 1
κ

sinh(κA), (5)

which is called here the sinh-type deformation. In Reference [6], the thermodynamic stability
of the κ-generalization SB

κ of Boltzmann entropy SB was studied. The κ-generalization SB
κ

was rewritten in the form:

SB
κ ∶= kB lnκ W = kB lnκ[exp(ln W)] = kB lnκ[exp(SB)], (6)

which could be regarded as the sinh-type deformation of Boltzmann entropy SB. Recently,
in cosmology, Lymperis et al. [7] modified Bekenstein–Hawking entropy SBH as follows:

SBH
κ = 1

κ
sinh(κSBH), (7)

which was obviously the sinh-type deformation of SBH.
In this paper we considered the arsinh-type deformations against some constitutive

relations in the field of statistical physics and natural sciences. In our previous work [8] we
studied a thermal particle under a velocity-dependent potential which could be regarded
as a deformation of Rayleigh’s dissipation function [9] and showed that the probability
distribution function (pdf) for the stationary-state of this thermal particle was a κ-deformed
Gaussian pdf. It was considered the canonical pdf ρ(v), in the velocity space, of a thermal
particle with unit mass (m = 1) in the κ-deformed confining potential Uκβ(v):

Uκβ(v) ∶= 1
κβ

arsinh(κβ
v2

2
), (8)

where β ∶= 1/kBT is a coldness (or inverse temperature). This κ-deformed potential Uκβ(v)
was rewritten, in the momentum–space, as:

Uκβ(p) = 1
κβ

arsinh(κβ
p2

2
) = 1

β
ln[expκ(β

p2

2
)], (9)

which was the arsinh type deformation of the quantity βp2/2 (the ratio of the kinetic energy
to the mean thermal energy kBT = 1/β). In other words, we considered the following
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κ-deformation Qκ(U) of the Boltzmann factor exp(−βU) for an equilibrium state with the
energy U:

Qκ(U) ∶= expκ(−βU) = exp[1
κ

arsinh(−κβU)]. (10)

One may wonder why the inverse hyperbolic sine function (arsinh) plays a role. In many
different fields of sciences, there is no doubt that the exponential and logarithmic functions
are important and fundamental. Since the inverse hyperbolic sine function and logarithmic
function are mutually related as:

arsinh x = ln[x +√1+ x2], ln x = arsinh[1
2
(x − 1

x
)], (11)

for a positive real x, we think both functions are important. By using the second relation,
for any real parameter κ ≠ 0, we have:

ln x = 1
κ

ln xκ = 1
κ

arsinh[1
2
(xκ − x−κ)] = 1

κ
arsinh[κ lnκ x]. (12)

Note that this relation corresponds to the arsinh-type deformation of lnκ x and is equivalent
to definition (2) of the κ-deformed logarithmic function that can be regarded as the sinh-
type of κ-deformation of ln x. Kaniadakis already discussed this issue in section II of
Reference [2] from the viewpoint of deformed algebra.

On the other hand, Pistone [10] was the first one to study the κ-exponential model in the
field of information geometry [11], and later, through our research activities [8,12,13], we realized
that there exist some relations among statistical physics, thermodynamics, mathematical
biology, and information geometry. Harper [14,15] pointed out that the replicator equation
(RE) [16] in mathematical biology or in an evolutional game theory [17] is related with
information geometry and a general form of the Lotka–Volterra (gLV) equation as briefly
explained in Appendix B. The gLV equations [14,15,18,19]:

dyi

dt
= yi fi(y), (13)

are used to model the competition dynamics of the populations y1, y2, . . . , yn of n biological
species. The Gompertz function [20] is a type of mathematical model for time evolution.
Historically, he studied human mortality and proposed his law of human mortality in
which he assumed that a person’s resistance to death decreases as his or her years increase.
His law is now called Gompertz rule (or law) and we would like to point out the relation of
his function and his rule to some important quantities concerning statistical physics.

The rest of the paper is organized as follows. In Section 2, we briefly explain Gompertz
function, and the gLV equations, which are important in mathematical biology (or evolu-
tional game theory). Their relations to thermal physics are pointed out. Section 3 considers
the thermal density operator, which is characterized by the so-called Bloch equation [21,22]
for thermal states, and we show that the Bloch equation can be regarded as a Gompertz rule
after the parameter transformation β to t = − ln β. In Section 4, we discuss the arsinh-type
deformation from the viewpoint of the κ-addition. In Section 5, we study the numerical
simulations of the thermostat algorithm for the Hamiltonian with the κ-deformed kinetic
energy, which can be regarded as the arsinh type of the κ-deformation of the ratio βp2/2 as
shown in (10). The final section is devoted to our conclusions.

2. Gompertz Functions and Gompertz Rule

Here we would like to point out that there exist relations between evolutional game
dynamics and thermal physics. In evolutional game theory [17], evolutional game dynamics
is described by a RE. The gLV equations are related to REs, as shown in Appendix B. On the
other hand, Gompertz function is a mathematical model describing an evolutional curve.
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Gompertz function (or Gompertz curve) [20] is a type of mathematical model for a time
series. Gompertz function fG(t) is a sigmoid function and is given by:

fG(t) ∶= K exp [C exp(−t)], (14)

where C and K are positive constants. A distinctive feature of Gompertz function is its
double exponential t-dependency. His function is nowadays used in many different areas
to model time evolution of populations where growth is slowest at the start and end of
a period. For example, Reference [23] applied Gompertz model to describe the growth
dynamics of the COVID-19 pandemic. Gompertz [20] studied human mortality by working
out a series of mortality tables, and this suggested to him his law of human mortality, in
which he assumed that a person’s resistance to death decreases as age increases. The rule
of his model is called Gompertz rule which states that:

d
dt

fG(t) = − fG(t) ln
fG(t)

K
. (15)

The solution of the Gompertz rule is the Gompertz function (14), if we set K = limt→∞ fG(t)
and C = ln( fG(0)/K).

If we choose fi(y(t)) = − ln yi(t) and assume limt→∞ yi(t) = 1, the gLV Equation (13)
becomes:

dyi(t)
dt

= −yi(t) ln yi(t), (16)

which can be regarded as the Gompertz rule (15) with K = 1 for each yi(t). Consequently,
its solution yi(t) is the Gompertz function:

yi(t) = exp [ ln yi(0) exp(−t)]. (17)

Now, by changing the parameter t to β = exp(−t), we have dβ = −βdt so that the limit t → 0
corresponds to β → 1, and each constant Ei is introduced as:

−Ei = lim
t→0

ln yi(t) = lim
β→1

ln yi(β), (18)

where yi(β) is the shorthand notation of yi(t(β)) with t(β) = − ln β. Then, the solution
yi(β) in (17) can be expressed as a quantity very familiar to statistical physics:

yi(β) = exp(−βEi), (19)

that is the Boltzmann factor. The corresponding Gompertz rule (15) for yi(β) is equivalent
to:

d
dβ

yi(β) = −Ei yi(β). (20)

Having described the relation between the Gompertz rule and the Boltzmann factor
exp(−βEi) in statistical physics, in the next section we discuss a κ-deformation of the Bloch
equation for thermal states.

3. Bloch Equation for Thermal States

For a given Hamiltonian Ĥ and the corresponding eigenvalues Ei and eigenstate ∣ψi⟩,
which are related in:

Ĥ∣ψi⟩ = Ei∣ψi⟩, (21)
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and assuming the completeness relation ∑i ∣ψi⟩⟨ψi∣ = 1̂, the density operator ρ̂(β) for a
canonical ensemble is constructed as:

ρ̂(β) ∶= ∑
i

exp(−βEi)∣ψi⟩⟨ψi∣ = exp(−βĤ). (22)

In order to determine the canonical density matrix, we have to solve the eigenvalue
Equation (21) and to sum over all the states. This needs heavy calculations in general. Note
that ρ̂(β) is un-normalized and its trace is Tr ρ̂(β) = Z(β), which is the partition function.

The Bloch equation [21,22] for thermal states is known as:

− ∂

∂β
ρ̂(β) = Ĥ ρ̂(β), (23)

which can be regarded as the diffusion equation in imaginary time β, and it has a similar
form as Schrödinger equation and diffusion equation. Bloch Equation (23) offers an alterna-
tive route to determine the density operator ρ̂(β). The initial (β = 0) condition is provided
if we know the eigenstates in the high-temperature limit.

Now, by multiplying β to both sides of (23), we have:

−β
∂

∂β
ρ̂(β) = βĤ ρ̂(β) = − ln[ρ̂(β)] ρ̂(β). (24)

Changing the parameter β to t = − ln β, it follows:

d
dt

ρ̂(t) = −β
d

dβ
ρ̂(β) = − ln[ρ̂(t)] ρ̂(t). (25)

This is the same form of the Gompertz rule (15). In this way, the Bloch equation can be
considered as a sort of Gompertz rule.

Next, let us consider the κ-deformed density operator:

ρ̂κ(β) ∶= ∑
i

expκ(−βEi)∣ψi⟩⟨ψi∣ = expκ(−βĤ). (26)

This leads to the following κ-deformation of the Bloch equation:

− ∂

∂β
ρ̂κ(β) = ∑

i
Ei

expκ(−βEi)
uκ[(expκ(−βEi)] ∣ψi⟩⟨ψi∣ = Ĥ

uκ[expκ(−βĤ)] ρ̂κ(β). (27)

Again, by changing the parameter β to t = − ln β and using the relation (A3), we have:

d
dt

ρ̂κ(t) = − lnκ[ρ̂κ(t)]
uκ[ρ̂κ(t)] ρ̂κ(t), (28)

which can be regarded as a κ-deformation of the Gompertz rule.
Differentiating (27), again with respect to β, we obtain the following nonlinear differ-

ential equation:

(1+ κ2β2Ĥ2)∂2ρ̂κ(β)
∂β2 + κ2βĤ2 ∂ρ̂κ(β)

∂β
− Ĥ2 ρ̂κ(β) = 0. (29)

This differential equation reminds us of the research work [24] on the quantum free particle
on the two-dimensional hyperbolic plane. The relevant two-dimensional Schrödinger
equation was separable in the κ-dependent coordinate system (zx, y)with zx ∶= x/√1+ κ2y2.
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The Schrödinger equation Ĥ1Ψ = e1Ψ for the first partial Hamiltonian Ĥ1 leads to the
following differential equation with the variable zx alone:

(1+ κ2z2
x)d2Ψ(zx)

dz2
x

+ κ2zx
dΨ(zx)

dzx
+ μΨ(zx) = 0, μ ∶= 2m

h̄2 e1. (30)

In the limit of κ → 0, this differential equation reduces to the standard time-independent
Schrödinger equation: d2Ψ(x)/dx2 + μΨ(x) = 0. Cariñena et al. [24] obtained the solution
of the differential Equation (30) as the κ-deformed plane wave (in our notations):

Ψ(zx) = exp[±i
μ

κ
arsinh(κ zx)], (31)

which is regarded as an arsinh-type deformation.

4. The κ-Addition and the Law of Large Number

Next, we considered the κ-addition from the viewpoint of the law of large numbers
(LLN), which plays a central role in probability, statistics, and statistical physics [25]. The
κ-addition [4] is defined by:

x
κ⊕ y ∶= x

√
1+ κ2y2 + y

√
1+ κ2x2. (32)

This deformation of the additive rule comes from the addition rule of the inverse hyperbolic
sine function as follows. For a, b ∈ R, the addition rule is written as:

arsinh(a) + arsinh(b) = arsinh(a
√

1+ b2 + b
√

1+ a2). (33)

By setting a = κx and b = κy, we obtain:

arsinh(κx) + arsinh(κy) = arsinh(κx
√

1+ κ2y2 + κy
√

1+ κ2x2)
= arsinh [κ(x κ⊕ y)]. (34)

This relation is equivalent to the definition (32). The additive relation (34) is readily
generalized to:

n∑
i=1

arsinh(κxi) = arsinh [κ(x1
κ⊕ x2

κ⊕⋯ κ⊕ xn)]. (35)

By applying this relation to the Boltzmann factor exp[−β∑n
i=1 Kκβ(pi)]with respect to the

κ-deformed kinetic energy [8] with m = 1:

n∑
i=1

Kκβ(pi) ∶= n∑
i=1

1
κβ

arsinh(κβ
p2

i
2
), (36)

we have:
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exp[−β
n∑

i=1
Kκβ(pi)] = exp[−1

κ
arsinh{κ(β

p2
1

2
κ⊕ β

p2
2

2
κ⊕ . . .

κ⊕ β
p2

n
2
)}]

= expκ[(−β
p2

1
2
) κ⊕(−β

p2
2

2
) κ⊕ . . .

κ⊕(−β
p2

n
2
)]

= expκ[−β
p2

1
2
] expκ[−β

p2
2

2
] . . . expκ[−β

p2
n

2
] = n∏

i=1
expκ[−β

p2
i

2
]. (37)

Note that the κ-exponential of the κ-summation of each term −β
p2

i
2 in the second line is

expressed as a factorized form in the last line.
It is well known that LLN plays a fundamental role in statistical physics [25].

Łapiński [26] showed that the standard LLN yielded the most probable state of the system,
which equaled the point of maximum of the entropy and this point could be either Maxwell–
Boltzmann statistics or Bose–Einstein statistics, or Zipf–Mandelbort law. McKeague [27]
studied the central limit theorems under the special theory of relativity based on the κ-
additivity. Scarfone [28] studied the κ-deformation of Fourier transform and discussed the
limiting distribution of the κ-sum of statistically independent variables. The κ-additivity
extension of the strong LLN was shown in [27] and it stated that if Xi were iid with finite
mean, then:

X1

n
κ⊕ X2

n
κ⊕ . . .

κ⊕ Xn

n
→ 1

κ
arsinh[κ⟨X⟩]a.s., (38)

where a.s. stands for almost surely, i.e., the above sequence of the random variables Xi
converges almost surely, and ⟨X⟩ is the standard average of the random variable X. Of
course, in the limit of κ → 0, the relation (38) reduced to the standard strong LLN. Note that
the converged value in (38) was the arsinh-type deformation of the average ⟨X⟩. In this
way, the κ-additivity extension of the strong LLN supports the arsinh-type deformation of
the average of a stochastic variable X.

5. Contact Density Dynamics

Nosé-Hoover (NH) thermostat [29,30] is a famous deterministic algorithm for constant-
temperature molecular dynamics simulations. Based on the idea of NH thermostat, several
improved versions were proposed. Among them, contact density dynamics (CDD) [31] is
an algorithm based on contact Hamiltonian systems and generates any prescribed target
distribution in physical phase space. The dynamical equations of CDD are the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqi

dt
= ∂h(q, p, S)

∂pi
,

dpi

dt
= −∂h(q, p, S)

∂qi + ∂h(p, q, S)
∂S

pi,

dS
dt
= −pi

∂h(q, p, S)
∂pi

+ h(q, p, S),

(39a)

(39b)

(39c)

where S is the thermostatting variable, qi and pi are the i-th component (i = 1, 2,⋯, n) of
n-dimensional vectors, respectively. Here h(q, p, S) denotes the contact Hamiltonian which
is formed as:

h(q, p, S) = (ρt(q, p) f (S))− 1
n+1 , (40)

with a target distribution ρt(q, p) on 2n-dimensional Γ-space and a normalized distribution
f (S) for the thermostatting variable S. As in the case of Reference [29,30], we also chose
f (S) as the logistic distribution with scale 1 and mean c = 0.0:
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f (S) = exp(S − c)(1+ exp(S − c))2 . (41)

Utilizing this CDD algorithm, the κ-deformed exponential distributions were simu-
lated. The target distribution ρt(q, p)was the one-dimensional (n = 1) κ-deformed Gaussian
function:

ρt(q, p) = 1
Zκ(β) exp[−βHκ(q, p)] = 1

Zκ(β) exp[−1
κ

arsinh(κβ
p2

2
)] exp[−β

q2

2
], (42)

where the associated Hamiltonian was:

Hκ(q, p) = 1
κβ

arsinh(κβ
p2

2
)+ q2

2
, (43)

and the normalization factor Zκ(β) [4] was:

Zκ(β) = π

β

√
2
κ Γ( 1

2κ − 1
4)( κ

2 + 1)Γ( 1
4 + 1

2κ ) . (44)

In general, the kinetic energy can be defined by:

K(p) ∶= ∫ p

0
v(p)dp, (45)

where v(p) denotes the constitutive relation between the velocity v and the canonical
momentum p. In the standard case of v(p) = p/m with m = 1, we have K(p) = p2/2. In the
case of the Hamiltonian (43), from (39a) we have:

vκ(p) ∶= dq
dt
= ∂Hκ(q, p)

∂p
= p

uκ[expκ(−β
p2

2 )] =
p√

1+ κ2(β
p2

2 )2
. (46)

It is worthwhile to note that the vκ(p) had a β (or temperature) dependency when κ ≠ 0.

Then the corresponding kinetic energy Kκ(p) was the first term 1
κβ arsinh(κβ

p2

2 ) in (43),

which could be regarded as a κ-deformation of the standard kinetic energy p2/2.
We performed a number of CDD simulations for the target state (42) with different

parameters and initial conditions. As an example, Figure 1 shows the phase space orbit
and the histogram of the frequencies of the momentum p for a typical result of the CDD
simulation of the target state (42) with β = 0.2, κ = 0.4. The initial conditions used are also
denoted in the figure captions.

The CDD simulated result obeys ergodicity, as can be seen from the well distributed
points in the phase space in Figure 1a. Note that the momentum distribution in the
histogram of Figure 1b was well fitted with the κ–Gaussian distribution, which was cased
by the arsinh-type deformation of the kinetic energy p2/2.

Note also that for the κ-deformed Hamiltonian (42), we have [8]:

⟨p
∂

∂p
Hκ(q, p)⟩ = 1

β
(47)
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which reminds us of a generalization of equipartition theorem [32]: ⟨p ∂
∂pH⟩ = kBT , whereH is

the Hamiltonian of a system in thermal equilibrium with the temperature T.

(a) (b)

Figure 1. The simulated results of the CDD simulations of the target distribution (42) with κ = 0.4 and
β = 0.2. (a) the phase (q-p) space orbit of the κ-deformed distribution. The 1.5× 104 points of a simulated
orbit with the initial condition (q0 = 0.1, p0 = 0.1, and S0 = 0.9 are shown. (b) the histogram of the
frequencies for p and the corresponding momentum κ-distribution (blue solid curve).

6. Conclusions

We considered the κ-deformations of some quantities concerning statistical physics and
pointed out some unexpected relations among different fields, such as statistical mechanics,
mathematical biology and evolutional game theory. We especially focused on the arsinh-type
deformation of the ratio βp2/2 of kinetic energy to the average thermal energy kBT = 1/β. With
the help of the thermostat (CDD) algorithm we performed the relevant numerical simulations
for the Hamiltonian with the arsinh-type deformation of kinetic energy term and showed the
resultant momentum distribution was the κ–Gaussian distribution.

Finally, we would like to point out a relation which might be suggested for future
research. Let us consider the κ-deformed energy density of state Ωκ(U):

Ωκ(U) ∶= expκ( U
kBTc

) = exp[1
κ

arsinh(κ
U

kBTc
)], (48)

which is the κ-deformation of the energy density of state exp(U/kBTc) for the thermal
reservoir with a constant-temperature Tc (Boltzmann reservoir [33]). In other words,
ln Ωκ(U) is regarded as the arsinh-type deformation of the ratio U/(kBTc). The Boltzmann
temperature T(U) for this κ-deformed thermal reservoir is given by:

1
kBT(U) ∶= d ln Ω(U)

dU
= 1

kBTc√
1+ κ2( U

kBTc
)2

. (49)

Rearranging this relation leads to:

kBT(U) = √(κU)2 + (kBTc)2, (50)

which reminds us of the relativistic energy–momentum relation: E(p) = √(cp)2 + (mc2)2.
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Appendix A. Basics of the κ-Deformed Functions

Here we briefly review some κ-deformed functions and the associated useful
relations [2,3]. Because all κ-deformed functions are symmetric under the sign change of
the deformation parameter κ, i.e., changing κ to −κ, throughout this paper we assume κ > 0.
In the κ → 0 limit, the κ-exponential function (1) and the κ-logarithmic function (2) reduce
to the standard exponential function exp(x) and logarithmic function ln(x), respectively

lim
κ→0

expκ(x) = exp(x), lim
κ→0

lnκ x = ln x. (A1)

We next introduce another κ-deformed function:

uκ(x) ≡ xκ + x−κ

2
= cosh [κ ln(x)], (A2)

which is the conjugate (or co-function) of lnκ x, as similar as that cos(x) is the co-function
of sin(x). In the κ → 0 limit, this κ-deformed function reduces to the unit constant function
u0(x) = 1. By using uκ(x), the derivative of the κ-exponential is expressed as

d
dx

expκ(x) = expκ(x)
uκ[expκ(x)] = expκ(x)√

1+ κ2x2
, (A3)

and the derivative of κ-logarithm is expressed as

d
dx

lnκ(x) = uκ(x)
x

, (A4)

respectively.
When κ ≠ 0, the inverse function of uκ(x) exists, and given by

u−1
κ (x) = exp[1

κ
arcosh(x)], (A5)

which is the co-function of expκ(x).
The κ-entropy Sκ [2,3] is a κ-generalization of the Gibbs-Shannon entropy

SGS = −kB∑i pi ln pi by replacing the standard logarithm with the κ-logarithm, i.e.,

Sκ = −kB∑
i

pi lnκ pi. (A6)

Appendix B. Replicator Equations and the General Form of Lotka-Volterra Equations

We here summarize some known important facts in mathematical biology and evolu-
tional game theory according to Ref. [14,15,19]. Consider a discrete probability distribution
described by a set of n positive variables x = (x1, x2, . . . , xn)with the normalization∑n

i xi = 1,
where each xi denotes the proportion of the i-th type in the total population. The RE for
this distribution is given by

d
dt

xi = xi( fi(x) − f̄ (x)), (A7)
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where f (x) = ( f1(x), . . . , fn(x)) is a fitness landscape and f̄ (x) = ∑n
i=1 xi fi(x) is the mean

fitness. Replicator dynamics can be described as a time evolutional curve on the simplex
Δn ∶= {x ∈ Rn

+
∣ xi ≥ 0,∑i xi = 1}with the matrix component gij(x) of Shahshahani metric [16]

g as

gij(x) = δij

xi
, (A8)

The inverse matrix is gij(x) = xiδij. Note that the n-simplex Δn is (n − 1)-dimensional and
the Shahshahani metric diverges on the boundary of the simplex. So this metric is valid
only on the interior Sn of Δn.

There is a natural mapping: (p1, p2, . . . , pn) → (x1, x2, . . . , xn). Fisher metric is induced
by the Shahshahani metric under this mapping.

(gF)ij(x) = E[∂ ln x
∂xi

∂ ln x
∂xj

] = n∑
k=1

xk
δik
xi

δik
xi
= δij

xi
. (A9)

It is known that the Shahshahani manifolds yields an interpretation of the RE. Theorem 1
in [14]: if the differential equation dxi/dt = fi(x) is a Euclidean gradient with fi = ∂V/∂xi,
the RE (A7) is a gradient with respect to Shahshahani metric. A brief explanation is as
follows. The gradient with respect to Shahshahani metric is

(∇gV)i = ∑
j

gij
∂V
∂xj

= ∑
j

xiδij f j = xi fi, (A10)

which is the first term in the left hand side of the RE (A7). The variable xi in the RE has
to satisfy the normalization constraint (∑i xi = 1), i.e., the dynamics of each xi is restricted
on the simplex Δn. Recall that Shahshahani metric is valid only on the interior Sn of Δn.
Indeed, the normalization constraint is satisfied during an time evolution as follows

d
dt
∑

i
xi = ∑

i

dxi

dt
= ∑

i
xi( fi − f̄ ) = ∑

i
xi fi − f̄ = 0. (A11)

The state x̂ is said to be evolutionarily stable state if for all x ≠ x̂ in some neighborhood
of x̂,

x ⋅ f(x) < x̂ ⋅ f (x). (A12)

Let the potential V(x) = D(x̂∥x) = ∑i x̂i ln x̂i −∑i x̂i ln xi, then we have

d
dt

V(x) = −∑
i

x̂i
1
xi

dxi

dt
= −∑

i
x̂i( fi − f̄ ) = −∑

i
x̂i fi + f̄ = −(x̂ ⋅ f −x ⋅ f) < 0. (A13)

Hence the Kullback-Leibler divergence D(x̂∥x) is a local Lyapunov function for the RE.
Next, if xi = exp(vi(x) −ψ)with dvi(x)/dt = fi(x) and ψ(x) a normalization constant.

From the normalization ∑i xi = 1, we have

0 = ∑
i

d
dt

xi = ∑
i
( d

dt
vi(x) − d

dt
ψ(x))xi = ∑

i
xi fi(x) − d

dt
ψ(x) = f̄ (x) − d

dt
ψ(x). (A14)

As a result we see that dψ(x)/dt = f̄ (x), and xi satisfies

d
dt

xi = xi( d
dt

vi(x) − d
dt

ψ(x)) = xi( fi(x) − f̄ (x)). (A15)

Consequently, the exponential families xi = exp(vi(x) −ψ) are solutions of the RE.
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If there is no constraint the corresponding dynamics is described by the gLV Equation (13).
The gLV equations and REs are related as follows. Let each yi satisfies the gLV Equation (13).
Changing the variable yi to xi as

xi = yi∑n
j=1 yj

, (A16)

which lead to the new normalized variables {xi}, i.e., ∑j xj = 1. Then, we see that

dxi

dt
= dyi

dt∑j yj
− yi

∑k
dyk
dt(∑j yj)2 = yi fi∑j yj

− yi(∑j yj) ∑k yk fk(∑j yj) = xi( fi − f̄ ). (A17)

Thus, the transformed variable xi in (A16) satisfies the RE.
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26. Łapiński, T.M. Law of large numbers unifying Maxwell-Boltzmann, Bose-Einstein and Zipf-Mandelbrot distributions, and related

fluctuations. Physica A 2021, 572, 125909. [CrossRef]
27. McKeague, I.W. Central limit theorems under special relativity. Stat. Probab. Lett. 2015, 99, 149–155. [CrossRef]
28. Scarfone, A.M.; Matsuzoe, H. κ-deformed Fourier transform. Physica A 2017, 480, 63. [CrossRef]

133



Entropy 2023, 25, 292

29. Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 1984, 81, 511–519.
[CrossRef]

30. Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [CrossRef]
31. Bravetti, A.; Tapias, D. Thermostat algorithm for generating target state. Phys. Rev. E 2016, 93, 022139. [CrossRef]
32. Tolman, R.C. A General Theory of Energy Partition with Applications to Quantum Theory. Phys. Rev. 1918, 11, 261–275. [CrossRef]
33. Leff, H.S. The Boltzmann reservoir: A model constant-temperature environment. Am. J. Phys. 2000, 68, 521. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

134



Citation: Martinez, A.S.; de Abreu,

W.V. The Scientific Contribution of

the Kaniadakis Entropy to Nuclear

Reactor Physics: A Brief Review.

Entropy 2023, 25, 478. https://

doi.org/10.3390/e25030478

Academic Editors: Dionissios

T. Hristopulos, Sergio Luiz E. F. da

Silva and Antonio M. Scarfone

Received: 15 December 2022

Revised: 12 January 2023

Accepted: 1 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

The Scientific Contribution of the Kaniadakis Entropy to
Nuclear Reactor Physics: A Brief Review

Aquilino Senra Martinez and Willian Vieira de Abreu *

Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa em Engenharia (COPPE/UFRJ), Programa de
Engenharia Nuclear (PEN), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, Brazil
* Correspondence: wabreu@coppe.ufrj.br; Tel.: +55-21992455819

Abstract: In nuclear reactors, tracking the loss and production of neutrons is crucial for the safe
operation of such devices. In this regard, the microscopic cross section with the Doppler broadening
function is a way to represent the thermal agitation movement in a reactor core. This function usually
considers the Maxwell–Boltzmann statistics for the velocity distribution. However, this distribution
cannot be applied on every occasion, i.e., in conditions outside the thermal equilibrium. In order to
overcome this potential limitation, Kaniadakis entropy has been used over the last seven years to
generate generalised nuclear data. This short review article summarises what has been conducted so
far and what has to be conducted yet.

Keywords: Kaniadakis entropy; Doppler broadening function; nuclear reactor physics

1. Introduction

In 2001, Giorgio Kaniadakis presented [1] a new one-parameter deformation for the
exponential function, which describes power-law asymptotic behaviour. He did this in
order to obtain a novel distribution that generalises the Maxwell–Boltzmann (MB) one.
This new deformed exponential is provided by:

expκ(x) ≡
(√

1 + κ2x2 + κx
)1/κ

, (1)

where the κ parameter represents the level of deformation concerning the standard expo-
nential. Hence, when κ → 0 , the deformed exponential reduces to exp(x).

The expκ(x), function obeys the following condition:

expκ(x) expκ(−x) = 1. (2)

By considering the deformed exponential function, one can obtain a new statistical dis-
tribution, starting from a particle system in the velocity space and postulating a generalised
density of entropy, given by [1,2]:

σκ( f ) = −
∫

d f ln{κ}(α f ). (3)

With that, after some calculations, one can arrive at the following distribution func-
tion [1–3]:

fκ(V, T) = A(κ) expκ

(
−MV2

2kBT

)
, (4)
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where in nuclear reactor physics terms, M is the nucleus mass, V is the velocity of the
target nucleus, kB the Boltzmann constant, T is the temperature of the medium, and A(κ) is
defined as [2,3]:

A(κ) =

( |κ|M
πkBT

)n/2(
1 +

3|κ|
2

)Γ
(

1
2|κ| +

3
4

)
Γ
(

1
2|κ| −

3
4

) (5)

Two significant advantages of using deformed statistics, such as those of Kaniadakis
or Tsallis [4], are the capacity to describe systems with long-term time correlations [5] and
the capacity to describe physical phenomena outside thermal equilibrium [3].

Given this considerable versatility, one can find several scientific papers that have
applied the Kaniadakis-type deformed statistics. To illustrate this usefulness, one can
cite works in astrophysics [6], cosmology [7], DNA analysis [8], quark–gluon plasma [9],
game theory [10], error theory [11], information theory [12], random matrices [13], fractal
systems [14], dusty-type plasmas [15], gravitational physics [16,17], epidemiology [18],
Jeans instability of self-gravitating systems [19], and nuclear reactor physics [3,20–23].

In the present work, we will review the seven years of application of Kaniadakis
statistics in the nuclear reactor physics area, presenting the theories developed until now
and reflecting on their future prospects.

2. Microscopic Cross Sections and the Doppler Broadening Function

In nuclear reactors, the power generation is guided by neutrons being absorbed by
unstable nuclides (uranium, for instance), which, in turn, split into fast-moving lighter
nuclides. This fission process generates energy plus additional neutrons, which, again, split
other nuclides, starting the nuclear chain reaction.

To understand the neutron–nucleus reaction, it is necessary to present the concept of
microscopic cross sections, which are characterized by the probability that a certain reaction
will occur and is represented by σ.

Specifically, from a nuclear reactor physics point of view, one can think in cross sections
in the diversity of nuclear reactions, which occur inside a nuclear reactor. These reactions
are usually divided in two types. The first one is scattering, σs, which has the subdivisions
of inelastic scattering, σin, and elastic scattering, σe. The second division is the absorption
types, σa, such as radiative capture, σγ, (n, α) reactions, σ(n,α), and, of course, fission, σf .
Considering all the possible reactions, one can define a conception of a total microscopic
cross section, σt, which is, consequently, the sum of all of types and summarizes the
probability that any type of neutron–nuclear reaction will occur:

σt = σs + σa = σe + σin + σf + σγ + σ(n,α) + . . . (6)

The nuclear cross sections will vary strongly according to the incident neutron energy
and weakly from the incident beam angle. For this reason, the beam angle is usually
ignored in nuclear reactor applications.

Of all these types of nuclear cross sections, the radiative capture, σγ, is significantly
relevant for nuclear reactor analysis since this is an important factor for removing neutrons
from the chain reactions. This process occurs when the incident neutron is absorbed by the
nucleus, forming a compound one. After this absorption, this new compound nucleus will
decay by the emission of high-energy gamma radiation.

The process of compound nucleus formation occurs only at those energies at which the
centre of mass (CM) incident neutron energy plus the neutron binding energy matches the
exact energy level of the compound nucleus. Due to this, by adding the Heisenberg’s un-
certainty principle considerations, one can obtain a resonance behaviour for the functional
dependence of the capture cross sections on the neutron kinetic energy.

In nuclear reactors, neutrons are generated in a highly energetic state in thermal
nuclear reactors, far from the ideal energy range to fission U235 nuclei. Consequently, it is
necessary to decrease the neutron energies. This process—called neutron slowing down—is
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conducted by multiple collisions (scattering) in moderators, such as water, graphite, or
heavy water. Nevertheless, these scattering processes can lead to absorption, generating
undesirable neutron losses.

These absorptions occur in an energy range called the resonance region and are
represented by the neutron cross sections. These cross sections, in turn, depend on the
relative speed between the neutron and the nuclei. Considering that the nuclei are in
thermal motion, the relative velocity can be different (greater or less) than the neutron
speed. That fact causes a Doppler effect in the existent neutron cross sections in the
resonance region [24].

A way to represent this Doppler effect is by utilising the nuclear cross-section through
the single-level Breit–Wigner (SLBW) resonance cross section formula. Although there are
more modern methodologies, the SLBW method is easier to implement. Besides, it can
present analytical functions for reactor physics calculations and, consequently, produce
faster processing times [3,25].

One of the cross-section expression components is the Doppler broadening function,
which considers a medium in thermal equilibrium at a temperature T. Additionally, the
different velocities of the target nuclei are described by the Maxwell–Boltzmann (MB)
distribution [26]. The averaged capture resonance cross section formula using the Breit–
Wigner methodology represents the thermal nuclei movement and is expressed by [24]:

σγ = σ0
Γγ

Γ

(
E0

E

)1/2
ψ(x, ξ). (7)

where:
Γγ/Γ ≡ the probability that, once formed, the compound nucleus decays to the ground

state of the original nucleus by gamma emission;

ξ ≡ Γ(
4E0kBT

A

) 1
2

; (8)

x ≡ 2
Γ
(E− E0); (9)

A is the mass number, kB is the Boltzmann constant, σ0 is the value of the total cross
section, Γγ is radiative line width, Γ is total width of the resonance as measured in the
laboratory coordinates, E0 is the resonant energy, E is the energy of the incident neutron,
and ψ(x, ξ) is the so-called Doppler broadening function.

The Doppler broadening function, after the Bethe and Placzek [27] approximation, can
be represented by:

ψ(ξ, x) ≡ ξ

2
√

π

+∞∫
−∞

dy
1 + y2 exp

[
−ξ2(x− y)2

4

]
(10)

where:
y ≡ 2

Γ
(ECM − E0) (11)

and ECM is the centre-of-mass energy.
Its formulation usually takes into consideration the Maxwell–Boltzmann distribution.

By doing a formal analysis, it is possible to note that ψ(ξ, x) is affected by the temperature,
i.e., the higher the temperature, the broader the resonance curve, with a peak attenuation,
resulting in a higher probability of loss of neutrons by absorption. This effect is represented
in Figure 1:
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Figure 1. The temperature rise causes the Doppler broadening effect in a resonance curve [28]. Source:
de Abreu (2020, p. 14).

As shown in Figure 1, there is an enlargement in the energy range—illustrated by the
x variable—caused by the temperature rise (T1 to T2), which affects the curve’s width. This
leads to the probability increase in absorption.

The Doppler broadening function is also known as the first Voigt function. It represents
an even function, i.e., it has symmetry with respect to the energy variable, x.

The Doppler broadening phenomenon is of crucial importance for the control of
thermal nuclear reactors. This relevance can be observed if one analyzes the expressions
for the average cross sections of resonance capture, Equation (7), and scattering, given by:

σS = σ0
Γn

Γ
ψ(ξ, x) + σ0

R
λ0

χ(ξ, x) + 4πR2 (12)

where:
Γn/Γ ≡ the probability that, once formed, the compound nucleus decays to the ground

state of the original nucleus by neutron emission;
χ(ξ, x) ≡ interference term;
4πR2 ≡ potential scattering term.
Another way of realizing the importance of the Doppler broadening phenomenon

is through the Doppler temperature coefficient. When the fuel temperature of a thermal
reactor is increased, there is a growth in the energy range of the nuclear resonances. Hence,
there is a decrease in the probability of resonance escape (p), i.e., a reduction in the
fraction of fission neutrons moderated to the thermal range without suffering resonant
absorption. As the resonance escape probability decreases, the multiplication factor,

(
ke f f

)
,

and, consequently, the reactivity, (ρ), will also be reduced. This relationship is represented
in the fuel temperature coefficient—also known as the Doppler temperature coefficient [29]:

αTf =
∂ρ

∂Tf
=

1
p

∂p
∂Tf

, (13)

where Tf is the fuel temperature.
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2.1. Literature Review of Doppler Broadening Functions Approximations Using the
Maxwell–Boltzmann Distribution

Over the years, several methods have been developed to obtain approximations of the
Doppler broadening function using standard Maxwell–Boltzmann statistics. Therefore, it is
relevant to make a brief review of the literature regarding the main methods used, as these
methods should also be natural candidates in obtaining generalized solutions.

To conduct this review, we focused on works that considered the approaches proposed
by Bethe and Placzek in the year 1936 and which were crucial for the development of the
deformed solution for ψκ(ξ, x).

2.1.1. Beynon and Grant Methods (1963)

In 1963, T. D. Beynon and I. S. Grant published, in the journal Nuclear Science and
Engineering, an article that proposed two different methods for calculating the Doppler
broadening function and for the interference term (ψ(ξ, x) and χ(ξ, x)), calculated with the
aid of a “digital machine”.

The first of these proposed methods use Chebychev polynomial expansions, while the
second uses the Gauss–Hermite method. According to the authors, this second method
was developed as an alternative to the first due to the excessive memory space spent [30].
Considering that this justification no longer represents a concern for most researchers due
to the advancement of technology, the present work will only present the first method,
which is more widespread in the literature [3,22,23,25,28,31].

As previously mentioned, the first method proposed by Beynon and Grant, in their
1963 work, carried out the expansion of the exponential part of the integrands of the
Doppler broadening function in Chebyshev polynomials. Once this was conducted, the
terms were integrated one by one. Before making the expansion, the authors presented the
following definitions:

a =
ξ

2
(14)

b = ξ·x (15)

Thus, the proposed series are represented as follows:

ψ(a, b) = a
{√

π·cos(ab)·[1− E2(a)]·ea2
+ J(a, b)

}
·e− 1

4 b2
(16)

where:

J(a, b) = 1
a

{
1
2! (ab)2 − 1

4! (ab)4 + 1
6! (ab)6 · · ·

}
+ 1

2a3

{
1
4! (ab)4 − 1

6! (ab)6 · · ·
}

+ · · ·+ 1√
πa2n+1 Γ

(
2n+1

2

)
·
{

1
[2(n+1)]! (ab)2n+1 · · ·

}
+ · · ·

(17)

and

E2(a) =
2√
π

a∫
0

e−y2
dy. (18)

The Γ(z) term represents the gamma function, which is one of the most common
special functions in discussions of physical problems. One of the possible ways to express
this function is [32]:

Γ(z) ≡
∞∫

0

e−tez−1dt, Re(z) > 0. (19)

Still, in their article, the authors of the work argued that the proposed approximation
works well for values where b < 6. For values where b ≥ 6, the authors suggested using
the asymptotic expansions method [33].
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The following method consists of the Taylor series expansion of the term 1/
(
1 + y2)

of the Doppler broadening function around y = x, given by [34]:

1
(1 + y2)

=
1

(1 + x2)
− 2x

(1 + x2)
2 (y− x) +

−1 + 3x2

(1 + x2)
2 (y− x)2 · · · . (20)

By substituting the above-mentioned equation in the approximation proposed by Bethe
and Placzek and then performing the integration of all terms, the expansion is obtained:

Ψ(ξ, x) =
1

(1 + x2)

{
1 +

2
(
−1 + 3x2)

ξ2(1 + x2)
2 +

12
(
1− 10x2 + 5x4)
ξ4(1 + x2)

4 · · ·
}

. (21)

For large values of x, Equation (21) tends to:

Ψ(ξ, x) ≈ 1
(1 + x2)

. (22)

Through Equation (21), it is possible to obtain results for the Doppler broadening
function considering temperatures close to zero Kelvin [34].

The consideration of alternating methods for different ranges of b (b < 6 and b ≥ 6 ) is
a strategy that was applied in later works [22,31].

The tables of values for the Doppler broadening function and for the interference term
generated by the work of Beynon and Grant were essential for the reactor physics field,
being present even in two of the main books in this field [24,29].

2.1.2. Campos and Martinez Method (1987)

In 1987, Campos and Martinez published, in the journal Annals of Nuclear Energy,
the article “The dependence of practical width on temperature”. This work, among other
topics, presented a new procedure for calculating the Doppler broadening function. To
do that, the authors used the definitions of Beynon and Grant for the first Voigt function,
ψ(ξ, x), and the interference term, χ(ξ, x), also known as second Voigt function.

For this, the authors differentiated both the integral definition of the Doppler broaden-
ing function and the interference term in relation to x, arriving at the following differential
equation [31]:

4
ξ2

∂2ψ(ξ, x)
∂x2 + 4x

∂ψ(ξ, x)
∂x

+
ξ2

4

[
2 + ξ2x2 + ξ2

]
ψ(ξ, x) = ξ2 (23)

subject to the following initial conditions:

ψ(ξ, x)|x=0 = ψ0 =
ξ
√

π

2
e

ξ2
4

[
1− erf

(
ξ

2

)]
(24)

∂ψ(ξ, x)
∂x

∣∣∣∣
x=0

= 0. (25)

To solve the proposed differential equation, Campos and Martinez (1987) used the
power series expansion method, presenting the following result:

ψ(ξ, x) =
∞

∑
n=0

cnx2n, (26)

with the coefficients generated from the recurrence formulas:

c0 = ψ0; (27)
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c1 =
ξ2

8

[
ξ2 −

(
ξ2 + 2

)
ψ0

]
; (28)

cn+1 = − ξ2

4

[(
4n + ξ2 + 2

)
cn + ξ2cn−1

(n + 2)(n + 1)

]
(29)

Similarly to Beynon and Grant, Campos and Martinez also used the alternation of
methods for different ranges of b (b < 6 and b ≥ 6), using the same Taylor expansion
method, demonstrated by Equation (21) for values of b ≥ 6.

Additionally, in this 1987 work, an expression for the temperature-dependent practical
width was developed, which, in turn, was used later in developing the Campos–Martinez
model for resonance integrals for isolated ones [31,35].

2.1.3. The Palma, Martinez, and Silva Method (2006)

In 2006, Palma, Martinez, and Silva published, in the Journal of Nuclear Science and
Technology, the article “The derivation of the Doppler broadening function using Frobenius
method” [36].

In this work, the authors solved Equation (23) using a different methodology from the
one proposed by Campos and Martinez: utilizing the Frobenius method for the resolution
of the homogeneous part of the equation and the method of variation of parameters to
obtain the particular solution.

Taking this into account, the solution for the obtained Doppler broadening function was:

ψ(ξ, x) =
ξ
√

π

2
e−

ξ2
4 (x2−1)cos

(
ξ2x
2

)[
1 + Reφ(ξ, x) + tan

(
ξ2x
2

)
Imφ(ξ, x)

]
(30)

where

φ(ξ, x) = er f
(

iξx− ξ

2

)
(31)

To measure the method’s accuracy, the authors compared the results of Equation (30)
with results obtained from Padé’s four-pole method [37,38], which is widely used in
calculating the function of Doppler broadening and for calculating resonance integrals.
According to Palma et al., approximations of this type are better than using the Taylor
series to describe functions with poles.

This comparison concluded that the proposed solution presented relative percentage
errors lower than the Padé method [36].

3. Kaniadakis Entropy in the Context of Nuclear Reactor Physics

In the context of the current thermal nuclear reactors scenario, it is appropriate to
apply the Maxwell–Boltzmann statistics to treat the nuclei velocities distribution. How-
ever, considering the perspective of a new generation of nuclear reactors with different
characteristics, the MB approach will not be enough, especially if one considers describing
situations outside the thermal equilibrium [3].

Guedes et al. [3] proposed using the Kaniadakis statistics to obtain an expression for
the Doppler broadening function, which could be capable of contemplating situations other
than the regular nuclear reactors, for instance, in the context of thermal non-equilibrium.

To do this, the authors proposed a new integral expression, ψκ(ξ, x), starting from the
Doppler broadening function without any approximations, Ψ(ξ, x), given by [3]:

Ψ(ξ, x) ≡ π

√
2kBT

M
ξ

+∞∫
− 2

Γ EO

dy
1 + y2

∫ v(x)+vr(y)

v(x)−vr(y)
dVV f (V, T), (32)
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where v is the neutron velocity, vr the relative velocity between the neutron and the nucleus,
and f (V, T) is the chosen nuclei velocities distribution. By substituting the Kaniadakis
statistics, fκ(V, T), into the equation above, one has [3]:

Ψ(ξ, x) ≡ π

√
2kBT

M
A(κ)ξ

+∞∫
− 2

Γ EO

dy
1 + y2

∫ v(x)+vr(y)

v(x)−vr(y)
dVV expκ

(
−MV2

2kBT

)
. (33)

After some algebraic manipulation to perform the integration of the V variable,
Guedes et al. [3] presented a new function, called iexpκ , since:∫

expκ(x)dx = i expκ(x) + C, (34)

where

i expκ(x) ≡
(√

1 + κ2x2 − κ2x
1− κ2

)
expκ(x); (35)

Noting that:
lim
κ→0

i expκ(x) = ex, (36)

Equation (33) becomes:

Ψ(ξ, x) ≡ ξ

2
√

π
B(κ)

+∞∫
− 2

Γ EO

dy
1 + y2

[
i expκ

(
− 1

2kBT
M(v(x)− vr(y))

2
)
− i expκ

(
− 1

2kBT
M(v(x) + vr(y))

2
)]

. (37)

where:

B(κ) = (2|κ|)3/2
(

1 +
3|κ|

2

)Γ
(

1
2|κ| +

3
4

)
Γ
(

1
2|κ| −

3
4

) . (38)

Finally, by using the Bethe–Placzek [27] approximations, Guedes et al. provided the
integral solution for the Doppler broadening function using the Kaniadakis distribution:

Ψκ(ξ, x) ≈ ψκ(ξ, x) =
ξ

2
√

π
B(κ)

+∞∫
−∞

dy
1 + y2 i expκ

[
−ξ2(x− y)2

4

]
. (39)

Noting again that, when κ tends towards zero, one can obtain the integral solution for
the Doppler broadening function using the Maxwell–Boltzmann distribution.

The primary behaviour with the usage of the Kaniadakis statistical distribution is
the peak attenuation for the resonance curves as the value of κ rises, as one can see in the
Figures 2 and 3 below:
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Figure 2. The comparison between the ψκ=0.3(ξ, x) (blue) and ψ(ξ, x) (green) curves [28]. It is possible
to see the peak’s attenuation.

Figure 3. The comparison between the ψκ=0.5(ξ, x) (blue) and ψ(ξ, x) (green) curves. It is possible to
see the peak’s attenuation.
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An animation of this behaviour for different values of κ is available at the following
link: “https://youtu.be/wAeBAETbU1c (Accessed on 1 March 2023)”.

4. Analytical Solutions for the Doppler Broadening Function Using the
Kaniadakis Distribution

Guedes et al. [3] presented the results of the integral formulation for the Doppler
broadening function using the Kaniadakis distribution, Equation (39), by using a numerical
calculation, which, in turn, can present very high processing times when inserted into
complex systems of calculations, such as nuclear reactor simulations.

In the already existing computer codes for nuclear core design, the Doppler broadening
process requires a relatively long computing time to calculate Equation (10). Therefore,
more time will be needed to calculate the deformed function, Equation (39). One should
keep in mind that the Doppler broadening function for neutron cross sections should be
calculated for each energy mesh point, isotope, and temperature.

In order to surpass this potential problem, de Abreu et al. proposed an analytical
solution for the integral expression. To do that, the authors started by obtaining a dif-
ferential equation for ψκ(ξ, x) from the integral expression, using the same methodology
by Campos and Martinez for obtaining an analytical expression for ψ considering the
Maxwell–Boltzmann distribution.

∂2ψκ(ξ, x)
∂x2 − ξ2x

2

[(
κ2 − 1

)2
+ 1

(κ2 − 1 )

]
∂ψκ(ξ, x)

∂x
+

ξ2

4

[
−2

(
κ2 − 1

)
+ ξ2x2 + ξ2

]
ψκ(ξ, x) = − ξ4

4

(
κ2 − 1

)
B(κ). (40)

One relevant thing to mention is that when κ tends to zero, the differential equation
proposed by Abreu et al. [21,22] becomes the equation proposed by Campos and Martinez,
proving the validity of the solution.

Initially, to solve the deformed differential equation using the Kaniadakis distribution,
the authors used the same method by Palma, Martinez, and Gonçalves, i.e., the Frobenius
method, for the homogeneous part and the parameter variation method for the particular
solution. However, to eliminate some of the approximations and assumptions made, a new
paper was published later using the dependent variable method to solve the homogeneous
part of the equation.

The solution of the deformed differential equation for ψκ is divided in two based on
the above-mentioned works of Beynon and Grant [30] and Campos and Martinez [31]: one
for |x·ξ| < 6 and other for |x·ξ| ≥ 6. The first one can be represented by:

ψk(ξ, x) = Λ(x, ξ)
[
D(ξ, x) + Ωg(ξ, x)

]
, (41)

where
D(ξ, x) ≡ [Δ(ξ)·cos(Θ)], (42)

Ωg(ξ, x) ≡ Π(x, ξ)·[iΩ1(ξ, x) + Ω2(ξ, x)]; (43)

Λ(ξ, x) = exp
(

ξ2 − ξ2x2

4

)
· ξ
√

πB(κ)
4

; (44)

Π(ξ, x) =

√
ξ4 − 2ξ2κ2

−ξ2 + 2κ2 · exp
(−κ2

2

)
; (45)

Δ(ξ) =
2− 2er f

(
ξ
2

)
1− κ2 . (46)

Ω1(ξ, x) = sin(Θ)·
[
er f (P1)κ

2 − er f (P1) + er f (P2)κ
2 − er f (P2)

]
; (47)
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Ω2(ξ, x) = cos(Θ)·
[
2er f (P3)κ

2 − 2er f (P3)− er f (P1)κ
2 + er f (P1) + er f (P2)κ

2 − er f (P2)
]
; (48)

P1(ξ, x) =
−iξ2x +

√
ξ4 − 2ξ2κ2

2ξ
; (49)

P2(ξ, x) =
−iξ2x−

√
ξ4 − 2ξ2κ2

2ξ
; (50)

P3(ξ, x) =

√
ξ4 − 2ξ2κ2

2ξ
; (51)

Θ(ξ, x) =
x
2

√
ξ4 − 2ξ2κ2; (52)

The solution for the |x·ξ| ≥ 6 domain is obtained by the conduction of asymptotic
expansions in the Taylor series. Thus, the expression for ψκ(ξ, x) in this case is:

ψκ�|x·ξ| ≥ 6� ∼= B(κ)·
[

1
(1− κ2)(1 + x2)

+
−3κ2ξ2 − κ2ξ2x4 + 4− 12x2

2ξ2(κ2 − 1)(1 + x2)
3 + . . .

]
(53)

In a more recent paper [25], the authors also calculated the computational processing
times. They obtained an average value of 4.6 for the ratio (numerical/analytical), confirming
the predicted faster processing times for the analytical solution.

In parallel with the development of analytical solutions, da Silva et al. [39] proposed
a method to establish a relation of equivalence among the standard Doppler broadening
function, ψ(ξ, x), and the deformed one, ψκ(ξ, x).

The effective medium temperature model consists of determining the temperature,
Te f f , which will have the Doppler broadening function from the perspective of the Maxwell–
Boltzmann distribution reproducing the same value for the function using Kaniadakis
distribution in the actual temperature (T) of the medium, that is:

ψκ(x, ξ) ∼= ψκ

(
x, ξ̃

)
(54)

where:
ξ̃ ≡ Γ(

4E0 kBTe f f /A
)1/2 (55)

and
ξ ≡ Γ

(4E0 kBT/A)1/2 (56)

Applying the polynomial regression method optimised by the genetic algorithm
technique, the values of ξ̃ and, consequently, of the effective medium temperature, Te f f ,
were obtained.

Thus, the deformed Doppler broadening function, ψκ(x, ξ), according to the Kani-
adakis distribution, can be obtained directly via the original Doppler broadening function
by replacing the medium temperature, T, with the effective temperature of the medium, Te f f .

According to the authors, the model proved to be a much faster and simpler method
for calculating deformed Doppler broadening functions concerning the numerical ap-
proach [39].

In this ‘twenty years of Kaniadakis entropy’ issue, a paper was published [23], apply-
ing the analytical solution for ψk to calculate deformed nuclear cross sections in the nuclear
data processing code FRENDY, developed by the Japan Atomic Energy Agency.
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One of the contributions of this work was to study the relevance of the so-called
Gaussian error function, er f , in the proposed analytical formulation for ψk. The erf function
is defined by:

er f (x) =
2√
π

∫ x

0
e−t2

dt. (57)

Due to its complexity, many programming code libraries use approximations to calcu-
late these functions. These approximations, in turn, result in errors. The authors then used
the Faddeeva Package [28] to minimise these, especially for the tails (far from the resonance
peaks) regions.

5. Kaniadakis’ Entropy Validation in the Nuclear Reactor Physics

Other areas that employed the Kaniadakis statistics can validate its results through
observational data (stellar clusters, for instance). For an example of this validation, one can
present the high-quality agreement between the theoretical curves for cosmic rays’ flux
using the Kaniadakis distribution and observational data. As one can see in reference [2], the
Kaniadakis statistics represented the observational data better than the standard Maxwell-
Boltzmann one.

However, in nuclear physics reactors, this is not possible. Thus, one needs to find ways
to validate the applicability of this generalised entropy in the nuclear engineering area.

From this perspective, it is crucial—from a validation point of view—to verify the
existence of a pertinency in applying the Kaniadakis method in the reactor physics area.
Hence, one of the first necessary steps is to generate deformed nuclear data and compare it
to the Maxwell–Boltzmann results.

Nevertheless, before this step, it was necessary to validate the analytical solution itself.
Hence, in a 2020 work, de Abreu [28] generated the first deformed data using the following
equations for the deformed radiative capture cross sections obtained through the Doppler
broadening function considering the Kaniadakis distribution:

σκ
γ = σ0

(
Γγ

Γ

)(
E0

E

) 1
2
ψκ(ξ, x) (58)

To calculate these cross sections, the authors used the parameters — illustrated in
Table 1—of the 238 isotope of uranium in the 6.67 eV peak resonance:

Table 1. Resonance data for the 6.67 eV line.

E0(eV) Γn(eV) Γγ(eV) σ0 (b) Γp(eV)

6.67 0.00152 0.026 2.16× 105 1.26
Source: Duderstadt and Hamilton [24] (1976, p. 335).

Using the above-mentioned data and Equation (58), the authors generated the de-
formed analytical data by using the numerical and analytical expressions for ψκ(ξ, x) to
compare them with each other, as shown in Figure 4.

The results show a robust agreement between both solutions, which gives conditions
to proceed in the validation steps.

However, even with the results in conformity with the predicted behaviour concerning
the numerical results, applying the Kaniadakis distribution in a proper nuclear data gener-
ator tool is still necessary for certification purposes. In this sense, one needs to insert the
analytical solution into nuclear data processing codes, preferably into ones recognised and
used by peers around the world, for instance, FRENDY [28,29], NJOY [40], PREPRO [41],
or NECP-Atlas [42]. The advantage of using these systems is that they can process official
evaluated nuclear data libraries, such as ENDF, CENDL, JEFF, or JENDL.
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Figure 4. A comparison between the analytical and numerical results for the radiative capture
cross-sections using the Kaniadakis distribution [28]. Source: de Abreu (2020, p. 90, our translation).

Therefore, a paper in this twenty-year commemorative issue was published, generat-
ing, for the first time, deformed data using the Kaniadakis distribution for two important
nuclides: technetium 99 and plutonium 238, as one can see in Figures 5 and 6. To do that,
they chose the FRENDY nuclear data processing code [28,29].

 

Figure 5. A plot of the deformed radiative capture cross section for plutonium 238 considering k = 0.1
and the 9.98 eV peak generated by the FRENDY data processing code [23]. Source: de Abreu et al.
(2022, p. 10).
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Figure 6. A plot of the deformed radiative capture cross section for gadolinium 155 consider-
ing k = 0.1 and the 95.7 eV peak generated by the FRENDY data processing code [23]. Source:
de Abreu et al. (2022, p. 12).

By analysing the data, the authors found compatibility between the expected peak
attenuation behaviour of the deformed curves compared to the Maxwell–Boltzmann data
for different resonance peaks.

These results represent a significant step in validating the Kaniadakis statistics in the
nuclear fission area.

6. Next Steps and Perspectives of Kaniadakis Entropy in the Nuclear Reactor Physics

Much work has been conducted on nuclear reactor physics with the Kaniadakis
deformed statistics. However, to proceed with this investigation, there is still a question to
answer: which value (or range) of κ fits with current and future nuclear reactors?

In this sense, future works will need to proceed with the work inside data generation
codes and use its results of deformed nuclear cross sections in other nuclear reactor simu-
lations to find the closest values of the deformation factor, κ, in order to fit the standard
nuclear reactor behaviour.

Another possible and relevant step is implementing the Kaniadakis methodology in
modern theoretical methods, such as the multi-level Breit–Wigner and Reich–Moore meth-
ods. With this implementation, it would be possible, for instance, to generate a deformed
nuclear cross section for other nuclides, such as the isotopes 235 and 238 of uranium.
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Abstract: Data-centric inverse problems are a process of inferring physical attributes from indirect
measurements. Full-waveform inversion (FWI) is a non-linear inverse problem that attempts to
obtain a quantitative physical model by comparing the wave equation solution with observed data,
optimizing an objective function. However, the FWI is strenuously dependent on a robust objective
function, especially for dealing with cycle-skipping issues and non-Gaussian noises in the dataset. In
this work, we present an objective function based on the Kaniadakis κ-Gaussian distribution and the
optimal transport (OT) theory to mitigate non-Gaussian noise effects and phase ambiguity concerns
that cause cycle skipping. We construct the κ-objective function using the probabilistic maximum
likelihood procedure and include it within a well-posed version of the original OT formulation,
known as the Kantorovich–Rubinstein metric. We represent the data in the graph space to satisfy the
probability axioms required by the Kantorovich–Rubinstein framework. We call our proposal the
κ-Graph-Space Optimal Transport FWI (κ-GSOT-FWI). The results suggest that the κ-GSOT-FWI is an
effective procedure to circumvent the effects of non-Gaussian noise and cycle-skipping problems.
They also show that the Kaniadakis κ-statistics significantly improve the FWI objective function
convergence, resulting in higher-resolution models than classical techniques, especially when κ = 0.6.

Keywords: κ-Gaussian distribution; optimal transport; seismic imaging; cycle skipping; non-linear
optimization; Wasserstein metric; inverse problems; wave propagation

1. Introduction

The task of inferencing physical parameters from indirect observations arises in various
practical problems. Determining parameters that cannot be directly observed remains a
complex issue and involves a robust set of tools that compose the theoretical basis of
the inverse problem theory [1]. The goal of an inverse problem consists of obtaining
a quantitative model m that explains the observations (or observed data) by matching
modeled data dmod = G(m) to observed data dobs, in which G denotes the so-called forward
operator. The forward operator maps the variables from the model space to the data space
through a physical law [2]. For instance, we may want to determine the thermal diffusivity
of a material (physical system) by analyzing the observed data: the temporal distribution of
the diffusing material density at a determined location. In this regard, the model consists of
the collective diffusion coefficient, and a diffusion equation represents the forward operator
G. So, the diffusion coefficients are determined by optimizing an objective function, which
measures the distance between modeled and observed data.

In this work, we consider a non-linear inverse problem that has attracted increasing
interest in several fields, such as astrophysics [3], biomedicine [4], machine learning [5],
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and geophysics [6], named the Full-Waveform Inversion (FWI) [7]. FWI is a powerful
imaging technique to obtain high-resolution quantitative physical models by analyzing the
complete information of a collection of waveforms [8]. In particular, we consider the FWI
technique in a geophysical context, in which the forward problem consists of simulating the
propagation of acoustic waves by solving a wave equation. In this regard, the acoustic wave
equation represents the forward operator G. At the same time, the data d and the model m
are the pressure waveforms and the distribution of acoustic wave velocities (coefficients of
the wave equation) of the subsurface medium. The inverse problem involves inferencing
the coefficients of the wave equation (model parameters) by comparing the modeled data
(wave equation solution) with the observed data by employing an objective function [9].

The objective function based on the least-squares method (or squared l2-norm) is the
most employed for handling FWI issues [7]. The least-squares objective function (from now
on, classical objective function) computes the square root of the sum of the absolute squares
of the residual data (or errors), the difference between the modeled and the observed
data. Each objective function is closely connected to a statistical interpretation of the
errors [2]. The classical objective function bears a relationship to Gaussian statistics. Indeed,
in this classical framework, the errors are assumed to be independent and identically
distributed according to a Gaussian probability distribution [10]. However, this assumption
is sometimes adequate since the errors seldom are Gaussian in non-linear problems [11,12].
Let us remind the reader that errors arise from different natures, comprising the noise in
the observations and uncertainties related to the physical rule employed in the forward
problem. In fact, non-Gaussian noises are present in geophysical datasets and are caused
by several elements, such as weather-related mechanisms [13] and instrument noise [14].
Several objective functions based on non-Gaussian statistics have been presented in the
literature as alternative criteria. Non-Gaussian distributions exhibit much longer tails than
the Gaussian ones, a crucial feature for dealing with erratic data (outliers) [15]. Several
works have shown the effectiveness of non-Gaussian criteria in geophysical data inversions,
such as objective functions based on Laplace distribution [16], Student’s t distribution [17],
generalized approaches [18,19], and hybrid criteria [20,21].

Recently, ref. [22] introduced a new non-Gaussian criterion, namely ,the κ-objective
function, based on the Kaniadakis statistics (or κ-statistics) [23–27], which is robust to erratic
data. The κ-objective function assumes that the errors are independent and identically
distributed according to the κ-deformation of a Gaussian distribution (or κ-Gaussian
distribution), in which the classical approach is a particular case [28]. The κ-Gaussian
distribution arises from optimizing the Kaniadakis κ-entropy as a generalization of the
well-known Gaussian distribution [29]. The κ-criterion exhibits robust characteristics
thanks to the much longer tail of the κ-Gaussian distribution than the classical Gaussian
probability function, which is crucial to mitigate the effects of non-Gaussian errors in FWI
problems [30].

Due to the high computational efforts to solve the wave equation several times during
the FWI process, the minimization process of the objective function is usually solved by
local optimization methods [7]. Thus, FWI is prone to trapping into a non-informative local
minimum if the initial background velocity model is not kinematically accurate [31]. Such
an intrinsic limitation of FWI is associated with the absence of low-frequency contents,
causing cycle-skipping issues [32,33]. Cycle-skipping is a phase ambiguity problem when
the phase correspondence between two waveforms is greater than half a wavelength [34].
Although the approaches mentioned above are robust to non-Gaussian errors, they mea-
sure sample-by-sample the data misfit, making them sensitive to cycle skipping. Hence,
a vast body of objective functions has been introduced for mitigating the cycle-skipping
effects, such as those based on the waveform envelopes [35], convolutional filters [36],
non-parametric techniques [37], and optimal transport metrics [38]; this is the methodology
employed in the present study.

The theory of optimal transport (OT) was formally introduced by Gaspard Monge [39],
who sought to understand the most effective allocation of resources by redistributing
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materials (mass) from sources to sinks. In recent years, OT theory has received much
attention in broad literature (e.g., refs. [40–43]), such as geophysics issues [44–46]. However,
the OT-based objective function is suitable for comparing probability distributions, that
is, positive and normalized quantities, two requirements that seismic signals do not greet
due to their oscillatory nature. In this way, waveforms are commonly distorted through
transformations to satisfy the probability axioms, which may manufacture unwanted
information. Indeed, several applications have demonstrated the effectiveness of OT-based
objective functions to mitigate the effects of phase ambiguity; however, all assume that the
errors obey Gaussian statistics.

In this work, we explore the κ-objective function in the context of OT theory to
introduce an objective function resistant to non-Gaussian noise and less sensitive to cycle-
skipping issues. In this regard, we propose a robust framework for matching seismic
waveforms using the Wasserstein distance, a well-posed relaxation of the OT formulation.
Furthermore, inspired by ref. [47], we consider the representation of the waveforms in the
graph space suitable for real large-scale problems [33]. In this approach, the waveforms are
represented by Dirac delta functions in a two-dimensional space (amplitude versus time).

We organize the present work as follows. In Section 2, we briefly introduce the theo-
retical basis of inverse problems in the context of κ-Gaussian statistics and their robustness
properties. In Section 3, we present a well-posed relaxation of the original optimal transport
formulation using the Kaniadakis κ-objective function. Then, in Section 4 we present FWI
based on optimal transport and κ-Gaussian statistics in the context of the adjoint state
method. In Section 5, we demonstrate how the proposed objective function deals with
cycle-skipping issues and non-Gaussian noise by considering a Brazilian pre-salt case study.
Finally, we devote Section 6 to the final remarks and future applications.

2. Inverse Problems in the Context of Kaniadakis κ-Statistics

In science issues, several practical problems are data-centric. Indeed, determining a
quantitative physical model that explains the observations is crucial to more accurately
model and describe a wide variety of existing physical systems. In this context, the inverse
problem theory is an excellent tool.

From a practical point of view, an inverse problem is formulated as an optimiza-
tion task for obtaining a quantitative model by comparing modeled data to observed
data. Modeled data are calculated using an appropriate physical law. The comparison
between modeled and observed data is performed through an objective function. In the
classical approach, the objective function is constructed from the assumption that the
errors (the difference between modeled and observed data) obey Gaussian statistics. Let
�ε = {ε1, ε2, · · · , εN} be the errors. From the assumption that the errors are independent
and identically distributed according to a standard Gaussian distribution,

p0(εi) =
1√
2π

exp
(
−1

2
ε2

i

)
, (1)

we can determine the associated likelihood function as follows [11]:

L0 =
N

∏
i=1

p0(εi) =

(
1√
2π

)N

exp

(
− 1

2

N

∑
i=1

ε2
i

)
, (2)

where L0 is the Gaussian likelihood. The use of index 0 will become clear later on. It is
worth remembering that the standard Gaussian distribution can be determined from the max-
imization of the Boltzmann–Gibbs–Shannon entropy subject to the normalization condition∫ +∞

−∞
p(ε)dε = 1 (3)
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and the unit variance constraint, ∫ +∞

−∞
ε2 p(ε)dε = 1. (4)

In inverse problems, the errors�ε depend on the model parameter m and are com-
puted through the difference between modeled (dmod = G(m)) and observed (dobs) data,
i.e., εi(m) = dmod

i (m)− dobs
i , where G represents the forward operator. In this way, obtaining

the model parameter can be performed by employing the maximum likelihood estimation
(MLE) method, which is achieved by maximizing the likelihood function as follows:

m̂ = max
m
L0(m|dobs) (5)

where m̂ represents the estimated model. The MLE estimates an unknown model parameter
by considering that its optimal value maximizes the probability that the observed data are
measured. Since the minimum of the negative log-likelihood coincides with the maximum
of the likelihood function, maximizing L0 (5) is equivalent to minimizing the negative
log-likelihood, i.e.,

max
m
L0(m|dobs) ≡ min

m
− ln

(
L0(m|dobs)

)
. (6)

From the principle of maximum likelihood, an objective function φ0 can be obtained
from [11]:

φ0(m) ∝ − ln
(
L0(m|dobs)

)
, (7)

which can be rewritten as:

φ0(m) ∝
N
2

ln(2 π) +
1
2

N

∑
i=1

ε2
i (8)

φ0(m) =
1
2

N

∑
i=1

ε2
i . (9)

We notice that minimizing Equation (8) or (9) is the same since the term N
2 ln(2 π) is

constant. The latter equation is well-known and used in solving problems via the least
squares method. Please see Section 2 of ref. [48] for more detail.

However, due to the non-Gaussianity of the errors, it is reasonable to assume that the
errors are non-Gaussian. In this study, we consider that the errors are distributed according
to a Kaniadakis κ-Gaussian distribution of the form [22]:

pκ(εi) =
1

Zκ
expκ

(
−βκ ε2

i

)
, (10)

where Zκ is a normalizing constant, βκ is a scale parameter, and

expκ(y) = exp
(

1
κ

arcsinh(κy)
)
=
(√

1 + κ2y2 + κy
) 1

κ
(11)

with 0 ≤ |κ| < 1, is the κ-exponential function [26], a generalization of the exponential
function. The κ-exponential becomes the ordinary exponential function in the limit κ → 0:
exp0(y) = exp(y).

Considering the normalization (3) and unitary variance (4) conditions, we obtain

Zκ =

√
π

βκ

|2κ|−1/2

1 + 1
2 |κ|

Γ
(

1
|2κ| −

1
4

)
Γ
(

1
|2κ| +

1
4

) (12)
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and

βκ =
|2κ|−1

2
1 + 1

2 |κ|
1 + 3

2 |κ|
Γ
(

1
|2κ| −

3
4

)
Γ
(

1
|2κ| +

1
4

)
Γ
(

1
|2κ| +

3
4

)
Γ
(

1
|2κ| −

1
4

) (13)

holding for |κ| < 2/3. The standard Gaussian distribution (1) is a particular case of
the κ-Gaussian distribution (10) in the classical limit κ → 0 since limκ→0 βκ = 1

2 and
limκ→0 Zκ =

√
2π. Figure 1 depicts the plots of the κ-Gaussian distribution (10) for typical

κ-values, with the solid black curve referring to the standard Gaussian distribution (κ → 0).

(a) (b)

Figure 1. Probability plots of the κ-Gaussian distribution (10) for some κ-values using (a) a linear
scale and (b) a linear scale on the axis of ordinates, and a logarithmic scale on the axis of abscissas.
The solid black line represents the standard Gaussian distribution (κ → 0).

Because we assume that the errors are independent and identically distributed by
the power law distribution represented in (10), we can calculate the corresponding objec-
tive function by estimating the most likely state using the probabilistic maximum likeli-
hood method:

min
m

φκ(m) ≡ max
m
Lκ(m|dobs), (14)

where Lκ(m|dobs) := ∏N
i=1 pκ(εi(m)) represents the likelihood function. It is crucial to

remember that minimizing the negative log-likelihood is the same as maximizing the
likelihood function. In this way, the objective function φκ can be obtained from (14):

φκ(m) ∝ N ln
(

Zκ

)
−

N

∑
i=1

ln

[
expκ

(
− βκε2

i (m)
)]

(15)

φκ(m) = −
N

∑
i=1

ln

[
expκ

(
− βκε2

i (m)
)]

, (16)

where φκ is the κ-objective function, which converges to the classical objective function (9)
in the limit κ → 0.

The κ-objective function is not easily influenced by aberrant measurements (outliers),
as it is based on κ-Gaussian criteria [49]. To demonstrate this, we compute the influence
function Υ related to the objective function. According to ref. [50], a statistical criterion
is not robust if Υ → ±∞ under |ε| → ∞, and robust (outlier-resistant) if Υ → 0 under
ε → ±∞. Given a model mi, the influence function is defined by [50]:

Υκ(mi) :=
∂φκ(ε|mi)

∂ε
, (17)
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where φκ(ε|mi) is the κ-objective function computed from the errors ε given the model mi.
Thus, the κ-objective function generates the following influence function:

Υκ =
2βκε√

1 + κ2β2
κε4

(18)

for 0 < κ < 2/3, with Υκ = Υκ(mi) and ε = ε(mi). We notice that, as ε tends to ±∞,
the influence function associated with the κ-criterion (Υκ) approaches to 0; the κ-objective
function is then robust (outlier-resistant). Indeed, the influence function in its valid domain
(0 < κ < 2/3) is proportional to 1/ε for large errors (suppressing these) and to ε for small
errors (magnifying these). Figure 2 depicts the behavior of the κ-objective function and the
associated influence function.

(a) (b)

Figure 2. (a) Graphical representation of the κ-objective function (16), and (b) the associated influence
function (18) for some κ-values. The solid black line represents the classical criterion (κ → 0).

3. Optimal Transport Metric Based on Kaniadakis κ-Statistics

In 1781, Gaspard Monge first raised a challenger transportation problem [39], which
consisted of moving a pile of sand from one place to another optimally and without
losing mass. As formulated by Monge, the optimal transport (OT) issue is an ill-posed
problem; hence the solution, if it exists, is not unique. Nearly 200 years later, Leonid
Kantorovitch proposed a well-posed relaxation of Monge’s OT problem in the context of
optimal economic resource allocation [51]. In this regard, Kantorovich proposed what is
now known as the Kantorovich–Rubinstein metric (also referred to as Wasserstein distance),
which earned him the 1975 Nobel Memorial Prize in Economic Science.

The Wasserstein criterion is a metric that defines a distance between two proba-
bility distributions. Let us consider two sets of points Ω1 = {xi; i = 1, 2, · · ·, N1} and
Ω2 = {yj; j = 1, 2, · · ·, N2}, in which each point xi and yj are represented by “mass” func-
tions, namely μ(xi) and υ(yj), respectively. Considering the mass conservation constraint
(∑i μ(xi) = ∑j υ(yj) = 1), we can define the κ-optimal total transport costWκ as [30,40]:

Wκ(μ, υ) = min
T ∈Λ(μ,υ)

∑
i,j
Ti,j φκ,i,j, (19)

where Λ(μ, υ) denotes the set of transport maps T defined in

Λ(μ, υ) =

{
Ti,j ≥ 0, ∀(i, j);

N2

∑
j=1
Ti,j = μ(xi), ∀ i;

N1

∑
i=1
Ti,j = υ(yj), ∀ j

}
. (20)

The transport map T assigns how many “sand particles” from μ(xi) should be trans-
ported to υ(yj) for each pair (xi, yj), while the κ-objective function maps each pair (xi, yj)
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to [0;+∞]. The Monge–Kantorovich transportation relaxed problem (19), using the Ka-
niadakis κ-statistics, can therefore be solved by determining an optimal transport plan
T that minimizes the κ-optimal total transport cost Wκ from μ to υ, given an κ-objective
function φκ .

Let us consider a metric space P(X × Y) formed by a set of probability measures,
in which X and Y are two separable and complete metric spaces with μ ∈ X and υ ∈ Y .
From this point forward, for practical reasons, we assume that X = Y ⊂ RN (with
N1 = N2 = N ∈ N). In addition, let us consider the mass distributions μ and υ rep-
resented in terms of the Dirac delta function as follows: μ(x) = 1

N ∑N
l=1 δ(x− ul) and

υ(y) = 1
N ∑N

l=1 δ(y− wl), in which ul ∈ Ω1 and wl ∈ Ω2 point out the data points de-
scribing μ(x) and υ(x). In this context, we can reformulate the optimization problem in
Equation (19) as follows:

Wκ(μ, υ) = min
Ti,j

− 1
N

N

∑
i,j=1

Ti,j ln

{
expκ

[
− βκ

(
μ(xi)− υ(yj)

)2
]}

(21)

subject to

Ti,j ≥ 0,
N

∑
j=1
Ti,j = 1,

N

∑
i=1
Ti,j = 1. (22)

From a practical viewpoint, we notice that solving (21) consists of obtaining an optimal
transport plan that links data points from P(X ) to the corresponding data points in P(Y)
that minimizes the κ-optimal total transport costWκ . Although each element of the optimal
transport plan Ti,j can assume fractional values, a classic result states that the optimal
solution values are integer values, specifically 0 or 1 when the constraints described in
Equation (22) are considered [52,53]. Indeed, obtaining the minimum of Wκ implicates
solving a combinatorial optimization issue, which can be defined as:

Wκ(μ, υ) = min
σ∈S

− 1
N

N

∑
i=1

ln

{
expκ

[
− βκ

(
μ(xσ(i))− υ(yi)

)2
]}

, (23)

where σ represents a permutation solution for the linear sum assignment problem in (21)
related with T , and S(N) = {1, 2, · · ·, N} is a set of permutations. Equation (23) represents
the Wasserstein metric in the context of κ-Gaussian statistics.

Naturally, the Wasserstein metric based on Kaniadakis κ-statistics appreciates the
advantages provided by κ-Gaussian statistics. However, this approach in this format is
only valid for comparing probability distributions, which is not interesting for geophysical
applications like the FWI case. This incompatibility is because seismic signals are not
normalized and positive-definite quantities like probability functions.

4. Kaniadakis κ-Graph-Space Optimal Transport FWI

4.1. FWI Based on Kaniadakis κ-Gaussian Distribution

In this section, we present the main elements of FWI based on the Kaniadakis κ-
Gaussian distribution, the metric explained in Section 2. The FWI is a non-linear inverse
problem whose main goal consists of inferring a quantitative physical model by comparing
modeled waveforms (modeled data) with measured waveforms (observed data) [7]. FWI is
often formulated as a gradient-based minimization due to the computational costs, in which
the model parameters are iteratively updated, from an initial model m0, as follows [8]:

mi+1 = mi − αi hκ(mi) for i = 0, 1, 2, · · ·, Niter, (24)

where m represents the model parameter, αi > 0 is the so-called step length [54], Niter
represents the number of FWI iterations, and hκ denotes the descent direction at the i-
th iteration.
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In this work, we employ a non-linear conjugate gradient optimization method based
on the so-called Polak–Ribière–Polyak algorithm. In this regard, the descent direction is
defined by [55,56]:

hκ(mi) =

{
∇mφκ(m0) , if i = 0

∇mφκ(mi) + ζκ(mi)hκ(mi−1), for i = 1, 2, · · · , Niter
(25)

with

ζκ(mi) =
∇mφκ(mi)(∇mφκ(mi)−∇mφκ(mi−1))

∇mφκ(mi−1)∇mφκ(mi−1)
, (26)

where ∇mφκ(m) is the gradient of the κ-objective function.
Thus, it is remarkable that the objective function plays a crucial role in obtaining

models via FWI, which is defined for our problem as (10):

min
m

φκ(m) := −∑
s,r

∫ T

0
ln
{

expκ

[
− βκ

(
Γs,rψs(�x, m, t)− ds,r(�xs,r, t)

)2]}
dt, (27)

where Γs,rψs = dmod
s,r and ds,r = dobs

s,r represent the modeled and observed data generated by
the seismic source s and recorded in the receiver r, while �x ∈ R2 and t ∈ [0, T] denote the
spatial coordinates and the seismic acquisition time.

It is worth mentioning that the observed data ds,r are registered only in the receiver
positions �x = �xs,r, the available and chosen positions during a seismic survey. The seismic
wavefield ψs is computed in the entire physical domain for each seismic source s by solving
a wave equation. Thus, Γs,r represents a sampling operator that acts as a measurement
processor onto the receiver r from the source s. In this work, we consider the acoustic case;
therefore, ψs are the pressure wavefields that satisfy the following model:

1
c2(�x)

∂2ψs(�x, t)
∂t2 −∇2ψs(�x, t) = gs(t)δ(�x−�xs) (28)

where gs represents a seismic source signature at the fixed position �x = �xs, c is the P-wave
velocity model of the medium, and ∇2 denotes de Laplacian operator.

Thus, the gradient of the κ-objective function (27) with respect to the model parameters
is given by:

∇mφκ(m) =
∂φκ(m)

∂ml
= 2βκ ∑

s,r

∫ T

0

Js,r(m, t)Δds,r(m, t)√
1 + κ2β2

κΔd4
s,r(m, t)

dt, (29)

where Δds,r(m, t) = Γs,rψs(�x, m, t)− ds,r(�xs,r, t) represents the error (or residual data) and

Js,r(m, t) =
∂

∂ml

(
Γs,rψs(�x, m, t)

)
(30)

is known as the Fréchet derivative. It is worth emphasizing that FWI problems involve
many elements from the model parameters that typically comprise 106 to 1012 variables
(coefficients of the wave equation). In this context, we need to solve the wave equation once
in the forward modeling process plus at least 106 times in calculating the gradient of the
κ-objective function through Fréchet derivatives, being unfeasible in industrial problems.

4.2. Adjoint-State Method

Since calculating Fréchet derivatives can be computationally prohibitive, we compute
the gradient of the κ-objective function using the adjoint-state method, which was devel-
oped in the 1970s [57]. There are several ways to formulate the state-adjoint approach, such
as in techniques based on the augmented Lagrangian method or Green’s functions. How-
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ever, in this work we consider the perturbation theory to calculate the gradient efficiently.
We notice that the κ-objective function can be written as:

φκ(m) = f
(

ψ(m), m
)

, (31)

where ψ is a state variable that belongs to the complex space Q; ψ satisfies the following
equation of state:

F
(

ψ(m), m
)
= A(m, t)ψ(m, t)− g(t) = 0, (32)

in which we suppress the subscript s for the sake of a simplified notation. In the latter
equation, A(m, t)ψ(t) = q(t) represents the wave equation written in a compact form,
where A(m, t) = m ∂2

∂t2 −∇2 is the d’Alembert wave operator with m = 1
c2(�x) belonging to

the real spaceM, whilst g(t) = gs(t)δ(�x−�xs).
Suppose we consider an arbitrary variation δm concerning the model parameter m.

In that case, the state variable ψ will be disturbed by a variation δψ; consequently, the κ-
objective function in Equation (31) will also be disturbed. In this way, we have to:

δφκ =
∂ f (ψ, m)

∂m
δm +

〈
∂ f (ψ, m)

∂ψj
, δψ

〉
Q

, (33)

where we only consider the first-order terms in δm and δψ. Furthermore, ψj is any element
of the space Q, and 〈, 〉Q is the inner product in Q.

It is worth emphasizing that the perturbations δm and δψ also induce variations in the
equation of state (32). Moreover, assuming that there is a unique solution ψ for any model
parameter m, we can state that ψ + δψ is the unique solution of F(ψ + δψ, m + δm) = 0.
In other words, for a physical realization ψ (that is, F(ψ, m) = 0), we have the following
first-order development in δm and δψ:

F(ψ + δψ, m + δm) = F(ψ, m) +

(
∂F(ψ, m)

∂m

)
δm +

(
∂F(ψ, m)

∂ψj

)
δψ = 0. (34)

From the latter equation, we have that the perturbation in the state variable ψ is given by:

δψ = −
(

∂F(ψ, m)

∂ψj

)−1(
∂F(ψ, m)

∂m

)
δm, (35)

where a−1 denotes the inverse of a. So, replacing the resulting from Equation (35) in
Equation (33), we have an efficient way to compute the gradient of the κ-objective function
without the Fréchet derivatives:

δφκ =
∂ f (ψ, m)

∂m
δm−

〈
∂ f (ψ, m)

∂ψj
,

(
∂F(ψ, m)

∂ψj

)−1(
∂F(ψ, m)

∂m

)
δm

〉
Q

. (36)

On the other hand, to obtain an intuitive way to calculate the gradient, Equation (36)
can be rewritten so that in the inner product in Q, one of the terms varies only with ψ and
the other with m. For this, we consider the following adjoint operator property for any x
and y variables:

〈x,Ry〉 = 〈R†x, y〉 (37)
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where R† is the adjoint operator of R, while the superscript † represents the adjoint
operation (complex-conjugate transpose). Applying the property (37) to the second term of
Equation (36), we obtain:

δφκ =
∂ f (ψ, m)

∂m
δm−

〈[(
∂F(ψ, m)

∂ψj

)−1]†
∂ f (ψ, m)

∂uj
,

(
∂F(ψ, m)

∂m

)
δm

〉
Q

. (38)

Furthermore, if we consider a new state variable v belonging to the complex space V ,
given by:

v =

[(
∂F(ψ, m)

∂ψj

)−1]†
∂ f (ψ, m)

∂ψj
, (39)

where v is the first term of the inner product in Equation (38), we have the following
equation of state: (

∂F(ψ, m)

∂ψj

)†

v =
∂ f (ψ, m)

∂ψj
, (40)

which is known as the adjoint-state equation [58,59], and therefore v is called the adjoint-
state variable.

In summary, the calculation of the gradient of the κ-objective function through the
state-adjoint method is given by:

∇mφκ(m) =
∂φκ(m)

∂m
=

∂ f (ψ, m)

∂m
−
〈

v,
∂F(ψ, m)

∂m

〉
Q

, (41)

where the state-adjoint variable v is calculated from the state-adjoint equation in (40). In this
way, for our problem we have:

f
(

ψs(m, t), m
)
= −∑

r
ln
{

expκ

[
− βκ

(
Γs,rψs(m, t)− ds,r(t)

)2]}
, (42)

where φκ(m) = ∑s f
(

ψs(m, t), m
)

. In addition, for any model parameter m, let ψs be a
solution of the equation of state given in (32), that is, a physical realization. We obtain:

F(ψs(t), m) = A(m, t)ψs(t)− gs(t) = 0 (43)

and

f
(

ψs(t), m
)
= −∑

r
ln
{

expκ

[
− βκ

(
Γs,rψs(t)− ds,r(t)

)2]}
= f

(
ψs(t)

)
. (44)

Therefore, we obtain the following derivatives of the equation of state:

∂F(ψs(t), m)

∂m
=

∂A(m, t)
∂m

ψs(t) and
∂F(ψs(t), m)

∂ψsj

= A(m, t), (45)

and the following for the κ-objective function:

∂ f (ψs(t), m)

∂m
= 0 and

∂ f (ψs(t), m)

∂ψsj

= ∑
r

2βκΓ†
s,r

(
Γs,rψs(t)− ds,r(t)

)
√

1 + κ2β2
κ

(
Γs,rψs(t)− ds,r(t)

)4
. (46)
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Thus, the gradient of the κ-objective function via the state-adjoint method is given by
substituting the derivatives calculated in Equations (45) and (46) in Equations (40) and (41),
as follows:

∇mφκ(m) = −∑
s

∫ T

0

〈
vs(�x, t; κ),

∂2ψs(�x, t)
∂t2

〉
�x

dt (47)

with vs being the solution of the adjoint-wave equation given by

m(�x)
∂2vs(�x, t)

∂t2 −∇2vs(�x, t) = ∑
r

2βκΓ†
s,r

(
Γs,rψs(t)− ds,r(t)

)
√

1 + κ2β2
κ

(
Γs,rψs(t)− ds,r(t)

)4
(48)

where m(�x) = 1
c2(�x) .

In search of a physical meaning for Equations (47) and (48), let us consider a new state
variable given by λs(�x, t) = vs(�x, T − t). So, the latter equation becomes:

m(�x)
∂2λs(�x, t)

∂t2 −∇2λs(�x, t) = ∑
r

2βκΓ†
s,r

(
Γs,rψs(T − t)− ds,r(T − t)

)
√

1 + κ2β2
κ

(
Γs,rψs(T − t)− ds,r(T − t)

)4
. (49)

We notice that the adjoint-state variable λs is calculated in reverse time from Equation (49),
i.e., starting the wave propagation from the final time T to the initial time 0. For this
reason, this state-adjoint variable is commonly called the backpropagated wavefield, while
Equation (49) is called the adjoint-wave equation, in which the right-hand term is named
the adjoint source [59]. In this way, the κ-objective function gradient is calculated efficiently
from the cross-correlation of the forward wavefield with the backpropagated wavefield.

In this context, computing the gradient via the state-adjoint method for each seismic
source requires solving the wave equation only twice, first in the forward modeling and
second in backpropagation modeling. We also point out that the robustness properties of
the objective function discussed in Section 2 are indispensable in calculating the gradient.
Indeed, the influence function (18) gives the adjoint source used in the inversion process.
The particular classical case κ → 0 provides the residual data as the adjoint source.

4.3. κ-Graph-Space Optimal Transport FWI

From a statistical point of view, non-Gaussian criteria are critical to handle noisy
datasets in FWI analysis [9]. In this sense, we also consider the κ-Gaussian-based metric
to deal with a challenging issue in FWI called cycle skipping [7]. Cycle skipping occurs
when the initial model used in the FWI process is not kinematically accurate or lacks
low-frequency contents in the analyzed dataset [34]. So, we consider the criterion based
on κ-Gaussian statistics in the context of OT metric to mitigate the effects of non-Gaussian
errors and cycle-skipping issues. However, let us remind the reader that the OT metric
measures the distance between probability distributions, incompatible with a comparison
between seismic signals, as discussed earlier. Thus, to work around this incompatibility,
in this work we represent the non-normalized and oscillatory waveforms in the graph
space [47]. Graphs are mathematical structures formed by ordered pairs of disjoint sets
(V, E), where V denotes the so-called vertices and E represents an edge that connects paired
vertices [60].

Hence, we discretize the waveforms d(t) as an ensemble of ordered pairs of the form
{(ti, di) ∈ R2; i = 1, 2, · · ·, N} with di = d(ti). So, the graph-transformed representation of
a discretized waveform d = {di; i = 1, 2, · · ·, N} is defined as:

G : d → G(d) = dG(y, t)
RN → D(R2),

(50)
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where G denotes the graph transformation, dG(y, t) is the graph-transformed waveform,
and D(R2) is a probability space on R2. The graph-transformed waveform is defined as:

dG(y, t) =
1
N

N

∑
i=1

δ(t− ti)δ(y− di), (51)

where y is associated with the waveform amplitude. In this way, waveforms are represented
by normalized and positive quantities.

However, in many contexts like FWI, one needs to calculate the derivative of wave-
forms on some occasions (as explained in the previous sections); the Dirac delta function
is not differentiable. Due to this, we consider a smoothed graph transformation by repre-
senting Dirac functions using κ-Gaussian distributions (10). Thus, the κ-graph-transformed
representation of a discretized waveform is given by [61]:

Gκ : d → Gκ(d) = dGκ (y, t)
RN → C∞(R,R+

∗ )
(52)

with

dGκ (y, t) =
1

Zκ

N

∑
i=1

expκ

(
− βκ(t− ti)

2
)

expκ

(
− βκ(y− di)

2
)

, (53)

where C∞(R,R+
∗ ) represents a set of strictly positive and infinitely differentiable functions.

In this context, the graph-space κ-OT objective function is defined as:

φWGκ
κ
(m) := ∑

s,r
Cκ

(
dmod

s,r (m), dobs
s,r

)
, (54)

where dGκ
mod,i = (ti, dmod,i) and dGκ

obs,i = (ti, dobs,i), and Cκ

(
dmod, dobs

)
= WGκ

κ

(
dGκ

mod, dGκ
obs

)
represents the κ-Wasserstein criterion applied to the graph-transformed seismic data. The κ-

Wasserstein distance WGκ
κ

(
dGκ

mod, dGκ
obs

)
= WGκ

κ is then computed via the following mini-
mization task:

WGκ
κ = min

σ∈S(N)
−

Nt

∑
i=1

ln

{
expκ

[
− βκ

(
tσ(i) − ti)

)2
]

expκ

[
− βκ

(
dmod

σ(i) − dobs
i )

)2
]}

. (55)

where Nt denotes the number of time samples for each waveform, while σ is the permuta-
tion solution for the linear sum assignment problem in (21) related with a transport map T ,
and S(N) = {1, 2, · · ·, N} is an ensemble of permutations. For simplicity, we multiply the
κ-Wasserstein distance (23) by the scalar N in the latter equation. Indeed, optimizingWκ is
equivalent to optimizing the product N ×Wκ . Equation (55) represents the FWI objective
function based on κ-OT, namely, the κ-GSOT-FWI, for short, in reference to κ-Graph-Space
Optimal Transport FWI.

The gradient of the κ-GSOT-objective function (55), that is, the derivative ofWGκ
κ with

respect to the model parameters, is given by:

∇mWGκ
κ (m) =

∂WGκ
κ (m)

∂m
=

Ns

∑
s=1

Nr

∑
r=1

Nt

∑
i=1
Js,r,i(m)Us,r,i(m; κ), (56)

in which

Us,r,i(m; κ) =
2βκ

(
dmod

s,r,σ(i)(m)− dobs
s,r,i

)
√

1 + κ2β2
κ

(
dmod

s,r,σ(i)(m)− dobs
s,r,i

)4
. (57)
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is the adjoint-source related with the κ-GSOT-FWI framework, while Ns, Nr and Nt repre-
sent the number of seismic sources, receivers, and time samples used in the acquisition of
seismic data.

The statistical interpretation of the residual data (error) associated with the κ-Gaussian
statistics is preserved in the κ-GSOT-FWI case. The critical difference is that in the approach
without OT, the waveforms are compared sample by sample. In contrast, in the κ-GSOT-
FWI approach, the waveforms are analyzed more completely, comparing each time sample
of the observed data with all the time samples of the modeled data in according to an
optimal assignment using the permutation solution σ.

Figure 3 shows a flow chart of the FWI algorithm, which is an iterative process, which
means that model updates are computed concerning the previous model as described
by Equation (24). The first step, called Initial Setup, consists of introducing the input
variables, i.e., the initial model, the parameters of the seismic acquisition (the positions of
the sources and receivers, the seismic source signature, acquisition time). After configuring
and organizing all the input variables of the FWI algorithm, modeled wavefields are
obtained in the forward problem through the numerical solution of the wave Equation (28)
by employing the finite difference method [62]. Then, a sampling operation (Γs,r) is carried
out from the modeled wavefields ψs to obtain the modeled data (dmod

s,r = Γs,rψs), extracting
the wavefields in the positions of the seismic acquisition receivers. After, the objective
function gradient is obtained through the adjoint-state method described in Section 4.2
and used to update the model following Equation (24). Finally, the FWI algorithm checks
whether the optimization process reached the pre-defined stopping criteria (which, in our
case, was the maximum number of iterations equal to 50). As long as the criteria are not
met, the cycle is repeated. If so, the iterative process is interrupted, and the resulting model
is the one that minimizes the difference between modeled and observed data.

Figure 3. Flow chart of the full-waveform inversion (FWI) process.

5. Numerical Experiments

To demonstrate how the κ-GSOT-FWI deals with non-Gaussian noise and cycle-
skipping issues, we carried out numerical examples involving a 2D acoustic time-domain
FWI to estimate a P-wave velocity model in a typical Brazilian pre-salt oil region. Such
an Earth model, namely, Chalda, represents a region with approximate dimensions 16 by
7 km in lateral distance and depth, respectively, as depicted in Figure 4a. Our problem
has 720,484 unknown variables because we discretize the Chalda model in a regular grid
with 12.5 m spacing, generating 562 and 1282 grid cells in the vertical and horizontal
directions, respectively.
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(a) (b) (c)

Figure 4. (a) Chalda model representing the Brazilian pre-salt oil region, used as the true model.
Initial models used in the (b) first and (c) second scenarios.

In all numerical experiments, we consider a seismic survey comprising 161 seismic
sources equally spaced every 75 m at 12.5 m in-depth. We employ a Ricker wavelet as a seis-
mic source, which is mathematically described by: f (t) =

(
1− 2π2μ2

pt2) exp
(
− π2μ2

pt2),
in which μp represents the peak frequency (maximum energy in the spectrum of frequen-
cies). Moreover, to simulate a sparse node acquisition, named the ocean bottom nodes
survey, we take into account 21 receivers implanted on the ocean floor at 400 m intervals.
We consider the Chalda model depicted in Figure 4a as a benchmark (or true model). Thus,
we generate a seismic dataset by considering the true model, the acquisition geometry,
and the finite difference method with second and eighth order approximations for time
and space. In order to simulate an infinite medium, we implement the perfectly matched
layer [63] absorbing boundaries for spatial discretization. We consider 7 s as the seismic
acquisition time at a sampling rate of 2 ms. In addition, to simulate a realistic case, we also
employ a high-pass filter on the seismic dataset to remove energy less than 2.5 Hz.

In the FWI experiments, we consider two scenarios involving different initial models
to confirm the significance of our proposal. In the first one, we consider an initial model
similar to the true model, which is depicted in Figure 4b. We produce such a velocity
model by weakly smoothing the true model by applying a Gaussian filter with a standard
deviation of 250 m. This scenario’s idea is to simulate a seismic imaging process starting
from a kinetically accurate model. We call this model the Good Model. In contrast, we
produce the second initial model, referring to the second scenario, by applying a more
severe Gaussian filter with a standard deviation of 750 m. We call this model the Bad Model.
We notice that the Bad Model lacks the main structures of the true model, particularly in the
pre-salt oil region, as depicted in Figure 4c. Since the Bad Model is kinematically inaccurate,
it generates cycle-skipped data [34].

For each initial-model scenario, we conduct time-domain FWI by applying the classical
FWI based on Gaussian statistics, and the κ-GSOT objective function (55) in the classical
limit κ → 0 and for κ = 0.1, 0.3, 0.5 and 0.6. We consider 50 FWI iterations in all numerical
experiments. To evade the so-called inversion crime, we perform the forward modeling
using a different algorithm than the one used to generate the observed dataset. In this
regard, our algorithm solves the forward problem using a finite difference scheme with
second and fourth order approximations for time and space in a regular grid with 25 m
spacing. In addition, we consider two different circumstances concerning the type of noise
in the seismic dataset. First, we consider a dataset contaminated by Gaussian noise with a
signal-to-noise ratio (SNR) of 20. In contrast, in the second circumstance, we consider a
non-Gaussian noise from which the dataset is polluted by Gaussian noise with an SNR of 20
and a collection of spikes (erratic data or outliers) with different amplitudes. In this regard,
10% of the time samples were contaminated by outliers, where locations were randomly
drawn. The spikes have intensities that range from 5 P to 15 P multiplied by the original
waveform amplitude, where P is a standard normal random variable.

We perform our numerical simulations using a computer hosting a quad-core processor
at 3.50 GHz and 256 GB RAM. Each FWI iteration takes approximately 6 min; 71.4% is
associated with calculating the gradient of the objective function using the state-adjoint
method described in Section 4.2, 26.7% is related to the forward modeling process (i.e.,
in generating the modeled data by numerically solving Equation (28)), 1.3% of this time is
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dedicated to solving the combinatorial optimization problem in (55), and 0.6% is spent on
the rest of the algorithm in I/O initialization and initial set-ups loading.

Figures 5 and 6 show the FWI resulting P-wave models starting from the Good Model
for the Gaussian and non-Gaussian noise cases, respectively. From a visual inspection,
when only Gaussian noise is considered, all resulting models are satisfactory (Figure 5)
since they are very similar to the true model (Figure 4a), regardless of the κ-value. Such
successful results are due to the weak Gaussian noise in the observed data simultaneously
with a kinetically accurate initial model (Figure 4b).

(a) (b) (c)

(d) (e) (f)

Figure 5. The resulting models starting from the Good Model for the Gaussian noise case, by em-
ploying the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1,
(d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Furthermore, we quantitatively compare our FWI resulting models with the true model
by employing Pearson’s correlation coefficient (R) and the normalized root-mean-square
(NRMS), defined as

R =
cov

(
ctrue, cinv)

std(ctrue) std
(
cinv

) and NRMS =

[
∑i

(
ctrue

i − cinv
i
)2

∑i
(
ctrue

i
)2

]1/2

, (58)

where ctrue and cinv are the true and the resulting models, while cov(·) and std(·) denote
covariance and standard deviation, respectively. The R-value ranges from −1 to 1, with −1
representing, in this context, a wrong resulting model, while 1 represents a perfect resulting
model. The NRMS-value range from 0 (perfect resulting model) to ∞ (wrong resulting model).

Table 1 summarizes the comparative metrics between the true model and the P-wave
velocity models resulting from the first scenario by analyzing data contaminated only by
Gaussian noise. In this table, we can see that all resulting models have a low error and are
strongly correlated with the true model (R ≥ 0.8, following the strength-scale suggested by
ref. [64]).

Table 1. The comparative metrics between the true model and the resulting models, depicted in
Figure 1, from the first scenario in the Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.0256 0.9982

0.0 0.0272 0.9979
0.1 0.0278 0.9979

κ-GSOT-FWI 0.3 0.0288 0.9977
0.5 0.0293 0.9976
0.6 0.0277 0.9979
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However, when non-Gaussian noise is considered, the classical approach fails as
expected (Figure 6a). Such a wrong model is due to the classical approach being based on
Gaussian statistics and sensitive to cycle-skipping issues. Figure 6b shows the resulting
model from the classical GSOT-FWI, which is also based on Gaussian statistics. However,
the Wasserstein metric was able to mitigate the effects of the outliers, building a satisfactory
model. Nevertheless, as the κ-value increases (which means a more significant deviation
from Gaussian behaviors), the κ-GSOT-FWI models present a better resolution (Figure 6c–f),
especially in the deeper regions of the analyzed area. Although all κ-GSOT-FWI models are
strongly correlated with the true model, the case κ = 0.6 has a higher Pearson’s coefficient
and a smaller NRMS error, as summarized in Table 2.

(a) (b) (c)

(d) (e) (f)

Figure 6. The resulting models starting from the Good Model for the non-Gaussian noise case,
by employing the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0,
(c) κ = 0.1, (d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Table 2. The comparative metrics between the true model and the resulting models, depicted in
Figure 6, from the first scenario in the non-Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.3009 0.7627

0.0 0.0306 0.9974
0.1 0.0296 0.9976

κ-GSOT-FWI 0.3 0.0293 0.9976
0.5 0.0293 0.9976
0.6 0.0277 0.9979

Figures 7 and 8 show the FWI resulting P-wave models starting from the Bad Model
for the Gaussian and non-Gaussian noise cases, respectively. From a visual inspection,
it is noticeable that the classical FWI approach fails when the initial model is kinetically
inaccurate, regardless of whether the data are polluted by Gaussian or non-Gaussian noise,
as depicted in Figures 7a and 8a. In contrast, the FWI based on the κ-GSOT approach
generates satisfactory models when Gaussian noise is considered, regardless of the κ-value
(Figure 7b–f). Again, as the κ-value increases, the resulting models (Figure 7) are closer to
the true model (Figure 4a), as endorsed by the statistical metrics summarized in Table 3.

Finally, in the second scenario with non-Gaussian noise, the resulting models are dras-
tically affected by the outliers and poverty from the initial model, as depicted in Figure 8.
However, when the κ-GSOT-based objective function is applied, the large geological struc-
tures of the true model are reconstructed regardless of the κ-value. However, the case
κ = 0.6 reveals a P-wave velocity model (Figure 8f) that is quite accurate and comparable
to the true model (Figure 4a). Likewise, the case κ = 0.6 generated a model closer to the
true model, as summarized in Table 4. Indeed, in all numerical tests, the κ-GSOT-FWI for
κ = 0.6 generated accurate velocity models, leading to accurate parameter estimations.
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(a) (b) (c)

(d) (e) (f)

Figure 7. The resulting models starting from the Bad Model for the Gaussian noise case, by employing
the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1, (d) κ = 0.3,
(e) κ = 0.5, and (f) κ = 0.6.

Table 3. The comparative metrics between the true model and the resulting models, depicted in
Figure 7, from the second scenario in the Gaussian noise case. R represents the Pearson’s correlation
coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.2947 0.7982

0.0 0.0362 0.9964
0.1 0.0333 0.9970

κ-GSOT-FWI 0.3 0.0363 0.9964
0.5 0.0372 0.9962
0.6 0.0341 0.9968

(a) (b) (c)

(d) (e) (f)

Figure 8. The resulting models starting from the Bad Model for the non-Gaussian noise case, by em-
ploying the (a) classical FWI approach, and the κ-GSOT-FWI framework with (b) κ → 0, (c) κ = 0.1,
(d) κ = 0.3, (e) κ = 0.5, and (f) κ = 0.6.

Table 4. The comparative metrics between the true model and the resulting models, depicted in
Figure 8, from the second scenario in the non-Gaussian noise case. R represents the Pearson’s
correlation coefficient, while NRMS represents the normalized root-mean-square.

Strategy κ NRMS R

Classical FWI - 0.2715 0.7192

0.0 0.0610 0.9899
0.1 0.0673 0.9874

κ-GSOT-FWI 0.3 0.0564 0.9913
0.5 0.0578 0.9908
0.6 0.0509 0.9928
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Figure 9 shows the normalized κ-GSOT-objective function decay for all numerical tests,
in which panels (a) and (b) refer to the first scenario, while panels (c) and (d) correspond to
the second scenario. In this regard, the left column refers to the case in which Gaussian
noise is considered, and the right column is the non-Gaussian noise case. The convergence
curve of the classical objective is represented by the solid black line in Figure 9. We notice
that the classical objective function monotonically decays only in the most straightforward
situation, where the initial model is the Good Model, and the data is contaminated by
Gaussian noise (Figure 9a). In this case, the classical approach is the most indicated because
the convergence rate is higher than our proposal, in addition to generating more accurate
models (as summarized in Table 1). In cases where the noise is non-Gaussian or when
the inversion process starts from the Bad Model, our proposal with κ = 0.6 exhibits a
higher objective function decay rate (see red curves in Figure 9b–d), reconstructing P-wave
velocity models closer to the true model, as summarized in Tables 2–4.

(a) (b)

(c) (d)

Figure 9. Convergence curves for the first scenario with (a) Gaussian noise, (b) non-Gaussian noise,
and for the second scenario with (c) Gaussian noise, (d) non-Gaussian noise.

6. Final Remarks

In this work, we have examined the portability of the objective function based on the
graph-space optimal transport and Kaniadakis κ-Gaussian statistics in the FWI context.
In particular, we have analyzed the robustness of our proposal in mitigating two critical
problems in seismic imaging via FWI, which are associated with cycle-skipping issues and
the non-Gaussian nature of the errors. We have set up an objective function by employing
the probabilistic maximum likelihood method for computing the most probable state using
a κ-Gaussian distribution. Furthermore, we have formulated the FWI in a relaxed version of
the optimal transport problem, known as the Kantorovich–Rubinstein metric or Wasserstein
distance. So, we have considered the graph of the seismic data rather than the original
data because the optimal transport framework is predicated on the idea that the compared
entities adhere to the probability axioms. We named our proposal the κ-Graph-Space
Optimal Transport FWI (or κ-GSOT-FWI, for short).

The Brazilian pre-salt case study disclosed how the κ-GSOT-FWI could be employed to
deal with flawed initial models and non-Gaussian noise. The findings have demonstrated
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that the classical approach is ineffective in producing accurate physical models when the
initial model is crude or if the observed waveforms are contaminated by non-Gaussian
errors. However, when the initial model is kinetically precise and the data well-behaved,
the classical approach is the best alternative in terms of computational cost. The results also
revealed that the κ-GSOT-FWI lessens the impact of phase ambiguity and non-Gaussian
errors on the waveform inversion, demonstrating that our proposal is a powerful way
to deal with non-linear inverse problems related to wave propagation. Moreover, we
notice that the κ-GSOT-FWI produces more accurate models than those produced by
classical approaches, leading to a notable improvement in objective function convergence.
Additionally, our numerical experiments demonstrated that a more significant deviation
from a Gaussian behavior (which in our applications was typified by the κ = 0.6 case)
results in a more authentic P-wave velocity model. However, our proposal depends on the
choice of a hyperparameter, which demands special investigations on how to obtain it in a
real setting application. This issue should be examined in future applications.

From a practical point of view, extensive and arduous data processing is required to
engineer a good initial model to alleviate phase-ambiguity issues and eliminate erratic
data points. In this context, the κ-GSOT-FWI decreases the requirement of human sub-
jectivity, which is appealing for automated techniques to analyze, for instance, recent big
datasets. Thus, the κ-OT-based approach has enormous potential for dealing with modern
data-centric problems. As a perspective, we intend to test our proposed methodology to
analyze field data and evaluate its robustness from several initial conditions. Finally, we
underline how readily our concept may be applied to a wide variety of inverse problems,
ranging from estimating critical exponents of power-law distributions to modern artificial
intelligence applications.
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Abstract: We propose to use a particular case of Kaniadakis’ logarithm for the exploratory analysis of
compositional data following the Aitchison approach. The affine information geometry derived from
Kaniadakis’ logarithm provides a consistent setup for the geometric analysis of compositional data.
Moreover, the affine setup suggests a rationale for choosing a specific divergence, which we name the
Kaniadakis divergence.

Keywords: Kaniadakis logarithm; information geometry; compositional data; affine displacement;
affine statistical bundle; barycenter; Kaniadakis divergence

1. Introduction

This paper describes Kaniadakis’ statistics as a methodology in data science. Precisely,
we discuss Kaniadakis’ formalism for defining an affine structure on the open probability
simplex. We present the methods in some generality and use them for the exploratory
analysis of compositional data. The illustrating example is a small dataset, and we do
not discuss any scaling issues of our methods. However, the dataset has an independent
interest in financial risk analysis.

1.1. Why a Geometric Methodology

Kaniadakis’ logarithm [1,2] generalises the ordinary logarithm in a way that sup-
ports the development of deformed exponential families, deformed statistical divergences,
and deformed entropy. Kaniadakis was originally motivated by the applications to non-
extensive statistical physics in the sense of [3,4]. In this paper, we present the geometry of
the probability simplex as a system of two affine spaces in duality from the perspective of
information geometry (IG) [5]. The affine setup was first applied to deformed statistical
models in [6].

The systematic use of this formal geometric perspective provides a robust and unified
rationale for discussing key descriptive concepts. Defining geometry is much more than
providing a topology or a distance. We provide a definition of affine geodesics and a
natural duality so that the orthogonal surfaces of the geodesics are well-defined by a
specific divergence function. The divergence level sets form a neighbourhood system and,
eventually, a topology. In this setup, we define the barycentre, the displacement from
the barycentre, and dimensionality reduction. For the standard affine geometry of the
probability simplex, see, for example, the tutorial reference [7]. We use a special kind of
Kaniadakis’ logarithm that appears with a different name in compositional data (CoDa) ([8]
Example 4.20).

1.2. CoDa

Compositional data (or CoDa) are the data where all of a (row) vector’s (i.e., [x1, x2, . . . , xD])
components are strictly positive real values, can also have zero values, and thus contain
solely relative information; the composition is called a D-part composition. Compositional
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data are often expressed in closed form and totalled a fixed value, such as 1 for parts per
unit or 100 for percentage measurements ([9] Chapter 2).

Compositional data are often found in geosciences and other scientific disciplines, and
classification, discrimination, and categorization need to be adapted to the case of CoDa.
CoDa analysis is closely related to geosciences and biology, where the data are mostly
expressed as proportions or concentrations without mentioning the total size or amount
explicitly [10].

Significant advancement has been accomplished during the last thirty to forty years.
Recently, the term CoDa analysis has been employed to “Insist on the idea that the study
goals or hypotheses, which place more of an emphasis on relative than absolute values, are
what ultimately determine composition rather than the data, which may not be pieces of a
whole or may not have a fixed sum” [11]. These qualities make CoDa analysis the most
powerful tool for applications outside the tradition of hard sciences [12]. Current studies
in management, economics, and social sciences have shown in practice the benefits of
compositional methods in handling a wide variety of problems, which range from market
shares and customer segmentation to tourism, transport systems, financial ratios, and many
more (see [11,13–15]).

1.3. CoDa and Systemic Financial Risk

The Center for Risk Management at the University of Lausanne (http://www.crml.ch,
accessed on 28 June 2023) provides systemic risk assessments for European financial
institutions, which we used in our empirical study using the above Kaniadakis methods.
The dataset enables the determination of SRISK country-level values, a market-based
systemic risk indicator first proposed in [16,17] and most recently examined in [18].

The characteristics of SRISK are popular in the literature, and SRISK is mainly used
to recognize weak institutions and countries with a system-wide impact before a crisis
occurs [19] and can help forecast actual sector performance [20].
Most of the previous literature has mainly focused on the absolute values of SRISK. In this
work, we focus on implementing the Kaniadakis methods to see the different European
countries as a part of compositional data. We developed work started in [12], where
they first introduced compositional data analysis to examine the distribution of relative
contributions to SRISK connected with key European nations from 2008 to 2021.

Atchison [21] first introduced CoDa analysis. The research conducted by the [12] on
financial data used the Atchison methods to examine how European nations contribute to
the total amount of systemic risk (SRISK). They find that the distinctive quality of CoDa
analysis, especially the Atchison geometry, is very effective in determining the threats of
possible instability offered by smaller institutions and nations that might not completely
emerge from the scale of their systemic risk.

1.4. Data and Methods

This paper first establishes a novel theoretical framework for compositional data using
Kaniadakis’ logarithm. Second, we implement the Kaniadakis divergence on the composi-
tional data and calculate the exponential and mixture displacements on compositional data.
Next, we calculate the barycenter and deviation. The purpose of calculating the barycenter
is to check how far the values of SRISK are from their centre value.

We consider ten European economies (Belgium, Denmark, France, Germany, Greece,
Italy, Netherlands, Spain, Switzerland, and the UK) with annual SRISK measurements
collected at the end of December for 2008–2021. Every number is stated in billions of Euros.
Like most CoDa method applications, the sample does not cover Europe. Therefore, the ten
components that make up our SRISK compositions are just a portion of all those that may
be used. CoDa analysis, however, is predicated on the basic notion of sub-compositional
coherence, which ensures that a compositional study conducted on a subset of components
is consistent with the same analysis performed on the entire composition.
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1.5. Kaniadakis’ Logarithm

We summarize the particular case of Kaniadakis’ logarithm with a purely algebraic
form. In the suggestive formalism introduced by [22], the generalised logarithms are
associated with the reciprocal derivative function A

logκ(x) =
1
2

(
x− 1

x

)
=

∫ x

1

du
A(u)

, with A(u) =
2u2

1 + u2 (1)

expκ(y) = log−1
κ y = y +

√
1 + y2 = exp

∫ y

0

dv√
1 + v2

, x2 − 2xy− 1 = 0 , x > 0 .

Notice that the growth is linear in both directions.
Notice that the above equation reduces any polynomial in y and x = expκ(y), for

example:

expκ(y)
2 = 2y expκ(y) + 1 ,

expκ(y)
3 = expκ(y)(2y expκ(y) + 1) = . . . ,

and so on. This is an algebraic feature, and this theory is a case of algebraic statistics [23].
The main known properties of the κ−logarithm and κ−exponential are

logκ

(
1
x

)
= − logκ(x) , expκ(y) expκ(−y) = 1

d
dy

expκ(y) = A(expκ(y)) =
1√

1 + y2
expκ(y)

expκ(x) expκ(y) = expκ

(
x
√

1 + y2 + y
√

1 + x2
)

(2)

logκ(x2)− logκ(x1) <
1

A(x1)
(x2 − x1) , x1 
= x2 (3)

expκ(y2)− expκ(y1) > A(expκ(y1))(y2 − y1) , y1 
= y2 (4)

1.6. Kaniadakis’ Exponential form of a Positive Probability Function

If the sample space Ω is a finite set, then the probability simplex on Ω is P(Ω), and
the open probability simplex is E(Ω).

For all p ∈ E(Ω), the function A ◦ p, A as in Equation (1), is strictly positive and
provides a positive weight on Ω. It is proportional, but usually not equal, to a probabil-
ity function,

p̃ ∝ A ◦ p , namely, p̃(x) =
A(p(x))

∑x∈Ω A(p(x))
.

We will also write p̃ = A ◦ p/A ◦ p. The mapping E(Ω) � p �→ p̃ ∈ E(Ω) is called the
escort mapping; see [22]. See ([24] §3.1) for a discussion of its injectivity and surjectivity. We
introduce a notation for the escort expectation, Ẽp[u] = ∑x∈Ω u(x) p̃(x).

For p, q ∈ E(Ω), the Kaniadakis divergence can be defined by changes in the usual
definition of the logarithm to the Kaniadakis logarithm and the probability function p with
the escort p̃:

D̃(p|q) = Ẽp[logκ(p)− logκ(q)]

= ∑
x∈Ω

(logκ(p)− logκ(q)) A ◦ p/A ◦ p

= ∑
x∈Ω

(logκ(p)− logκ(q)) p̃(x) (5)
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Clearly, D̃(p|p) = 0. If p 
= q, from the concavity in Equation (3),

D̃(p|q) =
(

A ◦ p
)−1 ∑

x∈Ω
A(p(x))(logκ(p(x))− logκ(q(x)))

>
(

A ◦ p
)−1 ∑

x∈Ω
(p(x)− q(x))

= 0 .

Fix p ∈ E(Ω). For all q ∈ E(Ω), define

sp(q) = (logκ(q)− logκ(p)) + D̃(p|q) = (logκ(q)− logκ(p))− Ẽp[(logκ(q)− logκ(p))] ,

then, for u = sp(q),

q = expκ

(
u− D̃(p|q) + logκ(p)

)
, Ẽp[u] = 0 . (6)

Conversely, for all p ∈ E(Ω), if u is a random variable such that Ẽp[u] = 0, the real
function

R+ � ψ �→ ∑
x∈Ω

expκ(u(x)− ψ + logκ(p(x)))

is continuous, goes to 0 as ψ → ∞, and, for ψ = 0, takes a value larger than 1 because of
Equation (4):

∑
x∈Ω

expκ(u(x) + logκ(p(x))) > ∑
x∈Ω

expκ(logκ(p(x))) + ∑
x∈Ω

A(expκ(logκ(p(x)))u(x)

= ∑
x∈Ω

p(x) + ∑
x∈Ω

A(p(x))u(x)

= 1 .

In conclusion, there exists a function,

Kp : Sp =
{

u ∈ L(Ω)
∣∣∣ Ẽp[u] = 0

}
� u �→ Kp(u) ≥ 0 ,

and Kp(u) > 0 provided u 
= 0, such that

q = expκ

(
u− Kp(u) + logκ(p)

)
∈ E(Ω) .

Hence, we have

Kp(u) = D̃(p|q)
and the mapping

sp : E(Ω)→ Sp

is a bijection with inverse

ep : Sp � u �→ expκ

(
u− Kp(u) + logκ(p)

)
∈ E(Ω) . (7)

1.7. Properties of the Cumulant Function Kp

Let us compute the derivatives of the function Kp. We use a square bracket notation
for the direction

dKp(u)[h] = lim
θ→0

θ−1(Kp(u + θh)− Kp(u)
)
=

d
dθ

Kp(u + θh)
∣∣∣∣
θ=0

.
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From Equation (7),

0 =
d
dθ ∑

x∈Ω
expκ

(
u(x) + θh(x)− Kp(u + θh) + logκ(p(x))

)∣∣∣∣∣
θ=0

= ∑
x∈Ω

A(expκ

(
u(x) + θh(x)− Kp(u + θh) + logκ(p(x))

)
)(h(x)− d

dt
Kp(u + θh))

∣∣∣∣∣
θ=0

= ∑
x∈Ω

A(expκ

(
u(x)− Kp(u) + logκ(p(x))

)
)(h(x)− dKp(u)[h])

= ∑
x∈Ω

A(ep(u))(h− dKp(u)[h]) .

It follows that, for each p ∈ E(Ω) and u, h ∈ Sp, it holds

dKp(u)[h] = Ẽq[h] , (8)

where q = ep(u); see Equation (7).
If the curve t �→ q(t) has constant divergence, that is, D̃(p|q(t)) = D̃(p|q(0)), deriva-

tion provides

0 =
d
dt

D̃(p|q(t)) = d
dt

Kp(u(t)) = dKp(u(t))[u̇(t)] = Ẽq(t)[u̇(t)] .

Notice that Ẽq(0)[u(t)] = 0, but this does not imply Ẽq(t)[u̇(t)] unless the previous condi-
tions hold true.

1.8. Bibliographical Notes

Similarly, d2Kp and the convex conjugate of Kp can be computed. See below for the
duality and see also [7,25]. Kaniadakis logarithm and exponential were first introduced
in [26,27]. The application to IG used here appeared in [6,24,28]. These papers discuss both
the finite state space and the general state space.

2. Affine Space

The Kaniadakis non-parametric affine geometry of the open probability simplex is a
variation of the standard case [7]. The main difference is the substitution of the expectation
with the escort expectation.

2.1. Statistical Bundle

The statistical bundle is an expression of the tangent space of E(Ω) as a dually flat
affine statistical manifold in the sense of [5]. The statistical bundle S E(Ω) and each fiber
Sq E(Ω) are defined by

S E(Ω) =
{
(q, v)

∣∣∣ q ∈ E(Ω), Ẽq[v] = 0
}

, (9)

Sq E(Ω) =
{

v ∈ L(Ω)
∣∣∣ Ẽq[u] = 0

}
, q ∈ E(Ω) . (10)

In our setup, each fibre is a finite-dimensional vector space and can be identified with
its dual. However, it is convenient to distinguish the two statistical bundles. The previous
one is called exponential statistical bundle, while the mixture statistical bundle is

∗S E(Ω) =
{
(q, v)

∣∣∣ q ∈ E(Ω), Ẽq[v] = 0
}

, (11)

∗Sq E(Ω) =
{

v ∈ L(Ω)
∣∣∣ Ẽq[u] = 0

}
, q ∈ E(Ω) . (12)

For each couple p, q ∈ E(Ω), the mapping

e
U

q
p : Sp E(Ω) � v �→ v− Ẽq[v] ∈ Sq E(Ω) (13)
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is a bijection. The e
U

p
p is the identity mapping, and

e
U

r
q

e
U

q
p = e

U
r
p .

The co-cycle of mappings (e
U

q
p)p,q is the exponential parallel transport of the exponential

statistical bundle.
The mapping defined for all p ∈ E(Ω), v ∈ ∗Sp E(Ω), and w ∈ Sp E(Ω) by

g : (p, v, w) �→ gp(v, w) = 〈v, w〉A◦p = ∑
x∈Ω

A(p(x))u(x)v(x) = A ◦ p Ẽp[vw]

provides a duality between the fibres of S E(Ω) and ∗S E(Ω).
The dual of the exponential transport can be computed as follows. For p, q ∈ E(Ω),

v ∈ ∗Sq E(Ω), and w ∈ Sp E(Ω),〈
v, e

U
q
pw

〉
A◦q

= ∑
x∈Ω

A ◦ q v(w− Ẽq[w])

= ∑
x∈Ω

A ◦ q vw− Ẽq[w]∑ A ◦ qv

= ∑
x∈Ω

A ◦ q vw

= ∑
x∈Ω

A ◦ p
(

A ◦ q
A ◦ p

u
)

w

=

〈
A ◦ q
A ◦ p

u, w
〉

A◦p
.

Now, A◦q
A◦p v ∈ ∗Sp E(Ω); hence, the dual of the exponential transport is the mixture transport,

∗(e
U

p
q

)
v = m

U
p
q v =

A ◦ q
A ◦ p

v . (14)

2.2. Velocity and Auto-Parallel Curves

The following computation is a version of the original argument about Fisher’s score.
Let t �→ q(t) ∈ E(Ω) be a one-dimensional parametric statistical model, namely a curve in
geometric language. We assume the curve is smooth and twice differentiable as a mapping
in the vector space L(Ω). For each random variable f ∈ L(Ω),

d
dt

Eq(t)[ f ] = ∑
x∈Ω

f (x)q̇(x; t)

= ∑
x∈Ω

f (x)
q̇(x; t)

A(q(x; t))
A(q(x; t))

= ∑
x∈Ω

f (x)
d
dt

logκ(q(x; t)A(q(x; t))

= ∑
x∈Ω

A ◦ q(t)( f −Eq̃(t)[ f ])
d
dt

logκ(q(t))

=

〈
f −Eq̃(t)[ f ],

d
dt

logκ(q(t))
〉

A◦q(t)

= ∑
x∈Ω

f (x)q̇(x; t)

=

〈
f −Eq̃(t)[ f ],

d
dt

logκ(q(t))
〉

A◦q(t)
(15)
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The velocity of the curve is defined as

�q(t) =
d
dt

logκ(q(t)) =
q̇(t)

A(q(t))
. (16)

We can check that �q(t) ∈ Sq(t) E(Ω) and ( f − Eq̃(t)[ f ]) ∈ ∗Sq(t) E(Ω). The Cramer–Rao
bound is (

d
dt

Eq(t)[ f ]
)2

= A ◦ q(t)
2
〈

f −Eq̃(t)[ f ],
d
dt

logκ(q(t))
〉

q̃(t)

≤ A ◦ q(t)
2
Eq̃(t)

[
( f −Eq̃(t)[ f ])2

]
Eq̃(t)

[(
q̇(t)

A ◦ q(t)

)2
]

= ∑
x∈Ω

A ◦ q(t)( f − Ẽq[ f ])2 ∑
q̇(t)2

A ◦ q(t)

= ∑
x∈Ω

A ◦ q(t)( f − Ẽq[ f ])2 ∑
q̇(t)2

A ◦ q(t)
(17)

The variation computed with the escort probability function, namely f − Ẽq[ f ], ap-
pears in Equation (15) as a gradient of the expectation f �→ Eq[ f ].

A curve t �→ q(t) is auto-parallel for the mixture trasport if

m
U

q(s)
q(t)

�q(t) = �q(s) .

For q(0) = q0 and q(1) = q1,

q̇(0)
A ◦ q0

=
A ◦ q(t)
A ◦ q0

q̇(t)
A ◦ q(t)

=
1

A ◦ q0
q̇(t) ,

so that
q(t) = q0 + t(q1 − q0) .

Let us compute the auto-parallel curves for the exponential transport,

e
U

q(s)
q(t)

�q(t) = �q(s) .

For q(0) = q0 and q(1) = q1,

�q(0) = �q(t)− Ẽq0

[ �q(t)
]
=

d
dt

logκ(q(t))−
1

A ◦ q0
∑ A ◦ q0

d
dt

logκ(q(t)) ,

so that, for some function ψ,

logκ(q(t)) = logκ(q0) + t �q(0)− ψ(t) .

Comparing with Equation (7), we have that the auto-parallel curve for the exponential
transport is

q(t) = expκ

(
t �q(0)− Kq0(t

�q(0)) + logκ(q0)
)

. (18)

As observed above,

�q(0) = logκ(q1)− logκ(q0)− Ẽq0 [logκ(q1)− logκ(q0)] = logκ(q0) + D̃(q0|q1) .
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2.3. Surfaces of Constant Divergence

We have observed that an auto-parallel curve starting at q(0) with velocity �q(0) has
the form of Equation (18). For given extreme points q0 = q(0) and q1 = q(1), it holds that

q1 = expκ

(
u− Kq0(u) + logκ(q0)

)
hence u = logκ(q(0))− logκ(q(1)) + D̃(q0|q1) ,

in particular, Ẽq1 [u] = 0.
The velocity of the auto-parallel curve at q1 is constant,

d
dt
(
tu− Kq0(tu) + logκ(q0)

)∣∣∣∣
t=1

= u− Ẽq1 [u] = u.

Consider a curve γ starting at γ(0) = q1 of the form,

t �→ γ(t) = expκ

(
u + v(t)− Kq0(u + v(t)) + logκ(q0)

)
with v(0) = 0

and assume a divergence is constant, precisely

D̃(γ(t)|q0) = D̃(γ(0)|q0) = D̃(q1|q0) .

It holds

Ẽγ(t)[logκ(γ(t))− logκ(q0)] = Ẽγ(t)
[
u + v(t)− Kq0(u + v(t)) + logκ(q0)− logκ(q0)

]
= Ẽγ(t)[u + v(t)]− Kq0(u + v(t))

= dKq(0)(u + v(t))[u + v(t)]− Kq0(u + v(t))

is constant so that the derivative is zero. In particular, it is zero at t = 0

0 = d2Kq0 [u + v(t)][u + v(t), v̇(t)]
∣∣∣
t=0

= d2Kq0 [u, v̇(0)] .

That is, this surface of equi-divergence is orthogonal to the auto-parallel curves in the
sense of the quadratic form d2K. This is actually the generalization of a well-known result
in IG, where the Hessian of the cumulant function is the Fisher’s information matrix. See,
for example, [5].

2.4. Displacement

The machinery introduced above allows for explicitly defining the affine structure
as originally defined by [29]. A textbook on affine geometry is ([30] Ch. 2,3,9). Below,
we call the following two (dual) displacements on the statistical bundle. The mixture
displacement is

ηp(q) =
q− p
A ◦ p

. (19)

The exponential displacement is

sp(q) = (logκ(q)− logκ(p))− Ẽp[(logκ(q)− logκ(p))] (20)

Both displacements define affine coordinates in the statistical bundle. The easy proofs
are the same as in the standard cases [7]. Each displacement defines an atlas of charts on
the affine bundle.

The orthogonal surfaces of the affine exponential auto-parallel curves are discussed in
the section above. The orthogonal surfaces to the affine mixture auto-parallel curves are
easily observed to be associated with the other divergence. In fact, it is the classical result
of the duality between the two divergences. See, for example, [5].

The availability of an affine bundle would allow for a coherent and straightforward
definition of mechanical concepts such as velocity, acceleration, Lagrangian, and Hamilto-
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nian. See [31,32] for the standard case. In the present paper, we develop the application to
CoDa, and we stress the notion of affine barycenter and the fact that a system of charts can
be observed as a preprocessing of data to be followed by any method adapted to actual
vector data.

2.5. Barycenter and Deviation

Let f1, . . . , fn be a sequence of CoDa points with strictly positive components and
normalized to one. Each data point is a point in the open probability simplex. The affine
coordinates (20) centered at p are

sp( f1) = (logκ( f1)− logκ(p))− Ẽp[(logκ( f1)− logκ(p))]
...

sp( fn) = (logκ( fn)− logκ(p))− Ẽp[(logκ( fn)− logκ(p))]

The mean value of the affine coordinates is

sp =
1
n

n

∑
j=1

sp( f j) =
1
n

n

∑
j=1

(
logκ

(
f j
)
− Ẽp

[(
logκ

(
f j
))])

−
(

logκ(p)− Ẽp[logκ(p)]
)

(21)

If the mean value computed in the centering q is sq, the difference is

sp − sq = logκ(q)− logκ(p)− 1
n

n

∑
j=1

Ẽp
[
logκ

(
f j
)]

+
1
n

n

∑
j=1

Ẽq
[
logκ

(
f j
)]

.

Hence,
sp + logκ(p) = sq + logκ(q) + constant .

The probability function is the same in both cases. In fact,

expκ

(
sp − Kp

(
sp
)
+ logκ(p)

)
= expκ

(
sq − Kp

(
sp
)
+ logκ(q) + constant

)
= expκ

(
sq − Kq

(
sq
)
+ logκ(q)

)
because of the uniqueness of the normalizing constant.

In conclusion, the probability function

f = expκ

(
sp − Kp

(
sp
)
+ logκ(p)

)
= expκ

(
sp + D̃

(
p
∣∣∣ f
)
+ logκ(p)

)
,

with sp as Equation (21) does not depend on the reference p. It is the barycentre of the given
data points.

The displacement of each data point f j from the barycentre f is

s f ( f j) = sp − sp( f j)− Ẽ f
[
sp − sp( f j)

]
=

1
n ∑

k
sp( fk)− sp( f j)− Ẽ f

[
1
n ∑

k
sp( fk)− sp( f j)

]

and the expression of each point f j in the barycentre f is

f j = expκ

(
s f ( f j) + D̃

(
f
∣∣∣ f j

)
+ logκ

(
f
))

.

A one-dimensional summary consistent with our formalism of the divergence of each
point from the barycentre is the Kaniadakis’ divergence D̃

(
f
∣∣∣ f j

)
, which is the normalising

constant in the equation above. Another option is the Kaniadakis’ divergence D̃
(

f j

∣∣∣ f
)

that
appears in the representation of the barycentre in the data point f j.
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3. Data Analysis

This section will use some geometric concepts derived from Kaniadakis’ IG. It should
be noted that our formalism is, in principle, affine and does not include any properly
defined distance.

3.1. Kaniadakis Divergence

First, we compute the Kaniadakis divergence defined in Equation (5). Each point in
(i, j) in Figure 1 is the Kaniadakis divergence of the CoDa point corresponding to the year
in the i-th row with respect to the CoDa point for the year in the j-th column. For example,
the Kaniadakis divergence between 2008 and 2009 is D̃(2008|2009) = 0.14. Most values are
smaller than one, except when the reference distribution corresponds to 2008 or 2009 for
the most recent years. The year 2009 deviates significantly from the other years.

3.2. Mixture Displacement

Equation (19) provides instructions for computing the mixture displacement. From
Figure 2, the mixture displacement for Greece and Spain is very high for all the years. The
value for Spain in 2009 was less than zero—the only negative value for Spain. On the
contrary, all other countries do not have too many high values.

Equation (21) provides the mean value. After determining the mean, we compute the
mixture displacement using the mean as a reference. We check that our values abruptly
go from −10 to 10. However, the results for Greece and Spain decrease when the mixture
displacement from the mean is calculated.

Figure 1. Kaniadakis divergence on compositional data.
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Figure 2. (A) Mixture displacement on compositional data by taking 2008 as a reference and (B) mix-
ture displacement on compositional data by taking mean as reference.

3.3. Exponential Displacement

As above, Equation (20) returns the exponential displacement. Further, Figure 3 is the
empirical result of Equation (20). As for the mixture displacement, we can see that Spain
and Greece have higher displacement than other European countries. The value for Spain
in the year 2009 is meagre.

If the mean is the reference point, the exponential displacement ranges from 0 to −60.
The only significant changes are for the nations of Spain and Greece, where our values for 2009
for Spain decreased by about 18 times, and, for Greece, our values decreased significantly.

Figure 3. (A) Exponential displacement on compositional data by taking 2008 as a reference and
(B) exponential displacement on compositional data by taking mean as a reference.

4. Conclusions and Discussion

In this research, we applied a particular type of divergence, Kaniadakis divergence,
to compositional data, aligned with the symmetrised ratio transformation in ([8] Example
4.20). The dataset being examined spans the years 2008 through 2021. First, we built a
theoretical framework for Kaniadakis divergence, mixture displacement, and exponential
displacement.

Section 1 provided the mathematical framework for determining divergence and
displacement, while Section 2 demonstrated how to apply those mathematical algorithms
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to compositional data. In the application, we found that Spain and Greece have more
fluctuations when compared to the other European countries. The values of the mixture
and exponential displacement confirm that Spain and Greece faced some financial crises
compared to other countries.

This simple application shows the potential of IG for application to compositional
data analysis. We suggest that Kaniadakis’ logarithm can reduce the computations for mon-
itoring systemic risk to algebraic computations. The Kaniadakis logarithm, mixture, and
exponential displacement on compositional data can be considered to broaden traditional
research methods for compositional data analysis.

We would like to add a few words regarding the specific tools and formalism we
used here. First, we mimicked one of the possible presentations of non-parametric IG
by following the basic dually-flat setup step by step. Another successful presentation of
non-parametric IG starts with properly defining the divergences and deriving the geometry;
see, for example, [33]. A popular approach, not equivalent to the affine one, defines the
geometry of the probability simplex by introducing a metric tensor. As in other geomet-
ric theories, one should carefully distinguish between choosing charts and introducing
a topology.

In the present approach, we define the charts so that the associated manifold is affine;
in this setup, some specific divergences appear as naturally associated with the geometry
and the basic statistical notion, namely the pairing between measures and random variables.
Everything is applied to simple data manipulation in the spirit of Aitchison’s methods.

No claim of optimality is made. The existence of many different but topologically
equivalent divergences is only natural in our setup, where the topology actually depends
on the geometry and not the other way around. Whenever needed, a choice must be based
on some additional assumption. We carefully check the simple, useful operations on data,
such that the geodesic connecting two given points, the velocity of variation, the barycentre,
and the deviation from the barycentre are all defined correctly.
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Abstract: The paper reviews the “κ-generalized distribution”, a statistical model for the analysis of
income data. Basic analytical properties, interrelationships with other distributions, and standard
measures of inequality such as the Gini index and the Lorenz curve are covered. An extension of
the basic model that best fits wealth data is also discussed. The new and old empirical evidence
presented in the article shows that the κ-generalized model of income/wealth is often in very good
agreement with the observed data.

Keywords: income and wealth distribution; parametric modeling; κ-generalized model

1. Introduction

The past two decades have seen a resurgence of interest in the study of income and
wealth distribution in both the physics [1–4] and economics [5–9] communities. Scholars
have focused particularly on the empirical analysis of large data sets to infer the shape of
income and wealth distributions and to develop theoretical models that can reproduce them.

Pareto’s observation that the number of people in a population whose income ex-
ceeds x is often well approximated by Cx−α was a natural starting point for this field
of analysis [10–13]. However, empirical research has shown that the Pareto distribution
accurately models only high income levels, while it does a poor job of describing the lower
end of distributions.

As research has continued, new models have been proposed to better describe the
data, using either a combination of known statistical distributions [14–22] or parametric
functional forms for the distribution as a whole. Among these, the two-parameter lognor-
mal [23] and gamma [24] distributions were proposed as models for the size distributions
of income and wealth, but later evidence showed that these models tend to exaggerate
skewness and perform poorly at the upper end of the empirical distributions [25–28].
Three-parameter models such as the generalized gamma [29–32], Singh–Maddala [33],
and Dagum Type I [34] provide better fits. These models converge to the Pareto model for
large values of income/wealth and accurately describe lower and middle ranges.

Finally, models with more than three parameters have also been suggested to fit
income and wealth data. For example, the generalized beta distribution of the second
kind (GB2) is a four-parameter distribution that was first described by [35]. It fits the
data very well and also includes some of the two- and three-parameter models mentioned
above as special or limiting cases. (The generalized beta distribution of the first kind
(GB1) [35] and the double Pareto-lognormal distribution [36] are other four-parameter
models that fit the data well. Ref. [37] also developed the five-parameter generalized beta
distribution family, which includes the GB1 and GB2 as special cases and all of the two- and
three-parameter distributions nested inside them. In turn, the double Pareto-lognormal
distribution has been generalized into a five-parameter family of distributions called the
generalized double Pareto-lognormal distribution [38]. However, closed-form expressions
for probability density and/or cumulative distribution functions do not always exist for
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these “super” models, making fitting them to data computationally difficult and slow due
to the need to use numerical methods [39,40]).

Among models that seek to provide a unified framework for describing real-world
data, including the power-law tails found in empirical distributions of income and wealth,
the κ-generalized distribution has demonstrated exceptional performance and is often
seen as a better alternative to other widely used parametric models. This model, which
was initially introduced in 2007 and progressively expanded in the years that followed,
has its origins in the framework of κ-generalized statistical mechanics [41–46]. It has a
bulk very similar to the Weibull distribution and an upper tail that decays according to a
Pareto power law for high values of income and wealth, providing a sort of middle ground
between the two descriptions.

The purpose of this paper is to provide a comprehensive overview of the impor-
tant results concerning the κ-generalized distribution. The desire to celebrate the 20th
anniversary of Kaniadakis’ notable contribution and the belief that an interdisciplinary
approach integrating statistical mechanics and economics may give novel insights into
economic relationships motivated this work. Giorgio Kaniadakis played a pivotal role in
the development of the κ-generalized model, making valuable and direct contributions to
its conception. The intention behind presenting information on the fundamental statistical
properties and empirical plausibility of this distribution is to convince the reader of its
importance and usefulness for future exploration.

The paper is structured as follows. Section 2 introduces the κ-generalized model,
covering topics such as interrelations with other distributions, basic statistical properties,
and inferential aspects. Section 3 presents recent results of fitting the κ-generalized distri-
bution to empirical income data corresponding to the distribution of household incomes in
Greece, and compares the relative merits of alternative income size distribution models us-
ing the same data. Section 4 reviews empirical applications showing that the κ-generalized
model is often in excellent agreement with observed income data; the κ-generalized mix-
ture model for net worth distribution, which best fits wealth data, is also discussed in this
section. Section 5 concludes the paper with some remarks.

2. The κ-Generalized Model for Income Distribution

The κ-generalized statistical model, named after [47], is based on the use of κ-deformed
exponential and logarithmic functions introduced by Kaniadakis [41–43] in the context of
special relativity. Within this framework, the ordinary exponential function exp(x) deforms
into the generalized exponential function expκ(x) given by:

expκ(x) =
(√

1 + κ2x2 + κx
) 1

κ , x ∈ R, κ ∈ [0, 1). (1)

The deformed logarithmic function lnκ(x), which is defined as the inverse of (1), can be
written as:

lnκ(x) =
xκ − x−κ

2κ
, x ∈ R+. (2)

Kaniadakis’ deformed functions have also been successfully used to analyze nonphysi-
cal systems. In economics, the κ-deformation has been used to study differentiated product
markets [48,49], finance [50–55], and the distribution of income by size [47,56–62]. In the
latter case, it is interesting to use such deformed functions because they can be used to
statistically describe the entire spectrum of incomes, from the low to the middle range and
up to the Pareto tail.
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2.1. Definitions and Basic Properties

A random variable X is said to have a κ-generalized distribution, and we write
X ∼ κ-gen(α, β, κ), if it has a probability density function (PDF) given by:

f (x; α, β, κ) =
α

β

(
x
β

)α−1 expκ

[
−(x/β)α]√

1 + κ2(x/β)2α
, x > 0, α, β > 0, κ ∈ [0, 1). (3)

Its cumulative distribution function (CDF) can be expressed as:

F(x; α, β, κ) = 1− expκ

[
−(x/β)α]. (4)

(For a complete description of the κ-generalized distributional properties, the reader is
referred to [60] and the references cited therein. A heuristic derivation of the κ-generalized
density, showing how this probability distribution emerges naturally within the field of
κ-deformed analysis, is given in [61,63]).

Figure 1 illustrates the behavior of the κ-generalized PDF and the complementary
CDF, 1− F(x; α, β, κ), for various parameter values.

Each of the three graph pairs holds two parameters constant and varies the remain-
ing one.

The constant β is a characteristic scale that has the same dimension as income. For this
reason, it takes into account the monetary unit and can be used to adjust for inflation
and facilitate cross-country comparisons of income distributions expressed in different
monetary units. Increases in the monetary unit result in a global increase in individual
income and average income.

(a) β = 1.20, κ = 0.75 and α = 1.00, 1.50, 2.00, 2.50

(b) α = 2.00, κ = 0.75 and β = 1.20, 1.40, 1.60, 1.80

Figure 1. Cont.
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(c) α = 2.00, β = 1.20 and κ = 0.00, 0.25, 0.50, 0.75

Figure 1. κ-generalized PDF (left) and complementary CDF (right) for different values of the parame-
ters. The complementary CDF is plotted on double-log axes, which is the standard way to emphasize
the right-tail behavior of a distribution.

The α and κ parameters are scale-free parameters that affect the distribution’s shape.
The region around the origin of the κ-generalized distribution is dominated by α, while the
upper tail is dominated by both α and κ. Increasing κ leads to a thicker upper tail, while
increasing α tapers both tails and increases the concentration of probability mass around
the peak of the distribution.

As κ approaches 0, the distribution converges to the Weibull distribution; it is easy to
verify that:

lim
κ→0

f (x; α, β, κ) =
α

β

(
x
β

)α−1
exp

[
−(x/β)α] (5)

and:
lim
κ→0

F(x; α, β, κ) = 1− exp
[
−(x/β)α]. (6)

(The Weibull distribution is primarily studied in the engineering literature. In physics, it is
known as the stretched exponential distribution when α < 1. In economics, it has potential
for income data, although it has only been used sporadically—some applications can be
found in Refs. [29,35,64–69].) The distribution behaves similarly to the Weibull model for
x → 0+, while for large x it approaches a Pareto distribution of the first kind with scale

k = β(2κ)−
1
α and shape a = α

κ , i.e.:

f (x; α, β, κ) ∼
x→+∞

aka

xa+1 (7)

and:

F(x; α, β, κ) ∼
x→+∞

1−
(

k
x

)a
, (8)

thus satisfying the weak Pareto law [70]. (Additional versions of the Pareto law were
introduced by [71], limx→+∞

x f (x)
1−F(x) = a, and [30], limx→+∞

[
1 + x f ′(x)

f (x)

]
= −a. Since

we have: limx→+∞
x f (x;α,β,κ)

1−F(x;α,β,κ) = α
κ = a and limx→+∞

[
1 + x f ′(x;α,β,κ)

f (x;α,β,κ)

]
= − α

κ = −a, the
κ-generalized distribution also obeys these alternative versions of the weak Pareto law.)

Equation (4) implies that the quantile function is available in closed form:

F−1(u; α, β, κ) = xu = β

[
lnκ

(
1

1− u

)] 1
α

, 0 < u < 1, (9)
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an attractive feature for generating random numbers from a κ-generalized distribution.
The median of the distribution is:

xmed = β[lnκ(2)]
1
α , (10)

and the mode occurs at:

xmode = β

[
α2 + 2κ2(α− 1)

2κ2(α2 − κ2)

] 1
2α

⎧⎨⎩
√√√√1 +

4κ2(α2 − κ2)(α− 1)2

[α2 + 2κ2(α− 1)]2
− 1

⎫⎬⎭
1

2α

(11)

if α > 1; otherwise, the distribution is zero-modal with a pole at the origin.
Finally, the rth raw moment of the κ-generalized distribution is equal to:

〈xr〉 =
∞∫

0

xr f (x; α, β, κ)d x = βr(2κ)−
r
α

Γ
(
1 + r

α

)
1 + r

α κ

Γ
(

1
2κ − r

2α

)
Γ
(

1
2κ + r

2α

) , (12)

where Γ(·) denotes the gamma function, and exists for −α < r < α
κ . Specifically:

〈x〉 = β(2κ)−
1
α

Γ
(

1 + 1
α

)
1 + 1

α κ

Γ
(

1
2κ − 1

2α

)
Γ
(

1
2κ + 1

2α

) (13)

is the mean of the distribution and:

〈
x2
〉
− 〈x〉2 = β2(2κ)−

2
α

⎧⎪⎨⎪⎩Γ
(
1 + 2

α

)
1 + 2 κ

α

Γ
(

1
2κ − 1

α

)
Γ
(

1
2κ + 1

α

) −
⎡⎣Γ

(
1 + 1

α

)
1 + κ

α

Γ
(

1
2κ − 1

2α

)
Γ
(

1
2κ + 1

2α

)
⎤⎦2⎫⎪⎬⎪⎭ (14)

is the variance.

2.2. Measuring Income Inequality Using the κ-Generalized Distribution

The concept of inequality in economics dates back to Pareto’s early work [10–13],
which showed that the top 20% of population held about 80% of total income/wealth.
Later, the American economist Lorenz [72] introduced the Lorenz curve, a widely used tool
for measuring income/wealth inequality. This curve measures the difference in income
or wealth distribution from an equal distribution. If there is perfect equality, the Lorenz
curve coincides with the diagonal of a unit square, while worsening distribution (more
inequality) moves the curve away from the diagonal.

The Lorenz curve for a random variable X with CDF F(x) and finite mean 〈x〉 =∫
x d F(x) is defined as [73]:

L(u) =
1
〈x〉

u∫
0

F−1(t)d t, u ∈ [0, 1]. (15)

Using the closed form of the quantile function F−1(u) of the κ-generalized distribution,
the Lorenz curve can be reformulated as follows [74]:

L(u) = Ix

(
1 +

1
α

,
1

2κ
− 1

2α

)
, x = 1− (1− u)2κ , (16)

where Ix(·, ·) is the regularized incomplete beta function defined in terms of the incomplete
beta function and the complete beta function, that is, Ix(·, ·) = Bx(·,·)

B(·,·) . The curve (16) exists
if and only if α

κ > 1. In particular, if Xi ∼ κ-gen(αi, βi, κi), i = 1, 2, the necessary and
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sufficient conditions for the Lorenz curves of X1 and X2 not to intersect (otherwise, it
would be impossible to determine which distribution has more inequality) are [58]:

α1 ≥ α2 and
α1

κ1
≥ α2

κ2
. (17)

The Lorenz curves of two κ-generalized distributions X1 and X2 with parameters
chosen according to (17) are illustrated in Figure 2. The depicted curves indicate that X1
exhibits lower inequality compared to X2, as the Lorenz curve of X1 does not intersect or
fall below that of X2.

Figure 2. Lorenz curves for two κ-generalized distributions.

Economists have employed statistical metrics to quantify income and wealth inequality.
The Gini coefficient, developed in 1914 by the Italian statistician Gini [75], is one of the best
known. From the general definition G = 1− 1

〈x〉
∫ ∞

0 [1− F(x)]2 d x due to [76], the Gini
coefficient associated with the κ-generalized distribution is:

G = 1− 2α + 2κ

2α + κ

Γ
(

1
κ − 1

2α

)
Γ
(

1
κ + 1

2α

) Γ
(

1
2κ + 1

2α

)
Γ
(

1
2κ − 1

2α

) . (18)

Using the Stirling approximation for the gamma function, Γ(z) ≈
√

2πzz− 1
2 exp(−z),

and taking the limit as κ → 0 in Equation (18), after some simplification one arrives at
G = 1− 2−

1
α , which is the explicit form of the Gini coefficient for the Weibull distribution

(see e.g., [77], p. 177). Since the exponential distribution is a special case of the Weibull
distribution with a shape parameter of 1, it follows directly that for κ → 0 and α = 1,
the exponential law is also a special limiting case of the κ-generalized distribution with a
true Gini coefficient of one half [16].

The Gini coefficient is a widely used measure of inequality, but it makes specific
assumptions about income differences in different parts of the distribution. It is most
sensitive to transfers around the middle of the income distribution and least sensitive to
transfers among the very rich or very poor [78]. Differently, the generalized entropy class
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of inequality measures [79–83] provides a range of bottom-to-top sensitive indices used by
analysts to assess inequality in different parts of the income distribution. The expression
for this class of inequality indices in terms of the κ-generalized parameters is [57]:

GE(θ) =
1

θ2 − θ

⎧⎨⎩
(

β

m

)θ
⎡⎣ (2κ)−

θ
α

1 + θ
α κ

Γ
(

1
2κ − θ

2α

)
Γ
(

1
2κ + θ

2α

)Γ
(

1 +
θ

α

)⎤⎦− 1

⎫⎬⎭, θ 
= 0, 1, (19)

where m = 〈x〉 denotes the mean of the distribution given by Equation (13). Formula (19)
defines a class because GE(θ) takes different forms depending on the value given to θ,
the parameter that describes the sensitivity of the index to income differences in different
parts of the income distribution—the more positive or negative θ is, the more sensitive
GE(θ) is to income differences at the top or bottom of the distribution. Two limiting cases
of (19), obtained when the parameter θ is set to 0 and 1, have gained attention in practical
work for the purpose of measuring inequality; these are the mean logarithmic deviation
index:

MLD = lim
θ→0

GE(θ) =
1
α

[
γ + ψ

(
1

2κ

)
+ ln(2κ)− α ln

(
β

m

)
+ κ

]
, (20)

where γ = −ψ(1) is the Euler–Mascheroni constant and ψ(z) = Γ
′
(z)/Γ(z) is the digamma

function, and the Theil index [84]:

T = lim
θ→1

GE(θ) =
1
α

[
ψ

(
1 +

1
α

)
− 1

2
ψ

(
1

2κ
− 1

2α

)
− 1

2
ψ

(
1

2κ
+

1
2α

)
− ln(2κ) + α ln

(
β

m

)
− ακ

α + κ

]
,

(21)

where the former is more sensitive to variations in the lower tail, while the latter is more
sensitive to variations in the upper tail [85]. (Equation (19) is not defined for θ = 0 and
θ = 1, as

(
θ2 − θ

)
= 0 in both cases. Expressions for these values of θ are therefore

derived using l’Hôpital rule, which allows evaluating limits of indeterminate forms using
derivatives. Expressions for any GE(θ) index other than the cases θ = 0, 1 can be derived
by simple substitution—see for example [60]).

Finally, the class of inequality measures introduced by Atkinson [86] can be derived
from (19) by exploiting the relationship [87,88]:

A(ε) = 1− [ε(ε− 1)GE(1− ε) + 1]
1

1−ε , ε > 0, ε 
= 1, (22)

where ε = 1 − θ is the inequality aversion parameter. As ε increases, A(ε) becomes
more sensitive to transfers among lower incomes and less sensitive to transfers among
top incomes [78]. The limiting form of (22) is A(1) = 1− exp(−MLD). (All measures
considered here are functions of distributional moments, whose existence depends on
conditions assuring the convergence of the appropriate integrals. The Gini coefficient
(18) exists if and only if the mean of the distribution 〈x〉 =

∫ ∞
0 x f (x; α, β, κ)d x converges,

which is true if and only if α
κ > 1. According to [89], parametric income distribution models

share the existence problem of popular inequality measures).

2.3. Estimation

The κ-generalized distribution’s parameters can be estimated using the maximum like-
lihood technique, which produces estimators with good statistical properties [90,91]. If sam-
ple observations x = {x1, . . . , xn, } are independent, the likelihood function is as follows:

L(x; θ) =
n

∏
i=1

f (xi; θ)wi =
n

∏
i=1

⎧⎨⎩ α

β

(
xi
β

)α−1 expκ

[
−(xi/β)α]√

1 + κ2(xi/β)2α

⎫⎬⎭
wi

, (23)
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where f (xi; θ) denotes the PDF, θ = {α, β, κ} the vector of unknown parameters, wi the
weight of the ith observation, and n the sample size. This leads to the problem of solving
the partial derivatives with respect to α, β and κ for the log-likelihood function:

l(x; θ) = ln[L(x; θ)] =
n

∑
i=1

wi ln[ f (xi; θ)], (24)

which is the same as finding the solution to the following nonlinear system of equations:

n

∑
i=1

wi
∂

∂α
ln[ f (xi; θ)] = 0, (25)

n

∑
i=1

wi
∂

∂β
ln[ f (xi; θ)] = 0, (26)

n

∑
i=1

wi
∂

∂κ
ln[ f (xi; θ)] = 0. (27)

However, the derivation of explicit expressions for maximum likelihood estimators of the
three κ-generalized parameters poses a challenge due to the absence of feasible analyt-
ical solutions. The utilization of numerical optimization algorithms becomes therefore
imperative in order to solve the maximum likelihood estimation problem.

3. Application to the Income Distribution in Greece

To celebrate 20 years of Kaniadakis’ contribution, it seems appropriate to consider the
income distribution in his native Greece to demonstrate the κ-generalized model’s capacity
to fit real-world data. First, income data for parameter estimation are briefly described.
Next, the κ-generalized distribution is fitted to Greek household income data. Finally, using
the same income microdata, different income size distribution models are compared.

3.1. Description of the Income Data

Income distribution data for Greece were obtained from the Luxembourg Income
Study (LIS) database, which provides public access to household-level data files for various
countries, including both developed and developing economies. The data are remote-
accessible, requiring program code to be sent to LIS rather than being run directly by the
user. At the time of writing, LIS contains Greek income distribution data for the following
years: 1995, 2000, 2004, 2007, 2010, 2013, and 2016. The data set used for this review is
the 2016 data set based on the 2017 wave of the Greek EU-SILC survey conducted by the
Hellenic Statistical Authority (ELSTAT). (EU-SILC is a cross-sectional and longitudinal
sample survey coordinated by Eurostat, focusing on income, poverty, social exclusion,
and living conditions in the European Union.) The sample size is 22,555 households.

The definition of income is “household disposable income”, which is the income avail-
able to households to support consumption expenditure and saving during the reference
period. The measure includes income from work, wealth, and direct government benefits,
but subtracts direct taxes paid. It does not include sales taxes or noncash benefits, such as
healthcare provided by a government or employer. Additionally, the income definition
excludes income from capital gains, a significant source of nonwage income for wealthy
individuals. As a result, many top incomes are likely to be underestimated.

Household disposable income is expressed in euro and “equivalized”, i.e., divided by
the square root of household size to adjust for differences in household demographics. Prior
to equivalization, top and bottom coding is applied to set limits for extreme values. We also
exclude all households with missing disposable income and use person-adjusted weights
(the product of the household weights and the number of household members) when
generating income indicators for the total population and estimating model parameters.
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3.2. Results of Fitting

Figure 3 shows the results of fitting the κ-generalized distribution to empirical income
data corresponding to the distribution of household income in Greece for the year 2016.

(a) Probability density (b) Complementary cumulative distribution

(c) Lorenz curve (d) Q-Q plot

Figure 3. κ-generalized distribution fitted to Greek household income data for 2016. The red solid
line represents the κ-generalized model, which fits the data well over the whole range from low to
high incomes, including the middle income region. It is compared to the Weibull (blue dashed line)
and Pareto power-law (green dashed line) distributions. The complementary cumulative distribution
is plotted on double-log axes, emphasizing the right-tail behavior of the distribution. The Lorenz
curve plot compares the empirical and theoretical curves, with the gray solid line representing the
Lorenz curve of a society with equal income distribution. The Q-Q plot of sample percentiles versus
theoretical percentiles of the fitted κ-generalized shows excellent fit, with corresponding percentiles
being close to the 45◦ line from the origin.

The best-fitting parameter values were determined using maximum likelihood estima-
tion, resulting in estimates of α = 2.233± 0.017, β = 10, 667± 46, and κ = 0.630± 0.014.
The small errors indicate accurate estimations, and the comparison between the observed
and fitted probabilities in panels (a) and (b) of Figure 3 suggests that the κ-generalized dis-
tribution has great potential for describing data across the range of low-to-middle-income
to high-income power-law regimes, including the intermediate region where Weibull and
Pareto distributions show clear departures. (In Figure 3, the curves for the Pareto and
Weibull distributions have been drawn by expressing their parameters in terms of the
estimated κ-generalized parameters—see Section 2.1).

Panel (c) of the same figure displays data points for the empirical Lorenz curve
superimposed on the theoretical curve given by Equation (16) with estimates replacing α
and κ as necessary. This formula, represented by the red solid line in the plot, matches the
data exceptionally well. In addition, the plot contrasts the empirical Lorenz curve with
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the theoretical curves associated with the Weibull and Pareto distributions, respectively,
given by:

lim
κ→0

L(u) = P
(

1 +
1
α

,− ln(1− u)
)

, (28)

where P(·, ·) is the lower regularized incomplete gamma function, and:

lim
x→∞

L(u) = 1− (1− u)1− 1
a . (29)

As one can easily see, these curves tell only a small part of the story.
To provide an indirect check on the validity of the parameter estimation, we have

also computed predicted values for median and mean household disposable income,
as well as the Gini and Atkinson coefficients—the latter with the inequality aversion
parameter ε equal to 1. The results, obtained by substituting the estimated parameters
into relevant expressions, are presented in Table 1, along with their empirical counterparts,
corresponding to the LIS staff’s “Inequality and Poverty Key Figures” for the considered
country and year. (In this article, inequality measures are calculated using the most
recent version of DASP, the Distributive Analysis Stata Package [92], which is available at
http://dasp.ecn.ulaval.ca/—accessed on 29 June 2023. The complete set of corresponding
“key figures” is available in an Excel workbook that can be downloaded from https://www.
lisdatacenter.org/data-access/key-figures/—accessed on 29 June 2023.)

Table 1. Observed and predicted values of the median, the mean, the Gini index G and the Atkinson
inequality measure A(1).

Statistic
Observed

Predicted
Value LB a UB b

Median 9123 8983 9264 9181
Mean 10,548 10,292 10,805 10,488
G 0.323 0.312 0.334 0.322
A(1) 0.179 0.169 0.189 0.172

Notes: a lower bound of the 95% normal-based confidence interval obtained by adding −1.96 times the standard
error to the sample indicator; b upper bound of the 95% normal-based confidence interval obtained by adding
+1.96 times the standard error to the sample indicator. Source: author’s calculations based on Greek LIS data
for 2016.

The κ-generalized distribution predictions are fully covered by asymptotic normal
95% confidence intervals, confirming excellent agreement between the model and sam-
ple observations.

The linear behavior of the quantile-quantile (Q-Q) plot of sample percentiles against
the fitted κ-generalized distribution and its limiting cases, shown in panel (d) of Figure 3,
confirms the model’s validity as well as the fact that the Weibull and Pareto distributions
provide partial and incomplete data descriptions.

3.3. Comparisons of Alternative Distributions

This section compares the κ-generalized distribution’s performance with other para-
metric models, including the three-parameter generalized gamma [93], Singh–Maddala [33],
and Dagum type I [34] distributions, which have the following PDFs, respectively:

f (x; a, β, p) =
axap−1 exp

[
−(x/β)a]

βapΓ(a)
, x > 0, a, β, p > 0, (30)

f (x; a, b, q) =
aqxa−1

ba
[
1 + (x/b)a]1+q , x > 0, a, b, q > 0, (31)
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f (x; a, b, p) =
apxap−1

bap
[
1 + (x/b)a]p+1 , x > 0, a, b, p > 0. (32)

Ref. [77] provides analytical expressions for distribution functions, moments, and tools
for inequality measurement, including the Lorenz curve and Gini coefficient. Refs. [87,94]
provide formulas for generalized entropy measures of the GB2 distribution, from which
the Singh–Maddala and Dagum versions are easily obtained. For the generalized gamma
distribution, closed expressions for the Theil entropy index and the mean logarithmic devi-
ation are given in Refs. [85,95]. (Let X be a random variable following the generalized beta
distribution of the second kind (GB2) with parameters a, b, p, and q, i.e., X ∼ GB2(a, b, p, q).
The Singh–Maddala distribution is the special case of the GB2 distribution when p = 1; the
Dagum type I distribution is the special case when q = 1. For a discussion of other special
cases, see [35,77]).

Table 2 displays maximum likelihood estimates for the models under consideration.

Table 2. Maximum likelihood estimates for the generalized gamma, Singh–Maddala, Dagum type I
and κ-generalized models of income distribution.

Model a
Parameters b Goodness-of-Fit Criteria c,d

a (α) b (β) q, p, κ RMSE MAE LRMSE LMAE

GG 0.684 829 5.475 2.325 2.047 0.939 0.812(0.018) (115) (0.270)

SM 2.441 12,531 1.835 0.716 0.574 0.319 0.187(0.021) (219) (0.053)

D 3.705 11,705 0.560 0.539 0.437 0.281 0.211(0.041) (104) (0.011)

κ-gen 2.233 10,667 0.630 0.530 0.418 0.188 0.139(0.017) (46) (0.014)

Notes: a GG = generalized gamma, SM = Singh-Maddala, D = Dagum type I, κ-gen = κ-generalized; b numbers
in parentheses: estimated standard errors; c RMSE = root mean square error, MAE = mean absolute error,
LRMSE = root mean square error between the observed and estimated Lorenz curves, LMAE = mean absolute
error between the observed and estimated Lorenz curves; d values multiplied by 100. Source: author’s calculations
based on Greek LIS data for 2016.

The κ-generalized model offers the best results, with parameter standard errors de-
rived from the inverse Hessian matrix being the lowest among competing income distribu-
tion models.

The root mean square error and mean absolute error between observed and predicted
probabilities were used to determine which distribution best fits the data. These goodness-
of-fit measures are, respectively, defined by:

RMSE =

√
1
n

n

∑
i=1

[
F̂W(t)− F

(
xi; θ̂

)]2
(33)

and:

MAE =
1
n

n

∑
i=1

∣∣F̂W(t)− F
(
xi; θ̂

)∣∣, (34)

where F̂W(t) = 1
W ∑n

i=1 wi�{xi ≤ t}, with W = ∑n
i=1 wi, denotes the weighted empirical

cumulative distribution function—equal to the sum of the income weights where x ≤ t
divided by the total sum of weights—and θ̂ is the vector of estimated parameters. (In the
formulas above, �{·} is an indicator function that takes the value 1 if the condition in {·}
is true, 0 otherwise.) The RMSE and MAE between the observed and estimated Lorenz
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curves have also been used as goodness-of-fit criteria, as they are expected to better reflect
the accuracy of the inequality estimates. These additional measures are given by:

LRMSE =

√
1
n

n

∑
i=1

[
Li − L

(
λi; θ̂

)]2
(35)

and:

LMAE =
1
n

n

∑
i=1

∣∣Li − L
(
λi; θ̂

)∣∣, (36)

where λi = F̂W(t) and Li denote the cumulative share of population and income, respec-
tively, up to percentile i—i.e., (λi, Li) is a point on the empirical Lorenz curve.

Based on the above goodness-of-fit criteria, the κ-generalized model is clearly the best
fit. As shown in the last three columns of Table 2, the generalized gamma, Singh–Maddala,
and Dagum type I have larger RMSE and MAE values for both probabilities and Lorenz
curves, suggesting that these models perform worse than the κ-generalized distribution.

The performance of the four models is further evaluated by considering the accuracy
of selected distributional statistics implied by parameter estimates. Table 3 presents the
predicted values for the median, mean, and several inequality measures derived from
estimates in Table 2. (The Gini coefficient of the generalized gamma distribution is available
in [35] as a long expression involving the Gaussian hypergeometric function 2F1, which is
not currently available in the online statistical evaluator provided by the LIS web-based
interface. An estimate of the Gini index for the generalized gamma distribution was
therefore obtained by numerically integrating the area between the predicted Lorenz curve
and the line of hypothetical equality. Ref. [96] reviews various methods for numerically
estimating the Gini.)

Table 3. Observed and predicted values of selected distributional statistics.

Statistic a
Observed Predicted d

Value LB b UB c GG SM D κ-gen

Median 9123 8983 9264 9076 9108 9189 9181
Mean 10,548 10,292 10,805 10,532 10,463 10,447 10,488
G 0.323 0.312 0.334 0.333 0.321 0.320 0.322
MLD 0.197 0.185 0.209 0.196 0.183 0.188 0.188
T 0.191 0.175 0.207 0.180 0.174 0.178 0.181
A(1) 0.179 0.169 0.189 0.178 0.168 0.172 0.172

Notes: a G = Gini index, MLD = mean logarithmic deviation index, T = Theil index, A(1) = Atkinson coefficient
with inequality aversion parameter ε equal to 1; b lower bound of the 95% normal-based confidence interval
obtained by adding−1.96 times the standard error to the sample indicator; c upper bound of the 95% normal-based
confidence interval obtained by adding +1.96 times the standard error to the sample indicator; d GG = generalized
gamma, SM = Singh–Maddala, D = Dagum type I, κ-gen = κ-generalized. Source: author’s calculations based on
Greek LIS data for 2016.

For each of the models examined, the accuracy of the implied statistics is evaluated by
calculating the absolute percentage error:

APE =
|P− A|

A
× 100 (37)

between the predicted values (P) and the actual sample estimates (A) given in Table 3.
The results are summarized in Figure 4.
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Figure 4. Absolute percentage error between the predicted values for key distributional summary
measures and their sample counterparts.

Except for the median, the κ-generalized distribution has more accurate implied
estimates of selected distributional statistics than the Singh–Maddala and Dagum type I
models, with the Gini coefficient being significantly more accurate. This implies that the
κ-generalized estimation procedure preserves the mean characteristic of the analyzed data
and accurately models intra- and/or inter-group variation. Additionally, when considering
income differences in different parts of the income distribution, the κ-generalized provides
more accurate estimates than the two competitors of the MLD index, Theil index T and the
Atkinson inequality measure A(1). The Gini is an inequality index sensitive to the middle,
while the other indices are more sensitive to the top and bottom of the income distribution.
These results support the closest approximation to the income distribution found for the
κ-generalized model.

The κ generalized distribution also outperforms the generalized gamma in predicting
the Gini coefficient and Theil index, while the generalized gamma provides more accurate
estimates for the MLD index, the A(1) measure, the median, and the mean. This agreement
is due to better fit in the lower part of the observed distribution, while disagreements
arise from poorer fit in the upper-middle range, especially at the top end. This is demon-
strated by the double-logarithmic plot in Figure 5, known as the Zipf plot, which shows
the relationship between income and the complementary CDF of income for the data
under study.

The Zipf plot is natural to use when looking at the upper part of the distribution
because it puts more emphasis on the upper tail and makes it easier to detect deviations
in that part of the distribution from what a model would predict [97]. The lines show
the Zipf plots that were predicted by fitting the generalized gamma and κ-generalized
models. As the graph shows, both are pretty close to the actual data in the lower part of
the income distribution. However, the empirical observations of the upper tail are very
different from what the generalized gamma says they should be, while the theoretical Zipf
plot for the κ-generalized distribution is much closer to the empirical one in the same part
of the observed income distribution.
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Figure 5. Zipf plot for the 2016 Greek household income data. The lines are the predicted Zipf plots
obtained from the fit of the generalized gamma and κ-generalized models.

4. Applications of κ-Generalized Models to Income and Wealth Data

Apart from the one considered in this review, there have been numerous applications
of the κ-generalized model to real-world income data over the past two decades.

The first study was conducted by [47], who analyzed 2001–2002 household incomes in
Germany, Italy, and the United Kingdom. They found excellent agreement between the
model and the empirical distributions across the full spectrum of incomes, including the
intermediate income range where clear deviation was found when the Weibull model and
pure Pareto law were used for interpolation.

The κ-generalized distribution was later applied to Australian household incomes in
2002–2003 [56] and US family incomes in 2003 [56,57]. The model again described the entire
income range well and accurately estimated the inequality level in both countries using the
Lorenz curve and Gini measure.

Comparative studies that fit multiple distributions to the same data are crucial for
comparing performance. For example, Ref. [58], which examined the distribution of house-
hold income in Italy from 1989 to 2006, showed that the κ-generalized model outperforms
three-parameter competitors such as the Singh–Maddala and Dagum type I distributions,
except for the GB2, which has an extra parameter. The model has also also been used to
analyze household income data for Germany between 1984 and 2007, the United King-
dom between 1991 and 2004, and the United States between 1980 and 2005. In many
cases, the distribution of household income is observed to conform to the κ-generalized
model, rather than the Singh–Maddala or Dagum type I distributions. In particular, the κ-
generalized distribution is found to outperform competitors in the right tail of the data.
The three-parameter κ-generalized model provides superior income inequality estimates
even when the fit is worse than distributions belonging to the GB2 family, as obtained
by [98] when comparing US and Italian income data for the 2000s. Finally, Ref. [60] finds
that the κ-generalized distribution offers a superior fit to the data and, in many cases,
estimates income inequality more accurately than alternatives using household income
data for 45 countries from Wave IV to Wave IX of the LIS database. (Four-parameter
extensions of the κ-generalized distribution, called extended κ-generalized distributions of the
first and second kind—EκG1 and EκG2, respectively—were introduced by [74]. These two
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extensions are not discussed here, but Refs. [60,61,74] provide formulas for the moments,
Lorenz curve, Gini index, coefficient of variation, mean logarithmic deviation, and Theil
index for both the models. The new variants of the κ-generalized distribution outperform
other four-parameter models in almost all cases, especially in estimating inequality indices
with greater precision. In addition, a κ-deformation of the generalized gamma distribution
with a power-law tail has recently been proposed by [99], to which the reader is referred
for further details.)

The κ-generalized distribution has also been used to analyze the singularities of
survey data on net wealth, which is gross wealth minus total debt [60,61,100]. These
data show highly significant frequencies of households or individuals with wealth that
is either null or negative. The κ-generalized model of wealth distribution is a mixture
of an atomic and two continuous distributions. The atomic distribution accounts for
economic units with no net worth, while a Weibull function accounts for negative net worth
data. Positive net worth values, on the other hand, are represented by the κ-generalized
model (3). The κ-generalized mixture model for wealth distribution was used to model
US net worth data from 1984 to 2011 [100]. The model was generally accurate and its
performance was superior to that of finite mixture models based on the Singh–Maddala
and Dagum type I distributions for positive net worth values. Similar results were later
obtained by Ref. [60] when analyzing net wealth data for nine countries selected from the
Luxembourg Wealth Study (LWS) database. (The Luxembourg Wealth Study database—see
https://www.lisdatacenter.org/our-data/lws-database/, accessed on 29 June 2023—is a
collaborative project to assemble existing microdata on household wealth into a coherent
database, aiming to do for wealth what the LIS database has achieved for income. The LWS
was officially launched in 2004 and currently provides wealth data sets for several countries
and years.)

5. Concluding Remarks

The κ-generalized distribution, a statistical model developed over several years of
collaborative, multidisciplinary research, is a valuable tool for studying income and wealth
distributions. This article discussed its basic properties, relationships with other distribu-
tions, and important extensions. It also discussed common inequality measures such as the
Lorenz curve and Gini index, and how they can be computed from κ-generalized parameter
estimates. A review of empirical applications showed excellent agreement with observed
data. It is hoped that the collection of all these results in a single source will facilitate and
promote the use of the κ-generalized distribution.
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Abstract: We investigate the dynamics of a system composed of two different subsystems when
subjected to different nonlinear Fokker–Planck equations by considering the H–theorem. We use
the H–theorem to obtain the conditions required to establish a suitable dependence for the system’s
interaction that agrees with the thermodynamics law when the nonlinearity in these equations is
the same. In this framework, we also consider different dynamical aspects of each subsystem and
investigate a possible expression for the entropy of the composite system.

Keywords: generalized entropy; H–theorem; entropy production; nonlinear Fokker–Planck equation

1. Introduction

Thermodynamics and statistical mechanics have entropy as a fundamental tool con-
necting the properties of a system from the particles’ microscopic dynamics with macro-
scopic quantities and, consequently, with thermodynamic quantities. The concept of en-
tropy started with Clausius’s studies of thermal machines [1]. Subsequently, the Boltzmann
and Gibbs works incorporated the concept of probability, building up the fundamentals
of statistical mechanics [2–4]. It has been successfully applied in many contexts, where
the fundamental basis is the molecular chaos hypothesis, which assumes the close-range
interaction of molecules and the absence of memory in the collision of particles [5,6]. How-
ever, for many physical systems (e.g., fractal and self-organizing structures), conditions for
the fulfillment of the molecular chaos hypothesis are not observed as well as the range of
the interactions, which are long-ranged [7–9]. These points have motivated the analysis
of extensions for thermodynamics and statistical physics to cover these scenarios. As an
example, Tsallis has proposed an extension of the entropy [10], which has been systemati-
cally applied in many contexts such as black holes [11], the electrocaloric effect in quantum
dots [12], chemotaxis of biological populations [13], Bose–Einstein condensation [14,15],
and stimulated the analysis of other entropies [16–20]. More applications can be found in
Refs. [21–26]. These entropies verify the H–theorem [27–31], which represents an important
result of nonequilibrium statistical mechanics by ensuring that a system will reach an
equilibrium after a long time evolution. The H–theorem establishes a connection between
the dynamics and entropy, which may be used to investigate the dynamics behind the law
of additivity for the different entropies. In this framework, by considering a nonlinear
Fokker–Planck equation, the H–theorem can show how the entropy additivity laws can be
obtained when a system composed of many subsystems is taken into account. In addition,
it can also allow us to obtain the equilibrium distributions.
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Here, we investigate through the H–theorem the conditions on the dynamics equations,
i.e., nonlinear Fokker–Planck equations [32–35], for each subsystem of a composed system
to reach the equilibrium condition. The results show that generalized entropies imply
a coupling between the nonlinear equations. The distributions that emerge from these
dynamics equations have a power-law behavior, where each subsystem modifies the other.
We also investigate the entropy production for this system. These developments are
presented in Section 2. In Section 3, we present our discussions and conclusions.

2. The Problem

Let us start our analysis by establishing the nonlinear Fokker–Planck equations con-
nected to the dynamics of each subsystem of a composed system. They are

∂

∂t
ρ1(x1, t) = Γ

∂2

∂x2
1

P1(ρ1, t)− ∂

∂x1

[
F1(x1)ρ1(x1, t)

]
(1)

and

∂

∂t
ρ2(x2, t) = Γ

∂2

∂x2
2

P2(ρ2, t)− ∂

∂x2

[
F2(x2)ρ2(x2, t)

]
, (2)

where Fi(xi), with i = 1 or 2, represents the external force, i.e., Fi = −∂xi φi(xi) and φi(xi) is
a potential energy, while Γ stands for a generic diffusion coefficient. Notice that P1(ρ1, t)
and P2(ρ2, t) present in the diffusive term may have the same form or a different form.
Particular choices of Pi(ρi, t) have been successfully analyzed in several problems such as in
porous media [36], anomalous diffusion [37], overdamped systems [38], and the Boltzmann
equation endowed with a correlation term [39]. In Equations (1) and (2), Pi(ρi, t) will be
determined by the H–theorem in connection with the entropic form used to describe the
combination of subsystems 1 and 2. It is worth pointing out that the different possibilities
may be considered by allowing us to obtain different results for the composite system
of 1 and 2 subsystems, as discussed in Refs. [28,29]. However, the combination of these
equations, which represent the subsystem 1 and 2, in connection with thermostatistics (e.g.,
the nonextensive statistics [40]) requires careful analysis with direct consequences on the
entropic additivity and zeroth law [41–43]. To accomplish this task, we consider general
scenarios with different dynamics to investigate possible conditions to Equations (1) and (2)
to allow a thermostatistics context.

2.1. H-Theorem

We start our analysis in terms of the H–theorem first by considering P1(ρ1) and P2(ρ2)
with the same functional form. Afterwards, we consider P1(ρ1) and P2(ρ2) with a different
functional form. Each one of these cases has different implications for the entropy related
to the composed system formed by the systems 1 and 2, with the dynamics given in terms
of Equations (1) and (2). Following Ref. [28,29,31], we analyze the behavior of the time
derivative of the Helmholtz free energy. This free energy is defined by F = U − TS, with
the internal energy, U, given by

U =
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2[φ1(x1) + φ2(x2)]ρ1(x1, t)ρ2(x2, t) (3)

and the entropy, S, expressed in terms of an arbitrary function

S = k
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2s(ρ1, ρ2). (4)

Note that Equations (3) and (4) represent the total internal energy and the entropy of the
system composed of two subsystems governed by Equations (1) and (2), respectively.
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By using the previous equations, the total free energy of the system is given by

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2[Ψ(x1, x2)ρ1(x1, t)ρ2(x2, t)− kTs(ρ1, ρ2)], (5)

with Ψ(x1, x2) = φ1(x1) + φ2(x2). Before determining the time derivative of Equation (5),
we assume that P1(ρ1, t) and P2(ρ2, t) have essentially the same functional forms and the
entropy is a function of the product of the probability densities related to each subsystem,
i.e., s(ρ1, ρ2) = s(ρ1ρ2). It is then possible to show that

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
Ψ(x1, x2)− kT

∂

∂ρ12
s(ρ12)

]
∂

∂t
[ρ1(x1, t)ρ2(x2, t)], (6)

where ρ12 = ρ1ρ2, and

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ2 − kTρ2

∂

∂ρ12
s(ρ12)

}
× ∂

∂x1

{
Γ

∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
+

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ1 − kTρ1

∂

∂ρ12
s(ρ12)

}
× ∂

∂x2

{
Γ

∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (7)

After integration by parts and applying the conditions ρi(x → ±∞, t)→ 0 and ∂xρi(x →
±∞, t)→ 0, we obtain

d
dt

F = −
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
∂

∂x1
φ1(x1)ρ2 − kTρ2

2
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

}

×
{

Γ
∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
−

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
∂

∂x2
φ2(x2)ρ1 − kTρ2

1
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

}

×
{

Γ
∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (8)

Now, let us focus on the term

Γ
∂

∂xi
Pi(ρi, t)− Fi(xi)ρi(xi, t), (9)

where i = 1, 2, which will be directly connected with the properties of the entropy of the
composite system. To proceed, we consider that

Pi(ρi, t) = Dj,γ(t)ρ
γ
i (xi, t) +Dj,ν(t)ρν

i (xi, t), (10)

with j 
= i, j = 1, 2, and

Dj,γ(t) = αγ

∫ ∞

−∞
dxjρ

γ
j (xj, t) and Dj,ν(t) = αν

∫ ∞

−∞
dxjρ

ν
j (xj, t), (11)

to be able to cover different scenarios, where αγ and αν are constants. Note that the
choice of the Dj,γ(t) and Dj,ν(t) implies that each subsystem influences the other. This
aspect of the problem can be associated to the feature that the nonlinearity present in
Equations (1) and (2) introduces additional interactions between the subsystems during the
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thermalization process, where each subsystem works as an additional thermal bath to the
other. By using the previous equations, we have

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

{∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ1ρ2 + Γ

∂ρ1

∂x1
ρ2

∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)]}

−
∫ ∞

−∞
dx2

1
ρ2

{∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

]

×
∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 + Γ

∂ρ2

∂x2
ρ1

∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)]}

. (12)

We verify that

d
dt

F ≤ 0 for − kTρ12
∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂ρ12

(
αγρ

γ
2 ρ

γ
1 + ανρν

2ρν
1
)

(13)

= Γ
∂

∂ρ12

(
αγρ

γ
12 + ανρν

12
)
,

which implies

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

{∫ ∞

−∞
dx2

[
∂

∂x1
φ1(x1)ρ2ρ1 − kTρ2

2ρ1
∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12)

]}2

−
∫ ∞

−∞
dx2

1
ρ2

{∫ ∞

−∞
dx1

[
∂

∂x2
φ2(x2)ρ1ρ2 − kTρ2

1ρ2
∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12)

]}2

. (14)

Consequently, by solving Equation (13) with Γ = kT under the conditions defined in
Refs. [28–31], we obtain

s(ρ12) =
αγ

γ− 1
(
ρ12 − ρ

γ
12
)
+

αν

ν− 1
(ρ12 − ρν

12). (15)

The entropy for the composite system is given by

S =
αγk

γ− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

(
ρ12 − ρ

γ
12
)

+
ανk

ν− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ12 − ρν

12), (16)

which can also be rewritten as

S =
αγk

γ− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ1ρ2 − (ρ1ρ2)

γ]
+

ανk
ν− 1

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ1ρ2 − (ρ1ρ2)

ν] (17)

and, consequently, as

S =
αγk

γ− 1

[
1−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ1ρ2)

γ
]

+
ανk

ν− 1

[
1−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2(ρ1ρ2)

ν
]

. (18)
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Equation (18) has several particular cases, such as the Tsallis and Kaniadakis entropies,
depending on the values of the parameters αγ, αν, γ, and ν. It is noteworthy that this
result preserves the additivity in the Penrose sense [3], i.e., S(ρ12) = S(ρ1ρ2) required for a
system composed of independent subsystems when the standard entropy is employed.

In the previous context, Equations (1) and (2) can be written as follows:

∂

∂t
ρ1(x1, t) = D2,γ(t)

∂2

∂x2
1

ρ
γ
1 (x1, t) +D2,ν(t)

∂

∂x2
1

ρν
1(x1, t)− ∂

∂x1

[
F1(x1)ρ1(x1, t)

]
(19)

and

∂

∂t
ρ2(x2, t) = D1,γ(t)

∂2

∂x2
2

ρ
γ
2 (x2, t) +D1,ν(t)

∂2

∂x2
2

ρν
2(x2, t)− ∂

∂x2

[
F2(x2)ρ2(x2, t)

]
, (20)

with Di,γ(t) = Di,γ(t)Γ and Di,ν(t) = Di,ν(t)Γ, by evidencing the influence of one of them
on the other. In particular, the terms forming the diffusive part can also be connected with
anomalous diffusion processes with different diffusion regimes. The stationary solutions
obtained from Equations (19) and (20) are given by

γ

γ− 1
D2,γρ

γ−1
1,st (x1) +

ν

ν− 1
D2,νρν−1

1,st (x1) = C1 − φ1(x1) (21)

and

γ

γ− 1
D1,γρ

γ−1
2,st (x2) +

ν

ν− 1
D1,νρν−1

2,st (x2) = C2 − φ2(x2), (22)

where limt→∞Di,γ(t) = Di,γ = constant, φi(x) are potentials with a minimum, and Ci are
constants. For the Tsallis entropy, by taking, for simplicity, Di,ν = 0, we have

ρ1,st(x1) =
1
Z1

[
1− (γ− 1)

Zγ−1
1

γD2,γ
φ1(x1)

] 1
γ−1

=
1
Z1

expγ

[
− Z

γ−1
1

γD2,γ
φ1(x1)

]
(23)

and

ρ2,st(x2) =
1
Z2

[
1− (γ− 1)

Zγ−1
2

γD2,γ
φ1(x2)

] 1
γ−1

=
1
Z2

expγ

[
− Z

γ−1
2

γD1,γ
φ2(x2)

]
, (24)

where Zi = 1/{[(γ− 1)/(γDi,γ)]Ci}
1

γ−1 is defined by the normalization condition and
Di,γ = kT

∫ ∞
−∞ dxiρ

γ
i,st(xi). In the preceding equations, expq[x] is the q−exponential func-

tion, defined as follows [40]:

expq[x] ≡
{

(1 + (q− 1)x)1/(q−1) , x > 1/(1− q),
0 , x < 1/(1− q).

(25)

The presence of this function in the previous equations enables the identification of either a
short- or a long-tailed behavior of the solution, depending on the value of the parameters γ
and ν. Indeed, they may have a compact behavior for γ > 1 (or ν > 1) due to the cut-off re-
quired by the q-exponential to retain the probabilistic interpretation of the distribution. On
the other hand, for γ < 1 (or ν > 1), the solutions may have the asymptotic limit governed
by a power-law behavior, which may also be related to a Lévy distribution [44] and, conse-
quently, asymptotically with the solutions of the fractional Fokker–Planck equations [45],
which are asymptotically governed by power-laws.
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From the stochastic point of view, Equations (19) and (20) are connected with the
following Langevin equations:

ẋ1 = F1(x1) +
√

2ΓΛ1,2(t)ξ1(t) (26)

and

ẋ2 = F2(x2) +
√

2ΓΛ2,1(t)ξ2(t), (27)

where ξ1(t) and ξ2(t) are connected to the stochastic forces and Λi,j(t) = Dj(i),γ(ν)(t)

ρ
γ(ν)
i(j) (x, t) + Dj(i),ν(γ)(t) ρ

ν(γ)
i(j) (x, t). In particular, we have

〈ξ1〉 = 〈ξ2〉 = 0 , 〈ξ1ξ2〉 = 〈ξ2ξ1〉 = 0 (28)

and

〈ξ1(t)ξ1(t′)〉 ∝ δ(t− t′) , 〈ξ2(t)ξ2(t′)〉 ∝ δ(t− t′). (29)

The walkers related to this problem can be described, for simplicity, in the absence of
external forces, in terms of the following equations [46,47]:

ρ1(x1, t + τ) =
∫ ∞

−∞
Θ1,2[x1 − x′1, t; ρ(x1 − x′1, t)]ρ1(x1 − x′1, t)Φ(x′1)dx′1 (30)

and

ρ2(x2, t + τ) =
∫ ∞

−∞
Θ2,1[x2 − x′2, t; ρ(x2 − x′2, t)]ρ2(x2 − x′2, t)Φ(x′2)dx′2, (31)

where

Θi,j[xi, t; ρ(xi, t)] = αγ

∫ ∞

−∞
dxjρ

γ
j (xj, t)ργ−1

i (xi, t) + αν

∫ ∞

−∞
dxjρ

ν
j (xj, t)ρν−1

i (xi, t). (32)

These equations, in the limit τ → 0 and x′i → 0, yield Equations (1) and (2) in the absence
of external forces, respectively.

Let us now consider a general case, i.e., the one in which the diffusion terms have a
different nonlinear dependence on the distributions. This means that the systems have
different dynamical aspects governed by the nonlinear dependence on the distribution
present in the diffusive term. By using the preceding equations and having in mind
Equation (5), we may write

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)

∂

∂t
[ρ1(x1, t)ρ2(x2, t)] (33)

− kT
[

∂

∂ρ1
s(ρ1, ρ2)

∂

∂t
ρ1(x1, t) +

∂

∂ρ2
s(ρ1, ρ2)

∂

∂t
ρ2(x2, t)

]}
,

which implies

d
dt

F =
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ2 − kT

∂

∂ρ1
s(ρ1, ρ2)

}
× ∂

∂x1

{
Γ

∂

∂x1
P1(ρ1, t)− F1(x1)ρ1(x1, t)

}
+

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

{
Ψ(x1, x2)ρ1 − kT

∂

∂ρ2
s(ρ1, ρ2)

}
× ∂

∂x2

{
Γ

∂

∂x2
P2(ρ2, t)− F2(x2)ρ2(x2, t)

}
. (34)
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After some calculations, it is possible to show that

d
dt

F = −
∫ ∞

−∞
dx1

1
ρ1

∫ ∞

−∞
dx2

{
∂

∂x1
φ(x1)ρ2ρ1 − kT

[
ρ1

∂2

∂ρ2
1

s(ρ1, ρ2)

]
∂

∂x1
ρ1

}

×
{[

Γ
∂

∂ρ1
P1(ρ1, t)

]
∂

∂x1
ρ1 − F1(x1)ρ1

}
−

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

1
ρ2

{
∂

∂x2
φ(x2)ρ1ρ2 − kT

[
ρ2

∂2

∂ρ2
2

s(ρ1, ρ2)

]
∂

∂x2
ρ2

}

× ∂

∂x2

{[
Γ

∂

∂ρ2
P2(ρ2, t)

]
∂

∂x2
ρ2 − F2(x2)ρ2

}
. (35)

Let us analyze in particular the previous equation, for example, for the case

P1(ρ1, t) = D2,ν(t)ρ
γ
1 (x1, t) and P2(ρ2, t) = D1,γ(t)ρν

2(x2, t), (36)

with

D2,ν(t) =
1

ν− 1

∫ ∞

−∞
dx2ρν

2(x2, t) and D1,γ(t) =
1

γ− 1

∫ ∞

−∞
dx1ρ

γ
1 (x1, t), (37)

which implies different dynamics for each subsystem. We notice that it is possible to take
into account different aspects of the dynamics of each subsystem, and every choice has
different implications for the total entropy of the composite system. Similar nonlinear
Fokker–Planck equations were considered in Ref. [48] from the point of view of analyzing
the interaction between the two subsystems. From Equation (37), we deduce that the
entropy needs to satisfy the following equations:

−ρ1
∂2

∂ρ2
1

s(ρ1, ρ2) =
γ

ν− 1
ρν

2ρ
γ−1
1 and − ρ2

∂2

∂ρ2
2

s(ρ1, ρ2) =
ν

γ− 1
ρν−1

2 ρ
γ
1 (38)

in order to verify

d
dt

F ≤ 0, (39)

and, consequently, to satisfy the H–theorem. A solution for the previous system of equa-
tions is

s(ρ1, ρ2) =
1

(ν− 1)(γ− 1)
(
ρ1ρ2 − ρν

2ρ
γ
1
)
. (40)

This result allows us to write the total entropy of this system as follows:

S =
k

(ν− 1)(γ− 1)

[
1−

∫ ∞

−∞
dx2ρν

2(x2, t)
∫ ∞

−∞
dx1ρ

γ
1 (x1, t)

]
. (41)

It is remarkable that this result for the entropy differs from the preceding one given by
Equation (18), obtained from a different choice of nonlinear Fokker–Planck equations.
Equation (41) results from a combination of different subsystems with different dynamics,
which individually have different entropies associated with them. One of the consequences
is that the entropy of the composite system, for this specific case, can not be written as
S(ρ1ρ2), only when γ = ν. Another remarkable point is the connection of Equation (41)
with the composition of Tsallis entropies of different q-indices [49,50]. The solution can
be found in this framework using the q-exponential functions. In particular, it is possible
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to show that the solution for each nonlinear Fokker–Planck equation, in the absence of
external force, is

ρ1(x1, t) = expγ

[
−β1(t)x2

1

]
/Z1(t) (42)

and

ρ2(x1, t) = expν

[
−β2(t)x2

2

]
/Z2(t), (43)

with β1(t), β2(t), Z1(t), and Z2(t) obtained from the following set of equations:

1
2β1

d
dt

β1 = − 2γ

ν− 1
Iν

Zν
2
√

β2
β1Z1−γ

1 , − 1
Z1

d
dt
Z1 = − 2γ

ν− 1
Iν

Zν
2
√

β2
β1Z1−γ

1 , (44)

1
2β2

d
dt

β2 = − 2ν

γ− 1
Iγ

Zγ
1

√
β1

β2Z1−ν
2 , − 1

Z2

d
dt
Z2 = − 2ν

γ− 1
Iγ

Zγ
1

√
β1

β2Z1−ν
2 , (45)

with

Iκ =

⎧⎪⎨⎪⎩
Γ( 1

2 )Γ(1+ κ
κ−1 )√

κ−1Γ( 3
2+

κ
κ−1 )

1 ≤ κ < 2

Γ( 1
2 )Γ( κ

1−κ− 1
2 )√

1−κΓ( κ
1−κ )

0 ≤ κ ≤ 1
, (46)

where κ = γ or ν.
Figure 1 shows the behavior of the mean square displacement for two different sets

of γ and ν in the absence of external forces. The values chosen for the parameters γ and ν
are responsible for different behaviors of the mean square displacement for each case, as
pointed out in the inset of Figure 1. In particular, the diffusion present in this scenario is
anomalous [51,52]. Figure 2 shows the behavior of Equation (41) for two different sets of
γ and ν. Note that different values of β1(0) and β2(0) used to obtain Figures 1 and 2 are
connected to different initial conditions for each subsystem. This is the reason why we
initially verified different behaviors for each set of the parameters γ and ν, and, after some
time, the mean square displacement has the same time dependence for both subsystems.
The entropy production is shown in the inset in Figure 2, which corresponds to the behavior
of Equation (61) for the entropy given by Equation (41). We underline that the system
composed of these two systems reaches equilibrium in the limit of t → ∞, since in this
limit Ṡ(t) → 0. For general nonlinear Fokker–Planck equations, the entropy should
simultaneously satisfy the following equations,

−ρ1
∂2

∂ρ2
1

s(ρ1, ρ2) =
∂

∂ρ1
P1(ρ1, t) and − ρ2

∂2

∂ρ2
2

s(ρ1, ρ2) =
∂

∂ρ2
P2(ρ2, t), (47)

to verify d
dt F ≤ 0 and, consequently, satisfy the H–theorem. It is also significant to mention

that, depending on the form of the nonlinear dependence in the Equations (1) and (2),
which may not recover the standard form of the Fokker–Planck equation, the entropy
associated with these equations will not recover the usual form.
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Figure 1. Behavior of σ2
x /σ0,γ(ν) versus t for two different sets of γ and ν, where σ0,γ(ν) =

σγ(ν)

∫ ∞
−∞ dξξ2 expγ(ν)

(
−ξ2)/

∫ ∞
−∞ dξ expγ(ν)

(
−ξ2), where σγ(ν) is chosen in order to collapse the

curves for each set of values. We consider, for simplicity, β1(0) = 2 and β2(0) = 1. The red dashed-
dotted and black dashed lines represent the case γ = 0.4 with ν = 0.7. The blue dashed-dotted
and black dashed-dotted-dotted lines represent the case γ = 0.35 with ν = 0.55. Notice that the
behavior for the cases worked out in this figure have different time dependence for the mean square
displacement, as pointed out in the inset.

Figure 2. Behavior of Equation (41) versus t for two different sets of γ and ν. We consider, for
simplicity, β1(0) = 2 and β2(0) = 1. The red dashed-dotted line represents the case γ = 0.4 with
ν = 0.7. The blue dashed-dotted line represents the case γ = 0.35 with ν = 0.55. Notice that the
behavior for the cases worked out in this figure have different time dependence for Ṡ(t), as pointed
out in the inset.
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2.2. Entropy Production

Let us analyze the entropy production related to Equation (17) with the dynamics of
ρ1(x1, t) and ρ2(x2, t) given by Equations (19) and (20). By performing a time derivative of
Equation (17), we obtain

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂

∂ρ12
s(ρ12)

]
∂

∂t
[
ρ1(x1, t)ρ2(x2, t)

]
= −k

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2ρ2

∂

∂ρ12
s(ρ12)

∂

∂x1
J1(x1, t)

− k
∫ ∞

−∞
dx1ρ1

∫ ∞

−∞
dx2

∂

∂ρ12
s(ρ12)

∂

∂x2
J2(x2, t) (48)

and, consequently, performing integration by parts with the conditions J1(x1 → ±∞, t)→
0 and J2(x2 → ±∞, t)→ 0, also

d
dt
S(t) = k

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ2

2
∂2

∂ρ2
12

s(ρ12)
∂ρ1

∂x1

]
J1(x1, t)

+ k
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

[
ρ2

1
∂2

∂ρ2
12

s(ρ12)
∂ρ2

∂x2

]
J2(x2, t) . (49)

It is possible to simplify Equation (48) by using, from the H–theorem, the equations

−kTρ1ρ2
2

∂ρ1

∂x1

∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂x1
P1(ρ1, t) (50)

and

−kTρ2ρ2
1

∂ρ2

∂x2

∂2

∂ρ2
12

s(ρ12) = Γ
∂

∂x2
P2(ρ2, t), (51)

in order to obtain

d
dt
S(t) = − 1

T

∫ ∞

−∞
dx1F1(x1)J1(x1, t)− 1

T

∫ ∞

−∞
dx2F2(x2)J2(x2, t)

+
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

, (52)

where

J1(x1, t) = −Γ
∂

∂x1
P1(ρ1, t) + F1(x1)ρ1(x1, t) (53)

and

J2(x2, t) = −Γ
∂

∂x2
P2(ρ2, t) + F2(x2)ρ2(x2, t), (54)

with P1(ρ1, t) and P2(ρ2, t) given by Equations (10) and (11). Equation (48) can be written
as follows:

d
dt
S = Π−Φ (55)

where one identifies the entropy flux, representing the exchanges of entropy between the
subsystems represented by ρ1 and ρ2 and their neighborhood,

Φ =
1
T

∫ ∞

−∞
dx1F1(x1)J1(x1, t) +

1
T

∫ ∞

−∞
dx2F2(x2)J2(x2, t), (56)
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as well as the entropy-production contribution:

Π =
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

. (57)

We underline that T and ρi(xi, t) are positive quantities, yielding the desirable result: Π ≥ 0.
For the general case represented by Equation (4), we have

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂

∂ρ1
s(ρ1, ρ2)

∂

∂t
ρ1(x1, t) +

∂

∂ρ2
s(ρ1, ρ2)

∂

∂t
ρ2(x2, t)

]
= −k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

∂

∂ρ1
s(ρ1, ρ2)

∂

∂x1
J1(x1, t)

− k
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

∂

∂ρ2
s(ρ1, ρ2)

∂

∂x2
J2(x2, t). (58)

Performing integration by parts in Equation (58) and by taking into account the conditions
J1(x1 → ±∞, t)→ 0 and J2(x2 → ±∞, t)→ 0, we obtain that

d
dt
S(t) = k

∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂ρ1

∂x1

∂2

∂ρ2
1

s(ρ1, ρ2)

]
J1(x1, t)

+ k
∫ ∞

−∞

∫ ∞

−∞
dx1dx2

[
∂ρ2

∂x2

∂2

∂ρ2
2

s(ρ1, ρ2)

]
J2(x2, t). (59)

By using the equations,

−ρ1
∂ρ1

∂x1

∂2

∂ρ2
1

s(ρ1, ρ2) =
∂

∂x1
P1(ρ1, t) and − ρ2

∂ρ2

∂x2

∂2

∂ρ2
2

s(ρ1, ρ2) =
∂

∂x2
P2(ρ2, t), (60)

it is possible to simplify Equation (59) in order to obtain

d
dt
S(t) = − 1

T

∫ ∞

−∞
dx1F1(x1)J1(x1, t)− 1

T

∫ ∞

−∞
dx2F2(x2)J2(x2, t)

+
1
T

∫ ∞

−∞
dx1
J 2

1 (x1, t)
ρ1(x1, t)

+
1
T

∫ ∞

−∞
dx2
J 2

2 (x2, t)
ρ2(x2, t)

, (61)

where

J1(x1, t) = −Γ
∂

∂x1
P1(ρ1, t) + F1(x1)ρ1(x1, t) (62)

and

J2(x2, t) = −Γ
∂

∂x2
P2(ρ2, t) + F2(x2)ρ2(x2, t), (63)

as before, with P1(ρ1, t) and P2(ρ2, t) arbitrary. Note that Equation (61) is formally equal
to Equation (52), which evidences that the result obtained for the entropy production is
invariant in form when the entropies are obtained from the H–theorem.

3. Discussion and Conclusions

We have investigated the entropy of a system composed of two subsystems governed
by nonlinear Fokker–Planck equations. In this context, we have essentially analyzed two
scenarios; in one of them, the subsystems have the same dynamics, and in the other one,
they have different dynamics, i.e., the nonlinear Fokker–Planck equations are different. The
first case allows the definition of entropy which can be connected to different cases and
preserves the formal structure S(ρ1, ρ2) = S(ρ1ρ2) also verified by the standard entropy of
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Boltzmann–Gibbs. For the other case, we consider different dynamics for each subsystem,
which allows the definition of an entropic form for which S(ρ1, ρ2) 
= S(ρ1ρ2). In both
cases, we have analyzed the entropy production and we have shown the effect of each
subsystem on the composite system. In addition, we have shown that the time variation of
the entropy (entropy production) for the total system is invariant in form for all the cases
considered here.
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Abstract: It is known that Kaniadakis entropy, a generalization of the Shannon–Boltzmann–Gibbs
entropic form, is always super-additive for any bipartite statistically independent distributions. In
this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy
distributions labeled by a positive real number ℵ > 0 that makes Kaniadakis entropy multi-additive,
i.e., Sκ [pA∪B] = (1 + ℵ)

(
Sκ [pA] + Sκ [pB]

)
, under the composition of two statistically independent

and identically distributed distributions pA∪B(x, y) = pA(x) pB(y), with reduced distributions pA(x)
and pB(y) belonging to the same class.

Keywords: κ-entropy; pseudo-additivity; power-law distributions

1. Introduction

A possible generalization of conventional statistics, named κ-statistics, is founded on
Kaniadakis entropy (κ-entropy) [1–3]. This is a continuous one-parameter deformation of
the information functional, also known as the Shannon–Boltzmann–Gibbs (SBG) entropic
form, defined in

Sκ [p] = −
∫
D

p(x) lnκ

(
p(x)

)
dx , (1)

in the appropriate dimensionless unities, where D is a suitable integration domain and

lnκ(x) =
xκ − x−κ

2 κ
, (2)

is a deformed version of the standard logarithm that, in the κ → 0 limit, reduces to the
ordinary logarithm: ln0(x) ≡ ln(x). Is then clear that, in the same limit, entropy Sκ

reproduces also the standard expression of SBG-entropy.
Over the last 15 years, the statistics theory based on the κ-entropy has attracted the in-

terest of many researchers, who have studied its foundations on the physical
ground [4–11] and its mathematical aspects [12–17]. Concurrently, κ-statistic has been
employed in various fields. A non-exhaustive list of applications of κ-entropy and κ-
distribution includes, to cite a few, those in thermodynamics [18,19]; plasma physics
and astrophysics [20–26]; nuclear physics [27–30]; cosmological issues [31–33], includ-
ing dark energy [34–36] and holographic theory [37–39]; information theory [40–46];
genomics [47,48]; complex networks [49,50]; the economy [51–53]; and finance [54–56].

As is known [57], for a joined statistical system described by the bipartite probability
distribution pA∪B(x, y) of two statistically independent distributions pA(x) and pB(y), i.e.,
pA∪B(x, y) = pA(x) pB(y), the κ-entropy Sκ

[
pA∪B] is a super-additive quantity, being

Sκ

[
pA∪B] > Sκ

[
pA]+ Sκ

[
pB] . (3)
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The difference between the total entropy of a joined system A∪B, and the sum of the
entropies of the single parts A and B is sometimes called the entropic excess. This is defined in

Sexc = S
[
pA∪B]− (

S
[
pA]+ S

[
pB]) , (4)

where, depending on the entropy nature, it can be a positive or negative quantity. It
quantifies the information gain or loss in a bipartite system, a property that may be related
to the concept of super-stability or sub-stability in thermodynamics [58]. Entropy is super-
additive, and the systems it describes are thermodynamically super-stable if the entropic
excess is positive. On the other hand, entropy is sub-additive, and the systems it describes
are thermodynamically sub-stable if the entropic excess is negative.

Following [59], in agreement with the second principle of thermodynamics, super-
stable systems (with a positive entropic excess) tend to join together while sub-stable
systems (with a negative entropic excess) tend to fragment.

The opposite of the entropic excess is called the entropic defect. Recently, the entropic
defect has been investigated as a basic concept of thermodynamics which is able to charac-
terize the entropic form describing a given physical system [60,61].

As discussed in [9], the entropic excess of the κ-entropy for any pair of statistically
independent distributions is always positive (cf. Equation (3)), indicating that, in this case,
it is a super-additive quantity useful for characterizing super-stable systems.

In general, the entropic excess depends on the bipartite distribution pA∪B, and cannot
be quantified in a precise manner. In this work, we show that, within κ-statistics, there are
classes of maximal entropy probability distributions, labeled by a real positive parameter
ℵ > 0, such that the entropic excess of a statistically independent bipartite system is
proportional to the sum of the entropy of the single distributions. Thus, for any pair of
probability distribution functions (pdf) belonging to the same ℵ-class, we have

Sexc
κ = ℵ

(
Sκ

[
pA]+ Sκ

[
pB]) , (5)

so that the joint κ-entropy Sκ

[
pA∪B] turns out to be related directly to the sum of the

κ-entropies of the single distributions, according to the relation

Sκ

[
pA∪B] = (1 + ℵ)

(
Sκ

[
pA]+ Sκ

[
pB]) . (6)

We call this propriety multi-additivity of κ-entropy.
The structure of this paper is as follows. In Section 2, we present the mathematical

background related to κ-statistics and the proprieties of composability of κ-entropy for
a bipartite statistically independent system. Section 3 contains our main results. There,
we introduce the multi-additivity of κ-entropy, and investigate the variational problem
concerning the maximization of the κ-entropy under the usual constraints given by the
distribution momenta and the multi-additivity conditions. In Section 4, we show by
a numerical evaluation that the problem admits solutions at least within the family of
Gibbs-like distributions. Finally, Section 5 contains our conclusive comments.

2. Mathematical Background

To start with, let us consider the following functional-differential equation [1]:

d
d x

[
x Λ(x)

]
= λ Λ

( x
α

)
, (7)
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where λ and α are two scaling parameters to be determined. It is easy to verify that a
solution of Equation (7), with the boundary conditions Λ(1) = 0 and (d/d x)Λ(x)

∣∣
x=1 = 1,

is given by the κ-logarithm (2), provide the scaling constants are set as

λ =
√

1− κ2 , (8)

α =

(
1− κ

1 + κ

) 1
2 κ

. (9)

As will be clarified in a follow-up, the constant λ plays the role of the scaling factor in the
argument of pdf, while the constant α is a κ-deformed version of the reciprocal Neperian
number. In the κ → 0 limit, λ → 1 and α → 1/e.

The κ-logarithm, defined in �+ → �, is symmetric in κ → −κ, with lnκ(1) = 0,
limx→+∞ lnκ(x)→ +∞, as well as limx→0 lnκ(x)→ −∞. Furthermore, it is a continuous,
strictly increasing (d/dx) lnκ(x) > 0 and concave (d2/dx2) lnκ(x) > 0 function for |κ| < 1.
More importantly,

lnκ

(
1
x

)
= − lnκ(x) , (10)

is a well-known propriety of standard logarithm that is preserved in its κ-deformed version.
Finally, since it is in the κ → 0 limit, κ-logarithm collapses to the standard logarithm
function; this legitimates us considering the κ-logarithm a faithful generalization of the
logarithmic function.

As the κ-logarithm is a monotonic function, its inverse, the κ-exponential, surely exists,
and is given in

expκ(x) =
(

κ x +
√

1 + κ2 x2
) 1

κ . (11)

It is a function defined in � → �+, symmetric in κ → −κ, reduces to the standard expo-
nential in the κ → 0 limit, and, like the standard exponential, is a continuous, strictly in-
creasing (d/dx) expκ(x) > 0 and convex (d2/dx2) expκ(x) < 0 function, with expκ(0) = 1,
limx→−∞ expκ(x)→ 0 as well as limx→+∞ expκ(x)→ +∞.

Again, the well-known propriety of the standard exponential is also satisfied by its
deformed version

expκ(−x) =
1

expκ(x)
, (12)

and, therefore, the κ-exponential is a faithful generalization of the exponential function.
Another solution of Equation (7) with the same scaling constants (8) and (9), but with

different boundary conditions Λ(1) = 1 and (d/d x)Λ(x)
∣∣
x=1 = 0, is given by [62]

uκ(x) =
xκ + x−κ

2
, (13)

which is a function defined in�+ → �+, and is symmetric in κ → −κ, with limx→0 uκ(x) =
limx→+∞ uκ(x) → +∞. Furthermore, uκ(x) is a continuous, concave (d2/dx2)uκ(x) > 0
function for |κ| < 1, and obtains its minimum at x = 1, where uκ(1) = 1. Finally, uκ(x)
satisfies a dual relation of (10); that is,

uκ

(
1
x

)
= uκ(x) , (14)

while, in the κ → 0 limits, it becomes merely a constant, u0(x) = 1. Therefore, there is not
an equivalent function in the standard, undeformed formalism.
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En passant, we observe that the two scaling constants α and λ are related by the
relations

−λ lnκ(α) = λ uκ(α) = 1 . (15)

One might easily persuade oneself that the functions uκ(x) and lnκ(x) are strongly con-
nected. In fact, two equivalent analytical expressions of these two functions are given by

lnκ(x) =
1
κ

sinh
(
κ ln(x)

)
, (16)

uκ(x) = cosh
(
κ ln(x)

)
, (17)

which show their relationship with the trigonometric hyperbolic functions. Consequently,
many properties of lnκ(x) and uκ(x) follow from the corresponding properties of sinh(x)
and cosh(x). In particular, it is ready to verify that

lnκ(x y) = lnκ(x) uκ(y) + uκ(x) lnκ(y) , (18)

uκ(x y) = uκ(x) uκ(y) + κ2 lnκ(x) lnκ(y) . (19)

as a consequence of the additivity formulas of hyperbolic functions.
In addition, it is useful to recall the following relations relating these two functions

uκ(x) =
√

1 + κ2 ln2
κ(x) = lnκ(x)− λ lnκ(α x) , (20)

that become trivial relations (1 = 1) in the κ → 0 limit, since, in the same limit, λ → 1 and
α → e−1.

By using the first of these relations, Equation (18) can be rewritten in

lnκ(x y) = lnκ(x)
√

1 + κ2 ln2
κ(y) + lnκ(y)

√
1 + κ2 ln2

κ(x) , (21)

which implies the relevant inequality

lnκ(xy) < lnκ(x) + lnκ(y) , (22)

holding in the statistically meaningful interval 0 < x, y < 1.
The next step is to introduce the κ-entropy Sκ [p]. Like in the standard case, where

SBG-entropy is defined as the negative of the linear average of the Hartley function (or
surprise function) defined by h(p) = ln

(
p(x)

)
, it is natural to introduce the κ-entropy as

the negative of the linear average of the κ-deformed Hartley function, hκ(p) = lnκ

(
p(x)

)
;

that is,

Sκ [p] = −〈hκ(p)〉 , (23)

a relation that reproduces Equation (1), accounting for the usual definition of the linear
average of a statistical observable O(x), given by

〈O〉 =
∫
D
O(x) p(x) dx . (24)

It is natural, in analogy with definition (23), to introduce the auxiliary function Iκ [p], as the
linear average of uκ

(
p(x)

)
, according to the relation

Iκ [p] = 〈uκ(p)〉 . (25)
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This quantity is a positive definite, with Iκ [p] > 1 for any normalized pdf and, in the κ → 0
limit, it gives

lim
κ→0

Iκ [p] =
∫
D

p(x) dx = 1 . (26)

Therefore, there is no equivalent function in standard statistics. However, like lnκ(x) and
uκ(x), that are two strictly related functions, also Sκ [p] and Iκ [p] turn out to be recurrent in
the developing of the κ-statistics.

In particular, by taking the linear average of Equations (18) and (19) for a statistically
independent bipartite distribution, with pA∪B(x, y) = pA(x) pB(y), we obtain

Sκ

[
pA∪B] = Iκ

[
pA] Sκ

[
pB]+ Sκ

[
pA] Iκ [pB] , (27)

Iκ

[
pA∪B] = Iκ

[
pA] Iκ

[
pB]+ κ2 Sκ

[
pA] Sκ [pB] , (28)

stating the additivity rule of Sκ and Iκ for two statistically independent systems.
From Equation (27), we readily deduce the super-additive propriety of κ-entropy

summarized in Equation (3). In particular, in the κ → 0 limit, according to (26), we recover
the usual additivity rule of the SBG entropy while, in the same limit, Equation (28) reduces
to a trivial identity.

As discussed in [9], composition rule (27) can be rewritten also by means of κ-
parentropy, a quantity defined as

S∗κ [p] = −λ Sκ [α p]− 1 , (29)

which is a scaled version of κ-entropy.
In fact, by taking the average of Equation (20), we can obtain the following relationship

Iκ [p] = 1 + S∗κ [p]− Sκ [p] , (30)

that relates κ-entropy and κ-parentropy to the Iκ function. In this way, Equation (27) can
be rewritten in

Sκ

[
pA∪B] = Sκ

[
pA]+ Sκ

[
pB]− 2 Sκ

[
pA] Sκ

[
pB]

+Sκ

[
pA] S∗κ [p

B]+ Sκ

[
pB] S∗κ [p

A] , (31)

providing a composition rule for Sκ that formally only includes κ-entropy; however, it is
important to remark that Sκ and S∗κ are, actually, two independent quantities.

From Equation (31), the entropic excess of the κ-entropy is given by

Sexc
κ = Sκ

[
pA] S∗κ [p

B]+ Sκ

[
pB] S∗κ [p

A]− 2 Sκ

[
pA] Sκ

[
pB] ≥ 0 , (32)

that is a quantity defined only as a function of the κ-entropy.
Finally, let us note that Equations (27) and (28) can be combined to write the κ-

entropy of a statistically independent multi-partite system in terms of Sκ and Iκ of a single
distribution. For instance, given a statistically independent tri-partite system, we can obtain
the relation

Sκ

[
pA∪B∪C] = κ2 Sκ

[
pA] Sκ

[
pB] Sκ

[
pC]+ Sκ

[
pA] Iκ

[
pB] Iκ

[
pC]

+Iκ

[
pA] Sκ

[
pB] Iκ

[
pC]+ Iκ

[
pA] Iκ

[
pB] Sκ

[
pC] , (33)

and so on.
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3. Multi-Additivity in Kaniadakis Entropy

Within κ-statistics, a maximal entropy pdf may be derived by maximizing the κ-
entropy under certain appropriate boundary conditions. Quite often, they are given using
linear averages of certain functions Oi(x) as

〈Oi〉 =
∫
D
Oi(x) p(x) dx , (34)

where i = 0, 1, . . . , M, with M + 1 being the number of given constraints. These relations
fix the values of different quantities 〈Oi〉, related to the system under inspection, whose
spectra of possible outcomes are given by Oi(x). Many times, constraints are given by
the momenta of a certain order n; that is, On(x) = xn. For instance, for n = 0, we pose
O0(x) = 1 with 〈O0〉 = 1, which fixes the normalization of the distribution; for n = 1,
we have O1(x) = x with 〈O1〉 ≡ 〈x〉, which fixes the mean value of the distribution; for
n = 2, we have O2(x) = x2 with 〈O2〉 ≡ 〈x2〉, which is related to the variance of the
distribution, etc.

In this case, the maximal entropy distribution can be derived from the following
variational problem:

δ

δp(y)

⎛⎝Sκ [p]−
M

∑
i=0

μi

∫
D
Oi(x) p(x) dx

⎞⎠ = 0 , (35)

where μi are Lagrange multipliers related to the M + 1 constraints.
By accounting for Equation (7) and definition (1), we obtain the maximal entropy pdf

in the form

p(x) = α expκ

(
− 1

λ

M

∑
i=0

μiOi(x)

)
, (36)

where the Lagrange multipliers μi(〈O0〉, 〈O1〉, . . . , 〈OM〉) are fixed throughout Equation (34)
and are finally functions of the boundary conditions 〈Oi〉.

It is worthwhile to observe that, given the analytical expression of expκ(x) given in
(11), Distribution (36) has an asymptotic power-law behavior, i.e.,

p(x) ≈ |κ xn|1/κ , (37)

for large x, where n is the order of the maximal momenta. This fact justifies the κ-statistic
in the study of those anomalous systems, often complex systems, characterized by pdfs
with heavy tails.

In the following, let us generalize the optimal problem described above to the case
in which, in addition to relations (34), we have further constraints that are functions of
the pdf itself. In particular, we seek a class of distributions, labeled by a real constant ℵ,
maximizing the κ-entropy under the further constraint given by

Iκ [p] = 1 + ℵ , ∀p(x) ∈ ℵ− class . (38)

As will be shown in the next section, this class always existed whenever ℵ ≥ 0, at least
for the Gibbs-like distributions, provided the constraint 〈O1〉 ≡ 〈x〉 falls in a given region
fixed by ℵ.

Therefore, we can state the following: for a bipartite probability distribution function
pA∪B(x, y) = pA(x) pB(y) of two statistically independent and identically distributed pdfs pA(x)
and pB(y), belonging to the same ℵ-class that maximizing the κ entropy under the constraint (38),
we have

Sκ

[
pA∪B] = (1 + ℵ)

(
Sκ

[
pA]+ Sκ

[
pB]) . (39)
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We call this property multi-additivity, and we say that κ-entropy is (1 + ℵ)-additive when-
ever relation (39) holds.

We observe that condition ℵ > 0 is fixed by the super-additive character of κ-entropy,
while the condition ℵ = 0 admits only trivial solutions. In fact, as it is straightforward to
verify, the two relations ∫

D
p(x) dx = 1 , (40)

∫
D

p(x)1+κ + p(x)1−κ

2
dx = 1 , (41)

are consistent only in the trivial case of κ = 0 or for an exact distribution p(x) = δ(x).
To derive the pdf maximizing the κ-entropy under the constraints (34) and (38),

we pose

δ

δp(x)

⎛⎝Sκ [p]− ν Iκ [p]−
M

∑
i=0

μi

∫
D
Oi(x) p(x) dx

⎞⎠ = 0 , (42)

where ν is the Lagrange multiplier related to Equation (38).
We obtain

− 1
2 κ

[
(1 + κ) (1 + κ ν) p(x)κ − (1− κ) (1− κ ν) p(x)−κ

]
−

M

∑
i=0

μiOi(x) = 0 , (43)

and pose ⎧⎨⎩
(1 + κ) (1 + κ ν) = λ(ν) α(ν)−κ

(1− κ) (1− κ ν) = λ(ν) α(ν)κ
(44)

From Equation (43), we obtain

−λ(ν) lnκ

(
p(x)
α(ν)

)
−

M

∑
i=0

μiOi(x) = 0 , (45)

that, solved for p(x), gives the pdf in the form

p(x) = α(ν) expκ

(
− 1

λ(ν)

M

∑
i=0

μiOi(x)

)
. (46)

Although this distribution has the same structure as Equation (36), it differs from (36) in
that the two functions λ(ν) and α(ν), given by

λ(ν) = λ
√

1− κ2 ν2 , (47)

α(ν) = α

(
1− κ ν

1 + κ ν

) 1
2 κ

, (48)

now depend on the Lagrange multiplier ν. They fulfill the relations

λ(ν) lnκ

(
α(ν)

)
= −(1 + ν) , (49)

λ(ν) uκ

(
α(ν)

)
= 1 + κ ν , (50)

that reduce to (15) for ν = 0.
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The reality condition of distribution (46), which is still symmetric in κ → −κ, requires{
κ ∈ (0, 1/ν) ∪ (1, +∞) for ν > 1 ,
κ ∈ (0, 1) ∪ (1/ν + ∞) for ν < 1 ,

(51)

while functions λ(ν) and α(ν) reduce to the constants (8) and (9), respectively, in the ν → 0
limit. Further, in the same limit, Problem (42) collapses into Problem (35).

Finally, plugging distribution (46) into Equations (34) and (38), they fix the Lagrange mul-
tipliers ν and μi as functions of boundary conditions 〈Oi〉, that is, ν ≡ ν(ℵ, 〈O1〉, . . . , 〈OM〉)
and μi ≡ μi(ℵ, 〈O1, 〉 . . . , 〈OM〉), so that the problem is solved definitively.

It is remarkable to note that, when accounting for the normalization of pdf, from
Equation (46), we have

α(ν)−1 =
∫
D

expκ

(
− 1

λ(ν)

M

∑
i=0

μiOi(x)

)
dx , (52)

a relation that suggests the role of α(ν) as a partition function, i.e., Z ≡ α(ν)−1, in the
present formalism. However, a word of caution is in order. As is well-known in standard
statistics, the partition function accounted for the normalization. Thus, it is related to the
corresponding Lagrange multiplier γ by the relation ln(Z) = 1 + γ. This is not the case
for pdf (46), since α(ν) is related to the Lagrange multiplier of constraint (41), whereas
Normalization (40) is controlled by the Lagrange multiplier μ0.

To convince yourself of this, it is sufficient to consider the κ → 0 limit. In this case,
both Constraints (40) and (41) assume the same form, since I0 ≡

∫
p(x) dx, and

lim
κ→0

α(ν)→ exp(−1− ν) , (53)

is a constant. Therefore, in this limit, Distribution (46) becomes

lim
κ→0

p(x) = exp(−1− ν) exp

(
−

M

∑
i=0

μiOi(x)

)

= exp(−1− ν− μ0) exp

(
−

M

∑
i=1

μiOi(x)

)

=
1
Z

exp

(
−

M

∑
i=1

μiOii(x)

)
, (54)

where, with γ = ν + μ0, we recover the usual definition of the partition function
given above.

Finally, we remark that when the distribution has Expression (46), according to Con-
straint (38) and by using Equations (49) and (50), we obtain

(1 + κ2 ν)

〈√√√√λ(ν)2 + κ2

(
M

∑
i=0

μiOi(x)

)2〉
− κ2 (1 + ν)

M

∑
i=0

μi 〈Oi〉 = (1 + ℵ) λ(ν)2 , (55)

which is a consistent relationship between the Lagrange multipliers and the expectation
values of the present statistical model.
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4. A Numerical Example: The Gibbs-like Distribution

To show the existence of solutions to the problem under investigation, let us consider
the simplest case of a problem with M = 2. Thus, we seek a family of pdf maximizing the
κ-entropy under the following constraints:

∞∫
0

p(x) dx = 1 , (56)

∞∫
0

x p(x) dx = 〈x〉 , (57)

∞∫
0

p(x)1+κ + p(x)1−κ

2
dx = 1 + ℵ , (58)

corresponding, respectively, to the normalization, the linear average, and the multi-
additivity constraints.

Solving the variational problem (43) in the present case, we obtain the optimizing pdf
in the form

p(x) = α(ν) expκ

(
− 1

λ(ν)
(μ0 + μ1 x)

)
. (59)

This is a Gibbs-like distribution since, in the κ → 0 limit, standard Gibbs-distribution
p(x) = exp(−1− ν− μ0 − μ1 x) is obtained. Otherwise, (59) is a pdf with an asymptotic
power-law heavy tail, being p(x) ≈ (κ x)1/κ for κ x � 1.

By plugging distribution (59) into Equations (56)–(58), we obtain the system of equations

I1(z) =
μ1

α(ν) λ(ν)
, (60)

μ0

λ(ν)
I1(z) + I2(z) =

μ2
1 〈x〉

α(ν) λ(ν)2 , (61)

α(ν)κ I3(z) + α(ν)−κ I4(z) = 2 (1 + ℵ) I1(z) , (62)

where Ii(z), i = 1, . . . , 4, are elementary integrals given by

I1(z) =
z∫

0

xκ + x−κ

2
dx =

z
2

(
zκ

1 + κ
+

z−κ

1− κ

)
, (63)

I2(z) =
z∫

0

x2 κ + x−2 κ

4 κ
dx =

z
4 κ

(
z2 κ

1 + 2 κ
− z−2 κ

1− 2 κ

)
, (64)

I3(z) =
z∫

0

x2 κ + 1
2

dx =
z
2

(
z2 κ

1 + 2 κ
+ 1

)
, (65)

I4(z) =
z∫

0

x−2 κ + 1
2

dx =
z
2

(
z−2 κ

1− 2 κ
+ 1

)
, (66)

as functions of the quantity

z = expκ

(
− γ

λ(ν)

)
. (67)

The system of Equations (60)–(62) can be solved numerically to obtain the Lagrange multi-
pliers μ0(ℵ, 〈x〉), μ1(ℵ, 〈x〉) and ν(ℵ, 〈x〉) as functions of the constraints ℵ and 〈x〉.
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For any fixed value of ℵ, real solutions only exist in certain intervals of 〈x〉. This is
shown in Figure 1, where the region of existence of real solutions (shaded areas) of the
system of Equations (60)–(62) is depicted for several values of the deformation parameter κ.
The case κ = 0 (not reported in the figure) corresponds to the horizontal line passing for
ℵ = 0. In this case, κ-entropy becomes 1-additive for any pdf.
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Figure 1. In the figure, we plotted the region of real solutions of system (60)–(62) in the plane of
constraints, for several values of the deformation parameter κ. The shaded areas represent the
admissible domine.

In other words, each value of ℵ selects a class of distributions whose interval
(〈x〉min, 〈x〉max) determines the possible pdf for which the κ-entropy is (1 + ℵ)-additive.

In Table 1, we give some numerical values of the interval (〈x〉min, 〈x〉max) for the
ℵ-classes between 0.5 and 2.5, step 0.5, corresponding to the three values of the deformation
parameter κ reported in the figure.

Table 1. Permitted interval (〈x〉min, 〈x〉max) for the ℵ-classes between 0.5 and 2.5, step 0.5, corre-
sponding to the three values of the deformation parameter κ reported in the figure.

κ = 0.2 κ = 0.3 κ = 0.4

ℵ 〈x〉min 〈x〉max 〈x〉min 〈x〉max 〈x〉min 〈x〉max

0.5 36.8 41.3 5.85 8.06 1.34 3.57

1.0 224.0 246.0 20.59 26.70 4.36 8.87

1.5 787.0 863.0 48.53 61.90 8.78 16.09

2.0 2107.0 2306.0 94.40 119.90 14.81 26.36

2.5 4752.0 5193.0 163.10 206.10 22.64 39.63

As an example, let us consider the case with κ = 0.3 and ℵ = 1.0. Any pair of
κ-deformed Gibbs-like distributions with 20.59 < 〈x〉 < 26.70 is 2-additive; that is,
Sκ(pA pB) = 2

(
Sκ(pA) + Sκ(pB)

)
. For instance, take 〈xA〉 = 22.5 and 〈xB〉 = 25.5; we

can evaluate the numerical values of the Lagrange multipliers corresponding to constraints
(56)–(58).

These can be read from Table 2, where we show several numerical values of the
Lagrange multipliers μ0, μ1 and ν, obtained from the system of Equations (60)–(62), for
several values of constraints ℵ and 〈x〉 belonging to the allowed region, and corresponding
to the three values of the deformation parameter κ reported in the figure.

From this table, we can obtain the terna of multiplier values (−2.1989, 0.01849, −0.8219),
corresponding to the distribution pA(22.5), and (−7.3990, 0.009404, −1.0796), correspond-
ing to the two distributions pB(25.5). Then, the respective values of κ-entropy of these two
distributions pA and pB are readily evaluated in Sκ(pA) = 5.63627 and Sκ(pB) = 5.70258,
while the value of κ-entropy for the join system Sκ

(
pA∪B) = 22.6777, which is exactly the

attended result.
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Table 2. Several numerical values of the Lagrange multipliers, μ0, μ1 and ν, obtained from the system
(60)–(62), for some values of constraints ℵ and 〈x〉 in the allowed region, corresponding to the three
values of the deformation parameter κ reported in the figure.

κ = 0.2 κ = 0.3 κ = 0.4

ℵ 〈x〉 μ0 μ1 ν 〈x〉 μ0 μ1 ν 〈x〉 μ0 μ1 ν

37 2.5761 0.03342 2.0607 6.0 0.8102 0.1980 0.5634 1.5 0.1690 0.8377 0.08488

0.5 38 −1.3791 0.01671 −0.8298 6.5 −1.7817 0.09376 −0.9642 2.0 −2.1727 0.3281 −1.1016
39 −3.6921 0.01204 −1.5989 7.0 −3.5685 0.06270 1.3475 2.5 −3.9538 0.1719 −1.2830
40 −6.7617 0.009670 −1.9744 7.5 −6.1733 0.04751 −1.5050 3.0 −6835 0.1113 −1.2834

225 1.2720 0.003917 0.8586 21.0 0.3309 0.04680 0.2129 5.0 −1.4060 0.1438 −0.6946

1 230 −1.8947 0.001918 −0.8003 22.5 −2.1989 0.01849 −0.8219 6.0 0.0608 −0.9088 −0.9088
235 −4.1393 0.001391 −1.2201 24.0 −4.1330 0.01231 −1.0079 7.0 −5.0451 0.03775 −0.9106
240 −7.2656 0.001124 −1.4248 25.5 −7.3990 0.009404 −1.0796 8.0 −8.6768 0.02712 −0.8879

790 2.2376 0.001219 1.4587 50.0 −0.5497 0.01190 −0.2549 9.0 0.1923 0.1678 0.1149

1.5 810 −2.1479 0.0004171 −0.6953 52.5 −2.2195 0.006305 −0.6605 11.0 −2.7096 0.03009 −0.7113
830 −4.9360 0.0002896 −1.0202 55.0 −3.6418 0.004508 −0.7731 13.0 −4.6906 0.01655 −0.7141
850 −10.1219 0.0002300 −1.1654 57.5 −5.4875 0.003571 −0.8236 15.0 −8.3442 0.01136 −0.6919

2150 −1.3309 0.0001541 −0.4175 95 1.1453 0.01147 0.6736 16.0 −1.2338 0.03603 −0.4690

2 2200 −3.9385 0.00009907 −0.7820 100 −1.7453 0.003185 −0.4927 19.0 −3.1742 0.01251 −0.5956
2250 −7.4910 0.00007668 −0.9237 105 −3.2500 0.002083 −0.6232 22.0 −5.1612 0.007630 −0.5848
2300 −26.3122 0.00006387 −1.0015 110 −5.0400 0.001591 −0.6727 25.0 −9.1792 0.005478 −0.5660

4800 0.08936 0.00008495 0.03164 170 −1.2742 0.001911 −0.3547 23.0 0.1565 0.05803 0.08391

2.5 4900 −2.6290 0.00004530 −0.5566 180 −3.1060 0.001066 −0.5263 28.0 −2.9118 0.007853 −0.508
5000 −5.0810 0.00003349 −0.7245 190 −5.2257 0.0007732 −0.5753 33.0 −5.0884 0.004362 −0.4981
5100 −9.2667 0.00002734 −0.8089 200 −9.9583 0.0006167 −0.5964 38.0 −9.8852 0.003019 −0.4796

5. Conclusions

In this work, we showed that, within κ-statistics, there exist classes of pdf that max-
imize κ-entropy under the condition of constant Iκ [p], a problem that admits a solution
at least for the family of Gibbs-like distributions. In this way, for any pair of distributions
belonging to the same ℵ-class, fixed by the real number ℵ > 0, κ-entropy turns out to
be (1 + ℵ)-additive; that is, the value of κ-entropy of a bipartite statistically independent
distribution, whose reduced belonging to the same ℵ-class is a multiple of the sum of the
single κ-entropy according to Equation (39).

Equivalently, for any pair of distributions belonging to the same ℵ-class, the entropic
excess is proportional to the sum of the κ-entropy of the single pdfs, according to (5).

On the physical ground, Distribution (46) describes a statistical ensemble constrained
by condition (38). While the physical meaning of functional Iκ is still unclear, it seems to be
related to the κ-partition function and, consequently, to the κ-free energy of the system, as
discussed in [57] (see also [45]). This also applies to Distribution (59), which characterizes a
canonical ensemble that is further constrained by (38). Moreover, given two independent
physical systems, both members of the same ℵ-class but with different internal energy, the
joined κ-entropy is an ℵ-multiple of the sum of their respective κ-entropies. This propriety
could be useful for studying thermal and mechanical equilibrium, where the composability
of entropy plays a role [62]. However, the potential impact that multi-additivity might have
on this aspect of the κ-thermostatistic deserves further investigation.

Furthermore, looking at Equations (27) and (30), we see that the entropic excess in
κ-statistics is related to the difference between the κ-entropy and κ-parentropy. In the κ = 0
case (standard statistics), such a difference is always null (ℵ = 0), i.e., parentropy and
entropy have a constant gap equal to 1 for any pdf. Otherwise, when κ > 0, the difference
between the κ-entropy and κ-parentropy depends on pdf. As shown in this paper, there
exist classes of distributions that optimize the κ-entropy under constraint (38), such that
the difference between the κ-entropy and κ-parentropy is fixed and equal to ℵ for any pdf
belonging to the same ℵ-class.

In other words, the difference between distribution (36) and distribution (46) can be
stated as follows: the former assigns distinct values for Sκ and Iκ , as these functionals both
depend on the expectation values 〈Oi〉. In contrast, the latter assigns distinct values for
Sκ , but assumes a constant value for Iκ = 1 + ℵ, fixed prior, for any distribution that falls

226



Entropy 2024, 26, 77

within the same ℵ-class. In this way, the entropic excess turns out to be proportional to the
sum of the κ-entropies of the two systems that are members of the same ℵ-class.
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Abstract: The axiomatic structure of the κ-statistcal theory is proven. In addition to the first three
standard Khinchin–Shannon axioms of continuity, maximality, and expansibility, two further axioms
are identified, namely the self-duality axiom and the scaling axiom. It is shown that both the κ-entropy
and its special limiting case, the classical Boltzmann–Gibbs–Shannon entropy, follow unambiguously
from the above new set of five axioms. It has been emphasized that the statistical theory that can be
built from κ-entropy has a validity that goes beyond physics and can be used to treat physical, natural,
or artificial complex systems. The physical origin of the self-duality and scaling axioms has been
investigated and traced back to the first principles of relativistic physics, i.e., the Galileo relativity
principle and the Einstein principle of the constancy of the speed of light. It has been shown that
the κ-formalism, which emerges from the κ-entropy, can treat both simple (few-body) and complex
(statistical) systems in a unified way. Relativistic statistical mechanics based on κ-entropy is shown
that preserves the main features of classical statistical mechanics (kinetic theory, molecular chaos
hypothesis, maximum entropy principle, thermodynamic stability, H-theorem, and Lesche stability).
The answers that the κ-statistical theory gives to the more-than-a-century-old open problems of
relativistic physics, such as how thermodynamic quantities like temperature and entropy vary with
the speed of the reference frame, have been emphasized.

Keywords: relativistic statistical mechanics; power-law tailed distributions; κ-entropy; κ-distribution;
κ-statistics; κ-exponential; κ-logarithm; κ-mathematics; κ-deformation; temperature of a moving
body; relativistic temperature; relativistic thermodynamics

1. Introduction

The spread of the neologism κ-distribution within the astrophysical plasma community
began after the publication of the seminal paper of Vasyliunas’ [1,2] in 1968. The enormous
existing literature on so-called κ-plasmas shows the undisputed success of the Vasyliunas
κ-distribution, which still seems to be very relevant today. There have been a very high
number of attempts to justify it, which shows that none of the proposals put forward are
accepted by the whole community of physicists in the field and, therefore, the success
of this distribution is mainly of an empirical nature. Curiously, there are no advanced
proposals that consider the possibility of going beyond the Vasyliunas κ-distribution and
investigating new possible distributions that have other analytical forms but describe the
empirical data equally well.

This paper deals with the statistical theory [3,4] proposed in 2001, which goes beyond
the Vasyliunas distribution. The underlying new distribution is also called a κ-distribution,
which sometimes unintentionally causes some confusion for the reader. This choice was
made because κ-plasmas represent one of the most natural fields of applications of the
new κ-distribution. The promotion of the proposal of the new κ-distribution essentially
arises from the purely theoretical need to have a statistical distribution that possesses the
important property of self-duality, i.e., f (−E) f (E) = constant, as in the case of the Boltz-
mann exponential factor exp(−βE) exp(βE) = 1 of ordinary Boltzmann–Gibbs statistical
mechanics. This need was easily met thanks to the empirical evidence suggesting that the
Pareto power law trend of the statistical distribution has purely asymptotic validity. The
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new κ-distribution asymptotically exhibits a power-law tail but gradually transforms in
the intermediate range in its bulk range and takes on the features of the typical behavior
of the standard exponential Boltzmann factor. In the two papers published in 2002 [5]
and 2005 [6], it was shown that the new κ-distribution arises naturally in the context of
Einstein’s special relativity and generates a self-consistent κ-statistic, which turns out to be
a relativistic extension of classical Boltzmann–Gibbs statistical mechanics. The entirety of
κ-statistical mechanics can be traced back to κ-entropy

Sκ =
W

∑
i=1

f 1−κ
i − f 1+κ

i
2κ

(1)

where { fi} is the statistical distribution. Sκ entropy is the relativistic generalization of
classical Boltzmann–Gibbs–Shannon entropy, which recovers in the κ → 0 limit. The
corresponding κ-distribution behaves like the ordinary Boltzmann distribution at low
energies, while it presents a power-law tail at high energies.

One of the greatest successes of κ-statistics is undoubtedly the explanation of the
non-Boltzmannian spectrum of cosmic rays, which are relativistic particles. The persistent
power-law tails of this spectrum, spanning 13 decades in terms of energy and 33 decades
in terms of particle flux, turn out to be a purely relativistic effect correctly predicted by
κ-statistics.

Remarkably, although the statistical theory based on Sκ can be traced back to the first
principles of special relativity, it can also be introduced without reference to special relativ-
ity, as will be shown in Section II, since it also has applications outside relativistic physics.
For this reason, statistical theory [7–13] based on the κ-distribution has attracted the interest
of many researchers. In the last two decades, various authors have devoted themselves to
the study of both the theoretical foundations of the theory and its applications not only in
plasma physics but also in various other areas of the science of complex physical, natural,
or artificial statistical systems. Some of these works deal with the H-theorem and the molec-
ular chaos hypothesis [14,15], thermodynamic stability [16,17], Lesche stability [18–21], the
Legendre structure of the resulting thermodynamics [22,23], the thermodynamics of non-
equilibrium systems [24], quantum versions of the theory [25–28], the geometric structure
of the theory [29,30], various mathematical aspects of the theory [31–44], etc. On the other
hand, specific applications to physical systems have been considered, e.g., cosmic rays [5],
relativistic [45] and classical [46] plasmas in presence of external electromagnetic fields,
relaxation in relativistic plasmas under wave–particle interactions [47,48], electronic cool-
ing [49], dark energy models [50–70], quantum gravity [71–78], quantum cosmology [79–83],
gravitation and cosmology [84,85], anomalous diffusion [86,87], non-linear kinetics [88–94],
the kinetics of interacting atoms and photons [95], particle kinetics in the presence of
temperature gradients [96,97], particle systems in external conservative force fields [98],
stellar distributions in astrophysics [99–102], quark–gluon plasma formation [103], quan-
tum hadrodynamics models [104], fracture propagation [105], plasma physics [106–120],
seismology [121–124], seismic imaging [125–129], nuclear physics [130–134], and quan-
tum mechanics [135–137]. Other applications concern dynamical systems at the edge of
chaos [138–140], fractal systems [141], field theories [142], genomic analysis [143–145], ran-
dom matrix theory [146–148], robust statistical inference [149,150], error theory [151,152],
game theory [153], the theory of complex networks [154], information theory [155], etc.
Also, applications to economic systems have been considered, e.g., to study the personal
income distribution [156–162], to model deterministic heterogeneity in tastes and product
differentiation [163,164], in finance [165,166], in equity options [167], to construct taxation
and redistribution models [168], etc.

In this paper, we present some new aspects of κ-statistical theory. Section 2 focuses on
the axiomatic structure of the theory by proposing the five axioms from which the theory
can be deduced without referring to the principles of special relativity. Section 3 focuses on
the relativistic origin of the theory. Some peculiar aspects of the physical–mathematical
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formalism of the theory are emphasized and, in particular, it is shown how the axioms of
the theory emerge in relativistic physics. Finally, in Section 4, a synthetic overview of the
theory is given in the light of the results obtained in recent years.

2. An Axiomatic Approach to κ-Entropy

The concept of entropy was introduced in the second half of the nineteenth century in
the context of thermodynamics by Clausius, who also gave it its name, and immediately
afterward by Boltzmann in the context of statistical mechanics. This physical quantity,
which emerged within the framework of classical physics, has retained its original form over
time, even after the emergence of new branches of physics such as relativistic physics and
quantum physics. This entropy, which is still used in physics, was also introduced towards
the middle of the twentieth century in Shannon’s information theory and subsequently in
various fields of science to treat physical, natural, or artificial complex systems. Currently,
this entropy is called Boltzmann–Gibbs–Shannon (BGS) entropy [169,170] and is a special
case of the more general class of the trace form generalized entropic functional

S =
W

∑
i=1

σ( fi) = −
W

∑
i=1

fiΛ( fi) = − < Λ( fi) > (2)

where<> indicates the standard mean value, and in the distribution f = { f1, f2, . . . , fi, . . . , fW},
fi represents the probability that the system is in the microstate i with ∑W

1 fi = 1. The
standard BGS entropy is obtained by setting Λ( fi) = ln( fi). In expression (2) of the general-
ized entropy [171,172], the function Λ( fi), called the generalized logarithm, is an arbitrary
strictly increasing function that is negative on the interval 0 < fi < 1. The function
σ( fi) = − fi Λ( fi) represents the contribution to entropy associated with the state i.

Some meaningful properties of the BGS entropy that are elevated to the rank of
axioms [169,170], i.e., the Khinchin–Shannon (KS) axioms I, II, and III, can also apply to
the generalized entropies. It is therefore assumed that the generalized entropy defined in
Equation (2) obeys the following three KS axioms:

I. Continuity axiom: The entropy depends continuously on all the variables fi. From
this axiom follows the continuity of the function Λ(pi).

II. Maximality axiom: The entropy is maximized by the uniform distribution fW = { f1 =
1

W , f2 = 1
W , . . . , fi =

1
W , . . . , fW = 1

W }, i.e., S[ f ] ≤ S[ fW ]. From this axiom follows the

concavity property d2 σ( fi)

d f 2
i

< 0.

III. Expansibility axiom: The (W + 1)-component distribution g obtained after the ex-
pansion of the W-component distribution f by adding a component with probability
equal to zero corresponds to the same entropy of the distribution g, i.e., S[g] = S[ f ].
From this axiom follows the property 0+Λ(0+) = 0. We also recall that the partic-
ular probability distribution f = {δia, 1 ≤ i ≤ W}, where a is a given integer with
1 ≤ a ≤ W, describes a state for which one has the maximum information. For this
state, S = 0 must be set. This condition in turn states that 0+Λ(0+) = 0 and also that
Λ(1) = 0. Equivalently, we can set up σ(0) = σ(1) = 1.

It is noteworthy that although the above three KS axioms impose some properties on
the function Λ( fi) and then on σ( fi), they do not uniquely determine its form. In the case of
BGS entropy, the form of the function Λ( fi) is determined by the fourth KS axiom, i.e., the
separability or strong additivity axiom, which implies the property Λ( fi gj) = Λ( fi) + Λ(gj),
from which Λ( fi) = ln( fi) follows. To go beyond the logarithmic BGS entropy and introduce
new entropic functionals, it is necessary to abandon the fourth KS axiom, provided that the
first three KS axioms are still equally valid. The fourth KS axiom is replaced by two meaningful
properties of the BGS entropy that can equally define the BGS entropy form without invoking
the additivity property of the ordinary logarithm function. These two properties are elevated
to the status of new axioms and must also apply to the case of generalized entropies. The
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problem is, therefore, reduced to the search for new generalized entropies that, in addition to
the ordinary BGS entropy, also obey the two new axioms.

Starting from the generalized logarithm Λ( fi), we introduce the function Λ(1/ fi),
which we will call generalized surprise or generalized unexpectedness in analogy to the
terms surprise [173] or unexpectedness [174] used in the literature when the generalized
logarithm is reduced to the ordinary logarithm. The generalized surprise/unexpectedness
is a continuous, decreasing function that admits a unique zero at fi = 1. The opposite of
the generalized surprise/unexpectedness Λ∗( fi) = −Λ(1/ fi) is a continuous, increasing
function and is referred to below as the dual generalized logarithm. The two generalized
logarithms Λ( fi) and Λ∗( fi), are the duals of each other and are both increasing functions
on the interval 0 < fi < +∞ with a zero at fi = 1. The two functions σ( fi) = − fi Λ( fi) and
σ∗( fi) = − fi Λ∗( fi) can be employed to construct the two entropic functionals S = ∑i σ( fi)
and S∗ = ∑i σ∗( fi), respectively, both of which fulfill the first three KS axioms. In general,
S∗ 
= S holds, and this leads to a theoretical dichotomy, since the two entropies S and
S∗ define two different statistical theories and, most worryingly, there is no criterion for
choosing one of the two entropies. This dilemma does not exist in the case of ordinary BGS
entropy, because the property ln(1/ fi) = − ln( fi) implies the self-duality of the logarithm
ln∗( fi) = ln( fi) and then the self-duality of the entropy, i.e., S∗ = S. To guarantee the
uniqueness of the entropy form when considering a generalized statistical theory, we must
force the generalized logarithm to be self-dual, just as in the case of ordinary statistical
theory. Then, we can introduce the following axiom:

IV. Self-duality axiom: The entropy defined in Equation (2) must be considered both as
the standard mean value of the opposite of the generalized logarithm −Λ( fi) and as
the standard mean value of the generalized surprise/unexpectedness Λ(1/ fi), i.e.,

S = − < Λ( fi) > = < Λ(1/ fi) > (3)

or, equivalently, the generalized logarithm must possess the self-duality property

Λ(1/ fi) = −Λ( fi) (4)

It is noteworthy that axioms I, III, and IV concern some properties of the function σ( fi)

or equivalently of Λ( fi), while axiom II concerns a precise property of the function d2σ( fi)

d f 2
i

.

In the following, we will focus on a property of the function λ( fi) = − dσ( fi)
d fi

= d
d fi

fiΛ( fi).

First, recall that σ( fi) is a continuous and concave function with d2σ( fi)

d f 2
i

< 0, which has two

zeros σ(0) = σ(1) = 0. Then, σ( fi) presents its maximum value at fi = 1/ε with ε > 1.
This means that λ( fi) is a monotonically increasing function that has a zero at fi = 1/ε.
These general features of the function λ( fi) are typical of a generalized logarithm, with
the exception that the generalized logarithm has its zero at fi = 1. Recall that in the case
of the ordinary logarithm, the associated function λ( fi) is simply the ordinary logarithm
after it has been properly scaled, i.e., λ( fi) = 1

γ ln(ε fi), with γ = 1 and ε = e (e is the
Napier number). This scaling property of the ordinary logarithm must also apply to the
generalized logarithm Λ( fi), so that the relationship λ( fi) =

1
γ Λ(ε fi) must hold, with γ

and ε being two scaling parameters that are connected by the Boltzmann limit limγ→1 ε = e.
The above scaling property of Λ( fi) is elevated to the status of the following axiom:

V. Scaling axiom: The generalized logarithm which appears in the definition of entropy
(2) has the following property of scaling:

d
d fi

(
fiΛ( fi)

)
=

1
γ

Λ(ε fi) (5)

where γ and ε are the scaling parameters.
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The question naturally arises as to whether the BGS entropy is the only existing entropy
that obeys the two axioms of self-duality and scaling or whether there is another generalized
entropy that equally fulfills the two axioms mentioned. To answer this question, we start
from Equation (5), which expresses the scaling axiom and is to be regarded as a differential–
functional equation. We seek its general solution after we have correctly determined the
free scaling parameters γ and ε. Equation (5) was solved in [5,32], and it was shown that
besides the BGS entropy, there is a large class of entropies obeying the scaling axiom, some
of which are already known in the literature [5,32]. This class of generalized entropies is
drastically reduced if the generalized entropy must simultaneously satisfy the scaling and
self-duality axioms. In this case, the above class of generalized entropies is reduced to only
two entropies. Only the standard BGS entropy corresponding to Λ( fi) = ln( fi) and the
so-called κ-entropy Sκ corresponding to the κ-logarithm Λ( fi) = lnκ( fi) remain to obey the
two scaling and self-duality axioms simultaneously. The κ-logarithm is defined by

lnκ( fi) =
f κ
i − f−κ

i
2κ

=
1
κ

sinh(κ ln( fi)) (6)

The free parameter that appears in the expression of the κ-logarithm varies in the range of
0 < κ < 1 and in the κ → 0 limit, the κ-logarithm lnκ( fi) is reduced to the ordinary loga-
rithm ln( fi). The function lnκ( fi) can then be regarded as a one-parameter generalization
of the ordinary logarithm. Remarkably, the meaning of the parameter κ emerges when the
asymptotic behaviour of the κ-logarithm is considered. The asymptotic behaviour of the
κ-logarithm results from Equation (6), i.e., for fi → 0+, it obtains lnκ( fi) ∝ − f−κ

i , while for
fi → +∞, according to self-duality axiom, it results in lnκ( fi) ∝ f κ

i . The parameter κ turns
out to be the Pareto index, which characterizes the power-law asymptotic behavior of the
κ-logarithm. Finally, the constants γ and ε = expκ(γ) are given by

γ =
1√

1− κ2
, ε =

(
1 + κ

1− κ

) 1
2κ

(7)

and in the κ → 0 limit, they reduce to unity and Napier number e, respectively, reproducing
the results of the standard logarithmic entropy. The connection between the parameters γ
and ε follows directly from their expressions and is given by γ = lnκ(ε).

Besides the BGS entropy, the κ-entropy is the only one that simultaneously fulfills all
five axioms presented above. Thanks to the self-duality property of the κ-logarithm, i.e.,
lnκ(1/ fi) = − lnκ( fi), κ-entropy can be written as follows:

Sκ =
W

∑
i

σκ( fi) = −
W

∑
i

fi lnκ( fi) =
W

∑
i

fi lnκ(1/ fi) (8)

and can be regarded as the standard mean of both the opposite of the κ-logarithm and its
self-dual κ-surprise/unexpectedness i.e. Sκ = − < lnκ( fi) > = < lnκ(1/ fi) >.

This axiomatic approach to the introduction of κ-entropy is typical of information
theory. Remarkably, the two self-duality and scaling axioms that give rise to κ-entropy
are also valid in the framework of BGS entropy, although they do not have the rank of
axioms but rather express two important properties of standard entropy. The method of
replacing the strong additivity axiom of BGS entropy with the new self-duality and scaling
axioms that do not contradict any of the standard properties of BGS entropy, including
its additivity, clearly leads to a new generalized entropy, namely κ-entropy, which can be
employed to analyze physical or non-physical complex systems.

In the reference [175], about sixty different entropies are given, and the corresponding
list is not complete. For each of these generalized entropies, it is in principle possible to
identify the founding axioms that follow the standard lines of information theory [171].
In any case, it is important to emphasize that entropy is a physical concept that was first
introduced in the context of classical thermodynamics and statistical physics. This means
that a generalized entropy that claims to be physically meaningful should not only be
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introduced by postulating some mathematical axioms, as we have done here, but also that
these founding axioms should emerge within the framework of a physical theory, starting
from its first principles.

The task of the next section will be to show that the two axioms of self-duality and
scaling, as well as the κ-logarithm form, follow naturally from the first principles of
special relativity.

3. Special Relativity

3.1. Energy–Momentum Lorentz Transformations

Let us consider two identical particles A and B with rest mass m in the one-dimensional
inertial frame S , whose velocities, momenta, and total energies are given by vA, pA =
mvAγ(vA), and EA = mc2γ(vA) and vA, pB = mvBγ(vB), and EB = mc2γ(vB), respectively,
where γ(v) = (1− v2/c2)−1/2 is the Lorentz factor, and c is the light speed.

In the rest frame S′ of particle B, the above variables in the case of particle B assume
the values v′B = 0, p′B = 0, and E′B = mc2, respectively, while the velocity v′A of particle A is
given by the Einstein relativistic velocity additivity law v′A = (vA − vB)/(1− vAvB/c2). In
the same frame S′, the momentum p′A and the energy E′A of the particle A are given by the
dynamic Lorentz transformations

p′A = γ(vB)pA − c−2vBγ(vB)EA (9)

E′A = γ(vB)EA − vBγ(vB)pA (10)

After introducing the momentum pB = mvBγ(vB) and the energy EB = mc2γ(vB) of the
particle B, the above transformations assume the form

p′A =
1

mc2 pAEB −
1

mc2 EA pB (11)

E′A =
1

mc2 EAEB −
1
m

pA pB (12)

It will be more useful for our discussion hereafter to introduce the new dimensionless
variables (u, q, E) in place of the dimensional variables (v, p, E) through

v
u
=

p
mq

=

√
E

mE = κc = v∗ < c (13)

where v∗ is an arbitrary reference velocity. For a particle at rest, this results in E(0) = m c2

and then E(0) = 1/κ2 so that 1/κ2 is the dimensionless rest energy of the particle. Finally,
we note that the classical c → ∞ limit is replaced now by the κ → 0 limit.

The Lorentz transformations for the dimensionless momentum and energy variable q
and E assume the form

q′A = κ2qAEB − κ2qBEA (14)

E′A = κ2EAEB − qAqB (15)

3.2. Emergence of κ-Exponential Function in Special Relativity

By directly combining the Lorentz transformations, we obtain

κ2E′A ± κq′A =
(

κ2EB ∓ κqB

)(
κ2EA ± κqA

)
(16)

The variables κ2E ± κq ≥ 0 can be viewed as a dynamic light cone variable, and Equation (16)
can be written in the form(

κ2E′A ± κq′A
)1/κ

=
(

κ2EB ∓ κqB

)1/κ(
κ2EA ± κqA

)1/κ
(17)
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After taking into account that limκ→0
(
κ2E ± κq

)1/κ
= exp(±q), the latter relationship

reduces to exp(±q′A) = exp(∓qB) exp(±qA), which implies the Galilei transformations for
the momenta q′A = qA − qB. This result suggests the introduction of the new variable

expκ(q) =
(

κ2E + κ q
)1/κ

(18)

generalizing within the special relativity the ordinary exponential exp(q), which recovers
in the classical limit, i.e., lim κ→0 expκ(q) = exp(q). The Lorentz transformations, as given
by Equation (17), in terms of the κ-exponential function, assume the form

expκ(±q′A) = expκ(∓qB) expκ(±qA) (19)

Starting from the Lorentz transformations (14) and (15), the relationship expressing the
Lorentz invariance, i.e., κ4E′2 − κ2q′2 = κ4E2 − κ2q2, can be obtained, and after identifying
S′ as the particle rest frame where E(0) = 1/κ2, the energy–momentum dispersion relation

κ4E2 − κ2q2 = 1 (20)

follows. From the latter relationship, the expression of the dimensionless total energy E
can be obtained in terms of the dimensionless momentum q

E =
1
κ2

√
1 + κ2 q2 (21)

After inserting this expression of total energy in the definition (18) of the κ-exponential
function, the explicit form is obtained as follows:

expκ(q) =
(√

1 + κ2q2 + κq
)1/κ

= exp
(

1
κ

arcsinh(κq)
)

(22)

After the substitution of the expression of the dimensionless total energy given by
Equation (21) into the first of the Lorentz transformations given by Equation (14), the relativistic

additivity law of the dimensionless momenta assumes the form q′A = qA

κ
 qB = qA

κ
⊕ (−qB),

where the κ-sum
κ
⊕ is defined as

qA

κ
⊕ qB = qA

√
1 + κ2 q2

B + qB

√
1 + κ2 q2

A (23)

The following property of the κ-exponential holds:

expκ(qA

κ
⊕ qB) = expκ(qA) expκ(qB) (24)

which is reminiscent of the analogous property of the classical exponential function
exp(qA + qA) = exp(qA) exp(qB).

3.3. Emergence of κ-Logarithm Function in Special Relativity

The function lnκ(w) is defined as the inverse function of expκ(w) through
lnκ(expκ w) = expκ(lnκ w) = w. Its explicit expression is

lnκ(w) =
wκ − w−κ

2κ
=

1
κ

sinh (κ ln w) (25)

and it reduces to the ordinary logarithm in the classical limit, i.e., limκ→0 lnκ(w) = ln(w).
The ordinary logarithm ln(w) is the only existing function unless a multiplicative con-

stant is used, which results in the solution to the function equation ln(w1w2) = ln(w1) +
ln(w2). Let us now consider the relativistic generalization of this equation, which we ob-
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tain from the Lorentz transformation given by Equation (24) after posing w = expκ(q), i.e.,

lnκ(w1w2) = lnκ(w1)
κ
⊕ lnκ(w2), which is written as

lnκ(w1w2) = lnκ(w1) γκ(lnκ(w2)) + lnκ(w2) γκ(lnκ(w1)) (26)

where γκ(lnκ(w)) =
√

1 + κ2 ln2
κ(w) is the Lorentz factor of argument lnκ(w). By the direct

substitution of the κ-logarithm in the expression of γκ(lnκ(w)), the further expression
γκ(lnκ(w)) = (wκ + w−κ)/2 is obtained. Starting from this latter relationship and after
some tedious but straightforward calculation, a third expression is obtained of the function
γκ(lnκ(w)), i.e.,

γκ(lnκ(w)) =
1
γ

lnκ(εw)− lnκ(w) (27)

where the constant ε = ((1 + κ)/(1− κ))1/2κ represents the κ-generalization of the Napier
number e, while the constant γ = 1/

√
1− κ2 is the Lorentz factor corresponding to the

reference velocity v = v∗. The two constants are linked through ε = expκ(γ). Equation (27)
expresses an important property of the κ-logarithm, which will be used in the following.

It is noteworthy that the introduction of the function lnκ(w) allows us to write the
additivity law of dimensionless relativistic moments defined in Equation (24) in the form

qA

κ
⊕ qB = lnκ

(
expκ(qA) expκ(qB)

)
(28)

3.4. Emergence of Self-Duality in Special Relativity

The dispersion relation (20) can be written in the factorized form
(
κ2E + κ q

)(
κ2E − κ q

)
=

1, and after noticing that κ2E ± κ q ≥ 0, the dispersion relation can be rewritten as follows:(
κ2E + κ q

)1/κ(
κ2E − κ q

)1/κ
= 1 (29)

and finally, after involving the κ-exponential function, the relation can be rewritten as

expκ(q) expκ(−q) = 1 (30)

The latter relationship expresses an important property of the κ-exponential function, which,
in the classical limit, is reduced to the well-known property of the ordinary exponential
function exp(q) exp(−q) = 1. As in the case of the ordinary exponential function, the
values of the κ-exponential function for q < 0 are directly related to its values for q > 0,
resulting in expκ(−q) = 1/ expκ(q). This self-duality property in terms of the κ-logarithm
assumes the form

lnκ(1/w) = − lnκ(w) (31)

and means that the values of the κ-logarithm function on the interval w > 1 are related to
its values on the interval 0 < w < 1. An important consequence of the relationship (30) is
that the inverse transformations of the direct Lorentz transformations (19) assume the form

expκ(±qA) = expκ(±qB) expκ(±q′A) (32)

A comparison of the direct (19) and inverse (32) Lorentz transformations shows that the
inverse Lorentz transformations have the same structure as the direct transformations,
except for the substitutions q′A ↔ qA and qB → −qB. This symmetry expresses the Galilean
principle of relativity, which applies both in classical physics and in special relativity
and prescribes the equivalence of all inertial frames. From this, we can conclude that
the self-duality property exp(q) exp(−q) = 1 of the ordinary exponential function and
the analogous property of the κ-exponential function, which is given by Equation (30), is
enforced by the Galilean principle of relativity.
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3.5. κ-Mathematics

The additivity law of dimensionless relativistic moments defined in Equation (23)

with qA, qB ∈ R called κ-sum and denoted by
κ
⊕ is a generalized sum and can be viewed

as a one-parameter, continuous deformation of the ordinary sum, which recovers in the

classical limit κ → 0, i.e., qA
0
⊕ qB = qA + qB. The κ-sum has the following properties:

(1) it is associative, where (qA
κ
⊕ qB)

κ
⊕ qC = qA

κ
⊕ (qB

κ
⊕ qC); (2) it admits a neutral

element, where qA
κ
⊕ 0 = 0

κ
⊕ aA = qA; (3) it admits an opposite element, where

qA
κ
⊕ (−qA) = (−qA)

κ
⊕ qA = 0; (4) it is commutative, where qA

κ
⊕ qB = qB

κ
⊕ qA. Then,

the algebraic structure (R,
κ
⊕) forms an abelian group. The κ-difference

κ
 is defined as

qA
κ
 qB = qA

κ
⊕ (−qA).

Starting from the κ-sum, κ-mathematics can be introduced after defining the κ-exponential
function as the solution to the functional Equation (24). The introduction of κ-functions
can be performed starting from the κ-exponential and following the standard procedures
of ordinary mathematics. For instance, κ-trigonometry (ordinary or hyperbolic) can be
introduced by employing the κ-Euler formula, while the κ-inverse function follows after
the inversion of their direct functions [3]. Also, κ-differential calculus can be introduced
after defining the κ-derivative as the differential operator, which acts on the κ-exponential
function, which subsequently produces the κ-exponential function itself.

Next, we revisit the κ-derivative and discuss how it arises within the special relativity.
Let us consider two identical particles A and B in the one-dimension spatial frame S having
dimensionless momenta qA = q and qB = q̃, respectively. In the rest frame S′ of particle
B, which is an inertial frame that moves with velocity vB with respect the inertial frame S ,
the dimensionless moment of particle B is q′B = q̃′ = 0, while the dimensionless moment

q′A = q′ of particle A is given by q′ = q
κ
 q̃. We suppose that q̃ ≈ q and pose dq ≈ q− q̃

and dq′ ≈ q
κ
 q̃. Starting from the limit

lim
q̃→q

q
κ
 q̃

q− q̃
=

1
γκ(q)

(33)

with γκ(q) =
√

1 + κ2q2 being the Lorentz factor, the differential dq′ can be obtained as

dq′ =
dq

γκ(q)
(34)

The κ-differential dκq = dq′ has a very transparent physical meaning representing the
infinitesimal variation in the momentum of a given particle, observed in the frame S′. It is
related to the infinitesimal variation in the momentum dq of the same particle, observed
in the inertial frame S through the Lorentz factor. A further interesting property of the
differentials dκq is given by dκq = d(ρκ(q)) or simply dκq = dρ, where ρ = ρκ(q) is the
κ-rapidity defined through

ρκ(q) =
1
κ

arcsinh(κ q) (35)

The variable φκ(u) = arctanh(v/c) = arctanh(κu) was introduced into special relativity
in 1910 by V. Varicak and E. T. Whittak and was named rapidity by A. Robb in 1911. The
old rapidity is related to the κ-rapidity ρκ(q) through φκ(u) = κ ρκ(q), which can be easily
verified after taking into account that u = q/γκ(q). The presence of the proportionality
factor κ in the relation linking φκ(u) and ρκ(q) is not trivial because, in the classical limit,
the κ-rapidity reduces to the dimensionless momentum, i.e., ρ0(q) = q, while in the same
limit, the old rapidity does not reduce to the dimensionless velocity holding φ0(u) = 0.
The relativistic composition law of κ-rapidity is given by
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ρκ(q′A) = ρκ(qA)− ρκ(qB) (36)

and becomes identical to the ordinary difference ρ′A = ρA − ρB. The expression of the
κ-exponential function in terms of ρκ(q) is given by

expκ(q) = exp(ρκ(q)) (37)

The κ-derivative of the scalar function f (q) is defined through

d f (q)
dκ q

= γκ(q)
d f (q)

d q
(38)

It is important to note that d f (q) is an ordinary differential, while dκ q is a κ-differential.
It follows that the κ-derivative is proportional through the Lorentz factor γκ(q) to the
ordinary derivative and then obeys Leibniz’s rules of the ordinary derivative.

3.6. The κ-Differential Equations

The dynamic variables of relativistic physics can be obtained as solutions of first-order
differential equations involving the κ-derivative d f (q)/dκq, which, in the classical limit,
reduces to the corresponding differential equations of classical physics.

The solution to

d
dκq

f (q) = 1 (39)

with the condition f (0) = 0 is the rapidity function f (q) = ρκ(q), i.e., f (q) = 1
κ arcsinh(κq).

The solution to

d
dκq

f (q) = q (40)

with the condition that f (0) = 1/κ2 is the total energy f (q) = Eκ(q), i.e., f (q) =
√

1 + κ2q2/κ2,
while the solution to the same equation with the condition f (0) = 0 is the relativistic kinetic
energy f (q) =Wκ(q) i.e., f (q) =

(√
1 + κ2q2 − 1

)
/κ2.

The solution to

d
dκq

f (q) = κ2q (41)

with the condition f (0) = 1 is the Lorentz factor f (q) = γκ(q), i.e., f (q) =
√

1 + κ2q2.
The solution to

d
dκq

f (q) = f (q) (42)

with the condition f (0) = 1 is the κ-exponential function f (q) =
(√

1 + κ2q2 + κq
)1/κ

.

Finally, the relativistic velocity uκ(q) = q/
√

1 + κ2q2 is the solution f (q) = uκ(q) of
the differential equation

d
dκq

f (q) =
(

f (q)
q

)2

(43)

with the condition f (±∞) = ±1/κ.
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3.7. The Scaling Property of κ-Logarithm

The differential equation√
1 + κ2q2 d expκ (q)

dq
= expκ(q) (44)

obeyed by the expκ(q) can be easily inverted, obtaining

d lnκ (w)

dw
=

γκ(lnκ(w))

w
(45)

and after taking into account Equation (27), it follows that the κ-logarithm function obeys
the first-order differential–functional equation

d
dw

[w lnκ (w) ] =
1
γ

lnκ(εw) (46)

expressing the so-called scaling property of the κ-logarithm. In the κ → 0 classical limit,
the latter equation continues to hold and reduces to a well-known property of the ordinary
logarithm, where scaling constants reduce to the values γ = 1 and ε = e.

The two last equations, if combined, lead to the further property of κ-logarithm

d2

dw2 [w lnκ (w)] =
1

γ w
γκ(lnκ(εw)) ≥ 0 (47)

4. κ-Statistical Physics

4.1. Maximum Entropy Principle and κ-Entropy

In proposing a relativistic statistical theory, the only guiding principle available is
the metaphor of classical statistical physics, and the entropy form plays an important role
in this context. The standard relativistic statistical theory is based on an entropic form
identical to that of classical statistical physics, the BGS entropy. This is due to the great
success of BGS entropy in classical many-body physics. In Einstein’s special relativity, all
microscopic physical quantities such as particle momentum or particle energy are properly
generalized. Regarding macroscopic quantities such as temperature or pressure, there is
still a debate about how they should be defined in a relativistic context. It is, therefore,
an evident dichotomy that on one side, there is the BGS entropy, which dominates both
classical and relativistic physics, and on the other side, there are all the other physical
quantities, both microscopic and macroscopic, which are or could be modified in special
relativity. We note that the BGS entropy in the relativistic context conducts to the Juttner
distribution, which, when considered as a function of the relativistic particle energy, is
exactly the Boltzmann exponential factor of classical physics. It has long been known that
the Boltzmann factor does not correctly describe the spectrum of cosmic rays, which are
relativistic particles.

In the following, we will present the relativistic statistical theory based on the κ-entropy
Sκ, which is defined as the standard mean of the opposite of the κ-logarithm emerging in
special relativity. The paradigm of classical statistical physics will be constantly present in our
discussion, and the starting point will be the maximum entropy principle, the cornerstone of
statistical theory. Let us consider the constrained entropy Φ( f ) = Sκ( f ) + C( f ), where the
constraints functional C( f ) is given in its simplest form by

C( f ) = a1

[
∑

i
fi − 1

]
+ a2

[
I −∑

i
Ii fi

]
(48)

where a1 and a2 are the Lagrange multipliers, while {Ii} is the generator function of
the moment I = ∑i Ii fi. The variational equation δΦ( f )

δ fi
= 0 implies the maximiza-
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tion of Sκ under the constraints imposing the conservation of the norm of fi and the
a priori knowledge of the values of the moment I = ∑i Ii fi generated by the generator
function {Ii}. The solution to the above variational problem conducts to the equation

d
d fi

( fi lnκ( fi)) = a1 − a2 Ii, which, after taking into account the scaling axiom, assumes
the form

1
γ

lnκ(ε fi) = a1 − a2 Ii (49)

In the case of a classical particle gas, the above equation reduces to ln(e fi) = a1 − a2 Ii,
where the microscopic collisional invariant Ii is the classical particle energy in the state i,
while Lagrange multipliers are related to the gas temperature T and chemical potential μ
according to a2 = 1/kBT and a1 = μ/kBT. The same parameters T and μ will also occur in
the case of a relativistic gas, while Ii will be the microscopic relativistic collisional invariant.
Equation (49), after inversion, takes the form

fi =
1
ε

expκ

(
− Ii − μ

kBTκ

)
(50)

with Tκ = T/γ.
Remarkably, thanks to the scaling property of the κ-logarithm, the expressions of the

κ-entropy and the κ-distribution fi are given in terms of the same function, which appears
in its direct (κ-logarithm) or inverse (κ-exponential) form, just as in the classical case.

Let us pose wi = (Ii − μ)/kBTκ . When wi → +∞, the asymptotic behavior of the
function expκ(−wi) is given by expκ(−wi) ≈ (2κwi)

−1/κ . Consequently, the tail of the
distribution (50) is described by a Pareto power law function, i.e., fi ≈ ε−1(2κwi)

−1/κ , in-
stead of the exponential tails of the Juttner distribution fi = e−1 exp(−wi), originating from
the BGS entropy. The power-law tail of the distribution (50) is one of its most interesting
features and is consistent with the experimental evidence in relativistic particle physics, i.e.,
cosmic rays and the so-called κ-plasmas observed in laboratory or in astrophysics.

Let us introduce the κ-entropy Sκ(g) = ∑i σ(gi), which refers to the arbitrary distribu-
tion g = {gi} and is subjected to the constraints described by the functional
C(g) = −∑i (a2 Ii − a1) gi − a1 + a2 I. Let us further denote by f = { fi} the optimal
distribution defined according to the maximum entropy principle, defined in Equation (49),
which takes the form a2 Ii − a1 = d σ( fi)

d fi
, so that the constraints functional can be written

as follows:

C(g) = −a1 + a2 I −∑
i

d σ( fi)

d fi
gi (51)

The difference in the constrained entropy Φ(g) from its maximum value Φ( f ), i.e.,
Φ( f )−Φ(g) = Sκ( f )− Sκ(g) + C( f )− C(g), finally assumes the form

Φ( f )−Φ(g) = ∑
i

[
σ( fi)−σ(gi)−

d σ( fi)

d fi
( fi−gi)

]
(52)

When gi ≈ fi, the Taylor expansion can be considered as

σ(gi) ≈ σ( fi) +
d σ( fi)

d fi
(gi − fi) +

1
2

d2σ( fi)

d f 2
i

(gi − fi)
2 (53)

so that we obtain

Φ( f )−Φ(g) ≈ −∑
i

1
2

d2σ(gi)

d g 2
i

( fi − gi)
2 (54)
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and after taking into account the expression of d2σ(gi)

d g 2
i

as given by Equation (47), we obtain

Φ( f )−Φ(g) ≈ ∑
i

γκ(lnκ(εgi))

2 γ gi
( fi − gi)

2 ≥ 0 (55)

The latter relationship tells us that Φ( f ) represents the maximum value of Φ(g) and
expresses the thermodynamic stability of the system.

Another stability that differs from thermodynamic stability is the Lesche stability
condition, which prescribes that any physically meaningful entropy that depends on a
probability distribution function g should exhibit a small relative error

R =

∣∣∣∣S(g)− S(h)
Smax

∣∣∣∣ (56)

with respect to small changes in the probability distributions g → h

D = ||g− h|| (57)

Mathematically, this means that for every ε > 0, there is a δ > 0 so that R ≤ ε applies to
all distribution functions that fulfill D ≤ δ. It is known that the Lesche stability condition
holds for the Boltzmann–Shannon entropy, and in refs. [18,19], it was shown that the
Lesche stability condition also holds for the κ-entropy. In addition, the κ-entropy is also
Lesche-stable in the thermodynamic limit.

4.2. κ-Kinetics

Let us consider the first equation of the Bogoliubov–Born–Green–Kirkwood–Yvon
hierarchy, which describes the evolution of a relativistic many-body system in the presence
of an external force field and imposes particle conservation during collisions [6,176,177]:

p ν∂ν f −mFν ∂ f
∂p ν

=
∫ d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
C( f ′, f ′1)− C( f , f1)

]
(58)

The system is described by the one-particle correlation function or distribution function
f = f (x, p), where x and p are the four-vector position and momentum. In the above
equation, both the streaming term and the Lorentz invariant integrations in the collision
integral have the standard forms of relativistic kinetic theory. The two-particle correlation
function C( f , f1), which is determined below, is postulated in the case of ordinary relativistic
kinetics as C( f , f1) = f f1, which represents the molecular chaos hypothesis and reduces the
above evolution equation to the relativistic Boltzmann equation.

Following standard lines of kinetic theory, we note that in stationary conditions, the
collision integral vanishes and then C( f , f1) = C( f ′, f ′1). This relationship expresses a
conservation law for the particle system and must have the form L( f ) + L( f1) = L( f ′) +
L( f ′1). In relativistic kinetics, the collision invariant L( f ), unless an additive constant, is
proportional to the microscopic relativistic invariant I(x, p), i.e.,

L( f ) = −a2 I(x, p) + a1 (59)

with a1 and a2 being two arbitrary constants. The more general microscopic relativistic in-
variant I, in the presence of an external electromagnetic field Aν, has a form proportional to

I(x, p) = (pν + qAν/c)Uν −mc2 (60)

with Uν being the hydrodynamic four-vector velocity with UνUν = c2 [176].
The expression of the distribution function defined in Equation (50) holds in stationary

conditions where the entropy of the particle system reaches its maximum value. According
to the scaling axiom, after considering the correspondences fi → f (x, p) and Ii → I(x, p)
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and after the identification of a2 = 1/kBT and a1 = μ/kBT, it follows that L( f ) = λκ( f ), or
more explicitly

L( f ) =
1
γ

lnκ(ε f ) (61)

while the stationary distribution assumes the form

f (x, p) =
1
ε

expκ

(
− I(x, p)− μ

kBTκ

)
(62)

with Tκ = T/γ.

4.3. κ-Molecular Chaos Hypothesis

In stationary conditions, C( f , f1) = C( f ′, f ′1) applies. This relationship expresses a
conservation law and can be written in the form L( f ) + L( f1) = L( f ′) + L( f ′1) after posing

C( f , f1) = L−1( L( f ) + L( f1)) (63)

The function L(w) increases monotonically on the interval 0 ≤ w < +∞, with L(0) = −∞
and L(+∞) = +∞. These conditions imply that C(0, f1) = C( f , 0) = 0, just as in the case
of the ordinary correlation function. After taking into account the expression of the function
L( f ), the two-particle correlation function assumes the form

ε C( f , f1) = expκ( lnκ(ε f ) + lnκ(ε f1)) (64)

which can be written in a more compact form

ε C( f , f1) = (ε f )⊗ (ε f1) (65)

by involving the generalized product

g⊗ h = expκ( lnκ g + lnκ h) (66)

This κ-product between probabilities has the following properties:

(i) (g⊗ h)⊗ l = g⊗ (h⊗ l), i.e., it is associative;
(ii) g⊗ h = h⊗ g, i.e., it is commutative;
(iii) 1⊗ g = g, i.e., it admits the unity as a neutral element;
(iv) g⊗ (1/g) = 1, i.e., the inverse element of g is 1/g;
(v) It holds the property g⊗ 0 = 0;
(vi) g$h = g⊗ (1/h) defines the κ-division between probabilities.

The real, positive probability distribution functions form an abelian group. The properties
of ⊗ are the same as those of the ordinary product, so the two products are isomorphic.

We can conclude that the relation given by Equation (64), which defines the two-
particle correlation function by the κ-product, is the relativistic version of the molecular
chaos hypothesis and reduces to its standard form C( f , f1) ∝ f f1 in the classical limit
κ → 0.

4.4. Four-Vector κ-Entropy and Relativistic H-Theorem

In standard relativistic kinetics, it is known from the H-theorem that entropy produc-
tion is never negative and that there is no entropy production under equilibrium conditions.
In the following, we will demonstrate the H-theorem for the system governed by the kinetic
Equation (58). We define the four-vector entropy Sν = (S0, S) as follows:

Sν = −
∫ d3 p

p0 pν f lnκ( f ) (67)
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and note that the scalar entropy S0 = Sκ coincides with the κ-entropy, while S = Sκ is the
κ-entropy flow. After considering the identity d3 p/p0 = d4 p 2 θ(p0) δ(pμ pμ −m2c2) and
the observation that d4 p is a scalar because the Jacobian of the Lorentz transformation is
equal to unity, we conclude that Sν transforms as a four-vector, since pν transforms as a
four-vector.

In order to calculate the entropy production ∂νSν, we start from the definition of
Sν and the relationship ∂ν [ f lnκ( f )] = [ ∂ [ f lnκ( f )]/ ∂ f ] ∂ν f = λκ( f ) ∂ν f with λκ( f ) =
1
γ lnκ(ε f ), obtaining

∂νSν = −
∫ d3 p

p0 λκ( f ) pν ∂ν f (68)

After taking into account the kinetic equation (58), the entropy production assumes the form

∂νSν =−
∫ d3 p

p0
d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
C( f ′, f ′1)−C( f , f1)

]
λκ( f )−m

∫ d3 p
p0 λκ( f ) Fν ∂ f

∂p ν
(69)

Since the Lorentz force Fν has the properties pνFν = 0 and ∂Fν/∂pν = 0, the last term
in the above equation involving Fν is equal to zero [176]. Given the particular symmetry of
the non-vanishing integral in Equation (69) we can write the entropy production as follows

∂νSν =
1
4

∫ d3 p
p0

d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G

×
[
C( f ′, f ′1)−C( f , f1)

]
[λκ( f ′)+λκ( f ′1)−λκ( f )−λκ( f1)] (70)

From the definition of the two-particle correlation function, it follows that λκ( f ′) +
λκ( f ′1) − λκ( f ) − λκ( f1) = λκ(C( f ′, f ′1)) − λκ(C( f , f1)), and after posing α′ = C( f ′, f ′1),
α = C( f , f1), finally, we write Equation () in the form

∂νSν =
1
4

∫ d3 p
p0

d3 p′

p′0
d3 p1

p 0
1

d3 p′1
p′01

G
[
α′ − α

]
[λκ(α

′)− λκ(α)] (71)

With λκ(α) being an increasing function, it follows that [α′ − α][λκ(α′)− λκ(α)] ≥ 0, ∀α′, α,
and then we can conclude that

∂νSν ≥ 0 (72)

This last relation is the local formulation of the relativistic H-theorem, which represents the
second law of thermodynamics for the system governed by the evolution Equation (58).

4.5. Relativistic Temperature

The construction of a thermodynamic theory compatible with the principles of special
relativity is an old and still open problem, dating back to the first years immediately after
the proposal of the relativistic theory. The proposals that have dealt with the question of
how the thermodynamic quantities that characterize the physical system change when the
inertial reference system changes are diverse and contradictory. Some of these proposals
are still under consideration, and the problem is still highly topical. Let T denote the
temperature of a body at rest and T′ the temperature of the body when the body is observed
from a reference frame moving at a speed characterized by the Lorentz factor γ. According
to Planck and Einstein, the two temperatures are linked by T′ = T/γ. According to Ott,
T′ = γT. Finally, according to Landsberg, T′ = T. In a series of subsequent articles, some
of which have appeared recently, the scientific community has overwhelmingly sided with
the Planck–Einstein proposal and accepted that a moving body is colder.

We do not intend to go into this important topic here. However, it is noteworthy that
the present formalism proves to be consistent with the Planck–Einstein proposal. Let us
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consider the particle gas described by the distribution function (62), where the relevant
temperature is given by

Tκ =
1
γ

T (73)

with
γ =

1√
1− κ2

=
1√

1− ( v∗
c )

2
(74)

A possible interpretation of the above formula of temperature is the following. The tem-
perature of the system at rest is T0 = T while Tκ = T0/γ < T0 is its temperature when it
is moving at speed v∗; this is just the Planck–Einstein proposal. The two temperatures Tκ

and T0 are proportional to each other, and the proportionality factor is the Lorentz factor
γ. Remarkably, entropy does not have this proportionality property. The entropy of the
physical system moving at the speed v∗ is Sκ = −∑i fi lnκ( fi), while its entropy at rest
reduces to the classical Boltzmann entropy S0 = −∑i fi ln ( fi).

5. Epilogue

Some of the results of the present theory, which were discussed in the previous sections,
are emphasized below:

(i) Relativistic statistical theory: It is possible to construct a statistical theory within the
framework of special relativity that preserves the main features of classical statistical
theory (axiomatic structure, maximum entropy principle, thermodynamic stability,
Lesche stability, molecular chaos hypothesis, local formulation of H-theorem, etc.).

(ii) Old problems of special relativity: Within the framework of the new relativistic statis-
tical theory, answers naturally arise to questions that were formulated immediately
after the proposal of special relativity as to how the temperature and entropy of a
moving body change. In particular, it turns out that the temperature varies according
to the law Tκ = T0/γ proposed by Planck and Einstein in 1906, where γ = 1/

√
1− κ2

is the Lorentz factor.
(iii) Axiomatic structure of the theory: Although the statistical theory generated by the

entropy Sκ was developed within the framework of Einstein’s special relativity, it can
also be introduced without reference to special relativity given its applications outside
physics by following the guidelines of information theory, which emphasizes the
axiomatic structure of the various theories. In the construction of κ-entropy, the first
three Khinchin–Shannon axioms are taken into account, i.e., those of the continuity,
maximality, and expansibility of the ordinary Boltzmann entropy. Subsequently, the
fourth Khinchin–Shannon axiom of strong additivity is replaced by two new axioms,
namely, those of self-duality and scaling, which express well-known properties of
logarithmic Boltzmann entropy. In the final step, it is shown that these five axioms are
not only able to generate the Boltzmann entropy but also a further and unique entropy,
namely, κ-entropy, which turns out to be a one-parameter continuous generalization of
the Boltzmann entropy. The axioms of self-duality and scaling can be seen as stemming
from the first principles of special relativity. In any case, these two axioms can also be
easily justified outside the special relativity, since they have general validity and can
also generate the Boltzmann entropy.

(iv) κ-mathematical statistics: Statistical theory does not only include statistical mechanics,
which is a physical theory. Mathematical statistics is another important tool for ana-
lyzing complex systems. Two important families of distributions dominate ordinary
mathematical statistics. On the one hand, there is the family of distributions with
exponential tails (generalized gamma distribution, Weibull distribution, logistic distri-
bution, etc.), and on the other hand, the family of distributions with power-law tails
(Pareto, Log-Logistic, Burr type XII or Singh-Maddala distribution, Dagum distribu-
tion, etc.). This dichotomy can be overcome in the framework of the present formalism
by using the κ-exponential function instead of the ordinary exponential function in
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the construction of statistical distributions, obtaining a unique family of statistical
distributions (κ-generalized gamma distribution, κ-Weibull distribution, κ-logistic
distribution, etc.). The new unified class of κ-distributions [178] in the low spectral
region reproduces the standard family of exponential distributions, while in the high
spectral region, it exhibits Pareto power-law tails.

(v) κ-mathematics: In special relativity, the physical quantities such as momentum, kinetic
energy, etc. are relativistically generalized and change their expressions relatively to
the corresponding classical expressions. The composition laws of the various physical
quantities are also properly generalized. The generalized sum of relativistic moments
inevitably leads to the generalization of the entire mathematics. The resulting κ-
calculus allows for the introduction of relativistic functions such as the κ-exponential,
the κ-logarithm, the κ-trigonometry, and so on. κ-mathematics proves to be isomorphic
to ordinary mathematics, which classically obtains the κ → 0 limit.

(vi) The Gell-Mann plectic: κ-mathematics is based on a formalism that can handle both
simple systems (relativistic one-particle physics) and complex systems (relativistic
statistical physics). Furthermore, the same formalism makes it possible to treat phys-
ical and non-physical complex systems (statistical physics, information theory, and
statistical mathematics) in a unified way. The above features of the κ-formalism give
it the status of a candidate for the construction of the holistic theory of simple and
complex systems, called plectics by Gell-Mann [179,180].
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