
mdpi.com/journal/mathematics

Special Issue Reprint

Computational Mechanics 
and Applied Mathematics

Edited by 

Matjaž Skrinar 



Computational Mechanics and
Applied Mathematics





Computational Mechanics and
Applied Mathematics

Guest Editor
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Preface

Structural engineering and mathematics have always existed mutually. Structural engineering

deals with mechanics, providing complex, adequate computational models, while mathematics

provides computational solution algorithms. Structural analysis is, therefore, one of the most

important and demanding engineering processes as it combines several elements which, although

carried out separately, lead to reliable and safe solutions as a whole: proper structural computational

model selection, the implementation of suitable mathematical methods, the critical evaluation of the

results with the possible modification or upgrade of the computational model and recalculation,

and the execution of details following the obtained results. The almost natural synergy between

mathematics and mechanics thus presents a potent tool in computational structural mechanics,

allowing engineers to design structures reliably without the help of experiments.

The evident and rapid progress in computational mechanics in recent decades (both in

mathematical models and computational algorithms) has already improved the level of knowledge

through various numerical methods (such as finite volume, finite element, boundary element,

and meshless methods) and simulations for various problems in the fields of computational

mechanics and engineering. This progress, supported by the simultaneous development of computer

technology, has allowed new models and approaches to become more comprehensive and complex

(including more information and detail), fast (i.e., computationally more efficient), robust, and

accurate.

Nevertheless, there is still room for improvement and, moreover, recent natural disasters have

reinforced the need for advanced and thorough constitutive modelling and structural analyses.

The present reprint contains the 10 articles that were, after strict reviews, accepted for publication

in the Special Issue “Computational Mechanics and Applied Mathematics” of the MDPI Mathematics

journal. These articles cover a wide range of themes connected to the two topics and are related

to applying new mathematical models, methods, or techniques in computational engineering

mechanics, including the analytical, semi-numerical, and numerical-based computational modelling

and analysis of structural engineering problems.

Because of its topicality, it can be expected that this reprint will be of interest and value for

specialists working in the complex areas of Computational Mechanics and Applied Mathematics,

either simply at the level of applying new knowledge or as inspiration for the foundation for new

knowledge development.

The Guest Editor is himself part of the team that made the Special Issue possible. As the

Guest Editor of the Special Issue, I am firstly grateful to all authors of the papers for their quality

contributions, to the thorough reviewers for their valuable comments and suggestions for the

improvement of the submitted works, and finally, to the helpful administrative staff of the MDPI

publications team for their assistance in completing this project. Last but not least, very special

thanks are in order for the Section Managing Editor, Ms. Rebecca Xue, for her outstanding and fruitful

collaboration as well as valuable and prompt support.

Matjaž Skrinar

Guest Editor

ix





Citation: Kramer Stajnko, J.; Ravnik,

J.; Jecl, R.; Nekrep Perc, M.

Computational Modeling of Natural

Convection in Nanofluid-Saturated

Porous Media: An Investigation into

Heat Transfer Phenomena.

Mathematics 2024, 12, 3653. https://

doi.org/10.3390/math12233653

Academic Editor: Ilya Simanovskii

Received: 10 October 2024

Revised: 11 November 2024

Accepted: 19 November 2024

Published: 21 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Computational Modeling of Natural Convection in
Nanofluid-Saturated Porous Media: An Investigation into Heat
Transfer Phenomena
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* Correspondence: janja.kramer@um.si

Abstract: A numerical study was carried out to analyze the phenomenon of natural convection in
a porous medium saturated with nanofluid. In the study, the boundary element method was used
for computational modeling. The fluid flow through a porous matrix is described using the Darcy–
Brinkman–Forchheimer momentum equation. In addition, a mathematical model for nanofluids was
used, which follows a single-phase approach and assumes that the nanoparticles within a fluid can be
treated as an independent fluid with effective properties. A combination of single- and sub-domain
boundary element methods was used to solve the relevant set of partial differential equations. The
method was originally developed for pure flow scenarios, but also proves to be effective in the
context of fluid flow through porous media. The results are calculated for the case of two- and
three-dimensional square cavities. In addition to various values of dimensionless control parameters,
including the porous Rayleigh number (Rap), Darcy number (Da), porosity (φ) and nanoparticle
volume fractions (ϕ), the effects of the inclination angle of the cavity on the overall heat transfer
(expressed by the Nusselt number (Nu)) and fluid flow characteristics were investigated. The results
indicate a pronounced dependence of the overall heat transfer on the introduction of nanoparticles
and inclination angle. The heat transfer in a two-dimensional cavity is increased for higher values of
Darcy number in the conduction flow regime, while it is suppressed for lower values of Darcy number
in the Darcy flow regime. In the case of a three-dimensional cavity, increasing the volume fraction of
nanoparticles leads to a decrease in heat transfer, and furthermore, increasing the inclination angle of
the cavity considerably weakens the buoyancy flow.

Keywords: porous media; nanofluids; natural convection; boundary element method

MSC: 65N38; 76S99; 76R10

1. Introduction

A nanofluid is a colloidal suspension containing nanoparticles between 1 and
100 nm in size, including materials such as metals, oxides and carbides, dispersed in a
base liquid such as water, oil or ethylene glycol. This breakthrough concept has been
proven to improve the efficiency of cooling and heating processes in various industries
and was originally introduced by Choi [1]. Recent efforts include both experimental
and theoretical studies aimed at investigating the effects of improved heat transfer
properties in various configurations and applications. A comprehensive overview of
these studies can be found in the references [2–4]. Convective heat transfer plays a central
role in various natural and engineering systems, including heating and cooling systems,
geothermal systems and drying processes. The efficiency of heat transfer in these

Mathematics 2024, 12, 3653. https://doi.org/10.3390/math12233653 https://www.mdpi.com/journal/mathematics1
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systems is considered crucial and can be significantly improved by the incorporation of
nanoparticles, as described in the literature [5–8].

The thermal efficiency of several industrial applications, such as heat exchangers, can
be improved by utilizing porous media (due to their large surface areas) and, furthermore,
with the addition of nanoparticles. Most recent applications have been of microchannel
heat sinks as innovative cooling devices, as introduced by Deng et al. [9] and Ghazvini
and Shokouhmand [10]. Moreover, recent advances are comprehensively reviewed in the
references [11–15], highlighting some recurring observations. In particular, the fusion of
porous media and nanofluid leads to higher heat transfer rates, due to the presence of larger
surface areas and more intense mixing. Nevertheless, there are still some unresolved issues,
including the need for efficient numerical methods, exploring nanofluid flow in porous
media under turbulent flow conditions, and conducting experimental studies involving
different geometries and flow conditions.

Various mathematical models have been used in published studies to describe
buoyancy-driven flow in porous media. Darcy’s law is the most commonly used mathe-
matical model for the governing momentum equation, which is particularly valid in the
laminar flow regime (when Reynolds number is Re < 10), where viscous forces dom-
inate over inertial forces at low velocities. In analogy to the Navier–Stokes equations,
an extension of the governing momentum equations was established that includes the
Brinkman term to account for viscous diffusion and the Forchheimer term to study the
inertial effects in free convection [16].

There are two main approaches to the mathematical modelling of nanofluids: the
single-phase and two-phase models. The single-phase approach assumes that nanoparticles
behave similarly to water molecules and have similar local velocities. This assumption is
particularly valid for low concentrations of nanoparticles (2.5–5%) and for solid particles
with a size between 1 and 100 nm [17]. However, the two-phase model is better suited to
describing mixtures of nanoparticles and base liquids in a physically correct way. This
model includes mechanisms that consider the relative motion between the liquid and the
nanoparticles, including Brownian diffusion and thermophoresis [18].

Various numerical methods have been used to investigate the complexity of heat
transfer in porous media and to model the flow of fluids. These include the finite element
method, the finite difference method, and the finite volume method, which are frequently
used. Recently, the boundary element method (BEM) has emerged as an alternative, and
is particularly popular for its efficiency in solving potential problems in fluid mechanics,
such as inviscid flow and heat conduction. The main advantage of the BEM lies in its
ability to solve partial differential equations by determining the boundary unknowns
alone, bypassing the need to discretize the entire domain. However, this advantage is
compromised if a suitable fundamental solution cannot be found, resulting in contributions
of the domain remaining in the integral equation. In scenarios with inhomogeneous and
non-linear problems such as diffusion–convection problems, the classical BEM is extended
to treat domain integrals in addition to boundary integral equations. In particular, the
evaluation of domain matrices becomes a central problem, since they are completely filled
and asymmetric and require a lot of memory. Various strategies have been proposed to
overcome this complication, including methods based on the expansion of the integral
kernel [19], the dual reciprocity method [20] or the compression of the resulting complete
matrices [21]. The numerical algorithm used in this study is divided into a single-domain
and a sub-domain BEM, where the single-domain BEM deals with the kinematic aspect,
while the sub-domain BEM is used to solve diffusion–advection type equations [22].

Previous studies have predominantly examined two-dimensional geometries in
the context of convective flow within nanofluid-saturated porous media, with limited
attention given to three-dimensional configurations. This research addresses this gap
by presenting enhanced numerical simulations of convective flow within both two- and
three-dimensional rectangular enclosures filled with a porous medium saturated with
nanofluid. The study of three-dimensional geometry enables a more comprehensive
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understanding of fluid dynamics and heat transfer behavior in complex, real-world
applications such as thermal management in electronic devices, enhanced geothermal
systems and industrial heat exchangers. These simulations provide insights that can
be used to design and optimize systems where precise control of heat transfer and
fluid flow is critical. Furthermore, the study investigates the effect of the cavity’s
inclination angle on flow behavior and heat transfer characteristics, offering a more
comprehensive understanding of the dynamics involved in such systems. As a test case,
a suspension of solid Cu nanoparticles in water is used as the base fluid. The calculations
were performed using a BEM-based algorithm. The fluid flow in porous media is
characterized by the Darcy–Brinkman–Forchheimer momentum equation. A single-
phase nanofluid mathematical model is used since low concentrations of nanoparticles
(2.5–5%) are considered. The effectiveness of the numerical code has been demonstrated
in various applications, including pure fluid flow scenarios [22,23] and flow simulations
in porous media [24,25]. In this study, the effects of inclination angle and nanoparticle
volume fraction on convective heat transfer are systematically examined within both
conduction-dominated and convection-dominated regimes. The combined influence of
these parameters leads to complex interactions within the convective flow field. In a
conduction-dominated regime, a low inclination angle can enhance the effects of the
increased volume fraction of nanoparticles and maximize heat transfer. In contrast, in a
convection-dominated regime at larger inclination angles, the effects of nanoparticles
limit the enhancement of heat transfer. This nuanced understanding enables targeted
optimization for specific applications where precise control of heat transfer is essential.

2. Mathematical Model

2.1. Equations Governing Flow in Porous Media

The mathematical model for the heat transfer of nanofluids in porous media is based on
the conservation equations for mass, momentum and energy. These equations are derived
from the Navier–Stokes equations, which are normally formulated at the microscopic level
for pure fluid flows. However, due to the irregular and generally complex geometry of
porous media, a microscopic description is impractical for modeling fluid flows. Therefore,
all equations are averaged over the representative elementary volume (REV), taking into
account only a part of the computational domain for the flow. The specific details of the
averaging procedure described by Bear [26] are not discussed in this article.

The continuity equation expresses the conservation of mass for an incompressible
fluid:

⇀
∇·⇀v = 0. (1)

Here, the symbol
⇀
v represents the volume-averaged velocity vector.

The Brinkman–Forchheimer momentum equation is used in the present study, which
reads as

1
φ

∂
⇀
v

∂t
+

1
φ2

(
⇀
v ·

⇀
∇
)
⇀
v =

1
ρn f

⇀
∇p − βn f (T − T0)

⇀
g +

1
φ

μn f

ρn f
∇2⇀v − 1

K
μn f

ρn f

⇀
v −

F
⇀
v
∣∣∣⇀v ∣∣∣

K
1
2

. (2)

In the provided context, φ represents porosity, t signifies time, p denotes pressure, T
stands for temperature,

⇀
g represents gravitational acceleration, K denotes permeability,

F represents the Forchheimer coefficient, ρn f represents the density of nanofluid, βn f
represents the nanofluid thermal expansion coefficient, and μn f denotes the dynamic
viscosity of nanofluid.

The Brinkman–Forchheimer momentum equation comprises two viscous and two
inertia terms:

– The Brinkman viscous term positioned third on the r.h.s., accounts for viscous forces
and ensures compliance with non-slip boundary conditions along a boundary. It has

3
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similarities with the Laplacian term found in the Navier–Stokes equations formulated
for pure fluid flow [16].

– The Darcy term, positioned fourth on the r.h.s., is a linear term that establishes a
connection between the velocity field and pressure difference. This relationship
involves fluid viscosity and permeability (K), which is contingent upon the geometry
of the porous medium and typically represents a second-order tensor. In the case of
assuming an isotropic porous medium, the permeability becomes a scalar.

– The Forchheimer term, positioned as the last term on the r.h.s., also referred to as
the dimensionless form-drag constant, varies based on the characteristics of the
porous medium and can be expressed using the Ergun model, as proposed in Nield
and Bejan [16]:

K =
φ3d2

p

a(1 − φ)2 , F =
b√
aφ3

. (3)

Here, Ergun’s constants are denoted by a and b, with specific values assigned as
a = 150 and b = 1.75, as per [27]. Additionally, dp represents the average particle size of
the bed.

Finally, the energy equation can be formulated as follows:

σ
∂T
∂t

+

(
⇀
v ·

⇀
∇
)

T =
ke(

ρcp
)

n f
∇2T, (4)

here, σ stands for the specific heat ratio, defined as σ = φ + (1 − φ)
(
ρcp
)

p/
(
ρcp
)

n f , where(
ρcp
)

p and
(
ρcp
)

n f denote the heat capacities of the solid phase and the nanofluid phase,
respectively. In addition, ke stands for the effective conductivity of the porous medium.
Following the work of [28], it is assumed that the thermal properties of the solid matrix
and the nanofluid are identical, which leads to σ = 1 and ke = kn f .

2.2. Non-Dimensional Equations

To render Equations (1), (2) and (4) into non-dimensional form, the following dimen-
sionless variables are utilized:

⇀
v →

⇀
v
v0

,
⇀
r →

⇀
r
L

, t → v0t
L

,
⇀
g →

⇀
g
g0

, p → p
p0

, T → (T − T0)

ΔT
(5)

In the given expressions, the parameters are defined as follows: the characteristic
velocity (v0) is expressed as v0 = k f /

(
ρ cp
)

f L, where k f represents the fluid thermal

conductivity,
(
ρ cp
)

f denotes the heat capacity for the fluid phase, and L is the characteristic
length. Additionally, the characteristic temperature (T0) is determined as T0 = (T2 − T1)/2,
and the characteristic temperature difference (ΔT) is given by ΔT = (T2 − T1)/2. The
characteristic pressure (p0) is established as p0 = 1 bar, and the gravitational acceleration
is denoted as g0 = 9.81 m/s2.

2.3. Velocity–Vorticity Formulation

The governing equations are reformulated through the introduction of the velocity–
vorticity formulation, effectively dividing the computational scheme into kinematic and

kinetic components. The vorticity vector is defined as the curl of the velocity,
⇀
ω =

⇀
∇×⇀

v ,
ensuring that both the velocity and vorticity fields adhere to the solenoidal condition,
⇀
∇·⇀v = 0,

⇀
∇·⇀ω = 0. The kinematics equation, derived from the mass conservation law

(Equation (1)), is a vector elliptic partial differential equation of a Poisson type and can be
expressed as follows:

∇2⇀v +
⇀
∇×⇀

ω = 0. (6)
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Applying the curl operator to the momentum equation (Equation (2)) allows for the
derivation of the vorticity transport equation which represents the kinetic computational
aspect along with the energy transport equation:(

⇀
v ·

⇀
∇
)
⇀
ω =

(
⇀
ω·

⇀
∇
)
⇀
v − CAPrRaT φ2

⇀
∇× T

⇀
g + CBPrφ ∇2⇀ω−

CB
Pr
Da

φ2⇀ω − F
Da

φ2
∣∣∣⇀v ∣∣∣⇀ω,

(7)

(
⇀
v ·

⇀
∇
)

T = CC ∇2T. (8)

The independent non-dimensional parameters featured in the momentum equation
are as follows:

– The fluid Rayleigh number:

RaT =
g βT ΔT L3 ρ f

(
ρcp
)

f(
μ f k f

) , (9)

– The Prandtl number:

Pr =
μ f cp

k f
, (10)

– The Darcy number:

Da =
K
L2 . (11)

Furthermore, the porous Rayleigh number can be defined in dependance of the fluid
Rayleigh number RaT and Darcy number Da as:

RaP = RaT ·Da. (12)

In the equations provided above, the parameters CA, CB, and CC represent the proper-
ties of the nanofluid and are defined by the following expressions:

CA =
μn f

μ f

ρ f

ρn f
, CB =

βn f

β f
, CC =

αn f

α f
, (13)

here αn f represents the thermal diffusivity of the nanofluid, defined as αn f = kn f /
(
ρcp
)

n f
where α f is the thermal diffusivity of the pure fluid, given by α f = k f /

(
ρcp
)

f . The nanofluid
properties are determined using the expressions outlined in the next section. For simulating
pure fluid flow, the parameters are set as CA = CB = CC = 1. As this paper focuses solely
on steady flow simulations, the vorticity and energy transport equations are considered
without time derivatives ∂

⇀
ω/∂t = ∂T/∂t = 0.

The general momentum equation (Equation (2)) contains the pressure term in gradient
form, which can lead to numerical instabilities. In the velocity–vorticity formulation, the
pressure term is removed from the momentum equation as a primary variable, resulting
from the application of the curl operator.

The determined partial differential Equations (6)–(8) form a non-linear system of
equations that controls the unknown fields of velocity, vorticity and temperature. The
characterization of the heat and mass transfer in the area of the porous media domain is
clearly determined by the specification of the buoyancy coefficient, the Rayleigh, Prandtl,
Lewis and Darcy numbers as well as the relevant initial and boundary conditions.

5



Mathematics 2024, 12, 3653

2.4. Nanofluid Properties

Nanofluid properties are expressed in terms of the relationships between the properties
of the pure fluid and the pure solid. In all subsequent expressions, the indices f and s
denote the fluid and solid phases, respectively.

Initially, the nanofluid’s solid volume fraction (ϕ) is established as the proportion
of the solid particles’ volume (Vs) to the combined volume of solid particles and fluid
(Vs + Vf ):

ϕ =
Vs

Vs + Vf
. (14)

Different models are used to describe the relationships between nanofluid and pure
fluid properties, and a thorough investigation of different models can be found in [29]. For
this study, the nanoparticles are assumed to have a spherical shape and all the assumed
models apply to scenarios characterized by small temperature gradients.

The expressions for the density (ρn f ), the effective dynamic viscosity μn f , the heat
capacity of nanofluid

(
ρcp
)

n f and the thermal expansion coefficient (ρβ)n f are as follows:

ρn f = (1 − ϕ)ρ f + ϕρs, (15)

μn f =
μ f

(1 − ϕ)2.5 , (16)

(
ρcp
)

n f = (1 − ϕ)
(
ρcp
)

f + ϕ
(
ρcp
)

s, (17)

(ρβ)n f = (1 − ϕ)(ρβ) f + ϕ(ρβ)s. (18)

The Wasp model [30] provides the expression for effective thermal conductivity (kn f )
as follows:

kn f = k f

ks + 2k f − 2ϕ
(

k f − ks

)
ks + 2k f + ϕ

(
k f − ks

) . (19)

Additional assumptions for the model used include that the nanoparticles are in
thermal equilibrium with the base fluid and that the boundary condition of slip resistance
is met. The fluid flow is assumed to be laminar, stationary, Newtonian and incompressible.
The relationship between density and temperature can be described using the Boussinesq
approximation as follows:

ρn f = ρ0

(
1 − βn f (T − T0)

)
. (20)

here, the subscript 0 denotes a reference state.

3. The Boundary Element Method

The BEM-based algorithm is used to solve the relevant non-linear partial differential
equations (Equations (6)–(8)). Although the classical boundary element method (BEM) has
been extended to incorporate domain integrals, several key advantages persist, justifying
its use in the present study. The extended BEM can significantly reduce computational
demands compared to fully volume-based methods, as it requires discretization primarily
on boundaries rather than throughout the domain. This boundary-centric approach delivers
high accuracy in scenarios where boundary interactions are essential. Furthermore, even
though domain integrals in non-linear problems produce fully populated matrices, the
BEM’s boundary-focused framework generally results in lower memory usage, especially
in sparse or boundary-dominant cases. Overall, the extended BEM provides a versatile and
efficient computational framework, particularly advantageous in boundary-dominated or
unbounded domain problems, as it reduces computational overheads while enhancing
precision at critical boundary regions.

In order to determine exact values for the boundary vortices, the algorithm is divided
into components for a single domain and for sub-domains. The kinematics equation

6
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(Equation (6)) is solved with the single-domain BEM, which provides the values for the
boundary vorticity. The sub-domain BEM then solves the vorticity and energy transport
equations (Equations (7) and (8)) to determine the unknown values for vorticity and
temperature. The algorithm was originally developed for pure fluid flow simulations [22]
and subsequently adapted for nanofluids [23] and flow simulations in porous media [24,25].

The computational approach leads to a completely filled system of equations, which
limits the maximum grid size due to memory constraints. To mitigate this drawback, the
fast BEM is used, which utilizes sparse approximations of the full matrices [31]. The main
advantage of using a single-domain BEM for boundary vortex values is the ability of the
algorithm to preserve the mass in complicated geometries—a property that is not present
when using velocity derivatives to compute boundary vortex values.

The numerical algorithm is structured as follows: At the beginning, the boundary
conditions, which can be of Dirichlet or/and Neumann type, for velocity and temperature
are specified. These conditions are used to solve the kinematic equation (Equation (6)) for
the velocity values of the domain and the energy equation (Equation (8)) for the temperature
values of the domain. In addition, temperature and temperature flux conditions are defined
on the solid walls, together with the imposition of no-slip boundary conditions. The initial
boundary conditions for vorticity values are unknown and are determined as part of the
algorithm using the single-domain BEM from the kinematics equation (Equation (6)) [32].
The vorticity values within the domain are calculated by employing a sub-domain boundary
element method (BEM) applied to the vorticity transport equation (Equation (7)). The
overall structure of the numerical algorithm is as follows:

– Determination of fluid and porous media properties.
– Calculation of vorticity values on the boundary using single-domain BEM from the

kinematics equation (Equation (6)).
– Computation of velocity values within the domain using the sub-domain BEM from

the kinematics equation (Equation (6)).
– Determination of temperature values within the domain using the sub-domain BEM

from the energy equation (Equation (8)).
– Determination of vorticity values within the domain using the sub-domain BEM from

the vorticity equation (Equation (7)).

Checking of convergence—repeat steps 2 to 5 until all flow fields achieve the
required accuracy.

3.1. Integral Formulation of Governing Equations

All governing equations are expressed in integral form through the application of
Green’s second identity. This involves the use of the fundamental solution u∗ of the
diffusion operator for the two unknown field functions:

u∗ =
1

4π

∣∣∣∣⇀ξ −⇀
r
∣∣∣∣ , (21)

here ξ is a source or collocation point on the boundary Γ and
⇀
r integration point in the

domain Ω. The unknown boundary vorticity values are acquired by applying the single-
domain BEM to the kinematics equation (Equation (6)), which needs to be expressed in its
tangential form:

c
(
⇀
ξ

)
⇀
n
(
⇀
ξ

)
×⇀

v
(
⇀
ξ

)
+

⇀
n
(
⇀
ξ

)
×
∫

Γ
⇀
v
⇀
∇u∗·⇀n dΓ =

⇀
n
(
⇀
ξ

)
×
∫

Γ
⇀
v ×

(
⇀
n ×

⇀
∇
)

u∗dΓ +
⇀
n
(
⇀
ξ

)
×
∫

Ω

(
⇀
ω ×

⇀
∇u∗

)
dΩ,

(22)
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Here, Ω represents the computational domain, and Γ = ∂Ω is the boundary of the

domain. The geometric factor c
(
⇀
ξ

)
is defined as c

(
⇀
ξ

)
= θ/4π, where θ is the inner

angle with the origin at
⇀
ξ . If

⇀
ξ lies inside the domain, then c

(
⇀
ξ

)
= 1; if

⇀
ξ lies on a

smooth boundary, then c
(
⇀
ξ

)
= 1/2. Additionally,

⇀
n is a vector normal to the boundary.

3.2. Kinematics Equation

The sub-domain BEM is applied to the kinematics equation (Equation (6)) to compute
the velocity values within the domain. The integral equation is given by

c(ξ)
⇀
v (ξ) +

∫
Γ

⇀
v
(
⇀
n ·

⇀
∇
)

u∗dΓ =
∫

Γ

⇀
v ×

(
⇀
n ×

⇀
∇
)

u∗dΓ+
∫

Ω

(
⇀
ω ×

⇀
∇u∗

)
dΩ. (23)

The main advantage of these formulations is that the resulting integral equation does
not contain any derivatives of the velocity or vorticity fields. This property makes it possible
to set the source point exclusively at the function nodes. The calculation of the values for
the range velocity is based on the known boundary values of the velocity from the initial
boundary conditions, where the values for the range and the boundary of the vorticity are
known from the previous iteration.

3.3. Vorticity and Energy Equations

To obtain the integral representation of the equations for vorticity and energy, we
use the same fundamental solution of Laplace’s equation as mentioned above. The final
integral form of the vorticity transport equation is given by

c
(
⇀
ξ

)
ωj

(
⇀
ξ

)
+
∫

Γ ωj
⇀
∇u∗·⇀n dΓ =

∫
Γ u∗qj dΓ

+
1

Pr
1

CB

1
φ

∫
Γ
⇀
n ·
{

u∗
(
⇀
v ωj −

⇀
ωvj

)}
dΓ− 1

Pr
1

CB

1
φ

∫
Ω

(
⇀
v ωj −

⇀
ωvj

)
·
⇀
∇u∗ dΩ

−RaT
CA
CB

φ
∫

Γ

(
u∗T

⇀
g ×⇀

n
)

j
dΓ−RaT

CA
CB

φ
∫

Γ

(
T
⇀
∇× u∗⇀g

)
j

dΩ

+
1

Da
φ
∫

Ω ωju∗dΩ +
F

Pr
√

Da
1

CB
φ
∣∣∣⇀v ∣∣∣∫Ω ωju∗dΩ.

(24)

Finally, the integral representation of the energy transport equation is expressed as

c
(
⇀
ξ

)
T
(
⇀
ξ

)
+
∫

Γ T
⇀
∇u∗·⇀n dΓ

=
∫

Γ u∗qT dΓ + 1
CC

[∫
Γ
⇀
n ·
{

u∗
(
⇀
v T
)}

dΓ −
∫

Ω

(
⇀
v T
)
·
⇀
∇u∗ dΩ

]
.

(25)

In the given equations, qj denotes a component of vorticity flux, and qT represents the
heat flux.

Within the sub-domain BEM method, a mesh is created for the entire domain Ω, where
each mesh element is referred to as a sub-domain. Equations are formulated for each of
these sub-domains. Shape functions are employed to interpolate the field functions, as
well as the flux across the boundary and within the domain. In this study, hexahedral
sub-domains comprising 27 nodes were employed, allowing for continuous quadratic
interpolation of field functions. The boundary of each hexahedron is composed of six
boundary elements. Flux interpolation on each boundary element is carried out using
a discontinuous linear interpolation scheme with four nodes. The use of discontinuous
interpolation mitigates definition problems in corners and edges. The resultant discrete
system of equations is over-determined and is addressed through a least squares solver [22].
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4. Test Examples

The examined scenario involves examples of two- and three-dimensional cavities
(Figure 1), filled with a porous medium and entirely saturated with nanofluid. The
horizontal walls are treated as adiabatic, while the vertical walls are differentially heated
with constant temperatures on opposite walls. Owing to the temperature contrast
along the vertical walls, variations in fluid density occur, giving rise to buoyancy forces
that induce convective motion. The fluid ascends along the hot wall, initiating heat
transport toward the cold wall. The magnitude of heat flux is contingent upon the fluid
type, the nature and quantity of the added nanoparticles, and the permeability of the
porous medium. The assumptions made include the non-deformability, isotropy and
homogeneity of the porous medium as well as the additional assumption that there is no
heat transfer between the solid and liquid phases.

 

ρ × ×

Figure 1. Two-dimensional (2D) and three-dimensional (3D) geometric representations of the exam-
ined case.

The wall heat flux is evaluated to quantify the overall heat transfer of nanofluids
through porous media, which is characterized by the average Nusselt number. For nanoflu-
ids, the Nusselt number can be expressed as

Nu =
kn f

k f

∫
Γ

⇀
∇T·⇀n dΓ (26)

where Γ represents the surface through which the heat flux is computed,
⇀
n is the unit

normal vector to this surface, kn f is the thermal conductivity of the nanofluid, and k f is the
thermal conductivity of the base fluid.

The Cu nanoparticles were considered to be added to the water as a base fluid. The
thermophysical properties of both are given in Table 1.

Table 1. Thermophysical properties of water and Cu nanoparticles, adapted from [25].

cp [J/kg K] ρ [kg/m3] K [W/m K] β [×10−5 K−1] α [×10−7 m2/s]

Water 4179 997.1 0.613 21 1.47
Cu 385 8933 400 1.67 1163
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Validation Tests

To achieve a grid-independent solution, a grid sensitivity analysis was first carried out.
Four different non-uniform grids (21 × 21, 41 × 41, 61 × 61 and 81 × 81) were tested for the
Cu–water nanofluid and Pr = 6.2, Da = 10−2, 10−4 and 10−6, respectively, Rap = 1000,
φ = 0.4 and ϕ = 0.05, which are listed in Table 2 together with the resulting average
Nusselt numbers. Based on the grid independence test, the non-uniform 41 × 41 grid was
selected for further analysis.

Table 2. Grid sensitivity analysis for 2D geometry; comparison of average Nusselt number for
Rap = 1000, Pr = 6.2, Da = 10−2, 10−4, and 10−6, φ = 0.4, and ϕ = 0.05.

Rap = 1000 RaT = 105 RaT = 107 RaT = 109

Nonuniform Gird Da = 10−2 Da = 10−4 Da = 10−6

21 × 21 3.416 9.076 13.185
41 × 41 3.400 9.132 12.911
61 × 61 3.401 9.132 12.992
81 × 81 3.400 9.131 12.991

In the case of the 3D geometry example, four non-uniform grids (12 × 12 × 12, 20 × 8 × 20,
22 × 10 × 22, and 30 × 10 × 30) for the Cu–water nanofluid and Pr = 6.2, Da = 10−2 − 10−5,
Rap = 1000, φ = 0.4 and ϕ = 0.0 were tested. Based on the results presented in Table 3, the
20 × 8 × 20 grid, with 28,577 nodes, demonstrated acceptable accuracy and was selected
for further analysis.

Table 3. Grid sensitivity analysis for 3D geometry; comparison of average Nusselt number for
Rap = 100, Pr = 6.2, φ = 0.4, ϕ = 0.0 and various Da.

Rap = 100 RaT = 103 RaT = 104 RaT = 105 RaT = 106 RaT = 107

Grid Da = 10−1 Da = 10−2 Da = 10−3 Da = 10−4 Da = 10−5

12 × 12 × 12 1.0423 1.5428 2.3432 2.9784 3.3008
20 × 8 × 20 1.0394 1.5329 2.3313 2.9575 3.2950
22 × 10 × 22 1.0393 1.5327 2.3307 2.9552 3.2945
30 × 10 × 30 1.0393 1.5325 2.3303 2.9541 3.2934

The numerical code was validated using several test cases with different geometries
and control parameters. A subset of the results is shown in Tables 4 and 5, in which the
Nusselt number values (Nu) for different parameters are compared with values stated
in the literature [28,33,34]. The high agreement between the calculated results and the
published data confirms the accuracy of the developed numerical algorithm and it can be
used for further calculations.

Table 4. Comparison of the average Nusselt number (Nu) for natural convection in porous media
saturated with pure fluid (Pr = 1.0) across various governing parameters with the data from [28,33,34].

Da Rap RaT [28] [33] [34] Present

φ = 0.4

10 103 1.005 1.008 - 1.008
10−2 100 104 1.404 1.359 - 1.371

1000 105 3.159 2.986 - 3.049

10 105 1.064 1.062 - 1.067
10−4 100 106 2.580 2.702 - 2.671

1000 107 7.677 8.903 - 8.377
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Table 4. Cont.

Da Rap RaT [28] [33] [34] Present

10 107 1.074 1.072 1.07 1.092
10−6 100 108 2.969 2.975 3.07 3.224

1000 109 11.699 11.892 12.80 12.519

φ = 0.6

10 103 1.012 1.010 - 1.012
10−2 100 104 1.489 1.533 - 1.503

1000 105 3.430 3.602 - 3.499

10 105 1.066 1.065 - 1.070
10−4 100 106 2.686 2.764 - 2.777

1000 107 8.452 9.454 - 9.174

10 107 1.074 1.072 - 1.093
10−6 100 108 2.982 2.980 - 3.241

1000 109 12.098 11.924 - 12.895

φ = 0.9

10 103 - 1.015 - 1.017
10−2 100 104 - 1.667 - 1.643

1000 105 - 4.075 - 3.980

10 105 - 1.066 - 1.073
10−4 100 106 - 2.817 - 2.867

1000 107 - 9.947 - 9.917

10 107 - 1.072 1.07 1.093
10−6 100 108 - 2.986 3.09 3.252

1000 109 - 12.069 13.29 13.164

Table 5. Comparison of the average Nusselt number (Nu) for natural convection in porous media
saturated with nanofluid (Pr = 6.2) across various governing parameters with the data from [28].

Rap Da RaT [28] Present [28] Present [28] Present

ϕ = 0.05

φ = 0.4 φ = 0.6 φ = 0.8

1000 10−2 105 3.433 3.400 3.850 3.826 4.162 4.145
1000 10−4 107 9.117 9.132 9.590 9.743 9.901 10.154
1000 10−6 109 11.778 12.991 11.899 13.128 11.976 13.195

φ = 0.4

ϕ = 0.0 ϕ = 0.025 ϕ = 0.05

10 10−2 103 1.007 1.008 1.081 1.083 1.160 1.162
1000 10−2 105 3.302 3.282 3.370 3.345 3.433 3.400
1000 10−6 109 11.867 13.238 11.847 13.131 11.778 12.991

5. Results and Discussion

The heat transfer and flow properties were further investigated, focusing on the effects
of the geometry, the inclination angle, the volume fraction of the nanoparticles and other
governing parameters. Table 6 shows the results of the average Nu number for Rap = 1000,
Pr = 6.2, φ = 0.4 and different values of Darcy number, nanoparticle volume fraction ϕ

and inclination angle α for two- and three-dimensional geometry.
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Table 6. Nusselt number values for the cases of 2D and 3D geometry, Rap = 1000, Pr = 6.2, φ = 0.4,
various Da numbers, volume fraction of nanoparticles ϕ and inclination angle α.

Rap = 1000, Pr = 6.2, φ = 0.4

α = 0◦

RaT = 105, Da = 10−2 2D 3D

ϕ
0.0 3.282 3.072

0.025 3.345 2.977
0.05 3.400 2.884

RaT = 107, Da = 10−4

ϕ
0.0 9.072 8.528

0.025 9.115 8.097
0.05 9.132 7.727

RaT = 109, Da = 10−6

ϕ
0.0 13.238 14.270

0.025 13.131 13.664
0.05 12.991 13.078

α = 15◦

RaT = 105, Da = 10−2 2D 3D

ϕ
0.0 2.847 2.653

0.025 2.909 2.574
0.05 2.966 2.497

RaT = 107, Da = 10−4

ϕ
0.0 7.466 6.935

0.025 7.494 6.176
0.05 7.503 6.313

RaT = 109, Da = 10−6

ϕ
0.0 10.726 11.684

0.025 10.626 11.185
0.05 10.496 10.686

α = 30◦

RaT = 105, Da = 10−2 2D 3D

ϕ
0.0 2.266 2.123

0.025 2.335 2.070
0.05 2.401 2.017

RaT = 107, Da = 10−4

ϕ
0.0 5.137 4.749

0.025 5.175 4.537
0.05 5.206 4.337

RaT = 109, Da = 10−6

ϕ
0.0 7.143 7.637

0.025 7.076 7.304
0.05 6.998 6.980

α = 60◦

RaT = 105, Da = 10−2 2D 3D

ϕ
0.0 1.276 1.249

0.025 1.269 1.240
0.05 1.261 1.231

RaT = 107, Da = 10−4
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Table 6. Cont.

Rap = 1000, Pr = 6.2, φ = 0.4

ϕ
0.0 1.522 1.474

0.025 1.501 1.462
0.05 1.487 1.451

RaT = 109, Da = 10−6

ϕ
0.0 1.568 1.563

0.025 1.554 1.557
0.05 1.513 1.548

Furthermore, Figures 2 and 3 present the three-dimensional temperature and velocity
fields for various values of Da and Rap at Pr = 6.2, ϕ = 0.05, and φ = 0.4. Figure 4
presents isotherms and streamlines with maximum values of stream function |ψmax| for
Rap = 1000, Pr = 6.2, Da = 10−6, and ϕ = 0.05, at inclination angles of 0◦, 15◦, 30◦, and
60◦ at the horizontal midsection of the 3D cavity. Figures 5 and 6 also show graphically the
dependence of the angle of inclination and the volume fraction of the nanoparticles on the
average heat transfer.

The results in Table 6 demonstrate that, within 2D geometry, the overall heat transfer
increases with higher nanoparticle volume fractions at low inclination angles (α < 30◦)
and in a conduction-dominated regime (Da ≥ 10−4). Conversely, in 3D geometry,
changes in nanoparticle volume fraction do not significantly influence heat transfer
under comparable conditions.

From the presented temperature and velocity fields it can be observed that at low
Rayleigh numbers (Rap = 10, RaT = 107) heat transfer is primarily governed by conduc-
tion, resulting in a nearly linear temperature distribution across the enclosure or cavity.
Temperature variations exhibit a steady gradient from the hot wall to the cold wall, with
minimal deviation throughout the domain. In this regime, the fluid remains predominantly
stationary, leading to a stable velocity field characterized by near-zero or very low velocities,
primarily consisting of slight movements near the boundaries.

Conversely, at higher Rayleigh numbers (Rap > 100, RaT = 108), the convective
motion becomes more pronounced, leading to a temperature field characterized by non-
linear gradients, well-defined boundary layers, and curvature of isotherms that follow the
flow patterns. This regime also exhibits potential temperature stratification, where warmer
fluid rises and cooler fluid descends, resulting in active convective currents throughout
the domain. The velocity field in this case reflects the dynamic movement of the fluid,
illustrating the influence of buoyancy-driven convection on heat transfer processes within
the enclosure.

Figure 3 illustrates the influence of the Darcy number on the temperature and velocity
fields at a fixed porous Rayleigh number. In all three cases, the high Rayleigh number indi-
cates that convection is the dominant heat transfer mechanism, with its effects becoming
more pronounced at lower Darcy numbers. As the Darcy number decreases, the strength of
the convective flow intensifies, leading to the distortion or bending of isotherms. Corre-
spondingly, the velocity field is characterized by significant fluid movement, highlighting
the enhanced convective activity in this regime.

Figure 4 clearly shows that increasing the angle of inclination of the cavity suppresses
the convective movement. At an inclination angle of 60◦, the isotherms approach linearity,
indicating that conductive heat transfer predominates. Nevertheless, two opposing flows
can be observed in the flow field, which illustrates the complex interplay between the angle
of inclination and fluid movement in the cavity.
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(a) (b) (c) 

Figure 2. Temperature and velocity fields and their profiles for Da = 10−6 at different values of Rap:
(a) Rap = 10 (RaT = 107), (b) Rap = 100 (RaT = 108), (c) Rap = 1000 (RaT = 109), ϕ = 0.05 and
φ = 0.4.
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(a) (b) (c) 

Figure 3. Temperature and velocity fields and their profiles for Rap = 1000 at different values of Da:
(a) Da = 10−2 (RaT = 105), (b) Da = 10−4 (RaT = 107), (c) Da = 10−6 (RaT = 109), ϕ = 0.05 and
φ = 0.4.
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(a) (b) (c) (d) 

Figure 4. Temperature fields and streamlines at the midplane of 3D cavity for Rap = 1000, Da = 10−6

(RaT = 109), ϕ = 0.05, φ = 0.4 and different values of inclination angles: (a) α = 0◦ (|ψmax| = 20.500),
(b) α = 15◦ (|ψmax| = 17.463), (c) α = 30◦, |ψmax| = 12.258) (d) α = 60◦, |ψmax| = 2.600).

(a) (b) 

Figure 5. Average Nu for Da = 10−6, ϕ = 0.0, various α and (a) 2D geometry, various Rap and (b) 2D
and 3D geometry at Rap = 1000.

Figure 5 shows that increasing the Rayleigh number at low inclination angles improves
the overall heat transfer. However, as the angle of inclination increases, the effectiveness of
convective heat transfer is suppressed. In particular, the heat transfer is more pronounced
in the case of the three-dimensional cavity than for low-dimensional configurations.

Figure 6 shows that in the case of 2D geometry at high Darcy numbers (Da = 10−2),
the total heat transfer increases with an increase in the volume fraction of the nanoparticles
at inclination angles below 30◦. In the 3D geometry, on the other hand, the increase in the
nanoparticle volume fraction does not lead to a higher heat transfer rate for any of the
Darcy numbers investigated.
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(a) (b) 

(c) (d) 

Figure 6. Average Nu for 2D and 3D geometry, Rap = 1000, various α and ϕ and (a,b) Da = 10−2

and (c,d) Da = 10−6.

5.1. Effect of the Darcy Number

Based on the average values of the Nusselt number (Nu) observed in both two- and
three-dimensional geometries, a decrease in the Darcy number (Da) improves heat transfer
within the cavity, which can be seen from the numerical results in Table 5 and from the
temperature fields in Figures 2 and 3. The Darcy number influences the value of the Darcy
term in Equation (2). As the Darcy number increases, the flow regime gradually shifts
towards a Darcy flow regime and thus more closely matches the properties described by
Darcy’s law. At low Darcy numbers, the flow is primarily controlled by the resistance of
the porous medium, resulting in a regime with minimal convective effects and significantly
restricted fluid movement. This flow behavior is primarily determined by conduction
rather than convection. As a result, the overall permeability of the medium is low, which
promotes conductive heat transfer and suppresses advective heat transport. In this state, the
system approximates the behavior of classical Darcy flow, where the effects of inertia and
convection are negligible, and the flow is primarily determined by the pressure gradient
and the permeability of the medium.

5.2. Effect of the Nanoparticle Volume Fraction

The solid volume fraction of nanoparticles (ϕ) significantly influences the fluid velocity
in nanofluid flows. With increasing ϕ, the effective viscosity of the nanofluid usually
increases due to the higher particle concentration, which leads to increased flow resistance.
This increase in viscosity generally leads to a decrease in fluid velocity, especially in
convection-dominated regions where the higher resistance dampens convective flows.

In conduction-dominated regimes, the influence of ϕ on velocity is less pronounced,
as the flow is mainly driven by conduction rather than convection. However, in convection-
dominated flows, higher ϕ values can lead to slower fluid movement, lower momentum
transfer and weaker convection flows, which affect the overall heat transfer dynamics.
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The results in Table 5 and Figure 6 show that in a 2D geometry, increasing the volume
fraction of nanoparticles improves the overall heat transfer in the conduction-dominated
regime (Da > 10−4) and at inclination angles α ≤ 30◦. However, in the convection-
dominated region (Da ≤ 10−4), the addition of nanoparticles reduces convective heat
transfer, resulting in lower Nusselt numbers at higher nanoparticle volume fractions. In
3D geometry, increasing the nanoparticle volume fraction suppresses convective motion in
both the conduction- and convection-dominated regimes.

5.3. Effect of the Inclination Angle

The inclination angle significantly influences fluid flow and heat transfer character-
istics in both 2D and 3D geometries. As the inclination angle increases, the buoyancy-
driven flow is altered, which can weaken or enhance convective currents depending on
the specific conditions.

In the present case, the flow tends to be more robust at lower inclination angles
(e.g., α ≤ 30◦), with strong convective motions contributing to higher heat transfer rates,
especially in convection-dominated regimes. This is characterized by well-defined thermal
boundary layers and increased Nusselt numbers (Figure 4). As the angle of inclination
increases further (e.g., α > 30◦), convective motion is increasingly suppressed, and heat
transfer becomes more conduction dominated. The weakening of the convection currents
at larger inclination angles leads to almost linear isotherms, as observed in Figure 4, and
a lower overall heat transfer, which is reflected in lower Nusselt numbers. In extreme
cases, e.g., near-vertical configurations, convection can be almost completely suppressed,
resulting in a significant reduction in heat transfer efficiency.

5.4. Insights into 2D and 3D Heat Transfer Mechanisms

In the 2D configuration, an increase in the volume fraction of nanoparticles improves
heat transfer in the areas dominated by thermal conduction, especially at inclination
angles of α ≤ 30◦. This enhancement indicates an improvement in thermal conductivity
due to the incorporation of nanoparticles, which facilitates efficient heat transfer in
these scenarios. Conversely, under convection-dominated conditions, the introduction of
nanoparticles has a detrimental effect on convective heat transfer, resulting in a decrease
in Nusselt number at higher volume fractions. This decrease can be attributed to the
increased viscosity of the fluid, which hinders fluid movement and reduces the efficiency
of convective heat transfer.

In contrast, the 3D geometry shows a consistent suppression of convective mo-
tion as the volume fraction of nanoparticles increases, affecting both conduction- and
convection-dominated regimes. This suppression indicates a more pronounced effect of
nanoparticle concentration in the 3D context, likely due to enhanced fluid interactions
and increased drag caused by the presence of nanoparticles. As a result, the ability of
the fluid to facilitate convective heat transfer is reduced, regardless of the predominant
heat transfer mechanism.

Overall, 2D systems show improved heat transfer in conduction-dominated scenarios,
with increased volume fractions of nanoparticles but a decrease in convective efficiency
in convection-dominated conditions. In contrast, 3D geometries consistently suppress
convective motion due to the influence of nanoparticles, highlighting the complex interplay
between geometric configuration, nanoparticle volume fraction and heat transfer mecha-
nisms, which should be further explored. This comparison emphasizes the need to consider
geometric configurations when evaluating heat transfer performance in nanofluids.

6. Conclusions

A numerical analysis of natural convection in two- and three-dimensional cavities
fully filled with nanofluid-saturated porous media was performed utilizing the boundary
element method. A single-phase mathematical nanofluid model was used in the study,
assuming a low nanoparticle concentration of up to 5% and that the nanoparticles behave
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analogously to water molecules. The conservation of momentum was described using the
Brinkman–Forchheimer momentum equation, which takes inertial effects into account. The
numerical approach integrated both the single-domain and sub-domain boundary element
methods to solve the velocity–vorticity formulation of the governing equations.

The proposed numerical code was validated by comparing its results with those avail-
able in the literature over a broad spectrum of governing parameters. The study further
investigated the influence of different types of nanoparticles on heat transfer enhance-
ment, with a particular emphasis on nanoparticle volume fraction and various properties
of the porous media. The results indicate that, while the addition of nanoparticles en-
hanced the thermal conductivity of the fluid, it generally suppressed natural convection
phenomena within the porous media, particularly evident in the results obtained from the
three-dimensional cavity analysis.

In the non-Darcy regime (high Da values), the effect of the Brinkman viscous term in
the momentum equation was significant, leading to enhanced overall heat transfer through
the nanofluid-saturated porous cavity compared to the pure fluid. As the Da number
decreased, the model approached the Darcy regime, and the addition of nanoparticles
resulted in a reduction in overall heat transfer.

The three-dimensional analysis reveals complex interactions between the flow struc-
ture and heat transfer characteristics within the nanofluid-saturated porous cavity. The 3D
temperature and velocity fields demonstrate how variations in parameters such as the Darcy
number (Da), inclination angle (α) and nanoparticle volume fraction (ϕ) affect convection
patterns and overall thermal performance. At higher Da values in three-dimensional ge-
ometries, convective motion is more pronounced due to the increased permeability of the
porous medium, which promotes stronger flow circulation and enhanced heat transfer.
However, the addition of nanoparticles generally reduces the overall heat transfer in the
three-dimensional cavity.

Inclination angles further modify the convection dynamics; lower angles sustain strong
convective loops, whereas higher angles (e.g., α = 60◦) suppress convection, leading to
more stratified temperature distributions. This is characterized by nearly linear isotherms,
indicating a predominance of conductive heat transfer.

The extended boundary element method presented in this study has proven to be an
efficient alternative for solving complex non-linear diffusion-convection problems.

This study offers important insights into natural convection in nanofluid-saturated
porous media, a field of significant industrial relevance for understanding heat transfer
mechanisms. In geothermal reservoirs, nanofluids enhance thermal conductivity, improv-
ing heat recovery and efficiency. Additionally, natural convection in these materials is
critical for developing thermal insulation and phase change materials for energy storage,
thereby increasing energy efficiency in buildings and transportation. Furthermore, it aids
in thermal management for groundwater remediation, where accurate temperature control
is vital for process effectiveness.

Future challenges and directions in the field of natural convection in nanofluid-saturated
porous media include the validation of theoretical and computational models through experi-
mental studies and the evaluation of their effectiveness in practical applications. Research
will focus on optimizing the properties of nanofluids, such as particle size and concentration,
to improve thermal conductivity and stability. Advances in multiscale computational mod-
els will improve the prediction of heat transfer behavior. In addition, research into hybrid
nanofluids and the development of innovative porous media structures with optimized pore
sizes will further improve natural convection and heat transfer efficiency. These efforts aim to
deepen the understanding and practical applications in this field.
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Nomenclature

a Ergun’s constant, a = 150
b Ergun’s constant, b = 1.75

c
(
⇀
ξ

)
geometric coefficient

cp specific heat at constant pressure [J/(kg · K)]
dp average particle size of the bed [m]
Da Darcy number
F Forchheimer coefficient
⇀
g acceleration due to gravity [m/s2]
k thermal conductivity [W/(m·K)]
K permeability of porous medium [m2]
L characteristic length [m]
⇀
n unit normal vector
Nu Nusselt number
p pressure [Pa]
q vorticity flux
qT temperature flux
⇀
r position vector [m]
Pr Prandtl number
Rap porous thermal Rayleigh number; Rap = RaT ·Da
RaT fluid Rayleigh number
t time [s]
T temperature [K]
u∗ fundamental solution of the Laplace equation
V volume [m3]
⇀
v velocity vector [m/s]
Greek Symbols
α thermal diffusivity [m2/s]
β thermal expansion coefficient [1/◦C]
Γ boundary of the computational domain
ζ inner angle
θ boundary shape function
ϑ boundary shape function for flux
Θ domain shape function
⇀
ξ source or collocation point
ϕ solid volume fraction of nanoparticles
ρ density [kg/m3]
μ dynamic viscosity [N·s/m2]
φ porosity
σ specific heat ratio [J/(kg·K)]
⇀
ω vorticity vector [1/s]
Subscripts
0 reference (average value)
c cold wall
f fluid phase
h hot wall
nf nanofluid
p solid phase of porous medium
s solid phase of nanofluid
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Citation: Imamović, D.; Skrinar, M.

Analysing Flexural Response in RC

Beams: A Closed-Form Solution

Designer Perspective from Detailed

to Simplified Modelling. Mathematics

2024, 12, 3327. https://doi.org/

10.3390/math12213327

Academic Editor: Yiu Yin

Raymond Lee

Received: 27 September 2024

Revised: 17 October 2024

Accepted: 20 October 2024

Published: 23 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Analysing Flexural Response in RC Beams: A Closed-Form
Solution Designer Perspective from Detailed
to Simplified Modelling
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Abstract: This paper presents a detailed analytical approach for the bending analysis of reinforced
concrete beams, integrating both structural mechanics principles and Eurocode 2 provisions. The
general analytical expressions derived for the curvature were applied for the transverse displacement
analysis of a simply supported reinforced concrete beam under four-point loading, focusing on key
limit states: the initiation of cracking, the yielding of tensile reinforcement and the compressive failure
of concrete. The displacement’s results were validated through experimental testing, showing a high
degree of accuracy in the elastic and crack propagation phases. Deviations in the yielding phase
were attributed to the conservative material assumptions within the Eurocode 2 framework, though
the analytical model remained reliable overall. To streamline the computational process for more
complex structures, a simplified model utilising a non-linear rotational spring was further developed.
This model effectively captures the influence of cracking with significantly reduced computational
effort, making it suitable for serviceability limit state analyses in complex loading scenarios, such
as seismic impacts. The results demonstrate that combining detailed analytical methods with this
simplified model provides an efficient and practical solution for the analysis of reinforced concrete
beams, balancing precision with computational efficiency.

Keywords: reinforced concrete structures; non-linear behaviour; transverse displacement; moment–
curvature diagram; rotational spring model

MSC: 74K10

1. Introduction

Reinforced concrete (RC) is one of the fundamental building materials. Consequently,
it is utilised regularly throughout a plethora of structures worldwide within modern civil
engineering [1]. Its exceptional features like economy, stiffness and load-bearing capacity
have made it a primary resource for many infrastructure structures, from viaducts and
bridges to high-rise structures. Nevertheless, challenges arise when using RC, with cracking
being one of the key issues arising from the complex non-linear behaviour of concrete.

Cracks in concrete indicate that the tensile strength of the material has been exceeded,
and they are not just a cosmetic concern. A comprehensive analysis of the behaviour of RC
structures over time is necessary to understand this process fully. With the appearance of
the first cracks, a structure that initially exhibits linear behaviour transitions to non-linear
behaviour due to crack propagation. In this context, the concrete takes on the compressive
force, while the rebar bears the tensile force. As cracks propagate, the load-carrying capacity
of the structural element undergoes changes. Therefore, a meticulous analysis of the impact
of cracks on the structure is essential.

Load capacity analysis is crucial for guaranteeing the safety and durability of complex
structures, such as bridges, power stations and tunnels. The creation of mathematical
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models and computational approaches is pivotal to accurately determining load-bearing
capacity and ensuring structural safety [2,3]. The structural engineer is thus frequently
challenged with designing an idealised mathematical model of the structure to ensure
that the ensuing analysis accurately accounts for all the essential attributes of the actual
structure, as far as is feasible.

Experimental verification of RC structures is crucial in enhancing the precision of
structural analysis and design within the field of civil engineering. Incorporating a broader
scope of material traits and integrating them into analytical models can lead to superior
simulation of the structure’s behaviour under realistic circumstances. This, in turn, results
in safer and more efficient construction practices. To further emphasise the importance
of analysing structural behaviour, it is noteworthy that beams, as integral members of
structures, have been studied extensively. This is particularly true for composite beams,
where studies have included deflection [4], buckling [5] and dynamic analyses [6]. These
investigations highlight important aspects of structural performance and provide valuable
insights into the complexities of load-bearing members.

To conduct precise computational analyses of RC structures, it is imperative to estab-
lish quality performance (stress–strain) diagrams for concrete and steel. The fundamental
material characteristics of concrete and steel are their compressive and tensile strength,
which can be determined via straightforward uniaxial tensile and compressive tests. Addi-
tionally, these tests enable the assessment of the complete stress–strain behaviour of both
materials. Although these two fundamental properties (strengths) hold paramount impor-
tance, the precise determination of performance diagrams requires the use of additional
material properties such as the modulus of elasticity, elongation at yield of steel, or failure
of concrete.

In contrast to steel, it is challenging to determine the mathematical model parameters of
concrete in the compressive and tensile zones due to its wider spectrum of values obtained
from experiments. Conducting additional experimental verifications, e.g., three-point or
four-point bending tests of RC beams, enables a more comprehensive assessment of its
mechanical properties, including crack and deformation development during loading, up
to ultimate failure [7–11].

RC structures exhibit a highly non-linear behaviour, particularly under extreme tensile
loads. Cracks form even at relatively low bending loads, caused by the bending moment
surpassing the concrete’s tensile strength, leading to stiffness changes and consequent
non-linear behaviour. In civil engineering, 1D finite element (FE) models are generally
utilised for global analyses of non-linear responses in RC structures comprising primarily
beams and columns. The non-linear region of 1D structural elements can be most simply
and efficiently modelled using plastic hinges, which are simulated by non-linear rotational
spring in the bending analyses [12]. Essentially, plastic hinges represent a concentrated
area of the structure where the non-linear behaviour of materials is assumed. The rest of
the structure is treated as linearly elastic.

The use of a non-linear rotational spring in 1D models allows for simulating the
bending behaviour of a structure at loads beyond its elastic limits with sufficient accuracy.
This is especially crucial in extreme conditions like seismic loads, where deformation
and cracking may be limited to certain areas [13]. The precision of these analyses within
the inelastic area of the structure relies predominantly on defining the moment–rotation
diagram of the rotational spring stiffness.

Research on reinforced concrete beams’ response has increasingly focused on enhanc-
ing their structural efficiency and durability through innovative materials and method-
ologies, with particular emphasis on steel bars. Recent studies have developed analytical
displacement solutions for statically determinate beams, employing bi-linear stress–strain
behaviour with a horizontal top branch for steel and concrete to define a trilinear moment–
curvature model for predicting deflection under various loading conditions [14]. Hybrid
reinforcement strategies, combining basalt fibre-reinforced polymer (BFRP) and steel bars,
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have demonstrated significant improvements in flexural behaviour, particularly for under-
reinforced configurations [15].

The use of high-strength and high-toughness (HSHT) steel bars has further enhanced
energy absorption and crack control in reinforced concrete beams [16]. Due to the broad
applicability of high-strength steel bars, not only their standard bending capacity but
also their behaviour at elevated temperatures is being investigated [17]. Additionally,
steel–basalt fibre composite bars (SBFCBs) have shown promise in addressing corrosion
issues while maintaining ductility, indicating the potential for hybrid reinforcement [18].

Constant resistance energy (CRE) steel reinforcement has outperformed traditional
high-strength bars in flexural performance, highlighting its advantages in design appli-
cations [19]. Research on two-layer fibre-reinforced concrete beams has confirmed that
an optimised fibre distribution enhances load-carrying capacity and ductility [20]. Fur-
thermore, hybrid GFRP–steel reinforced concrete beams exhibit superior impact resistance
compared to conventional configurations [21]. For very harsh and extreme environmental
conditions, such as marine ones, the application of Negative Poisson’s Ratio (NPR) steel
bars was also studied [22].

The exploration of stainless steel (SS) as a reinforcement has revealed improved
moment capacity, especially at lower reinforcement ratios, presenting an alternative to
conventional steel [23]. An analytical approach for ultra-high-performance concrete (UHPC)
has also been proposed, offering a flexible design methodology for achieving the desired
structural performance [24]. Finally, studies on hybrid FRP–steel reinforced beams have
provided new insights into predictive modelling for cracking moments and deflections [25].
This paper focuses on analyses of the bending behaviour of RC structures using an analytical
model in accordance with the Eurocode 2 standard, assimilating the principles of structural
mechanics. The new general analytical expressions derived for the curvature as a function
of the bending moment and considering the actual state of stresses and strains in the
cross-section were first derived. Afterwards, the derived expressions were implemented for
the bending analysis of a beam under four-point loading. The choice of analysing this kind
of structure was motivated by the availability of experimental data for this specific loading
condition, allowing for a comprehensive investigation and validation of the proposed
analytical model. Key aspects such as the first crack initiation, the loss of load-carrying
capacity of the steel reinforcement and the ultimate failure of the concrete were examined in
detail. This study contributes to the theoretical understanding and mathematical modelling
of the RC structure’s behaviour. In the end, it also discusses a new practical computational
model with a discrete crack modelled by a rotational spring for predicting its response.

2. Determination of the Closed-Form Solution for the Three-Linear
Moment—Curvature Diagram of the Rectangular Cross-Section

In this paper, a new analytical model is developed to calculate the structure’s trans-
verse displacement, taking into account the principles of structural mechanics and assimilat-
ing the principles and provisions of the Eurocode 2 standard. The elementary hypothesis is
thus the Euler–Bernoulli hypothesis, which is in accordance with the Eurocode 2 standard.
The most thorough constitutive law for concrete under compression from the code was
used for the uniaxial stress–strain state, which does not explicitly demonstrate any fracture
theory. This is standard practice in the flexural design of reinforced concrete members to
several standards, not just Eurocode 2 [26–29].

This study can be divided in the following two main steps:

1. Determination of the closed-form solutions for the three-linear moment–curvature
(flexural strength) diagram of the beam cross-section;

2. Determination of the transverse displacement in the considered point of the structure
using the elastic Euler–Bernoulli bending theory based on the moment–curvature
diagram of the cross-section provided in point 1.

Further, the simplified beam finite element analysis is presented as a promising po-
tential expansion of the computational process, implementing non-linear rotational spring
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stiffness. The determination of the closed-form solution for this spring, which implements
the three-linear moment–rotation diagram, is based on the first two derivation steps. The
complete flexural strength response of the RC rectangular section shows a highly non-linear
response to bending due to the both very different constitutive materials. This response
has been divided into three primary behavioural phases. The first phase is the elastic non-
cracked limit phase (I), followed by the crack propagation limit phase (II) and the bottom
reinforcement yielding limit phase (III). These phases are defined by the identification of
three limit points. For each of these phases, the moment–curvature relationship (M-κ) is as-
sumed to be linear. Further, these three phases together constitute a simplified three-linear
diagram of the cross-section (see Figure 1). The key points in this regard are the occurrences
of the initial crack in the concrete (M = Mcr, κ = κcr), the initiation of reinforcement yielding
(M = My, κ = κy) and the failure of the concrete in the compression zone (M = Mu, κ = κu).

Figure 1. Tri-linear moment–curvature diagram of cross-section.

The fundamental requirement for determining the moment–curvature diagram of the
RC cross-section is to know the behaviour of the two constituent materials. Numerous em-
pirical formulae have been proposed for both concrete [30–32] and steel to determine their
uniaxial stress–strain behaviour. In this study, in accordance with Eurocode 2 (EC2 [33]),
the non-linear constitutive parabola–rectangle stress–strain behaviour of concrete in the
compression zone is assumed to be as

σc(εc) =

⎧⎨⎩ fc

(
1 −
(

1 − εc
εc2

)2
)

f or 0 ≤ εc ≤ εc2

fc f or εc2 ≤ εc ≤ εc3

, (1)

where fc is the concrete compressive strength, εc2 is the strain at reaching the maximum
strength and εc3 is the ultimate strain. It should be noted that the compressive strains and
strength in Equation 1 are considered as positive.

An elasto-plastic approximation, as per the EC2 and given by Equation (2), is assumed
to idealise the behaviour of the steel in tension and compression as

σs(εs) =

⎧⎨⎩
Esεs f or − εy ≤ εs ≤ εy

fy f or εs > εy
− fy f or εs < −εy

(2)

where Es is the elastic modulus of steel, fy is the yield strength and εy = fy/Es is the
yield strain.

The other following basic assumptions were made to determine the moment–curvature
diagram of an RC cross-section [34]:

• A straight cross-section before bending remains straight after bending;
• A perfect bond exists between the reinforcement and the concrete;
• Since the tensile strength of concrete is relatively small compared to its compressive

strength, a linear distribution of tensile stresses was considered for the non-cracked
tensioned part of the cross-section. After a crack occurs, the tensile strength of concrete
in the cracked section is neglected;
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• The ultimate cross-section flexural capacity is achieved once the ultimate failure
deformation εc3 is reached in the top concrete compression fibre at the ultimate stage.

2.1. Determination of the Limit Characteristic Point for M = Mcr and κ = κcr

The cross-section characteristics include the cross-section width (b), the cross-section
height (h), the distance of the bottom rebar from the top edge of the section (d), the distance
of the top rebar from the top edge of the section (d′), the area of the bottom rebar (As) and
the area of the top rebar (As

′).
It is assumed that in this phase, there is a linear relationship between the normal

stresses and strains in concrete. This is due to the short first non-cracked limit phase
leading to the onset of the first crack in the cross-section and the relatively low compressive
stresses. Before the formation of the first crack, the complete cross-section is considered to
be in an elastic state, as shown in Figure 2. In the absence of axial force, the neutral axis
yn = ycr (given with respect to the top edge) and is given as

ycr =
bh2

2 + (n − 1)(A′
sd′ + Asd)

bh + (n − 1)(A′
s + As)

, (3)

where n = Es/Ec represents the ratio between the elastic modulus of steel (Es) and con-
crete (Ec).

The moment of inertia of the adjusted (with A2 = (n − 1) As
′ and A3 = (n − 1) As, represent-

ing adjusted cross-sections of the rebars) cross-sectional centroid In =
3
∑

i=1
Ii + Ai(yi − ycr)

2,

accounting for the small and entirely negligible centroid moment of inertia of the rebar
(Is = I2 = I3 ≈ 0), is calculated as

In =
bh3

12
+ bh(

h
2
− ycr)

2
+ (n − 1)

(
A′

s(d
′ − ycr)

2
+ As(d − ycr)

2
)

. (4)

The limit moment Mcr and the corresponding curvature κcr =
dεc(y)

dy at the point when
the first crack appears are as follows:

Mcr =
fct In

h − ycr
, (5)

and
κcr =

fct

Ec(h − ycr)
=

εct

h − ycr
, (6)

where εct represents the maximum tensile strain of the concrete.

Figure 2. Stress and strain distribution over the cross-section height at the first crack initiation.

2.2. Determination of the Limit Characteristic Point for M = My and κ = κy

In determining the limit moment My at which the tensile reinforcement starts to yield,
the strain (εs) and the resultant force (Fs) in the bottom (tensile) reinforcement have been
taken into account as

εs = εy, (7)
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and consequently,
Fs = fy As. (8)

The normal stresses in concrete, as given by Equation (1), occur only in the compression
zone and are expected to be only parabolically distributed along the height of the non-
cracked part of the cross-section, within the limits 0 ≥ εc ≥ εc2 shown in Figure 3, where
parabolic distribution is presented. The figure illustrates the additional required parameters,
including the maximum compressive strain in the top fibre of the concrete (εcc), strain in
the top reinforcement (εs

′), the resultant compressive force in the concrete (Fc), the resultant
force in the top reinforcement (Fs

′), and the linear function of the strains over the section
height εc(y) when the bottom reinforcement reaches yielding.

Figure 3. Stress and strain distribution over the cross-section height at the initiation of the yielding of
the tension (bottom) reinforcement.

At the beginning of the yielding of the bottom reinforcement in the cross-section
(assuming that the stresses in the compression zone of the concrete are exclusively dis-
tributed by the parabola), the compressive forces in concrete Fc and the top reinforcement
Fs

′, depending on the position of the neutral axis yn = yy, must be determined as follows:

Fc = b
∫ yy

0
σc(y)dy = b

∫ yy

0
fc

(
1 −
(

1 − εc(y)
εc2

)2
)

dy, (9)

and
F′

s = ε′s A′
s(Es − Ec) = εc

(
y = d′

)
A′

s(Es − Ec), (10)

assuming that the top rebar is still behaving elastically.
The strain εc(y) can be expressed as a linear function by considering boundary condi-

tions εc(y = d) = εy and εc(y = yy) = 0. Therefore, the strain function is

εc(y) =
εy(y − yy)

d − yy
f or 0 ≤ y ≤ h. (11)

Considering Equation (11) in Equation (9), the resultant force in the concrete (Fc) is now

Fc = − b fcyy
2εy
(
3dεc2 + yy

(
εy − 3εc2

))
3εc22

(
d − yy

)2 , (12)

where the correct orientation of Fc is already presented in Figure 3.
The neutral axis position yy is established by balancing all the forces acting on the

cross-section Fc + Fs
′ + Fs = 0 (considering that Fc and Fs

′ are obtained with negative signs).
As a result, the cubic characteristic polynomial is formed:

4

∑
i=1

βi,yyy
i−1 = 0, (13)

where the constants βi,y (i = 1, 2, 3, 4) are defined as
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β1,y = 3dεc2
2(Asd fy + A′

sεyd′(Es − Ec)
)

β2,y = −3εc2
2(2Asd fy − A′

sεy(d + d′)(Es − Ec)
)

β3,y = 3εc2
(

As fyεc2 − εy(A′
sεc2(Es − Ec) + bd fc)

)
β4,y = b fcεy

(
3εc2 − εy

) (14)

The neutral axis position yy at reinforcement yielding initiation in the tensile zone is
determined using the relevant cubic polynomial solution, as follows:

yy =
2

∑
j=1

((
−1

2
+ (−1)j+1 i

√
3

2

)
3

√
−q + (−1)j

√
q2 + p3

)
− β3,y

3β4,y
, (15)

where the coefficients p and q are defined as

p =
3β4,y β2,y−β3,y

2

9β4,y
2

q =
2β3,y

3−9β2,y β3,y β4,y+27β1,y β4,y
2

54β4,y
3

. (16)

The two remaining obtained solutions of the cubic polynomial for this problem are
irrelevant as they lie outside the boundaries of the cross-section area.

The characteristic limit moment My is determined by utilising the moment equilibrium
of all the resulting forces in the cross-section:

My = Mc + F′
sd′ + Fsd, (17)

where Mc = b
∫ yy

0 σc(y)ydy represents the moment of resulting force (Fc) of the non-cracked
concrete section, which is denoted as follows:

Mc = − b fcyy
3εy
(
4dεc2 + yy

(
εy − 4εc2

))
12εc22

(
d − yy

)2 . (18)

The corresponding curvature, obtained as κy = dεc(y)
dy , follows as

κy =
εy

d − yy
. (19)

The closed-form solution for My and κy is restricted to cases where the bottom re-
inforcement yields prior to the strain in the concrete reaching εc2 from Equation (1). A
necessary condition for the validity of the application of the derived expressions is therefore
εcc = εc(y = 0) ≥ εc2.

2.3. Determination of the Limit Characteristic Point for M = Mu and κ = κu

The value of the characteristic ultimate moment Mu is determined by considering that,
at the initiation of compression failure of the top concrete fibre, the maximum compressive
edge strain in the concrete is εcc = εc3. The linear strain function εc(y) is therefore acquired
under the following two conditions, εc(y = 0) = εcc = εc3 and εc(y = yu) = 0. Thus, the strain
function is

εc(y) = εc3

(
1 − y

yu

)
. (20)

At the initiation of concrete failure at the top compressive edge of the cross-section,
the total resulting force (Fc) in the concrete non-cracked area is calculated by combining
the resulting forces of two sub-areas. These areas include the region where the concrete
strain is within the limits of εc2 ≥ εc ≥ εc3 and the region where the concrete strain is at
limit 0 ≥ εc ≥ εc2, as illustrated in Figure 4.
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Figure 4. Stress and strain distribution over the cross-section height at the initiation of concrete failure
at the top compressive fibre.

The location of the fibre separating the two stress functions across the cross-section, as
derived from Equation (1), is designated as y1, originating from the top of the cross-section,
and by applying the condition εc(y = y1) = εc2, y1, it is defined as follows:

y1 =
yu (εc3 − εc2)

εc3
. (21)

Considering Equation (21), the resulting force in concrete Fc = b(
∫ y1

0 fcdy +
∫ yu

y1
fc((

1 +
εc(y)

εc2

)2
− 1
)

dy) can be expressed as follows:

Fc =
1
3

b fcyu

(
3 − εc2

εc3

)
. (22)

The forces acting on the top reinforcement (presumed in an elastic zone) and on the
bottom reinforcement are

F′
s = ε′s A′

sEs = εc
(
y = d′

)
A′

sEs, (23)

and
Fs = fy As. (24)

It should be noted that when calculating the neutral axis yn = yu at the initiation of
the compressive failure of the concrete, it is necessary to check the following condition
|εs

′| = |εc(y = d′)| ≤ εy, as it is assumed in Equation (23) that the upper reinforcement
remains within the elastic region.

The position of the neutral axis yu is determined by achieving equilibrium among the
resulting forces of Fc + Fs

′ + Fs = 0 in the cross-section. As a result, the quadratic polynomial
is obtained: 3

∑
i=1

βi,uyu
i−1 = 0. (25)

where the constants βi,u (i = 1, 2, 3) are defined as

β1,u = −3A′
sd′Esεc3

2

β2,u = 3εc3
(

As fy + AsEsεc3
)

β3,u = b fc(3 εc3 − εc2)
. (26)

The position of the neutral axis yu at the initiation of concrete collapse is defined by
the solution of Equation (25), which is thus

yu =

√
β2,u

2 − 4β1,uβ3,u − β2,u

2β3,u
. (27)
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The other solution of Equation (25) is irrelevant as it lies outside the boundaries of the
cross-sectional area.

The characteristic moment Mu is determined by applying the moment equilibrium of
all the resulting forces in the cross-section:

Mu = Mc + F′
sd′ + Fsd, (28)

where Mc = b
(∫ y1

0 σcydy +
∫ yu
−y1

σc(y)ydy
)

denotes the moment of the stresses in the non-
cracked concrete section, which is expressed as

Mc =
b fcyu

2(εc2
2 − 4εc2εc3 + 6εc3

2)
12εc32 , (29)

and the corresponding curvature κu = dεc(y)
dy is as follows:

κu = − εc3

yu
. (30)

It should be noted that the presented expressions (Equations (3)–(30)), which were
derived for doubly reinforced cross-sections, are applicable also to the single rebar cross-
section, simply taking into account the cross-section of the top rebar as As

′ = 0.

3. Practical Application and Experimental Testing

The expressions derived in the previous section can be implemented for a pure bending
analysis of an arbitrary rectangular cross-section with single or double reinforcement.
Although they are derived in complete accordance with the laws of structural mechanics,
they also include some details related to the EC2 standard requirements. To gain insight
into matching the assumptions of structural mechanics and the standard’s requirements,
an analysis of the bending of a simply supported beam, for which the experimentally
obtained values of transverse displacement at the centre were known [10], was performed
using the presented expressions. Since it is a simple statically determined structure, a
preliminary analysis was first performed, which led to analytical expressions for the
magnitude of the transverse displacement for different phases related to the degree of
cracking of different parts of the concrete beam depending on the size of the load. These
derived specific expressions for the magnitude of the transverse displacement of the
structure in question enabled a faster analysis of the values for comparison, but they are
not necessary since all the integrals that appear in the analysis can equally be qualitatively
evaluated purely numerically.

3.1. Determination of a Closed-Form Solution for the Transverse Displacement at the Centre of a
Simply Supported Beam

In this section, the limit value of the Euler–Bernoulli transverse displacement at the
centre of the four-point loaded RC beam from Figure 5 is calculated. The end spans and the
middle span areas had different longitudinally reinforced rectangular cross-sections, with
single reinforcement (subscript 1) in the end spans and double reinforcement (subscript 2)
in the middle span. The beam characteristics include the total span of the beam between
the two supports (l), the end span from the support to the concentrated force (l1) and
the mid-span between the concentrated forces (l2). The beam is loaded with two vertical
concentrated loads, acting at the borders of the middle span area. This load causes a
constant bending moment value in the beam between both forces in the middle span area,
and linear ones in both side areas.
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Figure 5. Four-point-loaded, simply supported RC beam with differently rebar-reinforced rectangular
cross-sections in the middle span and end span areas.

Transverse displacement is calculated for all three limit moments (M1
cr at the initiation

of the first crack, M1
y at the occurrence of the first yielding of the tensile reinforcement and

M1
u at the compressive failure of the concrete, all appearing at the middle span area of the

beam). Due to the symmetry of the beam and the loading, an alternative simplified model
for the left half of the beam is considered for calculating the transverse displacements. The
change in the bending stiffness, which occurs at the first crack, does not affect the linear
relationship between the load and the bending moments due to the static determinacy
of the structure. Therefore, the three limit moments M1

i (i = cr, y, u) that occur at the
middle span area of the beam between the two forces, as shown in Figure 6, determine the
two bending moment functions for the two areas:

Mi(x) =
M1

i
l1

x 0 ≤ x ≤ l1, (31)

and
Mi(x) = M1

i l1 ≤ x ≤ l
2

, (32)

where M1
i = Pil1/2 (i = cr, y, u) represents the maximum bending moment at the middle

span area of the beam as a function of the applied load Pi.

Figure 6. Moment diagrams for three characteristic moment values on the left half of the beam.
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The transverse displacement of the beam at the centre (Δ) caused by bending is
determined analytically for all three characteristic moments using the virtual work principle
Δ =

∫
l M(x)/EIδM(x) dx, where δM(x) is the moment that occurs due to a virtual vertical

unit force at the centre of the beam. Considering the relation between the bending moment
and the curvature, the transverse displacement Δ is expressed by the following equation:

Δ =
∫ l

2

0
κ(x)xdx. (33)

3.1.1. Determination of the Limit Characteristic Transverse Displacement Δcr

The transverse displacement Δcr that characterises the occurrence of the first crack in
area II is determined utilising Equation (33) for the two elastic zones as

Δcr =
∫ l1

0
κ2

cr,M1
cr
(x)xdx +

∫ l
2

l1
κ1

cr,M1
cr

xdx, (34)

where the corresponding curvatures are defined as

κ2
cr,M1

cr
(x) = κ2

cr
M2

cr

M1
cr

l1
x 0 ≤ x ≤ l1,

κ1
cr,M1

cr
= κ1

cr l1 ≤ x ≤ l
2 .

(35)

3.1.2. Determination of the Limit Characteristic Transverse Displacement Δy

The characteristic transverse displacement Δy at yielding initiation is determined by
considering M1

y. At the occurrence of the initial reinforcement yielding, the part of the
beam from the left support to location x1 still remains in the elastic zone (i.e., non-cracked
state), while the rest of the beam from location x1 to the centre of the beam is in the state
of the crack propagation limit phase. The location x1 is found from the moment function
when considering M(x = x1) = M1

yx1/l1 = M2
cr. Thus, the location x1 is

x1 =
M2

cr
M1

y
l1. (36)

The characteristic displacement Δy at yielding initiation is therefore

Δy =
∫ x1

0
κ2

cr,M1
y
(x)xdx +

∫ l1

x1

κ2
y,M1

y
(x)xdx +

∫ l
2

l1
κ1

y,M1
y
xdx, (37)

where the corresponding curvatures are defined as

κ2
cr,M1

y
(x) = κ2

cr
M2

cr

M1
y

l1
· x 0 ≤ x ≤ x1,

κ2
y,M1

y
(x) =

κ2
cr−κ2

y

M2
cr−M2

y

M1
y

l1
x +

M2
crκ2

y−M2
yκ2

cr

M2
cr−M2

y
x1 ≤ x ≤ l1,

κ1
y,M1

y
= κ1

y l1 ≤ x ≤ l
2 .

(38)

3.1.3. Determination of the Limit Characteristic Transverse Displacement Δu

The characteristic displacement Δu is computed under the assumption of the bend-
ing moment reaching the value of M1

u in the middle span area. At the initiation of the
compressive failure of the concrete, the section of the beam between the left support and
location x2 is in the elastic zone, while the section between locations x2 and x3 is in the
cracked zone, and the area between x3 and the centre of the beam is in the yielding zone.
Locations x2 and x3 are determined by utilising the moment functions with respect to
M(x = x2) = M1

ux2/l1 = M2
cr and M(x = x3) = M1

ux3/l1 = M2
y. Thus, locations x2 and

x3 are
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x2 =
M2

cr
M1

u
l1, (39)

and

x3 =
M2

y

M1
u

l1. (40)

The characteristic displacement Δu at the compressive failure of the concrete is therefore

Δu =
∫ x2

0
κ2

cr,M1
u
(x)xdx +

∫ x3

x2

κ2
y,M1

u
(x)xdx +

∫ l1

x3

κ2
u,M1

u
(x)xdx +

∫ l
2

l1
κ1

u,M1
u
xdx, (41)

where the corresponding curvatures are defined as

κ2
cr,M1

u
(x) = κ2

cr
M2

cr

M1
u

l1
x 0 ≤ x ≤ x2,

κ2
y,M1

u
(x) =

κ2
cr−κ2

y

M2
cr−M2

y

M1
u

l1
· x +

M2
crκ2

y−M2
yκ2

cr

M2
cr−M2

y
x2 ≤ x ≤ x3,

κ2
u,M1

u
(x) =

κ2
u−κ2

y

M2
u−M2

y

M1
u

l1
x +

M2
uκ2

y−M2
yκ2

u

M2
u−M2

y
x3 ≤ x ≤ l1,

κ1
u,M1

u
= κ1

u l1 ≤ x ≤ l
2 .

(42)

3.2. Experimental Verification and Discussion

Prior to the bending experiment, two preliminary tests were performed to obtain
the mechanical characteristics of the steel and the concrete. The yield strength of the
rebar is fy = 605 MPa and represents the average value of two tensile tests performed
separately of the rebar being installed. The measured strain at the yielding of the rebar
is εy = 3‰. The elastic modulus of the steel (calculated from the measured stresses and
strains) is Es = fy/εy = 201.7 GPa. The compressive mean value of the concrete strength is
fcm,cube = −44.8 MPa and represents the average of the uniaxial compressive strength of the
embedded concrete on six standardised cubes.

The beam geometric characteristics from the bending experiment, which have also
been implemented in the analytical model, are summarised in Table 1.

Table 1. Default beam characteristics from the bending experiment.

Parameter Value

Beam span between supports (l) 1.45 m
Span from support to concentrated force (l1) 0.475 m

Span between concentrated forces (l2) 0.50 m
Cross-section width (b) 0.10 m
Cross-section height (h) 0.15 m

Distance from top edge to centroid of bottom rebar (d) 12.1 cm
Distance from top edge to centroid of top rebar (d′) 2.9 cm

Area of bottom rebar (As) 1.571 cm2

Area of top rebar (As
′) 1.571 cm2

All the remaining material properties of the concrete that were not determined experi-
mentally during the concrete testing phase were determined using the empirical expressions
defined by EC2 and are given in Table 2. As can be seen from the table, the mean values
of the compressive strength (fc = fcm), tensile strength (fct = fctm) and modulus of elasticity
(Ec = Ecm) of the cylinder were implemented in the analytical model for the concrete.
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Table 2. Default material characteristics of concrete in analytical model in accordance with EC2.

Empirical Expressions
(According to EC2)

Material Characteristics

fcm = 0.8 fcm,cube fc = f cm = −35.84 MPa
fck = fcm − 8(MPa) f ck = −27.84 MPa
fctm = 0.30 · ( fck)

2
3 f ct= fctm = 2.75 MPa

Ecm = 22 · ( fc/10)0.3 Ec = Ecm = 32.3 GPa
f ck < 50 MPa εc2 = −2.0‰
f ck < 50 MPa εc3= εcu2 = −3.5‰

The testing device consisted of two parts, the lower support structure and the upper
hydraulic piston, through which the load was introduced (Figure 7). The used hydraulic
piston had a nominal force of Fv = 100 kN, and the working span of the piston was 250 mm.
The piston was connected to a control unit with an analogue load display in pressure
units, and the loading rate was around 32 N/s. The displacements of the concrete beam
under the applied force Fv were simultaneously measured with three MarCator 1086 digital
indicators located beneath the applied forces and at the mid-span of the beam. All the
applied devices were calibrated by the corresponding actual testing standards.

Figure 7. Testing setup.

The analytical model has produced results which include the limit points for the
moment–curvature diagrams (M1 − κ1 and M2 − κ2) of the middle span and end span areas,
and the force–displacement (P − Δ) diagrams. All of these results have been determined
based on the data given for this case, and are conveniently summarised in Table 3.

Table 3. Results of the characteristic limit points of the analytical model.

i cr y u

M1
i [kNm] 1.12787 9.98333 10.2068

κ1
i [10−3 rad/m] 1.17264 38.7849 106.822

M2
i [kNm] 1.15910 9.93093 10.1910

κ2
i [10−3 rad/m] 1.13519 37.4166 114.095

Pi [kN] 4.74891 42.0351 42.9761
Δi [mm] 0.25897 8.51234 19.0298

The transverse displacements from the experiment (presented in Figure 8) clearly
confirm three phases for the structure in question, as was also foreseen when preparing the
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analytical expressions, and in the first two phases, the match between the calculated and
measured values is almost perfect from the engineering point of view.

The experimental elastic phase (I) shows a slightly shorter linear range of measured
transverse displacements at the centre of the beam compared to the analytical model with
implemented expressions from EC2. This is due to the use of an apparent overestimation
of the concrete tensile strength value (fct), obtained through the code. Therefore, the actual
tensile strength is apparently much lower than assumed. On the other hand, the remaining
material properties of the concrete defined according to EC2 provide a satisfactory accuracy.

In the crack propagation limit phase (II), the transverse displacements match well with
the experimental results, providing an accurate representation of the real behaviour of the
materials used in the analytical model.

During the reinforcement’s yielding limit phase (III), when the bending moment due
to the applied load approaches the ultimate limit state of bearing capacity, the analytical
model exhibits a somewhat diminished agreement with the experimentally obtained values.
In this phase, the stress resultant in the concrete area is an increasing function of stresses
and the simultaneously decreasing function of the concrete area in compression. Such
an inverse relationship between the two parameters certainly depends on the quality of
both material’s constitutive laws, which are, as we know, approximations. Therefore, the
observed differences are attributed to the use of a simplified and conservative non-linear
behaviour (in accordance to standard EC2) for both materials in the analytical model. In the
preliminary experimental testing of the steel bars, the elastic limit was conservatively set at
the limit of proportionality, without consideration of their non-linear elastic (i.e., with the
inclined top branch of the steel design stress–strain diagram) behaviour. Nevertheless, the
analytically derived definitions not only yield more than satisfactory results considering
the uncertainties inherent in the experimental results in the ultimate plastic range, but the
experimentally obtained results are even more favourable from the design practice point
of view.

Figure 8. Comparing the experimental displacements with those predicted by the analytical model.

4. Expanding Utilisation of Detailed Solutions to Simplified Substitutive
Computational Model

The analysis of the case of a simple structure in the previous study not only showed
that the matching of values in the more significant engineering phase of the structural
element’s cracking is very good, but at the same time, it also exposed that such a thorough
non-linear incremental analysis would be very time- and computational effort-consuming
for more demanding structures.

When considering the serviceability limit states, where we usually focus just on
the displacements, or in situations with a not accurate enough knowledge of the load
(unpredictable both in magnitude as well as in direction), such as, e.g., in the analysis
of the seismic load, it becomes clear that the analysis of the practically infinite possible
combinations of orientations and the magnitude of the seismic load in this way is at least
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meaningless, if not even impossible. At the same time, it is clear that with such extreme
loads, it is impossible to avoid concrete cracking, which will appear quite unpredictably
(both in terms of location and size), because this is also the nature of an earthquake
impact. Therefore, various standards (Eurocode 8, FEMA) enable a compromise between
the thorough analysis and the complete ignoring of cracking. The impact of the cracks
is thus introduced as a simple uniform reduction of bending stiffness over the entire
length of each individual structural element. Such an elementary approach of including
cracking is computationally straightforward, but at the same time, the quality of its results
is questionable.

4.1. Determination of the Simplified Computational Model Mechanical Parameters

A much better engineering alternative, also allowed by the structural codes and also
already implemented in existing software, is where the displacement response of a cracked
element or beam is being modelled as a combination of two rigid parts, connected by a
rotational spring (Figure 9). The position of the spring coincides with the location of the
analysed displacement. The stiffness Kr of this spring must now summarise the effects
from both distributions: the pure elastic deformation as well as the cracked state within the
complete structural element (in contrast to the rotational spring stiffness genuine definition,
which is an exclusive function of the local state of the crack, i.e., at the discrete location of
the crack).

The total characteristic rotations ϕtot,i (i = cr, y, u) in spring with rotational stiffness
Kr situated at the midpoint of the beam, shown in Figure 9, which encompass both the
elastic as well as non-elastic deformations in the beam, have been determined using
three analytically computed characteristic transverse displacements Δi (i = cr, y, u) and
the kinematic relationship that is valid for the selected substitutive model. Each total
characteristic rotation ϕtot,i value was thus calculated as

ϕtot,i =
4Δi

l
. (43)

and the obtained values are presented in the first row of Table 3.
This definition of a rotational spring is appropriate for analyses that use non-deformable

line elements. However, structural computational models (like finite element models)
already account for the bending elastic deformations of elastic segments. Therefore, the
elastic (linear) component ϕe,i is obtained through the implementation of linear constitutive
moment–rotation law and similar triangles:

ϕe,i = ϕcr
Ms

i
Ms

cr
(44)

Further, this value is subtracted from the total rotation of the rotational spring ϕtot,i [35],
providing the pure inelastic component for all three characteristic points (i = cr, y, u):

ϕp,i = ϕtot,i − ϕe,i. (45)

Figure 10 shows the generalised moment–rotation diagrams for all three definitions of
rotational springs.

Figure 9. Transversely deformed beam with equivalent rotational spring in the mid-point.
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Figure 10. Generalised tri-linear moment–rotation diagram for a rotational spring.

4.2. Application Demonstration and Discussion

All of the characteristic corresponding rotation values for the previously considered
beam have been determined by Equations (34), (37), (41) and (43)–(45) implementing the
example data given in Section 3.2, and are conveniently summarised in Table 4. These
values, combined with the corresponding moments (Ms

i ) from Table 3, allow for the actual
tri-linear moment–rotation diagram for a rotational spring to be constructed. Further, the
corresponding rotational spring stiffness Kr value for phases II and III is obtained as the
ratio of the difference of the limiting moments of each phase to the difference of the limiting
rotation of the same phase (while for phase I, the stiffness value equals infinity).

Table 4. Results of the characteristic rotation limit points of the rotational spring stiffness.

i cr y u

ϕtot,i [10−3 rad] 0.71440 23.4823 52.4959
ϕp,i [10−3 rad] 0.00000 17.1588 46.0308
ϕe,i [10−3 rad] 0.71440 6.32356 6.46511

To demonstrate the possibilities of the alternative simplified computational model, an
FE model was prepared to perform a non-linear static bending pushover analysis of the
previously considered four-point-loaded, simply supported RC beam. Due to the different
cross-sections of the beam, as well as the applied concentrated loads, several FEs had to
be implemented (Figure 11). Since the primary goal of this model was to determine the
displacement at the mid-span, i.e., at the point where the experimentally obtained values of
the displacement were known, the cracked beam three-noded finite element (CB3NFE) with
an embedded non-linear rotational spring (Kr), with an additional degree of freedom at the
location of the rotational spring [36,37], was applied for the middle-span area (element 2).
By reducing the number of degrees of freedom, the utilisation of this element allows for a
slightly smaller computational model than the implementation of four standard elements,
simultaneously yielding an identical quality of the results. The applied FE model allows
for more convenient modelling than the analytical solving of differential equations, and at
the same time significantly simplifies the modelling for the analysis performed.

Figure 11. Idealised FE model of an RC beam using three finite elements.
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In the discussed finite element analysis procedure, the bending moment at the loca-
tion that governs the state and stresses in the cross-section was first obtained for each
con-sidered load P. Afterwards, the bending stiffnesses in the applied finite elements was
calculated by multiplying the concrete modulus of elasticity (Ec) with the moment of inertia
(In) defined in Equation (4). Further, the implemented embedded rotational spring stiffness
Kr was taken into account as a function of the applied moment, incorporating the limit
points of the moment–rotation diagrams (Ms − ϕ) for three defined rotations, summarised
in Table 4, allowing also the stiffness matrix for the second finite element to be evaluated.
The additional process of analysis follows the standard steps for finite element analyses.
Therefore, all three stiffness matrices of the finite elements are assembled in the structure’s
stiffness matrix.

For the example, for the load P = 42.0351 kN, the following stiffness matrix was obtained:

[K] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

8598.42 −27152.9 4299.21 0 0 0 0
−27152.9 324460. 22265.3 −235595. 25462.9 −3250.92 0
4299.21 22265.3 20663.5 −52669.1 3250.92 −523.309 0

0 −235595. −52669.1 471190. −235595. 52669.1 0
0 25462.9 3250.92 −235595. 324460. −22265.3 27152.9
0 −3250.92 −523.309 52669.1 −22265.3 20663.5 4299.21
0 0 0 0 27152.9 4299.21 8598.42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
By also applying the load vector, discrete displacements and rotations in the model’s

nodes are obtained. Afterwards, this procedure is repeated for all load values of interest.
However, it should be noted that the load must be applied incrementally (which is common
in non-linear static analysis). Namely, when applying a load, structures redesign themselves
accordingly, as the bending moment change can alter the bending stiffness, and the change
of the bending stiffness in statically indeterminate structures even consequently causes a
redistribution of the bending moment.

These results obtained from the presented FE model for the transverse displacement
at the mid-span were identical to the results of the analytical model presented previously.

The relation established in this model between the derived tri-linear moment–curvature
and moment–rotation diagrams provides a foundation for future research aimed at refining
the definition of plastic hinge lengths. This link between the moment–curvature behaviour
of the cross-section and the moment–rotation characteristics of a rotational spring allows
for more accurate modelling of the plastic behaviour of RC beams.

5. Conclusions

This paper introduces an analytical model for predicting the transverse displacement
of RC beams, using a three-linear moment–curvature diagram of the cross-section. The
main contributions of the study are as follows:

• A closed-form solution for each of the three-phase moment–curvature relationships
was developed, covering critical limit points: initial cracking, tensile reinforcement
yielding, and ultimate concrete failure in compression;

• The model provides accurate predictions of the flexural behaviour of RC beams,
validated through comparisons with experimental data, particularly in the elastic and
crack propagation phases;

• The model accommodates both single and double reinforcement configurations, broad-
ening its applicability across different beam designs;

• The analytical framework is adaptable and can be integrated into more complex
structural systems to predict behaviour under varying loading conditions;

• A simplified computational model was also considered, enhancing the efficiency of
the structural analysis and making it more practical for engineering applications.

Despite its strengths (efficiency and proven accuracy in the first two response phases),
the model assumes perfect bonding between concrete and reinforcement and uses idealised
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material behaviours, which may limit its precision in more complex scenarios, such as
irregular loading, high strain rates or non-standard geometries. Future research should
address these limitations by refining material constitutive models, also incorporating shear
effects and exploring the impact of cyclic and dynamic loading conditions.

Future studies might also build on the model with the rotational spring to develop
more refined approaches that account for varying material properties, loading conditions
and complex cross-sectional geometries, ultimately enhancing the reliability of plastic hinge
length predictions in design and analysis.
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Peruš, I. Mathematical Modeling of

the Floating Sleeper Phenomenon

Supported by Field Measurements.

Mathematics 2024, 12, 3142. https://

doi.org/10.3390/math12193142

Academic Editor: Carlo Bianca

Received: 11 September 2024

Revised: 2 October 2024

Accepted: 5 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mathematical Modeling of the Floating Sleeper Phenomenon
Supported by Field Measurements

Mojmir Uranjek 1,2, Denis Imamović 2 and Iztok Peruš 2,*
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Abstract: This article aims to provide an accurate mathematical model with the minimum number of
degrees of freedom for describing the floating sleeper phenomenon. This was accomplished using
mathematical modeling supported by extensive field measurements of the railway track. Although the
observed phenomenon is very complex, the simplified single degree of freedom (SDOF) mathematical
model proved accurate enough for its characterization. The progression of the deterioration of the
railway track was successfully correlated to changes in the maximal dynamic factor for different
types of pulse loading. The results of the presented study might enable the enhanced construction
and maintenance of railroads, particularly in karst areas.

Keywords: floating sleepers; dynamic factor; pulse loading; field measurements; SDOF mathematical
model

MSC: 37N15; 37N30; 74-05

1. Introduction

For a detailed analysis of the stress state in ballast railway tracks for different extreme
cases such as geometrical irregularities of the rail, ballast fouling, or abrupt changes in
stiffness along the railway track, realistic but also complex 2D [1] or 3D [2] numerical
models are used. Simpler models, on the other hand, enable quicker characterization of
the problem; however, they do not allow all factors to be considered. The simplest track
model is the one introduced by Winkler in 1867, where the track was modeled as a beam on
a continuous elastic foundation [3,4]. In this approach, a beam (rail) rests on a continuous
elastic foundation modeled by evenly distributed linear spring stiffness. This model is
suitable for assessing the static loading of a track on a soft support (i.e., wooden sleepers);
however, it does not allow dynamic effects to be considered. In a more advanced approach,
the track is modeled as a beam on discrete supports (e.g., Ref. [5]). Here, the rail is modeled
as a Euler–Bernoulli or Rayleigh–Timoshenko beam, and rail pads by spring-damper
systems. Sleepers are represented as rigid masses and ballast is modeled by spring-damper
systems. To be able to consider the influence of resonance at lower frequencies, this model
can be upgraded by incorporating the ballast mass [6]. The viability and applicability of this
model are considered in Ref. [7] by using calibration with a 3D modeling approach. At this
point, we should mention other problems that are directly related to the issues of railway
infrastructure, e.g., the hunting phenomenon related to the lateral oscillation of the rail
wheels [8], mathematical modeling of the deformable characteristics of railway ballast [9],
and various complex mathematical analyses of the rail beam, e.g., numerical analyses
of the non-uniform layered ground vibration caused by a moving railway load [10]. In
the modern sustainable development of railway infrastructure, we must not forget about
innovation (e.g., Cai et al. [11] identified key influencing factors in railway engineering
technological innovation in complex and difficult areas) and maintenance [12–15]. Effective
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planning, first, and maintenance of railway infrastructure, second, could largely prevent
the phenomenon of floating sleepers discussed in this article. A step toward a better
understanding of this phenomenon is, therefore, presented in this article.

The main objective of this work was to develop a simplified mathematical model with
the minimum number of degrees of freedom possible, which would be accurate enough
and allow simple characterization of the floating sleeper phenomenon. Such an approach
would enable an easy graphical presentation of the results. Therefore, this paper could
improve engineering understanding of the phenomenon and the effective development
of various technical solutions to deal with the problem efficiently. Within the framework
of the performed analysis, a simplified mathematical model for loading and dynamic
response has been used. The results in the presented study indicate that the dynamic factor
for short-term pulse loading, which corresponds to a one- or two-axle passage of train
composition, has relatively low values for typical track stiffness. The factor reaches very
high values with decreasing track stiffness and then decreases with a small value of track
stiffness. The observed phenomenon can be described as highly non-linear.

2. Methods and Field Measurements

2.1. Basic Idea and Methods Used

Solving the problem of floating sleepers can be approached in several ways—with
an experimental approach, with a theoretical approach, or with a combination of both.
For example, in Ref. [16], it was established with an experimental approach that the
phenomenon of floating sleepers is affected by a local change in the stiffness of the rail
beam, which is generally the result of several factors. These were identified based on
extensive experimental work and an analysis of the obtained results, with the help of
artificial neural networks. Of the factors identified in the research, welds between two
adjacent rails had by far the greatest impact (40%), while 13%, 10%, 10%, 9%, 9%, and 9%
were attributed to gravel, maximum rail displacement, gauge, twist, heterogeneity, and
residue, respectively. However, mathematical modeling of the phenomenon of floating
sleepers according to the theoretical approach is very demanding, as is also shown by
the research so far, since the existing models (e.g., Refs. [2,17]) do not yet explain the
phenomenon satisfactorily. The presented research proposes a combined approach that
includes the results of observations obtained through field measurements and simplified
mathematical models. In this proposal, first, instead of complex discretization with MDOF
models (e.g., Refs. [2,17]), which also include the half-space of the rail beam, we use simple
(equivalent) SDOF models, which have all the properties and loadings of the considered rail
beam structure. In this way, the individual influences and states of the considered system
can be identified more easily. Furthermore, the obtained results of SDOF models in the form
of simpler mathematical expressions can be more effectively interpreted and understood in
engineering terms. Based on the obtained results measured in the field, such a model can
be calibrated relatively easily. In this way, SDOF models will not accurately summarize all
the characteristics of the phenomenon, but they will enable simpler calculations and help
in understanding and solving the problems of floating sleepers.

Figure 1 shows the progression of the floating sleeper phenomenon on a short stretch
of track. An indicator of the beginning of the phenomenon is a slight local dusting in the
vicinity of the affected sleeper (Figure 1, left). As the phenomenon progresses, dusting
intensifies and can also spread to adjacent sleepers (Figure 1, top right). The final stage of
the phenomenon, when the sleepers lose contact with the ground and individual sleepers
practically hang from the rails, is shown in Figure 1, bottom right.

Ballast fouling reveals a change in some of the material characteristics of the track,
e.g., the reduction in stiffness over time within the observed period, which, in principle,
signifies the non-linear behavior of the observed phenomenon.
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Figure 1. Progression of the floating sleeper phenomenon in various states on a short stretch of track.

2.2. Assumptions, Equations, and Simplified SDOF Dynamic Model
2.2.1. Basic Assumptions

Using the simplified SDOF mathematical model, in comparison with more accurate
MDOF models (e.g., Ref. [17]), we considered the following assumptions, considering the
facts found in the field:

• The passage of the axle of the train composition over the observed location in the
idealized simplified mathematical model represents a special case of short-term
pulse loading.

• In the model, a single spring is considered between the axle of the train composition,
which causes the load, and the track, which carries this load.

• In the case of short-term pulse loadings, due to their relatively short-term action, the
damping in the basic equation of motion can be neglected, because it has little effect
on the response. Such an approach at the same time greatly simplifies the solution of
the problem.

• Since we are interested in the change of influence and the effects at the location of short-
term pulse loading, we neglect the influence of adjacent structural elements in the
SDOF model. In this way, the absolute values of the response are somewhat imprecisely
determined. However, the qualitatively calculated response still realistically describes
the actual situation, especially in the case when the stiffness characteristics of the
SDOF model are calibrated with actual measurements and findings from the literature.

• Since observations in the field (Figures 1 and 2) unequivocally show that the floating
sleeper is a non-linear phenomenon, it should also be modeled mathematically. This
would not be a problem to analyze on a simple SDOF system; a bigger problem is to
predict in advance the material characteristics of the track at the considered location.
For the sake of simplification and easier physical interpretation of the results, the
various most probable loadings for the entire range of real values of the oscillation
times of the considered structure and duration of pulse loadings were analyzed.

• The observed phenomenon is non-linear; regardless, it was treated as a linear system
in discrete time windows with known (i.e., assumed) values of stiffness and mass. In
most cases, stiffness and mass values change between individual discrete time points.
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Figure 2. Damage of ballast in a location prone to the phenomenon of floating sleepers: (a) initial
state after identification, (b) damaged state after 21 days, and (c) damaged state after an additional
21 days.

Figure 2 shows the different states of ballast at the location of the floating sleeper over
time and the high cycle “fatigue” of the ballast track material. There is a flow of material
(i.e., ballast) whereby the individual stones of the ballast behave similarly to molecules
in a liquid, except that, here, the stones are of very different shapes and dimensions;
unlike a normal liquid, individual stones also wear out during translational and rotational
movement. This wearing down of the ballast changes its contribution to the stiffness of the
system under consideration; in this specific case, the stiffness of the track decreases—the
greater the wear, the lower the stiffness of the track. The last finding confirms again that
the observed phenomenon is (highly) non-linear. For the needs of our simplified SDOF
mathematical model, it is crucial that the considered phenomenon can be described in
various short time windows with the corresponding values of the (constant) terms of the
differential equation (e.g., Ref. [18]), as will be described below.

2.2.2. Equations of Motion

The behavior of the observed structure under the action of an external time-varying
loading can be described by the equation of motion for discrete models with multiple
degrees of freedom (MDOF) (e.g., Refs. [17,18]):

[M]
{ ..

U
}
+ [C]

{ .
U
}
+ [K]{U} = { f (t)}, (1)

where [M], [C], and [K] represent mass, damping, and the stiffness matrix, respectively;{ ..
U
}

,
{ .

U
}

and {U} represent acceleration, velocity, and displacement vectors, respectively,
and { f (t)} represents the loading vector.

For simple systems, i.e., single degree of freedom (SDOF) models, an algebraic form of
Equation (1) can be written as:

m
..
u + c

.
u + k u = f (t), (2)

where m, c, and k represent mass, damping, and stiffness, respectively;
..
u,

.
u and u represent

acceleration, velocity, and displacement, respectively, and f (t) represents dynamic loading.
Solving the homogeneous part of the differential Equation (2) defines the basic dy-

namic parameter of the structure under consideration, which is called the period of the
structure and can be expressed as:

T = 2π

√
m
k

. (3)

45



Mathematics 2024, 12, 3142

2.2.3. Dynamic Factor of the SDOF System

Generally, we are interested in the maximum values of individual observed quantities.
Since the displacements of the structure are directly proportional to the forces of the struc-
ture, we usually define the maximal dynamic factor, Df ,max (known also as the maximal
deformation response factor, i.e., Ref. [18]), with the equation:

Df ,max =
umax

u0
, (4)

where Df ,max represents the ratio between the maximum absolute value of the displace-
ments (umax) during the time-history response, described by Equation (2), and the absolute
value of the displacement at static loading (u0), which is usually determined as the am-
plitude of the dynamic loading. With the known value of Df ,max, the maximum dynamic
influences on the structure can be treated as static, which significantly simplifies solving
and understanding the problem.

2.2.4. Different Pulse Loadings of the SDOF System

Short-duration pulse loadings are generally described by various functions, with the
key characteristic of such a loading being that its relative duration is short. Here, the
parameter λ = t/T refers to the ratio between the duration of the short-term pulse loading
(t) and the period of the structure (T). Equation (2) is simplified in this case—since the
influence of damping is negligible for pulse loading, the term c

.
u can be neglected. Moreover,

since the influence of damping is neglected, the transmissibility (which represents the factor
that tells how much loading is transmitted to the ballast; see, e.g., Ref. [10]) can be described
by the dynamic factor (Equation (4)).

Completed solutions for Df ,max in the case of rectangular pulse loading (Figure 3a) are
given in Ref. [18]. The solution is relatively simple and can be written in its closed form as:

Df ,max =
umax

u0
=

{
1 − cos(2π λ) λ ≤ 1

2

2 λ ≥ 1
2

. (5)

Figure 3. Different pulse loadings: (a) rectangular, (b) symmetric triangular, and (c) general loading.

Symmetric triangular pulse loading (Figure 3b) is more complicated as it includes the
calculation of the response in three areas (the rising part of the pulse on the left, the falling
part of the pulse on the right, and no pulse on the right). To make it easier to understand the
results of later derivations which type of pulse loadingis more suitable for the simulation of
the actual load when the axle of the train composition passes over the observed track, a full
derivation is given here. In the derivation, we proceed from Equation (2), noting that the
displacement u(t) = u0·Df (t) is the product of static displacement and the dynamic factor,
and the loading function f (t) = f0·DL(t) is the product of static loading and the dynamic
loading factor of the symmetric triangular pulse loading. Equation (2) is further written as:

m·u0·
..
D f (t) + k·u0·Df (t) = f0·DL(t). (6)
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Dividing Equation (6) by m·u0 and considering f0
u0

= k and k
m = ω2, the following

is obtained: ..
D f (t) + ω2·Df (t) = ω2·DL(t), (7)

where the dynamic factor of the symmetric triangular load DL(t) is defined as:

DL(t) =

⎧⎪⎨⎪⎩
2·t
t f or 0 ≤ t ≤ t

2
2 − 2·t

t f or t
2 ≤ t ≤ t

0 f or t > t
. (8)

Next, the time-history response of the dynamic factor in three phases is determined.
The dynamic factor for the first phase (I), considering the initial conditions DI

f (t = 0) = 0

and
.

D
I
f (t = 0) = 0, is given by:

DI
f (t) =

2·(t·ω − sin(t·ω))

t·ω 0 ≤ t ≤ t
2

, (9)

and
.

D
I
f (t) =

2 − 2· cos(t·ω)

t
0 ≤ t ≤ t

2
. (10)

The solution for the dynamic factor in the second phase (II), considering the initial

conditions DII
f (t =

t
2 ) = DI

f (t =
t
2 ) and

.
D

II
f (t =

t
2 ) =

.
D

I
f (t =

t
2 ), is:

DII
f (t) =

2·
(

2· sin
(

t·ω − t·ω
2

)
− ω·(t − t)− sin(t·ω)

)
t·ω

t
2
≤ t ≤ t, (11)

and
.

D
II
f (t) =

2·
(

2· cos
(

t·ω − t·ω
2

)
− cos(t·ω)− 1

)
t

t
2
≤ t ≤ t. (12)

The solution for the dynamic factor in the third phase (III), considering the initial

conditions DIII
f (t = t) = DII

f (t = t) and
.

D
III
f (t = t) =

.
D

III
f (t = t), is:

DIII
f (t) =

8· sin2
(

t·ω
4

)
sin
(

t·ω − t·ω
2

)
t·ω t > t, (13)

and
.

D
III
f (t) =

cos
(

t·ω − t·ω
2

)
·8 sin2

(
t·ω
4

)
t

t > t. (14)

The time at which the maximal dynamic factor occurred for the first phase is then
determined. From Equation (6), it follows:

.
D

I
f (t) =

2 − 2· cos(ω·t)
t

= 0 → cos(ω·t) = 1 → ω·t = 2·π·n. (15)

Considering T = 2·π
ω , the time is thus:

tI
n = T·n; n = 1, 2, 3 . . . . (16)

Only solutions within the interval 0 ≤ t ≤ t
2 are considered; given that t = λ·T, the

condition is:
λ ≥ 2·n. (17)
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Substituting Equation (16) into Equation (9), the extreme value of the dynamic factor
is obtained:

DI
f ,max = DI

f (t
I
n = T) =

2·n
λ

λ ≥ 2·n; n = 1, 2, 3 . . . . (18)

Next, the time at which the maximal dynamic factor occurred for the second phase

is determined, derived from Equation (12) under the condition
.

D
II
f (t) = 0. The expres-

sion follows:

2· cos
(

t·ω − t·ω
2

)
− cos(t·ω)− 1 = 0. (19)

Considering T = 2·π
ω , the general four solutions of time obtained from Equation (19) are:

tI I
1,n = T·(n − α1)

tI I
2,n = T·(n + α2)

tI I
3,n = T·(n − α2)

tI I
4,n = T·(n + α1)

n = 1, 2, 3 . . . , (20)

where αi (i = 1, 2), in Equation (20), is defined as:

αi =
1

2π
· cos−1

⎛⎝1
2
·

⎛⎝3 + (−1)i
(

4
√

2 cos
(

π·t
2T

)
− 4

√
2 cos

(
3π·t
2T

))
5 − 4 cos

(
π·t
T

) − 1

⎞⎠⎞⎠. (21)

Only solutions within the interval t
2 ≤ t = tI I

i,n ≤ t are considered; given that t = λ·T,
the condition is:

λ

2
≤

tI I
i,n

T
≤ λ. (22)

From Equation (22), the lower and upper bounds of parameter λ for time tI I
i,n are deter-

mined. Substituting time tI I
i,n from Equation (20) into Equation (11), DII

f ,max = DII
f (t = tI I

i,n)

is obtained. Among all possible solutions, only the envelope of maximal dynamic factor
values up to a parameter of λ = 10 is listed here.

DII
f ,max =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DII
f (t = tI I

4,0) 0.0 ≤ λ ≤ 0.5
DII

f (t = tI I
1,1) 0.5 ≤ λ ≤ 2.0

DII
f (t = tI I

2,1) 2.0 ≤ λ ≤ 2.5
DII

f (t = tI I
3,2) 2.5 ≤ λ ≤ 4.0

DII
f (t = tI I

4,2) 4.0 ≤ λ ≤ 4.5
DII

f (t = tI I
1,3) 4.5 ≤ λ ≤ 6.0

DII
f (t = tI I

2,3) 6.0 ≤ λ ≤ 6.5
DII

f (t = tI I
3,4) 6.5 ≤ λ ≤ 8.0

DII
f (t = tI I

4,4) 8.0 ≤ λ ≤ 8.5
DII

f (t = tI I
1,5) 8.5 ≤ λ ≤ 10.

. (23)

Next, the time at which the maximal dynamic factor occurs for the third phase is

determined, derived from Equation (14) under the condition
.

D
III
f (t) = 0. The expres-

sion follows:

cos
(

t·ω − t·ω
2

)
· sin2

(
t·ω
4

)
= 0. (24)

Considering T = 2·π
ω , the general time solution tI I I

i,n is:

tI I I
i,n =

t1

2
+ T·

(
n − (−1)i

4

)
i = 1, 2 and n = 1, 2, 3 . . . . (25)
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Furthermore, only solutions within the interval t = tI I I
i,n > t are considered; given that

t = λ·T, the condition is:

0 ≤ λ < 2n − (−1)i

2
i = 1, 2 and n = 1, 2, 3 . . . . (26)

Considering time tI I I
i,n from Equation (25) in Equation (13), it follows:

DIII
f ,max = DIII

f (t = tI I I
i,n ) =

2· cos(π·λ)− 2

(−1)i·π·λ
. (27)

From Equation (27), it can be observed that the magnitude of the dynamic factor
DIII

f ,max is independent of n. Additionally, it is evident that the dynamic factor for i = 2 is
negative; thus, only the dynamic factor values for i = 1 are of interest. The dynamic factor
for phase (III) is, therefore:

DIII
f ,max = DIII

f (t = tI I I
1,n = tI I I

1 ) =
2 − 2· cos(π·λ)

π·λ for λ ≥ 0. (28)

It can be observed from Figure 4 that for phase III of the load application, the maximal
dynamic factor occurs only within the interval 0 ≤ λ ≤ 0.5. For the remaining interval
0.5 ≤ λ ≤ 10, the maximal dynamic factor occurs during phase II of the load application.

 
Figure 4. Maximal dynamic factor for all three phases of symmetric triangular pulse loading.

Thus, based on the dynamic factors for all three phases of load application, the final
envelope Df ,max for the interval 0 ≤ λ ≤ 10 is constructed in Equation (29), which is also
graphically shown in Figure 5.

Df ,max =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DIII
f (t = tI I I

1 ) 0.0 ≤ λ ≤ 0.5
DII

f (t = tI I
1,1) 0.5 ≤ λ ≤ 2.0

DII
f (t = tI I

2,1) 2.0 ≤ λ ≤ 2.5
DII

f (t = tI I
3,2) 2.5 ≤ λ ≤ 4.0

DII
f (t = tI I

4,2) 4.0 ≤ λ ≤ 4.5
DII

f (t = tI I
1,3) 4.5 ≤ λ ≤ 6.0

DII
f (t = tI I

2,3) 6.0 ≤ λ ≤ 6.5
DII

f (t = tI I
3,4) 6.5 ≤ λ ≤ 8.0

DII
f (t = tI I

4,4) 8.0 ≤ λ ≤ 8.5
DII

f (t = tI I
1,5) 8.5 ≤ λ ≤ 10.

. (29)
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Figure 5. Envelope of the maximal dynamic factor of all three phases of symmetric triangular and
rectangular pulse loading, respectively.

2.3. Performed Measurements
2.3.1. Measurement of Vertical Loads by Train Crossings

The vertical load transmitted by every single axle of the train in transit over the
track was measured by the Marini SMCV measurement system. The layout of the Marini
measuring system is shown in Figure 6. The system enables the measurement of:

• Dynamic or quasi-static vertical loads transmitted by each wheel/axle of the train.
• Each axle speed of the train in transit.
• The distance between two consecutive axles of the train in transit.
• Evaluation of an eventual excessive load on an axle compared to a set threshold value.
• Evaluation of an unbalanced load between the two wheels of the same axle, relative to

a set threshold.

 
Figure 6. Layout of the Marini SMCV measuring system on the railway track.

2.3.2. Measurements of the Displacement of Sleepers

For displacement measurements (Figure 7), inductive displacement sensors were
used, which made it necessary to provide a stationary reference structure. Because of
this, a cantilevered scaffolding was made at each measuring point, placed about 3 m from
the tracks in an area where the ground vibration amplitude due to the passing of trains
was negligible in comparison to the vertical displacement amplitudes of the observed
railway sleepers.
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Figure 7. Measurements of the displacement of sleepers using inductive displacement sensors.

2.3.3. Measurements of Strain in the Rails

For measurements of strain on the rail (Figure 8), strain gauges were used. Before
applying strain gauges to the rail surface using a special glue, the surface was smoothed
and deoiled. When the surface of the structure that is the subject of measurements is
deformed, the foil is also deformed, causing its electrical resistance related to strain by
gauge factor to change. Consequently, strains and stresses can be calculated from the
measured electrical resistance.

 

Figure 8. Strain gauge applied to the rail surface.

3. Results

3.1. Measured Loadings—Results of Load Analysis and Responses of the Rail Track

As part of the field measurements, stresses in the middle of the rail above the consid-
ered sleeper were evaluated. Based on the measured vertical normal stresses, a relatively
accurate form of loading acting on the sleeper has been obtained, especially compared to
previous authors who determined the final shape and length of the loading using a genetic
algorithm [18].

3.1.1. Stresses in the Rail Due to the Passage of Locomotives

As the locomotive passed the measurement location, measurements were taken for all
four axles. Figure 9 shows stresses σx, σy, and τxy during the locomotive′s first and fourth
axles passing over the measuring point. In both measurements, a time interval of 0.25 s
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is considered, from 16.15 to 16.40 s for axle 1 transition measurements, and from 16.86 to
17.11 s for axle 4 transition measurements. As expected, stresses are at their maximum
when the locomotive axle is above the measurement point. At the passage of axle 1, i.e., at
16.30 s, stresses σx amount to 8.516 N/mm2, while at the transition of axle 4 (at 17.00 s),
they reach a value of 14.82 N/mm2. In the case of vertical normal stresses σy, the highest
value of 34.64 N/mm2 was measured directly after the transition of axle 1 at a time of
16.3033 s. At the transition of axle 4 at a time of 17.00 s, a smaller value of 18.25 N/mm2

was measured. In Figure 9, shear stresses τxy are equal to zero during the passage of axle 1
at the time of 16.30 s, when the axle is exactly above the measuring point, and reach their
extremes immediately before and right after axle 1 passes over the measuring point; at
16.295 s, the measured value is 20.18 N/ mm2 and, in 16.3067 s, the value of −23.77 N/mm2

is reached. Also, in the transition of axle 4, the sign of the shear stresses immediately before
and after the transition is inverted, and the shear stress order of magnitude approximately
coincides with the values measured in the transition of axle 1.

 

Figure 9. Stresses measured in the rail surface when axle 1 of the locomotive (left) and axle 4 of the
locomotive (right) passed over the measuring point.

As can be seen, the shape of measured vertical stress σy coincides well with the
triangular pulse loading considered in the numerical models used by other researchers. If
the values measured in the passing of axle 1 and axle 4 are compared, one can acknowledge
the effect of the first axle in the pair influencing the results of a neighboring axle passing
through the measuring point. Vertical force at the rail–wheel contact point tends to lift the
rail and sleeper at some distance from the contact point. Consequently, the passage of axle
3 influences the reduction in stresses measured by the passage of axle 4.

3.1.2. Stresses in the Rail Due to Passage of Carriages

Stresses in the rail were also measured and analyzed during the passage of train
carriages. Figure 10 shows the stress curves σx, σy, and τxy during the passage of the first
axle of the first carriage and the rear (140th) axle of the last carriage in the train composition
over the measuring point. Like the measurements at the passage of the first axle of the
locomotive, here, also, the normal stresses σx and σy and the shear stress τxy coincide well.
The change in shear stresses τxy can serve as an indicator of the passage of the axle over the
measuring point. During the passage of axle 1 of the first carriage in the train composition
(Figure 10, left), the maximum value of the measured vertical displacement occurs slightly
before (at approximately 0.03 s) the onset of extreme stress. This can be attributed to the
influence of the displacements of those sleepers adjacent to the sleepers directly at the
measuring point or to the time-dependent relaxation of the elements and materials of the
rail track. As expected, the measured values are smaller compared to the passage of the
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locomotive. Horizontal stresses reach an extreme at the time of 17.257 s, i.e., 3.445 N/mm2,
and the vertical normal stresses σy reach an extreme at the time of 17.287 s at a value of
16.673 N/mm2, which is approximately half the value measured during the passage of the
first axle of the locomotive.

 

Figure 10. Stresses measured in rail surface during the passage of axis 1 of the first carriage in the
train composition (left) and the last—140th—axle of the last wagon (right) over the measuring point.

3.2. Simulated Loadings and Corresponding Deformation Response Factors

The experimental measurements from Section 3.1 confirmed the theories other re-
searchers have already considered (i.e., Ref. [19]). Namely, the actual load caused by
the individual axle of the train composition when passing the observed place has an
approximately symmetrical shape, which, in the first rough approximation, resembles a
symmetrical, triangular shape (Figure 3b). Most of the actual loading, however, corre-
sponds to the double triangular form, as freight wagons generally have two axles at the
beginning and end of each wagon. Generally, the shape of the pulse loading must be
described with a more complex function than a linear one.

Based on the displayed results of the field measurements and axle loading proposed
in Ref. [19], the values of the maximal dynamic factors for different pulse loading following
the procedure in Section 2.2 were calculated. Thus, all the applied loads are symmetric
pulse loadings. They differ in whether it is a single or double pulse and in the shape of
the function that describes the rising and falling part. Definitions and designations of
pulse loadings were summarized and expanded according to Ref. [19]. Thus, all four pulse
loadings can be defined and denoted as:

• SPL-L: single-pulse loading of linearly distributed load that decreases symmetrically
concerning the geometric center of the wheel.

• DPL-L: double-pulse loading of linearly distributed load that decreases symmetrically
for the geometric center of the wheel.

• SPL-Q: single-pulse loading of quadratically distributed load that decreases symmet-
rically concerning the geometric center of the wheel.

• DPL-Q: double-pulse loading of quadratically distributed load that decreases sym-
metrically to the geometric center of the wheel.

It should be noted that the proposed shape of pulse loading in Ref. [19] was inspired
by the single wheel-induced displacement field. In Figure 11, the distribution of vertical
normal stresses is shown and compared to the proposed simulated pulse loadings in this
paper. Observed differences can be attributed to the influence of the multiple axle passages
of a train composition. The basic data for the three supplementary impulse loads (SPL-Q,
DPL-L, and SPL-Q) and the corresponding dynamic factors (Df,max) were obtained using
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the same methodology as that employed for the SPL-L case in Section 2.2. The results for
the dynamic factors in all four cases are shown in Figure 12.

Figure 11. Normalized measured vertical normal stresses in the rail for the (a) one-axle and (b) two-
axle passage of the train composition and their approximations for pulse loadings in the SDOF
mathematical model.

Figure 12. Different pulse loadings and the corresponding envelopes of the maximal dynamic
factor of (a) SPL-L pulse loading, (b) DPL-L pulse loading, (c) SPL-Q pulse loading, and (d) DPL-Q
pulse loading.
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3.3. Results for the Maximal Dynamic Factor (Df,max) Obtained by a Simplified SDOF System

The results for the dynamic factor and Figure 13 show that the maximum value (peak)
of the maximum dynamic factor increases significantly with double-pulse loading. Even
on average, double-pulse loadings give higher values than single ones. One of the key
results of the analysis is the identification of the highest peak in the initial part of the graph,
where the position of the peak is highly dependent on the type of pulse loading. We can
conclude that in the initial (ideal) state, the construction of the track is relatively rigid, as is
determined (and required) by the existing regulations.

 
Figure 13. Comparison of the different envelopes of maximal dynamic and smoothed spectrum.

A relatively small change (reduction) in stiffness can result in a higher dynamic factor
due to various influences (which have been described in the Introduction, e.g., Ref. [16]).
These increase markedly with a greater reduction (large gradients of the envelope of the
maximum dynamic factor) and can reach values of up to 2.5 for various pulse loadings.
Such high dynamic factors in high-cycle fatigue mean high loads on the track, especially
on the sleepers. The first indicator of this influence (with an increase in the dynamic factor)
is mild dusting in the vicinity of the sleeper, then the dusting locally intensifies and (may)
also spread to the neighboring sleepers, until the sleepers lose contact with the base and the
individual sleepers practically hang from the rails (see Figure 1). With ballast fouling and
the occurrence of the floating sleeper phenomenon, the stiffness is reduced significantly,
which increases parameter λ. Consequently, the dynamic factor reduces to the values that
are closest to the static case. Deterioration, which is a consequence of dynamic behavior,
practically stops. However, the railway track is significantly damaged, due to the ballast
fouling and the induced large displacements, and it urgently needs reconstruction.

The gray area indicates the λ range for the final state of the floating sleeper phe-
nomenon, while the red area indicates the λ range of Df,max peaks for all four pulse
loadings. It is evident that the phenomenon is highly non-linear and, as such, is hard to
understand in classical engineering terms, which are related to the track’s elastic charac-
teristics. The smoothed spectrum S(λ) is also proposed for the maximal dynamic factor
of pulse loadings, which were considered in the presented study. For small λ values, the
smoothed spectrum is bounded by Df,max, calculated for DPL-Q pulse loading. It can also
be observed that the proposed smoothed spectrum, which is defined by Equation (30), will,
in most instances, bound the Df,max of DPL-Q pulse loading. Note that the dashed curve
represents an alternative for a smoothed spectrum for λ values smaller than 1.58.

S(λ) =

⎧⎨⎩
6.187·λ for 0 ≤ λ ≤ 0.38
2.352 for 0.38 ≤ λ ≤ 1.58

1.037 + 1.356
λ−0.549 for 1.58 ≤ λ ≤ 10

(30)

4. Discussion

4.1. Discussion of the Results Obtained by Field Measurement

In the case of the generally “clean” passage of a single axle of the train composition
across the measurement site, a direct correlation between the maximum loading transmitted
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to the rail and the stresses (and displacements) may be seen. Such is, for example, the
situation in the transition of the first axle of the locomotive and the axles of heavier wagons
following lighter carriages. In the case of other axles, the influence of the load transfer
via the adjacent sleepers becomes more important, and the correlation between maximum
loading and stress flow is less obvious. This corresponds to the general laws of structural
dynamics in discrete systems with several degrees of freedom, where the extremes of
individual quantities do not occur at the same time.

4.2. Discussion of the Results Obtained with the Simplified SDOF Model

The proposed simplified SDOF mathematical model includes some assumptions and
observations from field measurements, which allowed relatively simple modeling of the
otherwise extremely complex phenomenon of floating sleepers. The results for the maximal
dynamic factor show that the maximum values are possible with double loading, regardless
of its shape or type. Non-linear forms of pulse loading generally result in higher values of
the maximal dynamic factor. In the initial state, which corresponds to the ideal state of a
newly built track (or the existing state, which is determined by modern regulations), the
stiffness of the track is relatively high. The corresponding parameter λ is relatively high (the
right-hand side of the graph in Figure 13) and the related maximal dynamic factor is small.
Any change in the properties of the track that causes a decrease in its stiffness generally
increases the value of the maximal dynamic factor. An increased maximal dynamic factor
causes adverse effects on the track, manifesting themselves first as local dusting (which
additionally reduces stiffness). Local dusting extends to the area of a larger number of
sleepers, further reducing stiffness and increasing the value of the maximal dynamic
factor. Due to the high values of the dynamic factor, the effects on the railway track are
increasingly pronounced (red area in Figure 13), which finally manifests itself in the fouling
of the ballast, which is the last stage of the floating sleeper phenomenon. In the last stage,
the stiffness of the track continues to decrease, which results in a decrease in the value of
the maximal dynamic factor (gray area in Figure 13). The phenomenon that now occurs
in the equilibrium state represents the dynamic collision of the rail with the hardened
surface of the fouled ballast. These dynamic effects were not covered by the proposed
model, but, from observations in the field, they are minimal, and the situation is definitive.
However, it is necessary to realize that this final state represents a limiting state since the
large, measured displacements during the passage of the train composition do not, in any
case, correspond to the safe condition of the track because, in such cases, there is a great
risk of derailment.

In a continuation of this research, it would be necessary to confirm some of the
presented results by using more complex mathematical models, at least in the initial and
final states. The latter state corresponds to the floating sleeper phenomenon. Also, it would
be beneficial to indicate other shapes/types of pulse loadings, which may produce higher
values of maximal dynamic factor than those analyzed in the current paper. Based on the
obtained and new results, advanced recommendations for more appropriate construction
and maintenance of railroads, particularly in karst areas, could be provided.

5. Conclusions

Dynamic influences have a markedly unfavorable effect on the degradation of rail
sleepers and should not be neglected. Based on the results presented in this study, it can be
concluded that the complex floating sleeper phenomenon (encountered in Slovenia and
many other countries) can be adequately, at least qualitatively, described by a proposed
simplified SDOF mathematic model that includes one degree of freedom. Despite its
simplicity, it enables the understanding of the key factors influencing the deterioration of
the ballast railway track.

The results of the presented research can be summarized as follows:

• A simplified SDOF mathematical model for the quantification of the influences on the
floating sleeper phenomenon has been developed.
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• For mathematical modeling of the phenomenon, extensive field measurements were
carried out, which yielded interesting results, enabled the identification of interesting
phenomena and findings, and enabled the simplification of mathematical modeling.

• Based on the actual field measurements and some recommendations from the re-
cent scientific literature, the loading was modeled as a pulse loading of different
shapes/types.

• Calculating the maximal dynamic factor reveals that the floating sleeper phenomenon
is highly non-linear. The initial response of the sleepers is elastic, but with a reduction
in stiffness due to different phenomena, the maximal dynamic factor can significantly
increase, which again influences a response in the form of damaged tracks. The final
damaged state corresponds to the floating sleeper phenomenon, which aligns with
lower values of maximal dynamic factors and relates to the dynamic collision of a rail
with the hardened surface of fouled ballast, with a low value for the dynamic factor.

The presented study has detected several issues that should be addressed in future
research:

• The accuracy of the applied pulse loadings should be evaluated and compared/discussed
with state-of-the-art mathematical models.

• The rate of wear of the ballast and its critical threshold should be identified. Given
that this sub-phenomenon is related to dynamic stability—that is, an abrupt change in
the ballast’s behavior, which relates to approaching the bifurcation point in the accom-
panying mathematical model—this could be an extremely challenging undertaking.

• As ballast wear contributes significantly to a reduction in track stiffness, the long-term
implications of this wear on the safety and performance of railway tracks should be
carefully addressed.

• The assumptions of the SDOF model, particularly those that ignore damping and the
impact of adjacent structural elements, should be checked.

• In general, additional research (theoretical and experimental) is needed, which will
confirm the obtained results and improve the explanation of the entire phenomenon
of floating sleepers.
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Abstract: The paper is devoted to the modeling of nonlinear viscoelastic materials. The constitutive
equations are considered in differential form via relations between strain, stress, and their derivatives
in the Lagrangian description. The thermodynamic consistency is established by using the Clausius–
Duhem inequality through a procedure that involves two uncommon features. Firstly, the entropy
production is regarded as a positive-valued constitutive function per se. This view implies that the
inequality is in fact an equation. Secondly, this statement of the second law is investigated by using
an algebraic representation formula, thus arriving at quite general results for rate terms that are
usually overlooked in thermodynamic analyses. Starting from strain-rate or stress-rate equations,
the corresponding finite equations are derived. It then emerges that a greater generality of the
constitutive equations of the classical models, such as those of Boltzmann and Maxwell, are obtained
as special cases.

Keywords: viscoelastic materials; constitutive rate-type equations; nonlinear models; thermodynamic
consistency

MSC: 74D05; 74C99; 74F05

1. Introduction

Viscoelasticity involves a wide domain of models of materials. In general, viscoelastic-
ity is a property ascribed to materials whenever the mechanical response changes in time
while the forces causing the deformation are removed. Furthermore, the relation between
forces and deformation may be different between the loading and unloading processes,
thus producing hysteresis. Accordingly, viscoelastic models are thought to involve both
viscous and elastic characteristics, which in turn might be affected by the temperature. This
quite general view is realized by a number of mathematical models.

As is frequent in the literature, models of viscoelasticity are set up with reference
to rheological elements, mainly the Maxwell unit and the Kelvin–Voigt unit; see, e.g., [1]
and [2] (Ch. 6). This results in a combination of (possibly tensorial) values of deformation,
stress, and their time derivatives.

From a mathematical standpoint, viscoelasticity is modeled in different ways. A well-
known description traces back to Boltzmann [3], whereby the stress at time t is affected
by the strain at all times s ≤ t. Furthermore, the stress–strain relation was assumed to be
linear. Based on the Boltzmann model, much research has been undertaken for constitutive
models in terms of memory functionals [4–6] in the wide domain of continuum physics
and with attention to thermodynamic restrictions, initial and boundary-value problems,
minimum principles, and wave propagation.
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So as to obtain mathematically more tractable models, and meanwhile to allow for
nonlinear effects, lately, different approaches have been developed. They are formally in
differential form, and usually called rate-type viscoelastic models, in that they are expressed
by relations between stress, strain, and their derivatives at the same time. This avoids the
use of integral-type models for which the account of nonlinearities would be quite involved
(see, e.g., [7]).

Physically admissible models are required to be thermodynamically consistent in
the sense that the constitutive equations have to satisfy the inequality arising from the
second law. While the inequality appears to place severe restrictions on the constitutive
functions, a recent approach of ours enables greater generality. This occurs for two reasons.
First, the entropy production is viewed as a constitutive function per se. Secondly, an
appropriate exploitation of the inequality allows for possibilities that usually do not arise.
There are approaches to (linear) viscoelastic models where continuum thermodynamics is
not considered merely because the existence of internal energy is not assumed.

This paper develops a systematic approach to the modeling of viscoelastic materials
through thermodynamically consistent schemes involving strain and stress in differential
forms. Owing to the generality of the approach, we are able to recover known models from
the literature and, furthermore, to find nonlinear models characterized by free energy and
entropy production.

The postulate on the second law of thermodynamics leads to the CD (Clausius–Duhem)
inequality, where the entropy production is provided by a constitutive function. The ther-
modynamic consistency is meant as the compatibility of a set of constitutive assumptions
with the CD inequality. The methodology for the analysis of the consistency involves
finding proper unknowns (here, stress-rate or strain-rate) through the direct application of
a representation formula to the CD inequality.

Notation

The body occupies a time-dependent region Ω in the three-dimensional space. The
position vector of a point in Ω is denoted by x. For any pair of vectors u, w or tensors A, B,
the notations u · w and A · B denote the inner product. Cartesian coordinates are used, and
then, in the suffix notation, u · w = uiwi, A · B = AijBij, the summation over the repeated
indices can be understood. For any tensor A, symA and skwA denote the symmetric and
skew-symmetric parts of A. Also, Sym is the space of symmetric tensors.

2. Balance Laws and Constitutive Equations

Let R be the region occupied by the body in a reference configuration. Any point in
R is associated with the position vector X relative to the chosen origin. The motion of the
body is a C2 function χ(X, t) : R ×R → Ω = χ(R, t). We let ∇ and ∇R denote the gradient
in Ω and R. Hence, ∇R χ is the deformation gradient in components FiK = ∂XK χi. Let ρ(x, t)
and v(x, t) be the mass density and the velocity fields at x at time t ∈ R. The symbol L

denotes the velocity gradient, Lij = ∂xj vi, while D = symL and W = skwL.
Hereafter, a superposed dot denotes the total time derivative. For any function f (x, t)

on Ω ×R, we evaluate ḟ as ḟ = ∂t f + (v · ∇) f . Accordingly, the balance of mass and the
equation of motion are expressed by

ρ̇ + ρ∇ · v = 0, ρv̇ = ∇ · T + ρb,

where T is the Cauchy stress tensor and b is the specific body force.
We assume the existence of a specific internal energy density ε so that ρ( 1

2 v2 + ε) is
the total energy density per unit volume. The balance of energy leads to

ρε̇ = T · D + ρr −∇ · q, (1)

where r is the heat supply, per unit mass, and q is the flux vector.
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Let θ be the absolute temperature and η the specific entropy density. Letting j be the
entropy flux, we assume the balance of entropy in the form

ρη̇ +∇ · j − ρr
θ

= ργ,

where γ is the (rate of) entropy production. We let b and r be arbitrarily provided time-
dependent fields on Ω×R. Hence, we say that a process is the set P = (ρ, v, T, ε, η, θ, q, j, γ),
on Ω ×R, of the quantities entering the balance equations and the constitutive relations.

The statement of the balance of energy in the form (1) is essential for the next devel-
opments. It is worth observing that there are approaches in continuum mechanics where
the existence of an energy density ε is not assumed. A distinction is made between stored
and dissipated energy; the dissipated energy is determined by a rate equation involving
appropriate state variables (see, e.g., [8] and Refs. therein). Still, without any assumption
about the internal energy, attention is confined to a relation between stress and deformation
through a transform function [9,10], the transform function being possibly expressed by
fractional derivatives.

2.1. Second Law of Thermodynamics

The balance of entropy is assumed to be non-negative. Hence, the second law is stated
as follows.

Postulate 1. For every process P admissible in a body, the inequality

ρη̇ +∇ · j − ρr
θ

= ργ ≥ 0 (2)

is valid at any internal point.

Letting
j =

q

θ
+ k

we regard k as the extra-entropy flux [11]. Nonzero values of k arise when nonlocal
properties (higher-order gradients) are considered. For the present purposes, there is no
loss of generality in taking k = 0. Since

∇ · q

θ
− ρr

θ
=

1
θ
(∇ · q − ρr)− 1

θ2 q · ∇θ

then substitution of ∇ · q − ρr from (1) and using the free energy ψ = ε − θη results in

−ρ(ψ̇ + ηθ̇) + T · D − 1
θ

q · ∇θ = ρθγ ≥ 0. (3)

As is standard in continuum thermodynamics [11–13], the requirement (2), or (3),
results in restrictions on physically admissible constitutive models. The novelty of the
present approach is that, beyond the entropy flux j, the entropy production γ is also
conceptually a constitutive function to be determined. Henceforth, we apply the statement
(2) to the modeling of viscoelastic materials.

While the extra-entropy flux k is generally associated with nonlocal effects, models
of materials are characterized by the free energy ψ and the entropy production γ. Before
addressing the restrictions placed by (3) and the intrinsic connections with ψ and γ, we
introduce useful terminology for viscoelastic models.

2.2. Lagrangian Form of the Balance Laws

Owing to the coexistent elastic and viscous properties, viscoelasticity is described by
relations involving stress, strain, and their derivatives. The occurrence of time derivatives
makes the compatibility with the objectivity principle more involved, whereby the con-
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stitutive equations must be form-invariant under the group of Euclidean transformations
([14] (Section 1.13); [2] (Section 1.9)). This requirement is best satisfied by dealing within
the Lagrangian description. Hence, we represent deformation and stress by using the
red-Lagrange strain, E, and the second Piola tensor, TRR,

E = 1
2 (F

TF − 1), TRR = JF−1TF−T ,

together with the referential vectors, e.g., qR = JqF−T . All of them and the Jacobian
J = det F are in fact invariant. Under SO(3), the time derivatives Ė, ṪRR are also invariant.
Using the identities

∇θ = F−T∇R θ, Ė = FTDF

we have
T · D = J−1TRR · Ė, q · ∇θ = J−1qR · ∇R θ.

Consequently, multiplying (3) by J and recalling that Jρ = ρR is the mass density in the
reference configuration, we obtain the CD inequality in the form

−ρR(ψ̇ + ηθ̇) + TRR · Ė − 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (4)

3. Rate-Type Models for Thermo-Viscoelastic Solids

To save writing the dependence on the temperature θ and possibly the temperature
gradient ∇θ, it is understood here and not written. Since we are dealing with viscoelastic
models, we split TRR into two additive parts, namely

TRR = G(E) + SRR, (5)

with the view that G(E) is the elastic stress and SRR the dissipative stress.
Rate-type equations involve relations, or constitutive equations, among variables

E, SRR, Ė, and ṠRR. So, the variables are not independent from one another and are subject
to appropriate conditions. Often, the relations are assumed in implicit form [15], namely

F (E, SRR, Ė, ṠRR) = 0. (6)

As a natural example, the CD inequality (4) might eventually result in the reduced form

A(E, SRR) · Ė + B(E, SRR) · ṠRR − γ(E, SRR, Ė, ṠRR) = 0,

where A, B are tensor functions. Depending on the function γ, this scheme allows us
to obtain models of viscoelastic or viscoplastic materials with hysteresis [2] (ch. 13). To
illustrate possible types of rate equations, we now show how particular cases arise from
the implicit form (6).

1. Assume ∂ṠRR
F �= 0. Hence, we can express ṠRR in terms of the remaining variables

E, SRR, Ė. The corresponding function

ṠRR = S(E, SRR, Ė), (7)

where S is a tensor-valued function, can be viewed as a constitutive function for ṠRR,
thus allowing models of dissipative stress–strain-rate materials.

2. Now let F be independent of ṠRR so that the condition is F (E, SRR, Ė) = 0. If further
∂SRRF �= 0, we can solve with respect to SRR and obtain a constitutive equation in the
form

SRR = S0(E, Ė).
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If, furthermore, S0(E, Ė) = S(E)Ė with S a fourth-rank tensor-valued function, using
(5), we can write

TRR = G(E) + S(E)Ė. (8)

Equation (8) is in a strain-rate form and can be viewed as a generalization of the
Kelvin–Voigt model.

3. The dual form of (7) is obtained by assuming that ∂ĖF �= 0. Hence, we obtain a
constitutive function for Ė, namely

Ė = E(E, SRR, ṠRR), (9)

where E is a tensor-valued function. Equation (9) may be viewed as a strain–stress-rate
model. If, in particular, E is independent of ṠRR, namely Ė = E0(E, SRR), then we can
view E0 as describing a conservative deformation, as is the case for elastic solids.

4. If F is independent of Ė and ∂EF �= 0, then we can derive the constitutive equation

E = Ê(SRR, ṠRR).

This form may be referred to as a stress-rate model and is convenient whenever we
examine the deformation determined by a time-dependent stress.

4. Stress–Strain-Rate Models

Based on the decomposition of TRR = G(E) + SRR, we look for models described by
equations of the form

ṠRR = S(θ, E, SRR, Ė). (10)

To allow also for heat conduction, we let

θ, E, SRR, Ė,∇R θ

be the variables for the constitutive functions

ψ, η, ṠRR, qR, γ.

A possible dependence on J = (det C)1/2 = [det(1 + 2E)]1/2 is embodied in the depen-
dence on E.

The CD inequality (4) can be written in the form

−ρR(∂θψ + η)θ̇ + (G(θ, E) + SRR − ρR∂Eψ) · Ė − ρR∂SRR ψ · ṠRR − ρR∂Ėψ · Ë

−ρR∂∇R θψ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ.
(11)

The quantities ∇R θ̇, Ë, and θ̇ occur linearly and can take arbitrary values. Hence, (11) holds
only if

∂∇R θψ = 0, ∂Ėψ = 0, η = −∂θψ.

We let
G(θ, E) = ρR∂Eψ,

and hence (11) simplifies to

SRR · Ė − ρR∂SRR ψ · ṠRR −
1
θ

qR · ∇R θ = ρRθγ.

Further restrictions follow by considering (10) and qR in the particular form

qR(θ, E, SRR,∇R θ).
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It follows that γ = γS + γq, such that

SRR · Ė − ρR∂SRR ψ · S = ρRθγS ≥ 0, (12)

−1
θ

qR · ∇R θ = ρRθγq ≥ 0, (13)

where γS is independent of ∇R θ and γq is independent of Ė.

4.1. Solutions to (12)

We now look for solutions to (12) in the unknown function S(θ, E, SRR, Ė) subject to

S(θ, E, SRR, Ė) = O(|Ė|),

that is, S(θ, E, SRR, Ė) → 0 as Ė → 0.
First, we determine the general form of S on the assumption that ∂SRR ψ �= 0. In this

connection, we recall a representation formula [2] such that if the (second order) tensor Z

satisfies
Z · N = f , |N| = 1,

then
Z = f N + [I− N ⊗ N]Ξ, (14)

Ξ being an arbitrary tensor. In Equation (14), I denotes the fourth-order identity tensor and
⊗ the dyadic tensor product. Now let ∂SRR ψ �= 0 and define

N =
∂SRR ψ

|∂SRR ψ|

while Ξ is allowed to be a function of θ, E, SRR, and Ė. Hence, by (12), with Z = S and
f = SRR · Ė − ρRθγS, we have

ṠRR = − θγS

|∂SRR ψ|2 ∂SRR ψ +
∂SRR ψ ⊗ SRR

ρR|∂SRR ψ|2 Ė + [I− ∂SRR ψ ⊗ ∂SRR ψ

|∂SRR ψ|2 ]Ξ. (15)

This is a general formula for the stress-rate ṠRR. Appropriate choices for ψ, γS, and Ξ lead
to special models of stress-rate equations.

4.1.1. A Model for Damage and Fatigue

A rather general model arises by letting

ρR∂SRR ψ = α(E, θ)SRR, γS = β(E, θ)|SRR|2, Ξ =
1

α(E, θ)
Ė,

where β > 0 in order that γS ≥ 0. These assumptions simplify Equation (15) to

ṠRR = − θβ

α
SRR +

1
α

Ė. (16)

The function α is usually assumed to be positive, which allows

τ(E, θ) =
α(E, θ)

θβ(E, θ)
> 0 (17)

to be viewed as a relaxation time. To integrate Equation (16), we proceed as follows. Let

YRR = exp[
∫ t

t0
(1/τ)dξ]SRR.
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Hence, Equation (16) provides

ẎRR(t) := exp[
∫ t

t0
(1/τ)dξ]

(
ṠRR(t) +

1
τ

SRR(t)
)
= exp[

∫ t
t0
(1/τ)dξ]

1
α

Ė(t),

and then the integration on (t0, t] yields

YRR(t) = YRR(t0) +
∫ t

t0

1
α

exp[
∫ s

t0
(1/τ)dξ]Ė(s)ds.

Accordingly, it follows that

SRR(t) = exp[−
∫ t

t0
(1/τ)dξ]SRR(t0) +

∫ t

t0

1
α

exp[−
∫ t

s(1/τ)dξ]Ė(s)ds.

Then, letting t0 → −∞ and assuming

lim
t0→−∞

SRR(t0) = 0

we obtain

SRR(t) =
∫ t

−∞

1
α

exp{−
∫ t

s[1/τ]dξ} Ė(s)ds. (18)

Finally, if we introduce the reduced-time function

Tr(t) =
∫ t

t0

1
τ
(
E(ξ), θ(ξ)

)dξ,

where τ is named the time-temperature shift factor, Equation (18) can be rewritten as

SRR(t) =
∫ t

−∞

1
α

exp{−[Tr(t)− Tr(s)]} Ė(s)ds. (19)

Note that Tr depends on the past values of E, so that (19) is a non-separable integral rep-
resentation of SRR (see, e.g., [16]) that is able to capture damage and fatigue effects; we
mention [17] where a representation of the form (19) is used to describe damage in asphalt
mixture. The thermodynamic consistency of (19) is proved in the more general case of (15),
which allows for nonlinearities through ψ and γS and any dependence, on the whole set of
variables, through Ξ.

4.1.2. The Maxwell Fluid

Assume that α and β depend on θ and let the temperature θ be a known function of
time. Then, α and τ are known functions of time in that

α(t) = α̂(θ(t)), τ(t) = τ̂(θ(t)).

Hence, Equation (18) takes the form

SRR(t) =
∫ t

−∞

1
α(s)

exp{−
∫ t

s[1/τ(ξ)]dξ} Ė(s)ds. (20)

Equation (20) is in the form of the Boltzmann model for SRR in terms of the present value
E(t) and the history Et.

If α and θβ, introduced in (17), are constants, then Equation (16) simplifies to

ṠRR = − 1
τ

SRR +
1
α

Ė, (21)
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which is just the classical Maxwell equation although in the Lagrangian formulation. The
solution SRR(t) can be obtained directly by integration. Otherwise, we observe that α and τ
would be constant and then Equation (20) would read

SRR =
1
α

∫ t

−∞
exp[− 1

τ
(t − s)]Ė(s)ds,

whence, by an integration by parts, it follows

SRR(t) =
1
α

E(t)− 1
ατ

∫ t

−∞
exp[−(t − s)/τ] E(s)ds.

Since TRR = G(E) + SRR, then TRR can be written in the form

TRR(t) = G0(E(t)) +
∫ t

∞
G′(t − s)E(s)ds,

where
G0(E) = G(E) +

1
α

E, G′(t − s) =
1

ατ
exp[−(t − s)/τ].

It reduces to the well-known linear model [4,5] if G(E) = G∞E, G∞ > 0.
In the one-dimensional case, the differences between the linear and the nonlinear

model are outlined by the following numerical simulations (see Figures 1 and 2). In the
first picture, we consider the linear one-dimensional model TRR = G∞E + SRR, where the
evolution of SRR is ruled by Equation (21). The resulting system{

Ė(t) = ω cos(ωt)
ṪRR(t) = G0Ė(t)− 1

τ

[
TRR(t)− G∞E(t)

] (22)

where G0 = G∞ + 1/α describes the cycles in the E − TRR plane at different frequencies ω
of the oscillating strain.

-1 0 1

-1

1 TRR

E

Figure 1. Stress–strain cycles at ω = π/50 (solid) and ω = π/150 (dashed) with τ = 2, α = 5/6, and
G∞ = 4/5.

Figure 2 represents the cycles at different frequencies ω of the nonlinear model ob-
tained by letting G(E) = G∞E3.

The resulting system{
Ė(t) = ω cos(ωt)
ṪRR(t) = G0(E(t))Ė(t)− 1

τ

[
TRR(t)− G(E(t))

] (23)
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where G0(E(t)) = G′(E(t)) + 1/α describes the cycles in the E − TRR plane at different
frequencies ω of the oscillating strain.

It is of interest that Figures 1 and 2 show a hysteretic evolution of the dependence
TRR(E). Systems (22) and (23) are rate-dependent, and this is made evident by the variation
in the loop shape as the frequency ω changes. Indeed, as ω goes to 0 the loop narrows until
it reaches the quasi-stationary regime TRR � G(E). On the other hand, as the frequency
increases, the loop becomes narrower and narrower, thus approaching the rate-independent
property at high frequencies where ṪRR � G′Ė. As a remark, the form of the loops associated
with (23) is quite similar to the stress–strain curve occurring in foamed materials [2]
(Section 13.7).

-1 0 1

-1

1 TRR

E

Figure 2. Stress–straincycles at ω = π/50 (solid) and ω = π/150 (dashed) with τ = 2, α = 1, and
G∞ = 4/5.

4.1.3. A Model for Bio-Soft Tissues

Consider one-dimensional settings and let β = 0, so γS = 0 too. Namely, materials
with zero entropy production from the mechanical side are concerned. Furthermore, let α
depend on the strain E as well as on the temperature. Equation (16) then simplifies to

ṠRR = f (θ, E)Ė, f (θ, E) =
1

α(θ, E)ρR
(24)

This type of rate equation is found to model the hypoelastic behavior of collagen fiber
stress [18] if

f (θ, E) = k{1 − exp[−(E/δ)a]}
for proper values of the positive parameters k, δ, a possibly dependent on θ. Assuming that
these parameters are constant, upon integration, we obtain

SRR(t) = H(E(t)),

where H′(E) = f (E), H(0) = 0.
In [18], the viscoelastic behavior of ligaments and tendons (bio-soft tissues) is deter-

mined by modeling collagen fibers and proteoglycan-rich matrix as a Maxwell-type system
with two relaxation times, τ1, τ2 > 0. By means of the following correspondence with our
notations

σf → H, σ → TRR, Ef → k, Em → h,

the full model (Equation (15) in [18]) can be written in the form (see Equation (16))

TRR = G(E) + SRR, ṠRR = − 1
τ

SRR +
1
α

Ė
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where τ = τ1 + τ2 and

G(E) =
τ

τ1
H(E), α(E) =

1
h − (1 − τ1/τ)G′(E)

.

The positivity of α for each value of E is guaranteed by the condition h ≥ kτ/τ1.

4.2. Solutions to (13)

Inequality (13) holds if qR is provided by a Fourier-like relation

qR = −K(θ, E)∇R θ, (25)

with K a positive definite second-order tensor; the dependence on the strain E, in addition
to the temperature θ, makes the model nonlinear. However, inequality (13) allows for more
general solutions qR.

Letting N = ∇R θ/|∇R θ|, we apply the representation formula to (13). It follows that

qR =
ρRθ2γq

|∇R θ|2 ∇R θ +
[
1 − ∇R θ ⊗∇R θ

|∇R θ|2
]
w, (26)

where w is any vector function of θ, E,∇R θ. If, e.g., we select w = −K∇R θ, with K positive
definite, then Equation (26) becomes

qR = −ρRθ2γq

|∇R θ|2 ∇R θ − K∇R θ +
∇R θ · K∇R θ

|∇R θ|2 ∇R θ.

Hence, qR consists of a part in the direction of ∇R θ and a part −K∇R θ subject only to K > 0.
This splitting is parameterized by the entropy production. Two interesting particular
cases arise. Firstly, if γq = ∇R θ · K∇R θ/ρRθ2, then the relation simplifies to Equation (25).
Secondly, if γq = 0, then

qR = −K∇R θ +
∇R θ · K∇R θ

|∇R θ|2 ∇R θ,

which is a Fourier-like relation with zero entropy production.
As a further example, let w = αE∇R θ. Then, we have

qR = −ρRθ2γq

|∇R θ|2 ∇R θ + αE∇R θ − α
∇R θ · E∇R θ

|∇R θ|2 ∇R θ.

This model shows that the deformation induces a transverse part of qR relative to ∇R θ;
the CD inequality is a constraint on the longitudinal part of qR while the transverse part
is unconstrained.

5. Strain–Stress-Rate Models

We now consider a strain–stress-rate model in the explicit form

Ė = E(θ, E, SRR, ṠRR);

for definiteness, we select ṠRR, rather than Ė, as one of the variables. Accordingly, the set of
variables is now

θ, E, SRR, ṠRR,∇R θ.

Again, we let TRR = G(E) + SRR and then consider the free energy

ρRφ = ρRψ − E · SRR − G,

68



Mathematics 2024, 12, 3011

where G is the elastic energy, say

G(E) = ∂EG(E).

Using φ instead of ψ, we can write the CD inequality in the form

−ρR(φ̇ + ηθ̇)− E · ṠRR −
1
θ

qR · ∇R θ = ρRθγ ≥ 0.

Computing the time derivative of φ(θ, E, SRR, ṠRR,∇R θ) and substituting, we have

−ρR(∂θφ + η)θ̇ − ρR∂Eφ · Ė − (E + ρR∂SRR φ) · ṠRR − ρR∂ṠRR
φ · S̈RR

−ρR∂∇R θφ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.
(27)

The arbitrariness of S̈RR,∇R θ̇, and θ̇ implies that ∂ṠRR
φ = 0, ∂∇R θφ = 0, and η = −∂θφ. The

remaining inequality is now examined by setting aside cross-coupling terms in the sense
that E is independent of ∇R θ and qR is independent of ṠRR. Hence, the inequality (27) splits
into

−ρR∂Eφ · Ė − (E + ρR∂SRR φ) · ṠRR = ρRθγS ≥ 0, (28)

and again (13), where γS is the value of γ at ∇R θ = 0.
We now apply the representation Formula (14) to Equation (28). Assume ∂Eφ �= 0 and

define N = ∂Eφ/|∂Eφ|. Hence, by Equation (28), we obtain

Ė =
ρRθγS

|∂Eφ|2 ∂Eφ +
∂Eφ ⊗ (E + ρR∂SRR φ)

|∂Eφ|2 ṠRR +
[
I− ∂Eφ ⊗ ∂Eφ

|∂Eφ|2
]
Ξ, (29)

where Ξ is a tensor function of θ, E, SRR, ṠRR. Equation (29) shows the general form of the
function E in terms of θ, E, SRR, ṠRR.

The simplest case follows by letting Ξ = 0 and γS = 0 (zero entropy production).
Hence, we have

Ė = F ṠRR, F :=
∂Eφ ⊗ (E + ρR∂SRR φ)

|∂Eφ|2 . (30)

The integration of (30) on (−∞, t) and the assumption E(−∞) = 0 yield

E(t) =
∫ t

−∞
F(ξ)ṠRR(ξ)dξ.

An integration by parts and the assumption SRR(−∞) = 0 result in

E(t) = F(t)SRR(t)−
∫ t

−∞
Ḟ(ξ)SRR(ξ)dξ.

These results have some analogy with a class of quasi-linear viscoelastic materials [19]
where the present value of B = FFT is provided by the history of Ṫ.

6. Strain-Rate Models

As a generalization of the Kelvin–Voigt constitutive equation, we now look for a
function

SRR = S0(θ, E, Ė) = O(|Ė|).
Hence, we let

θ, E, Ė,∇R θ

be the variables and ψ, η, qR, γ the constitutive functions. The CD inequality becomes

−ρR(∂θψ + η)θ̇ − ρR∂∇R θψ · ∇R θ̇ + (TRR − ρR∂Eψ) · Ė − ρR∂Ėψ · Ë − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.

69



Mathematics 2024, 12, 3011

The arbitrariness of ∇R θ̇, Ë, θ̇ implies that

∂∇R θψ = 0, ∂Ėψ = 0, η = −∂θψ.

The remaining inequality is

(TRR − ρR∂Eψ) · Ė − 1
θ

qR · ∇R θ = ρRθγ ≥ 0. (31)

Although TRR and qR might depend jointly on Ė,∇R θ, for definiteness, we assume
that

TRR = G(θ, E) + S0(θ, E, Ė), S0 → 0 as Ė → 0 (32)

while qR is independent of Ė. Hence, inequality (31) splits into two inequalities, namely

(TRR − ρR∂Eψ) · Ė = ρRθγE ≥ 0, (33)

and again (13), where γE is the value of γ at ∇R θ = 0 and γq is the value of γ at Ė = 0. In
light of (32), it follows from (33) that

G(θ, E) = ρR∂Eψ(θ, E), S0(θ, E, Ė) · Ė = ρRθγE ≥ 0. (34)

6.1. Some Examples

Borrowing from [20], we now consider a model with application to human knee
ligaments. Let G and S0 be functions satisfying the requirements in (34). Let

I1 = tr C = 2tr E + 3.

Hence, G and S0 are assigned the forms

G(θ, E) = −pC−1 + αβ{exp[β(I1 − 3)]− I1}1 + αβC, S0(θ, E, Ė) = ν(I1 − 3)Ė,

where the parameters α, β, ν are allowed to depend on temperature. Furthermore, p is the
standard pressure of the Eulerian description.

A nonlinear model is obtained by using the triples J = (J1, J2, J3) and J̃ = ( J̃1, J̃2, J̃3) of
the main invariants of E and Ė, respectively. The requirement (34) is satisfied by letting

S0(θ, E, Ė) = f0(θ, J)λ(Ė)

where f0 ≥ 0 and λ(Ė) · Ė ≥ 0. In a more detailed form, we can assume

λ(Ė) = λ0(J̃)Ė, λ0 > 0.

Otherwise, we might consider the representation

λ(Ė) = λ0(J̃)1 + λ1(J̃)Ė + λ2(J̃)ĖĖ.

whence it follows that

λ(Ė) · Ė = λ0(J̃) J̃1 + λ1(J̃) J̃2 + λ2(J̃) J̃3.

In this case, the non-negative value of λ(Ė) · Ė requires appropriate restrictions on λ0, λ1, λ2.
Another class of unidimensional nonlinear strain-rate models has been proposed to

describe the mechanical behavior of polymeric foams whose dynamic loading shows a
dependence of the stress also on the strain-rate [2] (ch. 13.7). To include strain-rate effects,
the dependence has been improved in the form [21]

S0(θ, E, Ė) = f (E)h(E, Ė) (35)
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where f , h may depend on the temperature θ. The literature shows various forms of the
functions f , h, e.g.,

f (E) = a{1 − exp[(−c/a)E(1 − E)m]}+ b
( E

1 − E
)n, h(E, Ė) = 1 + (α + βE) ln(Ė/Ė0),

where a, b, c, m, n, α, β are the pertinent positive parameters and Ė0 is a reference strain-rate
(frequently Ė0 = 10−3 s−1).

6.2. Generalizations of the Kelvin–Voigt Model

A two-parameter class of constitutive equations is considered in [15] in the form

γB + νD = F (T), B = FFT ;

this equation is said to model a fluid if γ = 0 and an elastic solid if ν = 0. For generality,
we might regard strain-rate models as those characterized by relations in the Lagrangian
form,

F S(θ, E, Ė, SRR) = 0 or F T(θ, E, Ė, TRR) = 0,

where TRR = G(E) + SRR. As we show in a while, significantly different relations arise
depending on the choice of the (independent) variables.

For definiteness, here, we let θ, E, SRR be the variables. The exploitation of the CD
inequality leads to

∂∇R θψ = 0, ∂SRR ψ = 0, η = −∂θψ

and the remaining inequality is (33). Assuming (34)1, we have

SRR · Ė = ρRθγE.

Since γE depends on θ, E, SRR, we look for Ė as a function of the same variables, namely

Ė = E0(θ, E, SRR),

(see the special case of item 3). We let N = SRR/|SRR| and apply the representation
Formula (14) to obtain

Ė := E0(θ, E, SRR) =
ρRθγE(θ, E, SRR)

|SRR|2
SRR + [I− SRR ⊗ SRR

|SRR|2
]Ξ, (36)

where Ξ is a tensor function of the variables θ, E, SRR. In particular, if we take Ξ = −βE,
then it follows

Ė =
ρRθγE + βSRR · E

|SRR|2
SRR − βE. (37)

A model describing a conservative strain evolution is obtained by assuming zero entropy
production, γE = 0. If ρRθγE = α|SRR|2, we can write Equation (37) in the form

Ė + βE = α(1 +
βSRR · E

α|SRR|2
)SRR.

Inasmuch as |βSRR · E/α|SRR|2| � 1, we obtain the Kelvin–Voigt equation as an approxi-
mation of (37).

A more general constitutive equation in the form

Ė + βE = HHH(θ, E, SRR)

is thermodynamically consistent. This is shown by substituting

Ξ = βE +H(θ, E, SRR)
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in (36). It follows that

Ė + βE = H(θ, E, SRR) +
ρRθγE(θ, E, SRR) + βSRR · E − SRR ·H(θ, E, SRR)

|SRR|2
SRR. (38)

The right-hand side is the expected function HHH(θ, E, SRR), where βE, H(θ, E, SRR) and
γE(θ, E, SRR) are involved in a proper way. This is a nonlinear generalization of the Kelvin–
Voigt type. However, if γE = 0, then a model is obtained with zero entropy production.

If θ is a known function of time, then we can integrate (38) to obtain

E(t) =
∫ t

−∞
exp

[
−
∫ t

sβ(ξ)dξ
]
HHH(θ, E, SRR)(s)ds,

which is again in the Boltzmann form with dependence on the histories of θ, E, and SRR.
If instead we let θ, E, Ė be the variables, then, applying the representation formula to

(34)2, it follows that

SRR := S0(θ, E, Ė) =
ρθγE(θ, E, Ė)

|Ė|2 Ė +
[
I− Ė ⊗ Ė

|Ė|2
]
Ξ.

In the simple case

G(E) = gE, ρRθγE = λ|Ė|2, λ > 0, Ξ = 0

we have
TRR = gE + λĖ.

6.3. Remarks about Alternative Strain-Rate Models

Let
ρRθγE = α(JS)|SRR|2, β = β(JS),

where JS denotes the triple of main scalar invariants of SRR. Hence, in light of (37), we can
write

Ė + βE =
(

α(JS)
√

J2 + β
SRR · E

|SRR|
) SRR

|SRR|
, J2 = |SRR|2. (39)

Within the strain-limiting elastic constitutive setting [22,23], the strain E and the
strain-rate Ė are replaced by their linear approximations ε and ε̇. In this setting,∣∣∣SRR · ε

|SRR|
∣∣∣ ≤ |ε| � 1

so that, if α
√

J2 and β are comparable, then we can take the approximation

ε + νε̇ = β1SRR, ν = 1/β, β1 = α/β > 0. (40)

Hence, assuming tr SRR = 0 and α = α̂(J2) > 0, we recover the model investigated in [22].

Remark 1. If β and then ν are constant, then integration of (40) on (−∞, t] yields

ε(t) =
∫ t

−∞
exp(−β(t − u)) α(JS(u)) SRR(u)du. (41)

Equation (41) shows an example of separable strain-dependent modulus [16,24].
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7. Stress-Rate Models

Many experimental tests may be viewed as the investigation of the strain induced by a
stress process. This warrants attention regarding stress-rate models, as is the case in [25,26].
Hence, we now address equations of the form

E = g(θ, TRR, ṪRR). (42)

To examine the compatibility of the constitutive function (42) with the second law, we let

θ, TRR, ṪRR,∇R θ

be the set of variables. Consistently, it is convenient to consider the Gibbs free energy

ρRφ = ρRψ − TRR · E

and observe that
−ρRψ̇ + TRR · Ė = −ρRφ̇ − ṪRR · E.

Now, φ, η, q, E, γ are provided by constitutive equations. Computation of φ̇ and substitution
in the CD inequality yield

−ρR(∂θφ + η)θ̇ − (E + ρR∂TRR φ) · ṪRR − ρR∂ṪRR
φ · T̈RR

−ρR∂∇R θφ · ∇R θ̇ − 1
θ

qR · ∇R θ = ρRθγ ≥ 0.

The arbitrariness of T̈RR,∇R θ̇, θ̇ implies that

∂ṪRR
φ = 0, ∂∇R θφ = 0, η = −∂θφ

and
−(E + ρR∂TRR φ) · ṪRR −

1
θ

qR · ∇R θ = ρRθγ ≥ 0. (43)

For reasonable simplicity, we let q be independent of ṪRR. Hence, we let

γ = γT(θ, TRR, ṪRR) + γq(θ, TRR,∇R θ),

both γT and γq being non-negative. Thus, it follows that

[g(θ, TRR, ṪRR) + ρR∂TRR φ(θ, TRR)] · ṪRR = ρRθγT, (44)

−1
θ

qR · ∇R θ = ρRθγq ≥ 0.

For definiteness, we consider (44) under the assumption

g(θ, TRR, ṪRR) = g0(θ, TRR) + g̃(θ, TRR, ṪRR), g̃ → 0 as ṪRR → 0.

It follows that
g0(θ, TRR) = −ρR∂TRR φ(θ, TRR)

and
g̃(θ, TRR, ṪRR) · ṪRR = ρRθγT.

A nonlinear dependence of g̃ on TRR and ṪRR can be assumed in the form

g̃(θ, TRR, ṪRR) = g1(θ, JT)λ(ṪRR),

where g1 ≥ 0 and
λ(ṪRR) = λ0(JṪ)ṪRR, λ0 > 0.
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8. Advantages and Disadvantages of Rate Equations

The constitutive equations of viscoelastic materials in the form of rate equations are
advantageous in many respects. Relative to the Lagrangian description adopted in this
paper, the dissipative properties of solids are modeled by equations involving the rates
Ė, ṠRR, most frequently through nonlinear dependencies on E and SRR. Nonlinear properties
are then accounted for in a variety of ways, thus showing the flexibility of the approach.
Furthermore, the thermodynamic consistency is established in a standard way by using the
representation formula also in view of the constitutive property of the entropy production.

The nonlinearities possibly involved in the rate equations need not allow us to set the
equations in the form of materials with fading memory. This shows the limited possibility
of modeling through memory integrals, although increasing attention is focused on models
with fractional derivatives [27–29].

It is worth mentioning that, so far, aging properties are described by memory function-
als. In this connection, consider a four-rank tensor function G(t, s) on R×R

+ and, in the
Eulerian description, we modify the Boltzmann model of viscoelastic behavior in the form

T(x, t) = G0(t)ε(x, t)−
∫ t

−∞
∂sG(t, s)ε(x, s)ds,

where G0(t) = G(t, t) and ε is the infinitesimal strain tensor. The function G(t, s) accounts
for the memory through the second variable, s, and for aging through the first variable, t.
This approach is developed in [30]. The aging effect on the viscoelastic property is also
described by a memory integral through a rescaling of times t, s [17,31], as illustrated above
by Equation (19).

9. Conclusions

The modeling of viscoelastic or dissipative solids is often developed through memory
functionals. The description through the Boltzmann functional for the stress in terms
of the strain history is the best-known example in this sense. Yet, memory functionals
make it more involved than any account of nonlinearity and affect compatibility with
thermodynamics. That is why, alternatively, the thermodynamically consistent modeling of
viscoelasticity is performed through rate-type equations whose best-known examples are
those associated with rheological models.

This paper provides a general account of viscoelasticity through rate equations as
relations between strain, stress, and their derivatives. To comply with the objectivity
principle, we chose to follow the Lagrangian description and used as variables the Green–
Lagrange strain E and the second Piola stress TRR, or E and SRR = TRR − G(E). Both
E and TRR are invariant under Euclidean transformations and hence so are their time
derivatives Ė, ṪRR. The inspection of thermodynamic consistency leads to the analysis of
inequalities like, e.g., SRR · Ė = ρRθγs. Equations (15), (29) and (38) describe general classes
of viscoelastic models in rate-type form.

Two features, characteristic of this paper, are unusual in the literature. Firstly, the en-
tropy production γS is regarded as provided by a constitutive function to be determined or
chosen. Secondly, the use of a representation formula enables vector (or tensor) unknowns
to comprise an arbitrary term, denoted by Ξ. Sections 4–7 show that special selections
of Ξ lead to qualitatively new constitutive equations. Furthermore, the constitutive rate
equations thus determined have the remarkable advantage of being consistent with thermo-
dynamics. The main outcome of this paper is that a simple, unique scheme, consistent with
the second law of thermodynamics, leads to nonlinear models of various real materials (see
Sections 4.1, 6.1 and 6.3).

Although this has not been our concern here, it is worth mentioning that the same
thermodynamic approach to equations involving Ė and ṪRR enables the modeling of
hysteresis in viscoplastic materials, as shown, e.g., in [6]. Regarding possibilities for
future work developments, we observe that modeling through rate equations is under
investigation in connection with the transition processes.
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Abstract: Porous hierarchical structures are extensively utilized in engineering for their high specific
strength, enhanced corrosion resistance, and multifunctionality. Over the past two decades, multiscale
topology optimization for these structures has garnered significant attention. This paper introduces a
novel hybrid MMCs (Moving Morphable Components)–density topology optimization method for
quasi-periodic cellular structures. The term ‘quasi-periodic’ refers to microstructures whose different
macroscopic points exhibit similar topologies with varying parameters. The primary concept involves
using the MMC method to describe microstructural topology, while employing variable density
to depict macro layouts. This approach leverages the advantage of MMCs in explicitly describing
structural topology alongside the variable density of arbitrary microstructures. Sensitivity analyses
of the optimization functions concerning design variables are shown, and a gradient optimization
solver is employed to solve the optimization model. The examples effectively show the efficacy of
the proposed method, illustrating that quasi-periodic cellular structures outperform single-scale
solid structures.

Keywords: moving morphable components (MMC) method; topology optimization; quasi-periodic
structures; hybrid method

MSC: 74P05

1. Introduction

Cellular structures are abundant in natural biological entities, and are renowned
for their exceptional structural performance [1]. The biomimetic emulation of these cel-
lular structures has garnered significant interest across various industries including the
aerospace, automotive, and biomedical fields. In recent years, propelled by the rapid
advancements in advanced manufacturing technologies, particularly additive manufac-
turing, it has become feasible to fabricate cellular structures with increasingly intricate
geometries [2–4]. Consequently, the systematic design of cellular structures tailored to meet
specific engineering requirements has emerged as a pivotal focus.

The topology optimization (TO) method is an automated design approach that gen-
erates novel and often unexpected design solutions by determining the optimal material
distribution to meet specified design objectives and constraints [5–9]. It is of great signifi-
cance to search for a cellular structure with excellent performance and establish a design
theory based on the TO method to promote the engineering application of hierarchical
structures. Cellular structures, unlike single-scale structures, encompass two or more
interconnected scales, posing challenges for topology optimization. A straightforward
yet computationally costly approach involves discretizing the domain using fine meshes
that span all scales. Subsequently, procedures such as those used in traditional TO can
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be applied [10]. However, this method typically necessitates a dense mesh, leading to
significant computational overheads.

Another approach to mitigate computational demands is to separate the two scales
using the multiscale finite element method [11] or homogenization method [12,13]. Com-
bining topological optimization methods with homogenization theory, some scholars
have carried out research on microstructure topology optimization methods with spe-
cific/specific properties, and obtained a large number of microstructure configurations
with excellent properties, such as materials with a negative Poisson ratio, materials with
zero expansion and materials with a high permeability. Notable studies include those by
Rodrigues et al. [14] and Xia et al. [15,16], where both macro-scale material distribution and
corresponding local microstructures were optimized concurrently. However, these methods
still entail significant computational costs due to the necessity of inverse-homogenization
for all macro elements, and they often lack connectivity between neighboring microstruc-
tures. To address these challenges, Yan et al. [17,18] proposed a concurrent design for
periodic multiscale structures that provides simpler topological optimization formulas
with fewer computational resources being required. Based on the homogenization method,
the performance transfer relationship between the two scales is established, and the opti-
mization variables of two levels are unified in a simple optimization model, and there is
only one macro finite element calculation and one micro homogenization calculation for
each optimization step. Therefore, this method shows advantages in terms of its simple
optimization formulation, low calculation and easy implementation, and has been success-
fully applied to many physical problems, such as the thermodynamic coupling problem,
dynamic problem, uncertainty problem and multifunctional problem. However, since
such structures contain the same microscopic structure, the ability to change the material
properties in the macro domain is limited, thus reducing the room for improvement in
structural properties. In view of this, some scholars have proposed a TO method of periodic
multiscale structure according to partitions. In this kind of algorithm, the domain can be
divided into a series of regions either artificially or according to specific criteria, different
regions have different microstructure configurations, and the same region is periodically
filled by a single microstructure. The core problem of this method is how to find a suit-
able and efficient macro-structure partitioning strategy to reduce the computation while
ensuring the performance.

Different to the above method, recently, some researchers focused on the design of
quasi-periodic structures. The so-called quasi-periodic means that the microstructures share
the same topology but different parameters. The key idea of these works is changing the
parameters of a unit cell, in order to transfer the variable material property across the macro
domain. Due to the invariance in topological form on the macro scale, the quasi-periodic
structure avoids the discontinuity phenomenon at the boundary of the microstructure,
and the spatial variation in material properties can be realized by adjusting the macro
distribution of variable parameters, so it has a broader design space than the periodic
cellular structure. Recently, the authors introduced a TO method for a quasi-periodic
cellular structure. Previous studies achieved this by manipulating the microstructural
topology using erode–dilate operators. Similar concepts have been implemented within the
level set TO method [19,20], where quasi-periodic cells are described by cutting the signed
distance function using different thresholds. Building upon this foundation, Zong et al. [21]
introduced shape-function-based thresholds that interpolate height variables at nodes to
ensure seamless geometric connections between adjacent cells. Through this formulation,
the macro and micro concurrent design of a quasi-periodic double-level structure is realized.
For this kind of algorithm, micro-structures at different locations have the same topological
configuration but different parameters, which ensures different functional requirements at
different locations, and creates a double-layer porous structure with better performance.

Compared to density or level set methods, the Moving Morphable Components
(MMCs) method [22–24] offers a clear geometric representation of the design space, which
simplifies the interpretation and manipulation of design variables. The above advantages
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make it convenient to incorporate variable parameters for quasi-periodic cellular structures.
Therefore, we applied the MMCs method to describe microstructural topology. For the
macro domain, the one to zero density is also used to give the optimal distribution for mi-
crostructures with different volume fractions. The study focuses on minimizing compliance
under a volume constraint, and employs the Moving Asymptotes Method (MMA) [25] to
solve the optimization models.

2. Problem Formulation

This section introduces a novel topological description for quasi-periodic cellular
structures within the MMCs framework. First, a brief overview of the MMCs method is
provided to ensure the paper is self-contained. Next, the design variables used to describe
the quasi-periodic cellular structures are defined. Finally, the formulation for topology
optimization is presented.

2.1. Moving Morphable Component Method

Different from the level set and density methods, the MMCs-based approach adopts
a set of moving morphable components as basic building blocks for topology optimiza-
tion. The implementation of the MMCs method involves optimizing the positions (center
coordinates), sizes and orientations of a series of structural components to determine the
final global topology description equation. This, in turn, defines the precise boundaries of
the structure for its final representation. The basic forms and component descriptions are
shown in Figure 1. This topological description method enables the final designed structure
to have clear boundary descriptions and geometric features (such as the length and width
of the components).

Figure 1. Parametric description of a structural component in the MMC method.

Based on the above component description, the final configuration of the structure
can be obtained by designing the control parameter vectors D = {(D1)T, . . . , (Di)T, . . .}
of multiple components. Here, Di = (x0i, y0i, Li, θi, dT

i )
T represents the topological control

parameters of the ith component. di represents the parameters in the component control
equation (such as t1

i , t2
i and t3

i in Figure 1), and L is the length of a component. The
relationship between the background element density and the global Heaviside equation
determined by

ρmi
j =

4

∑
k=1

H(φ
j
k(D

i))/4 (1)

where φ
j
k represents the TD function value of the k-th node with the j-th element node.

Many functions have been used to describe components, such as super-ellipses and closed
B-splines (CBS). In this paper, the following TDF [26] is applied for its simplicity:

φi(x, y) =
(

x′

Li

)p

+

(
y′

f (x′)

)p

− 1 (2)
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with {
x′

y′

}
=

[
cos θi sin θi
− sin θi − cos θi

]{
x − x0i
y − y0i

}
(3)

where f (x′) describes the thickness of the components along the x’ direction. p = 6 is applied
here. By using these parameters, the boundary and geometry features of a component can
be described explicitly:

f
(
x′
)
=

t1 + t2 − 2t3

2L2

(
x′
)2

+
t2 − t1

2L2 x′ + t3 (4)

where t1, t2 and t3 denote the thickness of a component. The specific expression of Heavi-
side function is as follows:

Hε(x) =

⎧⎪⎪⎨⎪⎪⎩
1, i f x > ε,
3(1−α)

4 ( x
ε − x3

3ε3 ) +
1+α

2 , i f − ε ≤ x ≤ ε,

0, otherwise.

(5)

Here, ε represents the transition region as well as degree of nonlinearity in the filtering
process. α is a small value for avoiding singularities for the linear equations solver.

2.2. Topological Description Formulation

Compared to the traditional density or level set-based method, the design variable
in the MMC method changes from the unit density ρmi

i to the component variable Di of
the structure. Thus, we can easily apply the varied thickness of the components based
on MMC algorithm to map the microscopic base unit cell (BUC) into a series of quasi-
periodic microstructures.

Two procedures are involved in describing a quasi-periodic cellular structure. One
procedure involves describing the base unit cell, while the other involves choosing a vari-
able method to generate quasi-microstructures from BUC. Since the MMC method provides
explicit parameters for describing components, it offers a more convenient approach to
defining variable parameters compared to other methods. Therefore, the MMCs method
is applied here to describe the topology of the BUC. The topology of the BUC can be
determined by a design vector Dmi. To obtain a series of quasi-periodic microstructures
using a simple alterable parameter from the BUC, we define a parameter R which can scale
the thickness of all components, as shown in Figure 2, this means:[

t1
i , t2

i , t3
i

]
Q
= R ×

[
t1
i , t2

i , t3
i

]
B

(6)

where the subscripts Q and B represent the quasi-periodic microstructures and base unit
cell (BUC), respectively. When R < 1, the thickness of the components decreases, resulting
in microstructures with a smaller volume fraction. Conversely, when R > 1, the thickness
of the components increases, leading to microstructures with a larger volume fraction. By
gradually increasing R from zero in small increments until the cell is completely filled with
solid material, different microstructures can be obtained.

After obtaining quasi-periodic microstructures, the next step is to determine the opti-
mal macro distribution of these microstructures. The most direct approach is to set vector
Rma as the design variable. By optimizing R for the desired objective and constraint func-
tions, the optimal quasi-periodic cellular structure can be achieved. However, determining
the bounds of R in this way can be challenging. To address this problem, the element
density 0 ≤ ρma ≤ 1 is defined as the design variable instead of R in the macro design.
Here, ρma

e = 0 and ρma
e = 1 represent the void and solid, respectively. For 0 < ρma

e < 1, the
corresponding microstructure with the same volume fraction is placed. The subscript e
denotes index of the design variable.
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Figure 2. The two types of design variables in the proposed method.

In a conclusion, the component parameter is the Micro Topology description variable
and R is the Macro Topology description variable. By optimizing the distribution of the
quasi-periodic microstructures, in other words, by optimizing the distribution of the Macro
Topology description variable R, a multi-scale structure with quasi-periodic microstructures
can be obtained.

2.3. Optimization Formulation

In this study, the typical optimization problem of minimizing structural compliance is
considered to make an easy comparison with traditional methods. By minimizing structural
compliance, maximum stiffness for a prescribed force can be achieved. This function, being
convex, is well-suited for finding the optimal solution and is widely applied in topology
optimization to test new methods. The formulations are expressed as follows:

find ρma, Dmi

min c = FTU = UTKU

s.t. K(ρma, Dmi)U = F∫
Dmi H(φs(x))dV − Vmi

= 0
Nma

∑
e=1

ρma
e vma

e − Vma ≤ 0

0 ≤ ρma
e ≤ 1, (e = 1, . . . , Nma)

Dmi ∈ ΞD

(7)

where ρma =
(
ρma

1 , . . . , ρma
e , . . . , ρma

Nma
)T and Dmi =

((
D1)T

, . . . ,
(

Di
)T

, . . .
(

DNmi
)T
)T

denote the vectors of design variables. Vmi and Vma are the upper limits for the volume
constraint. Nmi and Nma the number of design variables within the macro and micro
domains, respectively. Here, the limit of the micro volume is added for a stable convergence.
Here, Vmi

= 0.2 is applied in the following examples. ΞD is the admissible set for the
design variables. c is the structural compliance which can be computed by:

c = UTKU =
Nma

∑
e=1

UT
e KeUe (8)
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where K, U and F denote the global stiffness matrix, displacement vector and load vector,
respectively. The subscript e represents the element form:

Ke =
∫

Ωe
BTDma

e BdΩ (9)

where Ωe denotes the element domain. Dma
e
(
ρma

e , Dmi) is the elastic matrix which
relates to the microstructural topology and macro density. B is the element strain–
displacement matrix.

3. Numerical Implementations

In this section, we initially outline interpolation strategies that correlate material
properties with design variables. Subsequently, a sensitivity analysis of the functions is
carried out using gradient-based optimization solvers.

3.1. Interpolation Scheme

Before computing the element stiffness matrix, the elastic matrices of microstructures
should be given. In this study, the widely applied asymptotic homogenization (AH)
method [27] is used:

DH =
1
|Y|
∫
Y

[
D(y)− D(y)εy(φ, y)

]
dy (10)

where Y is the local coordinate in the unit cell, and y denotes the coordinate vector. D(y) is
the elastic matrix for the elements in the microstructure. To obtain a clear 0–1 topology, the
Solid Isotropic Material with Penalty method [28] is applied here as:

Di =
(

ρ + (ρ − ρ)
(

ρ̃
mi
i

))
D0 (11)

where D0 is the elastic material matrix and subscript i represents the ith element in unit cell.
ρ = 0.001 is a small value to avoid a singular global stiffness matrix, ρ = 1. εy(·) represents
the strain calculator. φ =

[
φ11, φ22, φ12] denotes the characteristic displacements which are

obtained by solving: ∫
Y

εT
y(v)

[
D(y)− D(y)εy(φ)

]
dy = 0, ∀φ ∈ Vy (12)

where Vy denotes the function space of periodic functions. Due to computational con-
straints, calculating the elastic matrices DH for all microstructures generated by the BUC is
challenging. As a result, only a subset of samples is selected for computation. Subsequently,
cubic B-splines are employed as the basis functions, and an explicit formulation is derived
using the least squares method:

DH
(

ρma
e , ρmi

i

)
= fspline

(
ρma

e , ρmi
i

)
(13)

To prevent the occurrence of microstructures with low volume fractions, which are
challenging to manufacture, a penalization scheme is implemented:

Dma
e

(
ρma

e , ρmi
i

)
= (ρma

e )q fspline

(
ρma

e , ρmi
i

)
(14)

where q is the penalization power. The following values of q are suggested:

q =

{
3 ρma

e < 0.1
0 ρma

e ≥ 0.1
(15)
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3.2. Sensitivity Analysis

Since topology optimization has a large number of design variables, gradient-based
optimization solver is often applied. Here, the adjoint method is used to derive the
sensitivities of the functions with respect to the design variables in micro and macro
domain. Frist, the general formulation of the structural compliance with respect to xj

(=ρmi
i , ρma

e ) can be written as:

∂c
∂xj

= −
Nma

∑
e

UT
e

(∫
Ωe

BT ∂Dma
e

∂xj
BdV

)
Ue (16)

where xj (=ρmi
i , ρma

e ) includes the two types of the design variable. For the two design
variables, the primary difference lies in the derivation of the elastic matrix Dma

e . Therefore,
we will give the detail formulations of the design variables ρma

e and ρmi
i separately.

(1) Sensitivities with respect to. ρma
e

Differentiating Equation (14) to ρma
e yields:

∂Dma
e

∂ρma
j

=

⎧⎨⎩ 0 e = j

q
(

ρma
j

)q−1
fspline

(
ρma

e , ρmi
i
)
+
(

ρma
j

)q ∂ fspline(ρma
e ,ρmi

i )
∂ρma

j
e �= j

(17)

Then, substituting it into Equation (16), and we can obtain:

∂c
∂ρma

e
=

−p(ρma
e )p−1UT

e

(∫
Ωe

BT fspline
(
ρma

e , ρmi
i
)
BdV

)
Ue − (ρma

e )pUT
e

(∫
Ωe

BT ∂ fspline
(
ρma

e , ρmi
i
)

∂ρma
e

BdV

)
Ue

(18)

where subscript e = 1, 2, . . . , Nma.
(2) Sensitivities with respect to. Dmi

i
Substituting Equation (14) to Equation (16), the sensitivity of ρmi

i can be written as:

∂c
∂Dmi

i
=

∂c
∂ρmi

j
·

∂ρmi
j

∂Dmi
i

= −
Nma

∑
r=1

uT
r · (f(ρma

r ) ·
∫

Ωe

BT
∂Dr(ρmi

j , ρma
e )

∂ρmi
j

·
∂ρmi

j

∂Dmi
i

B · dΩe) · ur (19)

Note that ∂c/∂ρmi
i is a summation of the elements in the macro domain:

∂ρmi
j

∂Dmi
i

=
4

∑
k=1

(q · H(φ
j
k)

q−1
· ∂H(φ

j
k)

∂Dmi
i

)/4 (20)

4. Results and Discussions

To validate the effectiveness of the method, two design problems including the short
and long cantilever beam problems are shown here. The cantilever beam is a common
design problem in structural optimization. These problems usually involve optimizing the
material distribution of a structure to meet specific performance indicators under given
constraints. The detailed numerical implantations and parameter settings are provided
in the subsequent subsections, including an optimization model, parameter setting, opti-
mization results, and so on. For the finite element analysis, four-node bilinear rectangular
element grids are applied to discretize the domains. In two examples, the micro-design
domain is discretized into 50 × 50 rectangular elements. The material properties of the
two examples are set as Young’s modulus E = 206 MPa and Poisson’s ratio μ = 0.28. To
obtain a design with a smooth gradient for the density in the macro domain and prevent
the phenomenon of a numerical instability such as the checkerboard scheme that occurs in
the topology optimization design of a continuum structure, the density filtering technique
is applied. Here, the filtering radius is set to rma = 1.5. The objective function of the
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example is the maximization of structural stiffness; that is, the minimization of structural
compliance. It is the most commonly used objective function in topology optimization
design because it has the characteristics of a simple form and reflects structural stiffness
properties. By updating the design variables based on MMA after the sensitivity analysis,
the optimal micro-structure layout of the cantilever beam can be obtained to meet the
design requirements. The convergence criterion of the MMA algorithm was selected as
max

∥∥xi+1 − xi
∥∥ ≤ 10−3, and the maximum number of iteration steps was set to 300.

4.1. Short Cantilever Beam Problem

The first test case involves minimizing compliance for a short cantilever beam. Figure 3
illustrates the design domain for the short cantilever beam, including the force, boundary
conditions and sizes. In this case, the size of the design domain is 20 mm by 15 mm. The
degree of freedom at the left end of the short beam is completely fixed. A vertical point load
of F = 1 KN is applied at the bottom-right corner. The short cantilever beam is discretized
using a 20 × 15 grid of elements. The upper volume fraction of the material is 0.4.

Figure 3. The design domain for the short cantilever beam, including the force, boundary conditions
and sizes.

Figure 4a shows the optimized topology of the base unit cell which is described
by the MMCs method, while the optimized macrostructural density layout is shown
in Figure 4b. It should be noted that, here, the black color means the design variable
ρma

e = 1, the gray color means 0 < ρma
e < 1 and the white color means ρma

e = 0. For different
parameters of the operator R, the corresponding microstructural is shown in Figure 5. Here,
we just give microstructural topology for some ρma

e , actually we can obtain an arbitrary
microstructural topology for all of the ρma

e using the method shown in Section 2. According
to the macrostructural density layout, the base unit cell with the closest volume fraction
is placed at each macroscopic unit to assemble the quasi-periodic cellular structure, and
the result is shown in Figure 6. The compliance of the optimized quasi-periodic cellular
structure obtained by the proposed method is 21.73.

Firstly, based on the operator R described in the MMCs framework proposed in this
paper, the microstructure form of the quasi-periodic cellular structure is described, and a
microstructure optimization design is created.
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Figure 4. The optimized structure by the proposed method: c = 21.73. (a) Microstructural topology.
(b) Macrostructural layout.

Figure 5. The microstructural topology for different parameters ρma
e .

Furthermore, in order to further verify the effectiveness of the algorithm, the structure
with less compliance can be optimized under the same condition. Therefore, the problem
was solved using the classical single-scale method and periodic cellular structural design,
and the results are presented in Figures 7a and 7b, respectively. The structural compliances
obtained by these two methods were 27.85 and 52.81, respectively, both of which are higher
than the compliance achieved by the proposed method. It also proves that the feasible
domain of the structure can be greatly extended by a quasi-periodic design, and a cellular
structure with a better performance can be obtained. Since the porous hierarchical structure
has lager stiffness than traditional solid structures, it has been widely used in aerospace
now. Often, the design results have been fabricated by additive manufacturing.
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Figure 6. The optimized structure by the proposed method: c = 21.73.

Figure 7. The optimized results: (a) single-scale design: c = 27.85; (b) periodic design: c = 52.81.

4.2. Long Cantilever Beam Problem

The second case addressed here is the minimum compliance for a long cantilever beam.
The design domain, depicted in Figure 8, is a rectangle measuring 120 mm by 30 mm, with
the left side fixed. The domain is discretized using a 120 × 30 grid of rectangle elements,
and a vertical point load of F = 1 KN is applied at the bottom-right corner. The volume
fraction of the total material is set at 0.4. Figure 9 shows the optimization iteration curve,
highlighting the change in the base cell in the micro domain and the density distribution of
the macro domain with the number of optimization steps. It can be seen from the curve
that the convergence of the optimization objective function is good and the volume fraction
is satisfied. The slight oscillations observed in the iteration curve are due to variations in
the parameters. The final optimized quasi-periodic cellular structure, with a compliance of
269.73, is presented in Figure 10. At the top of the picture is the microstructure topology
optimized at the microscopic level and the base unit cell library constructed by the erode–
dilate operator. The volume fraction of base unit cells varies from zero to one, corresponding
to the macroscopic density layout. It can be seen from the optimization results that the
microstructure topology can ensure the connectivity between cellular structures, although
the volume fraction of each base unit cell is variable. At the bottom of the image is the
optimal density layout obtained by macroscopic optimization. As can be seen from the
figure, the external outline of the structure is solid material, and the base unit cells are
mainly distributed in the middle part of the beam. These numerical examples verify
the effectiveness of the proposed erode-dilate algorithm under the MMCs framework,
which can improve the design space, ensure the connectivity and manufacturability of the
structure and obtain cellular structures with excellent performance.
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Figure 8. The design domain for the long cantilever beam, including the force, boundary conditions
and sizes.

Figure 9. Iteration process.

Figure 10. The final optimized structure obtained by the proposed method: c = 269.73.
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5. Conclusions

In this study, we developed a novel topology optimization (TO) method for de-
signing quasi-periodic cellular structures using a hybrid material-and-morphology-based
(MMCs–density) approach. This method enables integrated optimization at both macro and
micro scales. The MMCs method was employed to describe the quasi-periodic microstruc-
tures by varying the thickness of the bars. The topology of the base unit microstructure is
optimized to construct a library of quasi-periodic structures, followed by the macrostructure
optimization to determine the distribution of these quasi-microstructures. Interpolation
functions are established to derive sensitivities for use in gradient-based optimization. This
approach allows us to simultaneously optimize the topology and parameters of microstruc-
tures, which vary within the macro design domain, thereby enhancing the performance of
graded structures. Moreover, the resulting neighboring microstructures are seamlessly con-
nected, facilitating rapid prototyping via additive manufacturing. The numerical examples
demonstrate that quasi-periodic structures offer significant performance improvements
over periodic structures, with only a modest increase in the computational cost.
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Abstract: Due to their high specific stiffness, particularly in bending, along with their strong design
capabilities, stiffened plates have become a prevalent structural solution in aerospace and various
other fields. In pursuit of optimizing such structures, a topology optimization method named
Heaviside-function-based directional growth topology parameterization (H-DGTP) was proposed
in our previous work. However, this approach is limited to designing planar, single-sided stiff-
ened structures. Thus, this paper extends the scope of this method to encompass double-sided,
curved, stiffened panels, presenting a topology optimization technique tailored for such configura-
tions. Specifically, considering the position, shape of the curved panels, and the arrangement and
height of the stiffeners as design variables, while prioritizing structural stiffness as the objective, a
topology optimization model for double-sided curved stiffened plate structures is established, and
the corresponding sensitivities of the objective with respect to the design variables are analytically
derived. Numerical examples illustrate that simultaneously optimizing the position and shape of the
plate, as well as the layout and height of the stiffeners on both sides of the curved plate, results in
greater stiffness compared to optimizing only part of these variables, validating the necessity and
effectiveness of the proposed method.

Keywords: topology optimization; Heaviside function; curved stiffened structure

MSC: 74P05

1. Introduction

The stiffened plate structure, composed of a base plate and several stiffeners, is of great
significance in the fields of machinery, aerospace, etc., for its high rigidity-to-weight ratio
and strong design freedom. Previous studies have shown that by reasonably optimizing the
plate shape and stiffener layout, the mechanical properties of the stiffened plate structure
can be improved effectively [1–3]. Therefore, establishing a systematic optimization design
method for a stiffened plate structure has become a research hotspot [4–7]. In recent years,
applying genetic algorithms and other intelligent algorithms to optimize stiffened plate
structures has made great progress [8]. However, the shortcomings of these methods, such
as low computational efficiency, few achievable design variables, and limited optimization
space, limit their application. Casting is a very commonly used manufacturing process
for the stiffened structure due to its advantages, including cost-effectiveness, complex
shape formation, and high material utilization [9]. Hence, casting provides a mature
manufacturing technology for complex stiffened plate structures. However, the casting
process also has requirements regarding the shape of the casting; for example, the shape of
the casting should be protruding, and internal holes should be avoided [10]. If this is not
the case, the casting may have defects, or casting failure may be experienced.

Topology optimization is currently one of the most powerful structural design meth-
ods. It can obtain innovative configurations with an excellent performance by seeking
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the optimal layout of materials under given objectives and constraints [11]. As an intel-
ligent and systematic optimization design method, it can design products according to
performance requirements and manufacturing capacity. Therefore, topology optimization
is widely used to improve the structural properties of materials in aerospace and other
fields [12,13]. Various topology optimization methods have been proposed in the past few
decades, including homogenization-based methods [14], density-based methods [15], level
set methods [16], evolution methods [17], and feature-mapping methods [18,19]. In the con-
text of topology optimization, how to generate designs that can be manufactured by casting
is of great importance. In this direction, several studies have been conducted. For example,
a level-set-based method for the conceptual design shape and topology optimization of
castings is proposed in the work of Wang et al. [20], and this method can conveniently
consider casting constraints and traditional material volume constraints. Xu et al. [21]
proposed a topology optimization method for natural frequency optimization considering
casting constraints.

So far, several topology optimization methods for the stiffened layout of plate and
shell structures have been developed [22–24]. Cheng and Olhoff developed a topology
optimization method to design the thickness of plates to realize the optimal design of stiff-
ened plate structures [25]. Rais-Rohani and Lokits also utilized the topology optimization
method to explore the design aspects of composite stiffeners [26]. Furthermore, Krog and
Olhoff [27] derived a stiffened structure by employing the homogenization method and
strategically designing laminated microstructure parameters. In addition, Gersborg and
Andreasen proposed a parametric interpolation format based on a three-dimensional struc-
ture to delineate stiffener height [19]. The underlying concept was to identify the interface
between the solid and hollow materials along the stiffener to attain an optimal structure.
Moreover, Liu et al. [28] developed a novel parametric method for the design of single-
sided stiffened plate structures by using the Heaviside function, which is referred to as
Heaviside-function-based directional growth topology parameterization (H-DGTP). Also,
Sun et al. [29] proposed a multiple unidirectional material field-based topology optimiza-
tion method for thin-walled structures with directional straight stiffeners. Huang et al. [30]
developed a mesh-deformation-based integrated topology and shape optimization frame-
work for stiffened curved shells. Sun et al. [31] proposed an isogeometric-analysis-based
stiffness spreading method for stiffener layout optimization. Up to now, the above works
have mainly focused on single-sided stiffened structures. However, the design space of
a single-sided stiffened structure is not large enough to accommodate complex design
requirements. Hence, developing a design theory and method for single-sided stiffened
plates to increase the design space is an important direction.

Under above context, an improved H-DGTP-based topology optimization method for
double-sided stiffened plates is proposed in this paper, where the main contribution is that
the scope of the improved method is extended from single-sided stiffened plates to double-
sided ones. In the proposed method, two types of design variables are introduced: one is
used to describe the shape of the reference plate in relation to the height of the interpolation
point of the reference plate; the other is used to describe the double-sided stiffener layout
above and below the reference plate in relation to the density field of the bidirectional
stiffener distribution and the height field describing the height of the stiffeners. Several
numerical results indicate that the aforementioned optimization variables have a significant
impact on the optimization outcomes, thereby validating the necessity of the collaborative
optimization approach presented in this paper. Here, it is worth mentioning that the results
obtained by the method proposed in this paper naturally satisfy the casting constraints
of vertical stiffeners, thereby removing the barriers from design to manufacturing and
greatly improving the possibility of engineering applications using the optimization method
presented, and the corresponding results.
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2. Topology Optimization Model

2.1. Parameterization Model for the Curved-Plate Structure with Double-Sided Stiffeners

The parameterization of double-sided curved stiffened plates is a prerequisite for
achieving their topological optimization. Therefore, this section proposes a new param-
eterization model for such structures based on the Heaviside function. This model can
simultaneously describe the shape of the curved plates and the layout of the stiffeners, as
illustrated in Figure 1.

Figure 1. Illustrative sketch of the curved-plate structure with double-sided stiffeners.

To determine the location of the reference plate, a set of design variables is defined. The
height values of the reference plate center are equally distributed: sdc = [sdc0, sdc2, . . . , sdcn]

T.
The coordinates are x = [x0, x2, . . . , xn]

T, and the spacing is h. In this paper, cubic spline
interpolation with natural boundary conditions is applied to determine the height of any
element of the reference plate center whose expression is

sd = A1 ∗ m + A2 ∗ sdc (1)

where m = [M0, M2, . . . , Mn] can be obtained by⎛⎜⎜⎜⎜⎜⎝
2 λ0

μ1 2 λ1
. . . . . . . . .

μn−1 2 λn−1
μn 2

⎞⎟⎟⎟⎟⎟⎠ ∗

⎛⎜⎜⎜⎜⎜⎝
M1
M2

...
Mn−1

Mn

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
d0
d1
...

dn−1
dn

⎞⎟⎟⎟⎟⎟⎠ (2)

where d = [d0, d1, . . . , dn] is computed by

d =
3
h2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · · · · 0
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∗ sdc (3)

In addition, A1 and A2 are given as follows:

A1 =

⎛⎜⎜⎜⎝
u(1) v(1)

u(2) v(2)
. . . . . .

u(m) v(m)

⎞⎟⎟⎟⎠A2 =

⎛⎜⎜⎜⎝
α(1) β(1)

α(2) β(2)
. . . . . .

α(m) β(m)

⎞⎟⎟⎟⎠ (4)
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where u, v,α and β are computed by

u(i) = (x(j)−i)3−(x(j)−i)2∗h2

6∗h , x(j − 1) < i ≤ x(j), j = 2, 3, . . . , n

v(i) = (i−x(j−1))3−(i−x(j−1))2∗h2

6∗h , x(j − 1) < i ≤ x(j), j = 2, 3, . . . , n

α(i) = x(j)−i
h , x(j − 1) < i ≤ x(j), j = 2, 3, . . . , n

β(i) = i−x(j−1)
h , x(j − 1) < i ≤ x(j), j = 2, 3, . . . , n

(5)

Through the above formulations, the specific position of the center of a series of
reference plate centers in the X and Y directions can be determined.

The thickness of the reference plate is δd. Thus, when only considering the influence
of the reference plate, the density of any element in the design domain can be obtained:

X1e = H1

(
se, sdj

)
, where H1

(
se, sdj

)
=

⎧⎨⎩ 1
∣∣∣se − sdj

∣∣∣ ≤ δd
2

0
∣∣∣se − sdj

∣∣∣ > δd
2

(6)

where se = x/l ∈ [0, 1] is a normalized coordinate of the center point of any element in the
Z direction, sdj is the height of any element on the reference plate to the lower boundary
of the design domain, and H1 is the first Heaviside function, whose specific expression is
as follows:

H1(se, sd) = e
− 1

2 (
2(se−sd)

δd
)

2β1

(7)

where the parameter β1 > 0 determines the smoothness of the approximate function. The
larger the β1 value, the steeper the approximation, as shown in Figure 2.

δ

β
β
β
β

 
Figure 2. The second smooth Heaviside function with different β1 values.

Now, after the reference plate has been determined, the next step is to model the
stiffeners. The direction of the stiffener is first determined, and sets of elements above and
below the reference plate (usually judged by the position of the center point of the element)
are regarded as two stiffeners. Here, four design values are defined: the design variable
that describes the layout of the stiffeners above the reference plate L1, the design variable
that describes the height of the stiffeners above the reference plate η1, the design variable
that describes the layout of the stiffeners below the reference plate L2, and the design
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variable that describes the height of the stiffeners below the reference plate η2. Thus, when
considering the influence of stiffeners, the density of any element is formulated as follows:

X2e =

{
L1j · H1

(
η1j, s1e

)
above

L2j · H1
(
η2j, s2e

)
below

(8)

where

H2
(
ηij, sie

)
=

{
1 sie < ηij
0 sie ≥ ηij

i = 1, 2 (9)

where sie = xi/li ∈ [0, 1] is the normalized coordinate of the center point of any element
above/below the reference plate; ηij is the height of the j-th stiffener above/below the
reference plate; H2 is the second Heaviside function; and Lij ∈ [0, 1] is the density of the
j-th stiffener above/below the base surface which can be penalized to 0 or 1. Because the
Heaviside function is a sudden-change function and its first derivative is discontinuous,
in order to adopt a gradient optimization algorithm, it usually needs to be approximately
smoothed. In this paper, the Sigmoid function commonly used in artificial neural network
theory is used to approximate the Heaviside function, and the modified form is as follows:

H2(ηi, si) =
eβ2∗(ηi−si)

1 + eβ2∗(ηi−si)
i = 1, 2 (10)

where the parameter β2 is similar to β1, which determines the smoothness of the approxi-
mate function, and the larger the β2 value, the steeper the approximation, as is shown in
Figure 3.

η

β
β
β
β
β
β
β

Figure 3. The first smooth Heaviside function with different β2 values.

When the two conditions of the stiffeners and the base plate are considered simulta-
neously, the relations of their values with the density of all elements are determined, as
shown in Table 1.

Table 1. The relationship between ρe and X1, X2.

Different Combinations of X1, X2 Interpolated Elemental Density

X1 = 1 ρe = 1
X1 = 0, X2 = 1 ρe = 1
X1 = 0, X2 = 0 ρe = 0

Therefore, as is shown in Figure 4, the density of all elements in the 3D design domain
can be interpolated as follows:

ρe = X1 + X2(1 − X1) (11)
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( )e X X Xρ = + −

XX

e

Figure 4. The interpolation function for element density ρe.

Now, Equation (11) is the final developed parameterization model for the curved-plate
structure with double-sided stiffeners, and it is used to realize the topology optimization of
such structures in the next section.

2.2. Topology Optimization Model

In this paper, the compliance optimization problem is considered. The optimization
formulation is given as follows:

min c = UTF

subject to K(ρe)U = F

g ≤ 0
0 ≤ η1(i),η2(i), L1(i), L2(i), sdc(i) ≤ 1 for i = 1, . . . , m

find η1(i),η2(i), L1(i), L2(i), sdc(i) ∈ Rm

(12)

where c is the compliance, U is the displacement vector, F is the external load vector, and K

is the global stiffness matrix, which can be assembled by

K(ρ) =
N

∑
e=1

(
ρ + (ρ − ρ)ρ

p
i

)
Ke (13)

where Ke is the element stiffness matrix and N is the number of elements. ρ = 0.001 is
the lower limit of density to avoid the singularity of the global stiffness matrix; ρ = 1
is the upper limit of density. p is a penalization parameter, and is set as 3 in this paper.
Because of only considering volume constraint in this paper, the constraint function can be
expressed by

g =

N
∑

e=1
ρeνe

γV
− 1 (14)

where νe is the element volume, γ is the allowed volume fraction, and V is the total volume
of the design domain.

3. Sensitivity Analysis

The sensitivity of the objective function c with respect to the design values
sdc = [sdc1, sdc2, . . . , sdcn]

T can be obtained by the chain rule as follows:

∂c
∂sdc

=
Ne

∑
i=1

∂c
∂ρe

(
∂ρe

∂X1

∂X1

∂sd

∂sd
∂sdc

+
∂ρe

∂X2

∂X2

∂s
∂s
∂sd

∂sd
∂sdc

)
(15)

where Ne is the number of elements in the design domain, and ∂ρe/∂X1 can be written as

∂ρe

∂X1
= 1 − X2 (16)
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In addition, the term ∂X1/∂sd can be formulated as

∂X1

∂sd
=

∂H1

∂sd
=

2β1

δd
(

2(se − sd)

δd
)

2β1−1

e
− 1

2 (
2(se−sd)

δd
)

2β1

(17)

Also, ∂sd/∂sdc is the sensitivity of the height of the reference plate to the equally
distributed height of the reference plate sdc, which can be expressed by

∂sd

∂sdc
= A1 ·

∂m

∂sdc
+ A2 = A1 ·

⎛⎜⎜⎜⎜⎜⎝
2 λ0

μ1 2 λ1
. . . . . . . . .

μn−1 2 λn−1
μn 2

⎞⎟⎟⎟⎟⎟⎠

−1

· ∂d

∂sdc
+ A2 (18)

Now, ∂ρe/∂X2, ∂X2/∂s can be similarly written as follows:

∂ρe

∂X2
= 1 − X1 (19)

∂X2

∂si
= −Li

β2eβ2∗(ηi−si)

(1 + eβ2∗(ηi−si))
2 i = 1, 2 (20)

Based on the relationship between s and sd, say that

s =

{
s1 = se−sd

1−sd
se ≥ sd

s2 = sd−se
sd

se < sd
(21)

The term ∂s/∂sd can be expressed by

∂s
∂sd

=

⎧⎨⎩
∂s1
∂sd

= se−1
(1−sd)

2 se ≥ sd
∂s2
∂sd

= se
(sd)

2 se ≥ sd
(22)

According to Equations (1), (10), and (11), the sensitivity of the objective function c to
the design values η1, η2, L1, L2 by the chain rule can be obtained as follows:

∂c
∂η1

=
Ne1
∑

e=1

∂c
∂ρe

(
∂ρe

∂X1

∂X1

∂η1
+

∂ρe

∂X2

∂X2

∂η1
) =

Ne1
∑

e=1

∂c
∂ρe

∂ρe

∂X2
L1

∂H2(η1, s1)

∂η1

∂c
∂L1

=
Ne1
∑

e=1

∂c
∂ρe

(
∂ρe

∂X1

∂X1

∂L1
+

∂ρe

∂X2

∂X2

∂L1
) =

Ne1
∑

e=1

∂c
∂ρe

∂ρe

∂X2
H2(η1, s1)

∂c
∂η2

=
Ne2
∑

e=1

∂c
∂ρe

(
∂ρe

∂X1

∂X1

∂η2
+

∂ρe

∂X2

∂X2

∂η2
) =

Ne2
∑

e=1

∂c
∂ρe

∂ρe

∂X2
L2

∂H2(η2, s2)

∂η2

∂c
∂L2

=
Ne2
∑

e=1

∂c
∂ρe

(
∂ρe

∂X1

∂X1

∂L2
+

∂ρe

∂X2

∂X2

∂L2
) =

Ne2
∑

e=1

∂c
∂ρe

∂ρe

∂X2
H2(η2, s2)

(23)

where Ne1 is the number of elements in a stiffener above the reference plate, Ne2 is the
number of elements in a stiffener below the reference plate, and ∂c/∂ρe is the sensitivity of
compliance to element density, whose expression is

∂c
∂ρe

= −p(ρ − ρ)ρ
p−1
e UT

e KeUe (24)
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where Ue is the displacement vector of the element and Ke is the stiffness matrix of the
element. ∂H2/∂ηi is the sensitivity of the Heaviside function with respect to the design
variable ηi, which can be expressed by

∂H2

∂ηi
=

β2eβ1∗(ηi−si)

(1 + eβ2∗(ηi−si))
2 i = 1, 2 (25)

The values of parameters β1 and β2 determine the size of the transition domain of
the Heaviside function, so choosing reasonable values of parameters β1 and β2 is very
influential to the optimization process. To determine their value, numerical experiments
were carried out to show that the height of the stiffeners ηi varied by 0.0001 steps from
0 to 1, and the other design variables were all 1. For different β1 values, the curves of the
objective function on the variable are shown in Figure 2.

4. Numerical Implementations

Next, the process of topology optimization with the parameterized methods is sum-
marized. First of all, we need to determine the position of the reference plate by setting the
initial design variable, and then substituting the initial design variable into cubic spline
interpolation to obtain the height of the reference plate with a set of elements in the X
direction. The height of each set of elements in the Y direction is the same, so the height
of all elements on the reference plate can be obtained. The element density within the
thickness of the reference plate is 1. The direction of the stiffeners is positive and negative
in the Z direction. Secondly, the element density should be calculated by the parameterized
optimization method, which is the key to the realization of the algorithm. Third, a new
iterative process is started by updating the design variables through MMA. The specific
optimization process is as follows:

Step 1: Initialize design variables. Determine the position of the base surface and
set up the direction of the stiffeners and the maximum design variable change Δρmax,
maximum iterations imax = 400, and the iteration counters i = 0, β1 = 5, and β2 = 1. Set
up the system of equations and choose the filter method, etc.

Step 2: While max
∥∥ρi+1 − ρi

∥∥ > Δρmax and i ≤ imax, then i = i + 1 and go to Step 3,
else go to Step 9.

Step 3: Calculate element density from design variables.
Step 4: Solve elastic problems.
Step 5: Calculate objective function and constraint function.
Step 6: Solve sensitivity.
Step 7: Update design variables based on MMA optimization algorithm.
Step 8: If mod(i, 30) = 1 ‖ max

∥∥ρi+1 − ρi
∥∥ < 0.01, then β= min(β + Δβ, 128) and go

to Step 2.
Step 9: Post-processing after optimization convergence.

5. Numerical Examples

Based on the topology optimization method presented above, the topology optimiza-
tion design is carried out for two typical examples. In the examples, the material is isotropic,
the elastic modulus is E = 1 MPa, and Poisson’s ratio is ν = 0.3. The design domain is
divided by a hexahedral eight-node grid. The interpolation parameters p for the SIMP
interpolation start at 1 and increase by 1 for every quarter of the operation. The maxi-
mum is 3. Sensitivity filtering is used to avoid the checkerboard phenomenon and grid
dependence, and the filtering radius is 2.5. The design variables are updated based on
the MMA algorithm. A parameter is introduced in order to describe the dispersion of the
optimization results, which is

Mnd =
∑
e

4ρe(1 − ρe)νe

∑
e

νe
(26)
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where ρe is the element density and νe is the element volume. The smaller the value of
Mnd, the closer the optimized element density is to the 0–1 distribution, and the better the
optimization effect.

5.1. Example 1: Simply Supported Plate

In this section, the structure of a simply supported plate is designed, as shown in
Figure 5, to obtain the optimal reference surface position, stiffener height, and layout
simultaneously. The design range is a 192 × 192 × 128 cube, and the four edges of the
lower end face are fixed in three directions. Vertical point loads F are applied to the upper
bottom, as shown in Figure 5. In order to better optimize the structure, select the element
near the load and constraint as the undesignable domains.

 
Figure 5. The design domain of the simply supported plate structures.

First, the topological optimization results obtained by the four methods are shown in
Figure 6 with a volume fraction of 40%. The red represents the reference plate, the green
represents the stiffener structure, and the remaining colors are gray elements. Figure 6a is
the result of the topology optimization under the condition where the reference plate is
a flat plate and the height is fixed to 0.5. It can be seen that there are more gray elements
around the reference plate, and the final objective function value is 328.8133. Figure 6b is
the topological optimization result under the condition where the reference plate is a flat
plate and the height is a design variable. It can be seen that there are fewer gray elements
around the reference plate, and the final objective function value is 317.1167. Figure 6c is the
topological optimization result under the condition where the reference plate is a curved
plate interpolated by spline and both ends of the curved plate are fixed at 0.5. It can be
seen that compared with the result of a flat plate, the structure is more reasonable and there
are fewer gray elements. The final objective function value is 303.8884. Figure 6d is the
topological optimization result under the condition where the reference plate is a curved
plate interpolated by spline and both ends of the curved plate are highly free. Compared
with the optimization results of the previous three methods, the final objective function
value is smaller (294.7610), as shown in Table 2.

Table 2. Initial and final values of the objective function for the considered four cases.

Method Category Method 1 Method 2 Method 3 Method 4

Initial value of the objective function 1201 1201 1201 1201
The final value of the objective function 328.81 317.12 303.89 294.76

The iterative curves of the optimization process of the four methods are given in
Figure 7. The small oscillation of the curve during the optimization iterative process
is mainly caused by the changes in the values of β1 and β2. The sudden increase in
the objective function near steps 100 and 200 is due to the increase in the penalty factor
p. Through optimization, the four methods, respectively, reduce the objective function
from the same initial value of 1201 to 328.81, 317.12, 303.89, and 294.76, corresponding
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to increases in structural stiffness of 3.65, 3.79, 3.95, and 4.07 times, respectively. Thus, it
can be seen from these results that the optimized result for Method 4 is the best, where
the reference plate is curved with its shape freely optimized, including the location at
the boundaries. Furthermore, optimized structures with different volume fractions are
also provided, as shown in Figure 8. It can be observed that there are differences in the
optimized results with different volume fractions, indicating that volume fraction can
influence the optimal structure.

 View Angle 1 View Angle 2 The reference plate 

(a) 
Method 1 

 
 

(b) 
Method 2 

  

(c) 
Method 3 

 
 

(d) 
Method 4 

  

Figure 6. Topologically optimized structures of the four methods. (a) Method 1: The reference plate
is flat and its location in the height direction is fixed at 0.5. (b) Method 2: The reference plate is flat
and its location in height direction is considered as a design variable. (c) Method 3: The reference
plate is curved with its shape optimized but with fixed locations at the boundaries (fixed as 0.5).
(d) Method 4: The reference plate is curved with its shape freely optimized, including the locations at
the boundaries.
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Figure 7. Iteration curves of objective function and constraint function.

 View Angle 1 View Angle 2 The reference plate 
γ =  

 
 

 

γ =  

 
 

 

Figure 8. Optimized structures with different volume fractions.

Also, it should be noted that the computational efficiency of the proposed method
is poorer than the existing H-DGTP-based method (for the above considered examples,
the computational efficiency of the proposed method is approximately 20% to 30% lower
than for existing methods), and this is because the new method has far more design
variables, which will increase the computational time of the sensitivity analysis and
optimization solver.

5.2. Cantilever Beam

In this section, the structure of the cantilever beam is designed, as shown in Figure 9,
to obtain the optimal base reference position, stiffener height, and layout simultaneously.
The design domain is a 384 × 64 × 128 cube, whose left side is fixed in three directions.
Vertical point loads F are applied to the right end of the reference surface, as shown in
Figure 9. The discrete domain of an eight-node brick element is used for finite element
analysis. The volume fraction is set to 40%.

As shown in Figure 10, the optimized results indicate that the shape of the optimal
structure plate is curved rather than flat, validating the necessity for the optimization of the
stiffened plate’s shape. Additionally, it can be observed that there are stiffening structures
on both sides of the plate. Therefore, it can be concluded that, through the method proposed
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in this paper, stiffened plates with stiffeners on both sides can be obtained. This once again
confirms the effectiveness of the method proposed in this paper.

 
Figure 9. The design domain of the cantilever beam example.

View angle 1 

 

View angle 2 

 

The plate 

 

Figure 10. Different view angles of the optimized structures.
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6. Conclusions

This paper proposed an improved H-DGTP method (Heaviside-function-based di-
rectional growth topology parameterization method) for stiffened plate structures. This
enhanced approach extends the method’s scope from planar and single-sided stiffened
plates to curved and double-sided ones. It specifically considers the positioning and shape
of curved panels, along with the arrangement and height of stiffeners, as design variables.
Emphasizing structural stiffness as the optimization objective, a topology optimization
model is established for double-sided curved stiffened plate structures, followed by a
comprehensive sensitivity analysis. Numerical examples demonstrate that optimizing
both the position and shape of the plate, along with the layout and height of the stiffeners
on both sides of the curved plate simultaneously, yields greater stiffness than optimizing
only a subset of these variables. This underscores the necessity and effectiveness of the
proposed method.

In this article, only the mechanical stiffness optimization problem is considered. In the
future, this method will be extended to more complex design problems, such as thermome-
chanical coupling and thermo-vibration coupling problems.

Details on the numerical implementation for replicating the results are provided in
Section 4, with the pseudo-code and the optimization parameters. The design problems,
mesh size, and boundary conditions are given in Section 5. If the information provided in
the paper is not enough, we sincerely welcome scientists or interested parties to contact us
for further explanation.
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Abstract: Defanging equipment layout in multi-floor satellites consists of two primary tasks: (i) allo-
cating the equipment to the satellite’s layers and (ii) placing the equipment in each layer individually.
In reviewing the previous literature in this field, firstly, the issue of assigning equipment to layers
is observed in a few articles, and regarding the layout, the non-overlapping constraint has always
been a challenge, particularly for components that do not have a circular cross-section. In addition to
presenting a heuristic method for allocating equipment to different layers of the satellite, this article
presents a robust flexible programming model (RFPM) for the placement of equipment at different
layers, taking into account the inherent flexibility of the equipment in terms of placement and the
subject of uncertainty. This model is based on the existing uncertainty between the distances between
pieces of cuboid equipment, which has not been addressed in any of the previous research, and by
comparing its outputs with cases from past studies, we demonstrate a significantly higher efficiency
related to placing the equipment and meeting the limit of non-overlapping constraints between the
equipment. Finally, it would be possible to reduce the design time in the conceptual and preparatory
stages, as well as the satellite’s overall size, while still satisfying other constraints such as stability
and thermal limitations, moments of inertia and center of gravity.

Keywords: satellite components/equipment 3D layout; uncertainty; proposed robust flexible
programming model (RFPM); optimization algorithm

MSC: 90C17

1. Introduction

In the system design phase of a satellite, layout design is the key step that determines
whether the aggregation of functional components from different subsystems can operate
normally and smoothly in the space environment throughout its design lifespan or not.

The main aim of satellite layout design is to place the objects or equipment (called com-
ponents) in the proper positions and orientations to meet various engineering requirements
or constraints [1].

As the problem of component layout in a satellite occurs in a limited 3D space, the
study of three-dimensional layout would help us to investigate and find the best choices for
satellite components’ layout. Another important criterion in satellite component layout is
the multi-floor concept, due to the space of the satellite containing different layers. Ahmadi,
A., et al. [2] undertook a comprehensive survey of multi-floor layouts, and provided a
complete overview of the models and solution methods applied for multi-floor facility
layout problems.
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One of the practical problems with satellite layout is related to the measurement of
the distance between pieces of equipment under uncertainty. This type of planning is
related to epistemic uncertainty, in which either the data are incomplete or the essence of
the problem has an imprecise definition. Here, the opinion of the decision-maker (DM) is
not considered, and the uncertainty is related to the data of the problem. On the other hand,
flexible programming is used when the constraints are soft and flexibility is considered for
the final value of the objective function. Here, the DM has the flexibility required to satisfy
the constraints or the value of the objective function, and even though the data are certain,
the DM can comment on the uncertainty of the information.

The uncertainty concept plays a significant role in determining the distances between
cuboid equipment to solve the overlapping issue in satellite layout by applying flexible
programming in determining the distances between pieces of equipment, which is the
major contribution of this article.

The rest of this article is structured as follows: A thorough analysis of earlier inves-
tigations is provided in Section 1.1. The multi-layer satellite equipment layout problem
and related mathematical model are presented in Section 1.2. The problem statement and
solution of the integration optimization problem are presented in Section 2, which includes
two steps of equipment allocation to bearing layers and then a thorough description of the
layout of each layer.

The findings of the sensitivity analysis applied to case studies are presented in
Section 3, along with a discussion. Finally, Section 4 presents the conclusions.

1.1. Literature Review

The works of [3,4] probably contain the first uses of numerical optimization methods
in the layout of spacecraft equipment during the conceptual phase. Rocco, E.M., et al. [5]
also presented a multi-objective optimization method for a set of satellites to minimize
time-limited fuel consumption. A detailed study of approaches and solution algorithms for
the arrangement of three-dimensional equipment was presented by [6]. They showed that
the use of CAD software for designing the arrangement of equipment, especially in the
arrangement of electrical board parts, is very common, while the three-dimensional arrange-
ment of this software is not very efficient and innovative, and meta-innovative methods
such as genetic algorithm and simulated annealing (SA) (such as in the research of [7], who
used the SA algorithm to investigate the location of three-dimensional equipment with
unknown geometric shapes) have been used more widely in this field.

Articles published in the field of satellite layout are summarized in Table 1. In this
table, the methods for allocating equipment to the carrier plates or locating the equipment
on each plate are specified, and the details of the problems mentioned by the articles
as case studies or numerical examples can be observed in this table. As demonstrated
in the table, there are only four articles discussing the allocation of equipment between
carrier plates, and the rest only considered the DM’s opinion or used arrangements from
previous articles.

In addition, regarding the dimensions of problem-solving, as illustrated in Table 1,
only 11 articles examined issues related to the design of four carrier plates. Three papers
by [8–10] adapted the data from [1] to a multi-cabin satellite with 120 components and
eight layers, as opposed to the single-cabin satellite of the original article. These three
articles, which established the concept of docking two satellites, are excluded from Table 1.
In the remaining cases, the layout of the equipment is either described for a smaller number
of plates or is limited to the satellite’s cabin, with the latter being more suitable for cube-
shaped satellites. In the following, most of the research that has been published in the field
of satellite equipment arrangement will be introduced.
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One of the essential constraints in satellite layout is the non-overlapping of components
in all bearing plates, named layers. One common method is based on integrating Computer-
Aided Design (CAD) tools, engineering analysis packages and optimization algorithms.
Coupling optimization algorithms with Computer-Aided Design (CAD) and engineering
analysis packages to find the optimal layout of spacecraft equipment was first proposed
by [39]. After that, this method was applied in the studies of [22,23,26,33,40,41].

The following are the most important articles in the field of satellite equipment arrange-
ment, and they present various methods in approaching the subject of non-overlapping.

For the first time, ref. [11] studied the arrangements of equipment on several satellite
layers, and then analyzed the three-dimensional layout problem on a rotating vessel.
Because of the spiral rotation movement of the vessel, they took into account dynamic
equilibrium constraints and used the heuristic algorithms constructed by [42] for non-
convex polygons to determine the amount of overlap among objects.

Sun, Z.G. et al. [12] introduced a centripetal balancing heuristic algorithm to allocate
objects between bearing plates. To distribute objects in a bearing plate, they applied a
Genetic Algorithm (GA) to produce random populations and finally to reach a feasible
(near-optimal) solution. Eventually, they developed an Ant Colony Optimization (ACO)
method to refine the positions of each object in a detailed design on bearing surfaces.

Huo, J. et al. [13] developed a human-guided GA, and compared its results with the
GA library to demonstrate the efficacy of their algorithm for the two-dimensional layout of
objects in a satellite. They added artificial individuals to the population of GA to cope with
overlapping components.

Liu, Z. et al. [15] presented a Human–Algorithm–Knowledge approach with the
support of GA to design the layout of equipment in a satellite, and used the CAD software
to derive previous knowledge for use in their GA.

Zhang, B. et al. [1] developed a two-stage model for the layout optimization of satellites.
The first stage concerned allocating objects to different bearing plates, and the second one
dealt with the detailed design of each bearing plate such that no overlapping occurred.
To develop an optimal layout in each bearing plate, they applied a combinatorial method
including GA and Particle Swarm Optimization (PSO) metaheuristics. They explained that
GA is inherently suited to finding global convergence, while PSO is the proper method for
local convergence, and the disadvantage of GA in local convergence was compensated for
using PSO to replace the random population in the initial phase of GA and the weakness of
PSO in terms of global converge was satisfied using the best solution of GA to replace the
first population of PSO. To tackle the overlapping issue, they applied the concept of the
compaction and separation algorithm introduced by [43], who applied locality heuristics
for star-shaped non-convex polygons.

Huo, J.Z. et al. [16] presented a co-evolutionary method in which a genetic algorithm
(GA) was used to determine the rotation angle of the final layout scheme of the equipment,
and a heuristic combination–rotation method was introduced to determine the entire layout
scheme with reference to the rotation strategy of a heuristic constraint rubik cube method
(CRCM).

Teng, H.F. et al. [20] proposed an evolutionary method called the dual-system variable-
grain algorithm to decompose the satellite layout system into several sections, and also
to avoid premature convergence problems. In their model, they took into account the
constraints of interference between objects, the centroid offset of the satellite system and
constraints of inertia angles. They applied analytic geometry to handle the discontinuous
constraints related to overlapping volumes. Li, Z. et al. [27] presented a three-step strategy
for distributing equipment throughout the layers of a satellite and then determining the
location of each component inside its assigned layer. In the initial phase, each piece of
equipment was assigned to one of the four bearing layers using a genetic algorithm (GA).
In the second step, they applied a heuristic positioning rule to address the challenge of
satisfying overlapping constraints between circles and rectangles in the precise 2D design
of equipment for each layer. In this step, an ACO algorithm and a heuristic adjustment
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approach are used to manage the detailed design of each layer. Lastly, they presented a PSO
algorithm to combine subproblems and attempt to minimize errors in the mass center and
moment of inertia, while preserving the other components of the objective function. Liu, J.
et al. [25] proposed a hybrid method based on local and heuristic search algorithms to find
the optimal arrangement of satellite equipment. They calculated the amount of equipment
overlap based on geometric shapes. In this way, if two devices were rectangular, or one was
rectangular and the other was circular, projection and no-fit polygon methods were used,
respectively. The second method is utilized for the non-overlapping of polyhedra, in which
all possible placements of a polyhedron in relation to others are illustrated, and the topic
of overlapping between two polyhedra is relegated to overlapping between a polyhedron
and a vector that is more computationally efficient. Cui, F.Z. et al. [30] represented a new
dual algorithm combining the detecting of PSO and a cooperative co-evolution method
for use in a multi-layer satellite. Similar to [20], here, analytic geometry was the method
they proposed to deal with the problem of overlapping among components. Ref. [32]
presented an integrated method for satellite equipment assignment and layout design.
They used GA and Tabu Search (TS) to reassign equipment before attempting to lay out
19 components in two layers using the Differential Evolution (DE) method. Ref. [36] stated
that the assignment of satellite equipment can be achieved based on the Multiple Bin
Packing Problem (MBPP) approach. They offered a method based on stepwise regression
to assign equipment, and after comparing the assignment schemes, the optimal one was
chosen as the input for the layout phase, which was solved using a pseudo-algorithm
employing DE and a random mutation operation. Refs. [37,44] evaluated the overlap
between equipment in the satellite’s central plane utilizing the method given in the paper
by Chernov et al. (2012) [45] and the phi-function method. For two components, if the
value of the phi-function is positive, the two components will not overlap; if the value of
the function is zero, they are tangential to each other, and if it is negative, they intersect.
Also, unlike most of the research done in this field, they here considered the interaction
between the pieces of equipment. They studied five examples of different satellites. The
first example involved six equilateral triangles in a circular enclosure, the second example
involved resolving an overlapping problem between two diagonally placed rectangles, the
third example concerned cylindrical satellites, the fourth example was for nano-satellites,
and the final example concerned overlapping between parts in cube-shaped satellites.
They solved the third and fifth instances using an adaptive PSO approach, and the fourth
example using the Finite Circle Method (FCM), all of which were developed by [34]. Finally,
the existing limitations associated with this method were also addressed, and it was shown
that, due to the use of geometric non-linear and non-convex restrictions, the proposed
model does not provide a sufficient solution for some conditions, and it is necessary that in
the future, efficient and effective algorithms be produced to solve this problem.

In the field of uncertainty, defined uncertainty as the difference between the amount
of information needed and the amount of information available to perform a task [46]. The
uncertainty related to decision-making arises under conditions of incomplete information.
Ref. [47] divided the discussion of uncertainty between issues of flexibility in limitations
and the different levels of acceptability of goals, and those related to uncertainty in input
data. In this way, the flexibility in the constraints takes into account the decision-maker’s
preferences. Ref. [48] divided decision-making conditions into two groups according to
the quality of available information: decision-making under conditions of certainty (when
information is fully available) and decision-making under conditions of uncertainty (when
information is incomplete). Ref. [49] indicated that developments in robust optimization
have taken place in three historical waves. The first wave, begun by [50], concerned robust
optimization related to a scenario-based stochastic planning approach. Refs. [51,52] then
developed this approach further. The second wave, known as robust convex programming,
was first introduced by [53–55]. Here, the cone programming method is used to solve
convex problems due to the existence of complexities, which is achieved according to
duality theorems and optimality conditions. The third wave, pioneered by [56], presented
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different approaches to robust planning. They demonstrated that robust fuzzy mathemati-
cal programming (RFMP) can be divided into two parts: possibilistic programming and
flexible programming.

As the analyses in the literature demonstrate, there are two fundamental aspects
to the satellite layout issue. First, there is the issue of component distribution across
different bearing layers, and second, there is the problem of cuboid component overlapping.
Accordingly, this paper addresses both problems.

In the next section, the mathematical modeling of satellite components’ layout is
described.

1.2. Mathematical Modeling

Conceptual design, preliminary design, and detailed design are the three basic stages
of satellite design. One of the fundamental subjects of the detailed design phase is layout
design, which encounters the issue of whether operational components from various
subsystems can function properly and effectively when integrated in a unique environment,
such as a space that is constantly exposed to cosmic rays.

The major goal of designing satellite equipment is to optimize a satellite’s stability,
control, and dimensions, which will result in a reduction in the size and weight of the
satellite, and so this kind of optimization can have a direct impact on the satellite’s launch
success, as well as its continuity and durability in space.

Numerous factors, such as size, stability, and optimum system performance, contribute
to the best satellite layout, and result in more variables and limitations. This intricacy
emphasizes the need for industrial engineering optimization solutions rather than the
typical trial-and-error methods used in mechanical engineering in this field. The challenge
of placing many pieces of equipment in a cylinder, cube, or polygonal volume on different
floors, and deploying multiple distinct plates within the satellite, is known as a problem
related to optimizing telecommunication and measurement satellite equipment.

The layout optimization problem of a communication satellite module can be described
as follows.

A total number of n components will be located in a cylindrical satellite module with
two floors. Four plates, including the upper and lower and two middle plates of the inner
space of the satellite, attached to a standing column in the module, are used to hold all
the components, and in this proposed methodology, all the components are given simple
cylindrical and cubic shapes and regarded as rigid bodies with uniform mass allocation.

There is an even distribution of mass across every piece of equipment, which are
shaped as cubes or cylinders.

An extensive analysis of the influencing factors, such as distance constraints, heat
constraints, radiation constraints, functional constraints, and stability, is crucial because the
goal of this paper is to optimize the interior space of the satellite and ultimately reduce its
dimensions and weight. The problem becomes more complex after a full analysis of these
constraints, necessitating the employment of specialized optimization software. Therefore,
the ultimate objective is to build an optimization model and ensure its output with the aid
of software, so that manufacturing units can optimally place equipment when building
satellites with smaller dimensions and weights.

The objective is to reduce the satellite’s size and weight while still maintaining stability,
taking into account the major inertia moments, cross-inertia moments, and center of gravity,
as well as distance, heat, and radiation limits. The problem of equipment placement is an
NP-hard problem because of the engineering and mechanical complexity of satellites. This
calls for a combination of numerous intricate and specialized approaches, in addition to the
design of a sophisticated system. For example, shown in Figure 1 is a typical cylindrical
configuration of a satellite, with two center plates (or four layers/floors) for holding boxes
and components across the satellite’s multiple floors. The shape of the equipment is
cylindrical or cubic, and all of it is located on one of the two sides of these center plates.
As each side of a plate is called a layer, this satellite includes four layers. Depending
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on the numbers, sizes and weights of the cylindrical and cubic boxes (representative of
interior equipment of satellite), several solutions may be developed for the placement of
the elements in the layers or floors of the satellite. Finding the optimum solution (i.e.,
the best layout or placement of elements, with the ability to satisfy the constraints of the
problem) using optimization methods rather than trial-and-error methods is an interesting
and important issue. Successful optimization methods can help the designers of satellites
in reducing the time taken in designing the layout of the components and subsystems.

Figure 1. Example of the 3D layout of cubic or cylindrical components (boxes) of a sample satellite
with two middle plates and four layers.

The assumptions of the model are as follows:

Three-dimensional layout—Difficulties in placing satellite equipment arise across
three dimensions, so the Z axis is considered the main part;
Multi-layer layout—The multiple layers of a satellite represent another crucial consid-
eration in the installation of satellite equipment. In relation to this, the model must
allocate equipment to all plates or layers;
Non-interference and overlap constraints—No interference occurs between any pieces
of the components;
Equilibrium constraint—The equilibrium error of the system should be as small as
possible;
Thermal constraints—The performance of electronic components may be directly
impacted by the thermal environment. As a result, the system’s equipment is generally
more efficient and reliable when heat flow is distributed uniformly.
From a thermal point of view, each piece of equipment has an effective area that
can affect the performance of other equipment. Therefore, reducing the interaction
space is essential to improving the uniformity of the thermal field in the satellite. In
determining the thermal effects of equipment, it is assumed that some components
produce a thermal radius that forms a uniform circle around the equipment. For this
reason, no intersection between virtual thermal radii between equipment is allowed;
Obnoxious equipment limitations—Another constraint must be taken into account
for some equipment types with a high amount of heat radiation, or “hot parts”, such
as batteries, radio transmitters, and photo transmitters, which must be positioned at
as great a distance from one another as possible in the satellite space. In other words,
there needs to be limitations placed on the presence of this hot equipment on each
floor of the satellite;
Static stability constraint—The center of gravity offset of the system should be as small
as possible.

The stability limit of the satellite should be such that the device can move and rotate
easily in space. Therefore, the sum of the inertia moments of the system should be minimal.
Physically, minimizing the sum of moments of inertia means that the satellite inherently
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tends towards stability, and this minimization can reduce the effort required from subsys-
tems in stabilizing the satellite, as a result of which moments of inertia, including the axes
of the main axis and impact or cross moments, must be at a minimum.

System uncertainty—There is no fixed value for the distance at which equipment
should be spaced apart, so it is important to use uncertainty to determine this distance. As
mentioned in the previous section, uncertainties are included in the model for a variety of
reasons—one of them is uncertainty on the part of the decision-maker (DM). In the design
of satellite equipment layout, it is not easy to apply non-overlap constraints to cube-shaped
equipment with a rectangular cross-section as has been done for cylindrical equipment
with a circular cross-section, because, when there are two items of circular equipment, the
overlap between them can be easily prevented by calculating the radius and entering the
distance between the two radii. On the other hand, for two pieces of equipment with a
rectangular cross-section, or when there is one piece of circular equipment and another
rectangular one, the non-overlap restriction cannot be easily observed. For this reason, the
uncertainty argument is easily applicable, and is very effective in developing a solution.

Due to the nature of the problem, the fuzzy concept is also used here, meaning that
the constraints related to equipment distances are written in fuzzy form. By adding fuzzy
constraints, a decision variable (α) is defined in the model and added to the objective
function with a penalty coefficient (γ).

1.2.1. Model Development

In this section, we outline the parameters, decision variables, objective functions and
constraints of the basic model, derived from previous studies such as [1,12,15] and to be
utilized for introducing and defining the 3D layout problem, and the optimization method
is also illustrated.

Model Parameters

The model parameters are introduced as follows:

i—indicator of the equipment;
j—index of the number of layers (j = 1, 2, 3, 4)
lj—layer j of the satellite;
ai—the cross-sectional length of the cuboid equipment i;
bi—the cross-sectional width of the cuboid equipment i;
ri—radius of the cross-sectional area of the cylindrical equipment i;
hi—the height of the equipment i;
mi—the mass of equipment i;
θi—the angle between the positive direction of the x-axis and the horizontal edge of
the cuboid equipment i;
c—number of pieces of cuboid equipment;
n—total number of equipment;
nj—the number of equipment pieces located at layer j;
sMi—a segment of the radius of the hypothetical circumferential circle of a cross-
section of cuboid equipment i;
sOi—optimistic value of a triangular fuzzy number for sMi;
sPi—pessimistic value of a triangular fuzzy number for sMi;
∼

sTi—a triangular fuzzy number for sMi;
γ—the cost of the fine for each unit of violation of the soft limit;
xe—expected coordinates in the direction of the x-axis of the satellite’s center of gravity;
ye—expected coordinates in the y-axis direction of the satellite’s center of gravity;
ze—expected coordinates in the direction of the z-axis of the satellite’s center of gravity;
Jxi—moment of inertia of equipment in the direction of the x-axis;
Jyi—moment of inertia of equipment in the direction of the y-axis;
Jzi—moment of inertia of equipment in the direction of the z-axis;
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δxe—permissible error of deviation in the coordinates of the real center of gravity of
the satellite from the expected value in the direction of the x-axis;
δye—permissible error of deviation in the coordinates of the real center of gravity of
the satellite from the expected value in the direction of the y-axis;
δze—permissible error of deviation in the coordinates of the real center of gravity of
the satellite from the expected value in the direction of the z-axis;
δθx—permissible error of deviation in the angle between the mass moment of inertia of
the satellite in the direction of the x-axis from the axis of the coordinate of the satellite
in the direction of the ox axis;
δθy—permissible error of deviation in the angle between the mass moment of inertia
of the satellite in the direction of the y-axis and the axis of the satellite coordinates in
the direction of the oy axis;
δθz—permissible error of deviation in the angle between the mass moment of inertia
of the satellite in the direction of the z-axis from the coordinate axis of the satellite in
the direction of the z-axis.

Decision Variables of the Model

The model’s decision variables are as follows:

xi—the coordinates of equipment i in the direction of the x-axis;
yi—the coordinates of equipment i in the direction of the y-axis;
zi—the coordinates of equipment i in the direction of the z-axis;
xm—coordinates of the center of gravity of the satellite in the direction of the x-axis;
ym—the coordinates of the center of gravity of the satellite in the direction of the y-axis;
zm—coordinates of the center of gravity of the satellite in the direction of the z-axis;
θx—the angle between the mass moment of inertia of the satellite in the direction of
the x-axis and the axis of the satellite coordinates in the direction of the x-axis;
θy—the angle between the mass moment of inertia of the satellite in the direction of
the y-axis and the coordinate axis of the satellite in the direction of the y-axis;
θz—angle between the mass moment of inertia of the satellite in the direction of the
z-axis and the axis of coordinates of the satellite in the direction of the oz axis;
Ixx—the mass moment of inertia of the satellite in the direction of the x-axis;
Iyy—the mass moment of inertia of the satellite in the direction of the y-axis;
Izz—the mass moment of inertia of the satellite in the direction of the z-axis;
Ixy—product moment of inertia used to calculate satellite imbalance in the direction
of the x and y plane;
Ixz—product moment of inertia used to calculate satellite imbalance in the x and z
plane directions;
Iyz—product moment of inertia used to calculate satellite imbalance in the y and z
plane directions;
f ri—the final radius of equipment i after performing the uncertainty calculations;
αi—the minimum level of satisfaction in flexible constraints;
Sj—the space available on each layer;
S′

j—the space occupied on each layer.

There are three types of coordinate systems:

1. Oxyz reference coordinate system

O—the center of this coordinate system is located on the geometric center of the
lower plate of the satellite;
z—the longitudinal symmetric axis of the satellite, which is positive in the up-
ward direction;
x—the axis perpendicular to the z-axis on the bottom plate of the satellite;
y—the axis perpendicular to the z-axis on the bottom plate of the satellite and at
a 90-degree angle to the x-axis.
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This coordinate system is used to find the center of the satellite and determine the
layout of the equipment.

2. Satellite coordinate system O′x′y′z′

O′—the center of this coordinate system is located on the real center of gravity of
the satellite.
z′—the longitudinal symmetric axis of the satellite that coincides with or is
parallel to the z-axis.
x′, y′—these two axes are parallel to the x- and y-axes, respectively.

This coordinate system is used to calculate the mass and product moment of inertia of
the satellite.

3. The local coordinate system of the equipment O′′ x′′ y′′ z′′

O′′ —the center of this coordinate system is located on the center of gravity of the
equipment;
z′′ —the longitudinal symmetric axis of the equipment, which is parallel to the
z-axis.
x′′ , y′′ —these two axes form an angle αi parallel to the x- and y-axes, respectively.

This coordinate system is used to calculate the moment of inertia of the equipment
according to its axis.

Optimization Model

A minimal sum of the moments of inertia physically suggests that the satellite is
inherently stable. This means that minimizing the sum of the moments of inertia can reduce
the efforts required from the attitude control subsystem in the stabilization of the satellite.

The moments of inertia of both cubic and cylindrical components are calculated in the
xyz direction. The total moments of inertia of all the components that need to be minimized
can be expressed as follows:

Min f(X) = Ixx+Iyy+Izz (1)

The constraints are as below.
Non-overlap constraint:

g1(X) = −
(
xi − xj

)2 −
(
yi − yj

)2
+ (ri + rj)

2 ≤ 0 for i, j ∈ Lk k = 1, 2, 3, 4 (2)

Static stability constraint:

g2(X) = |xm − xe| − δxe ≤ 0 (3)

g3(X) = |ym − ye| − δye ≤ 0 (4)

g4(X) = |zm − ze| − δze ≤ 0 (5)

where xe, ye and ze are the expected centroid position of the satellite and δxe, δye and δze are
the allowance errors of xm, ym and zm (real centroid position of the satellite), respectively.

Equilibrium constraints:

g5(X) = |θx − θe| − δθx ≤ 0 (6)

g6(X) =
∣∣θy − θe

∣∣− δθy ≤ 0 (7)

g7(X) = |θz − θe| − δθz ≤ 0 (8)

where θx, θy and θz are angles between the principal axes of inertia of the satellite and the
principle axes oz, oy and oz, and δθx, δθy and δθz are their allowance errors.
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The objective function (1) shows the minimization of mass moments of inertia in
the main direction of the coordinate axis. Constraint (2) represents the constraint of non-
overlapping between pieces of equipment by requiring that the distance between the
centers of two pieces of equipment be equal to or larger than the sum of their two radii. For
cuboid equipment, the radius of the circumferential circle of the rectangular cross-section is
considered as the radius.

Constraints (3) to (5) show static stability, where xe, ye and ze coordinates are the
expected center of gravity of the satellite and δxe, δye and δze are permissible error in the
coordinates of the actual center of gravity of the satellite (xm, ym, zm). The deviation of
the center of gravity of the satellite after the placement of all equipment should not be
greater than that in the expected center of gravity of the satellite. Constraints (6) to (8) are
equilibrium constraints, in which θx , θy and θz are the angles between the directions of the
mass moments of inertia of the satellite with the major axes Ox, Oy and Oz, and δθx, δθy
and δθz are their allowable errors. The following shows how to calculate θx, θy and θz.

The center of mass of the ith component in the local xyz coordinate system can be
stated as shown below:

xm =
n

∑
i=1

mixi ÷
n

∑
i=0

mi (9)

ym =
n

∑
i=1

miyi ÷
n

∑
i=0

mi (10)

zm =
n

∑
i=1

mizi ÷
n

∑
i=0

mi (11)

where (xi.yi.zi) and mi are the coordinates of the center and the mass of the piece of
equipment i, respectively. In the denominator of these equations, the sum starts from zero
because, in addition to the number of pieces of equipment (n), the mass of the shell, the
middle cylinder and the floors must also be taken into account in calculating the true center
of gravity of the satellite.

The computational formulas of moments of inertia in the main directions of the satellite
coordinate axis are as follows:

Ixx =
n
∑

i=1
(Jxi cos2θi +Jyi sin2θi) +

n
∑

i=1
mi(y2

i + z2
i )−

n
∑

i=0
mi
(
y2

m + z2
m
)

=
c
∑

i=1
( 1

12 (mi(b2
i + h2

i )cos2θi +
1
12 mi(a2

i + h2
i )sin2θi)

+
n
∑

i=c+1

1
12 mi

(
3r2

i + h2
i
)
+

n
∑

i=1
(mi(y2

i + z2
i )−

n
∑

i=0
(mi(y2

m + z2
m)

(12)

where Jxi and Jyi are moments of inertia of the ith component concerning the local coordinate
system (to the x- and y-axes, respectively). ai and bi are the length and width of a cubic
component, respectively, and hi and ri are the height and radius of the ith component (for
both cubic and cylindrical components). Similarly, the derivations of moments of inertia in
the y direction of both cylindrical and cubic components are shown below:

Iyy =
c
∑

i=1
( 1

12 mi
(
a2

i + h2
i
)
cos2θi +

1
12 mi(b2

i + h2
i ) sin2θi) +

n
∑

i=c+1

1
12 mi(3r2

i + h2
i )

+
n
∑

i=1
(mi(x2

i + z2
i )−

n
∑

i=0
(mi(x2

m + z2
m)

(13)

Similarly, the derivations of moments of inertia in the z direction of both cylindrical
and cubic components are illustrated below:

Izz = Jzi +
n

∑
i=1

mi(x2
i + y2

i )−
n

∑
i=0

mi(x2
m + y2

m) (14)
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αi—this parameter is the placement angle of the cubic object; it equals the included
angle between axis x in the positive direction and the long edge of the cubic component.
Here, it is assumed that the cubic equipment only rotates 90 degrees, so the only possible
values for this parameter are zero or 90.

The formulae of θx, θy and θz are as below:

θx(x) = arctan

2Ixy
Ixx−Ixy

2
(15)

θy(x)= arctan
2Ixz

Ixz−Ixx

2
(16)

θz(x)= arctan

2Iyz
Ixz−Ixy

2
(17)

where Ixy, Ixz and Iyz are the products of moments of inertia in the x − y, x − z and y
− z planes, respectively, for both cylindrical and cubic components, and are calculated
as below:

Ixy =
n
∑

i=1
(mi(xi − xm)( yi − ym) + (Jxi + (y2

i + z2
i )− Jyi − (x2

i + z2
i ))÷ 2)× sin2θi

=
n
∑

i=1

[
mixiyi +

Jxi+mi(y2
i +z2

i )
2 sin2θi

]
−

n
∑

i=1

[
Jyi+mi(x2

i +z2
i )

2 sin2θi

]
−

n
∑

i=1
mixmym

(18)

Ixz =
n

∑
i=1

(mi(xi − xm)( Zi − Zm)) =
n

∑
i=1

mixizi −
n

∑
i=1

mixmzm (19)

Iyz =
n

∑
i=1

(mi(yi − ym)( Zi − Zm)) =
n

∑
i=1

miyizi −
n

∑
i=1

miymzm (20)

The moments of inertia of the ith cylindrical component are defined by Jxi, Jyi and Jzi
in relation to the local coordinate system, as follows:

Jxi = Jyi =
1
12

mi

(
3r2

i + h2
i

)
(21)

Jzi =
1
2

mir2
i (22)

Also, moments of inertia for the ith cubic component indicated by Jxi, Jyi and Jzi are
shown below:

Jxi =
1

12
mi

(
b2

i + h2
i

)
(23)

Jyi =
1
12

mi

(
a2

i + h2
i

)
(24)

Jzi =
1

12
mi

(
a2

i + b2
i

)
(25)

2. Problem Statement and Implementation

The main issue to be investigated in this study is how to deal with the component
assignment problem, along with the growing number of bearing layers and components
and the complexity of technical requirements related to the satellite layout problem. In this
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section, we offer a heuristic solution for the assignment problem, and then the RFMP is
used to evolve the distance between cuboid components.

In approaching the mentioned problem, consider Figure 2, which shows the front view
of a satellite in which components and boxes (cylindrical or cubic parts) are located on two
floors or four layers (levels), such that the equipment is located on the upper and lower
levels of each floor. The center of gravity of the satellite shown in Figure 2 (xm, ym, zm) is
somewhere between levels L2 and L3 (i.e., between the two middle plates of the satellite).
The distance between the layers and the bottom plate of the satellite is defined by H1, H2
and Ht as shown in Figure 2. The parameters introduced in Figure 2 will be explicated in
the next part.

Figure 2. Front view of satellite with two middle plates and the locations of components in four layers.

2.1. Allocation and Layout

The placement of equipment in the satellite space involves two main steps: first, the
allocation of equipment to floors and layers, and then their placement in each layer. As
such, the problem is one of allocation and layout. Since the objective function involves
minimizing mass moments of inertia, the equipment should be arranged such that the
moments of inertia possess the lowest possible values in all directions of the coordinate
axes (x, y, z). Since the problem involves two floors and four layers, the placement of
equipment can affect the moments of inertia in two ways.

The location of equipment at different levels affects the moment of inertia in the
directions of the x- and y-axes, and the layout of the equipment at each layer can affect the
moment of inertia in the direction of the z-axis (Izz). In other words, to change the moment
of inertia in the directions of the x- and y-axes, the distances of the pieces of equipment
from the omxm and omym axes, respectively, play a decisive role. Therefore, if a component
is moved between layers, its distance from the mentioned axes changes, and this affects the
moment of inertia in the x and y directions. Conversely, if the distance of the equipment
from the omzm axis remains constant, there will be no change in the moment of inertia in
the direction of the z-axis. According to this, the proper allocation of equipment to different
layers can play an important role in reducing the moment of inertia in the directions of the
x- and y-axes (Ixx and Iyy).

2.1.1. Allocation of Components between Layers

At this stage, all components are assigned to one of four layers in the satellite such
that the most optimal state is created for the intended function. As previously explained,
the assignment of equipment to surfaces can affect the moments of inertia along the x-
and y-axes (Ixx and Iyy). Since Equations (12) and (13) are similar, calculations are here
only undertaken for one of them, and the result is generalized to the other. As is evident
from Equation (26), to obtain the lowest possible value for this expression, the first three
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expressions must show the lowest value, and the last expression must have the maximum
possible value.

c
∑

i=1
( 1

12 mi
(
b2

i + h2
i
)
cos2θi +

1
12 mi(a2

i + h2
i )sin2θi) +

n
∑

i=c+1

1
12 mi(3r2

i + h2
i )

+
n
∑

i=1
(mi(y2

i + z2
i )−

n
∑

i=0
(mi(y2

m + z2
m)

(26)

Before considering the minimization of the above expression, we must first discuss the
value of zi. This value indicates the final localization of the equipment in terms of height (z
dimension) after placement. This is calculated as follows:

zi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H2 + Dt +

hi
2 i f lj = 1

H2 − hi
2 i f lj = 2

H1 + Dt +
hi
2 i f lj = 3

H1 − hi
2 i f lj = 4

(27)

Since the length, width and height (a, b, h) of cuboid equipment, and the radius and
height (r, h) of cylindrical equipment, are fixed, the first three expressions of Equation (26)
cannot be altered. Therefore, to change the equation, we must perform the following:

n

∑
i=1

(mi(y2
i + z2

i )−
n

∑
i=1

(mi(y2
m + z2

m) (28)

First, we consider the first part of the above equation. Given that the allocation of
equipment to distinct layers impacts their z-axis coordinates, it suffices to minimize the
first half of Formula (28) to minimize the following value:

n

∑
i=1

(miz2
i ) (29)

We now turn to the second part of Equation (28). According to Equations (10) and (11),
which concern the coordinates of the center of mass in the directions of the axes y and z,
the second expression of Equation (28) is written as follows:

n

∑
i=1

(mi(
n

∑
i=1

miyi ÷
n

∑
i=1

mi)
2 + mi(

n

∑
i=1

mizi ÷
n

∑
i=1

mi)
2) (30)

As can be observed, the denominator of both fractions in Formula (30) is the sum of the
mass of all the equipment, which is a constant and can be omitted from the maximization
computation. On the other hand, since in this part, the layout of equipment in each layer is
not considered, and only their locations are important to the surfaces, we can omit the first
part of (30), which refers to the coordinates in the direction of the y-axis. It is thus sufficient
to maximize the following value to maximize the whole expression:

n

∑
i=1

(mi)(
n

∑
i=1

mizi)
2 (31)

Since the total mass of all equipment is a fixed value, the only part that will need to be
maximized is as follows:

(
n

∑
i=1

mizi)
2 (32)
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Here, there are two expressions (29) and (31). One should take the maximum possible
value, and the other should be minimized:

Min
n

∑
i=1

(miz2
i ) and Max(

n

∑
i=1

mizi)
2 (33)

As is known, maximizing the expression (∑n
i=1 mizi)

2 is equivalent to maximizing
∑n

i=1 mizi, but in the first expression, the minimization of ∑n
i=1 miz2

i is considered. Therefore,
as the second power in the expression of minimization indicates, this part is of higher
priority than the part regarding maximization, and in principle, the heavier the mass of
the equipment at lower layers, the lower the product of mass in their height will be, and
so the total moment of inertia in the direction of the x-axis (Ixx) will assume the lowest
possible value.

On the other hand, according to Equation (11) and considering that the moment of
inertia is calculated according to the coordinates of the center of gravity, it can be concluded
that the closer the equipment is to the center of gravity of the satellite, the lower the moment
of inertia in the direction of the x-axis ((Ixx) and y (Iyy)) will be. Therefore, it makes sense
to place more equipment in the middle layers (layers L2 and L3) so as to minimize the
moment of inertia. According to the above explanations, we conclude that, in order to
optimize the allocation of equipment at different levels of the satellite, it is best to place
heavier equipment at lower layers (L3 and L4 layers) and to group more items in the middle
layers (layers L2 and L3). Now, to satisfy the abovementioned cases, the following heuristic
method is presented.

Heuristic Method to Allocate Equipment to Different Layers

Step 1: Arrange all the equipment at the same time based on height (h) and mass (m).
Since all equipment is symmetrical and the mass distribution is assumed to be the same,
the center of mass of each item of equipment is located in the middle, and its height is
equal to half the height of the equipment ( h

2 ). Therefore, pieces of equipment that have
a lower height are prioritized for placement in the initial and final layer (layers L1 and
L4). Conversely, if the height of the equipment is great, placing it in one of the middle
layers (layers L2 and L3) will reduce the distance between it and the center of gravity of
the satellite, thus decreasing the moment of inertia along the x-axis (Ixx) and y-axis (Iyy).
Step 2: The space available on each layer is displayed by Sj, and variable S′

j is refers to the
amount of layer j occupied by the equipment. If more than 70% of the area on each layer
(0.7 × Sj) is occupied by equipment, localization here will be practically impossible, as it
will not be possible to place the equipment without overlapping. Moreover, since the area
occupied by the equipment at levels L2 and L3 must be at least two times the area occupied
by the equipment on layers L1 and L4, the following ratio forms between the surface areas:

2 × (S′
1 + S′

4) ≤ S′
2 + S′

3 ≤ 1.4 × (
1

S′ − 1.4
)× (S′

1 + S′
4) (34)

where
S′= ∑4

j=1 S′
j (35)

Step 3: After the equipment is arranged according to height and mass, to minimize
the moments of inertia, pieces of equipment with lower heights should be placed on layers
L1 and L4, and to satisfy Equation (22), the equipment with the lowest height and mass
values will be selected and placed on a list called A. This separation is necessary so that
this equipment can be assigned to the two layers L1 and L4, and the rest of the equipment
will be automatically assigned to layers L2 and L3. An approximate value means that one
can start from Equation (36) to satisfy Equation (34) and return to this step to add the next
piece of equipment to List A if the final assignment of Equation (34) is not met.

(S′
1 + S′

4) ≥ S′ − 1.4 (36)
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where S′ is the total area available for the equipment in the four layers. There are only a
few cases in which Equations (34) and (36) are met. For example, if there are a total of 60
pieces of equipment, and it is determined by the initial division that only in cases where
n1 + n4 = 19, 20, 21 or 22 does the ratio of Equation (22) remain eligible, then the following
steps will be performed for the feasible cases.

Step 4: The selected equipment (List A) that makes up n1 + n4 is sorted by mass from
low to high.

Step 5: To allocate equipment to layer L1, start from the lowest height and the lowest
amount of mass and work up until the following ratio of the total area of the selected
equipment becomes feasible,

0.4 (S′
1 + S′

4) ≤ S′
1 ≤ 0.6 (S′

1 + S′
4) (37)

This division is intended to maintain the balance of equipment between the first and
fourth layers. Therefore, with the first choice that satisfies this ratio, the allocation of
equipment to the first level is completed, and the values of n1 and S′

1 are determined.
Step 6: The rest of the equipment is assigned to layer L4, and the values of n4 and S′

4
are determined.

Step 7: The rest of the equipment (remaining about 2
3 ), which makes up n2 + n3, should

be assigned to the two layers L2 and L3. Accordingly, the equipment is ordered by height
and then mass, from the greatest to the lowest value;

Step 8: Since, according to the previous description, the equipment must occupy less
than 70% of the area of each layer, the remaining equipment will be assigned to the two
layers L2 and L3 in such a way that the components are again arranged from the lowest to
the highest value, and assigned to layer L2 until the following ratios are met, after which
the remaining equipment is assigned to layer L3.

S′
2 ≤ 0.7S2 (38)

S′
3 ≤ 0.7S3 (39)

0.9S′
3 ≤ S′

2 ≤ 1.1S′
3 (40)

According to the previously mentioned constraints, such as Equation (33), and the
need for a balanced distribution of equipment between layers, following the completion
of Equations (38) and (39), Equation (40) must also be performed with relation to these
two layers. Thus, all equipment is assigned to all layers, with heavier equipment placed on
layers L3 and L4, and equipment with the lowest height on layers L1 and L4.

Step 9: Upon completion of equipment allocation, the information obtained should be
placed in the GAMS software (v.24.1.3), following which the problem can be considered
initially solved, and the optimal local solution will be generated and stored. The assigning of
an initial solution means that uncertainty is not considered at this point, and the designing
of a detailed layout with equipment on each floor is done in the next section. By employing
the presented heuristic method, all the cases that may produce a near-optimal solution are
considered, and the best arrangements are used as inputs in the next stage.

2.1.2. Layout of Equipment in Each Layer

Since the satellite’s components are cuboid or cylindrical, they can be viewed in
two dimensions as a rectangle or a circle. To satisfy the non-overlap constraint between
equipment, the location of each piece of equipment must be compared with the locations
of others, and no overlap between any components will be allowed. Here, two types of
survey are required: one for circular cross-sectioned equipment and one for rectangular
cross-sectioned equipment.
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Satisfying the non-overlap constraint for equipment with a circular cross-section is
easily achievable. To do this, it is sufficient to rewrite constraint number 2, as follows.

(ri + rj)
2 ≤

(
xi − xj

)2
+
(
yi − yj

)2 (41)

As indicated by the inequality in (41), the Euclidean distance between the centers of
both circles must be greater than or equal to the sum of the radii of the two circles.

For equipment with a rectangular cross-section, satisfying the non-overlap constraint
is not as simple as it is with circular equipment. In this article, we use flexible and robust
programming to solve this problem. It is assumed that each rectangle can be represented
by a circle whose center is positioned in the same location as the center of the rectangle,
and after this, no overlap between these circles is allowed.

Now, if the abovementioned circle is considered as a circumscribed rectangular circle,
satisfying the non-overlap constraint will increase the distance between the pieces of
equipment more than is necessary, and as a result, the objective function will degrade. If the
circle is designed to be so small that it becomes inscribed on the rectangle, then even though
the objective function is greatly reduced and the components are positioned at shorter
distances from each other, we will see the overlap of parts of the rectangular components,
and the non-overlap constraint will be violated.

Therefore, it is essential to find virtual circles that, while satisfying the non-overlap
constraint, can present optimal and minimal values of the objective function. To achieve
the best hypothetical circle, a novel approach is applied. As shown in Figure 3, the value of
sM is considered as a parameter to determine the optimal radius of the hypothetical circle.
Other parameters (i.e., r, x and y) have also been defined previously.

Figure 3. Defining the circle circumscribed for equipment with a rectangular cross-section in terms of
sM, dimensions of the rectangle (x, y) and the radius of the circle (r).

If the hypothetical circle displayed the largest radius and we converted the circum-
scribed circle to a rectangle, the value of sM could be calculated as follows

sMi = r(i)− min(x(i).y(i))
2

(42)

where x and y are the length and width of the rectangle, respectively, and r is the radius of
its hypothetical circumscribed circle.

Conversely, if the radius of the hypothetical circle is the smallest, and is set out as a
circle inscribed in the rectangle, the value of sM will tend to be zero. To ensure a flexible
constraint and a robust concept, fuzzy numbers are an appropriate option, because the
nature of fuzzy numbers closely affects flexible robust programming [49].
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2.2. Robust Flexible Programming Model (RFPM)

To cope with the difficulties associated with overlapping issues for rectangle shapes, a
robust flexible programming model is proposed.

Based on the RFPM introduced by [49], fuzzy numbers are represented as triangular
numbers in this paper.

To solve the problem using flexible programming, the model is first written as follows:

Min f (x) = Ixx + Iyy + Izz (43)

s.t.
f ri

∼
≥ ri i ∈ cubic equipments (44)

f ri ≥ ri i ∈ cylinder equipments (45)

( f ri + f ri+1)
2 ≤ (xi − xi+1)

2 + (yi − yi+1)
2 i ∈ cubic equipments (46)

The sign of
∼
≥ represents the fuzzy version of ≥, and illustrates that the value of the

right hand side of the constraint is smaller than or similar to that of the left hand side. The

fuzzy number
∼
sT can be used to depict the flexible condition of the fuzzy constraint.

Therefore, the model can be rewritten as follows:

Min f (x) = Ixx + Iyy + Izz (47)

s.t.
f ri ≥ ri −

∼
sT × (1 − αi) i ∈ cubic equipments (48)

f ri ≥ ri i ∈ cylinder equipments (49)

( f ri + f ri+1)
2 ≤ (xi − xi+1)

2 + (yi − yi+1)
2 i ∈ cubic equipments (50)

The α parameter indicates a minimum level of satisfaction with the flexible constraint.

Suppose that the fuzzy number
∼
sT is a triangular fuzzy number represented by three

numbers (
∼
sT = (sP.sM.sO)), which can be elucidated by the method demonstrated in

Yager (1981) as follows:

∼
sT =

(
sM +

(sO − sM)− (sM − sP)
3

)
(51)

Based on constraint 2, the flexible programming model can be rewritten in the non-
fuzzy mode as follows:

Min f (x) = Ixx + Iyy + Izz (52)

s.t.

f ri ≥ ri − sMi +

(
(sO − sM)− (sM − sP)

3

)
× (1 − αi) i ∈ cubic equipments (53)

f ri ≥ ri i ∈ cylinder equipments (54)

( f ri + f ri+1)
2 ≤ (xi − xi+1)

2 + (yi − yi+1)
2 i ∈ cubic equipments (55)

The expression
(
(sO−sM)−(sM−sP)

3

)
× (1 − αi) indicates the permissible amount of

violation of the flexible constraint. It should be noted that the use of this flexible fuzzy
programming method allows other fuzzy numbers to be used in the fuzzy constraint, and
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other fuzzy ranking methods can also be used to de-fuzzy the uncertain parameters present
in the soft constraints.

Also, using α-cuts to determine the degree of violation in soft constraints can lead us
to different fuzzy solutions that help decision-makers in comparing different outputs and
achieving better solutions in sensitivity analysis.

In the fuzzy flexible planning model, the decision of whether to allocate the lowest
level of satisfaction to the flexible constraints (0 ≤ α ≤ 1) must be made by the decision-
maker. In other words, this method should be reactive, and the decision-maker will achieve
different results by manually changing the minimum level of satisfaction and extracting
the best solutions for the fuzzy parameters.

The desirability of choices made at each stage is determined by the output of the
model. The drawback of this method is that there is no guarantee of achieving the optimal
level of satisfaction. For this purpose, the RFPM is represented as follows.

Min f (x) = Ixx + Iyy + Izz+γ ×
[

sMi +

(
(sO − sM)− (sM − sP)

3

)]
× (1 − α) (56)

s.t.

f ri ≥ ri −
(

sMi +

(
(sO − sM)− (sM − sP)

3

))
× (1 − αi) i ∈ cubic equipments (57)

f ri ≥ ri i ∈ cylinder equipments (58)

( f ri + f ri+1)
2 ≤ (xi − xi+1)

2 + (yi − yi+1)
2 i ∈ cubic equipments (59)

0 ≤ α ≤ 1. Ixx, Iyy, Izz, f r ≥ 0 (60)

In this model, in addition to minimizing moments of inertia, a new section has been
added to the objective function, which depicts the total cost of the penalty for possible
non-compliance with the flexible constraints. In essence, this phase controls the feasibility
and robustness of flexible constraints.

In other words, this expression shows the difference between the minimum and
maximum possible values for the flexible constraint, as follows:(

sMi +
(
(sO−sM)−(sM−sP)

3

))
× (1 − αi)

= ri −
[
ri −

(
sMi +

(
(sO−sM)−(sM−sP)

3

))
× (1 − αi)

]
i ∈ cubic equipments

(61)

In this model, the penalty cost for each unit of violation of the soft constraint is also
considered, as is represented by the parameter γ. In the RFPM, unlike the initial flexible
programming model, the minimum level of satisfaction (α) is no longer a parameter and is
determined by the model as a variable.

Therefore, when solving the model at once, the optimal value of this variable can be
achieved, and there is no need to repeat the experiments. Because the objective function
of the model seeks a balance between the robustness cost (the last expression of the ob-
jective function) and the overall performance of the system, including other expressions
of the objective function (such as moments of inertia), the proposed model is called a
realistic RFPM.

It should be noted that the parameter γ is an important value, and its value is deter-
mined based on the application and the subject under discussion. Here, for example, for
cuboid components that need to be placed at a greater distance from other equipment, the
value of the penalty parameter can be set as much greater; in this case, the variable α will
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tend to increase to near 1, and therefore the soft constraint for this piece of equipment will
become similar to those of cylindrical components.

It should be noted that the use of the penalty parameter in the objective function
helps to optimize the variable of minimum satisfaction level (α), and prevents the direct
involvement of decision-makers in quantifying this variable.

3. Results and Discussion

In this section, the efficiency of the proposed model is investigated by comparing its
performance with those of previous models in a review of the literature.

Since some of the constraints of the model are flexible, new parameters are introduced
that are valued for their possible ability to exceed the aforementioned constraints. For this
purpose, the maximum permissible flexibility for soft constraints (sT) is considered.

To analyze the sensitivity of a model based on flexible robust planning, we must first
compare it with a simple flexible model with certain levels of satisfaction (for example,
α = 0.0 , 0.1 , 0.2, 0.3). The numerical examples used in [1,12,15] were used for this purpose.
These three numerical examples have served as the foundation for numerous papers;
therefore, the results shown in the eleven articles that used these numerical examples are
compared to the results of the suggested model. The multi-layer satellites investigated in
the following case studies have a similar structure and layout to those of the geostationary
communications satellites of the INTELSAT III series that were designed, assembled,
and finally launched successfully several times between 1968 and 1970. The use of new
optimization methods and algorithms can reduce the time required for satellite layout
design and the related steps, and can help in improving the mass properties as well as the
stability and controllability parameters of real satellite projects.

- Case Study 1: Investigating the work of [12]

In this example, there are 53 pieces of equipment, of which 24 are cuboids and 29 are
cylindrical. In this example, the satellite equipment is arranged across two levels and four
layers. As shown in Figure 2, the parameters of the satellite body are as follows: the radius
of the circular cross-section of the satellite surface is 500 mm; the radius of the middle
cylinder in the satellite connecting the surfaces is 100 mm; the H1, H2 and Ht parameters
are 300 mm, 830 mm and 1150 mm, respectively, and the diameters of the first and second
levels are 20 mm each. The empty satellite consists of four plates (two middle levels and
two floor and top levels of the satellite), and the satellite shell and its middle cylinder
weigh 776.53 kg. To perform more accurate calculations, it was assumed that the density of
materials used in the body of this satellite was 3.006 g/cm3 (a combination of aluminum
and titanium alloys), and the thickness of the satellite’s shell was 41.25 mm. Also, the two
middle plates on which components are placed were considered to be hollow cylinders
with inner and outer diameters of 100 and 500 mm, respectively, and the upper and lower
plates were considered as complete cylinders with 100 mm diameters. According to these
hypotheses, it was simple to calculate the weights of each component in the satellite, and
to determine the satellite’s moment of inertia (as Ix0= Iy0 = 185.24 and Iz0 = 155.2 kg.m2).
Since the moment of inertia is higher with an empty satellite than when the components
are added, it is expected that the values for the moment of inertia in each of the principal
directions of the coordinate axes will be greater than the values calculated for an empty
satellite compartment. Also, the coordinates of the center of gravity of the empty satellite
were calculated as C0 = (0, 0, 595).

This case was first introduced by [12,16], after which [25,28] also used the data of
this numerical example, and compared their results with each other. Ref. [16] similarly
utilized comparable data, but the coordinates of their resulting layout were not given for
comparison with other studies. With the assumptions mentioned above and according to
the coordinates of the equipment after placement in the mentioned articles, the moments of
inertia were recalculated and the results were compared, which can be seen in Table 2.
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Table 2. Comparison of moments of inertia of articles with similar data.

References

Moment of Inertia

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

[12] 261 268.5 225.8 755.3

[16] 268.4 271.1 232.7 772.2

[25]—Ex. 2 264.4 261.5 222.2 748.1

[28] 270 265.7 231.9 767.7

As illustrated in Table 2, the best solution in all these articles was given by [25], wherein
the achieved objective function was less than the others. Therefore, in this paper, we have
used the output in this paper to determine the θi of cuboid equipment.

Then, using the heuristic method provided in Section 2.1.1, all conceivable modes
of allocation of equipment to different layers with these data were investigated, and
25 viable models of equipment allocation were determined. Here, each of these models
were implemented using the RFPM described in Section 2.1.2 and GAMS software, and the
results have been compared to those of previous works that utilized these data (Table 3).

Table 3. Moments of inertia for feasible states in case study 1.

No.
Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)
No.

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

1 256.3 254.5 220.1 730.8 14 255 256.4 220.3 731.8
2 257.6 257.2 232.9 747.6 15 254.2 257.6 220.4 732.2
3 252.9 254.1 224.5 731.5 16 256.2 255.1 219.3 730.6
4 255.5 257.9 224.1 737.5 17 256.3 255.7 219.7 731.7
5 254.7 257.9 226.9 739.6 18 257.3 256.3 220.9 734.5
6 253.9 256.5 224.2 734.6 19 256.5 258.7 222.1 737.4
7 254.5 254.9 220.9 730.3 20 256.4 257.4 224.7 738.5
8 255.7 253.7 220.3 729.6 21 256.9 257.6 220.3 734.8
9 255.1 253.8 219.2 728.1 22 256.1 257.8 219.1 733

10 255.2 255.9 221.2 732.3 23 259.6 261.1 225.4 746.2
11 256.5 259.7 226.2 742.4 24 259.5 256.2 219.6 735.3
12 260.8 255.1 227.6 743.5 25 261 262.5 226.9 750.4
13 255.3 255.9 220.4 731.6

As can be seen from the table, the minimum moment of inertia is associated with
possible state number 9, in which the total moment of inertia in the main directions of the
coordinate axes is equal to 728.1 kg.m2, and on the other hand, in 24 of the 25 possible
states, the total moment of inertia is slightly better than that given by [25]. Figures 4 and 5
and Table 4 depict the outputs of the model for a case wherein the sum of the moment of
inertia is at its lowest possible value (layout of equipment on different layers of the satellite)
and the coordinates of the equipment in this optimal state, respectively. In Figure 4, a total
number of 29 cylindrical and 24 cubic components are finally placed in optimal locations
on the four layers (i.e., L1, L2, L3, L4) or two middle plates of a satellite with a general
cylindrical configuration. Figure 5 also shows the numbers and locations of cylindrical and
cubic parts allocated to the four layers of the satellite based on the optimal layout.

To compare the best solutions obtained (Table 3) with a flexible model in the flexible
state, we have run the model in all possible modes and compared the objective functions
with each other. The results can be seen in Figure 6.

As demonstrated in Figure 6, in cases where the minimum level of satisfaction required
to exceed the flexible constraints (α) is greater than 0.4, the models will not be responsive
in the flexible state, because, if this parameter tends to 1, the constraint loses its flexibility,
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and the rectangular radius of the cuboid equipment becomes equivalent to the radius of its
circumference, and the limit of no overlap between the pieces of equipment will not be met.

Figure 4. Layout of equipment (i.e., placement of a total of 29 cylindrical and 24 cubic compo-
nents with different sizes and masses) on different layers (i.e., L1, L2, L3, L4) of the satellite in the
optimal state.

Figure 5. Top view of the optimal allocation and layout of equipment on different layers (layer (a)
(L1), layer (b) (L2), layer (c) (L3) and layer (d) (L4)) of the cylindrical satellite.
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Figure 6. Comparison of the objective function of the RFPM with the flexible models.

It is also clear that when increasing the penalty coefficient for violating the flexible
constraints (α) in the objective function, the values of the objective function will increase.
As a result, the higher the coefficient, the faster the minimum level of satisfaction (α) will
increase in a flexible model with a lower α. The reason for this is that, with a decreasing
level of satisfaction, the value of (1 − α) will increase, and the product of the penalty for
violating the soft limits by an amount of (1 − α) in the objective function will increase
more sharply.

In the RFPM, the model provides a better solution for all cases; however, when
γ = 0.5, this difference will be more pronounced than in other flexible cases, as the penalty
coefficients will be increased and the model will attempt to reduce the value of the objective
function, causing the minimum value of the satisfaction level (α) to increase. Comparing
the values of the variables of the minimum satisfaction level (α) when γ = 0.05 and γ = 0.5, it
is obvious that the satisfaction level at γ = 0.5 will have a higher value, which, as previously
stated, is due to the model’s goal of reducing the objective function, but this can prevent
the flexibility of soft constraints increasing, and will increase the value of the moment of
inertia by increasing the distances between pieces of equipment.

Therefore, moments of inertia must also be compared to infer the best penalty coefficient.
The total of moments of inertia in the principal directions of the coordinate axes has

also been examined using the aforementioned models to determine with which coefficient
the model yields the most accurate response. The outcomes are depicted in Figure 7.
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Figure 7. Comparison of the sum of moments of inertia of RFPM produced with flexible models.
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As depicted in Figure 7, the greater the minimal satisfaction level (α) in flexible models,
the greater the amount of the estimated radius of cuboid equipment that will become a
circumscribed circle. This model tends to place pieces of equipment further apart from one
another, hence increasing the total moments of inertia. An intriguing phenomenon that
arises is the distinction between the modifications achieved in the trends under RFPM and
flexible models in return for increasing the penalty coefficient for violating soft constraints.
This indicates that when increasing the penalty coefficient, the RFPM will produce a greater
sum of moments of inertia output. Consequently, the optimal instance for this model is
γ = 0.05.

As this coefficient increases, to avoid increasing the objective function of the model, it
tries to increase the value of the minimum satisfaction level (α), but the RFPM prevents
this from occurring, such that the soft constraints are met and the value is not excessively
high, causing the objective function to be greater than under flexible states. As a result, the
best case for the RFPM is when the value of the penalty coefficient is γ = 0.05. In cases
when the cost factor is below this value, the model loses efficiency because the penalty for
violating the soft constraints on the objective function is drastically reduced. The model’s
minimum satisfaction level (α) tends towards zero, and the flexible constraints will be in
their softest state, which increases the probability of equipment overlapping.

Now that it has been determined that the RFPM is more capable than other flexible
models, we will compare this model to the models proposed in prior articles. Here, four
articles that used this example in their case studies are analyzed, and the data from each
article are used as input for the suggested robust model based on pre-existing equipment
positions on different satellite layers. In addition, the model has been applied to these data.
The outcomes are depicted in Figure 8.
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Figure 8. Comparison of the sum of moments of inertia of RFPM with the results of other arti-
cles [12,16,25,28].

As shown in Figure 8, the suggested RFPM has a lower total number of moments of
inertia than previous articles with all scenarios of penalty coefficients for the violation of
soft constraints. Also, the proposed RFPM shows the lowest values of the sum of moments
of inertia, at γ = 0.05.

There is a 1.75 percent improvement when comparing the moments of inertia achieved
by [25] (741.6 kg.m2) and the suggested RFPM (728 kg.m2). This implies that if an identical
force is required to spin these two satellites, at least 13 kg of mass could be conserved. This
improvement will be vital for satellite design specialists seeking to increase the functionality
of their products, where every kilogram saved could be essential to a successful mission.

As can be seen, as the penalty coefficient increases, the values of moments of inertia
tend to increase due to the objective function seeking to reduce the penalty values, resulting
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in less flexibility in soft constraints, as a result of which the pieces of equipment are placed
far apart from one another, thereby increasing the total moments of inertia.

- Case Study 2: Investigating the work of [1]

In this example, there are 60 pieces of equipment, of which 24 are cuboids and 36
are cylindrical. In this example, the satellite equipment is arranged across two levels and
four layers. The parameters of the satellite body are as follows: the radius of the circular
cross-section of the satellite surfaces is 500 mm; the radius of the middle cylinder of the
satellite connecting the surfaces is 100 mm; the H1, H2 and Ht parameters are 300 mm,
830 mm and 1150 mm, respectively, and the diameters of the first and second levels are
20 mm each.

The empty satellite consists of four plates (two middle levels and two floor and top
levels of the satellite), a satellite shell and the middle cylinder, the combined mass of which
is 576.53 kg. To perform more accurate calculations, it was assumed that the density of
materials used in the body of this satellite was 3.006 g/cm3 (a combination of aluminum
and titanium alloys) and the thickness of the satellite’s shell was 24.5 mm.

Also, the two middle plates on which the components are placed were assumed to be
hollow cylinders with inner and outer diameters of 100 and 500 mm, respectively, and the
upper and lower plates were assumed to be complete cylinders with 100 mm diameters.
Using these hypotheses, the weights of each part of the empty satellite were calculated, and
the moment of inertia of the empty satellite was determined to be Ix0= Iy0 = 133.24 and
Iz0 = 98.4 kg.m2.

Since the moment of inertia is higher for an empty satellite than when the components
are added, it is expected that the values obtained regarding the moment of inertia in each
of the principal directions of the coordinate axes are greater than these values calculated
for an empty satellite. Also, the coordinates of the center of gravity of the empty satellite
were calculated as C0 = (0, 0, 595).

Since the case was first introduced by [1], five articles, including those by [17,20,30,
36,37] also used the data from this example, and compared their results with each other.
Ref. [27] also utilized these numerical data, but the output localizations of the equipment
were not organized diagonally, therefore the findings were not comparable. According
to the assumptions mentioned above and the coordinates of the equipment placements
in the mentioned articles, the moments of inertia have been recalculated and the results
compared, as can be seen in Table 5.

Table 5. Comparison of moments of inertia in articles with similar data.

References

Moment of Inertia

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

[1] 228.7 232.9 185.1 646.7

[17] 227.8 226 178.2 632

[20]—Ex. 2 228.3 225.8 171.4 625.5

[30] 223.5 220.7 168.4 612.6

[36] 218.2 215.6 166.2 600

[37]—Ex. 3 224.1 228.1 179.7 631.9

As depicted in Table 5, the best solution in these articles was given by [36], where
the objective function was less than in other articles. Therefore, in this paper, we have
used the output to determine the value of θi for cuboid equipment. As explained in case
study no. 1, here, according to the heuristic method presented in Section 2.1.1, all possible
models of equipment allocation to different layers with these data have been examined,
and 25 feasible models have been obtained.
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Here, each of these feasible models was implemented using the RFPM presented in
Section 2.1.2 and GAMS software, and the results have been compared with those from
other papers that also used this numerical example (Table 6).

Table 6. Moments of inertia for feasible states described in case study 2.

No.
Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)
No.

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

1 204.8 208.9 164. 8 578.5 14 207.9 209.3 171.2 588.5
2 206.8 208.3 164.7 579.8 15 208.3 210.9 169.6 588.8
3 207.7 206.2 166.9 580.8 16 211.3 208.3 169.7 589.3
4 210.8 199.9 170.2 580.9 17 209.1 209.9 172.8 591.8
5 206.6 208.8 167.2 582.4 18 209 212.6 170.6 592.2
6 210.9 207.1 165.8 583.7 19 211.6 210.1 171.2 592.9
7 207.9 207.9 168.2 584 20 209.7 211.3 173.2 594.2
8 209.8 209.2 165.1 584 21 210.8 210.1 174.1 594.9
9 209.8 209.45 166.3 585.5 22 210.9 211.4 173.1 595.5

10 208.2 207.9 169.8 586 23 211.3 211.1 175.3 597.7
11 207.9 208.2 170.8 586.9 24 211.9 208.4 177.7 598.1
12 208.8 208.7 169.6 587.1 25 212.4 211.5 176.5 600.4
13 208.4 207.1 171.5 587.1

As can be seen in the table, the minimum value of the sum of moments of inertia in
the main direction of the coordinate axes is equal to 578.5 kg/m2, and in 24 of the feasible
states, the sum of moments of inertia derived is slightly better than that given by [36].
Figure 9 and Table 7 show the output of the model for cases where the sum of the moments
of inertia is as low as possible (layout of equipment on different layers of the satellite) and
the coordinates of the equipment in this optimal model, respectively.

To compare the best solutions obtained (Table 6) with the flexible model in the flexible
state, we ran the model in all possible modes and have compared the objective functions
with each other. The results can be seen in Figure 10.

As illustrated in Figure 10, in cases where the minimum level of satisfaction required
for exceeding the flexible constraints (α) is greater than 0.25, the models will not be respon-
sive in the flexible state because, as in case no. 1, if this parameter tends to 1, the constraint
loses its flexibility, and the rectangular radius of the cuboid equipment becomes equivalent
to the radius of the circumference, and the constraint of non-overlapping between the
equipment will not be met. The only difference from case study no. 1 is that, in flexible
states, the minimum level of satisfaction cannot be reached if it is greater than 0.25.

This is due to the increased quantity of equipment to be positioned, which reduces
the flexibility of the non-overlap constraints by increasing the (α) variable and making the
model infeasible. As shown previously, the objective function values increase as the penalty
coefficient for violating the flexible constraints (γ) in the objective function increases. In
reality, in flexible models with a smaller (α) variable, increasing the value of (γ) will increase
the objective function further. In the RFPM, the model behaves similarly to that in the first
case study, and at γ = 0.5, the difference in the output of the objective function between the
robust and flexible models becomes more obvious.

Comparing the values of the variables of the minimum satisfaction level (α) for γ = 0.05
and γ = 0.5, we see that greater values are obtained for the variable at γ = 0.5, but this
leads to an increase in moments of inertia. This implies substantially lower values for (α)
variables than those seen in case study no. 1 due to the greater quantity of equipment.
It indicates that soft constraints must be set to their softest mode to prevent components
from overlapping.
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Figure 9. Top view of the optimal allocation and layout of equipment on different layers (layer (a)
(L1), layer (b) (L2), layer (c) (L3) and layer (d) (L4)) of the cylindrical satellite.
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Therefore, the sum of moments of inertia in the main directions of the coordinate axes
has also been compared for the mentioned models, and the results can be seen in Figure 11.
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Figure 11. Comparison of the sum of moments of inertia of RFPM with those of flexible models.

As depicted in Figure 11, the behavior of the models has not changed significantly
from those in case study no. 1, and it is only due to the increase in the number of equipment
that the flexibility of soft constraints becomes more important; even for the flexible models
where the minimum satisfaction level (α) exceeds 0.25, the model is infeasible. Similarly,
when increasing the penalty factor (γ), the model in its robust form will gain more moments
of inertia, due to the tendency of the model to shrink the objective function and increase
the α variables, as well as the tendency of the equipment to move away from one another
and raise the moments of inertia.

As a result, the best case for the RFPM is when γ = 0.05. As said before, in cases when
the value of the cost factor is lower than this, the model loses its efficiency because the
penalty for violating the soft constraints in the objective function is sharply reduced; the
minimum level of satisfaction (α) of the model tends towards zero, and this causes the
flexible constraints to enter their softest mode, increasing the likelihood of the equipment
overlapping.

Now that it has been seen that the RFPM has greater capability compared to the other
flexible models, we now compare this model with those proposed in similar articles. Here,
five articles that used this example in their case studies have been reviewed and, according
to the pre-existing equipment layouts on different satellite layers available in the articles,
the data of each article have been used as input for the proposed RFPM. The results are
shown in Figure 12.

As depicted in Figure 12, the sum of moments of inertia in the suggested RFPM
when the penalty coefficients for the violation of soft constraints are less than 0.3 indicates
a significantly better solution than in the other articles. Compared to [36], the sum of
moments of inertia is increased marginally only in cases when γ = 0.4 and γ = 0.5. This
confirms that the best choice for the value of the penalty coefficient is γ = 0.05, and that
increasing this coefficient reduces the model’s efficiency. Therefore, similar to case study
no. 1, an improvement of 2.95 percent can be seen when comparing the moments of inertia
between that in [36] (596.1 kg.m2) and that achieved by the suggested RFPM (578.5 kg.m2).
This means that if an identical force is required to spin these two satellites, at least 17.6 kg
of mass could be preserved.
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- Case Study 3: investigating the work of [15]

Ref. [15] utilized the data from [57]. In this example, there are 51 pieces of equipment,
of which 20 are cuboid and 31 are cylindrical. In this example, the satellite equipment is
arranged across two levels and four layers. The parameters of the satellite body are as
follows: the radius of the circular cross-section of the satellite surfaces is 500 mm; the radius
of the middle cylinder of the satellite connecting the surfaces is 100 mm; the H1, H2 and Ht
parameters are 500 mm, 1050 mm and 1400 mm, respectively, and the diameters of the first
and second levels are 20 mm each.

The empty satellite consists of four plates (two middle levels and two floor and
top levels), the satellite shell and the middle cylinder, the cumulative mass of which is
349.557 kg.

To perform more accurate calculations, it was assumed that the density of materials
used in the body of this satellite was 1.766 g/cm3 (a combination of fiberglass, Kevlar,
carbon fiber, and aluminum and titanium alloys) and the thickness of the satellite shell
was 20 mm. Also, the two middle plates on which equipment are placed were considered
to be hollow cylinders with inner and outer diameters of 100 and 500 mm, respectively,
and the upper and lower plates were considered to be complete cylinders with a 100 mm
diameter. According to these hypotheses, the weight of each part of the empty chamber of
the satellite was calculated, and the moment of inertia of the empty satellite was calculated,
as Ix0= Iy0 = 101.556 and Iz0 = 56.686 kg.m2.

Since the moment of inertia is higher for the empty satellite than when the equipment
is added, it is expected that the values obtained for the moments of inertia in each of the
principal directions of the coordinate axes will be greater than the values calculated for an
empty satellite compartment. The coordinates of the center of gravity of the empty satellite
were calculated as C0 = (0, 0, 732.96).

After [15], the first study to utilize these numerical data and compare their results
was [25]. Ref. [13] also employed similar data, but the coordinates of their output design
were not disclosed in that article to allow comparisons with other studies. According to
the assumptions mentioned above and the coordinates of the placed equipment available
in the mentioned articles, the moments of inertia have been recalculated and the results
compared, as can be seen in Table 8.
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Table 8. Comparison of moments of inertia of articles with similar data.

References

Moment of Inertia

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

[15] 174.5 171.3 101 446.8

[25]—Ex. 1 163.2 162.9 93.8 420

As can be seen in Table 8, the best solution given by these two articles was produced
by [25], in which the objective function was given a lower value compared to other articles.
Therefore, in this paper, we have used the output to determine the θi value for cuboid
equipment. Then, according to the heuristic method presented in Section 2.1.1, all possible
models of equipment allocation to different layers using these data have been examined,
and 11 feasible models have been obtained. Here, each of these models was implemented
using the RFPM presented in Section 2.1.2 and GAMS software, and the results have been
compared with those from other papers that used this dataset (Table 9).

Table 9. Moments of inertia for feasible states in case study 3.

No.
Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)
No.

Ixx

(kg.m2)

Iyy

(kg.m2)

Izz

(kg.m2)
f

(kg.m2)

1 147.7 149.5 100.7 397.9 7 149.9 150.9 96.8 397.6
2 149.2 150.7 95.7 395.6 8 148.5 149.7 98.9 397.1
3 149.4 150.7 99.8 399.9 9 149.9 150.2 97.6 397.7
4 148.5 150.4 99.6 398.5 10 149.2 150.9 98.5 398.5
5 148.6 150 101.2 399.8 11 153.6 152.1 102.7 408.4
6 149.1 149.4 100.6 399.1

As can be seen from the table, the minimum moment of inertia correlates with the
second possible state, in which the total moment of inertia in the main direction of the
coordinate axes is equal to 395.6 kg.m2, and on the other hand, in all possible states, the
total moment of inertia derived is better than that achieved by [25]. Figure 13 and Table 10
show the output of the model when the value of the sum of the moments of inertia is as
low as possible (layout of equipment on different layers of the satellite) and the coordinates
of the equipment in this optimal state, respectively.

To compare the best solutions obtained (Table 9) with those given by the flexible
model in the flexible state, we have run the model in all possible modes and compared the
objective functions with each other. The results can be seen in Figure 14.

As shown in Figure 14, in cases where the minimum level of satisfaction for exceeding
the flexible constraints (α) is greater than 0.3, the models will not be responsive under the
flexible state because, as we saw in case studies 1 and 2, by increasing the value of (α),
flexibility is lost, and the rectangular radius of the cuboid equipment becomes equivalent
to the radius of the circumference. As a result, the requirement of non-overlap between the
pieces of equipment will not be met.

The only difference from previous case studies is that, in flexible states, the minimum
level of satisfaction becomes inapplicable if it increases from 0.3. The reason is that the
equipment here occupies more space than in case study no. 1, but less compared to case
study no. 2, and therefore setting α = 0.3 also offers a feasible model. As said before,
by increasing the penalty coefficient for a violation of the flexible constraints (γ) in the
objective function, the objective will be increased, as the number of flexible models with
a lower minimum degree of satisfaction (α) will increase dramatically as this coefficient
increases.
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Figure 13. Top view of the optimal allocation and layout of equipment on different layers (layer (a)
(L1), layer (b) (L2), layer (c) (L3) and layer (d) (L4)) of the cylindrical satellite.
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Figure 14. Comparison of the objective function of the RFPM with those of the flexible models.

In the robust state, the model acts similarly to in the previous case studies, and at
γ = 0.5, the difference in the objective function for flexible models will be more obvious.
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When comparing the minimum satisfaction level variables (α) for values of γ = 0.05 and
γ = 0.5, it is obvious that the values obtained for the α variable at γ = 0.05 are higher than
those in previous case studies, and it is only the location of the equipment that allows
the robust model to limit the flexibility of soft constraints by increasing the values of the
minimum satisfaction level (α) variables. As a result, these non-overlap constraints are met
more easily (lower penalty in the objective function).

To offer a more detailed study, the sums of the moments of inertia in the main directions
of the coordinate axes were also compared for the mentioned models, and the results can
be seen in Figure 15.
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Figure 15. Comparison of the sums of moments of inertia of RFPM with those of flexible models.

As can be seen in Figure 15, in general, the behaviors of the models are not very differ-
ent compared to those in previous case studies, and by increasing the penalty coefficient
γ, the model can be made to gain more moments of inertia in the robust state, due to the
same tendency of the model to reduce the objective function by increasing the α variables.
This will result in the pieces of equipment being placed far apart from one another, thereby
increasing the total moments of inertia.

Therefore, as in case studies 1 and 2, the best case for an RFPM is when γ = 0.05. As
before, in cases with a cost factor below this value, the model loses its efficiency because the
penalty for violating the soft constraints in the objective function is sharply reduced, and
the model’s minimum level of satisfaction (α) tends towards zero and leads to the flexible
constraints adopting their softest state, increasing the probability of equipment overlap.
As before, we now compare the robust model presented here with the models proposed in
similar articles.

Here, two articles that used this example in their case studies have been examined,
and, according to the pre-existing equipment layout designs for different satellite layers
that are available in the articles, the data from each article have been used as the input for
the proposed robust model. The results are illustrated in Figure 16.
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Figure 16. Comparison of the sum of moments of inertia of RFPM with the results of other articles [15,25].

As can be seen in Figure 16, the sum of moments of inertia for the proposed RFPM in
all cases of penalty coefficients for the violation of soft constraints is much lower than in
other articles. Also, as in previous case studies, the best and lowest values for the sum of
moments of inertia can be seen in the proposed RFPM when γ = 0.05.

Similar to other case studies, an improvement of 7.35 percent may be seen when
comparing the moments of inertia between [25] (427 kg.m2) and the suggested RFPM
(395.6 kg.m2). This suggests that if an identical force is required to spin these two satellites,
at least 31.4 kg of mass can be preserved.

Finally, when increasing the penalty coefficient, the values of moments of inertia tend
to increase due to the objective function trying to reduce the penalty values. As a result,
the soft constraints will be less flexible, as a result of which the equipment will be placed at
great distances, thereby increasing the total moments of inertia.

4. Conclusions

In this study, the optimal allocation and layout of equipment in a three-dimensional
satellite space are investigated. Stratified satellites were here discussed, and to measure
performance, research was conducted on satellite containers with the most floors. Accord-
ing to the literature, the majority of satellite categories have two levels and four layers, with
a total of eleven case studies discussed here using these numbers of levels and layers. In
this study, the performance of the suggested model was assessed by comparison with all of
the examples from these 11 publications, which were analyzed in three separate cases.

In every instance, it was demonstrated that the flexible model delivers a far superior
solution compared to the models presented in prior articles.

In other words, developing an optimum solution for allocating and locating equipment
using an optimization method instead of trial-and-error is the contribution of this article.

Although some authors have considered constraints related to thermal distributions,
such as [23,26], no studies have taken into account the importance of the distance between
components with greater thermal energy. Therefore, components that produce and emit
more thermal energy must be as far away from each other as possible. For instance, to
ensure better performance and a longer battery life, these components should be kept away
from equipment that generates greater heat. In this case, using the concept of the obnoxious
facility location problem (reviewed by Zanjirani Farahani and Hekmatfar (2009) [58]) would
appropriate when locating the best positions of these components within the satellite. The
concept of uncertainty can be applied here. For problematic equipment, the required
distance values are unknown in advance. Possibilistic programming is useful when there
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is “uncertainty in the data”. As a consequence, it would be feasible to model some of
these problems using flexible programming under uncertainty, and some using possible
programming, when it comes to problematic equipment.

Since one of the sources of uncertainty is measurement errors, and the issue of tolerance
design plays a significant role in the conceptual design phase of the layout of satellite
equipment, the issue of uncertainty when determining the distances between components
is another appropriate use of the uncertainty concept, and this can enhance the performance
of the model by satisfying the functional and equilibrium constraints, which will ultimately
lead to model optimization.

Another topic that could be investigated is the satellite’s temperature field, which
would exert a direct influence on the operational performance of electrical components.
Generally, a homogeneous distribution of heat flux within the satellite is required to main-
tain the optimal performance and reliability of its components. Batteries, telemetry senders,
and picture senders are examples of components that emit a great deal of energy, and are
therefore classified as “hot” components. These components must be positioned at specified
distances from each other. Hengeveld et al. (2011a) [59] proposed that their strategy, when
paired with another one that they established Hengeveld et al. (2011b) [60], was highly
appropriate when distributing individual components with uneven power to different
panels of a satellite so as to minimize temperature dispersion within the satellite. From
a thermal perspective, each component has an effective area that influences neighboring
modules; therefore, decreasing the area of intersection is comparable to increasing the
uniformity of the temperature field across the satellite panels. As regards adding thermal
constraints, [34] may offer the best reference.

According to all of these interpretations, regarding the calculation of the distances and
thermal radii of equipment, soft constraints can be used to calculate the distances of all
cuboid and cylindrical pieces of equipment such that they are no closer than a specific limit.
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Abstract: This study proposes an interface localizing scheme to enhance the performance of the
previous hybrid-level interface-reduction method. The conventional component mode synthesis
(CMS) only focuses on interior reduction, while the interface is fully retained for convenient synthesis.
Thus, various interface-reduction methods have been suggested to obtain a satisfactory size for the
reduced systems. Although previous hybrid-level interface-reduction approaches have addressed
major issues associated with conventional interface-reduction methods—in terms of accuracy and
efficiency through considering partial substructure synthesis—this method can be applied to limited
modeling conditions where interfaces and substructures are independently defined. To overcome
this limitation, an interface localizing algorithm is developed to ensure an enhanced performance in
the conventional hybrid-level interface-reduction method. The interfaces are discriminated through
considering the Boolean operation of substructures, and the interface reduction basis is computed
at the localized interface level, which is constructed by a partially coupled system. As a result, a
large amount of computational resources are saved, achieving the possibility of efficient design
modifications at the semi-substructural level.

Keywords: parametric component mode synthesis; Craig Bampton method; interface reduction;
characteristic constraint modes; hybrid-level interfaces

MSC: 70-08

1. Introduction

Numerical simulations for large-scale, dynamical systems are challenging tasks even
now. To mitigate these computational burdens, introducing a reduced-order model (ROM)
within a surrogate modeling framework can be an attractive solution. In general, reduced-
order modeling is realized by projecting a full-order system into a lower subspace using
a truncated reduction basis. Traditionally, the eigenvectors of a system matrix can be
a projection basis that transforms the state vector into a generalized coordinate system.
By truncating the eigenvectors, one achieves a dimensionality reduction in the given system.
Another type of reduction is achieved through introducing the singular value decomposi-
tion of data usually obtained from a response of the system. Such dimensionality reduction
is one of the general approaches in the viewpoint of a data analysis regardless of the
underlying physics of the given problems. For either the data or the system, the reduc-
tion results in efficient computations, particularly for such engineering disciplines that
inevitably require heavy numerical simulations.

From the viewpoint of deriving and using appropriate reduced-order models for real
industrial applications, an efficient adaptation to parametric variations is one of the most
important properties that the ROM should have. Thus, the model reduction techniques
have been widely investigated for real industrial systems, particularly large-scale models
that undergo parametric variations. The offline–online strategy [1,2] alleviated a large
amount of computation caused by repetitive evaluations with respect to parameter changes.
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Once a substantial amount of data is acquired in the offline stage, prediction accuracy
can be increased in the online stage. One of the major barriers that hinders applying the
offline–online strategy is the number of parameters that the system contains. In particular,
the offline cost dramatically increases due to the sampling of the independent parameters,
which is referred to as the “curse of dimensionality”. To mitigate such complexities caused
by the dependencies between the parameters, various sampling strategies [3,4] have been
developed within the framework of surrogate modeling and the design of experiments.
To be more specific, domain-decomposition-based methods have also been developed for
the spatially distributed parameters [5–7]. Such approaches have shown the possibility
of offline time reduction for high dimensional parameter spaces. Some works have also
developed mathematical techniques to address dimensional problems for complex finite
element modeling (FEM) [8–11].

The main advantage of component mode synthesis (CMS), which stands for dynamic
substructuring, is that the entire system is divided into multiple independent subsystems,
and model reduction is performed at a substructural level. Therefore, design modification
can be practically reflected without requiring full-system analysis with respect to design-
variable changes. Based on these concepts of domain decomposition, Hurty [12] was
initially conceptualized by applying normal, rigid-body, and constraint modes within the
finite element modeling (FEM) framework. Subsequently, Craig Bampton [13] discovered
that the treatment of interface can be simplified by considering rigid-body and redundant
modes in the same manner. Bennighof and Lehoucq [14] formulated an automatic multi-
level substructuring method to achieve high dimensional reduction with a similar accuracy
level as modal truncation. In addition, proper consideration of residual substructural
modes based on a Craig Bampton (CB) method has been suggested for enhanced accuracy
by Kim [15]. The efficiency and accuracy of CMS methods are demonstrated in [12–18].

The majority of engineering systems consist of multiple materials and components.
For this reason, the treatment of interface is another essential consideration for efficient and
robust FEM simulation due to interaction between each domain. Peskin [19] presented the
immersed boundary (IB) method to handle fluid–flexible structure interactions, such as
blood flow in the heart. Based on the IB method, related works handling interfaces could be
found in [20–22]. According to Craig Bampton’s work, a divided substructure is separately
treated for reduction as interior and interface degrees of freedom (DOFs). The fixed interface
normal modes (FINMs) and static constraint modes (SCMs) are independently applied to
a partitioned subsystem. This approach offers the benefit of convenience synthesis, as it
ensures the interface compatibility. On the other hand, the CB method has a significant
disadvantage in that it requires an additional reduction method to obtain sufficiently
reduced systems. The reduced subsystems are tend to be dominated by interface DOFs
under several circumstances, where fine mesh or numerous subcomponents are adopted
for modeling. Therefore, to achieve a manageable size of reduced system matrices, various
interface reduction techniques are presented by performing two-level reduction.

Craig and Chang [23] initially proposed the concept of interface reduction by in-
corporating several model reductions, such as Guyan, Ritz, and modal reduction. Cas-
tanier et al. [24] developed Craig and Chang’s modal reduction method as a system-level
characteristic constraint (CC) mode. The interface reduction basis is computed using
secondary eigenvalue analysis to a fully synthesized system. This system-level interface-
reduction method successfully represents the physical motion of the interface. Due to the
constant effort for highly reduced systems, the interface reduction approach is continuously
extended to various engineering fields. Traditionally, Tran [25,26] applied CMS using
interface modes to the cyclic symmetry problems. Herrmann et al. [27] applied Craig and
Chang’s work to the acoustic fluid–structure interaction and predicted hydraulic transfer
system using ROM reduced by appropriate Ritz vectors. According to recent studies, Cam-
marata et al. [28] presented a novel interface-reduction method for interpolation multipoint
constraints by discarding dependent node selection. Hughes and Kuether [29] handled
nonlinear interface for further system reduction by computing system-level CC modes
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and proper orthogonal interface modal derivatives. They validated this newly proposed
interface reduction scheme to frictional contact system considering time transient. Addi-
tional investigations exploiting interface reduction based on dynamic substructuring to
engineering fields are shown in [30–32].

The system-level CC modes approach hinders the primary advantage of CMS, which
rapidly responds to parametric variations. In other words, the independence of each subsys-
tem is no longer assured since the final reduced system is obtained after all substructures
are coupled. To emphasize the flexibility of design, the local-level interface-reduction
method is presented by Hong et al. [33]. The secondary eigenvalue analysis is computed at
the subsystem level; exact interface compatibility should be enforced for synthesis after
interface reduction. Kuether et al. [34] suggested weak compatibility at local-level interface
reduction to minimize compatibility errors, constructing geometric nonlinear reduced-
order models. Nevertheless, this local-level technique causes a considerable compromise
in accuracy. Holzwarth et al. [35] aimed to improve the accuracy of local-level CC modes
computation by adopting the Legendre polynomials. However, accuracy compromising
and synthesis cumbersome remain critical concerns.

To overcome the shortcomings of the aforementioned CC modes approaches, CC
modes computation to a partially synthesized system has been constantly investigated.
The multilevel interface reduction presented by Wu et al. [36] performs secondary eigen-
value analysis at a localized subset level by assembling paired substructures. This method
reduces computational effort and guarantees accuracy as much as the system level. Fur-
thermore, based on the concept of Aoyama’s work [37] considering a partially assembled
system and separately computing CC modes, Krattiger et al. [38] recently proposed the
hybrid-level (HB-level) interface reduction that allows applying boundary condition free
system. These introduced methods can compromise accuracy and efficiency since con-
structing a single interface does not need information on disconnected substructures,
but substructure connectivity is not entirely ignored. Additionally, these methods allow
interface parallel computation.

Despite the CC modes computation method has substantial strengths when consid-
ering a partially synthesized system, the previous HB-level interface reduction is only
applicable for modeling where each interface is independently defined and isolated. There-
fore, this conventional method has difficulties in application to real industrial engineering
problems. In this study, the modified HB-level interface-reduction method is proposed to
provide more practical solutions for parametric studies. The proposed method aims to
apply to unlimited modeling scenarios while the advantages of each localized interface set
are retained. The unique numbering-based interface discrimination algorithm is integrated
with the previous HB-level interface reduction [38] to address the limitation. To assess the
performance of the proposed method, the graphic partitioning algorithm METIS [39] is
adopted for substructuring systems. Multiple substructuring scenarios are provided to
demonstrate wide applicable modeling ranges.

This paper is organized as follows. In Section 2, the CB method is described. In
Section 3, the interface discrimination algorithm to build independent interface sets and
a new interface reduction are proposed, with a brief review of the hybrid-level interface
reduction. In Section 4, several numerical examples decomposed into multiple subdomains
by METIS are presented to evaluate the performance of the proposed method.

2. Craig Bampton Method-Based Component Mode Synthesis

The conventional Craig Bampton method has been developed within the finite element
discretization framework. Hence, the FEM formulation for system equation is obtained
following the principle of virtual work. Further details of basic FEM formulation procedure
are found in Ref. [40]. The full system equation in terms of finite element modeling is
expressed as

Mü + Cu̇ + Ku = f. (1)
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Equation (1) describes the global system before performing substructuring. M, C,
and K represent mass, damping, and stiffness matrices, respectively. u and f are the
displacement and force vectors, respectively. The size of the presented entire system is Ns.
Based on the classical CB method, this proposed method is applicable to the condition that
the boundary DOFs is exactly separated as nodal displacement.

In the CB-CMS, the partitioning of interiors and interfaces is essential to realize straight-
forward synthesis. Following the global system matrices Equation (1), each subsystem
matrix is written as [

Ms
ii Ms

ib
Ms

bb Ms
bi

][
üs

i
üs

b

]
+

[
Ks

ii Ks
ib

Ks
bb Ks

bi

][
us

i
us

b

]
=

[
fs

i
fs

b

]
, (2)

where
Msü + Ksu = Fs, s = 1, 2, ..., Nd. (3)

In this substructural system, the damping is ignored for convenience. The superscript
s denotes the number of substructures, and the entire system is decomposed into total Nd
subcomponents. The subscripts i and b indicate the degrees of freedom for interiors and
boundaries known as interfaces.

For the sth subsystem reduction, the eigenvalue analysis is performed on interior
DOFs to obtain fixed interface normal modes, one obtains the following FINMs:

Φs
im = [φs

i,1, φs
i,2, ..., φs

i,Ns
m
], (4)

where
Ks

iiφi,ξ = λi,ξ Ms
iiφi,ξ , ξ = 1, 2, ..., Ns

i . (5)

Ns
i is the number of interior DOFs for a sth substructure. Ns

m from Equation (4) denotes
the number of selected dominant modes following the frequency cut-off method. This
number should be smaller than the initial interior DOFs (Ns

m < Ns
i ). The FINMs Φs

im are
derived from generalized eigenvalue analysis to satisfy the mass orthogonality, as follows:

[Φs
im]

TMs
iiΦ

s
im = Imm. (6)

To obtain the static constraint modes for boundaries, a unit displacement is applied to
the interface DOFs. In addition, an inertia force fs

i is ignored for a static analysis.[
Ks

ii Ks
ib

Ks
bb Ks

bi

][
Ψs

ii
Is

bb

]
=

[
0

fs
b

]
, (7)

The SCM is obtained by solving the upper part of Equation (7),

Ψs
ib = −Ks

ii
−1Ks

ib. (8)

The size of SCMs for sth substructure is Ns
b , which is equal to the number of initial

physical interfaces. The boundary DOFs and compatibility are fully retained by static
condensation to achieve direct synthesis.

According to the above procedures, the final CB transformation for a sth substructure
is expressed as

Ts =

[
Φs

im Ψs
ib

0bm Ibb

]
. (9)
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The CB-reduced mass and stiffness matrices of a sth substructure are derived by
applying transformations Equation (9) to the system matrices, such that

M̄s = [Ts]TMsTs =

[
Imm M̄s

mb
M̄s

bm M̌s
bb

]
,

K̄s = [Ts]TKsTs =

[
Λs

mm 0mb

0bm Ǩs
bb

]
.

(10)

The bar (.̄) and check (.̌) notations indicate the matrices transformed into the reduced
coordinate and the generalized coordinate, respectively. The total size of sth reduced
subsystem is Ns = Ns

i + Ns
b .

The boundary DOFs retain continuity of each subsystem without reduction. According
to the interface displacement compatibility, the reduced substructural system matrices are
directly synthesized as follows:

M̃bb =
Nd

∑
i=1

M̌i
bb, K̃bb =

Nd

∑
i=1

Ǩi
bb. (11)

The tilde (.̃) notation denotes the synthesized system, and Nd is the number of sub-
structures. Consequently, the final displacement and transformation relationship of coupled
CB system matrices is ⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1
m

u2
m
...

us
m

ub

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= P

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ū1
i

ū2
i
...

ūs
i

ub

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (12)

where

P =

⎡⎢⎢⎢⎢⎢⎢⎣

Φ1
im 0 0 0 0

Φ2
im 0 0 0

. . . 0
...

Φs
im 0

symm I

⎤⎥⎥⎥⎥⎥⎥⎦. (13)

The transformation P is used for system recovery to approximate the full system.
The subscript im indicates the reduced interior subspace of the original CB method. More
details and the overview of the original CB method are presented in Ref. [13].

3. Localized Interface Reduction

This section introduces the newly proposed interface-reduction method. The presented
hybrid-level interface reduction can address the issues in terms of both accuracy and
efficiency. In other words, the system-level interface reduction that CC modes are computed
from the fully synthesized system may be inefficient sometimes, particularly when the
system needs various design modifications. On the other hand, the local-level interface
reduction disregarding system connectivity compromises accuracy. Moreover, enforcing
interface compatibility, which is an initial consideration for synthesis after computing CC
modes at the substructural level, is a challenging task. To address these issues, this localized
interface method is developed based on the key idea of the hybrid-level interface reduction
initially proposed by Krattiger et al. [38].
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3.1. Interface Discrimination Algorithm for Independent Interface

According to the hybrid-level interface reduction, a single interface is constructed by
coupling adjacent substructures. Nevertheless, this previous method is restricted to certain
modelings where each interface is clearly segregated. However, as we usually adopt a
graphic partitioning algorithm for an automatic division of the whole FE model, interfaces
and their reduction cannot be handled considering design parameters. This issue becomes
more critical for real applications with large numbers of DOFs. To overcome this limitation,
the interface discrimination algorithm is proposed by assigning a unique number based on
Boolean operations. Figure 1 illustrates differences in building interface sets depending
on interface reduction techniques. In addition, the process for localizing interfaces using
unique numbering is described in Table 1.

(a) (b)

(c)

Figure 1. The comparison of interface reduction techniques between previous methods and
proposed method. (a) System-level interface; (b) hybrid-level interface; (c) proposed semi-
localized interface.

In Figure 1c, the red points are the one that contains three domains. To minimize
accuracy loss, the red points sharing particularly many substructures are regarded as
reduced interiors to retain without transformation. Therefore, they are excluded when we
reduce the interface DOFs. Details of the algorithm for the interface discrimination are
given in Algorithm 1. The example of converting binary to decimal numbers is presented
in Table 1.

Table 1. Characteristic numbering for semi-localized interface reduction.

Interface DOF Sub 1 Sub 2 Sub 3 Sub 4 Binary Decimal Interface Number

1 1 1 0 0 1100 12 Γ1
13 0 1 0 1 0101 14 Γ2
16 1 0 1 0 1010 10 Γ3
28 0 1 1 0 0110 6 Γ4
40 0 0 1 1 0011 3 Γ5
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Algorithm 1 Discrimination algorithm for interface localizing

1: for s = 1, 2, ..., Nb, do
2: Describe Boolean operations between interfaces and substructures.
3: Convert Boolean operations to a binary number.
4: Assign a unique number by converting a binary number to a decimal number.
5: end for
6: Discard untransformed points as numbering.
7: Rearrange interface numbering from 1 to j.

3.2. Interface Reduction Formulations

The interface is individually defined as a single set by the interface discrimination
algorithm introduced in the above subsection. This implies that the proposed method
conducts the secondary eigenvalue analysis to a partially synthesized system. In this
section, the interface reduction process is described, and the jth localized interface Γj is
presented in Figure 2 for comprehensive understanding.

Figure 2. The jth localized interface Γj.

The system matrices of a jth interface are constructed by coupling relative substruc-
tures are

M̃
Γj
bb =

Nk

∑
i=1

M̌i
bb, K̃

Γj
bb =

Nk

∑
i=1

Ǩi
bb. (14)

The Nk is the number of partially synthesized substructures to construct jth localized
interface Γj. To obtain characteristic constraint modes, the secondary eigenvalue analysis is
performed as

Φ
Γj
bn = [φ

Γj
b,1, φ

Γj
b,2, ..., φ

Γj
b,Nn

], (15)

where
K̃

Γj
bbφb,ξ = λb,ξM̃

Γj
bbφb,ξ , ξ = 1, 2, ..., N

Γj
b . (16)

N
Γj
b is the total number of boundary DOFs for a jth interface. The Nn is the number of

selected CC modes to be used for interface reduction basis. According to modal reduction,

the number of reduction basis should be Nn < N
Γj
b .

The range of CC modes computation is an important factor in obtaining guaranteed
accuracy. The reduction basis for a jth interface (15) contains other interface sets dependent
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on synthesized substructures. In Figure 2, for example, Γj,1, Γj,2, Γj,3, Γj,4 are uncompleted
interface sets, and connected to substructures consist of Γj:

Φ
Γj
bn =

⎡⎢⎢⎢⎢⎢⎢⎣
Φ

Γj
bj,n

Φ
Γj,1
b1,n

Φ
Γj,2
b2,n

Φ
Γj,3
b3,n

⎤⎥⎥⎥⎥⎥⎥⎦. (17)

Therefore, the proportion of interface set Φ
Γj
bj,n is only selected as an Γj reduction basis.

The final interface reduction basis for a jth interface is expressed as

Φ
Γj
kn =

[
Φ

Γj
bj,n

]
. (18)

Note that the additional sets are straightforwardly removed from Equation (17). How-
ever, it is crucial to consider these eliminated additional sets to account for the free-interface
and rigid-body modes of partially synthesized systems.

In addition, the primary distinction between the previous hybrid level and this newly
proposed localized interface reduction is that the points interconnected by multiple inter-
faces and substructures are discriminated, as presented in Figure 1a. Applying transfor-
mation to these red points may result in a significant loss of accuracy since the connection
between interfaces and substructures are ignored. Thus, presented red points should be
treated as CB-reduced interior DOFs and retained. Consequently, the relationship between
interface-reduced CB systems is expressed as follows:⎡⎢⎣Um

Uib

UΓ
n

⎤⎥⎦ =

⎡⎢⎣ Qim 0 0
I 0

symm Qkn

⎤⎥⎦
⎡⎢⎣ Ūi

Uib

ŪΓ
k

⎤⎥⎦, (19)

where

Ūi =
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i
...
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ū
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k

ūΓ2
k
...

ū
Γj
k

⎤⎥⎥⎥⎥⎥⎦. (20)

Following to previous procedures, interface transformation bases, Qim and Qkn, for a
final interface localized system could be written as

Qim =

⎡⎢⎢⎢⎢⎣
Φ1

im 0 0 0
Φ2

im 0 0
. . . 0

Φs
im

⎤⎥⎥⎥⎥⎦, Qkn =

⎡⎢⎢⎢⎢⎢⎣
Φ

Γ1
kn 0 0 0

Φ
Γ2
kn 0 0

. . . 0

Φ
Γj
kn

⎤⎥⎥⎥⎥⎥⎦. (21)

The Φs
im is FINMs for interior reduction. p denotes numbering for retained points

without transformation. Φ
Γj
kn indicates the localized CC modes for a jth interface.

This proposed localized interface-reduction method minimizes the trade-off between
accuracy and efficiency in comparison to other techniques. Design modification respecting
parameter changes is more effective than system-level interface reduction, which requires
assembling all substructures for CC modes computation. As a result, interface parallel
computation is also possible. Regarding accuracy, the connectivity of substructures can be
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considered besides the local-level interface reduction, and enforcing compatibility is no
longer required since straightforward synthesis can be allowed.

4. Numerical Examples

In this section, numerical examples are presented to evaluate the performance of
the proposed interface-reduction method. One of the significant benefits of the proposed
approach is that there is no modeling limitation to apply. To demonstrate the multiplic-
ity of applicable models, the graphic partitioning algorithm METIS [39] is adopted for
substructuring to design subdomains.

For performance verification, the original CB method [13] and the system-level inter-
face reduced CB method with same proportion CC modes [24] are adopted as reference
values. However, the previous hybrid-level interface reduction [38] cannot be applied
to the systems substructured by METIS algorithm since this substructuring method pro-
vides complicated interface design, and users are not allowed to intervene for design
modification. For fair comparison with the previous interface-reduction method, designed
substructuring models are additionally presented with METIS substructuring. The relative
error is written as

errori =
|λFOM,i − λROM,i|

λFOM,i
. (22)

The subscript i denotes the ith eigenvalue of systems. Therefore, λFOM,i indicates the
ith modes of full-system, while λROM,i is the ith mode of the ROM . Note that the ROM
could be the reference values and the proposed method. The performance evaluation of the
presented systems is conducted by MATLAB R2022 in-house code under an 8-core Intel CPU
running at 4.80 GHz. The finite element modeling information is summarized in Table 2.
The materials for the presented structures are aluminum with the following properties:
Young’s modulus E = 72 × 109 Pa, Poisson ratio v = 0.33, and density ρ = 27 × 103 kg/cm3.

Table 2. DOF information of numerical examples.

Elem. Node DOFs FINMs CC Modes Designed ROM METIS ROM

Plate 128 153 459 10% 30% 13.73% 14.16%
Box–beam 360 383 2298 5% 30% 8.40% 8.77%
Wing–box 12560 12073 72438 1% 10% - 1.75%

4.1. Cantilever Plate

The cantilever plates divided into four substructures are presented. The four-node
plate element is adopted for finite element modeling, and the total number of elements and
DOFs are 128 and 459, respectively. In this plate example, designed substructuring is also
presented and compared with METIS substructuring. Therefore, the number of interior
and interface DOFs are slightly different, while the ratios of reduced systems are similar.
The details of DOF information are also presented in Table 2. The domain decomposition
information and localized interfaces are described in Figures 3 and 4 for the substructuring
methods. Each substructure is dependent on certain design variables, such as the thickness
of a plate. The thickness is 12 mm for all substructures for both structural models.

Figure 5 shows the error verification of the proportion of CC modes. To assess the accu-
racy of the proposed CC modes approaches, the number of CC modes is gradually reduced
from 50% to 30%. Figure 5a represents the CC modes comparison for the system performed
substructuring by designers. The entire system consists of four substructures, five localized
interfaces, and two untransformed points, as presented in Figure 3. For the system reduc-
tion, 38 FINMs are used for interior reduction, which is about 10% of the entire interior
DOFs. In addition, 29, 24, and 19 CC modes are employed for the interface reduction,
which are 50%, 40%, and 30%, proportional to the entire interfaces, respectively. In general,
noticeable error gaps are observed regarding the percentage of CC modes compared to the
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original CMS. Nevertheless, the overall predictions are acceptable, with average relative
errors of 0.3%, 1.9%, and 5.0% to the proportion of CC modes.
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Figure 3. Plate substructured by designation. (a) Plate with 4 design variables; (b) localized interfaces.
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Figure 4. Plate substructured by METIS. (a) Plate with 4 design variables; (b) localized interfaces.
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Figure 5. Error verification with respect to the proportion of CC modes. (a) Designated substructuring
plate; (b) METIS substructuring plate.

Regarding a plate structure performed substructuring by METIS in Figure 4, the entire
system is composed of four substructures and four localized interfaces. There is an untrans-
formed point, which is a connection of interface sets Γ1, Γ2, Γ3. The same percentage of
modes are adopted for the reduction in both interiors and interfaces. The interior DOFs
are reduced by 35 FINMs, and 46, 36, and 27 CC modes are, respectively, used to the pre-
sented proportion of CC modes. The average errors for 50%, 40%, and 30% CC modes are
0.2%, 0.4%, and 2.1%, respectively. A higher accuracy is noticed in METIS substructuring
than in the designed substructures. However, those results could not guarantee that the
METIS substructuring approach performs better than the designed system. This is due
to the differences in the original number of interior and interface DOFs between the two
modeling, as presented in Table 3. In this presented case, a larger number of CC modes are
used than designed substructuring approaches. According to the characteristic of modal
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system reduction, overall errors gradually increase as the number of CC modes increases,
as expected, for both modeling cases.

Figure 6 compares the proposed methods and the system-level interface reduction.
For a fair comparison, the total number of untransformed interface DOFs and the number
of CC modes for each interface is equal to the applied number of system-level CC modes.
The proposed methods show compromise in accuracy regardless of substructuring methods,
while the system-level interface-reduction method presents great agreement with the
original CB method. These accuracy losses are believed to be caused by system connectivity,
partially considered, not a fully coupled system. Further investigation of accuracy will be
presented by comparing with the previous hybrid-level interface-reduction methods in the
following examples. Although the error gap is noticed, the proposed method demonstrates
acceptable reliability, with presented relative errors at nearly 10−2.
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Figure 6. Error verification with respect to substructuring methods.

Table 3. The information of localized interfaces for plate.

Interface DOFs
# of Interface

Sets
Untransformed

DOFs
# of CC Modes

Design domain 63 5 6 19
METIS: 4 subs 93 4 3 27

4.2. Shell Box–Beam

This section compares the performance of the proposed method with previous hybrid-
level interface reduction techniques. To present the performance of the previous hybrid-
level interface method, the box–beam structures are decomposed into the same number
of subdomains with METIS substructuring, as illustrated in Figures 7 and 8. The system
is designed to realize clearly isolated interface sets with multiple substructures, while the
system designed by METIS substructuring has interconnected localized interface sets and
substructures, as shown in Figure 8.

Furthermore, the applicable modeling range is also investigated with diverse box–
beam substructuring designs. For FE modeling, 360 4-node flat shell elements (MITC4) [41]
and 383 nodes are employed. The initial thickness is 25 mm for all presented beam models
and substructures. The FE modeling details are presented by comparison of FOM and
ROM in Table 2.
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(a)

(b)

Figure 7. Box–beam substructured by designation. (a) Box–beam with 4 design variables; (b) localized
interfaces.

(a)

(b)

Figure 8. Box–beam substructured by METIS. (a) Box–beam with 4 design variables; (b) localized
interfaces.

Figure 9 presents the error verification with respect to the proportion of CC modes
for the box–beam structure. According to Figure 7, four substructures construct three
independent interface sets without untransformed points to represent a modeling case ap-
plicable to the previous hybrid-level evaluation. The relative errors of the structure, which
is distinctly sectioned, are presented in Figure 9a. Despite of error discrepancy in lower
modes, the overall error level is comparable with the original CB method. Additionally,
relative errors within 20 modes are below 10−3 for all presented numbers of CC modes.

In addition, Figure 9b shows the relative errors for the system performed substructur-
ing by METIS. Compared to the original CB method, the relative errors steadily increase by
considering the number of CC modes. This is a reasonable trend of modal reduction. When
30% of CC modes are used for reduction, the average relative error is 0.17%, while for 50%
and 40% of CC modes, the relative errors are all below 10−3.
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Figure 9. Error verification with respect to the proportion of CC mods for box–beam. (a) Previous
hybrid interface reduction; (b) proposed localized interface reduction.

Corresponding to the previous investigation determining an appropriate number of
CC modes for the box beam, it turned out that employing 30% of CC modes can achieve
the desired error level, which is below 10−2 for the presented box model. Accordingly,
the previous and proposed hybrid-level CC modes are compared using 30% CC modes in
Figure 10. Furthermore, the system-level interface reduced system is also presented for
more comprehensive evaluation. The proposed method shows a higher error level than the
previous hybrid-level interface reduction. However, this discrepancy could not be evidence
to conclude that the proposed method causes a larger compromise in accuracy than the
previous method. This is because the modeling condition, such as the numbers of interior
and interface DOFs, differs even when the same proportion of CC modes are employed.
For instance, 102 and 95 CC modes are, respectively, selected as the 30% CC modes for
both designed and METIS substructuring models. The information on localized interfaces
for the beam is summarized in Table 4. According to this comparison, it can be inferred
that larger accuracy losses compared to the identical number of system-level CC modes
are influenced by the partial system coupling, even though a perfectly fair comparison
between the proposed and previous hybrid-level is not possible.
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Figure 10. Error verification with respect to substructuring methods.

In Figure 11, additional beam models that have different numbers of substructures
are presented for further investigation of applicable modeling ranges with METIS sub-
structuring. In each case, a consistent 30% proportion of CC modes is employed for each
localized interface set. The system defined by 6 substructures and 10 interfaces selects
144 CC modes, while the total interface DOFs are 480, in Figure 11a. Regarding the system
with 8 substructures in Figure 11b, substructures build 11 localized interfaces, and 170 CC
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modes are selected from 594 original interface DOFs. More details of the localized interfaces
and untransformed DOFs are presented in Table 4.

(a)

(b)

Figure 11. METIS design. (a) 6 substructuring; (b) 8 substructuring.

Table 4. The information of localized interfaces for box–beam.

Interface DOFs
# of Interface

Sets
Untransformed

DOFs
# of CC Modes

Design domain 342 3 - 102
METIS: 4 subs 330 5 12 95
METIS: 6 subs 480 10 18 144
METIS: 8 subs 594 11 42 170

Figure 12 presents the relative error comparison with respect to the number of sub-
structures. When the system has four substructures, relative error within 20 modes shows
great prediction with figures below 10−3. On the other hand, error levels with a larger
number of substructures rise, even the average relative errors are still acceptable as 0.95%
and 2.23% for six and eight substructures, respectively. It is important to note that the same
percentage of CC modes is applied to each localized interface set for reduction. This implies
that the influence of each interface on the entire system is overlooked in this investigation.
Consequently, the sensitivity analysis of each interface set would be a possible option to
improve the accuracy of the proposed method.
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Figure 12. Error verification with respect to the number of substructures.
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4.3. Wing Box

The systems presented above are unsuitable to properly demonstrate the efficiency of
the proposed method due to their inherently low number of DOFs. Moreover, interface
reduction is carried out under limited conditions, with over 30% of CC modes proportional
to entire interface DOFs. This limitation arises from the need to include rigid body modes,
aiming for higher system reduction than 30% CC modes cannot sufficiently contain rigid
body modes.

Accordingly, a large-winged structure with numerous substructures and interfaces is
presented as a final example in Figure 13. All substructures in this structure have the same
thickness value of 8 mm. The structure consists of 12,560 shell elements and 12,073 nodes,
with specific DOFs detailed in Table 2. The system is divided into 10 substructures and
28 localized interfaces by METIS substructuring, as indicated in Table 5. This section
focuses on efficiency verification, not only accuracy. Therefore, parametric studies were
also performed to evaluate the performance.

Figure 13. Wing–box modeling.

Table 5. The information of localized interfaces for wing.

Interface DOFs # of Interface Sets Untransformed DOFs # of CC Modes

Large wing 5184 28 24 578

Figure 14 presents a relative comparison with respect to the percentage of CC modes
for wing structures. The relative errors consistently increase, similar to the previous
investigations. When 1076 and 1586 CC modes are applied, which is proportional 20% or
30% to entire interface DOFs, reliable error levels are observed with the value of relative
errors are approximately 10−3. However, applying 10% CC modes compared to the entire
interface DOFs shows 10−2 error level, while the system-level method shows great accuracy
below 10−4. Nonetheless, the average relative error remains below 1%, specifically at 0.92%.
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Figure 14. Error verification with respect to CC modes.
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To assess the efficiency of the proposed method, the eigenvalue analysis is conducted
by using eigs function [42] adopted in MATLAB due to significant computational resources.
As shown in Figure 15, three values of computation time are presented: full-system, original
CMS without interface reduction, and the system reduced using the proposed CC modes
method. Despite a considerable interior reduction, there is no significant difference in
system computation time between the full system and the original CMS system. On the
other hand, the system that employed CC modes shows a great decrease in computation
time to 0.12 s. Significant time saving can be achieved with this proposed method—
approximately 5.19% of system solving time is taken compared to the original CMS.

For specific comparison in efficiency, the system matrices for CC modes comparison
between the system-level and proposed method are presented in Figure 16. Interface region
accounting for CC modes computation is marked with a yellow box on the sparsity matrix.
Figure 16b–d show partially synthesized stiffness matrices to construct semi-localized
interfaces which numbers 1, 2, and 3, and Figure 16a offers the stiffness matrix, which
is fully synthesized all substructures. For the system-level interface reduction, the CC
modes were computed by considering the system matrix, which has a 9,865,565 non-zero
value. On the other hand, the proposed method handles 1,470,616, 1,961,465, and 3,645,419
non-zero matrices for CC modes computation, respectively.
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Figure 15. System solving time for wing.
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(c) (d)

Figure 16. CC modes computation comparison. (a) System-level CC modes; (b) proposed cc modes—
interface 1; (c) proposed CC modes: interface 2; (d) proposed CC modes: interface 3.
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According to the interface matrices comparison presented in Figure 16, the CC modes
computation time comparison is also provided in Figure 17. The orange bar represents
the secondary eigenvalue analysis time for system-level CC modes computation, while
the blue bars indicate individual localized interfaces determined by the proposed method.
Most of the localized interfaces require less than 200 s for CC modes computation except for
the 13th and 23rd interfaces, while the system-level takes 1066 s. Additionally, this figure
also points out that this proposed method enables parallel computation for each interface
set. Only several interfaces connected to substructures requiring design modification are
considered for design changes, not the full size of the system interface.

System-level CC modes (s)
Proposed method for (s)

Figure 17. CC modes computation time with respect to each interface.

For further efficiency verification, simple parametric studies have been conducted in
this section considering two case scenarios. The thickness of marked substructures varies as
[8,10,12] mm, while the previous performance evaluations input consistent thickness for all
substructures. The second and eighth substructures are considered for parametric variations
following Figure 18a. For the system-level CC modes computation, 3 × 3 = 9 times
secondary eigenvalue analysis is performed on a fully coupled system. On the contrary,
eight semi-localized interface sets are associated with parameter-varied substructures.
Therefore, 8 × 3 = 24 times CC modes are computed in partially assembled systems.
For three substructures with parametric variations according to Figure 18b, the third
substructure and five semi-localized interfaces are additionally accounted for CC modes
computation; 3 × 3 = 27 times and 13 × 3 = 39 times secondary eigenvalue analysis
are, respectively, performed for system-level and proposed interface-reduction method.
The substructure information for constructing each semi-localized interface Γj is shown in
Table 6.

Figure 19 shows the CC modes computation time comparison for each parametric
case studies case. Case 1 represents parametric studies for two substructures shown in
Figure 19a, and the system-level CC modes computation took 9592.62 s, including nine
repeated computations. Meanwhile, the proposed CC modes computation takes 949.05 s,
which is less than 10% compared to the system-level CC modes computation time. Fur-
thermore, in parametric study case 2, the proposed method requires 1944.50 s, while the
system-level case takes 28,777.87 s. This figure indicates that approximately 6% of com-
putation time is consumed in comparison to the system-level computation. One of the
most significant benefits of the proposed method is the availability of parallel computation.
Therefore, only the most time-consuming interface associated with parametric variations
is accounted for computation. As a result, it can be expected to achieve at least 61 times
computational resource savings according to case 2, which has three parametric varied sub-
structures, when more substructures are associated with parametric studies. The efficiency
of CC modes computation with respect to presented parametric studies cases is organized
in Tables 7 and 8.
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(a)

(b)

Figure 18. Parametric case studies. (a) Case 1: 2 substructure varied to parametric variations;
(b) Case 2: 3 substructure varied to parametric variations.

Table 6. Adjacent substructures to construct interface Γj.

Localized-Interface Number Γj

1 2 3 4 6 10 17 18 20 25 26 27 28

Subdomains
connectivity

- - - 1, 2 1, 2, 4 2, 5 2, 4 - - - - 2, 4, 5 -
- 3, 6 1, 3 - - - - 3, 4 - 3, 4, 6 1, 3, 4 - -

6, 8 - - - - - - - 8, 9 - - - 7, 8

(a) (b)

Figure 19. CC modes computation time comparison. (a) Computation time for case 1; (b) Computa-
tion time for case 2.

Table 7. CC modes computation time comparison: 2subs parametric variations.

System-Level
Proposed Method

(Sum)
Proposed (Parallel)

# of CC modes computation 9 24 3
CC modes computation time 9,592.62 s 949.05 s 232.85 s
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Table 8. CC modes computation time comparison: 3subs parametric variations.

System-Level
Proposed Method

(Sum)
Proposed (Parallel)

# of CC modes computation 27 39 3
CC modes computation time 28,777.87 s 1,944.50 s 468.38 s

5. Conclusions

In this paper, an enhanced hybrid-level interface-reduction method was proposed
by developing an interface localization algorithm. Although the previous CMS and its
variants allow convenient parametric studies by decomposing the main structure into
independent subsystems, the methods were limited in using ROM for parametric varia-
tions as they primarily focused on the interior reduction, and as a result, the final ROMs
were not online-capable size. Since interface reduction is mandatory to be useful for ef-
ficient computation, various interface-reduction methods were continuously developed
by incorporating secondary eigenvalue analysis. Among them, the methods adopting
hybrid-level characteristic constraint (CC) modes verify the feasibility of considering de-
sign modifications at the substructural level without much accuracy loss. The proposed
method overcomes the limitation of previous hybrid-level interface reduction. Specifically,
the previous methods were only applicable to independently defined interfaces and sub-
systems. In the present work, the interface localization was realized by assigning unique
numbers based on substructural-level Boolean operations. As a result, the substructuring
and interface reduction became possible regardless of the number of interconnected in-
terfaces and substructures. The performance of the proposed method was demonstrated
for both accuracy and efficiency aspects. Compared with the methods at the system-level
CC modes, the proposed one requires less than 10 times the CC mode computation time,
resulting in a significant enhancement in the efficiency of the constructing ROM for the
parametric studies of large dynamical systems.

As a future development, the proposed interface localization method will be applicable
to the family of parametric CMS methods. The conventional parametric CMS derives ROMs
and their solutions for parametric variations in the online stage by using precomputed
offline samples with reduced subsystems. Therefore, the proposed interface localizing
method is expected to discard the interface reduction process in the online stage, whereas
the previous CMS performs the secondary eigenvalue analysis in the online stage. Addi-
tionally, this proposed method is expected to apply to the finite volume method (FVM)
expending from the FEM analysis [42–45].
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Abstract: Based on the modified Moore–Gibson–Thompson (MGT) model, transversely isotropic
visco-thermoelastic material is investigated for frequency shift and thermoelastic damping. The Green–
Naghdi (GN) III theory of thermoelasticity with two temperatures is used to express the equations
that govern heat conduction in deformable bodies based on the difference between conductive and
dynamic temperature acceleration. A mathematical model for a simply supported scale beam is
formed in a closed form using Euler Bernoulli (EB) beam theory. We have figured out the lateral
deflection, conductive temperature, frequency shift, and thermoelastic damping. To calculate the
numerical values of various physical quantities, a MATLAB program has been developed. Graphical
representations of the memory-dependent derivative’s influence have been made.

Keywords: transversely isotropic viscoelastic; beam; memory-dependent derivative; Moore–Gibson–
Thompson model; thermoelastic damping; frequency shift
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1. Introduction

In modern engineering structures, materials are often exposed to high temperatures,
which makes viscoelastic materials, such as polymer science, of great interest. A certain
amount of viscoelastic response is evident in all materials. Among the most common metals
are steel, aluminium, and copper. If a material exhibits both viscous and elastic properties
when deformed, it is termed viscoelastic. When linear materials show dependency on
both time and temperature, they are described as rheological viscoelastic materials. As
a consequence of engineering structures’ variation in temperature, approximating their
material characteristics no longer holds even in an approximation context. Temperature
affects the thermal and mechanical properties of materials, so it is necessary to consider
the temperature dependence of their properties when performing a thermal stress analysis.
Heat conductance is crucial in materials science and related sciences, especially at high
working temperatures. Depending on the circumstances, metals and other materials may
react differently to temperature changes. Free electrons are the main cause of conductivity
in metals. As a general rule, a metal’s thermal conductivity (Kelvin) is proportional to its
electric conductivity at absolute temperatures.

Visco-thermoelasticity and variational laws in irreversible thermodynamics were
discussed by Biot [1]. Using an elastic moduli model and relaxations as parameters,
Drozdov [2] developed a thermo-viscoelasticity constitutive model. Applied magneto-
thermo-viscoelastic media were studied by Bera [3]. An isotropic visco-thermoelastic
model was developed by Ezzat and El-Karamany [4] to investigate volume relaxations in
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viscoelasticity. Ezzat et al. [5] developed the equation of generalized thermo-viscoelasticity
with one relaxation time and two relaxation times, ignoring the volume’s relaxation effects.
Visco thermoelastic micro-polar transversely isotropic (TI) media were studied by Kumar
et al. [6] to determine the effect of viscosity on the amplitude ratios of plane waves. In
contrast, Green and Naghdi [7–9] presented Green–Nagdhi (GN) theories of thermoelastic-
ity with and without energy dissipation. A generalized fractional-order thermoelasticity
(FOT) model, introduced by Povstenko [10], introduced both classical thermoelasticity and
generalized thermoelasticity with GN.

Several academic works have recently analysed and interpreted the Moore–Gibson–
Thompson (MGT) equation because of its wide range of applications. There are several
important applications of the MGT equation, including fluid dynamics and viscoelastic-
ity [11]. According to Lasiecka and Wang [12], certain fluid dynamics can be modelled by a
differential equation of the third order. Quintanilla [13,14] used the MGT equation with 2T
to develop a new model of heat conduction. The modified Fourier equation, also known as
the MGT equation, is as follows:(

1 + τ0
∂

∂t

)
q = −Kij∇T − K∗

ij∇ϑ, where,
.
ϑ = T (1)

Later, the memory effect of thermoelasticity was subsequently demonstrated with a
better model of MDD (rate of sudden change dependent on past state). “MDD is defined in
an integral form of a common derivative with a kernel function on a slip-in interval”. Wang and
Li [15] presented the first-order MDD with respect to time delay τ0 > 0 for a fixed time t,
for the differentiable function f (t):

Dτ0 f (t) =
1
τ0

∫ t

t−τ0

K(t − ξ) f ′(ξ)dξ, (2)

Taylor’s series of MDD may be used to extend q(x, t + τ0) while ignoring words up to
the first order in time delay:

q(x, t + τ0) = q(x, t) + τ0Dτ0 q(x, t), (3)

Thus, Fourier’s law in the theory of generalized heat conduction is provided by Ezzat
et al. [16] using the Taylor series of MDD.

q(x, t) + τ0Dτ0 q(x, t) = −KT,i, (0 < τ0 ≤ 1), (4)

The selection of the kernel functions K(t − ξ) and τ0 is influenced by the characteristics
of the raw materials. Following Ezzat et al. [16–18], the K(t − ξ) is used here in the form

K(t − ξ) = 1 − 2β

τ0
(t − ξ) +

α2

τ2
0
(t − ξ)2 =

⎧⎪⎪⎨⎪⎪⎩
1,

1 + (ξ − t)/τ0,
ξ − t + 1,

[1 + (ξ − t)/τ0]
2,

α = 0, β = 0,
α = 0, β = 1/2,
α = 0, β = τ0/2,

α = 1, β = 1.

(5)

Despite this, several researchers such as Marin [19,20], Abbas and Marin [21], Kaur
et al. [22,23], Van Do et al. [24], Doan et al. [25], Craciun et al. [26], Lata et al. [27], Jafari
et al. [28], Craciun et al. [29], Malik et al. [30], and Sharma and Marin [31] studied the
theories of thermoelasticity. Besides this, there have not been any studies on frequency
shift and thermoelastic damping in visco-beams with the MGT and MDD theories of
thermoelasticity.

In this research, the GN III theory of thermoelasticity and the Moore–Gibson–Thompson
(MGT) equation have been revisited, and they are adopted to analyse the free vibrations
in visco-thermoelastic beams with MDD. EB beam theory has been used to formulate the
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mathematical simulation for the visco-beams. The effect of MDD on the various quantities
is graphically depicted.

2. Basic Equations

The basic equations for an anisotropic thermo-visco-elastic medium without heat
sources and body forces [8,32,33] utilizing the MGT and MDD theories are as follows:

1. The stress–displacement–temperature relation:

tij = τmCijklekl − τmβijT, (6)

where τm = 1 + η ∂
∂t , and η is the viscoelastic relaxation time due to the viscosity.

2. The strain–displacement relation:

eij =
1
2
(
ui,j + uj,i

)
, i, j = 1, 2, 3. (7)

3. The MGT thermoelastic heat conduction equation with MDD is

Kij
.
ϕ,ij + K∗

ij ϕ,ij =
(

1 + τ0Dτ0 − η2∇2
)(

βijτmT0ëij + ρCE

..
T
)

, (8)

where

T = ϕ − aij ϕ,ij, (9)

βij = Cijklαij, (10)

βij = βiδij, Kij = Kiδij, K∗
ij = K∗

i δij , i is not summed. Cijkl are elastic parameters and have

symmetry (C ijkl = Cklij = Cjikl = Cijlk

)
.

3. Mathematical Modelling of the Problem

As illustrated in Figure 1, we have taken a visco-beam with length (0 ≤ x ≤ L), width(
− b

2 ≤ y ≤ b
2

)
, and thickness

(
− h

2 ≤ z ≤ h
2

)
in Cartesian coordinates. Let the beam’s

x-axis serve as its axis. Its two endpoints should be at x = 0 and x = h, and the origin
should be located in the middle of the end at x = 0. Consider that beam is free from any
stress and strain and is at a uniform temperature T0 in a stable position. Additionally, the
upper and bottom surfaces of the beam do not experience any heat transfer; therefore,

∂ϕ

∂z
= 0, at z = ± h

2
. (11)

Figure 1. Diagram of the visco-beam.

The EB model describes that “any plane cross-section, initially perpendicular to the
axis of the beam remains plane and perpendicular to the neutral surface during bending”.
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Therefore, according to Youssef et al. [34], the following displacement components are
given for small deflection:

u(x, y, z, t) = −z
∂w
∂x

, v(x, y, z, t) = 0, w(x, y, z, t) = w(x, t), (12)

The 1D constitutive Equation (6) using Equation (12) becomes

txx = −C11τmz
∂2w
∂x2 − β1τmT, (13)

where β1 = (C 11 + C13)α1 + C13α3.
The thermoelastic parameter β3 = 2C13α1 + C33α3 does not exist along the z-axis

according to the EB hypothesis.
The flexural moment of the cross-section M(x, t) for the beam is provided by Rao [35]

as

M(x, t) = −
∫ h

2

− h
2

∫ b
2

−b
2

txxzdzdy = C11τm I
∂2w
∂x2 + β1τm MT , (14)

where

MT = b
∫ h

2

−h
2

Tzdz , (15)

I =
bh3

12
.

Since T ≡ T(x, z, t) and ϕ ≡ ϕ(x, z, t), the thermodynamic temperature of a trans-
versely isotropic beam from Equation (14) is given by

T =

{
ϕ −

(
a1

∂2 ϕ

∂x2 + a3
∂2 ϕ

∂z2

)}
. (16)

The equation for the motion of the visco-beam without pressures in the transverse
direction [35,36] is written as

∂2M
∂x2 + ρA

∂2w
∂t2 = 0, (17)

where A = bh.
Using Equation (14) in Equation (17), we obtain

C11 Iτm
∂4w
∂x4 + β1τm

∂2MT

∂x2 + ρA
∂2w
∂t2 = 0. (18)

Equation (8), with the help of Equation (12), becomes(
K∗

1 + K1
∂
∂t

)
∂2 ϕ
∂x2 +

(
K∗

3 + K3
∂
∂t

)
∂2 ϕ
∂z2 = −zβ1T0(1 + τ0Dτ0)τm

∂4w
∂x2∂t2 +

ρCE(1 + τ0Dτ0)
∂2

∂t2

{
ϕ −

(
a1

∂2 ϕ

∂x2 + a3
∂2 ϕ

∂z2

)}
.

(19)

The beam’s time harmonic behaviour may be described as

[w(x, t), ϕ(x, z, t)] = [w(x), ϕ(x, z)]eiωt. (20)

The dimensionless quantities are given as

x′ = x
L , z′ = z

L , w′ = w
L , h′ = h

L , b′ = b
L , t′ = c1

L t, η′ = c1
L η, T′ = T

T0
,

ϕ′ = ϕ
T0

, ρc2
1 = C11, t′xx = txx

β1T0
, a′1 = a1

L2 , a′3 = a3
L2 , M′

T = MT
T0L3 .

(21)
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Equation (21) is applied to Equations (18) and (19) to yield the non-dimensional version
of these equations after suppressing the primes, which is represented as

Iτ∗
m

∂4w
∂x4 + τ∗

m
β1T0L4

c11

∂2MT

∂x2 − AL2ω2w = 0, (22)

(
K∗

1 + K1
c1
L iω

) ∂2 ϕ

∂x2 +
(
K∗

3 + K3
c1
L iω

) ∂2 ϕ

∂z2 = zc2
1β1ω2(1 + τ0G)τ∗

m
∂2w
∂x2 −

ρCEc2
1ω2(1 + τ0G)

{
ϕ −

(
a1

∂2 ϕ
∂x2 + a3

∂2 ϕ
∂z2

)}
.

(23)

where τ∗
m = 1 + ηiω

G =
i
ω

⎧⎨⎩
(
1 − eiωτ0

)
i

ωτ0
− 2β

[
(1 − iωτ0)eiωτ0 − 1

(ωτ0)
2

]
+ α2

⎡⎣
(

i
(
(ωτ0)

2 − 2
)
− 2τω

)
eiωτ0 − 2i

(ωτ0)
3

⎤⎦⎫⎬⎭
4. Boundary Conditions

Let us assume that the beam is initially at rest and intact. As a result,

w(x, 0) =
∂w(x, 0)

∂t
= 0, (24)

ϕ(x, z, 0) =
∂ϕ(x, z, 0)

∂t
= 0, (25)

As considered, the ends of the beam are simply supported; therefore,

w(0, t) = w(L, t) = 0, (26)

∂2w(0, t)
∂x2 =

∂2w(L, t)
∂x2 = 0. (27)

Now imagine that there is no heat transfer between the two surfaces of the beam, i.e.,
along the bottom surface z = h

2 and the upper surface z = − h
2 , which results in

∂ϕ

∂z

(
x,

h
2

, 0
)
=

∂ϕ

∂z

(
x,

−h
2

, 0
)
= 0. (28)

5. Solution of the Problem along the Thickness Direction

Lifshitz and Roukes [37] state that the thermal gradient is zero in the y-direction.
Additionally, “due to geometry, the thermal gradients in the plane of the cross-section along the
thickness direction i.e., z-axis are much larger than those along its axis i.e., x-axis of the -beam”

(i.e., ∂2 ϕ

∂x2 � ∂2 ϕ

∂z2 , hence ∂2 ϕ

∂x2 can be ignored in Equation (22)), and hence Equation (22) for
heat conduction may be changed to

∂2 ϕ

∂z2 + ζ2
1 ϕ =

β1ζ2
1τ∗

m
ρCE

∂2w
∂x2 z, (29)

where

ζ1 =

√
ρCEc2

1ω2(1 + τ0G)(
K∗

3 + K3
c1
L iω − a3ρCEc2

1ω2(1 + τ0G)
) .

Equation (29) yields the following solution:

ϕ(x, z) =
β1τ∗

m
ρCE

(
z − sin ζ1z

ζ1cos ζ1h
2

)
∂2w
∂x2 . (30)
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Using Equation (30) in Equation (15) with the aid of Equation (16), we obtain

MT =
Iβ1τ∗

m
ρCE

(
1 +
(
−1 + a3ζ2

1

)
f (ω)

)
∂2w
∂x2 . (31)

and using Equation (31) in Equation (22), we obtain

Lω
∂4w
∂x4 − ω2w = 0, (32)

where
Lω = I

AL2 τ∗
m
[
1 + εT

(
1 −
(
1 + a3ζ2

1
)

f (ω)
]
,

εT =
β2

1T0L4

ρCE
,

f (ω) =
24

ζ3
1h3

(
ζ1h
2

− tan
ζ1h
2

)
.

Now, Equation (32) can also be written as

∂4w
∂x4 − ζ4w = 0, (33)

where

ζ4 =
ω2

Lω
.

Applying Laplace transforms defined by

w(s) =
∫ ∞

0
w(x)e−sxdx, (34)

on Equation (33) and using boundary conditions defined by Equations (26) and (27), we
obtain the following solution of Equation (33):

w(s) =
A1

2ζ

(
1

s2 + ζ2 +
1

s2 − ζ2

)
+

A2

2ζ2

(
1

s2 − ζ2 − 1
s2 + ζ2

)
. (35)

Now, taking the inverse Laplace transform of Equation (35) gives

w(x) =
A1

2ζ
(sin(ζx) + sinh(ζx)) +

A2

2ζ3 (sinh(ζx)− sin(ζx)). (36)

After including the dimensionless quantities defined by Equation (21) in the boundary
conditions (26) and (27), solving Equation (36) at x = L provides

sin(ζ)sinh(ζ) = 0. (37)

which yields ζn = nπ, n ≥ 1. Thus, the solutions for the lateral deflection from Equation (24)
and the thermal moment expressions from Equation (35) for ζn = nπ, n ≥ 1 are derived by
using (31) as follows:

w(x, t) = 1
2 ∑n

An
ζn(sin ζn+sinhζn)

{(sin ζn+sinhζn)(sin ζnx+sinhζnx)−
(−sin ζn+sinhζn)(− sinζnx + sinhζnx)}eiωnt,

(38)

MT(x, z, t) = Iβ1τ∗m
ρCE

(1 + (1

+a3ζ2
1) f (ω)

)
∑
n

Anζn
(sin ζn+sinhζn)

{(sin ζn

+sinhζn)(− sinζnx+sinhζnx)
−(−sin ζn+sinhζn)(sin ζnx+sinhζnx)}eiωnt.

(39)
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From Equation (32), the beam’s vibrational frequency is determined by

ωn = n2π2√Lω = ω0

√
1 + εT

(
1 +
(
1 + a3ζ2

1
)

f (ω), (40)

where

ω0 =
hn2π2

L
√

12

If we replace ω with ω0 and f (ω) with (ω0), we obtain the solution for all the media
having εT � 1 as follows:

ωm = ω0

√
1 + εT

(
1 +
(
1 + a3ζ2

1
)

f (ω). (41)

The thermoelastic damping (TED) quality, also known as the thermal quality Q-factor,
may be determined by

Q−1 = 2
∣∣∣∣ωn

I
ωn

R

∣∣∣∣, (42)

where n is the mode number and is related to the transcendental roots in Equation (37),
and ωn

R and ωn
I are the real and the imaginary parts of frequency ωn. Due to thermal

variations, the frequency shift (FS) may be given by

ωS =

∣∣∣∣ωn
R − ω0

ω0

∣∣∣∣. (43)

6. Particular Cases

1. We can obtain the solution of physical quantities for simply supported visco-beams
with the GN-II theory of thermoelasticity if K1 = K3 = 0 in Equations (38)–(43).

2. We can obtain the solution of physical quantities for simply supported visco-beams with
the classical theory of thermoelasticity if we take K∗

1 = K∗
3 = 0 in Equations (38)–(43).

3. We can obtain the solution of physical quantities for simply supported cubic crystal
thermoelastic visco-beams with the GN type-III theory of thermoelasticity if we take
C11 = C22 = C33, C12 = C13, C44 = C66, α1 = α3 = α′, β1 = β3 = β′, K1 = K3 =
K, K∗

1 = K∗
3 = K∗ in Equations (38)–(43).

4. We can obtain the solution of physical quantities for free vibrations in simply sup-
ported visco-beams with energy dissipation similar to Abbas [38] if we take C11 =
C33 = λ + 2μ, C12 = C13 = λ, C44 = 2μ, α1 =α3 = α’, a1 = a3 = a,K1 = K3 = K, K∗

1 =
K∗

3 = K∗ in Equations (38)–(43).

7. Results and Discussion

Physical information for cobalt material (transversely isotropic) for the beam was
selected from Dhaliwal and Singh [39] to illustrate the theoretical results:

C11 = 3.071 × 1011Nm−2, C12 = 1.650 × 1011Nm−2, C13 = 1.027 × 1010Nm−2,

C33 = 3.581 × 1011 Nm−2, C44 = 1.510 × 1011 Nm−2, CE = 4.27 × 102 Jkg−1K−1,

β1 = 7.04 × 106 Nm−2K−1, ρ = 8.836 × 103kgm−3, T0 = 298 K,

β3 = 6.90 × 106 Nm−2K−1, L = 1m, b = 0.01m

K1 = 0.690 × 102 Wm−1K−1, K3 = 0.690 × 102 Wm−1K−1,
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K∗
1 = 0.02 × 102 NSec−2K−1, K∗

3 = 0.04 × 102 NSec−2K−1,

η = 0.01, τ0 = 0.02. Here, we have taken An = 1.

The following physical data for copper, which is an isotropic material, were taken:

λ = 7.76 × 1010 Nm−2, μ = 3.86 × 1010 Nm−2, ρ = 8.954 × 103 Kgm−3,

K = 386 Wm−1K−1, α’ = 1.78 × 10−5 K−1, CE = 383.1 JKg−1K−1, T0 = 293 K,

K∗ = 1.0 × 1010 Nm−2

A program was developed in MATLAB to determine the numerical values of w,
conductive temperature ϕ, MT, Q−1, and ωS, and graphs drawn for different modes of
kernel function of MDD are presented in Figures 2–6.

 
Figure 2. Graph of the lateral deflection w with respect to length of beam with different kernel
function of MDD.

Figure 2 demonstrates the variation in the lateral deflection w with respect to the length
of the visco-beam for different modes of kernel function 1− 2β

τ0
(t − ξ) + α2

τ2
0
(t − ξ)2 of MDD

based on the values of α and β. As both ends of the visco-beam are simply supported,
from the graph, it can be observed that the lateral deflection at x = 0 and x = L is zero,
which satisfies the boundary conditions. Moreover, for the kernel function 1 + (ξ − t)/τ0
of MDD, the visco-beam shows the minimum variation as compared to when the value of
the kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly noticeable
from the graph.

Figure 3 shows the variation in thermal moment MT with the length of the beam
for different modes of kernel function 1 − 2β

τ0
(t − ξ) + α2

τ2
0
(t − ξ)2 of MDD based on the
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values of α and β. As both ends of the visco-beam are simply supported, from the graph, it
can be observed that the thermal moment at x = 0 and x = L is zero, which satisfies the
boundary conditions. Moreover, for the kernel function 1 for α = 0 and β = 0 of MDD, the
visco-beam shows the minimum variation, whereas the thermal moment is at its maximum
when the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is
clearly noticeable from the graph.

Figure 3. Graph of the thermal moment MT with length of the beam with different kernel function of
MDD.

 
Figure 4. The conductive temperature with length x of beam with different kernel function of MDD.
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Figure 5. The thermoelastic damping Q−1 with length x of beam with different kernel function of
MDD.

 
Figure 6. Graph of the frequency shift ωS with length L of the beam with different kernel function of
MDD.

Figure 4 demonstrates the variations in the conductive temperature ϕ with the length
x for different modes of kernel function 1 − 2β

τ0
(t − ξ) + α2

τ2
0
(t − ξ)2 of MDD based on the

values of α and β. As both ends of the visco-beam are simply supported, from the graph, it
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can be observed that the conductive temperature at x = 0 and x = L is zero, which satisfies
the boundary conditions. Moreover, for the kernel function 1 for α = 0 and β = 0 of MDD,
the visco-beam shows the minimum variation in conductive temperature and shows the
opposite behaviour to other values of kernel function of MDD, whereas the conductive
temperature is at its maximum when the value of kernel function is [1 + (ξ − t)/τ0]

2.
Therefore, the memory effect is clearly noticeable from the graph.

Figure 5 demonstrates the variations in the thermoelastic damping Q−1 with the length
x for different modes of kernel function 1 − 2β

τ0
(t − ξ) + α2

τ2
0
(t − ξ)2 of MDD based on the

values of α and β. For the kernel function 1 for α = 0 and β = 0 of MDD, the visco-beam
shows the maximum variation in thermoelastic damping, whereas thermoelastic damping
is at its minimum when the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the
memory effect is clearly noticeable from the graph.

Figure 6 exhibits the frequency shift ωS with length x for different modes of kernel
function 1 − 2β

τ0
(t − ξ) + α2

τ2
0
(t − ξ)2 of MDD based on the values of α and β. For the kernel

function 1 for α = 0 and β = 0 of MDD, the visco-beam shows the minimum variation
in thermoelastic damping, whereas the thermoelastic damping is at its maximum when
the value of kernel function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly
noticeable from the graph. It is observed that as the length of the beam increases, the
frequency shift ωS abruptly decreases from its highest value to zero.

8. Conclusions

A mathematical model for a simply supported scale beam was formed in a closed form
using Euler Bernoulli (EB) beam theory based on the modified Moore–Gibson–Thompson
(MGT) model to investigate the frequency shift, thermoelastic damping, and other pa-
rameters of visco-beams. The Green–Naghdi (GN) III theory of thermoelasticity with two
temperature- and memory-dependent derivatives was used to express the equations that
govern heat conduction in deformable bodies. The solutions of PDE were obtained using
Laplace transforms.

We came to the following conclusions after the discussion:

• The kernel function of the memory-dependent derivative plays a dominant role. As the
kernel function changes, the amplitudes of the lateral deflection and thermal moment
increase, but amplitude of the thermoelastic damping factor decreases with change in
the kernel function.

• It was noticed that the frequency of time harmonic sources has a significant impact on
the various properties of the beam.

• It was observed that the thermoelastic damping Q−1 grows first to reach the maximum
values before decreasing with length. For the kernel function 1 for α = 0 and β = 0
of MDD, the visco-beam shows the maximum variation in thermoelastic damping,
whereas the thermoelastic damping is at its minimum when the value of kernel
function is [1 + (ξ − t)/τ0]

2. Therefore, the memory effect is clearly noticeable from
the graph.

• As the length of the beam increases, the frequency shift ωS decreases from its high
value at the beginning to zero.

• Theoretical research and computational results demonstrate that memory effects can
amplify the thermoelastic field variations.

• Theoretical research and applications in viscoelastic materials have become crucial for
solid mechanics because of the quick development of polymer science and the plastics
industry, as well as the widespread use of materials that can withstand high tempera-
tures in contemporary technology, sensing and actuation, mechanical resonators, and
the integration of biology and geology into engineering.

176



Mathematics 2023, 11, 4416

Author Contributions: K.S.: conceptualization, effective literature review, experiments and simula-
tion, investigation, methodology, software, supervision, validation, visualization, writing—original
draft. I.K.: idea formulation, conceptualization, formulated strategies for mathematical modelling,
methodology refinement, formal analysis, validation, writing—review and editing. E.-M.C.: conceptu-
alization, effective literature review, formulated strategies for mathematical modelling, investigation,
methodology, supervision, validation, visualization, writing—review and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: No fund/grant/scholarship has been taken for this research work.

Data Availability Statement: For the numerical results, silicon material was taken from Mahdy
et al. [40].

Conflicts of Interest: The authors declare that they have no conflict of interest.

Nomenclature
δij Kronecker delta
Cijkl Elastic parameters
βij Thermal elastic coupling tensor
T Absolute temperature
T0 Reference temperature
ϕ Conductive temperature
tij Stress tensors
eij Strain tensors
ui Components of displacement
ρ Medium density
CE Specific heat
aij Two temperature parameters
ω Frequency
I Moment of inertia
C11 I Flexural rigidity of the visco-beam
s Laplace transform parameter
εT Thermoelastic coupling
A Area of cross-section
MT Thermal moment
M(x, t) Flexural moment
w(x, t) Lateral deflection
t Time
αij Linear thermal expansion coefficient
Kij Thermal conductivity
K∗

ij Materialistic constant
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Abstract: In this study, the variational method and numerical simulation technique were used to
solve the problem of bimodular functionally graded thin plates under large deformation. During the
application of the variational method, the functional was established on the elastic strain energy of
the plate while the variation in the functional was realized by changing undetermined coefficients in
the functional. As a result, the classical Ritz method was adopted to obtain the important relationship
between load and maximum deflection that is of great concern in engineering design. At the same
time, the numerical simulation technique was also utilized by applying the software ABAQUS6.14.4,
in which the bimodular effect and functionally graded properties of the materials were simulated by
subareas in tension and compression, as well as the layering along the direction of plate thickness,
respectively. This study indicates that the numerical simulation results agree with those from the
variational solution, by comparing the maximum deflection of the plate, which verifies the validity
of the variational solution obtained. The results presented in this study are helpful for the refined
analysis and optimization design of flexible structures, which are composed of bimodular functionally
graded materials, while the structure is under large deformation.

Keywords: variational solution; numerical simulation; bimodular effect; functionally graded materials;
thin circular plate; large deformation

MSC: 74K20; 74S05

1. Introduction

In the last ten years, bimodular functionally graded materials have gradually become
a new research topic in academic circles. A bimodular material [1] has different elastic
moduli in tension or compression, while a single-modulus material has the same modulus
in tension or compression. Functionally graded materials [2] (FGMs) are a new type of
composite material, generally composed of two materials, and the composition of the two
materials presents continuous gradient changes, thus avoiding interface issues effectively.
On the basis of functionally graded materials, considering the bimodular characteristics
of the material will undoubtedly increase the difficulty of analysis, not to mention the
application of this material model to the analysis of flexible structures involving large
deformation (for example, flexible thin plates [3,4]). The problem is quite challenging for the
combination of nonlinearity of materials and geometrical nonlinearity, especially in terms
of the analytical methods. Therefore, in this study, we try to conduct both analytical and
numerical research on this problem to enrich and improve existing research works in this
field. For this purpose, the review is conducted in the following order to present a complete
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research background. The first is the bimodular materials, functionally graded materials,
and their combination in recent studies; then, we briefly review the basic analytical methods
used for plates and shells; finally, the structure of this paper is presented.

Many investigations show that most materials [5,6], such as graphite, rubber, concrete,
ceramics, and biomedical materials, present different strains in tension and compression
when they are subjected to tensile stress and compressive stress of the same magnitude.
These materials have been referred to as bimodular materials by Jones [7]. In the theoretical
analysis, there are basically two material models widely adopted: Bert’s model [8] and
Ambartsumyan’s model [9]. Bert’s model is mainly used in the analysis of orthotropic
materials and laminated composites [10–12], and this model is based on the criterion of
positive and negative signs in the strain of longitudinal fibers. Ambartsumyan’s model,
which is established on the criterion of positive and negatives signs of principal stresses, is
mainly applied to isotropic materials. This model is of particular significance in the analysis
and design of structures, and our present study is based on this model. In the application
of Ambartsumyan’s model, the principal stress is generally obtained as a result of the
solution but not as a known quantity, which necessarily brings difficulties for describing
the stress state of a point. Moreover, there is also a lack of experimental results to describe
the elastic coefficient in complex stress states. Analytical solutions are only available in
a few simple cases, most of them dealing with plates and beams [13–15]. However, in
complex problems, we must turn to the finite element method (FEM) based on an iterative
strategy. During each iteration, we need to judge the principal stress state of each element,
thus acquiring a new elastic matrix used for the subsequent iteration. In the review of
Ye et al. [16], this method is referred to as a direct iterative method of variable stiffness
that has widely been used in earlier studies. Thereafter, Ma et al. [17] established a finite
element iterative program to obtain buckling critical loads of bimodular rods. Given that
the previous iteration of methods struggled because of the convergence difficulty of the
constitutive model, Du et al. [18] established a new computational framework. Their works
showed that the proposed framework can be successfully applied in solving the problem.

Functionally graded materials are a new type of composite materials, and the char-
acteristic of its composition presents continuous gradient changes along the thickness
direction, thus eliminating interface problems and presenting a smooth stress distribution.
The material has been successfully used in various engineering fields since its advent, such
as micro-electro-mechanical systems [19], aerospace engineering [20], civil engineering [21],
and acoustics [22]. There are many works on the analysis of structural elements made
of functionally graded materials, most of them dealing with beams and plates (for exam-
ple, [23]). Among the studies, few consider the bimodular effect from functionally graded
materials. As indicated above, most materials will show the bimodular effect (it is just
a matter of whether it is obvious or not); thus, functionally graded materials seem to be
no exception.

Recently, the bimodular effect of materials was further introduced into the analysis
of functionally graded materials, and some works finally emerged, including bimodular
FGM beams [24] and bimodular FGM plates [25–28]. Aiming at the bimodular FGM plates,
a simplified theory on the neutral layer under small deflection was established in [25];
thereafter, the governing equations of the large-deflection problem of bimodular FGM thin
circular plates was derived in [26]. For large-deformation problems, both the deflection
and rotation angle will increase with the increase in external loads. For this purpose, a
single-parameter perturbation method was used to solve the Föppl–von Kármán equations
without the small-rotation-angle assumption in [27], and the biparametric perturbation
method was used to solve the same problem in [28]. From the above review, it can be
seen that for the analytical solution of this problem, the method is still mostly limited to
the perturbation method, although extending from a single-parameter perturbation to a
multiple-parameter perturbation. However, the analytical method for this problem is still
relatively single. To solve this problem, various analytical methods must be sought.
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In general, for plate and shell problems, there are three analytical methods widely
used in theoretical analysis. The first one is the so-called series expansion method, in
which the series may take all kinds of functional forms, for example, the power function,
exponential function, and trigonometric function; the variational method is the second
method, which is established on an energy principle (Galerkin method and Ritz method,
for example); and the third is the perturbation technique. Each of the three methods has its
advantages and disadvantages, which are not discussed in this article.

In large-deformation problems of plates and shells, the applications of the perturbation
method and variational method both show their unique advantages. In the perturbation
method, the first step is to establish the governing equation expressed in terms of the un-
known displacement and stress. Then, the unknown displacement and stress are expanded
in the form of ascending powers with respect to a certain small parameter (perturbation
parameter). By substituting the expansions into the governing equations and boundary con-
ditions, a set of equations determining the approximate solution of all levels are obtained.
Due to the fact that the perturbation parameter either appears explicitly or is introduced
artificially, in 1947, Chien [29] first selected the maximum deflection of thin plates as a
perturbation parameter to acquire the perturbation solution successfully. Compared with
the experimental data, Chien’s solution is accurate and regarded as a landmark. For a long
period of time, Chien’s solution has been cited in subsequent studies. In the variational
method, especially in the displacement variational method, that is, the Ritz method, the
first step is to prescribe the displacement containing undetermined coefficients, and the
prescribed displacement should satisfy the boundary conditions. As the second step, the
energy functional is established, in which the total strain energy stored in the elastic body
and the work done by external loads are determined in advance. By substituting the pre-
scribed displacement into the energy functional, the so-called variation is realized only by
the change in coefficients, thus determining the unknown coefficients and finally obtaining
the displacement.

For large-deflection problems of thin circular plates, both Chien’s perturbation solu-
tion [29] and the corresponding variational solution [30] have given satisfactory results
in the literature. Compared with the perturbation method, the variational method has
a distinct advantage. Due to the fact that the displacement variational equation itself
represents the equilibrium equation and stress boundary conditions, it naturally avoids the
consideration for the equilibrium condition of thin plates, while in the perturbation method,
the establishment of an equation of equilibrium is necessary and somewhat complicated.
Recent studies [31,32] also indicated that the variational method can be successfully used
in the analysis of plates and shells. First, Xue et al. [31] adopted the variational method
to obtain the critical loads of cantilever vertical plates with different moduli. Thereafter,
He et al. [32] also used the variational method to solve bimodular thin shells under large
deformation. The studies indicated that the variational method can be used for the analyti-
cal investigation of flexible plate and shell structures, but the introduction of nonlinearity
of materials will increase the complexity in the analysis. From the currently collected
literature, it seems that there is still no application of the variational method to bimodular
functionally graded thin plates under large deformation.

In this study, the variational method of displacement is applied to solve the large
deformation problem of bimodular functionally graded thin circular plates. The purpose
and scope of this work are to seek a feasible analytical method for this problem and, at
the same time, this analytical method is verified by the appropriate numerical simulation
technique. From point of view of the nonlinearity of problems, the analytical solution
for bimodular functionally graded thin plates under large deformation is challenging
because the nonlinearities of materials and geometry that are intertwined further makes
the obtainment of analytical solution more complicated. To this end, the whole article
is organized as follows. In Section 2, the variational method and the bimodular FGM
thin circular plate problem are briefly described. In Section 3, the physical equations
of bimodular functionally graded materials and the geometrical relations under large
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deformation are presented. In Section 4, the total strain energy of the plate is derived first
and then the Ritz method is adopted to solve the large deformation problem of bimodular
functionally graded thin circular plates. Section 5 shows the numerical simulation and the
comparisons with the variational solution and the previous perturbation solution. Section 6
shows the corresponding results and discussion, and the concluding remarks are given
in Section 7.

2. Method and Problem

2.1. Displacement Variational Method

In a spatial axisymmetric problem of elasticity, the cylindrical coordinate system
is established as O-rθz, in which O denotes the origin; r and θ denote the radial and
circumferential direction, respectively; and z denotes the direction normal to the rOθ plane,
as shown in Figure 1. Let σr, σθ , and σz be the normal stress along the radial, circumferential,
and z directions, respectively; and τrθ = τθr, τrz = τzr, and τzθ = τθz be the three shearing
stress components. Due to the axisymmetric characteristic, τrθ = τθr = 0 and τzθ = τθz = 0,
and there are four stress components in total remaining, σr, σθ , σz, and τrz = τzr, which
are the functions of r and z (please refer to Figure 1). Let εr, εθ , and εz be the normal strain
along the radial, circumferential, and z directions, respectively; and let γzr be the shearing
strain of r and z directions. In addition, let ur, uθ , and w be the radial, circumferential, and z
direction displacements, respectively. Note that, due to the axisymmetry, uθ = 0.

 
(a) 

 
(b) 

Figure 1. Cont.
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(c) 

Figure 1. Stresses in a spatial axisymmetric problem in cylindrical coordinate system: (a) hexahedron
element in cylindrical coordinate system; (b) stresses on rOz plane; (c) stresses on rOθ plane.

The geometrical equation of the spatial axisymmetric problem gives [33]

εr =
∂ur

∂r
, εθ =

ur

r
, εz =

∂w
∂z

, γzr =
∂ur

∂z
+

∂w
∂r

. (1)

At the same time, the physical equation of the spatial axisymmetric problem gives [33]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εr =
1
E [σr − μ(σθ + σz)]

εθ = 1
E [σθ − μ(σz + σr)]

εz =
1
E [σz − μ(σr + σθ)]

γzr =
2(1+μ)

E τzr

, (2a)

where μ and E are the Poisson’s ratio and modulus of elasticity, respectively. Alternatively,
we may give another form of the physical equation as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σr =
E

1+μ

[
μ

1−2μ (εr + εθ + εz) + εr

]
σθ = E

1+μ

[
μ

1−2μ (εr + εθ + εz) + εθ

]
σz =

E
1+μ

[
μ

1−2μ (εr + εθ + εz) + εz

]
τzr =

E
2(1+μ)

γzr

. (2b)

The total strain energy stored in the whole elastic body, U, is expressed in stress and
strain as

U =
1
2

�
(σrεr + σθεθ + σzεz + τzrγzr)dV. (3)

Obviously, via the geometrical equation and physical equation, the strain potential energy
may be expressed in terms of the displacement components, ur and w, which opens
possibilities for the application of the displacement variational method.

Under a cylindrical coordinate system, we suppose that a spatial axisymmetric elastic
body is subjected to external forces including the body force and surface force along the r,
θ, and z directions; that is, Fr, Fθ , and Fz, as well as Fr, Fθ , and Fz, and the elastic body are
now in equilibrium. The resulting displacements, ur, uθ , and w, should satisfy the equation
of equilibrium, displacement boundary conditions, as well as stress boundary conditions.
If the displacements cause minor changes allowed by the boundary conditions, the new
displacements will become (note that, due to the axisymmetry, uθ = 0)
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u∗
r = ur + δur, w∗ = w + δw, (4)

where δur and δw are the virtual displacements that occur. During the virtual displacement,
if there are no changes in thermal and kinetic energies, according to the principle of energy
conservation, the increment in strain potential energy, δU, is equal to the work done by
the external forces; therefore, the displacement variational equation may be obtained
as follows [33]

δU =
�

(Frδur + Fzδw)dV +
�

(Frδur + Fzδw)dS, (5)

which is referred to as the Lagrangian variational equation. This variational equation
provides an approximate solution to elastic problems. More specifically, if a group of
displacements containing a series of unknown coefficients satisfy the displacement bound-
ary conditions, Equation (5) may be used for the determination of these coefficients, thus
obtaining the displacement.

The displacement expression is taken as

ur = ur0 + ∑
m

Amurm, w = w0 + ∑
m

Cmwm, (6)

where Am and Cm are the independent coefficients; ur0 and w0 are the specified functions
whose boundary value is equal to the known quantity at the boundary; and urm and wm
are given functions that are equal to zero at the boundary. Therefore, regardless of how
Am and Cm are taken, the displacements ur and w always satisfy the boundary conditions.
Note that because the displacement variation is obtained only by changing Am and Cm,
according to Equation (6), the variation of displacement is

δur = ∑
m

urmδAm, δw = ∑
m

wmδCm. (7)

The variation of strain energy gives

δU = ∑
m

(
∂U

∂Am
δAm +

∂U
∂Cm

δCm

)
. (8)

Substituting Equations (7) and (8) into Equation (5) will yield

∑
m

(
∂U

∂Am
−

�
FrurmdV −

�
FrurmdS

)
δAm

+∑
m

(
∂U

∂Cm
−

�
FzwmdV −

�
FzwmdS

)
δCm = 0

. (9)

Because the variations δAm and δCm are arbitrary and independent from one another, the
coefficients of these variations in Equation (9) must be zero, thus obtaining the following
two relations: ⎧⎨⎩

∂U
∂Am

=
�

FrurmdV +
�

FrurmdS

∂U
∂Cm

=
�

FzwmdV +
�

FzwmdS
, (10)

which are used for solving the undermined coefficients; thus, the displacement may be
obtained via Equation (6). In many references [30,33,34], the variational method based on
displacement is also called the Ritz method.

2.2. Description of Problem

As shown in Figure 2, a bimodular FGM thin circular plate is subjected to a transversely
uniformly distributed load q, in which t is the plate thickness and a denotes the radius of
the plate. The origin O of cylindrical coordinates system (O-rθz) is set at the plate center on
the neutral layer; r, θ, and z denote the radial, circumferential, and transverse coordinates,
respectively. For the reason of axisymmetry, θ is not depicted in Figure 2.
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Figure 2. Sketch of bimodular FGM thin circular plate.

Note that in Figure 2, the dot-dashed line stands for the location of the unknown
neutral layer of the plate, which is determined next. In general, due to the introduction
of bimodular functionally graded materials, the neutral layer does not coincide with the
geometrical middle plane of the plate. In Figure 2, t1 and t2 are the tensile thickness and
compressive thickness, respectively, and the corresponding modulus of the material on
the two thicknesses is the tensile modulus E+(z) and compressive modulus E−(z), which is
a function of z since the functionally graded property is varied along the thickness direc-
tion. To facilitate the application of the displacement variational method, the prescribed
displacement should satisfy all displacement boundary conditions. Thus, the constraints
for the thin circular plate are considered as fully fixed on its peripheral.

For the convenience of differential and integral operations, E+(z) and E−(z) are defined
as exponent-type functions [25], such that

E+(z) = E0eα1z/t, E−(z) = E0eα2z/t, (11)

where α1 and α2 are two graded indices of the tensile zone and compressive one, respec-
tively, and E0 is the elastic modulus on the neutral layer. From Equation (11), it is found that
when α1 = α2 = 0 or z = 0, E+(z) = E−(z) = E0. Meanwhile, according to common practice,
the Poisson’s ratio is assumed as two constants, μ+ and μ−, ignoring the gradient change
along the direction of z.

In addition, the determination of the unknown neutral layer (t1 and t2) may be via two
different conditions, according to our previous study [25]. One is the equilibrium condition,
that is, the radial and circumferential normal forces acting on the differential element are
zero; the other is the continuity condition, that is, the stresses acting on the neutral layer
are continuous. In [25], the equilibrium condition gives

A+
1

1 − μ+
+

A−
1

1 − μ− = 0, (12a)

while also in [25], the continuity condition gives
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A+
1

1 − (μ+)2 +
A−

1

1 − (μ−)2 = 0, (12b)

in which ⎧⎪⎪⎪⎨⎪⎪⎪⎩
A+

1 =
∫ t1

0 zeα1z/tdz =

[(
tt1
α1

− t2

α2
1

)
eα1t1/t + t2

α2
1

]

A−
1 =

∫ 0
−t2

zeα2z/tdz =

[(
tt2
α2

+ t2

α2
2

)
e−α2t2/t − t2

α2
2

] . (13)

The obtainment process in detail for Equation (12a,b) may refer to our previous
study [25], so there is no need to repeat the derivation process again. During the obtainment
of Equation (12a,b), we first need to give the functional forms of E+(z) and E−(z) for the
subsequent integral operation, which is also the reason why Equation (11) is given first.

In addition, we note that for the two solutions concerning the neutral layer, it is
obvious that the difference between them is slight due to the fact that the values for the
Poisson’s ratio generally fall into the range of 0 to 0.3; also in Equation (12a,b), there is
always a larger number compared to it (here, it is unit 1) before the Poisson’s ratio, thus
making the influence of Poisson’s ratio on the solution small. Moreover, according to
our previous study [35], if the influence of Poisson’s ratio is completely neglected, both
Equation (12a,b) are reduced to A+

1 + A−
1 = 0, which is exactly the solution used for the

determination of the unknown neutral axis of bimodular FGM beams.

3. Geometrical and Physical Equations of Thin Circular Plates

Note that in a spatial axisymmetric problem, there exist four stress components in total,
σr, σθ , σz, and τrz, and their corresponding strain components, εr, εθ , εz, and γrz; thus, the
geometrical and physical relations will involve these stresses and strains. In the bending
problem of thin plates, according to the classical Kirchhoff hypothesis, εz is negligibly
small and γrz may be regarded as zero; thus, the geometrical and physical equations will
finally involve the two main stresses, σr and σθ , as well as the corresponding strains, εr and
εθ . Note that σz and τrz are not zero; they will participate in the equilibrium conditions;
however, only the geometric and physical relations are discussed here.

3.1. Geometrical Equations under Large Deformation

The geometrical relation under small-deflection bending may be expressed in terms of
the curvature [33] as follows, according to the classical Kirchhoff hypothesis:

εrb =
z
ρr

, εθb =
z
ρθ

, (14)

where εrb and εθb are the radial and circumferential strain under small-deflection bend-
ing, respectively; ρr and ρθ are the curvature radius along the radial and circumferential
directions, respectively; and in the case of small rotation angle, they are the following
familiar forms [33]:

1
ρr

= −d2w
dr2 ,

1
ρθ

= −1
r

dw
dr

, (15)

where w is the transverse displacement or the deflection. Thus, the geometrical relation
under small-deflection bending may be expressed in terms of w as follows:

εrb = −z
d2w
dr2 , εθb = −z

1
r

dw
dr

. (16)

At the same time, the geometrical relation between in-plane displacements and in-plane
strain will give [33]

εrm =
dur

dr
+

1
2

(
dw
dr

)2
, εθm =

ur

r
, (17)
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where εrm and εθm are the in-plane strains along the radial and circumferential directions,
respectively; ur and w are the radial displacement and deflection, as indicated above.
Finally, the total geometrical relation will give⎧⎪⎨⎪⎩

εr = εrm + εrb = dur
dr + 1

2

(
dw
dr

)2
− z d2w

dr2

εθ = εθm + εθb = ur
r − z 1

r
dw
dr

. (18)

If the plate is under small deflection, the above relation will change into the form of
Equation (16). In the case of small deflection, only the bending effect is considered while
the membrane effect is neglected.

3.2. Physical Equations

We suppose the radial and circumferential bending stresses in tensile and compressive
zones are σ+/−

rb and σ+/−
θb , respectively, in which the subscript b stands for the bending,

and the stress–strain relations, in the tensile zone, will give⎧⎪⎪⎨⎪⎪⎩
σ+

rb = E+(z)
1−(μ+)2 (εrb + μ+εθb)

σ+
θb = E+(z)

1−(μ+)2 (εθb + μ+εrb)

, at 0 ≤ z ≤ t1, (19a)

and in the compressive zone,⎧⎪⎪⎨⎪⎪⎩
σ−

rb = E−(z)
1−(μ−)2 (εrb + μ−εθb)

σ−
θb = E−(z)

1−(μ−)2 (εθb + μ−εrb)

, at − t2 ≤ z ≤ 0. (19b)

At the same time, we note that under large deformation, the in-plane stresses acting on
the whole thickness of the cross-section are always tensile; thus. the membrane stress may
be changed to σ+

rm and σ+
θm, in which the subscript m stands for the membrane stress, and

the elastic modulus and Poisson’s ratio may also be changed to E+(z) and μ+, respectively.
The physical equation of in-plane deformation may be expressed, along the whole thickness
direction, as ⎧⎪⎪⎨⎪⎪⎩

σ+
rm = E+(z)

1−(μ+)2 (εrm + μ+εθm)

σ+
θm = E+(z)

1−(μ+)2 (εθm + μ+εrm)

, at − t2 ≤ z ≤ t1. (20)

Next, the geometrical and physical equations obtained above are used for the establishment
of the functional of energy.

4. Displacement Variational Method

4.1. Total Strain Energy

The total strain energy, U, consists of the energy produced by the bending deformation,
Ub, and the energy produced by the deformation of middle surface, Um, that is [30],

U = Ub + Um, (21)

where the subscript b denotes the bending deformation and the subscript m denote the
in-plane membrane deformation, which is consistent with the above notational conventions
in geometrical and physical equations.

First, the strain energy produced by the middle surface deformation, Um, is computed
as follows [30]:

Um =
1
2

�
V

(
σ+

rmεrm + σ+
θmεθm

)
dV. (22)
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Substituting Equation (20) into Equation (22) and also noticing that the lower limit and
upper limit of the integral along the z direction are −t2 and t1, respectively, and dV = dzdS,
Equation (22) may be written as

Um =
1
2

1

1 − (μ+)2

∫ t1

−t2

E+(z)dz
�
S

[
(εrm)

2 + (εθm)
2 + 2μ+εrmεθm

]
dS. (23)

Also, substituting Equation (17) into Equation (23) will yield

Um =
1
2

1

1 − (μ+)2

∫ t1

−t2

E+(z)dz
�
S

⎧⎨⎩
[

dur

dr
+

1
2

(
dw
dr

)2
]2

+
(ur

r

)2
+ 2μ+ ur

r

[
dur

dr
+

1
2

(
dw
dr

)2
]⎫⎬⎭dS. (24)

Thus, Um is expressed in terms of ur and w. Considering Equation (11), we have

A0 =
∫ t1

−t2

E+(z)dz =
∫ t1

−t2

E0eα1z/tdz =
E0t
α1

(
eα1 − 1
eα1t2/t

)
, (25)

and also noting dS = rdθdr, Um may be further computed as

Um =
πA0

1 − (μ+)2

∫ ⎧⎨⎩r

[
dur

dr
+

1
2

(
dw
dr

)2
]2

+
ur

2

r
+ 2μ+ur

[
dur

dr
+

1
2

(
dw
dr

)2
]⎫⎬⎭dr. (26)

The energy produced by the bending deformation, Ub, can be derived by the above
subareas in tension and compression, that is,

Ub =
1
2

�
V+

(
σ+

rbεrb + σ+
θbεθb

)
dV +

1
2

�
V−

((
σ−

rbεrb + σ−
θbεθb

))
dV. (27)

Substituting Equation (19a,b) into Equation (27), we have

Ub = 1
2

1
1−(μ+)2

�
V+

E+(z)
[
(εrb)

2 + (εθb)
2 + 2μ+εrbεθb

]
dV

+ 1
2

1
1−(μ−)2

�
V−

E−(z)
[
(εrb)

2 + (εθb)
2 + 2μ−εrbεθb

]
dV

. (28)

Substituting Equation (16) into Equation (28), and also noticing that the range of integrals
in the tensile term is from 0 to t1 while the range in the compressive term is from −t2 to 0,
we have

Ub = 1
2

1
1−(μ+)2

∫ t1
0 z2E+(z)dz

� [( d2w
dr2

)2
+
(

1
r

dw
dr

)2
+ 2μ+ 1

r
dw
dr

d2w
dr2

]
dS

+ 1
2

1
1−(μ−)2

∫ 0
−t2

z2E−(z)dz
� [( d2w

dr2

)2
+
(

1
r

dw
dr

)2
+ 2μ− 1

r
dw
dr

d2w
dr2

]
dS

. (29)

If we let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+
2 = 1

1−(μ+)2

∫ t1
0 z2E+(z)dz = E0

1−(μ+)2

∫ t1
0 z2eα1z/tdz

= E0
1−(μ+)2

[(
2t3

α3
1
+

t2
1t

α1
− 2t2t1

α2
1

)
eα1t1/t − 2t3

α3
1

]
A−

2 = 1
1−(μ−)2

∫ 0
−t2

z2E−(z)dz = E0
1−(μ−)2

∫ 0
−t2

z2eα2z/tdz

= E0
1−(μ−)2

[
−
(

2t3

α3
2
+

t2
2t

α2
+ 2t2t2

α2
2

)
e−α2t2/t + 2t3

α3
2

]
, (30)
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and also noting dS = rdθdr, Um may be finally computed as

Ub = πA+
2
∫ [

r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
+ 2μ+ dw

dr
d2w
dr2

]
dr

+πA−
2
∫ [

r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
+ 2μ− dw

dr
d2w
dr2

]
dr

. (31)

Further, Equation (31) may be simplified if the peripheral of the circular plate is fully fixed.
Note that the last term of the integrand in Equation (31) may be written as

∫ a

0

d2w
dr2

dw
dr

dr =
∫ a

0

dw
dr

d
(

dw
dr

)
=

1
2

(
dw
dr

)2
∣∣∣∣∣
a

0

, (32)

in which a is the radius of the circular plate, as shown in Figure 2. If the peripheral of
the circular plate is fully fixed, we may have dw/dr = 0 at r = a; at the same time, the
axisymmetric condition also gives dw/dr = 0 at r = 0; it is obvious that, lastly, we have∫ a

0

d2w
dr2

dw
dr

dr = 0. (33)

Thus, Equation (32) is simplified as

Ub = π
(

A+
2 + A−

2
)∫ [

r
(

d2w
dr2

)2

+
1
r

(
dw
dr

)2
]

dr = πD∗
∫ [

r
(

d2w
dr2

)2

+
1
r

(
dw
dr

)2
]

dr, (34)

in which D* is exactly the bending stiffness of the bimodular FGM plate,

D∗ = A+
2 + A−

2 , (35)

which indicates that the bending stiffness is still obtained via the derivation of bending
strain energy, not via the equilibrium relation in our previous study [25].

Finally, we obtain the total strain potential energy, U,

U = Ub + Um = πD∗∫ [r
(

d2w
dr2

)2
+ 1

r

(
dw
dr

)2
]

dr

+ πA0
1−(μ+)2

∫ {
r
[

dur
dr + 1

2

(
dw
dr

)2
]2

+ ur
2

r + 2μ+ur

[
dur
dr + 1

2

(
dw
dr

)2
]}

dr
, (36)

which is expressed in terms of the displacement components, ur and w. Note that for the
case of small deflection, in Equation (36), only the bending term Ub is retained, while the
membrane force term Um is omitted.

4.2. Ritz Method

For the large-deformation problem of thin circular plates, we take the following
displacement components (note that due to the axisymmetry, uθ = 0):

ur = ∑
m

Amurm, w = ∑
m

Cmwm, (37)

where Am and Cm are the independent coefficients, and urm and wm are the specified
functions that are equal to zero on the boundaries. Thus, the displacements, ur and w,
always satisfy displacement boundary conditions. According to the variational method
in Section 2.1 and also considering Equation (10), the following two variational equations
may be obtained:

∂U
∂Am

=
�

FrurmdV +
�

FrurmdS = 0 (38)

and
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∂U
∂Cm

=
�

FzwmdV +
�

FzwmdS =
�

qwmdS = 2π
∫

qwmrdr, (39)

where Fz = q. Equations (38) and (39) are used for solving Am and Cm. We adopt the
following forms of the radial displacement and deflection:

ur =
(

1 − r
a

) r
a

[
A0 + A1

r
a
+ A2

( r
a

)2
+ · · ·

]
(40)

and

w =

(
1 − r2

a2

)2[
C0 + C1

(
1 − r2

a2

)
+ C2

(
1 − r2

a2

)2

+ · · ·
]

. (41)

Obviously, regardless of how the coefficients are chosen, the displacements satisfy the
boundary conditions of displacement at the peripheral:

ur = 0, w = 0,
dw
dr

= 0 at r = a, (42)

and the axisymmetric conditions at the center:

ur = 0,
dw
dr

= 0 at r = 0. (43)

According to the conclusion from [30,33,34], by taking the first few terms, the variational
method can give satisfactory results. Thus, in the next computation, for convenience, we
take A0 and A1 in Equation (40) and C0 in Equation (41) and then substitute these two
displacement formulas into Equation (34):

Ub =
32πD∗

3a2 C2
0. (44)

And substituting these displacement formulas into Equation (26), we have

Um = E0πt
1260[1−(μ+)2]α1a2eα1t2/t (e

α1 − 1)

×
(

328μ+aA0C2
0 + 176μ+aA1C2

0 + 315a2 A2
0 + 378a2 A0 A1

−184aA0C2
0 + 147a2 A2

1 + 16aA1C2
0 + 384C4

0

) . (45)

In addition,

2π
∫

qwmrdr = 2πq
∫ a

0

(
1 − r2

a2

)2

rdr =
π

3
qa2. (46)

According to Equations (21), (38), and (39), we have

∂

∂A0
(Ub + Um) = 0,

∂

∂A1
(Ub + Um) = 0, (47)

and
∂

∂C0
(Ub + Um) =

π

3
qa2. (48)

Substituting Equations (44) and (45) into Equation (47), we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂U
∂A0

= E0πt
1260[1−(μ+)2]α1a2eα1t2/t (e

α1 − 1)

(
328μ+aC0

2 + 630a2 A0

+378a2 A1 − 184aC0
2

)
= 0

∂U
∂A1

= E0πt
1260[1−(μ+)2]α1a2eα1t2/t (e

α1 − 1)

(
176μ+aC0

2 + 378a2 A0

+294a2 A1 + 16aC0
2

)
= 0

, (49)
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and then we express A0 and A1 with C0:

A0 = − C2
0

126a
(
89μ+ − 179

)
, A1 =

C2
0

42a
(
13μ+ − 79

)
. (50)

At the same time, substituting Equations (44)–(46) into Equation (48), we have

E0πt
1260[1−(μ+)2]α1a2eα1t2/t (e

α1 − 1)

⎛⎝ 656μ+aA0C0 + 352μ+aA1C0

−368aA0C0 + 32aA1C0 + 1536C3
0

⎞⎠
+ 64πD∗

3a2 C0 − π
3 qa2 = 0

. (51)

Substituting Equation (50) into Equation (51), we finally have

HC3
0 +

64D∗

3
C0 =

1
3

qa4, (52)

where

H = − 2E0t(eα1 − 1)

19845[1 − (μ+)2]α1eα1t2/t

[
2791(μ+)

2 − 4250μ+ − 7505
]
. (53)

Thus, C0 may be solved and, according to Equation (50), A0 and A1 may also be obtained
accordingly. Once the displacements become known, the corresponding stresses and strains
may be obtained. Note that C0 also stands for the central deflection of the thin circular plate;
therefore, Equation (52) presents the important relationship of load vs. central deflection.
In order to better clarify the solution process of the variational method, we add a flow block
diagram for reference (please see Figure 3).

 
Figure 3. Block diagram of solution process of displacement variational method.

In addition, we note that the above solution is derived on the simple form of the
displacement functions ur and w; that is, A0 and A1 are taken in Equation (40), and only C0
is taken in Equation (41). Although the next comparison with the numerical simulation
will show its reliability in the case of small-number terms, for higher precision, more terms
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in displacement functions ur and w are necessary; thus, the computation for more terms
was also conducted. But, for the sake of coherence of this study, we put this part into
Appendix A for interested readers, in which A0, A1, and A2 are taken in Equation (40) and
C0 and C1 are taken in Equation (41).

5. Numerical Simulation and Comparison with Variational Solution

We use the software ABAQUS6.14.4 to conduct the numerical simulation. When
constructing the computational model of a thin circular plate, the first step is to create the
three-dimensional solid diagram based on the real shape and size. In our study, the radius
of the thin plate, a, is taken as 10 m, and the thickness of the plate, t, is taken as 0.2 m.
The peripheral of the circular plate is fully fixed and the load magnitudes take different
values, ranging from 10 kPa to 200 kPa, with an interval of 10 kPa. The given values in the
numerical simulation are listed in Table 1. A three-dimensional solid element with eight
nodes, C3D8, is adopted to conduct the numerical computation. Figure 4 shows the grid
division, the loading, and the boundary conditions.

  
(a) (b) 

Figure 4. Thin circular plate model. (a) Grid division; (b) loading and boundary conditions.

Table 1. Given values in numerical simulation.

Physical Quantities Taken Values

plate radius a 10 m
plate thickness t 0.2 m

neutral layer modulus E0 2 × 1010 Pa
load magnitudes q 10 kPa to 200 kPa

tensile grade index α1 0.5
compressive grade index α2 0.1

tensile Poisson’s ratio μ+ 0.35
compressive Poisson’s ratio μ− 0.25

In our numerical computation, the simulation for bimodular functionally graded
materials presents a slight degree of complexity. In ABAQUS6.14.4 software, the realization
for functionally graded properties of materials is by layering, but before layering, in
consideration of the bimodular effect, we must determine the position of the neutral layer
first, that is, only after the subareas are in tension and compression can we effectively layer.
To this end, we need to use Equation (12a) or (12b) and the data from Table 1 to determine
the tensile thickness and compressive one first, which give t1 = 0.4917t and t2 = 0.5083t,
respectively, where t is the thickness of the plate. Then, the thin circular plate is divided
into eight layers along the thickness direction (see Figure 5), taking the middle modulus as
the average modulus of this layer. The moduli of elasticity and Poisson’s ratios for these
eight layers are computed and listed in Table 2, which are used for the property module
during the material editing.
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Figure 5. Layering sketch along the direction of plate thickness.

Table 2. Modulus of elasticity of 8-layer plate (t is the plate thickness, m).

Distance from Plate Top
(m)

Modulus of Elasticity
(×1010 Pa)

Poisson’s Ratio

0.0625t 1.913 0.25
0.1875t 1.937 0.25
0.3125t 1.961 0.25
0.4375t 1.986 0.25

0.5625t 2.055 0.35
0.6875t 2.186 0.35
0.8125t 2.326 0.35
0.9375t 2.475 0.35

Figure 6 shows some representative displacement nephograms under different mag-
nitudes of load, including 20 kPa, 40 kPa, 60 kPa, 80 kPa, 100 kPa, and 120 kPa. From
Figure 6, it is easy to see that the maximum deflection occurs at the center of the thin
circular plate, as we predicted; the central deflection gradually increases with the increase
in load magnitude; and from the center of the plate to the edge of the plate, the deflection
gradually decreases, as predicted in our theoretical solution.

Table 3 lists the central deflection values under different load magnitudes (from
q = 10 kPa to q = 200 kPa, with an interval of 10 kPa). For an effective comparison, in
Table 3, we also list two other groups of value from different theoretical solutions, the
variational solution in this study and the perturbation solution in our previous study [26],
in which the results from the variational solution are obtained via Equation (52) in this
study; the results from the perturbation solution are based on Equation (104) in [26]. By
comparing the values of central deflection in Table 3, it is easily found that the values from
the three solutions are basically consistent, but there still exist small differences between
them. However, the differences are negligibly small and generally acceptable, which
verifies the validity of the variational method.

Table 3. Numerical results of central deflection of three solutions.

q (kPa)
Central Deflection w0 (m)

Result from Analytical Calculations Result from [26] Result from FEM

10 0.0898 1 0.0897 2 0.0895 0.0885
20 0.1538 0.1514 0.1516 0.1491
30 0.2003 0.1953 0.1963 0.1925
40 0.2368 0.2293 0.2311 0.2263
50 0.2670 0.2571 0.2602 0.2542
60 0.2931 0.2808 0.2851 0.2781
70 0.3160 0.3015 0.3070 0.2991
80 0.3366 0.3200 0.3268 0.3179
90 0.3554 0.3367 0.3447 0.3350
100 0.3727 0.3519 0.3613 0.3507
110 0.3887 0.3660 0.3766 0.3653
120 0.4037 0.3790 0.3910 0.3789
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Table 3. Cont.

q (kPa)
Central Deflection w0 (m)

Result from Analytical Calculations Result from [26] Result from FEM

130 0.4178 0.3913 0.4045 0.3917
140 0.4312 0.4028 0.4173 0.4038
150 0.4438 0.4137 0.4294 0.4152
160 0.4558 0.4240 0.4409 0.4262
170 0.4674 0.4338 0.4519 0.4366
180 0.4784 0.4432 0.4625 0.4466
190 0.4890 0.4522 0.4726 0.4562
200 0.4992 0.4608 0.4824 0.4654

1 Results from the variational solution, in which A0 and A1 are taken in Equation (40) and C0 is taken in Equation
(41) (please refer to Section 4.2). 2 Results from the variational solution, in which A0, A1, and A2 are taken in
Equation (40), and C0 and C1 are taken in Equation (41) (please refer to Appendix A).

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Displacement nephogram under different load magnitudes: (a) q = 20 kPa; (b) q = 40 kPa;
(c) q = 60 kPa; (d) q = 80 kPa; (e) q = 100 kPa; and (f) q = 120 kPa.
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6. Results and Discussion

6.1. Numerical Comparision of Three Solutions

From the current results, it is found that if the numerical solution can be regarded
as a standard to test the validity of two theoretical solutions, the perturbation solution is
closest, followed by the variational solution. The values from the variational solution are
slightly larger than the values from the perturbation solution, which agrees with the results
of classical large-deflection solutions from [29,30]. As indicated in the Introduction, in the
literature, both Chien’s perturbation solution [29] and the variational solution [30] give
satisfactory results. In Chien’s perturbation solution [29], the relationship between load
and maximum deflection gives

qa4

64D
= w0

[
1 + 0.544

(w0

t

)2
]

, (54)

while, in the variational solution [30], the same relationship is

qa4

64D
= w0

[
1 + 0.486

(w0

t

)2
]

, (55)

where a is the radius of a thin circular plate, t is the plate thickness, w0 is the central
deflection, q is the uniformly distributed loads, and D is the bending stiffness of the plate.
It is readily found that they are quite close. In addition, we note that if other quantities
in this relationship take the same values, the value of the maximum deflection from the
variational solution is a little greater than the value from the perturbation solution.

The above conclusion is drawn on the basis of the variation solution with fewer terms.
If the variation solution with more terms is taken, another phenomenon should be noticed.
From the data of the second column marked with footer 2, it is easy to see that if more
terms in the displacement functions are taken, the precision of the variational solution will
be significantly improved, even exceeding that of the perturbation solution.

It should be noted here that the observed discrepancies resulting from the variational
method and FEM method may come down to the fact that, apart from differences in
the calculation methods themselves, it comes from different simulated models of the
material properties. In the Ritz method, the bimodular functionally graded properties
are considered as, for the bimodular effect, the subarea in tension and compression is
used, while for the functionally graded property, in each tensile or compressive area, two
smooth and continuous functions ((Equation (11)) are adopted. At the same time, in the
FEM method, the subarea in tension and compression is still used for the bimodular effect,
but the functionally graded property is realized by the layering along the direction of
plate thickness; thus, the difference is inevitable. We can speculate that if more layers are
adopted, the simulation of materials is likely to be closer to the continuous function change,
like Equation (11). However, considering the computational efforts and time, only eight
layers were adopted in our present study. In future work, more layers can be adopted to
obtain a more precise result.

6.2. Stress Variation along Plate Thickness

In order to investigate the influence of plate thickness on the radial and circumferential
stresses, we take three different thickness values, 0.1 m, 0.2 m, and 0.3 m, to carry out the
numerical computation, and other taken values may refer to Table 1, in which the load
intensity is taken as 10 kPa. At the same time, we take two different survey locations, that is,
r = a/4 and r = 3a/4, where a is the radius of the circular plate, to investigate the influence
of different radial locations on stresses. The numerical results are plotted in Figure 7, in
which Figure 7a–c correspond to the thickness cases of t = 0.1 m, t = 0.2 m, and t = 0.3 m.
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(a) 

 
(b) 

 
(c) 

Figure 7. Radial and circumferential stresses under different radial locations and thicknesses: (a) t = 0.1 m;
(b) t = 0.2 m; (c) t = 0.3 m.

From Figure 7, the following two trends may be found. (i) The stress distribution
trend of radial and circumferential stresses under different plate thicknesses is basically
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the same, that is, when r = a/4 (near the plate center), the differences between the radial
and circumferential stresses tend to be smaller; when r = 3a/4 (near the plate edge), the
differences between the radial and circumferential stresses tend to be larger, which may
be due to the influence of boundary constraints. (ii) When the plate becomes thinner
(t = 0.1 m), the radial and circumferential stresses both tend to be tensile, indicating that the
membrane stress is dominant in thinner plates; when the plate becomes thicker (t = 0.3 m),
the tensile area and compressive area appear distinct, showing that the bending stress is
dominant in thicker plates. This phenomenon is also consistent with our expectations.

7. Conclusions

In this paper, the displacement variational method is used to solve the large-deformation
problem of bimodular functionally graded thin plates. In order to facilitate the application
of the variational method, the physical equations of the bimodular functionally graded
material and the geometric equation under large deformation are first given. The total
strain potential energy is expressed as the displacement component, which opens up the
possibility for the realization of the Ritz method. Finally, the analytical result is verified by
numerical simulation. The following three conclusions can be drawn.

(i) The numerical simulation results verify the validity of the perturbation solution
obtained in our previous study and the variational solution presented in this study.

(ii) The perturbation method and variational method are both, in terms of nature, the-
oretical, being able to give useful analytical expressions that are convenient for use
in the analysis and design. However, the variational method based on the energy
principle avoids the establishment of an equation of equilibrium, which is necessary
in the perturbation method yet.

(iii) Compared with the traditional variational method, the improvement on this method
in this study lies mainly in such a fact that the derivation of total strain energy is
somewhat complicated due to the introduction of bimodular functionally graded
materials and structural large deformation. In addition, the bending stiffness of the
bimodular FGM plate may also be obtained from the derivation of total strain energy,
but not necessarily from the conditions of equilibrium.

The results presented in this study are helpful for the refined analysis and optimized
design of flexible thin plate structures, which are composed of functionally graded materials,
while at the same time, the bimodular effect of materials is relatively obvious and cannot
be ignored.

In the end, it should be pointed out again that Ambartsumyan’s bimodular model is
established on the criterion of positive–negative signs of principal stresses. This fact makes
it very difficult to use this model in structural analysis, because, except for a very few cases,
the state of principal stress at any point in the structure is different each other under the
action of external load. Fortunately, the proposal of a simplified mechanical model on a
subarea in tension and compression makes it possible to use Ambartsumyan’s bimodular
model in structural analysis. While, at the same time, the material model also deviates from
the original definition, this may be seen as an imperfection of the method. In the future,
we will try to establish a simplified mechanical model that satisfies the requirements of
structural analysis and is closer to the original material model. This work is in progress.
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Appendix A

If more terms in displacement functions ur and w are taken, that is, A0, A1, and
A2 are taken in Equation (40), and C0 and C1 are taken in Equation (41), we have the
following displacement:

ur =
(

1 − r
a

) r
a

[
A0 + A1

r
a
+ A2

( r
a

)2
]

(A1)

and
w =

(
1 − r2

a2

)2[
C0 + C1

(
1 − r2

a2

)]
. (A2)

Substituting them into Equations (34) and (26), respectively, we have

Ub =
32πD∗

3a2 C2
0 +

16πD∗

a2 C0C1 +
48πD∗

5a2 C2
1. (A3)

and

Um = E0πt
[1−(μ+)2]α1eα1t2/t (e

α1 − 1)×⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13
168 A2

2 +
7
60 A2

1 +
3

10 A0 A1 +
1
5 A0 A2 +

19
105 A1 A2 +

32
105a2 C4

0 +
18

55a2 C4
1 +

6
5a2 C0C3

1 +
1
4 A2

0

+ 1
3465a

(
284μ+A2C2

0 + 212A2C2
0
)
+ 1

315a
(
44μ+A1C2

0 + 82μ+A0C2
0 − 46A0C2

0 + 4A1C2
0
)

+ 1
385a

⎛⎝ 102μ+A1C0C1

+206μ+A0C0C1

⎞⎠+ 1
5005a

(
886A2C0C1 + 1467μ+A0C2

1 + 678μ+A1C2
1 + 346μ+A2C2

1

+722μ+A2C0C1 − 69A0C2
1 + 526A2C2

1 + 498A1C2
1

)

+ 1
77a (10A1C0C1 − 10A0C0C1) +

1
7a2

(
12C2

0C2
1 + 8C3

0C1
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A4)

In addition, ⎧⎪⎨⎪⎩
2π
∫

qwm=0rdr = 2πq
∫ a

0

(
1 − r2

a2

)2
rdr = π

3 qa2

2π
∫

qwm=1rdr = 2πq
∫ a

0

(
1 − r2

a2

)3
rdr = π

4 qa2
(A5)

According to Equations (21), (38), and (39), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂A0
(Ub + Um) = 0

∂
∂A1

(Ub + Um) = 0
∂

∂A2
(Ub + Um) = 0

(A6)

and { ∂
∂C0

(Ub + Um) =
π
3 qa2

∂
∂C1

(Ub + Um) =
π
4 qa2

. (A7)

Substituting Equations (A3) and (A4) into Equation (A6), we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂A0

= E0πt
[1−(μ+)2]α1eα1t2/t (e

α1 − 1)

⎛⎝ 1
2 A0 +

206μ+

385a C0C1 +
3
10 A1 +

1
5 A2 +

82μ+

315a C2
0

+ 1467μ+

5005a C2
1 − 10

77a C0C1 − 46
315a C2

0 − 69
5005a C2

1

⎞⎠ = 0

∂U
∂A1

= E0πt
[1−(μ+)2]α1eα1t2/t (e

α1 − 1)

⎛⎝ 7
30 A1 +

102μ+

385a C0C1 +
3
10 A0 +

19
105 A2 +

44μ+

315a C2
0

+ 678μ+

5005a C2
1 +

10
77a C0C1 +

4
315a C2

0 +
498

5005a C2
1

⎞⎠ = 0

∂U
∂A2

= E0πt
[1−(μ+)2]α1eα1t2/t (e

α1 − 1)

⎛⎝ 13
84 A2 +

722μ+

5005a C0C1 +
1
5 A0 +

19
105 A1 +

284μ+

3465a C2
0

+ 886
5005a C0C1 +

346μ+

5005a C2
1 +

212
3465a C2

0 +
526

5005a C2
1

⎞⎠ = 0

(A8)

And then we express A0, A1, and A2 with C0 and C1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A0 = − 1
180,180a

(
93, 990μ+C2

0 + 249, 516μ+C0C1 + 167, 931μ+C2
1

−206, 050C2
0 − 553, 824C0C1 − 350, 145C2

1

)

A1 = − 1
25,740a

(
11, 050μ+C2

0 + 5508μ+C0C1 − 8307μ+C2
1

+19, 890C2
0 + 149, 328C0C1 + 124, 425C2

1

)

A2 = 8
6435a

(
520μ+C2

0 + 891μ+C0C1 + 306μ+C2
1

−780C2
0 + 1341C0C1 + 1980C2

1

)
. (A9)

At the same time, substituting Equations (A3) and (A4) into Equation (A7), we have

D∗
(

16π
a2 C1 +

64π
3a2 C0

)
+ E0πt

[1−(μ+)2]α1eα1t2/t (e
α1 − 1)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎝

722μ+

5005a A2C1 +
102μ+

385a A1C1 +
206μ+

385a A0C1 +
128

105a2 C3
0

+ 568μ+

3465a A2C0 +
88μ+

315a A1C0 +
164μ+

315a A0C0 +
886

5005a A2C1

+ 10
77a A1C1 − 10

77a A0C1 − 92
315a A0C0 +

8
315a A1C0

+ 424
3465a A2C0 +

24
7a2 C0C2

1 +
24
7a2 C2

0C1 +
6

5a2 C3
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= πqa2

3

, (A10)

and

D∗
(

16π
a2 C0 +

96π
5a2 C1

)
+ E0πt

[1−(μ+)2]α1eα1t2/t (e
α1 − 1)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

722μ+

5005a A2C0 +
102μ+

385a A1C0 +
206μ+

385a A0C0 +
72

55a2 C3
1

+ 1356μ+

5005a A1C1 +
886

5005a A2C0 +
2934μ+

5005a A0C1 +
10
77a A1C0

− 10
77a A0C0 +

692μ+

5005a A2C1 − 138
5005a A0C1 +

24
7a2 C2

0C1

+ 8
7a2 C3

0 +
1052
5005a A2C1 +

996
5005a A1C1 +

18
5a2 C0C2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= πqa2

4

, (A11)

Substituting Equation (A9) into Equations (A10) and (A11), we finally obtain the
expressions of C0 and C1. Since the expressions are too complex, they are not given here.
At the same time, according to Equation (A2), if we let r = 0, the central deflection or the
maximum deflection of the circular plate will be

w0 = C0 + C1. (A12)
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