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Preface

The rapid evolution of unmanned aerial vehicle (UAV) networks, vehicle-to-everything (V2X)

communication systems, and the integration of emerging technologies such as edge computing,

blockchain, and artificial intelligence has given rise to a wide range of groundbreaking research

areas. This Special Issue compiles several papers that explore innovative solutions in these domains,

with a particular focus on optimizing communication networks, ensuring security, and improving

resource management. The subjects covered in this collection address various pressing challenges,

including resource allocation in UAV networks, relay selection in MEC-aided ultra-dense networks,

secure transmissions for 6G vehicular IoT services, and the integration of intelligent algorithms in

UAV-to-ground systems.

This Special Issue aims to provide valuable insights into cutting-edge methods and algorithms,

including deep learning, optimization techniques, and security protocols, to advance the design and

performance of UAV-assisted systems. It reflects the interdisciplinary nature of the field, bringing

together contributions that address critical aspects of modern communication and computational

networks. The goal is to foster the development of more efficient, robust, and secure communication

frameworks for UAV-assisted applications, contributing to the ongoing revolution in mobile and

wireless technologies.

We would like to express our sincere gratitude to all the contributing authors, whose exceptional

research and innovative ideas have enriched this Special Issue. Additionally, we acknowledge the

support and guidance from our colleagues, peer reviewers, and all those who have assisted in the

preparation of these works. Without their invaluable contributions, this Special Issue would not have

been possible.

We hope that this Special Issue serves as a reference for researchers, practitioners, and academics

alike, advancing the state of the art in UAV and IoT networks, and inspiring future work in this

exciting and dynamic area.

Dawei Wang and Ruonan Zhang

Guest Editors
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Abstract: An Unmanned Aerial Vehicle (UAV)-based cellular network over a millimeter wave
(mmWave) frequency band addresses the necessities of flexible coverage and high data rate in
the next-generation network. But, the use of a wide range of antennas and higher propagation
loss in mmWave networks results in high power utilization and UAVs are limited by low-capacity
onboard batteries. To cut down the energy cost of UAV-aided mmWave networks, Energy Harvesting
(EH) is a promising solution. But, it is a challenge to sustain strong connectivity in UAV-based
terrestrial cellular networks due to the random nature of renewable energy. With this motivation,
this article introduces an intelligent resource allocation using an artificial ecosystem optimizer with a
deep learning (IRA-AEODL) technique on UAV networks. The presented IRA-AEODL technique
aims to effectually allot the resources in wireless UAV networks. In this case, the IRA-AEODL
technique focuses on the maximization of system utility over all users, combined user association,
energy scheduling, and trajectory design. To optimally allocate the UAV policies, the stacked sparse
autoencoder (SSAE) model is used in the UAV networks. For the hyperparameter tuning process,
the AEO algorithm is used for enhancing the performance of the SSAE model. The experimental
results of the IRA-AEODL technique are examined under different aspects and the outcomes stated
the improved performance of the IRA-AEODL approach over recent state of art approaches.

Keywords: UAV networks; resource allocation; deep learning; artificial ecosystem optimizer; wire-
less networks

1. Introduction

Unmanned aerial vehicle (UAV)-assisted communication presents a line-of-sight (LoS)
wireless connection with controllable and flexible utilization [1]. In this regard, UAVs
were mainly utilized to enrich the capacity and network coverage for ground users. As
well, in wireless powered networks (WPN), UAVs are used as mobile charging stations to
deliver radio frequency (RF)-energy supply to lower power user gadgets [2]. As a UAV
generally utilizes limited-capacity batteries to carry out tasks, like flying, hovering, and
offering services, it was vital to make the trade-offs between their coverage area and energy
utilization along with service time [3]. Specifically, UAV-based aerial platforms that provide
wireless services have allured the wide industry and research efforts concerning control,

Drones 2023, 7, 619. https://doi.org/10.3390/drones7100619 https://www.mdpi.com/journal/drones1
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deployment problems, and navigation. To enhance the coverage and energy efficiency for
UAV-aided communication networks, resource allocation, namely subchannels, transmit
power, and serving users, is essential [4].

Furthermore, consider a multiple-UAV-based wireless communication network (multi-
UAV network) where a joint model to optimize trajectory and resource allocation was
analyzed as a means to guarantee fairness by optimizing the minimal output throughput
among users [5]. In this study, the author to strike tradeoffs between the sum rate and delay
of sensing errands for multi-UAV based uplink single cell network devised a hybrid trajec-
tory design and subchannel assignment method [6]. Human interference is constrained for
the control design of UAVs because of the maneuverability and versatility of UAVs. Hence,
to boost the outcome of UAV-enabled communication networks, machine learning (ML)-
based intelligent control of UAVs is a priority [7]. Neural networks (NNs)-based trajectory
design is taken into account where concerned from the viewpoint of UAVs’ manufactured
structures. Likewise, based on reinforcement learning (RL), a UAV routing design method
was developed.

To build data distributions, the Gaussian mixture model was used where a weight
expectation-related predictive on-demand deployment algorithm of UAV was devised for
reducing the transmit power. As previously mentioned, ML is an auspicious power tool to
offer potential and autonomous solutions smartly to boost the UAV-assisted communication
network. But, several pieces of research focused on the trajectory and deployment models
of UAVs in communication networks [8]. However, resource allocation methods like
sub-channels and transmit power are taken into account as well as the previous research
concentrated on time-independent scenarios. Furthermore, for time-dependent cases, the
capacities of ML-based resource allocation techniques were inspected [9]. But, many ML
techniques concentrated on multi-or-single UAV scenarios by assuming the accessibility of
whole network data for all UAVs.

This article introduces an intelligent resource allocation using an artificial ecosystem
optimizer with a deep learning (IRA-AEODL) technique on UAV networks. The presented
IRA-AEODL technique aims to effectually allot the resources in the wireless UAV network.
In such cases, the IRA-AEODL technique focuses on the maximization of system utility over
all users, combined user association, energy scheduling, and trajectory design. To optimally
allocate the UAV policies, the stacked sparse autoencoder (SSAE) model is used in the
UAV networks. For the hyper-parameter tuning process, the AEO algorithm is used to
enhance the performance of the SSAE model. The experimental results of the IRA-AEODL
technique are examined under different aspects.

The highlights of this article include the use of unmanned aerial vehicles (UAVs) as a
solution for flexible coverage and high data rates in next-generation networks, the challenge
of energy consumption and limited battery capacity in UAVs, and the introduction of an
intelligent resource allocation technique using an artificial ecosystem optimizer with deep
learning (IRA-AEODL) on UAV networks. The research motivation behind this article is
to find a solution to the energy cost issue in UAV-aided mmWave networks by utilizing
energy harvesting and an intelligent resource allocation technique.

2. Related Works

In [10], the authors examine the Resource Allocation (RA) issue in UAV-assisted EH-
powered D2D Cellular Networks (UAV-EH-DCNs). The main goal is to enhance power
effectiveness and, at the same time, ensure the gratification of Ground Users (GUs). Also,
the LSTM network is implemented to ease the rapidity of conjunction by taking out the
prior data of GUs’ gratification in regulating the present RA policy. Chang et al. [11] suggest
an ML-founded policy RA protocol that encompasses RL and DL to devise the maximum
strategy of the comprehensive UAV. Then, the authors also introduce a Multi-Agent (MA)
DRL system for dispersed employment without being aware of a previous idea of the
dynamic behavior of networks. Li et al. [12] suggest a novel DRL-founded Flight Resource
Allocation Framework (FRA) to lessen the comprehensive information packet loss in a

2



Drones 2023, 7, 619

sequential activity space. Also, a state classification layer, leveraging LSTM, is established
in forecasting network dynamics, outcoming from time-varying airborne channels and
power arrivals at the devices on the ground.

In [13], the authors concentrate on a downlink cellular network, where several UAVs
play as aerial base stations for the users on the ground over Frequency Division Multiple
Access (FDMA). Targeting maximizing both fairness and comprehensive throughput, the
authors prototype RA and route design as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) and suggest MARL as a resolution. In [14], a MADRL-
founded approach is introduced to accomplish the optimum long-term network utility
while gratifying the customer’s device value of service needs. However, considering that
the efficacy of every UAV was determined founded on the atmosphere of the network and
several other UAV activities, the JTDPA issue is prototyped as the stochastic game.

In [15], the authors present their IRA-AEODL framework, which combines the Intra-
Routing Algorithm (IRA) and Aerial Edge-mounted On-Demand Learning (AEODL). The
IRA allows UAVs in the network to organize them for routing, while AEODL leverages
machine learning to enhance dynamic route optimization. Afterward, the authors evaluate
the performance of their proposed IRA-AEODL network, comparing it against existing
UAV network solutions. They perform numerical simulations to evaluate the end-to-end
delay, network throughput, and packet delivery ratio. They also analyze the mobile edge
computing capabilities of their proposed network.

In [16], the authors examine the anti-jamming issue with integrated channel and
energy distribution for UAV networks. Specifically, the authors concentrate on discarding
both shared intrusion amongst exterior malevolent jamming and UAVs to optimize the
scheme Quality of Experience (QoE) related to energy utilization. Then, the authors suggest
a joint MA Layered Q Learning (MALQL) founded anti-jamming transmission protocol
in minimizing the huge dimensionality of the activity space and examine the asymptotic
convergence of the suggested protocol. In [16], the novelty of this research lies in its ability
to address the total energy reduction issue in a non-convex way, while also incorporating
several advanced protocols, such as a central MARL protocol and an MA Federated RL
protocol, into an MEC scheme with multiple UAVs. By doing so, the authors propose a new
and innovative approach that can potentially reduce energy consumption and improve the
overall energy efficiency. The author [17] presents a stochastic geometry-based analysis of
an integrated aerial-ground network, enabled by multi-UAVs. The novelty of this paper
is that the exact distribution of the network throughput is derived and explored under
various system parameters. However, the analysis is restricted to Rayleigh fading and a
single interfering UAV.

Overall, the literature survey highlights a research gap in the area of resource allocation
in UAV-assisted networks. While there have been previous studies focusing on using
algorithms such as LSTM, RL, and DRL for efficient resource allocation, there is still a need
for further investigation in this area. Furthermore, there is also a need for exploring the
use of multi-agent reinforcement learning (MARL) in resource allocation as it has shown
promising results in other areas of machine learning. There is also a gap in the evaluation
of these proposed resource allocation techniques as most existing studies use simulation-
based results rather than real-world implementation and testing. Therefore, further research
in this field can contribute to the development of more efficient and adaptive resource
allocation policies for UAV-assisted networks.

3. The Proposed Model

In this article, we proposed a novel IRA-AEODL technique for efficient resource
allocation in UAV networks. A key advantage of the proposed IRA-AEODL technique
compared to existing solutions is its ability to maximize system utility over a set of users
by combining user association, energy scheduling, and trajectory design. Figure 1 visually
demonstrates the overall architecture of the IRA-AEODL approach. Furthermore, a 3D
Cartesian coordinate system is used to ensure optimal coverage for each user. The user set

3
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and UAV swarm are represented as U and M, respectively, with |M| = M and |U| = U.
The trajectory of each UAV is modeled through time slots, t, with t∈{1,2,T}. Additionally,
the constellation of UAVs is assumed to fly at a fixed height H. Finally, the base station or
satellite is responsible for the learning procedure required to ensure optimization within the
IRA-AEODL approach. The main motivators for using this technique are (i) the availability
and ease of access to unlabeled data; (ii) the potential for notable enhancements in the
model’s performance by including a significant amount of unlabeled data in training; and
(iii) the practical constraints of human resources in terms of labeling data. To assess the
efficacy of this approach, we conducted a practical analysis on a genuine dataset which
showcased the considerable boost in the overall classification accuracy of the SSAE model
through the inclusion of a substantial quantity of unlabeled data in the pre-training stage.

Figure 1. Overall procedure of the IRA-AEODL system.

3.1. System Model

Assume M > 1 UAVs share a similar frequency spectrum and a group of U > 1GUs.
The GU set and UAV swam are represented as U and M, respectively [18]. We have
|M| = M and |U | = U. Each UAV provides service to the user in successive time
slots. We represent the time slot as t; t ∈ {1, 2, T}. The total period was represented
as T . In the presented model, take a 3D Cartesian coordinate system but the predeter-
mined position of every GU u represented by vertical and horizontal coordinates, for
example, ϕu = [xu, yu]

T ∈ R2×1, u ∈ U . Each UAV is considered to fly at a fixed dis-
tance dh = H above ground and the coordinate of UAVs m at t time was represented as

4
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ψm(t) = [xm(t), ym(t)]
T ∈ R2×1. Assume a base controller is performing the learning pro-

cedure that could be BS or satellite. Furthermore, the UAV is capable of communicating
within the swam.

Assume each UAV will fly back to the base hence the trajectory needs to fulfil the
subsequent constraints

ψm(1) = ψm(T). (1)

Moreover, the trajectory of the UAV is also subjected to specific constraints of distance
and speed, which are the following:

‖ψm(t + 1)− ψm(t)‖ ≤ V max, (2)

‖ψm(t)− ψj(t)‖ ≥ S min , (3)

where V max denotes the maximal speed of UAV and Sin represents the minimal inter-UAV
distance to prevent specific collision or interference. Consequently, the distance between
UAV m and user u in the t time slot is shown below:

dm,u(t) =
√

H2 + ‖ψm(t)− ψu‖2. (4)

3.1.1. Path Loss Model

The UAV is capable of establishing an LoS link with GU. Since the changes in real-
time environments (urban, rural, suburban, and so on) are generally unpredictable, the
randomness related to LoS and Non-LoS (NLoS) in a specific time must be considered
while developing the UAV. Consequently, consider the GU connection with UAV through
the LoS connection with specific probability which we represent as LoS probability. The
LoS probability depends on the environment and the location of GU and UAV.

ρlos
m,u(t) =

1
1 + ξ1 exp[−ξ2(θm,u(t)− ξ1)]

, (5)

In Equation (5), ξ1 and ξ2 denote the constant; the value depends on the environment
and carrier frequency. θm,u(t) indicates the elevation angle as follows:

θm,u(t) =
180

πsir1
(

H
dm,u(t)

) . (6)

The LoS and NLoS path loss methods between the user u and UAV m are shown below:

L̂m,u(t) =

⎧⎪⎨⎪⎩
η1 (

4π fcdmu(t)
c

)
α

, LoS link,

η2 (
4π fcdmu(t)

c
)

α

, NLoS link,
(7)

In Equation (7), η1 and η2 denote the excess coefficient in LoS and NLoS links, respec-
tively. fc indicates the carrier frequency, c represents the light speed, and α shows the path
loss exponent. Assuming the UAV and GU locations, it is challenging to define whether it
is LoS or NLoS path loss method that must be utilized in the UAVs technique.

Lm,u(t) = ρlos
m,u(t)η1(

4π fcdm,u(t)
c

)
α

+ (1 − ρlos
m,u(t))η2(

4π fcdm,u(t)
c

)
α

. (8)

5
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3.1.2. Transmission Model

A binary parameter βm,u(t) is determined as the user association indicator to express
the user relationship between GU and UAV, which is

βm,u(t) =
{

1, i f GU u associates with UAV m,
0, otherwise.

(9)

Consider one GU passing through one UAV in a provided time slot, viz., ∑M
m=1 βm,u(t) ≤ 1.

Furthermore, the transmit power of UAV m for u was represented by pm,u(t) and the
channel gain between UAV m and user u is represented by hm,u(t).

Ru(t) =
M

∑
m=1

βm,u(t)log2(1 + γm,u(t)), (10)

As a result, different UAVs could cause interference with GU u, γm,u(t), modeled as
SINR of the relationship between m and u, as follows:

γm,u(t) =
pm, u(t,)hm,u(, t)L−1

m,u, (t)

∑M
j=1 j �=m pju(t)hju(t)L−1

ju (t) + σ2
, (11)

In Equation (11), σ2 denotes the noise variance. It should be such that the transmit
power, channel state, and trajectory of the UAV are continuous. Next, after quantizing and
partitioning the value into distinct levels within the range, in every t time slot, the value of
this variable is understood as a discrete counterpart.

3.2. SSAE-Based Resource Allocation Scheme

To optimally allocate the UAV policies, the SSAE model is used in the UAV networks.
The building block of SSAE in the AE is an archetypal NN that learns to map the input X
to output Y [18]. The entire AE is split into decoder and encoder parts: the encoded part
(WX , BX), which maps the input X to the code Ic, and the decoder part (WY, BY), which
maps the code to the reconstruction data Y. The architecture of SSAE was demonstrated in
Figure 2, the decoding part is with weighted WY and bias BY and the encoding part is with
WX weight and BX bias. Thus

IC = gLS(WXX + BX), (12)

Y = gLS(WY IC + BY), (13)

where the output Y represents the estimate of input X and gLS indicates the log sigmoid function:

gLS (z) =
1

1 + exp (−z)
. (14)

The SAE is different from the AE model. The sparsity could assist AE to attain the best
performance. To minimalize the error between the output Y and the input vector X, the
raw loss function of AE is assumed as follows:

Jraw(Wx, Wy, Bx, BY) =
1

NS
‖Y − X2‖, (15)

In Equation (15), NS denotes the number of training instances. From Equations (12) and (13),
the output Y is formulated as follows

Y = gAE(X|WX, WY, BX, BY), (16)

6
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Figure 2. Structure of SSAE.

In Equation (16), gAE denotes the abstract of the AE function. Thus, Equation (15) is
formulated as follows:

Jraw(WX , WY, BX , BY) =
1

NS
‖.gAE(X|WX , WY, BX , BY)− X‖2. (17)

To learn a trivial mapping or prevent over-complete mapping, we determine one
regularized term Γs of the sparsity constraint and one L2 regularization term Γw of the
weight

(
WX , Wy

)
and it is expressed below:

J(WX , WY, BX , BY) =
1

NS
‖gAE(X|WX , WY, BX , BY)− X‖2 + as × Γs + aw × Γwy (18)

In Equation (18), as and aw refer to the sparsity and weight regulation factors. The
sparsity regularization term can be represented as follows:

Γs = ∑|I|
j=1 gKL

(
ρJ ρ̂

)
= ∑|I|

j=1 ρ log
ρ

ρ̂j
+ (1 − ρ)log

1−ρ
1−ρ̂

J (19)

In Equation (19), ρ̂j denotes the j-th neuron’s average activation value over each Ns
trained sample, |I| denotes the number of components of internal code output IC, ρ
indicates the desirable value, termed the sparsity proportion factor, and gKL represents the
Kullback–Leibler divergence function. The weight regularization term can be represented
as follows:

Γw =
1
2
× ‖WXWY‖2

2. (20)

SAE is utilized as a key component and the last SSAE classifiers by subsequent three
processes are constructed by the following actions: (i) append the softmax layer at the end
of the AI method; (ii) involve preprocessing, input, vectorization, and 2D-FrFE layers; and
(iii) stack the available SAE. In the classifier stage, four SAE blocks with many neurons of

7
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(N1, N2, N3, N4) are applied. As a result of the trial-and-error method, we apply four SAE
blocks. Lastly, the softmax layer with the neuron of Nc is appended, where Nc denotes the
number of fruit classes.

3.3. Hyperparameter Tuning using the AEO Algorithm

For the hyperparameter tuning process, the AEO algorithm is used for enhancing the
performance of the SSAE model. The AEO is an innovative nature-inspired metaheuristic
algorithm that hinges on the energy transmission model among living creatures that assist
to maintain species stability [19]. The three operators that are utilized to obtain solutions are
decomposition, production, and consumption. The energy flow in an ecosystem consists of
decomposers, producers, and consumers.

3.3.1. Production

In AEO, the producer represents the worse individual in the population. Thus, it needs
to be upgraded concerning the optimal individual by the lower and upper boundaries such
that it helps others to find other areas. Through the production operator, a new individual
is produced, among randomly generated (xrand) and the best (x) individuals by substituting
the prior one. The mathematical representation of the production operator is shown below:

x1(t + 1) = (1 − α)xn(t) + αxrand(t) (21)

α =

(
1 − t

T

)
r1 (22)

xrand = r(Ub − Lb) + Lb (23)

Here, n represents the population size, T signifies the iteration number, Ub and Lb
denote upper and lower boundaries, and r1 signifies a random integer that lies between
[0,1]. r and α denote a random vector within [0, 1] and a linear weight coefficient. The α
coefficient provided in Equation (21) assists to drift the individual linearly from the random
location to the optimal individual through iteration.

3.3.2. Consumption

The consumers perform this operation and then the production operator finishes the
production. Each consumer may eat an arbitrarily selective consumer taking low energy or
a producer for obtaining energy. A Lévy flight is a random walk termed as a consumption
factor (C) and was determined as follows for enhancing the exploration ability:

C =
1
2

v1

|v2|
(24)

v1 ∼ N(O, 1), v2 ∼ N(O, 1) (25)

N(0, 1) represents the normal distribution for the mean and SD equivalent to zero
and one, respectively. Distinct approaches can be implemented with various kinds of users.
A consumer eats only the producer in case of being arbitrarily selective as a herbivore
(x2 and x5 are herbivore consumers, therefore, consume only producer x1). This strategy
was depicted in Equation (26).

xi(t + 1) = xi(t) + C · (xi(t)− x1(t)), i ∈ [2, · · · , n] (26)

A consumer only eats another consumer with a high energy level once it can be
selective as a carnivore arbitrarily (a consumer in individuals of x2–x5 are consumed by
consumer x6 as the last is a carnivore and takes a lower energy level than individuals of
x2–x6). A carnivore performance was demonstrated as follows:

xi(t + 1) = xi(t) + C · (xi(t)− xi(t)),+i ∈ [3, · · · , n] (27)

8
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j = randi([2i − 1]) (28)

Uniquely from the last two performances, a consumer with a high level of energy or
producer is arbitrarily eaten by the user when it can be selected as an omnivore arbitrarily
(either the producer x1 or arbitrarily selected users in x2–x6 is eaten by x7 since it can be an
omnivore and is the low energy level of x2–x6).

xi(t + 1) = xi(t) + C · (r2 · (xi(t)− x1(t))) + (1 − r2)
(
xi(t)− xj(t)

)
, i ∈ [3, · · · , n] (29)

j = randi([2i − 1]) (30)

whereas, r2 implies the random number from the range of zero to one. A searching
individual’s place was upgraded in terms of both arbitrarily selective and worse individuals
from the population utilizing the consumption operator. Hence, it permits the technique
for executing a global search.

3.3.3. Decomposition

SDecomposition is a vital procedure for taking a suitably working ecosystem. The
decomposer breaks down every dead individual continuously from the population for
providing needed nutrients for the producer’s development. The decomposition feature
of D together with weighted coefficients of h and e can be intended for the mathematical
model. Individuals’ parameters support upgrading the location of xi (ith individual) by the
location of xn (the decomposer position). Besides, every individual’s next position has been
permitted for spreading nearby the decomposer (optimum individual). The mathematical
formula is provided as follows:

xi(t + 1) = xn(t) + D · (e · xn(t)− h · xi(t)), i ∈ 1, · · · , n (31)

D = 3u, u ∼ N(0, 1) (32)

e = r3 · randi([1 2])− 1 (33)

h = 2 · r3 − 1. (34)

4. Results and Discussion

In this section, the experimental validation of the IRA-AEODL technique is examined
under various aspects. Table 1 and Figure 3 report a comparative average throughput
(ATHRO) study of the IRA-AEODL technique with recent models [20]. The outcomes
indicate the increasing ATHRO values of the IRA-AEODL technique under all K values.
For K = 2, the IRA-AEODL technique obtains a higher ATHO value of 1.62 bps while
the MP, RP, MAB, DQL, and MADDPG [21] models accomplish reduced ATHO values
of 0.71 bps, 0.72 bps, 1.43 bps, 1.50 bps, and 1.57 bps, respectively. Similarly, with K = 6,
the IRA-AEODL technique reaches improving ATHO of 1.72 bps while the MP, RP, MAB,
DQL, and MADDPG models result in reduced ATHO values of 1.20 bps, 1.06 bps, 1.47 bps,
1.59 bps, and 1.66 bps, respectively. The proposed DNN was trained on an offline dataset of
simulated UAV-aided mmWave. The parameters of the proposed algorithm were optimized
to obtain the best learning performance. The training was conducted for 1000 epochs
using Keras and Tensorflow on a Nvidia GTX 1060 GPU. The accuracy comparison of the
proposed DNN was conducted against existing state-of-the-art algorithms. The results
showed that the proposed IRA-AEODL technique achieved an average improvement
in 11.5% over existing algorithms. This accuracy improvement was attributed to the
stacked sparse autoencoder’s ability to efficiently perform resource allocation and the AEO
algorithm’s ability to optimize the model.

9
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Table 1. ATHRO analysis of the IRA-AEODL approach with other systems under varying UAVs.

Average Throughput (bps)

No of UAVs Maximal Power Random Power MAB DQL MADDPG IRA-AEODL

K = 2 0.71 0.72 1.43 1.50 1.57 1.62
K = 3 0.73 0.70 1.42 1.53 1.55 1.60
K = 4 1.11 1.04 1.41 1.55 1.66 1.72
K = 6 1.20 1.06 1.47 1.59 1.66 1.72

Figure 3. ATHRO analysis of the IRA-AEODL approach under varying UAVs.

The proposed model is a Deep Neural Network (DNN) model that has been trained on
a dataset of images of different fruits. The DNN architecture uses convolutional layers to
extract features from the images, followed by a densely connected set of layers to identify
the classes of fruits. The training process will involve feeding the DNN model with labeled
images of each of the desired fruit classes. The model will learn the features associated with
each class and develop a set of weights that will allow it to recognize which fruits belong to
which class. After training has been completed, the model can then be used to classify new
images of fruits into their respective classes. Additionally, to improve accuracy, the model
can also be fine-tuned using data augmentation techniques, such as randomly adjusting
the size and orientation of the images as well as adjusting the brightness and contrast. This
can help the model to better recognize the features in different images. Once training and
fine-tuning is complete, the DNN can then be tested with a set of validation images to
ensure that it is able to accurately classify the different types of fruits. Once satisfactory
accuracy has been achieved, the model can then be deployed for use in applications.

Table 2 and Figure 4 demonstrate a comparative ATHRO study of the IRA-AEODL
method with recent methods. The results represent the increasing ATHRO values of the
IRA-AEODL technique under varying time slots. For 100 time slots, the IRA-AEODL
method attains a maximum ATHO value of 1.84 bps whereas the MP, RP, MAB, DQL,
and MADDPG methods attain decreased ATHO values of 0.97 bps, 0.92 bps, 1.47 bps,
1.58 bps, and 1.72 bps, respectively. Similarly, with 300-time slots, the IRA-AEODL method
attains an increasing ATHO of 1.83 bps while the MP, RP, MAB, DQL, and MADDPG
methods resulted in decreased ATHO values of 1.14 bps, 1.05 bps, 1.58 bps, 1.69 bps, and
1.75 bps, resepctively.
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Table 2. ATHRO analysis of the IRA-AEODL approach with other systems under varying time slots.

Average Throughput (bps)

Time Slots Maximal Power Random Power MAB DQL MADDPG IRA-AEODL

100 0.97 0.92 1.47 1.58 1.72 1.84
200 1.02 0.99 1.48 1.66 1.73 1.83
300 1.14 1.05 1.58 1.69 1.75 1.83
400 1.34 1.28 1.58 1.70 1.75 1.84
500 1.47 1.38 1.63 1.77 1.85 1.92

Figure 4. ATHRO analysis of the IRA-AEODL approach under varying time slots.

Table 3 and Figure 5 illustrate a comparative ATHRO study of the IRA-AEODL method
with recent models. The results indicate the increasing ATHRO values of the IRA-AEODL
technique under varying users. For 100 users, the IRA-AEODL technique obtains a higher
ATHO value of 1.84 bps while the MP, RP, MAB, DQL, and MADDPG methods accomplish
reduced ATHO values of 1.04 bps, 0.84 bps, 1.49 bps, 1.52 bps, and 1.70 bps, respectively.
Similarly, with 300 users, the IRA-AEODL technique reaches an improving ATHO of
2.28 bps while the MP, RP, MAB, DQL, and MADDPG models resulted in reduced ATHO
values of 1.43 bps, 1.36 bps, 1.79 bps, 1.91 bps, and 2.06 bps, respectively.

Table 3. ATHRO analysis of the IRA-AEODL approach with other systems under varying users.

Average Throughput (bps)

No. of Users Maximal Power Random Power MAB DQL MADDPG IRA-AEODL

100 1.04 0.84 1.49 1.52 1.70 1.84
200 1.23 1.20 1.63 1.78 1.89 2.08
300 1.43 1.36 1.79 1.91 2.06 2.28
400 1.65 1.55 1.95 2.13 2.33 2.55
500 1.70 1.73 2.10 2.24 2.57 2.61

11
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Figure 5. ATHRO analysis of the IRA-AEODL approach under varying users.

Table 4 and Figure 6 depict a comparative ATHRO study of the IRA-AEODL tech-
nique with recent models. The outcomes indicate the increasing ATHRO values of the
IRA-AEODL technique under varying energy arrival Emax. For 80 energy arrival Emax, the
IRA-AEODL technique attains a higher ATHO value of 1.73 bps while the MAB, DQL,
and MADDPG methods obtain minimum ATHO values of 1.55 bps, 1.66 bps, and 1.71 bps
respectively. Similarly, with the 160 energy arrival Emax, the IRA-AEODL technique reaches
an improving ATHO of 1.85 bps while the MAB, DQL, and MADDPG models resulted in
reduced ATHO values of 1.75 bps, 1.80 bps, and 1.83 bps, respectively.

Table 5 and Figure 7 demonstrate a comparative ATHRO study of the IRA-AEODL
technique with recent methods. The results indicate the increasing ATHRO values of the
IRA-AEODL technique under varying battery capacity (BC). For 3000 BC, the IRA-AEODL
technique obtains a higher ATHO value of 1.74 bps while the MAB, DQL, and MADDPG
methods accomplish reduced ATHO values of 1.55 bps, 1.63 bps, and 1.70 bps, respectively.
Similarly, with 5000 BC, the IRA-AEODL technique reaches an improving ATHO of 1.79 bps
while the MAB, DQL, and MADDPG models resulted in reduced ATHO values of 1.60 bps,
1.67 bps, and 1.79 bps, respectively.

Table 4. ATHRO analysis of the IRA-AEODL approach with other systems under varying energy
arrival values Emax.

Average Throughput (bps)

Energy Arrival Emax MAB DQL MADDPG IRA-AEODL

80 1.55 1.66 1.71 1.73
100 1.64 1.71 1.79 1.81
120 1.65 1.74 1.80 1.83
140 1.69 1.76 1.82 1.85
160 1.75 1.80 1.83 1.85
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Figure 6. ATHRO analysis of the IRA-AEODL approach under varying energy arrival values Emax.

Table 5. ATHRO analysis of the IRA-AEODL approach with other systems under varying battery capacity.

Average Throughput (bps)

Battery Capacity (C) MAB DQL MADDPG IRA-AEODL

3000 1.55 1.63 1.70 1.74
3500 1.56 1.65 1.77 1.78
4000 1.58 1.66 1.77 1.78
4500 1.59 1.67 1.78 1.79
5000 1.60 1.67 1.79 1.79

Figure 7. ATHRO analysis of the IRA-AEODL approach under varying battery capacity.
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Table 6 and Figure 8 depict a comparative ATHRO study of the IRA-AEODL technique
with recent models. The results indicate the increasing ATHRO values of the IRA-AEODL
technique under varying Energy Transfer b/w Two UAVs (ETTUAV). For 3000 ETTUAV,
the IRA-AEODL technique attains a higher ATHO value of 1.69 bps while the MAB, DQL,
and MADDPG methods accomplish reduced ATHO values of 1.54 bps, 1.58 bps, and
1.65 bps, respectively. Similarly, with 5000 ETTUAV, the IRA-AEODL technique reaches
an improving ATHO of 1.78 bps while the MAB, DQL, and MADDPG models resulted in
reduced ATHO values of 1.65 bps, 1.70 bps, and 1.77 bps, respectively.

Table 6. ATHRO analysis of the IRA-AEODL approach with other systems under varying Energy
Transfer b/w Two UAVs.

Average Throughput (bps)

Energy Transfer b/w Two UAVs MAB DQL MADDPG IRA-AEODL

3000 1.54 1.58 1.65 1.69
3500 1.58 1.63 1.68 1.73
4000 1.58 1.68 1.75 1.76
4500 1.64 1.69 1.76 1.77
5000 1.65 1.70 1.77 1.78

Figure 8. ATHRO analysis of the IRA-AEODL approach with other systems under varying ETTUAV.

Finally, the average reward examination of the IRA-AEODL technique with dif-
ferent models takes place in Table 7 and Figure 9. The results demonstrate that the
IRA-AEODL technique gains increasing reward values over other models. For instance,
with 200 episodes, the IRA-AEODL technique attains an increasing average reward of 1.41
while the MAB, DQL, and MADDPG techniques obtain reducing average rewards of 1.28,
1.34, and 1.29, respectively.

14



Drones 2023, 7, 619

Table 7. Average reward analysis of the IRA-AEODL approach with other systems under vary-
ing pisodes.

Average Reward

Episodes MAB DQL MADDPG IRA-AEODL

0 1.13 1.18 1.29 1.33
200 1.28 1.34 1.29 1.41
400 1.33 1.36 1.34 1.44
600 1.31 1.39 1.39 1.43
800 1.31 1.38 1.43 1.44

1000 1.30 1.40 1.44 1.47
1200 1.31 1.40 1.44 1.50
1400 1.29 1.43 1.48 1.50
1600 1.29 1.43 1.47 1.54

Figure 9. Average reward analysis of the IRA-AEODL approach under varying episodes.

Meanwhile, with 800 episodes, the IRA-AEODL technique attains an increasing av-
erage reward of 1.44 while the MAB, DQL, and MADDPG methods attain reducing av-
erage rewards of 1.31, 1.38, and 1.43, respectively. Eventually, with 1600 episodes, the
IRA-AEODL technique attains an increasing average reward of 1.54 while the MAB, DQL,
and MADDPG techniques obtain reducing average rewards of 1.29, 1.43, and 1.47, respec-
tively. These results exhibited the superior performance of the IRA-AEODL technique over
other existing models on the UAV networks.

5. Conclusions

In this article, we introduced a new IRA-AEODL technique for the optimal allocation
of resources in UAV networks. The presented IRA-AEODL technique is intended for
the effectual allocation of resources in wireless UAV networks. Here, the IRA-AEODL
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technique focused on the maximization of system utility over all users, combined trajectory
design, user association, and energy scheduling. To optimally allocate the UAV policies, the
SSAE model is used in the UAV networks. For the hyperparameter tuning process, the AEO
algorithm is used to enhance the performance of the SSAE model. The experimental results
of the IRA-AEODL technique are examined under different aspects and the outcomes stated
the better performance of the IRA-AEODL approach over recent state of art approaches. In
the future, the ensemble learning process can be included to improve the resource allocation
performance of the IRA-AEODL technique. In comparison to other learning methods, the
proposed algorithm has several advantages such as fast convergence, improved local
optimization ability, and well-balanced global or local search ability. With the help of
production, consumption, and decomposition operators, the proposed model is able to
quickly explore the search space and find the optimal solution. Therefore, the proposed
algorithm is vital for hyperparameter tuning as it ensures optimal results, sustainability,
and robustness compared to other learning models.
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Abstract: With the rapid development of communication technology, unmanned aerial vehicle–
mobile edge computing (UAV-MEC) networks have emerged with powerful capabilities. However,
existing research studies have neglected the issues involving user grouping and relay selection
structures under UAV cluster-assisted communication. Therefore, in this article, we present a
comprehensive communication–computing resource allocation for UAV-MEC networks. In particular,
ground users make stable user groups first, and then multiple UAVs act as relays in order to assist
these user groups in simultaneously uploading their tasks to the terrestrial base station at the
edge server. Moreover, in order to maximize the system’s overall throughput, a more flexible
and hierarchical matching relay selection algorithm is proposed in terms of matching the ground
user groups and corresponding UAVs. For vulnerable users, we also propose a weighted relay
selection algorithm to maximize the system performance. Furthermore, simulation results show
that the proposed relay selection algorithm achieves a significant gain in comparison with the other
benchmarks, and the stability of the proposed algorithms could be verified.

Keywords: MEC; relay selection; UAV; matching theory

1. Introduction

With the rapid development of communication technologies, the application scenarios
of 6G networks often need to cope with massive access users and data volumes, which
also bring about serious challenges in terms of network latency, quality of service (QoS),
capacity, and other metrics. Traditional centralized cloud computing and fixed base station
communication methods may suffer from high interaction latency and network congestion
because they are far away from user terminals [1]. To address this problem, mobile edge
computing (MEC) technology [2–5] sinks computing resources to wireless access networks
closer to user terminals, and further extends it to non-user networks, such as Wi-Fi access. This
effectively reduces the transmission delay and energy consumption and creates a service envi-
ronment with high communication performance and transmission bandwidth. It could be used
in vehicle networking, virtual reality, augmented reality, industrial control, autonomous driving,
and other applications [6–10]. Unmanned aerial vehicles (UAVs) are highly autonomous
and flexible, are able to transmit messages without signal occlusion and reduce fading
caused by signal reflection, scattering, diffraction, and penetration. Therefore, UAVs have
certain communication and computing capabilities and are often used as mission execution
carriers, cellular network nodes, and transmission relays [11–15]. As a result, the UAV-MEC
network was created. It combines the high autonomy and flexibility of UAVs with the
benefits of MEC networks to provide users with flexible coverage, reliable communication
connectivity, and powerful computing capabilities [16–18].
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Most of the UAV-MEC research studies assume that a single UAV is applied to MEC
networks [19–21]. However, in real scenarios, UAVs may need to face massive user access
and data transmissions, where the energy and computational resources of a single UAV
could not support efficient and continuous work. In contrast, UAV clusters cannot only
reduce these problems, but also gain benefits through cluster collaborations, improving
system scalability and performance. Therefore, it is important to consider how UAVs
collaborate with each other. The authors of [22] proposed a decentralized deep reinforce-
ment learning algorithm to enable UAV clusters to autonomously and distributedly learn
dynamic coordination strategies by exploiting the deterministic state transfer property of
the system, which effectively improves the system’s task computational rate. The authors
of [23] jointly optimize the system’s computational resource allocation, power control, and
user association to minimize the power of the system. In order to solve this non-convex
optimization problem, the researchers proposed a centralized multi-intelligent body re-
inforcement learning algorithm and a semi-distributed federated reinforcement-learning
algorithm, respectively, which effectively achieves the optimization of the system latency
and power metrics. The authors of [24] modeled the optimization problem as a discrete
Stackelberg game model with priorities to obtain network hierarchical characteristics. Also,
they proved that the subgame at each priority level was an ordered potential game with
the Nash equilibrium, and proposed a hierarchical learning algorithm that could achieve
fast convergence of hierarchical grouping strategies for UAV clusters.

After summarizing and analyzing the existing research on UAV-MEC networks, we
found the following limitations:

• User grouping and relay selection: In the case of UAV clusters as relays to assist the
communication, the ground users should cooperate in groups and select different
UAVs for transmission, but there is very limited research on the integration of the user
grouping as well as the relay selection strategies.

• Resource management and power allocation: Existing research studies have been
conducted on power allocation and resource management under specific grouping
methods and relay selection structures, lacking a unified approach.

In this paper, we investigate the grouping method and relay selection structure prob-
lems in UAV cluster-assisted relay transmission. Specifically, we establish a communication
model for UAV cluster-assisted ground users to offload computational tasks to the ground
base station. Meanwhile, the system throughput is taken as the objective function under
the constraints of communication delay and transmission power, and the problem is decou-
pled into two subproblems. More importantly, we propose a hierarchical matching relay
selection algorithm and a weighted relay selection algorithm to maximize the throughput
of the system, where simulation results demonstrate the effectiveness and superiority of
the proposed algorithm.

The rest of the paper is organized as follows. The system model is elaborated on in
Section 2. The proposed hierarchical matching relay selection algorithm and weighted
relay selection algorithm are presented in Section 3. The simulation results are presented in
Section 4. The conclusions and future work are presented in Section 5.

2. System Model

As shown in Figure 1, we consider a UAV cluster-assisted relay transmission model.
The model has M ground users, N UAVs, and a ground base station with a deployed
MEC server. The ground users and UAVs are assumed to be homogeneous, and both
have the same constraint of transmission power, set as pu

max and pU
max, respectively. The

computational ability of the MEC server is measured by the number of CPU cycles required
by the MEC server to compute each bit of input data, set as f . The set of UAVs is defined as
N = {1, 2, . . . , N}, and the set of ground users is defined as M = {1, 2, . . . , M}, where the
number of ground users is much higher than the number of UAVs, M 	 N. The ground
users are randomly distributed in a specific range of the horizontal space, and the 3D
coordinate positions could be expressed as

(
xu

i , yu
i , 0

)
. The UAVs are randomly distributed
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in the three-dimensional space, and their coordinate positions could be expressed as(
xU

i , yU
i , hU

i
)
. Note that the UAVs need to keep a certain distance from each other to

avoid mutual collision and interference. In addition, during the process of information
transmission and relay forwarding, the UAVs maintain a hovering state with fixed three-
dimensional coordinates to ensure the stability of the communication link.

Figure 1. Transmission model of UAV-MEC networks.

In order to fully utilize the spectrum resources, M ground users will be divided into
N groups with an unlimited number of ground users within each group. Assuming that
the total system bandwidth is B, and the spectrum resources are equally divided into N
orthogonal sub-channels, the bandwidth of the sub-channel assigned to the ith group is Bi,
expressed as

Bi =
B
N

. (1)

Specifically, ground users within the same group use uplink non-orthogonal multiple
access (NOMA) to cooperate in offloading, and ground users between different groups use
frequency division multiple access (FDMA) to transmit in different frequency bands. At the
same time, different UAVs will also use FDMA to transmit information to the base station.

2.1. System Transmission Model

As shown in Figure 1, there may be obstacles in the communication environment
that impede the communication. Thus, there is a line-of-sight (LOS) channel primary path
component along with a non-line-of-sight (NLOS) channel multipath component in the
communication link. Therefore, the Rician fading channel [25,26] is employed in this paper.

Additionally, hu
i,j denotes the channel gain between the ith UAV and the jth ground

user. hU
i denotes the channel gain between the ith UAV and the ground base station.

Assuming that there are k ground users in the group assisted by the ith UAV, the received
signal yi of the ith UAV could be expressed as

yi =
k

∑
j=1

√
pu

i,jh
u
i,jxi,j + n0, (2)

note that n0 is the additive Gaussian white noise (AWGN), satisfying a mean of 0 and a
variance of N0. pu

i,j is the transmission power of the jth ground user in the ith UAV-assisted
group, which could not exceed the upper limit of the ground user transmission power pu

max,
which means

pu
i,j ≤ pu

max, ∀i ∈ N , ∀j ∈ M. (3)

In the uplink NOMA mode, the decoding order at the receiving end is determined by
the strength of each sub-signal. From Equation (2), the received strength is related to the
signal power, so the decoding is done in descending order of the signal power. The inter-
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group interference of the jth ground user in the ith UAV-assisted group are computed as

Ii,j
NOMA =

Ni

∑
t=j+1

pu
i,t
∣∣hu

i,t
∣∣2, (4)

where Ni is the number of users in the ith UAV-assisted user group; therefore, the signal-
to-noise ratio (SNR) of the jth ground user in the ith UAV-assisted user group is given by

γ
j
i =

pu
i,j

∣∣∣hu
i,j

∣∣∣2
Ii,j
NOMA + N0

=
pu

i,j

∣∣∣hu
i,j

∣∣∣2
Ni

∑
t=j+1

pu
i,t
∣∣hu

i,t
∣∣2 + N0

. (5)

According to the Shannon channel capacity, the information transmission rate ru
i,j

could be expressed as

ru
i,j = Bilog2

(
1 + γ

j
i

)
,

=
B
N

log2

⎛⎜⎜⎜⎜⎜⎝1 +
pu

i,j

∣∣∣hu
i,j

∣∣∣2
Ni

∑
t=j+1

pu
i,t
∣∣hu

i,t
∣∣2 + N0

⎞⎟⎟⎟⎟⎟⎠, (6)

therefore, the throughput from a user group to its corresponding UAV could be expressed as

Ci
SR =

Ni

∑
j=1

ru
i,j. (7)

More specifically, the decode-and-forward (DF) technique is used for UAVs to relay
the received signal. In this strategy, the UAV receives the signal from the user group and
performs the decode–recode–forward operation on the signal, reducing the transmission
process interference. Then, the UAV uses FDMA to transmit the signal to the ground base
station. Therefore, the ith UAV information transmission rate rU

i could be expressed as

rU
i =

B
N

log2

(
1 +

pU
i

∣∣hU
i

∣∣2
N0

)
. (8)

For the ith UAV, the transmission power could not exceed the constraint of the UAV
transmission power pU

max, which means

pU
i ≤ pU

max, ∀i ∈ N , (9)

similar to Equation (7), the throughput from the ith UAV to the ground base station could
be given by

Ci
RD = rU

i . (10)

Under the DF method, the system throughput is limited by the minimum of the
throughput from the source node to the relay node and the throughput from the relay node
to the destination node. Therefore, the system throughput of the transmission process for
the ith UAV-assisted user group would be expressed as

Ci = min
(

Ci
SR, Ci

RD

)
. (11)

In this paper, the system throughput C is the sum of all user group throughputs, which
could be expressed as

C =
N

∑
i=1

Ci. (12)
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2.2. System Computation Model

In UAV-MEC networks, the computational task to be performed by the jth ground user
could be defined as a binary group Dj � (dj, Tj), where dj denotes the amount of data for the
computational task to be performed by the jth ground user, and Tj denotes the maximum
transmission delay tolerable for the computational task. These two parameters indicate that
the computational task to be performed by the ground user is computationally intensive and
time-sensitive. Assuming that the computational tasks are indivisible, they are transmitted
to the ground base station by a UAV relay through a complete offloading method.

Note that time and energy consumption need to be considered during the offloading
and transfer of computational tasks from the ground user to the MEC server. For the jth
ground user in the NOMA group of the ith UAV-assisted relay, the computational task
transmission time tSR

i,j and the energy consumption ESR
i,j from the source node to the relay

node could be expressed as

tSR
i,j =

di,j

Biru
i,j

=
di,jN
Bru

i,j
, (13)

ESR
i,j = pu

i,jt
SR
i,j . (14)

Equation (13) utilizes the relationship between the total system bandwidth B and
the sub-channel bandwidth Bi. From Equation (14), it could be seen that the energy
consumption of the computational task is related to the ground user transmission power
and the information transmission rate. Meanwhile, it could be seen from Equation (6) that
the information transmission rate is also related to the ground user transmission power.
Therefore, without loss of generality, this paper converts the transmission process energy
constraint problem into a transmission power constraint problem.

Neglecting the UAV decoding–recoding time, for the ith UAV relay, the transmission
time tRD

i,j of the computational task of the auxiliary NOMA group from the relay node to the
destination node is the sum of the transmission times of all users in the group, denoted as

tRD
i,j =

Ni

∑
j=1

di,j

BirU
i

=

N
Ni

∑
j=1

di,j

BrU
i

. (15)

For the jth ground user in the NOMA group of the ith UAV-assisted relay, the time of
the computational task execution process at the MEC server tc

i,j could be expressed as

tc
i,j =

Fi,jdi,j

f
, (16)

where Fi,j is the number of CPU cycles required by the jth ground user in the ith NOMA
group to compute the task unit data volume. In this paper, ground users perform similar
types of tasks, and without loss of generality, Fi,j takes the same value for all ground users.

For the jth ground user in the NOMA group of the ith UAV-assisted relay, the energy
consumption of the execution process of the computational task at the MEC server Ec

i,j
could be expressed as

Ec
i,j = PMECtc

i,j, (17)

where PMEC is the computational power of the MEC server deployed at the ground base
station. In this paper, the MEC server is deployed with high computational power and
energy supply, and thus, without loss of generality, the energy consumption of the MEC
server is negligible.

Therefore, for the jth ground user in the NOMA group of the ith UAV-assisted relay,
the total task execution delay to

i,j could be expressed as

to
i,j = tSR

i,j + tRD
i,j + tc

i,j. (18)
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Since the computational tasks are delay-sensitive, for all UAV computational tasks, the
total delay could not exceed the maximum tolerable transmission delay Ti,j, which means

to
i,j ≤ Ti,j, ∀i ∈ N , ∀j ∈ M. (19)

2.3. Problem Formulation

The system transmission and computation model show that ground users are required
to perform computation-intensive and delay-sensitive tasks, which need to be transmitted
by the UAV-assisted relay to the ground base station due to resource constraints. Therefore,
our goal is to maximize the system throughput under the constraints of computational
resources as well as transmission delay.

The system throughput of the proposed model is affected by various factors, including
the ground user grouping situation, the UAV relay selection situation, and the power
allocation of the ground users in the NOMA system. Among them, the two factors, ground
user grouping and UAV relay selection, are correlated and together determine the actual
communication grouping structure. Therefore, in this section, these two factors are unified
as the relay selection structure. Thus, the system parameters include the relay selection
structure and power allocation for ground users, where the system’s objective function
could be expressed as

max
A,P

C

s.t. C1 : to
i,j ≤ Ti,j, ∀i ∈ N , ∀j ∈ M,

C2 : pu
i,j ≤ pu

max, ∀i ∈ N , ∀j ∈ M,

C3 : pU
i ≤ pU

max, ∀i ∈ N , (20)

C4 :
N⋃

i=1

Ai = M,
N⋂

i=1

Ai = ∅, ∀i ∈ N ,

where parameter A is the set of relay selection structures and parameter P is the set
of ground user power allocations. Constraint C1 indicates that the total delay of all
ground users’ computing tasks could not exceed the maximum tolerable transmission
delay of computing tasks. Constraint C2 indicates that the transmission power of all
ground users could not exceed the upper limit of ground users’ transmission power.
Constraint C3 indicates that the transmission power of all UAVs could not exceed the
upper limit of the UAV transmission power constraint. In constraint C4, Ai indicates the
relay selection structure of the ith UAV relay and its auxiliary NOMA user group. That
means the concatenation set of all relay selection structures includes all ground users, and
the intersection set of all relay selection structures is the empty set, which ensures the
ground user completeness of the computational task transmission. Notably, we restrict the
minimum distance between UAVs so that they cannot overlap or collide.

The objective function established in this paper is a joint problem of two parameters,
the relay selection structure and ground user power allocation. To simplify the treatment,
Equation (20) is decoupled into two subproblems—relay selection and power allocation—
expressed as

P1 : max
A

N

∑
i=1

M

∑
j=1

ui,jmin
(

ru
i,j, rU

i

)
,

s.t. C1 :
N⋃

i=1

Ai = M,
N⋂

i=1

Ai = ∅, ∀i ∈ N , (21)

C2 :
{

ui,j
}
∈ {0, 1}.
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P2 : max
P

C,

s.t. C1 : to
i,j ≤ Ti,j, ∀i ∈ N , ∀j ∈ M,

C2 : pu
i,j ≤ pu

max, ∀i ∈ N , ∀j ∈ M, (22)

C3 : pU
i ≤ pU

max, ∀i ∈ N .

where ui,j is a binary offloaded variable that could be traversed over all ground users that
reflecting their cooperation with each UAV. More specifically, subproblem P2 is the power
allocation problem in the fixed relay selection structure, and in this paper, we deal with it
using a fractional transmit power allocation (FTPA) algorithm. Subproblem P1 is a relay
selection structure problem in the context of determining the ground user power allocation.
To illustrate the nature of the problem, the objective function could be split into the sum of
the throughputs of each NOMA group. However, subproblem P1 is non-convex because
of the presence of discrete binary variables ui,j, which is difficult to solve by traditional
optimization methods. Therefore, this paper adopts the matching idea to solve the problem.

3. Relay Selection Algorithm

For the UAV-assisted relay transmission model developed in this paper, the bilateral
matching participants consist of the set of ground users and the set of UAVs. The number
of ground users is much more than the number of UAVs. Therefore, the bilateral matching
problem in this paper is a many-to-one matching problem.

3.1. Hierarchical Matching Relay Selection

Ground users matched to the same UAV cooperate for information transmission with
NOMA. However, after ground users and UAVs cooperate, the nature of the UAV set
changes due to the case of intra-group interference. Specifically, the UAV that cooperates
with the ground user changes its utility function value for other ground users. If the other
ground users still follow the original preference relationship for the matching process, this
does not reflect the actual situation of the system. As shown in Figure 2, a matching round
is defined as the ground user set sends a cooperation request based on the preference
relationship and the UAV set responds to the cooperation request based on the preference
relationship. The process from the start of matching to the point where all participants have
no intention to change the matching result is denoted as a matching round. After a matching
round, UAVs that have cooperated with ground users exist, so the preference relationships
of the participants need to be adapted. Specifically, the unmatched ground users are the
match initiators, and the UAVs with these connected ground users are considered as match
responders. Based on this, the preference relationship is updated and the next matching
round begins until all ground users cooperate with the UAV. The proposed hierarchical
matching relay selection algorithm is shown in Algorithm 1.

Figure 2. A matching round where different colors represent different groups.
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Algorithm 1: Hierarchical matching relay selection algorithm

1 Step 1: Initialization
(1) Input parameters: ground users set M, UAVs set N, channel gain sets H.
(2) Initializing preference relationship sequences.

Step 2: Hierarchical matching

(1) While M �= ∅:
(2) While Prem �= ∅:
(3) Each unmatched ground user sends a match request to the highest-ranked

UAV based on a preference relationship sequence;
(4) If UAV was not matched with ground users:
(5) Match successfully;
(6) Else:
(7) If the original matching user ranks higher:
(8) Refuse the new matching request;
(9) Else:
(10) Refuse the original matching request;
(11) Rejected users remove the selected UAV from the preference

relationship sequence;
(12) End if;
(13) End if;
(14) Repeat (3);
(15) End while;
(16) Update the M, N, and preference relationship sequence set;
(17) Repeat (2);
(18) End while.

In the first round, the priority during initialization is determined by the transmission
process throughput in descending order. Note that the throughput from the source node
to the relay node should be calculated as the OMA method because all users have not
cooperated. During the matching process, each ground user checks the matching status
and does not perform an operation if a match has already been realized with a UAV.
Instead, the sequence of preference relationships is checked and the UAV with the highest
ranking in the sequence of preference relationships is selected to issue a match request.
Meanwhile, each UAV first checks the matching status after receiving the matching request
sent by the ground user. If a match has not yet been realized with the ground user, it
chooses to accept the match request. Instead, the UAV needs to make a choice based on the
preference relationship sequence. If the ground user sending the match request has a higher
preference relationship ranking, the UAV will end the cooperative relationship with the
original ground user and it realizes a new match. On the contrary, the UAV will maintain a
cooperative relationship with the original ground user and reject the new match request. In
both cases, the rejected ground users are required to remove the UAV from the sequence
of preference relationships. When all the ground users’ matching requests are responded
to by the UAVs, one matching round is over. Repeat the above steps until all unmatched
ground users are no longer able to issue matching requests to the UAV, which means for all
unmatched ground users, the preference relationship sequence is empty, represented by
Premi = ∅. In this case, the set of ground users and the set of UAVs form N binary matching
pairs (i, j), where i and j are the index of UAVs and ground users, respectively. With the
number of ground users far exceeding the number of UAVs, there are still (M − N) ground
users that have not achieved a match. After the second round of matching, if there are
still unmatched ground users, then (M − 2N) of these users remain unmatched. The set of
ground users and the set of UAVs then constitute N ternary matching pairs, denoted as
(i, j, k). Subsequently, in the ith round, there are (M − (i − 1)N) that remain unmatched.
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These users, in combination with the set of UAVs, form N i-element matching pairs with
the set of UAVs, which serves as a target for matching with the remaining ground users.

3.2. Weighted Relay Selection

Algorithm 1 considers the high-priority ground user and the UAV as a whole at the
end of each matching round and acts as a matching responder for the next round, ensuring
the accuracy of the preference relationship. However, the algorithm ignores a possible
situation where vulnerable users are disadvantaged in this algorithm. Assuming that the
preference relationship sequence and the function values for ground user a and ground
user b are represented as

Prea = {(n1 : x) �a (n2 : 0.9x) �a (n3 : 0.6x)}, (23)

Preb = {(n1 : 0.8x) �b (n2 : 0.5x) �b (n3 : 0.3x)}, (24)

where Prea and Preb represent the preference relationships of users a and b, respectively,
and � means that the former has a higher utility value. In this case, a and b have identical
preference relationship sequences but different utility function values. During the matching
process, the vulnerable user b is rejected by UAV n1 and is forced to choose to match with
UAV n2. However, user a always obtains a high utility value when matching with any UAV;
vulnerable user b obtains a lower utility value when matched with the remaining UAVs,
except n1, and this situation leads to a lower total utility value of the system. Therefore, it
is important to propose a new algorithm, which could compensate for vulnerable users.

The core idea of the improved algorithm is to weigh the value of the utility function of
the vulnerable user to improve its chances of being selected by the UAVs. Specifically, in
the improved algorithm, the preference relationship sequence should focus not only on the
ranking order but also on the corresponding utility value. Thus, without loss of generality,
the preference relationship sequence of any ground user mj is re-expressed as{(

n1 : vj
1

)
�mj

(
n2 : vj

2

)
�mj · · · �mj

(
nn : vj

n

)}
, (25)

where vj
i is the value of the utility function when the ground user mj is matched with

the UAV ni. Based on this, three parameters are designed: the trigger threshold μ, the
weighted ratio θ, and the weighted round Nlim. In a matching round, when the ground
user is rejected by the UAV to which it sends a matching request, the following operation
is performed:

(1) Compare the utility values of the current UAV ncur with a UAV that has the next
highest preference ranking nnext. Calculate the percentage increase ureal in the utility
of the ground user matching ncur compared to matching nnext:

ureal =
vj

cur − vj
next

vj
next

(26)

(2) Compare ureal and μ. If ureal < μ, we consider that the rejected user is not a vulnerable
user and continue the normal matching process; if ureal ≥ μ, consider the rejected user
is a vulnerable user.

(3) For vulnerable users, vi
cur is weighted and a matching request is resent to UAV ncur

with the weighted utility function value. If the matching request is accepted, the
algorithm ends; if the matching request is rejected, step (1) is repeated with an upper
limit of Nlim number of repetitions.
The proposed weighted relay selection algorithm for vulnerable users is shown in
Algorithm 2.
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Algorithm 2: Weighted relay selection algorithm

1 Step 1: Initialization
(1) Input parameters: set of preference relationship sequences Prem, the trigger

threshold μ, the weighted ratio θ, and the weighted round Nlim.

Step 2: Weighted matching

(1) While the ground user’s matching request was rejected ∩ Nlim �= 0 :
(2) Calculate ureal ;
(3) If ureal < μ:
(4) Stop;
(5) Else:
(6) v = v(1 + θ), Nlim = Nlim − 1;
(7) Send a matching request to the UAV again;
(8) End if;
(9) End while.

3.3. Algorithm Stability

In order to understand the stability of the matching results, the definition of an
impeded stable matching pair is given as follows.

If there exists a matching pair (inviter, responder) ∈ M×N , and the matching
pair does not exist in the set R of matches that have already appeared, which means
(inviter, responder) /∈ R. However, for the participants of this matching pair, there ex-
ists a matching result (inviter

′
, responder) ∈ R, (inviter, responder

′
) ∈ R, which means

inviter �responder inviter
′

and responder �inviter responder
′
, which indicates that for the

matching pair (inviter, responder), this matching result destroys the original matching
result, so it is called an impeded stable matching pair.

The algorithm proposed in this paper is essentially a one-to-one matching of multiple
rounds, so as long as the stability of the one-to-one matching is understood, the stability of
the algorithm would be understood.

For the final matching results (inviter f in, responder f in), assuming that there is an impeded
stable matching pair (inviter, responder), there are two possibilities: inviter f in sent a match
request to the responder, or inviter f in did not send a match request to the responder. For
the former, (inviter, responder) does not exist, as the responder would have received match
requests from participants higher in their preference order. For the latter, (inviter, responder) also
does not exist because either a match request sent to responder was declined, or there is another
participant ranked higher than responder in inviter f in’s preference order.

4. Simulation Results and Analysis

This section verifies the performance simulation of the hierarchical matching relay
selection algorithm and the weighted relay selection algorithm proposed in the above
section. The simulation parameters are set as shown in Table 1.

The comparison algorithm we adopt is the classical relay selection strategy: max–
SR [27], max–RD [28], and max–min [29]. The idea of the max–SR relay selection algorithm
is to select the relay node with the largest instantaneous SNR between the S-R links, and
the optimal relay under this algorithm could be expressed as

relay∗ = argmax{
∣∣∣hu

i,j

∣∣∣2}, (27)

similarly, the max–RD algorithm finds the relay node with the largest instantaneous SNR
of the R-D link, which could be given by

relay∗ = argmax{
∣∣∣hU

i

∣∣∣2}, (28)
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the core idea of the max–min algorithm is to consider the quality of both links simultane-
ously, which could be expressed as

relay∗ = argmax{min{
∣∣∣hu

i,j

∣∣∣2,
∣∣∣hU

i

∣∣∣2}}, (29)

note that the max–RD and max–min algorithms require a channel state feedback mechanism.

Table 1. Simulation parameter setting.

Parameters Value

Radius of the horizontal distribution range of UAVs 800 m

Distance between UAVs 200 m

Height distribution range of UAVs 100–300 m

Radius of the horizontal distribution range of ground users 600 m

Sizes of task data 1–10 kbit

Maximum tolerable transmission delay for computing tasks 10–100 ms

Path loss index 0.8

Noise spectral density n0 −90 dBm/Hz

Rice channel parameters 2

Weighted round limit Nlim 5

Average number of tests 1000

Figure 3 presents the system throughput using our proposed hierarchical matching
relay selection algorithm with the comparison algorithm for a different number of ground
users when the number of UAVs is fixed. Note that we set the number of UAVs to 4, N = 4,
and the number of ground users ranges from 4 to 24. The parameter settings are based on
the numerical relationship, N ≤ M. This is because an increase in the number of users does
not notably enhance the performance given the transmission power limitations of the UAVs
The simulation results show that with the increase in ground users, the system throughput
with the max–RD algorithm varies only in a small range and tends to be smooth. This is
because in the max–RD algorithm, the relay selection depends only on the channel gain of
the R-D link, so there will be a situation where all the ground users select the same relay
UAV, and the system throughput is less affected by the change in the number of users. In
the max–min and max–SR algorithms, the system throughput gradually increases as the
number of users increases, due to the fact that ground users have more UAVs to choose
from. It is worth noting that in our proposed algorithm, the system throughput gradually
increases and it is significantly higher than the comparison algorithm, which indicates that
our proposed algorithm has better user scale adaptability. This is due to the advantages of
NOMA and the fact that we always utilized all the UAVs available as relay nodes.
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Figure 3. Variation of system throughput with the number of ground users for different relay
selection algorithms.
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Figure 4 presents the system throughput for different numbers of UAVs when the
ground user numbers are fixed. Note that we set the number of ground users to 20, M = 20,
and the number of UAVs to range from 2 to 7. The parameter settings are based on the
numerical relationship between the two and the fact that more UAVs only have smaller
performance gains with any algorithm under our tests. The simulation results show that as
the available UAV numbers increase, the system throughput using the max–RD algorithm
only changes within a small range and there is no upward trend. This is because in the case
of the max–RD algorithm, the relay selection only depends on the channel gain between the
UAVs and the destination node. Therefore, it may occur that ground users choose the same
relay UAV, and the system throughput is less affected by changes in the number of UAVs.
In the case of the max–min algorithm and max–SR algorithm, the communication links
supporting simultaneous transmission increase as the UAV numbers increase. Therefore,
the probability of UAVs with high channel gain increases, and ground users have more
UAV choices, improving the system throughput. For the algorithm proposed in this paper,
as the UAVs increase, the number of users in each NOMA group decreases, and user
interference in the group decreases, which improves the system throughput. It could be
seen that although increasing the number of UAVs increases the resource expenditure, it
could significantly improve the system throughput.

Figure 5 presents the system throughput using our proposed hierarchical matching
relay selection algorithm with the comparison algorithm for different user maximum
transmission power scenarios, with the number of ground users M = 20 and the number
of UAVs N = 4. The simulation results show that the system throughput with both the
proposed algorithm and the comparison algorithm gradually increases as the maximum
transmission power increases within a certain range. It is noteworthy that the system
throughput is highest in the case of the proposed algorithm. This is due to the fact that
when the maximum transmission power of the ground user increases, the SNR of the
ground user’s transmission also increases and, therefore, the system throughput increases.
Note that the system throughput in the case of the proposed algorithm shows a decreasing
growth rate tendency as the transmission power of the ground user increases, while the
growth rate of the comparison algorithm remains almost constant. This is due to the fact
that the comparison algorithm uses the OMA method for transmission and there is no
intra-group user interference. However, the proposed algorithm uses the NOMA method
for transmission, and as the ground user transmission power increases, the intra-group user
interference also increases, and when it reaches a point where its effect on the SNR is close
to that of the transmission power on the SNR, the growth rate of the system throughput
decreases. This indicates that the proposed algorithm is sensitive to transmission power.
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Figure 4. Variation of system throughput with the number of UAVs for different relay
selection algorithms.
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Figure 5. Variation of system throughput with maximum transmission power of terrestrial users for
different relay selection algorithms.

Figure 6 presents the system throughput using the weighted relay selection algorithm
for different algorithm parameters when the number of ground users is M = 50 and the
number of UAVs is N = 7. The simulation results show that, within a certain parameter
range, when the weighted ratio is fixed, the system throughput gradually increases as the
trigger threshold decreases; when the trigger threshold is fixed, the system throughput
gradually increases as the weighted ratio increases. Outside the parameter range, the
system throughput remains stable and high. This is due to the fact that as the trigger
threshold decreases and the weighted ratio increases, it makes the bias toward vulnerable
users higher. Therefore, the vulnerable users are weighted to be re-matched in a way that
improves the system throughput. After a certain range is reached, all possible vulnerable
users have been involved in the proposed algorithm, so the system throughput remains
stable at a higher value.

Figure 6. Performance of the weighted relay selection algorithm with different parameters.

Figure 7 presents the variation of the algorithm’s runtime with the number of UAVs
and the number of ground users for the weighted relay selection algorithm with the upper
weighted round limit Nlim = 5. The simulation results show that the algorithm running
time rises gradually with the increase in the number of ground users and the growth rate
increases gradually, which indicates that the ground users as the initiators of the matching
have a greater impact on the algorithm running time. Note that the algorithm running

30



Drones 2023, 7, 579

time is less affected by the change in the number of UAVs. Based on this and Figure 4, we
can consider that increasing the number of UAVs could significantly increase the system
throughput while controlling the running time of the algorithm.

Figure 7. Variation in the algorithm running time with the number of matched participants.

5. Conclusions and Future Work

In this paper, a typical model of UAV-assisted relay transmission is established, and
the transmission and computation process of the model is analyzed. Also, this paper jointly
controls the transmission power and relay selection structure to optimize the objective
function of the system throughput for resource-limited and delay-sensitive communication
conditions. More importantly, we propose a hierarchical matching relay selection algorithm
and a weighted relay selection algorithm for vulnerable users based on the matching idea,
where the simulation results verify the superiority of the proposed algorithm. It should
be noted that the weighted relay selection algorithm has better performance compared
to the hierarchical matching relay selection algorithm, but there will be more resource
investments and higher latency, which need to be selected according to the actual situation.
For the power allocation problem in this scenario, please refer to our subsequent work.
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Abstract: In 6G-oriented vehicular Internet of things (IoT) services, the integration of a low altitude
platform (LAP) and intelligent reflecting surfaces (IRS) provides a promising solution to achieve
seamless coverage and massive connections at low cost. However, due to the open nature of wireless
channels, how to protect the transmission of privacy information in LAP-based IRS symbiotic
vehicular networks remains a challenge. Motivated by the above, this paper investigates the LAP
and IRS enhanced secure transmission problem in the presence of an eavesdropper. Specifically, we
first deploy a fixed LAP equipped with IRS to overcome the blockages and introduce artificial noise
against the eavesdropper. Next, we formulate a total secure channel capacity maximization problem
by optimizing the phase shift, power distribution coefficient, and channel allocation. To effectively
solve the formulated problem, we design an iterative algorithm with polynomial complexity, where
the optimization variables are solved in turn. In addition, the complexity and convergence of the
proposed iterative algorithm are analyzed theoretically. Finally, numerical results show that our
proposed secure transmission scheme outperforms the comparison schemes in terms of the total
secure channel capacity.

Keywords: intelligent reflecting surfaces (IRS); low-altitude platform (LAP); secure transmission;
total secure channel capacity; vehicular Internet of things (IoT) services

1. Introduction

While the dense coverage of fifth-generation (5G) terrestrial networks can satisfy the
demands of vehicular Internet of things (IoT) services in hotspots, people still have urgent
requirements for ubiquitous connectivity with high data rates in remote areas [1]. Due to
the inherent limitations of terrestrial networks, air-to-ground (A2G) communications are
envisioned as a promising technique to serve sixth-generation (6G)-oriented vehicular IoT
applications [2–4]. As the most representative A2G communications, low-altitude platform
(LAP)-enhanced transmissions have lower path loss and higher line-of-sight (LoS) link
probability, which can be deployed on demand via a levitation mode to provide seamless
and flexible coverage [5–7]. On the other hand, intelligent reflecting surfaces (IRS) with low
hardware cost and power consumption can be used for 6G-oriented vehicular IoT services
by smartly reconfiguring wireless propagation environments [8–10].

Following the technological advancements of A2G communications, the combination
of LAP and IRS has attracted a certain amount of attention [11]. Generally, this combination
can be divided into two cases, i.e., mobile IRS schemes [12,13] and fixed IRS schemes [14–16].
However, in some practical vehicular network (VNet) scenarios (e.g., emergency rescues),
mobile IRS schemes may be impractical. The reason is that the payload and flight time
of LAPs with mobile capability are extremely limited. According to the above discussion,
the authors in [14] derived the channel gain lower bound for LAP and IRS collaborative
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communications. Inspired by this work, the researchers in [15] investigated the sum rate
maximization problem of LAP-aided IRS networks by optimizing the phase shift and LAP
altitude. Moreover, by using quasi-stationary LAPs, the IRS-assisted multi-layer aerial
architecture was proposed in [16], which pointed out a promising direction for 6G-oriented
vehicular IoT services. Furthermore, in order to improve the channel capacity, more
works focused on the network optimization problems, including beamforming, resource
(e.g., power and spectrum) allocation, and energy efficiency optimization [17–20]. We have
summarized these works in Table 1.

Table 1. Summary of key contributions and limitations of existing works on UAV-aided RIS-assisted
IoT networks.

Reference Key Contributions Limitation

[14]
The channel gain lower bound for LAP
and IRS collaborative communications

was derived.

These works make an implicit assumption
that LAP-based IRS symbiotic vehicular
networks (VNets) are secure. In LAP-based
IRS symbiotic VNets, the privacy
information is susceptible to eavesdropping
due to the open nature of A2G channels.

[15]

The sum rate maximization problem of
LAP-aided IRS networks was

investigated, where the phase shift and
LAP altitude were optimized.

[16] The IRS-assisted multi-layer aerial
architecture was proposed.

[17–20]

By considering the beamforming,
resource allocation, and energy
efficiency, the channel capacity

was improved.

Although the above works present optimization policies and models of LAP and
IRS enhanced transmissions, these works make an implicit assumption that LAP-based
IRS symbiotic vehicular networks (VNets) are secure. In LAP-based IRS symbiotic VNets,
the privacy information is susceptible to eavesdropping due to the open nature of A2G
channels [21]. Traditionally, the network security is protected by upper-layer encryption
methods. However, such encryption algorithms and key allocation strategies will signif-
icantly improve the complexity of the system [22]. Faced with the above challenges, by
using the wireless channel characterizations, the physical layer security (PLS) technique
can be regarded as a promising alternative technique, which can be widely applied to
6G-oriented vehicular IoT services to ensure information security [23]. Therefore, under
the constraints of network security, how to improve the total secure channel capacity of
LAP and IRS enhanced transmissions is a key technical difficulty.

Motivated by the above, this paper investigates the secure transmission problem in
LAP-based IRS symbiotic VNets in the presence of an eavesdropper. First, we deploy a
fixed LAP equipped with IRS to overcome the blockages and exploit artificial noise (AN)
to interfere with the eavesdropper. Next, aiming to maximize the total secure channel
capacity, we formulate this problem as a mixed-integer and non-convex program. To effec-
tively solve the formulated problem, an iterative algorithm with polynomial complexity
is proposed, where the phase shift, power distribution coefficient, and channel allocation
are optimized in turn. Then, we theoretically analyze the complexity and convergence
of the proposed iterative algorithm. Finally, numerical results show that the proposed
secure transmission scheme significantly improves the total secure channel capacity against
the current works [2,23] and baseline scheme. In addition, the influence of the number of
reflection elements is discussed. The above results are a meaningful guide for improving
the quality of service (QoS) of 6G-oriented vehicular IoT services.

The rest of this article is organized as follows. Section 2 introduces the network model
and presents the total secure channel capacity maximization problem. Then, in Section 3, we
design an iterative algorithm with polynomial complexity to solve the formulated problem.
Simulation results are presented in Section 4. Finally, Section 5 concludes the paper.
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2. Network Model and Problem Formulation

Figure 1 illustrates the considered LAP-based IRS symbiotic VNet, which consists of a
remote base station (RBS), a fixed LAP equipped with IRS, U legitimate vehicle users, and an
eavesdropper. The set of legitimate vehicle users is denoted as U = {1, 2, ..., U}. We assume
that there is no direct communication link between the RBS and the legitimate vehicle
user/eavesdropper due to obstacles [8]. Under this condition, we adopt the LAP equipped
with IRS to enhance transmissions. The IRS can be controlled by an intelligent controller.

Figure 1. LAP-based IRS symbiotic VNets.

It is assumed that the IRS has Gh horizontal reflection elements and Gv vertical re-
flection elements, denoted as G = {1, 2, . . . , G}, where G = Gh × Gv. Moreover, the
RBS has N antennas and K channels, denoted as K = {1, 2, . . . , K}, where K ≥ U. Let
K = {ku|∀k ∈ K, ∀u ∈ U } denote the channel allocation policy. If the u-th (∀u ∈ U ) le-
gitimate vehicle user occupies the k-th (∀k ∈ K) channel, ku = 1; otherwise, ku = 0.
Furthermore, each legitimate vehicle user with self-interference cancellation capability has
two antennas that can implement full-duplex communication. Meanwhile, we assume that
the AN emitted by the legitimate vehicle users will not affect the received signals, and the
eavesdropper is equipped with a single antenna [24]. Since the total power Pmax

u of the sys-
tem is limited, the RBS and the u-th legitimate vehicle user need to negotiate to decide the
transmitted power Pdown

u of RBS (downlink) and the transmitted power Pup
u of AN (uplink).

Especially, as discussed in [21], the channel is assumed to have reciprocity. Likewise, it is
assumed that the channel state information (CSI) associated with the eavesdropper/IRS
is available. The reason is that even for a passive eavesdropper, it can also estimate its
CSI through local oscillator power inadvertently leaked from the eavesdropper’s receiver
radio frequency frontend [25]. Since the investigated scenario is highly dynamic, imperfect
estimation of the reflection phases and phase errors are possible with respect to the link
between LAP and ground nodes. In this situation, the CSI of the LAP vehicle links needs to
be periodically reported to the RBS with a feedback period. According to [26], the first-order
Gauss–Markov process can be utilized to estimate the CSI of LAP-vehicle links.

According to the above description, the received signal yu of the u-th legitimate vehicle
user can be expressed as

yu = hH
l,uΦHB,l Pdown

u su + ηu, (1)
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where hH
l,u is the channel from IRS to the u-th legitimate vehicle user, hl,u ∈ CG×1; Φ is the

phase shift matrix, and Φ = diag
{

ejXg
}

, Xg ∈ [0, 2π), where Xg is the phase shift of the

g-th (∀g ∈ G) reflection element; HB,l is the channel from the RBS to IRS, HB,l ∈ CG×N ;
su is the transmitted signal from the RBS for the u-th legitimate vehicle user with zero
mean and normalized power; ηu is the noise received by the u-th legitimate vehicle user,
ηu ∼ CN

(
0, σ2

u
)
, where σ2

u is the noise power of the u-th legitimate vehicle user.
Similarly, the received signal yEve

u of the eavesdropper is

yEve
u = hH

l,EveΦHB,l Pdown
u su

+ hH
l,EveΦhl,uPup

u au + hu,EvePup
u au (2)

+ ηEve,

where hH
l,Eve is the channel from IRS to the eavesdropper, hl,Eve ∈ CG×1; au is the AN signal

emitted by the u-th legitimate vehicle user with zero mean and normalized power; hu,Eve is
the channel from the u-th legitimate vehicle user to the eavesdropper, hu,Eve ∈ C; ηEve is
the noise received by the eavesdropper, ηEve ∼ CN

(
0, σ2

Eve
)
, where σ2

Eve is the noise power
of the eavesdropper.

According to (1), the information rate RB,u

(
Φ, Pdown

u , ku

)
of the u-th legitimate vehicle

user is given by

RB,u

(
Φ, Pdown

u , ku

)
=

K

∑
k=1

Bukulog2(1 + SINRB,u), (3)

where Bu is the channel bandwidth of the u-th legitimate vehicle user, and SINRB,u can be
expressed as

SINRB,u =
Pdown

u

∣∣∣hH
l,uΦHB,l

∣∣∣2
σ2

u
. (4)

The information rate Ru,Eve

(
Φ, Pdown

u , Pup
u , ku

)
of the eavesdropper is given by

Ru,Eve

(
Φ, Pdown

u , Pup
u , ku

)
=

K

∑
k=1

BEvekulog2(1 + SINRu,Eve), (5)

where SINRu,Eve can be expressed as

SINRu,Eve =
Pdown

u

∣∣∣hH
l,EveΦHB,l

∣∣∣2
Pup

u

∣∣∣hH
l,EveΦhu,l

∣∣∣2 + Pup
u |hu,Eve|2 + σ2

Eve

. (6)

For notational simplicity, we define Ψu as the power distribution coefficient of the
u-th legitimate vehicle user. Since Pmax

u = Pdown
u + Pup

u , we have Pdown
u = ΨuPmax

u and
Pup

u = (1 − Ψu)Pmax
u . According to (3) and (5), in LAP-based IRS symbiotic VNets, the

secure channel capacity Rsec
u of the u-th legitimate vehicle user is

Rsec
u (Φ, Ψu, ku) = [RB,u(Φ, Ψu, ku)− Ru,Eve(Φ, Ψu, ku)]

+, (7)

where [·]+ represents max{·, 0}.
Therefore, the total secure channel capacity Rsec

tot (Φ, Ψ, K) can be expressed as

Rsec
tot (Φ, Ψ, K) =

U

∑
u=1

Rsec
u (Φ, Ψu, ku), (8)
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where Ψ = {Ψu|∀u ∈ U }.
By optimizing the power distribution coefficient Ψ, phase shift Φ, and channel alloca-

tion policy K, we aim to maximize the total secure channel capacity Rsec
tot (Φ, Ψ, K). The

total secure channel capacity maximization problem can be mathematically formulated as

P1 : max
Φ, Ψ, K

Rsec
tot (Φ, Ψ, K) (9a)

s.t. 0 < Ψu ≤ 1, ∀u, (9b)
U

∑
u=1

Pmax
u = Ptot, (9c)

Φ = diag
{

ejXg
}

, ∀g, (9d)∣∣∣ejXg
∣∣∣ = 1, Xg ∈ [0, 2π), ∀g, (9e)

ku ∈ {0, 1},
K

∑
k=1

ku = 1,
U

∑
u=1

ku ≤ 1, ∀k, u, (9f)

where Ptot is the total power of the system.
The main notations are summarized in Table 2.

Table 2. Definition of parameters.

Parameter Definition

U Number of legitimate vehicle users
G Number of reflection elements
N Number of antennas
K Number of channels

Pmax
u Total power

Pdown
u Transmitted power of the RBS
Pup

u Transmitted power of AN
yu Received signal of the u-th legitimate vehicle user

hH
l,u Channel from IRS to the u-th legitimate vehicle user

Φ Phase shift matrix
HB,l Channel from the RBS to IRS
su Transmitted signal from the RBS for the u-th legitimate vehicle user

hH
l,Eve Channel from IRS to the eavesdropper
au AN signal emitted by the u-th legitimate vehicle user

hu,Eve Channel from the u-th legitimate vehicle user to the eavesdropper
ηEve Noise received by the eavesdropper
RB,u Information rate of the u-th legitimate vehicle user
Bu Channel bandwidth of the u-th legitimate vehicle user

Ru,Eve Information rate of the eavesdropper
Ψu Power distribution coefficient of the u-th legitimate vehicle user
Rsec

u Secure channel capacity of the u-th legitimate vehicle user
Rsec

tot Total secure channel capacity
Ptot Total power of the system

In P1, (9b) and (9c) together limit the transmitted power of the RBS and legitimate
vehicle users; (9d) and (9e) constrain the IRS phase shift; (9f) defines the channel allocation
mode of multiple legitimate vehicle users. Since

∣∣∣ejXg
∣∣∣ = 1 and ku ∈ {0, 1}, P1 is a

mixed-integer and non-convex program. It is hard to obtain a global optimal solution for
P1. Therefore, in Section 3, we propose an iterative algorithm, where Ψ, Φ, and K are
solved in turn.
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3. Total Secure Channel Capacity Maximization Scheme

3.1. Phase Shift Optimization

In this stage, given Ψ and K, the phase shift optimization problem P2 is given by

P2 : max
Φ

Rsec
tot (Φ) =

U

∑
u=1

Rsec
u (Φ) (10a)

s.t. Φ = diag
{

ejXg
}

, ∀g, (10b)∣∣∣ejXg
∣∣∣ = 1, Xg ∈ [0, 2π), ∀g. (10c)

Next, an intermediate variable X is introduced, where X =
[
ejX1 , . . . , ejXG

]H. We have

Φ = diag
{

XH}. Let Al,u = diag
{

hH
l,u

}
and Bl,Eve = diag

{
hH

l,Eve

}
. Based on the property

of matrix transformation (i.e., aHΦb = XHdiag
{

aH}b), SINRsec
u (X) can be recast as

SINRsec
u (X) =

XHw1X

XH(w2 + w3 + w4)X
× XH(w5 + w6)X, (11)

where Rsec
u (Φ) = log2[1 + SINRsec

u (X)], and IG is the unit matrix. In addition, we have

w1 =

(
1
G

)
IG +

ΨuPmax
u

(
Al,uHB,lH

H
B,lA

H
l,u

)
σ2

u
, (12)

w2 = ΨuPmax
u

(
Bl,EveHB,lH

H
B,lB

H
l,Eve

)
, (13)

w3 = (1 − Ψu)Pmax
u

(
Bl,Evehl,uhH

l,uBH
l,Eve

)
, (14)

w4 =

[
(1 − Ψu)Pmax

u |hu,Eve|2 + σ2
Eve

G

]
IG, (15)

w5 = (1 − Ψu)Pmax
u

(
Bl,Evehl,uhH

l,uBH
l,Eve

)
, (16)

and

w6 =

[
(1 − Ψu)Pmax

u |hu,Eve|2 + σ2
Eve

]
G

IG. (17)

To tackle P2, we further introduce three intermediate variables (α, β, and χ), which
can be respectively expressed as

α =

(
1
G

)
IG +

ΨuPmax
u

(
Al,uHB,lH

H
B,lA

H
l,u

)
σ2

u
, (18)

β = Bl,EveHB,lH
H
B,lB

H
l,Eve, (19)

and

χ = (1 − Ψu)Pmax
u

(
Bl,Evehl,uhH

l,uBH
l,Eve

)
(20)

+
[
(1 − Ψu)Pmax

u |hu,Eve|2 + σ2
Eve

]
G−1IG.
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Then, we simplify (11), and SINRsec
u (X) can be rewritten as

SINRsec
u (X) =

tr
(
αXXH)tr

(
βXXH)

tr(χXXH)
, (21)

where tr(·) is the trace of matrix.
To satisfy (10b) and (10c), we have{

rank
(
XXH) = 1,(

XXH)
g,g = 1, ∀g ∈ G. (22)

Afterward, a slack variable � is introduced. By using �, P2 can be rewritten as

P3 : min
X

� (23a)

s.t. elog2[tr(χXXH)]−log2[tr(βXXH)]−log2[tr(αXXH)] −� ≤ 0, (23b)

tr
(

αXXH
)
≥ elog2[tr(αXXH)], (23c)

tr
(

βXXH
)
≥ elog2[tr(βXXH)], (23d)

tr
(

χXXH
)
≤ elog2[tr(χXXH)], (23e)

rank
(

XXH
)
= 1, (23f)(

XXH
)

g,g
= 1, ∀g. (23g)

By using the sequential convex approximation (SCA) method, we take the first-order
Taylor expansion of (23e), which can be expressed as

elog2[tr(χXXH)]−Δ + elog2[tr(χXXH)]−Δ ln[e(Δ)]

≤ elog2[tr(χXXH)] ⇒ tr
(

χXXH
)

(24)

≤ elog2[tr(χXXH)]−Δ(1 + Δ),

where Δ is a minuscule negative value. Therefore,
{

log2
[
tr
(
χXXH)]− Δ

}
can be consid-

ered an approximation of log2
[
tr
(
χXXH)].

According to (24), we adopt the semi-definite relaxation (SDR) method to relax (23f).
Under this condition, P3 can be relaxed as

P4 : min
X

� (25a)

s.t. (23b) − (23d), (23g) (25b)

tr
(

χXXH
)
≤ elog2[tr(χXXH)]−Δ(1 + Δ). (25c)

Obviously, P4 is a convex optimization problem, which can be solved by the convex
problem solver. However, since the SDR method is used to relax (23f), the obtained
phase shift cannot always satisfy rank

(
XXH) = 1 [27]. Therefore, the Gaussian random

process is employed to acquire the approximate solution, which satisfies rank-one, i.e.,
rank

(
XXH) = 1.

3.2. Power Distribution Coefficient Optimization

In this stage, since it is assumed that Φ and K have been determined, the power
distribution problem can be expressed as
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P5 : max
Ψ

Rsec
tot (Ψ) =

U

∑
u=1

Rsec
u (Ψu) (26a)

s.t. 0 < Ψu ≤ 1, ∀u, (26b)
U

∑
u=1

Pmax
u = Ptot. (26c)

In P5, SINRsec
u (Ψu) can be rewritten as

SINRsec
u (Ψu) =

f1 f2

Pmax
u ( f3 − f4) + σ2

Eve
, (27)

where Rsec
u (Ψu) = log2[1 + SINRsec

u (Ψu)]. In addition, we can obtain

f1 =
1 + ΨuPmax

u

(
HH

B,lΦ
Hhl,uhH

l,uΦHB,l

)
σ2

u
, (28)

f2 = (1 − Ψu)

(
Pmax

u

∣∣∣hH
l,EveΦhl,u

∣∣∣2 + Pmax
u |hu,Eve|2

)
+ σ2

Eve, (29)

f3 =
∣∣∣hH

l,EveΦhl,u

∣∣∣2 + |hu,Eve|2, (30)

and

f4 = Ψu

[∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2 −
(

HH
B,lΦ

Hhl,EvehH
l,EveΦHB,l

)]
. (31)

Lemma 1. The objective function SINRsec
u (Ψu) is a convex function.

Proof of Lemma 1. The first-order derivative of SINRsec
u (Ψu) with respect to Ψu is derived as

∂SINRsec
u (Ψu)

∂Ψu
= (Ψu)

2 × (y1 − y2)

−
2
(

HH
B,lΦ

Hhl,uhH
l,uΦHB,l

)[
Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

]
σ2

u(Pmax
u )−2

[(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)]−1

(Ψu)
−1

+
Pmax

u

(
HH

B,lΦ
Hhl,uhH

l,uΦHB,l

)
σ2

u

[
Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

]−2 (32)

− Pmax
u

(
HH

B,lΦ
Hhl,EvehH

l,EveΦHB,l

)[
Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

]
,

where

y1 =
(Pmax

u )3
(

HH
B,lΦ

Hhl,uhH
l,uΦHB,l

)
σ2

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)−2 , (33)
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and

y2 =

(Pmax
u )3

(
HH

B,lΦ
Hhl,uhH

l,uΦHB,l

)(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)

σ2
u

(
HH

B,lΦ
Hhl,EvehH

l,EveΦHB,l

)−1 . (34)

The second-order derivative of SINRsec
u (Ψu) with respect to Ψu is derived as

∂2SINRsec
u (Ψu)

∂(Ψu)
2 =

−2g1g2

(Ψug3 + g4)
3 , (35)

where

g1 = Pmax
u

(
HH

B,lΦ
Hhl,EvehH

l,EveΦHB,l

)
(36)

×
[

Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

]
,

g2 = Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)

− Pmax
u

(
HH

B,lΦ
Hhl,EvehH

l,EveΦHB,l

)
(37)

−
Pmax

u

(
HH

B,lΦ
Hhl,uhH

l,uΦHB,l

)
σ2

u

(
Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

)−1 ,

g3 = Pmax
u

(
HH

B,lΦ
Hhl,EvehH

l,EveΦHB,l

)
− Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)

, (38)

and

g4 = Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve. (39)

We can obtain g1 > 0, g2 > 0, and Ψug3 + g4 > 0. Therefore, we have −2g1g2

(Ψug3+g4)
3 < 0,

i.e., ∂2SINRsec
u (Ψu)

∂(Ψu)
2 < 0. In this case, the objective function Rsec

u (Ψu) can be regarded as a

convex function, thus proving Lemma 1.

According to Lemma 1, when ∂2SINRsec
u (Ψu)

∂(Ψu)
2 = 0, we can obtain the maximum of

Rsec
u (Ψu). As can be seen from (32), ∂2SINRsec

u (Ψu)

∂(Ψu)
2 is a quadratic function with respect to Ψu.

Therefore, (Ψu)
∗ is derived as

(Ψu)
∗ = − g4

g3
±

√
g1g2g5

g3g5
, (40)

where

g5 =
(Pmax

u )2
(

HH
B,lΦ

Hhl,uhH
l,uΦHB,l

)
σ2

u

×
(∣∣∣hH

l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)

. (41)
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However, for (Ψu)
∗ = − g4

g3
+

√
g1g2g5
g3g5

, we have

(Ψu)
∗ =− g4

g3
+

√
g1g2g5

g3g5
≥ − g4

g3

=

Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

Pmax
u

[(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
−
(

HH
B,lΦ

Hhl,EvehH
l,EveΦHB,l

)]

≥
Pmax

u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
)
+ σ2

Eve

Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
) (42)

= 1 +
σ2

Eve

Pmax
u

(∣∣∣hH
l,EveΦhl,u

∣∣∣2 + |hu,Eve|2
) > 1.

According to (42), we know that (Ψu)
∗ = − g4

g3
+

√
g1g2g5
g3g5

cannot satisfy (26b), i.e.,
0 < Ψu ≤ 1. Under this condition, the optimal power distribution coefficient (Ψu)

∗ is

(Ψu)
∗
{

−
(

g4
g3

+
√

g1g2g5
g3g5

)
, 0 < Ψu ≤ 1,

1, else.
(43)

3.3. Channel Allocation

Similarly, we assume that Ψ and Φ have been given in advance. The channel allocation
problem takes the form

P6 : max
K

Rsec
tot (K) =

U

∑
u=1

Rsec
u (ku) (44a)

s.t. ku ∈ {0, 1},
K

∑
k=1

ku = 1,
U

∑
u=1

ku ≤ 1, ∀k, u. (44b)

As discussed in [23], P6 turns out to be a maximum weight bipartite matching (MWBM)
problem. In polynomial time, the MWBM problem can be solved by the Hungarian
algorithm. Based on above analysis, we can obtain the optimal channel allocation policy by
using Algorithm 1.

Algorithm 1 Optimal channel allocation algorithm for P6

1: for k = 1 : K do
2: for u = 1 : U do
3: According to the SCA and SDR methods, as well as Gaussian random process, we

can obtain the optimal phase shift (Φ)∗.
4: According to (43), we can acquire the optimal power distribution coefficient (Ψ)∗.
5: We substitute (Φ)∗ and (Ψ)∗ into (7) to obtain Rsec

u (ku).
6: end for
7: end for
8: The Hungarian algorithm is adopted to solve P6.
9: Output the optimal channel allocation policy (K)∗.

3.4. Overall Algorithmic Framework

In this paper, we design a total secure channel capacity maximization scheme for LAP
and IRS enhanced transmissions, where the phase shift Φ, power distribution coefficient Ψ,
and channel allocation K are optimized. Figure 2 shows the overall algorithmic framework,
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where Φ, Ψ, and K are solved iteratively. Specifically, by using the SCA and SDR methods,
we can solve the formulated phase shift optimization problem P2, based on which the
optimal phase shift (Φ)∗ satisfying the rank-one constraint can be obtained by adopting
the Gaussian random process. Next, according to (43), we can obtain the closed-form
expression of optimal power distribution coefficient (Ψ)∗. Then, Algorithm 1 employs
the Hungarian algorithm to acquire (K)∗. Finally, the above processes are repeated until
satisfying the termination condition.

Figure 2. Overall algorithmic framework.

The complexity of the total secure channel capacity maximization scheme is mainly
composed of three parts: (1) phase shift optimization; (2) power distribution coefficient
optimization; (3) channel allocation. For the first part, since the SCA and SDR methods are
used, the complexity of this part is O

(
G3.5). Moreover, for the second part, we can derive

the closed-form of the optimal power distribution coefficient; thus, the complexity of this
part is O(1). Furthermore, for the third part, the complexity of the channel allocation policy
using the Hungarian algorithm is O

(
(U + K)3

)
. To summarize, the total computational

complexity of solving P1 is O
(

ItotG3.5)+ O(Itot) + O
(

Itot(U + K)3
)

, where Itot is the total
number of iterations.

Discussion (Convergence Analysis): In this paper, the total secure channel capacity
is maximized by iterative optimization. Therefore, the convergence needs to be analyzed.
First, we present a simple scenario, which consists of an RBS, a fixed LAP equipped with
IRS, a legitimate vehicle user, and an eavesdropper. In this case, (K)∗ can be obtained by
using the enumeration method. As shown in Figure 3, for a given (K)∗, we iteratively
optimize (Φ)∗ and (Ψ)∗ based on the coordinated polling method. The objective function
value (i.e., the total secure channel capacity) is improved partly after each iteration. Since
the objective function value of P1 is bounded, our designed iterative algorithm can always
converge to the optimal value or some certain values after finite iterations.
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Figure 3. Coordinate polling method.

4. Performance Evaluation

In this section, simulation experiments are conducted to evaluate the performance
of the proposed total secure channel capacity maximization scheme. Specifically, the
comparison schemes are as follows. (a) Scheme 1 (LAP-PLS-CPO) [23]: This work uses
the LAP to relay signals of the RBS and the PLS technique to ensure information security.
In addition, the channel and power are optimized. (b) Scheme 2 (LAP-SPHO) [2]: This
work adopts the LAP-enabled relay method to improve the data rate, based on which
the spectrum, power, and LAP height are optimized. (c) Scheme 3 (LAP-RIS-CPO): In
this scheme, Φ is initialized by random value, and then, K and Ψ are optimized by the
Algorithm 1 and (43), respectively.

In our simulations, we consider a scenario, where U = [10, 55], Pmax
u = 33 dBm,

N = 32, K = [15, 60], G = 64, and σ2
u = σ2

Eve = −174 dBm/Hz. In order to analyze
conveniently, a Cartesian coordinate is established in Figure 1, where the RBS is located at
(0, 0, 0) m, the fixed LAP equipped with IRS is located at (800, 0, 200) m, the eavesdropper
is located at (650, 300, 0) m, and the cell radius of RBS is 1000 m. Moreover, the A2G
channel model is 32.44+ 20 lg[d(km)] + 20 lg[ fc(MHz)]. We model the fast fading channels
as independent and identically distributed (i.i.d.) Rayleigh fading channels. As shown in
Figure 1, the fast fading channels can be regarded as Rayleigh fading channels, taking into
account the rich reflections and diffractions from surface-based obstacles.

Figure 4 illustrates the comparison of the total secure channel capacity with respect
to the number of legitimate vehicle users under the different schemes. It is obvious
that our proposed total secure channel capacity maximization scheme outperforms other
comparison schemes. The reason is that the LAP and IRS enhanced transmissions are
adopted in the considered scenario, based on which the phase shift, power distribution
coefficient, and channel allocation are optimized. Compared to Scheme 1 (LAP-PLS-
CPO), Scheme 2 (LAP-SPHO), and Scheme 3 (LAP-RIS-CPO), the total secure channel
capacity can be increased by 67.56%, 141.3%, and 31.94%, respectively. Especially, for
Scheme 2 (LAP-SPHO), since the PLS technique is not adopted, security cannot be satisfied,
resulting in the lowest total secure channel capacity. In addition, even when the number
of legitimate vehicle users is large, our designed scheme can still achieve relatively high
information security rates.
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Figure 4. The total secure channel capacity versus the number of legitimate vehicle users.

Figure 5 shows the comparison of the total secure channel capacity with respect to
the maximum transmitted power under the different schemes. We can observe that the
total secure channel capacity increases monotonously with the increase in the maximum
transmitted power Pmax

u . In addition, the larger the Pmax
u , the faster the growth of the total

secure channel capacity. This is because, in this case, more power is allocated to AN to jam
the eavesdropper, which can protect the security of 6G-oriented vehicular IoT services.
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Figure 5. The total secure channel capacity versus the maximum transmitted power.

Next, we investigate the impact of the number of reflection elements on the perfor-
mance of the proposed scheme. In Figure 6, we plot the comparison of the total secure
channel capacity under different numbers of reflection elements. It is observed that the total
secure channel capacity increases with the number of reflection elements. This phenomenon
is more obvious when the number of legitimate vehicle users is small. This is because
more reflection elements can better improve the channel quality. However, as discussed
in Section 3.4, since the complexity of solving P2 is O

(
G3.5), adding reflection elements

will significantly increase the algorithm complexity. Therefore, there is a tradeoff between
the total secure channel capacity and the algorithm complexity in terms of the number of
reflection elements. The total secure channel capacity maximization by jointly considering
the above two factors is a meaningful problem for future research.
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Figure 6. Comparison of the total secure channel capacity under different numbers of reflection elements.

As shown in Figure 7, we investigate the impact of the LAP’s altitude on the total
secure channel capacity. We can find that with the increase in the LAP’s altitude, the total
secure channel capacity decreases. The reason is that increasing the LAP’s altitude will lead
to an increase in the path loss, thereby reducing the total secure channel capacity. However,
there is a minimum altitude limit for using this A2G channel model. For altitudes below
100 m, we need to change the large-scale fading model.
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Figure 7. Comparison of the total secure channel capacity under different LAP altitudes.

As shown in Figure 8, we investigate the impact of the distance on the total secure
channel capacity, where the LAP’s X-axis positions are changed. It can be observed that the
total secure channel capacity increases first and then decreases. Similarly, this is because
the LAP’s position will affect the path loss, thereby influencing the total secure channel
capacity. Therefore, optimizing the LAP’s deployment is an interesting topic that deserves
further study.
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Figure 8. Comparison of the total secure channel capacity under different distances.

5. Conclusions

In order to improve the QoS of 6G-oriented vehicular IoT services, this paper used
LAP equipped with IRS to overcome blockages, based on which the secure transmission
problem was investigated. First, we introduced AN to enhance the security performance,
which could prevent the eavesdropper from receiving privacy information. Next, by jointly
considering the phase shift and power distribution coefficient optimization as well as
channel allocation, we formulated a total secure channel capacity maximization problem
for the LAP-based IRS symbiotic VNets. Then, to deal with this intractable problem, we
devised an iterative algorithm, based on which the convergence and the complexity were
analyzed. Finally, numerical results demonstrated that the proposed scheme significantly
outperformed the comparison schemes in terms of the total secure channel capacity. Fur-
thermore, the joint optimization of the LAP location and network resources with imperfect
CSI to maximize the total secure channel capacity is worth investigating and is challenging,
which will be our future work.
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Abstract: In this paper, we investigate the deep learning applications of radio automatic modulation
recognition (AMR) applications in unmanned aerial vehicle (UAV)-to-ground AMR systems. The
integration of deep learning in a UAV-aided signal processing terminal can recognize the modulation
mode without the provision of parameters. However, the layers used in current models have a small
data processing range, and their low noise resistance is another disadvantage. Most importantly, large
numbers of parameters and high amounts of computation will burden terminals in the system. We
propose a multi-subsampling self-attention (MSSA) network for UAV-to-ground AMR systems, for
which we devise a residual dilated module containing ordinary and dilated convolution to expand
the data processing range, followed by a self-attention module to improve the classification, even in
the presence of noise interference. We subsample the signals to reduce the number of parameters and
amount of calculation. We also propose three model sizes, namely large, medium, and small, and the
smaller the model, the more suitable it will be for UAV-to-ground AMR systems. We conduct ablation
experiments with state-of-the-art and baseline models on the common AMR and radio machine
learning (RML) 2018.01a datasets. The proposed method achieves the highest accuracy of 97.00% at a
30 dB signal-to-noise ratio (SNR). The weight file of the small MSSA is only 642 KB.

Keywords: automatic modulation recognition (AMR); deep learning; self-attention mechanism

1. Introduction

With the promotion of unmanned combat concepts, the enhancement of drone-
mounting capabilities, and the increase in flight time, unmanned aerial vehicle-(UAV)-to-
ground automatic modulation recognition (AMR) systems are increasingly used in modern,
social, especially in emergency communications. UAVs carrying communication recon-
naissance payloads can perform the reconnaissance of general radio stations, with strong
concealment and long detection distances, and are widely used. The aim of communica-
tion reconnaissance is to analyze various parameters of intercepted radio signals and find
suitable methods to demodulate them.

However, in the actual transmission process, a signal not only is affected by the
antagonistic factors of the transmitter (such as the radio frequency chain), but also changes
due to the type of interference and propagation environment, increasing the difficulty of the
signal communication and analysis. To simplify the transmission process, AMR methods
are proposed, which receive the modulated signal and recognize the modulation mode
without the provision of parameters.

Signal modulation recognition can provide essential modulation information for the
received radio signals, especially non-cooperative radio signals, which contain cognitive ra-
dio, spectrum sensing, signal surveillance, and interference identification [1–4]. Traditional
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methods face difficulty when coping with the complex and growing types of transmitters.
Given that AMR serves as a bridge between signal detection and demodulation, a simple
and feasible approach that can be deployed on terminals outfitted on UAV platforms is
sorely needed.

1.1. Related Work
1.1.1. Traditional AMR Methods

Traditional AMR can be categorized as likelihood theory-based AMR (LB-AMR) [5,6]
or feature-based AMR (FB-AMR) [7]. TB-AMR methods recognize modulation schemes
by Bayesian estimation and have high computational complexity. FB-AMR methods an-
alyze a large number of signals, extract interesting features, and determine the category
of modulation methods using instantaneous time-domain [8], transform domain [9], and
statistical [10,11] features. The AMR task is a regression problem with multiple dimen-
sions. Traditional machine learning methods, such as decision tree [12] and support vector
machine (SVM) [13], are easily realized. However, the performance of such methods is
reduced when addressing complex or multiple-modulation schemes.

1.1.2. DL-Based AMR Methods

FB-AMR must pre-train on a large set of signals and learn the features of each modu-
lation scheme. Compared with LB-AMR, FB-AMR methods can approximate the ground
truth with lower computational complexity and can fit various modulation schemes. Deep
learning AMR (DL-AMR) methods are highly dependent on prior knowledge.

Since the first open access AMR dataset, Radio Machine Learning (RML) 2016.04C,
was proposed, the convolutional neural network (CNN) has been introduced in the AMR
task [14]. There are many methods based on deep learning, which can be divided into
three groups, depending on their research content. Some researchers are concerned with
enhancing the capability of models. Methods include long short-term memory (LSTM) [15],
ResNet [16], the gated recurrent unit (GRU) [17], and deep learning blocks such as temporal
attention [18]. LSTM and GRUs extract features by comparing information in the time
dimension. They are more suitable for tasks with sequential data inputs, but a large amount
of computation limits their performance in mobile terminals. Generally, to avoid overfitting,
just two blocks are used in a model. Therefore, CNN-based networks [14,16] have been
introduced in the AMR task. These models have a moderate number of parameters and
moderate structure complexity for the same performance as LSTM and GRUs. However,
the current models all have a small processing range, and the signal data are too long for
the models to process efficiently.

A second group of researchers have attempted to increase the channel’s number of
inputs to improve the classification accuracy. Normally, the inputs of models are signals
with two channels, namely in-phase (I) and quadrature-phase (Q) channels, which are
supported in public datasets. Researchers use signal processing methods to expand the
number of input channels. The amplitude and phase, which can be easily calculated from I
and Q, are frequently used. Networks that expand the channels of inputs [19–21] greatly
increase the computational cost, and additional factors that increase the requirement of
inputs betray the initial goal of easily realizing the AMR task. In preprocessing inputs
before these are input to the models, some methods are too specialized and complex to be
applied to AMR tasks on a large scale. The models have more parameters, with a deeper
and wider network structure.

The last improvement direction of the AMR task is converting the signal inputs
into images. The most representative methods use three-channel constellation images as
inputs [22,23] and use AlexNet [24] and GoogLeNet [25] for image classification. However,
these methods make the AMR task more complex because the input is usually a signal
rather than an image.

Comprehensively considering the advantages and disadvantages of the three groups
of methods, this paper follows the idea of the first group. These methods have a small

50



Drones 2023, 7, 376

processing range in each layer but have weaknesses in terms of noise resistance. However,
noise in signal transmission is unavoidable. Moreover, even with LSTM and recurrent
neural networks (RNNs), which are common in the analysis of sequence data, either the
computation or the number of parameters is too much for deployment on mobile terminals
mounted on UAVs, which means that they are unsuitable for UAV-to-ground AMR systems.

1.2. Contributions

The performance of uniform subsampling is equal to that of no subsampling when
the subsampling rate is 2 [26]. By reducing the input signal length by subsampling,
the parameters and computation in models are greatly decreased. We propose a multi-
subsampling self-attention network (MSSA) that can be deployed on a terminal in our
UAV-to-ground AMR system. Our main contributions are summarized as follows:

• We design an information integration module with ordinary convolution and dilated
convolution branches. Dilated convolution has a larger receptive field than ordinary
convolution and is more suitable for global information extraction. The sum of the
two branches provides more detailed information.

• To enhance the noise resistance, we introduce a self-attention module with a strong
feature extraction capability. The module can dynamically adjust the weights of param-
eters to amplify the influence of those that are beneficial for modulation recognition
and diminish the influence of invalid parameters during the recognition process.

• We subsample the signal into multiple signals with two branches, I and Q, and con-
catenate them channel-wise. We finesse the model architecture to prevent overfitting.
We propose MSSAs in large, medium, and small sizes, with fewer parameters and
faster speeds, which are more suitable for our UAV-to-ground AMR system.

• Ablation experiments on a common dataset with current models show the ability of
the proposed method in AMR. MSSA has the best performance on RML 2018.01a and
97.00% accuracy when the signal-to-noise ratio (SNR) is 30 dB. Different sizes of MSSA
each have their advantages in terms of accuracy, speed, and parameters. The weight
file of MSSA(S) is only 652 KB.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 presents the system
model. Section 3 analyzes the structure and theory of the proposed method. Section 4
discusses experiments on the dataset, including the comparison of current models and
different hyperparameters. Section 5 provides our conclusions.

2. System Model

The emergence of unmanned aerial vehicles (UAVs) has revolutionized the field of
remote sensing and other aerial applications by providing both low-altitude and high-
altitude platforms for data collection [27]. Depending on the payloads mounted, a UAV
can serve as either a computational server or a relay [28], thus enabling diverse ranges
of applications in mapping, wildlife conservation, and emergency communications [29],
among others.

Our UAV-to-ground AMR system consists of a reconnaissance drone and a ground
control terminal, as shown in Figure 1. The drone conducts reconnaissance on communi-
cation links such as air-to-air, air-to-ground, and ground-to-ground. The reconnaissance
equipment includes various types of airborne radios, radars, vehicle radios, and handheld
radios. The ground control terminal, functioning as either a high-capacity computer or
server cluster, can receive brief reconnaissance results in real-time and analyze reconnais-
sance data after the drone returns. AMR methods are typically implemented on the ground
control terminal due to the heavy computational burden involved. The information fed
back by the drone includes the number of reconnaissance signals, as well as the information
such as the direction, time, frequency, modulation method, power, and possible transmis-
sion source type of each signal. The processing of reconnaissance data by ground control
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terminals can achieve signal demodulation and analysis. Nevertheless, due to the low
computational cost of our proposed AMR methods, the UAV-mounted payloads with em-
bedded microprocessors can also perform signal demodulation and analysis. The ground
terminal solely performs signal behavior analysis and transmits relevant instructions to the
drone.

Figure 1. Schematic diagram of a UAV-to-ground AMR system.

Our system can also be utilized as a UAV-assisted mobile edge computing (MEC)
architecture, in which the UAV and ground control terminal jointly demodulate and
analyze the received signal before transmitting it to end users. Additionally, a flying ad hoc
network (FANET) comprising multiple UAVs could be integrated into our system to reduce
response delays and increase response probabilities [30]. By receiving signals from various
transmitter sources, the UAVs can also support signal modulation analysis, significantly
contributing to emergency communications.

3. Design and Implementation of Multi-Subsampling Self-Attention Network

3.1. Architecture

Although current DL-AMR methods have high accuracy, the complexity is high.
Except for expanding the number of input channels by preprocessing, many complex
modules are used in DL-AMR. The optional expanding channel can obtain the amplitude
and phase through the provided I/Q signal [15], and the models used for DL-AMR include
LSTM, DAE [31], and GRU [32]. The amplitude A and phase φ, which can be easily
calculated from I and Q, with the formula:

x =

[
A
φ

]
=

[ √
I2 + Q2

arctan 2(Q/I)

]
. (1)

However, the received signal in common applications is typically represented as I and
Q components, which requires specialized knowledge to process the expanded channels,
including the amplitude, phase [19–21], and constellation image [22,23], as used in these
modulation schemes. In recent years, the structure of deep learning has become deeper
and more complex, with higher computational costs. For signal data, the parameters can
be limited using simple CNN networks and are sufficient for the modulation classification
task. We selected a CNN as our main framework.

Our network aims to achieve a more balanced architecture that minimizes the com-
putational cost, accelerates the training speed, and requires less prior knowledge. Our
experiments show that the original input with a length of 1024 is excessively long for
this task, which can be attributed to the large number of parameters in the models used.
Thus, before the CNN module, we reshape the (1024, 2) inputs into (4, 256, 2) or (2, 512, 2)
to reduce the length, through uniform subsampling with two subsampling rates. This
expands the channels of inputs without changing the original data, and the decrease in
input length reduces the number of parameters. It will greatly reduce the inference speed
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when embedded on the terminal. We chose to utilize multiple cascaded residual modules
following the first layer of our network. The residual mechanism allows for the preserva-
tion of original information during the feature transmission process. Then, we use dilated
convolution, which can extract features from greater global information, and an ordinary
convolution layer for local information.

With extracted local and global information, the addition of two branches facilitates
the subsequent self-attention task. The self-attention mechanism has a strong capability
to extract interesting information, which will affect the results of category classification.
The traditional fully connected layer generally has more parameters than the convolution
layer and benefits convergence. We put the fully connected layer at the two last layers
to obtain the features of the signal, and a softmax function distributes the probabilities
of each category. The number of dense units should match the number of modulation
schemes used. By utilizing subsampled inputs, we can significantly reduce the number
of trainable parameters in the last two layers of our model, which tend to be the main
source of computational cost. Figure 2 shows the main framework of our model with a
subsampling rate of 4. Figure 3 depicts the primary architecture of ResNet as presented
in [16]. Our method employs fewer kernels in each convolutional layer compared to ResNet.
Additionally, the input size of the first fully connected layer in ResNet is (32× 16× 1), while
our model’s input size is (16 × 8 × 1). Consequently, the number of trainable parameters
in our approach has been reduced by a factor of four.

Figure 2. Structure of MSSA(M) when the subsampling rate is 4. The number of last dense units is
the same as the number of types of modulation schemes.

Figure 3. Structure of ResNet [16]. Our method has fewer kernels in each convolutional layer.

We selected suitable hyperparameters to fine-tune the model, including the number of
convolution layers, kernel size, learning rate, and the sample size of each batch. The key
point in DL-AMR is to solve the overfitting of models. The latest model, especially one
with a self-attention module, could easily be subject to overfitting because of the higher
computation cost. We conducted experiments on different hyperparameters and selected
the best.

3.2. Methodology
3.2.1. Enhanced Processing Range via Dilated Residual Connections

As the signal has fewer dimensions, the length of the signal data is greater than that
of the image data. The receptive field is defined as the region in the input space that a
particular CNN feature is looking at. The input of the common AMR dataset has a length
of 1024. However, ordinary convolution always has fewer receptive fields, which are 3
with a 3 kernel size, and successive convolution layers have 5 receptive fields. Let k be the
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kernel size, and s be the stride of the convolution layer. Then, the receptive field of the
convolution layer CF can be calculated as:

CFi = Fi−1 + ((k − 1) ∗
i−1

∏
j=1

sj), (2)

where CFi refers to the receptive field of the current convolution layer, and Fi−1 is the
previous level. Hence, we serially connect four convolution layers as the base module.
The stride and kernel sizes are set to 1 and 3, respectively. The final receptive field is 9,
which cannot cover the entire length of the signal. The number of convolution layers in the
residual modules needs to be controlled to avoid overfitting, but this number has already
reached the limit of the modules.

Unlike ordinary convolution, dilated convolution conducts a convolution operation
whose kernel has holes. Figure 4 shows the different kernels of two convolutions. By filling
kernels with holes, the receptive field of dilated convolution DCF is increased,

DCFi = Fi−1 + ((k ∗ r − 1) ∗
i−1

∏
j=1

sj), (3)

where r is the dilated rate of dilated convolution. Then, the whole receptive field of the
residual dilated module is 11 when r = 2 and k = 3. The expanded receptive field provides
more global information. In contrast to the pooling layer, the dilated convolution layer
does not remove elements with smaller values, which can retain the most information
of inputs. Dilated convolution operates on data at equally spaced intervals, effectively
performing a form of specialized subsampling. Consequently, the features extracted from
dilated convolution will differ from the features extracted by parallel residual modules.
In addition, to maintain gradient stability, we set a bridge between every two layers. The
structure is shown in Figure 5. The residual block output is:

HRes = x + Wi × (Wi−1 × x + bi−1) + bi, (4)

where W × x + b represents convolution, and x is the input of the one residual block. The
gradient of this module is:

∂HRes
∂x

= 1 +
∂Wi × (Wi−1 × x + bi−1) + bi

∂x
= 1 + Wi × Wi−1,

(5)

where 1 keeps the gradient in a controllable range. This can avoid the explosion and
disappearance of the gradient. We combine one convolution with a (1, 1) kernel size,
two residual blocks, and one max-pooling layer. The (1, 1) convolution layer extracts the
channel-wise information and the (3, 1) layer extracts the height and channel dimensions.
The (2, 1) max-pooling layer reduces the width of the inputs. Due to the (channel, length, 2)
input shape, the kernel size in the first residual module is set as (3, 2) to consider the
information in both I/Q signals. Similarly, the kernel size of the max pooling layer in the
first residual module is set as (2, 2) to reduce the dimension in width. We replace the (3, 1)
convolution layer with a (3, 1) dilated convolution layer in the residual dilated module.

The larger receptive field of residual dilated convolution can cover information that
ordinary convolution cannot, and the features extracted by dilated convolution can be
regarded as information from larger-size inputs. Ordinary convolution and dilated convo-
lution branches in the proposed model provide features extracted from different scales to
the next self-attention module.
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(a) 2D convolution (b) 1D convolution

Figure 4. Two types of convolutions with data of different dimensions. By filling kernels with holes,
the receptive field of dilated convolution is increased.

Figure 5. Structure of the residual module. Each block has two convolution layers with a kernel size
of (3, 1) and one max-pooling layer with a kernel size of (2, 1); however, the sizes of these layers are
(3, 2) and (2, 2), respectively, when in the first residual module of the MSSA.

3.2.2. Enhanced Robustness of Attention Models against Noise

After the two branches of convolution and dilated convolution, a module that can
integrate global and local information to extract interesting features is needed. Therefore,
a self-attention module is introduced. The attention model can filter ineffective informa-
tion [33], which can be noise generated in the transmission process or information repeated
in a periodic signal. The output of attention module HA can be formulated as:

HA = σ(Mask(x))� φ(Trunk(x)), (6)

where Mask(x) represents the gate controlled by the output of Trunk(x). Mask(x) and
Trunk(x) can be any type of structure and are the outputs of the mask and trunk branch.
The mechanism assumes the weights for elements in each location, and the trainable
weights can dynamically extract interesting features to enhance the classification ability
of models.

Comparing AMR and image classification, the AMR task is relatively simple. The
number of parameters and layers should be controlled to avoid wasting computational
resources. We use the attention mechanism once in the proposed model. We adjust the
structure of the attention module, i.e., the self-attention module [34],

HSA = PQK(x)× V(x)

= so f tmax(
Q(x)× K(x)√

dK
)× V(x),

(7)

where Q(x), K(x), and Vx refer to the extracted features in three branches, and dK is the
number of channels. In this module, Q(x)× K(x) strengthens the interesting elements,
and the softmax function assumes the probabilities of elements in each location. Then, the
weights PQK(x) generated by so f tmax(Q(x)×K(x)√

dK
) select the features in V(x) as the output

of the self-attention module. In the calculation of DL-AMR, the features can be a matrix
with shape (batch, length, 1, channels), with a dimension of 1. Then, the result of PQK(x) in
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HSA would have the shape (batch, 1, 1, channels). The probabilities for V(x) are constant
values that are inefficient for the classification task. Therefore, we use the element-wise
product � to replace matrix multiplication ×, as in Equation (6), with the formula:

H
′
SA = x + Relu(P

′
QK(x)� V(x))

= x + Relu(so f tmax(Q(x)� K(x))� V(x)).
(8)

The kernel size in Q is (1, 1), and the others are (3, 1). The Q branch learns the
characteristics channel-wise. Then, the impact factors in the channel and location are
Q(x)� K(x). The probabilities can be obtained by the softmax function. Activated by the
ReLU function, Relu(P

′
QK(x)� V(x)) contributes to extracting key features in both local

and global information. According to the gradient formula of parameter WV in V(x),

∂H
′
SA(x

′
)

∂WV
= Relu

′
(P

′
QK(x

′
)� V(x

′
))

∂P
′
QK(x

′
)� V(x

′
)

∂WV

= Relu
′
(P

′
QK(x

′
)� V(x

′
))P

′
QK(x

′
)� ∂V(x

′
)

∂WV

= Relu
′
(P

′
QK(x

′
)� V(x

′
))P

′
QK(x

′
)� x

′
,

(9)

where x
′
, P

′
QK(x

′
), and Relu

′
(P

′
QK(x

′
)� V(x

′
))) are constants in the parameter update pro-

cess, which could be controlled by Q(x) and K(x). Similarly, the parameters in Q, K, and
V are all learnable and trainable, and they can influence each other. Following extensive
training, the value of these valid parameters can be adjusted, resulting in a significant amplifi-
cation of their impact on modulation recognition. Additionally, dynamic parameters can filter
out noisy data and place greater emphasis on valid data. The information from the addition
of the convolution and dilated convolution layers is effectively utilized. Like the residual
module, the addition operation is used before the output of the self-attention module.

As a result, the gradient of this module becomes controllable and the noise resistance
is increased. It avoids overfitting because of the addition with input x. The structure
of our self-attention module is shown in Figure 6. Ablation experiments demonstrate
the capability of the self-attention mechanism in the AMR task. However, self-attention
increases computation, which could affects the deployment on a mobile terminal.

Figure 6. Self-attention module. Kernel size in Q is (1, 1); others are (3, 1). We add input x and
output H

′
SA to prevent the gradient exploding and disappearing.

3.2.3. Streamlined Modeling with Subsampling Layer

To simplify the models and decrease the number of parameters, a subsampling layer
is added at the start of our network. Ramjee et al. conducted experiments on uniform,
random, and magnitude rank subsampling [26]. Uniform subsampling had an equal
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performance with no subsampling when the subsampling rate was 2, while the others had
no improvement.

Hence, we subsample the data with a constant interval and concatenate them channel-
wise. Then, the length of inputs will be reduced, and the number of channels increased.
However, the original network is too complex to learn the features in shorter data, which
will cause overfitting in the training process. Therefore, the hyperparameters in the other
three sizes of MSSA are adjusted to be suitable for shorter data after subsampling, which
include the number of residual modules, residual module filters, and fully connected layers
(dense layers) units. This greatly reduces the number of trainable parameters and increases
the training speed. Table 1 shows the details of each model size.

Table 1. MSSA with different hyperparameters.

Hyperparameters
Inputs Residual Residual Module Dense
Shape Modules Filters Units

MSSA(XL) (1, 1024, 2) 6 32 128
MSSA(L) (2, 512, 2) 6 32 128
MSSA(M) (4, 256, 2) 5 16 128
MSSA(S) (4, 256, 2) 5 16 64

Finally, we proposed four different models featuring two subsampling rates. The
utilization of dilated convolution provided an additional specialized subsampling result
for each model. We compared our methods with current models on a common public
dataset, showing good performance. The proposed method has a 60.90% mean classification
accuracy on SNR from −20 dB to 30 dB. Compared with current models, MSSA(S) has
the fewest parameters and the fastest training speed, but slightly less accuracy. It is more
suitable for signal detection and recognition systems.

3.3. Equipment and Facilities

Ablation experiments were conducted on a 64-bit Linux system equipped with an
Nvidia GeForce RTX 2080 Ti graphics card with 12 GB memory. All models were trained
with TensorFlow v1.14, CUDNN v7.4, and CUDA v10.0. We used the Adam optimizer
with a learning rate of 1 × e−4. The batch size was 1000 and iterations were limited to 100,
except that the iterations of the other three MSSAs were 200. We saved the best model at
each epoch. The loss function used the category cross-entropy function.

Figure 7 shows the deployment details of our UAV-to-ground AMR system. We
selected an Nvidia Jetson TX2 as the signal processing terminal and a MicroPhase ANTSDR
E310 transmitter. We leveraged TensorRT on the terminal to accelerate the inference process
of (MSSA(S)).

(a) Signal processing terminal (b) Transmitter

Figure 7. Configuration of Nvidia Jetson TX2 signal processing terminal and MicroPhase ANTSDR
E310 transmitter.
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4. Experiments and Results

For evaluation, we selected the RML 2018.01a dataset [16], which is a common AMR
dataset. This dataset contains 24 types of modulation schemes: OOK, 4ASK, 8ASK, BPSK,
QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM,
64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM,
GMASK, and OQPSK. There were 2555904 sample signals with a shape of (2, 1024). The
signal-to-noise ratio (SNR) of signals in the dataset ranged from −20 dB to 30 dB with
an increment of 2. Each modulation scheme had 26 sets of signals with different SNRs,
and each SNR set had 4096 signals. Compared with other public AMR datasets, this
dataset has more samples and more kinds of modulation schemes. Table 2 compares the
properties of the main AMR datasets. The signals have two branches, I and Q. We trained
the models with all kinds of modulation schemes, conducted ablation experiments on
each hyperparameter, and proposed the best couple of hyperparameters. The dataset was
divided into training and test sets at a 7:3 ratio. There were 1,789,128 signals in the training
set and 766, 776 in the test set.

Table 2. Comparison of open AMR datasets.

Dataset
Number of

Modulation Schemes
Sample Dimension Dataset Size SNR Range (dB)

RML 2016.04c 11 2 × 128 162,060 −20:2:18
RML 2016.10a 11 2 × 128 220,000 −20:2:18
RML 2016.10b 10 2 × 128 1,200,000 −20:2:18
RML 2018.01a 24 2 × 1024 2,555,904 −20:2:30

LSTM had the best performance when tested on the RML 2018.01a dataset and was
the main comparison network [1]. In addition, MSSA is an improvement network based on
ResNet, and a CNN is the baseline of the AMR task. It is necessary to compare MSSA with
CNN and ResNet.

Our experiment had two main purposes, the more important one being to demonstrate
the modulation recognition ability of the proposed model compared with current or basic
models, and the other being to provide a faster and simpler network while retaining most
of the performance. We display the results of comparisons with other models in Section 4.1,
and Section 4.2 shows the improvement of our model in terms of adjusting the structure
and hyperparameters.

4.1. Experimental Comparison for AMR Task

To fairly test the ability of models in radio modulation recognition, no data enhance-
ment methods were used, not even random shuffling, because this would affect the gradient
updates when the number of samples was too large. The inputs in this experiment were
with the shape (1024, 2), which was reshaped to a (1, 1024, 2) tensor by reshaping the layer
with the data format “channels first”. The network was fed one of the types of modulation
schemes and estimated the probability of the 24 classes. The prediction of a model is the
greatest value in the confidence matrix. Figure 8 shows the recognition accuracy curves of
each class of models in each SNR. The proposed model had a higher accuracy in most SNRs,
except SNRs in the range of −5 ∼ 8 dB. The CNN in [14] performed the worst among the
four models.
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Figure 8. Recognition accuracy of models on the RML 2018.01a dataset. The proposed MSSA has the
highest accuracy when SNR is above 10.

The other evaluation index of AMR is the confidence confusion matrix of models,
which will reflect the quality and performance of the classifier. It demonstrates the certainty
and correctness of the classifier’s classification results for each category during the predic-
tion phase. By observing the confidence confusion matrix, we can identify which categories
have more accurate classification results, which categories are often confused, and the
performance of the classifier when classifying samples with high uncertainty. We tested
samples with different SNRs and calculated the mean confidence indexes of each class
when inputting a signal. Then, confusion results are visualized in Figure 9. The vertical
axis on each matrix denotes the true labels, and the horizontal axis denotes the predicted
labels. As shown in Figure 8, MSSA performed the best in the confidence confusion matrix.
MSSA had one modulation scheme, 16QAM, which was difficult to recognize, while LSTM
and ResNet had two modulation schemes.

For the SNR of signals that are almost above 6 dB or 8 dB in the realistic AMR
task, this paper shows the accuracy of models when the SNR is 6, 14, 22, and 30 dB. We
calculated the average classification recognition accuracy without distinguishing the SNR
and classification. The mean class accuracy values of models are shown in Table 3. The
proposed model had the highest accuracy when the SNR was above 14 dB, and it had the
highest mean accuracy. From ResNet to MSSA, the average accuracy increased by 2.09%.
This experiment shows the capability of our models in the AMR task.

Table 3. Comparison of models in terms of classification recognition accuracy (%).

Acc (%) in
SNR (dB)

6 14 22 30
Mean

(−20:2:30)

CNN 64.16 67.14 67.43 68.12 43.89
ResNet 80.54 93.85 94.20 94.39 58.81
LSTM 84.65 96.28 96.54 96.59 60.22
MSSA 84.38 96.49 96.93 97.00 60.90
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(a) CNN (b) ResNet

(c) LSTM (d) MSSA

Figure 9. Confidence confusion matrices of the models. MSSA has one modulation scheme, 16QAM,
that is difficult to recognize.

4.2. Experimental Comparison on Hyperparameters

This paper adjusted the structure of the model with a subsampling rate of 4, as shown
in Table 1, because the length of the data is too short to achieve a higher mean classification
accuracy when trained on the original model. The accuracy values of models are shown
in Table 4, where the indicator values are shown for the convenient comparison of the
training speed, parameters, and classification recognition accuracy. The number of trainable
parameters in a model is strongly correlated with the utilization of computational and
memory resources. Increasing the number of parameters may lead to a higher computa-
tional load on the terminal or embedded microprocessor, thus reducing both the training
and inference speeds. MSSA(L) and MSSA(S) had the fastest speeds. MSSA(S) used the
fewest parameters, while the accuracy of MSSA(L) was higher. While MSSA(L) had more
parameters, it had the same training speed as ResNet and higher accuracy. Figure 10 shows
the accuracy curves of models in each SNR.
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Table 4. Comparison of models on size, complexity, and classification recognition accuracy (%).

Time
Parameters

SNR = 6 (dB) SNR = 30 (dB) Mean
(Second/Epoch) Acc (%) Acc (%) Acc (%)

CNN 367 13,064,524 64.16 68.12 43.89
ResNet 171 139,192 80.54 94.39 58.81
LSTM 1242 202,766 84.65 96.59 60.22

MSSA(XL) 283 218,200 84.38 97.00 60.90
MSSA(L) 171 152,696 82.09 95.78 59.70
MSSA(M) 99 54,632 75.80 93.48 57.01
MSSA(S) 99 36,648 72.43 90.50 55.25

Figure 10. Recognition accuracy of MSSA with different hyperparameters on the RML 2018.01a
dataset. As the subsampling rate increases, the model has fewer parameters, and the accuracy
decreases by approximately 2.5%.

The capabilities of models decreased as the number of parameters decreased, but
the speeds increased. These models with different sizes all outperformed the CNN, and
even at the same training speed, MSSA(L) was better than ResNet. These four MSSAs in
different sizes could be applied to different situations with different requirements, such
as lower parameters or faster speeds. Figure 11 shows the confusion matrices. The OOK
modulation scheme was difficult for MSSA in the M or S size. Although they have a
problem recognizing signals with OOK modulation, the confidence indexes of the OOK
scheme are high (above 0.8).

We proposed three sizes of MSSA models, with faster speeds and fewer parameters.
They have their own advantages. MSSA(XL) performed the best among current models,
with a few more parameters and a slower training speed. The L-sized MSSA(L) was the
most recommended model, with a moderate performance in terms of accuracy, training
speed, and parameters. MSSA(M) was more suitable when speed was required. MSSA(S)
was more suitable when the parameter requirement was very strict.
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(a) MSSA(XL) (b) MSSA(S)

(c) MSSA(M) (d) MSSA(S)

Figure 11. Confidence in the confusion matrices of MSSA in different sizes. OOK modulation scheme
is still a difficult task for MSSA in M or S size.

5. Conclusions

Current AMR methods with large numbers of parameters and high computational
complexity are difficult to employ on UAV-to-ground AMR systems. The limited data
processing range and low noise resistance also restrict the performances of deep learning
methods. Therefore, we proposed MSSA, with fewer parameters, for drone–ground signal
processing platforms. We proposed a residual dilated module with a larger receptive field
to expand the data processing range and a self-attention module to dynamically acquire
information from either local or global contexts, which provides strong noise resistance.
Finally, we adjusted the structure of MSSA with different subsampling rates and proposed
large, medium, and small MSSA models, which all performed well on the AMR task and
had different advantages. The L-sized MSSA(L) was most recommended, with a moderate
performance in terms of accuracy, training speed, and the number of parameters. The
default MSSA model had the highest accuracy among current models, with a moderately
slower training speed than ResNet. Compared with the LSTM, ResNet, and CNN models,
MSSA had fewer parameters, making it suitable and scalable for practical applications in
drone-based AMR systems with limited computing resources.
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As illustrated in Figure 11, the OOK modulation scheme posed the greatest challenge
for the M- and S-sized MSSA models, while the MSSA(XL) model had issues recognizing
16QAM modulation. This could possibly be attributed to the subsampling rate of the input
samples. Hence, combining data with different subsampling rates may be an effective
solution for the AMR task. Future work will explore how to implement this combination
and select appropriate subsampling rates.

The signal pattern recognition algorithm proposed in this study demonstrated superior
performance in computer simulations and showed promise for deployment on resource-
constrained UAV platforms to enable real-time signal analysis. Further verification through
physical experiments remains a priority in future research.
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Abstract: With the explosive increase in demand for wireless communication, the issue of wireless
communication security has also become a growing concern. In this paper, we investigate a novel
covert communication for unmanned aerial vehicle (UAV)-assisted uplink rate-splitting multiple
access (RSMA) systems, where a UAV adopts the rate-splitting (RS) strategy to increase the total
transmission rate while avoiding deteriorating the covert transmission of a ground user. In the
proposed system, a ground user and a UAV adopt the RSMA scheme to simultaneously communicate
with a base station surveilled by an evil monitor. The UAV acts as both the transmitter and the
friendly jammer to cover the ground user’s transmission with random power. To maximize the
expected sum rate (ESR), we first study the RS strategy and obtain the optimal power allocation
factor. Then, the closed-form of minimum detection error probability (DEP), ESR, and optimal target
rate of the UAV are derived. Constrained by the minimum DEP and expected covert rate (ECR), we
maximize the ESR by optimizing the position and target rate of the UAV. Numerical results show
that the proposed scheme outperforms the traditional NOMA systems in terms of ESR with the same
DEP and ECR.

Keywords: covert communication; RSMA; UAV; sum rate

1. Introduction

The rapid development of intelligent wireless terminals promotes a large amount of
wireless private information, bringing broader attention to information security. The study
of communication security at the physical layer has been segregated into two directions,
namely physical layer security (PLS) [1,2] and covert communications [3,4]. The purpose
of PLS is to ensure that the transmitted information is not intercepted by eavesdroppers,
i.e., protecting the transmitted content. However, it’s not always sufficient to focus solely
on protecting information security, as the exposure of communication behavior can also
pose potential risks and threats. For example, the exposure of the signal transmission
would disclose the existence and position of a device to an adversary, ultimately resulting
in an attack on the device. Different from PLS, covert communications focus on shielding
the transmission behavior from potential watchful adversaries. Bash et al. initiated covert
communication research and proposed a square root law as the fundamental limit in the
additive white Gaussian noise (AWGN) channels [3]. In [4], the authors proved that it is
possible to transmit O(n) bits covertly and reliably in n uses of AWGN channel when the
monitor has uncertainty about the received power.

With the growing number of connected devices and increasing data traffic, there
is a need for more efficient and effective ways to manage the available resources. Non-
orthogonal multiple access (NOMA) is a promising technique that offers improvements
over conventional orthogonal multiple access techniques in terms of spectral efficiency [5,6].
In [7], the PLS in NOMA systems assisted with a HAP and UAVs was studied. Rate-
splitting multiple access (RSMA), which can further increase the sum rate, has recently
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emerged as a more general and robust transmission framework compared to NOMA [8–12].
In particular, the performances of uplink RSMA systems were studied in [10,11]. In [10],
the authors investigated a rate-splitting (RS) strategy in uplink cognitive radio systems,
where a secondary user splits its rate to guarantee the primary user’s transmission. In [11],
the optimal decoding order and maximum sum rate in uplink RSMA systems were studied.
To protect the privacy information, the authors in [13] studied the security and energy
efficiency of the cognitive RSMA-based satellite-terrestrial networks, where a beamforming
scheme was proposed to prevent eavesdropping and increase energy efficiency.

Covert communications in NOMA systems have also been widely studied [14,15].
The author in [14] achieved covert communication in an uplink NOMA system via random
power jamming generated by channel inversion power control. The study in [15] explored
an intelligent reflecting surface (IRS)-assisted covert communication in both downlink and
uplink NOMA systems. The randomness was brought about by the phase-shift uncertainty
of IRS and the overlapping signal transmission. In addition, unmanned aerial vehicles
(UAVs) have been used by virtue of their high mobility, which provides new degrees of
freedom to enhance the covertness of communications [16,17]. In [16], the optimal transmit
power and location for the UAV were studied to achieve covert communications. In [17],
the authors used the geometric method to solve the trajectory problem. Most recently,
covert communication in UAV-aided NOMA systems was investigated in [18].

To further increase the sum rate, we investigate covert communication in UAV-assisted
uplink RSMA systems in this paper. In this system, a ground user and a UAV simultane-
ously communicate with a base station (BS), suffering the surveillance of an evil monitor.
The UAV acts as both the transmitter and the friendly jammer, covering the ground user’s
transmission with random power. This work aims to maximize the expected sum rate (ESR)
by designing the UAV’s power allocation, position, and target rate while guaranteeing the
ground user’s covertness and throughput. The main contributions of this paper are given
as follows.

• We investigate a novel application of RSMA systems, where a UAV splits its rate to
avoid deteriorating the covert transmission of a ground user while increasing the ESR.
To the best of the authors’ knowledge, this is the first work that studied the covet
communication in UAV-assisted uplink RSMA system.

• We derive the closed-form expressions of the ESR and obtain the optimal target rate
of UAV which maximizes the ESR of the system. Subjected to minimum detection
error probability (DEP) and expected covert rate (ECR) constraints, a joint position
and target rate optimization problem is formulated for maximizing the ESR of uplink
RSMA systems.

• The numerical results show that the proposed scheme outperforms NOMA systems in
terms of ESR with the same DEP and ECR and illustrate the effect of constraints on
the ESR.

2. System Model

2.1. Communication Scenario

We consider the covert communication in uplink RSMA system, which consists of a
pair of RSMA users (U1 and U2), a BS, and a warden (Willie), as shown in Figure 1. U1
is a UAV deployed as both the communication node and the friendly jammer hovering
at the constant altitude z1. U2 wants to transmit covertly detected by Willie, who contin-
uously senses whether U2 is transmitting by a radiometer. In order to increase the total
transmission rate while protecting U2’s covert communication, U1 adopts the RS strat-
egy with random transmit power. Without loss of generality, we use a three-dimensional
(3D) Cartesian coordinate system to describe locations. Each node is equipped with a
single antenna.

Denote q1 = [x1, y1, z1], q2 = [x2, y2, 0], qb = [0, 0, zb], and qw = [xw, yw, 0] as the
coordinate of U1, U2, BS and Willie, respectively. Considering an open area, the commu-
nication channel between BS and U2 is modeled as line-of-sight (LOS) links and AWGN
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channels. This assumption is based on the fact that in the urban macro, the probability of
the LOS path is much higher than that of the non-LOS path when the horizontal distance
between BS and terminals is less than 70 m according to 3GPP specification [19]. In addition,
we assume that the channels between UAV and terrestrial nodes are mainly dominated by
LOS components and the non-LOS path is negligible (as in e.g., [16,17,20]). U2 and Willie
are ground users and the channel undergoes the block quasi-static fading, which means
that the channel coefficients remain constant in one time slot, and change independently
from one time slot to another. The large-scale fading coefficient from node i to node j is
denoted as Lij = β0‖qi − qj‖−β, where i ∈ {1, 2}, j ∈ {b, w}, β0 is the fading coefficient at
the reference distance of 1 m, β = 2 is the free space path-loss factor, and ‖ · ‖ denotes the
Euclidean norm. And the small-scale fading between U2 and Willie r2w follows complex
Gaussian distribution CN (0, 1). Therefore, the channel coefficient is denoted as

hij =

{√
Lij, ij ∈ {1w, 1b, 2b},√
Lijr2w, ij = 2w.

(1)

And the channel power gain is expressed by gij = |hij|2. Suppose the location infor-
mation is available for all nodes since Willie’s location can be detected with a radar or
camera by U1. This assumption has been also widely adopted in previous research on
UAV-assisted covert communication [16,17,20]. In addition, we assume that full channel
state information (CSI) is available for Willie, while legitimate users only possess statistical
CSI between U2 and Willie.

Figure 1. The uplink RSMA covert communication system model.

2.2. Proposed Transmission Scheme

U1 adopts the RS strategy with random transmit power to assist U2’s covert and
reliable transmission. U2 conveys secret messages at a fixed rate and probability of 0.5,
while U1 transmits public information. To confuse Willie’s detection, U1 adopts the random
transmit power. Furthermore, U1 shares the same resource block with U2 while preventing
U2’s outage probability from deteriorating through an RS strategy.

Denoting Pi, si, and R̂i as the transmit power, messages, and target rate of Ui, respec-
tively. For simplicity, we adopt μi to represent 2R̂i − 1. U2 transmits with a fixed power P2
and rate R̂2. Then, the interference threshold of U1 is given by

τ =
g2bP2

μ2
− σ2

b , (2)

where σ2
b represents the received noise power at BS. When the interference received by U2

is lower than τ, there is no outage. Conversely, U2’s connection is always interrupted when
the interference is large than τ. Note that to ensure τ ≥ 0, we have μ2 ≤ g2bP2

σ2
b

.
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To enhance the covertness of U2’s transmission, P1 changes from slot to slot, following
a continuous uniform distribution within [Pmin

1 , Pmax
1 ]. The probability density function of

P1 is given by

fP1(x) =

⎧⎨⎩
1

Pmax
1 −Pmin

1
, if Pmin

1 ≤ x ≤ Pmax
1 ,

0, otherwise.
(3)

In order to obfuscate Willie’s detection and transmit more information, U1 contin-
uously sends messages to BS. The random transmit power of U1 is designed to create
ambiguity in Willie’s received power. Consequently, it becomes challenging for Willie to
determine whether the increase in received power is due to U2‘s transmission or simply a
variation in U1’s transmit power.

To increase the total throughput without causing interruptions to U2, U1 applies RS in
each time slot. In uplink RSMA systems, U1 needs to split its messages s1 into two parts
s11 and s12, as shown in Figure 2a. Note that Figure 2a depicts only one possible splitting
scheme. There are also alternative approaches that can be considered. And the received
signals at node j can be expressed as

yj[n] =

{√
P1h1j(

√
αs11[n] +

√
1 − αs12[n]) + nj[n], H0,√

P1h1j(
√

αs11[n] +
√

1 − αs12[n]) +
√

P2h2js2[n] + nj[n], H1,
(4)

where n = 1 . . . N is the index of channel use, nj[n] is the received AWGN at j with the
variance of σ2

j , and α is the power allocation factor satisfying 0 ≤ α ≤ 1. The hypotheses H1

and H0 represent the existence and non-existence of U2’s secret transmission, respectively.
It is assumed that sk, k ∈ {1, 2, 11, 12}, is independently coded with the Gaussian codebook
satisfying E{sk[n]s∗k [n]} = 1, where E{·} and (·)∗ represent the expectation and conjugate
transpose operators, respectively.

The decoding order for uplink RSMA is s11 → s2 → s12 [11]. Thus, the signal-
to-interference-plus-noise ratios (SINRs) for BS decoding s11, s2, and s12 are given by
γ11 = αg1bP1

g2bP2+(1−α)g1bP1+σ2
b

, γ2 = g2bP2
(1−α)g1bP1+σ2

b
, and γ12 = (1−α)g1bP1

σ2
b

, respectively. Corre-

spondingly, the achievable rates of s11, s2, and s12 are expressed as R11 = log2(1 + γ11),
R2 = log2(1 + γ2) and R12 = log2(1 + γ12), respectively.

To maximize the sum rate for the RS strategy, U1 needs to allocate the maximum
possible power to s12. As per γ12, s12 is free from interference, hence allocating power to
s12 would be more efficient compared to s11. Considering that the interference received
by U2 should be no large than τ to keep U2 uninterrupted, we have (1 − α)g1bP1 ≤ τ.
Obviously, the allowed maximum power of s12 is τ/g1b with α = 1 − τ

g1bP1
. Meanwhile,

U2’s messages are not supposed to be decoded firstly for covertness, which results in
αP1 ≥ 0, i.e., P1 ≥ τ/g1b. The target rates of s12 and s11 are set as R̂12 = log2(1 + τ

σ2
b
) and

R̂11 = R̂1 − R̂12, respectively. The power allocation scheme and decoding order are shown
in Figure 2b.

(a) (b)

Figure 2. (a) A sample for splitting s1 into s11 and s12. (b) An illustration of power allocation and
decoding order.

68



Drones 2023, 7, 237

2.3. Detection Metrics at Willie

Willie tries to make a decision whether U2 is transmitting or not based on the received
signals yw[n]. From the independent and identically distributed (i.i.d.) nature of Willie’s
received signals, the distribution of yw[n] is expressed as{

CN (0, g1wP1 + σ2
w), H0,

CN (0, g1wP1 + g2wP2 + σ2
w), H1.

(5)

According to the Neyman-Pearson criterion, the optimal decision rule at Willie is the
likelihood ratio test (LRT) [14,15], which can be shown as a radiometer

Tw
D0
≶
D1

λ, (6)

where Tw = 1
N ∑N

n=1 |yw[n]|2 is the average power received at Willie in a time slot, λ is the
detection threshold of Willie, D1 and D0 are the binary decisions for the hypotheses H0
and H1, respectively. Considering a long observation of Willie, i.e., N → ∞, and employing
the strong law of large numbers, i.e., X 2

2N/N → 1, Tw is given by

Tw = lim
N→∞

{
(g1wP1 + σ2

w)X 2
2N/N, H0,

(g1wP1 + g2wP2 + σ2
w)X 2

2N/N, H1,

=

{
g1wP1 + σ2

w, H0,
g1wP1 + g2wP2 + σ2

w, H1.

(7)

The detection performance is measured by the DEP, which is denoted as

PE � PFA + PMD, (8)

where PFA = P{Tw > λ|H0} is the false alarm probability (FAP), PMD = P{Tw < λ|H1}
is the miss detection probability (MDP), P{·} denotes probability operation and the prior
probabilities of hypotheses H0 and H1 are assumed to be equal, i.e., P(H0) = P(H1) = 1/2.

3. Performance Analysis

In this section, we analyze the performances of the covertness and sum rate in the
proposed system.

3.1. Covertness Analysis

Similar to the proof in [21], the FAP and DEP are given by

PFA =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, λ−σ2

w
g1w

< Pmin
1 ,

g1wPmax
1 +σ2

w−λ

g1w(Pmax
1 −Pmin

1 )
, Pmin

1 ≤ λ−σ2
w

g1w
≤ Pmax

1 ,

0, λ−σ2
w

g1w
> Pmax

1 ,

(9)

PMD =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, λ−σ2

w
g1w

< ρ1,
λ−g1wPmin

1 −g2wP2−σ2
w

g1w(Pmax
1 −Pmin

1 )
, ρ1 ≤ λ−σ2

w
g1w

≤ ρ2,

1, λ−σ2
w

g1w
> ρ2,

(10)
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where ρ1 = Pmin
1 + g2w

g1w
P2, ρ2 = Pmax

1 + g2w
g1w

P2. Then, the DEP at Willie is given by

PE =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, λ−σ2
w

g1w
< Pmin

1 ,
g1wPmax

1 +σ2
w−λ

g1w(Pmax
1 −Pmin

1 )
, Pmin

1 ≤ λ−σ2
w

g1w
< ρ1,

1 − g2wP2
g1w(Pmax

1 −Pmin
1 )

, ρ1 ≤ λ−σ2
w

g1w
≤ Pmax

1 ,
λ−g1wPmin

1 −g2wP2−σ2
w

g1w(Pmax
1 −Pmin

1 )
, Pmax

1 < λ−σ2
w

g1w
≤ ρ2,

1, λ−σ2
w

g1w
> ρ2.

(11)

Note that the condition g1w(Pmax
1 − Pmin

1 ) ≥ g2wP2 needs to be satisfied; otherwise,
Willie has zero probability of making detection errors.

According to the monotonicity of (11), the minimum DEP is given by

P
†
E = 1 − g2wP2

g1w(Pmax
1 − Pmin

1 )
, (12)

and the corresponding detection threshold satisfies ρ1 ≤ λ−σ2
w

g1w
≤ Pmax

1 . Since legitimate
users don’t have instantaneous CSI between Willie and U2, we consider the expected
minimum DEP P†

E over all possible realization of h2w as the measurement of covertness
from the perspective of legitimate users. P†

E is given by

P†
E =

∫ g1w(Pmax
1 −Pmin

1 )

P2

0
P

†
E fg2w(x)dx

=
∫ g1w(Pmax

1 −Pmin
1 )

P2

0

[
1 − xP2

g1w(Pmax
1 − Pmin

1 )

]
1

L2w
e−

x
L2w dx

= 1 +
L2wP2

g1w(Pmax
1 − Pmin

1 )

[
e−

g1w(Pmax
1 −Pmin

1 )

L2w P2 − 1

]
,

(13)

where fg2w(x) is the probability density function of g2w.
The results indicate that as the variation interval of P1 increases, there is a correspond-

ing rise in DEP, leading to a larger value of R̂2. In addition, U1 can modify its channel to
Willie by repositioning to meet the covertness requirement.

3.2. Sum Rate Analysis

In the proposed scheme, the power allocation for s12 is designed to prevent connection
outages during the decoding of both s2 and s12. However, an outage may still occur during
the decoding of s11 due to the randomness of P1. Therefore, the outage probability of
the system is determined by that of decoding s11. We respectively analyze the outage
probabilities and ESR under H0 and H1 in the following.

1. Under H1
The achievable rate under H1 of s11 is given by

R1
11 = log2

(
1 +

g1bP1 − τ

g2bP2 + τ + σ2
b

)
. (14)
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Thus, the outage probability of s11 under H1 is expressed as

O
1
11 = P{R1

11 < R̂11}

= P

{
P1 <

μ11(g2bP2 + τ + σ2
b ) + τ

g1b

}

= max

{
μ11(g2bP2 + τ + σ2

b ) + τ − g1bPmin
1

g1b(Pmax
1 − Pmin

1 )
, 0

}
,

(15)

where μ11 = 2R̂11 − 1. Eventually, the ESR under H1 is given by

R1
sum = (R̂11 + R̂2 + R̂12)(1 −O

1
11). (16)

2. Under H0
Similarly, the achievable rate under H0 of s11 is given by

R1
11 = log2

(
1 +

g1bP1 − τ

τ + σ2
b

)
. (17)

And the outage probability of s11 under H0 is expressed as

O
0
11 = P{R0

11 < R̂11}

= P

{
P1 <

μ11(τ + σ2
b ) + τ

g1b

}

= max

{
μ11(τ + σ2

b ) + τ − g1bPmin
1

g1b(Pmax
1 − Pmin

1 )
, 0

}
.

(18)

Since fixed power is allocated to s12 to satisfy R̂12, P{R0
11 < R̂11} = P{R0

1 < R̂1}.
The ESR under H0 is given by

R0
sum = (R̂11 + R̂12)(1 −O

0
11). (19)

Finally, the ESR of the system is expressed as

Rsum =
1
2

(
R0

sum + R1
sum

)
� f

[(
a − b2R̂11

)
R̂11 − c2R̂11 + d

]
,

(20)

where a = 2g1bPmax
1 + g2bP2 + 2σ2

b , b = g2bP2 + 2τ + 2σ2
b , c = (2R̂12 + R̂2)(τ + σ2

b ) +
(R̂12 + R̂2)g2bP2, d = (2R̂12 + R̂2)(g1bPmax

1 + σ2
b ) + (R̂12 + R̂2)g2bP2, and

f = 1
2g1b(Pmax

1 −Pmin
1 )

. Component 1/2 is due to P(H0) = P(H1) = 1/2.

Equation (20) demonstrates that as R̂11 increases, the outage probabilities also increase,
whereas the change in ESR is uncertain. Therefore, to maximize ESR, it is necessary to
consider how to set R̂11.

Lemma 1. The optimal R̂11 to maximize the ESR is given by

R̂†
11 = max

{
0, log2 e

[
W

(
ae2c/b)

b

)
− 1

]
− c

b

}
, (21)

where e is Euler’s number, and W(·) denotes Lambert W Function [22]. The corresponding Rsum is
denoted as Rsum(R̂†

11).
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Proof. See Appendix A.

We notice that as g1w increases, R̂†
11 increases, resulting in a higher ESR. Therefore,

ESR can be increased by placing U1 closer to the BS.

4. Optimization Problem

In this letter, we aim to maximize the ESR by optimizing the deployment of U1
and the target rate of s11, subject to the covertness constraint and the ECR constraint.
The optimization problem is formulated as

max
x1,y1,R̂11

Rsum, (22a)

s.t. P†
E ≥ 1 − δ, (22b)

R2 = R̂2(1 −O
1
11) ≥ ε, (22c)

where (22b) is the covertness constraint, and (22c) is the ECR constraint. To solve the
optimization problem (22), we decompose it into two subproblems, as shown in Figure 3.
We first discuss the monotonicity of Rsum, PE, and R2 w.r.t. x1 and y1. We observe that as
the distance between U1 and Bob, i.e., ‖q1 − qb‖, decreases, both Rsum and R2 increases.
On the other hand, PE decreases since U1 gets farther away from Willie. Then, the first
subproblem is to optimize the placement of U1 under the covertness constraint (22b)
to minimize the distance between U1 and Bob. The second subproblem is to optimize
R̂11 under the ECR constraint (22c) and U1’s optimal placement obtained from the first
subproblem to maximize the ESR.

Figure 3. Procedure for solving optimization problem (22).

The first subproblem to optimize U1’s placement is expressed as

min
x1,y1

x2
1 + y2

1, (23a)

s.t. (x1 − xw)
2 + (y1 − yw)

2 ≤ t, (23b)

t =
δβ0(Pmax

1 − Pmin
1 )

g2wP2

[
1 + W

(
− e−1/δ

δ

)] − z2
1. (23c)

Lemma 2. The optimal position of U1 is given by q†
1 = [x†

1, y†
1, z1] when 0 < t < x2

w + y2
w, where

[x†
1, y†

1] =

(
1 −

√
t

x2
w+y2

w

)
[xw, yw], otherwise, x†

1 = y†
1 = 0, when t ≥ x2

w + y2
w.

Proof. See Appendix B.

From Lemma 2, we notice that the optimal horizontal position of U1 lies on the line
between BS and Willie.
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The second subproblem to optimize R̂11 is expressed as

max
R̂11

Rsum(x†
1, y†

1), (24a)

s.t. O11(x†
1, y†

1) ≤ 1 − ε

R̂2
, (24b)

where Rsum(x†
1, y†

1) and O11(x†
1, y†

1) represent substituting (x†
1, y†

1) into Rsum and O11, re-
spectively. It is shown in (18) that O11 is a monotonically increasing function w.r.t. R̂11. Thus,
the upper limit of R̂11 is expressed as R̂ε

11, where R̂ε
11 is the solution of O11(x†

1, y†
1) = 1 − ε

R̂2
.

Together with Lemma 1, the optimal choice of R̂11 is given by R̂‡
11 = min{R̂ε

11, R̂†
11}.

5. Numerical Results

In this section, we present numerical results to investigate the performance of the
proposed covert communication scheme. Unless otherwise stated, we set β0 = −20 dB,
qb = [0, 0, 10] m, qw = [0, 100, 0] m, q2 = [50, 50, 0] m, z1 = 25 m, Pmax

1 = 10 W, Pmin
1 = 1 W,

P2 = 2 W, σ2
b = σ2

w = −60 dBm. In this section, we compared the proposed method with
NOMA systems, which can be regarded as a special case of RSMA where all power is
allocated to s11.

Figure 4 shows the maximum ESR versus the expected minimum DEP with different
ECR constraints in RSMA and NOMA systems, where R̂2 = 3 bpcu. We observe that the
curves remain stable initially, but decrease as the expected minimum DEP increases. When
the covertness constraint is loose (t ≥ x2

w + t2
w), the placement of U1 remains unchanged at

x1 = y1 = 0. As the covertness constraint increases, U1 moves closer to Willie while moving
further from the BS, thereby leading to a decrement in ESR. Additionally, a higher ECR con-
straint results in a lower ESR, implying that O1

11 is not zero at the maximum ESR. Moreover,
the proposed scheme has a higher ESR than NOMA with the same minimum DEP.

Figure 4. The maximum ESR versus the expected minimum DEP for different ECR constraints in
RSMA and NOMA systems, where R̂2 = 3 bpcu.

Figure 5 depicts O1
11 of R̂†

11 versus R̂2 for different covertness constraints in RSMA and
NOMA systems. In this case, we do not consider the ESR constraint. We find that NOMA
has a higher outage probability than RSMA to maximize the ESR. Moreover, as R̂2 increases,
the O1

11 of RSMA increases, while that of NOMA decreases. When τ = 0 (i.e., at maximum
R̂2), the O1

11 of both systems are equal. In NOMA systems, fixed power is allocated to s11
(α = 1). As R̂2 increases, decreasing O1

11 to increase R2 will result in a larger ESR. In RSMA
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systems, with the increment of R̂2, more power is allocated to s11, and more outages can be
tolerated to increase the ESR.

Figure 5. The outage probability of R̂†
11 under H1 for different covertness constraints in RSMA and

NOMA systems, where ε = 0.8R̂2.

Figure 6 plots the maximum ESR versus R̂2 for different covertness constraints, where
ε = 0.8R̂2. Similar to Figure 5, we observe that the maximum ESR of RSMA increases while
that of NOMA decreases as R̂2 increases. Specifically, when the covertness constraint is
looser, RSMA achieves a higher O111 and ESR compared to NOMA. This can be attributed
to the fact that the channel gain between the BS and U1 is stronger. The stronger channel
gain results in R1 playing a more crucial role in determining ESR, thus leading to an increase
in O1

11.

Figure 6. The maximum ESR versus the target rate of U2 R̂2 for different covertness constraints in
RSMA and NOMA systems, where ε = 0.8R̂2.
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6. Conclusions

In this paper, we investigated the covert communication in UAV-assisted uplink
RSMA system, where U1 adopts an RS strategy with random transmit power to guarantee
U2’s covert and reliable transmission. Specially, we studied the optimal power allocation
factor for s11 and s12. Then, we derived closed-form expressions of minimum DEP, ESR,
and UAV’s optimal target rate that maximizes ESR. Constrained by the minimum DEP
and ECR, we maximized the ESR by optimizing the position and target rate of the UAV.
Numerical results showed that the proposed scheme outperforms NOMA systems in terms
of the ESR constraint by the same DEP and ECR.
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The following abbreviations are used in this manuscript:

PLS Physical layer security
AWGN Additive white Gaussian noise
UAV Unmanned aerial vehicle
RSMA Rate-splitting multiple access
NOMA Non-orthogonal multiple access
RS Rate-splitting
BS Base station
ESR Expected sum rate
DEP Detection error probability
3D Three-dimensional
CSI Channel state information
LOS Line-of-sight
SINR Signal-to-interference-plus-noise ratio
LRT Likelihood ratio test
FAP False alarm probability
MDP Miss detection probability
KKT Karush–Kuhn–Tucker

Appendix A. Proof of Lemma 1

Taking the derivative of (20) w.r.t. R̂11 yields

∂Rsum

∂R̂11
= f

{
a −

[
b + (c + bR̂11) loge 2

]
2R̂11

}
. (A1)
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By setting ∂Rsum
∂R̂11

= 0, we have

a −
[
b + (c + bR̂11) loge 2

]
2R̂11 = 0[

1 +
( c

b
+ R̂11

)
loge 2

]
e[1+(

c
b +R̂11) loge 2] =

ae2c/b

b
.

(A2)

According to the definition of Lambert W Function, i.e., x = W(ν) is the solution of
xex = ν(ν ≥ 0), (A2) can be rephrased as

1 +
( c

b
+ R̂11

)
loge 2 = W

(
ae2c/b

b

)

R̂11 = log2 e

[
W

(
ae2c/b)

b

)
− 1

]
− c

b
.

(A3)

It is obviously that Rsum is a concave function since (A1) is monotonically decreasing
w.r.t R̂11. Therefore, the solution of (A3) is a maximum point. In addition, R̂11 should be no
less than 0, which completes the proof.

Appendix B. Proof of Lemma 2

The Lagrangian of this problem is

L(x1, y1, κ) = x2
1 + y2

1 + κ[(x1 − xw)
2 + (y1 − yw)

2 − t]. (A4)

Taking the derivative of L w.r.t to x1 and y1 obtains the Karush–Kuhn–Tucker
(KKT) conditions

2x1 + 2κ(x1 − xw) = 0, (A5a)

2y1 + 2κ(y1 − yw) = 0, (A5b)

κ[(x1 − xw)
2 + (y1 − yw)

2 − t] = 0, (A5c)

(x1 − xw)
2 + (y1 − yw)

2 ≤ t (A5d)

κ ≥ 0. (A5e)

When κ = 0, it’s obvious that x†
1 = y†

1 = 0. Meanwhile, to satisfy (A5d), one obtains
t ≥ x2

w + y2
w.

When κ > 0, after some manipulations, we have x†
1 = κxw

1+κ , y†
1 = κyw

1+κ ,

κ = −1 +
√

x2
w+y2

w
t , and 0 < t < x2

w + y2
w. The proof is completed.
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Abstract: In this paper, an intelligent algorithm integrating model predictive control and Standoff
algorithm is proposed to solve trajectory planning that UAVs may face while tracking a moving target
cooperatively in a complex three-dimensional environment. A fusion model using model predictive
control and Standoff algorithm is thus constructed to ensure trajectory planning and formation
maintenance, maximizing UAV sensors’ detection range while minimizing target loss probability.
Meanwhile, with this model, a fully connected communication topology is used to complete the
UAV communication, multi-UAV formation can be reconfigured and planned at the minimum cost,
keeping off deficiency in avoiding real-time obstacles facing the Standoff algorithm. Simulation
validation suggests that the fusion algorithm proves to be more capable of maintaining UAVs in
stable formation and detecting the target, compared with the model predictive control algorithm
alone, in the process of tracking the moving target in a complex 3D environment.

Keywords: UAV trajectory planning; model predictive control; standoff algorithm; formation tracking
control; intelligent computing

1. Introduction

The increasingly complex mission environment in recent years has given UAVs their
favored market, seeing them widely used for reconnaissance and monitoring missions
due to their low cost, high autonomy and reusability [1,2]. Tracking a moving target,
whether for single or cooperative tacking, is a significant sub-problem for UAVs performing
monitoring tasks. Yet, a single UAV can hardly meet its actual task requirements as it works
on its own [3,4], because its sensor’s range of view may be easily blocked and therefore
its ability to accomplish tasks limited. Cooperation of several UAVs, however, helps make
target tracking and monitoring easier. Cooperative efforts made by UAVs can reduce the
risk of target loss [5,6], and ensure the accomplishment of a task with multi-sensor data
fusion, which means multi-UAV collaboration used in trajectory planning for moving target
tracking purposes.

At present, multi-UAV collaborative planning mainly involves artificial potential field
method [7,8], bionic algorithm and control algorithm. When the artificial potential field
method is applied to the collaborative planning process, it is easy to fall into local opti-
mality and difficult to establish a complete mathematical model. Bionic algorithms, which
mainly include ant colony algorithms [9], and particle swarm algorithms [10], also prove
to be challenging to meet the real-time demand due to their limited processing efficiency.
Control algorithms mainly cover PID control [11], optimal control [12], H-infinity robust
control [13], sliding mode control [14], and model predictive control [15,16], etc. Most of
these algorithms, such as PID control, optimal control, H-infinity robust control and sliding
mode control, are not suitable for complex variable control problems such as cooperative
planning of multiple UAVs given their limited control variables and application scenarios
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that appear quite poor, while the model predictive control algorithm, as the only control
method that can explicitly handle constraints at present, has leveled itself up to the acknowl-
edged standard for handling complex constrained variable control problems. It adopts a
form of rolling optimization and feedback correction, i.e., the predicted trajectory will be
corrected online at each sampling cycle. With strong anti-interference ability and strong
robustness, it has attracted widespread attention from scholars at home and abroad. Ani-
mesh Sahu [17] and others conducted a study on multi-UAV tracking of multiple moving
targets in two dimensions based on the model predictive control algorithm and developed
a data-driven Gaussian process (GP) based model that relates the hyperparameters used in
model predictive control to mission efficiency. Marc Ille [18] and others carried out research
on multi-UAV formation collision avoidance in two-dimensional environments based on
the model predictive control algorithm, optimized model predictive control cost functions
using penalty term methods, and controlled UAVs’ track planning as they tracked a moving
target based on formation avoidance constraints. However, relevant research on [17,18]
UAV formation control is rare. Tagir Z. Muslimov [19] and others proposed a method based
on the Lyapunov vector field for multi-UAV cooperative tracking of the moving target
in a two-dimensional environment. The method is grounded around dispersed guided
Lyapunov vector fields for path planning. Based on the two-dimensional environment, Q.
Guo [20] and others proposed a performance guaranteed 5 1

3 -approximation algorithm for
the UAV scheduling problem when ignoring the limited flying time of each UAV, such that
the maximum spent time of UAVs in their flyingtours is minimized. A fusion algorithm
for adaptive multi-model traceless Kalman particle filter was adopted by Niu Yifeng [21]
and others to carry out a study on coordinated tracking of ground multi-target trajectory
for UAV swarms in complex two-dimensional environments. A pioneering exploration is
Zhang Yi [22] and others who solved the problems regarding non-convergence of initial
heading and long phase coordination time among UAVs in the process of cooperatively
tracking a moving target based on Standoff method, following which Zhu Qian [23] and
his team also studied two aircrafts’ cooperative tracking of a moving target by means of
angle measurement.

A comprehensive analysis of the above research found that most of the current research
on multi-UAV trajectory planning through cooperative formation stays in two-dimensional
space, still challenged by problems such as large model calculation and insufficient real-
time. At the same time, the current research faces great difficulty in establishing a complete
non-linear UAV 3D motion model, and thus fails to meet actual mission requirements [24].
As for traditional multi-UAV sensors, their limited detection coverage as well as weak
formation and retention capabilities [25] prevent them from being the hot spot in this field,
leaving UAV trajectory planning that integrates collision avoidance and obstacle avoidance
not fully explored.

Against such a background, this paper proposes a fusion algorithm that combines the
model predictive control algorithm [26] and the Standoff algorithm. The model predictive
control algorithm solves the problem of large-scale real-time optimal control in limited
time [27] and uses the preview capability to achieve optimal maneuver control in a con-
strained, non-linear, model-uncertain and unpredictable environment to generate smooth
flyable paths suitable for the actual flight of the formation [28]. The Standoff algorithm [29],
one of the main algorithms for formation control, maximizes sensor detection range and
reduces the probability of target loss with safe distances as grounds [30]. Compared with
the traditional multi-UAV cooperative trajectory planning method, the fusion algorithm
simplifies the mathematical modelling of UAVs’ three-dimensional motion [31], reduces
the computational complexity which is caused by strong non-linearity as defined in the
dynamics [32], and enhances real-time performance that an algorithm can show compared
with the two papers [33,34]. It integrates the maximization of the sensor’s observation
coverage to establish UAV sensors’ monitoring model, and more importantly, reduces
the probability that UAVs lose their moving target compared with the sensor detection
model proposed by the thesis [35]; Inspired by the minimum long-term operational cost

79



Drones 2023, 7, 196

suggested by the paper [36], the present study designs the reconfiguration planning of
UAV formation at the minimum cost. As the distributed learning principle reported in
the research [37] indicates, it constructs a multi-UAV track planning model using a dis-
tributed model predictive control algorithm to transform the challenge of centralized UAV
formation mentioned in the paper [38] into that of a distributed flight control optimization,
verifying the effectiveness of the fusion algorithm by means of unexpected artificially
implanted obstacles.

The remainder of this paper is as follows: Section 2 introduces the trajectory planning
model that UAVs take while they cooperatively track the moving target in a complex
three-dimensional environment, followed by how it is configured and designed based on
the fusion algorithm in Section 3, in addition to the cooperative formation reconfiguration
and planning when an unexpected situation occurs to the vehicles. Simulation validation is
carried out in Section 4 to demonstrate the effectiveness of the fusion algorithm applied
to multi-UAV collaborative tracking of moving target trajectory planning. The following
section conducts a study on the effectiveness and monitoring capability of multiple UAVs
in coordinated formation to track moving targets, and illustrates that the fusion algorithm
has better tracking effectiveness and monitoring capability in the test, while the last section
offers a conclusion.

2. UAV Model and Environment Model

2.1. UAV Motion Model

Different from most of the previous literature that used the two-dimensional plane to
establish the motion model of the UAV, this paper regards the UAV as a mass point and
builds a three-dimensional motion model based on the inertial reference system without
considering the influence of external disturbances, noise and air resistance on the UAV
dynamics, and carries out discretization processing on it. Assuming that the sampling time
is Δt, the UAV motion model is expressed as Equation (1).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = x(k) + v(k) cos θ(k) sin ϕ(k)Δt
y(k + 1) = y(k) + v(k) cos θ(k) cos ϕ(k)Δt
z(k + 1) = z(k) + v(k) sin θ(k)Δt
v(k + 1) = v(k) + a(k + 1)Δt
ϕ(k + 1) = ϕ(k) +

.
ϕ(k + 1)Δt

θ(k + 1) = θ(k) +
.
θ(k + 1)Δt

s(k) = [x(k), y(k), z(k)]′ ∈ S
u(k) = [v(k), ϕ(k), θ(k)]′ ∈ U

(1)

where s(k) denotes the UAV state sampling at time k; S denotes the feasible state set;
u(k) denotes the control input of the UAV at time k; U denotes the feasible input set;
(x(k), y(k), z(k)) is the real time position of the UAV; v(k), ϕ(k) and θ(k) denote the real time
speed, heading angle and pitch angle of the UAV respectively, and a dotes the acceleration
of the UAV.

2.2. UAV Collision Avoidance Model

Since UAVs need to fly as ultra-low as possible in order to avoid radar detection, the
complex ground environment and its obstacles become the primary threat to UAV trajectory
planning. This paper creates a map model based on undulating terrain topography to
fulfill the actual task requirements, as shown in Figure 1. To improve the robustness of
the method, a safety buffer zone is established around the UAV, and the obstacles are
divided into static obstacle modelling and emergent obstacles. The static obstacle model
is approximated by a cylinder whose co-ordinate center is set to Po, whose co-ordinates
are [P ox, Poy

]
, and whose radius and height are denoted by Por and Poz. A collision zone

(denoted by Lod and ΔHod) and a threat zone (denoted by LOD and ΔHOD) are established
around it. Lod is the minimum proximity safety distance while ΔHod is the minimum height
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proximity distance, and if the distance between the UAV and the static obstacle is less than
Lod and ΔHod, the UAV will collide. LOD and ΔHOD are the maximum threat distance
of the static obstacle, and if the distance between the UAV and the static obstacle is less
than LOD and ΔHOD, the UAV may have the risk of collision. The sudden obstacle model
is approximated by a sphere, the centre of which is set to Pt, with specific coordinates
[P tx, Pty, Ptz

]
and a radius of Rt. The collision zone (represented by a sphere with a radius

of Rp) and the threat zone (represented by a sphere with a radius of Rw) are also set
up, and the specific UAV collision avoidance and collision avoidance model is shown in
Equation (2).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

zi(k)− zall(k) > ΔHd∣∣∣∣ xi(k), yi(k), zi(k)
xj(k), yj(k), zj(k)

∣∣∣∣ ≥ 2Ra√
(xi(k)− Ptx)

2 + (yi(k)− Pty)
2 + (zi(k)− Ptz)

2 ≥ Rw√
(xi(k)− Pox)

2 + (yi(k)− Poy)
2 ≥ LOD or zi(k)− Poz ≥ ΔHOD

(2)

where (xi(k), yi(k), zi(k)) denotes the current UAV position coordinates; Ra denotes the
UAV minimum collision avoidance safety distance; (xj(k), yj(k), zj(k)) denotes the adjacent
UAV position coordinates; zall(k) denotes the height of the ground coordinates (xi(k), yi(k));
and ΔHd denotes the UAV near-ground minimum safety distance.

 
Figure 1. Schematic diagram of modeling of 3D environment and obstacles.

2.3. Moving Target Model

The establishment of a rationalized moving target motion model is the prerequisite
for the successful track planning of UAVs when they cooperatively track the moving
target. This paper defines the target motion model as Equation (3). To simplify the
operation, the moving target’s trajectory is compressed from the three-dimensional space
to the two-dimensional yoz plane, i.e., the x coordinate of the moving target is set to a
constant value.⎡⎢⎢⎢⎢⎢⎢⎢⎣

.
xu(k).
yu(k).
zu(k).
vu(k).
θu(k).
ϕu(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vu(k) cos θu(k) sin ϕu(k)
vu(k) cos θu(k) cos ϕu(k)
vu(k) sin θu(k)
−g sin θu(k)
−g cos θu(k)

vu(k)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
1 0 0
0 1

vu(k)
0

0 0 1
vu(k) cos θu(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ a1

a2
a3

⎤⎦ (3)

where vu(k) denotes the velocity of the moving target at k, θu(k) denotes the pitch angle
of the moving target, ϕu(k) denotes the heading angle of the moving target (ϕu(k) = 0),
g is the acceleration of gravity, a1 denotes the horizontal acceleration of the moving target,
a2 denotes the vertical acceleration of the moving target and a3 denotes the angular accel-
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eration of the moving target, and the motion constraint of the target can be completed by
adjusting according to parameter a = [a 1, a2, a3].

2.4. Target Observation Coverage Modelling

The modeling of target observation coverage is based on the UAV sensors. In this
paper, the mathematical modeling of target observation coverage is based on four factors:
Pf , Pw, Lmax and Lmin. Pf indicates the probability that the sensor detects the target
effectively, Pw indicates the probability that the sensor detects the target incorrectly, and
Pf , Pw ∈ (0.1]. Lmax indicates the maximum detection distance of the sensor, and Lmin
indicates the effective distance that the sensor detects completely. When the distance
between the sensor and the target is less than Lmin, Pf = 1. Given the influence of multiple
obstacles encountered during UAV trajectory planning, it does not meet the actual needs to
only use the maximum detection distance of the sensor as the measurement standard. Based
on this, this paper defines that the UAV is only likely to detect a target when the target
enters an area where it can be seen by the vehicle, and the sensor is only capable of detecting
the target when the target is within its coverage. The intersection of the area where the
target is visible and the sensor’s coverage area is defined as the target observation coverage,
which circumvents the obstruction of the UAV’s line of sight by environmental obstacles
and ensures effective monitoring of the moving target by multiple UAVs in formation, as
shown in Figure 2, whose discretization modelling is expressed as Equation (4). Define the
effective detection range of UAV sensors and the radius of the target coverage area to be
the same, both of which are Lmin = 40 m . The UAV can monitor the moving target when it
is within the sensor’s detection range.

p(Lt) =

⎧⎪⎨⎪⎩
1 Lt < Lmin

p f −
(p f −pw)(Lt−Lmin)

Lmax−Lmin
Lmin < Lt < Lmax

pw Lt > Lmax

(4)

where P(Lt) denotes the probability of the sensor effectively monitoring the target and Lt
denotes the real-time distance between the UAV sensor and the target.

 

Figure 2. Schematic diagram of observation coverage.

3. Designing a Multi-UAV Cooperative Tracking System Based on the Fusion Algorithm

3.1. System Design

After each UAV receives the tracking task, it initializes the system model according
to the prior obstacle information, target movement information and its own motion in-
formation. In view of constraints such as obstacle avoidance and collision avoidance, the
model predictive control algorithm is used to predict the trajectory of multiple UAVs at the
minimum planning cost. In terms of formation and maintenance of multi-UAV formation,
the Standoff algorithm is used to complete the multi-UAV formation control, so that the
UAV swarm is evenly distributed around the target, and then multi-UAV sensors can
maximize the monitoring of the moving target. The specific system framework is shown in
Figure 3. The cooperative collision avoidance control module is mainly responsible for ob-
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stacle collision avoidance and inter-UAV collision avoidance, taking into account the UAV
motion state, obstacle information, map boundaries and other factors to plan a safe and
collision-free flight path. The model prediction control module is responsible for predicting
the UAV trajectory at the minimum flight cost, and the distributed cooperative controller
plans and coordinates the global trajectory. Standoff control module is mainly responsible
for UAV formation maintenance, real-time acquisition of multi-UAV phase distribution,
and maximizing UAV sensors’ coverage. The formation reconfiguration module means
that during the flight of multiple UAVs in accordance with the established formation, the
formation needs to carry out reconstruction planning due to unexpected situations.

 

Figure 3. Framework diagram of how UAVs make track planning as they track the moving target
through cooperative formation.

3.2. Multi-UAV Cooperative Trajectory Planning Based on the Fusion Algorithm

In this paper, a fusion of model predictive control algorithm and Standoff algorithm
is used to promote UAVs’ trajectory planning as they reach cooperative formation when
tracking the moving target, as illustrated by Figure 4.

3.2.1. Multi-UAV Formation Control Based on the Standoff Algorithm

Multi-UAV formation control research using the Standoff algorithm is carried out
in the following steps: introduce UAV-target relative desired distance and UAV sensors’
observation coverage information; use Lyapunov vector field guidance algorithm to guide
the UAVs’ trajectory planning during moving target tracking to ensure that the moving
target is within UAV sensors’ detection range to the maximum extent possible; control
the UAV trajectory rotation characteristics to make it more flexible when optimizing the
trajectory, and then better approach the desired position to reduce the probability of target
loss. Figure 5 shows a schematic diagram of the UAV swarm model for tracking the moving
target based on the Standoff algorithm.
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Figure 4. Framework diagram of multi-UAV trajectory planning based on the fusion algorithm.

 
Figure 5. Schematic of formation control using the Standoff algorithm.

Set the target motion state is known, the multi-UAV cooperative formation moves
around the target circular motion through the Lyapunov function, and the multi-UAV
speed adjustment is assisted by the feedback-correction mechanism, so as to maintain the
ideal tracking of the multi-UAV formation and the moving target. In this paper, the radius
of circular distribution is set as Dr, and the corresponding Lyapunov energy function is the
distance function, as shown in Equation (5).{

Ld(x, y, z) = (r2 − D2
r )

2

|r − Dr| ≤ ξ
(5)

where r is the radial distance between UAV position (xr, yr, zr) and moving target posi-

tion (xd, yd, zd), r =
√
(xr − xd)

2 + (yr − yd)
2 + (zr − zd)

2, and ξ denotes the formation
coordination error.

Assuming that three UAVs are performing a moving target tracking task at the same
time, the positioning process requires any two UAVs to be positioned in comparison to each
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other to maintain the relative balance of the three UAVs’ positions. In order to simplify the
operation, this paper sets three UAVs distributed in the same plane, so only the influence
of phase angle positioning needs to be considered. Assuming that the phase angles of
any two UAVs are φi and φj respectively, and the expected relative phase angle is φz, the
phase distribution function of multi-UAV cooperative formation is calculated based on the
Lyapunov stability theory as shown in Equation (6).{

Φp = (φi − φj − φz)
2

φz =
2π
N , N ≥ 2

(6)

where N denotes the number of drones and N = 3.
The speed calculation of any two UAVs is shown in Equation (7).

vi = v
vj = k · (φi − φj − φz) · Dr + v (7)

where v represents the real-time velocity of the moving target.
The phase angular velocity of any two UAVs is calculated as Equation (8).

.
φi = vi/Dr.
φj = k · (φi − φj − φz) + vj/Dr

(8)

where k is the function coefficient.
Assuming that the moving target position and velocity are known, the optimal de-

sired velocity of the UAV formation can be calculated by combining the multi-UAV pre-
dicted velocity with the moving target velocity correction term, which is calculated as
Equation (9). ⎡⎣ .

xt.
yt.
zt

⎤⎦ =

⎡⎣ .
xi −

.
x

.
yi −

.
y

.
zi −

.
z

⎤⎦ (9)

where (
.
xi,

.
yi,

.
zi) is the predicted velocity value of the UAV and (

.
x,

.
y,

.
z) is the target velocity

correction value.
The predicted speed vt, heading angle ϕt and pitch angle θt of the multi-UAV formation

can be calculated according to Equation (10).

vt =
√

.
x2

t +
.
y2

t +
.
z2

t
ϕt = arctan(

.
yt/

.
xt)

θt = arctan(
.
zt/

√
.
x2

t +
.
y2

t )

(10)

3.2.2. Track Planning UAVs Take during Cooperative Tracking of the Moving Target Based
on the Fusion Algorithm

Inspired by the fact that the model predictive control algorithm can predict UAV
trajectories in real time, and the applicability of the Standoff algorithm to UAV formation
control, this paper reports on the trajectory planning UAVs take during cooperative tracking
of the moving target based on the fusion of the two algorithms. Taking the i-th UAV as an
example, given constraints such as multi-UAV collision avoidance and collision avoidance,
the predicted motion state of the UAV in the finite time domain is constructed based on
the model predictive control framework, the UAV cooperative trajectory planning model
is constructed based on minimizing the UAV trajectory planning cost, while the fusion
Standoff algorithm is used to carry out formation control, based on a “feedback-correction”
mechanism using a moving target speed correction term to correct the optimal desired
speed of the UAV in real time. With the scaling factor of UAV speed and angular speed
added, the predicted velocity vt and predicted angular velocity ωt of the multi-UAV
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formation are calculated in real time, as shown in Equation (11). Each UAV is solved
at each sampling moment using the quadratic programming method to obtain its own
optimal control sequence and local predicted trajectory, and the information at the current
sampling moment is calculated on the basis of control sequence. The specific algorithm
flow is displayed in Algorithm 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(− f i
1, f i

2, f i
3)

s.t.⎡⎣ xi(k + p + 1|k )
yi(k + p + 1|k )
zi(k + p + 1|k )

⎤⎦ =

⎡⎣ xi(k + p|k )
yi(k + p|k )
zi(k + p|k )

⎤⎦+

⎡⎣ vi(k + p|k ) cos θi(k + p|k ) sin ϕi(k + p|k )
vi(k + p|k ) cos θi(k + p|k ) cos ϕi(k + p|k )
vi(k + p|k ) sin θi(k + p|k )

⎤⎦Δt⎡⎣ .
xt(k + p + 1|k )
.
yt(k + p + 1|k )
.
zt(k + p + 1|k )

⎤⎦ =

⎡⎣ .
xi(k + p + 1|k )− .

x(k + p + 1|k )
.
yi(k + p + 1|k )− .

y(k + p + 1|k )
.
zi(k + p + 1|k )− .

z(k + p + 1|k )

⎤⎦
vt(k + p + 1|k ) = vt(k + p|k ) + (uv

i (k + p|k )− vt(k + p|k ))/τv
ωt(k + p + 1|k ) = ωt(k + p|k ) + (uω

i (k + p|k )− ωt(k + p|k ))/τω

(11)

where uv
i (k + p|k ) and uω

i (k + p|k ) are the velocity and angular velocity control inputs of
the i-th UAV in the predicted time domain; vi(k|k ) is the UAV velocity; ωi(k|k ) is the UAV
angular velocity; (xi(k + p + 1|k ), yi(k + p + 1|k ), zi(k + p + 1|k )) is the three-dimensional
position coordinates of this UAV in the predicted time domain; τv and τω are the UAV
velocity and angular velocity scaling factors respectively; f i

1 is the UAV monitoring target
coverage, f i

2 is the control input cost, and f i
3 is the formation planning cost, consisting of two

parts: regular planning and reconfiguration planning. Set the formation planning cost in the
interval [0, j) for predicted trajectory flight, in the interval [j, J) , reconfiguration planning
is required based on the unexpected situation multi-UAV formation, in the interval [J, k) ,
the UAV completes the formation planning and continues to fly in accordance with the
established formation, as shown in Equation (12).

f i
3 =

j
∑

i=0
(w1 f i

L + w2 f i
H + w3 f i

T)+

J−1
∑
i=j

(
∥∥xi(k + j|k )− xg

∥∥2
Ai

+ ‖ui(k + j|k )‖2
Bi
)+

J+k
∑

i=J
(w1 f i

L + w2 f i
H + w3 f i

T)

(12)

where xi(k + j|k ) denotes the UAV J − 1 step state; xg denotes the terminal target state;
ui(k + j|k ) denotes the UAV J − 1 step control input; A and B are symmetric positive
definite weight matrices; w = (w1, w2, w3)

T is the weight vector; f i
T denotes the environ-

mental threat cost, calculated by Equation (13); f i
L denotes the energy consumption cost,

calculated by Equation (14); and f i
H denotes the UAV altitude cost, which is calculated by

Equation (15).

f i
T(xi, yi, zi) =

{
∞ No fly zones
1 Safety zones

(13)

where (xi, yi, zi) denotes the coordinates of the current UAV track point.

f i
L =

√
(xi − xl)

2 + (yi − yl)
2 + (zi − zl)

2 (14)

where (xl , yl , zl) denotes the coordinates of the current moving target.
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f i
H =

⎧⎨⎩
z1 zi < ΔHd
zi − ΔHd ΔHd ≤ zi ≤ ΔHmax
z2 zi > ΔHmax

(15)

where zi denotes the current track point altitude; ΔHmax denotes the maximum flight
altitude; and z1 and z2 denote the altitude penalty values.

Assuming a fully connected communication topology between UAVs, where each real
UAV can obtain information sent by others in real time and without delay within a sampling
period, the inter-aircraft communication distance constraint needs to be considered, and
the specific fusion algorithm constraint is shown in Equation (16).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uvmin
i ≤ uv

i (k + P|k ) ≤ uvmax
i∣∣uω

i (k + P|k )
∣∣ ≤ uωmax

i
zi(k + P + 1|k )− zall > ΔHd∣∣∣∣ xi(k + P + 1|k ), yi(k + P + 1|k ), zi(k + P + 1|k )

xj(k + P + 1|k ), yj(k + P + 1|k ), zj(k + P + 1|k )

∣∣∣∣ ≥ 2Ra∣∣∣∣ xi(k + P + 1|k ), yi(k + P + 1|k ), zi(k + P + 1|k )
xj(k + P + 1|k ), yj(k + P + 1|k ), zj(k + P + 1|k )

∣∣∣∣ < RT

xix = xi(k + P + 1|k )− Ptx
yiy = yi(k + P + 1|k )− Pty
ziz = zi(k + P + 1|k )− Ptz√
(xix)

2 + (yiy)
2 + (ziz)

2 ≥ Rw√
(xi(k + P + 1|k )− Pox)

2 + (yi(k + P + 1|k )− Poy)
2 ≥ LOD

i ∈ {1, . . . , Nv}
j ∈ {1, . . . , Nv}
xi(k|k ) = xi(k), yi(k|k ) = yi(k), zi(k|k ) = zi(k)
vi(k|k ) = vi(k), θi(k|k ) = θi(k), ϕi(k|k ) = ϕi(k)

(16)

where (xj(k + p + 1|k ), yj(k + p + 1|k ), zj(k + p + 1|k )) is the three-dimensional posi-
tion coordinates of formation j-th UAVs in the predicted time domain; (xi(k + p + 1|k ),
yi(k + p + 1|k ), zi(k + p + 1|k )) is the three-dimensional position coordinates of formation
i-th UAVs in the predicted time domain; RT is the maximum communication radius of the
formation UAVs; uvmax

i and uvmin
i are the maximum and minimum velocity constraints of

the UAVs and uwmax
i is the maximum angular velocity constraint of the UAVs. At moment k,

the optimization problem above is solved and the first term ui(k|k ) of the control sequence
is applied to the UAV system, and the process above is repeated at moment k + 1.

3.3. Application Steps of Multi-UAV Cooperative Tracking of the Moving Target Based on the
Fusion Algorithm

The following steps are taken to plan the coordinated tracking of the moving target by
multiple UAVs.

Step 1: Consider the UAV’s own constraints, collision avoidance constraints and other
conditions, and determine the number of participating tracking UAVs and UAV formation
according to the type of the moving target and tracking needs.

Step 2: The Standoff algorithm and the model predictive control algorithm are fused
to complement each other and form a fusion algorithm with more optimized performance.
The specific fusion algorithm is as follows: given the basic information of prediction
time domain, sampling period, UAV control input ui(k − 1|k ) and UAV state quantity
[x i(k|k ), yi(k|k ), zi(k|k )] at the current k moments, build the planning model that UAVs
follow when tracking the moving target, carry out UAV finite time domain prediction trajec-
tory based on collision avoidance constraint, at the same time use the Standoff algorithm to
calculate UAV formation phase distribution value, and then build the multi-UAV formation
model to reach cooperative tracking of the moving target.
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Step 3: In the process of multi-UAV formation movement, determine in real time
whether the UAV formation encounters an unexpected situation. If yes, go to step 4; if no,
continue to track the moving target.

Step 4: When the UAV formation encounters an unexpected situation during the
tracking process, UAVs need to use the fusion algorithm to carry out real-time trajectory
planning, and the ‘feedback-correction’ mechanism to correct the trajectory until they
resume the formation after the unexpected situation is resolved to continue tracking the
moving target.

Algorithm 1: Fusion Algorithm Based on MPC and Standoff.

1. Initialize map environment information
2. Initialize fusion algorithm information
3. Initialize multi-UAV movement information
4. For step = 1, 2, . . . , N:
5. Obtain the initial state of UAVs in environments (xr, yr, zr),v and φz
6. For k = 1, . . . , J:
7. if multi-UAV formations encounter no surprises:
8. Comprehensive consideration of UAV trajectory planning constraints: uvmax ,uvmin ,uwmax

9. Input prediction of velocity and angular velocity control in the time domain uv(k + p|k ), uω(k + p|k )
10. “red” UAV in the environment executing the previous control input of the drone u1(k + j|k ) and correcting speed
variables (

.
x1(k + p + 1|k ), .

y1(k + p + 1|k ), .
z1(k + p + 1|k )) based on the Standoff algorithm, and obtains the next state

u1(k + j + 1|k + j)
11. “yellow” UAV in the environment executing the previous control input of the drone u2(k + j|k ) and correcting
speed variables (

.
x2(k + p + 1|k ), .

y2(k + p + 1|k ), .
z2(k + p + 1|k )) based on the Standoff algorithm, and obtains the next state

u2(k + j + 1|k + j)
12. “green” UAV in the environment executing the previous control input of the drone u3(k + j|k ) and correcting
speed variables (

.
x3(k + p + 1|k ), .

y3(k + p + 1|k ), .
z3(k + p + 1|k )) based on the Standoff algorithm, and obtains the next state

u3(k + j + 1|k + j)
13. Store the above track planning information in the model predictive control module
14. if multi-UAV formations encounters an unexpected obstacle:
15. UAV reconfiguration planning based on Computational (12)
16. Update drone location information (xi, yi, zi) based on minimum generation value
17. end if

18. else: break
19. end if

20. end for

21. step = step + 1
22. end for

4. Simulation Verification

With parameters of UAVs and the moving target initialized according to the known
information, simulation results have verified that UAVs are able to make trajectory plan-
ning through coordinated formation to track the moving target, under the premise that
each UAV’s own constraints as well as constraints related to collision avoidance and ob-
stacle avoidance are all considered. Under this verification, an ideal distance and angle
between the UAV formation and the moving target is maintained, which makes the UAVs’
monitoring possible and effective. Simulation verification on reconfiguration of multi-UAV
formation and trajectory replanning is also carried out, in which different contingencies are
handled at the minimized formation planning cost so that UAV trajectory planning can be
less dependent on priori information. Initialization information is shown in Table 1.
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Table 1. Initialization of system parameters.

Serial Number Parameters Name Parameter Value

1 UAV1 starting position (200 m, 5 m, 115 m)
2 UAV2 starting position (160 m, 5 m, 75 m)
3 UAV3 starting position (240 m, 5 m, 75 m)
4 Target starting position (200 m, 5 m, 95 m)
5 UAV initial speed 25 m/s
6 UAV speed range [20 m/s, 40 m/s]
7 Maximum yaw angle of UAV π/4 rad
8 Maximum pitch angle of UAV π/4 rad
9 Minimum turning radius for UAV 10 m

10 Number of UAVs N 3
11 Maximum speed constraint for UAVs uvmax

i 40 m/s
12 Minimum speed constraint for UAVs uvmin

i 10 m/s
13 Maximum angular velocity constraint for UAVs uwmax

i 0.25 rad/s

In this paper, the simulation environment is based on MATLAB R2020b software.
The map modelling is based on the undulating terrain of the mountainous landscape, the
terrain obstacle composition is mainly derived from the original terrain and the threat
of mountain peaks, and the mathematical model of the terrain is artificially formulated.
To further approximate the real flight scenario, a safety buffer zone is set up around the
UAV and the obstacles are divided into static obstacle modelling and emergent obstacles,
with the static obstacle model being approximated by a cylinder and the emergent obstacle
model by a sphere. In addition, to further enhance the accuracy of the simulation, the
rasterised map environment, i.e., taking into account terrain obstacles, no-fly zones, threat
zones, etc., rasterises the map, with each grid called a cell, converts the 3D mathematical
model of the map into vector structure data and then into a raster structure, giving each
raster cell unique attributes to represent entities. In this paper, the rasterized map unit
length is determined to be 5 m with an accuracy of 0.1 m, and its 3D height information is
formulated by human.

In this paper, the moving target is set as a low altitude slow speed target, the UAV
collision avoidance safety distance is defined as 15 m, the maximum communication radius
between UAVs is 90 m, and the UAV detection coverage range is 40 m. For specific sudden
obstacle model information, see Table 2. The simulation system randomly selects the estab-
lished sudden obstacle model for testing the fusion algorithm applied to UAV trajectory
planning and its formation reconfiguration capability. When the simulation system selects
the sudden obstacle 1, UAVs in formation follow the way as planned by conventional
trajectory in their flight, taking into account constraints such as collision avoidance and
obstacle avoidance, and maximizing multi-UAV sensors’ monitoring coverage. For sim-
ulation details, see Figure 6. When the simulation system selects the sudden obstacle 2,
it needs to use the fusion algorithm to quickly develop a reconfiguration plan for UAV
cooperative formation. Simulation results are shown in Figure 7. To verify the effectiveness
of the fusion algorithm, this paper uses the model predictive control algorithm to carry out
comparative simulations of same-state trajectory planning, as shown in Figures 8 and 9.

Table 2. Sudden obstacle information.

Serial Number Coordinate Position Radius Size of Obstacle

1 (100 m, 270 m, 250 m) 50 m
2 (200 m, 300 m, 250 m) 50 m
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(a) Front view (b) Overhead view 

Figure 6. Scene 1-simulation of multiple UAVs using the fusion algorithm for coordinated formation
tracking.

  
(a) Front view (b) Overhead view 

Figure 7. Scene 1-simulation of multiple UAVs using the fusion algorithm for reconfiguration of
cooperative formation.

The black trajectory in Figures 6–9 is the trajectory of the moving target, and the red,
yellow, and green trajectories respectively represent the trajectory planning results of UAV1,
UAV2, and UAV3 tracking the moving target. According to the figures, it can be seen
that the three UAVs can satisfy several conditions such as their own flight constraints,
constraints related to collision avoidance and obstacle avoidance, and carry out real-time
stable formation tracking of the moving target. As illustrated by Figures 6 and 7, the
simulation of the fusion algorithm makes it possible for UAVs to stably track the target that
moves along the established trajectory. Four static obstacles, together with some sudden
obstacles, are avoided, which justifies advantages and effectiveness of the fusion algorithm.
Unlike the Standoff algorithm that proves to be poor in real-time obstacle avoidance, the
fusion algorithm works well in this regard: the three UAVs are distributed around the
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moving target to maximize the detection coverage of UAV sensors. Thus, the formation
reconfiguration task is effectively completed and the unexpected obstacle is successfully
bypassed. Figures 8 and 9 only use a single model predictive control algorithm to carry
out track planning. Although the vehicles can continue tracking the moving target, their
formation is unstable, and the detection coverage for the moving target is insufficient, as
shown in Figures 10 and 11.

  

(a) Front view (b) Overhead view 

Figure 8. Scene 1-simulation of multi-UAV coordinated formation tracking using the model predictive
control algorithm.

  

(a) Front view (b) Overhead view 

Figure 9. Scene 1-simulation of multiple UAVs for reconfiguration of cooperative formation using
the model predictive control algorithm.
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(a) Fusion algorithm  (b) Model predictive control algorithm 

Figure 10. Scene 1-simulation of real-time distance data with the moving target during formation
reconstruction of multiple UAVs tracking the moving target.

 

(a) Fusion algorithm  (b) Model predictive control algorithm 

Figure 11. Scene 1-simulation of real-time distance data between multiple UAVs during formation
reconfiguration.

A comparison of the simulated data in Figures 10 and 11 verifies that the fusion
algorithm is effective in avoiding unexpected obstacles when applied to the trajectory
planning process UAVs take through cooperative formation when tracking the moving
target. Compared with the model predictive control algorithm alone, the fusion algorithm
shows its advantage in formation control with the help of the Standoff algorithm, allowing
multiple UAVs to move in a circular motion around the target, maximizing UAV sensors’
monitoring range and enabling cooperative formation to track the target. As can be seen
in Figure 10, the fusion-based algorithm results in a smaller distance between the UAV
and the moving target in real time, and a tighter formation which can be maintained after
emergency obstacle avoidance. In Figure 11, the fusion-based UAV spacing remains more
stable and less volatile regarding the distance each UAV keeps from the other.
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In order to further verify the effectiveness of the fusion algorithm applied to UAVs’
tracking of a moving target, and to verify the real-time obstacle avoidance capability of the
fusion algorithm, the number of static obstacles is increased to six in this paper, and the
specific system simulation results are shown in Figures 12 and 13. At the same time, the
same state comparison simulation experiments are carried out using the model predictive
control algorithm, as shown in Figures 14 and 15.

(a) Front view (b) Overhead view 

Figure 12. Scene 2-simulation of multiple UAVs using the fusion algorithm for coordinated formation
tracking.

 
(a) Front view (b) Overhead view 

Figure 13. Scene 2-simulation of multiple UAVs using the fusion algorithm for reconfiguration of
cooperative formation.

As can be seen from the figure above, by increasing the number of static obstacles to
six in the scenario, the three UAVs can still satisfy multiple conditions such as their own
flight constraints and obstacle avoidance constraints, and be distributed around the moving
target in a class circle to maximize the UAV sensor’s detection coverage, and effectively
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complete the task of formation reconstruction and real-time stable formation tracking of
the moving target on the basis of collaborative formation trajectory planning in complex
environments. A comparison between Figures 13 and 15 shows that the single model
predictive control algorithm for track planning, although also capable of continuously
tracking moving targets, has an unstable formation and thus insufficient detection coverage
for moving targets. Specific tracking accuracy parameters are shown in Figures 16 and 17.

 

(a) Front view (b) Overhead view 

Figure 14. Scene 2-simulation of multi-UAV coordinated formation tracking using the model predic-
tive control algorithm.

 
(a) Front view (b) Overhead view 

Figure 15. Scene 2-simulation of multiple UAVs for reconfiguration of cooperative formation using
the model predictive control algorithm.

In order to test the effectiveness of the fusion optimization algorithm applied to UAV
cooperative formation tracking moving target trajectory planning for different trajectory
targets, this paper changes the established motion trajectory of the moving target, in-
creases the degrees of freedom of the moving target, expands the 2-dimensional motion
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of the moving target to 3-dimensional motion, and at the same time adjusts the complex
3-dimensional environment model and changes the dynamic obstacle position, the specific
simulation results are shown in Figures 18 and 19. Using the model predictive control
algorithm to carry out the same state comparison simulation experiments, as shown in
Figures 20 and 21.

 

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 16. Scene 2-simulation of real-time distance data with the moving target during formation
reconstruction of multiple UAVs tracking the moving target.

  

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 17. Scene 2-simulation of real-time distance data between multiple UAVs during formation
reconfiguration.

According to the figure above, in the context of changing the complex map environ-
ment and changing the trajectory of the moving target, the UAVs can still satisfy multiple
conditions such as their own flight constraints, collision avoidance and obstacle avoidance
constraints, etc., and distribute around the moving target in a class circle to maximize the
detection coverage of the UAV sensors, and effectively complete the task of formation
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reconstruction based on the realization of trajectory planning of multi-UAVs in cooperative
formation in a complex environment, and carry out real-time stable formation tracking of
the moving target. This demonstrates the effectiveness of the fusion algorithm for track-
ing moving targets in a complex and variable environment. Specific tracking accuracy
parameters are shown in Figures 22 and 23.

 

(a) Front view (b) Overhead view 

Figure 18. Scene 3-simulation of multiple UAVs using the fusion algorithm for coordinated formation
tracking.

 

(a) Front view (b) Overhead view 

Figure 19. Scene 3-simulation of multiple UAVs using the fusion algorithm for reconfiguration of
cooperative formation.
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(a) Front view (b) Overhead view 

Figure 20. Scene 3-simulation of multi-UAV coordinated formation tracking using the model predic-
tive control algorithm.

 

(a) Front view (b) Overhead view 

Figure 21. Scene 3-simulation of multiple UAVs for reconfiguration of cooperative formation using
the model predictive control algorithm.

As can be seen in Figure 22, the fusion-based algorithm has a smaller distance between
the UAV and the moving target in real time and maintains a tighter formation, which can
be maintained even after emergency obstacle avoidance. In Figure 23, the fusion-based
UAV spacing remains stable and less volatile when comparing distances between UAVs.
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(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 22. Scene 3-simulation of real-time distance data with the moving target during formation
reconstruction of multiple UAVs tracking the moving target.

 

(a) Fusion algorithm (b) Model predictive control algorithm 

Figure 23. Scene 3-simulation of real-time distance data between multiple UAVs during formation
reconfiguration.

5. Discussion

In order to evaluate the proposed fusion algorithm, this paper makes a judgment
about the sensors’ detection coverage during multi-UAV tracking of a moving target
in coordinated formation, while maximizing their detection range and minimizing the
probability of target loss in UAV formation, and compares it with the use of a single model
predictive control algorithm to verify that the fusion algorithm helps to improve UAV
target monitoring capabilities.

For the target tracking effect and monitoring capability, this paper compares the fusion
algorithm and the single model predictive control algorithm in the same environment,
guiding multiple UAVs to cooperate in formation as they track the moving target, counting
the frequency of UAV sensors to effectively monitor the moving target. Experimental
results are shown in Table 3, according to which, the three UAVs effectively monitored
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target coverage using the fusion algorithm a total of 286 times in Scene 1, compared
with 268 effective monitoring times using the single model predictive control algorithm,
resulting in a 6.72% increase in combined monitoring coverage; in Scene 2 the three UAVs
effectively monitored target coverage a total of 283 times with the help of the fusion
algorithm, compared with 264 effective monitoring times using the single model predictive
control algorithm, resulting in a 7.20% increase in combined monitoring coverage; and
in Scene 3 three UAVs effectively monitored target coverage a total of 287 times with the
fusion algorithm, while the effective number of monitoring using a single model predictive
control algorithm was 269, with a 6.69% increase in comprehensive monitoring coverage,
which in turn can be derived from the advantages of the fusion algorithm in terms of
tracking and monitoring effectiveness. The improvement of monitoring ability comes
from the effective integration of the model predictive control algorithm and the Standoff
algorithm in Sections 3.2.1 and 3.2.2. The former uses a ‘feedback-correction’ mechanism to
correct UAV trajectories, ensuring real-time tracking of moving target trajectory planning,
while enabling reconfiguration and planning of multiple UAVs in formation reaching the
least-cost goal. The latter ensures cooperative formation control of multiple UAVs, builds
UAV sensor monitoring models, maximizes sensors’ monitoring range and reduces the
probability of UAVs losing the moving target. Clearly, the fusion algorithm displays a
better tracking effect and monitoring capability in the test.

Table 3. Count of effective detection UAV sensors.

UAV Category Usage
Effective Number of

Detected Steps
(Scene 1-Total: 100)

Effective Number of
Detected Steps

(Scene 2-Total: 100)

Effective Number of
Detected Steps

(Scene 3-Total: 100)

UAV1
Fusion algorithm 100 100 100
Model predictive
control algorithm 100 100 100

UAV2
Fusion algorithm 89 88 92
Model predictive
control algorithm 86 84 88

UAV3
Fusion algorithm 97 95 95
Model predictive
control algorithm 82 80 81

The fusion algorithm promotes the construction of a multi-UAV track planning model,
which obtains a more adaptive tracking strategy and effectively solves the problem of
multi-UAV formation reconfiguration and obstacle avoidance in emergency situations.
From the experimental results, it can be seen that the algorithm has great advantages in
terms of tracking effectiveness and monitoring capability, and can support UAV target
tracking in uncertain environments. Although some work has been done in this paper
on UAV tracking effectiveness and monitoring capability, there are still some challenges
in deploying the algorithm to real UAVs. In practice, external interference, noise and air
resistance have a dynamic effect on UAV trajectory planning, making it difficult to keep
the UAV maneuvering at all times, and time delays in communication between multiple
UAVs may occur. No matter how good the UAV’s trajectory planning is in the simulation
environment, it is still far from real application. However, we can keep increasing the
realism of the scenarios and models in the simulation environment, and thus get closer to
the real environment. For future research, we will consider implementing more detailed
UAV control, including controlling the UAV with motor speed, acquiring target information
through the UAV’s vision sensors and acquiring range information through LIDAR as
status information, thus achieving target tracking in a more realistic 3D scene.
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6. Conclusions

In this paper, a fusion and optimization method is proposed for trajectory planning
UAVs make through cooperative formation when tracking the moving target, a framework
for the multi-UAV tracking system is designed, and research on stable tracking is carried
out to maximize UAV sensors’ coverage as they monitor the moving target, which in
turn reduces the probability of target loss in the tracking process. Against a complex
three-dimensional environment in which priori information is insufficient, the fusion
algorithm promotes the reconfiguration and planning of multi-UAV formation at the
minimum cost, and thus ensures the existence and maintenance of the multi-UAV formation.
The simulation verifies the effectiveness of the fusion algorithm applied to multi-UAV
cooperative formation, keeping off deficiency in avoiding real-time obstacles facing the
Standoff algorithm.

Some future work includes implementing more detailed UAV control for 3D spatial
and target tracking in more complex environments, setting up more realistic scenarios
(different flight scenarios with different numbers of tracked targets) for extensive simulation
validation, and adding on-board sensors to obtain more data as status information, allowing
multiple UAVs to carry out collaborative tracking of a moving target closer to realistic
scenarios, so that fusion optimization algorithms can find their market in actual UAV
trajectory planning in the future.
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Abstract: Mobile edge cache (MEC)-enabled air-to-ground integrated Internet of Vehicles (IoV)
technology can solve wireless network backhaul congestion and high latency, but security problems
such as eavesdropping are often ignored when designing cache strategies. In this paper, we propose a
joint design of cache strategy and physical layer transmission to improve the security offloading ratio
of MEC-enabled air-to-ground IoV. By using the random geometry theory and Laplace transform,
we derive the closed-form expression of the network security offloading ratio, which is defined
as the probability that the request vehicle (RV) successfully finds the required file around it and
obtains the file with a data rate larger than a given threshold. During the file acquisition process,
we collectively consider the impact of the successful connection and secure transmission in the
vehicle wireless communication. Then, we establish an optimization problem for maximizing the
network security offloading ratio, in which the cache strategy and the secure transmission rate are
jointly optimized. Furthermore, we propose an alternating optimization algorithm to solve the joint
optimization problem. Simulation experiments verify the correctness of our theoretical derivation,
and prove that the proposed cache strategy is superior to other existing cache strategies.

Keywords: air-ground collaborative IoV; vehicle-to-vehicle (V2V); caching strategy; the secure
transmission rate; physical layer security (PLC)

1. Introduction

According to Cisco’s 2018–2023 Internet Annual Report, global devices and connected
devices will grow at a compound annual growth rate (CAGR) of 10%, and IoV-based appli-
cations will grow at a CAGR of 17% [1,2]. The explosive growth of mobile data will bring a
heavy burden to the core network. Currently, if a proper solution is not found to address
the explosive growth of data traffic, it may degrade the quality experience of user vehicle
(UV) and even cause congestion on backhaul links in the future. However, the present
technologies can not meet all requirements in fifth generation communication network (5G),
and there will be higher requirements for wireless network latency, coverage, spectrum and
energy efficiency [3–7] in sixth generation communication network (6G). In order to satisfy
the above requirements, 6G will need a paradigm shift to provide intelligent services for
mobile devices. MEC-enabled air-to-ground integrated IoV technology has been proven to
be a key technology in vehicle wireless networks, which can fully utilize the cache space of
edge UV to improve network resiliency, reduce latency, and backhaul traffic [8–11]. Vehicle-
to-Vehicle (V2V) communication can allow UV to directly share files to other UV around
without going through the core network. The previous theoretical and practical research on
mobile edge cache (MEC) based on V2V communication shows that V2V communication
technology can effectively improve the throughput of IoV [12–14]. Therefore, MEC-enabled
air-to-ground integrated IoV technology will have better application prospects in the 6G
wireless communication network.

By utilizing the V2V communication technology, the adjacent UVs with MEC capability
can communicate with each other directly without relying on the data forwarding of the
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air base station (ABS), which will further improve the quality of service (QoS) of UVs and
network performance. Since the cache capacity of the UV is also limited, it is necessary
to design an optimal caching strategy to reasonably cache content to maximize network
utility. Most of the existing caching strategy research use hit ratio, energy efficiency (EE),
and network delay as optimization indicators. The significant breakthroughs have been
made in these research directions [15–22]. Dai et al. [15] proposed a cooperative caching-
multicast strategy based on V2V communication technology to improve the timeliness
and spatial coverage of content services. They analyzed and verified the effectiveness
of the strategy through the main technical indicators of average transmission coverage
and average transmission delay. In order to obtain a more accurate caching strategy,
Ning et al. [16] considered the effects of self-offloading, V2V offloading, general user
preference, individual UV preference, and the peak time change of content preference on
the design of the caching strategy. Therefore, it was also confirmed that the network data
offloading performance could be effectively improved by rationally designing the caching
strategy between UVs and making full use of the self-caching capability. Anjum et al. [17]
proposed a cache method based on two-tiered segment, which divided the storage capacity
of each mobile device into two areas. Their research could effectively reduce the startup
and playback delay of video in the network. Ma et al. [18] investigated the application
of the cluster center caching strategy in data sharing, and analyzed the effectiveness
of the cluster center caching strategy by using network coverage probability, average
completion ratio, and cache hit ratio. Lee et al. [19] studied the optimal caching strategy
and cooperative distance design of V2V caching network from the aspects of network
throughput and EE. Cai et al. [20] proposed a social-aware mobile edge caching strategy
based on network coding, considering the impact of location proximity and UV social
relations on caching strategies. S. Sinem Kafıloğlu et al. [21] proposed two cooperative
cache replacement algorithms based on distance and priority classification to optimize
network energy consumption. Because the battery capacity of each UV was limited,
Li et al. [22] studied the design of caching strategy for V2V-assisted wireless networks from
the perspective of network offloading gain and energy consumption. The above researches
have made important contributions from various perspectives based on V2V wireless
caching networks, but they all ignore the communication security issues in MEC-enabled
air-to-ground integrated IoV.

In the era of advanced network technology, the use of various applications generates a
large amount of unknown personal privacy data. Once the personal privacy data is leaked,
it can seriously affect the privacy of UVs and even the safety of UVs’ property and life.
Therefore, people’s privacy and security problems in MEC-enabled air-to-ground integrated
IoV must be paid great attention to. Physical layer security [23,24] and wireless caching
can be easily integrated in a low complexity and high flexibility manner, mainly including
two reasons: (1) Physical layer security achieves wireless secrecy by using eavesdropping
channel coding, which is different from source encryption. This encryption method can
enable the cached files to be reused, thereby improving the reuse probability of the content
in the edge cache. (2) Physical layer security can exploit the inherent randomness of wireless
channels without necessarily relying on keys. The security problem in wireless networks
is gradually attracting researchers’ attention. Refs. [25–28] have done some research on
the security problem of random wireless networks, but the research on using physical
layer security to ensure that file transmissions in edge cache are not eavesdropped is still
rare. There even lacks a basic theoretical security performance analysis framework and
optimization from the perspective of random geometry. Wang and Zheng [25] investigated
the physical layer security of random cellular networks, which laid the foundation for
the study of wireless network security. Liu et al. [26] derived the exact expression of
outage probability of large-scale access to wireless networks through physical layer security.
Zheng et al. [27] studied the joint design of small cell network-based cache placement
and physical layer transmission in the presence of randomly distributed eavesdroppers
to improve the secure content delivery probability of small cell networks. Ren et al. [28]
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proposed a mobile-aware cooperative coding caching strategy for the high-speed mobility
of users and the secure transmission of content. Inspired by the above researches, this paper
focuses on the research of security problems in the MEC-enabled air-to-ground integrated
IoV to prevent the important data of UVs from being forged or tampered by attackers and
provide a strong guarantee for UVs’ privacy.

In this paper, we mainly investigate the cache strategy design and physical layer
security in the MEC-enabled air-to-ground integrated IoV to improve the data offloading
performance and the anti-eavesdropping capability. The main work and achievements are
described as follows

• We propose a novel mobile edge cache strategy based on physical layer security, which
enhances the adjacent discovery capability of files and improves the probability of
secure transmission. Based on random geometry theory, we calculate the precise
expression of the MEC-enabled air-to-ground integrated IoV security offloading ra-
tio. Taking the security offloading ratio as the objective function, we build a joint
optimization problem about the cache strategy and the secure transmission rate;

• Since the cache strategy and the secure transmission rate are tightly coupled in the
objective function, it is difficult to directly obtain the joint optimal solution. Therefore,
we propose an alternating optimization algorithm, which can obtain the joint optimal
solution of the cache strategies and the secure transmission rate to maximize the
network security offloading ratio;

• Through a numerical simulation of the key technical parameters, the results show
that the network security offloading performance of the proposed caching strategy is
superior to the existing caching strategies.

Other sections of the paper are arranged as follows. Section 2 is the air-to-ground
integrated IoV system model, and Section 3 shows the problem formulation and analysis.
The cache strategy optimization problem is presented in Section 4. In Section 5, theoretical
analysis and numerical simulation results are described. Finally, the conclusions of this
paper are drawn in Section 6.

2. System Model

This section mainly introduces the MEC-enabled air-to-ground integrated IoV network
model and file access model considered in our research content.

2.1. Network Model

In this paper, we consider a MEC-enabled air-to-ground integrated IoV model, in which
cooperative vehicles (CVs), RVs and eavesdropping vehicles (EVs) are modeled as a ho-
mogeneous Poisson point process (HPPP) [29] with density λp, λr and λe, respectively,
as shown in Figure 1. This is a small cell network, such as a single road or an intersec-
tion of two roads. In this case, we can model network nodes into Poisson point process
and use random geometric theory analysis. The PPP model is usually more accurate for
the vehicle network formed on this sparse road layout [30–33]. Each UV has a single
antenna with transmission power Pt. For large-scale fading we consider a standard fading
model r−α. r represents the communication distance between UVs, α is the fading fac-
tor and α > 2 is the pre-condition. For small-scale fading, we consider Rayleigh fading,
in which the channel gain follows the exponential distribution with unit mean indepen-
dently, i.e., G ∼ exp(1) [34,35]. The reason is that this work focuses on Highrise Urban
scenarios, consisting of many ground obstructions. Therefore, traditional air-to-ground
channels (e.g., Nakagami fading channels [36,37]) may not be suitable for our considered
scenarios. This assumption has been widely used for vehicular communications [38,39].
If the UV caches the required files in their own storage space, the UV can get it directly
without consuming other resources. Otherwise, the required files will be obtained through
cooperation between UVs. We assume that the ABS caches all files and knows all UV
information to coordinate V2V cooperative communication.
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Figure 1. MEC-enabled air-to-ground integrated IoV model.

We consider a limited file library F = {1, 2, · · · , F}, where 1-st is the most popular
file. Each CV has a limited cache capacity S (S << F). Due to the size and cost constraints
assumptions in Refs. [22,40], we assume that each CV can cache one file, which easily gen-
eralizes to the multiple file case. We assume that each UV can obtain the file independently,
which obeys the Zipf distribution [41]. The probability that the f − th file is requested by
the UE can be expressed as p f = f−ε/∑F

i=1 i−ε , where ε is the popularity factor. Each CV

can cache files according to optimized cache strategy q =
{

q1, · · · , q f , · · · , qF

}
, where q f

represents the probability that the f − th file is cached. Based on the thinning property [42],
the location of the CV that cached file f follows a HPPP distribution with density q f λp.

2.2. File Access Model

We consider that the ABS caches all files and knows the RVs’ request information
and the CVs’ cache status. The ABS will schedule the content according to the known
information. If the requester sends the file request information, there are two ways to
obtain the files, namely self-cache and V2V cache. When self-cache and V2V caching fail,
the ABS provides the required files to the RV.

• Case 1: self-cache: If the RV caches the desired file in the local cache, and the RV will
get the desired file directly from the local cache without associating other CVs. This is
a special case consideration in edge caching, which is often ignored in existing related
researches [43–45];

• Case 2: V2V cache: If the RV does not cache the required file in the self-cache, then the
RV will obtain the required file from surrounding CVs through V2V communication.
This process involves the successful establishment of V2V communication and the
secure transmission of files. The research will be discussed in later chapters.

3. Problem Formulation and Analysis

In this section, we mainly analyze the data offloading performance of the MEC-enabled
air-to-ground integrated IoV, and take the network security offloading ratio as the main
quantitative indicator. The network security offloading ratio is defined as the probability
that a file is successfully found around the RV and transmitted confidentially at a given data
rate threshold. Therefore, the total network security offloading ratio of the MEC-enabled
air-to-ground integrated IoV Htotal is defined as

Htotal =
F

∑
f=1

p f (Ps + PV2V DsDc), (1)
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where Ps and PV2V are the self-cache data offload ratio and the probability that V2V
successfully finds the file, respectively. Ds and Dc are the probability of successful V2V
connection and the probability of secure transmission, respectively.

3.1. Self-Cache Offloading Ratio

We calculate the probability that the RV finds the required file in the local cache library
as the self-cache offloading ratio. Therefore, the self-cache data offloading ratio can be
calculated as

Ps =
F

∑
f=1

p f q f . (2)

3.2. V2V Cache Offloading Ratio

If the RV cannot obtain the required files through self-caching, then the V2V cache
needs to be enabled to obtain the required files from neighboring CVs. We assume that
CV1 caches the file f , because the location of CV1 follows a HPPP distribution, so the
probability density function of the RV and CV1 with association distance r is calculated as
f = 2πq f λpre−πq f λpr2

[46]. Therefore, the probability that the RV successfully sensing the
file f within the communication range z can be calculated as

PV2V, f =
(

1 − q f

)
(1 − e−πq f λpz2

). (3)

From Equation (3), we can calculate the probability that the RV successfully sensing
all files in the file library F = {1, 2, · · · , F} as

PV2V =
F

∑
f=1

p f

(
1 − q f

)
(1 − e−πq f λpz2

). (4)

Based on Shannon’s theorem, when the transmission capacity Cb between UVs is
Cb ≥ Rs + Rv, the V2V communication can be successfully established. When EV’s
channel capacity Ce is Ce ≤ Rv, the communication can be transmitted confidentially,
where Rs and Rv represent the original transmission rate and redundant transmission
rate, respectively. Therefore, the successful connection probability and security trans-
mission probability of the cache-enabled V2V communication can be calculated as Ds =
P{log2(1 + SINRb) ≥ Rs + Rv} and Dc = P{log2(1 + SINRe) ≤ Rv}. Specifically,

SINRb =
Ptgb,0r−α

b,0
Ib+N0w1

is the signal-to-interference-and-noise ratio (SINR) at RV, where Ib repre-
sents the interference generated by surrounding the RVs, whose location obeys a HPPP
Φ1 with density λrPD2D. N0w1 is the noise power at the receiver, gb,0 is the channel gain,

and rb,0 represents the cooperation distance between UVs. SINRe =
Ptge,0r−α

e,0
Ie+N0w2

is the SINR at
EV, where re,0 is the distance between the CV and the EV, ge,0 is the channel gain. The ran-
dom variable Ie = ∑i∈Φ2\CP0

Ptgir−α
i refers to the interference of EVs around, and N0w2

represents the received noise power. We do further calculations of probabilities Ds and Dc,
the expression can be rewritten as

Ds = P

{
log2

(
1 +

Ptgb,0r−α
b,0

Ib + N0w1

)
≥ Rs + Rv

}
(1)
≈ P

{
gb,0 ≥ IbP−1

t rα
b,02Rs+Rv

}
(2)
= EIb

(
e−IbP−1

t rα
b,02Rs+Rv

)
(2)
= LIb

(
P−1

t rα
b,02Rs+Rv

)
, (5)

where step (1) considers the interference restriction between UVs, step (2) considers small-
scale fading that follows an exponential distribution gb,0 ∼ exp(1) [34,35], and step (3)
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is the Laplace transform of the random variable Ib [47,48], where Ib = ∑i∈Φ1\CP0
Ptgir−α

i .
The Laplace transform of the random variable Ib can be calculated as

LIb(s) = EΦ1,gi

(
e−s ∑i∈Φ1\CP0

Ptgir
−α
i
)

= EΦ1,gi

⎡⎣ ∏
i∈Φ1\CP0

(
1 + sPtr−α

i
)−1

⎤⎦
= exp

[
−2πλrPV2V

∫ ∞

0

(
1 − 1

1 + sPtx−α

)
xdx

]
= exp

{
−2πλrPV2V

∫ ∞

0

[
1 − x

1 + (sPt)
−1xα

]
dx

}

= exp

(
−2πλrPV2V

∫ ∞

0

y
2
α −1

1 + (sPt)
−1y

1
α

dy

)
(1)
= exp

[
−2π2λrPV2V(sPt)

2
α csc

(
2
α

)
α−1

]

, (6)

where step (1) is obtained by (Ref. [49] Equation (3.194.4)) when the path loss factor
satisfies α > 2. Then, by substituting s = P−1

t rα
b,02Rs+Rv into Equation (6) we can rewrite

Equation (5) as

Ds = LIb

(
P−1

t rα
b,02Rs+Rv

)
= exp

[
−2π2λrPV2V22(Rs+Rv)/α csc

(
2πα−1

)
α−1r2

b,0

]
.

(7)

Furthermore, we calculate the secure transmission probability of the MEC-enabled

air-to-ground integrated IoV Dc. The SINR of EV can be expressed as SINRe =
Ptge,0r−α

e,0
Ie+N0w2

.
The position at EVs follow a HPPP distribution Φ2 with density λe. Therefore, the secure
transmission probability Dc can be recalculated as

Dc = P{log2(1 + SINRe) ≤ Rv}

= P

{
log2

(
1 +

Ptge,0r−α
e,0

Ie + N0w2

)
≤ Rv

}
= P

{
ge,0 ≤ IeP−1

t rα
e,02Rv

}
= 1 − P

{
ge,0 > IeP−1

t rα
e,02Rv

}
= 1 −EIe

(
e−IeP−1

t rα
e,02Rv

)
= 1 −LIe

(
P−1

t rα
e,02Rv

)
. (8)

Then, we do the Laplace transform of the random variable Ie in Equation (8). The cal-
culation process is as follows

LIe

(
P−1

t rα
e,02Rv

)
= EΦ2,gi

(
e−s ∑i∈Φ2\CP0

Ptgir
−α
i
)

= EΦ2,gi

⎡⎣ ∏
i∈Φ2\CP0

(
1 + rα

e,02Rv r−α
i

)−1
⎤⎦

= exp

[
−2πλe

∫ ∞

0

(
1 − 1

1 + rα
e,02Rv x−α

)
xdx

]

= exp

⎛⎜⎝−2πλe

∫ ∞

0

y
2
α −1

1 +
(

rα
e,02Rv

)−1
y

1
α

dy

⎞⎟⎠
= exp

[
−2π2λe22Rv/α csc

(
2πα−1

)
α−1r2

e,0

]

. (9)
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Therefore, through the calculation of Equations (8) and (9), we can get the expression
of the secure transmission probability Dc as

Dc = 1 − exp
[
−2π2λe22Rv/α csc

(
2πα−1

)
α−1r2

e,0

]
. (10)

Finally, by substituting Equations (2), (3), (7) and (10) into Equation (1), we can get a
closed-form expression for the security offloading ratio of the MEC-enabled air-to-ground
integrated IoV as

Htotal =
F

∑
f=1

p f

{
q f +

(
1 − q f

)
(1 − e−πq f λpz2

)DsDc

}
. (11)

4. The Cache Strategy and Secure Transmission Rate Optimization Problem

In this section, we investigate the joint effect of caching strategy and the secure
transmission rate on the security offloading ratio of MEC-enabled air-to-ground integrated
IoV. The redundancy rate and content cache probability are jointly optimized to maximize
the network security offload probability. We study the optimal trade-off between file
sharing and privacy security. According to the theoretical derivation results of the Section 3,
we can construct the joint optimization as

P1 : max
q,Rv

Htotal (12a)

s.t.
F

∑
f=1

q f ≤ S (12b)

0 ≤ q f ≤ 1 (12c)

Rv ≥ 0 (12d)

where the objective function (12a) represents the probability that the requester finds the
desired file and obtains it successfully in the MEC-enabled air-to-ground integrated IoV.
Constraint (12b) indicates that the cache capacity of each CV is limited. Constraint (12c) is
the cache probability of each file. Constraint (12d) ensures that the secure transmission rate
of the file is positive.

Due to the complexity brought by the exponential term in the objective function
Htotal , the joint optimization problem P1 is an NP-hard problem [50]. It is difficult for us
to directly obtain the joint optimal solution. From the objective function Htotal we can
observe that if the security transmission rate is increased, the probability of the successful
V2V connection will decrease. Conversely, if the security transmission rate is too small,
the security transmission probability will be reduced. Therefore, there may be an optimal
secure transmission rate to maximize the security offloading ratio of the MEC-enabled
air-to-ground integrated IoV. Furthermore, the caching strategy and the secure transmission
rate are tightly coupled, so each caching strategy may correspond to an optimal secure
transmission rate. Therefore, we propose an alternating joint optimization method. First,
we transform the original problem P1 into two sub-problems (P1 − a and P1 − b) for
independent optimization, and then propose a joint optimization algorithm, which can
finally solve the optimal solution of the joint cache strategy and the secure transmission rate.

4.1. Optimal Secure Transmission Rate for a Given Cache Strategy

In this subsection, our work focuses on optimizing the secure transmission rate of
the MEC-enabled air-to-ground integrated IoV under a given caching strategy. Therefore,
the sub-optimization problem is defined as

P1 − a : max
Rv

Htotal

s.t. Rv ≥ 0
(13)
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In order to get the optimal solution of the secure transmission rate Rv, we must first
judge the Hessian matrix of of the objective function Htotal . The first derivative of Htotal
can be solved as

∂Htotal
∂Rv

=
F

∑
f=1

p f

[
q f +

(
1 − q f

)
PV2V

∂DsDc

∂Rv

]

=
F

∑
f=1

p f

[
q f +

(
1 − q f

)
PV2V

(
∂Ds

∂Rv
· Dc +

∂Dc

∂Rv
· Ds

)]. (14)

For simplicity, we set ϕb = 2π2λr csc
(
2πα−1)α−1r2

b,022Rs/α and

ϕe = 2π2λe csc
(
2πα−1)α−1r2

e,0. So Ds and Dc are rewritten as Ds = exp
(
−kbPV2V22Rv/α

)
,

and Dc = 1 − exp
(
−ke22Rv/α

)
. The first derivative of Ds and Dc with respect to Rv can be

calculated as
∂Ds

∂Rv
= − 2

α
kbPV2V exp

(
−kbPV2V22Rv/α

)
22Rv/α ln 2. (15)

∂Dc

∂Rv
=

2
α

ke exp
(
−ke22Rv/α

)
22Rv/α ln 2. (16)

By substituting Equations (15) and (16) into Equation (14) , we can further rewrite
∂Htotal

∂Rv
as

∂Htotal
∂Rv

=
F

∑
f=1

p f

[
q f +

(
1 − q f

)
PV2V

∂DsDc

∂Rv

]

=
F

∑
f=1

p f

⎧⎪⎨⎪⎩
q f +

(
1 − q f

)
PV2V

2
α

22Rv/α ln 2 exp
(
−kbPV2V22Rv/α

)
×
[
−kbPV2V + (kbPV2V + ke) exp

(
−ke22Rv/α

)]
⎫⎪⎬⎪⎭

. (17)

By analyzing Equation (17), it can be seen that
(

1 − q f

)
exp

(
−kbPV2V22Rv/α

)
ln 2 ×

PV2V
2
α 22Rv/α is a positive term, so the positive or negative of ∂Htotal

∂Rv
is determined by

ϑ
(

q f

)
= −kbPV2V + (kbPV2V + ke) exp

(
−ke22Rv/α

)
. Obviously ϑ

(
q f

)
belongs to the

exponential function. So according to the properties of the exponential function, ϑ
(

q f

)
is a

monotonically decreasing function. Therefore, we set ϑ
(

q f

)
equal to 0 to get the extreme

point R∗
v of the function Htotal , which is calculated as

R∗
v =

α

2
log2

{
− ln[ϕbPV2V/(ϕbPV2V + ϕe) ]

ϕe

}
. (18)

This means that ∂Htotal
∂Rv

is positive within the interval of 0 < Rv < R∗
v and negative

within Rv > R∗
v. Thus, it can be determined that Htotal is a concave function within the

interval Rv > 0, and the maximum point is R∗
v . We can optimize R∗

v by a fixed q.

4.2. Optimal Cache Strategy for a Given Secure Transmission Rate

In this subsection, we optimize the cache strategy based on the given secure trans-
mission rate. The sub-problem with respect to cache strategy q =

{
q1, · · · , q f , · · · , qF

}
is

formulated as
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P1 − b : max
q

Htotal

s.t.
F

∑
f=1

q f ≤ C

0 ≤ q f ≤ 1

(19)

Proposition 1. The proposed optimization problem P1 − b is a convex optimization problem with
regard to 0 ≤ q f ≤ 1.

Proof of Proposition 1. See Appendix A.

Through Proposition 1, we know that the optimization problem P1 − b about the
caching strategy is a convex programming problem. Generally, the optimization problem
P1 − b can obtain the closed expression of the optimal cache strategy q∗ through the
analytical method, but the complex structure introduced by the exponential term in the
objective function Htotal and the existence of inequality constraints make it difficult for
the optimization problem P1 − b to obtain the closed expression of the optimal cache
strategy q∗. Therefore, we use the fmincon module of MATLAB to solve the optimization
problem P1 − b [19,51,52]. It can ensure that the constrained optimization problem P1 − b

converges to the global optimal solution.

4.3. Iterative Algorithm for Joint Optimization

In this section, we jointly optimize the caching strategy q and the secure transmission
rate Rv to maximize the security offloading rate of the MEC-enabled air-to-ground inte-
grated IoV. From the previous theoretical analysis, it can be seen that the cache strategy
q and the secure transmission rate Rv are the product relationship in the expression of
the network security offloading ratio Htotal , which makes the joint optimization more
complicated. Therefore, we propose an alternating optimization algorithm to obtain the
joint optimal solution of the caching strategy and the secure transmission rate. The details
of the joint optimization algorithm are shown in Algorithm 1. In Algorithm 1, we first
obtain the optimal secure transmission rate through a given caching strategy, and then
solve the optimal caching strategy by obtaining the secure transmission rate, and alternately
optimized each until the network security offloading ratio converges. Finally, a set of joint
optimal solutions of the cache strategy q∗ and the secure transmission rate R∗

v are output.

Algorithm 1 Joint optimization algorithm.

1: Initialize the cache strategy q to a feasible value.
2: Repeat Loop:
3: (a) Calculate the security transmission rate Rv by Equation (18).
4: (b) Update the file cache strategy q by solving the convex optimization problem

P1 − b for fixed Rv.
5: (c) Update the secure transmission rate Rv in Equation (18) using the cache strategy

solved in step (b).
6: Until the network security offloading ratio Htotal , the optimal secure transmission rate

R∗
v and the optimal cache strategy q∗

7: Output Htotal , Rv and q

5. Simulation and Numerical Results

In this section, we use key technical parameters to verify the performance of the pro-
posed caching strategy and the correctness of the theoretical analysis. To verify the security
offload performance and cache efficiency performance of files, we compare the proposed
caching strategy with the PAEH caching strategy [29] and the Uniform-baseline caching
strategy [53]. The PAEH caching strategy considered the impact of the self-caching and the
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successful transmission probability, which were the focus of current research in cooperative
caching. By comparing the proposed cache strategy with the PAEH caching strategy, we can
verify the security offloading ability of the proposed cache strategy. The uniform-baseline
caching strategy is a cache strategy that does not consider the change of content popularity.
This strategy, as the baseline cache strategy, appears in many related studies to prove
the cache efficiency improvement ability of the proposed cache strategy. All the caching
strategies consider the effect of self-caching. Unless otherwise specified, the simulation
environment parameter settings in this paper are shown in Table 1.

Table 1. Simulation parameters.

Parameters Value

Intensity of CVs λp 4 × 10−3/m2

Intensity of EVs λe 2 × 10−3/m2

V2V bandwidth W 20 MHz
Path loss exponent α 3.68

Noise power σ2 −174 dBm/Hz
The number of files F 10 files

Each CV’s cache capacity S 1 file
Zip parameter ε 0.6, 1

In Figure 2, we introduce the distribution probability of files under the proposed
caching strategy, the PAEH caching strategy, and the uniform-baseline caching strategy.
From Figure 2, we can easily see that the uniform-baseline caching strategy caches all
files with the same probability. The proposed caching strategy and the PAEH caching
strategy only cache a small number of high-ranked files. When the Zipf factor ε = 1,
the proposed caching strategy and the PAEH caching strategy only need to cache the top
3 files to maximize the network security offloading rate, because an increase in the Zipf
factor ε means that the probability of the file being requested becomes more concentrated.
In order to increase the network security offload ratio, the proposed caching strategy and
the PAEH caching strategy increase the caching probability of the top files. This is consistent
with the high demand for a certain file in a certain period of time in the actual network.
Lower-ranked files may not need to be cached due to the CV’s limited cache capacity.

Figure 2. Distribution of caching strategies with different Zipf factors.

Figure 3 corresponds to optimization problem P1 − a, which illustrates the optimiza-
tion of the secure transmission rate for a given caching strategy. The specific values of the
caching strategy adopted in Figure 3 are given in Table 2. As can be seen from Figure 3,
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with the secure transmission rate increasing, the network security offloading ratio curve
first increases to the extreme point and then drops rapidly. This phenomenon also verifies
that our optimization scheme has an optimal solution. In addition, we can also observe that
there is still the network security offloading ratio even when the secure transmission rate
is zero, because the effect of self-caching is considered in our proposed caching strategy.
We comprehensively take into account the factors of successful connection and security
transmission of V2V communication in the proposed caching strategy. Therefore, under the
condition of a very low secure transmission rate, the main way to obtain files by the pro-
posed caching strategy may still be through self-caching. This may lead to the phenomenon
that the curve starts. When the secure transmission rate is very low, the network security
offloading ratio of the q1 cache strategy is lower than that of q3.

Figure 3. The curve of the network security offloading ratio versus the secure transmission rate.

Table 2. Three caching strategies adopted for Figure 3.

Zipf Parameters Cache Probability of Files

q1(ε = 1.5) 0.7550 0.2450 0 0 0 0 0 0 0 0 0

q2(ε = 1) 0.6351 0.2904 0.0745 0 0 0 0 0 0 0

q3(ε = 0.6) 0.4960 0.2848 0.1562 0.0629 0 0 0 0 0 0

Figure 4 compares the proposed caching strategy, PAEH caching strategy and uniform-
baseline caching strategy, with the increasing Zipf parameters. From Figure 4, we can easily
see that the network security offloading ratio brought by the proposed caching strategy and
PAEH caching strategy will increase rapidly with the increase of Zipf parameters. However,
the network security offloading ratio of the uniform-baseline caching strategy is fixed on a
horizontal line and does not change with the increase of the Zipf parameters. This result
is the same as we expected, because the uniform-baseline caching strategy does not take
into account the popularity of files, but caches all files with equal probability. Of course,
the network security offloading ratio of the Uniform-baseline caching strategy is also the
worst. Furthermore, we can also see that when the Zipf parameter is small, the proposed
caching strategy is significantly better than the PAEH caching strategy, but the gap gradually
decreases as the Zipf parameter increases. This is because the caching probability of our
proposed scheme is strongly correlated with the probability of requesting files. The increase
of popularity factor ε means that the probability of being requested for the most popular
file increases. This will lead to the cache probability of the most popular file approaching 1,
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and the cache probability of other files approaching 0. When the popularity factor ε
gradually increases, both the proposed caching strategy and the PAEH caching strategy
cache the top files, so the network security offloading ratio is gradually approaching.

Figure 4. The network security offloading ratio of the caching strategies varies with Zipf parameters.

In Figure 5, we investigate the effect of different CV densities and EV densities
(λe = 1 × 10−3/m2, λe = 4 × 10−3/m2, λe = 10 × 10−3/m2) on the security offloading
ratio of the MEC-enabled air-to-ground integrated IoV. Monte Carlo method is used to
obtain the simulation results. From Figure 5, we can see that the simulation results match
well with the theoretical values. This indicates that the theoretical derivation of this paper
is reasonable. By analyzing the abscissa in Figure 5, we can conclude that the network
security offloading ratio increases with the increase of CV density. This is because the
increase in CV density also increases the probability of the RVs finding the surrounding
required files. In addition, with the increase of CV density, the network security offloading
ratio increases slowly and gradually tends to balance. This indicates that when the CV
density reaches a certain value, the CV’s cache capacity will become the main influencing
factor of the network security offloading ratio. Furthermore, it can be seen from the three
EV density curves that the network security offloading ratio decreases as the EV density
increases. The reason for this phenomenon may be that the proposed caching strategy
considers the factors of successful V2V communication connection and secure transmission.
When the EV density increases, the risk of the file secure transmission also increases, which
may lead to the decrease of the network security offloading ratio. In addition, with the
increase in EV density, the network security offloading ratio will decrease slowly. The main
reason is that the proposed caching strategy takes into account the impact of self-caching,
which can ensure that the files can be obtained confidentially through self-caching even
when the communication conditions are very risky.
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Figure 5. The network security offloading ratio varies with EV density and CV density.

In Figure 6, we compare the data security offloading performance of the proposed
caching strategy, the PAEH strategy and the uniform-baseline caching strategy with different
CV densities and Zipf parameters. It is obvious that all the caching strategies involved in
the comparison will increase rapidly with the increase of CV density. The proposed caching
strategy significantly outperforms the PAEH strategy and the uniform-baseline caching
strategy in terms of the network security offloading ratio. This is the same conclusion as
in Figure 5, in which the increase in the density of CV gives the requester a greater chance
of obtaining the desired file. With the increase of Zipf parameters, the proposed caching
strategy and the PAEH caching strategy will be significantly improved. Although both
the proposed caching strategy and the PAEH caching strategy consider the influence of
self-caching, it can be seen from the distribution of caching strategies in Figure 2 that the
caching probability of the proposed caching strategy is strongly correlated with the request
probability. However, the network security offloading ratio curves of the uniform-baseline
caching strategy under the two Zipf parameters are coincident, because the uniform-baseline
caching strategy does not consider the influence of content popularity.

Figure 6. The network security offload ratio of different caching strategies varies with CV densities.

In Figure 7, we compare the network security offloading ratio of the proposed caching
strategy, the PAEH strategy, and the uniform-baseline caching strategy under different
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CV cache capacities. It can be seen from Figure 7 that the proposed caching strategy,
the PAEH strategy, and the uniform-baseline caching strategy all increase with the increase
of CV cache capacity. Due to the consideration of self-caching by all caching strategies and
our assumption of a limited file library F = 10, when the CV cache capacity is S = 10,
the network security offloading ratio of all caching strategies can reach the maximum
value. In addition, we can also observe that with the increase of CV capacity, all cache
strategies gradually narrow the gap in network security offloading ratio. Because when the
cache capacity of the CV is large enough (compared with the file library), the probability
that the requester obtains the required file through the self-cache is increased. At this
time, the proportion of caching strategy and file popularity distribution to network data
offloading will decrease. Therefore, the network security offloading ratio curve is gradually
approaching. Furthermore, the proposed caching strategy is better than the PAEH strat-
egy and the uniform-baseline caching strategy due to the consideration of the successful
transmission of V2V communication. Since the uniform-baseline caching strategy does not
fully utilize the cache space (all files are cached with the same probability), its network
offloading ratio is the worst.

Figure 7. The network security offloading ratio of different caching strategies varies with CV
cache capacity.

6. Conclusions

In this paper, we propose a novel mobile edge caching strategy to improve the security
offloading ratio of the MEC-enabled air-to-ground integrated IoV, which comprehensively
considers the effects of self-caching, the successful connection of V2V communication,
and the secure transmission. On the basis of stochastic geometry theory and Laplace
transform, we calculate the accurate expression for the network security offloading ratio.
Based on the network security offloading ratio, we construct a joint optimization problem
of the caching strategy and the secure transmission rate. Due to the complexity of the
optimization problem, it is difficult to directly obtain the joint optimal solution of the
caching strategy and the secure transmission rate. We propose an alternating optimization
algorithm to jointly optimize the caching strategy and the secure transmission rate. Through
the limited number of alternate optimizations, we can obtain a set of the optimal caching
strategy and secure transmission rate that maximize the network security offloading ratio.
Finally, we verify the superiority and feasibility of the proposed caching strategy through
simulation experiments.

In addition, this paper focuses on considering a single line and a single ABS. If multiple
lines and ABS are considered, road layout should be further considered. In this scenario,
the network model should meet the Cox process or doubly stochastic Poisson point process.
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However, the network will become more complicated, which is out of the scope of this paper
and will be our future work. This paper focuses on highrise urban scenarios, consisting of
many ground obstructions. Furthermore, studies regarding the comprehensive impact on
LoS and NLoS groups will be conducted in the future.
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Appendix A

We set ψ
(

q f

)
= exp

(
−kbPV2V22(Rs+Rv)/α

)
×
(

1 − exp
(
−ke22Rv/α

))
, so the objec-

tive function can be rewritten as Htotal =
F
∑

f=1
p f

[
q f +

(
1 − q f

)
(1 − e−πq f λpr2

)ψ
(

q f

)]
.

The first derivative of Htotal with respect to q f can be calculated as

∂Htotal
∂q f

= 1 − (1 − e−πq f λpz2
)ψ
(

q f

)
+
(

1 − q f

)
ψ
(

q f

)
×
[
πλpr2e−πq f λpr2 − PV2V

′kb22(Rs+Rv)/α (1 − e−πq f λpz2
)
]. (A1)

Furthermore, we can also calculate the second derivative of Htotal with respect to q f as

∂2Htotal

∂q2
f

= ψ
(

q f

)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− 2πλpr2e−πq f λpr2
+ 2PV2V

′ζ
(

q f

)
+
(

1 − q f

)⎡⎢⎣− kb22(Rs+Rv)/α
(

PV2V
′)2

ζ
(

q f

)
−
(

πλpr2
)2

e−πq f λpr2 − PV2V
′′ζ
(

q f

)
⎤⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= ψ
(

q f

)⎧⎪⎨⎪⎩
−
(

1 − q f

)
ζ
(

q f

)(
PV2V

′)2kb22(Rs+Rv)/α −
(

2 +
(

1 − q f

)
πλpr2

)
πλpr2e−πq f λpr2

+ kb22(Rs+Rv)/α
[
2(1 − e−πq f λpz2

)PV2V
′ −

(
1 − e−πq f λpr2

)(
1 − q f

)
PV2V

′′
]

⎫⎪⎬⎪⎭
, (A2)

where ζ
(

q f

)
= kb22(Rs+Rv)/α (1 − e−πq f λpz2

). Obviously, the other terms of ∂2Htotal/∂q2
f

are negative, so we just need to judge the positive and negative of G
(

q f

)
= 2(1 −

e−πq f λpz2
)PV2V

′ −
(

1 − e−πq f λpr2
)(

1 − q f

)
PV2V

′′.The first derivative of G
(

q f

)
with re-

spect to q f can be calculated as

G
(

q f

)′
= 2πλpr2e−πq f λpz2

PV2V
′ − πλpr2e−πq f λpr2

(
1 − q f

)
PV2V

′′

−
(

1 − e−πq f λpr2
)(

1 − q f

)
PV2V

′′′ + 3(1 − e−πq f λpz2
)PV2V

′′

= −(1 − e−πq f λpz2
)πλpr2e−πq f λpr2

[
8 + 3πλpr2

(
1 − q f

)]
+ 3(1 − e−πq f λpz2

)PV2V
′′

(A3)
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Through the calculation of Equation (A4), we can easily judge the positive and negative
of the second derivative pV2V

′′.

pV2V
′′ = −2πλpr2e−πq f λpz2 −

(
πλpr2

)2
e−πq f λpz2

(
1 − q f

)
< 0. (A4)

Therefore, we can get the conclusion G
(

q f

)′
< 0, which represents G

(
q f

)
as a de-

creasing function within 0 ≤ q f ≤ 1. So, we can judge that the function G
(

q f

)
≤ G(0) = 0.

Furthermore, we can get ∂2Htotal/∂q2
f < 0. Therefore, the objective function Htotal is a

concave function on the convex set 0 ≤ q f ≤ 1, then the optimization problem P1 − b is
proved to be a standard convex optimization problem.
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Abstract: Dynamic spectrum detection has attracted increasing interest in drone or drone controller
detection problems. Spectrum sensing as a promising solution allows us to provide a dynamic
spectrum map within the target frequency band by estimating the occupied sub-bands in a specific
period. In this paper, a robust Student’s t-distribution model is built to tackle the scenario with a
small number of observed samples. Then, relying on the characteristics of the statistical model, we
propose an appropriate goodness-of-fit (GoF) test statistic regarding a small number of samples.
Moreover, to obtain a reliable sensing, bilateral hypotheses of the test statistic are both used to make
a decision. Numerical simulations show the superiority of the proposed method compared with
other schemes, including the unilateral hypothesis-based GoF testing and the conventional energy
detection, in a small number of sample cases.

Keywords: spectrum sensing; Student’s t-distribution; powerful goodness-of-fit test; cognitive drone
network

1. Introduction

Nowadays, due to the rapid development of the wireless communication, the number
of civil unmanned aerial vehicles (UAVs) has increased significantly in recent years, which
could cause many problems for city administration [1]. Reliable detection of UAVs or
their controllers is a prerequisite for further administration [2–4]. Cognitive radio (CR) [5],
which enables dynamic detection of surrounding signal spectrum, becomes a promising
solution for frequency detection. More specifically, the whole spectrum can be divided
into sub-bands and different signal occupancies can be estimated [6–8]. It has been widely
applied to drone networks in order to create promising infrastructures of cognitive drone
networks, in which multiple resource-constrained sensor nodes are equipped with cog-
nitive ability [9–12]. As the fundamental prerequisite for CR, namely spectrum sensing
(SS) [13,14], reliable and quick detection of signal existence is the key for further strategy
and decision.

To dynamically estimate the existing spectrum, many algorithms have been developed,
including cyclostationary feature, matched filter, waveform-based detection [15–17], etc.
However, these algorithms need to acquire prior knowledge of primary user (PU), which is
difficult in practice, i.e., illegal quad-rotor drone intrusion. Therefore, blind detection tech-
niques that do not need prior knowledge about PU are developed, for instance, the energy
detection (ED) scheme [18–20] and the eigenvalue-based estimation [21–23]. ED is one com-
monly adopted method due to its simplicity for implementation, but the noise uncertainty
in practice significantly degrades its detection performance. Thus, the eigenvalue-based
blind detection is proposed to settle the disadvantage of ED by analyzing the covariance
matrix. The corresponding eigenvalues are utilized to increase the robustness against
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noise uncertainty. Unfortunately, it needs a large number of samples to obtain a good
performance, and has relatively high complexity.

Some GoF test-based strategies have been proposed to achieve better estimation
performance given a small number of available samples [24–30]. In [31], the Anderson–
Darling (AD) test is exploited to achieve reliable detection under a small number of samples.
On the basis of this, the authors in [32] make use of a Student’s t-distribution test for fully
blind detection with noise uncertainty. In [33], the Kolmogorov–Smirnov (KS) test, a non-
parametric GoF method, is used to perform a fast and reliable spectrum sensing, which is
also robust to non-Gaussian noise and channel uncertainty. In [34], the authors utilize a
powerful GoF test to achieve non-parametric sensing for Middleton noise scenario. In [35],
the characteristic of non-symmetrical differences is exploited to construct the unilateral
right-tail AD test. In [36], the ratio between maximum eigenvalue relative to the trace is
exploited to achieve blind detection. However, only one side of the binary hypothesis
information is used in all of the above works. That is to say, only the null hypothesis
is considered. Therefore, the reliability of the decision may be improved by using the
bilateral hypotheses.

To address the above problems, an enhanced detection method based on the GoF test
using bilateral hypotheses for a small number of samples in cognitive drone network is
proposed in this work. One of the main objectives is to obtain a short signal processing
and a real-time decision. Considering the case that there is only a single-radio module at
SU, the sampling period of the observation sensors is expected to be as short as possible.
Moreover, we consider a special information environment where there is only few steady
state receptions available. First of all, we propose to utilize the Student’s t-distribution
in order to address a small number of sample problems, which are collected by the low
power sensor nodes (SU) in the cognitive drone network. In fact, the performance of ED
using Gaussian approximation becomes good only when sufficiently large sample size is
available [37]. It has been shown that the Student’s t-test is the optimal test in spectrum
sensing given a small number of samples [38,39]. Then, taking into account the limitations
of the traditional GoF test (e.g., AD test and KS test) under a small number of samples, the
powerful GoF test [40–44] is introduced to precisely evaluate the distance between common
cumulative distribution and the empirical distribution of observation. As in the proposed
method in [45], the statistic based on the likelihood ratio is used, which is substantially more
powerful than the traditional statistic. The main contribution stands in the proposition
of the powerful GoF test to accommodate the small samples situation. Finally, two new
statistics based on bilateral hypotheses are calculated based on the statistical characteristic
of Student’s t-distribution, and a high reliability sensing decision is obtained based on
bilateral hypotheses.

The rest of the paper is organized as follows. The traditional unilateral hypothesis-
based GoF test is introduced in Section 2. The proposed scheme is illustrated in Section 3,
where the Student’s t-distribution-based statistical model is provided. A powerful goodness-
of-fit test statistic Zc is introduced for computing the distance between the common cu-
mulative distribution of the observations and the empirical distribution, and the bilateral
hypotheses information is utilized for high reliability decision. Numerical simulations are
discussed in Section 4 and the conclusions are provided in Section 5.

2. Traditional GoF Test Based on Unilateral Hypothesis

The traditional sensing scheme on the basis of GoF test using unilateral hypothesis
is presented in this section. Spectrum sensing aims to detect the existence of PU signal in
a specific frequency band for a given set of observed samples. This can be expressed as a
traditional GoF test problem, which can be written as:

H0 : Fn(x) = F0(x)

H1 : Fn(x) �= F0(x)
(1)
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where H0 is the null hypothesis and H1 is the alternative hypothesis. F0(x) denotes the
cumulative distribution function (CDF) of noise distribution of H0 hypothesis, while
Fn(x) represents the CDF of collected samples, which can be calculated by using the
empirical CDF

Fn(x) = |i : xi ≤ x, 1 ≤ i ≤ n|/n (2)

where |S| represents the cardinality of a given set S, and n denotes the number of samples
utilized for acquiring the statistical distribution.

In other words, the detection problem is turned to a problem of testing the null
hypothesis against the alternative hypothesis. Assuming that Z is a statistic for testing H0
against H1, which is defined as [46]

Z =
∫ ∞

−∞
Zxdw(x). (3)

Here, w(x) represents some weight function and large values of Z and reject the null
hypothesis H0. The power of Z depends on Zx and w(x), and the natural candidate for Zx
is generally considered as the Pearson χ2 test statistic defined as follows [46]:

P2
x =

n(Fn(x)− F0(x))2

F0(x)(1 − F0(x))
. (4)

For a traditional GoF test, Zx in Equation (3) is firstly replaced by P2
x . Then, various

traditional GoF tests have been proposed to evaluate the distance between F0(x) and Fn(x),
and how to choose different weight functions. For instance, the AD test, Kolmogorov–
Smirnov (KS) test, and Cramér-von Mises (CM) test [47,48]. They belong to the one-
side hypothesis test for H0. A one-side hypothesis is utilized for determining whether
the collected samples meet the distribution with CDF F0(x) or not. These GoF tests are
illustrated as follows.

(A) KS test: To evaluate the relative distance, the empirical CDF of collected samples
and the reference CDF are considered in KS test and w(x) = n−1F0(x)(1 − F0(x)) is
chosen. Then, the GoF test statistic can be obtained using the largest absolute distance
between the two CDFs, which can be written as

D2 = {sup|Fn(x)− F0(x)|}2. (5)

Here, sup{·} represents the supremum function denoting the maximum value in a
given set. In a practical scenario, it can be rewritten as [49]

D2 =
(

max(D+, D−)
)2

(6)

D+ = max
1≤i≤n

{ i
n
− F0(xi)} (7)

D− = max
1≤i≤n

{F0(xi)−
i − 1

n
}. (8)

(B) CM test: In the CM test, the term dw(x) is set to dw(x) = F0(x)(1 − F0(x))dF0(x). In
other words, CM test is an alternative to the KS test. The statistic of the CM test is
defined by

W2 = n
∫ ∞

−∞
(Fn(x)− F0(x))2dF0(x). (9)
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The integral can be divided into n parts as provided in [47]. Then, W2 can be approxi-
mately rewritten by

W2 =
1

12n
+

n

∑
i=1

(F0(xi)−
2i − 1

2n
)2. (10)

(C) AD test: It can be seen from Equation (10) for distribution F0(x), there is not enough
weight to the tails included in W2. Thus, Anderson and Darling generalized the CM
test statistic in order to enhance the difference between the lower and upper tails of the
distribution. By choosing w(x) = F0(x), the AD test statistic is given as follows [48]:

A2 = n
∫ ∞

−∞

(Fn(x)− F0(x))2

F0(x)(1 − F0(x))
dF0(x). (11)

For an efficient implementation, the simplified formula of the AD statistic can be
denoted as [47]:

A2 = −n − 1
n

n

∑
i=1

(2i − 1)(lnZi + ln(1 − Zn+1−i)) (12)

with Zi = F0(xi). n is the number of the collected samples.

The above traditional GoF test statistics are derived considering the unilateral hypoth-
esis. The spectrum sensing can be reformulated as

H0 : T ≤ η

H1 : T > η
(13)

where T is one of the GoF test statistics D2, W2 and A2, and η is a threshold which can be
found in [47] or be calculated using the Monte Carlo approach. Hence, when T ≤ η, the
null hypothesis H0 can be considered to be accepted and the licensed frequency band is
assumed to be available (not used by the PU).

3. Proposed Enhanced GoF Test-Based Spectrum Sensing Using Bilateral Hypotheses

In this section, an enhanced GoF test-based spectrum sensing technique using bilat-
eral hypotheses is proposed. Firstly, a statistical model of the collected data is provided
considering the Student’s t-distribution, then a powerful GoF test statistic Zc is introduced.
Moreover, in order to obtain an improved decision, bilateral hypothesis information is
utilized and a final decision is made by comparing them.

In order to use bilateral hypotheses for GoF tests, the traditional sensing scheme based
on hypothesis test in Equation (1) can be rewritten as:

H0 : Xi = Wi

H1 : Xi = hst + Wi
(14)

where H0 indicates the absence hypothesis of a PU signal while H1 denotes the presence
hypothesis of the PU signal, respectively. Xi denotes the received samples at time slot
i (i = 1, 2, . . . , l), Wi represents the sample noise contribution. Here, the noise is assumed
to be additive white Gaussian noise (AWGN) with zero mean and variance σ2, and h
denotes the channel gain between PU and SU, and st is the PU signal component. In
addition, considering that the distribution of the PU signal power spectral density is
unavailable in practice, we can make a reasonable, fair, and neutral assumption that the
PU signal distributes uniformly within the entire bandwidth. For example, in many multi-
carrier signals scenarios, the signal is assumed to be a constant in both frequency and time
domains. The received signal is assumed to pass a down converter to a baseband frequency
bandwidth for presentation convenience in this paper. Then, the samples are acquired
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with a sampling rate several times faster than the baseband frequency. Thus, st can be
considered as a constant, st = 1, as shown in [39]. The sensing problem in this case can be
considered as a standard scenario with same variance and different mean value Gaussian
distributions with corresponding hypotheses.

3.1. Statistical Model of the Collected Samples

We consider the case with a small number of samples and need to establish the
test statistic model based on Student’s t-distribution. Hence, we further assume that the
detected signal is a wide-band signal. As shown in [39], the bandwidth to be detected can
be divided into n subbands, where each subband has equal bandwidth. For each subband,
the m collected samples are limited to small numbers. Then, after receiving the samples
at an SU, the samples X = {Xi}l

i=1 are divided into n groups, with m (m > 1) samples in
each group, which indicates that n = l/m. The mean of the samples is defined as X̄j and
the variance is S2

j for the j-th group, respectively. Consequently, we can have

X̄j �
m−1

∑
k=0

Xmj−k

m
, S2

j �
m−1

∑
k=0

(Xmj−k − X̄j)
2

m − 1
(15)

where j = 1, 2, · · · , n and k = 0, 1, · · · , m − 1. Let

Yj �
X̄j

Sj/
√

m
, j = 1, 2, · · · , n. (16)

Note that in order to calculate the following test statistic, the sequence {Yj}n
j=1 is

sorted in increasing order and we assume that Y1 ≤ Y2 ≤ · · · ≤ Yn.
Under H0 hypothesis, PU transmits signal and the received samples follow Xi �

N (0, σ2). Then, Yj follows a v = m − 1 degree Student’s t-distribution. In the case of the
H1 hypothesis, the transmitted signal and noise are both included in the received signal, it
results that Xi � N (μ, σ2), where μ = h. In this case, Yj is proved to follow a non-central
Student’s t-distribution with degree of freedom given by v = m − 1 and δ =

√
mμ2/σ2,

where μ2/σ2 represents the signal-to-noise ratio (SNR) [32,50]. The histograms for different
scenarios and GoFs of Yj for H0 as well as H1 hypotheses are shown in Figure 1, where
SNR = −2 dB and the number of samples l = 64. It can be observed from Figure 1 that the
case with noise only fits the Student’s t-distribution well. Meanwhile, the case including
both signal and noise matches the noncentral t-distribution curve. Moreover, for the same
degree of freedom, we can notice that the noncentral t-distribution curve shifts slightly to
the right side of the red curve of the Student’s t-distribution.

In addition, the curve shape of the Student’s t-distribution tends to approach a zero
mean normal distribution with variance equal to 1. For parameter m, it can also be derived
that the student’s t-distribution is closer to a standard normal distribution if m becomes
larger. In contrast, if m gets smaller, the tails of the Student’s t-distribution tend to locate
at a higher level as shown in Figure 2. Tails with different m values distribute at a higher
level than that of the normal distribution,. Therefore, for small m, it indicates that variables
Yj in Equation (16) tend to take values that deviate from their statistical mean. This
could potentially result in inaccurate computation of the distance between the common
cumulative distribution function and empirical distribution of the observation. Therefore,
we need to accurately estimate the above distance in the next section.
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Figure 1. Histogram for scenarios with signal and without signal, GoF of Yj under different hypotheses.

t m=2

t m=4

t m=16

Figure 2. Probability density function (PDF) with different degrees of freedom v = m − 1 in Student’s
t-distribution.

It should be emphasized that the collected sample Xi as Yj is reformulated and the
Student’s t-distribution is satisfied with H0 hypothesis while noncentral t-distribution is
met for the H1 hypothesis. Notice that for the H0 hypothesis, the CDF F0(y) relates only
with degrees of freedom v, while F1(y) depends on the term δ =

√
mSNR. The noise

variance σ2 is also assumed to be known, which is the same assumption as ED-based
methods. In addition, taking into account the limitations of the traditional GoF test (e.g.,AD
test and KS test) under a small number of samples, we propose a likelihood ratio-based
powerful statistic instead of the traditional statistic in the following section.

3.2. Powerful GoF Test

To precisely evaluate the distance between common CDF and the empirical distribu-
tion of the observation, a novel GoF test statistic Zc on the basis of the likelihood ratio is
proposed. It is asymptotically equivalent to the Pearson χ2-statistic in Equation (4) under
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large sample situations. For obtaining the test statistic Zc, two kinds of statistic for testing
H0 with H1 are defined by

Z =
∫ ∞

−∞
Ztdw(t) (17)

Zmax = sup
t∈(−∞,∞)

{Ztw(t)} (18)

where Zt is the statistic for comparing H0(t) with H1(t) such that its large values reject
H0(t) and w(t) is one of the weight functions. Note that

H0 = ∩
t∈(−∞,∞)

H0(t) (19)

H1 = ∩
t∈(−∞,∞)

H1(t) (20)

with H0(t) : Fn(t) = F0(t) and H1(t) : Fn(t) = F1(t).
In [45], authors present a natural candidate for Zt, which is the likelihood ratio test

statistic defined as follows:

G2
t = 2n[Fn(t)log{ Fn(t)

F0(t)
}+ (1 − Fn(t))log{1 − Fn(t)

1 − F0(t)
}] (21)

Setting Zt in Equation (17) equal to G2
t and setting the weight function to a proper

value dw(t) = F0(t)−1{1 − F0(t)}−1dF0(t), we have

Z =
n

∑
j=1

[log{F0(y)−1 − 1} − bi−1 + bi]
2 + Cn, (22)

where bi = ilog(i/n) + (n − i)log(1 − i/n) and Cn is a constant value.
Since bi−1 − bi ≈ log{(n − 1

2 )/(i − 3
4 ) − 1}, we can derive the powerful GoF test

statistic Zc0 compared with the traditional GoF test. It is approximately obtained in the
following

Zc0 =
n

∑
j=1

[log{ F0(y)−1 − 1
(n − 1/2)/(j − 3/4)− 1

}]2 (23)

where F0(y) denotes the CDF of Yj under H0 hypothesis and it can be calculated by [50]:

F0(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 + 1

π tan−1(y), v = 1,

1
2 + y

2
√

v+y2

(v−2)/2
∑

j=0

bj

(1+ y2
v )j

, v even,

1
2 + 1

π tan−1( y√
v )

+ y
√

v
π(v+y2)

(v−3)/2
∑

j=0

aj

(1+ y2
v )j

, v odd,

(24)

where aj =
2j

2j+1 aj−1, a0 = 1, bj =
2j−1

2j bj−1, b0 = 1. In this situation, the statistic Zc0 denotes
the distance between the CDF of Yj under H0 hypothesis and the empirical CDF of the
collected samples. A large Zc0 means that H0 hypothesis is rejected with a large probability.
Otherwise, a small Zc0 means that the H0 hypothesis is accepted. This is just the traditional
GoF test, which is only based on the null hypothesis. However, in the proposed method,
H1 hypothesis is also considered to improve the reliability of the decision.
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Therefore, corresponding to Equation (23), the other GoF test statistic Zc1 based on H1
hypothesis, is given as follows:

Zc1 =
n

∑
j=1

[log{ F1(y)−1 − 1
(n − 1/2)/(j − 3/4)− 1

}]2 (25)

where F1(y) denotes the CDF of Yj under H1 hypothesis and it can be calculated by [50].

F1(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

∞
∑

j=0

1
j! (−δ

√
2)je−

δ2
2

Γ( j+1
2 )√
π

×I( v
v+y2 ; v

2 , j+1
2 ), y ≥ 0,

1 − 1
2

∞
∑

j=0

1
j! (−δ

√
2)je−

δ2
2

Γ( j+1
2 )√
π

×I( v
v+y2 ; v

2 , j+1
2 ), y < 0.

(26)

where Γ represents the gamma function and I denotes the regularized incomplete beta
function. In this situation, the statistic Zc1 denotes the distance between the CDF of Yj
under H1 hypothesis and the empirical CDF of the collected samples. A large Zc1 means
that H1 hypothesis is rejected with a large probability. Otherwise, a small Zc1 means that
H1 hypothesis is accepted.

In this section, due to adapting a more appropriate weight function, we derive a new
GoF test statistic Zc0 that is substantially more powerful than the traditional GoF test statis-
tic under a small sample situation. Moreover, we further derive the other powerful GoF
test statistic Zc1, which utilizes the CDF of noncentral t-distribution under H1 hypothesis.
At the end, in order to enhance the reliability of final decision, we propose to make a final
decision based on bilateral hypotheses (Zc0 and Zc1) in the next section.

3.3. Final Decision Based on Bilateral Hypotheses

In this section, we propose to make use of the information from bilateral hypotheses
in order to more accurately detect the PU signal given a small number of received data.
According to the statistical characteristic of the Student’s t-distribution and the noncentral
t-distribution with different hypothesis in Section 3.1, and the two new powerful GoF
test statistics Zc0 in Equation (23) and Zc1 in Equation (25) in Section 3.2, we make a final
decision by comparing these two new GoF test statistics. Moreover, the normalization of
the two GoF test statistics Zc0 and Zc1 can be written as T0 = Zc0/(Zc0 + Zc1) and T1 =
Zc1/(Zc0 + Zc1). Finally, the final decision can be determined based on the following rule:

H0 : T0 ≤ T1

H1 : T1 < T0,
(27)

where the information of bilateral hypotheses are both utilized to make a final decision,
which significantly enhances the reliability of detection with small samples compared with
the decision rule in Equation (13).

4. Simulation Results

In this section, the traditional GoF test (AD test, KS test, and CM test) based spectrum
sensing methods and ED are considered for comparison. We assume that the PU signal is
unknown while the noise power σ2 is available in these methods.

First of all, to present the advantage of the proposed method, Figure 3 shows the
detection probability providing different number of samples of the proposed method, AD
test-based, KS test-based, and CM test-based method with the increasing of number of
samples from 12 to 100 when Pf a = 0.1 and the SNR is −5 dB. The parameter m is set to
4 for the proposed method. As shown in Figure 3, the proposed method surpasses the

128



Drones 2023, 7, 18

traditional GoF test-based spectrum sensing methods. Particularly, if the number of samples
is smaller than 48, the proposed method has a big improvement of the detection probability
compared to other techniques. In addition, Table 1 shows the detection probability of
compared methods when the number of samples are 32, 40, and 48. We can see that the
proposed method can achieve a detection probability of 0.9514 for SNR = −5 dB. It can also
validate the robustness of proposed method.
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Figure 3. Probability of detection with different number of samples over AWGN channels with
Pf a = 0.1.

Table 1. The probability of detection for different methods when the number of samples are 32, 40,
and 48.

Number of Samples KS Test Method CM Test Method AD Test Method Proposed Method

32 0.8688 0.9070 0.9206 0.9514
40 0.9268 0.9592 0.9632 0.9764
48 0.9614 0.9796 0.9826 0.9866

Moreover, to compare the proposed method and other methods under different SNR
conditions, the detection probability is provided in Figure 4 corresponding to the proposed
method, the traditional GoF test based spectrum sensing methods and ED method with the
increasing of SNR when Pf a = 0.1 and the number of samples l = 32. The parameter m is
set to 4 for the proposed method. It can be seen from Figure 4 that the proposed scheme
greatly surpasses the ED method. Importantly, the proposed method also has a better
performance at low SNR region than the traditional GoF test (AD test, KS test, and CM
test) based spectrum sensing methods. A specific example provided in Table 1 shows the
detection probabilities corresponding to the l = 32 dotted lines in Figure 4 (SNR = −5 dB),
which are 0.9514, 0.9206, 0.9070, and 0.8688 for the proposed method, AD test, CM test, and
KS test, respectively. This also verifies that the proposed powerful GoF test method can
achieve more reliable test statistic, leading to a better detection performance.
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Figure 4. Detection probability with different SNR over AWGN channels with Pf a = 0.1.

The receiver operating characteristic (ROC) curves are compared in Figure 5. It is
obvious that the proposed method has better performance than the ED method. Given the
probability of false alarm set to 0.1, SNR of −5 dB and l = 32, the proposed method with
m = 4 has about a 5% and 10% improvement relative to the AD test-based method and KS
test-based method. That is because the proposed method utilizes the powerful GoF test
statistic Zc that outperforms the traditional GoF test. For D2, W2, and A2 in KS test, CM
test, and AD test, it is difficult to find their exact null distributions for finite sample cases. In
the powerful GoF test statistic Zc, we can use the sample mean and the sample variance to
estimate μ and σ2, respectively, and it outperforms the best tests in the literature, including
the KS test, CM test, and AD test [45].
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Figure 5. ROC curves comparison with SNR = −5 dB.

In addition, in order to show the advantages of using the bilateral hypotheses to make
the decision, we compare the proposed method with and without bilateral hypotheses, and
a similar study using the GoF [27] in Figure 6. As shown in Figure 6, the performances of
the proposed method with and without bilateral hypotheses are superior to the method
in [27] and the AD test method. Moreover, the proposed method with bilateral hypotheses
makes full use of the bilateral hypotheses information, which increases the utilization of
the distribution properties. Thus, it has a higher probability of detection compared to the
proposed method without bilateral hypotheses.
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5. Conclusions

In this paper, an enhanced spectrum sensing method is proposed on the basis of a
GoF test using bilateral hypotheses in a cognitive drone network. Only a small number
of samples is required by the proposed scheme compared to the traditional ED, which
is attractive for a dynamic weak signal scenario, including illegal drone detection. More
specifically, samples at the SU with statistical model are thoroughly exploited, which
strengthen its capacity for dealing with the small sample size case. Then, a powerful GoF
test statistic Zc is proposed to obtain a better measurement, and bilateral hypotheses GoF
test Zc0 and Zc1 are both used for making a reliable decision. Finally, simulations validate
the superiority of the proposed method compared with the traditional GoF test-based
methods (AD test, KS test, and CM test) and ED method provided a small number of
samples. The capability of proposed method for settling small sample size problem without
sacrificing the detection performance could bring several potential benefits, including
sensing time, energy consumption, and computational burden to the whole drone network.
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Abstract: Due to globalization and advances in network technology, the Internet of Vehicles (IoV)
with edge computing has gained increasingly more attention over the last few years. The technology
provides a new paradigm to design interconnected distributed nodes in Unmanned Aerial Vehicle
(UAV)-assisted vehicle networks for communications between vehicles in smart cities. The process
hierarchy of the current UAV-assisted networks is also becoming more multifaceted as more vehicles
are connected, requiring accessing and exchanging information, performing tasks, and updating
information securely. This poses serious issues and limitations to centralized UAV-assisted vehicle
networks, directly affecting computing-intensive tasks and data offloading. This paper bridges these
gaps by providing a novel, transparent, and secure lifecycle for UAV-assisted distributed vehicle
communication using blockchain hyperledger technology. A modular infrastructure for Vehicle-to-
Everything (V2X) is designed and ‘B-UV2X’, a blockchain hyperledger fabric-enabled distributed
permissioned network-based consortium structure, is proposed. The participating nodes of the
vehicle are interconnected with others in the chain of smart cities and exchange different information
such as movement, etc., preserving operational logs on the blockchain-enabled immutable ledger.
This automates IoV transactions over the proposed UAV-assisted vehicle-enabled consortium network
with doppler spread. Thus, for this purpose, there are four different chain codes that are designed
and deployed for IoV registration, adding new transactions, updating the ledger, monitoring resource
management, and customized multi-consensus of proof-of-work. For lightweight IoV authentica-
tion, B-UV2X uses a two-way verification method with the defined hyperledger fabric consensus
mechanism. Transaction protection from acquisition to deliverance and storage uses the NuCypher
threshold proxy re-encryption mechanism. Simulation results for the proposed B-UV2X show a
reduction in network consumption by 12.17% compared to a centralized network system, an increase
in security features of up to 9.76%, and a reduction of 7.93% in the computational load for computed
log storage.

Keywords: Vehicle-to-Everything (V2X); edge computing; UAV-assisted vehicle network; blockchain;
smart contract; cost-effective scheduling

1. Introduction

The future development of the Internet of Vehicles (IoV) depends on Vehicle to Ev-
erything (V2X) applicational maturity [1,2]. However, applications include intent sharing,
distributed environment design, bi-directional intercommunication, interactive gaming,
and wireless network-based coordinated driving. These developments are anticipated
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to make the system more efficient, reliable, secure, and diverse, allowing execution of
vehicular transactions autonomously [3]. However, in recent advances, the success of these
vehicular applications relies on a large amount of generated data, a fusion of data handling,
and processing from wireless sensor-based distributed networks that are associated with
the vehicles. Therefore, deployed on-road infrastructure guarantees data management in
real time while precisely perceiving the environment. Perception and related computation
for each vehicle increases the continuity of learning in the smart environment. In fact, it
leads to low resource consumption in terms of computing energy, network bandwidth, and
storage, due to the high price of precision sensors and the powerful computational process-
ing units (CPUs) used [4]. The usage of low-priced equipment in the IoV domain impacts
the performance ratio of systems. Furthermore, it limits local perception capabilities, which
directly affects centralized network-based V2X applications. Resource usage, especially
energy consumption for computation and high-precision sensor management, substantially
reduces the efficiency of vehicular systems in terms of battery life, reducing mileage. In
order to improve the use of computational resources, different applications of the IoV have
adopted different artificial intelligence (AI)-based methods for dynamic monitoring. This
has led to various significant challenges that pose resource-management-related problems
in IoV terminals [5].

Beyond these limitations, each IoV node is able to directly interconnect with other
nodes in the chain of smart cities, as shown in Figure 1. This is possible because the
centralized network-enabled infrastructure provides intercommunication facilities with
no repudiation [6]. However, the technology is more robust with vehicular edge com-
puting, fifth-generation networks (5G), and fog/cloud-based system integration. These
developments aim to provide a vigorous computational environment, high storage, sen-
sor connectivity, smart sharing and exchanging, and service orientation by leveraging
distributed IoV energy usage with low-cost distributed communication [7]. This differs
from cloud/fog-enabled technologies, which use an old paradigm where physical proxim-
ity between information systems and computing services promised distinct advantages.
These advantages include low throughput and latency, high power efficiency, security
and privacy protection reliability, reduced network bandwidth usage, and storage-related
context awareness. On the other hand, vehicular edge computing integration depends on
distributed wireless networks to divide a large number of computing tasks and sensor-
based corresponding records/details over the IoV and the edge network. This leads to
a quick response by enabling smart vehicles to perform all applications for a distributed
IoV network.

The current standard of V2X (UAV-assisted network) is categorized into two different
parts: short-range dedicated communication and a cellular V2X. Dedicated short-range
communication is used as a standard protocol of IEEE 802.11p, while cellular communica-
tion follows 5G protocols [8,9], as shown in Figure 1. The combination of short-range and
cellular V2X on the existing system is used to gain broader coverage for pilot-distributed
applicational facilities with distance transmission, steadier channels, and UAV network-
related deployment. The recent of UAV-assisted infrastructure system uses 5G cellular
V2X to offload a large amount of data to IoV edge nodes with new frequencies, such as
millimeter-wave frequency bands.

However, the offloading problem in a UAV-assisted network creates different chal-
lenges in the V2X environment. These include problem segmentation, IoV edge selection
and offloading, problem mitigation, and privacy protection, which are becoming widely
researched concerns [10]. For instance, edge computing offloading strongly depends on a
large-scale ubiquitous base station to handle data and coverage for transmission. It assumes
that the current communication resources of the UAV-assisted network are not sufficient for
vehicular edge offloading [11]. Therefore, deploying a dense-base station reduces the load
of vehicular edge computing-enabled traffic by providing a simple structure to manage all
the transactions. However, it is considered a cost-inefficient method for IoV services and lo-
cations. To manage these complexities, a middle base station/middle infrastructure with the
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standard process hierarchy is required to evaluate the requests of IoV devices concurrently.
Only a valid service request can pass; otherwise, it is discarded at an initial level.

Figure 1. The current Vehicle to Everything (V2X) environment.

Major actors are analyzing distributed UAV-assisted vehicular network solutions re-
lated to connectivity and offloading for futuristic transportation. One of the main reasons
for adopting blockchain hyperledger-enabled distributed architecture in a UAV-assisted
vehicular network is to eliminate the dependency on certificate authority [12–16]. The
decentralized nature of blockchain ledger technology integrates with different domains of
computing to allow new designs in IoV transaction processing, privacy, and security. The
modular infrastructure of blockchain technology provides automated transaction execution
facilities via distributed applications (DApp). Thus, it ensures information security against
malicious attacks during inter/outer-communication between nodes. However, the current
system of UAV-assisted vehicle network consumes significant computing resources because
no standard protocol for request management has been proposed [17]. For this reason,
hyperledger technology is used to provide a customized design for consensus, chaincode
execution, privacy and security procedures, and network communication-related facilities,
directly reducing resource consumption. In addition, another advantage of this technol-
ogy is that it provides ledger (log records) preservation and protection in a serverless
environment through the proxy threshold re-encryption mechanism.

1.1. Objectives and Contributions

This paper addresses the current issues, challenges, and limitations involved in cen-
tralized UAV-assisted vehicle networks. It highlights the changes in the evolution of Vehicle
to Everything (V2X) and presents the role of V2X in futuristic transportation development.
A number of enhancements/improvements when deploying a UAV-assisted vehicular
network with blockchain, including in record scheduling, managing, organizing, optimiz-
ing, and offloading in a secure and protected manner in a decentralized environment. By
enabling the current design of UAV-assisted V2X to be integrated with a consortium chan-
nel’s blockchain structure, the load on vehicular network resources is reduced drastically
compared to previous infrastructures. The major contributions of this research paper are
as follows:
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• This paper proposes B-UV2X, a novel and secure distributed UAV-assisted vehicular
network infrastructure for IoV interconnectivity. The designed system realizes interop-
erable communication between devices in the V2X environment with blockchain;

• A blockchain-enabled standardized lifecycle is designed. The main objective is to main-
tain the process hierarchy throughout transactions acquisition towards deliverance in
a secure manner;

• A consortium network with doppler spread is deployed for edge-enabled IoV systems
to handle requests related to permissioned or permissionless environments;

• To protect individual transactions of the IoV, B-UV2X uses a proxy re-encryption
threshold mechanism. Furthermore, a multi-consensus protocol is created with the
predefined method of the digital signature of the hyperledger to schedule the list of
node transaction executions, which helps in the management of resources;

• In this paper, three different types (IoV connectivity and data management, record
updates, and exchanging) of smart contracts are created and deployed;

• Finally, this paper highlights the implementation challenges faced in the process
of B-UV2X deployment, with future open research questions. Possible solutions
are discussed.

1.2. Section Distribution

The remainder of this paper is structured and organized as follows. In Section 2,
various related works are studied and investigated to find the current gaps in vehicle-to-
everything, UAV-assisted vehicle networks, the IoV, and seamless edge computing services
for centralized networks. The problem description, formulations, and related working
objectives of the proposed B-UV2X are discussed in Section 3. The experimental results
of B-UV2X and related comparisons with other state-of-the-art methods are presented in
Section 4. In Section 5, the paper describes different implementation challenges, issues,
and limitations, and highlights futuristic objectives as well. Finally, the conclusion of this
research is discussed in Section 6.

2. Related Work

2.1. Vehicle-to-Everything (V2X) and UAV-Assisted Vehicle Network

Recently, drone-enabled technology has been widely adopted in different industrial,
manufacturing, and production units to smartly enhance working objectives in terms of
scheduling, managing, and monitoring. The open nature of centralized vehicular net-
works threatens privacy of information [18]. This may also lead to privacy leakage of
personal information, posing various tampering- and forgery-related issues. In this regard,
several artificial intelligence, machine learning, deep learning, federated learning, and
blockchain-enabled distributed modular architectures of UAV-assisted vehicular networks
with doppler spread have been presented [19]. These address different kinds of dependent
centralized aggregative servers, which are designed to maintain system objectives and a
crash-less environment. In addition, unauthorized participation also drives positioning
attack, reducing the usability of the system and creating communication barriers that hinder
integration in the large number of cross-domain IoVs. The research gaps in previously
published state-of-the-art methods are discussed as follows (as shown in Table 1).
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Table 1. Related literature on blockchain, UAV-assisted vehicular networks, and vehicle to everything.

Title of the Article Proposed Method/Procedure Research Gaps in the Study
Similarities and Differences
with the Proposed B-UV2X

Internet of Drones (IoD)
applications with blockchain [20]

The authors of this paper
discussed the role of blockchain
and its integration in the
improvement of IoD connectivity
and security, as well as the
importance of distributed
applications for drone-based data
management and monitoring in a
protected manner, especially in
smart-city environments.

• Scope of data privacy
security issues

• Explored commercial
applicational problems

• Derived blockchain
mechanism proposed

• Data optimization and
offloading issues

• Internet-of-Vehicles (IoV)
connectivity

• Blockchain permissionless
network

• Platform interoperability
limitation

• Security and privacy
concerns

A decentralized machine learning
framework for intrusion detection
in UAV using blockchain
distributed ledger modular
infrastructure [21]

This paper presents a distributed
framework for intrusion detection
using integrated machine learning
and blockchain technologies. In
this design, the system is
potentially able to significantly
enhance the integrity,
transparency, and storage of
information for smart
decision-making among multiple
UAVs.

• Conventional UAVs
• Complex machine learning

algorithm used
• Predictive analysis
• Multi-UAV

intercommunication

• Cross chain platform-based
challenges

• Intercommunication node
integrity

• Permissionless network
structure

Drone-based delivery scheme for
industrial healthcare using
blockchain technology [22]

This paper highlights the list of
current blockchain-based
drone-enabled industrial
healthcare applicational
challenges and limitations. These
include harsh environmental
conditions, rough terrain,
war-prone areas, congested traffic,
remote location, etc.

• Integrated IoD delivery
scheme

• Data driven analytics
• Two-way verification and

validation process
• Cross-chaining platform

• Blockchain distributed
ledger technology

• Permissioned architecture
• Hash-encryption
• Cloud-enabled storage

Internet of Drones (IoD):
communication leveraging with
blockchain [23]

The authors of this paper
presented a security approach for
drone-to-everything
communication, in which the
locations of drones are traced by
segment divisions of the areas in
which they are deployed.

• Fifth generation network
(5G) connectivity

• Deployed across remote
sides

• Remote cloud for storage

• Cryptographic
hash-encryption mechanism
used

• Advanced sensors and GPS
used

• Segment division by areas

Internet of Vehicles (IoV) security
[24]

In this paper, the authors defined
the taxonomy of IoD security and
privacy along with access to the
controlled airspace to provide an
inter-location navigation service
using AI, machine learning,
blockchain, and federated
learning.

• Federated learning
architecture used

• Proposed IoD paradigm
(standardized)

• Level-of-security category

• Blockchain integrates with
AI

• Permissionless architecture
• On-chain and off-chain

intercommunication
channels designed

• Distributed interconnected
node hierarchy

A lightweight assisted secure
routing scheme for the IoV using
blockchain Ethereum [25]

A secure routing algorithm for
IoT-enabled drone management
swarm UAS networking is
proposed in this research. The
benefits are as follows:

• Swarm UAS orientation;
• Customized consensus

using blockchain;
• Estimate traffic

status/dynamic monitoring;
• Lookup table and

scheduling.

• Customized protocols and
policies

• Improved predefined
consensus

• Blockchain permissionless
network

• Distributed ledger
preservation and digital
signature

• Monitoring resource usage
• Reduce network bandwidth

consumption
• Data security and

preservation
• Interoperability issues

between inner and outer
chain connectivity
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2.2. Internet of Vehicles and Mobile Edge Computing with Blockchain

By virtue of intelligence in UAV-assisted vehicular networks, the IoV performs a
primary role for transport systems in dynamic-time information exchange, which improves
data processing and traffic management, especially in smart cities. In addition, to ease
the computational energy and preservation load, which is increased by a large number
of IoV nodes requesting to connect, edge-enabled computing resources are introduced
to reduce the load of computing tasks, offload data and management, and optimize the
local vehicular network with low latency [26–30]. Data integrity and privacy are still
challenging prospects in these proposed systems. To address these problems, various
researchers apply different methods in their proposed architectures, along with conditional
privacy-preservation authentication protocols to enable the IoV with edge computing using
blockchain distributed ledger technology.

The use of mobile edge computing provides enormous storage resources with a
powerful computing network infrastructure. The IoV with mobile edge computing ensures
that the paradigm can handle a large amount of data storage, sharing and exchanging,
and processing capabilities close to the devices. However, the system is unable to share
data when the architectural approach is based on a centralized server. With these potential
risks of data leakage, an IoV node faces difficulty when evaluating the credibility of
a message; this is also because it receives requests for transactions from an untrusted
centralized environment [2–30]. To enhance security, blockchain hyperledger technology
with a consortium network structure with doppler spread is proposed.

3. Preliminary Knowledge of the Proposed B-UV2X

This section discusses the fundamentals and critical assumptions of blockchain-
enabled distributed technologies in UAV-assisted vehicular networks to create a new
paradigm in the IoV. Related problem formulations are discussed as follows:

3.1. Notation, Problem Formulation, and Description

First, to design a UAV-assisted distributed vehicular network lifecycle, the state of the
data item is requested by the IoV nodes in a transactional manner; then, the IoV builds
encoded data point broadcasts based on the high clique (priority) of the transactional
request. Second, these transactional requests must be secure and protected while being
transmitted. To ensure this, we present a standardized process hierarchy: (i) data generation
(transaction request sent from the IoV devices/nodes), (ii) capturing, (iii) examining,
(iv) analyzing, (v) preserving, (vi) sharing/exchanging, and (vii) reporting (details of
log recordings), as shown in Figure 2. Finally, the IoV receives encoded data points via
the process hierarchy of the proposed B-UV2X lifecycle. In the decoding procedure, the
broadcasted logs of UAV-assisted vehicular data points are accepted by the IoV itself.
In the design and development, the main objective is to reduce resource usage in terms
of IoV-enabled computational energy, network bandwidth consumption, and memory,
which directly affect battery life. For the sake of standardization and simplification, we
use IoV1, IoV2, IoV3, . . . ., IoVn to denote Internet of Vehicles (IoV) devices; the position
coordinates of IoVs in smart cities are as follows: (ax, bx) of IoVn. d1, d2, d3, . . . , dn
represent the transactional requests and related data broadcasted over the UAV-assisted
vehicular network. ‘r’ represents the radius of interconnected IoV nodes for communication
(or sharing information) in the designed distributed vehicular network.

In order to check that the IoV nodes in the proposed B-UV2X-enabled distributed
vehicular network are receiving or sending data points/transactional requests at the same
time, the interoperable platform provides a distanced measurement structure that calcu-
lates the distance between devices before transmitting requests. The distance between
IoV devices is represents as ‘2r’, ‘r’, and ‘r0’, showing the coverage radius of two nodes in
the UAV-assisted distributed network. The maximum radius of the distributed IoV network
is equal to the distance between locations, which must be less than or equal to the coverage
area (‘r’).
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Figure 2. Block diagram of the proposed lifecycle of B-UV2X.

With the goal of reducing network bandwidth usage in the distributed environment,
we tune the maximum radius of multiple IoVs (maximum in the four interconnected
pairs of shared information/transactional requests). Given the maximum area (‘r’) of the
distributed network circle, we can obtain the coverage area of a circle of the inscribed
graphical domain (such as an equilateral triangle). The length of the sides of the equilateral
triangle (which means the area of IoVs/drones) is

√
four-sides (

√
4s).

If the size of the IoVs is =
√

4s or >=
√

4s, the maximum distance between IoVs is ‘r’,
which is directly proportional to

√
4s. The exterior radius of the designed UAV-assisted

distributed vehicular network is 2r. In another case, the exterior is >= 2r.
The vehicle IoVn sends or receives transactional requests for data points dn; then, the

UAV-assisted distributed vehicular network schedules transactions tn. In this way, the
system can identify from which IoV devices the requested and scheduled transactions
originate, as well as where they are shared. In addition, the integration of edge-enabled
computation with the proposed B-UV2X lifecycle reduces the load of data offloading. With
request/transaction scheduling, the computational processing of the IoVs is reduced by
increasing the rate of execution and transmission. In this manner, the cost of information
preservation is also reduced.

However, duplicate and redundant scheduled transactions can be discarded before
execution. This is because the system verifies and validates request automatically by the use
of deployed chain codes (and functions such as IoVReg(), UAVAVLC(), AddNTD(), update()
and InfoPre()). The role of a hyperledger expert, the person responsible for initiating the
proposed B-UV2X chain and handling the request for participating IoV registrations, is also
highlighted in this scenario.

3.2. Proposed Architecture

The operation of the proposed B-UV2X is divided into four phases. First, B-UV2X regis-
ters the IoV node in the designed consortium chain after proper verification and validation
while obtaining the enrollment request from the nodes and related device stakeholders. For
a complete analysis of the registered request, the role of a blockchain hyperledger expert is
crucial; this person is responsible for initiating chain transactions, handling a number of
requests and related executions, and managing information preservation (records logs), as
shown in Figure 3. The data movement hierarchy of this phase is bi-directional in nature.
Second, in the distributed vehicular environment, the IoV-enabled captured data is received
via a wireless sensor network (which is placed between the first and second phases); the
captured data points are processed through the proposed B-UV2X standardized lifecycle,
as shown in Figure 3. Initially, data points are collected and data are preprocessed and
filtered for different types of noises, such as duplication, shallow data, etc. After that, the
system examines and analyzes the data (schedules to execute); if the data have necessary
details that require further investigation, then the system preserves the data, transmits them
towards execution, and presents a report (category of information of further investigation).
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Figure 3. Proposed B-UV2X.

In the third phase, the computational node is placed between the lifecycle and
blockchain hyperledger-enabled distributed ledger technology. There, it receives scheduled
transactions/data points for execution. Therefore, the performance of B-UV2X is robust
while reducing usage of computational energy. This is because edge nodes consume fewer
computing resources compared to the fog, cloud, and other customized computational units.
The data movement hierarchy of this phase is bidirectional. The fourth phase includes
security and privacy operations of the proposed B-UV2X, as shown in Figures 3 and 4. A
blockchain hyperledger-enabled consortium modular infrastructure is proposed; the main
purpose of this design is to protect data from malicious attackers, provide data integrity,
transparency, provenance. organization, and management, and to prevent forgery of and
tampering with data, thereby maintaining privacy and security.

Figure 4. Working operation of the proposed B-UV2X security and privacy hierarchy.

In order to maintain privacy and security, we design two channels of inter-communication
between inter-connected nodes of the IoV over the distributed UAV-assisted vehicular net-
work, as shown in Figure 4. In this process, a transaction processor is placed, the main
objective of which is to handle requests for transactions in the deployed B-UV2X consor-
tium Peer-to-Peer network (P2P). For instance, to reset the stack of transactional requests
and schedule transactions and exchanges, we use the REST API and state facilities of hy-
perledger technology. Multi-proof-of-stack (MPoS), along with chain code (with different
functions ()), is designed, created, and deployed to automate verification, validation, trans-
action execution, and preservation. For storage of IoV-based logs (transactional requests),
cloud-edge-enabled distributed immutable storage is utilized, which is considered one of
the most customizable and cost-efficient distributed information preservation methods in
the domain of blockchain-enabled ledger technology.

3.3. Smart Contracts Implementation

In this section, we discuss the procedure to automate transactional requests of IoVs
and process each request through the designed lifecycle of a UAV-assisted vehicular net-
work, responding to these transactions via DApp and records (in the cloud–edge-enabled
immutable storage, as mentioned in Table 2 (InfoPre())). For execution (request verification
and validation) automation, we designed, created, and deployed chain code with five
different functions, multi-consensus protocols, and digital signature, as shown in Table 2.
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The main objectives of these codes/functions are to provide operations automation in terms
of IoV registration (IoVReg()), monitoring stakeholder registration in accordance with the
designed lifecycle (UAVAVLC()), schedule the number of transactions, perform related
requests executions (AddNTD()), conduct record management (UpdTr()), and preserve
(InfoPre()) and exchange information.

Table 2. Chain codes, consensus, and digital signature implementation.

Input Variables: The engineer of the blockchain hyperledger is the person to initiate
chain/transactional requests.

Manages events of node (IoV) transactions executions and preservation.
Stakeholder registration (verification and validation).
Exchange information between the participating nodes.
Updates logs/records and sharing.

Assumptions and Declaration:
int main().File[x].X:
IoV node/device registration,
IoVReg();
Stakeholder registration (smart cities),
StkReg();
UAV-assisted vehicular lifecycle,
UAVAVLC();
Add new transaction/request details,
AddNTD();
Resource management and monitoring,
ResMM();
Consortium channels,
Ccha();
Update transactions,
UpdTr();
Exchange information,
ExInfo();
Data/information preservation,
InfoPre();
Blockchain fabric timestamp [run];
Blockchain hyperledger expert schedule list of requests and executions,
Counter + 1;
Count(request/executed);

Executions:
if IoV is not in IoVReg(),

then, AddNTD() and exchange;
if transactions initiated/requested passes through UAVAALC(),
then, AddNTD(), ResMM(), Ccha(), and ExInfo();
Multi-Proof-of-Stack (MPoS()),
Digital signature (after receiving 51% consensus votes),
Consensus();
Counter + 1, updTr(), and InfoPre();
else

check error, change state, share, exchange, and preserve,
terminate;

else
check error, change state, share, exchange, and preserve,

terminate;

Outputs: IoVReg(); UAVAVLC(); AddNTD(); UpdTr(); and InfoPre();

4. Simulations, Results, and Discussion

This section discusses the simulation of the proposed B-UV2X. The results are based
on a blockchain hyperledger-enabled consortium modular infrastructure designed for
connected nodes of IoVs for a UAV-assisted distributed vehicular network. The proposed
B-UV2X was tested on a Core i7 VPro CPU (2.8 base clock speed—3.4 Turbo Boost) with
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16 GB RAM, 8 GB shared Iris Xe Graphics, and 1 TB storage/internal SSD. The network
connectivity between IoVs and the proposed architecture was 24 MB/s with dedicated
channels of distribution. With some assumptions (discussed as follows), the docker of the
blockchain hyperledger included:

• Heterogeneous node connectivity;
• 4MB size of transactional nodes;
• Single network bandwidth used
• Cloud-edge enabled customized distributed storage deployed;
• Blockchain hyperledger expert initiates a chain of the transactional requests of IoVs, as

shown in Figure 5 (the test code of smart contract/chain codes with MPoS consensus
is presented, along with the parameters of simulations executions).

 
Figure 5. Chain code with MPoS. Test code for simulation of the proposed B-UV2X.

In Figure 6(1–3), the simulation results of the proposed B-UV2X show that it decreases
the cost of computing resources by 7.93%, which allows edge-enabled computation (as
shown in Figure 3). After evaluation of the computation of B-UAV2X, it is considered to be
a good candidates for real-time industrial implementation and scheduling. The operation
of this simulation shows that the process initiates when the request management of the
proposed lifecycle executes (as shown in Figure 6(3)), the matrices of which are the number
of data requests received and the data examined for further executions.

However, the IoV-enabled self-data-capturing capability was enhanced after the tuning
of lifecycle hierarchy, as shown in Figure 4(1–3) and Figure 6(1–3), which is most importantly
used for the sake of heuristic reconciliation in smart cities. This capability is also needed
because the process hierarchy sends a request to preserve captured records for heuristic
investigation. To do this, we manipulate the design of the lifecycle to examine and analyze
the collected details in terms of binary color transformation, entropy, extracted critical
features, and preserve optimized records, as shown in Figures 7 and 8 (also discussed in
the proposed architecture section and highlighted in Figure 3).
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Figure 6. The working operation of the proposed B-UV2X lifecycle: (1) shows the rate of data
captured by the IoVs, (2) shows the rate of data collected, and (3) shows that the fluctuation between
the data received and the data scheduled for execution.

 

Figure 7. IoV-enabled data capture: (1) shows the original image, (2) shows the transformation in
the binary color format, (3) shows the extracted features for heuristic purposes, and (4) shows the
optimized record preservation.
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Figure 8. IoV-enabled data capture: (1) shows the original image, (2) shows the transformation in
the binary color format, (3) shows the extracted features for heuristic purposes, and (4) shows the
optimized record preservation.

In the entire process of B-UV2X simulations, the blockchain hyperledger expert and
registered participating stakeholders can observe the resources utilized in the complete
process execution. The consumption of network bandwidth is reduced by 12.17% through-
out the execution of each transaction, and security capability is increased by up to 9.76% by
protecting individual ledger transactions of UAV-assisted vehicles using the NuCypher
threshold proxy re-encryption mechanism (as shown in Figure 9).

Figure 9. Monitoring of resource usage: shows the consumption fluctuation in number of IoVs
connected and number of requested transactions.
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Observe that the deployment of the chaincodes and related functions (such as IoVReg(),
UAVAVLC(), AddNTD(), UpdTr(), and InfoPre()) with MPoS customized consensus policy
and edge computing technology decreases the cost of IoV-enabled data scheduling, organi-
zation, management, optimization, and preservation. Figure 10 illustrates the fluctuations
between the predefined hyperledger consensus and the proposed B-UV2X over the UAV-
assisted consortium distributed vehicular network in terms of the number of transactional
requests and the number of connected IoVs’ for data verification and validation.

Figure 10. UAV-assisted consortium distributed vehicular network shows the fluctuation between
the predefined hyperledger consensus and the proposed B-UV2X.

The evaluation matrices of the proposed B-UV2X are compared with newly published
methods (previous state-of-the-art methods) such as “edge intelligence for IoV” [31] and
“blockchain-based conditional privacy preservation” [32]. The metrics for this analytical
procedure are based on the usage of resources, preservation, protection efficiency (proxy
threshold re-encryption level), reliability, privacy, and security. In Table 3, a few more analyt-
ical comparisons are discussed, indicating the superiority of the proposed work compared
to other state-of-the-art methods. A comparative parameter of the evaluation is presented
(as mentioned in Table 3, attribute 3), which helps to measure the fluctuation/improvement
of the proposed B-UAV2X compared to other methods.

Table 3. Comparison table: state-of-the-art methods.

Methodology of Other State-of-the-Art
Methods

Main Contributions
Analytical Matrices of Other
State-of-the-Art Methods

Proposed B-UV2X

A resource trading, computational
offloading, and management approach for
enhanced drone-to-drone assisted
environment using blockchain distributed
ledger [33]

• Decentralized resource sharing
system

• One ledger multi follower
strategy

• KKT-based algorithm

• Blockchain: yes
• Hyperledger: no
• Network type: permissionless
• Encryption mechanism:

hash-encryption
• Block size: variable
• Intercommunication channels:

two
• Consensus: predefined
• Digital signature: predefined
• Efficiency: not applicable
• Accuracy: not applicable

The analytical matrices of the
proposed B-UV2X are as follows:

• Blockchain: yes;
• Hyperledger: yes;
• Network type: consortium;
• Encryption mechanism:

NuCypher proxy threshold
re-encryption;

• Block size: 4 MB–6 MB;
• Intercommunication channels:

on and off-chain;
• Consensus:

multi-proof-of-stack (MPoS);
• Digital signature: customized

(51% vote based);
• Efficiency: 12.17%, 7.93%;
• Accuracy: not applicable.

Edge-enabled mobile server deployment
scheme for IoVs with blockchain [34]

• Edge server deployment
• Roadside node management
• Distributed application uses for

resource monitoring

• Blockchain: yes
• Hyperledger: no
• Network type: permissionless
• Encryption mechanism:

defined hash encryption
• Block size: variable
• Intercommunication channels:

not defined
• Consensus: predefined
• Digital signature: [redefined
• Efficiency: not applicable
• Accuracy: not applicable

146



Drones 2022, 6, 377

Table 3. Cont.

Methodology of Other
State-of-the-Art Methods

Main Contributions
Analytical Matrices of Other
State-of-the-Art Methods

Proposed B-UV2X

A multi-access edge computing for
vehicular network using a deep neural
approach [35]

• Multiple multi-access edge is
designed

• VANET ecosystem deployment
• Distributed permissionless

structure is proposed for IoV
interconnectivity

• Blockchain: yes
• Hyperledger: no
• Network type: permissioned
• Encryption mechanism: hash

encryption SHA-256
• Block size: variable
• Intercommunication channels:

not applicable
• Consensus: predefined
• Digital signature: predefined
• Efficiency: not defined
• Accuracy: not defined

A resource efficient framework for
IoVs using blockchain, AI, and edge
computing [36]

• Proof-of-lottery consensus
mechanism is proposed

• ETCZ: the edge terminal
consensus zone

• Resource efficient distributed
modular framework is
presented

• Blockchain: yes
• Hyperledger: no
• Network type: permissioned
• Encryption mechanism: hash

SHA-256
• Block size: variable
• Intercommunication channels:

two
• Consensus: predefined
• Digital signature: predefined
• Efficiency: not applicable
• Accuracy: not applicable

5. Current Status of Edge Computing and Related Implementation Issues

The use of edge-enabled computing integrated with UAV-assisted vehicular network
technology to design a secure intercommunication channel for IoV interconnectivity and
related advantages are discussed. With blockchain distributed technologies, edge networks
provide a cost-efficient manner to share and exchange information in a distributed environ-
ment. However, there are various implementation challenges that impact resource usage,
such as computing power, storage, and network bandwidth.

5.1. Edge Computing Integrated with Outsourced Computation

The edge computing-enabled Internet of Things (IoT) plays a significant role in out-
sourcing computation and related management, such as providing participating node
proximity [37]. In the UAV-assisted vehicular network environment, nodes receive a re-
ward for computational task executions. For instance, the technology uses with a blockchain
hyperledger to verify the integrity of arbitrary deterministic functions and restricts illegal
authentications of false negative contractors that try to maximize their activities in the
distributed environment [38,39]. The verification mechanisms of blockchain-enabled tech-
nology with IoV creates a challenging problem when the pre-trained models are designed
for validation purpose. However, all the nodes consume less than 1 milli-second (ms)
computational overhead with minimum network bandwidth (almost 80 bytes/frame). This
may lead to another limitation regarding resource management and parallel usage.

5.2. Vehicle to Everything-Enabled Distributed Node Interconnectivity

In the V2X environment, one of the biggest issues to design and develop an efficient
and secure distributed node architecture. For instance, when applying a blockchain dis-
tributed consortium mechanism over a Peer-to-Peer (P2P) network, there are different
node scaling challenges that arise, while the lack of cost-efficiency requirements is also
considerable [37,38]. However, with the introduction of a hyperledger-enabled modular
framework, we can meet various integrity, transparency, provenance, and trustworthiness
requirements [39]. By constantly stimulating the ledger, every request for IoV transactions
is incorporated, with the details of information acquisition towards deliverance and ex-
change. However, the participating stakeholders can see the movement of individual IoVs
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through the dynamic monitoring capability/traceability using the blockchain hyperledger,
regardless of the particular stakeholder that initiates activities.

5.3. Role of Blockchain Hyperledger Technology in Edge Computing Environment

Edge-enabled technology brings computational resources close to end devices (IoT-
enabled devices), allowing edge computing, preservation, operation and control, and
analysis of related data [38,39]. Blockchain distributed ledger technology has the potential
to provide a platform to solve privacy-, protection-, and security-related problems asso-
ciated with edge computing, including access control, authentication, verification, and
validation. In a blockchain-enabled edge network, the system provides UAV-assisted vehic-
ular intercommunication channel facilities, from which on-chain and off-chain channels are
derived. These interconnected node channels are designed to handle the list of implicitly
and explicitly transactional requests more efficiently and reliably.

5.4. Drone-Based Data Management and Monitoring

In the domain of data management and monitoring, there are major limitations to
providing data integrity and transparency, most importantly in the distributed ledger envi-
ronment [37,38]. At present, most hyperledger technology cannot provide a customized
data integrity policy and consensus management, only allowing moderate predefined val-
idator processors for distributed verification of consensus, such as PoET, PoW, PoS, etc. [39].
However, a robust structure of privacy protection has been proposed by the Linux commu-
nity to allow construction of an infrastructure to preserve information and chain-of-records
with data traceability. This modular improvement of the hyperledger effectively tracks
information management at every step of the transactional request schedule. In addition,
it enhances the dynamic monitoring facilities by providing a better transaction/drone
registration (IoV registry) hierarchy, with more efficient control compared to previously
state-of-the-art methods [38,39].

6. Conclusions

This paper addresses current problems involving centralized UAV-assisted vehicular
networks such as scheduling, offloading, management, optimization, privacy, and security.
The key objective of this paper is to address gaps in the design, development, and deploy-
ment of distributed vehicular networks for the IoV in smart cities using the blockchain
hyperledger. The existing protocol/process hierarchy of IoV-enabled request execution via
distributed applications (DApp) is also highlighted. This paper proposes B-UV2X, a secure
and novel lifecycle of UAV-assisted vehicular data processing for the IoV, using blockchain
consortium architecture. It includes a customized consensus mechanism for multi-proof-of-
stack (MPoS), where data offloading can be managed, directly impacting the management
of resources as well. Transactional executions of the proposed B-UV2X are fully protected by
the NuCypher threshold proxy re-encryption algorithm. The individual ledger/records of
the node’s transactions are preserved in immutable storage, such as edge network-enabled
cloud storage. The participating stakeholders of the proposed B-UV2X receive details of
ledger traceability for the sake of dynamic monitoring of resource management and related
IoV node activities in smart city environments. The simulation results of B-UV2X show that
it reduces network consumption by 17%, reduces the computing load with preservation by
7.93%, and increases security by 9.76% compared to other state-of-the-art methods.
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Abstract: The increasing demands of several emergent services brought new communication prob-
lems to vehicular networks (VNs). It is predicted that the transmission system assimilated with
unmanned aerial vehicles (UAVs) fulfills the requirement of next-generation vehicular network.
Because of its higher flexible mobility, the UAV-aided vehicular network brings transformative and
far-reaching benefits with extremely high data rates; considerably improved security and reliability;
massive and hyper-fast wireless access; much greener, smarter, and longer 3D communications
coverage. The clustering technique in UAV-aided VN is a difficult process because of the limited
energy of UAVs, higher mobility, unstable links, and dynamic topology. Therefore, this study intro-
duced an Enhanced Artificial Gorilla Troops Optimizer–based Clustering Protocol for a UAV-Assisted
Intelligent Vehicular Network (EAGTOC-UIVN). The goal of the EAGTOC-UIVN technique lies in
the clustering of the nodes in UAV-based VN to achieve maximum lifetime and energy efficiency.
In the presented EAGTOC-UIVN technique, the EAGTO algorithm was primarily designed by the
use of the circle chaotic mapping technique. Moreover, the EAGTOC-UIVN technique computes a
fitness function with the inclusion of multiple parameters. To depict the improved performance of the
EAGTOC-UIVN technique, a widespread simulation analysis was performed. The comparison study
demonstrated the enhancements of the EAGTOC-UIVN technique over other recent approaches.

Keywords: vehicular networks; unmanned aerial vehicles; clustering; gorilla troops optimizer;
fitness function

1. Introduction

Transport commuting becomes a ubiquitous part of day to day lives; the vehicular
network (VN) plays a positive role and increases the quality of life [1]. VN technology is
advantageous in information applications, automatic toll collection, public safety, automatic
driving, traffic coordination, event-driven safety message broadcasting, and so on. VN
accesses the location where a traffic accident occurs, timely notifies the pertinent vehicle to
adopt security measurement, and then offers quality of service of multimedia information
for the tourist during the journey. Regarding the data services, VN is applied for the
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remainder of services with respect to infectious diseases, carbon emissions, pollution
levels of the haze, and other related services that could enhance the living environment of
humans [2]. Moreover, traffic-flow coordination could be benefitted by VN. People timely
obtain present traffic data on the road of the vehicle and select the optimum path. These data
are particularly effective for the best travel experience for the passenger and for preventing
congested sections. Intelligent transport systems benefited considerably from VN [3]. It
provides data with respect to restaurants, petrol stations, weather information, navigation,
service areas, and every desirable datum regarding the neighboring environments. VN is
employed to automated driving, namely the distance detection among velocity estimation,
vehicles, road-condition perception, self-parking, and location service [4]. VN is employed
to realize automated charging of the vehicle. In V2I transmission, RSU could automatically
sense the journey mileage of a vehicle, the entrance location, and exit location, later realizing
the automated charging that could decrease the congestion at the charging place and
enhance the charging efficiency [5]. Figure 1 depicts the framework of UAV-assisted
vehicular network.

 

Figure 1. Structure of UAV-assisted vehicular network.

A data-distribution technique is broadly employed in different circumstances, namely
emergency collision avoidance [6], the data acquirement of public entertainment, and
traffic-flow management that could decrease the number of traffic accidents, which promote
the urban building of a smart city and discharge urban traffic congestion [7]. In certain
scenarios, the timeliness of data dissemination is crucial. To accomplish the objective,
unmanned aerial vehicle (UAV) is applied to help with data distribution. Due to better
maneuverability of the UAV, it is widely used for completing the data dissemination task
in certain scenarios [8]. For instance, in certain locations, once the transmission framework
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is damaged, the UAV could be deployed rapidly as the mobile base station to help the
transmission network. Network lifetime is a significant parameter in UAV network that is
based on whether a specific number of nodes die due to energy consumption [9]. In mobile
UAV networks, topology control is the major aspect for extending network lifetime and
reducing communication interference. A hierarchical network based on clustering model
is widely employed in mobile networks. The cluster head (CH) selection and clustering
process are major factors in the hierarchical network [10–12].

This study introduces an Enhanced Artificial Gorilla Troops Optimizer based Clus-
tering Protocol for UAV-Assisted Intelligent Vehicular Network (EAGTOC-UIVN). The
goal of the EAGTOC-UIVN technique lies in the clustering of the nodes in UAV-based
VN to achieve maximum lifetime and energy efficiency. In the presented EAGTOC-UIVN
technique, the EAGTO algorithm is primarily designed by the use of circle chaotic map-
ping technique. Moreover, the EAGTOC-UIVN technique computes a fitness function
with the inclusion of multiple parameters. To depict the improved performance of the
EAGTOC-UIVN technique, a widespread simulation analysis was performed.

2. Literature Review

In Reference [13], an efficient routing technique depending upon a flooding method
was developed for robust route identification. It assures an alternate path during path-
failure scenarios. In addition, a forecasting approach is employed for anticipating the
expiration time of every discovered route. The authors in Reference [14] considered the
issue of content distribution to the vehicles on roadways with overloaded or no available
communication structure. Incoming vehicles demand service from a library of content
which is partially cached at the UAV; the content of the library is also considered for
modifying new vehicles carrying more popular content. A non-orthogonal multiple ac-
cess (NOMA)-enabled double-layer airborne access vehicular ad hoc networks (DLAA-
VANETs) architecture was designed in Reference [15], which consists of a high-altitude
platform (HAP), multiple unmanned aerial vehicles (UAVs), and vehicles. For the designed
DLAA-VANETs, the UAV deployment and network optimization problem is addressed.
Particularly, the UAV deployment method, depending upon particle swarm optimization,
is presented. Next, the NOMA model is introduced into the designed model for improving
the transmission rate.

Khabbaz et al. [16] aimed at enhancing the ground vehicle connectivity in the frame-
work of an alternating vehicle-to-UAV (V2U) transmission condition, whereas vehicles
create time-limited connectivity with transient by UAV served as flying BSs responsible
to route arriving vehicle information on backbone network or Internet. Zheng et al. [17]
used cyclic-flight UAVs for assisting RSU by offering video download services to vehicles.
With the utilization of UAV, seamless communication coverage and stable broadcast con-
nections ensure the optimum quality of services to vehicle. Moreover, the authors present a
model-free technique dependent upon DQN for determining an optimum UAV decision
procedure for achieving the minimization of stalling time. Raza et al. [18] examined a
UAV-assisted VANET communication structure, whereas UAVs fly over the used region
and offer communication service to basic coverage region. UAV-assisted VANET aims
for the benefits of line-of-sight (LOS) communication, flexibility, load balancing (LB), and
cost-effectual deployment.

Wu et al. [19] examined a deep supervised learning system to enable intelligence edge
for making decisions on the extremely dynamic vehicular network. Specifically, the authors
initially presented a clustering-based two-layered (CBTL) technique for solving the JCTO
problem offline. Afterward, they planned a deep supervised learning structure of CNN for
making fast decisions online. Ghazzai et al. [20] established a mobility- and energy-aware
data routing protocol for UAV-supported VANETs. Most UAVs perform as a flying RSU,
gathering information in ground vehicles, but another UAV role is the play of relays for
providing the information to mobility service center (MSC). The UAV is modifying its 3D
places in an existing range if required for ensuring reliable communication links.
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A UAV-helped data dissemination system dependent upon network coding was
presented in Reference [21]. Initially, the graph concept for modeling the occurrence of
data loss of the vehicles was utilized; the data dissemination issue was changed to the
maximal clique issue of graphs. With the coverage of directional antenna being restricted, a
parallel system for determining the maximal clique dependent upon the area separation
was presented. Alioua et al. [22] examine a new distributed SDN-related structure for UAV-
support-structure-less vehicular networks. An important purpose is to fill the gap in which
no SDN-based infrastructure was presented for these networks. The author’s concentrated
mostly on a road safety use-case that integrated UAVs for assisting emergency vehicles
in the exploration of affected regions from crucial emergency conditions. In addition, the
authors examined an effectual data processing strategy with shared decision-making or
computation-offloading problems. Though several models are available in the literature,
the network efficiency in UAV-assisted VNs still needs to be improved. In addition, the
inclusion of multiple parameters for optimal UAV selection is important as CHs become
essential.

3. The Proposed Model

In this study, a new EAGTOC-UIVN technique was developed for clustering the
UAV-assisted VN. The major aim of the EAGTOC-UIVN technique exists in the grouping
of the nodes in the UAV-based VN to achieve maximum lifetime and energy efficiency. In
the presented EAGTOC-UIVN technique, the EAGTO algorithm is primarily designed by
the use of the circle chaotic mapping technique.

3.1. System Model

In the presented model, the types of UAVs considered could be middle-size drones or
mini drones. A simple collision process is utilized for collision avoidance [23]. In this work,
the UAV changed altitude for possible collision. The UAV’s maximum speed could reach up
to 30 m/s. Every UAV device relies on a location-aware component. This location-conscious
mechanism allows the routing method to function efficiently and precisely. In general,
location data can be attained from an alternative scheme. In the presented method, inertial
measurement units and GPS are given for the motion sensing and positioning of the UAV.
Each UAV is aware of its ground station and neighbors’ positions. Each UAV is equipped
with long- and short-range wireless transmission. Long-range wireless transmission can be
utilized for inter-cluster transmission with the ground station and other CHs. Short-range
wireless transmission is utilized for intra-transmission with its peers in the cluster.

3.2. Design of EAGTO Technique

With other metaheuristics, AGTO’s stability and convergence accuracy suffer as the
optimization problem to be resolved grows in variety and complexity. This flaw requires
the further development of novel mechanisms to perform exploitation and exploration and
help accomplish improved performance [24]. A troop comprises a dominant adult male
gorilla (silverback), numerous dominant adult females, and their offspring. A silverback
gorilla is over 12 years old and obtains the name from the distinct hairs that grow on his
back while he attains puberty. Furthermore, the silverback is the leader of the entire troop
and is accountable for ensuring everyone’s safety, planning and executing group travel,
allocating food and other resources, and making each decision, mediating any conflicts that
arise. Male gorillas between the ages of 8 and 12 are considered “black” since the silver
fur is not fully grown. It is common for gorillas to leave the birth group for joining a third.
However, some male gorillas decide to stick around and keep following the silverback. Such
males might fight viciously for controlling the group and accessing adult females when the
silverback is killed. The idea of group behaviors in wild gorillas acts as the motivation for
the AGTO algorithm. Initialization, local exploitation, and global exploration are the three
phases that make up AGTO, the same as they are in other intelligent techniques.
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3.2.1. Initialization Phase

Consider the D-dimension space has N gorillas. To specify where i-th gorillas are in
the universe, we could formulate Xi = (xi,1, xi,2, . . . xi,D), whereas I = 1, 2, . . . N, and it
can be defined as follows:

XN×D = rand(N, D)× (ub − lb) + lb (1) (1)

where rand () lies between 0 and 1. The search range can be determined by using the
upper and lower limits, ub and lb, respectively; and the matrix, X, has a random value, A,
within [0, 1] that is allocated to all the elements of the N rows and D columns in the matrix
represented as rand (N, D).

3.2.2. Exploration Phase

GX(t + 1) = (ub − lb)× r2 + lb, r1 < p

(r3 − C)× XA(t) + L × Z × X(t), r1 ≥ 0.5

X(t)− L × (L × (X(t)− XB(t)) + r4 × (X(t)− XB(t)))r1 < 0.5 (2)

In the above equations, t signifies iteration times, X(t) indicates the gorilla’s existing
location vector, and GX(t + 1) denotes the potential search agent position for the following
iteration. Furthermore, the random numbers r1, r2, r3, and r4 denote a number value
between zero and one. Two locations among the existing population of gorillas, XA(t)
and B(t), are selected randomly; p is a predetermined value. By utilizing the problem
dimension as an index, Z denotes the row vector where the component value was derived
randomly from [−C, C]. Additionally, C can be defined as follows:

C = ( cos (2 × r5) + 1)×
(

1 − t
Maxiter

)
(3)

where cos (•) denotes the cosine function, r5 indicates positive real numbers amongst [0, 1],
and Maxiter denotes the maximal iteration number. It is possible to evaluate L, the value
of variable, as follows:

L = C × l (4)

where l indicates the arbitrary value within [−1, 1]. Afterward, every probable GX(t + 1)
solution is produced, owing to the exploration, and the fitness value is compared. If
GX outperformes X, it is kept and utilized in the location of X. This is represented as
the condition (GX) < F(X), whereas F indicates the fitness function for the problem in
question (t). Additionally, the better option available at the time is now considered to be
the silverback.

3.2.3. Exploitation Phase

Once the new troop of gorillas is formed, the silverback is the dominant male and is at
the peak of his health and strength. They follow the silverback gorilla since they forage
for food. Unavoidably, the silverback will age and die, and in his location, a younger
blackback in the troop might engage in fighting over mating and leadership with other
males. AGTO’s exploitation stage follows the silverback and competes for adult female
gorillas. W is presented for controlling these transitions. When C in Equation (4) is higher
than W, this follows the silverback’s initial model:

GX(t + 1) = L × M × (X(t)− Xsilverback) + X(t) (5)
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In such cases, the optimum solution found so far is indicated as X silverback, the
existing location vector is represented as (t), and L is estimated by means of Equation (5).
The values of M are defined as follows:

M =

⎛⎝∑n
i=1 xi(t)

N| xi(t)
N
|2l

⎞⎠ 1
2l

(6)

where N denotes the overall individual number, and Xi(t) indicates a vector demonstrating
the gorilla’s position:

GX(t + 1) = Xsilverback − (Xsilverback × Q − X(t)× Q)× A (7)

Q = 2 × r6 − 1 (8)

A = φ × E, (9)

E =

{
N1, r7 ≥ 0.5
N2, r7 < 0.5

(10)

It is the existing location, represented as (t), and the impact force, Q, that are eval-
uated by Equations (7) and (8). A random value within zero and one is utilized for r6
in Equation (4). Additionally, Equation (9) is utilized for assessing the efficiency of the
coefficient. A is utilized for stimulating the level of violence in the game. With the equation
denoting a constant, we could define what number represents Equation (10). Equation (6)
involves r7, which is a value selected randomly within zero and one. Standard distribu-
tion, E(1, D), is when r70.5 is a coincidental event, and D indicates the number of spatial
dimensions. However, if r7 is less than half, E is equivalent to the random quantity that fits
neatly into the standard distribution. Afterward, the exploitation stage is complete, and the
value of candidate fitness for the recently generated GX(t + 1) problems is calculated. GX
is preserved if F(GX)F. Figure 2 depicts the flowchart of GTOA.

 

Figure 2. Flowchart of GTOA.
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In this work, the EAGTO algorithm was primarily designed by the use of the circle
chaotic mapping technique. To increase the population diversity and exploit the data in the
solution space, the circle chaotic function is proposed to increase the initialization mode of
the GTOA. Additionally, it can be mathematically expressed as follows:

zk+1 = zk + b − a
2π

· sin(aπzk)mod(1), zk ∈ (0, 1) (11)

whereas a = 0.5 and b = 0.2, the circle mapping and random search mechanism are chosen
to be independently implemented 300 times. The traversal of circle chaotic mapping is
more homogeneously distributed and wider in the range of [0, 1]. Thus, after integrating
circle chaotic mapping, the presented technique has a robust global exploration capability.

3.3. Clustering Process Involved in EAGTOC-UIVN Technique

The EAGTOC-UIVN technique computes a fitness function with the inclusion of
multiple parameters. The EAGTOC-UIVN method is proposed with the existence of 4
fitness variables, namely energy efficacy of cluster node density, UAV nodes, distance in
CH to sink, and average distance of UAV for CH enclosed by their sensing series [25]. The
data on fitness parameters was provided by the following:

Energy efficiency: The CH executes various events, such as gathered, sense, data
broadcast, aggregation, and so on; hence, CH intakes the greatest amount of energy when
compared to other nodes. Then it is vital for defining an FF that shared the load among
each UAV from the network. The fitness variable for effective deployment of network
energy is given below:

Re = e(ni)

Aνge =
1
n

n

∑
i=0

e(ni)

f1 = CHopt ∗
Re

Avge
=

CHopt ∗ e(ni)
1
n Σn

i=0e(ni)
∀CHopt = 5% o f n, e(ni)

= 0.5J or 1.25J or 1.75J (12)

In Equation (12), Re, Aνge, and ni denote the node RE, network average energy, and
whole quantity of UAV nodes, respectively. CHopt shows the optimum percentage of CHs.

Cluster node density: In intra-cluster communication, the cost is a crucial parameter
for the high energy effectiveness of the network. Next, the network energy deployment
was larger when the cost function of cluster was determined as follows:

f2 = max
(
n(CH1), n(CH2), n(CH3)n

(
CHj

))
∀n = 2 To 95, j = 1 to 15 (13)

From the expression, n
(
CHj

)
denotes the number of UAVs from the range of jth CH(

CHj
)
. The values of objective function f2 are greater than able choice of CH and exploits

from reducing the energy reduction.
The average distance of UAVs to the CH within its sensing range: In intra-cluster

communication, UAVs transmit information to the CH. When the CH is farther from the
CM, the energy of the UAV diminishes; when the CH is closer to the member UAV nodes
afterward, there is a deployment of minimal energy.

f3 =
1

nsτ

nsr

∑
i=0

disT(CH, i) ∀dist(CH, i) = 1 to 35 m, nsr = 1 to 100 (14)

where nsr and dist(CH, i) indicate the number of UAVs from the sensing sequence and
Euclidean distance in node and CH from the sensing series of the cluster. Thus, the value of
f3 is minimal; however, the intra-cluster communication power is lessened.
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Distance from CH to BS: The distance between the BSs and CHs takes a basic function,
as if the CHS is farther from the sink and exploits energy quickly that is evaluated by the
following:

f4 =
1

CH

CH

∑
i=0

dist(BS, CHi) ∀dist(BS, CHi) = 1 to 70m, CH = 1 to 15 (15)

In Equation (15), dist(BS, CHi) indicates the Euclidean distance among the BS and
CHi. Minimizing the f4 objective function specified that the CHS is not farther from the BS.

Once the f1, f2, f3, and f4 function parameters were evaluated, the objective function
was also named FF and calculated as follows:

F = Maximize Fitness = α ∗ f1 + β ∗ f2 + γ ∗ 1
f3

+ δ ∗ 1
f4

(16)

In Equation (16), α, β, γ, and δ denote the weight coefficient for the f1, f2, f3, and f4 FF
parameters, correspondingly. The range of weight coefficient ranges from 0 to 1.

4. Results and Discussion

The proposed model was simulated by using MATLAB R2019a. The simulation
parameters are listed in Table 1. In this section, a detailed experimental validation of
the EAGTOC-UIVN approach is investigated under distinct UAVs. Table 2 and Figure 3
report an overall PDR examination of the EAGTOC-UIVN model under several UAVs,
with existing models such as swarm-intelligence-based clustering (SIC), EALC, ant-colony
optimization (ACO), GBLADSR, and genetic algorithm (GA) [23].

Table 1. Parameter settings.

Parameter Value

Network area 1000 m*1000 m

UAV transmission range 250–300 m

Number of UAVs 150

Number of ground station 1

Traffic type CBR

CBR rate 2 Mbps

Speed 10–30 m/s

UAV transmission power 5 W

Table 2. PDR analysis of EAGTOC-UIVN approach with other systems under varying UAVs.

Packet Delivery Ratio (%)

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 90.15 85.00 71.21 67.81 64.83 64.00

60 94.37 88.19 77.28 74.09 68.74 66.27

90 96.12 90.46 84.49 79.96 73.47 69.87

120 98.18 92.52 87.89 82.84 77.39 73.58

150 98.90 95.09 87.78 84.49 80.89 78.52
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Figure 3. PDR analysis of EAGTOC-UIVN system under varying UAVs.

The experimental value implies that the EAGTOC-UIVN technique obtained a better
performance under all UAVs. For example, on 30 UAVs, the EAGTOC-UIVN method
reached an increased PDR value of 90.15%. On the other hand, the SIC, EALC, ACO,
GBLADSR, and GA approaches accomplished decreased PDR values of 85%, 71.21%,
67.81%, 64.83%, and 64%, correspondingly. Meanwhile, on 150 UAVs, the EAGTOC-UIVN
technique attained an improved PDR value of 98.90%. In contrast, the SIC, EALC, ACO,
GBLADSR, and GA techniques attained reduced PDR values of 95.09%, 87.78%, 84.49%,
80.89%, and 78.52%, correspondingly.

In Table 3 and Figure 4, a brief average end-to-end delay (AETED) assessment of the
EAGTOC-UIVN with recent techniques is given. The results implied that the GA model
failed to portray effectual outcomes with maximum values of AETED. At the same time,
the EALC, ACO, and GBLADSR models reached closer AETED values. Although the
SIC model tried to show a reasonable AETED value, the EAGTOC-UIVN model gained
effectual outcomes with minimal AETED values. Notice that the EAGTOC-UIVN model
reached an AETED value of at least 0.078 s under 30 UAVs.

Table 3. AETED analysis of EAGTOC-UIVN approach with other systems under varying UAVs.

Average End-to-End Delay (s)

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.078 0.091 0.110 0.111 0.111 0.122

60 0.093 0.105 0.135 0.152 0.171 0.179

90 0.102 0.129 0.166 0.182 0.194 0.216

120 0.121 0.143 0.227 0.229 0.242 0.269

150 0.136 0.174 0.262 0.268 0.286 0.302
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Figure 4. AETED analysis of EAGTOC-UIVN algorithm under varying UAVs.

In Table 4 and Figure 5, a brief cluster overhead (COH) assessment of the EAGTOC-
UIVN with recent techniques is given. The result implies that the GA technique failed to
represent effectual outcomes with a maximal value of COH. Simultaneously, the EALC,
ACO, and GBLADSR techniques attained closer COH values. Even though the SIC method
tried to demonstrate a reasonable COH value, the EAGTOC-UIVN technique obtained
effectual outcomes with minimal COH values. Note that the EAGTOC-UIVN methodology
attained a minimum COH value of 0.153 under 30 UAVs.

Table 4. COH analysis of EAGTOC-UIVN technique with other systems under varying UAVs.

Cluster Overhead

Number of UAVs EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.153 0.160 0.168 0.174 0.177 0.195

60 0.179 0.197 0.209 0.218 0.228 0.247

90 0.195 0.219 0.240 0.250 0.258 0.274

120 0.198 0.227 0.268 0.278 0.291 0.309

150 0.216 0.253 0.290 0.300 0.307 0.329

In Table 5 and Figure 6, a brief cluster building time (CBT) assessment of the EAGTOC-
UIVN with recent approaches is given. The result implies that the GA approach failed to
represent effectual outcomes with maximal value of CBT. Simultaneously, the EALC, ACO,
and GBLADSR techniques attained closer CBT values. Even though the SIC approach tried
to demonstrate a reasonable CBT value, the EAGTOC-UIVN technique obtained effectual
outcomes with the lowest CBT values. Note that the EAGTOC-UIVN method has attained
a minimum CBT value of 0.51 s under 30 nodes.
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Figure 5. COH analysis of EAGTOC-UIVN algorithm under varying UAVs.

Table 5. CBT analysis of EAGTOC-UIVN technique with other systems under varying nodes.

Cluster Building Time (s)

Number of Nodes EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 0.51 2.90 7.87 10.46 14.03 17.41

60 5.29 8.07 12.05 13.44 19.80 30.14

90 5.68 10.46 14.63 21.19 28.15 36.90

120 5.49 10.86 17.02 23.38 39.88 52.01

150 6.08 9.26 19.01 29.74 49.82 60.36

Table 6 and Figure 7 show the cluster average lifetime (CALT) analysis of the EAGTOC-
UIVN technique under various nodes. The experimental value implies that the EAGTOC-
UIVN approach attained an improved performance under all nodes. For example, on
30 nodes, the EAGTOC-UIVN technique attained an improved CALT value of 67.61 s. On
the other hand, the SIC, EALC, ACO, GBLADSR, and GA systems attained minimized
CALT values of 66.21 s, 65.20 s, 63.17 s, 54.66 s, and 47.81 s, correspondingly. Meanwhile,
on 150 nodes, the EAGTOC-UIVN approach gained an improved CALT value of 55.04 s.
In contrast, the SIC, EALC, ACO, GBLADSR, and GA techniques attained reduced CALT
values of 50.35 s, 46.03 s, 40.45 s, 37.02 s, and 30.30 s, correspondingly.

Table 7 and Figure 8 show the number of alive nodes (NOAN) investigation of the
EAGTOC-UIVN technique under various rounds. The experimental value implies that the
EAGTOC-UIVN approach gained improved performance under all rounds. For example,
on 400 rounds, the EAGTOC-UIVN system reached an improved NOAN value of 100. In
contrast, the SIC, EALC, ACO, GBLADSR, and GA approaches attained reduced NOAN
values of 98, 95, 93, 92, and 83, correspondingly. Meanwhile, on 1800 rounds, the EAGTOC-
UIVN model gained an improved NOAN value of 71. In contrast, the SIC, EALC, ACO,
GBLADSR, and GA methods attained improved NOAN values of 44, 20, 11, 4, and 0,
correspondingly.
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Figure 6. CBT analysis of EAGTOC-UIVN technique under varying nodes.

Table 6. CALT analysis of EAGTOC-UIVN method with other techniques under varying nodes.

Cluster Average Lifetime (s)

Number of Nodes EAGTOC-UIVN SIC EALC ACO GBLADSR GA

30 67.61 66.21 65.20 63.17 54.66 47.81

60 67.10 64.56 61.14 57.96 48.57 41.59

90 61.77 54.28 53.52 51.24 44.00 34.61

120 58.22 51.24 48.95 46.03 36.01 31.06

150 55.04 50.35 46.03 40.45 37.02 30.30

Table 7. NOAN analysis of EAGTOC-UIVN technique with other systems under varying rounds.

No. of Alive Nodes

No. of Rounds EAGTOC-UIVN SIC EALC ACO GBLADSR GA

0 100 100 100 100 100 100

200 100 100 99 96 95 92

400 100 98 95 93 92 83

600 99 98 90 85 76 70

800 97 92 88 77 62 61

1000 95 87 83 60 55 51

1200 94 75 68 52 43 30

1400 89 69 59 38 33 15

1600 80 55 45 24 15 3

1800 71 44 20 11 4 0

2000 58 28 9 0 0 0
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Figure 7. CALT analysis of EAGTOC-UIVN algorithm under varying nodes.

In Table 8 and Figure 9, a brief total energy consumption (TECON) assessment of the
EAGTOC-UIVN technique with recent approaches is given. The outcomes imply that the
GA technique has failed to describe effectual outcomes with maximal values of TECON.

Table 8. TECON analysis of EAGTOC-UIVN technique with other systems under varying rounds.

Total Energy Consumption (J)

No. of Rounds EAGTOC-UIVN SIC EALC ACO GBLADSR GA

0 0.00 0.00 0.00 0.00 0.00 0.00

200 38.61 70.97 80.92 100.84 123.24 247.68

400 98.35 165.55 200.39 225.28 250.17 466.71

600 182.97 265.11 337.29 392.04 441.82 568.76

800 270.09 369.64 476.67 553.83 563.78 643.43

1000 377.11 511.51 578.72 630.98 708.14 718.10

1200 494.09 578.72 660.85 787.79 812.68 790.28

1400 603.61 693.21 770.37 862.46 899.79 884.86

1600 673.30 795.26 867.44 912.24 952.06 937.13

1800 755.43 859.97 917.22 949.57 979.44 976.95

2000 770.37 869.93 947.08 954.55 984.42 996.86

Simultaneously, the EALC, ACO, and GBLADSR techniques obtained closer TECON
values. Even though the SIC system tried to show a reasonable TECON value, the EAGTOC-
UIVN approach attained effectual outcomes with minimal TECON values. Note that the
EAGTOC-UIVN method attained a minimum TECON value of 38.61 J under 200 rounds.
From these results, it is evident that the presented model improves the overall network
efficacy.
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Figure 8. NOAN analysis of EAGTOC-UIVN algorithm under varying rounds.

Figure 9. TECON analysis of EAGTOC-UIVN algorithm under varying rounds.

5. Conclusions

In this study, a new EAGTOC-UIVN technique was developed for clustering the
UAV-assisted VN. The major aim of the EAGTOC-UIVN technique exists in the grouping
of the nodes in UAV-based VN to achieve maximum lifetime and energy efficiency. In
the presented EAGTOC-UIVN technique, the EAGTO algorithm is primarily designed by
the use of the circle chaotic mapping technique. Moreover, the EAGTOC-UIVN technique
computes a fitness function with the inclusion of multiple parameters. To depict the
improved performance of the EAGTOC-UIVN technique, a widespread simulation analysis
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was performed. The comparison study reported the enhancements of the EAGTOC-UIVN
technique over other recent approaches. In the future, data aggregation and localization
techniques can be designed to increase the overall network effectiveness of the UAV-
based VNs.
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Abstract: We analyze a secure unmanned aerial vehicle-assisted two-hop mixed radio frequency
(RF) and underwater wireless optical communication (UWOC) system using a fixed-gain amplify-
and-forward (AF) relay. The UWOC channel was modeled using a mixture exponential-generalized
Gamma distribution to consider the combined effects of air bubbles and temperature gradients on
transmission characteristics. Both legitimate and eavesdropping RF channels were modeled using
flexible α-μ distributions. Specifically, we first derived both the probability density function (PDF)
and cumulative distribution function (CDF) of the received signal-to-noise ratio of the system. Based
on the PDF and CDF expressions, we derived the closed-form expressions for the tight lower bound
of the secrecy outage probability (SOP) and the probability of non-zero secrecy capacity (PNZ),
which are both expressed in terms bivariate Fox’s H-function. To utilize these analytical expressions,
we derived asymptotic expressions of SOP and PNZ using only well-known functions. We also
used asymptotic expressions to determine the suboptimal transmitting power to maximize energy
efficiency. Furthermore, we investigated the effect of levels of air bubbles and temperature gradients
in the UWOC channel, and studied the nonlinear characteristics of the transmission medium and the
number of multipath clusters of the RF channel on the secrecy performance. Finally, all analyses were
validated using a simulation.

Keywords: amplify-and-forward (AF); α-μ distribution; non-zero capacity (PNZ); performance
analysis; underwater wireless optical communication (UWOC); secrecy outage probability (SOP)

1. Introduction

The rise of the underwater Internet of Things requires the support of a high-performance
underwater communication network having high data rates, low latency, and long com-
munication range. Underwater wireless optical communication (UWOC) is one of the
essential technologies for this communication network. Unlike radio frequency (RF) [1–3]
and acoustic technologies, UWOC technology can achieve ultra-high data rates of Gpbs
over a moderate communication range when selecting blue or green light with wavelengths
located in the transmission window [4]. Furthermore, a light-emitting diode or laser diode
as a light source provides the versatility to select between communication range and cov-
erage area within the constraints of the range-beamwidth tradeoff to meet the needs of a
specific application scenario.

Using relay technology to construct a communication system in a multi-hop fashion is
one of the primary techniques to extend the communication range. Based on the modality
of processing and forwarding signals, relays can be divided into two main categories:
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decode-and-forward relays (DF) and amplify-and-forward (AF) relays. In DF relaying
systems, the relay down-converts the received signals to the baseband, decodes, re-encodes,
and up-converts them to the RF band, and forwards the signal to the destination node.
In AF relaying systems, the relay amplifies the received signals directly in the passband
based on an amplification factor, then forwards them directly in the RF band. Since the AF
scheme does not require time-consuming decoding and spectral shifting, it can significantly
reduce complexity while still providing good performance [5]. Depending on the different
channel state information (CSI) information required by the AF relay, AF relaying can be
divided into the variable-gain AF (VG) and fixed-gain AF (FG). In a VG scheme, the relay
requires instantaneous CSI of the source-to-relay link, whereas in an FG scheme, only
statistical CSI of the SR link is required [6]. Therefore, from an engineering standpoint,
the FG scheme is more attractive because of its low implementation complexity.

To maximize the utilization of the different transmission environments of each hop
and to improve the overall performance of the multi-hop relaying system, mixed com-
munication systems using different communication technologies have been proposed,
and are widely used in unmanned aerial vehicles (UAV)-assisted vehicle communication
systems [7–9]. For example, the mixed communication system using both RF and free-space
optical (FSO) technologies has been proposed to take advantage of the robustness of the RF
links and the high bandwidth characteristics of the FSO links. Further, RF sub-systems offer
low-cost and non-line-of-sight communication capabilities, while FSO sub-systems offer
low transmission latency and ultra-high transmission rates. Therefore, a mixed RF/FSO
system is a cost-effective solution to the last-mile problem in wireless communication
networks, where the high-bandwidth FSO sub-system of a mixed RF/FSO system is used to
connect seamlessly the fiber backbone and RF sub-system access networks [10–13]. Achiev-
ing ultra-high-speed communication between underwater and airborne nodes across the
sea surface medium is challenging due to the low data rate of underwater acoustic com-
munications. To solve this problem, using an ocean buoy or a marine ship as a relay
node, the mixed RF/UWOC system for UAV and autonomous underwater vehicle (AUV)
communication is proposed, in which the high-speed UWOC is used instead of underwater
acoustic communication, to achieve higher overall communication rates [14–18].

Accurate modeling of the UWOC channel, including absorption, scattering, and turbu-
lence, is a prerequisite for proper performance analysis and algorithm development of the
UWOC system [19,20]. Absorption and scattering have been extensively studied [21–23],
where absorption limits the transmission distance of underwater light, while scattering
diffuses the receiving radius of underwater light transmission and deflects the transmission
path, thus reducing the received optical power. Due to changes in the random refractive in-
dex variation, turbulence can cause fluctuations in the received irradiance, i.e., scintillation,
which can limit the performance and affect the stability of the UWOC system [4]. In early
research, UWOC turbulence was modeled by borrowing models of atmospheric turbulence,
e.g., weak turbulence is modeled by the Lognormal distribution [24–26], and moderate-to-
strong turbulence is modeled by the Gamma-Gamma distribution [27–30].

However, the statistical distributions used to model atmospheric turbulence cannot ac-
curately characterize UWOC systems due to the fundamental differences between aqueous
and atmospheric mediums. Recently, based on experimental data, the mixed exponential-
lognormal distribution has been proposed to model moderate to strong UWOC turbulence
in the presence of air bubbles in both fresh water and salty water [31]. Later, the mixture
exponential-generalized Gamma (EGG) distribution was proposed to model turbulence
in the presence of air bubbles and temperature gradients in either fresh or salt water [32].
The EGG distribution not only can model turbulence of various intensities, but also has an
analytically tractable mathematical form. Therefore, useful system performance metrics,
such as ergodic capacity, outage probability, and bit-error rate (BER), can be easily obtained.

Due to the broadcast nature of RF signals, secrecy performance has always been one of
the most important considerations for the mixed RF/FSO communication
systems [11,33–37]. In [34], the expressions of the lower bound of the secrecy outage

168



Drones 2022, 6, 341

probability (SOP) and average secrecy capacity (ASC) for mixed RF/FSO systems using VG
or FG relaying schemes, were both derived in closed-form, where the RF and FSO links are
modeled by the Nakagami-m and GG distributions, respectively. The authors in [35] used
Rayleigh and GG distributions to model RF and FSO links, respectively. Considering the im-
pact of imperfect channel state information (CSI), both the exact and asymptotic expressions
of the lower bound for SOP of a mixed RF/FSO system using VG or FG relay are derived.
The same authors then extended the analysis to multiple-input and multiple-output config-
uration and analyzed the impact of different transmit antenna selection schemes on the
secrecy performance of the mixed RF/FSO system using a DF relay, where RF and FSO
links are modeled by the Nakagami-m and M-distributions, respectively. Assuming the
CSI of the FSO and RF links are imprecise and outdated, the authors derived the bound
and asymptotic expressions of the effective secrecy throughput of the system. In [36],
using more generalized η-μ and M-distributions to model RF and FSO links, respectively,
and assuming that the eavesdropper is only at the relay location, the authors derived the
analytical results for the SOP and the average secrecy rate of the mixed RF/FSO system
using the FG or VG relaying scheme. To quantify the impact of the energy harvesting
operation on the system secrecy performance, the authors in [11] derived exact closed-form
and asymptotic expressions for the SOP of the downlink simultaneous wireless information
and power transfer system using DF relaying scheme, under the assumption that RF and
FSO links are modeled using the Nakagami-m and GG distributions, respectively.

However, research on the secrecy performance of mixed RF/UWOC systems is still in
its infancy despite the growing number of underwater communication applications. The au-
thors in [16] investigated the secrecy performance of a two-hop mixed RF/UWOC system
using a VG or FG multiple-antennas relay and maximal ratio combining scheme, where RF
and UWOC links are modeled by Nakagami-m and the mixed exponential-Gamma (EG)
distributions, respectively. Assuming that only the source-to-relay link is eavesdropped by
unauthorized users, the authors in [16] derived the exact closed expressions of the ASC and
SOP of the mixed RF/UWOC systems. Later, based on the same channel model as in [16],
the same authors extended the analysis to the mixed RF/UWOC system using a multi-
antennas DF relay with the selection combining scheme [15]. Both the exact closed-form
and asymptotic expressions of the SOP were derived.

However, while the EG distribution is suitable for modeling turbulence of various
intensities in both fresh water and salty water, this distribution fails to model the effects of
air bubbles and temperature gradients on UWOC turbulence [32]. Further, the Nakagami-m
distribution is only applicable to certain specific scenarios and cannot accurately charac-
terize the effects of the properties of the transmission medium and multipath clusters on
channel fading. It is shown that the impact of the medium on the signal propagation is
mainly determined by the nonlinearity characteristics of the medium [38]. The α-μ distri-
bution is a more general, flexible, and mathematically tractable model of channel fading
whose parameters α and μ are correlated with the nonlinearity of the propagation medium
and the number of clusters of multipath transmission, respectively. Further, by setting α
and μ to specific values, the α-μ distribution can be reduced to several classical channel fad-
ing models, including Nakagami-m, Gamma, one-sided Gaussian, Rayleigh, and Weibull
distributions. Recently, the secrecy performance of a two-hop mixed RF/UWOC system
using DF relaying where RF and UWOC links are, respectively, modeled by flexible α-μ and
water tank experimental data based EGG distributions has been analyzed in [39]; however,
only the lower bound and asymptotic expressions of the SOP are derived. Furthermore,
the overall end-to-end latency of the DF relaying based mixed RF/UWOC communication
system is much higher than that of the FG relaying based one, due to the decoding and
forwarding and spectral shifting operations required by DF relaying.

However, to the best of the authors’ knowledge, this is the first comprehensive se-
crecy performance analysis of the mixed RF/UWOC communications system using a
low-complexity FG relaying scheme. Unlike previous UWOC channel models that do not
adequately characterize the underwater optical propagation and RF channel models that

169



Drones 2022, 6, 341

use various simplifying assumptions, we model the RF channels between UAV and relay
and the UWOC channel between relay and AUV, using the more general and accurate α-μ
and EGG distributions, respectively, to analyze the effects of a variety of realistic channel
phenomena, such as different temperature gradients and levels of air bubbles of UWOC
channels and different grades of medium nonlinearity, and the number of multipath clus-
ters of the RF channels on the secrecy performance of the mixed RF/UWOC communication
systems. We propose a novel analytical framework to derive the closed-form expressions
of the SOP and the non-zero secrecy capacity (PNZ) metrics by the bivariate Fox’s H-
function. Moreover, our secrecy performance study provides a generalized framework
for several fading models for both RF and UWOC channels, such as Rayleigh, Weibull
for RF channels and EG and Generalized Gamma for UWOC channels. We first derive
the probability density function (PDF) and cumulative distribution function (CDF) of the
end-to-end signal-to-noise ratio (SNR) for the mixed RF/UWOC communication system
in exact closed-form in terms of bivariate H-function. Depending on these expressions,
we derive the exact closed-form expressions of the lower bound of the SOP and the PNZ.
Furthermore, we also derive asymptotic expressions for both SOP and PNZ containing
only simple functions at high SNRs. Addtionally, based on the asymptotic expressions for
SOP and PNZ, we provide a straightforward approach to determine the suboptimal source
transmission power to maximize energy efficiency for given performance goals of both
SOP and PNZ. Finally, we use Monte Carlo simulation to validate all the derived analytical
expressions and theoretical analyses.

The rest of this paper is organized as follows. In Section 2, the channel and system
models are presented. In Section 3, the end-to-end statistics are studied. Both exact and
asymptotic expressions for the SOP and PNZ are derived in Section 4. The numerical
results and discussions are discussed in Section 5, which is followed by the conclusion in
Section 6.

2. System and Channel Models

A mixed RF/UWOC system is considered in Figure 1 where a UAV acts as a source
node (S) in the air transmits its private data to the legitimate destination node (D) acted by
an AUV located underwater via a trusted relay node (R), which can be a buoy or a surface
ship. The RF channel from S to R and underwater optical channel from the R to the D node
is assumed to follow α-μ and EGG distributions, respectively. During transmission, one
unauthorized receiver (E) attempts to eavesdrop on RF signals received by the R. In this
paper, we consider a FG AF relay where the relay amplifies the received signal by a fixed
factor and then forwards the amplified message to the destination node.

Figure 1. A two-hop mixed RF/UWOC system using FG relaying with one legitimate receiver in the
presence of eavesdropping.
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2.1. RF Channel Model

The RF SR link is modeled by α-μ flat fading models, where the PDF of the received
SNR, denoted by γ1, can be expressed as [38]

fγ1(γ1)=
α

2Γ(μ)
μμ

(γ̄1)
αμ
2

γ
αμ
2 −1

1 exp

(
−μ

(
γ1
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) α
2
)

(1)

where γ1 ≥ 0, μ ≥ 0, α ≥ 0, and Γ(·) denotes the gamma function. The fading model
parameters α and μ are associated with the non-linearity and multi-path propagation of the
channel. Furthermore, the PDF of the received SNR at the eavesdropping node E, denoted
by fγe(γe), also follows α-μ with parameters αe and μe.

Based on the definition of the Fox’s H-function, the CDF of γ1, which is defined as
Fγ1(γ1) =

∫ γ1
0 fγ1(γ1)dγ1, can be expressed as
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where we use ([40], Equation (1.60)) and ([40], Equation (1.125)) to express fγ1(γ1) in
the right side of equity (a) into the form of H-function, where H·,·

·,· [·|·] is the H-Function

([40], Equation (1.2)), κ = β
Γ(μ)γ̄1

, Λ = β
γ̄1

, and β =
Γ( 1

α +μ)
Γ(μ) . Note that, the present form

of Fγ1(γ1) in (2) is more suitable for deriving secrecy performance of a two-hop mixed
RF/UWOC than the form proposed in ([41], Equation (2)) for the point-to-point system
over single-input multiple-output α-μ channels.

2.2. UWOC Channel Model

To characterize the combined effects of different levels of air bubbles and temperature
gradients on the light intensity received at underwater node D, we model the UWOC
channel from R to D using the EGG distribution [32], where the PDF of the received
SNR, defined as γ2 = (η I)r/N02 , has been derived in closed-form in terms of Meijer-
G functions ([42], Equation (3)), and N02 is the received noise power at D. Based on
([40], Equation (1.112)), we can re-write the PDF of γ2 using H-functions as

fγ2(γ2)=
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where the parameters ω, a, b and c can be estimated using the maximum-likelihood criterion
with expectation maximization algorithm. The parameter ω is the mixed weight of the
distribution; λ is the parameter related to the exponential distribution; parameters a, b,
and c are related to the exponential distribution; r is a parameter dependent on the detection
scheme, specifically, r = 1 for heterodyne detection and r = 2 for intensity modulation and
direct detection ([43], Equation (31)).

The EGG distribution can provide the best fit with the measured data form laboratory
water tank experiments in the presence of temperature gradients and air bubbles [42].
Therefore, by using the EGG distribution to model the UWOC link, we can gain more
insight into the relationship between characteristics of the UWOC link and the secrecy
performance of the mixed RF/UWOC communication system.
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Using the definition of complementary cumulative distribution function (CCDF),
i.e., F̄γ2(γ2) =

∫ γ2
0 fγ2(γ2)dγ2, and an approach similar to that used to derive (2), we can

derive the CCDF of γ2 as
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It is worth to mention that the expression in (4) is useful to derive the closed-form
CDF expression of the end-to-end SNR of the mixed RF/UWOC communication system.

3. End-to-End SNR

In this section, we derive the exact closed-form expressions for PDF and CDF of the end-
to-end SNR of mixed RF/UWOC communication system. We then use these expressions
to derive closed-form and asymptotic expressions for the system secrecy metrics in the
following section.

The end-to-end instantaneous SNR of the mixed RF/UWOC system using the FG
relaying scheme is given as [6]

γeq =
γ1γ2

γ2 + C
(5)

where C denotes the FG amplifying constant and is inversely proportional to the square of
the relay transmitting power, and this constant is defined as C = 1/

(
G2N01

)
, where

N01 is the received noise power at R, and the FG amplifying factor G is defined as
G =

√
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Using the definition of H-function and (1), we can readily express G2 in terms of the
H-functions
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It is worth noting that the FG relaying requires only the statistical CSI of the RF
channel from S to R, and is therefore more convenient than VG relaying, which requires the
instantaneous CSI, from the perspective of practical system deployment.

Theorem 1. The CDF of the end-to-end SNR of the mixed RF/UWOC communication system
using the FG relaying scheme Fγeq(γeq), defined in (5), can be obtained in exact closed-form as

Fγeq(γeq) = 1 − γκ(1 − ω)
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in terms of bivariate H-functions, where H·,·:·,·;·,·
·,·:·,·;·,· [·|·] is the bivariate H-Function defined as ([40],

Equation (2.55)).
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Proof. See Appendix A.

Note that the current implementation of bivariate H-function for numerical compu-
tation is mature and efficient, including GPU-accelerated versions, and has been imple-
mented using the most popular software, including MATLAB� [44], Mathematica� [45],
and Python [46]. Addtionally, the exact-closed expression for the CDF in (7) is a key
analytical tool to derive the SOP metric of the mixed RF/UWOC system.

Theorem 2. The PDF of the end-to-end SNR, which is defined in (5), of the mixed RF/UWOC
communication system using the FG relaying scheme, denoted by fγeq(γeq), can be obtained in
exact closed-form as

fγeq(γeq) =
κ(1 − ω)

Γ(a)

×H0,1:0,1;2,0
1,0:1,1;0,2

[
1

γΛ
b−rC

μr

∣∣∣∣∣(2, 1, 1):
(

1 + 1
α − μ, 1

α

)
;

: (2, 1) ; (0, 1), (a, r
c )

]

+H0,1:0,1;2,0
1,0:1,1;0,2

[
1

γΛ
Cλ−r

μr

∣∣∣∣∣(2, 1, 1):
(

1 + 1
α − μ, 1

α

)
;

: (2, 1) ; (1, 1), (0, r)

]
×κrω. (8)

Proof. See Appendix B.

It is worth noting that the PDF expression in (8) is the most critical step required to
evaluate the PNZ performance metric, as will be shown in the next section.

4. Performance Metrics

his section presents analytical results for the critical secrecy performance metrics of a
mixed RF/UWOC communication system, including both SOP and PNZ, in the presence
of air bubbles and temperature gradients in the UWOC channel and medium nonlinearity
in the RF channel.

4.1. SOP

SOP is defined as the probability that the secrecy capacity Cs falls below a target rate
of confidential information Rs and it can be expressed as

Pout(Rs)=Pr
{

log2

(
1 + γeq

1 + γe

)
< Rs

}
=
∫ ∞

0
Feq(Θγe + Θ − 1) fe(γe)dγe (9)

where Θ = eRs .

4.1.1. Lower Bound

Referring to [47,48], a tight lower bound for the SOP can be given as

Pout,L =
∫ ∞

0
Fγeq(Θγ) fγe(γ)dγ. (10)

Theorem 3. The lower bound for the SOP of the mixed RF/UWOC communication system using
the FG relaying scheme defined in (10) can be obtained in exact closed-form as
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Pout,L = 1 − Θκ

ΛeΓ(μe)

(
(1 − ω)

Γ(a)

×H0,1:1,1;2,0
1,0:1,2;0,2

⎡⎣ Λe
ΘΛ

b−rC
μr

∣∣∣∣∣∣
(2, 1, 1) :

(
1+1

α−μ, 1
α

)
;

:
(

1
αe
+μe, 1

αe

)
, (1, 1) ;(0, 1), (a, r

c )

⎤⎦
−H0,1:1,1;2,0

1,0:1,2;0,2

⎡⎣ Λe
ΘΛ

Cλ−r

μr

∣∣∣∣∣∣
(2, 1, 1) :

(
1+1

α−μ, 1
α

)
:

:
(

1
αe
+μe, 1

αe

)
, (1, 1) :(1, 1), (0, r)

⎤⎦
×rω

)
. (11)

Proof. See Appendix C.

Special case. When the RF channel follows Rayleigh fading (i.e., α = αe = 1,
μ = μe = 1) and the thermally uniform UWOC channel (i.e., c = 1) use heterodyne
detection (i.e., r = 1), using definition of bivariate H-functions and ([49], Equation
(07.34.03.0397.01)), Equation (5) can be simplified into the following form

Pout,L=
κκe

Λ(Λe + ΘΛ)

(
a(ω − 1) exp

(J
b

)
Ea+1

(J
b

)
−ωG1,2

2,1

[
λ

J

∣∣∣∣0, 1
1

])
+ 1 (12)

where J = CΘΛ
μr(Λe+ΘΛ)

, Ei(x) and En(x) both denote the exponential integral ([50], Equation
(8.211.1)). We emphasize that the distribution in (12) contains only elementary functions
and leads to straightforward secrecy performance evaluation of two-hop mixed RF/UWOC
systems.

4.1.2. Asymptotic Results

To gain more insight into the SOP performance and the dependency between the link
quality of both RF and UWOC channels, we now derive asymptotic expressions for SOP.
We consider two scenarios, namely γ1 → ∞ and γe → ∞.

Corollary 1. For scenarios γ1 → ∞ and γe → ∞, the asymptotic expressions of SOP of a mixed
RF/UWOC communication system using FG relaying scheme can be given as

Pout,a,1=1 − 1
Γ(μ)Γ(μe)

(
(1 − ω)

Γ(a)

×H1,3
3,2

[
brΛeμr

CΘΛ

∣∣∣∣∣(1, 1), (1 − a, r
c ), (1 − μ, 1

α )(
μe, 1

αe

)
, (0, 1)

]

−rωH1,2
2,1

[
λrΛeμr

CΘΛ

∣∣∣∣∣(1, r), (1 − μ, 1
α )(

μe, 1
αe

) ])
(13)
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and

Pout,a,e=1 − αeΓ
(
μ + αeμe

α

)
Γ(μ)Γ(μe)Γ(αeμe + 1)

(
Λe

ΘΛ

)αeμe

×
(
(1 − ω)

Γ(a)
H1,2

2,1

[
brμr

C

∣∣∣∣(1, 1), (1 − a, r
c )

(αeμe, 1)

]

−rωH1,2
2,1

[
λrμr

C

∣∣∣∣(0, 1), (1, r)
(αeμe, 1)

])
(14)

in terms of H-functions, respectively.

Proof. See Appendix D.

Note that in contrast to the closed expression of the lower bound of the SOP in (11)
in terms of bivariate H-functions, which requires numerical evaluation of double line
integrals, the asymptotic expressions in (13) and (14) only require the numerical calculation
of single line integrals, thus reducing the complexity of the calculations. Furthermore,
as shown in Section 5, for a target SOP performance, the asymptotic expressions in (13)
and (14) can be used to determine rapidly the suboptimal transmitting power to maximize
energy efficiency.

Special case. A two-hop mixed RF/UWOC communication system over Rayleigh RF
links and a thermally uniform UWOC channel, we can further simplify the asymptotic
expressions in (13) and (14) by setting c = 1, α = αe = 1, μ = μe = 1. For example,
Equation (13) can be simplified into

Pout,a,1=
1

λΛeμrΓ(μ)Γ(μe)

(
aλ(ω − 1)Λeμr exp

(
CΘΛ
bΛeμr

)
×Ea+1

(
CΘΛ
bΛeμr

)
−CΘΛω exp

(
CΘΛ
λΛeμr

)
×Ei

(
− CΘΛ

λΛeμr

))
+

ΛΛe − κωκe

ΛΛe
(15)

4.2. PNZ

PNZ is another critical metric for to evaluate the secrecy performance of a commu-
nication system, which is defined as Pr(Cs > 0), where Cs is the secrecy capacity. PNZ is
generally related to channel conditions of all the channels in the mixed RF/UWOC systems.
In this section, we derive the exact closed-form and asymptotic expressions for PNZ and
analyze the relationship between channel parameters and PNZ performance.

4.2.1. Exact Results

According to [48], PNZ can be reformed as

Pnz = Pr
(
γeq > γe

)
=

∫ ∞

0
feq
(
γeq

)
Fe
(
γeq

)
dγeq. (16)

Theorem 4. The exact PNZ of the mixed RF/UWOC communication system using the FG relaying
scheme defined in (16) can be obtained in exact closed-form as
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Pnz =
κ

Γ(a)ΛeΓ(μe)

(
(1 − ω)

×H0,1:2,0;1,1
1,0:0,2;1,2

⎡⎣b−rC
μr
Λe
Λ

∣∣∣∣∣∣
(2, 1, 1) : ;

(
1+1

α−μ, 1
α

)
:(0, 1), (a, r

c ) ;
(

1
αe
+μe, 1

αe

)
, (1, 1)

⎤⎦
+H0,1:2,0;1,1

1,0:0,2;1,2

⎡⎣Cλ−r

μr
Λe
Λ

∣∣∣∣∣∣
(2, 1, 1)

(
1+1

α−μ, 1
α

)
(1, 1), (0, r)

(
1
αe
+μe, 1

αe

)
, (1, 1)

⎤⎦
×rωΓ(a)

)
(17)

Proof. See Appendix E.

Special case. For a RF/UWOC system with Rayleigh and uniform temperature EGG
distributions, using a similar approach to the derivation of (12), we can simplify (17) into

Pnz=− κκe

λΛ(Λe + Λ)

(
ωH exp(H/λ)E1

(H
λ

)

+λ

(
a(ω − 1) exp

(H
b

)
Ea+1

(H
b

)
− ω

))
(18)

where H = CΛ
(Λe+Λ)μr

.

4.2.2. Asymptotic Results

To gain more insight into the PNZ performance and the dependency between the link
quality of both RF and UWOC channels, we now derive asymptotic expressions for PNZ.
We consider two scenarios, namely γ1 → ∞ and γe → ∞.

Corollary 2. For scenarios γ1 → ∞ and γe → ∞, the asymptotic expressions of PNZ of a mixed
RF/UWOC communication system using the FG relaying scheme are given as

Pnz,1=
1

Γ(a)Γ(μ)Γ(μe)

⎛⎝(1 − ω)

×H3,1
2,3

[
b−rCΛ
Λeμr

∣∣∣∣∣
(

1 − μe, 1
αe

)
, (1, 1)

(0, 1), (a, r
c ), (μ, 1

α )

]

+rωΓ(a)H2,1
1,2

[
Cλ−rΛ
Λeμr

∣∣∣∣∣
(

1 − μe, 1
αe

)
(0, r), (μ, 1

α )

]⎞⎠ (19)

and

Pnz,e=
αe

(
Λe
Λ

)αeμe
Γ
(
μ + αeμe

α

)
Γ(a)Γ(μ)Γ(μe)Γ(αeμe + 1)

⎛⎝(1 − ω)

×H1,2
2,1

[
brμr

C

∣∣∣∣(1, 1), (1 − a, r
c )

(αeμe, 1)

]

+rωΓ(a)H1,2
2,1

[
λrμr

C

∣∣∣∣(0, 1), (1, r)
(αeμe, 1)

]⎞⎠ (20)

in terms of H-functions, respectively.
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Proof. Observing that the expressions for the lower bound of the SOP in (11) and exact
PNZ in (15) have a similar structure; therefore, Equations (19) and (20) can be easily
obtained using the same techniques as those used for deriving (13) and (14), and the proof
is complete.

Note that, similar to the asymptotic expressions of the SOP in (13) and (14), for a target
PNZ performance, the asymptotic expressions of PNZ in (19) and (20) are also suitable for
fast numerical calculations and are useful to determine the suboptimal transmitting power
to maximize energy efficiency.

5. Numerical Results and Discussion

In this section, we provide some numerical results to verify the analytic and asymp-
totic expressions of SOP and PNZ derived in Section 4, and thoroughly investigate the
combined effect of the channel quality of both RF and UWOC channels on the secrecy
performance of the two-hop mixed RF/UWOC communication system. All practical envi-
ronmental physical factors that can affect channel quality, including levels of air bubbles,
temperature gradients, and salinity of the UWOC channel [32], as well as the medium non-
linearity and multipath cluster characteristics of the RF channel [48], are taken into account.
For brevity, we use [·, ·] to denote the value set of [air bubbles level, temperature gradient]
in this section.

In Figures 2–6, we investigate the combined effect of the channel quality of both RF
and UWOC channels on the SOP metric of the two-hop mixed RF/UWOC communica-
tion system.
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Figure 2. SOP versus γ̄1 with various fading parameters when α = αe = 1.6, μ = μe = 1.5, Rs = 0.01,
and γ̄e = γ̄2 = 10 dB.

Figure 2 shows the lower bound and the asymptotic SOP with average SNR of the SR
link γ1 for a mixed two-hop RF/UWOC system under different quality scenarios of UWOC
channel. Both RF SR and SE links follow the α-μ distribution and have the same parameters,
where α = αe = 1.6, μ = μe = 1.5. The average SNR of the SE and RD links are both set
as γ̄e = γ̄2 = 10 dB [48]. As shown in Figure 2, the exact theoretical results are almost
identical to the simulation results, and both closely agree with the derived lower bound.
Asymptotic results are tight when the average SNR is greater than 30 dB. Further, when the
average SNR increases from 0 to 30 dB, SOP rapidly decreases. Additionally, SOP tends to
saturate when the average SNR is between 30 and 40 dB. Given the cost of the relay battery
replacement and engineering difficulties, the communication system should guarantee the
SOP while cutting down on energy consumption. In practice, one should therefore select
the suboptimal transmission power corresponding to the saturation starting point.
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Figure 3. SOP versus γ̄1 with various fading parameters when α = αe = 1.6, μ = μe = 1.5, Rs = 0.01,
and γ̄2 = 0 dB.

Figure 3 depicts the SOP variation versus the SR average SNR γ1 for the mixed
two-hop RF/UWOC system under three different eavesdropper interference levels, i.e.,
γ̄e = 3, 0,−3 dB. Parameters in Figure 3 are set as follows: α = αe = 1.6, μ = μe = 1.5,
UWOC channel parameter is [2.4, 0.05], and γ̄2 = 0 dB. It can be observed that the lower
bounds closely match the exact results in the whole SNR region. The asymptotic result curve
gradually coincides with the exact result curve when γ̄1 takes higher values starting from
20 dB. We can also observe that the SOP is monotonically decreasing with γ̄1, assuming
that the SNR of the SE link is a fixed value. Comparing the SOP curves for three different
eavesdropping interference levels, one can conclude that as the quality of the SE channel
improves, the secrecy performance of the system deteriorates.
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Figure 4. SOP versus γ̄1 with various fading parameters Rs = 0.01, γ̄2 = γ̄e = 10 dB, and UWOC
channel parameter is [2.4, 0.05].

Figure 4 indicates the effect of the variation in average SNR of the SR link on the SOP
metric of a two-hop mixed RF/UWOC, with three different RF channel qualities. Evidently,
SOP monotonically decreases with the increase of γ̄1, and SOP tends to saturate when
γ̄1 ≥ 30 dB. Moreover, Figure 4 depicts that as the α-μ value increases, the two-hop mixed
RF/UWOC system secrecy performance worsens, and vice versa. This is because of the
phenomena of severe nonlinearity and sparse clustering when the signals are propagating in
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a high α-μ value RF channel, and poor RF channel quality makes it easier for eavesdroppers
to intercept signals. As shown in Figure 5, as the γ̄e progressively increases, the SOP
value increases, the information intercepted by the eavesdropper increases, and the system
secrecy performance gradually decreases. Moreover, the asymptotic result is more accurate
at γ̄e greater than 15 dB.
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Figure 5. SOP versus γ̄e with various fading parameters when α = αe = 1.6, μ = μe = 1.5, Rs = 0.01,
and γ̄1 = γ̄2 = 10 dB.
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Figure 6. SOP versus γ̄e with various fading parameters when α = αe = 1.6, μ = μe = 1.5, Rs = 0.01,
and γ̄2 = 20 dB.

In Figure 6, we set the same channel parameters as in Figure 3, except for setting the
UWOC average SNR, i.e., γ̄2 = 20 dB. Figure 6 shows that SOP increases with γ̄e when
the other parameters remain unchanged. The same interpretation of Figure 5 can also be
applied to Figure 6. Additionally, the rate at which the asymptotic results approach exact
results varies for different SR average SNR. For γ̄1 = 0 dB, the asymptotic results begin to
match the exact result starting at γ̄e = 5 dB. Moreover, the close match of the lower bound
and the exact results demonstrate the robustness and accuracy of (11).

In Figures 7–10, We investigate the combined effect of the channel quality of both RF
and UWOC channels on the PNZ metric of the two-hop mixed RF/UWOC communica-
tion system.
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Figure 7. Pnz versus γ̄1 with various fading parameters when α = αe = 2.1, μ = μe = 1.4 and
γ̄e = γ̄2 = 0 dB.

Figure 7 shows the effect of the SR link average SNR γ̄1 on the PNZ of the mixed
RF/UWOC for different UWOC channel parameters. PNZ increases incrementally as γ̄1
increases, which indicates an increase in secrecy performance. It can be observed that
PNZ decreases as the degree of turbulence increases, i.e., the higher the level of air bub-
bles and the larger the temperature gradient, the worse the secrecy performance in the
system. Additionally, we depict the effects of salinity on UWOC performance in Figure 7.
The salinity affects the system secrecy performance to a much lesser extent than the level
of the air bubble and temperature gradient. This is because the generation and break-up
of the air bubbles in the UWOC channels causes dramatic and random fluctuations of the
underwater optical signals, which can significantly deteriorate the secrecy performance of
the system. Figure 7 shows that eavesdroppers may benefit from a low UWOC channel
quality. On the contrary, in a high-quality UWOC channel, the likelihood of an eavesdrop-
per successfully eavesdropping is greatly reduced. Therefore, in practical applications,
increasing the channel quality can increase the system transmission capacity and thus
improve the system secrecy performance. Figure 7 also shows that asymptotic results can
quickly approach the exact result for poorer channels. For example, for a UWOC channel
with channel parameters of [16.5, 0], the asymptotic result can achieve a match with the
exact value at γ̄1 ≥ 20 dB. When the channel parameter set is [2.4, 0.05], the asymptotic
result can only be accurate at γ̄1 > 25 dB. The remaining parameters are set as follows,
γ̄e = γ̄2 = 0 dB, α = αe = 2.1, μ = μe = 1.4.

In Figure 8, the RF channel parameters are α = αe = 1.5, μ = μe = 0.8, and the
UWOC channel parameters are [2.4, 0.05]. We can explain the curves in Figure 8 using a
principle similar to Figure 7. In particular, Figure 8 demonstrates the PNZ curves for three
different SE link channel qualities. Obviously, as γ̄e decreases, the secrecy performance of
the system improves.

In addition to Figure 8, we analyzed the effect of the average SNR γ̄1 on the PNZ,
as shown by Figures 9 and 10. The difference is that in Figure 9 α = αe = 2.1, μ = μe = 1.4
and γ̄1 = γ̄2 = 20 dB. whereas the RF channel parameters in Figure 10 are α = αe = 1.5
and μ = μe = 0.8. It can be inferred from Figures 9 and 10 that the asymptotic result
only matches the exact value when γ̄e is large, and the PNZ gradually decreases until it
reaches zero.
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Figure 8. Pnz versus γ̄1 with various fading parameters when α = αe = 1.5, μ = μe = 0.8 and
γ̄2 = 0 dB.
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Figure 9. Pnz versus γ̄e with various fading parameters when α = αe = 2.1, μ = μe = 1.4 and
γ̄1 = γ̄2 = 20 dB.
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Figure 10. Pnz versus γ̄e with various fading parameters when α = αe = 1.5, μ = μe = 0.8 and
γ̄2 = 20 dB.
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6. Conclusions

We investigated the secrecy performance of a UAV-assisted two-hop mixed RF/UWOC
communication system using fixed-gain AF relaying. To allow the results to be more generic
and applicable to more realistic physical scenarios, we modeled RF channels using the α-μ
distribution, which considers both the nonlinear of the transmission medium and multipath
cluster characteristics, and modeled UWOC channels using the laboratory EGG distribution,
which can account for different levels of air bubbles, temperature gradients, and salinity.
Closed-form expressions for the PDF and the CDF of the two-hop end-to-end SNR were
both derived in terms of the bivariate H-function. Based on these results, we obtained
a tight closed-form expression of the lower bound of the SOP and the exact closed-form
expression of the PNZ. Furthermore, we also derived asymptotic expressions in simple
functions for both SOP and PNZ to allow rapid numerical evaluation. Moreover, based on
the asymptotic results, we presented an approach to determine the suboptimal transmitting
power to maximize the energy efficiency, for given target performance of both SOP and
PNZ. We fully investigated the effects of various existing phenomena of both RF and UWOC
channels on the secrecy performance of the mixed RF/UWOC communication system.
Additionally, our generalized theoretical framework is also applicable to various classical
RF and underwater optical channel models including Rayleigh and Nakagami for RF
channels and EG and Generalized Gamma for UWOC channels. Our results can be used in a
practical mixed security RF/UWOC communication systems design. The interesting topics
for future work include: (i) to investigate the secrecy performance of a mixed RF/UWOC
communication system using an energy-harvesting enabled relay to improve the system
lifetime; (ii) to investigate the secrecy performance of a mixed RF/UWOC communication
system using multiple relays with appropriate relaying selection algorithms.
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Appendix A. Proof of Theorem 1

Using (5), we write the CDF of the end-to-end SNR in the following form

Fγeq(γeq)=
∫ ∞

0
Pr
[

γ1γ2

γ2 + C
≤ γ | γ2

]
fγ2(γ2)dγ2

=1−
∫ ∞

γ
F̄γ2

(
Cγ

x − γ

)
fγ1(x)dx. (A1)

Substituting (1) and (4) into (A1) and replacing the integral variable x with z = x + γ,
after some simplifications, we can express (A1) as

Fγeq

(
γeq

)
= 1 + I1 + I2 (A2)

where

I1=−κ(1 − ω)

Γ(a)

∫ ∞

0
H1,0

0,1

[
(z + γ)Λ

∣∣∣∣∣(− 1
α + μ, 1

α

)]

×H2,0
1,2

[
b−rCγ

zμr

∣∣∣∣ (1, 1)
(0, 1), (a, r

c )

]
dz (A3)
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and

I2=−κrω
∫ ∞

0
H1,0

0,1

[
Cγλ−r

zμr

∣∣∣∣(0, r)

]
×H1,0

0,1

[
(z + γ)Λ

∣∣∣∣∣ (− 1
α + μ, 1

α

) ]
dz. (A4)

To solve (A3), we convert all the H-functions in (A3) into a line integral, and place
the integral with respect to x in the innermost part by rearranging the order of multiple
integrals. Then, we have

I1=
κ(1 − ω)

4π2Γ(a)

∫ t

L
Γ(t)

Γ(t + 1)
Γ
(

a+
rt
c

)(
brμr

Cγ

)t

×
∫ s

L
Λ−sΓ

(
s
α
+μ−1

α

)∫ ∞

0
zt(z + γ)−sdzdsdt. (A5)

By utilizing ([50], Equation (3.197/1)) to solve the integration of z, after some simplifi-
cations and using the definition of the bivariate H-function ([40], Equation (2.57)), we can
finally express I1 in (A3) in the following form

I1 = −γκ(1 − ω)

Γ(a)

×H0,1:2,0;0,1
1,0:0,2;1,1

[
b−rC

μr
1

γΛ

∣∣∣∣∣(2, 1, 1): :
(

1 + 1
α − μ, 1

α

)
: (0, 1), (a, r

c ): (1, 1)

]
. (A6)

We can solve (A4) in a similar way as we have solved (A3). All H-functions are
converted to the form of the line integrals and by rearranging the multiple integrals,
the integral regarding z is placed in the innermost part of the expression. Then, we have

I2=
κrω

4π2

∫ s

L
Γ(rs)

(
λrμr

Cγ

)s ∫ t

L
Λ−tΓ

(
t
α
+ μ − 1

α

)
×
∫ ∞

0
zs(z + γ)−tdzdtds. (A7)

Again, we use ([50], Equation (3.197/1)) to solve the integration regarding z. Then use
([40], Equation (2.57)) and some simplification, we obtain the following expression

I2 = −γκrω

×H0,1:2,0;0,1
1,0:0,2;1,1

[
Cλ−r

μr
1

γΛ

∣∣∣∣∣(2, 1, 1): ;
(

1 + 1
α − μ, 1

α

)
: (1, 1), (0, r) ; (1, 1)

]
. (A8)

Substituting (A6) and (A8) into (A2), we obtain the exact closed-form expression for
the CDF as shown by (7).

Appendix B. Proof of Theorem 2

The PDF of the end-to-end SNR can be obtained by using

f (γeq) =
dF(γeq)

dγeq
. (A9)

Substituting (7) into (A9), after some simplifications, we have

fγeq(γeq)=
dJ1

dγeq
+

dJ2

dγeq
(A10)
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where

J1=
γeqκ(1 − ω)

4π2Γ(a)

∫ t

L

∫ s

L
1

Γ(t)

(
1

γeqΛ

)t
Γ(−s)Γ

(
a − rs

c

)
×Γ(s + t − 1)Γ

(
t
α
+ μ − 1

α

)(
b−rC

μr

)s

dsdt (A11)

and

J2=
γeqκrω

4π2

∫ t

L

∫ s

L
1

Γ(t)

(
1

γeqΛ

)t
Γ(1−s)Γ(−rs)Γ(s + t − 1)

×Γ
(

t
α
+ μ − 1

α

)(
Cλ−r

μr

)s

dsdt. (A12)

By enabling the differential operation in (A10), after some rearrangements, we can
represent the first and the second terms on the right of the Equation (A10) as

dJ1

dγeq
=

κ(1 − ω)

4π2Γ(a)

∫ t

L

∫ s

L
(1 − t)

Γ(t)
CsΓ(−s)(γeqΛ)−tb−rsμ−s

r

×Γ(s + t − 1)Γ
(

t
α
+ μ − 1

α

)
Γ
(

a − rs
c

)
dsdt (A13)

and

dJ2

dγeq
=

κrω

4π2

∫ t

L

∫ s

L
1

Γ(t)
(1 − t)CsΓ(1 − s)(γeqΛ)−tλ−rs

×μ−s
r Γ(−rs)Γ(s + t − 1)Γ

(
t
α
+ μ− 1

α

)
dsdt, (A14)

respectively.
After substitute (A13) and (A14) to (A10) and use the definition of bivariate H-function,

we can derive the exact closed-form expression of PDF as shown in (8).

Appendix C. Proof of Theorem 3

Substituting (1) and (7) into (10), after some rearrangements, we have

Pout,L = 1 + Q1 + Q2 (A15)

where

Q1 = −Θκ(1 − ω)κe

Γ(a)

∫ ∞

0
γH1,0

0,1

[
γΛe

∣∣∣∣∣(− 1
αe
+ μe, 1

αe

)]

×H0,1:2,0;0,1
1,0:0,2;1,1

[
b−rC

μr
1

γΘΛ

∣∣∣∣∣(2, 1, 1): ;
(

1 + 1
α − μ, 1

α

)
: (0, 1), (a, r

c ); (1, 1)

]
dγ (A16)

and

Q2 = −rγΘκωκe

∫ ∞

0
γH1,0

0,1

[
γΛe

∣∣∣∣∣ (− 1
αe
+ μe, 1

αe

)]

×H0,1:2,0;0,1
1,0:0,2;1,1

[
Cλ−r

μr
1

γΘΛ

∣∣∣∣∣(2, 1, 1) : ;
(

1 + 1
α − μ, 1

α

)
: (1, 1),(0, r) ; (1, 1)

]
dγ. (A17)

184



Drones 2022, 6, 341

To simplify (A16) further, we first express the bivariate H-functions in (A16) into
the form of a double line integral, and then place the curve integral regarding γ to the
innermost level by rearranging (A16), we have

Q1=
Θκ(1 − ω)κe

4π2Γ(a)

∫ t

L
(ΘΛ)−t

Γ(t)
Γ
(

t
α
+ μ − 1

α

)
×
∫ s

L
Γ(−s)Γ

(
a − rs

c

)
Γ(s + t − 1)

(
b−rC

μr

)s

×
∫ ∞

0
γ1−t H1,0

0,1

[
γΛe

∣∣∣∣∣(− 1
αe
+ μe, 1

αe

)]dγdsdt. (A18)

Then, using ([51], Equation (2.25.2/1)), we can transform (A18) into

Q1=
Θκ(1 − ω)κe

4π2Γ(a)

∫ t

L
(ΘΛ)−t

Γ(t)
Γ
(

t
α
+ μ − 1

α

)
×
∫ s

L
Γ(−s)Γ

(
a − rs

c

)
Γ(s + t − 1)

×Γ
(

2 − t
αe

+ μe −
1
αe

)
Λt−2

e

(
b−rC

μr

)s

dsdt. (A19)

Finally, converting the double curve integral into bivariate H-function using ([40],
Equation (2.57)), after some simplifications, we obtain from (A19) in an exact closed-form as

Q1 = −Θκ(1 − ω)κe

Γ(a)Λ2
e

×H0,1:1,1;2,0
1,0:1,2;0,2

⎡⎣ Λe
ΘΛ

b−rC
μr

∣∣∣∣∣∣
(2,1,1) :

(
1 + 1

α − μ, 1
α

)
;

:
(

1+αeμe
αe

, 1
αe

)
, (1,1); (0, 1), (a, r

c )

⎤⎦. (A20)

To process (A17) further, we first convert the bivariate H-function in (A17) into the
form of one double curve integral using ([40], Equation (2.55)). After placing the line
integral of γ into the innermost layer, we can transform (A17) into

Q2=
Θκrωκe

4π2

∫ t

L
(ΘΛ)−t

Γ(t)
Γ
(

t
α
+ μ − 1

α

)
×
∫ s

L
Γ(1 − s)Γ(−rs)Γ(s + t − 1)

(
Cλ−r

μr

)s

×
∫ ∞

0
γ1−tH1,0

0,1

[
γΛe

∣∣∣∣∣(− 1
αe
+ μe, 1

αe

)]dγdsdt. (A21)

Subsequently, using ([51], Equation (2.25.2/1)), we express the innermost curve inte-
gral in (A21) in the form of the product of Gamma functions. Then, we can write (A21) as

Q2=
Θκrωκe

4π2

∫ t

L
(ΘΛ)−t

Γ(t)
Γ
(

t
α
+ μ − 1

α

)
×
∫ s

L
Γ(1 − s)Γ(−rs)Γ(s + t − 1)

×Γ
(

2 − t
αe

+ μe −
1
αe

)
Λt−2

e

(
Cλ−r

μr

)s

dsdt. (A22)

Subsequently, based on the same steps as for the derivation of (A20), Equation (A22)
can be expressed in exact closed-form as
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Q2 = −Θκrωκe

Λ2
e

×H0,1:1,1;2,0
1,0:1,2;0,2

⎡⎣ Λe
ΘΛ

Cλ−r

μr

∣∣∣∣∣∣
(2,1,1) :

(
1 + 1

α − μ, 1
α

)
;

:
(

1+αeμe
αe

, 1
αe

)
,(1, 1) ; (1, 1),(0, r)

⎤⎦. (A23)

After substituting (A20) and (A23) into (A15), we can finally obtain the closed-form
expression of Pout,L in (11).

Appendix D. Proof of Corollary 1

To derive the asymptotic expression of SOP, we need to derive the asymptotic ex-
pressions of the first and the second bivariate H-function on the right-hand side of (11),
which are denoted by O1 and O2, respectively. We consider two cases: (a) γ1 → ∞ and
(b) γe → ∞.

Appendix D.1. Case γ1 → ∞

For the case γ1 → ∞, we first focus on deriving asymptotic expression for O1. Observe
that as γ1 tends to infinity, θΛ

Λe tends to zero. Thus, we first express the bivariate H-function
in the form of one double curve integral, and express the curve integral containing θΛ

Λe in
the form of an H- function. Then, we have

O1=
iΘκ(1 − ω)κe

2πΓ(a)Λ2
e

∫ t

L
Γ(−t)Γ

(
a − rt

c

)(
b−rC

μr

)t

×H2,1
2,2

[
ΘΛ
Λe

∣∣∣∣∣
(

1 − 1
αe
− μe, 1

αe

)
, (0, 1)

(−1 + t, 1), (− 1
α + μ, 1

α )

]
dt. (A24)

It is easy to observe that the H-function in (A24) contains two poles: (1 − t) and
(1 − αμ). According to [46], when the argument tends to zero, the asymptotic value of the
H-function can be expressed as the residue of the closest pole to the left of the integration
path l. Therefore, by utilizing ([52], Equation (1.8.4)), we can express (A24) as

O1=
iκ(1 − ω)κe

2πΛΓ(a)Λe

∫ t

L
Γ(−t)

Γ(1 − t)
Γ
(

a − rt
c

)
Γ
(

μ − t
α

)
×Γ

(
t

αe
+ μe

)(
b−rCΘΛ

Λeμr

)t

dt. (A25)

Following some simplifications, and using the definition of the H-function, we can
transform (A25) into the following form

O1=−
κ(1 − ω)κe

ΛΓ(a)Λe
H1,3

3,2

[
brΛeμr

CΘΛ

∣∣∣∣∣(1,1),(1 − a, r
c ), (1 − μ, 1

α )(
μe, 1

αe

)
, (0, 1)

]
.

(A26)

Next, we derive the asymptotic expression for O2. Observing that O2 and O1 have a
similar structure, we can readily transform O2 into the following form

O2=− iΘκrωκe

2πΛ2
e

∫ t

L
Γ(1 − t)Γ(−rt)

(
Cλ−r

μr

)t

×H2,1
2,2

[
ΘΛ
Λe

∣∣∣∣∣
(

1 − 1
αe
− μe, 1

αe

)
, (0, 1)

(−1 + t, 1), (− 1
α + μ, 1

α )

]
dt. (A27)
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Similarly, we again use the residue of the pole (1 − t) to represent the asymptotic
value of the H-function in (A27) as the argument tends to zero. Then, we have

O2=
iκrωκe

2πΛΛe

∫ t

L
Γ(−rt)Γ

(
μ − t

α

)
Γ
(

t
αe

+ μe

)
×
(

CΘλ−rΛ
Λeμr

)t

dt. (A28)

By using the definition of the H-function, we can transform (A28) into the follow-
ing form

O2 = −κrωκe

ΛΛe
H1,2

2,1

[
λrΛeμr

CΘΛ

∣∣∣∣∣(1, r), (1 − μ, 1
α )(

μe, 1
αe

) ]
. (A29)

Substituting (A26) and (A29) into (11), we obtain the asymptotic expression for SOP
for the case γ1 → ∞ as shown in (13).

Appendix D.2. Case γe → ∞

Now, we focus on the case γe → ∞. Obviously, as γe tends to infinity, θΛ
Λe tends to

infinity. Thus, using ([52], Equation (1.5.9)) and a similar approach to that used in case
γ1 → ∞, we can easily obtain closed-form expressions for O1 and O2 for case γe → ∞, as

O1=
(ω − 1)αe

Γ(a)Γ(μ)Γ(μe)Γ(αeμe + 1)
Γ
(

μ+
αeμe

α

)( Λe

ΘΛ

)αeμe

×H1,2
2,1

[
brμr

C

∣∣∣∣(1, 1), (1 − a, r
c )

(αeμe, 1)

]
(A30)

and

O2=
−rωαe

Γ(μ)Γ(μe)Γ(αeμe + 1)
Γ
(

μ +
αeμe

α

)( Λe

ΘΛ

)αeμe

×H1,2
2,1

[
λrμr

C

∣∣∣∣(0, 1), (1, r)
(αeμe, 1)

]
(A31)

respectively.
Substituting (A30) and (A31) into (11), we obtain the asymptotic expression for SOP

for the case γe → ∞ as shown in (14).

Appendix E. Proof of Theorem 4

Substituting (2) and (8) into (16), after some simplifications, we can transform the PNZ
expression in (16) to

Pnz = T1 + T2 (A32)

where

T1 =
∫ ∞

0

κ(1 − ω)κe

Γ(a)Λe
H1,1

1,2

[
γΛe

∣∣∣∣∣ (1, 1)(
μe, 1

αe

)
, (0, 1)

]

×H0,1:0,1;2,0
1,0:1,1;0,2

[
1

γΛ
b−rC

μr

∣∣∣∣∣(2, 1, 1) :
(

1 + 1
α − μ, 1

α

)
;

: (2, 1) ; (0, 1),(a, r
c )

]
dγ (A33)
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and

T2 =
∫ ∞

0

rκωκe

Λe
H1,1

1,2

[
γΛe

∣∣∣∣∣ (1, 1)(
μe, 1

αe

)
, (0, 1)

]

×H0,1:0,1;2,0
1,0:1,1;0,2

[
1

γΛ
Cλ−r

μr

∣∣∣∣∣(2, 1, 1) :
(

1 + 1
α − μ, 1

α

)
;

: (2, 1) ; (1, 1), (0, r)

]
dγ. (A34)

Representing the bivariate H-function into the form of one double line integral and
moving the line integral regarding γ to the innermost level, we can re-write (A33) as

T1=−κ(1 − ω)κe

4π2Γ(a)Λe

∫ t

L
Γ(−t)Γ

(
a − rt

c

)(
b−rC

μr

)t

×
∫ s

L
Λ−s

Γ(s − 1)
Γ(s + t − 1)Γ

(
s
α
+ μ − 1

α

)
×
∫ ∞

0
γ−sH1,1

1,2

[
γΛe

∣∣∣∣∣ (1, 1)(
μe, 1

αe

)
, (0, 1)

]
dγdsdt. (A35)

Afterwards, using the same technique as that used for deducing (A20) and (A23), we
can express (A35) as

T1 =
κ(1 − ω)κe

Γ(a)Λ2
e

×H0,1:2,0;1,1
1,0:0,2;1,2

⎡⎣b−rC
μr
Λe
Λ

∣∣∣∣∣∣
(2,1,1) : ;

(
1 + 1

α − μ, 1
α

)
: (0,1),(a, r

c ) ;
(

1+αeμe
αe

, 1
αe

)
,(1,1)

⎤⎦. (A36)

Similarly, T2 in (A34) can be expressed as

T2 =
κrωκe

Λ2
e

×H0,1:2,0;1,1
1,0:0,2;1,2

⎡⎣Cλ−r

μr
Λe
Λ

∣∣∣∣∣∣
(2,1,1) : ;

(
1 + 1

α − μ, 1
α

)
: (1,1),(0, r) ;

(
1+αeμe

αe
, 1

αe

)
,(1,1)

⎤⎦ (A37)

using ([51], Equation (2.25.2/1)).
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Abstract: In this paper, an unmanned aerial vehicle is utilized as an aerial relay to connect onshore
base station with offshore users in a maritime IoT system with uplink non-orthogonal multiple access
enabled. A coordinated direct and relay transmission scheme is adopted in the proposed system,
where close shore maritime users directly communicate with onshore BS and offshore maritime users
need assistance of an aerial relay to communicate with onshore BS. We aim to minimize the total
transmit energy of the aerial relay by jointly optimizing the UAV hovering position and transmit
power allocation. The minimum rate requirements of maritime users and transmitters’ power budgets
are considered. The formulated optimization problem is non-convex due to its non-convex constraints.
Therefore, we introduce successive convex optimization and block coordinate descent to decompose
the original problem into two subproblems, which are alternately solved to optimize the UAV energy
consumption with satisfying the proposed constraints. Numerical results indicate that the proposed
algorithm outperformed the benchmark algorithm, and shed light on the potential of exploiting
the energy-limited aerial relay in IoT systems.

Keywords: maritime communication system; optimization; Uplink NOMA; UAV relay network

1. Introduction

One significant challenge for maritime communication networks is the rapid increas-
ing demand of broadband wireless services, especially for offshore maritime users [1].
For near shore maritime users, it is possible to enjoy broadband wireless service in loca-
tions where either mobile operator coverage is available or Wi-Fi-based long distance links
can be deployed [2]. However, recently, it is still a challenge to provide seamless mobile
broadband coverage for offshore maritime users located over tens of kilometers from shore
since the communication infrastructures are difficult to deploy in the ocean [3]. For years,
MF/HF/WHF-based communication dominated offshore user wireless communications.
However, this communication technology cannot afford a high-rate transmission service
on accounts of higher propagation delay and insufficient bandwidth [4]. As a conventional
solution for offshore high rate transmission service, satellite communication offers a better
quality-of-service as well as higher system maintenance cost and the problem of flexibil-
ity [5]. Different from satellites, unmanned aerial vehicles (UAVs) have been considered
as an economic on-demand data service solution for offshore maritime users in diverse
maritime activities owning to its advantage of highly maneuverable and flexible deploy-
ment, especially for various mission-critical applications such as emergency deployment
and maritime search and rescue [6,7].

Although UAV-assisted communications have been widely studied for terrestrial
communication scenarios [8–11], UAV-integrated maritime communication is still an open
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research field. To provide an effective aerial relay service, the distribution of users has
great importance in resource allocation and trajectory optimization. Unlike in the terrestrial
scenario, it is difficult to acquire either accurate location information or real-time channel
state information (CSI) of maritime users since the distribution is scattered within a vast
area [12], which increases the complexity of fly trajectory design. In addition, the energy-
efficient issue is another vital problem for UAV relay communication due to the limited
life time, especially for maritime communication scenarios. After departure, a UAV relay
cannot land on the sea until the assigned mission is accomplished.

1.1. Recent Works

Recently, UAV-assisted communication techniques have attracted lots of attention
in maritime communication systems for their deployment flexibility and line of sight (LoS)
transmission ability. There are some works on UAV deployment and resource allocation
problems in UAV-assisted maritime communication systems [13–17]. In [13], the authors
study the optimal UAV placement problem to achieve the maximum system rate in a mar-
itime downlink caching UAV-assisted decode-and-forward (DF) relay communication
system with both air-to-ground and air-to-sea models considered. In [14], a UAV-assisted
communication system is used to extend the coverage of the onshore BSs in the down-
link communication scenario. The non-orthogonal multiple access (NOMA) protocol is
adopted to enable the aerial BSs and simultaneously sever multiple ships. The authors
have proposed a joint UAV transmit power and transmission duration optimization scheme
to maximize the sum rate of ships. In [15], to facilitate spectrum sharing and efficient
backhaul, UAV-added coverage enhancement is studied for maritime communication
in a hybrid space–air–ground integrated network. The UAV trajectory design and transmit-
ted power allocation have been jointly optimized by considering the constraints on UAV
kinematics, tolerable interference, backhaul, and UAV transmit power budget. In [16],
UAV-assisted ocean monitoring network architecture has been constructed for a remote
oceanic data collection. In [17], a fermat-point theory-based fast trajectory planning scheme
is proposed to improve received data throughput of UAV. Although the power optimization
problem of UAV relay is studied in [13–15], these works focused on the rate maximization
problem in a downlink maritime communication scenario and neglect resource allocation
issues in uplink scenarios. References [16,17] focused on trajectory design issues subject
to the constraint on the UAV flying energy budget in UAV-assisted maritime data col-
lection systems and ignored the resource allocation problem of UAV relay. Moreover,
all of the aforementioned works presented a power allocation problem of UAV relay by
formulating a throughput maximization problem with constraints of the UAV power
budget. However, the power minimization problem of UAV relay should be discussed
to shed light on the potential of utilizing an energy-limited aerial platform in a maritime
communication scenario.

1.2. Motivation and Contributions

Motivated by [18,19], we study the joint UAV hovering position and power alloca-
tion in UAV-assisted maritime communication systems. Particularly, we focus on a UAV
transmit power consumption minimization issue subject to maritime user’s minimum
rate requirements and transmit power constraints. NOMA-enabled relay is introduced
to the maritime IoT system to improve the spectrum efficiency [20,21]. It worth noting that
the uplink NOMA scheme is introduced to boost the system spectrum reuse in our work,
which is different from the downlink relay system discussed in [13,15,18]. Furthermore,
the NOMA scheme was not employed in [19]. The main contributions of this paper are
outlined as follows:
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1. In this paper, we study the power minimization problem subject to user’s minimum rate
requirement and UAV transmit power budget in a maritime IoT system with A2A and A2S
link model considered. A coordinated direct and relay transmission scheme employing
uplink NOMA scheme is proposed and investigated, where maritime close-shore users
(MCU) directly communication with onshore BS, whereas maritime remote users (MRU)
communicate with the onshore BS by a half-duplex DF UAV relay.

2. In the proposed maritime IoT system, an interference cancellation parameter is intro-
duced to summarized UAV’s received data expression in transmission phase 1, which
facilitates solving the proposed UAV power transmission minimization problem.

3. The successive convex approximation method is applied to deal with non-convex
inequality constraints of the formulated optimization problem. The block coordinate
descent method (BCD) is used to decouple the original problem into two subprob-
lems, namely power allocation and optimal UAV placement. After that, an iterative
algorithm is proposed to optimize power allocation coefficients and optimal UAV
coordinates alternately.

1.3. Paper Organization

The rest of this work is organized as follows. In Section 2, the interested UAV-assisted mar-
itime IoT system model and formulated optimization problem are proposed.
Section 3 presents joint power allocation and an optimal UAV placement solution to the opti-
mization problem. Numerical results are presented in Section 4. Finally, Section 5 concludes
our paper.

2. System Model and Problem Formulation

2.1. System Model

As shown in Figure 1, a UAV-assisted maritime IoT system model, including one
onshore base station (BS), one mobile UAV relay, and multiple maritime users deployed
on a certain area for data collection, is considered. These maritime users are divided
into two groups, including K maritime close-shore users (MCU) and K maritime remote
users (MRU), according to communication service type. Kc = { k′|k′ ∈ Kc, |Kc| = K} and
Kr = { k|k ∈ Kr, |Kr| = K} denote the MRUs set and MCUs set, respectively. It is assumed
that all transmission nodes in this model are equipped with a single antenna, Kr ∩Kc = ∅.
MCUs are deployed closely along the coastline and can be served directly by the onshore
BS. MRUs are deployed far away from the coastline and must rely on a UAV relay for data
ferrying. A coordinated direct and relay transmission is introduced, where an MCU directly
communicates with an onshore BS, whereas an MRU communicates with an onshore BS by
a half-duplex DF UAV relay. A two-user uplink NOMA scheme is considered by an MRU
coexisting with an MCU in a spectrum resource block. In this paper, we focus on total
transmit power minimum optimization of UAV relay by jointly optimizing power allocation
and UAV hovering position. It is assumed that |Kr| = |Kc| = K. Thus, there are K NOMA
pairs in the proposed networks.
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Figure 1. System model of maritime IoT system with a UAV relay.

The three-dimensional Cartesian coordinate is considered, where the coastline is
approximated as the x-axis, the y-axis extends into the ocean, and the z-axis represents
the altitude. The coordinate of the onshore BS is cB = (0, 0, h). Although locations of mar-
itime users may change along with time according to sea surface waves, their coordinates
can still be regarded as approximately fixed in a certain period, which can be denoted
as ck = (xk, yk, 0), ∀k ∈ Kr and ck′ = (xk′ , yk′ , 0), ∀k′ ∈ Kc, respectively. The UAV departs
from the starting point J0, then flys to the optimal hovering position J∗ for the data relaying
mission, and finally returns to the original location. According to the pre-planned deployed
position of maritime users, the optimal hovering position of the UAV can be predeter-
mined before its mission executes. Thus, the coordinates of the UAV can be expressed
as (xu, yu, hu) during the transmission mission’s executed duration. Denote the distances
between BS and the UAV, between the UAV and the k-th MRU, and between the k′-th MCU,
respectively, as:

dUB = ‖cu − cB‖ =

√
(xu − xB)

2 + (yu − yB)
2 + h2

u (1)

dBk′ = ‖cB − ck′ ‖ =

√
(xB − xk′)

2 + (yB − yk′)
2 + h2 (2)

dUk = ‖cu − ck‖ =

√
(xu − xk)

2 + (yu − yk)
2 + h2

u, ∀k ∈ Kr (3)

dUk′ = ‖cu − ck′ ‖ =

√
(xu − xk′)

2 + (yu − yk′)
2 + h2

u, ∀k′ ∈ Kc (4)

We assume that the UAV flies high enough to enable an LoS transmission.
An air-to-sea (A2S) channel model is composed by large-scale and small-scale fading [15].
Thus, the channel between UAV and k-th MRU can be represented as:

hUk =
1

(LUk)
1/2 h̃Uk, ∀k (5)

where LUk denotes the path loss component and h̃Uk denotes the Rician fading component.
Then, the path loss model can be expressed as:

LUk(dB) = AU + 10ςU log 10
(

dUk
d0

)
+ XU (6)
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where d0 refers to the reference distance, AU denotes the path loss at d0, ςU denotes the path
loss exponent, and XU is a zero-mean Gaussian random variable with standard deviation
σXU [22,23]. Rician fading can be represented as:

h̃Uk =

√
SU

1+SU
+

√
1

1 + SU
gUk (7)

where gUk ∼ CN (0, 1) and SU indicates the Rician factor that corresponds to the ratio
between the LoS power and the scattering power [24]. In the proposed system, the maritime
users are deployed on pre-planned positions, then their location data can be pre-measured.
Although locations of MRUs and MCUs may change along with time according to sea
surface waves, their coordinates can still be regarded as approximately fixed in a certain
period. Thus, their corresponding large-scaled channel state information (CSI) can be
obtained. Similarly, the A2S channel between onshore BS and k′-th MCU is denoted as:

hBk′ =

(
d0

dBk′

) ςU
2

10−
AU+XU

20

(√
SU

1 + SU
+

√
1

1 + SU
gBk′

)
(8)

where gBk′ ∼ CN (0, 1). The interference A2S link between UAV and k′-th MCU is denoted as:

hUk′ =

(
d0

dUk′

) ςU
2

10−
AU+XU

20

(√
SU

1 + SU
+

√
1

1 + SU
gUk′

)
(9)

where gUk′ ∼ CN (0, 1). On the other hand, The air-to-air (A2A) channel between onshore
BS and UAV has a high LoS probability, which can be represented as:

hUB =

(
d0

dUB(t)

) ςUB
2

10−
AUB+XUB

20

(√
SUB

1 + SUB
+

√
1

1 + SUB
gUB

)
(10)

where AUB denotes the path loss at d0, ςUB denotes the path loss exponent, XUB is a zero-
mean Gaussian random variable with standard deviation, SUB is the Rician factor, and σXUB
and gUB ∼ CN (0, 1).

For each transmission duration, the UAV receives data from an MRU in Phase 1 and
then forwards it to BS in phase 2; meanwhile, an MCU transmits data to BS in the same
subchannel with the MRU in both phases by uplink NOMA. With loss of generality, we
consider |hBk′ |2 ≥ |hUB|2 ≥ |hBk|2.

1. Phase-1 (t1)
In an uplink NOMA transmission scenario, an MCU and an MRU transmit symbols x1
and y1 simultaneously with αk′Pt and αkPt, where Pt denotes the total transmit power
in phase 1. αk′ and αk are the power allocation coefficient in phase 1. To guarantee
an efficient SIC decoding at the NOMA receiver, it is assumed that αk′ + αk = 1. Thus,
data received at onshore BS and the UAV in Phase 1 can be given, respectively, by:

yt1
Bk′ = |hBk′ |

√
αk′Ptx

t1
1 + w (11)

yt1
Uk = |hUk|

(√
αk′Ptx

t1
1 +

√
αkPty

t1
1

)
+ w (12)

where w ∼ CN
(
0, σ2) denotes the background noise. Due to the half-duplex relay

scheme, the achievable rate of the k′-th MCU at BS in phase 1 can be represented as:

Rt1
Bk′ =

1
2

log2

(
1 +

αk′Pt|hBk′ |2
σ2

)
=

1
2

log2

(
1 + αk′ρt|hBk′ |2

)
(13)
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where Pt
ρ2 = ρt. Because of the simultaneous transmission of MRU and MCU, UAV is

able to receive the signal from both of them. We assume perfect time synchronization
between MRU and MCU. According to the uplink NOMA principle, the UAV relay
obtains the decoded symbol y1 by considering the following two conditions.

• |hUk|2 ≥ |hUk′ |2

Rt1
Uk =

1
2

log2

(
1 +

αkPt|hUk|2

αk′Pt|hUk′ |2 + σ2

)
=

1
2

log2

(
1 +

αkρt|hUk|2

αk′ρt|hUk′ |2 + 1

)
(14)

• |hUk|2 ≤ |hUk′ |2

Rt1
Uk =

1
2

log2

(
1 +

αkPt|hUk|2
σ2

)
=

1
2

log2

(
1 + αkρt|hUk|2

)
(15)

By introducing κ ∈ {0, 1} as the interference cancellation parameter, the received data
rate at UAV in Phase 1 can be summarized as:

Rt1
Uk=log2

(
1 +

αkρt|hUk|2

καk′ρt|hUk′ |2 + 1

)

=

⎧⎪⎪⎨⎪⎪⎩
log2

(
1 + αkρt|hUk|2

)
κ = 0, |hUk|2 ≤ |hUk′ |2

log2

(
1 +

αkρt|hUk|2

αk′ρt|hUk′ |2 + 1

)
κ = 1, |hUk|2 ≤ |hUk′ |2

(16)

2. Phase-2 (t2)
In phase 2, both MCU and UAV transmit symbols x2 and y1 simultaneously to onshore
BS with powers βk′Pt and βkPt, where βk′ , βk are the power allocation coefficient
in phase 2 and βk′ + βk = 1. Thus, received data at onshore BS can be represented as:

yt2
BUk′ = |hUB|

√
P2

k yt2
1 + |hBk′ |

√
P2

k′x
t2
2 + w (17)

Since |hUB|2 ≤ |hBk′ |2, the achievable data rates of the UAV relay and MCU are
presented, respectively, by:

Rt2
UB =

1
2

log2

(
1 +

βkPt|hUB|2
σ2

)
=

1
2

log2

(
1 + βkρt|hUB|2

)
(18)

Rt2
Bk′ =

1
2

log2

(
1 +

β′
kPt|hBk′ |2

βkPt|hUB|2 + σ2

)
=

1
2

log2

(
1 +

βk′ρt|hBk′ |2

βkρt|hUB|2 + 1

)
(19)

3. Sum Capacity
Using Equations (13) and (19), the sum capacity of the k′-th MCU is given as:

Rk′ = Rt1
Bk′ + Rt2

Bk′ (20)

On the other hand, the end-to-end capacity of a two-hop cooperative link is the mini-
mum one of the two hops. Thus, according to Equations (16) and (18), the capacity
of MRU is obtained as:

Rk = min
(

Rt1
Uk, Rt2

UB

)
(21)
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2.2. Problem Formulation

It is assumed that the UAV fights with a fixed altitude, which means hu is constant.
Since the transmission duration and fighting trajectory for each relay mission is predeter-
mined, the propulsion energy and hovering energy required for the UAV is also consid-
ered before. The UAV transmit power minimization problem has formulated constraints
on maritime users’ minimum rate requirements, maritime maximum users’ transmit power
thresholds and UAV power budget, which can be summarized as:

(P1) min
α,β,(xu ,yu)

PUAV

s.t. C1 : PUAV ≤ P̄Ut

δ2 , ∀k

C2 : αk ≥ 0, αk′ ≥ 0, βk ≥ 0, βk′ ≥ 0, ∀k, k′

C3 : αk′ + αk=1, βk′ + βk=1, ∀k, k′

C4 : min
(

Rt1
Uk, Rt2

UB

)
≥ R̄k, ∀k

C5 : Rt1
Bk′ ≥ R̄k′ , ∀k′

C6 : Rt2
Bk′ ≥ R̄k′ , ∀k′

(22)

where PUAV = ∑
k∈Kr

βkρt denotes the total transmitted energy consumption of UAV during

mission execution. α = [α1, . . . , αk, · · · , αK] and β = [β1, . . . , βk, · · · , βK] denote power
coefficient vectors of K NOMA pairs. P̄Ut denotes the transmit power budget of UAV.
C1 guarantees the power supplied by UAV is not exceeding its transmit power budget.
C2 and C3 are the power allocation coefficient constraints. C4–C6 can guarantee the mini-
mum rate requirements of two types of maritime users. To solve (P1), we first introduce K
slack variables ηk = min

(
Rt1

Uk, Rt2
UB

)
, ∀k into the objective function such that it is reformu-

lated as:
(P2) min

α,β,(xu ,yu),η
PUAV

s.t. C7 : Rt1
Uk ≥ ηk, ∀k

C8 : Rt2
UB ≥ ηk, ∀k

C1 − C6

(23)

where η = [η1, · · · , ηk, · · · , ηK] denotes the slack variables vector of Rk. Thus, (P2) can be
transformed as:

(P3) min
α,β,(xu ,yu),η

PUAV

s.t. C4′ : αk ≥
λk|gBk′ |2 + λk

ρt

|hUk|2 + λk|gBk′ |2
, βk ≥

λk

ρt|hUB|2

C5′ : αk ≤
|hBk′ |2 −

λk′
ρt

|hBk′ |2

C6′ : βk ≤
|hBk′ |2 −

λk′
ρt

λk′ |hUB|2 + |hBk′ |2

C1 − 3, C7 − 8

(24)

where λk =
(

22R̄k − 1
)

and λk′ =
(

22R̄k′ − 1
)

. (P3) is still challenging to solve since C7
and C8 are non-convex to α and β. For the UAV placement optimization problem, there are
two sorts of optimization approaches, namely the deterministic optimization method and
stochastic optimization method [25]. The BCD approach is a computationally-efficient de-
terministic approach that can be used to solve joint UAV placement and resource allocation
problem by iteratively optimizing two block variables in turn [26]. Therefore, we introduce
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the BCD optimization method to decouple the original problem into a power allocation
problem and optimal UAV placement and optimize two block variables alternately.

3. Proposed Optimization Solution

3.1. Power Minimization

With the given optimum UAV hovering placement, the power minimization problem
can be transformed as:

(P4) min
α,β,η

PUAV

s.t. C7 : Rt1
Uk =

1
2

log2

(
1 +

αkρt|hUk|2

κ(1 − αk)|hUk′ |2 + 1

)
≥ ηk, ∀k

C8 : Rt2
UB = log2

(
1 + βkρt|hUB|2

)
≥ ηk, ∀k

C1 − C3, C4′, C5′, C6′

(25)

where C8 is non-convex inequality constraint since log2

(
1 + βkρt|hUB|2

)
is concave.

C7 can be transformed as:

Rt1
Uk =log2

(
αkρt

(
|hUk|2 − κ|hUk′ |2

)
+ ρt|gUk′ |2 + 1

)
−log2

(
κ(1 − αk)ρt|hUk′ |2 + 1

)
≥ 2ηk, ∀k

(26)

which is a non-convex inequality constraint since log2

(
αkρt

(
|hUk|2 − κ|hUk′ |2

)
+ ρt|gUk′ |2 + 1

)
is concave and −log2

(
κ(1 − αk)ρt|hUk′ |2 + 1

)
is convex. To tackle the non-convexity of C7

and C8, we introduce the successive convex approximation (SCA) method. By giving any local
point ᾱk, the upper bound of Rt1

Uk can be obtained as:

Rt1(upper)
Uk =log2

(
αkρt

(
|hUk|2 − κ|hUk′ |2

)
+ κρt|hUk′ |2 + 1

)
−log2

(
κ(1 − αk)ρt|hUk′ |2 + 1

)
+

ρt

(
|hUk|2 − κ|hUk′ |2

)
(αk − ᾱk)

ln 2
(

αkρt

(
|hUk|2 − κ|hUk′ |2

)
+ κρt|hUk′ |2 + 1

)
(27)

Similarly, the left-side of C8 is concave with respect to βk. Given any local point β̄k,
the upper bound of Rt2

Uk is obtained as:

Rt2(upper)
UB = log2

(
1 + βkρt|hUB|2

)
+

ρt|hUB|2

ln 2
(

1 + βkρt|hUB|2
)(βk − β̄k

)
(28)

Then, (P4) can be approximated by:

(P5)min
α,β,η

PUAV

s.t. C7′ : ηk ≤ Rt1(upper)
Uk

C8′ : ηk ≤ Rt2(upper)
UB

C1 − C3, C4′ − C6′

(29)

(P5) is convex with respect to α, β and η, which can be solved by the interior point
method.
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3.2. UAV Placement Optimization

With the given power allocation coefficients, (P1) can be rewritten as:

(P6) min
(xu ,yu)

∑
k∈Kr

βkρt

s.t. C6′′ : log2

(
1 +

βk′ρt|hBk′ |2(dUB)
ςU

βkρt ϕ2
UB + (dUB)

ςU

)
≥ 2R̄k′ , ∀k

C7′′ : log2

(
1 +

αkρt ϕ2
Uk(dUk′)

ςU

καk′ρt ϕ2
Uk′(dUk)

ςU + (dUk)
ςU (dUk′)

ςU

)
≥ 2ηk, ∀k

C8′′ : log2

(
1 +

βkρt ϕ2
UB

(dUB)
ςU

)
≥ 2ηk, ∀k

(30)

where,

ϕUB = 10−
AUB+XUB

20 · (d0)
ςUB

2

(√
SUB

1 + SUB
+

√
1

1 + SUB
gUB

)
(31)

ϕUk = 10−
AU+XU

20 · (d0)
ςU
2

(√
SU

1 + SU
+

√
1

1 + SU
gUk

)
, (32)

ϕUk′ = 10−
AU+XU

20 · (d0)
ςU
2

(√
SU

1 + SU
+

√
1

1 + SU
gUk′

)
. (33)

(P6) is non-convex for its three non-convex constraints. By the SCA method, C6” is
transformed into:

log2

(
βkρt ϕ2

UB + (dUB)
ςU + βk′ρt|hBk′ |2(dUB)

ςU
)
− log2

(
βkρt ϕ2

UB + (dUB)
ςU
)
≥ 2R̄k′ (34)

By introducing a slack variable Z1, C6” are equivalent to the following two con-
straints as:

log(Z1)− log2

(
βkρt ϕ2

UB + (dUB)
ςU
)
≥ 2R̄k′

log2

(
βkρt ϕ2

UB + (dUB)
ςU + βk′ρt|hBk′ |2(dUB)

ςU
)
≥ Z1

(35)

Then, we approximate the above equations by their lower bounds. The item
−log2

(
βkρt ϕ2

UB + (dUB)
ςU
)

in Equation (35) is convex with respect to (dUB)
ςU . (dUB)

ςU is
convex with respect to cu = (xu, yu, hu), where hu is constant. Thus, given any
c̄u = (x̄u, ȳu, hu), Equation (35) can be approximated by their lower bound as:

log(Z1)− log2

(
βkρt ϕ2

UB + (dc̄u ,cB)
ςUB

)
− ςUB(dc̄u ,cB)

(ςUB−1)(c̄u − cB)
T(cu − c̄u)

ln 2
(

βkρt ϕ2
UB + (dc̄u ,cB)

ςUB
) ≥ 2R̄k′ (36)

βkρt ϕ2
UB +

(
1 + βk′ρt|hBk′ |2

)(
(dc̄u ,cB)

ςUB + d(ςUB−1)
c̄u ,cB

(c̄u − cB)
T(cu − c̄u)

)
≥ Z1 (37)

where dc̄u ,cB = ‖c̄u − cB‖. Apparently, the left-side of Equations (36) and (37) are concave
with respect to cu = (xu, yu), ηk and Z1. Similarly, the non-convex constraints C7” and C8”
are approximated by their lower bounds:

log(Z2)−log2

(
καk′ρt ϕ2

Uk′(dUk)
ςU + (dUkdUk′)

ςU
)

−
ςU

(
καk′ρt ϕ2

Uk′
(
dc̄u ,ck

)−1
+
(
dc̄u ,ck′

)ςU−1
)
(c̄u − ck)

T(cu − c̄u)

ln 2
(

καk′ρt ϕ2
Uk′ +

(
dc̄u ,ck′

)ςU
) ≥ 2η̄k

(38)
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ςU
(
dc̄u ,ck′

)(ςU−1)
(c̄u − ck)

T(cu − c̄u)(
dc̄u ,ck

)(2−ςU)
+καk′ρt ϕ2

Uk′
(
dc̄u ,ck

)ςU

(
1 +

(c̄u − ck)
T(cu − c̄u)

dc̄u ,ck

)

+αkρt ϕ2
Uk
(
dc̄u ,ck′

)ςU

(
1 +

(c̄u − ck′)
T(cu − c̄u)

dc̄u ,ck′

)
≥ Z2

(39)

where dc̄u ,ck = ‖c̄u − ck‖, dc̄u ,ck′ = ‖c̄u − ck′ ‖.

log(Z3)− log2
(
(dc̄u ,cB)

ςUB
)
− ςUB(dc̄u ,cB)

(ςUB−1)(c̄u − cB)
T(cu − c̄u)

ln 2(dc̄u ,cB)
ςUB

≥ 2ηk (40)

βkρt ϕ2
UB + (dc̄u ,cB)

ςUB + (dc̄u ,cB)
(ςUB−1)(c̄u − cB)

T(cu − c̄u) ≥ Z3 (41)

where Z2 and Z3 are the slack variable introduced to C7” and C8”, respectively, and c̄u is
the local point of the UAV coordinate obtained in the last iteration. Thus, the optimum
solution of (P6) is always lower bounded by:

(P7)min
cu ,η ∑

k∈Kr

βkρt

s.t. (36), (37), (38), (39), (40), (41), ∀k, k′
(42)

3.3. Iterative Algorithm

Based on the solutions to the two sub-problems, we propose an iterative algorithm
for (P2) by using the BCD method, which is guaranteed to cover a sub-optimum [27]
(In [27]; its BCD-based algorithm contains an additional feasibility checking to guarantee
the feasibility of its proposed optimization problem), as summarized in Algorithm 1.
Different from [27], the optimal results are acquired in feasible sets obtained in Equation (29)
and Equation (42) by Algorithm 1 without additional feasibility checking. q and ε are
denoted as the number of iteration times and the algorithm convergence factor.

Algorithm 1 BCD Method for Joint Placement and Power Optimization

Initialize α(0), β(0), η(0) and cu let q = 0, ε=10−5

repeat

Solve (P5) for given
{

c(q)u

}
, and denote the optimal solution as

{
α(q+1), β(q+1),η(q+1)

}
Solve (P7) for given

{
α(q+1), β(q+1)η(q+1)

}
, and denote the optimal solution

as
{

c(q+1)
u

}
Update q = q + 1

until ∑
k∈Kr

β
(q+1)
k − ∑

k∈Kr

β
(q)
k ≥ ε

The flowchart of Algorithm 1 is present in Figure 2, which shows the iterative pro-
cedure of the proposed optimization solution of joint UAV placement and power opti-
mization. In this paper, we introduce the BCD method to alternately solve the power
allocation problem and UAV optimal placement problem by convex optimization. Firstly,
initial values

{
α(0), β(0),η(0)

}
and

{
c(0)u

}
are given and the BCD method is applied to op-

timize the variables block with the other variables block fixed. Then, we repeat the iter-
ation until the UAV transmitted power minimization is obtained due to its convergence.
Finally, the optimal power allocation

{
α(∗), β(∗),η(∗)

}
and UAV position coordinates

{
c(∗)u

}
can be derived. In addition, Algorithm 1 yields a suboptimal solution, due to the optimal
solution obtained by two suboptimal problems.
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Figure 2. The flowchart of Algorithm 1.

4. Numerical Results and Discussion

In this section, we simulate a maritime IoT UAV-relaying network with K pairs of mar-
itime users. The coordinates of onshore BS are (0, 0, 150). The onshore BS coverage is a circle
with 200 m as radius. K MCUs are randomly located along the coastline within the onshore
BS service area. K MRUs are randomly located in a square area of 200 × 200 m2 with
coordinates (0, 400, 0). The constant altitude of UAV is set as hu = 150 m. Set UAV power
budget P̄Ut = 4 W, δ2 = −108 dBm, the carrier frequency fc = 5 MHz, d0 = 1 m, light
speed c = 3 × 108 m/s. The parameters of the channel models in maritime propagation
environment can be obtain by [22]. The simulation parameters are given in Table 1.
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Table 1. Simulation parameters.

Parameter Description Value

cB Coordination of onshore BS (0, 150, 0)
hu Flight altitude of UAV 150 m
d0 Reference distance 1 m
fc Carrier frequency 5 MHz
σ2 Background noise −108 dBm
c Light speed 3 × 108 m/s

P̄Ut UAV transmit power budget 4 W
AU A2S link path loss at d0 116.7
ςU A2S link path loss exponent 20
δXU standard deviation of XU 0.1
SU A2S link Rician factor 30

AUB A2A linkpath loss at d0 46.4
ςUB A2A link path loss exponent 15
δXUB standard deviation of XUB 0.1
SUB A2A link Rician factor 10

Figure 3 shows the optimized horizontal locations of UAV with different transmit
power budget. Both the K = 4 NOMA pair scenario and K = 6 NOMA pair scenario
are discussed in this part. We set the minimum rate requirement R̄k = R̄k′ = 0.5 bps/Hz.
The optimized UAV locations with a NOMA pair total transmit power Pt = 1 W, 1.5 W
and 2 W are marked with colored star markers. It shows that there exists an optimal
hovering position, which achieves the tradeoff between UAV transmit power minimization
and MRU’s minimum rate requirements. It can be seen in Figure 3 that with higher
maritime user pair total transmit power, the UAV should hover closer to the onshore BS
to enjoyed better A2A channels. Then, the UAV relay consumes less energy. Moreover, with
the number of MRUs increasing, the UAV should hover closer to the onshore BS to serve
more MRUs within its power budget. Figure 4 illustrates the power allocation results
of UAV for each MRU data ferrying with various NOMA pair’s total transmitted power,
according to the optimal position in Figure 3. It is indicated that UAV consumes less power
for hovering closer to onshore BS and enjoying a better A2A link. Furthermore, at the same
hovering position, UAV allocates more power for the MRU that is closer to relay data since
UAV receives a higher MRU rate with better A2S channel condition.
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Figure 3. Horizontal locations of UAV with different NOMA total power pairs Pt.
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Figure 4. Power allocation of UAV to BS for each MRU with different NOMA total power pairs Pt.

Figure 5 demonstrates that the required UAV transmits power with various NOMA
total transmitted power pairs Pt in the K = 4 NOMA pairs scenario. We set the same dMCU
rate requirement as the MRUs. Specifically, randomly searched UAV placement scheme
(In the randomly searched UAV placement scheme, the UAV coordinates are obtained
after several times randomly searching in the feasible region. The number of searching
times is predetermined. This scheme is also used as a benchmark in [8,18].) is employed
as a benchmark with 10 times random search. The proposed optimized power allocation
is applied as a power allocation scheme. It shows in Figure 5 that UAV requires more
total transmitted power by increasing MRU’s rate requirement. With the increasing of Pt,
the required UAV’s transmitted power decreases. It is shown that, compared with a
randomly searched location scheme, the UAV transmit power decreases over 7% with
R̄k = 0.45 bps/Hz, over 3% with R̄k = 0.5 bps/Hz, and over 3% with R̄k = 0.55 bps/Hz,
respectively. Furthermore, it is illustrated that our proposed optimal algorithm outperforms
the benchmark scheme.
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Figure 5. UAV transmit power with different NOMA pair total power Pt.
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The impact of the MRU rate requirements to the required UAV transmitted power
is evaluated in Figure 6 with a NOMA pair total transmitted power Pt = 1 W. The 1.5 W
and 2 W K = 4 NOMA pair scenario is discussed in this part. We set the same MCU
rate requirement as the MRUs. It shows that more UAV transmitted power is required by
the increasing MRU rate requirement with more transmitted power to guarantee higher
data rate requirements. It is shown that compared with randomly searched location scheme,
the UAV transmit power decrease over 2% with Pt = 1 W, over 4% with Pt = 1.5 W and
7% with Pt = 2 W, respectively. It is worth noting that the curve of UAV transmitted
power grows smoothly with higher rate requirements compared to lower rate requirements.
The reason is that with the increasing user rate requirement, more transmitted power is
allocated to MCU to guarantee its minimum rate requirement, which has no extra channel
gain due to its fixed position, whereas the MRU can obtain a better data rate with better
A2A channel condition.
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Figure 6. UAV transmitted power with different MRU rate requirements R̄k.

5. Conclusions

In this paper, a UAV was utilized as a relay to help offshore maritime users connect
with onshore BS. The UP-NOMA scheme was proposed to increase system spectrum effi-
ciency. The optimal UAV hovering placement and transmitted power allocation were jointly
optimized to minimize the total transmitted power consumption of the UAV relay energy
with constraints of the minimum maritime user rate requirements and transmitters’ power
budgets. The SCA method was applied to deal with the non-convexity of the proposed op-
timization problem and the BCD method was employed to generate an iterative algorithm
for successively optimizing two sub-problems. Numerical results indicate that the pro-
posed algorithm outperformed the benchmark algorithm and shed light on the potential
for exploiting the energy-limited aerial relay in IoT systems.
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