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Editorial

Introduction to the Special Issue of Plants on “The Application
of Spectral Techniques in Agriculture and Forestry”

Youzhen Xiang 1,2

1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of
Education, Northwest A&F University, Yangling 712100, China; youzhenxiang@nwsuaf.edu.cn

2 Institute of Water-Saving Agriculture in Arid Areas of China, Northwest A&F University,
Yangling 712100, China

This Special Issue, titled “Applications of Spectral Technology in Agriculture and
Forestry”, presents a collection of cutting-edge research findings exploring various ap-
plications of spectral analysis in agricultural and forestry environments. The papers in
this issue collectively examine the use of advanced spectral methods across key domains,
including crop health monitoring, disease detection, forest parameter estimation, soil
quality assessment, water stress analysis, and nutrient management. These studies not
only highlight advances in their respective fields but also reveal the complex interplay
between spectral technologies, machine learning, and sustainable resource management in
agricultural ecosystems. Through the research presented, this Special Issue showcases an
evolving paradigm where precision agriculture and forestry practices increasingly rely on
sophisticated spectral data analysis for information acquisition and decision optimization.
This Special Issue compiles research from around the world, covering diverse applications
of spectral technologies in agriculture and forestry across different climates, ecosystems,
and crop types. The twelve papers included demonstrate the broad applicability of these
technologies in varying geographical regions and crops, emphasizing the efforts of scientists
from multiple countries, including regions such as Europe and Asia, to promote precision
agriculture and forestry practices. The following is an overview of each paper, provid-
ing insights into how they collectively advance the development of precision agriculture
and forestry.

A common theme across these studies is the use of advanced spectral indices and
remote sensing techniques to monitor various physiological parameters of plants. For
example, Liu et al. (2024) [1] proposed a novel spectral index designed to overcome the
angular effects on the estimation of the leaf area index (LAI) in winter rapeseed. Their
method utilizes multi-angle hyperspectral data to test the stability of 16 traditional vegeta-
tion indices (VIs) in monitoring LAI from different observation angles. The study found
that the OPIVI index exhibited the highest correlation in LAI estimation, providing valuable
guidance for the selection of vegetation indices in future UAV and satellite applications.
Shi et al. (2024) [2] focused on using hyperspectral data to monitor chlorophyll content
in potato crops, demonstrating how differential transformations of spectral indices can
effectively estimate chlorophyll levels. They constructed several machine learning mod-
els, including Support Vector Machine (SVM), Random Forest (RF), and Backpropagation
Neural Network (BPNN) models, to predict potato chlorophyll content, highlighting the
versatility of hyperspectral data in monitoring different physiological parameters. Both
studies suggest that combining multi-angle and differential spectral indices with machine
learning algorithms is an effective approach to capturing key physiological features of crop
growth. Liu et al. (2024) and Shi et al. (2024) [1,2] provide complementary insights into
the application of spectral data in precision agriculture, recommending the integration of
various spectral indices with machine learning to construct a robust, non-destructive crop
monitoring framework.
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In the area of crop disease detection, spectral technology also plays a critical role.
Danilov et al. (2024) [3] investigated the effects of disease development on the spectral
characteristics of winter wheat varieties, revealing how disease severity alters wheat
spectral reflectance, particularly in the near-infrared range. Their study demonstrated
significant differences in the spectral characteristics of winter wheat varieties under disease
influence, offering new possibilities for monitoring crop health and disease progression. In
contrast, Zhou et al. (2024) [4] utilized an improved convolutional neural network (CNN)
model, ShuffleNetV2, to identify maize leaf diseases. They introduced the SimAM attention
mechanism to enhance the model’s accuracy in complex backgrounds. The results showed
that the model achieved an accuracy of 98.40% on the maize leaf disease dataset, with a
more compact model structure. Both studies underscore the importance of spectral data
in disease detection, with the former focusing on near-infrared spectral monitoring of
disease severity and the latter demonstrating the efficiency of deep learning models in
disease identification.

The issue also discusses the application of spectral technology in forest parameter
estimation and soil quality assessment. Ye et al. (2024) [5] provided a comprehensive
review of L-band synthetic aperture radar (SAR) technology for forest canopy penetration
and vertical structure parameter estimation, summarizing the application of L-band SAR
in estimating forest height, moisture, and biomass. The study explored the challenges
and future research directions of L-band SAR in forest resource management. Zhong
et al. (2024) [6] studied how rice leaf spectra could be used to indirectly estimate heavy
metal contamination in soil, utilizing a genetic algorithm-optimized partial least squares
regression (GA-PLSR) model for soil quality monitoring. Despite focusing on different
application areas, with Ye et al. concentrating on SAR technology in forestry and Zhong et al.
(2024) [6] on spectral technology for agricultural soil monitoring, both studies emphasize
the importance of remote sensing as an environmental assessment tool, showcasing how
spectral technology can provide critical data for resource management.

Water stress analysis and nutrient management represent another field where spectral
technology is making significant contributions. Wang et al. (2024) [7] investigated the
impact of the time-lag effect between canopy temperature and atmospheric temperature
on the accuracy of the Crop Water Stress Index (CWSI). They quantified the time-lag pa-
rameter for winter wheat and improved the predictive accuracy of CWSI using a genetic
algorithm–support vector machine (GA-SVM) model. The study’s results showed that
accounting for the time-lag effect effectively enhanced the correlation between CWSI and
photosynthetic parameters, providing theoretical support for the application of thermal
infrared remote sensing in crop water stress diagnostics. The study by Yang et al. (2024) [8]
also focuses on crop water status diagnosis. They utilized UAV multispectral technology to
estimate soybean leaf moisture through a comprehensive analysis of vegetation indices,
canopy texture features, and randomly extracted texture indices. By employing Extreme
Learning Machine (ELM), Extreme Gradient Boosting (XGBoost), and BPNN models, they
achieved significant results, with the XGBoost model demonstrating the highest accuracy
in leaf moisture monitoring. Similarly, Sun et al. (2024) [9] utilized spectral parameters
to monitor nitrogen concentration in soybean leaves, finding the highest correlation be-
tween spectral parameters and nitrogen concentration in the upper leaves of the crop.
They constructed several machine learning models, with the Random Forest (RF) model
exhibiting the highest accuracy in estimating soybean leaf nitrogen concentration. Both
studies highlight the integration of spectral data and machine learning to improve the
accuracy of crop water and nutrient monitoring. Additionally, Nowack et al. (2024) [10]
explored the use of UAV-mounted multispectral sensors to estimate vineyard water status
under different pruning strategies, finding that red light and red-edge bands effectively
predicted vine water status. This study further emphasizes the value of high-resolution
multispectral imaging in crop water management. Zhang et al. (2024) [11] conducted field
experiments to explore the effects of optimizing mulch type and nitrogen application rate
on maize photosynthetic capacity, yield, and nitrogen use efficiency, discovering that using
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biodegradable plastic mulch combined with moderate nitrogen application significantly
improved maize photosynthetic efficiency and yield. These studies highlight the potential
of spectral technology in various nutrient conditions and farming practices.

Lastly, Bitella et al. (2024) [12] proposed a low-cost, near-ground platform for mon-
itoring crop height and spatial distribution using ultrasonic sensors and spectral data,
achieving precise monitoring of plant growth characteristics across different cropping
systems. This research not only demonstrates the potential of low-cost remote sensing
platforms in agriculture but also complements the studies by Liu et al. (2024) and Shi
et al. (2024) [1,2], which utilize multi-angle and hyperspectral data to monitor crop growth,
providing diverse technological pathways for precision agriculture.

In summary, the papers in this Special Issue provide a deeper understanding of the
applications of spectral technology in precision agriculture and forestry management,
expanding the research scope of this field. The topics covered, including crop health
monitoring, disease detection, forest parameter estimation, soil quality assessment, water
stress analysis, and nutrient management, reveal the diversity and practicality of spectral
technology while emphasizing its crucial role in promoting sustainable development of
agricultural ecosystems. These studies point to a rapidly evolving scientific frontier, where
the deep integration of spectral data and machine learning techniques is set to become the
core driving force for future precision agriculture and forestry development. The papers
in this Special Issue draw on each other’s findings, employing multi-source data fusion,
machine learning modeling, remote sensing, and hyperspectral analysis to establish a
comprehensive and flexible analytical framework capable of real-time, accurate monitoring
of crop and forest ecosystem dynamics. This framework provides both the theoretical
foundation and practical pathways for addressing the increasingly complex challenges in
agriculture and forestry. More importantly, these research findings not only provide a solid
theoretical basis for the application of spectral analysis in multidisciplinary fields but also
offer valuable guidance for scholars and practitioners in precision agriculture and forestry.
Through this compilation, we witness the immense potential of spectral technology in
data-driven decision making, sustainable resource management, and ecosystem health
assessment, laying a solid foundation for future in-depth research and practical applications
in related fields.
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Abstract: Efficient acquisition of crop leaf moisture information holds significant importance for
agricultural production. This information provides farmers with accurate data foundations, enabling
them to implement timely and effective irrigation management strategies, thereby maximizing crop
growth efficiency and yield. In this study, unmanned aerial vehicle (UAV) multispectral technology
was employed. Through two consecutive years of field experiments (2021–2022), soybean (Glycine
max L.) leaf moisture data and corresponding UAV multispectral images were collected. Vegetation
indices, canopy texture features, and randomly extracted texture indices in combination, which exhib-
ited strong correlations with previous studies and crop parameters, were established. By analyzing
the correlation between these parameters and soybean leaf moisture, parameters with significantly
correlated coefficients (p < 0.05) were selected as input variables for the model (combination 1: vege-
tation indices; combination 2: texture features; combination 3: randomly extracted texture indices
in combination; combination 4: combination of vegetation indices, texture features, and randomly
extracted texture indices). Subsequently, extreme learning machine (ELM), extreme gradient boosting
(XGBoost), and back propagation neural network (BPNN) were utilized to model the leaf moisture
content. The results indicated that most vegetation indices exhibited higher correlation coefficients
with soybean leaf moisture compared with texture features, while randomly extracted texture indices
could enhance the correlation with soybean leaf moisture to some extent. RDTI, the random com-
bination texture index, showed the highest correlation coefficient with leaf moisture at 0.683, with
the texture combination being Variance1 and Correlation5. When combination 4 (combination of
vegetation indices, texture features, and randomly extracted texture indices) was utilized as the input
and the XGBoost model was employed for soybean leaf moisture monitoring, the highest level was
achieved in this study. The coefficient of determination (R2) of the estimation model validation set
reached 0.816, with a root-mean-square error (RMSE) of 1.404 and a mean relative error (MRE) of
1.934%. This study provides a foundation for UAV multispectral monitoring of soybean leaf moisture,
offering valuable insights for rapid assessment of crop growth.

Keywords: leaf moisture content; multispectral; soil moisture content; soybean; texture features;
vegetation indices

1. Introduction

Soybean (Glycine max L.), as one of the major leguminous crops globally, plays a crucial
role in global food security and sustainable agriculture [1]. In arid and semi-arid regions,

Plants 2024, 13, 1498. https://doi.org/10.3390/plants13111498 https://www.mdpi.com/journal/plants21
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soybean cultivation faces multiple challenges, often associated with limited water resources
and irregular precipitation patterns [2]. Being a water-consuming crop, soybean requires
adequate water for normal growth [3]; however, water scarcity in dry areas frequently
leads to water stress, constraining soybean growth and resulting in yield reduction [4].
Therefore, timely monitoring of soybean leaf moisture is essential for identifying plant
moisture status, adjusting irrigation strategies, and enhancing yield.

Plant leaf moisture is influenced by multiple factors such as sunlight, soil moisture,
and air temperature, making it difficult to measure accurately and rapidly [5]. Currently,
commonly used methods for measuring plant leaf moisture include oven drying, Karl Fis-
cher titration, and capacitance methods; however, these methods are often time-consuming,
labor-intensive, and limited in applicability, failing to provide timely and accurate field
monitoring data [6]. Hence, rapid acquisition of plant leaf moisture status and timely
adjustment of soil moisture management strategies remain a challenge for large-scale
agricultural operations.

Remote sensing technology has been widely applied to qualitatively and quantita-
tively analyze the water and nutrient status of large-scale plants nondestructively [7].
Among them, multispectral remote sensing technology can simultaneously obtain data
from multiple bands, covering various information during the crop growth cycle [8]. In
contrast, traditional field measurement methods require measurements at different times
and locations, which are inefficient and make it difficult to achieve comprehensive monitor-
ing [9]. Compared with hyperspectral remote sensing, multispectral remote sensing has
fewer bands but still covers key bands related to crop growth and health conditions, with
more flexible band selection according to specific application requirements, making UAV
multispectral technology more widely applicable in field management [10].

Spectra can focus on the internal optical response of crops [11], while images capture
external morphological information of crops [12]. Multispectral data provide reflectance
of crops in different bands, which correlates with crop leaf moisture to some extent [13],
thus enabling indirect inference of crop moisture status through multispectral data analysis.
Vegetation indices, computed based on multispectral data, directly reflect the growth status
of crops [14]. On the other hand, vegetation canopy texture features, obtained through
image data analysis, reflect the spatial distribution and structural characteristics of crops,
including leaf morphology, density, and arrangement, which also indicate the moisture
status of crops [15]. Researchers have conducted relevant studies on monitoring physiolog-
ical growth indicators of crops based on vegetation indices; however, constrained by crop
types and meteorological factors, using fixed formulas to calculate vegetation indices for
monitoring physiological growth indicators of crops can limit prediction accuracy. Some
studies have shown that combining texture features with vegetation indices can improve
the inversion accuracy of physiological growth indicators of crops (biomass [16], leaf area
index [17], chlorophyll content [18], etc.). Constructing inversion models based on multiple
input variables has higher accuracy compared with single input variables.

Machine learning methods have been proven effective in solving complex nonlinear
problems with multiple factors. Some results indicate that back propagation neural net-
works (BPNN) have higher accuracy in monitoring physiological growth indicators [19,20],
while other studies suggest that extreme gradient boosting (XGBoost) may be more suit-
able [21,22]. Overall, there is uncertainty in the existing research regarding the optimal
feature extraction and modeling methods for monitoring physiological growth indicators.
Therefore, this study further explores monitoring soybean leaf moisture.

In this study, our aim was to determine the relationship between soybean leaf moisture
and vegetation indices and texture features. To achieve this, we employed machine learning
algorithms such as ELM, XGBoost, and BPNN to explore the optimal combination of these fea-
tures and the best monitoring depth for monitoring soybean physiological growth indicators,
aiming to provide rapid and efficient theoretical support for field water management.
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2. Materials and Methods

2.1. Research Area and Test Design

The experiment was conducted during 2021–2022 at the Institute of Water-saving
Agriculture in Arid Areas, Northwest A&F University, located in the southern part of
the Loess Plateau in northwest China (34◦14′ N, 108◦10′ E). The experimental area is a
typical dryland agricultural region with an average annual precipitation of 632 mm and an
evaporation of 1500 mm. Daily temperature and rainfall data for the two growing seasons
were carefully recorded by an automatic weather station located within the experimental
fields, as shown in Figure 1. During the period from June to October 2021, the annual
average maximum and minimum temperatures were 30.3 ◦C and 20.0 ◦C, respectively,
while in 2022, they were 31.3 ◦C and 21.2 ◦C, respectively. The precipitation during
the soybean growing seasons in 2021 and 2022 was 432.6 mm (from 18 June 2021 to
30 September 2021) and 279.5 mm (from 10 June 2022 to 20 September 2022), respectively.
For basic terrain and meteorological information of the experimental site, please refer to
reference [1].

Figure 1. The daily temperature and precipitation of soybean growing season at the Yangling
experimental station in China in 2021 and 2022.

In this experiment, a split-plot design with two factors was employed, including
different cover treatments and supplementary irrigation strategies. The cover treatments
consisted of three types: straw mulch (SM), ridge-film mulch (FM), and no mulch (NM).
Additionally, three supplementary irrigation treatments were included: W1 (irrigation
during branching stage, V4), W2 (irrigation during podding stage, R2), and W3 (irrigation
during both V4 and R2 stages simultaneously). This resulted in a total of nine treatments,
each replicated three times, comprising 27 experimental plots. Each irrigation event applied
40 mm of water. The detailed information of the experiment is presented in Table 1. Each
plot had an area of 24 m2 (4 m × 6 m) and was arranged randomly, with a 2 m buffer zone
around each plot.
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Before sowing, each plot received phosphorus and potassium fertilizers at a rate of
30 kg ha−1 and nitrogen fertilizer at a rate of 120 kg ha−1. The nitrogen fertilizer used in
the experiment was urea (46% N), the phosphorus fertilizer was calcium superphosphate
(16% P2O5), and the potassium fertilizer was potassium chloride (62% K2O).

For the FM treatment, a ridge (50 cm wide, 30 cm high) was used, and seeds were
sown in furrows covered by the ridge. The ridge–furrow ratio was 1:1. Before sowing,
two rows of soybeans were planted at the bottom of each ridge. The straw mulch rate was
9000 kg ha−1, and wheat straw was used to cover the soil within 7 days after sowing. The
planting density of soybeans was 300,000 plants ha−1, with row spacing of 50 cm and plant
spacing of 10 cm. Soybeans were sown on 18 June 2021 and 10 June 2022 and harvested on
30 September 2021 and 20 September 2022, respectively.

Additionally, to ensure proper germination, approximately 20 mm of water was
applied to each plot after sowing. Other field management practices, including spraying
and weeding, remained consistent with local practices.

2.2. Data Collection and Preprocessing
2.2.1. Drone Data Acquisition

This study utilized a DJI Matrice M300 RTK quadcopter equipped with an MS600 Pro
multispectral camera platform to acquire multispectral remote sensing data. The camera
platform comprised six spectral channels and was equipped with six CMOS image sensors,
with a pixel resolution of 1.2 × 106. The sensors covered the following spectral bands: blue
band (center wavelength 450 nm, band 1), green band (center wavelength 555 nm, band 2),
red band (center wavelength, band 3), red edge band 1 (center wavelength 720 nm, band
4), red edge band 2 (center wavelength 750 nm, band 5), and near-infrared band (center
wavelength 840 nm, band 6). Data were collected during the soybean flowering period
(5 August 2021 and 10 August 2022) at noon under clear-sky conditions. Flight routes were
planned for the study area, and whiteboard calibration was conducted. The flight altitude
was set at 30 m, with a speed of 2.5 m per second and a pixel resolution of 4.09 cm. The
forward and lateral overlap ratios were set at 75% and 65%, respectively. Figure 2 shows
the aerial photos of some residential areas in the test area.

Figure 2. UAV photo of soybean plots in this experimental area.

2.2.2. Obtaining Leaf Moisture Content

Simultaneously with the collection of multispectral information by drones, the soybean
leaf moisture content was determined using the drying method. Five average growing
soybeans plants were selected from each plot. Fresh leaves were harvested from various
directions and heights of each plant, totaling 100 g, using an analytic balance. These leaves
were then placed in parchment bags, labeled, and subjected to dehydration in a drying
oven at 105 ◦C for 0.5 h, followed by drying at 80 ◦C until a constant mass was achieved.
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The dry mass, after subtracting the mass of the parchment bags, represented the moisture
content. The average moisture content of the five soybean plants was considered indicative
of the entire plot’s soybean leaf moisture content.

2.2.3. Multispectral Image Processing

In scientific research, precise handling and analysis of remote sensing data are crucial.
In this study, we employed the Yusense Map V2.2.2 software to process multispectral
imagery collected by unmanned aerial vehicles (UAVs). Initially, the software was used for
image mosaicking to ensure continuity and integrity of all images within the study area.
To enhance the accuracy of subsequent analyses, geometric correction was applied to the
mosaicked images, eliminating distortions caused by variations in UAV flight altitude and
angle. This was followed by radiometric preprocessing to mitigate the impact of sensor
sensitivity, solar radiation intensity, and atmospheric conditions on the imagery, ensuring
that the images accurately reflected the ground truth. The preprocessed UAV multispectral
image information was then imported into ENVI 5.3 software. ENVI is a widely used
remote sensing image processing software that supports a variety of data analysis and
image processing functions. Within this software, we extracted spectral reflectance, a key
metric for measuring the reflection of solar energy by surface objects. To focus on the study
area, we clipped corresponding spectral images centered around each experimental plot
from the imagery. During the clipping process, special attention was given to exclude areas
with soil and film shadows as these could affect the purity of spectral data. Subsequently,
regions of interest (ROIs) were defined within each experimental plot, and the average
reflectance spectra of the soybean leaf samples were extracted from these areas. This
average reflectance spectrum represented the spectral reflectance within the plot, providing
us with valuable information about the growth conditions of the soybeans. Ultimately, we
obtained spectral reflectance data across different bands, which will be used for further
analysis, such as assessing crop health, monitoring vegetation cover changes, or estimating
biophysical parameters. Through these detailed spectral data, researchers can gain a
deeper understanding of the environmental conditions affecting crop growth, offering a
scientific basis for precision agriculture. Figure 3 shows the reflectivity performance of each
experimental treatment in each band.

Figure 3. Spectral reflectance of soybean under different field treatments in each band.

2.3. Selection and Construction of Vegetation Index and Texture Features

Crop growth and nutritional status can be effectively reflected by vegetation in-
dices [23]. In this study, based on existing research, ten classic vegetation indices were
selected for investigation, with calculation formulas and references provided in Table 1.
The texture is a visual feature reflecting homogeneity phenomena in images, indicating the
arrangement properties of surface structures with slow or periodic changes. In this paper,
ENVI 5.3 software was employed to extract texture features (TFs) based on second-order sta-
tistical filtering (co-occurrence measures). Eight TFs were extracted from the near-infrared
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band: mean (MEA), variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity
(DIS), entropy (ENT), second moment (SEM), and correlation (COR). A window size of
7 × 7 and default spatial offset values of 1 were used for texture analysis. To explore the
potential applications of texture features in estimating soybean leaf moisture content from
UAV multispectral images, randomly combined texture features were extracted in this
study. Subsequently, based on previous research experience and formulas, seven types of
texture indices (TIs) [24] were constructed, including normalized difference texture index
(NDTI), ratio texture index (RTI), difference texture index (DTI), additive texture index
(ATI), reciprocal difference texture index (RDTI), and reciprocal additive texture index
(RATI). The specific calculation formulas are as follows:

RTI = Ti/Tj (1)

DTI = Ti − Tj (2)

ATI = Ti + Tj (3)

NDTI =
(
Ti − Tj

)
/
(
Ti + Tj

)
(4)

RDTI = 1/Ti − 1/Tj (5)

RATI = 1/Ti + 1/Tj (6)

Table 1. Vegetation index and its calculation formula.

Selected Spectra Parameters Calculation Formula Reference

Soil-adjusted vegetation index (SAVI) (1 + 0.5)(RNIR − RRED )/(RNIR + RRED + 0.5) [25]
Enhanced vegetation index (EVI) 2.5 × (RNIR − RRED)/((RNIR + 6 × RRED − 7.5 × RB)+1) [26]

Modified simple ratio vegetation index (MSR)
(

RNIR
RRED

− 1 )
(

RNIR
RRED

+ 1)−0.5 [27]

Optimized soil-adjusted vegetation index (OSAVI) (1 + 0.16)(RNIR − RG)/(RNIR + RG + 0.16) [25]
Renormalized difference vegetation index (RDVI) (RNIR − RRED/ RNIR + RRED )̂(0.5) [25]
Modified soil-adjusted vegetation index (MSAVI) 0.5((2RNIR − 1 ) +

((
2RNIR + 1)2 − 8

(
RNIR − RRED)

2)0.5 ) [27]
Atmospheric resistance vegetation index (ARVI) (RNIR − 2RRED + RB )/(RNIR + 2RRED − RB ) [28]

Green normalized difference vegetation index (GNDVI) RNIR − RG/RNIR + RG [26]
Meris terrestrial chlorophyll index (MTCI) RNIR − RRE/RRE − RRED [29]

Chlorophyll index (CI) RNIR/RRE − 1 [30]

Note: R_RED, R_G, R_B, R_NIR, and R_RE represent the reflectance of the red, green, blue, near-infrared, and
red-edge bands, respectively.

2.4. Sample Set Partitioning, Model Methods, and Model Evaluation

During the soybean flowering stage, a total of 54 valid samples were collected. Two-
thirds of the samples were randomly selected as the training set, while the remaining
one-third was reserved as the validation set. Figure 4 presents the sample counts and
statistical characteristics of both the training and validation sets.

First, the correlation between vegetation indices, texture features, and soybean leaf
moisture content was analyzed. Parameters significantly correlated with soybean leaf
moisture content (p < 0.05) were selected as input variables for the model. These include
combination 1, vegetation indices; combination 2, texture features; combination 3, texture
indices extracted from random combinations; and combination 4, vegetation indices, texture
features, and randomly extracted texture indices combined. Subsequently, ELM, XGBoost,
and BPNN were employed to model the leaf moisture content. Detailed descriptions of
these machine learning models can be found in references [7,31].
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For the ELM model, a sigmoid function was utilized, and parameters (ai, bi)
L
i=1 for the

hidden layer were randomly generated within the range [−1, 1]. The number of hidden
layer nodes was set to 1000 [7], and the number of neurons started at 15, incrementing by
15 until reaching 120. Each model was run 50 times to select the optimal training result,
and the final number of neurons was determined to be 60.

For the XGBoost algorithm, the optimal parameters were refined through a grid search,
setting 100 weak learners (n_estimators), a learning rate of 0.03, and a maximum tree depth
(max_depth) of 5 [31].

In BPNN, the transfer function for the hidden layer was set as TANSIG, and the
Levenberg–Marquardt algorithm based on numerical optimization theory (Train-LM) was
used as the network training function. After multiple training iterations, the number of
neurons in the middle layer was determined to be 15 [31]. Figure 5 shows the process of
UAV multispectral data processing, the acquisition of vegetation index and texture features,
and the construction process of soybean leaf moisture content model.
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Figure 4. Descriptive statistics of soybean leaf moisture content. The horizontal line in the box line
diagram represents the median, and the white box represents the average value.

To validate the model’s prediction accuracy and capability, this study selected three
evaluation metrics: the coefficient of determination (R2), root mean square error (RMSE),
and mean relative error (MRE). These metrics were used to assess the model’s precision [32].
A higher R2 value closer to 1 and lower RMSE and MRE values closer to 0 indicated better
model fitting. The formulas for these metrics were as follows:

R2 =
∑n.

i=1
(ŷi − y)2

∑n
i=1(yi − y)2 (7)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(8)

MRE =
1
n∑n

i=1
|ŷi − yi|

yi
× 100% (9)
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Figure 5. The process of UAV multispectral data processing, the acquisition of vegetation index and
texture features, and the construction process of the soybean leaf moisture content model. * on behalf
of each small piece of UAV image stitching.

3. Results and Analysis

3.1. Correlation Analysis between Vegetation Index, Texture Features, and Leaf Moisture Content

The correlation analysis between the vegetation indices and the soybean leaf moisture
content is presented in Table 2, the correlation analysis between the texture feature and
the soybean leaf moisture content is presented in Table 3. The results indicated that the
majority of vegetation indices and texture features exhibited significant correlations with
the soybean leaf moisture content (p < 0.05). Among these, the vegetation index with the
highest correlation coefficient was MSR, with a value of 0.649. Additionally, the texture
feature with the highest correlation coefficient to leaf moisture content was the mean in
band 2, with a coefficient of 0.644. Subsequently, an analysis of randomly extracted texture
indices was conducted (Table 4 and Figure 6). It was found that the randomly extracted
texture indices, after screening, also demonstrated significant correlations with soybean
leaf moisture content (p < 0.05). Among these, RDTI stood out as the combination with
the highest correlation coefficient to leaf moisture content, with a coefficient of 0.683. The
texture combination comprised Variance1 and Correlation5.

Table 2. The calculation results of vegetation index and correlation coefficient with soybean leaf
moisture content (* significant at p < 0.05).

Vegetation Index Correlation Coefficient

Soil-adjusted vegetation index (SAVI) 0.511 *
Enhanced vegetation index (EVI) 0.517 *

Modified simple ratio vegetation index (MSR) 0.649 *
Optimized soil-adjusted vegetation index (OSAVI) 0.636 *
Renormalized difference vegetation index (RDVI) 0.506 *
Modified soil-adjusted vegetation index (MSAVI) 0.619 *
Atmospheric resistance vegetation index (ARVI) 0.643 *

Green normalized difference vegetation index (GNDVI) 0.189
Meris terrestrial chlorophyll index (MTCI) 0.249

Chlorophyll index (CI) 0.171

From this, we selected four combinations to serve as input for the model: combi-
nation 1 (SAVI, EVI, MSR, OSAVI, RDVI, MSAVI, and ARVI), combination 2 (Mean1,
Variance1, Homogeneity1, Contrast1, Dissimilarity1, Entropy1, Second Moment1, Correla-
tion1, Mean2, Variance2, Homogeneity2, Contrast2, Second Moment2, Correlation2, Mean3,
Variance3, Homogeneity3, Contrast3, Second Moment3, Correlation3, Mean4, Variance4,
Contrast4, Second Moment4, Correlation4, Variance5, Homogeneity5, Contrast5, Dissimilar-
ity5, Second Moment5, Correlation5, Variance6, Homogeneity6, Contrast6, Dissimilarity6,
Second Moment6, and Correlation6), combination 3 (RTI, DTI, ATI, NDTI, RATI, and RDTI),
combination 4 (SAVI, EVI, MSR, OSAVI, RDVI, MSAVI, ARVI, Mean1, Variance1, Ho-
mogeneity1, Contrast1, Dissimilarity1, Entropy1, Second Moment1, Correlation1, Mean2,
Variance2, Homogeneity2, Contrast2, Second Moment2, Correlation2, Mean3, Variance3,
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Homogeneity3, Contrast3, Second Moment3, Correlation3, Mean4, Variance4, Contrast4,
Second Moment4, Correlation4, Variance5, Homogeneity5, Contrast5, Dissimilarity5, Sec-
ond Moment5, Correlation5, Variance6, Homogeneity6, Contrast6, Dissimilarity6, Second
Moment6, Correlation6, RTI, DTI, ATI, NDTI, RATI, and RDTI).

Table 3. Texture features and calculation results of correlation coefficient with soybean leaf moisture
content (* significant at p < 0.05).

Texture
Features

Correlation Coefficients

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6

Mean 0.597 * 0.644 * 0.618 * 0.606 * 0.249 0.259
Variance 0.578 * 0.559 * 0.398 * 0.513 * 0.485 * 0.505 *

Homogeneity 0.554 * 0.328 * 0.268 * 0.164 0.429 * 0.424 *
Contrast 0.585 * 0.581 * 0.439 * 0.531 * 0.492 * 0.506 *

Dissimilarity 0.581 * 0.223 0.046 0.170 0.505 * 0.523 *
Entropy 0.389 * 0.210 0.229 0.138 0.251 0.248

Second moment 0.457 * 0.285 * 0.399 * 0.358 * 0.398 * 0.396 *
Correlation 0.471 * 0.593 * 0.599 * 0.588 * 0.667 * 0.654 *

Table 4. The calculation results of texture index extracted by random combination and correlation
coefficient with soybean leaf moisture content (* significant at p < 0.05).

Texture Features Extracted by
Random Combination

Maximum Correlation Coefficient

Correlation Coefficient
Texture Feature
Combination

RTI 0.663 * Homogeneity3, Mean2
DTI 0.645 * Dissimilarity1, Mean2
ATI 0.653 * Mean2, Second Moment3

NDTI 0.647 * Correlation5, Mean4
RATI 0.670 * Variance5, Correlation5
RDTI 0.683 * Variance1, Correlation5
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Figure 6. The correlation coefficients between the moisture content and the texture index of soybean
leaves were (a) RTI, (b) DTI, (c) ATI, (d) NDTI, (e) RDTI, and (f) RATI. Any point in the figure represents
the correlation coefficient between the texture index and the moisture content of soybean leaves. The
texture index is calculated by the two texture eigenvalues corresponding to the horizontal and vertical
coordinates of the point. Band 1 in the image consists of the following parameters from start to finish:
Mean1, Variance1, Homogeneity1, Contrast1, Dissimilarity1, Entropy1, Second Moment1, and Corre-
lation1; band 2 consists of Mean2, Variance2, Homogeneity2, Contrast2, Dissimilarity2, Entropy2,
Second Moment2, and Correlation2; band 3 consists of Mean3, Variance3, Homogeneity3, Contrast3,
Dissimilarity3, Entropy3, Second Moment3, and Correlation3; band 4 consists of Mean4, Variance4,
Homogeneity4, Contrast4, Dissimilarity4, Entropy4, Second Moment4, and Correlation4; band 5
consists of Mean5, Variance5, Homogeneity5, Contrast5, Dissimilarity5, Entropy5, Second Moment5,
and Correlation5; and band 6 consists of Mean6, Variance6, Homogeneity6, Contrast6, Dissimilarity6,
Entropy6, Second Moment6, and Correlation6.

3.2. Construction of a Monitoring Model for Soybean Leaf Moisture Content

The four selected combinations from Section 3.1 were utilized as inputs for modeling
using ELM, XGBoost, and BPNN. The model results are illustrated in Figure 7. The findings
revealed that when the machine learning models were consistent, the combination of
vegetation indices and texture features (combination 4) yielded the highest estimation
accuracy for soybean leaf moisture content. This was evidenced by the highest R2, and the
lowest RMSE and MRE values in the validation set. Furthermore, among models with the
same input combinations, XGBoost demonstrated the optimal capability for monitoring the
soybean leaf moisture content.

In summary, in this study, the combination of vegetation indices and texture features
(combination 4) as input, combined with the XGBoost model, achieved the highest level
of soybean leaf moisture content monitoring. The estimated R2 for the validation set was
0.816, with an RMSE of 1.404 and an MRE of 1.934%.
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Figure 7. The prediction results of soybean leaf moisture content based on ELM, XGBoost, and BPNN.
The red dots in the figure are the modeling set, and the blue dots are the verification set. The predicted

results of the soybean leaf moisture content inversion models using different input variables and
modeling methods are presented for both the modeling and validation datasets. (a−c) The prediction
models constructed using combination 1 with ELM, XGBoost, and BPNN as the methods. (d−f) The
prediction models constructed using combination 2 with ELM, XGBoost, and BPNN as the methods.
(g−i) The prediction models constructed using combination 3 with ELM, XGBoost, and BPNN as the
methods. (j−l) The prediction models constructed using combination 4 with ELM, XGBoost, and
BPNN as the methods.

4. Discussion

Water is a crucial element for photosynthesis and nutrient transport in plants. The
water content in plant leaves directly influences the plant’s growth process [5]. Therefore, a
profound understanding of variations in the leaf moisture content is essential for grasping
the plant’s growth status, assessing its water condition, and effectively managing plant
water resources. This awareness has garnered widespread attention in fields such as agri-
culture, forestry, and horticulture [6]. By analyzing vegetation indices and texture features
in unmanned aerial vehicle multispectral data, the crop water status can be inferred more
accurately, providing a scientific basis for field management and irrigation decisions [12].

In this study, to ensure the accuracy and reliability of experimental outcomes, a
stringent control variable approach was adopted. Apart from water management, all
other agricultural practices were kept uniform, including but not limited to soil fertility,
planting density, and pest control. By doing so, we were able to eliminate the interference
of these potential factors on the experimental results, ensuring that the observed outcomes
could be attributed to the varying treatments. This research aimed to elucidate the direct
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impact of water management on soybean growth and yield by precisely controlling all
management measures except for water, thereby offering a scientific basis for sustainable
agricultural practices.

This study found that the correlation coefficient between vegetation indices and
leaf moisture content was generally higher than that of texture features. This is because
texture features typically reflect the spatial distribution and structural characteristics of
vegetation (such as density, height, coverage, etc.). However, when measuring canopy
texture features, the shadowing effect may affect the sensor’s observations, leading to less
accurate extraction of canopy texture features [24]. In contrast, vegetation indices are more
capable of comprehensively reflecting the growth status of vegetation; therefore, they may
be more reliable in terms of correlation with leaf moisture content [33].

The study also found that when using the same machine learning model for modeling,
the accuracy of the combined model using combination 4 for leaf moisture content monitor-
ing was higher than combinations 1, 2, and 3. This may be because combination 4, which
included vegetation indices, texture features, and texture indices, provided richer and more
diverse information. Compared with using vegetation indices or texture features alone,
the combination of these two in combination 4 could offer a more comprehensive feature
description. Vegetation indices typically reflect the growth status and photosynthetic activ-
ity of vegetation [34], while texture features provide information about the structure and
spatial distribution of vegetation canopies [35]. By combining these two features, the model
could more accurately capture the complex relationship between leaf moisture content and
vegetation growth status. Additionally, vegetation indices and texture features often have
different sensitivities and feature expression capabilities. That is, vegetation indices may
be more suitable for reflecting vegetation growth status, while texture features can better
describe the spatial distribution and structural characteristics of vegetation canopies [36].
Therefore, combining these two features can complement each other’s shortcomings and
improve the model’s accuracy in estimating the leaf moisture content.

In the process of constructing leaf moisture content models, when the input combina-
tions were the same, it was found that the XGBoost model had higher accuracy compared
with the SVM and BPNN models. This may be because XGBoost performed well in handling
nonlinear relationships and complex data patterns, enabling better fitting of the complex
relationship between leaf moisture content and input features [31]. In contrast, ELM and
BPNN models may be less flexible in handling high-dimensional, nonlinear data, resulting
in relatively lower accuracy [7,31]. Additionally, XGBoost improved model generalization
by optimizing the loss function, which enabled it to perform well beyond the training
dataset. This means that the XGBoost model could better adapt to new datasets and exhibit
more stable performance on the test set, thereby enhancing model accuracy [37]. Finally, in
terms of feature selection and processing, the XGBoost model had unique advantages [22].
It could automatically select the most important features and had good capabilities in
handling missing values and outliers, helping to reduce the model’s sensitivity to noise
and unnecessary features and thereby improving model accuracy [21].

Currently, monitoring the leaf moisture content based on remote sensing data and
machine learning models still has certain limitations. Despite using various feature combi-
nations and machine learning models for modeling, there still exists a certain degree of error
and uncertainty. First, vegetation water status is influenced by multiple factors, including
climatic conditions, soil types, vegetation types, etc., and existing models may not fully
consider the complex relationships among these factors. Additionally, current research
mainly focuses on monitoring and evaluating vegetation water status, while challenges
remain in translating these monitoring results into effective agricultural management and
irrigation decisions in practical applications. Further research and development are needed
to establish intelligent agricultural decision support systems based on monitoring results,
integrating multiple data sources such as meteorological data, soil information, etc., to
achieve precise management and optimal utilization of farmland water resources.
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To address these issues, future research will consider in-depth exploration of the water
requirements and response patterns of different vegetation types at different growth stages,
optimizing vegetation water monitoring models to improve the accuracy and reliability
of vegetation water status assessment. Additionally, combining meteorological data, soil
information, and other multiple data sources, conducting correlation analyses between
vegetation water content and factors such as climatic conditions and soil types, will deepen
the understanding of influencing factors and variation patterns of vegetation water status.

5. Conclusions

This study employed plot experiments and multispectral data obtained from drones,
combined with vegetation indices and texture features, and utilized three machine learn-
ing models, extreme learning machine (ELM), extreme gradient boosting tree (XGBoost),
and back propagation neural network (BPNN), to estimate soybean leaf moisture content.
The results indicated that most vegetation indices and texture features were significantly
correlated with the soybean leaf moisture content (p < 0.05). Among them, the vegetation
index with the highest correlation coefficient was MSR, at 0.649, while the texture feature
with the highest correlation coefficient with leaf moisture content was the mean in band 2,
at 0.644. All texture indices were significantly correlated with the soybean leaf moisture
content (p < 0.05), with RATI being the randomly combined texture feature with the highest
correlation coefficient, at 0.683. The texture combination was Variance1 and Correlation5,
and the prediction model’s fitting accuracy for leaf moisture content was ranked as fol-
lows: XGBoost > BPNN > ELM. Furthermore, using the XGBoost model, combination 4
(vegetation indices, texture features, and randomly combined texture features) provided
the best monitoring effect for leaf moisture content, with an R2 of 0.816, RMSE of 1.404,
and MRE of 1.934% on the model validation set. These results provide important refer-
ences for establishing a nondestructive, rapid, and efficient model for monitoring crop leaf
moisture content.

In the research on three machine learning models based on vegetation indices and
texture features, there are still some issues to be addressed. For example, this study,
along with the majority of researchers, primarily focused on a single growth period of a
single plant species as the experimental subject. The feasibility of applying these research
findings to the entire growth period of vegetation requires further investigation. Therefore,
achieving a higher level of universality and accuracy in simulating leaf moisture content for
both individual growth periods and the entire growth period of most plants still requires
further research and practical exploration.
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Abstract: Leaf chlorophyll content (LCC) is an important physiological index to evaluate the pho-
tosynthetic capacity and growth health of crops. In this investigation, the focus was placed on
the chlorophyll content per unit of leaf area (LCCA) and the chlorophyll content per unit of fresh
weight (LCCW) during the tuber formation phase of potatoes in Northern Shaanxi. Ground-based
hyperspectral data were acquired for this purpose to formulate the vegetation index. The correlation
coefficient method was used to obtain the “trilateral” parameters with the best correlation between
potato LCCA and LCCW, empirical vegetation index, any two-band vegetation index constructed
after 0–2 fractional differential transformation (step size 0.5), and the parameters with the highest
correlation among the three spectral parameters, which were divided into four combinations as model
inputs. The prediction models of potato LCCA and LCCW were constructed using the support vector
machine (SVM), random forest (RF) and back propagation neural network (BPNN) algorithms. The
results showed that, compared with the “trilateral” parameter and the empirical vegetation index,
the spectral index constructed by the hyperspectral reflectance after differential transformation had
a stronger correlation with potato LCCA and LCCW. Compared with no treatment, the correlation
between spectral index and potato LCC and the prediction accuracy of the model showed a trend
of decreasing after initial growth with the increase in differential order. The highest correlation
index after 0–2 order differential treatment is DI, and the maximum correlation coefficients are 0.787,
0.798, 0.792, 0.788 and 0.756, respectively. The maximum value of the spectral index correlation
coefficient after each order differential treatment corresponds to the red edge or near-infrared band.
A comprehensive comparison shows that in the LCCA and LCCW estimation models, the RF model
has the highest accuracy when combination 3 is used as the input variable. Therefore, it is more
recommended to use the LCCA to estimate the chlorophyll content of crop leaves in the agricultural
practices of the potato industry. The results of this study can enhance the scientific understanding and
accurate simulation of potato canopy spectral information, provide a theoretical basis for the remote
sensing inversion of crop growth, and promote the development of modern precision agriculture.

Keywords: potato; hyperspectral; chlorophyll content; machine learning

1. Introduction

Potato, the fourth largest staple crop in the world, is widely distributed and exhibits
strong adaptability, high yield, and rich nutritional content. It is suitable for storage as
both food and industrial raw material, playing a crucial role in improving people’s living
standards and ensuring food security [1]. Shaanbei, as one of the major potato-producing
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regions in China, possesses soil, temperature, and light conditions favorable for the growth
and development of potatoes. However, outdated irrigation and fertilization techniques
in this region have led to soil fertility degradation and environmental pollution, severely
hindering the development of its potato industry [2]. Therefore, addressing the issues of
unstable potato yields and inconsistent quality in this area is imperative. Leaf chlorophyll
content (LCC) serves as a vital indicator for measuring crop growth, reflecting the growth
status and health of crops. Monitoring its content changes aids in distinguishing the
physiological characteristics of crops [3]. In recent years, with the rapid development of
intelligent agriculture, the rapid and non-destructive estimation of chlorophyll content
has been realized, which is of great significance for evaluating and managing crop canopy
photosynthetic capacity.

Traditional methods for determining chlorophyll content mainly rely on ethanol ex-
traction, which is time-consuming and cumbersome [4–6]. In recent years, commonly used
units for chlorophyll content include chlorophyll content per unit leaf area (LCCA) and
chlorophyll content per unit fresh weight (LCCW) [7]. Expressing LCCA is not affected by
changes in crop plant internal water content, resulting in more stable outcomes. Meanwhile,
LCCW is widely used in agricultural research to describe chlorophyll content [8,9]. Thus,
clarifying the chlorophyll content in different measurement units is of significant impor-
tance for reflecting the actual value of crop chlorophyll. Traditional measurement methods
are destructive and yield unstable results. Utilizing hyperspectral remote sensing technol-
ogy provides a new approach for monitoring dynamic changes in crop leaf chlorophyll and
offers technical means for selecting the most representative measurement units of crop leaf
chlorophyll. Modern information technology provides a new method for intelligent agricul-
ture. With the rapid development and integration of modern information technologies such
as remote sensing, big data, machine learning and cloud computing, other technologies
such as intelligent identification, accurate measurement, model construction, information
collection are becoming more and more mature. It provides a new method for monitoring
crop growth parameters by remote sensing, which is of great significance for crop water
and fertilizer management and agricultural decision-making [10]. Liu et al. (2021) collected
SPAD and remote sensing information of soybean leaves and successfully monitored the
chlorophyll content using mathematical models [11]. Based on feature optimization, Zhao
et al. (2022) used a variety of machine learning methods to invert farmland surface soil
moisture. The experimental results show that the random forest model has higher inversion
accuracy and the best fitting effect, and the inversion accuracy is greatly improved after
feature optimization [12]. Existing studies mostly construct spectral indices from original
canopy hyperspectral reflectance to infer crop growth physiological indicators, but the
prediction accuracy and results are not satisfactory. Introducing differential transformation
methods can reduce noise interference, enhance model applicability, and optimize fitting
effects. Shi et al. (2023) selected the optimal spectral indices and established models using
first-order differentially processed hyperspectral reflectance, which significantly improved
model accuracy [13]. Zhao et al. (2022) used five methods to process the original spectrum,
and found that FOD achieved good results regardless of the modeling method [14]. Cur-
rently, chlorophyll content determination often involves averaging chlorophyll content at
the individual plant level [15]. Although this method is simple and easy to implement, it
fails to accurately reflect the overall level of LCC. Spectral indices are linear or nonlinear
combinations of different sensitive bands, closely related to the reflection, absorption, and
growth of different plants in different spectral bands. Constructing a prediction model
requires appropriate band combinations to enhance model accuracy [16]. When plants are
subjected to disease stress, chlorophyll digestion, water content reduction and coverage
reduction often accompany plant growth [17], leading to the degree of reflection of canopy
spectral information on plant physiological growth indicators to decrease significantly [18].
In such cases, the use of spectral indices related to relevant bands may fail to extract all
spectral information, resulting in poor model fitting [19]. A correlation matrix analysis
is commonly used in crop growth parameter and spectral index correlation analysis. By
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selecting the optimal bands highly correlated with crop growth physiological indicators
across the full spectrum, it greatly enhances the utilization of spectral information and
optimizes model performance [20].

This study utilized spectral data and employed the correlation coefficient method
to select three sensitive parameters for potato LCCA and LCCW. Additionally, empirical
vegetation indices, vegetation indices obtained from the differentiation of spectral bands
from 0 to 2 (with a step size of 0.5), and the most highly correlated parameters among
these three spectral parameters were identified. These parameters were divided into four
combinations and used as inputs for model construction. Support Vector Machine (SVM),
Random Forest (RF), and Back Propagation Neural Network (BPNN) were employed to
build prediction models for potato LCCA and LCCW. The study aimed to identify the
most effective method for reflecting crop chlorophyll content to enhance the scientific
understanding and accurate simulation of potato canopy spectral information, providing a
theoretical basis for the remote sensing inversion of crop growth.

2. Materials and Methods

2.1. Research Area and Test Design

This experiment was conducted at the Potato Experimental Demonstration Station
of Northwest A&F University in Yulin City (Figure 1), Shaanxi Province, China (38◦23′
N, 109◦43′ E) during the months of May to October in both 2022 and 2023. The experi-
mental variety used was the local main cultivar, ‘Qingshu 9’. Planting took place on 5
May 2022, and 1 May 2023, respectively. In 2022, the average temperature during the
entire potato growing period was 22 ◦C, and the total rainfall was 482.20 mm. In 2023, the
average temperature during the entire potato growing period was also 22 ◦C, while the
total rainfall was 212.10 mm. The soil was sandy loam, with the following physical and
chemical properties: the bulk density of the cultivation layer (0–40 cm) was 1.73 g/cm3,
the ammonium nitrogen content was 6.35 mg/kg, the nitrate nitrogen content was 11.45
mg/kg, the available phosphorus content was 4.43 mg/kg, the available potassium content
was 107 mg/kg, the pH value was 8.1 (H2O was used to determine soil pH in the experi-
ment), and the organic matter content was 4.31 g/kg. The experiment encompassed five
nitrogen application levels: N0 (0 kg N/hm2), N1 (90 kg N/hm2), N2 (180 kg N/hm2), N3
(270 kg N/hm2), and N4 (360 kg N/hm2). Additionally, two biochar application levels
were implemented: B0 (0 t/hm2) and B1 (30 t/hm2), resulting in a total of 10 experimental
treatments. Phosphorus and potassium fertilizers were applied once before sowing, and
nitrogen fertilizers were applied together using the water and fertilizer integration facil-
ities during irrigation. The test fertilizers were urea (N—46%), diammonium phosphate
(N—18%, P2O5—46%) and potassium nitrate (N—13.5%, K2O—46%). Each treatment was
replicated three times, yielding a total of 30 plots. The plot dimensions were 4 m × 12 m,
equivalent to 48 m2, and the plots were arranged randomly with a protective strip of 3 m
surrounding the experimental area. The potatoes were planted by artificial sowing, with
a row spacing of 0.9 m, a plant spacing of 25 cm, and a sowing depth of 8~10 cm. Before
potato planting, biochar was evenly incorporated into the top 20 cm of the soil and mixed
evenly, and other field treatments were consistent with the locale.
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Figure 1. Geographic location of study area.

2.2. Data Collection and Preprocessing
2.2.1. Acquisition of Spectral Data

During the tuber formation stage of the potato, spectral data were collected on days
with clear weather and no cloud cover. The spectral reflectance was measured using an
ASD Field-Spec 3 portable spectrometer, following the method described in reference [20].
Spectral data were collected on 7 July 2022, and 8 July 2023, between 11:00 and 13:00. There
are 60 groups of samples in this study.

2.2.2. Acquisition of Agronomic Parameters

The Leaf Chlorophyll Content (LCC) was determined using the 100% ethanol extrac-
tion method. Potato leaves corresponding to the hyperspectral measurement plots were
collected. After removing the leaf veins, leaf disks were obtained using a hole punch
method. Nine leaf disks with a diameter of 1 cm were collected and thoroughly ground.
Additionally, 0.1 g of the remaining crushed leaves was weighed. A total of 10 mL of
100% ethanol was added, soaking and extracting the chlorophyll in potato leaves in a dark
place at room temperature for approximately 3 days. Periodic shaking during soaking can
shorten the duration, until the leaves become colorless or white. After all the chlorophyll in
the crushed leaves was extracted into the ethanol solution (adjusted to a total volume of
25 mL), the absorbance at wavelengths of 663 nm and 645 nm was measured. The LCCA
and LCCW were calculated using the following formulas [8,9]:

Chlorophyll a content = (12.7D663nm − 2.69D645nm)× 1
40 × m

(1)

Chlorophyll b content = (22.9D663nm − 4.68D645nm)× 1
40 × m

(2)

Total chlorophyll content = (20.21D645nm + 8.02D663nm)× 1
40 × m

(3)

In the equations, D663nm and D645nm represent the absorbance at 663 nm and 645 nm,
respectively. m denotes the fresh weight (g) or leaf area (dm2). When m represents the fresh
weight of the leaf, it yields the LCCW. When m represents the leaf area, it yields the LCCA.
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Specific Leaf Weight (SLW) refers to the weight of leaf per unit leaf area (fresh weight).
In this study, Specific Leaf Weight (g/dm2) is calculated as the LCCA divided by the LCCW.

2.2.3. Spectral Data Processing

The original spectra of 60 samples in this study were obtained using View Spec Pro
Version 6.2 software. In this study, 0–2 order fractional differential (FD) processing was
performed on the spectral data after SG (Savitzky–Golay) smoothing pretreatment [20,21].
SG smoothing was implemented in The Unscrambler X 10.4 software.

The preprocessing of spectral data and the calculation of vegetation indices were
conducted using MATLAB 2022 (MathWorks, Inc., Natick, MA, USA). The drawing charts
were created using Origin 2024 (OriginLab Corp., Northampton, MA, USA).

2.3. Model Construction and Validation

Three different spectral indices were selected to more accurately screen for the wave-
length combinations with the highest correlation with LCCA and LCCW:

(1) Previous research has demonstrated better correlations between empirical vegeta-
tion indices and crop parameters; therefore, this study also selected some empirical
vegetation indices.

(2) The “trilateral” spectral parameters, which encompass the regions in the blue edge,
yellow edge, and red edge spectra, are derived by extracting the peak value, valley
value, area, or a combination of different bands from the blue edge, yellow edge, and
red edge.

(3) The inversion of agricultural parameters can be effectively achieved by selecting any
two-band vegetation index as the input parameter for the model. In this study,
three arbitrary dual-band indices were initially chosen and then subjected to a
0–2 order fractional differential operation. Within the range of its spectral measure-
ment wavelength, the combination index of the optimal order and the best vegetation
index were selected.

Then, the two spectral indices with the highest correlation to potato LCCA or LCCW
were further selected, constituting the optimal combination indices. The detailed calculation
formulas are provided in Table 1.

Table 1. The empirical vegetation index selected for the study.

Selected Spectra Parameters Calculation Formula Reference

CARI (R700 − R670) − 0.2 × (R700 + R670) [22]
GRVI R800/R550 [22]
PRI (R570 − R530)/(R570 + R530) [22]
IPVI R800 × (R800 + R670) [22]
PRI1 (R531 − R570)/(R531 + R570) [23]
SR1 R750/R700 [24]
SR3 R750/R550 [24]

SR705 R750/R705 [25]
SR680 R800/R680 [25]
SIPI (R800 − R445)/(R800 − R680) [25]

Db
The highest value of the blue edge band (490–530 nm) in the 1-FD

order spectral. [26]

Dy The highest value of the yellow edge band (462–642 nm) after the 1-FD
order treatment. [26]

Dr The highest value of the red edge band (670–760 nm) after the 1-FD
order treatment. [27]

Rg The highest value of the green edge band (510~560 nm). [27]
Rr The lowest value of the red edge band (650~690 nm). [27]

SDb
The sum of the blue edge wavelength range in the spectral reflectance

after the 1-FD order treatment. [28]
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Table 1. Cont.

Selected Spectra Parameters Calculation Formula Reference

SDy
The sum of the yellow edge wavelength range after the 1-FD

order treatment [28]

SDr
The sum of the red edge wavelength range after the 1-FD

order treatment. [28]

SDr-SDb / [29]
SDr/SDy / [29]

Difference Index (DI) Ri − Rj [13]
Soil-Adjusted Vegetation Index (SAVI) (1 + 0.16) Ri−Rj

Ri+Rj+0.16
[13]

Notes: Ri (i = 1, 2, 3) is any value of the wavelength reflectivity in the measurement range (350~1830 nm), 1-FD is
the first-order differential, and Rnumber is the spectral reflectivity of the digital band.

2.4. Model Approach

From the empirical spectral indices, “trilateral” spectral parameters, fractional order
differentiation processed spectral indices within 0–2 order, and all spectral indices, the
spectral index with the best correlation with LCCA and LCCW was selected as the model
input. Subsequently, SVM, RF and BPNN models were separately employed to model
LCCA and LCCW. For SVM, both Gaussian kernel and polynomial kernel were used as
base kernel functions. The model parameters C and γ are 20 and 0.02, respectively [30]. RF
belongs to the bagging algorithm in Ensemble Learning. The CART tree model is used as
the base learner, the number of decision trees is 100 [31]. In BPNN, through data forward
propagation and error back propagation, the input has undergone multiple iterations and
repeated training [32]. The final fitted result is the average of multiple predictions from the
machine learning model.

2.5. Model Evaluation Index

The model fitting results are evaluated using R2, RMSE, and MRE. A higher R2 signifies
improved predictive accuracy, whereas smaller RMSE and MRE values indicate greater
model stability and more focused prediction outcomes [21].

3. Results

3.1. LCCA, LCCW, SLW and Yield (GY)

In Figure 2, the trends of LCCA, LCCW, SLW, and GY under different treatments are
illustrated. When the application rate of biochar is constant, LCCA, LCCW, SLW, and GY
initially increase and then decrease with the increase in nitrogen fertilizer. Among them,
the highest values of LCCA, LCCW, SLW, and GY are observed at N3. When the nitrogen
fertilizer application rate is constant, the values of LCCA, LCCW, SLW, and GY in treatment
B1 are higher than those in treatment B0, with increases of 5.44%, 7.61%, 1.32%, and 4.82%,
respectively, compared to B0. Treatment B1N3 maximally enhances LCCA, LCCW, SLW,
and GY of the crops.

The significant analysis of the effects of different biochar types and nitrogen application
rates on LCCA, LCCW, SLW and yield (GY) is presented in Table 2. Different nitrogen
fertilizer application rates significantly affect LCCA, SLW, and GY (p < 0.05). Different
biochar application rates significantly affect LCCA and GY, and the interaction between
nitrogen fertilizer and biochar application rates significantly influences LCCA, SLW, and
GY (p < 0.05). The effects of nitrogen fertilizer application rates, biochar application rates,
and their interaction on LCCW are not significant.
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Figure 2. LCCA (a), LCCW (b), SLW (c), and GY (d) under different treatments.

Table 2. Effects of different biochar and nitrogen application rates on LCCA, LCCW, SLW and GY.

Year Treatment LCCA LCCW SLW GY

mg·dm−2 mg·g−1 g·dm−2 kg·ha−1

2022

B0

N0 33.60 hi 2.07 ab 16.54 bcd 50,520.34 f
N1 33.87 hi 2.16 ab 19.00 abcd 58,533.81 e
N2 38.44 fgh 2.34 ab 14.63 cd 65,618.02 d
N3 49.00 bcd 2.64 ab 18.72 bcd 69,750.80 bc
N4 40.78 ef 2.33 ab 16.80 bcd 63,574.08 d

B1

N0 33.55 hi 2.24 ab 13.43 cd 52,084.25 f
N1 34.09 hi 2.65 ab 13.65 cd 64,221.69 d
N2 42.74 ef 2.70 ab 16.53 bcd 71,766.71 ab
N3 54.95 cde 2.73 ab 22.73 ab 74,203.79 a
N4 44.77 a 2.50 ab 20.73 abcd 68,307.19 c

2023

B0

N0 35.22 ghi 2.07 ab 15.66 bcd 46,397.08 e
N1 39.75 fg 2.45 ab 17.32 bcd 53,743.41 d
N2 40.87 ef 2.57 ab 17.33 bcd 60,027.95 b
N3 50.91 abc 2.69 ab 21.41 abc 63,212.80 a
N4 45.11 de 2.11 ab 20.17 abcd 60,036.28 b

B1

N0 32.56 i 2.04 ab 13.14 d 48,711.15 e
N1 38.81 fgh 2.89 a 16.48 bcd 56,542.28 c
N2 49.38 bcd 1.88 b 17.01 bcd 62,935.39 a
N3 53.35 ab 2.97 a 26.52 a 64,432.88 a
N4 45.79 cde 2.76 ab 19.74 abcd 58,184.26 bc

Significant level
B ** ns ns **
N ** ns ** **

B×N ** ns * *

Notes: The letters after the values of each column indicated that there were significant differences between
treatments (p < 0.05), and * (p < 0.05) and ** (p < 0.01) indicated that there were significant differences in different
degrees, ns means no significant difference.
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3.2. Correlation Analysis between LCCA, LCCW and Spectral Index

The correlation analysis between various spectral indices and potato LCCA and LCCW
was conducted to select the optimal vegetation index as the model input variable. Table 3
displays the correlation coefficients between empirical spectral indices, “trilateral” parameters,
and potato LCCA and LCCW. The correlation analysis between empirical spectral indices
and potato LCCA indicates that the top seven indices with the highest correlation coefficients
are IPVI, SR1, SR705, SR3, SR680, GRVI, and CARI, ranging from 0.4 to 0.8. Among them,
IPVI exhibits the highest correlation coefficient of 0.771. In contrast, the top seven indices
with the optimal correlation between empirical spectral indices and potato LCCW are IPVI,
CARI, SR1, SR3, SR705, SR680, and SIPI, ranging from 0.3 to 0.7. The Integrated Phenotypic
Vegetation Index (IPVI) exhibits a peak correlation of 0.695. When assessed against LCCW,
empirical spectral indices have demonstrated a higher degree of correlation with LCCA.
Furthermore, the so-called “trilateral” parameters have shown a consistently strong correlation
with potato LCCA and LCCW. The top seven parameters with the optimal correlation with
potato LCCA are SDr-SDb, SDr, Dr, Dy, Db, SDb, and Rg, ranging from 0.5 to 0.8. Among
them, SDr-SDb exhibits the optimal correlation of 0.717. Similarly, the top seven parameters
with the optimal correlation with potato LCCW are SDr, SDr-SDb, Dr, Dy, Db, Rg, and
SDb, ranging from 0.4 to 0.7. SDr shows the highest correlation coefficient of 0.613. Two
arbitrary two-band spectral indices were constructed based on the spectral reflectance after
0–2 order (step size 0.5) differential processing, and their correlation with LCCA and LCCW
were analyzed (Table 4). A graphical representation of the correlation matrix, referred to
as Figures 3 and 4, was constructed. In this visualization, a color gradient ranging from
yellow to green is utilized to depict the degree of correlation between various two-band
spectral indices and the concentration of LCCA or LCCW. The gradient indicates a spectrum
of correlation values, transitioning from strongly negative to strongly positive. The correlation
analysis between spectral indices and LCCA indicates that the spectral indices constructed
from spectra processed with 0.5, 1, and 1.5 order differentials exhibit significantly improved
correlation coefficients with potato LCCA, with the highest correlation coefficient observed
for DI constructed from spectra processed with a 0.5 order differential, reaching a maximum
value of 0.798, with corresponding wavelength positions at (755,697). In contrast, the spectral
indices constructed from spectra processed with a 2 order differential show a decrease in
correlation coefficients. The order of correlation coefficients in terms of order is: 0.5 order > 1
order > 1.5 order > 0 order > 2 order. Similarly, the spectral index with the optimal correlation
in the correlation analysis between spectral indices and LCCW is DI processed with a 1.5 order
differential, with a value of 0.737 and corresponding wavelength combination of (726,680).
The order of correlation coefficients in terms of order is: 1.5 order > 1 order > 0.5 order >
2 order > 0 order. Compared to spectral indices established from the original reflectance,
the correlation coefficients of spectral indices calculated from fractional order differentials
significantly improved with LCCA or LCCW.
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Table 3. Empirical spectral index and ‘trilateral’ parameters and potato LCCA and LCCW correlation
coefficients.

Index Spectral Index Category Spectral Index r

LCCA

Empirical spectral index

CARI 0.496
GRVI 0.404
PRI 0.317
IPVI 0.771
PRI1 0.338
SR1 0.669
SR3 0.533

SR705 0.658
SR680 0.504
SIPI 0.372
Db 0.567

“trilateral” parameters

Dy 0.568
Dr 0.673
Rg 0.536
Rr −0.087

SDb 0.565
SDy −0.262
SDr 0.711

SDr-SDb 0.717
SDr/SDy 0.432

LCCW

Empirical spectral index

CARI 0.563
GRVI 0.133
PRI −0.106
IPVI 0.695
PRI1 0.123
SR1 0.515
SR3 0.473

SR705 0.394
SR680 0.383
SIPI 0.302
Db 0.531

“trilateral” parameters

Dy 0.532
Dr 0.560
Rg 0.548
Rr 0.106

SDb 0.481
SDy −0.064
SDr 0.613

SDr-SDb 0.612
SDr/SDy 0.398

Table 4. Optimal spectral index wavelength combinations under different differential orders.

Index
Spectral

Index
Differential Order rmax

Position of Wavelength
(i, j)/(nm)

LCCA

DI

0 0.787 740,733
0.5 0.798 755,697
1 0.792 737,758

1.5 0.788 736,748
2 0.756 702,753

SAVI

0 0.700 708,756
0.5 0.787 694,755
1 0.792 754,745

1.5 0.785 748,736
2 0.756 753,702

LCCW

DI

0 0.684 757,724
0.5 0.723 756,671
1 0.723 739,670

1.5 0.737 726,680
2 0.702 694,751

SAVI

0 0.612 674,678
0.5 0.706 671,756
1 0.723 670,739

1.5 0.736 751,731
2 0.702 751,694
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Figure 3. Correlation matrix of DI, SAVI with LCCA (a1–a5,b1–b5).
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Figure 4. Correlation matrix of DI, SAVI with LCCW (a1–a5,b1–b5).
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3.3. Establishment of Estimation Model of LCCA and LCCW Based on Optimal Spectral Index

Section 2.3 introduces empirical spectral indices, “trilateral” spectral parameters, and
arbitrary two-band vegetation indices. The parameters with the optimal correlation in
these three types of spectral parameters are divided into four combinations for correlation
analysis. Then, the top seven spectral indices with the optimal correlation with potato
LCCA or LCCW in each combination are chosen as the input for the model. Potato LCCA
or LCCW is used as the response variable, and SVM, RF, and BPNN are used to construct
prediction models for potato tuber formation period LCCA and LCCW. The performance
and fitting effect of the models are comprehensively evaluated based on three indicators:
R2, RMSE, and MRE (Figures 5 and 6).

Figure 5. Precision evaluation of potato LCCA model under different input variables and different
model combinations.
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Figure 6. Precision evaluation of potato LCCW model under different input variables and different
model combinations.

In a parallel comparison of the three models, the model accuracy for estimating potato
LCCA and LCCW is as follows: RF > BPNN > SVM. In the potato LCCA estimation model,
both RF and BPNN have R2 values higher than 0.7, with RMSE and MRE maintained
at relatively low levels, indicating good model performance and fitting effect. In the
potato LCCA estimation model, when the input variables are different combinations, the
validation set R2 values are all higher than 0.7, indicating good model performance and
fitting effect. In contrast, in the potato LCCW estimation model, the SVM and BPNN
models have R2 values ranging from 0.5 to 0.7 when the input variables are combination
1, indicating a lower fitting accuracy. However, for combination 3, both the modeling set
and validation set have the highest R2 values, with lower RMSE and MRE, specifically
showing: combination 3 > combination 4 > combination 2 > combination 1. Overall, the
R2 of the LCCA model is higher than that of the LCCW model, and the MRE shows lower
values, indicating higher model accuracy and better performance and fitting effect. When
the input variables and modeling methods are combination 3 and RF, the optimal potato
LCCA and LCCW prediction models can be constructed. The R2 values of the validation
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set are 0.840 and 0.720, RMSE values are 1.145 and 0.311, and MRE values are 6.569% and
11.868%, respectively.

4. Discussion

In recent years, with the rapid development and integration of modern information
technologies such as remote sensing, big data, machine learning and cloud computing,
there have been numerous applications in monitoring crop growth or pest and disease
infestations in agriculture. Hyperspectral imaging, due to its wide spectral range and
nearly continuous spectral information of objects, can accurately record multidimensional
information and component data [33]. It has been widely used in monitoring crop parame-
ters such as leaf area index (LAI) [21], LCC [13], above-ground biomass (AGB) [34], soil
moisture content [35], and surface parameters. Chlorophyll content directly determines the
photosynthetic activity of crops and is an important physiological indicator for evaluating
crop growth status. Combining hyperspectral remote sensing to estimate crop LCC is
beneficial for accurately assessing its estimation capability and comprehensively evaluating
crop growth status [36].

The construction of three types of spectral indices or parameters, including empirical
spectral indices, “trilateral” spectral parameters, and arbitrary two-band spectral indices,
revealed that the selection of arbitrary two-band spectral indices showed the highest corre-
lation with potato LCC. This is because the arbitrary two-band spectral indices created by
combining two bands utilize hyperspectral reflectance data processed through 0–2 order dif-
ferentials, which helps reduce the basic background noise of the original spectral reflectance
data and highlights their detailed spectral features [37]. As the order of differentiation
increases, both the correlation between spectral indices and potato LCC and the predictive
fitting performance of the model initially increase, but then decrease. When fractional order
differentials (such as 0.5 order and 1.5 order) are used, the correlation between arbitrary
two-band spectral indices and potato LCC exceeds that of the integer-order differentials
(such as 1 order and 2 order). This is mainly because fractional order differentials can
capture gradient information missed by integer-order differentials [38]. Most empirical
vegetation indices based on fixed bands tend to saturate. When the crop canopy coverage
is high, empirical vegetation indices tend to saturate, leading to decreased sensitivity to the
reflecting of chlorophyll content and thus a decrease in correlation [39]. In sparse canopy
conditions, where soil reflectance dominates, the effectiveness of empirical vegetation
indices in reflecting vegetation growth parameters is often poor [40]. Additionally, due
to the influence of the crop growth stage, environment, and pests and diseases, different
spectral information may be generated, resulting in the phenomenon of “same object with
different spectra” or “different objects with the same spectrum”. In such cases, the use of
empirical vegetation indices and “trilateral” parameters based on correlated bands may
not fully utilize spectral information, leading to reduced correlation [41].

Our study utilized the rich spectral information contained in hyperspectral data to
construct various spectral indices combined with different machine learning methods. We
aimed to establish models for predicting LCCA and LCCW in potatoes, and to explore
the rationality and applicability of these two different units of chlorophyll content. The
results indicated that the LCCA model exhibited higher R2 compared to LCCW, with a
lower Mean Relative Error (MRE), indicating higher accuracy and better fitting of the
model. This suggests that using hyperspectral data to extract information about crop LCCA
is richer and more correlated compared to LCCW. This is attributed to the instability of
chlorophyll content represented per unit fresh weight under different water and fertilizer
supply conditions and growth environments. When chlorophyll content is expressed per
unit leaf area, its representation per unit fresh weight is greatly affected by leaf water
content variations, resulting in significant variability [42]. Therefore, expressing LCCA
can effectively avoid the interference of crop leaf water content, better approximate the
true value of crop leaf chlorophyll content, and make full use of spectral information to
accurately monitor crop photosynthetic capacity and understand crop growth conditions in
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a timely manner. Among the three models used in this study, the LCCA and LCCW predic-
tion models-based RF method showed the optimal fitting performance, attributed to RF’s
good noise and interference resistance and its resistance to overfitting [43], whereas Back
Propagation Neural Network (BPNN) suffers from slow convergence and is prone to local
minima during training [44]. Support Vector Machine (SVM) exhibited the lowest accuracy,
possibly due to its sensitivity to model parameters such as the kernel function and penalty
factor, which hindered its predictive ability [45]. Therefore, the RF model is considered
the optimal method for predicting crop LCC, and expressing LCCA is recommended for
estimating crop leaf chlorophyll content in the agricultural practices of the potato industry.

This study mainly focuses on the model inversion results of LCCW and LCCA, which
shows that LCCA has a strong ability to represent the real chlorophyll content of crops.
These strategies can efficiently and non-destructively monitor the chlorophyll content of
crops, grasp the real-time growth status of crops, and formulate corresponding solutions.
Under the premise of paying attention to the efficient and rational use of water resources
and fertilizers, they can effectively guide precision fertilization, scientific irrigation, and
integrated pest control. These models not only save agricultural water and fertilizer, but
also make an important contribution to the sustainable utilization of agricultural resources
and the protection of the ecological environment. In the future, multi-source remote
sensing data (hyperspectral, multispectral, thermal infrared, etc.) will be used as model
input variables, and other types of models will be tried. The field measured data (different
varieties, regions, time and space) will be compared and verified at a larger scale, in order
to strengthen the real-time monitoring of crop physiological growth and promote the
development of intelligent agriculture.

5. Conclusions

In this study, four combinations of model input variables were constructed, including
empirical spectral indices, “trilateral” spectral parameters, any two-band vegetation indices,
and the most highly correlated parameters among these three spectral parameters. SVM, RF
and BPNN machine learning methods were employed to construct models for predicting
LCCA and LCCW during the tuber differentiation stage of potatoes. The conclusions drawn
from the study are as follows:

(1) Compared to “trilateral” parameters and empirical vegetation indices, any two-band
vegetation indices constructed from hyperspectral reflectance after fractional order
differentiation processing exhibit stronger correlations with potato LCC. As the order
of differentiation increases, both the correlation between spectral indices and potato
LCC and the predictive accuracy of the models initially increase but then decrease.
When employing fractional order differentiations (e.g., 0.5th order and 1.5th order),
the correlation between any two-band spectral indices and potato LCC exceeds that
obtained when using integer-order differentiations (e.g., 1st order and 2nd order).
Among them, the maximum correlation coefficients of the DI with the highest correla-
tion after 0–2 order differentiation processing are: 0.787, 0.798, 0.792, 0.788, and 0.756,
respectively.

(2) In the constructed LCCA and LCCW models, the performance and fitting effects
are as follows: RF > BPNN > SVM, with the input combinations ranked as follows:
combination 3 > combination 4 > combination 2 > combination 1. The RF method
consistently demonstrates the highest accuracy and best fitting performance in model
construction. The optimal input variables and modeling method for both LCCA and
LCCW models are combination 3 and RF method. Therefore, expressing LCCA is
recommended for estimating crop leaf chlorophyll content in agricultural practice.
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Abstract: Optical remote sensing can effectively capture 2-dimensional (2D) forest information,
such as woodland area and percentage forest cover. However, accurately estimating forest vertical-
structure relevant parameters such as height using optical images remains challenging, which leads
to low accuracy of estimating forest stocks like biomass and carbon stocks. Thus, accurately obtaining
vertical structure information of forests has become a significant bottleneck in the application of
optical remote sensing to forestry. Microwave remote sensing such as synthetic aperture radar
(SAR) and polarimetric SAR provides the capability to penetrate forest canopies with the L-band
signal, and is particularly adept at capturing the vertical structure information of forests, which is
an alternative ideal remote-sensing data source to overcome the aforementioned limitation. This
paper utilizes the Citexs data analysis platform, along with the CNKI and PubMed databases, to
investigate the advancements of applying L-band SAR technology to forest canopy penetration
and structure-parameter estimation, and provides a comprehensive review based on 58 relevant
articles from 1978 to 2024 in the PubMed database. The metrics, including annual publication
numbers, countries/regions from which the publications come, institutions, and first authors, with
the visualization of results, were utilized to identify development trends. The paper summarizes the
state of the art and effectiveness of L-band SAR in addressing the estimation of forest height, moisture,
and forest stocks, and also examines the penetration depth of the L-band in forests and highlights
key influencing factors. This review identifies existing limitations and suggests research directions in
the future and the potential of using L-band SAR technology for forest parameter estimation.

Keywords: L band SAR; Citexs data; forest canopy penetration

1. Introduction

The rapid advancement in technologies of satellites [1], unmanned aerial vehicles
(UAVs) [2] and radar [3] has facilitated the acquisition of fast and precise ground informa-
tion for forest resource surveys. Consequently, the reliance on remote sensing technologies
in forestry has significantly increased. Remote sensing technologies now enable accurate
extraction of two-dimensional (2D) forest information such as woodland area and percent-
age forest cover, along with other parameters. However, due to the limited penetration
ability of electromagnetic waves and the complexity of forest canopies, obtaining accurate
information of vertical structures remains challenging. Estimating forest canopy height and
related parameters such as stock, biomass, and carbon storage continues to pose difficulties.
Therefore, acquiring comprehensive information of forest vertical structures represents a
major obstacle that hampers the widespread application of remote sensing technologies
in forestry.
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Spaceborne microwave signals used by Synthetic Aperture Radar (SAR) and polari-
metric SAR possess the capability to penetrate forest canopies. Particularly, L-band SAR
signals exhibit strong forest canopy-penetration ability and sensitivity [4] to forest vertical
structures. Thus, the L-band SAR offers a valuable means of acquiring extensive forest
vertical-structure information across multiple frequencies and serves as an optimal remote
sensing data source for addressing this “bottleneck”. However, current research findings
indicate that the estimation results of forest height using L-band SAR data, combined
with InSAR or PolInSAR technology, are still not satisfied. This is primarily attributed
to the unclear understanding of the penetration process and response mechanism of the
L-band SAR signal in forests, as well as the lack of clarity regarding its penetration depth
in different types of forests. The quantitative description of transmittance and behavior
patterns exhibited by the L-band SAR signal within forest canopies remains elusive, im-
peding the establishment of a reliable model for determining the L-band SAR signal’s
penetration depth [5]. Therefore, it becomes imperative to characterize the attenuation
process and penetration depth of the L-band SAR signal based on information of forest
canopies obtained from air-ground cooperative microwave radiometers and LiDAR data.
Additionally, interpreting the forest penetration mechanism associated with the L-band
SAR signal will enable us to develop a theoretical framework and methodology for re-
trieving accurate estimates pertaining to forest penetration depth of the L-band, and thus
effectively overcome the existing limitations related to extracting accurate information of
forests through remote sensing technologies.

2. Literature Analysis of Forest Penetration of L-Band SAR Signal

2.1. Introduction of L-Band SAR Satellites

In 1978, the United States launched the first Ocean Satellite (Seasat) with the L-band
SAR sensor. Then, Japan launched the JELLS-1 satellite in 1992 and the Advanced Land
Observing Satellite (ALOS) in January 2006 with L-band SAR sensors and a maximum
positioning accuracy of 10 m. In November 2009, the European Space Agency launched
the Soil Moisture and Ocean Salinity Satellite (SMOS), which can emit L-band radiation
energy to the ground and provide 9 km spatial resolution products. In January 2015, the
United States launched the Active and Passive Soil Moisture Monitoring Satellite (SMAP)
with an L-band SAR sensor, which can provide global moisture products with a resolution
of 40 km × 40 km. In October 2018, Argentina launched the SAOCOM 1A satellite with
L-band and a spatial resolution of 10 m × 10 m to 100 m × 100 m. In January 2022, China
launched the Land Probe 1 Group 01 A/B satellite (LT-1A/1B), also known as the L-band
differential Interferometric SAR satellite, with spatial resolutions of 3 m × 3 m, 6 m × 6 m,
12 m × 12 m, 20 m × 20 m and 30 m × 30 m. A summary of the launched satellites with
L-band is shown in Table 1.

Table 1. SAR satellites with L band in the world.

Serial Number Launch Time Country or Region Satellite Name

1 February 1978 Global Positioning System NAVSTAR GPS

2 June 1978 American Seasat satellite Seasat

3 February 1992 Japan Earth Resource Satellite JERS-1

4 January 2006 Japan Advanced Land Observing Satellite ALOS/ALOS-2

5 November 2009 European Space Agency Soil Moisture and Ocean Salinity Satellite SMOS

6 January 2015 United States Active and Passive Soil Moisture Monitoring Satellite SMAP

7 October 2018 Argentine Microwave Observation Satellite 1A SAOCOM-1A

8 September 2019 China Yunhai-1 02 satellite Yunhai-1 02

9 August 2020 Argentine Microwave Observation Satellite 1B SAOCOM-1B

10 January 2022 China Landexplorer-1 Group 01A satellite LT-1A

11 January 2022 China Landexplorer-1 Group 01 B satellite LT-1B
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Compared with the number of other remote sensing satellites, L-band SAR satellites
are very few, and even fewer are in orbit. Thus, it is relatively difficult to obtain L-band
data. The emergence of LT-1 has started to change this situation.

2.2. Trend in Annual Publications

Based on the Citexs comprehensive literature database, this paper adopted the bib-
liometrics method to carry out mining of the literature big database by selecting year,
country, institution, author, journal, and so on. Moreover, analyzing and visualizing the
general trend and distribution in this field was conducted. Using L band SAR and forest
penetration as keywords, we identified 0 papers from January 1978 to April 2024 in the
CNKI database and 58 papers from January 1978 to April 2024 in the PubMed database.
The average annual number of the papers published was three, and the annual numbers of
the published papers are shown in Figure 1.

Figure 1. SCI published papers from 1978 to 2024 dealing with L-band SAR data and related to
forest penetration.

Figure 1 shows that the publications related to the use of L-band SAR data in the
field of forest canopy penetration first appeared in 1999, indicating a relatively late start.
From 1999 to 2011, there is only one SCI paper published each year, which indicates the
stage of slow development. From 2012 to 2023, the annual number of the published papers
increased to more than two, reaching the peak of eight in 2019. The fastest growth happened
from 2012 to 2019, indicating that the research in this field was in a rising stage of rapid
development, and then a decreased trend was found.

2.3. Publications by Country and Region

From January 1978 to April 2024, the distribution of the top 23 countries/regions in
the studies of L band SAR data and forest canopy penetration in the world is shown in
Figure 2. The countries/regions in which there is the largest number of publications were
China (13 papers, 22.41%), then Germany (7 papers, 12.07%) and France (7 papers, 12.07%).
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Figure 2. The distribution of the SCI publications related to the use of L-band SAR data and forest
canopy penetration.

2.4. Publications by Research Institution

The top-20 national research institutions in which the authors published their papers
in the field of L band SAR data applications and forest canopy penetration from January
1978 to April 2024 are shown in Figure 3. The institutions can be divided into three groups.
The top group includes the Chinese Academy of Sciences, the German Aerospace Center,
the Japan Aerospace Exploration Agency and the Indian Institute of Remote Sensing, in
which there are three papers in this field for each institute. The second group consists
of 12 research institutions, each publishing two articles in this field. The last group is
composed of four institutes in which there is only one publication each.

Figure 3. Top-20 research institutions that published SCI papers dealing with L-band SAR data and
forest canopy penetration.
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2.5. Publications by the First Author

From January 1978 to April 2024, the world’s top-30 first authors who studied the
use of L band SAR data and forest canopy penetration are shown in Figure 4. The author
who produced the largest number of the papers in this field is Mark L. Williams, with
three papers in total. Yasser Maghsoudi, Matteo Pardini, Mohammad Javad Valadan Zoej,
Marco Lavalle, Tayebe Managhebi and Masanobu Shimada tied for second place, with two
publications. The authors with one publication include Liming Jiang, Om Prakash Tripathi,
A.K. Milne, Junli Chen, Chadi Abdallah, J. Jomaah, Masato Hayashi, Jyotishman Deka,
Michael F. Toups, Kiran Dasari, P. S. Roy, Fulong Chen, Qingwei Tong, A.C. Lee, Wei Li,
Ruixia Yang, Takeo Tadono, Shashi Kumar, Lal Bihari Singha, Jean Luc Betoulle, Nicolas
Baghdadi, E. Mougin, and Van Nhu Le.

Figure 4. The-top 30 first authors who published SCI articles in the field of using L-band SAR data
and dealing with forest canopy penetration.

2.6. Publication by Journal

From January 1978 to April 2024, the top 22 journals in terms of the publications
dealing with L-band SAR data and forest canopy penetration are shown in Figure 5. Remote
Sensing is the journal with the largest number of publications (10). IEEE Transactions on
Geoscience and Remote Sensing ranked second, with three articles, and Remote Sensing of Envi-
ronment ranked third, with two papers. There are another 19 journals with one publication.
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Figure 5. Publications by journal in the field of using L-band SAR data and dealing with forest
canopy penetration.

3. Applications of L-Band SAR Data in Forestry

L-band SAR data have been used in forestry. Most of the data come from ALOS
satellites with different polarization modes. The main applications deal with estimations of
forest canopy height, moisture and forest stocks.

3.1. Forest Height

Kugler successfully estimated and verified the potential of L-band, P-band and X-band
to estimate tree height in temperate forests by using airborne SAR sensors combined with
constraints [6,7]. Zhang et al. used the improved RMoG model and ALOS-1 data to invert
forest height with the estimation error reduced by 27.73% and 8.57% Asopa et al. used
UAV SAR technology to estimate the tree height of tropical forests with a root mean square
error (RMSE) of 4.21 m [8]. Huang et al. estimated tree height by using L-band SAR data
and generated a digital terrain model (DTM) and digital surface model (DSM) validated by
using UAV LiDAR data [9]. Thieu et al. proposed a new algorithm based on a mean set
to increase phase, and combined it with the polarization characteristics of the VE-RVoG
optimized set, developed to improve the estimation of forest height, and obtained an RMSE
of 2.91 m and a correlation coefficient of 0.909 [10]. Xie et al. improved the accuracy of
forest height estimation by using the new airborne PolInSAR data-processing strategy;
the RMSE was significantly reduced, to 1.02 m, with a decrease of 12.86%, providing a
feasible solution for forest height estimation with X-band waves [11]. Based on L-band
single-baseline pooled SAR interferometric simulation data, Sui et al. proposed a standard
scale optimization model suitable for various densities, successfully overcoming the failure
of traditional methods in low-density regions, and effectively realized the estimation of
forest height [12].

Moreover, Luo et al. used UAV SAR multi-baseline L-band data from the AfriSAR
project to show better accuracy in forest height estimation, providing an improved method
for estimating structural parameters of tropical rain forests [13]. Luo et al. conducted an
estimation experiment using L-band multi-baseline fully polarized data from the AfriSAR
project in the Lope Pongara pilot area and proposed a depth-based error-correction method
that improved the accuracy of forest height estimation and demonstrated potential ap-
plications [14] of machine learning-interference feature prediction. Zhang et al. used the
simulated L-band SAR data and combined it with the improved three-stage method to
derive forest height with a significantly improved accuracy [15]. Integrating the TF-RVoG
method based on time–frequency analysis and the improved single-baseline data decompo-
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sition method significantly improved the estimation accuracy of the forest canopy height
model, with the RMSE dropping to 2.54 m [16]. Zang et al. combined ICESat-2 data
and tree age information to propose a method to estimate the change in palm tree height
in Peninsular Malaysia, and successfully produced a comprehensive map of tree height
change from 2001 to 2020 [17]. The verification results showed that the estimated height
was highly consistent with the actual height. Providing a spatially explicit tool with great
potential for quantifying plantation stocks, Sa and Nei et al. used ALOS-2 L-band data to
retrieve conifer tree height in Saihanba, Hebei Province and obtained an R2 of 0.67 between
the SAR-based estimated and the LiDAR-based conifer tree height [18]. These studies show
that L-band SAR data have great potential in forest height estimation, but the estimation
accuracy cannot meet the needs of forestry production.

3.2. Moisture

Grant et al. used an airborne L-band microwave radiometer to study the effect of forest
cover on soil water estimation in Australia and utilized the L-MEB zero-order radiative
transfer model to simultaneously estimate soil water and vegetation optical depth [19].
Richaume et al. found that SAR signal was highly correlated with the optical depth,
roughness and canopy density of vegetation by using SMOS for large-scale moisture
estimation, and the Hr value of the spatial pattern of soil moisture was correlated with
land-cover types. Their results demonstrated that the evergreen broad-leaved mixed
forests and the deciduous coniferous mixed forests had higher values of Hr, ranging from
0.32 to 0.39, desert, shrub and bare soil had lower values of Hr, ranging from 0.14 to 0.16,
and the Hr values of grassland and tundra cultivated land changed to between 0.20 and
0.23 [20]. Konings et al. used SMAP data and a multi-temporal dual-channel retrieval
algorithm (MT-DCA) to estimate the optical depth, moisture and reflectance of large-scale
vegetation [21]. Lv et al. studied the relationship between optical depth, penetration and
temperature of vegetation [22]. Since the L-band is sensitive to moisture, it is often used
to estimate forest moisture. Holtzman et al. used L-band radiometer towers in Red Oak
forests in Massachusetts, USA, to prove that the optical depth of vegetation measured by
microwave radiometers is correlated with the amount of water in vegetation [23]. These
studies indicate that the optical depth of vegetation is an important index to evaluate the
microwave signal transmission process in forest canopy.

3.3. Forest Stocks

Forest stocks include stand volume, above-ground biomass (AGB) and carbon stocks.
Balzter et al. estimated changes [24] in stand volume in Thetford, United Kingdom from
1910 to 1997 using Seasat and JELLS-1 satellite data. Santoro et al. used JELLS-1 L-band
SAR data to study volume of forests in Sweden, Finland and Siberia, and achieved an
estimation accuracy of greater than 75% [25]. Chowdhury et al. used ALOS L-band data to
estimate forest volume in Siberia and obtained an R2 of about 0.60 between the estimated
and observed values, with an accuracy greater than 70% [26]. Santoro et al. conducted
a comprehensive assessment of forest volume by using L-band ALOS data from 2006 to
2011; they found that HH-polarized SAR data had a good estimation effect, and obtained
an error of less than 30% when the area was larger than 20 hectares [27,28]. Thiel et al.
used ALOS data to estimate forest volume in central Siberia; the R2 between the estimated
and measured values reached 0.58, and the estimation accuracy was greater than 70% [29].
Christian Thiel et al. employed ALOS PALSAR L-band to estimate forest volume in central
Siberia, and demonstrated that HV backscattering achieved a slightly higher accuracy
than HH. They also found that the simple inversion method, coupled with multi-temporal
SAR images, performed well in feature correction, providing a feasibility study for forest
resource estimation in this region. Santoro et al. compared the forest volume-estimation
potential of SAR data in X-, C- and L-bands, and demonstrated that L-band led to the
highest accuracy, with a relative error of 31.3% [30]. Zhang et al. used ALOS-2 (PALSAR-
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2) data to estimate forest volume in Huangfengqiao Forest Farm, Hunan Province, and
obtained an R2 of 0.61 [31].

Sandra Englhart et al. used X-L band SAR data to estimate forest AGB in Indonesian
Borneo, and the results showed that the X-L band was suitable for the estimation when
AGB was low, with an R2 of 0.53 [32]. Oliver Cartus et al. used ALOS PALSAR data to
carry out regional scale mapping of forest biomass in northeastern United States. They
combined SAR data and optical remote-sensing calibration models, and the results showed
that the accuracy and performance of the method was superior to the results from using
SAR data alone, which are dependent on imaging conditions [33]. Peregon and Yamagata
used L-band SAR data to carry out AGB estimation on deciduous forests in Western Siberia,
and obtained an R2 of 0.72 with an estimation accuracy of 85% [34]. Rahman et al. analyzed
different observation models of ALOS PALSAR data, and conducted a regression analysis
and estimation of natural forests in southeast Bangladesh [35]. Chaparro et al. studied
the use of C- and X-band vegetation optical depth to estimate forest biomass and carbon
balance, and concluded that vegetation optical depth from the L-band provided more
accurate information because the penetration of microwaves through the canopy is higher
at longer wavelengths and lower frequencies [36]. Berninger et al. used L-band and C-band
SAR data for large-scale AGB monitoring, providing important information for accurately
portraying forest loss [37,38]. Liu et al. compared airborne P-band and L-band TomoSAR
measurements of the canopy-height model (CHM) and AGB over a tropical forest in Lope,
Gabon, and found that the results of the CHM did not significantly differ, while the P-band
was more sensitive than the L-band in the estimation. Maciej J. Soja et al. used P-band SAR
data to estimate AGB in tropical forests and obtained an accuracy of 80%, based on the field
measurements from 141 plots [39,40].

Ji et al. studied the sensitivity of L-band SAR backscattering with respect to forests
with conditions of different mean canopy densities, different mean tree height, and different
mean diameter at breast height (DBH), and found that the way of backscattering affected
the improvement in biomass estimation accuracy. Hernandez-Stefanoni et al. improved
the AGB map of tropical arid forests by integrating LiDAR, ALOS PALSAR, and climate
data, and reduced the relative error of biomass estimation by 12.2% [41]. Zhang et al. used
L-band ALOS data to estimate the AGB of Chinese fir forests in Huangfengqiao Forest Farm,
Hunan Province, by extracting multiple rotation thresholds, and realized an estimation
accuracy of 77.5% [42]. Ni et al. estimated the biomass of deciduous forests in mountainous
areas with three-dimensional (3D) data and found that the season had a significant impact
on the estimation results [43]. These studies show that the L-band has the potential to
estimate forest stock and biomass, but the accuracy of estimation results is generally lower
than 80%, due to inaccurate information of forest vertical structures.

4. Penetration of L-Band Signal and Its Influencing Factors

4.1. Penetration of L-Band Signal

Dal pointed out that microwave signals can penetrate vegetation and that the el-
evation bias caused by penetration is not exactly equal to the penetration depth, then
proposing a penetration model [44]. Pardini and Papathanassiou carried out a forest
canopy-penetration experiment using L- and P-band data, and their results showed that
SAR penetration ability was closely related to band and canopy structure [45]. In Brazivella,
Congo, Toochi et al. investigated the penetration capacity of six bands, including the
K-band (1 cm), X-band (3 cm), C-band (5.6 cm), S-band (10 cm), L-band (23 cm), and
P-band (75 cm), and further confirmed that the penetration of short wavelengths (X, K)
was low and that the penetration depth was also dependent on the vertical structures of
the forests [46]. Reginald R. Muskett progressively buried mesh reflectors underground in
the Alaskan tundra, USA, and quantified the depth of L-band penetration into the soil [47].
Schlund et al. conducted penetration-depth and compensation experiments for temperate
forests using an X-band based on LiDAR data. The estimated RMSE was less than 1 m,
indicating great potential [48]. Teubner et al. explored the relationship between vegetation
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optical depth and gross primary production (GPP), and found that, overall, GPP was
negatively correlated with vegetation optical depth in predominantly occurring both wet
and dry areas, and that the correlation was similar to higher SIF [49].

Tanase et al. evaluated the effectiveness of C-band, L-band and P-band SAR sensors
in Romanian coniferous forests using simulation models, and their results showed that
different bands had different sensitivity to vegetation characteristics and disturbances.
The authors emphasized the need for the comprehensive use of multi-band, dense time
series and different types of sensors to compensate for the limitations of a single frequency
and acquisition time [50]. Chaparro et al. quantified the contribution of ACD proportional
vegetation optical depth/enhanced vegetation index signals, and their results confirmed
an enhancement compared to higher frequency bands, indicating that the penetration
depths of all bands were reduced in the densest forests. The 34% and 30% of variance
could be explained with the proportional decrease in C- and X-band vegetation optical
depth [51], respectively. Colliander et al. used airborne L-band SAR data to carry out
a two-year forest-soil-moisture experiment under forest canopies in the northeastern
United States [52]. Singh et al. found that the penetration depth of microwave signals into
the ground varied significantly with the available content of soil moisture, with longer
wavelengths having the stronger ability to penetrate the soil; however, the penetration
capacity would be reduced as soil moisture content increased [53]. Liu et al. used ALOS
L-band data to conduct penetration studies in extremely arid desert areas, and their
results showed that the penetration depth of the L-band reached 2.98 m [54]. Qi et al.
conducted an additional reference-height error analysis for baseline calibration based on a
distributed Target DEM in TwinSAR-L in the arid region of eastern Xinjiang. Their results
showed errors of 1.295 m and 1.39 m, respectively, which seriously reduced the product
quality [55].

Wang et al. selected AGB, the leaf area index (LAI), and the normalized difference
vegetation index (NDVI) to optimize effective scattering albedo (ω), surface roughness,
and for estimation (VODini). When LAI was greater than 20.76 and NDVI larger than
0.83, the results were significantly improved, especially for dense vegetation [56]. Zhu
et al. used ALOS data and a deep-learning algorithm to study penetration depth in desert
areas, and found that the maximum penetration depth of the L-band reached 2.84 m, and
that the penetration was also related to scattering coefficient, dielectric constant, surface
roughness and mineral composition [57]. The simulation of Bai et al. showed the vege-
tation optical depth increased linearly with the decrease in LAI, while the results were
similar to those from the satellite-based L-band, C-band and X-band. Their sensitivity
tests indicated that polarization dependence become more pronounced at higher frequen-
cies [58]. Olivares-Cabello et al., through unsupervised classification analysis on a global
scale, found that the L-band is suitable for monitoring dense canopies, while X-band and
LCX vegetation optical depths are more suitable for sparse tree canopy, savannas and
grasslands [59]. Schmidt et al. analyzed the relationship between live fuel coverage and
vegetation optical depth through random forest regression, using multi-band datasets
and soil-moisture—marine-salinity sensors, providing important guidance for selecting
suitable wavelengths for specific applications and algorithm development [60]. Baur et al.
studied the attenuation characteristics of L-, C- and X-bands with respect to the conditions
of different land-cover types, and concluded that shrub had a high transient peak value,
while forest canopy had a low value [61]. In the areas with strong seasonal rainfall, the
seasonal amplitude was greater in the C-band than in the L-band. The penetration char-
acteristics of the L-band in various conditions and its comparison with the C-band and
X-band are summarized in Table 2.
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Table 2. Penetration characteristics of L-band in various conditions and its comparison with C-band
and X-band (Note:

√√
—very good;

√
—good; *—not good).

Observed Object L-Band C-Band X-Band

Sea Ice *
√ √√

Snow (type and thickened layer)
√√ √√ √√

Soil moisture
√√ √√ √√

Soil roughness
√ √√ √√

Soils
√√ √

*

Water-land boundaries
√√ √ √√

Vegetation
√√ √√ √√

Vegetation moisture
√√ √√ √√

Ocean
√√ √√

*

Geological structure, structure *
√ √

Desert underground
√√ √

*

4.2. Influencing Factors in L-Band Penetration

Singh et al. used the functional relationship between incidence angle and ground pene-
tration depth and found that penetration ability was related to incidence angle, wavelength,
and soil characteristics, including water moisture content and structural composition [62].
The longer the wavelength, the stronger the penetration ability, but the penetration ability
decreased with soil depth. Ji et al. studied the sensitivity of different canopy densities,
mean stand height, and mean diameter at breast height to L-band backscattering [63].
They concluded that canopy density had a greater effect on L-band backscattering than
average height and mean diameter at breast height. HV is more sensitive to forest structural
parameters than HH, also depending on the tree species. Richaume et al. found that
the L-band signal was not only related to the optical depth of vegetation, but also to the
canopy roughness of tree species and canopy density. Zhu et al. found that the L-band
was related to ground roughness and even mineral composition, such as hematite reducing
the penetration depth. These studies indicate that there are many factors affecting the
penetration of the L-band in forests, mainly including incidence angle, polarization mode,
forest canopy density, tree species (canopy roughness), crown height (age structure) and
moisture. Moreover, slope, season, meteorological factors, forest LAI, leaf direction and so
on, also affect the penetration effect.

5. Future Development

5.1. Integration of L-Band SAR Data and the Tomography Algorithm

Cazcarra-Bes et al. used TomoSAR technology to process L-band forest data obtained
by monitoring at different times, extracted the distribution and spatial patterns of forests by
a compressed sensing approach, and further utilized two complementary search methods
to find the local maximum value and reconstruct the spatial patterns, so as to realize the
inference of forest structure information and the assessment of the effect of delineating
forests [64]. Minh et al. found that in the forests with a height of above 30 m and biomass
up to 500 t/hm2, the strong ground return of P-band can be seen in the tomography
images [65]. Tello et al. used L-band SAR data in Trauenstein, Germany, to provide forest
vertical-structure information, coupled with high spatial- and temporal-resolution images;
they developed TomoSAR technology and reconstructed 3D models, and the results were
verified based on airborne LiDAR data [66]. This experiment opened the door for 3D-based
forest monitoring. Moussawi et al. compared P-band and L-band TomoSAR profiles, using
the Land Vegetation Ice Sensor (LVIS), and discrete-return LiDAR to monitor and estimate
tropical forest-structure parameters [67]. The extracted radar reflectance yielded RMSE
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values of 3.02 m and 3.68 m for P-band and L-band, respectively, and the corresponding
determination coefficients were 0.95 and 0.93. Pardini et al. reviewed the features of L-
band TomoSAR reconstruction and discussed the unique ability of reconstructing radar
reflectance using TomoSAR to reveal the 3D structure and temporal changes of forests [68].
The authors emphasized the importance of penetration sensitivity to vegetation elements.

5.2. Integration of L-Band and P-Band

Minh D et al. believed that the further development of integrating the L-band and P-
band would make it possible to use TomoSAR technology to more accurately extract forest
vertical structures, which would not only solve the problem of forest classification, but also
provide strong support for the next generation of Earth Explorer BIOMASS mission [69].
Lope, Gabon, Liu et al. compared the CHM and AGB models of a tropical forest obtained
by an airborne P-band and L-band synthetic (SAR) Tomosar tomography [70]. In the
forests located in Paracou, French Guiana and South America, Ngo et al. analyzed the
applications of airborne P-band TomoSAR and LiDAR, showing that both could directly
lead to high-resolution surface, height, and profile models. The results demonstrated that
airborne-based products had higher quality due to stronger penetration. For the forest of an
average height of 30 m at Paracou, a RMSE of less than 5 m for tree height estimation was
obtained [71]. Moreover, Chuang et al. proposed a robust TomoSAR imaging procedure to
obtain local high-resolution L-band images of forests for the areas of interest [72].

The aforementioned studies demonstrate the strong penetration of L-band SAR signal
in forests, and reveal the key factors that affect the penetration ability of the L-band SAR
signal in forests. However, the studies did not explain the attenuation mechanism of
the SAR signal in forest canopies and also did not account for the response process of
microwave transmittance and penetration depth. In the estimation of forest height, the
improvement in estimation accuracy was mainly achieved by developing algorithms and
enhancing computation performance. Obtaining the results, to some extent, was fortuitous.

In addition, the existing experiments focus mainly on temperate and boreal forests, and
rarely take place in subtropical forests. Compared with the temperate and boreal forests,
the structures of subtropical forests are more complex. Generally, subtropical forests often
consist of three layers including tree, shrub, and grass, and have higher canopy closure
and moisture inside the forests, which will lead to stronger impacts on the penetration of
signals. Therefore, the results from the temperate and boreal forests will be less effective,
and their applicability is limited in subtropical forests.

L-band SAR data provide the potential for advancing forestry remote sensing tech-
nologies by exploring forest vertical structures from the canopy surface to the interior of
forests and from 2D- to 3D-model reconstruction l [73], and are also critical in realizing the
technologies of TomoSAR and penetrating remote sensing in the future [74].

6. Conclusions and Discussion

Through bibliometric analysis of the related literature, this paper reviews the applica-
tion status of L-band SAR data and their penetration in forests. The main conclusions are
drawn as follows:

(1) The number of the publications is related to the availability of L-band SAR data.
The earliest launched L-band SAR satellite took place in 1978; thus, this paper deals with
the activities from 1972 to 2024. The first publication reviewed appeared in 1999, which
indicates that, compared with other remote sensing technologies, the development of L-
band-related technology started late. From 1999 to 2011, there was only one publication
coming out each year, and less attention was paid. From 2012 to 2024, the number of the
relevant publications increased rapidly and L-band SAR data (including airborne data)
began to appear widely.

(2) The lack of L-band SAR data impedes their application. Compared with a large
number of other remote-sensing data, L-band SAR data are relatively less available (see
Table 1). Some satellites have ceased operation and others have just appeared recently, with
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data such as SAOCOM and LT. There has been no relevant literature found. The existing
publications mainly deal with the use of Japan’s JERS and ALOS data. With the emergence
of SAOCOM, LT and UAV data, this situation should be changed in the near future.

(3) The existing reports concentrate mainly on the temperate and boreal forests, while
there have rarely been relevant L-band studies conducted in the vast subtropical forests.
This situation is mainly related to the countries/regions in which the relevant research was
carried out. The countries/regions with most of the existing studies are mainly distributed
in the temperate and boreal zones, including China (mainly in the Chinese Academy of
Sciences), Germany and France.

(4) The state of the art in applications of L-band SAR data: the existing studies show
that the L-band signal has strong penetration in snow, soil moisture, water–land boundaries,
vegetation, vegetation moisture, and in the ocean and desert underground. The applications
of L-band SA data in forestry focus mainly on the estimation of forest height, moisture
and forest stocks. The factors affecting the penetration of the L-band in forests mainly
include forest-canopy closure, tree species, crown height and moisture. Slope, seasonality,
meteorological features, LAI and leaf direction also have influence on the penetration.

(5) Directions for future efforts: the existing literature deals mainly with applied
studies of L-band data, while theoretical research studies hardly exit. There are a lack
of studies related to the mechanism of L-band signal working in various forests and the
interactions between the L-band signal and the forests, especially subtropical forests. For
example, the penetration capacity and attenuation process and characteristics of the L-band
signal in various forests are unknown. The penetration depth, the transmission rate and
response process of the L-band in different forests are also unclear. Moreover, there have
rarely been reports dealing with the compensation mechanism of using L-band SAR data to
estimate forest height. The gaps that exist currently imply the importance of carrying out
the research on the mechanism of forest penetration of the L-band SAR signal. In addition,
the integration of L-band and new technologies, such as P-band and chromatographic SAR
data, will provide a technical way to improve forest height estimation.
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Abstract: When calculating the CWSI, previous researchers usually used canopy temperature and
atmospheric temperature at the same time. However, it takes some time for the canopy temperature
(Tc) to respond to atmospheric temperature (Ta), suggesting the time-lag effects between Ta and Tc.
In order to investigate time-lag effects between Ta and Tc on the accuracy of the CWSI inversion of
photosynthetic parameters in winter wheat, we conducted an experiment. In this study, four moisture
treatments were set up: T1 (95% of field water holding capacity), T2 (80% of field water holding
capacity), T3 (65% of field water holding capacity), and T4 (50% of field water holding capacity).
We quantified the time-lag parameter in winter wheat using time-lag peak-seeking, time-lag cross-
correlation, time-lag mutual information, and gray time-lag correlation analysis. Based on the
time-lag parameter, we modified the CWSI theoretical and empirical models and assessed the impact
of time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters. Finally, we
applied several machine learning algorithms to predict the daily variation in the CWSI after time-lag
correction. The results show that: (1) The time-lag parameter calculated using time-lag peak-seeking,
time-lag cross-correlation, time-lag mutual information, and gray time-lag correlation analysis are
44–70, 32–44, 42–58, and 76–97 min, respectively. (2) The CWSI empirical model corrected by the
time-lag mutual information method has the highest correlation with photosynthetic parameters.
(3) GA-SVM has the highest prediction accuracy for the CWSI empirical model corrected by the time-
lag mutual information method. Considering time lag effects between Ta and Tc effectively enhanced
the correlation between CWSI and photosynthetic parameters, which can provide theoretical support
for thermal infrared remote sensing to diagnose crop water stress conditions.

Keywords: time-lag effects; winter wheat; CWSI; photosynthetic rate; transpiration rate; stomatal
conductance

1. Introduction

The timely and accurate diagnosis of crop water stress conditions effectively deter-
mines the timing of irrigation and facilitates precision irrigation, crucial for enhancing water
use efficiency (WUE) and increasing yield [1,2]. When crops experience water stress, their
physiological indicators, such as photosynthetic parameters, leaf water potential, and exter-
nal morphology, undergo changes. These changes include a decrease in the leaf area index,
a reduction in chlorophyll concentration, and a diminution in leaf length and width [3,4].
Physiological indicators, including photosynthetic parameters, leaf water potential, and
stem water potential, focus on the crop itself for research and offer a straightforward,
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scientific method to diagnose the status of crop water deficit. These indicators have proven
effective in monitoring the water status of crops [5]. Moisture stress impacts photosynthetic
parameters across the reproductive period of crops, displaying consistent trends in the
net photosynthesis rate (Pn), transpiration rate (Tr), and stomatal conductance (gs), which
all decrease with increasing moisture stress [6]. The extent of changes in photosynthetic
parameters varies with different levels of water stress, with minor reductions under mild
water stress and significant declines under moderate to severe water stress [2].

Beyond the physiological indicators of crop water deficit, the crop water stress index
(CWSI), sensitive to soil moisture, stands as a reliable indirect metric for monitoring crop
water status. Under water stress conditions, crops exhibit reduced stomatal conductance
and diminished transpiration cooling, leading to an increase in canopy temperature. Idso
et al. [7] found that the differential in canopy temperature following noon effectively
measures the crop water deficit, revealing a consistent linear relationship between the
canopy air temperature differential (CTD) and vapor pressure deficit (VPD) under clear sky
conditions, which is not affected by environmental factors, such as wind speed. In response
to the above phenomenon, Idso, Jackson, Pinter, Reginato and Hatfield [7] propose the
CWSI empirical model, which has the advantages of fewer computational parameters, ease
of measurement, and sensitivity to crop varieties. Jackson et al. [8] proposed the CWSI
theoretical model based on the principle of canopy energy balance, taking into account
environmental factors such as aerodynamic resistance, crop minimum canopy resistance,
and net radiation, making the CWSI model more theoretical.

The CWSI is a sensitive indicator used to reflect water stress caused by the stomatal
function of the crop, and continuous water stress results in an increasing trend of the
CWSI and a decreasing trend of Pn, Tr, and gs [9]. There is a good negative correlation
between the CWSI and photosynthetic parameters [6,10]. The results of Ramos-Fernández
et al. [11] showed a strong correlation between the CWSI and gs (R2 = 0.91). When the crop
is subjected to water stress, the soil–root hydraulic resistance increases [12], which reduces
root water transport and eventually leads to the reduction in or closure of plant stomata
and a decrease in photosynthetic parameters [13]. Different physiological characteristics of
wheat have different sensitivities to soil moisture [14]; therefore, the correlation between
Pn, gs, Tr, and CWSI varies.

In calculating the CWSI, previous researchers always used atmospheric temperature
(Ta) and canopy temperature (Tc) at the same moment [15]. However, there is a time-lag
effect in the response of Tc to Ta [16]. Therefore, it is more accurate to use atmospheric
temperature that actually influences the canopy temperature. Zhang et al. [17] discovered
that accounting for the time-lag effect significantly enhances the accuracy of the CWSI in
estimating soil water content. Currently, research on the impact of this time lag on the
accuracy of the CWSI in the inversion of photosynthetic parameters remains unexplored.

We hypothesized that the time-lag effects between the canopy temperature and atmo-
spheric temperature have a significant impact on the model accuracy of the CWSI inversion
of photosynthetic parameters. Therefore, we conducted an experiment with winter wheat,
where we continuously monitored the canopy temperature and environmental factors of
winter wheat. We quantified the time-lag parameters between Ta and Tc using time-lag
peak-finding, time-lag cross-correlation, time-lag mutual information, and time-lag gray
correlation analysis. We then modified the theoretical and empirical CWSI models based on
these time-lag parameters. Finally, we investigated the implication and mechanisms of Ta
and Tc time-lag effects on the accuracy of the CWSI inversion of photosynthesis parameters.

2. Results

2.1. Time-Lag Parameters of Winter Wheat under Different Water Stresses

As depicted in Figure 1, the CCE equation fitted the daily variation process of
winter-wheat canopy temperature smoothed by S-G filtering with excellent accuracy
(R2 = 0.98), and the ECS equation fitted the daily variation process of atmospheric temper-
ature smoothed by S-G filtering with equal precision (R2 = 0.98). As seen in Figures 2–6,
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among the time-lagged parameters of Tc and Ta obtained by different methods, the gray
time-lag correlation analysis was the largest. The time-lag peak-seeking method and the
time-lag mutual information method were the second largest, followed by the time-lag
cross-correlation method.

Figure 1. (a) ESC equations fitted to S-G filter-smoothed Ta; (b) CCE equation fitted to S-G filter-
smoothed Tc.

Figure 2. (a) Time-lag parameters of T1 (fully irrigated), T2 (mild water stress), T3 (moderate water
stress), and T4 (severe water stress) calculated by time-lag peak-finding method. (b) Coefficient of
determination (R2) for T1, T2, T3, and T4 fitted by the time-lag peak-finding method.
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Figure 3. Time-lag parameters and corresponding coefficients for fully irrigated treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.
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Figure 4. Time-lag parameters and corresponding coefficients for mild water stress treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.
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Figure 5. Time-lag parameters and corresponding coefficients for moderate water stress treatment.
(a) is the time-lag parameter calculated by the time-lag cross-correlation method and the cross-
correlation coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter
calculated by the time-lag grey correlation analysis and the time-lag grey correlation coefficient
between Ta and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag
mutual information method and the mutual information coefficient between Ta and Tc after the
corrected time-lag. Circles indicate the results of the time-lag cross-correlation method under the four
moisture treatments; cross sign indicates the results of the time-lag grey correlation analysis under
the four moisture treatments; squares indicate the results of the time- lag mutual information method.
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Figure 6. Time-lag parameters and corresponding coefficients for severe water stress treatment. (a) is
the time-lag parameter calculated by the time-lag cross-correlation method and the cross-correlation
coefficient between Ta and Tc after the corrected time-lag; (b) is the time-lag parameter calculated
by the time-lag grey correlation analysis and the time-lag grey correlation coefficient between Ta
and Tc after the corrected time-lag; (c) is the time-lag parameter calculated by the time-lag mutual
information method and the mutual information coefficient between Ta and Tc after the corrected
time-lag. Circles indicate the results of the time-lag cross-correlation method under the four moisture
treatments; cross sign indicates the results of the time-lag grey correlation analysis under the four
moisture treatments; squares indicate the results of the time- lag mutual information method.

The time-lag parameters between the canopy temperature (Tc) and atmospheric tem-
perature (Ta), calculated using four different methods, exhibited distinct values across
varying irrigation treatments. For the fully irrigated treatment, the time-lag parameters
were approximately 53 min, 44 min, 58 min, and 97 min when calculated using the time-lag
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peak-finding method, time-lag cross-correlation method, time-lag mutual information
method, and gray time-lag correlation analysis, respectively; for the mild water stress
treatment, these time-lag parameters were about 52 min, 43 min, 55 min, and 92 min, respec-
tively. For the moderate water stress treatment, the parameters were approximately 55 min,
44 min, 54 min, and 98 min. Lastly, for the severe water stress treatment, the parameters
were around 44 min, 32 min, 42 min, and 76 min. These results highlight the variability in
time-lag parameters across different irrigation treatments, as well as the influence of the
chosen calculation method.

This indicates that the time lag between the Tc and Ta obtained from different calcula-
tion methods for the fully irrigated, mild water stress, and moderate water stress treatments
did not differ significantly. However, for the severe water stress treatment, the Tc reached
its peak time later, resulting in a decrease in the time-lag parameter between the Ta and
Tc by approximately 10 to 22 min. This phenomenon might be associated with the soil
moisture threshold [18]. When the soil moisture threshold was reached, the water lost
through transpiration in winter wheat could not be replenished promptly. To ensure the
normal life activities of the crop, the expansion rate of the crop leaves was reduced, stomatal
conductance decreased significantly, transpiration rate declined, and canopy temperature
continued to increase, reaching the peak time later. This led to a shorter time lag between
the atmospheric temperature and canopy temperature [19].

In addition, the cross-correlation coefficient, mutual information coefficient, and gray
correlation coefficient values corresponding to the peak moments for the fully irrigated,
mild water stress, moderate water stress, and severe water stress treatments did not differ
significantly. This indicated that the linear correlation [20], nonlinear correlation [21], and
curve similarity [22] of Tc and Ta under the four moisture treatments after a time-lag
correction did not differ much.

The accuracy of the CWSI inversion of photosynthetic parameters before and after
time-lag effects was considered.

2.2. Time-Lag Peak-Seeking Method, Time-Lag Cross-Correlation Method, Time-Lag Mutual
Information Method, and Gray Time-Lag Correlation Analysis

As shown in Figures 7 and 8, correcting the time lag between the Ta and Tc improved
the accuracy of the CWSI inversion for Pn. After CWSI empirical and theoretical models
were corrected using the time-lag peak-seeking method, time-lag cross-correlation method,
time-lag mutual information method, and gray time-lag correlation analysis, the correlation
between the CWSI and Pn improved for all methods, with the empirical model showing
a more significant improvement. This indicated that the time-lag effect had a substantial
impact on the accuracy of the CWSI empirical model in inverting Pn, while its impact on
the accuracy of the CWSI theoretical model in inverting Pn was small and negligible.

Figure 7. Heat map of the CWSI theoretical model and Pn before and after considering time-lag
effects.
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Figure 8. Heat map of the CWSI empirical model and Pn before and after considering time-lag effects.

As shown in Figures 9 and 10, the time-lag effect has a small impact on the accuracy
of the CWSI theoretical model inverting Tr and a large impact on the accuracy of the
CWSI empirical model inverting Tr. The correlation between the CWSI and Tr does not
change after correcting the CWSI theoretical model by using the time-lag peak-seeking
method. The correlation between the CWSI and Tr is improved by correcting the CWSI
theoretical model by using time-lag cross-correlation method, time-lag mutual information
method, and gray time-lag correlation analysis. The correlation between Tr and the CWSI
theoretical model corrected based on gray time-lag correlation analysis and time-lag mutual
information is the best (R2 = 0.90). The correlation between the CWSI empirical model
and Tr decreases after correcting the CWSI empirical model using the time-lag mutual
information method and gray time-lag correlation analysis. The accuracy of the CWSI
inversion of Tr improves after correcting the CWSI empirical model using the time-lag
peak-seeking method and time-lag mutual correlation method. The correlation between Tr
and the CWSI empirical model corrected based on the time-lag mutual correlation method
is the highest (R2 = 0.94).

Figure 9. Heat map of the CWSI theoretical model and Tr before and after considering time-lag effects.

As demonstrated in Figures 11 and 12, the correlation between the CWSI and gs
remains unchanged after the CWSI theoretical model was corrected by applying the time-lag
peak-seeking method. However, the correlation between the CWSI and gs improved after
the CWSI theoretical model was corrected using the time-lag cross-correlation method, the
time-lag mutual information method, and the gray time-lag correlation analysis. Notably,
the time-lag mutual information method enhanced the accuracy of the CWSI theoretical
model inversion of gs the most (R2 = 0.96). The time-lag effect significantly impacted the
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accuracy of the CWSI empirical model inversion of gs. The correlation between the CWSI
and gs increased after correcting the CWSI empirical model using the time-lag peak-seeking
method, the time-lag mutual correlation method, the time-lag mutual information method,
and the gray time-lag correlation analysis. gs showed the highest correlation with the CWSI
empirical model based on the time-lag mutual information method (R2 = 0.96).

Figure 10. Heat map of the CWSI empirical model and Tr before and after considering time-lag effects.

Figure 11. Heat map of the CWSI theoretical model and gs before and after considering time-
lag effects.

Figure 12. Heat map of the CWSI empirical model and gs before and after considering time-lag effects.

In summary, it was observed that time-lag effect between the Ta and Tc caused a
significant impact on the accuracy of the CWSI inversion of photosynthetic parameters. The
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impact was more substantial on the accuracy of the CWSI empirical model for inverting
photosynthetic parameters, and the time-lag-corrected CWSI empirical model demon-
strated a higher correlation with the photosynthetic parameters. This indicated that the
CWSI empirical model was more sensitive to the time-lag effect than the CWSI theoretical
model. The reason for this phenomenon might be that the CWSI theoretical model required
measurements of net radiation, soil heat flux, wind speed, and canopy resistance, making
the theoretical models less volatile [23]. The correlation of the time-lag-corrected CWSI
with Pn, Tr, and gs was in the order of gs > Tr > Pn. Pn showed the highest correlation
with the empirical/theoretical CWSI models corrected by the time-lag mutual information
method (R2 = 0.8); Tr had the best correlation with the CWSI empirical model corrected by
the time-lag mutual information method (R2 = 0.93); and gs exhibited the best correlation
with the CWSI empirical model corrected by the time-lag mutual information method
(R2 = 0.93). Occasionally, time-lag correction reduced the accuracy of the CWSI inversion
of photosynthetic parameters. This reduction could be attributed to the fact that the time-
lag effect between the Tc and environmental factors, such as relative humidity and solar
radiation, was not accounted for [24].

Meanwhile, the time-lag effect was the result of the continuous direct or indirect
influence of previous environmental factors on crops, representing an accumulative pro-
cess [25–27]. The time-lag peak-finding method, which utilized a function to fit the daily
change curves of the Tc and Ta and defined the time-lag parameter solely by the time
difference between its peak points, exhibited certain limitations.

2.3. Machine Learning Algorithms for Predicting CWSI Empirical Models Based on Time-Lag
Mutual Information Correction

The accuracy of the CWSI empirical model corrected based on the time-lag mutual
information method for the inversion of photosynthetic parameters was overall high. It was
investigated by using Genetic Algorithm Optimized Support Vector Machines (GA-SVMs)
based on genetic algorithms, Bayesian Optimized Long and Short-Term Memory Neural
Networks (Bayes-LSTMs), Particle Swarm Algorithm Optimized Long and Short-Term
Memory (PSO-LSTM) based on particle swarm algorithms, Convolutional Bi-directional
Long and Short-Term Memory Neural Networks (CNN-BILSTMs), Attention Mechanism
Long Short-Term Memory Neural Networks (attention-LSTMs), and Attention Mechanism
Gated Recurrent Unit (attention-GRU) machine learning algorithms for predictions. The
prediction accuracies are shown in Table 1.

Table 1. Prediction accuracy of machine learning algorithms for the CWSI empirical model based on
time-lag mutual information correction.

Machine Learning
Algorithm

R2 RMSE

attention-LSTM 0.88928 0.035052
GRU-attention 0.80197 0.037266
CNN-BILSTM 0.9148 0.031886

GA-SVM 0.98237 0.016596
PSO-LSTM 0.9466 0.028885

Bayes-LSTM 0.97865 0.018266

With GA-SVM > Bayes-LSTM > PSO-LSTM > CNN-BILSTM > attention-LSTM >
GRU-attention. The prediction accuracy of the above models for the CWSI empirical model
corrected by the time-lag mutual information method was higher overall. Predicted effect
diagrams are shown in Figures 13–24. The GA-SVM model had the highest prediction
accuracy (R2 = 0.982, RMSE = 0.017).
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Figure 13. Training set for attention-LSTM.

 
Figure 14. Validation set for attention-LSTM.

 
Figure 15. Training set for GRU-attention.
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Figure 16. Validation set for GRU-attention.

 
Figure 17. Training set for CNN-BILSTM.

 
Figure 18. Validation set for CNN-BILSTM.
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Figure 19. Training set for GA-SVM.

 
Figure 20. Validation set for GA-SVM.

 
Figure 21. Training set for Bayes-LSTM.
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Figure 22. Validation set for Bayes-LSTM.

 

Figure 23. Training set for PSO-LSTM.

 
Figure 24. Validation set for PSO-LSTM.

3. Materials and Methods

3.1. Study Site Description

The experimental site is located at the Institute of Water Saving Agriculture in Arid Re-
gions, Northwest Agriculture and Forestry University, Yangling District, Shaanxi Province,
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China (108◦24′ E, 34◦20′ N). This region is characterized by a warm, temperate, semi-humid
monsoon climate, distinguished by four distinct seasons and moderate rainfall. The average
annual temperature ranges from approximately 13 ◦C to 15 ◦C. Rainfall predominantly
occurs in July and August, driven by the southeast monsoon, with an annual average
between 600 mm and 800 mm. The effect of groundwater recharge is not considered in this
experiment.

3.2. Experiment Design

The experimental site was 32.5 m × 10.5 m and divided into 12 plots, each measuring
4 m × 4 m. Protected row treatments were used to mitigate the effects of water infiltration
(Figure 25). Four moisture treatments were used in the experiment to obtain generalizable
results: T1 (fully irrigated), T2 (mild water stress), T3 (moderate water stress), and T4
(severe water stress). The upper irrigation limits were set at 95%, 80%, 65%, and 50%
of the field water holding capacity for T1, T2, T3, and T4, respectively. Each moisture
treatment was replicated three times. Instruments for the continuous monitoring of canopy
temperature and environmental factors were positioned above experimental plots 2, 5, 8,
and 11. The cultivar used was “Genmai 68” winter wheat sown at 25 cm spacing with 30 g
of seed per row. The sowing date was 19 October 2022 and the harvest date was 1 June 2023.
Irrigation was carried out by drip irrigation system, and the irrigation quota is detailed
in Table 2. The measured volumetric soil water content was calculated by oven-drying
method and the irrigation quota is calculated as follows:

m = H · (θs − θo) · p · s (1)

where m is the irrigation quota (mm); H is the planned wetted layer depth (m): 0.4–0.5 m
(green-up stage), 0.5–0.6 m (jointing stage), 0.6–0.8 m (tasseling stage), and 0.8–1.0 m
(grouting period); θs is the field capacity (%), which is the upper limit of soil moisture
content; θo is the measured volumetric soil moisture content (%); s is the trial plot size (m);
and p is the drip irrigation wetting ratio, 0.6.

Figure 25. Overview of the experimental site.

Table 2. Irrigation quota of winter wheat.

Irrigation Date Irrigation Quota (mm)

T1 T2 T3 T4

17 February 2023 46.7 43.9 19.2 18.2
25 February 2023 50.3 23.8 23.0 16.0

5 March 2023 63.0 28.5 13.4 31.2
12 March 2023 58.1 19.4 17.7 51.0
19 March 2023 64.0 54.6 40.0 16.3
29 March 2023 64.0 44.8 33.0 16.3
7 April 2023 90.3 36.0 15.8 38.0
18 April 2023 91.9 44.9 40.6 42.0
28 April 2023 29.5 25.2 19.4 17.0
12 May 2023 53.8 69.0 88.4 14.0
23 May 2023 53.9 65.0 30.6 17.9
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3.3. Data Acquisition
3.3.1. Tc Measurements

In this study, the canopy temperature of winter wheat was continuously monitored us-
ing an SI-411 infrared thermometer. The monitoring interval was set at 2 min. Considering
the effect of crop cover on the instrumental monitoring of canopy temperature, the time-lag
parameter was calculated in this experiment starting from 16 February 2023. The canopy
temperature of winter wheat for the four moisture treatments is shown in Figure 26.

Figure 26. Canopy temperature of winter wheat under four moisture treatments.

3.3.2. Environmental

In this experiment, meteorological factors were continuously monitored using the
AWS-CR1000 scientific-grade automatic meteorological monitoring system, as detailed in
Table 3. Data collection intervals were set at 2 min. Meteorological factors are shown in
Figure 27.

Table 3. Summary of environmental factors observed by the weather station.

Variables Sensor Number
Instrument
Height (m)

Abbreviation Unit

Solar radiation SN-500 3.5 Rs W·m−2

Soil heat fux HFP01 −0.10 G W·m−2

Atmospheric
temperature HC2AS3 2.5 Ta ◦C

Relative humidity HC2AS3 2.5 RH %
Wind speed HC2AS3 2 u m·s−1

3.3.3. Photosynthetic Parameters Measurements

The differences in crop physiological indicators at different irrigation levels were
small in the morning and evening, and the differences were largest around midday, which
could accurately reflect the crop water status [28,29]. Therefore, we chose sunny and
windless days to collect the photosynthetic parameters of winter wheat: stomatal conduc-
tance gs (mol/(m2·s)), net photosynthesis rate Pn (μmol/(m2·s)), and transpiration rate
Tr (mmol/(m2·s)) at 14:00 using a portable photosynthesizer model Li-6800 from LICOR,
Lincoln, NE, USA. Three wheat plants were randomly selected from each plot, and the mea-
surements were repeated three times for each wheat flag leaf, and the average value was

84



Plants 2024, 13, 1702

taken as the photosynthetic parameters of the crop under the moisture treatment; to ensure
the accuracy of the acquired data, the CO2 concentration of the Li-6800 portable photosyn-
thesizer reached 400 μmol/mol, and the intensity of the light reached 1000 μmol/(m2·s)
during the measurement. The data of photosynthetic parameters were collected 12 times in
this experiment (Figure 28).

Figure 27. Dynamic variations in (a) u (m·s−1); (b) G (W·m−2); (c) RH (%); (d) Ta (◦C); (e) Rs (W·m−2).

Figure 28. Pn (μmol/(m2·s)), gs (mol/(m2·s)), and Tr (mmol/(m2·s)) in winter wheat.

3.4. Data Processing
3.4.1. Savitzky–Golay (S-G) Filter

The Savitzky–Golay (S-G) filter [30] is a smoothing filtering technique that employs
local least squares to eliminate noise from time-series data. This method achieves its
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smoothing effect by fitting a polynomial to the data, which effectively removes noise while
preserving the signal’s original shape as closely as possible. Consequently, the S-G filter
maintains the integrity of the signal, ensuring effective smoothing.

3.4.2. Z-Score Normalization

Employing the Z-Score standardization method [31], the dimensionless standardiza-
tion of raw indicator data effectively mitigates the impact of discrepancies in data size,
characteristics, and distribution. This approach eliminates unit differences across the data,
enabling comparability among variables with diverse characteristics, while preserving the
original distribution pattern of the data.

3.4.3. Time-Lag Peak-Seeking Method

The time-lag peak-seeking method [32,33] selects the appropriate function to fit the Ta
and Tc and determine the peak position of the fitted curve. The time difference correspond-
ing to this peak point represents the time-lag parameter between the Ta and Tc. Zhang and
Wu [34] used the Gaussian function to fit the canopy temperature and atmospheric temper-
ature of summer maize and achieved good accuracy. However, the Gaussian function fits
the canopy temperature and atmospheric temperature of winter wheat with lower accuracy.
The CCE equation has a higher fitting accuracy for the canopy temperature after smoothing
by S-G filtering, and the ECS equation has a higher fitting accuracy for the atmospheric
temperature after smoothing by S-G filtering.

The CCE equation is expressed as follows:

double1 z = x − xc1 (2)

y = y0 + A × (exp(−z × z/(2 × w)) + (1 − 0.5 × (1 − tan(k2 × (x − xc2))))×
B × exp(−0.5 × k3 × (abs(x − xc3) + (x − xc3))))

(3)

where xc1 is the peak moment of winter-wheat canopy temperature. The fitting accuracy
was judged by the coefficient of determination (R2).

The ECS equation is expressed as follows:

y = y0 + A/(w × sqrt(2 × pi))× (exp(−0.5 × ((x − xc)/w)2)× (1 + (a3/(3 × 2 × 1))× ((x − xc)/w)×
(((x − xc)/w)2 − 3) + (a4/(4 × 3 × 2 × 1))× (((x − xc)/w)4 − 6 × ((x − xc)/w)3 + 3)+
((10 × a2

3)/(6 × 5 × 4 × 3 × 2 × 1))× (((x − xc)/w)6 − 15 × ((x − xc)/w)4+

45 × ((x − xc)/w)2 − 15)))

(4)

where xc is the moment of peak atmospheric temperature. The accuracy of the fit is judged
by the coefficient of determination (R2), and the peak time difference between Tc and Ta is
the time-lag parameter between Tc and Ta.

3.4.4. Time-Lag Cross-Correlation Method

Zhang et al. [35] used the time-lag cross-correlation method to calculate the time lag
between the canopy temperature and atmospheric temperature in winter wheat. They
then found that correcting the time-lag effect between Tc and Ta by the time-lag cross-
correlation method can improve the accuracy of the CWSI inversion of SWC. X (Tc) is first
mapped to Y (Ta) in the chronological order of observations. Then, Tc is shifted in steps of
2 min and the Pearson correlation coefficients of the two series are calculated. When the
Pearson correlation coefficient attains its maximum value, the corresponding shift duration
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is designated as the time-lag parameter for the two series [16,36], where the correlation
coefficient is calculated as:

Rk =

n−k
∑

i=1
(xi − xi)(yi+k − yi+k)√

n−k
∑

i=1
(xi − xi)

2

√
n−k
∑

i=1
(yi+k − yi+k)

2

(5)

Rm = max(Rk) (6)

TL = 2m (7)

where Rk is Pearson correlation coefficient for a sliding shift number of K; n is the sample
size; xi is the canopy temperature (◦C); yi+k is the atmospheric temperature (◦C); xi is
the mean of canopy temperature series (◦C); yi+k is the mean of atmospheric tempera-
ture series (◦C); Rm is the maximum correlation coefficient; m is the sliding shifts in the
canopy temperature series that correspond to the maximum Pearson correlation coefficient;
k = 0, ±1, ±2, . . ., ±n, k > 0 indicates the canopy temperature change ahead of atmospheric
temperature; and k < 0 indicates that canopy temperature changes lag behind atmospheric
temperature. TL is the time-lag parameter (min).

3.4.5. Time-Lag Mutual Information Method

To date, no researcher has calculated the time-lag parameter between Tc and Ta using
the time-lag mutual information method. Therefore, this study investigates it. Employing
the time-lag mutual information method, the time-lag parameter between the canopy
temperature, X, and atmospheric temperature, Y, is determined [37]. The formula is
presented as follows:

I(X, Y, τ) = ∑
x

∑
y

p(xt, yt+τ) log
p(xt, yt+τ)

p(xt, )p(yt+τ)
(8)

where P(xt, yt+τ) is the X = xt, Y = yt+τ joint distribution probability. τ is the time-lag
parameter. The time-lag parameter τ is determined when the mutual information coefficient
reaches its peak. A positive τ means that x changes before y, while a negative τ indicates
that x changes after y.

3.4.6. Gray Time-Lag Correlation Analysis

Currently, no researcher has employed the gray the time-lag correlation analysis to
investigate the time-lag effect between the Ta and Tc. Therefore, this study pioneers the use
of gray time-lag correlation analysis to calculate the time-lag parameter between Ta and Tc.
The methodology is outlined as follows:

1© The reference sequence canopy temperature (Tc) is

X = (x(1), x(2), . . . , x(n)) (9)

The comparison of the sequence group atmospheric temperature (Ta) is

Yτ = (y(1 + τ), y(2 + τ), . . . , y(n + τ)) (10)

where τ is the time-lag parameter.
2© Calculate the correlation coefficient ζ(x(k), yτ(k + τ)) between X and Yτ with the

following formula:

ζ(x(k), yτ(k + τ)) =
minτmink|x(k)− yτ(k + τ)|+ ρmaxτmaxk|x(k)− yτ(k + τ)|

|x(k)− yτ(k + τ)|+ ρmaxτmaxk|x(k)− yτ(k + τ)| (11)
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k = 1, 2, 3, . . . , n (12)

τ = 0, 1, . . . , T − n (13)

γ(τ) =
1
n∑n

k=1 ζ(x(k), yτ(k + τ)) (14)

τ = 0, 1, . . . , T − n (15)

where ρ is the resolution factor, ρ = 0.5; T is the time span of the time series.
3©The time lag parameter τ between Ta and Tc is identified as the time at which

γ(τ) peaks.
γ(τ∗) = max0≤τ≤T−nγ(τ) (16)

where γ(τ*) is the gray correlation between X and Y, τ∗ is the time-lag parameter of Y
and X.

3.4.7. CWSI Theoretical Model

Based on the canopy energy balance theory, Jackson, Idso, Reginato and Pinter Jr [8]
developed a theoretical model of the CWSI. The formula is as follows:

CWSI =
γ(1 + rc

ra
)− γ∗

Δ + γ(1 + rc
ra
)

(17)

γ = 0.665 × 101.3 × (
293 − 0.0065Z

293
)

5.26
(18)

γ∗ = γ × (1 +
rc

ra
) (19)

Δ = 45.03 + 3.014T + 0.05345T2 + 0.00224T3 (20)

T =
Tc + Ta

2
(21)

ra =
4.72[ln( z−d

z0
)]

2

(1 + 0.54u)
(22)

where the CWSI is crop water stress index; γ is psychrometric coefficient (Pa·◦C−1); rc is
canopy resistance (s·m−1); ra is aerodynamics resistance (s·m−1); Δ is slope of the water
vapor pressure curve (Pa·◦C−1); Z is height above sea level (m); d is zero-plane displacement
(m), d = 0.63 h; z0 is roughness (m), z0 = 0.13 h; h is crop height (m); u is reference height
wind speed (m·s−1); z is reference height (m), z = 2; and rc is canopy resistance (s·m−1),
displayed in Table 4.

Table 4. rc of winter wheat at different fertility stages [38].

Growth Period rc (s·m−1)

Regreening stage-jointing stage 13.01
Jointing stage-tasseling stage 18.03
Tasseling stage-filling stage 26.85
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3.4.8. CWSI Empirical Model

The CWSI empirical model was first constructed by Idso et al. [7]. The formula is as
follows:

CWSI =
(Tc − Ta)− NWSB

NTB − NWSB
(23)

CTD = Tc − Ta (24)

VPD = 0.6108 × exp(
17.27 × Ta
Ta + 237.7

)× (
100 − RH

100
) (25)

VPG = 0.6108 × exp(
17.27 × Ta
Ta × 237.7

)− 0.6108 × exp(
17.27 × (Ta + b)
(Ta + b) + 237.7

) (26)

NWSB = a × VPD + b (27)

NTB = a × VPG + b (28)

where Tc is canopy temperature (◦C); Ta is atmospheric temperature (◦C); NWSB is lower
bound (no water stress); NTB is upper bound (no transpiration); CTD is canopy air tem-
perature differential (◦C); and a, b are the slope and intercept of CTD and VPD linear fits,
respectively.

Solar radiation intensifies during the period from 13:00 to 15:00, when the discrepancy
between crop and soil water supply conditions becomes more pronounced, and the linear
relationship between the canopy temperature difference (CTD) and vapor pressure deficit
(VPD) is distinct [39]. Consequently, this study opts for a linear fitting of the CTD and VPD
specifically for the 13:00–15:00 interval. The results are presented in Figure 29.

Figure 29. The blue circle represents the trajectory of the VPD (kPa) and the corresponding CTD (◦C)
over the course of a day; The blue line represents the outcome of a linear regression analysis of the
relationship between VPD (kPa) and CTD (◦C) between 13:00 and 15:00.

3.4.9. Evaluation Indicators

In this study, the accuracy of the CWSI inversion of photosynthetic parameters, both
before and after time-lag corrections, is assessed using the coefficient of determination (R2).
An R2 value closer to 1 indicates a higher inversion accuracy.
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Similarly, the prediction accuracy of the machine learning algorithm is evaluated
through the coefficient of determination (R2) and the root-mean-square error (RMSE),
with R2 values nearing 1 and RMSE values approaching 0 denoting enhanced prediction
accuracy.

3.4.10. Machine Learning Algorithms

In this study, various machine learning and deep learning methods were employed
to process and predict the crop water stress index (CWSI), including Genetic Algorithm
Optimized Support Vector Machines (GA-SVMs), Bayesian Optimized Long Short-Term
Memory Neural Networks (Bayes-LSTMs), Particle Swarm Algorithm Optimized Long
Short-Term Memory (PSO-LSTM), Convolutional Bi-directional Long Short-Term Mem-
ory Neural Networks (CNN-BILSTMs), Attention Mechanism Long Short-Term Memory
Neural Networks (Attention-LSTMs), and Attention Mechanism Gated Recurrent Units
(Attention-GRUs). The GA-SVM optimizes SVM parameters using a genetic algorithm,
effectively enhancing the model’s classification and prediction performance, making it
suitable for small but complex datasets. PSO-LSTM employs particle swarm optimiza-
tion to find the optimal parameters for LSTM, improving prediction performance and
training efficiency, suitable for scenarios with a large parameter space. The CNN-BILSTM
combines a CNN and bi-directional LSTM to simultaneously extract spatial and tempo-
ral features, enhancing the prediction capability for complex long time-series data with
spatial dependencies. The Attention-LSTM incorporates an attention mechanism into
LSTM, enhancing the model’s focus on important time steps and improving prediction
accuracy, particularly for long time-series data with significant features. The Attention-
GRU introduces an attention mechanism into the GRU, simplifying the network structure
while improving the focus on important time steps, making it suitable for the efficient
prediction of long time-series data. Overall, the introduction of the attention mechanisms
(Attention-LSTM and Attention-GRU) significantly enhances the model’s ability to capture
important information, thus improving prediction accuracy. Bayes-LSTM enhances model
robustness by addressing parameter uncertainty. Both PSO-LSTM and GA-SVM improve
model performance through optimization algorithms, but are sensitive to initial settings
and optimization processes.

4. Discussions

4.1. Time-Lag Parameters between the Tc and Ta Calculated by Different Models

The essence of the peak-finding method is to find a suitable function for fitting [40],
and the time difference of the peak of the curve is the time-lag parameter between the
two series. In this study, the CCE equation was applied to fit the Tc of winter wheat
after S-G filter smoothing, and the ECS equation was applied to fit the Ta after S-G filter
smoothing. This is in general agreement with the time-lag parameter between the Tc and
Ta for summer maize obtained by Zhang et al. [34]. Considering that the time-lag effect
was the persistent influence of previous climatic conditions on current crop growth as a
result of the cumulative effects of meteorological factors and soil moisture content on the
crop [41,42], there were limitations in determining the time-lag parameter through isolated
points. Therefore, the time-lag parameter between the Ta and Tc was calculated using the
time-lag cross-correlation method [43]. The time-lag parameter calculated in this study was
about 32–44 min, consistent with the findings of Zhang et al. [44].

Meanwhile, this study innovatively utilized the time-lag mutual information method [45]
and gray time-lag correlation analysis [46] to calculate the time-lag parameter between the
Ta and Tc. The time-lag parameter calculated by the time-lag mutual information method
ranged from 42 to 58 min, while the gray time-lag correlation analysis-calculated time-lag
parameter ranged from 76 to 98 min. Additionally, the time-lag parameter between the Tc
and Ta in winter wheat calculated by the four methods all experienced a significant sudden
drop under the heavy water stress treatment. Pn, Tr, and gs all exhibited a decreasing trend
with diminishing soil moisture [47], and a sudden drop occurred during the severe water
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stress treatment (T4) [2]. This phenomenon might be related to the soil moisture quench
value [5].

Mild water stress does not affect the normal life activities of the crop, and the physio-
logical activities of the plant are limited only when the degree of drought stress exceeds the
drought threshold. When the soil moisture threshold is reached, stomata are reduced or
closed, and water lost through stomatal transpiration and CO2 entering the chloroplasts
is reduced [48]. As a result, Pn, Tr, and gs undergo varying degrees of reduction [49]. Wu
et al. [50] found that, when the soil volumetric water content was lower than 60% of the field
holding capacity for a long period of time, leaf enlargement was restricted, the total leaf area
for light energy interception was reduced, and the gas exchange process of winter wheat
was limited, which was the reason for the sudden decrease in photosynthetic parameters
under severe water stress. At the same time, the decrease in stomatal conductance reduces
crop transpiration, evaporative cooling was reduced, and canopy temperatures continue
to rise [51], reaching their peaks later, resulting in a decrease in the time-lag parameter
between the Tc and Ta in the heavy water stress treatment. Liu et al. [52] found that the
soil moisture quench value of winter wheat was about 43.5–52.2% of the soil water content,
which was consistent with the soil moisture treatments in this experiment, where there
were abrupt changes in photosynthetic and time-lag parameters.

4.2. Reasons for Different Changes in the Magnitude of the Accuracy of the CWSI Inversions of Pn,
Tr, and gs before and after Corrections of the Time-Lag Effect

After considering the time-lag effect, the magnitudes of correlations between the
CWSI and Pn, Tr, and gs varied inconsistently, which might be related to the different
major environmental factors affecting Pn, Tr, and gs [29], as well as their distinct critical
soil moisture thresholds. When the crop was not subjected to water stress, environmental
factors had a small and negligible effect on Pn, Tr was mainly limited by solar radiation,
and gs was primarily limited by photosynthetically active radiation and crop canopy
temperature. When crops were subjected to water stress, Pn was mainly limited by relative
humidity and atmospheric temperature, Tr was chiefly limited by saturated water-vapor
pressure difference, and gs was predominantly limited by saturated water-vapor pressure
difference and wind speed [53]. Meanwhile, Pn, Tr, and gs showed different sensitivities to
soil water deficit. The critical soil moisture thresholds for Pn, Tr, and gs were 62%, 60%,
and 58% for maize at the seedling stage and 51%, 53%, and 48% at the nodulation stage,
respectively. This indicated that crop photosynthetic parameters were sensitive to soil
moisture in the order of gs > Tr > Pn [14], consistent with the magnitude of the CWSI
correlation with Pn, Tr, and gs obtained in this study [18]. At the same time, this might
result in a varying degree of improvement in the correlation between the CWSI and Pn, Tr,
and gs before and after accounting for time-lag effects (gs > Tr > Pn).

4.3. Outlook

Physiological parameters of plants at different growth stages exhibit varying sensi-
tivities to soil moisture [14]. This suggests that the photosynthetic parameters of winter
wheat at different fertility stages show differential sensitivities to the CWSI under varying
water stress conditions. The impact of water stress on the crop’s gas exchange processes is
minimal during the regrowth period, with little variation in Pn, Tr, and Gs across different
water stress levels. However, the inhibitory effects of persistent water stress during the
nodulation–irrigation period are more pronounced, indicating a more significant decrease
in Pn, Tr, and gs in winter wheat under severe water stress [54]. Therefore, there are
significant seasonal variations in the correlation of the CWSI with Pn, Tr, and gs in winter
wheat subjected to different moisture treatments. In this study, the impact of the time-lag
effect on the accuracy of the CWSI inversion of photosynthesis parameters is investigated
only for the entire reproductive period. The influence of time lag between the Ta and Tc on
the accuracy of the CWSI inversion of photosynthesis parameters during each reproductive
phase is not discussed and requires further study.
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5. Conclusions

In this study, we investigate the impact of the time-lag effect between the Tc and Ta on
the correlation between the CWSI and photosynthetic parameters. The main conclusions
are: (1) The magnitude of the time-lag parameter between the Tc and Ta in winter wheat,
calculated by the four methods for the entire reproductive period, follows the order: gray
time-lag correlation analysis > time-lag peak-seeking method > time-lag mutual information
method > time-lag cross-correlation method. All time-lag parameters of severe water stress
treatment experience a sudden decrease. (2) The CWSI empirical model is more sensitive
to the time-lag effect than the theoretical model. Time-lag correction, particularly using
the time-lag mutual information method, significantly improves the correlation between
the CWSI and photosynthetic parameters. (3) The GA-SVM machine learning algorithm
provides the highest prediction accuracy for daily changes in the CWSI empirical model
corrected with the time-lag mutual information method (R2 = 0.982, RMSE = 0.017).
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Abstract: The leaf area index (LAI) is a crucial physiological indicator of crop growth. This paper
introduces a new spectral index to overcome angle effects in estimating the LAI of crops. This study
quantitatively analyzes the relationship between LAI and multi-angle hyperspectral reflectance from
the canopy of winter oilseed rape (Brassica napus L.) at various growth stages, nitrogen application
levels and coverage methods. The angular stability of 16 traditional vegetation indices (VIs) for moni-
toring the LAI was tested under nine view zenith angles (VZAs). These multi-angle VIs were input
into machine learning models including support vector machine (SVM), eXtreme gradient boosting
(XGBoost), and Random Forest (RF) to determine the optimal monitoring strategy. The results indi-
cated that the back-scattering direction outperformed the vertical and forward-scattering direction in
terms of monitoring the LAI. In the solar principal plane (SPP), EVI-1 and REP showed angle stability
and high accuracy in monitoring the LAI. Nevertheless, this relationship was influenced by experi-
mental conditions and growth stages. Compared with traditional VIs, the observation perspective
insensitivity vegetation index (OPIVI) had the highest correlation with the LAI (r = 0.77–0.85). The
linear regression model based on single-angle OPIVI was most accurate at −15◦ (R2 = 0.71). The LAI
monitoring achieved using a multi-angle OPIVI-RF model had the higher accuracy, with an R2 of 0.77
and with a root mean square error (RMSE) of 0.38 cm2·cm−2. This study provides valuable insights
for selecting VIs that overcome the angle effect in future drone and satellite applications.

Keywords: leaf area index; multi-angle hyperspectral; machine learning; winter oilseed rape
(Brassica napus L.)

1. Introduction

The leaf area index (LAI) is a crucial parameter for characterizing plant canopy struc-
ture, influencing processes such as light interception, respiration, transpiration, and net
primary productivity [1]. The LAI reflects the dynamic changes in growth characteristics,
canopy light distribution, respiration, photosynthesis, water vapor release, and carbon
cycling [2]. Traditional methods for monitoring crop LAI, such as length–width factor
method, lattice method, paper weight method, and laser leaf area method, can provide
accurate measurements for small areas. However, these methods are time consuming,
destructive, and unsuitable for large-scale monitoring [3]. Hyperspectral remote sensing
emerged as a prominent tool in precision agriculture for monitoring crop growth, offering
robust spectral continuity and high spectral information content for real-time and extensive
LAI monitoring [4].
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The vegetation canopy exhibits significant vertical gradients in biochemical and bio-
physical properties, posing challenges for traditional remote sensing techniques that rely
on vertical observations [5]. Multi-angle remote sensing addresses these challenges by
capturing comprehensive geometrical and spatial distribution information from multiple
directions. This approach is widely used to derive crop growth and nutritional status from
remote sensing data [6,7]. Hasegawa et al. [8] improved the accuracy of LAI inversion and
mitigated saturation effects associated with the normalized difference vegetation index
(NDVI) by integrating traditional vertical angle vegetation indices with hotspot and dark
point information from multi-angle remote sensing. Similarly, Stagakis et al. [9] compared
the ability of different view zenith angles (VZAs) to invert the LAI using satellite imagery
data and ground-measured LAI data from 64 vegetation indices (VIs). These studies col-
lectively highlight that non-vertical observations offer more reliable insights into canopy
structural information compared to vertical observations, thus reducing errors in LAI
inversion associated with canopy structural features [10].

High reflectance in the near-infrared (NIR) band indicates multiple scattering within
plant leaf blades and canopy leaves, making it a reliable indicator of the LAI [11]. Extensive
research has compared the stability and accuracy of various VIs for LAI estimation, optimiz-
ing them to enhance their linear correlations [12–14]. For instance, the widely used NDVI
has limitations such as saturation and non-linear relationships in dense canopies and vigor-
ous growth conditions [15]. To account for soil background effects, soil-corrected VIs like
the soil-adjusted vegetation index (SAVI), modified soil-adjusted vegetation index (MSAVI),
and optimized soil-adjusted vegetation index (OSAVI) have been developed [16–18]. The
meris terrestrial chlorophyll index (MTCI), involving green and red edges, can alleviate
LAI saturation [19]. Introducing the blue band into the NDVI helps mitigate the impact
of atmospheric and surface factors [20]. These established VIs maximize sensitivity to
LAI changes while minimizing adverse effects from soil, light, and atmosphere. However,
as VIs are derived from the reflectance of multiple bands through various combinations,
they exhibit varying sensitivities to view zenith angles (VZAs). For example, the NDVI
generally shows higher values at larger VZAs, whereas the enhanced vegetation index (EVI)
displays stronger angle sensitivity [10,21]. Galvão et al. [22] proposed that the EVI and
photochemical reflectance index (PRI) exhibit strong anisotropy, whereas the NDVI and the
Vogelmann index (VOG) show weaker angle sensitivities. Verrelst et al. [23] suggested that
VIs constructed from bands between 450 and 1050 nm display significantly different angle
sensitivities depending on crop types. Hovi et al. [24] emphasized that canopy structure
significantly influences reflectance variations at different VZAs. Most of these studies have
focused on analyzing the angle sensitivity of VIs observed vertically, with limited research
utilizing multi-angle remote sensing data for crop growth monitoring. Therefore, it is
necessary to analyze the anisotropic characteristics of crop canopies to reduce the impact of
VZAs on monitoring crop growth and to develop novel multi-angle VIs. He et al. [25] im-
proved the prediction accuracy and stability of leaf nitrogen content (LNC) by introducing
a new angle-insensitive vegetation index (AIVI). Li et al. [26] developed an index algorithm
based on multi-angle reflectance factors for leaf surfaces, which is effective for measuring
leaf water content and applicable to various plant species with different significant and
moisture contents under different measurement conditions. Currently, there is a lack of
systematic analysis of the relationship between multi-angle VIs and the LAI, particularly
for oilseed crops like rapeseed. This gap severely limits the application of various spectral
analysis methods in multi-angle remote sensing. Future studies should focus on analyzing
the angle sensitivity of different spectral analysis methods to identify VIs and techniques
most sensitive to the LAI while being least sensitive to VZAs.

Oilseed rape is a widely cultivated essential oilseed crop globally, including in China,
and its growth and yield formation are significantly influenced by nitrogen nutrition. The
real-time, accurate, and rapid estimation of rapeseed LAI is essential for diagnosing and
managing its growth and predicting yields [27]. This study was conducted to design field
experiments involving various coverage methods and levels of nitrogen fertilization, with
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the aim of analyzing parameter changes under different VZAs. The goal is to develop
VIs that exhibit stable performance under different VZAs and experimental conditions.
Additionally, the optimal VI is inputted into various machine learning models to compare
the monitoring accuracy of each model. This research provides technical guidance and
a theoretical foundation for enhancing ground-based technologies in multi-angle remote
sensing applications.

2. Results

2.1. Changes in the Canopy Reflectance and VIs of Feature Bands at Different VZAs

In this study, we selected five representative feature spectral bands: blue (450 nm),
green (550 nm), red (660 nm), red edge (720 nm), and NIR bands (780 nm). As illustrated
in Figure 1, visible light exhibits a significantly asymmetrical shape within the SPP, while
the red edge and NIR bands are almost symmetrical. For visible light, the reflectance of
blue and red bands shows minimal change with the varying VZA, with amplitudes within
40%. In contrast, the green and NIR bands exhibit higher amplitudes, reaching up to 122%.
Generally, in the back-scatter direction, the reflectance of all five feature bands increases
with an increase in VZA, with the minimum reflectance occurring near the vertical angle.

Figure 1. Reflectance changes in blue, green, red, red edge, and NIR bands with different VZAs at
the stage of flowering of winter oilseed rape. (a) Visible wavelengths. (b) NIR wavelengths.

The changes in 16 VIs constructed from these five feature bands with respect to VZAs
show fluctuations. Table 1 presents the change amplitude and F significance analysis of VIs
relative to the vertical angle. A larger F-value indicates greater variation within that angular
range. The results show that all the parameter variations exhibit significant differences
at the p < 0.05 level in the range of −60◦ to +60◦, while all the other parameters except
the PRI, DVI, NDDA, VOG-2, DD, and CCII did not show significant differences at the
p < 0.05 level in the range of +30◦ to +60◦ VZA. As shown in Figure 2, all parameters exhibit
significant angular changes, with the NDDA showing the most prominent change between
the forward- and back-scatter direction, with amplitudes reaching −29.77% and 95.42%.
The F-test revealed significant difference at the p < 0.01 level in the range of −60◦ to +60◦
and +30◦ to +60◦, indicating that the NDDA is the most sensitive parameter to VZAs. In
the forward-scatter direction, most parameters show gradual stabilization after +30◦, while
the NDRE, NDDA, VOG-2, and CCII continue to increase with increasing VZAs. In the
back-scatter direction, most parameters show a sharp increase or decrease after −15◦, with
the SAVI, NDDA, and DD being the most obvious. Additionally, the PRI, NDDA, and
DD undergo sudden changes at a VZA of −45◦. R1-dB, mND705, DDn, and DD exhibit a
symmetrical shape in both the forward- and back-scatter direction, with their minimum
values occurring at the vertical angle and increasing with VZAs. In summary, Vlopt, the
OPIVI, and REP exhibit no significant change with the respect to VZAs and show a gentle
angular change trend within the SPP.
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Table 1. Percentages of change compared to nadir values for extreme VZAs and ANOVA F-ratio
values.

Index

−60◦ vs.
Nadir

+60◦ vs.
Nadir

ANOVA F
Values (F8,1620)

ANOVA F
Value (F2,360)

(%) (%) (−60◦~+60◦) (30◦~60◦)

Two bands
PRI 1.74 −8.98 3.195 *** 2.805 **

R1-dB 2.33 8.72 7.129 *** 1.509
SAVI 12.52 5.47 3.248 *** 1.160

NDRE 3.23 21.18 5.723 *** 1.298
DVI 8.60 −6.87 2.722 *** 2.180 *

Vlopt 4.79 3.76 2.131 ** 0.604
Three bands

mND705 6.64 18.19 6.555 *** 1.226
NDDA −29.77 95.42 3.901 *** 3.228 **
MTCI −2.52 18.12 6.119 *** 1.297
EVI-1 11.81 3.90 1.819 * 1.597
DDn 20.22 17.21 1.947 * 1.751

OPIVI 1.60 −6.61 1.735 * 0.444
Four bands

VOG-2 6.35 36.14 5.951 *** 3.447 **
DD 19.31 19.16 4.877 *** 2.062 *
REP −2.36 3.31 1.877 * 0.760
CCII −0.70 10.12 3.592 *** 2.499 *

* p < 0.05. ** p < 0.01. *** p < 0.001.

Figure 2. Normalized differences in VI values with respect to nadir between different VZAs within
SPP in winter oilseed rape. X-axis represents the VZA (negative values represent back-scatter
direction, positive values represent forward-scatter direction). Y-axis represents the normalized
difference. (a) Two bands, (b) three bands, (c) four bands.

2.2. Relationship between LAI and VIs under Different VZAs

This study comprehensively analyzes the relationship between VIs and the LAI based
on the performance of the same spectral parameter under different VZAs and the perfor-
mance of different VIs under the same VZAs. A linear regression model was established
to monitor the LAI using VIs under different VZAs. As shown in Figure 3, VIs have a
closer relationship with the LAI in the back-scatter direction. Among the 16 parameters,
MTCI exhibited the poorest regression potential (R2 = 0.09–0.45) for all VZAs. Additionally,
VIs such as the NDRE, NDDA, VOG-2, and CCII also showed poorer regression potential.
For two-band VIs, although the PRI, SAVI, and DVI maintain a good correlation with the
LAI near the vertical angle, their correlation coefficients decrease with increasing VZAs in
both the forward- and back-scatter direction, indicating poor stability. In contrast, among
the three-band VIs, mND705, EVI-1, and OPIVI exhibit strong correlations with the LAI.
However, considering angular stability, the OPIVI performs the better. Among the four-
band VIs, the REP shows high potential for monitoring crop LAI. Overall, most parameters
are sensitive to changes in VZAs. As shown in Figure 4, EVI-1, the OPIVI, and the REP
maintain high monitoring accuracy while demonstrating good angular stability. Notably,
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the OPIVI performed the best in the single-angle linear regression model at a VZA of −15◦,
with an R 2 of 0.71 and RMSE of 0.55 cm2·cm−2.

 

Figure 3. Accuracy of monitoring LAI with different VIs at different VZAs.

Figure 4. Quantitative relationship between VIs (EVI, OPIVI, and REP) and LAI at different VZAs.

2.3. Comparison of VIs in Different Experimental Conditions across All VZAs

Numerous studies have confirmed that different experimental conditions can affect
the angular sensitivity of VIs, necessitating an analysis of how different reproductive stages
and treatments impact VIs’ angle sensitivity. As shown in Table 2, the correlation between
different VIs and the LAI varies with different experimental factors. The R values under
different experimental conditions show similar trends, with higher R values for vertical
angles than for forward- and back-scatter direction. As shown in Figure 5, the parameters
exhibit varying levels of correlation and angular stability under different experimental
factors. During various growth stages, both the OPIVI and REP parameters demonstrate
good angular stability while maintaining a high correlation with the LAI. However, there
are significant differences in the correlation between EVI-1 and the LAI during the budding
and flowering stages. Different treatments also results in significant differences in the
correlation between the EVI-1 and REP parameters when comparing coverage method
treatment and nitrogen fertilizer treatment.

Given the significant differences among experimental conditions (Table 2), the differ-
ence of R (DR, the difference in R among different experimental conditions) were calculated.

DR =
Rmax − Rmin

Raverage
(1)

Equation (1) demonstrates that the value of DR can reflect the angular stability of the
correlation between VIs and VZAs. A smaller DR value indicates higher angular stability
of the relationship between VIs and the LAI. The DR values were compared across all
experimental factors. The results showed that the OPIVI had the strongest correlation with
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the LAI and exhibited the most stable change under different VZAs, followed by the REP
and EVI-1. Specifically, the correlation coefficient for the OPIVI was slightly higher during
flowering stage (0.85) compared to the seedling stages (0.82). Additionally, the correlation
coefficient for cover treatment (0.86) was marginally higher than for nitrogen fertilizer
treatment (0.82).

Table 2. Correlation coefficient (R) between three VIs and LAI at different VZAs. The highest r values
for OPIVI are highlighted in bold.

Categories Sub Datasets VIs −60◦ −45◦ −30◦ −15◦ 0◦ 15◦ 30◦ 45◦ 60◦

Growth
stages

Bolting stage
EVI-1 0.70 0.75 0.81 0.85 0.80 0.74 0.72 0.69 0.69
OPIVI 0.74 0.78 0.81 0.82 0.81 0.81 0.78 0.75 0.74
REP 0.72 0.74 0.80 0.81 0.80 0.76 0.72 0.69 0.68

Flowering stage
EVI-1 0.54 0.58 0.65 0.70 0.64 0.60 0.58 0.57 0.53
OPIVI 0.78 0.79 0.83 0.85 0.83 0.80 0.78 0.75 0.76
REP 0.68 0.71 0.75 0.78 0.76 0.74 0.72 0.69 0.67

Treatments

N rates
EVI-1 0.62 0.67 0.72 0.74 0.70 0.64 0.62 0.60 0.59
OPIVI 0.77 0.78 0.82 0.82 0.82 0.81 0.76 0.77 0.76
REP 0.61 0.64 0.71 0.74 0.70 0.65 0.62 0.61 0.60

Overlay mode
EVI-1 0.72 0.76 0.81 0.82 0.81 0.75 0.72 0.70 0.69
OPIVI 0.80 0.82 0.85 0.86 0.85 0.84 0.81 0.79 0.77
REP 0.76 0.78 0.80 0.85 0.82 0.76 0.74 0.72 0.73

Figure 5. Influence of different experimental factors on the relationship between three VIs and LAI
at different VZAs. (a) Changes in correlation coefficient of different growth stage VIs at different
VZAs. (b) Changes in correlation coefficient of different experimental treatment VIs at different VZAs.
(c) Changes in DR value of different VIs at different VZAs.
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2.4. Estimating LAI by Different Machine Learning Algorithm

The three best angles (−30◦, −15◦, and 0◦) of the OPIVI were selected as independent
variables and input into three machine learning algorithms, SVM, XGBoost, and RF, for
modeling. As shown in Figure 6, the results varied in monitoring accuracy among the
algorithms. The RF algorithm performed the best, with an R2 of 0.77 and an RMSE of
0.38 cm2·cm−2, indicating that the Bagging model within the ensemble algorithm effectively
utilized the information from the multi-angle VI data. The XGBoost algorithm achieved
an R2 of 0.73 and an RMSE of 0.41 cm2·cm−2, slightly inferior to the RF algorithm. The
SVM had the poorest performance in the multi-angle OPIVI monitoring of winter oilseed
rape LAI (R2 = 0.71, RMSE = 0.51 cm2·cm−2). Overall, the RF algorithm, as an ensem-
ble algorithm with integrated thinking, demonstrates strong comprehensive application
capabilities and a high utilization rate of effective information in multi-angle VI data. It
can serve as a robust algorithm support for monitoring crop nutrient parameters using
multi-angle remote sensing data.

Figure 6. Quantitative relationships of OPIVI to LAI. (a) RF, (b) SVM, (c) XGBoost.

3. Materials and Methods

3.1. Experimental Design

This experiment was conducted at the Key Laboratory of Agricultural Soil and Water
Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F
University, Yangling, from October 2022 to June 2023. The study area is a typical semi-
humid and drought-prone region with a warm temperate semi-humid monsoon climate.
The winter rapeseed variety used in this experiment is “Shaanyou No.18”. A total of
45 plots were used for data collection in this experiment, each with a size of 4 m × 6 m
(24 m2) and arranged randomly. The experiment included five nitrogen (N) application
rates: N0 (0), N1 (70 kg/hm2), N2 (140 kg/hm2), N3 (210 kg/hm2), and N4 (280 kg/hm2).
Additionally, three types of mulching treatments were applied: straw mulching (SM) for
flat crops, film mulching (FM) for ridges, and no mulching (NM) for flat crops. This resulted
in a total of 15 treatments (Table 3), replicated three times. A 2 m wide protective belt
surrounded the experimental area.

Table 3. The growth stage of the experiment, solar zenith angle, and azimuth angle.

Year Date Stage Time
Solar Zenith

Angle (◦)
Solar Azimuth Angle

(◦)

2023

14 March Budding 12:30–13:20 48.90–52.77 148.68–167.55
18 March Budding 12:30–13:20 50.23–54.23 147.68–167.10
22 April Flowering 12:30–13:20 61.52–67.06 135.46–160.89
25 April Flowering 12:20–13:10 62.32–68.01 134.18–160.15

3.2. Measuring Multi-Angular Spectra and LAI

The spectral reflectance of winter oilseed rape (Brassica napus L.) canopy was measured
using an ASD field-spec 4 back-mounted field spectrometer (LICA United Technology
Limited in Beijing, China) with the field gonimeter system (FIGOS) as the reference [28]. A
multi-angle hyperspectral monitoring device was designed to meet specific requirements
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(Figure 7a,b), ensuring the same target was observed at different VZAs. Measurements
were taken between 11:00 and 13:00 under clear, windless conditions with good visibility.

Figure 7. Schematic diagram and instrument for multi-angle hyperspectral measurement.
(a) Schematic diagram of multi-angle observation at VZA of +60◦ and +45◦. (b) Field measure-
ment map.

For multi-angle hyperspectral data collection, the optical fiber is first fixed on the
rocker arm of the bracket positioned at a height of 1.5 m. The real-time sun azimuth was
obtained using an open-source sun azimuth calculator. The horizontal azimuth of the
bracket was adjusted to ensure that the measurement plane was within the solar principal
plane (SPP). Different VZAs were achieved by controlling the rocker arm, which moved
back and forth to ensure consistent observations of the same area within the plot. The
observation object was marked for accuracy. VZA was defined as 0◦ at vertical monitoring.
The direction of sunlight opposite to the observation direction was defined as the forward-
scatter direction (+), while the same side as the observation direction was defined as the
back-scatter direction (−). VZAs were arranged as −60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦,
45◦, and 60◦ (Figure 7). Three measurements were taken at each VZA, and their average
value was used as the spectral reflectance at that angle. Reference board calibration was
performed immediately before and after each of VZA measurement (with the reflectance
board having a reflectance of 1).

Following spectral data collection, three representative winter oilseed rape plants
were randomly selected from each plot. These plants were separated into stems and leaves,
and the leaf area was determined using the threshold segmentation of the photographs.
The LAI was then calculated by multiplying the mean leaf area of the three plants by the
number of single stems per unit area (obtained from field surveys conducted during critical
growth stages).

3.3. Construction of the New Vegetation Index

Numerous studies have indicated that the NDVI is a frequently used and well-inverted
spectral parameter. The saturation phenomenon of the parameters can be alleviated by
introducing new bands or fixed coefficients based on the NDVI [29]. Considering that the
blue and red bands are insensitive to changes in VZAs, and they are closely related to the
leaf area index, it is proposed to introduce these bands into the NDVI. The specific formula
is as follows:

OPIVI =
Rλ1 − Rλ3

Rλ2 − Rλ3
(2)
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Among them, λ1 refers to all red edge bands within the range of 700–760 nm. λ2
and λ3 represent red and blue bands, respectively. After screening and comparison, it is
determined that λ1 = 720 nm, λ2 = 660 nm, and λ3 = 450 nm. The specific forms are as
follows:

OPIVI =
R720 − R450

R660 − R450
(3)

3.4. Data Analysis
3.4.1. Preprocessing of Spectral Data and Construction of VIs

Numerous studies have indicated that the wavelength range of 350–1300 nm is par-
ticularly sensitive and characteristic spectral for reflecting crop pigments, nutrients, and
the overall growth and development status [30]. Consequently, this study utilizes this
wavelength region to analyze the LAI of winter oilseed rape. To reduce the influence of
background noise, baseline drift, and undesirable elements such as scattered light on hy-
perspectral reflectance, preprocessing techniques are employed. These techniques include
Savitzky–Golay convolution smoothing and quadratic polynomial function fitting and
filtering for denoising [31].

The VI inversion method is a well-established approach for parameter inversion.
Table 4 lists the commonly used two-band, three-band, and four-band VIs for monitoring
the LAI, leaf nitrogen concentration (LNC), and chlorophyll content.

Table 4. The selected vegetation indices used in this study.

Index Formula References

Two bands
PRI (photochemical reflectance index) (R570 − R531)/(R570 + R531) [32]
RI-dB (redness index–decibels) R735/R720 [33]
SAVI (soil-adjusted vegetation index) 1.5 × (R870 − R680)/(R870 + R680 + 0.5) [34]
NDRE (normalized difference red edge) (R790 − R720)/(R790 + R720) [35]
DVI (difference vegetation index) R860 − R560 [36]
Vlopt (variable light optical properties) (1 + 0.45) × (R8002 + 1)/(R670 + 0.45) [37]
Three bands
mND705 (modified normalized difference at 705 nm) (R750 − R705)/(R750 + R705 − 2 × R445) [38]
NDDA (normalized difference drought index) (R680 + R756 – 2 × R718)/(R756 − R680) [39]
MTCI (meris terrestrial chlorophyll index) (R754 − R709)/(R709 − R681) [40]

EVI-1 (enhanced vegetation index-1) 2.5 × (R860 − R645)/(1 + R860 + 6 × R645 − 7.5 ×
R470) [20]

DDn (derivative difference normalized) 2.5 × R710 − R660 − R760 [41]
OPIVI (observation perspective insensitivity vegetation
index) (R720 − R450)/(R660 − R450) This paper

Four bands
VOG-2 (vogelmann red edge index 2) (R734 − R747)/(R715 − R726) [24]
DD (difference vegetation index) (R749 − R720) − (R701 − R672) [41]

REP (red edge position) R700 + 40 × [(R670 + R780)/2 − R700]/(R740 −
R700) [42]

CCII (canopy chlorophyll index integrated) TCARI/OSAVI [43]

3.4.2. Training Dataset and Test Dataset

To ensure consistency across different viewing zenith angles (VZAs), we employed a
uniform dataset partitioning method before modeling [39]. Specifically, the 180 samples
were randomly divided into two sets: 70% (n = 126) for training and 30% (n = 54) for testing.
This partitioning was maintained across all studies conducted at the same VZA.

3.4.3. Support Vector Machines (SVM)

Machine learning models can be categorized into single models and ensemble mod-
els. Among these models, support vector machine (SVM) is particularly effective for the
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inverse estimation of crop growth parameters [44]. The SVM transforms data into a high-
dimensional feature space to establish a linear model and fits a regression function based
on this model. SVM can largely overcome issues such as multiple discrete values and
overfitting. By choosing an appropriate kernel function, the performance and accuracy
of SVM can be enhanced. In this study, we compared the effects of linear, polynomial,
and radial basis function (RBF) and Sigmoid kernel functions, concluding that the RBF
performed best. The RBF kernel offers advantages such as wide mapping dimensions,
fewer parameters to determine, and relatively simple operation [45].

3.4.4. eXtreme Gradient Boost (XGBoost)

Among the ensemble models, boosting and bagging are commonly used. XGBoost,
a boosting algorithm, is frequently employed for the inverse estimation of agronomic
parameters [46]. XGBoost iteratively combines weak base learners to form stronger learners.
To control overfitting, it is crucial to manage model complexity and increase randomness.
In this study, the max_depth is chosen as 5, the learning rate is 0.01, and the regular term
coefficient is realized by adjusting the alpha and lambda values.

3.4.5. Random Forest (RF)

Random Forest, a popular bagging model in ensemble learning, is extensively used
for the inverse estimation of crop growth parameters. This method involves sampling
n samples from the original training set using bootstrap resampling, building decision
trees for each sample to obtain n modeling results, and finalizing the prediction through
voting on all decision tree results. Random Forest is effective for handling large datasets,
estimating specific feature variables, managing noise, and providing fast computations [47].
After error analysis and repeated experiments, we selected ntree = 500 and mtry = 3 for
model construction.

3.4.6. Evaluating Model Performance

Model performance was evaluated using the using the coefficient of determination
(R2) and the root mean square error (RMSE). The formulas for R2 and RMSE are as follows:

R2 =
∑n

i = 1 (O i − Pi)
2

∑n
i = 1 (O i − Oi

)2 (4)

RMSE =

√
1
n∑n

i = 1 (O i − Pi)
2 (5)

where Pi and Oi are the predicted values and observations, respectively, Oi represents the
average of the observations, and n is the number of samples.

3.4.7. Flowchart

The workflow chart of this study is illustrated in Figure 8. The main stages include:
(1) Data measurement: Ground measurements (LAI) and hyperspectral remote sensing data
were collected at specified intervals. (2) Data analysis: The Angle sensitivity of different VI
under different experimental conditions after SG smoothing was analyzed. (3) Model and
result: The optimal index OPIVI was input into different machine learning models to get
the best modeling decision.
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Figure 8. A brief flowchart of this study.

4. Discussion

4.1. The Impact of View Zenith Angle on Band Information and VI

He et al. [48] studied the impact of changes in VZAs on the crop spectral characteristics.
They found significant differences in the reflectance values for green and NIR bands at
varying VZAs. The reflectance values for green bands are primarily influenced by the ab-
sorption of pigments such as chlorophyll a/b, carotenoids, and lutein [49]. Discrepancies in
these bands can be attributed to differences in pigment information acquisition at different
VZAs. Conversely, NIR band reflectance is mainly influenced by canopy characteristics
such as the LAI, biomass, the leaf tilt angle, and canopy distribution patterns [50]. Changes
in VZAs influence these canopy characteristics, leading to variations in band emissivity.

In this study, most VIs were constructed at vertical angles, making them sensitive to
changes in VZAs [39,43]. Among the nine VZAs, the LAI showed a strong correlation with
VIs constructed at near-vertical angles. However, this correlation weakened as the viewing
angle increased. This is because larger viewing angles capture canopy characteristics
from the upper part of the canopy, while rapeseed plants typically have more leaf area
in the lower parts of their canopies during the budding and flowering stages [51]. Thus,
spectral information obtained at near-vertical angles is more closely related to the LAI.
The angular effect of VIs can affect the stability of monitoring field crops. A new spectral
index, the OPIVI, incorporates red, blue, and red edge reflectance into the structure of
the NDVI, making it an effective parameter for monitoring the LAI. The advantages of
the OPIVI lie in its angle insensitivity to blue and red reflectance and its ability to assess
crop growth conditions using red edge parameters. Numerous studies have demonstrated
strong relationships between the bands in the OPIVI formula and the LAI, nitrogen nutrient
availability, contributing to the establishment of stable monitoring models within certain
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VZA ranges [33,52]. Including blue band parameters reduces atmospheric correction
effects and enhances the estimation of physiological indicators while mitigating the angle
effect [20,38]. Consequently, the OPIVI maintains a stable and close relationship with the
LAI within the SPP.

Different remote sensing monitoring directions provide different canopy information.
Back-scattered signals primarily come from illuminated leaves or branches, while forward-
scattered signals mainly come from shaded leaves or branches [9]. When monitoring plant
water use efficiency (WUE) and crop LAI, back-scattered observations exhibit stronger
robustness and information content than front-scattered ones [53]. In this study, most VIs
demonstrated higher ability to monitor LAI at −15◦ than at vertical or frontal VZAs. Among
the back-scattered viewing angles, −15◦ exhibited optimal performance. Huang et al. [51]
and Ratutiainen et al. [54] also monitored leaf chlorophyll content and the LAI using
similar VZAs, as spectral information at −15◦ viewing angles better reflected the vertical
gradients of plant growth information. Furthermore, the relationship between different VIs,
composed of various band numbers, and the LAI varies with changes in VZAs. Among
these three VIs with high correlation and stability, namely EVI-1, the OPIVI, and the REP, all
incorporate blue, red, and red edge parameters. This indicates that the stability advantage
of OPIVI is not solely attributed to a single band but rather to the combined use of multiple
bands, enhancing the accuracy and stability of the OPIVI.

4.2. The Impact of Experimental Factors on the Relationship between VIs and LAI

Different experimental treatments on crop canopy structure directly affects the angle
sensitivity of VIs. Consequently, VIs exhibit varying angle sensitivities under varying
experimental conditions. For example, He et al. [25] found that models performed better
during the reproductive stage than the nutrient stage, likely due to stable canopy structure
and reduced nitrogen dilution during reproduction. Additionally, the growth direction
of leaves (horizontal or upright) influences canopy structure and vertical gradients [55].
In this study, the relationship between VIs and LAI varied with different experimental
conditions. For instance, the relationship between VIs and LAI was stronger during the
flowering stage compared to the budding stage, which may be attributed to the significant
difference in canopy structure between these two stages. Crop nitrogen dilution effects
were present from the bolting to flowering stages, and canopy structures reached a stable
state during the flowering stage. Thus, there were significant differences in the relationship
between VIs and the LAI during these stages. Among these three VIs, EVI-1, REP, and
OPIVI, the red band parameter was crucial. Due to pigment absorption by rapeseed flowers
during the two growth stages, there were significant differences in reflectance values for
the red band, leading to underpinning the monitoring accuracy of EVI-1 depending on the
growth stage. Nitrogen fertilization treatments influenced the population density and LAI
of rapeseed plants, while cover treatments mainly affected soil water content changes in
rapeseed populations [56,57]. Cover treatment had little impact on LAI changes during the
late growth stage of rapeseed plants. As a result, correlations between VIs and the LAI were
weak under nitrogen fertilization treatments but were stronger under cover treatments,
as evidence by the REP parameter. The OPIVI maintained high stability across different
growth stages and experimental treatments due to its balanced composition, allowing it
to maintain consistent monitoring accuracy under varying experimental conditions. In
conclusion, different growth stages, nitrogen fertilization treatments, and coverage methods
significantly affect the relationship between the LAI and VIs. Therefore, it is essential to
consider these experimental factors when selecting sensitive indices and constructing
monitoring models.

4.3. The Suitable Algorithm for OPIVI to Monitor LAI

Different types of machine learning algorithms significantly impact the accuracy of
monitoring VIs. He et al. [48] used neural network algorithms to estimate wheat LNC based
on different VZAs, achieving a high accuracy with an R2 value of 0.82. It is important to
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note that neural networks are single-model machine learning algorithms. In this study, the
SVM algorithm, another single-model approach, performed poorly, with an R2 value of 0.71.
This may be because single models are prone to dataset fragmentation, which affects the
monitoring accuracy [58]. Moreover, the main challenge of the SVM lies in determining the
kernel functions and related parameters [59]. Due to limitations in parameter selection, such
as kernel functions and penalty factors, its application is somewhat restricted. Ensemble
algorithm-based machine learning models generally provide higher accuracy in monitoring
crop nutrient parameters. For instance, Yuan et al. [60] developed a model to estimate
the LAI of rice by combining single spectral and texture indicators, with the RF model
achieving the highest R2 value of 0.84. In this study, the LAI monitoring model developed
by inputting the OPIVI data from three sensitive VZAs into the RF model achieved the
highest accuracy, with an R2 value of 0.77. This was the highest accuracy among the
three machine learning algorithms tested and was significantly improved compared to the
single-band linear regression models. This RF algorithm, as an ensemble learning method,
demonstrates strong comprehensive application capabilities and high efficiency in utilizing
effective information from multiple-angle VIs [61].

This study contributes to the application of multi-angle remote sensing in agriculture
for monitoring crop growth and nutrient parameters. We aim to expand our dataset by
including more experimental treatments, planting densities, locations, years, and rapeseed
varieties to better analyze the angular effects of VIs under different conditions. To further
validate the applicability of VIs, it is crucial to conduct analyses on other crops and utilize
multiple datasets. Additionally, applying PROSAIL models to simulate additional VZAs
and integrating them with various experimental conditions and algorithms will enable
further investigation into the anisotropy of crop canopies. In summary, this study provides
a more accurate and stable method for monitoring crop LAI from various perspectives.

5. Conclusions

The changes in reflectance and VIs with the change in the VZA highlight the impor-
tance of considering angle effects in remote sensing for crop LAI monitoring. Acknowl-
edging the vertical distribution of the leaf area in winter oilseed rape, we developed a
new index called the OPIVI that captures the dynamic changes in LAI using blue, red, and
red-edge parameters. The OPIVI offers a simple and practical method for monitoring LAI
in winter oilseed rape. The main conclusions are as follows:

(1) Multi-angle observations reveal that the relationship between the back-scatter direc-
tion and LAI is stronger than between the vertical and forward-scatter directions.
Among the 16VIs tested, the OPIVI shows the highest potential for monitoring across
different VZAs, performing best at an elevation angle of −15◦.

(2) Different experimental factors, such as growth stage, nitrogen fertilizer application,
and coverage method, have varying effects on different VIs and the LAI. Notably, the
OPIVI maintains a high correlation and angular stability under various experimental
conditions.

(3) For monitoring model selection, the combination of the RF model with clustering
algorithms and multi-angle OPIVI provide optimal results in estimating winter oilseed
rape LAI (R2 = 0.77; RMSE = 0.38 cm2·cm−2). This approach significantly improves
accuracy compared to single-angle inversion models.
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Abstract: Studying the influence of the host plant genotype on the spectral reflectance of crops
infected by a pathogen is one of the key directions in the development of precision methods for
monitoring the phytosanitary state of wheat agrocenoses. The purpose of this research was to study
the influence of varietal factors and disease development on the spectral characteristics of winter
wheat varieties of different susceptibility to diseases during the growing seasons of 2021, 2022 and
2023. The studied winter wheat crops were represented by three varieties differing in susceptibility
to phytopathogens: Grom, Svarog and Bezostaya 100. Over three years of research, a clear and
pronounced influence of the varietal factor on the spectral characteristics of winter wheat crops was
observed, which in most cases manifested itself as an immunological reaction of specific varieties to
the influence of pathogen development. The nature of the influence of the pathogenic background
and the spectral characteristics of winter wheat crops were determined by the complex interaction
of the development of individual diseases under the conditions of a particular year of research. A
uniform and clear division of the spectral characteristics of winter wheat according to the intensity of
the disease was recorded only at a level of pathogen development of more than 5%. Moreover, this
gradation was most clearly manifested in the spectral channels of the near-infrared range and at a
wavelength of 720 nm.

Keywords: ground-based spectrometry; winter wheat; wheat diseases; spectral characteristics

1. Introduction

Winter wheat is one of the leading agricultural crops grown worldwide. Econom-
ically important diseases of wheat include pathogens of septoria spp. and brown spot
(Pyrenophora tritici-repentis (Died.) Drechsler), as well as pathogens that cause powdery
mildew (Blumeria graminis (DC.) Speer), brown rust (Puccinia triticina Erikss.) and yellow
rust (Puccinia striiformis West.). These diseases are widespread in the world [1,2]. In Russia,
there are also cases of wheat affected by these diseases. This is especially pronounced in the
southern regions [3–5]. According to FAO and the UN, wheat diseases cause annual losses.
Thus, in developed countries, crop losses of up to 10% are observed and, in developing
countries, up to 20–50% [6]. In Russia, losses of grain crops of up to 25–35% are caused by
rust fungi, septoria, yellow spot, powdery mildew, fusarium and root rot [7,8].

One of the factors for successful plant protection is the ability to quickly monitor
large areas of agricultural land. This approach can provide high quality data [9,10]. Vast
cultivated areas make it difficult to conduct phytosanitary monitoring using traditional
visual accounting methods. Consequently, there is a lack of proper control by specialists
and, therefore, there is an urgent need for a fundamental scientific and methodological
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ground for early diagnosis of the main pathogens of wheat diseases based on aerospace
information technology, as well as high-performance ground-based measurements. The
current level of Earth remote-sensing equipment is characterized by the emergence of space-
and aviation-based hyper-spectral equipment. Researchers believe that determining the
spectral properties of an object in specific narrow wavelength ranges creates the opportunity
to identify hidden special changes [11–17]. It is not possible to record such changes on the
ground without special tools and special methods.

Many researchers study the physiological state of wheat crops through hyper-spectral
data analysis [18–34]. The most significant results have been obtained by identifying
diseases such as fusarium head blight (F. graminearum Schwabe) [19–22]. Further research
is needed to determine the spectral properties of different wheat varieties since these
properties may distort the overall picture of biotic and abiotic stress in the wheat canopy.
Thus, Delwiche et al., 2000, studying the possibilities of detecting fusarium head blight
in three different wheat varieties, established a significant influence of the variety factor
on the adequacy of pathogen-detection models. Models developed for only one variety
were found to be useless when applied to other varieties [19]. Zhang et al. studied the
relationship between nutritional stress and yellow rust disease in three wheat varieties.
They identified the only disease-sensitive plant growth index PhRI [24,25]. Others have
established the possibility of using hyper-spectral data for phenotyping the resistance of
different wheat varieties affected by septoria [32,33]. The results of studying the influence
on the spectral properties of different varieties and variety mixtures of pathogens causing
winter wheat yellow spot have also been obtained [34].

Thus, studying the influence of the host plant genotype on the spectral reflectance of
crops, as well as on the biochemical and physiological characteristics of plants exposed to
pathogen infection, is one of the key directions in the development of precision methods
for monitoring the phytosanitary state of wheat agrocenoses. Currently, there is a growing
trend in the number of scientific papers on this topic. However, a complete picture and
unambiguous results on the spectral parameters of plants have not been obtained. This is
attributed to the poor reproducibility of the results due to the lack of experimental data in
the field of reflective properties of different varieties of the same species throughout years
or seasons of research.

Here we aim to study the influence of variety factors and disease intensity on the
spectral characteristics of winter wheat varieties of different susceptibility during the
growing seasons of 2021, 2022 and 2023.

Accordingly, the following tasks were set:

(1) Study the nature of similarities and differences in the spectral characteristics of crops
of winter wheat varieties in individual years of research;

(2) Study the relationship between the spectral characteristics of winter wheat crops and
disease intensity in individual years of research;

(3) Study the relationship between spectral characteristics and disease intensity of each
individual variety during three years of research;

(4) Assess the possibility of differentiating crops according to the degree of pathogen
development.

2. Results

Using two-factor analysis of variance, how the spectral characteristics of winter wheat
crops are affected by varietal differences, as well as the intensity of various diseases
(Table 1), was established. However, the nature of their mutual influence was not entirely
clear during the three years of research. Thus, in 2021, only a separate influence of crop
varietal characteristics and disease development indicators was observed. In 2022 and
2023, observations were made of the influence of plant varietal characteristics and the
development of disease on the plant.
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Table 1. The influence of variety factors and disease development on the spectral brightness coefficient
indicators of crops of the studied varieties of winter wheat at the time of the onset of intensive
manifestation of all leaf diseases in the GS 60–70 “blooming” phase in the growing seasons 2021–2023.

Spectral
Channels

Variety Infectious Background Variety * Infectious Background

2021 2022 2023 2021 2022 2023 2021 2022 2023

490 * - * * - * - * *

520 * - * * - * - * *

550 * * * * - * - * *

575 * * * * - * - * *

660 * - * * * * - * *

700 * * * * * * - * *

720 * * * * - * - * *

845 * - * - - * - - -

920 * * * - - * - - -

1085 * * * - - * - - -

1135 * * * * - * - - -

1215 * * * * - * - - -

1245 * * * * - * - - -

1285 * * * * - * - - -

1445 - * * - * - - * -

1675 * * * * - * - * *

1725 * * * - - * - * *

2005 * * - - - - - - -

2035 - * - * * * - * *

2295 * * - - * - - * -

2345 - * - - - * - - -

Notes: *—mathematically reliable influence of the factor on SBC indicators is confirmed.

According to 2022 data, the full influence of variety factors and disease development,
as well as their combination, was manifested in the spectral channels of 575, 700, 1445,
2035 and 2295 nm. In the spectrum channels of 550, 660, 720 and 1725 nm, the influence
of individual varieties and their combination with the disease development factor was
observed. At wavelengths of 920, 1085, 1135, 1245, 1285 and 2345 nm, which belong
to the near- and mid-infrared spectral ranges, only the influence of the variety factor
was observed.

In 2023, the influence of varietal factors and the development of diseases on winter
wheat crops had the greatest visibility. This effect was especially strong at wavelengths
490, 520, 550, 575, 660, 700, 720, 1675 and 1725 nm. A separate influence of the two factors,
similar to in 2021, was observed at mid-infrared wavelengths of 845, 920, 1085, 1135, 1215,
1245, 1285 and 1445 nm.

A comparative post-hoc (Duncan) analysis showed (Figure 1, Table 2) that, during
three years of research, despite the difference in the level of development and pathogenic
composition, a clear and pronounced separation of control and infected crops was no-
ticed. Moreover, in 2021, this division manifested itself in the form of an excess of the
average values of the crops SBC in control plots over the infected ones in a number of
spectral channels.
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Figure 1. Spectral images of crops of studied varieties of winter wheat at the moment of the onset
of intensive manifestation of all leaf diseases in the “flowering” phase of GS 60–70 in the growing
season 2021–2023.

On the contrary, infected plots of the studied varieties of winter wheat exceeded the
control ones in terms of reflectivity in 2022 and 2023. At the same time, the most informative
spectral channels in which the difference between control and infected plots appeared are
wavelengths of 575, 660, 700 and 2035 nm. A distinctive feature of the 2021 studies was
the lowest development of pathogens compared to those in 2022 and 2023, as well as the
simultaneous manifestation of yellow and brown rust on crops in infected plots. One could
assume that this is what determined the nature of the differences between the control plots
and the infected ones.
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Table 2. A comparative post-hoc (Duncan) analysis of spectral brightness coefficient values of the
studied winter wheat varieties in different spectral ranges at the time of the onset of intensive
manifestation of all leaf diseases in the GS 60–70 “blooming” phase in the growing seasons 2021–2023.

Variety Experience Option
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

2021

Bezostaya 100

Control

0.019 b 0.045 b 0.021 b 0.134 b 0.454 b 0.057 a 0.128 b 0.020 a

Svarog 0.021 bc 0.052 c 0.023 b 0.152 b 0.494 b 0.066 a 0.146 b 0.038 a

Grom 0.025 d 0.054 c 0.027 c 0.150 b 0.487 b 0.058 a 0.152 b 0.031 a

Bezostaya 100

Infected

0.015 a 0.038 a 0.017 a 0.111 a 0.367 a 0.039 a 0.098 a 0.012 a

Svarog 0.021 bc 0.051 bc 0.021 b 0.150 b 0.506 b 0.041 a 0.140 b 0.034 a

Grom 0.022 c 0.048 bc 0.023 b 0.136 b 0.472 b 0.056 a 0.144 b 0.039 a

2022

Bezostaya 100

Control

0.018 ab 0.043 ab 0.018 a 0.128 ab 0.460 a 0.053 b 0.141 a 0.039 b

Svarog 0.016 a 0.042 ab 0.016 a 0.127 ab 0.419 a 0.037 a 0.112 a 0.025 a

Grom 0.021 b 0.043 ab 0.021 a 0.122 ab 0.463 a 0.043 ab 0.126 a 0.030 ab

Bezostaya 100

Infected

0.022 b 0.053 c 0.025 b 0.153 c 0.466 a 0.072 c 0.179 b 0.051 c

Svarog 0.019 ab 0.049 bc 0.021 a 0.140 bc 0.412 a 0.047 ab 0.127 a 0.033 ab

Grom 0.017 ab 0.038 a 0.017 a 0.113 ab 0.422 a 0.039 a 0.116 a 0.026 a

2023

Bezostaya 100

Control

0.024 b 0.063 c 0.030 c 0.176 cd 0.440 b 0.059 a 0.153 b 0.036 a

Svarog 0.022 ab 0.057 b 0.023 a 0.164 bc 0.500 c 0.067 a 0.157 b 0.032 ab

Grom 0.020 a 0.046 a 0.021 a 0.128 a 0.383 a 0.074 a 0.123 a 0.020 ab

Bezostaya 100

Infected

0.024 b 0.057 b 0.027 b 0.164 bc 0.477 c 0.056 a 0.150 b 0.033 ab

Svarog 0.027 c 0.066 c 0.029 bc 0.180 d 0.536 d 0.069 a 0.178 c 0.045 c

Grom 0.023 b 0.056 b 0.028 bc 0.156 b 0.406 a 0.076 a 0.155 b 0.040 c

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error in each column; the average values with the same letter do not differ significantly.

It is important to note that over the entire three-year study, the influence of varietal
characteristics had an advantage in influencing the spectral properties of winter wheat
crops. The development of the pathogenic background affected varieties only in accordance
with the influence of varietal characteristics. In addition, it was found that the nature of the
similarities and differences in the crops of compared winter wheat varieties according to
spectral characteristics in the same growth phase, but in different years of research, was
also ambiguous.

Differences only appeared in the mid-infrared spectral channel in 2021 and 2023. These
years of research were characterized by leaf rust in the pathogenic background. In the
spectral channels 490, 520, 550, 845, 1675, 1725 and 2345 nm, differences appeared only in
2023, when the maximum level of pathogen development was observed. In 2022, differences
were noted in the 1445 nm spectral channel. This, in all likelihood, can be associated with
the characteristics of composition and intensity of the pathogenic background for a given
period of time.

The average level of development of the entire pathogenic background in control plots
in 2021 was 0.33% and, in the infected ones, 0.72%. The difference between them was
0.54%. In 2022, this was 1.07 and 1.52%, respectively, with a difference of 0.45%. In 2023,
the average level of development of all pathogens in the control background was 1.7%, and
in the infected background 6.8%. The difference between them was 5.03%.
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Thus, we can state that the factor of separability of winter wheat crops according to
spectral characteristics with a minimum difference in the development of pathogens was
0.5%. In individual spectral channels of 490, 520, 845 and 2345 nm, variations appeared
with a difference in the pathogenic background of 5%.

In 2021, the difference in the spectral characteristics of infected and control areas of the
studied winter wheat crops was determined by the mutual influence of the development
of yellow and brown rusts. According to the results of the correlation analysis for yellow
and brown rusts, a negative relationship was revealed between the indicators of their
development and the variable values of the spectral brightness coefficient of the spectral
channels of the visible and near-infrared ranges (Table 3). Also, for both pathogens, a high
and statistically significant correlation was established in the mid-infrared spectral channel
of 1445 nm. Separately, for yellow rust, a high and statistically significant correlation was
identified in the 2035 nm spectral channel.

Table 3. Results of assessing the correlation between the degree of disease development and variable
values of the spectral brightness coefficient of spectral channels in the 2021–2023 research.

Pathogen
Spectral Range, nm

490 550 660 700 720 845 1245 1445 1675 2005 2035 2295 2345

2021

Powdery mildew −0.39 0.13 −0.39 0.13 0.13 0.13 −0.13 0.13 −0.13 0.13 0.39 −0.39 −0.65

Yellow spot 0.46 0.33 0.46 0.33 0.21 0.58 0.27 −0.27 0.27 0.33 −0.09 0.7 0.52

Septoria 0.49 0.2 0.49 0.2 0.09 0.31 0.26 −0.37 0.26 0.26 −0.37 0.66 0.54

Yellow rust −0.46 −0.62 −0.46 −0.62 −0.62 −0.31 −0.62 −0.93 * −0.62 −0.22 −0.93 * −0.31 −0.15

Brown rust −0.68 −0.51 −0.68 −0.51 −0.51 −0.17 −0.68 −0.85 * −0.68 −0.1 −0.68 −0.51 −0.51

Generalized
categories 0.03 −0.35 0.03 −0.35 −0.43 −0.23 −0.23 −0.72 −0.23 −0.17 −0.75 0.17 0.17

2022

Powdery mildew 0.03 0.31 0.03 0.31 0.2 −0.54 −0.66 −0.31 −0.31 −0.66 −0.31 −0.14 −0.31

Yellow spot - - - - - - - - - - - - -

Septoria −0.2 −0.49 −0.2 −0.49 −0.77 0.09 −0.26 −0.66 −0.66 −0.26 −0.66 −0.77 −0.66

Yellow rust 0.43 0.77 0.43 0.77 0.94 * 0.03 0.14 0.54 0.54 0.14 0.54 0.71 0.54

Brown rust - - - - - - - - - - - - -

Generalized
categories 0.43 0.7 0.43 0.7 0.64 −0.12 −0.14 0.2 0.2 −0.14 0.2 0.32 0.2

2023

Powdery mildew 0.49 0.71 0.14 0.14 0.71 0.94 * 0.94 * −0.49 0.6 −0.14 −0.09 −0.14 0.2

Yellow spot 0.2 −0.09 0.14 0.14 −0.09 −0.2 −0.2 0.31 −0.09 0.09 0.6 0.26 0.49

Septoria 0.49 0.54 0.14 0.14 0.54 0.77 0.77 −0.49 0.43 0.2 0.26 −0.14 0.37

Yellow rust - - - - - - - - - - - - -

Brown rust −0.54 −0.78 −0.3 −0.3 −0.78 −0.78 −0.78 0.85 * −0.3 −0.3 0.17 0.34 −0.07

Generalized
categories 0.6 0.49 0.43 0.43 0.49 0.6 0.6 0.14 0.71 0.03 0.77 0.54 0.83 *

Notes: *—statistical significance of data correlation is confirmed.

Tan spot and septoria were allocated to another group. A high and statistically
significant correlation was also identified between these pathogens. The development
indicators of powdery mildew were characterized by an average level of correlation with
the development indicators of tan spot and septoria. No significant level of correlation was
found with variable SBC values of spectral channels for tan spot and septoria.

A comparative post-hoc analysis showed that the difference in the spectral charac-
teristics of the studied winter wheat crops with different levels of pathogen development

116



Plants 2024, 13, 1892

was largely determined by the influence of the variety factor. Thus, in 2021, the main and
most pronounced difference between control crops and infected spots was identified. It
was determined by the presence of the joint manifestation of yellow and brown rusts on the
latter. Despite the fact that the distribution and development of brown spot and septoria
blight were high, the influence of these pathogens on the spectral response of the studied
winter wheat crops was not revealed.

The pathogenic background of 2022 was characterized by the highest level of yellow
rust manifestation over the entire research period, which negatively correlated with the
development of septoria (Table 5). Correlation analysis revealed that yellow rust devel-
opment indicators were characterized by a high and positively directed relationship with
variable values of the spectral channels of the visible range.

Correlation analysis revealed that yellow rust was characterized by a positive correla-
tion of the development degree with variable SBC values in the visible spectral channels,
and the highest and statistically significant correlation in the 720 nm spectral channel.
Septoria stood out with an average (0.5–0.6) level of correlation in the spectral channels of
the mid-infrared range (1445, 1675, 1725, 2035, 2295 and 2345 nm), and powdery mildew in
the near-infrared spectral range (Table 3).

A comparative post-hoc analysis indicated that the most pronounced and significant
difference was characterized by infected crops of the Bezostaya 100 and Svarog vari-
eties. This was manifested by the highest SBC values for almost all spectrum channels
(Appendix A, Table A1). It is important that the spectral properties of two different vari-
eties, when considered separately, are very different, despite the same level of pathogenic
background. In general, the most pronounced differentiation of crops according to the de-
gree of development of yellow rust appeared in the 720 nm spectral channel. Differentiation
of crops according to the degree of septoria development in most of the spectral chan-
nels was subject to the influence of the variety factor. Categories of crops with pathogen
development of 0.5–1% were identified only at wavelengths of 1445 and 2345 nm.

In 2023, the highest level of disease development was observed compared to 2021 and
2022, respectively, which was manifested in the strongest impact on the spectral properties
of the studied winter wheat crops (Table 5). Against a pathogenic background, a statistically
significant negative correlation was observed between the development of powdery mildew
and leaf rust. In addition to these pathogens, a positive correlation of development was
observed in septoria with powdery mildew, as well as a negative correlation in septoria
with leaf rust.

The mutual influence of the three pathogens manifested in the correlation between
their development and the variable SBC values of the near-infrared spectral channels
(Table 3). This relationship was highest and statistically significant for powdery mildew.
A statistically significant relationship between the developments of leaf rust and variable
SBC values appeared at a wavelength of 1445 nm.

A comparative post-hoc analysis demonstrated that the best differentiation of crops
according to disease intensity was also revealed in the spectral channels of the near-infrared
range (Appendix A, Table A2). At the same time, a tendency for SBC values to increase
along with the growing intensity of disease development was observed for powdery
mildew and septoria. On the other hand, for leaf rust, a decrease in SBC values with an
increase in the severity of disease development was observed.

Thus, according to the intensity of powdery mildew, the studied crops were clearly
divided into groups with corresponding indicators of disease intensity of 0–3, 4, 10–12 and
30%, but according to the degree of development of septoria by 0, 2–3 and 4%. Solely crops
with an indicator of 0% stood out according to the intensity of leaf rust. When grouping
SBC values obtained at a wavelength of 1445 nm, no statistically significant differentiation
of crops according to the degree of leaf rust intensity was revealed, despite the high level of
correlation with the development of the disease in this wavelength range.

There was no significant correlation found in any of the tan spot spectral channels,
although in 2023 it reached an average level of development of 18.37%. The division
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of crops according to disease intensity in agreement with the Duncan criterion was also
extremely ambiguous. Apparently, this was due to the very specific reaction of each specific
variety to the influence of a given pathogen.

The most pronounced differentiation of crops according to generalized groups ap-
peared in the 2345 nm spectral channel. At the same time, crops of the first category with
minimal pathogenic background, as well as of the fifth and sixth categories of crops with
maximum indicators of disease development, were identified. The differentiation of the
second and third categories was determined by the variety factor, which was superimposed
by the influence of pathogens of various levels of development and composition. However,
upon closer examination, it is possible to distinguish between these categories based on
combinations of differences in SBC values in various spectral channels.

As a result, tables were created that compare spectral properties between individual
varieties over a three-year study period (Table 4, Appendix A, Tables A3–A5).

Against the background of pathogenic development on crops of the Bezostaya 100
variety, a statistically significant positive correlation of the development of powdery mildew
with yellow spot was revealed, which influenced the appearance for this variety of a
statistically significant correlation between the external signs of powdery mildew damage
and the SBC values of the visible and near-infrared wavelength ranges (Table 4).

Table 4. Results of the assessment of the correlation between the degree of disease development and
variable values of the spectral brightness coefficient of winter wheat crops of the varieties Bezostaya
100, Svarog and Grom for the research period 2021–2023.

Pathogen
Spectral Range, nm

490 550 660 700 720 845 1245 1445 1675 2005 2035 2295 2345

Bezostaya 100

Powdery
mildew 0.84 * 0.84 * 0.84 * 0.84 * 0.84 * 0.61 0.81 * 0.41 0.75 0.46 0.58 0.32 0.46

Yellow spot 0.78 0.78 0.78 0.78 0.78 0.34 0.44 0.14 0.37 −0.03 0.14 −0.1 −0.03

Septoria 0.31 0.31 0.31 0.31 0.31 0.03 0.14 −0.14 0.03 −0.26 −0.26 −0.49 −0.43

Yellow rust −0.46 −0.46 −0.46 −0.46 −0.46 0.15 0.21 0.03 0.21 0.7 0.39 0.39 0.58

Brown rust −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.65 −0.39 −0.65 −0.65 −0.65

Generalized
categories 0.66 0.66 0.66 0.66 0.66 0.71 0.89 * 0.37 0.77 0.6 0.6 0.31 0.54

Svarog

Powdery
mildew 0.52 0.52 0.52 0.81 * 0.52 0.26 0.52 0.52 −0.81 * 0.81 * 0.12 0.06 −0.31

Yellow spot 0.7 0.7 0.7 0.52 0.7 0.94 * 0.7 0.7 −0.39 0.52 0.82 0.52 -

Septoria 0.66 0.66 0.66 0.43 0.66 0.77 0.66 0.66 −0.49 0.43 0.43 0.03 −0.66

Yellow rust −0.88 * −0.88 * −0.88 * −0.52 −0.88 * −0.7 −0.88 * −0.88 * 0.03 −0.52 −0.64 −0.52 0.54

Brown rust −0.13 −0.13 −0.13 −0.39 −0.13 0.39 −0.13 −0.13 0.39 −0.39 0.39 0.13 -

Generalized
categories 0.49 0.49 0.49 0.77 0.49 0.31 0.49 0.49 −0.83 * 0.77 0.14 0.03 0.2

Grom

Powdery
mildew −0.58 −0.72 −0.67 −0.52 −0.72 −0.23 −0.64 −0.41 −0.67 0.17 −0.12 −0.72 −0.81 *

Yellow spot 0.38 0.75 0.55 0.81 * 0.75 −0.46 0.06 0.93 * 0.55 −0.64 0.12 0.75 0.41

Septoria −0.09 −0.09 −0.03 −0.31 −0.09 0.26 0.26 −0.43 −0.03 0.09 −0.09 −0.09 0.37

Yellow rust −0.52 −0.76 −0.52 −0.88 * −0.76 0.21 −0.21 −0.88 * −0.52 0.27 −0.27 −0.76 −0.21

Brown rust 0.1 0.51 0.34 0.68 0.51 −0.78 −0.3 0.85 * 0.34 −0.54 0.34 0.51 0.17

Generalized
categories −0.37 −0.14 −0.09 −0.09 −0.14 −0.66 −0.49 0.03 −0.09 −0.14 0.37 −0.14 0.09

Notes: *—statistical significance of data correlation is confirmed.

A comparative post-hoc analysis showed that crops of the Bezostaya 100 variety were
well differentiated by the degree of development of powdery mildew, tan spot and septoria
into groups with indicators of 0–1 and 2–10% in the spectral channels of the visible and
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near-infrared ranges (Appendix A, Table A3). At the same time, there was a tendency for
SBC values to increase with the intensification of disease manifestation.

The pathogenic background of crops of the Svarog variety during three years of
research was characterized by a positive interaction between the development of powdery
mildew, tan spot and septoria, which negatively correlated with yellow rust manifestation.
A high level of statistically significant and negatively directed correlation of variable SBC
values of most spectral channels with symptoms of yellow rust development was revealed
for crops of the Svarog variety (Table 4). A positive, statistically significant correlation of
variable SBC values was revealed for powdery mildew in the 700 and 2035 nm spectral
channels, for tan spot in the 845, 920 and 1085 nm spectral channels, and for septoria in the
920 nm spectral channel.

A comparative post-hoc analysis showed that the clearest and most pronounced
division of crops was also revealed when grouping variable SBC values corresponding to
the degree of intensity of yellow rust (Appendix A, Table A4). Crops of the Svarog variety
were clearly divided according to the degree of development of yellow rust with a gradation
of 0, 1–2 and 6%. At the same time, crops with a lower level of pathogen development
were characterized by the highest average values. That is, the opposite trend was observed
for powdery mildew, tan spot and septoria on crops of the Bezostaya 100 variety. Only
groups with maximum pathogen development rates were identified when dividing crops
by degree of intensity of powdery mildew, tan spot and septoria.

For the pathogenic background of the Grom variety, a positive and statistically con-
firmed relationship between the development of tan spot and brown rust was revealed,
which in turn was negatively correlated with yellow rust. For indicators of brown spot and
yellow rust on crops of the Grom variety, a characteristic was determined—a significant
dependence at wavelengths of 700 and 1445 nm (Table 4). A statistically significant high
correlation for leaf rust appeared only at a wavelength of 1445 nm, and for powdery mildew
in the 2345 nm spectral channel.

A comparative post-hoc analysis showed that the differentiation of crops of the Grom
variety was ambiguous according to the development degree of pathogens and the intensity
of powdery mildew, tan spot and septoria (Appendix A, Table A5). Groups of crops with
maximum pathogen development rates of 2–3% were identified for brown and yellow rust.

A cumulative comparison of the spectral characteristics of all three varieties over
the entire period of research revealed a statistically significant relationship between only
two pathogens: tan spot and yellow rust. A statistically significant correlation with the
variable values of the visible and mid-infrared spectral channels was established for these
two pathogens (Appendix A, Table A6).

3. Discussion

3.1. Assessment of the Mutual Influence of Variety Factors and Disease Development on the
Spectral Characteristics of Winter Wheat Crops

Using two-factor analysis of variance, the influence of varietal factors and disease de-
velopment on the spectral characteristics of the studied winter wheat crops was established
(Table 1). In 2021, only a separate influence of crop varietal characteristics and disease
development indicators was observed. In 2022 and 2023, an interaction between varietal
factors and disease development was observed. This interaction of factors manifested
itself in the form of differences in the spectral characteristics of the infected and control
crops of each individual variety in the spectral channels of the visible and mid-infrared
spectral ranges. In the near-infrared range, there was no interaction be-tween variety
factors and disease development. Selected visible spectral channels (490, 520, 550, 575,
660 and 700 nm) are sensitive to pigment content (chlorophyll, carotenoids), phytomass,
canopy structure, moisture content and plant stress. The mid-infrared range contains areas
of water absorption, as well as areas sensitive to plant stress, lignin and starch content [12].
Thus, it can be assumed that the interaction of variety factors and disease development
was a stress response of the host plant. This was accompanied by changes in the pigment
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composition of plants, disruption of the plant canopy structure, as well as disruption of
water and temperature conditions [14,15].

A comparative post-hoc (Duncan) analysis showed (Table 2) that over three years
of research, despite the difference in intensity and composition of pathogens, a clear and
pronounced separation of control and infected crops was observed.

It was revealed that in the 575, 660, 700 and 2035 nm spectral channels, these differ-
ences appeared annually, regardless of the conditions and the specific year of research.
At the same time, the manifestation of variability at other wavelengths of the spectral
range depended on the composition and disease intensity in the pathogenic background.
It is known that the 575 nm green spectral channel is sensitive to the content of plant
pigments [11]. The 660 nm wavelength of the red part of the spectrum is associated with
chlorophyll absorption and depends on many factors (phytomass, crop, canopy structure,
nitrogen content, moisture content and stress) [12]. The 700 nm range is also associated
with chlorophyll absorption and is most sensitive to changes in overall plant health. The
light wavelength of 2035 nm corresponds to the maximum absorption of water in the
mid-infrared region of the spectrum [13,14].

3.2. Comparison of the Spectral Characteristics of Crops of the Studied Varieties across the Time
Period of Each Individual Year of Research

When considering the spectral properties of the studied winter wheat crops across the
time period of each individual year, the following patterns can be identified:

- The nature of the influence of the pathogenic background on the spectral character-
istics of winter wheat crops was determined by the complex interaction of disease
development in a specific year of research. For instance, in 2021, the differences in the
spectral characteristics of the control and infected backgrounds were determined by
mutual manifestations of yellow and brown rusts in the latter. In 2022, the greatest
impact was exerted by a negative correlation between the development of yellow rust
and septoria, and in 2023 powdery mildew and brown rust;

- A clear and pronounced influence of varietal characteristics on the spectral properties
of winter wheat was observed over three years. In most cases, this manifested itself
as an immunological reaction of a particular variety to the influence of pathogen
development. Different cultivars with similar pathogen indicators often exhibited
strong differences in spectral response;

- A regular and clear division of the spectral properties of winter wheat crops according
to the intensity of the disease was observed only at a level of pathogen development
of more than 5%. Moreover, this gradation was clearest in the spectral channels
of the near-infrared range and at a wavelength of 720 nm. The most pronounced
differentiation of crops according to generalized groups appeared in the 2345 nm
spectral channel.

However, upon closer examination, it was possible to identify distinctions in these
categories based on combinations of differences in SBC values in various spectral channels.

- When the pathogenic background was below 5%, as in 2022 and 2023, the reflectivity
of crops was largely determined by the influence of the variety factor or the interaction
of the variety factor and disease intensity;

- Tan spot showed no significant correlations with SBC variables, even at its highest
level in 2023. In all likelihood, this pathogen is the most variety-specific, i.e., it is
determined most by the immunological reaction of a particular variety;

- A high level of correlation with variable SBC values of the 1445 nm spectral channel
was revealed for leaf rust in 2021 and 2023.

3.3. Comparison of the Spectral Characteristics of Each Individual Variety over Three Years
of Research

A comparison of the spectral properties of each individual variety over three years of
research revealed the following patterns:
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- A fairly clear correlation and differentiation of spectral characteristics according to
the development degree of individual pathogens was revealed for crops of each
individual variety;

- The spectral properties of each individual variety were determined by the different
direction of the correlation relationship of disease intensity indicators in the general
pathogenic background. Moreover, the nature of this relationship was different for
the compared varieties, even with similar indicators of external disease manifestation.
For instance, a pronounced and statistically significant correlation of external signs
of powdery mildew manifestation with variable values of SBC spectral channels of
the visible and near-infrared ranges appeared for the Bezostaya 100 variety. Such a
relationship was not found in crops of the Svarog variety, though they were character-
ized by the highest rates of powdery mildew intensity. But a high level of statistically
significant and negatively directed correlation of variable SBC values of most spectral
channels with symptoms of yellow rust development was revealed. Moreover, the
gradation of yellow rust development indicators in the Bezostaya 100 and Svarog
varieties was almost identical;

- The clearest and most consistent differentiation of the spectral characteristics of winter
wheat varieties was manifested by pathogen intensity. Thus, crops of the Bezostaya
100 variety were well differentiated by the intensity of powdery mildew, tan spot and
septoria into groups with indicators of 0–1 and 2–10%. Crops of the Svarog variety
were clearly divided according to the intensity of yellow rust with a gradation of 0, 1–2
and 6%. Crops with minimum and maximum indicators were differentiated according
to general categories of disease intensity.

3.4. Prospects for Further Development of Research

The international scientific literature presents works aimed at identifying the develop-
ment of individual pathogens in different wheat varieties [18–34]. These works proved the
possibility of diagnosing diseases using hyperspectral analysis methods. However, results
obtained even within the study of a single disease vary widely. This difference in results is
potentially explained by the biochemical characteristics of different wheat varieties, climate,
as well as a complex combination of the influence of abiotic and biotic stress factors [13–15].
Research on varietal and biochemical differences forms only a very small part of all studies
devoted to spectral studies of vegetation. In addition, there is no reference methodology or
database on which the authors of the works could rely in their research.

A feature of these studies is a detailed study of the nature of the interaction of varietal
factors and complex development of the main economically significant diseases on the
pathogenic background of crops of three varieties of winter wheat in 2021, 2022 and 2023.

The research results allow us to conclude that it is necessary to accumulate and
systematize data over a significant period of time in relation to specific wheat varieties. A
solution to this problem may be to create a model based on long-term data. Such a model
should contain parameters of the mutual influence of pathogens on a specific variety, taking
into account the limiting weather factors of a particular year. It is also possible to create a
generalized model that allows extrapolation of data for many varieties based on studying a
group of reference varieties [32,33]. In addition, the importance of studying biochemical
changes in plant tissues under the influence of pathogens should be recognized [35,36].

4. Materials and Methods

4.1. Organization of Test Plots and Experimental Design

We conducted the research in the experimental fields of the Federal Research Center of
Biological Plant Protection (FRCBPP), Krasnodar (45◦ 2.413′ 0′′ N, 38◦ 58.5598′ 0′′ E, 29 m
above sea level) in 2021–2023 (Figure 2). The Köppen climate classification scheme assigns
the climate of the study area as transitional from temperate continental to subtropical
(Cfa) [37]. This region is characterized by long, hot summers and mild to moderately warm
winters. Transitional seasons are poorly expressed. The average annual precipitation is
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700–750 mm. The average annual air temperature is +13.4 ◦C and the average annual air
humidity is 71%. The soil cover of the territory is represented by leached chernozems with
low humus [38].

 

Figure 2. Geographical location of the research site.

The studied winter wheat crops were represented by three varieties bred by the
National Grain Center named after. P. P. Lukyanenko (Krasnodar, Russia), which are sus-
ceptible to phytopathogens: Bezostaya 100, Svarog and Grom. Each plot was divided into
two zones: 1—disease-protected by fungicides (clean background), 2—with an infectious
background of pathogens. Artificial inoculation methods were used to develop brown and
yellow rusts in the experimental area [39]. Inoculation of plants was carried out in the
first ten days of April (HS phase 30–32). A mixture of urediniospores and talc in a ratio of
1:100 at a load of 5 mg spores/m2 was used as an inoculating agent. The development of
pathogens causing yellow spot, septoria and powdery mildew occurred against a natural
infectious background. The creation of a control background (without diseases) was carried
out by 2-fold treatment with the systemic fungicide Sokol, KS: 1st treatment on 25–31 April
(flag-leaf phase), 2 May. 10–15 (phase “beginning of flowering” GS 61).

The research methodology was based on a comparative analysis of high-precision
ground-based spectrometric measurements with the results of field phytopathological
studies (Figure 3).
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Figure 3. Research methodology diagram.

4.2. Field Experiments

The main period for conducting research was the beginning of the intensive appear-
ance of leaf-stem diseases. This period fell in the second ten days of May (phase GS 61
“beginning of flowering”). This time period was the leading link for creating a predictive
model of pathogen development since it allows for a comparative analysis of quantitative
indicators of pathogen development. This analysis took into account the development of
the pathogen from primary symptoms (after the incubation period) to intensive manifes-
tation, taking into account the influence of varietal factors and weather conditions of a
particular year.

The degree of development of the disease was assessed using the method of visual
calculation of the ratio of the proportion of the affected area of the plant leaf blade to its
total area (Figure 4). Visual observations of the development of winter wheat diseases were
carried out while moving along the diagonal of each experimental plot with an area of
10 m2. A total of 30 plants were selected for analysis. After this, for each tier (first, second
leaf, etc.) a percentage assessment of leaf damage was given according to international
scales. The degree of damage from rust diseases was assessed using the Peterson scale [40];
the degree of pyrenophorosis damage was assessed using the modified Saari–Prescott
scale [41]; the degree of damage by powdery mildew and septoria was assessed using a
special scale developed by CIMMYT [42].

Analyzing the test areas, the average degree of disease development was calculated
using the following Formula (1):

R =
1
n ∑n

i=1 ri (1)

where R is the average degree of disease development, %; r—degree of the disease develop-
ment of an individual plant, %; n—total number of registered plants, pcs.
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Areas with crops of the studied varieties were divided into general categories in
accordance with the average indicators of pathogen development (Table 5).

 

Figure 4. Symptoms and degree of development of diseases. (a) Brown rust—10%; (b) Tan spot—25%;
(c) Septoria—40%; (d) Brown rust—15%; (e) Brown rust—25%, Tan spot—5%; (f) Brown rust—10%,
Tan spot—5%; (g) Brown rust—30%, Tan spot—10%.

4.3. Ground-Based Spectrometric Measurements

Ground-based spectrometry was carried out remotely at a height of 1.2–1.4 m from the
earth’s surface in the range of electromagnetic radiation from 350 to 2500 nm, with a spectral
resolution of 1–10 nm. For this purpose, the ASD FieldSpec 3 Hi-Res spectroradiometer
(Boulder, CO, USA) was used [43], which is designed for field remote sensing of the
environment. The device has a non-removable fiber optic cable with factory calibration,
thanks to which a high signal-to-noise ratio is achieved, which in turn ensures high accuracy
of results for better identification and analysis of materials. To ensure comparability of the
obtained data, measurements were carried out on days with clear sunny weather with a
minimum amount of clouds. The sun’s altitude was more than 35◦.

Such analysis conditions were chosen due to the fact that, under such circumstances,
lighting conditions change significantly less. This period of time and weather conditions
reduce the possible error associated with the tilt of the sun. To analyze the spectral prop-
erties of the vegetation cover, two series of measurements of five repetitions were carried
out. In the intervals between measurements, the panel reflecting light was calibrated. This
decision was made due to the need to reduce the influence of uneven lighting. Vegetation
cover was measured along the diagonal of the experimental plot, which corresponded to
the methodology for conducting field surveys of plants for the presence of pathogens.

The results of ground-based spectrometric measurements are a set of spectral bright-
ness coefficient (SBC) values. These values indicate the degree to which sunlight was
reflected from plant surfaces at each wavelength.
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Table 5. Average indicators of disease development in winter wheat crops of varieties Bezostaya
100, Svarog and Grom at the beginning of intensive manifestation of all leaf diseases in the GS 60–70
“blooming” phase in the growing seasons 2021–2023.

Variety
Experience

Option
Powdery
Mildew

Septoria Yellow Tan Yellow Rust Brown Rust
General

Categories

2021

Bezostaya 100

Control

0.01 0.8 0 0 0 1

Svarog 0.01 1 0 0 0 1

Grom 0.01 2.1 0.01 0 0 2

Bezostaya 100

Infected

0.01 1.9 0 0.3 0.3 4

Svarog 0.01 2.3 1.9 0.2 0.05 3

Grom 0 4.1 0.3 0.2 0 5

2022

Bezostaya 100

Control

0.8 0.26 - 1.48 - 1

Svarog 4.02 1.87 - 2.21 - 3

Grom 2.82 2.06 - 1.06 - 2

Bezostaya 100

Infected

2 0.94 - 7.72 - 5

Svarog 4.42 0.87 - 6.41 - 5

Grom 1.76 4.2 - 0.78 - 4

2023

Bezostaya 100

Control

3.43 1.23 1.87 - 0 2

Svarog 10.23 3.03 0.77 - 0 3

Grom 2.6 0 2.03 - 0.77 1

Bezostaya 100

Infected

12.93 3.77 10.03 - 0 4

Svarog 28.17 3.35 6.03 - 0 6

Grom 0 2.2 18.37 - 15.9 5

4.4. Data Processing

To identify specific spectral ranges indicating the manifestation of pathogenic changes,
an analysis of changes in the morphology of reflective properties according to their actual
state during field experiments was carried out.

Pre-processing of the analysis results and graphical visualization were carried out
using the OriginPro 8.5.1 software package.

The pathogenic effect on the spectral properties of winter wheat plants in different
wavelength ranges was assessed using two-way analysis of variance. To analyze the
measurement results, the following wavelengths were selected: 490, 520, 550, 575, 660,
700, 720, 845, 1445, 1675 and 2345 nm. These spectral ranges are closely related to the
biophysical characteristics of plants and are widely used in such studies [10]. Statistical
processing of data from selected spectral channels was carried out with the calculation of
the average value and standard deviation.

As a result of the analysis, the BCS values were grouped into categories corresponding
to different degrees of the disease. The grouping of SBC values was carried out according to
various parameters, including plant variety, damage from certain diseases, or compliance
with three selected plant backgrounds. Correlation analysis of the relationship between
the development of the disease and the number of detected pathogen spores was carried
out on the basis of nonparametric statistical methods using Spearman’s correlation at a
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high significance level of 95%. All methods of statistical analysis were performed in the
Statistica 2010 program.

5. Conclusions

A regular and clear distinction in the spectral characteristics of winter wheat according
to disease intensity was observed only when the pathogen development level exceeded
5%. Moreover, this gradation was clearest in the spectral channels of the near-infrared
range and at a wavelength of 720 nm. During three years of research, a strong influence
of varietal characteristics on the spectral properties of winter wheat crops was discovered.
In most cases, this manifested itself as an immunological reaction of a particular variety
to pathogens.

The features of the pathogenic influence on the spectral properties of winter wheat
crops was characterized by a complex interaction between the manifestations of individual
diseases in a specific year of research. The reflectivity of crops was largely determined
by the influence of the variety factor or the interaction of the variety factor and disease
intensity when the pathogenic background was below 5%, as in 2022 and 2023.
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Appendix A

Table A1. Results of a posteriori analysis of the spectral characteristics of winter wheat crops with
different gradations of disease development according to the Duncan criterion in the growing season
of 2022 research (GS 60–70 “flowering”).

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Septoria

0.5 0.018 ±
0.001 ab

0.043 ±
0.003 a

0.018 ±
0.002 a

0.128 ±
0.006 a

0.460 ±
0.020 a

0.053 ±
0.005 bc

0.141 ±
0.012 ab

0.039 ±
0.004 bc

1 0.020 ±
0.001 b

0.051 ±
0.002 b

0.023 ±
0.001 b

0.147 ±
0.004 b

0.439 ±
0.014 a

0.060 ±
0.004 c

0.153 ±
0.008 b

0.042 ±
0.003 b

1.5 0.016 ±
0.001 a

0.042 ±
0.003 a

0.016 ±
0.002 a

0.127 ±
0.006 a

0.419 ±
0.020 a

0.037 ±
0.005 a

0.112 ±
0.012 a

0.025 ±
0.004 a

2 0.021 ±
0.001 b

0.043 ±
0.003 a

0.021 ±
0.002 ab

0.122 ±
0.006 a

0.463 ±
0.020 a

0.043 ±
0.005 ab

0.126 ±
0.012 ba

0.030 ±
0.004 ab

4 0.017 ±
0.001 ab

0.038 ±
0.003 a

0.017 ±
0.002 a

0.113 ±
0.006 a

0.422 ±
0.020 a

0.039 ±
0.005 ab

0.116 ±
0.012 a

0.026 ±
0.004 a
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Table A1. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Yellow rust

1 0.019 ±
0.001 ab

0.041 ±
0.002 a

0.019 ±
0.001 a

0.118 ±
0.004 a

0.442 ±
0.015 a

0.041 ±
0.004 ab

0.121 ±
0.008 a

0.028 ±
0.003 a

1.5 0.018 ±
0.001 ab

0.043 ±
0.003 a

0.018 ±
0.002 ab

0.128 ±
0.006 ab

0.460 ±
0.021 a

0.053 ±
0.005 bc

0.141 ±
0.012 ab

0.039 ±
0.004 b

2 0.016 ±
0.001 a

0.042 ±
0.003 a

0.016 ±
0.002 a

0.127 ±
0.006 ab

0.419 ±
0.021 a

0.037 ±
0.005 a

0.112 ±
0.012 a

0.025 ±
0.004 a

7 0.020 ±
0.001 b

0.051 ±
0.002 b

0.023 ±
0.001 b

0.147 ±
0.004 b

0.439 ±
0.015 a

0.060 ±
0.004 c

0.153 ±
0.008 b

0.042 ±
0.003 b

Generalized categories

1 0.018 ±
0.002 ab

0.043 ±
0.003 a

0.018 ±
0.002 ab

0.128 ±
0.005 a

0.460 ±
0.014 a

0.053 ±
0.004 bc

0.141 ±
0.008 ab

0.039 ±
0.003 bc

2 0.017 ±
0.001 ab

0.038 ±
0.002 a

0.017 ±
0.001 ab

0.113 ±
0.003 a

0.422 ±
0.013 a

0.039 ±
0.001 ab

0.116 ±
0.004 a

0.026 ±
0.001 a

3 0.021 ±
0.001 b

0.043 ±
0.001 a

0.021 ±
0.001 bc

0.122 ±
0.005 a

0.463 ±
0.016 a

0.043 ±
0.002 ab

0.126 ±
0.006 ab

0.030 ±
0.002 ab

4 0.016 ±
0.001 a

0.042 ±
0.002 a

0.016 ±
0.001 a

0.127 ±
0.005 a

0.419 ±
0.022 a

0.037 ±
0.002 a

0.112 ±
0.006 a

0.025 ±
0.001 a

5 0.020 ±
0.001 b

0.051 ±
0.002 b

0.023 ±
0.001 b

0.147 ±
0.006 b

0.439 ±
0.018 a

0.060 ±
0.006 c

0.153 ±
0.013 b

0.042 ±
0.005 c

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In each column, the average values with the same letter do not differ significantly.

Table A2. Results of a posteriori analysis of the spectral characteristics of winter wheat crops with
different gradations of disease development according to the Duncan criterion in the growing season
of 2023 research (GS 60–70 “flowering”).

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Powdery mildew

0 0.023 ±
0.001 b

0.056 ±
0.002 b

0.028 ±
0.001 bc

0.156 ±
0.005 b

0.406 ±
0.011 a

0.076 ±
0.005 a

0.155 ±
0.004 b

0.040 ±
0.005 ab

3 0.020 ±
0.000 a

0.046 ±
0.001 a

0.021 ±
0.000 a

0.128 ±
0.002 a

0.383 ±
0.008 a

0.074 ±
0.014 a

0.123 ±
0.003 a

0.020 ±
0.010 a

4 0.024 ±
0.001 b

0.063 ±
0.003 c

0.030 ±
0.002 c

0.176 ±
0.009 cd

0.440 ±
0.018 b

0.059 ±
0.003 a

0.153 ±
0.010 b

0.036 ±
0.003 ab

10 0.022 ±
0.001 ab

0.057 ±
0.001 b

0.023 ±
0.001 a

0.164 ±
0.003 bc

0.500 ±
0.009 c

0.067 ±
0.005 a

0.157 ±
0.004 b

0.032 ±
0.004 ab

12 0.024 ±
0.000 b

0.057 ±
0.000 b

0.027 ±
0.000 b

0.164 ±
0.001 bc

0.477 ±
0.002 c

0.056 ±
0.001 a

0.150 ±
0.002 b

0.033 ±
0.001 ab

30 0.027 ±
0.001 c

0.066 ±
0.002 c

0.029 ±
0.001 bc

0.180 ±
0.004 d

0.536 ±
0.015 d

0.069 ±
0.006 a

0.178 ±
0.006 c

0.045 ±
0.006 b
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Table A2. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Septoria

0 0.020 ±
0.000 a

0.046 ±
0.001 a

0.021 ±
0.000 a

0.128 ±
0.002 a

0.383 ±
0.008 a

0.074 ±
0.014 a

0.123 ±
0.003 a

0.020 ±
0.010 a

2 0.024 ±
0.001 c

0.063 ±
0.003 c

0.030 ±
0.002 c

0.176 ±
0.009 c

0.440 ±
0.018 b

0.059 ±
0.003 a

0.153 ±
0.010 b

0.036 ±
0.003 b

3 0.022 ±
0.000 bc

0.056 ±
0.001 b

0.025 ±
0.001 b

0.160 ±
0.003 b

0.453 ±
0.010 b

0.072 ±
0.004 a

0.156 ±
0.003 b

0.036 ±
0.003 b

4 0.025 ±
0.000 c

0.062 ±
0.001 c

0.028 ±
0.000 bc

0.172 ±
0.003 b

0.507 ±
0.009 c

0.062 ±
0.003 a

0.164 ±
0.004 b

0.039 ±
0.003 b

Generalized categories

1 0.020 ±
0.000 a

0.046 ±
0.001 a

0.021 ±
0.000 a

0.128 ±
0.002 a

0.383 ±
0.008 a

0.074 ±
0.014 a

0.123 ±
0.003 a

0.020 ±
0.010 a

2 0.024 ±
0.001 b

0.063 ±
0.003 c

0.030 ±
0.002 c

0.176 ±
0.009 cd

0.440 ±
0.018 b

0.059 ±
0.003 a

0.153 ±
0.010 b

0.036 ±
0.003 ab

3 0.022 ±
0.001 ab

0.057 ±
0.001 b

0.023 ±
0.001 a

0.164 ±
0.003 bc

0.500 ±
0.009 c

0.067 ±
0.005 a

0.157 ±
0.004 b

0.032 ±
0.004 ab

4 0.024 ±
0.000 b

0.057 ±
0.000 b

0.027 ±
0.000 b

0.164 ±
0.001 bc

0.477 ±
0.002 c

0.056 ±
0.001 a

0.150 ±
0.002 b

0.033 ±
0.001 ab

5 0.023 ±
0.001 b

0.056 ±
0.002 b

0.028 ±
0.001 bc

0.156 ±
0.005 b

0.406 ±
0.011 a

0.076 ±
0.005 a

0.155 ±
0.004 b

0.040 ±
0.005 b

6 0.027 ±
0.001 c

0.066 ±
0.002 c

0.029 ±
0.001 bc

0.180 ±
0.004 d

0.536 ±
0.015 d

0.069 ±
0.006 a

0.178 ±
0.006 c

0.045 ±
0.006 b

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In each column, the average values with the same letter do not differ significantly.

Table A3. Results of a posteriori analysis of the spectral characteristics of winter wheat crops of the
Bezostaya 100 variety with different gradations of powdery mildew development according to the
Duncan criterion (GS 60–70 “flowering”).

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Powdery mildew

0 0.017 ±
0.001 a

0.041 ±
0.002 a

0.019 ±
0.001 a

0.123 ±
0.005 a

0.411 ±
0.020 a

0.048 ±
0.007 a

0.113 ±
0.007 a

0.040 ±
0.005 a

1 0.018 ±
0.002 a

0.043 ±
0.003 a

0.018 ±
0.002 a

0.128 ±
0.005 a

0.460 ±
0.014 ab

0.053 ±
0.004 a

0.141 ±
0.008 b

0.020 ±
0.010 bc

2 0.022 ±
0.001 b

0.053 ±
0.002 b

0.025 ±
0.001 b

0.153 ±
0.003 b

0.466 ±
0.018 ab

0.072 ±
0.003 b

0.179 ±
0.006 c

0.036 ±
0.003 c

4 0.024 ±
0.001 b

0.063 ±
0.003 c

0.030 ±
0.002 c

0.176 ±
0.009 b

0.440 ±
0.018 ab

0.059 ±
0.003 bc

0.153 ±
0.010 bc

0.032 ±
0.004 bc

12 0.024 ±
0.000 b

0.057 ±
0.000 bc

0.027 ±
0.000 bc

0.164 ±
0.001 b

0.477 ±
0.002 b

0.056 ±
0.001 a

0.150 ±
0.002 b

0.033 ±
0.001 b
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Table A3. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Yellow spot

0 0.018 ±
0.001 a

0.027 ±
0.031 a

0.020 ±
0.001 a

0.130 ±
0.004 a

0.432 ±
0.013 a

0.054 ±
0.004 a

0.133 ±
0.007 a

0.028 ±
0.006 a

2 0.024 ±
0.001 b

0.037 ±
0.046 b

0.030 ±
0.002 c

0.176 ±
0.009 b

0.440 ±
0.018 ab

0.059 ±
0.003 a

0.153 ±
0.010 a

0.036 ±
0.003 a

10 0.024 ±
0.000 b

0.038 ±
0.039 b

0.027 ±
0.000 b

0.164 ±
0.001 b

0.477 ±
0.002 b

0.056 ±
0.001 a

0.150 ±
0.002 a

0.033 ±
0.001 a

Septoria

0 0.018 ±
0.002 a

0.043 ±
0.003 a

0.018 ±
0.002 a

0.113 ±
0.143 a

0.460 ±
0.014 ab

0.053 ±
0.004 a

0.141 ±
0.008 a

0.039 ±
0.003 a

1 0.020 ±
0.001 ab

0.048 ±
0.002 ab

0.022 ±
0.001 ab

0.133 ±
0.151 ab

0.459 ±
0.015 ab

0.063 ±
0.006 a

0.149 ±
0.009 a

0.033 ±
0.009 a

2 0.022 ±
0.001 ab

0.056 ±
0.003 b

0.027 ±
0.002 b

0.141 ±
0.177 b

0.421 ±
0.016 a

0.054 ±
0.004 a

0.139 ±
0.009 a

0.030 ±
0.004 a

4 0.024 ±
0.000 b

0.057 ±
0.000 b

0.027 ±
0.000 b

0.162 ±
0.166 b

0.477 ±
0.002 b

0.056 ±
0.001 a

0.150 ±
0.002 a

0.033 ±
0.001 a

Generalized categories

1 0.019 ±
0.001 ab

0.045 ±
0.002 ab

0.021 ±
0.001 ab

0.134 ±
0.005 ab

0.454 ±
0.022 b

0.057 ±
0.009 bc

0.128 ±
0.008 b

0.020 ±
0.013 ab

2 0.015 ±
0.001 a

0.038 ±
0.002 a

0.017 ±
0.001 a

0.111 ±
0.005 a

0.367 ±
0.024 a

0.039 ±
0.010 a

0.098 ±
0.008 a

0.012 ±
0.010 a

3 0.022 ±
0.001 bc

0.053 ±
0.002 bc

0.025 ±
0.001 bc

0.153 ±
0.003 bc

0.466 ±
0.018 b

0.072 ±
0.003 c

0.179 ±
0.006 c

0.051 ±
0.003 d

4 0.018 ±
0.002 a

0.043 ±
0.003 a

0.018 ±
0.002 a

0.128 ±
0.005 ab

0.460 ±
0.014 b

0.053 ±
0.004 ab

0.141 ±
0.008 b

0.039 ±
0.003 cd

5 0.024 ±
0.001 c

0.063 ±
0.003 d

0.030 ±
0.002 d

0.176 ±
0.009 c

0.440 ±
0.018 b

0.059 ±
0.003 bc

0.153 ±
0.010 bc

0.036 ±
0.003 bcd

6 0.024 ±
0.000 c

0.057 ±
0.000 cd

0.027 ±
0.000 d

0.164 ±
0.001 c

0.477 ±
0.002 b

0.056 ±
0.001 b

0.150 ±
0.002 bc

0.033 ±
0.001 bc

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In each column, the average values with the same letter do not differ significantly.

Table A4. Results of a posteriori analysis of the spectral characteristics of winter wheat crops of the
Svarog variety with different gradations of powdery mildew development according to the Duncan
criterion (GS 60–70 “flowering”).

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Yellow rust

0 0.024 ±
0.001 c

0.060 ±
0.001 b

0.025 ±
0.001 c

0.169 ±
0.003 c

0.514 ±
0.009 b

0.068 ±
0.004 b

0.164 ±
0.004 b

0.039 ±
0.004 a

1 0.021 ±
0.001 bc

0.051 ±
0.002 ab

0.021 ±
0.001 bc

0.150 ±
0.006 bc

0.506 ±
0.017 b

0.041 ±
0.008 ab

0.140 ±
0.007 ab

0.034 ±
0.009 a

2 0.019 ±
0.002 ab

0.049 ±
0.005 a

0.021 ±
0.002 ab

0.140 ±
0.011 ab

0.412 ±
0.029 a

0.047 ±
0.008 ab

0.127 ±
0.018 a

0.033 ±
0.007 a

6 0.016 ±
0.001 a

0.042 ±
0.002 a

0.016 ±
0.001 a

0.127 ±
0.005 a

0.419 ±
0.022 a

0.037 ±
0.002 a

0.112 ±
0.006 a

0.025 ±
0.001 a
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Table A4. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Generalized categories

1 0.021 ±
0.001 b

0.052 ±
0.003 bc

0.023 ±
0.001 b

0.152 ±
0.008 bc

0.494 ±
0.030 b

0.066 ±
0.015 b

0.146 ±
0.011 bc

0.038 ±
0.011 a

2 0.021 ±
0.001 b

0.051 ±
0.002 bc

0.021 ±
0.001 b

0.150 ±
0.006 bc

0.506 ±
0.017 b

0.041 ±
0.008 ab

0.140 ±
0.007 bc

0.034 ±
0.009 a

3 0.019 ±
0.002 ab

0.049 ±
0.005 ab

0.021 ±
0.002 b

0.140 ±
0.011 ab

0.412 ±
0.029 a

0.047 ±
0.008 ab

0.127 ±
0.018 ab

0.033 ±
0.007 a

4 0.016 ±
0.001 a

0.042 ±
0.002 a

0.016 ±
0.001 a

0.127 ±
0.005 a

0.419 ±
0.022 a

0.037 ±
0.002 a

0.112 ±
0.006 a

0.025 ±
0.001 a

5 0.022 ±
0.001 b

0.057 ±
0.001 c

0.023 ±
0.001 b

0.164 ±
0.003 cd

0.500 ±
0.009 b

0.067 ±
0.005 b

0.157 ±
0.004 cd

0.032 ±
0.004 a

6 0.027 ±
0.001 c

0.066 ±
0.002 d

0.029 ±
0.001 c

0.180 ±
0.004 d

0.500 ±
0.009 b

0.069 ±
0.006 b

0.178 ±
0.006 d

0.045 ±
0.006 a

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In each column, the average values with the same letter do not differ significantly.

Table A5. Results of a posteriori analysis of the spectral characteristics of winter wheat crops of the
Grom variety with different gradations of powdery mildew development according to the Duncan
criterion (GS 60–70 “flowering”).

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

Yellow rust

0 0.022 ±
0.000 b

0.051 ±
0.001 b

0.025 ±
0.001 b

0.143 ±
0.003 b

0.408 ±
0.008 a

0.072 ±
0.006 a

0.141 ±
0.003 b

0.030 ±
0.005 a

2 0.022 ±
0.001 b

0.048 ±
0.002 b

0.023 ±
0.001 b

0.136 ±
0.007 b

0.472 ±
0.024 b

0.056 ±
0.005 a

0.144 ±
0.009 b

0.039 ±
0.009 a

3 0.019 ±
0.001 a

0.041 ±
0.001 a

0.019 ±
0.001 a

0.118 ±
0.003 a

0.442 ±
0.012 ab

0.041 ±
0.001 a

0.121 ±
0.004 a

0.028 ±
0.001 a

Brown rust

0 0.022 ±
0.001 ab

0.047 ±
0.002 a

0.023 ±
0.001 a

0.133 ±
0.004 a

0.464 ±
0.011 a

0.050 ±
0.003 a

0.137 ±
0.005 b

0.032 ±
0.004 a

1 0.020 ±
0.000 a

0.046 ±
0.001 a

0.021 ±
0.000 a

0.129 ±
0.002 a

0.386 ±
0.008 a

0.073 ±
0.014 ab

0.124 ±
0.003 a

0.016 ±
0.010 ab

2 0.022 ±
0.001 b

0.056 ±
0.002 b

0.027 ±
0.001 b

0.153 ±
0.005 b

0.402 ±
0.011 b

0.076 ±
0.005 b

0.152 ±
0.005 c

0.042 ±
0.005 b

Generalized categories

1 0.025 ±
0.001 c

0.054 ±
0.002 c

0.027 ±
0.001 c

0.150 ±
0.006 cd

0.487 ±
0.020 c

0.058 ±
0.007 a

0.152 ±
0.008 c

0.031 ±
0.010 a

2 0.022 ±
0.001 b

0.048 ±
0.002 b

0.023 ±
0.001 b

0.136 ±
0.007 bc

0.472 ±
0.024 c

0.056 ±
0.005 a

0.144 ±
0.009 bc

0.039 ±
0.009 a

3 0.017 ±
0.001 a

0.038 ±
0.002 a

0.017 ±
0.001 a

0.113 ±
0.003 a

0.422 ±
0.013 ab

0.039 ±
0.001 a

0.116 ±
0.004 a

0.026 ±
0.001 a
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Table A5. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2345

4 0.021 ±
0.001 b

0.043 ±
0.001 b

0.021 ±
0.001 b

0.122 ±
0.005 ab

0.463 ±
0.016 bc

0.043 ±
0.002 a

0.126 ±
0.006 ab

0.030 ±
0.002 a

5 0.020 ±
0.000 ab

0.046 ±
0.001 ab

0.021 ±
0.000 b

0.128 ±
0.002 ab

0.383 ±
0.008 a

0.074 ±
0.014 a

0.123 ±
0.003 a

0.020 ±
0.010 a

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In each column, the average values with the same letter do not differ significantly.

Table A6. Correlation between the degree of disease development and variable spectral brightness
coefficient values of winter wheat crops of all varieties in 2021–2023.

Spectral Channels

Pathogen

Powdery
Mildew

Tan Spot Septoria Yellow Rust Brown Rust

490 0.14 0.66 * 0.35 −0.56 * −0.17

520 0.22 0.74 * 0.25 −0.66 * −0.07

550 0.32 0.70 * 0.24 −0.59 * −0.13

575 0.34 0.68 * 0.22 −0.52 * −0.12

660 0.09 0.69 * 0.30 −0.56 * −0.07

700 0.32 0.68 * 0.15 −0.53 * −0.06

720 0.31 0.63 * 0.21 −0.53 * −0.18

845 0.15 0.23 0.42 −0.28 −0.44

920 0.19 0.22 0.40 −0.28 −0.46

1085 0.23 0.31 0.40 −0.27 −0.44

1135 0.19 0.28 0.33 −0.22 −0.46

1215 0.22 0.44 0.35 −0.39 −0.38

1245 0.22 0.44 0.35 −0.39 −0.38

1285 0.23 0.44 0.32 −0.40 −0.37

1445 −0.02 0.52 * −0.18 −0.56 * 0.18

1675 0.13 0.48 * 0.19 −0.39 −0.22

1725 0.12 0.50 * 0.21 −0.40 −0.20

2005 0.06 −0.09 −0.07 0.16 −0.33

2035 0.20 0.31 −0.05 −0.20 −0.21

2295 −0.27 0.44 0.03 −0.29 0.00

2345 −0.03 0.27 0.11 0.04 −0.18

Notes: *—statistical significance of data correlation is confirmed.
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Abstract: The occurrence of maize diseases is frequent but challenging to manage. Traditional
identification methods have low accuracy and complex model structures with numerous parameters,
making them difficult to implement on mobile devices. To address these challenges, this paper
proposes a corn leaf disease recognition model SNMPF based on convolutional neural network
ShuffleNetV2. In the down-sampling module of the ShuffleNet model, the max pooling layer replaces
the deep convolutional layer to perform down-sampling. This improvement helps to extract key
features from images, reduce the overfitting of the model, and improve the model’s generalization
ability. In addition, to enhance the model’s ability to express features in complex backgrounds, the Sim
AM attention mechanism was introduced. This mechanism enables the model to adaptively adjust
focus and pay more attention to local discriminative features. The results on a maize disease image
dataset demonstrate that the SNMPF model achieves a recognition accuracy of 98.40%, representing a
4.1 percentage point improvement over the original model, while its size is only 1.56 MB. Compared
with existing convolutional neural network models such as EfficientNet, MobileViT, EfficientNetV2,
RegNet, and DenseNet, this model offers higher accuracy and a more compact size. As a result, it
can automatically detect and classify maize leaf diseases under natural field conditions, boasting
high-precision recognition capabilities. Its accurate identification results provide scientific guidance
for preventing corn leaf disease and promote the development of precision agriculture.

Keywords: precision agriculture; deep learning; plant diseases; convolutional neural network

1. Introduction

Maize (Zea mays L.), commonly referred to as corn, stands as a fundamental crop
with a rich history of sustaining human civilizations over millennia [1]. Originating
from Mesoamerica, maize has evolved into a global staple, indispensable not only for
human consumption but also for animal feed, biofuel production, and various industrial
applications. According to the Food and Agriculture Organization Statistics (FAOSTAT),
maize ranks among the most cultivated cereals globally, with a staggering production
of approximately 1.14 billion tons in 2019 [2]. In the United States, maize holds the
title of the most produced crop, occupying over 92 million acres of cultivated land [3].
This widespread cultivation underscores maize’s pivotal role in global food security and
agricultural economies. However, maize is frequently threatened by a range of pests and
diseases, including maize leaf spot disease, pathogenic spot disease, maize aphids, and
maize borers [4]. These challenges not only compromise yield quantity and quality but also
jeopardize food security. To ensure successful maize cultivation, comprehensive measures
must be taken to manage pests and diseases.

At present, traditional methods of pest and disease identification rely on manual
observation and empirical judgment, processes that are time-consuming and prone to
human error [5]. Professionals are tasked with identifying and categorizing maize leaves
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through the visual inspection or microscopic examination of features such as morphology,
color, and texture [6]. Complex backgrounds pose a significant challenge in these traditional
methods due to visual noise, similarity in color and texture between disease symptoms and
background elements, and dynamic environmental changes that can obscure or alter the
appearance of disease symptoms. Advancements in computer vision and image processing
technologies have revolutionized crop disease identification, offering more efficient and
objective avenues for disease detection through automated methods leveraging techniques
like feature extraction, image segmentation, and machine learning [7,8]. The identification
of pests and diseases using leaf images has emerged as a critical domain in plant health
detection [9].

In the 21st century, convolutional neural networks (CNNs), a deep learning tech-
nique, have achieved remarkable success in image-based recognition tasks [10]. A CNN
autonomously extracts image features and classifies images based on these features [11].
For maize leaf disease recognition, researchers commonly employ CNNs to train on maize
leaf images, discerning maize leaf disease types by learning image features [12]. Specif-
ically, CNN scrutinizes maize leaf image intricacies and characteristics, mapping them
to maize leaf disease categories, thereby achieving rapid and precise disease recognition
and classification. However, the presence of complex backgrounds in leaf images further
complicates this task. Background elements such as soil, other plants, and varying lighting
conditions can introduce noise that confounds the disease detection algorithms. Successful
models must therefore effectively differentiate between disease symptoms and irrelevant
background details. In recent years, an increasing number of researchers have embraced
CNN techniques for crop leaf disease identification, yielding significant outcomes [13]. For
instance, Hlaing et al. [14] characterized tomato images using the Johnson SB distribution
model, achieving an average accuracy of 85.1%. Junde et al. [15] integrated channel atten-
tion into the lightweight neural network model MobileNetV2, enhancing pest recognition
in complex backgrounds, with an average accuracy of 92.79%. Yun et al. [16] embedded an
improved channel and spatial attention module into ResNet, achieving an average accuracy
surpassing 95.37%. Hidayatuloh et al. [17] utilized the Keras deep learning framework
to enhance the SqueezeNet model for automatic disease detection in tomato leaf images,
boasting an average recognition accuracy of 86.92%. Agarwal et al. [18] proposed a model
for tomato leaf disease recognition and detection, achieving an average accuracy of 91.2%.
Bhujel et al. [19] devised a lightweight CNN integrating various attention modules to
bolster overall accuracy, validated on a tomato leaf disease dataset. Bari et al. [20] em-
ployed Faster R-CNN for the real-time detection of rice leaf diseases, achieving accuracies
of 98.09%, 98.85%, and 99.17%. Trivedi et al. [21] utilized Google Testbed on a dataset
containing tomato leaf samples, attaining a prediction accuracy of 98.49%. Deepalakshmi
et al. [22] developed a CNN model capable of recognizing various image types with an
average accuracy of 94.5% and a recognition cost of 3.8 s. Sibiya et al. [23] devised a tomato
leaf disease detection model based on ResNet50 using PyTorch, achieving 97% accuracy.

Leveraging CNN technology for maize leaf disease identification holds immense
significance, substantially reducing diagnosis time and enhancing diagnosis accuracy and
efficacy, thereby positively impacting maize yield and quality [24]. Therefore, this paper
proposes a CNN model (SNMPF), which is based on the improved ShuffleNetV2 and aims
to achieve the high-precision recognition of maize leaf disease. By optimizing the network
structure, the SNMPF model can improve the recognition performance of corn leaf disease.
At the same time, the lightweight design of the model enables it to be deployed on mobile
devices, facilitating its practical application in the field. It provides farmers with a new
technological means for the timely detection and prevention of diseases and pests, thereby
reducing grain yield losses.

Therefore, the focus of this paper is to achieve high accuracy in maize leaf disease recog-
nition, as well as a lightweight model. To accomplish this, the lightweight convolutional
neural network ShuffleNetV2 was utilized, and the following studies and improvements
were conducted:
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• Augmentation of data using the Augmentor tool, employing random combinations of
operations such as random rotation, vertical flip, morphological magnification, region
erasure, and brightness transformation to bolster model training generalization ability;

• Division of data into training and validation sets in a 4:1 ratio, with 3200 images
allocated for training and 800 sheets for validation;

• Comparative study of four models, ShuffleNetV2, ShuffleNetV2 + Max pooling (MP),
ShuffleNetV2 + SimAM (SAM), and ShuffleNetV2 + Max pooling (MP) + SimAM
(SAM), to assess the contributions of different improvement measures;

• Comparison between SimAM and the attention mechanisms, including SE, ECA, EMA,
and CSAM. The suitability of each attention mechanism for the task of maize leaf
disease recognition is being determined through comparison;

• Comparative evaluation with existing network models such as EfficientNet, Reg-Net,
MobileViT, EfficientNetV2, and DenseNet showcases the advantages of the SNMPF
lightweight model in maize leaf disease identification amidst complex backgrounds.

2. Materials and Methods

2.1. Data Selection and Preprocessing
2.1.1. Image Data

The target dataset of this paper’s experiment is maize leaf diseases. To address the issue
of poor robustness in the trained model caused by image data with simple backgrounds,
this paper opted to utilize maize leaf images captured under field conditions with complex
backgrounds. Data sourced from (https://osf.io/s6ru5/ (accessed on 31 July 2023)). These
images were captured through the 12-megapixel camera sensor on the iPhone 11 Pro
smartphone. These images were originally sized at 3000 × 3000 pixels and maintained a
1:1 aspect ratio [25]. During the model training process, to ensure that the input image
meets the model requirements, the resolution of the image was unified to 224 × 224. The
dataset comprised healthy maize leaves along with images depicting three common maize
leaf diseases in complex backgrounds, namely Northern Leaf Blight (NLB), Gray Leaf Spot
(GLS), and Northern Leaf Spot (NLS) of maize (Figure 1), totaling 1902 maize leaf images.
From Table 1, the original data are both limited in quantity and unevenly distributed. This
may lead to a decrease in the model’s generalization ability, subsequently affecting the
accuracy of evaluation results and hindering the model from being adequately trained. To
address these issues, this study plans to employ data augmentation techniques to balance
the quantity of samples across different categories, thereby enhancing the robustness of the
model.

Table 1. Data distribution.

Image Type
Number of Original

Image
Number of Enhanced

Image
Label

Northern Leaf Blight 497 1000 NLB
Healthy Leaves 331 1000 Health
Gray Leaf Spot 523 1000 GLS

Northern Leaf Spot 551 1000 NLS

2.1.2. Data Augmentation

To ensure a relatively balanced number of samples across various categories in the
dataset and enhance the performance and generalization ability of the model, a total of
4000 images were obtained through the random expansion and enhancement of the original
1902 images for training the research model. In this paper, the Augmentor tool in Python
was employed for data augmentation, encompassing random rotation, vertical flipping,
shape amplification, region erasure, and brightness transformation (Figure 2).
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Figure 1. Maize leaves in a complex field background.

Figure 2. Data augmentation effect image. (a) Original image; (b) vertical flip: vertical flip probability
set to 0.5; (c) random rotation: rotation probability set to 0.7, with a maximum angle of 10 degrees to
the left and to the right; (d) region erasure: erasure probability set to 0.3, with the size of the
erasure area being 0.3 of the image size; (e) brightness transformation: brightness adjustment
probability set to 0.5, with the minimum value being 0.7 times and the maximum value being 1.3 times;
(f) morphological amplification: magnification probability set to 0.3, with the minimum amplification
factor being 1.1 times and the maximum being 1.6 times.

137



Plants 2024, 13, 1621

2.2. Construction of Identification Model of Maize Leaf Disease
2.2.1. ShufflenetV2

ShuffleNetV2, a lightweight convolutional neural network model proposed by
MegVII [26], presents several advantages over traditional neural network models, includ-
ing its lightweight, flexible, and highly efficient nature. The ShuffleNetV2 block introduces
a Channel Split operation based on the ShuffleNetV1 block, dividing the input feature
map into two blocks. In each block, half of the feature channels pass directly through the
block and join the next block. This strategy reduces computations and parameters while
increasing the number of feature channels, thereby enhancing network accuracy. Within
the network module, some feature channels are passed directly to the next module without
undergoing convolution calculations. In the subsampling layer of the network, instead of
employing channel separation, each branch is created by copying the input, and subsam-
pling operations with a step size of 2 are performed on each branch. Finally, the feature
maps from all branches are concatenated, halving the spatial size of the feature maps while
doubling the number of channels (Figure 3). This design effectively reduces computation
while maintaining information richness and enhancing network expression capability [27].
Compared to the ShuffleNetV1 version, where ShuffleNetV2 adds a conv5 convolution be-
fore global pooling, ShuffleNetV2 enhances network performance and generalization. This
model demonstrates strong feasibility, enabling rapid image processing and recognition on
mobile devices while remaining lightweight. It holds promising prospects for applications
in embedded computing, mobile terminals, and large-scale image recognition.

Figure 3. The basic unit of ShufflenetV2.

2.2.2. Max Pooling

Max Pooling is a down-sampling operation utilized to decrease computing and storage
demands. This layer is commonly employed to diminish the size of a feature map while
preserving crucial feature information. By partitioning the input feature map into fixed-size
rectangular regions and selecting the maximum value within each region as the output,
maximum pooling effectively diminishes the spatial dimension of the feature map while
retaining features with the strongest response [28]. In the formula, the maximum pool
selects the maximum value within the locally acceptable domain F, as demonstrated in
Equation (1).

y = Max(x1, x2, · · · , xi), (xi ∈ F) (1)
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The maximum value serves as a significant feature extracted by the convolutional
layer. By retaining these crucial features and discarding unimportant ones, the interference
of irrelevant information is minimized (Figure 4). The incorporation of a maximum pooling
layer can augment the characterization capability of the model. Furthermore, the maximum
pooling layer also aids in reducing computation by diminishing the size of the feature map,
thereby rendering the model more lightweight.

 
Figure 4. Illustration of Max Pooling.

In this paper, a Max Pooling layer is integrated into the ShuffleNetV2 network. This
layer reduces the width and height of the feature map by half, gradually diminishing its
size. It facilitates the extraction of key information from feature maps, the reduction in
model overfitting, and the enhancement of the model’s generalization capability.

2.2.3. SimAM Attention Module

Existing attention modules in computer vision typically focus on either the channel
domain or spatial domain, corresponding to feature-based attention and spatial-based at-
tention in the human brain, respectively. Traditional channel attention is one-dimensional,
concentrating on the characteristics of different channels while treating all positions equally.
Spatial attention, on the other hand, is two-dimensional, focusing on features at different
locations while treating all channels equally. However, Yang et al. argue that comput-
ing three-dimensional values should be straightforward and allow modules to maintain
lightweight properties [29]. Consequently, they proposed a simple yet effective attention
mechanism called SimAM. SimAM can directly derive three values for the feature map
without adding additional parameters, enabling the model to learn more discriminative
neurons and improving the network’s feature extraction ability (Figure 5). Additionally,
based on neuroscience theory, SimAM optimizes the energy function to mine the impor-
tance of neurons, enhancing the ability to extract important features while suppressing
the interference of non-important features. Furthermore, SimAM’s operation is primarily
based on the selection of an optimized energy function, avoiding excessive structural
adjustments, and accelerating the calculation of attention weights. This allows the network
to remain lightweight while better leveraging the effectiveness and flexibility of SimAM
when integrated into our ShuffleNetV2 model.

In this paper, the SimAM attention mechanism is inserted into the basic network unit of
ShuffleNet V2. This enhances the interaction between channels, enabling the model to better
adapt to different input features, improve representation ability, and enhance classification
performance. Additionally, the SimAM module assists the model in capturing important
image features more efficiently and weighing these features to enhance recognition and
classification accuracy. By introducing the SimAM module, ShuffleNetV2 can enhance its
image processing and recognition capabilities while maintaining lightweight and efficient
performance, thereby making the model more applicable to mobile devices and embedded
systems.
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(a) (b) (c) 

Figure 5. Comparisons of different attention steps. Most of the existing attention modules generate
1D or 2D weights from feature X and then expand the generated weights for channel (a) and spatial
(b) attention. SimAM attention instead directly estimates 3D weights (c). In each subfigure, the same
color denotes that a single scalar is employed for each channel, for the spatial location, or for each
point on that feature.

2.2.4. Improved ShufflenetV2

Based on the characteristics of corn leaf disease images, ShuffleNetV2-0.5 was chosen
as the baseline network and improved to create the SNMPF model. In the basic unit of the
ShuffleNetV2 network, the stride in depth-wise (DW) convolution, which was originally set
to 2 for down-sampling, is reduced to 1. Additionally, in the down-sampling module of the
ShuffleNet model, the maximum pooling layer is employed instead of deep convolution
for down-sampling. This enhancement aids in extracting crucial features from images,
mitigating model overfitting, and enhancing the model’s generalization ability (Figure 6).

Figure 6. Structure of the SNMPF model. Input a 224 × 224 × 3 size image, first through a 3 × 3
convolution and then through the Max Pooling, followed by several Stage modules, and then through
a 1 × 1 convolution. Finally, input through the full pooling layer (Global Pooling) and then connect
to a fully connected layer to obtain the output.

Given that the dataset used in this paper consists of corn leaf images captured under
complex backgrounds, non-important features such as environmental backgrounds may
interfere with model recognition. Therefore, SimAM attention was integrated into the
ShuffleNetV2 network (Figure 7) to alleviate the interference of non-important features,
such as complex environmental backgrounds, on model recognition.
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(a) (b) 

Figure 7. Comparison of the basic units of the initial network and the improved network. (a) Initial
network; (b) improved network.

2.3. Experimental Setup

The experiments were carried out on a 64-bit Windows 10 operating system using
the Python programming language. The PyTorch framework was employed for network
construction, training, and testing purposes. The computer utilized for these experiments
is equipped with an Intel(R) Core (TM) i7-10510U CPU and has 8 GB of RAM. Additionally,
it is complemented by an NVIDIA GeForce MX250 GPU for accelerated processing.

2.4. Training Hyperparameter Settings

In our experiments, we use the SGD optimizer to iteratively update model parameters
to minimize the loss function. This choice was made due to the advantages of the SGD
optimizer in terms of computational efficiency and memory requirements. Additionally,
we set the following hyperparameters: epoch = 30, learning rate = 0.01, and batch size = 4.
These hyperparameters were carefully selected to maximize the effectiveness and accuracy
of our model. By choosing these hyperparameters, we aimed to optimize our deep learning
model and enhance its performance in recognition tasks.

2.5. Model Evaluation

In this paper, our main evaluation metrics include accuracy, model loss, and the size
of the model. Accuracy (A) is calculated using Equation (2), while model loss is computed
according to Equation (3). Accuracy is defined as the ratio of correctly recognized samples
to the total number of samples.

A =
TP + TN

TP + TN + FP + FN
× 100% (2)

TP (True Positive): The number of positive samples correctly predicted as positive by
the model. In other words, the model successfully detected a positive sample.

FP (False Positive): The number of negative samples incorrectly predicted as positive
by the model. In other words, the model incorrectly predicted negative samples as positive
samples.

TN (True Negative): The number of negative samples correctly predicted as negative
by the model. In other words, the model correctly determined negative samples.
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FN (False Negative): The number of positive samples incorrectly predicted as negative
by the model. In other words, the model incorrectly predicted positive samples as negative
samples.

The loss function provided in Equation (3) is a formulation commonly used in margin-
based methods, such as contrastive loss or triplet loss, for tasks like metric learning or
Siamese network training.

Loss = yd2 + (1 − y)·max(0, margin − d)2 (3)

In this equation, the following variables are defined:
d: Represents the Euclidean distance between two samples.
y: Represents the label indicating whether the two samples match. y = 1 indicates that

the two samples belong to the same category, while y = 0 indicates that the two samples
belong to different categories.

margin: Denotes the threshold.
The loss function encourages the model to learn embeddings such that the distance

between samples from the same category is minimized while ensuring that the distance
between samples from different categories is larger than the margin. This facilitates a better
discrimination between classes in the learned feature space.

3. Results

3.1. Results on Data Enhanced Analytics

ShuffleNetV2 was utilized to train both the original maize leaf disease dataset and its
augmented counterpart to assess the viability of data augmentation. It was observed that
the performance of the ShuffleNetV2 model on the two datasets exhibited the following
trend: the augmented data outperformed the raw data. When using an enhanced dataset,
the accuracy of the model increased from 93.40% to 94.30%, an increase of 1.1 percentage
points, while the loss slightly decreased from 0.416 to 0.414. This means that data aug-
mentation effectively improves the performance of the model (Table 2). As the number
of epochs increased, the recognition accuracy of the model trained on augmented data
demonstrated improvement (Figure 8).

Table 2. Comparison before and after data augmentation.

Data Set Accuracy Loss Model Size/MB

Original date 93.40% 0.416 1.50
Enhanced date 94.30% 0.414 1.50

It is worth noting that after data augmentation, the overall loss decreased compared to
the original data, and the convergence speed accelerated (Figure 9). Furthermore, as epochs
progressed, the enhanced data notably enhanced model accuracy, affirming the viability of
data augmentation. Remarkable outcomes were achieved in enhancing model performance
through data augmentation, as evidenced by the gradual reduction in the loss function and
the progressive increase in accuracy. These findings underscore the positive impact of data
augmentation on model training and performance.

3.2. Results of the Ablation Test

To validate the impact of various enhancements proposed in this paper on model
performance, an ablation test was conducted for analysis. Throughout the experiments,
consistency in test conditions was maintained, with only one enhancement altered in each
experiment to assess its influence on model performance. Four models were evaluated:
ShuffleNetV2, ShuffleNetV2 + Max Pooling (MP), ShuffleNetV2 + SimAM (SAM), and
ShuffleNetV2 + Max Pooling (MP) + SimAM (SAM). Results revealed that incorporating
Max Pooling into the ShuffleNetV2 network without increasing model complexity led
to a 2.1 percentage point improvement in recognition accuracy for corn leaf diseases in
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complex environments, accompanied by a reduction in model loss by 0.135. The introduc-
tion of the SimAM module increased model size by only 0.06 MB, enhancing accuracy by
1.3 percentage points (Table 3). These findings indicate that the addition of SimAM resulted
in improved accuracy and reduced loss, underscoring the effectiveness of model enhance-
ments (Figure 10). The model incorporating both Max Pooling and SimAM achieved the
highest performance (Figure 11). The synergistic effect of these enhancements did not
adversely affect the model but rather boosted its accuracy. The enhanced model achieved
an accuracy of 98.40%, surpassing the original model by 4.1 percentage points, with a loss
of 0.228, 0.186 lower than that of the original model. Although the size of the improved
model slightly increased, it remained lightweight.

Figure 8. Accuracy curves before and after data augmentation.

Figure 9. Loss curves before and after data augmentation.
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Table 3. Comparison of ablation tests.

Model Accuracy Loss Model Size/MB

ShuffleNetV2 94.30% 0.414 1.50
ShuffleNetV2 + MP 96.40% 0.279 1.50

ShuffleNetV2 + SAM 95.60% 0.316 1.56
ShuffleNetV2 + MP + SAM 98.40% 0.228 1.56

Figure 10. Accuracy curve of ablation test. This figure illustrates how adding different modules (MP,
SAM, MP + SAM) affects the recognition accuracy of the model. The x-axis represents epoch, and the
y-axis represents accuracy. The curve indicates that the model with the addition of MP + SAM has
the best recognition performance.

3.3. Results of the Attention Test

To further validate the feasibility of incorporating SimAM attention in this paper,
comparative experiments were conducted by adding SimAM, SE, ECA, EMA, and CSAM
attention mechanisms to the ShuffleNetV2 model. These experiments aimed to analyze the
effects of different attention mechanisms on the recognition and detection of maize leaf
diseases amidst complex backgrounds. The results revealed that following the integration
of SEM, ECA, EMA, CSAM, and SimAM attention mechanisms, the accuracy of maize
leaf disease recognition by the ShuffleNetV2 model improved by 0.3%, 2.1%, 2.6%, 3.5%,
and 4.1% (Table 4), respectively. Notably, the introduction of an attention mechanism
effectively enhanced the model’s capability to focus on crucial lesion features within
complex backgrounds. Particularly, the introduction of the SimAM model exhibited the
most significant enhancement in recognition performance.

Conversely, the introduction of the SE attention mechanism resulted in a decrease in
model loss by 1.9 percentage points. Moreover, the integration of attention mechanisms
led to an increase in the size of the model compared to the original ShuffleNetV2 model.
Specifically, the ECA attention mechanism exhibited the smallest model size increase of
1.509 MB, followed by the SimAM attention mechanism with 1.556 MB, while the CSAM
attention mechanism demonstrated the largest model size increase of 2.017 MB (Table 4).
Consequently, SimAM attention emerged as a pivotal factor in enhancing the model’s
lightweight performance while achieving the highest accuracy gain, highlighting the sig-
nificance of integrating attention mechanisms to enhance the performance of lightweight
models in complex recognition tasks such as maize leaf disease identification.
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Figure 11. Loss curve of ablation test. This figure illustrates how adding different modules (MP, SAM,
MP + SAM) affects the generalization ability of the model. The x-axis represents epoch, and the y-axis
represents loss. The curve indicates that the model with the addition of MP + SAM fits the training
data best.

Table 4. Comparison of different attentions.

Attention Accuracy Loss Model Size/MB

No attention 94.30% 0.414 1.499
SE 94.60% 0.433 1.644

ECA 96.40% 0.298 1.509
EMA 96.90% 0.285 1.587

CSAM 97.80% 0.271 2.017
SimAM 98.40% 0.244 1.556

Subsequently, we draw the loss curve of the model to analyze the impact of different
attention mechanisms on the robustness of the model. It was observed that the loss
values of the models gradually decreased and stabilized with an increase in the number
of model training iterations. By introducing ECA, EMA, CSAM, and SimAM attention
mechanisms, the loss of the model was reduced. Especially after introducing the SimAM
attention mechanism, the model exhibited the lowest loss value and significantly improved
robustness. However, SE attention led to an increase in model loss (Figure 12).

3.4. Results of Model Comparison Test

To explore the advantages of the lightweight model developed in this paper for
recognizing maize leaf diseases in complex scenarios, comparisons were drawn with
contemporary network modeling algorithms. In the task of maize leaf disease recognition
and detection, SNMPF achieved the highest recognition accuracy of 98.4%. DenseNet
and EfficientNet performed similarly, while the MobileViT model exhibited the lowest
recognition accuracy at only 64.7%. Furthermore, the model loss of MobileViT was notably
high at 0.839 compared to several other models (Table 5). Although EfficientNetV2 is
a widely optimized and efficient model, its performance in the recognition task of this
paper was not as expected and even worse than EfficientNet. The main reason may be
that EfficientNetV2 was originally designed to perform well on large and diverse datasets.
However, our dataset size is relatively small, which may result in EfficientNetV2 not being
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able to fully leverage its advantages. In contrast, EfficientNet had better adaptability on the
dataset in this paper.

Figure 12. Attention test model loss curve. This figure depicts the loss of the model when adding
different attention mechanisms (SE, ECA, EMA, CSAM, SimAM). The x-axis represents epoch, and the
y-axis represents loss. The curve indicates that the model with added SimAM attention mechanism
has the smallest loss.

Table 5. Comparison of different models.

Model Accuracy Loss Model Size/MB

SNMPF 98.4% 0.228 1.56
EfficientNet 95.3% 0.369 15.98

RegNet 90.7% 0.504 15.49
MobileViT 64.7% 0.839 3.86

EfficientNetV2 83.9% 0.431 79.73
DenseNet 95.9% 0.290 27.78

The SNMPF model, built upon the enhanced ShuffleNetV2 architecture proposed
in this paper, demonstrated superior performance. It achieved the highest recognition
accuracy for maize leaf disease under complex backgrounds with minimal model loss
(Figure 13). Moreover, the model size of SNMPF was a mere 1.56 MB, which was less than
half of MobileViT’s model size and even less than one-tenth of other models.

3.5. Visual Presentation of Model Prediction Results

The SNMPF model was used to predict the test image and then the activation heat
map (Grad-CAM) technique was used to visualize the prediction of the model. Grad-CAM
can display the recognition focus area of the model by evaluating the contribution of
each region in the image to the prediction results. In this way, we can more accurately
understand the features that the model focuses on, which can improve the understanding
of the model’s prediction results and the interpretability of the model.

The results revealed that for the four types of maize leaf images—GLS, NLB, NLF, and
Health—the original ShuffleNetV2 model correctly predicted the disease with probabilities
of 0.933, 0.922, 0.968, and 0.999, respectively. The SNMPF model developed in this paper
achieved correct predictions with probabilities of 0.985, 0.995, 0.995, and 1.0, respectively
(Figure 14). Even in the presence of complex background interference, SNMPF could still
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effectively capture the positions of maize leaf lesions and extract their features. It demon-
strated relatively high recognition accuracy for the same type of leaf disease, enabling better
focus on the identified lesion areas and thus reducing the impact of complex backgrounds.

 
(a) (b) 

Figure 13. (a) Accuracy curves of different models; (b) loss curves of different models.

Figure 14. Visualization results of SNMPF in identifying maize leaf diseases. Different species of
diseases have different thermogram characteristics, and the closer the color is to red, the more it plays
a role in decision-making for the identification of that species.

This result further proves the effectiveness of the model improvement measures
proposed in this paper, as well as the excellent performance of the SNMPF model in corn
leaf disease recognition tasks in complex backgrounds, providing useful references for corn
leaf disease recognition on mobile devices.

4. Discussion

After introducing the Maximum Pooling layer into ShuffleNetV2, the accuracy of the
model in identifying corn leaf disease improved by 2.1 percentage points, and the model’s
loss was also reduced. This is because the max pooling layer can select the maximum
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value in each region, thereby reducing the size of the feature map while retaining the most
significant feature information, thereby improving the model’s generalization ability [30].
Introducing attention mechanisms enables the model to focus more sensitively on disease
areas, thereby aiding in distinguishing various leaf disease images [31]. After introducing
the SimAM attention mechanism in ShuffleNetV2, the model performance has been im-
proved. SimAM can help models focus more on important features [32], thereby improving
their ability to extract key information from images. Meanwhile, when both the max pool-
ing layer and SimAM attention mechanism are added to the model, the performance of the
model is further improved. This is because the max pooling layer effectively reduces the
dimensionality of the feature map and preserves the most important information, while
the SimAM attention mechanism further enhances the model’s perception of key features,
making it more accurate in identifying and classifying objects in the image. Overall, by
combining these two mechanisms, the model’s ability to extract and utilize features has
been further enhanced, thereby improving overall performance.

To assess the feasibility of SimAM attention, a comparison was conducted with SE,
ECA, EMA, and CSAM attention mechanisms within the ShuffleNetV2 model [33–36]. The
results showed that after introducing attention mechanisms such as SE, ECA, EMA, CSAM,
and SimAM, the recognition accuracy of the model was improved to varying degrees.
These attention mechanisms help the model focus on the lesion area, thereby significantly
improving the performance of the model [37]. However, after introducing the SE attention
mechanism, the model’s loss increases. This may be because SE introduces additional
parameters, making the model more complex and leading to overfitting [38].

Furthermore, the recognition effects of SNMPF, EfficientNet, MobileViT, Efficient-
NetV2, RegNet, and DenseNet models on maize leaf diseases were compared [39–43].
Experimental results showed that EfficientNetV2 had the largest model size. However,
large networks have high hardware requirements on computers and mobile devices, which
is not conducive to a wide range of applications. Moreover, EfficientNetV2 had the worst
recognition effect on maize leaf diseases, and the model loss value was also relatively large.
This indicates that there is an overfitting problem [44], and EfficientNetV2 needs to be
further optimized and adjusted for the identification and application of corn leaf diseases.
The SNMPF model achieved the best recognition effect, and the highest recognition accu-
racy reaches 98.4%. Compared with the other models, the SNMPF model had the highest
recognition accuracy and the smallest loss. The recognition accuracy is improved by 4.1%.
This improvement was attributed to the addition of max pooling, which reduced model
oversensitivity to feature locations, enhanced robustness [38], and minimized interference
from complex backgrounds. Coupled with the SimAM attention mechanism, recognition
accuracy was further improved.

Finally, comparing the prediction results of SNMPF and ShuffleNetV2 models for
different types of maize leaf diseases, it can be observed that ShuffleNetV2 identifies some
non-diseased areas as diseased areas, while the SNMPF model focuses more on diseased
areas, reduces environmental impact, and improves the probability of accurate predic-
tion [45]. These results further validate the effectiveness of the improvement measures in
this article.

This paper verified the feasibility of ShuffleNetV2 in maize leaf disease recognition,
providing technical support for deploying maize leaf disease recognition models on mobile
devices. Due to limited public data on corn leaf disease, there are still limitations in this
study, namely, the dataset used in this study is relatively limited. By comparing the model
training results of the pre- and post-enhanced datasets, a large amount of data is beneficial
for optimizing model performance. In the future, with the application of various image
recognition technologies in the field, more types and quantities of corn leaf disease data
images will be collected [46], which can increase the types of corn leaf disease recognition,
further improve the recognition accuracy and performance of the model, and enhance the
robustness and generalization ability of the model [47].
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5. Conclusions

In this paper, we addressed the issues of low efficiency in traditional manual identifica-
tion methods and the challenge of deploying existing recognition models on mobile devices
due to their large size. We proposed a maize leaf disease recognition solution based on the
improved lightweight convolutional neural network ShuffleNetV2. Focusing on maize leaf
images in complex backgrounds, we improved the ShuffleNetV2 model by introducing max
pooling layers to replace deep convolutional layers for down sampling, adding attention
mechanisms, optimizing network structures, and we presented the SNMPF model.

The results indicate that the addition of max pooling layers is effective in improving the
model’s ability to recognize maize leaf diseases. Introducing attention mechanisms further
enhances ShuffleNetV2’s discriminative power in feature extraction and the classification
of maize leaf diseases. After incorporating attention modules such as SE, ECA, EMA,
CSAM, and SimAM, the accuracy of the model’s recognition is enhanced, with the model
achieving optimal recognition performance after introducing SimAM. In the task of maize
leaf disease recognition under complex backgrounds, the SNMPF model proposed in
this paper outperforms other traditional neural network models, achieving a recognition
accuracy of 98.4%. Additionally, its model size is only 1.56 MB, making it suitable for
deployment on small mobile devices.

In summary, this paper provides new technical means for the recognition and detection
of maize leaf diseases, with potential applications in field environments in the future.
Since this paper only focuses on recognizing three common types of maize leaf diseases,
further improvements are needed in future research. Future studies will enrich image
data to recognize more types of leaf diseases and deploy the SNMPF model on mobile
devices to achieve the real-time recognition and detection of maize leaf diseases. Therefore,
enabling the timely detection of maize leaf diseases can foster the development of precision
agriculture.
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Abstract: Pruning determines the plant water status due to its effects on the leaf area and thus the
irrigation management. The primary aim of this study was to assess the use of high-resolution
multispectral imagery to estimate the plant water status through different bands and vegetation
indexes (VIs) and to evaluate which is most suitable under different pruning management strategies.
This work was carried out in 2021 and 2022 in a commercial Merlot vineyard in an arid area of central
Spain. Two different pruning strategies were carried out: mechanical pruning and no pruning. The
stem water potential was measured with a pressure chamber (Ψstem) at two different solar times
(9 h and 12 h). Multispectral information from unmanned aerial vehicles (UAVs) was obtained
at the same time as the field Ψstem measurements and different vegetation indexes (VIs) were
calculated. Pruning management significantly determined the Ψstem, bunch and berry weight,
number of bunches, and plant yield. Linear regression between the Ψstem and NDVI presented the
tightest correlation at 12 h solar time (R2 = 0.58). The red and red-edge bands were included in a
generalised multivariable linear regression and achieved higher accuracy (R2 = 0.74) in predicting the
Ψstem. Using high-resolution multispectral imagery has proven useful in predicting the vine water
status independently of the pruning management strategy.

Keywords: canopy development; Vitis vinifera; production; vegetation index; chlorophyll

1. Introduction

Pruning is usually performed to control the vine’s vegetative development and gener-
ally implies a reduction in the leaf area, vigour and reserve accumulation compared to a
non-pruned vine. A reduction in vegetative material can lead to more spaces in the canopy
and exposed bunches [1]. Vinegrowers can adopt the no-pruning vineyard management
practice to reduce operating costs and grape size [2], increasing the skin to pulp relation,
an interesting feature for quality winemaking as it contributes to higher tannin and antho-
cyanin levels. However, it generally leads to an increment in the total leaf area [3], thus to
greater transpiration levels [4] and water uptake demands, which, if not fulfilled, could
lead to physiological water stress.

There is great interest in determining the plant water status in irrigated vineyards
due to its relationship with the yield, fruit composition and wine quality [5,6], critical
parameters for a profitable winemaking company. Water stress reduces photosynthetic
activity and vegetative growth and limits berry ripening [7,8] The stem water potential
(Ψstem) is a consistent and sensitive indicator of the plant water status in grapevines [9],
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and diverse authors have published optimal thresholds of Ψstem for different phenological
stages [10]. It is an integrating measurement that can provide greater precision than the
soil water content concerning irrigation management. However, determining the Ψstem
in commercial vineyards has a series of downsides. Only small samples can be assessed
rapidly because the Ψstem is a changing parameter throughout the day. The maximum Ψstem
(higher vine hydration) occurs before dawn and starts descending as the plant transpires
throughout the day [11]. To compare the Ψstem values from different treatments, they must
be assessed in the shortest possible time.

Moreover, it is highly time-consuming, making it unpractical for large plantations where
the intra-field variability is usually high. This evidences the necessity of developing a well-
founded method for determining the grapevine water status in a cost-effective manner.

Remote sensing is a powerful tool increasingly being used at the commercial and
research levels as it can obtain vast amounts of valuable and accurate geospatial data
on a large-scale dimension. Some practical applications include the discrimination of
plant species or vegetation types or the detection of diseased or physiologically stressed
plants [12]. Precision viticulture, a recently acquired term, can be described as the precision
agriculture sector focusing on the vineyard. Its main objective is to use diverse technologies
to manage vineyard spatial heterogeneity to reduce environmental impacts while increasing
profitability. This spatial and temporal variability can be expressed through productiv-
ity, vine development, water status, or exogenous factors such as the soil characteristics
or microclimate conditions. Some common applications of remote sensing in vineyard
management include the assessment or estimation of the chlorophyll and carotenoid con-
centrations [13,14], grape phenolic content [15] or colour [16], canopy structure [17,18] and
water status [19–21].

With the use of vegetation indexes (VIs), a wide range of particular characteristics,
like the vegetation biomass, productivity, biochemical properties or crop water status of
a photosynthetically active plant, can be assessed based on the plant spectral response.
Ref. [22] conducted an extensive review of the application of remote sensing-derived
vegetation indexes (VIs) in viticulture, with 113 publications evaluated since 2000. They
discovered that the most commonly used platforms are currently unmanned aerial vehicles
(UAVs), aircraft, and Sentinel 2 satellites. The pursued objective and the imagery’s price
and resolution mainly conditioned each platform’s utilisation. While commercial satellites
can be suitable for regional-scale studies due to their extensive coverage [23], their generally
low and inflexible spatial and temporal resolutions make them unattractive for managing
at a vineyard or site-specific scope.

Concerning water variability management, ref. [24] used high-resolution multispectral
and thermal sensors mounted on a UAV to estimate the water status in a rain-fed Tem-
pranillo vineyard. They found that specific spectral indexes were significantly correlated
to the Ψstem and stomatal conductance, both water status indicators, using 10 cm/pixel
images. The same occurred with thermal indexes derived from 30 cm/pixel thermal images.
They stated that thermal imagery could be helpful as a short-term water stress indicator,
considering that the correlations changed throughout the season. Conversely, multispectral
indexes can serve as long-term indicators as their correlations are more stable. Other related
studies, like the one in [21], obtained similar results. They used 1 m/pixel multispectral
images to prove that zones based on the Normalised Difference Vegetation Index (NDVI),
one of the most well-known and -used VIs, values presented significant differences in the
vine vegetative development, yield, and water status. Significant correlations between
this index and the grapevine yield were also found by [5] using higher spatial resolution
(2.6 cm/pixel) only 40 days before harvest. In general, the VIs are related to different
agronomic parameters, such as the leaf area development, determined by pruning tech-
nique, which may modify vine water status and, therefore, the VI values. The leaf area is
considered one of the most important agronomic parameters for evaluating the vegetative
development of the plants; however, leaf area measurements are time-consuming and
labour-intensive because of the inherent variability found within a vine and, on a larger
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scale, within a vineyard. Some methods are destructive and cannot be performed on a large
scale [25]. On the other hand, the pruning weight is a parameter that encompasses the
final performance of the plant. As the percentage of soil coverage, the pruning weight can
differentiate between treatments, making it a good indicator in terms of the development of
the vines. Other studies have observed a direct relationship between the yield through the
pruning weight and the percentage of soil coverage [26–28]. The percentage of soil coverage
appears to be an interesting tool as a proxy for the vegetative development and yield.

Other works have focused on using spectral proximal-sensing devices instead of
UAVs. For example, ref. [29] evaluated hyperspectral reflectance indexes derived from a
spectrometer (350–2500 nm region) to detect grapevine water status. Their study evidenced
the existence of indexes capable of significantly correlating to water status parameters
(both at canopy and leaf level), such as the total leaf water content, Ψstem or equivalent
water thickness.

The above-mentioned studies and others will serve as a reference, considering that the
availability of a varied set of spectral bands conditions the use of multiple VIs.

It must be emphasised that applying remote sensing to a discontinuous crop, like
vineyards or fruit orchards, is technically more challenging than to a continuous herbaceous
crop [30–32]. From an aerial perspective, the presence of the soil layer, which could be
vegetated or not, does not allow for the use of widely accessible low-spatial-resolution
satellite scenes (10 m/pixel for Sentinel-2). If the pixel size is excessive, the soil or intra-
row vegetation reflectance deteriorates the data quality, which would not represent the
canopy’s status. In general terms, the pixel size should not be coarser than the targeted
object or unit, an individual vine in this study. However, some studies have proven
helpful in estimating the vine water status in Mediterranean climates with nanosatellite-
based imagery (3 m/pixel) by compensating for the low spatial resolution with high
temporal availability [33]. Until high-resolution satellite information is achieved and freely
accessible, using UAVs with multispectral sensors remains one of the vineyard’s best
technical solutions for remote sensing, as pure canopy pixel information can be extracted.
The pixel size may vary depending on the intended spatial coverage, but it can be down to
1.4 cm/pixel for monitoring grapevines.

The primary aim of this study was to assess the use of high-resolution multispec-
tral imagery (12 cm/pixel) to estimate the plant water status through different bands
and vegetation indexes (VIs) in vines under different pruning management. This work
focuses on developing a well-founded indirect method for determining the grapevine
water status that could be used to map the Ψstem in all the vineyard surfaces and aid in
irrigation management.

2. Materials and Methods

2.1. The Study Vineyard

This study was carried out during the growing seasons of 2021 and 2022 on a 40 ha
commercial vineyard in Yepes (39◦56′26.2′′ N, 3◦42′49.7′′ W), Spain, at 699 m above the
mean sea level. The vineyard was planted in 2002, cv. Merlot (Vitis vinifera L.) over SO4
rootstock (Vitis berlandieri × Vitis riparia) and arranged on a trellis with a plantation frame
of 2.6 m × 1.1 m (3500 vines/ha). The plants have been trained in a double-cordon system.

The climate of the area corresponds to a typical hot-summer Mediterranean climate.
The region has an average daily temperature of 16 ◦C and an average annual rainfall of
394 mm, mainly concentrated at the end of autumn and the beginning of spring. Summers
are characterised by a high atmospheric vapour demand derived from high temperatures
(maximum temperatures > 40 ◦C) and low relative humidity. The temperature and relative
humidity were measured in-field using a portable weather station OMEGAETTE model
HH314A (OMEGA, Ltd., Bridgeport, NJ, USA, EEUU) that provided minute data. From
these values, the saturation vapour pressure (es), actual vapour pressure (ea) and vapour
pressure deficit (VPD) were calculated for the measuring times.
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Precipitation and reference evapotranspiration (ETo) data were extracted from the
closest public weather station, 18 km from the study site, located in Magán (Toledo)
(39◦56′06.6′′ N 3◦56′32.4′′ W). The rainfall in 2021 was 347 mm, while the ETo was 1284 mm.
In 2022, these values were 348 and 1396 mm, respectively. The meteorological data are
summarised in Figure 1.
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Figure 1. Monthly climatic variables during 2021 and 2022: rainfall, applied irrigation, reference
evapotranspiration (ETo), average minimum temperature (Tmin), average temperature (Tmed) and
average maximum temperature (Tmax). Data were obtained from the Magán public weather station
(39◦56′06.6′′ N 3◦56′32.4′′ W).

2.2. Pruning Management

As in many other large-scale vineyards, this one is divided into smaller units for
management purposes, designated as plots or parcels. Our study was executed in one of
these plots (Figure 2), belonging to a zone classified as a coarse-loamy, gypsic, mesic Typic
Calcixerepts soil [34]. In this 5 ha plot, two pruning strategies have been traditionally used,
dividing it into two 2.5 ha areas with homogeneous conditions and management except for
pruning. To a large extent, vineyard managers have done so over the last few years to assess
its impact on qualitative performance. From this, two pruning treatments were selected
for this study. The pruning treatment was developed over 10 years ago. The activity takes
place in winter, around the second week of February. This plot area has a more intensive
pruning approach. Firstly, mechanical pruning is performed with a horizontal trimmer
30 cm above the cordons to eliminate large amounts of wood in the most cost-effective
way. Then, the vines are spur-pruned by hand, leaving approximately two buds per node.
The no pruning treatment was developed over 10 years ago. Like the rest of the plots, the
activity takes place in winter, around the second week of February. This treatment area was
minimally hand-pruned, focusing on removing damaged or unnecessary parts. Therefore,
the pruning magnitude is substantially smaller, considering the amount of wood removed
after each productive campaign. Six vines out of each pruning system in adjacent lines
were selected in order to take the different experimental measurements (Figure 2b).
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Figure 2. (a) Aerial RGB image of the commercial vineyard used for this study. Different pruning
management plots (2.5 ha each) are outlined in different colours: red for no pruning and yellow for
pruning. (b) Location details of the six experimental vines where measurements were taken.

2.3. Irrigation

Given the atmospheric conditions previously mentioned and the limited irrigation
water availability in the growing area, the studied vines inevitably developed under a
deficit irrigation strategy. During the irrigation season, from May to August in both years,
the ETo was 769 in 2021 and 851 in 2022. Irrigation supplied 17% and 9% of the ETo in 2021
and 2022, respectively.

Irrigation was applied with one drip emitter per meter with a flow rate of 2 L h−1. It
was scheduled according to the standard practices followed by Bodegas Casa del Valle,
i.e., with limited time intervals. The irrigation periods varied between the years of the
study regarding the duration and total quantities applied. In 2021, the irrigation season
went from mid-May to the beginning of September, and the irrigation in the study plot
was 128 mm. In 2022, the irrigation season was shorter, going from the end of June to the
beginning of September, and the applied amount was also reduced, with a total of 82 mm,
36% less than in the previous season.

2.4. Physiological and Agronomic Parameters

These measurements were conducted in six experimental vines for each pruning
treatment in both study campaigns.

2.4.1. Stem Water Potential Measurements

The Ψstem (MPa) was measured at 9:00 and 12:00 h solar time on 9 different dates:
25 June 2021, 5 July 2021, 20 July 2021, 30 July 2021, 19 August 2021, 30 June 2022,
15 July 2022, 5 August 2022 and 12 August 2022. Measurements were performed on
healthy and shaded leaves from the inner part of the canopy, where 6 leaves/plant were
taken per treatment. They were covered with a plastic bag with aluminium foil one hour
before the measurement, as standardised methods recommend attaining water status
equilibrium between stem and leaves. For this measurement, a Scholander-type pressure
chamber was used (Soil Moisture Equipment Corp., Santa Barbara, CA, USA).
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2.4.2. Chlorophyll Measurements

The leaf chlorophyll level (μmol chlorophyll/m2 leaf area) was measured on the
same dates and times as the Ψstem using an Apogee MC-100 sensor (Apogee Instru-
ments Inc., Logan, UT, USA). Measurements were performed on three healthy leaves
per experimental vine.

2.4.3. Canopy Description

Measurements, necessary to describe the canopy development, were taken on 1 July 2021
and 20 June 2022 at an advanced stage in the season, ensuring vegetative growth had halted
and maximum vegetative expression had been achieved.

In each experimental vine, three points were selected to measure the canopy contour
(using a flexible tape) and distance between the highest and lowest leaves: trunk and
40 cm on either side. On the same points, the canopy width was noted at three heights
(80, 110 and 120 cm from the ground). From these measurements, the canopy height and
width were derived, and the canopy volume and external leaf area were calculated:

Canopy volume
(

m3
)
= H ∗ W ∗ SV (1)

External canopy area
(

m2
)
= (2H + W) ∗ SV (2)

where: H: canopy height (m), W: canopy width (m), SV: spacing between vines (m).
The canopy soil coverage was calculated from a high-resolution (3 cm/pixel) RGB

image using QGIS software (version 3.22.13 Białowieża) at the beginning of the irrigation
season: 1 July 2021 and 30 June 2022. At this moment, the vegetative development stopped.
The apex stops growing and does not develop more leaves (QGIS, Free Software Foundation,
Boston, MA, USA). A non-supervised k-means classification with two classes was run to
differentiate the vine canopy and soil pixels for a posterior percentage of covered soil
calculation (Figure 3).

Figure 3. Details of the non-supervised classification performed to calculate the percentage of covered
soil of the two pruning treatments in two consecutive seasons—a commercial vineyard in Yepes (Toledo).

2.4.4. Quantitative and Qualitative Analysis

The experimental vines were harvested by hand according to the commercial vineyard
manager’s decision concerning the optimal productive characteristics. The selected dates
were 20 August 2021 and 16 August 2022. During the harvest, bunches were counted and
production was weighed using a portable electronic scale. Between 150 and 200 berries of each
vine were randomly selected, packaged, tagged, and stored in a cooler for subsequent analysis.
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The selected berries were taken to the laboratory, counted, and weighed immediately.
Then, they were processed to determine the total soluble solids (◦Brix) with an Atago digital
Brix refractometer (ATAGO CO., LTD., Tokyo, Japan), and the pH was measured with a pH
Meter Hach sensION (Hach company., Loveland, CO, USA).

2.5. Multispectral Images and Vegetation Indexes Calculation

Aerial images were acquired by employing a UAV, model eBee (AgEagle Aerial
Systems Inc., Wichita, Kansas), a commercial fixed-wing platform equipped with a Parrot
Sequoia (Parrot© SA, 2017, Paris, France) multispectral sensor. Flights were carried out at
120 m of altitude with nadir mode. On the same days and times as the flights, the Ψstem
measurements were carried out (9:00 and 12:00 solar time). The different high-resolution
imagery consisted of RGB images (3 cm/pixel) and multi-band images (12 cm/pixel) that
included the green (495–570 nm), red (620–750 nm), red-edge (670–760 nm) and near-
infrared (NIR) (780–2500 nm) bands.

QGIS software was used to extract the band pixel information. Given the high spatial
resolution of multi-band images (12 cm/pixel), pure canopy pixels could be selected, avoid-
ing soil interference. A set of five points from the centremost area (top of the canopy) of
each vine was selected to obtain each band reflectance value. These reflectance values were
loaded on a spreadsheet where the VIs were calculated. Based on the available bands and
the cited literature, five indexes (Table 1) were calculated: the NDVI, the Renormalized Dif-
ference Vegetation Index (RDVI), the Transformed Chlorophyll Absorption Ratio (TCARI),
the Optimised Soil Adjusted Vegetation Index (OSAVI), and the Normalised Difference
Red-Edge Index (NDRE).

Table 1. Formulas and references of the vegetation indexes used in this study.

Index Formula Reference

NDVI NDVI = RNIR−Rred
RNIR+Rred

[35]
RDVI RDVI = RNIR−Rred√

RNIR+Rred
[36]

TCARI TCARI = 3 ∗
[(

RRedEdge − Rred

)
− 0.2 ∗

(
RRedEdge − Rgreen

)
∗
(

RRedEdge
Rred

)]
[37]

OSAVI OSAVI = (1 + 0.16) ∗ (RNIR − Rred)/(RNIR + Rred + 0.16) [38]
NDRE NDRE =

RNIR−RRed Edge
RNIR+RRed Edge

[39]

2.6. Statistical Analysis and Stem Water Potential Modelling

Data subjected to statistical variance analysis (ANOVA) were processed with Infostat
Software version 1.5 (Universidad Nacional de Córdoba, Argentina). The mean values
were classified using the LSD test (p < 0.05).

In order to estimate the Ψstem from the UAV-acquired multispectral information,
different model approaches were evaluated using Statgraphics 19 software (Statgraphics
Technologies, Inc. The Plains, Virginia, USA). Simple linear regressions between the Ψstem
and all individual bands (green, red, red edge and NIR) and simple linear regressions
between the Ψstem and Vis (NDVI, RDVI, TCARI, OSAVI and NDRE) were performed.

Multivariable linear regression models between the Ψstem and individual bands aim
for a better correlation than simple linear regressions.

In the latter case, the Variance Inflation Factor (VIF), which measures multicollinearity,
was used for this purpose, excluding solutions where VIF > 10 for any parameter. Moreover,
the Durbin–Watson Statistic (DW) was used to assess the autocorrelation between the
residuals. Models with DW < 1.5 were rejected. Other metrics we used to select which
bands were best to include in the model are the Akaike Information Criterion (AIC),
the Schwarz Information Criterion (SBIC), and the Hannan–Quinn Information Criterion
(HQC). They are all indicators of the goodness of fit in a multivariable linear regression;
the lower the value, the better.
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3. Results

3.1. Climatic Characterisation

The climatic variables during the in-field measurements are summarised in Table 2,
and the critical monthly parameters are presented in Figure 1. Our results reveal that the
2022 season was hotter (+2.0 ◦C and +1.8 ◦C at 9:00 and 12:00, respectively) and drier (10.4%
and −3.7% RH lower at 9:00 and 12:00, respectively) than 2021. Moreover, the annual
ETo (reference Evapotranspiration) was 109 mm higher in 2022, while a 36% reduced total
irrigation was applied. The maximum monthly ETo occurred in July in both years and was
226.1 mm and 249.6 mm in 2021 and 2022, respectively.

Table 2. Temperature (◦C), relative humidity (%), vapour pressure deficit (kPa) and daily ETo
(mm/day) during the times and days that the Ψstem was evaluated and multispectral images were
obtained for two hours of measurement and two campaigns in a commercial vineyard under two
pruning treatments (mechanical and no pruning) in central Spain (Yepes, Toledo).

9:00 Solar Time 12:00 Solar Time ETo
(mm/Day)Date T (◦C) RH (%) VPD (kPa) T (◦C) RH (%) VPD (kPa)

25 June 2021 27.4 43.9 2.05 33.5 29.8 3.63 6.6
5 July 2021 28.2 42.8 2.19 34.0 30.8 3.68 8.2

20 July 2021 28.8 39.6 2.39 35.9 19.8 4.74 7.9
30 July 2021 28.3 34.1 2.53 33.6 12.7 4.54 9.1

19 August 2021 28.7 41.0 2.32 33.1 22.8 3.91 6.3
Average 2021 28.3 40.3 2.30 34.0 23.2 4.10 7.6

30 June 2022 27.5 28.2 2.64 30.0 23.1 3.25 7.0
15 July 2022 35.2 22.6 4.40 40.2 15.4 6.32 8.1

5 August 2022 29.1 37.7 2.52 36.6 18.4 5.01 7.3
12 August 2022 29.3 31.0 2.81 36.6 21.2 4.85 6.3
Average 2022 30.3 29.8 3.09 35.8 19.5 4.86 7.2

The vapour pressure deficit (VPD) suffered an apparent increase between measuring
hours due to a decrease in the RH and an increase in the temperature caused by solar
radiation. This daily increase reached a topmost value of 98.8% on 5 August 2022. However,
the average VPD increase between the hours was higher in 2021 (78.3% vs. 59.5%). Notable
differences in climatic conditions between campaigns are also evidenced by the maximum
VPD values in 2022, 73.9% and 33.3% higher than in 2022, at 9:00 and 12:00, respectively.
These differences assuredly affected the vines’ physiological and spectral behaviour. From
our results, it can be noted that the VPD and daily ETo are tightly associated. The peak ETo
values coincided with high VPD measures each season, although the ETo is a daily value
and the VPD is an averaged punctual value.

3.2. Canopy Development

Characterisation of the different measurements and calculations relative to the canopy
structure are reflected in Table 3. As expected, the pruning weight was notably higher in
the pruning treatment vines (around double the amount in both years).

The height, width, volume, and external canopy area within the analysed geometry
parameters did not show significant differences between the treatments in the two years of
the study. However, the differences between the treatments were found to be influenced
more by the effect of the year than by the treatments. On the other hand, the pruning
weight and covered soil by the canopy show that the treatment and the year influence
significant differences.

Lastly, remote sensing was applied to estimate the percentage of covered soil, which
yielded statistically significant observations during both campaigns. This parameter is tightly
related to the vine width, as reflected in the results. The pruned vines presented significantly
higher soil coverage in both years, and both treatments experimented with an increase in this
measure in 2022 (+6% and +9%, pruning and no pruning treatments, respectively).

159



Plants 2024, 13, 1350

Table 3. Vine canopy geometric parameters relative to the development and architecture over
two campaigns (2021 and 2022), under mechanical pruning (P) and no pruning (NP), in a commercial
vineyard in central Spain (Yepes, Toledo). Mean data and coefficient of variation (CV).

2021 2022
P CV (%) NP CV (%) P CV (%) NP CV (%)

Pruning weight (g/plant) 177.5 27% 87.5 29% * 216.9 30% 101.7 35% *
Canopy height (cm) 69.75 21% 70.67 18% ns 86.25 25% 106.08 11% ns

Width (cm) 71.52 19% 58.9 15% ns 96.07 10% 89.73 19% ns
External canopy area (m2) 2.34 8% 2.07 12% ns 3.06 10% 3.14 9% ns

Canopy volume (m3) 0.53 13% 0.46 23% ns 0.91 27% 1.04 14% ns
Canopy contour (m) 1.64 11% 1.64 14% ns 1.72 15% 1.73 6% ns

Covered soil by the canopy (%) 43% 6% 36% 9% * 49% 4% 45% 2% *

ns: non-significant and * significant at p < 0.05.

3.3. Physiological Responses

The plant water status, determined by the Ψstem measurements, did not show a
consistent trend for the different pruning treatments over the two campaigns (Table 4).
In 2021, the no pruning treatment expressed lower values of Ψstem at both times and for
almost all the measurement dates, with significant differences between the treatments on
three dates and for both measuring times. The average Ψstem for the 2021 season was
significantly lower in the pruning treatment, only at 9:00 solar time. The general tendency
observed as the campaign advanced was a reduction in the Ψstem value, implying a decline
in the plant water status for both treatments due to the depletion of water reservoirs in
the soil.

Table 4. Ψstem (MPa) measured in two hours per day and over two campaigns (2021 and 2022),
under mechanical pruning (P) and no pruning (NP), in a commercial vineyard in central Spain
(Yepes, Toledo).

9:00 Solar Time 12:00 Solar Time

Date
P

Ψstem (MPa)
NP

Ψstem (MPa)
P

Ψstem (MPa)
NP

Ψstem (MPa)

25 June 2021 −0.5 −0.6 ns −0.8 −0.8 ns
5 July 2021 −0.6 −0.7 ns −1.1 −0.9 ns
20 July 2021 −0.5 −0.8 * −1.0 −1.1 *
30 July 2021 −0.6 −0.7 * −1.0 −1.4 *

19 August 2021 −0.7 −1.1 * −1.3 −1.6 *
Average 2021 −0.6 −0.8 * −1.0 −1.2 ns

30 June 2022 −0.9 −0.9 ns −1.1 −1.1 ns
15 July 2022 −1.1 −0.8 * −1.1 −0.9 *

5 August 2022 −1.7 −1.5 * −1.9 −1.7 ns
12 August 2022 −1.6 −1.3 * −1.7 −1.7 ns
Average 2022 −1.3 −1.1 ns −1.4 −1.3 ns

ns: non-significant and * significant at p < 0.05.

In 2022, the physiological behaviour of the pruning treatments reversed. In this
campaign, the pruning treatment obtained lower Ψstem values, with significant differences
on three dates and one date for the 9:00 and 12:00 measurements, respectively. The average
campaign value was not significant for either of the two times. The progression throughout
the season was also a decreasing trend for the Ψstem, for both times and treatments.

The chlorophyll concentration measurements (Table 5) did not show clear tendencies
between the treatments, hours of measurement or campaigns, unlike the Ψstem values.
In 2021, only three single-date significant differences between the pruning treatments
were observed at solar noon. In 2022, this number was reduced to one date in the 9:00
measurement. The average campaign values did not show statistical differences for any
measuring times.
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Table 5. Chlorophyll concentration measurements (μmol chlorophyll/m2 leaf area), two hours per
day and over two campaigns (2021 and 2022), under mechanical pruning (P) and no pruning (NP), in
a commercial vineyard in central Spain (Yepes, Toledo).

9:00 Solar Time 12:00 Solar Time

Date

P
Chlorophyll

μmol Chlorophyll/m2

Leaf Area

NP
Chlorophyll

μmol Chlorophyll/m2

Leaf Area

P
Chlorophyll

μmol Chlorophyll/m2

Leaf Area

NP
Chlorophyll

μmol Chlorophyll/m2

Leaf Area

25 June 2021 15.00 17.05 ns 14.05 15.65 ns
5 July 2021 16.05 17.18 ns 19.75 14.65 *

20 July 2021 17.18 15.80 ns 20.40 17.08 ns
30 July 2021 14.45 14.75 ns 18.23 15.38 *

19 August 2021 18.98 16.32 ns 18.45 15.61 *
Average 2021 16.33 16.22 ns 18.18 15.67 ns

30 June 2022 14.9 14.7 ns 14.5 14.9 ns
15 July 2022 16.2 14.9 * 16.7 15.8 ns

5 August 2022 15.8 15.0 ns 15.6 15.5 ns
12 August 2022 14.1 14.2 ns 14.7 14.7 ns
Average 2022 15.3 14.7 ns 15.4 15.2 ns

ns: non-significant and * significant at p < 0.05.

3.4. Vine Production and Quality

Table 6 summarises the productive and qualitative parameters that were assessed.
Only the bunch weight showed significant and consistent differences in both campaigns.
The pruning treatment obtained statistically higher values in both years, with an increase of
104% and 34% compared to the no pruning in both years. In 2022, both treatments suffered
a decrease in this parameter compared to the previous year: −46% and −19% for pruning
and no pruning, respectively.

Table 6. Productive and qualitative parameters were evaluated for two campaigns (2021 and 2022),
under mechanical pruning (P) and no pruning (NP), in a commercial vineyard in central Spain
(Yepes, Toledo).

2021 2022
P NP P NP

Production per plant (kg) 1.88 1.53 ns 1.27 1.60 ns
Berry weight (g) 0.77 0.51 * 0.39 0.34 ns
Bunch weight (g) 52.2 25.6 * 27.96 20.86 *

Number of bunches per plant 36.25 56.5 ns 37.17 62.0 *
TSS (◦Brix) 28.48 28.88 ns 25.8 25.4 ns

pH 3.44 3.41 ns 3.65 3.81 *

ns: non-significant and * significant at p < 0.05.

The berry weight was higher in the pruning treatment but only significantly so in 2021.
The pruned vines presented a higher berry weight than the non-pruned ones but showed
the most significant decline between campaigns. The number of bunches per plant behaved
contrarily to the previous parameters, as the non-pruned vines had higher numbers during
both campaigns, with significant differences found only in the second campaign (+56% and
+67% in 2021 and 2022, respectively).

The production per plant was not significantly different between the pruning treat-
ments, but significant differences were observed between the mean values. In 2021, the
pruning treatment had higher production than in 2022, caused by the significantly higher
berry and bunch weight. In 2022, the non-pruned plants obtained higher production since
the bunch and berry weights were balanced. Moreover, the non-pruned vines developed a
very high number of bunches compared to 2021.

Concerning the qualitative parameters, the TSS (◦Brix) did not show significant dif-
ferences between the treatments in either campaign. the year factor influenced the perfor-
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mance, so in 2022, there was an apparent reduction in this parameter for both treatments,
indicating less sugar content in the must. On the other hand, the pH measurements behaved
contrarily to the TSS. The 2022 campaign reflected higher pH values for both treatments
than the previous one, with significant differences between the treatments, which did not
happen in 2021. As with the TSS, with the pH, the year factor influences the quality of
the performance.

3.5. Vine Spectral Behaviour

In general terms, the pruning treatment obtained lower values for the NDVI, RDVI,
OSAVI, and NDRE in the 2022 season than in 2021 for both flying times (Table 7). In
2021, the indexes average values were statistically higher in the pruning treatment at the
9:00 and 12:00 flights, except for the TCARI. In 2022, there were no significant differences
between the two treatments for any of the indexes at both times, except for the NDRE at
9:00. The differences in values between the treatments decreased. In this season, the no
pruning treatment reflected higher values for these indexes, although not significantly so
(refer to Appendix A Figure A1). The VI values in 2022 were notably more alike between the
treatments than in the previous campaign. As a result, statistically significant differences
were reduced on individual dates and average seasonal values, as with the Ψstem values
(refer to Appendix A Tables A1 and A2).

Table 7. Annual average and factorial analysis (FA) of vegetation indexes calculated from a high-
resolution (12 cm/pixel) multispectral sensor mounted on board a UAV at two solar times (09:00 and
12:00), for two campaigns (2021 and 2022), under mechanical pruning (P) and no pruning (NP), in a
commercial vineyard in central Spain (Yepes, Toledo).

9:00 NDVI RDVI TCARI OSAVI NDRE

2021
P 0.78

*
0.61

*
0.03

*
0.71

*
0.23

*NP 0.67 0.47 0.17 0.58 0.21

2022
P 0.67 ns 0.56 ns 0.29 ns 0.63 ns 0.18

*NP 0.70 0.56 0.23 0.65 0.19

12:00

2021
P 0.74

*
0.55

*
0.06

*
0.67

*
0.20 ns

NP 0.69 0.47 0.15 0.59 0.20

2022
P 0.68 ns 0.51 ns 0.18 ns 0.61 ns 0.19 ns

NP 0.71 0.51 0.15 0.63 0.20

FA

Treatment P
NP * * ns * ns

Year 2021
2022 * ns * ns *

ns: non-significant and * significant at p < 0.05.

The evolution of the different vegetation indexes during the year 2021 for the 9:00 and
12:00 flights is presented in Figure 4. In this year, the two treatments were significantly
different for many indexes. The VI values showed a decline as the season advanced, which
was more evident in the latest flights, and the same pattern followed in the 2022 season
(refer to Appendix A Figure A1). However, the NDVI, RDVI, and OSAVI presented a more
evident evolution in time than the rest (Figure 4). The evolution of these indexes shows that
in the morning (Figure 4a,c,g), the separation between the treatments is more pronounced
than at noon (Figure 4b,d,h).
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Figure 4. Evolution along the season of different vegetation indexes calculated from a high-resolution
(12 cm/pixel) multispectral sensor mounted on board a UAV at 09:00 and 12:00 solar time in 2021 on
a commercial vineyard under two pruning treatments (mechanical and no pruning) in central Spain
(Yepes, Toledo).
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The NDVI showed no differences in the first two measurement days at 9:00 (Figure 4a).
The RDVI and OSAVI showed statistical differences between the treatments for all the
dates and times in 2021(refer to Appendix A Tables A1 and A2). The evolution of the
RDVI was constantly equidistant between the two treatments throughout the season at
both times (Figure 4c,d). The NDRE did not exhibit a clear difference throughout the season
between the two treatments (Figure 4i,j). The differences between the pruning treatments
only showed statistical differences for the 9:00 flights in both campaigns (Table 7).

On the other hand, the TCARI presented no clear evolution along the season (Figure 4e,f),
where this index was significantly higher in the non-pruned plants at both flying times.
The TCARI reversed its response in 2022, and the pruned plants obtained slightly higher
average values (Table 7).

A factorial analysis considering the year and treatment (Table 7) showed that the
NDVI was influenced by the treatment and year; the RDVI and OSAVI were not influenced
by the year but by the treatment. The TCARI was only influenced by the treatment, and the
NDRE was influenced by only the year.

Figure 5 shows the NDVI performance between the treatments at two time (9:00 and
12:00) for the last flight date of the 2021 season (19 August). It is observed that the pruning
treatment exhibits higher values of the NDVI than the non-pruning treatment at both times
of day.

Figure 5. Details of the NDVI of two pruning treatments at two times of day. Left imagen correspond-
ing to values of the NDVI at 9:00. Right imagen corresponding to values of the NDVI at 12:00. The no
pruning treatment is located near the red line; the pruning treatment is located near the yellow line.

3.6. Stem Water Potential Estimation
3.6.1. Simple Linear Regression Models

The results of the calculated R2 values for the simple linear regressions are depicted in
Table 8. Different approaches were developed concerning the data included in the models.
Seven different single-variable regression models were performed for each VI value and
band reflection (four single-season and single-time, two multi-seasonal and single-time,
and one multi-seasonal and multi-time). Even though our objective in this work was to
develop a multi-seasonal robust model, the Ψstem was also predicted for individual seasons
and flying times to better understand the results.
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Table 8. Coefficients of determination (R2) for the simple linear regression models where the Ψstem

is predicted using the five calculated VIs (NDVI, RDVI, TCARI, OSAVI and NDRE) and the four
individual bands (red, green, red edge and NIR) in different model-type scenarios.

Model Type
Single-Season and Single-Time Multi-Season 2021–2022

2021 * 2022 ** Single Time *** Both Times

Indexes 9:00 12:00 9:00 12:00 9:00 12:00 9:00–12:00

NDVI 0.5 0.65 0.62 0.65 0.44 0.58 0.43
RDVI 0.49 0.6 0.37 0.48 0.12 0.39 0.23

TCARI 0.13 0.40 0.53 0.56 0.56 0.48 0.36
OSAVI 0.73 0.65 0.52 0.58 0.25 0.49 0.33
NDRE 0.23 0.41 0.30 0.12 0.40 0.00 0.10

Bands

RED 0.02 0.47 0.71 0.68 0.69 0.64 0.38
GREEN 0.27 0.21 0.62 0.72 0.50 0.62 0.18

RED EDGE 0.51 0.25 0.0008 0.12 0.03 0.08 0.00
NIR 0.46 0.42 0.03 0.02 0.00 0.08 0.04

* n = 40, ** n = 48, *** n = 88.

In most cases, the correlations between the Ψstem and the different VIs were stronger
at solar midday. The NDVI and OSAVI were, on average, the tightest-fitting VIs (R2: 0.55
and 0.51, respectively). Not surprisingly, when modelling the Ψstem with the combined VI
data from 2021 and 2022 or when integrating the measuring times, the R2 values decreased
due to higher variability being added to the models.

Concerning the use of individual bands to estimate the Ψstem, the red and green bands
obtained the best results (average R2: 0.51 and 0.45, respectively) and were the least variable
between the models. The red-edge and NIR bands only obtained good correlations in 2021,
with exceptionally low values when data from 2022 were included.

Simple linear regression models with the vegetation indexes proved more useful to
estimate the Ψstem when data from both seasons and times were included (n = 176) than
individual bands, with the NDVI and the red band providing the best fit in each category
(R2: 0.43 and 0.38, respectively).

3.6.2. Multiple-Variable Regression Modelling with Spectral Bands

A multivariable linear regression model was developed to estimate the Ψstem to
improve the quality of the simple regression models (Table 8), especially concerning the
multi-seasonal and multi-temporal approach (n = 176). Only individual bands were con-
sidered independent variables, as the VIs are a linear combination of individual band
reflectance values.

The initial procedure included two categorical factors: measurement time and pruning
treatment. However, the pruning treatment was not statistically significant at the 95%
confidence level. Therefore, it was removed from the categorical factors, and only the
measuring time was included. The difference in the average Ψstem values at 9:00 and
12:00 over the two seasons is statistically significant (−0.92 and −1.32 MPa, respectively),
dividing the measuring time into two homogeneous groups to include it as a categorical
factor. On the other hand, the Ψstem values divided by the pruning treatment could not be
used to identify two homogeneous groups.

Of all the possible combinations of bands, the red and red edge yielded the best quality
results (highest R2 adjusted for degrees of freedom and lowest AIC, HQC, and SBIC). The
equation for the fitted model is presented below, and Table 9 summarises the statistical
metrics used to evaluate the model performance:

Ψstem (MPa) = 0.199484 ∗ T + [−0.365892 + 1.4701 ∗ RED EDGE − 14.8059 ∗ RED] (3)
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where: {
T = 1 i f time is 9 : 00

T = −1 i f time is 12 : 00

where T is the categorical factor for the time of day the data were obtained.

Table 9. Performance statistical metrics of the multivariable linear regression model used to predict
the Ψstem with data from 2021 and 2022 and two flying times, 9:00 and 12:00 solar time: n, R2 and R2

adjusted for degrees of freedom (R2 adj.), standard error of estimates (Se), mean square error (MSE),
mean absolute error (MAE) and Durbin–Watson Statistic (DW).

Metric Value

n 176
R2 0.72

R2 adj. 0.72
Se 0.215

MSE 0.05
MAE 0.17
DW 1.53

This model meets the imposed conditions stated beforehand: Durbin–Watson Statistic
>1.5 and VIF for every parameter <10. Therefore, it is accepted as a viable and quality-fitting
model. A comparison of the observed and predicted Ψstem using this model is represented
in Figure 6. Noticeably, its coefficient of determination is impressively improved compared
to the single-variable regression models. The model, using the red and red-edge bands as
independent variables, can explain 72% (R2 adj.) of the variance of the dependent variable
Ψstem, independently of the pruning management carried out.

y = 0.718x 0.3099
R² = 0.74
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Figure 6. Plot of the observed vs. predicted Ψstem using the developed multivariable regression
model with the red and red-edge bands as independent variables (n = 176). The dashed line indicates
a 1:1 slope.

A visual representation of the model for the different measuring times is possible,
given that it only has two dependent variables (Figures 7 and 8, for 9:00 and 12:00 solar
time, respectively). As observed, lower Ψstem values are associated with lower red-edge
and higher red reflection values. Conceptually, both models are parallel planes separated
by the TIME factor, 0.40 MPa.
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Figure 7. Visual representation of the multivariable linear regression model developed at 9:00.
Horizontal axes correspond to the red and red-edge reflection values, and the vertical axis to the stem
water potential (MPa). The model developed includes data from 2021 and 2022 and two pruning
treatments for commercial vineyards in Yepes (Spain).
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Figure 8. Visual representation of the multivariable linear regression model developed at 12:00.
Horizontal axes correspond to the red and red-edge reflection values, and the vertical axis to the stem
water potential (MPa). The model developed includes data from 2021 and 2022 and two pruning
treatments commercial vineyard in Yepes (Spain).

4. Discussion

Both years show that climatic conditions in the studied area can be extremely harsh
(>40 ◦C and high evaporative demand). Therefore, optimal water management would
be necessary to avoid water stress incidences. The daily ETo values ranged from 6.3 to
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9.1 (mm/day) (Table 2). However, it must be noted that the irrigation and rainfall in this
commercial vineyard do not fulfil the evaporative demands, and therefore, the vines are
grown under a deficit irrigation regime. Both seasons registered similar rainfall (around
348 mm), but in 2021, the annual ETo was lower than in 2022 (1284 vs. 1393 mm), and the
irrigation supply was higher (128 vs. 82 mm).

Our results indicate that the vine water status presented a wide range of values in both
seasons. In 2021, the measured solar midday Ψstem values oscillated between −0.8 MPa
(beginning of the measuring campaign) and −1.6 MPa (last measurement day). According
to the thresholds described by [40], these values correspond to non-stressed vines and
intense water stress, respectively. In 2022, the solar midday Ψstem readings were noticeably
lower, ranging from −0.9 MPa to −1.9 MPa, which can be interpreted as non-stressed and
severely stressed vines, respectively.

Vine water use is majorly determined by atmospheric conditions (VPD) and plant
structural characteristics like the canopy size or disposition. The VPD is an integrating
climatic parameter more tightly associated with physiological variables such as the stomatal
conductance or Ψstem. Ref. [41] concluded that around 71% of the variability in the Ψstem
could be explained by the VPD, and this correlation was not affected by the location or
cultivar. Given that the climatic and irrigation conditions were equal for both pruning
treatments, it could be assumed that the differences in their water status were caused almost
solely by canopy management. However, climatic data can be used to explain the general
behaviour of the crop during the day and throughout the campaign. The atmospheric
conditions were clearly reflected in the Ψstem values, evidencing their intrinsic relationship.
The 2022 campaign was subject to higher evaporative demands (Table 2), resulting in lower
Ψstem values and vine water status. The minimal Ψstem values in 2022 were 54.5 and 18.8%
lower than in 2021 for the 9:00 and 12:00 measures, respectively. It is also remarkable that
the lowest value at 9:00 in 2022 (−1.7 MPa) was even smaller than the lowest 12:00 value in
2021 (−1.6 MPa).

The results from both campaigns indicate that the Ψstem decreases throughout the day
due to transpiration, obtaining lower values in almost all cases in the midday measure for
the same treatment (Table 4). This tendency has been widely observed and studied [9]. In
our study, the midday value was never higher than the morning one, only equal in one
event (15 July 2022, pruning treatment). The midday Ψstem reading was 58.3% and 12.9%
lower than at 9:00 in 2021 and 2022, respectively. Considering both seasons, the average
Ψstem values significantly differed between the measuring times: −0.92 and −1.32 MPa
at 9:00 and 12:00, respectively. This indicates that the Ψstem reduction during the day is
less notable under more stressed conditions, as with the VPD (Table 2). The average VPD
values were 2.7 and 4.5 kPa at 9:00 and 12:00, respectively. This is also evidenced by the
fact that in both campaigns, the treatment with the lowest average Ψstem values presented
the most negligible perceptual differences between the measuring times (no pruning in
2021, pruning in 2022).

The effect of pruning severity on canopy development (Table 3) did reveal some inter-
esting differences that were not statistically significant in most cases. Ref. [42] concluded
that less intensive pruning approaches resulted in higher nodes and shoots per vine but
shorter shoot lengths. This can explain our results: the pruning treatment vines grew longer
shoots, which developed more laterally, resulting in a higher percentage of soil coverage,
although it has not been reflected in the rest of the parameters of the geometry of the
vine, which did not show significant differences. These results suggest that remote-sensing
tools may be more accurate in determining the breathable surface of plants than field
measurements. Remote sensing has used airborne imagery to map the relative differences
in vine canopies, which are used to characterise the grapevine canopy shape and vegetative
expression throughout a vineyard [32].

Concerning the effect of water stress on vine production and berry quality (Table 6),
our results are in agreement with other evaluated studies. Like [6], we found that more
heavily water-stressed vines (no pruning treatment in 2021; pruning treatment in 2022)
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reported a lower yield per plant and smaller berries in both study seasons. The same results
were observed by [26], who also reported that irrigated vines maintained at Ψstem values
above −1.0 MPa until harvest produced higher berry flesh mass and had a lower skin to
pulp relation. Regarding the fact that the no pruning treatment had a higher yield in 2022
compared to the pruning treatment, it could be explained by a higher precipitation in the
spring of 2022 compared to 2021 (Figure 1). This could have influenced the sprouting of
buds, greater number of bunches and then the bunch weight [1]

In our study, the Ψstem variation was not caused by irrigation management but by
pruning management; however, the physiological response of the vines regarding produc-
tion was the same.

Many studies have addressed the relationship between the VIs and healthy vegetative
growth of crops. Our study observed that the VIs exhibited higher values between the two
pruning treatments (Figure 4). However, when extreme climatic conditions occur, as in
the 2022 season, plant stress increases. Such conditions affected the behaviour of the VIs
and not all of them could detect the water stress experienced by the vines [27]. This stress,
however, was detected by the Ψstem measurement.

The 2022 conditions limited the performance in the VIs. Severe water deficits decrease
the leaf area and intercepted light [28] but also induce stomatal closure, which limits
photosynthesis [25]. In addition, in grapevines, changes in the leaf pigment composition
have been associated with water stress [43–45]. This situation makes it difficult to detect
differences between treatments. However, another factor to consider in the evolution of the
indexes is the angle of illumination from the sun, as it is not the same at the beginning of
summer as at the end.

The central part of our study, the prediction of the vine Ψstem using high-resolution
(12 cm/pixel) multispectral sensors mounted on UAVs, proved to be a successful tool in
vineyard water status variability management. However, in most cases, the prediction of
the Ψstem was stronger at solar noon than at 9:00 (Table 8), possibly due to the better quality
spectral data derived from a more vertical sun position.

These values show that the NDVI is the one most strongly correlated with vine water
status. However, indexes such as the OSAVI and RDVI, which have shown significant
differences between the treatments in conditions where the Ψstem did not exhibit differences,
suggest that they are related to more structural aspects than physiological ones of the crop.
This would explain why both the OSAVI and RDVI were not influenced by the year (Table 7).
Indexes integrating the red and NIR bands are often more associated with the structural
characteristics of plants, such as the vigour, biomass, leaf area, etc. [32,46]. The NDVI
includes these bands, although its use has also been linked to canopy vigour [32]; in our
study, it was also able to correlate with water status. Other authors have found that the
NDVI can be a good indicator of the plant water status [21,47].

The NDVI may be more related to the amount of intercepted light than to the leaf area
or biomass. Ref. [43] observed that the Ψp vs. NDVI relationship was consistent across
their study, vegetative development was strongly determined by water availability, and the
vegetation index NDVI effectively characterised the effects of water availability on vine
canopy growth.

Other authors did not find a relationship between the NDVI and water status under
severe stress conditions. Reflectance indexes such as the NDVI or the simple ratio (SR)
are useful for characterising the canopy structure and pigment concentration, and, thus,
the potential photosynthetic activity [43], but they have proven less useful for monitoring
photosynthetic functioning under stress conditions [48,49]. Thus, these indexes have proven
less useful for monitoring plant physiological status (e.g., photosynthesis and/or water
status) under stress conditions [43].

Different regression model approaches yielded different results (Table 8). The single-
season and single-time simple Ψstem regressions were strongly associated with the calcu-
lated Vis. For this model type, the correlations were quite variable (R2 range: 0.12–0.73),
and the OSAVI index achieved the best fit (R2 = 0.73) for the average 9:00 measure in 2021.
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Ref. [24] estimated the Ψstem for a single day with a high-resolution multispectral sensor
(10 cm/pixel) multiple camera array (MCA-6, Tetracam, Inc., California, USA) on board a
UAV but obtained an R2 value of only 0.35 when using the OSAVI. However, our results
were similar to theirs with respect to the capacity of the NDVI and TCARI for estimating
the Ψstem. They obtained a significant fit for both indexes, with R2 values of 0.68 and 0.45
(NDVI and TCARI, respectively). In our case, the TCARI expressed the highest correlation
in the 9:00 multi-seasonal model (R2 = 0.56, n = 88) and the NDVI at 12:00 for the same type
of model (R2 = 0.58, n = 88). When combining data from both flying times, the NDVI was
once again the best index for predicting the Ψstem (R2 = 0.43, n = 176).

Additionally, ref. [5] could relate the NDVI and stomatal conductance on a single day
with a correlation of r = 0.56, revealing that VIs can predict different vine water status
indicators. Proximal-sensing methodologies have also proven useful in correlating VIs
with the Ψstem. For example, ref. [50] reported a significant linear relationship between the
NDVI and Ψstem (R2 = 0.69) when using a hand-held spectrometer at canopy level, which
is fundamentally similar to a UAV-mounted sensor.

Contrarily to other studies [13,14,51], we did not obtain satisfactory findings from the
chlorophyll concentration measurements (Table 5), nor were we able to correlate it with
the VIs. This could be because their studies used more precise destructive methods for
determining the leaf chlorophyll concentration levels.

Normally, there were more works relating the Ψstem with several VIs than with spectral
bands. Recently, ref. [52] showed that using spectral bands as Ψstem predictors provided
better results than VIs in olive orchards, using machine-learning techniques. Our results
revealed some interesting features of this approach. In some cases (2022, 9:00 and 12:00;
2021 and 2022, 9:00 and 12:00) (Table 8), the R2 values were higher when using individual
bands than VIs. The red band correlated strongly with the Ψstem, obtaining an R2 as high as
0.71. On the other hand, a downside of using individual bands is that the variation in the
R2 values was higher than with the VIs: the NDVI ranged from 0.5 to 0.65, while the red
band ranged from 0.02 to 0.71.

To our mind, the most significant achievement of this work has been the development
of a robust multi-seasonal linear model based on the red and red-edge bands, which predicts
the Ψstem better than any of the tested VIs (Table 9). Further validation is needed to ensure
its applicability using linear and non-linear methods. However, in the first instance, it does
seem like a very valid method for detecting spatial and temporal water status variability
in vineyards.

5. Conclusions

Using high-resolution (12 cm/pixel) multispectral imagery acquired by UAV-mounted
sensors has proven useful in predicting the vine water status (Ψstem) in a semi-arid com-
mercial vineyard in central Spain. Other authors have already found it useful in vine-
yards [19,20]. Our findings have revealed that simple or multiple-regression models using
individual bands reflectance values and vegetation indexes yield significant correlations
with the Ψstem independently of canopy development. The multispectral image acquisi-
tion time is an important factor to consider, given that the solar midday flights obtained
better fittings than at 9:00. Nonetheless, by including the time as a categorical factor in
our multivariable model, its effect was reduced, and a robust model was achieved. This
multivariable model (R2 = 0.74) with the red (620–750 nm) and red-edge (670–760 nm)
bands could only be used to predict the Ψstem. Although other authors have found that the
NDVI can be a good indicator of the plant water status [21,50]. In our study, the relation of
the Ψstem with the NDVI is lower (R2 = 0.65). This results in us being able to use cheaper
custom-made sensors with just the two necessary bands.

The most significant achievement of this work has been the development of a robust
multi-seasonal linear model based on the red and red-edge bands, which predicts the
Ψstem better than any of the tested VIs. This research helps farmers to determine different
irrigation management zones.
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6. Future Research

This work opens up the possibility for future research focused on different aspects.
As a future prospective, this study should be applied to other vineyards with different
cultivars to validate the model. Exploration of the integration of AI and machine-learning
methods should focus on automated data analysis, potentially enhancing the accuracy and
enabling real-time application in diverse settings.
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Appendix A

Table A1. Different vegetation indexes calculated from a high-resolution (12 cm/pixel) multispectral
sensor mounted on board a UAV at two solar times (09:00 and 12:00), for two campaigns (2021 and
2022), under mechanical pruning (P) and no pruning (NP), in a commercial vineyard in central Spain
(Yepes, Toledo).

9:00 Solar Time

Date NDVI RDVI TCARI OSAVI NDRE

25 June 2021
P 0.79

ns
0.69

*
0.05

ns
0.76

*
0.22

ns
NP 0.75 0.60 0.19 0.69 0.22

6 July 2021
P 0.82

ns
0.72

*
−0.05

*
0.79

*
0.28

ns
NP 0.77 0.62 0.16 0.62 0.27

20 July 2021
P 0.79

*
0.57

*
−0.02

*
0.70

*
0.21

*
NP 0.69 0.44 0.16 0.58 0.19

30 July 2021
P 0.78

*
0.60

*
0.02

*
0.71

*
0.21

ns
NP 0.65 0.44 0.20 0.56 0.19

19 August 2021
P 0.72

*
0.45

*
0.16

ns
0.59

*
0.23

*
NP 0.52 0.29 0.18 0.40 0.18

Average 2021
P 0.78

*
0.61

*
0.03

*
0.71

*
0.23

*
NP 0.67 0.47 0.17 0.58 0.21

30 June 2022
P 0.75

ns
0.64

ns
0.14

ns
0.71

ns
0.19

*
NP 0.77 0.64 0.08 0.73 0.20
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Table A1. Cont.

9:00 Solar Time

Date NDVI RDVI TCARI OSAVI NDRE

15 July 2022
P 0.68

*
0.55

ns
0.29

*
0.64

ns
0.18

*
NP 0.73 0.58 0.21 0.67 0.19

5 August 2022
P 0.65

ns
0.56

ns
0.34

ns
0.62

ns
0.17

*
NP 0.66 0.53 0.31 0.62 0.19

12 August 2022
P 0.64

ns
0.52

ns
0.33

ns
0.60

ns
0.18

ns
NP 0.64 0.51 0.32 0.59 0.18

Average 2022
P 0.67

ns
0.56

ns
0.29

ns
0.63

ns
0.18

*
NP 0.70 0.56 0.23 0.65 0.19

ns: non-significant and * significant at p < 0.05.

Table A2. Different vegetation indexes calculated from a high-resolution (12 cm/pixel) multispectral
sensor mounted on board a UAV at 12:00 solar time for two campaigns in a commercial vineyard
under two pruning treatments (mechanical and no pruning) in central Spain (Yepes, Toledo).

12:00 Solar Time

Date NDVI RDVI TCARI OSAVI NDRE

25 June 2021
P 0.84

*
0.63

*
−0.26

*
0.76

*
0.22

ns
NP 0.80 0.54 0.002 0.69 0.24

6 July 2021
P 0.74

ns
0.58

*
0.18

ns
0.68

*
0.24

ns
NP 0.71 0.51 0.19 0.63 0.24

20 July 2021
P 0.71

*
0.53

*
0.15

ns
0.64

*
0.18

*
NP 0.66 0.45 0.18 0.57 0.16

30 July 2021
P 0.78

*
0.58

*
0.02

*
0.70

*
0.21

*
NP 0.70 0.49 0.18 0.61 0.20

19 August 2021
P 0.66

*
0.45

*
0.19

ns
0.57

*
0.17

ns
NP 0.56 0.36 0.21 0.46 0.15

Average 2021
P 0.74

*
0.55

*
0.06

*
0.67

*
0.2

ns
NP 0.69 0.47 0.15 0.59 0.2

30 June 2022
P 0.78

ns
0.57

ns
0.03

ns
0.69

ns
0.20

ns
NP 0.79 0.57 −0.01 0.70 0.21

15 July 2022
P 0.70

*
0.51

ns
0.18

*
0.62

ns
0.16

*
NP 0.74 0.51 0.10 0.64 0.17

5 August 2022
P 0.65

ns
0.48

ns
0.28

ns
0.59

ns
0.25

ns
NP 0.66 0.48 0.27 0.59 0.25

12 August 2022
P 0.65

ns
0.49

ns
0.24

ns
0.58

ns
0.17

ns
NP 0.66 0.49 0.23 0.59 0.17

Average 2022
P 0.68

ns
0.51

ns
0.18

ns
0.61

ns
0.19

ns
NP 0.71 0.51 0.15 0.63 0.20

ns: non-significant and * significant at p < 0.05.
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Figure A1. Evolution along the season of different vegetation indexes calculated from a high-
resolution (12 cm/pixel) multispectral sensor mounted on board a UAV at 09:00 and 12:00 solar time
in 2022 on a commercial vineyard under two pruning treatments (mechanical and no pruning) in
central Spain (Yepes, Toledo). (a,c,e,g,i) in the morning, (b,d,f,h,j) at noon.
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Abstract: Residual film pollution and excessive nitrogen fertilizer have become limiting factors for
agricultural development. To investigate the feasibility of replacing conventional plastic film with
biodegradable plastic film in cold and arid environments under nitrogen application conditions, field
experiments were conducted from 2021 to 2022 with plastic film covering (including degradable
plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320
(N2), and 480 (N3) kg·ha−1. The results showed no significant difference (p > 0.05) in dry matter
accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize
under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is
the main factor limiting the growth of spring maize. The above-ground and root biomass showed a
trend of increasing and then decreasing with the increase in nitrogen application level. Increasing
nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain
soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of
degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%,
respectively. At the same time, it can also improve water use efficiency and irrigation water use
efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic
use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined
with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2
treatment had the best complete growth of maize, which was the best model for achieving stable
yield and income increase and green development of spring maize in cold and cool irrigation areas.

Keywords: film mulching; nitrogen; maize; yield; nitrogen use efficiency; soil quality

1. Introduction

As one of the C4 crops with the most extensive planting area in the world, maize is
a crop for food and feed and an essential source of industrial raw materials [1]. China
has become the second largest producer of maize, with the planting area accounting for
more than 30% of the national grain crop planting area, reaching over 40 million hm2 [2].
(https://www.stats.gov.cn/sj/. accessed on 25 March 2024). Thus, increasing maize yield is
essential to ensuring food security, achieving self-sufficiency in food supply, and stabilizing
economic development. However, the frequent occurrence of extreme drought and the
shrinking of arable land area has brought enormous pressure on agricultural production
and even caused decreases in food production [3,4]. How to alleviate the pressure of
reduced grain production and implement a food security strategy is a major challenge
currently faced.
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Plastic film mulching is a key technology to improve crop yield [5] and change the
agricultural production mode in areas with water shortages [6]. Plastic film mulching may
improve soil moisture and heat status, promote the decomposition and transformation of
soil organic matter, improve soil nutrient content, enzyme activity, and microbial richness,
inhibit weed growth, reduce nutrient competition, and create a good soil environment
for crop growth [7]. Plastic film covering not only increases crop yield but also hinders
gas exchange between soil and atmosphere, enhances crop root respiration intensity, and
strengthens soil nitrification and denitrification processes to increase N2O and CH4 gas
emission pressure [8]. Ordinary film used in mulching is mainly made of polyethylene,
which is degraded very slowly in soil [9,10]. However, long-term plastic film mulching and
a lack of effective recovery measures make the residue of farmland mulching plastic film a
critical environmental problem. Film residue may destroy the continuity of soil pores [11],
change the composition of the soil microbial community [12], affect water [13] and nutrient
migration [14], hinder seed germination [15] and crop root development, and ultimately
reduce crop yield [16], even threatening food security. To solve the adverse effects caused
by continuous plastic film covering for many years, it is essential to develop and apply new
covering materials, such as degradable plastic film.

As a new plastic film, the degradable type could be degraded into CO2 and H2O with
the aid of the soil and natural environments [17], which could alleviate the pressure on
the agricultural ecological environment and was considered an effective way to solve the
problem of farmland residual film concentration. Therefore, the degradable plastic film has
been applied in many countries, such as China [18], Italy [19], Thailand [20], etc. In addition,
the soil water and heat preservation effects of degradable film are equivalent to those of
ordinary film [21], which can effectively improve the soil moisture and heat status [22]. In
the middle and late stages of crop growth, the soil moisture and heat of the degradable
plastic film were lower than those of the ordinary due to the expansion of the degradation
area [23]. The difference in crop yield and water use efficiency was slight between the
degradable film mulching and the ordinary [1]. Also, soil nitrate nitrogen accumulation
could even be reduced under degradable film mulching [24]. At present, nitrogen fertilizer
application is widespread in agricultural production to maintain high yields. However,
excessive application of nitrogen fertilizer does not significantly improve crop yield and
may result in yield reduction; furthermore, surplus nitrogen might be discharged into the
atmosphere in gaseous form, causing environmental pollution [25]. In addition, the low
nitrogen use efficiency and decline in recovery rate would lead to more soil residual nitrogen
or nitrogen leaching [26], resulting in soil salinization and groundwater pollution [27,28].
Therefore, optimizing nitrogen application rate and improving nitrogen utilization are of
great significance for improving grain quality, efficiency, and environmental protection.

Film mulching combined with nitrogen fertilizer application is an essential measure in
agricultural production, which can significantly improve crop yield and water use efficiency,
increase soil microbial nitrogen content and particulate organic nitrogen, and improve
soil fertility, conducive to sustainable development of the agricultural system. Therefore,
the objectives of this study were to determine: (1) effects of ordinary and degradable
plastic film on dry matter accumulation and physiological aspects of spring maize under
different nitrogen application gradients; (2) performance in crop yield, water and nitrogen
use efficiency, and soil quality subjected to nitrogen application; and (3) the possibility of
degradable plastic film replacing the ordinary by multiple indicators.

2. Materials and Methods

2.1. Description of the Study Site

The trial was conducted at the Yimin irrigation experimental station in Minle County,
Gansu Province, China, from April 2021 to October 2022. The area is located at 100◦43′
east longitude, 38◦39′ north latitude, and 1970 m above sea level, belonging to a temperate
continental climate (Figure 1). The average annual precipitation is about 200 mm, with
the evaporation of 1680–2270 mm; the average sunshine duration is about 2592–2997 h;
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the average yearly temperature is 3.4–5.6 ◦C; and the frost-free period is about 78–188 d.
The tested soil was light loam, with a maximum field water capacity of 24% and a soil
bulk density of 1.46 g·cm−3 in topsoil. The soil pH is 7.2 and soil fertility is medium
within 0–20 cm soil layer, with organic matter of 12.6 g·kg−1 and the available phosphorus,
potassium, and alkali hydrolyzed nitrogen of 15.8 mg·g−1, 192.1 mg·kg−1 and 57.5 mg·kg−1,
respectively. The rainfall in 2021 and 2022 was 244.7 mm and 237.4 mm, respectively
(Figure 2).

Figure 1. Location of the experimental site. Red star represents the city where the experimental site
is located.

 

Figure 2. Precipitation and temperature during the spring maize growth period in 2021 (a) and 2022 (b).

2.2. Experimental Design and Field Management

The spring maize crop was film-mulched and fertilized with nitrogen. There were
two kinds of mulching film: the ordinary mulching film and the egradable mulching film
(produced by Shandong Tianzhuang environmental protection Co., Ltd. with a thickness
of 0.008 mm and a width of 70 cm, Jinan, China), respectively recorded as P, D. There were
four nitrogen application levels: 0, 160, 320, and 480 kg·ha−1, respectively, recorded as N0,
N1, N2, and N3. There were 8 treatments in total, with 3 replications. There were 18 plots
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with each area of 28 m2 (2 m × 14 m), a 0.2 m interval between communities. The field plots
were arranged with random blocks. The spring maize was planted with a row spacing of
40 and plant spacing of 35cm, and a planting density of 74,000 plants per hectare, sown
on 16 April and harvested on 25 September 2021 or sown on 18 April and harvested on
28 September 2022, respectively. The fields were rotary tilled and leveled before sowing.
The application amounts of phosphorus fertilizer (P2O5) and potassium fertilizer (K2O)
were the same at 120 kg·ha−1 and 80 kg·ha−1, respectively, and all fertilizers were supplied
as base fertilizer, which was applied to the soil when the soil was turned. Nitrogen
fertilizer was applied four times at different growth stages, namely, 20% as base fertilizer,
30% at jointing, 30% at tasseling, and 20% at grain filling. The crop was watered using
plastic film-mulched drip irrigation with the same irrigation amount according to 100%ETc
(ETc = Kc × ET0, ET0 is calculated based on Penman–Monteith equation recommended by
FAO, while Kc refers to the standard of the China Meteorological Administration; the Kc
values for April, May, June, July, August, and September are 0.3, 0.4, 0.88, 1.26, 1.25, and
0.73, respectively) [29] (https://hbba.sacinfo.org.cn/, accessed on 10 January 2024). The
meteorological parameters were provided by the micro-meteorological instrument system
in the experimental station. The effective rainfall in the 2021 and 2022 crop growing seasons
was 138.86 mm and 123.66 mm, respectively (Figure 3), and the irrigation amount in the
above two growing seasons was 627 mm and 609 mm, respectively.

 

Figure 3. ETc and the effective precipitation during the spring maize growth period in 2021 (a) and
2022 (b).

2.3. Measurements and Calculations
2.3.1. Above-Ground and Underground Biomass

Three plants were randomly selected with uniform jointing, tasseling, and grain
filling of spring maize. The root sampling area was 15 × 15 cm around the plant, and the
sampling depth was determined according to the depth of spring maize roots. The plants
were decomposed into different organs, then killed at 105 ◦C for 30 min, and finally dried at
80 ◦C to a constant weight. The dry weight of each organ was weighed, and the root/shoot
ratio was calculated according to equation R/S(%) = root biomass/above-ground biomass.

2.3.2. Photosynthetic Gas Exchange Characteristics

Photosynthetic gas exchange parameters at the third leaf of the spring maize ear with
three repetitions were measured at 9:00–11:00 a.m. on sunny days during spring maize
jointing, tasseling, and grain filling using a LI-6400 portable photosynthesis instrument,
including photosynthetic rate, stomatal conductance, and transpiration rate.
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2.3.3. Soil Quality

During the maize harvest period, 0–20 cm of soil was taken in the middle of two
corn plants, and 3 points were randomly taken from each treatment as mixed samples to
measure soil enzyme activity. The urease was measured by sodium phenol and sodium
hypochlorite colorimetry. The enzyme activity was expressed by the milligrams of NH3-N
produced by 1 g of soil after incubation at 37 ◦C for 24 h under the action of urease. The
sucrase was measured using the 3,5-dinitrosalicylic acid colorimetric method, and enzyme
activity was expressed as the milligrams of glucose produced in 1 g of soil after being
incubated at 37 ◦C for 24 h under the action of sucrase. The soil pH was measured by a pH
meter (PHS-3C), with a soil mass extract of 2.5:1.

2.3.4. Grain Yield and Its Components

Ten spring maize plants were randomly selected in each plot at spring maize ripening
to determine the grain yield after measuring the yield components, including grain number
per ear, row number per ear, ear longitudinal diameter, and ear diameter.

2.3.5. Water and Nitrogen Use Efficiency

The crop evapotranspiration (ET, mm) was calculated using the following equation [30]:

ET = P + I + U − D − S + ΔW (1)

where P is the effective precipitation (mm); I is the amount of irrigation (mm); U is the
amount of groundwater recharge (mm). The depth of groundwater is below 20 m, so
groundwater recharge can be ignored. D is the amount of deep leakage (mm) (the tested
area is flat, thus there is no surface runoff, therefore D = 0). ΔW is the soil water storage
change between plant sowing and harvest (mm).

The water use efficiency (WUE, kg·m−3) was calculated according to following formula:

WUE = Y/ET (2)

where Y is spring maize grain yield (kg·ha−1).
The irrigation water use efficiency (IWUE, kg·m−3) was calculated using the

following formula:
IWUE = Y/I (3)

The nitrogen fertilizer partial productivity (NPF, kg·kg−1) was calculated according to
the following formula:

NPF = YN/N (4)

where YN is the spring maize yield in nitrogen application area (kg·ha−1), and N is the
amount of nitrogen fertilizer input (kg·ha−1).

The nitrogen fertilizer agronomic use efficiency (NFA, kg·kg−1) was calculated using
the following formula:

NFA = (YN − Y0)YN/N (5)

where Y0 is the spring maize yield in the area without nitrogen application (kg·ha−1).

2.4. Statistical Analysis

The SPSS 22.0 software was used to analyze the difference in the measured data
(p < 0.05), and the Origin 2021 software was used for plotting. The Yaaph software
(http://www.jeffzhang.cn/, accessed on 25 March 2024) was used to draw the compre-
hensive analysis hierarchy model of spring maize and the weight analysis of each index.
The Matlab software (https://ww2.mathworks.cn/products/matlab.html, accessed on
25 March 2024) was used to calculate the weight of the combination based on the game
theory and the comprehensive score of TOPSIS.
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3. Result

3.1. Root and Shoot Growth

Nitrogen fertilizer is the main factor affecting spring maize root and shoot growth. The
degradable plastic film was gradually degraded with spring maize growth, and the effects
of different film types on spring maize growth were quite different, showing significant
(p < 0.05) effects on spring maize growth at tasseling and grain filling and significant
(p < 0.01) effects on spring maize root and shoot growth (Table 1).

Table 1. Significance test on spring maize root and shoot growth at different growth stages; ns means no
significant difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest

Jointing Tasseling Grain Filling

Above-Ground
Dry Matter

Root Dry
Matter

Above-Ground
Dry Matter

Root Dry
Matter

Above-Ground
Dry Matter

Root Dry
Matter

2021
F 1.16 ns 3.83 ns 4.35 ns 5.12 * 5.39 * 8.16 *
N 12.44 ** 29.36 ** 43.94 ** 102.72 ** 45.27 ** 139.07 **

F×N 0.04 ns 0.16 ns 0.16 ns 0.27 ns 0.15 ns 0.19 ns

2022
F 4.09 ns 4.31 ns 2.38 ns 5.52 * 7.01 * 10.18 **
N 29.27 ** 27.05 ** 18.33 ** 58.71 ** 63.02 ** 157.72 **

F×N 0.02 ns 0.06 ns 0.05 ns 0.26 ns 0.20 ns 0.04 ns

Y 34.57 ** 9.79 ** 3.48 ns 12.39 ** 16.10 ** 8.94 **
F 4.73 * 8.05 ** 5.87 * 10.55 ** 12.31 * 18.20 **
N 39.39 ** 54.90 ** 51.40 ** 151.20 ** 106.92 ** 295.61 **

Y×F 0.38 ns 0.21 ns 0.03 ns 0.19 ns 0.03 ns 0.01 ns
Y×N 1.52 ns 0.90 ns 0.03 ns 0.25 ns 0.66 ns 0.10 ns
F×N 0.02 ns 0.01 ns 0.16 ns 0.52 ns 0.28 ns 0.16 ns

Y×F×N 0.05 ns 0.19 ns 0.00 ns 0.01 ns 0.07 ns 0.08 ns

3.1.1. Above-Ground Dry Matter

The spring maize above-ground dry matter accumulation showed an increasing trend
with plant growth (Figure 4). At jointing, there was no significant difference (p > 0.05)
between the degradable plastic film mulching and the ordinary above-ground dry matter
accumulation. The above-ground dry matter was significantly improved under nitrogen
application, and that in N2 treatment marked the maximum with 7.76~31.43% increase
under the degradable plastic film mulching and 6.50~28.85% increase under the ordinary
mulching. At tasseling, nitrogen fertilizer was the main factor affecting spring maize
above-ground dry matter. Compared with N0, N1, and N3, N2 treatment, the above-
ground dry matter of spring maize was increased by 49.89%, 22.36%, and 7.12% under
the degradable plastic film mulching and 40.39%, 20.45%, and 5.27% under the ordinary
mulching, respectively. At the grain-filling stage, nitrogen fertilizer had a more significant
effect on increasing above-ground dry matter accumulation. Compared with N0 and
N1, N2 significantly increased by 61.45%, 28.66% under degradable plastic film mulching
and 52.87%, 28.74% under ordinary mulching, and the effect of nitrogen fertilizer under
degradable plastic film mulching was better than that of ordinary plastic film mulching.
It can be seen that a reasonable amount of nitrogen fertilizer can promote the growth
and development of spring maize and improve the dry matter quality of above-ground
parts. When the nitrogen fertilizer level exceeds N2, it will inhibit the growth of spring
maize and affect the accumulation of dry matter. There was no significant difference in the
development of spring maize under ordinary plastic film mulching and degradable plastic
film mulching (p > 0.05).
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Figure 4. Effects of different mulching and nitrogen application on root and shoot growth of spring
maize in 2021 (a) and 2022 (b). D represents degradable plastic film, P represents ordinary plastic
film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The let-
ters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

3.1.2. Root Dry Matter

The root biomass of spring maize reached its maximum, with the growth stage advanc-
ing to the filling phase (Figure 4). Nitrogen fertilizer can promote the growth of the spring
maize root system and improve its quality. At the jointing stage, N2 treatment increased the
root system by 40.57%, 20.58%, and 8.07% under the degradable plastic film mulching and
37.97%, 20.50%, and 7.66% under the ordinary mulching, respectively, compared with N0,
N1, and N3, indicating that N3 nitrogen application can inhibit the growth of the spring
maize root system. At the tasseling stage, under the cover of degradable plastic film and
ordinary plastic film, the growth rate from N0 to N1 increased by 40.39% and 31.06%, while
from N1 to N2 it increased by 26.38% and 25.43%. It can be seen that the effect of root
mass growth gradually decreased with the increase in nitrogen application level, and even
the N3 treatment of degradable plastic film and ordinary plastic film decreased by 6.58%
and 8.92%, respectively. At the grain filling stage, compared with N0, N1, and N3, N2
treatment significantly increased 115.73%, 58.17%, and 22.02% under the degradable plastic
film mulching and 103.56%, 49.18%, and 18.53% under the ordinary mulching (p < 0.05).
From the jointing stage to the grain filling period, the degradable mulching film improved
root quality more than the ordinary one.

3.1.3. Root Shoot Ratio

At the jointing stage, film mulching type, nitrogen application level, and their interac-
tion had no significant effect on root shoot ratio (p > 0.05). From the tasseling stage to the
grain filling stage, the impact of nitrogen fertilizer on the root shoot ratio reached p < 0.01
level, and film mulching and its interaction had no significant effect on the root shoot ratio
(p > 0.05) (Table 2).
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Table 2. Significance test of spring maize root shoot ratio at different growth stages; ns means no
significant difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest Jointing Stage Tasseling Period Grain Filling Period

2021
F 0.41 ns 0.03 ns 0.22 ns
N 1.77 ns 19.24 ** 17.72 **

F×N 0.12 ns 0.38 ns 0.32 ns

2022
F 0.11 ns 0.27 ns 0.13 ns
N 0.60 ns 6.23 ** 10.43 **

F×N 0.07 ns 0.25 ns 0.17 ns

Y 4.73 * 1.41 ns 0.86 ns
F 0.45 ns 0.28 ns 0.33 ns
N 2.03 ns 19.40 ** 27.09 **

Y×F 0.02 ns 0.13 ns 0.00 ns
Y×N 0.13 ns 0.10 ns 0.25 ns
F×N 0.01 ns 0.56 ns 0.35 ns

Y×F×N 0.17 ns 0.01 ns 0.12 ns

The root shoot ratio increased first and then decreased with the growth period
(Figure 5). At a jointing stage, film mulching type and nitrogen application level had
no significant effect on the root shoot ratio (p > 0.05). At the tasseling stage, nitrogen
fertilizer could significantly improve the root shoot ratio of spring maize. The root shoot
ratio of spring maize under degradable plastic film mulching increased with the increase in
nitrogen application level; from N0 to N1 increased by 14.59%, from N2 to N2 increased
by 3.35%, and from N2 to N3 increased by 0.15%; Under ordinary plastic film mulching,
the root shoot ratio of the N3 treatment was 4.37% lower than that of N2, indicating that
degradable mulching was more conducive to the growth of the spring maize root shoot
and coordinated the root shoot ratio. There was no significant difference in the root shoot
ratio of the nitrogen application treatment (p > 0.05). At the grain-filling stage, the nitro-
gen application level of N2 was significantly higher than that of N0 and N1 by 33.35%,
22.56% under the degradable plastic film mulching, and 32.54%, 15.69% under the ordinary
mulching (p < 0.05), respectively. At the same time, there was no significant difference
between N3 and N2 (p > 0.05).

 
Figure 5. Effect of different film mulching and nitrogen application on spring maize root shoot ratio
in 2021 (a) and 2022 (b). R/S represents root-to-shoot ratio, D represents degradable plastic film,
P represents ordinary plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1

nitrogen fertilizer. The letters above the histogram indicate that there are significant differences
among different treatments (p < 0.05). The data are the figure is the average of multiple repeated sets
(n = 3). The bar above the bar graph represents the standard error.
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3.2. Photosynthetic Gas Exchange Characteristics

Nitrogen fertilizer was the main factor affecting the net photosynthetic rate, transpi-
ration rate, and stomatal conductance of spring maize, reaching a level of p < 0.01. Film
mulching and its interaction at the jointing stage did not significantly affect the net pho-
tosynthetic rate, transpiration rate, or stomatal conductance. Nitrogen fertilizer from the
tasseling location to the grain filling stage had significant (p < 0.05) and highly significant
(p < 0.01) effects on net photosynthetic rate, transpiration rate, and stomatal conductance,
and the interaction between film mulching and nitrogen fertilizer had no significant impact
(p > 0.05) (Table 3).

Table 3. Significance test of photosynthetic gas exchange parameters of spring maize at different
growth stages. Pn represents the net photosynthetic rate, Tr represents the transpiration rate, and Gs
represents stomatal conductance. ns means no significant difference (p > 0.05); * means significant at
p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest
Jointing Stage Tasseling Period Grain filling Period

Pn Tr Gs Pn Tr Gs Pn Tr Gs

2021
F 0.84 ns 3.02 ns 4.00 ns 2.10 ns 3.73 ns 3.88 ns 5.74 * 8.71 ** 21.70 **
N 15.14 ** 24.54 ** 33.63 ** 17.82 ** 26.54 ** 21.23 ** 38.33 ** 81.79 ** 86.84 **

F×N 0.12 ns 0.89 ns 0.44 ns 0.13 ns 0.08 ns 0.04 ns 0.12 ns 1.19 ns 4.31 *

2022
F 3.16 ns 4.22 ns 2.24 ns 3.39 ns 5.83 * 8.07 * 3.42 ns 4.57 * 8.84 **
N 19.89 ** 34.39 ** 8.29 ** 25.51 ** 34.77 ** 56.66 ** 23.08 ** 21.97 ** 136.09 **

F×N 0.27 ns 0.61 ns 0.23 ns 0.50 ns 0.22 ns 0.11 ns 0.10 ns 0.92 ns 0.04 ns

Y 7.13 * 1.15 ns 71.52 ** 35.52 ** 2.26 ns 21.89 ** 7.42 * 1.15 ns 0.72 ns
F 3.97 ns 7.14 * 5.56 * 5.42 * 9.36 ** 10.16 ** 8.85 ** 12.50 ** 28.98 **
N 34.23 ** 58.08 ** 31.60 ** 43.00 ** 60.68 ** 62.68 ** 59.28 ** 88.49 ** 213.84 **

Y×F 0.97 ns 0.02 ns 0.02 ns 0.08 ns 0.06 ns 0.02 ns 0.04 ns 0.07 ns 1.28 ns
Y×N 2.68 ns 0.21 ns 0.88 ns 0.39 ns 0.07 ns 0.23 ns 0.28 ns 5.04 ** 10.15 **
F×N 0.38 ns 1.47 ns 0.44 ns 0.55 ns 0.26 ns 0.11 ns 0.21 ns 0.77 ns 2.03 ns

Y×F×N 0.07 ns 0.05 ns 0.16 ns 0.09 ns 0.03 ns 0.01 ns 0.01 ns 1.30 ns 2.23 ns

3.2.1. Net Photosynthetic Rate

With the advance of the spring maize growth period, the net photosynthetic rate
reached its maximum at the tasseling stage and slightly decreased at the grain filling
stage. The net photosynthetic rate increased with the increase in nitrogen application
level (Figure 6). At jointing, there was no significant difference in net photosynthetic rate
between N2 and N3 treatments under degradable plastic film mulching (p > 0.05), which
was significantly increased by 19.40%, 8.95% and 24.25%, 13.37% compared with N0 and N1,
respectively. Under ordinary plastic film mulching, N3 was increased by 18.90%, 10.54%,
and 3.88% compared with N2, N1, and N0, respectively. At tasseling, the net photosynthetic
rate of degradable plastic film and ordinary plastic film mulching increased by 16.57%
and 11.45% from N0 to N1, increased by 9.24% and 7.78% from N1 to N2, and increased
by 2.87% and 2.17% from N2 to N3, respectively. It can be seen that the effect of nitrogen
fertilizer gradually weakened with the increase in nitrogen application level. At the grain
filling stage, the nitrogen application level of N3 was significantly higher than that of N0,
N1, and N2 (p < 0.05), increasing by 45.71%, 26.64%, and 15.10% under the degradable
plastic film mulching, and 43.44%, 29.41%, and 13.32% under the ordinary mulching
(p < 0.05), respectively. From the jointing to the grain filling stage, there was no significant
difference in the net photosynthetic rate between degradable plastic film and ordinary
plastic film under the same nitrogen application level (p > 0.05), and the increase in the net
photosynthetic rate of degradable plastic film combined with nitrogen fertilizer was higher
than that of ordinary plastic film.
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Figure 6. Effect of different film mulching combined with nitrogen fertilizer on the net photosynthetic
rate of spring maize (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents ordinary
plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The
letters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

3.2.2. Transpiration Rate

The transpiration rate of spring maize increased first, then decreased with the advance
of the growth period, and increased with the increase in nitrogen application level (Figure 7).
At a jointing stage, the degradable plastic film and common plastic film increased by 23.20%
and 10.96%, respectively, from N0 to N1, increased by 14.29% and 12.63%, respectively,
from N1 to N2, and increased by 5.23% and 4.62%, respectively, from N2 to N3. This
showed that nitrogen application significantly increased the transpiration rate. At the
tasseling stage, the transpiration rate of nitrogen application treatment was significantly
higher than that of no nitrogen application treatment (p < 0.05). N1, N2, and N3 under
degradable plastic film cover increased by 29.50%, 54.07%, and 68.84% compared to N0,
respectively. N1, N2, and N3 under ordinary plastic film cover increased by 22.81%, 40.40%,
and 52.66% compared to N0. Moreover, there was no significant difference in transpiration
rate between degradable plastic film cover and ordinary plastic film cover under the same
nitrogen application level (p > 0.05). At the grain filling stage, the nitrogen application
level treatment of N3 was 69.97%, 21.08%, and 5.06% under the degradable plastic film
mulching, and 55.42%, 15.13%, and 8.15% under the ordinary mulching, higher than that of
N0, N1, and N2, respectively. From the jointing to the tasseling stage, the transpiration rate
of common plastic film mulching was higher than that of degradable plastic film mulching,
but there was no significant difference (p > 0.05).

3.2.3. Stomatal Conductance

As the growth period progressed, the stomatal conductance of spring maize reached
its maximum at the tasseling stage and slightly decreased during the filling phase (Figure 8).
During the jointing stage, the stomatal conductance of nitrogen application treatments was
significantly higher than that of non-nitrogen application treatments (p < 0.05). N3, N2, and
N1 increased by 11.87%, 23.50%, and 32.00% under the degradable plastic film mulching,
and 11.57%, 16.67%, and 24.07% under the ordinary mulching, respectively, compared
to N0. Moreover, the stomatal conductance of ordinary plastic film was higher than that
of degradable plastic film, but there was no significant difference (p > 0.05). During the
tasseling period, N3 treatment under degradable plastic film coverage was significantly
higher than N2, N1, and N0 (p < 0.05), with increases of 48.95%, 23.48%, and 12.70%,
respectively. There was no significant difference in nitrogen application levels between N3
and N2 under ordinary plastic film coverage (p > 0.05), both of which were significantly
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higher than N1 and N0 (p < 0.05). During the grain-filling period, under the cover of
degradable and ordinary plastic film, the increase from N0 to N1 was 12.83% and 16.74%,
respectively. The increase from N1 to N2 was 29.02% and 35.48%, and the increase from N2
to N3 was 17.63% and 9.79%, respectively. Under the same nitrogen application level, the
stomatal conductance of ordinary plastic film was higher than that of degradable plastic
film, and when the nitrogen application level was lower than N2, the amplification effect
of average plastic film was better than that of degradable plastic film. Under the nitrogen
application level of N3, the amplification effect of degradable plastic film was better than
that of ordinary plastic film.

Figure 7. The effect of different coverage and nitrogen fertilizer applications on the spring maize
transpiration rate (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents ordinary
plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer. The
letters above the histogram indicate that there are significant differences among different treatments
(p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar above the
bar graph represents the standard error.

Figure 8. The effect of different coverage and nitrogen fertilizer application on the stomatal con-
ductance of spring maize (2021 (a) and 2022 (b)). D represents degradable plastic film, P represents
ordinary plastic film, and N0, N1, N2, and N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertil-
izer. The letters above the histogram indicate that there are significant differences among different
treatments (p < 0.05). The data in the figure are the average of multiple repeated sets (n = 3). The bar
above the bar graph represents the standard error.
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3.3. Yield and Water and Nitrogen Use Efficiency

Nitrogen fertilizer was the main factor affecting spring maize yield, water consump-
tion, and water and nitrogen utilization efficiency, reaching p < 0.05 and p < 0.01. Film
mulching has a significant (p < 0.05) and highly effective (p < 0.01) impact on irrigation
water use efficiency (IWUE) and nitrogen fertilizer agronomic utilization efficiency. The
interaction between film mulching and nitrogen fertilizer had a significant (p < 0.01) impact
on nitrogen fertilizer agronomic utilization efficiency (Table 4).

Table 4. Effects of different mulching and nitrogen application on spring maize yield and water and
nitrogen use efficiency. The data in the table is the mean ± standard deviation, n = 3. Different letters
after the same column of numbers indicate significant differences (p < 0.05); ns means no significant
difference (p > 0.05); * means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year Treatments Yield (kg·ha−1) ET (mm) WUE (kg·m−3) IWUE (kg·m−3) NPF (kg·kg−1) NFA (kg·kg−1)

2021

DN0 10,056.06 ± 723.38 d 786.20 ± 16.74 ab 1.28 ± 0.07 d 1.60 ± 0.12 d -- --
DN1 12,275.78 ± 497.49 bc 818.83 ± 14.01 ab 1.50 ± 0.05 bcd 1.96 ± 0.08 bc 76.72 ± 3.11 a 28.83 ± 3.03 a
DN2 14,016.28 ± 542.33 ab 839.86 ± 15.91 a 1.67 ± 0.10 a 2.24 ± 0.11 ab 43.80 ± 2.04 b 12.38 ± 0.40 b
DN3 13,680.4 ± 653.61 ab 844.57 ± 20.03 a 1.62 ± 0.03 abc 2.18 ± 0.08 ab 28.50 ± 1.13 c 7.55 ± 0.83 c
PN0 11,014.06 ± 622.97 cd 770.25 ± 21.94 b 1.43 ± 0.10 cd 1.76 ± 0.10 cd -- --
PN1 12,973.96 ± 514.01 ab 793.97 ± 16.97 ab 1.63 ± 0.05 abc 2.07 ± 0.08 ab 81.09 ± 3.21 a 12.25 ± 1.28 b
PN2 14,895.24 ± 586.73 a 827.76 ± 20.65 ab 1.80 ± 0.03 a 2.38 ± 0.10 a 46.55 ± 1.83 b 12.13 ± 0.23 b
PN3 14,621.44 ± 607.53 a 835.34 ± 14.52 a 1.75 ± 0.09 a 2.33 ± 0.10 a 30.46 ± 1.27 c 7.52 ± 0.24 c

F fest
F 4.23 ns 1.52 ns 6.38 * 4.25 ns 2.71 ns 24.17 **
N 18.00 ** 5.05 * 9.52 ** 17.95 ** 251.76 ** 44.21 **

F×N 0.02 ns 0.07 ns 0.01 ns 0.02 ns 0.15 ns 22.97 **

2022

DN0 9446.10 ± 446.82 d 746.38 ± 11.50 cd 1.26 ± 0.04 d 1.55 ± 0.07 d -- --
DN1 11,207.88 ± 488.95 cd 765.96 ± 16.27 bcd 1.46 ± 0.07 cd 1.84 ± 0.08 cd 70.05 ± 3.06 a 25.21 ± 0.88 a
DN2 13,773.96 ± 766.25 ab 801.97 ± 14.61 ab 1.72 ± 0.12 ab 2.26 ± 0.13 ab 43.04 ± 2.39 b 13.52 ± 1.31 bc
DN3 13,107.30 ± 518.96 abc 813.98 ± 15.09 a 1.61 ± 0.03 abc 2.15 ± 0.09 abc 27.31 ± 1.08 c 7.63 ± 0.18 d
PN0 10,028.44 ± 895.66 d 727.34 ± 10.15 d 1.38 ± 0.11 cd 1.65 ± 0.15 d -- --
PN1 12,017.44 ± 626.16 bc 758.35 ± 13.62 bcd 1.59 ± 0.10 bc 1.97 ± 0.10 bc 75.11 ± 3.91 a 12.43 ± 2.92 bcd
PN2 14,567.82 ± 498.79 a 784.20 ± 11.10 abc 1.86 ± 0.05 a 2.39 ± 0.08 a 45.52 ± 1.56 b 14.19 ± 1.25 b
PN3 14,248.88 ± 573.33 a 795.25 ± 16.05 ab 1.79 ± 0.07 ab 2.34 ± 0.09 a 29.69 ± 1.19 c 8.79 ± 1.16 cd

F fest
F 3.61 ns 2.65 ns 6.64 * 3.75 ns 2.78 ns 8.60 *
N 21.63 ** 9.98 ** 14.52 ** 21.65 ** 169.04 ** 24.24 **

F×N 0.07 ns 0.08 ns 0.09 ns 0.07 ns 0.20 ns 13.45 **

Y 4.45 * 25.85 ** 0.00 ns 0.83 ns 4.09 ns 0.02 ns
F 7.81 ** 3.88 ns 13.29 ** 7.97 ** 5.48 * 11.74 **
N 39.48 ** 13.72 ** 24.50 ** 39.48 ** 412.74 ** 25.52 **

Y×F 0.00 ns 0.00 ns 0.00 ns 0.00 ns 0.01 ns 0.53 ns
Y×N 0.29 ns 0.06 ns 0.35 ns 0.38 ns 1.77 ns 0.54 ns
F×N 0.05 ns 0.01 ns 0.03 ns 0.05 ns 0.34 ns 13.78 **

Y×F×N 0.04 ns 0.14 ns 0.07 ns 0.05 ns 0.01 ns 0.12 ns

Nitrogen fertilizer significantly increased the spring maize yield. Under biodegradable
plastic film and ordinary plastic film coverage, the yield increased from N0 to N1 by 20.42%
and 18.77%, respectively, and from N1 to N2 by 18.34% and 17.89%, respectively. As the
nitrogen application rate increased, the yield of spring maize gradually weakened and
even decreased by 2.01% to 3.61% at the N3 nitrogen application level. Moreover, under the
same nitrogen application level, the yield of biodegradable plastic film was not significantly
different from that of ordinary plastic film (p > 0.05). Nitrogen fertilizer promoted spring
maize water absorption and increased water consumption. N3 is 8.22%, 4.65%, and 1.02%
higher under the degradable plastic film mulching than N2, N1, and N0, respectively,
and 8.88%, 5.04%, and 1.16% under the ordinary mulching. Increasing nitrogen fertilizer
application can improve spring maize WUE and IWUE. Under degradable plastic film
coverage, N2 treatment increased WUE and IWUE by 33.55%, 14.53%, 42.55%, and 18.40%
compared to N1 and N0, respectively. Under ordinary plastic film coverage, N2 treatment
increased WUE and IWUE by 30.08%, 13.48%, 40.09%, and 17.94% compared to N1 and N0,
respectively. However, it reduced nitrogen fertilizer productivity. Degradable plastic film
treatment reduced N2 and N3 by 69.01% and 163.00%, respectively, while ordinary plastic
film treatment reduced N2 and N3 by 69.65% and 159.69%, respectively, compared to N1.
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3.4. Soil Enzyme Activity and pH

Nitrogen fertilizer significantly affected the soil urease and sucrase (p < 0.01), while
film mulching had a critical (p < 0.05) and highly effective (p < 0.01) effect on urease and
sucrase. Film mulching and nitrogen fertilizer had no significant effect on pH (p > 0.05), and
the interaction had no considerable impact on urease, sucrase, and pH (p > 0.05) (Table 5).

Table 5. Significance test of soil enzyme activity and pH. ns means no significant difference (p > 0.05);
* means significant at p < 0.05 level; ** means significant at p < 0.01 level.

Year F Fest Urease Sucrase pH

2021
F 9.66 ** 4.33 ns 0.02 ns
N 76.05 ** 15.13 ** 0.48 ns

F×N 0.06 ns 0.12 ns 0.002 ns

2022
F 6.16 * 8.61 * 0.06 ns
N 64.21 ** 37.80 ** 1.32 ns

F×N 0.24 ns 0.20 ns 0.003 ns

Y 1.21 ns 0.45 ns 0.08 ns
F 15.49 ** 11.18 ** 0.06 ns
N 139.26 ** 43.66 ** 1.57 ns

Y×F 0.10 ns 0.02 ns 0.00 ns
Y×N 0.24 ns 0.04 ns 0.04 ns
F×N 0.14 ns 0.25 ns 0.01 ns

Y×F×N 0.17 ns 0.04 ns 0.00 ns

The soil urease, sucrase, and pH under plastic film mulching were lower than those
under ordinary plastic film mulching, but there was no significant difference (p > 0.05)
(Figure 9). Under ordinary plastic film coverage, urease and sucrase increased by 34.24%
and 13.67% from N0 to N1, 26.72% and 15.24% from N1 to N2, and 11.18% and 1.44% from
N2 to N3, respectively. Under biodegradable plastic film coverage, urease and sucrase
increased by 42.21% and 21.92% from N0 to N1, 32.88% and 14.48% from N1 to N2, and
12.71% and 2.33% from N2 to N3, respectively. It can be seen that increasing nitrogen
fertilizer can significantly improve soil urease and sucrase activities, but the increase
gradually decreases with increasing nitrogen application. Increasing nitrogen fertilizer
application can reduce soil pH, but the treatments have no significant difference (p > 0.05).

Figure 9. The effect of film mulching combined with nitrogen fertilizer on the soil quality of spring
maize. D represents degradable plastic film, P represents ordinary plastic film, and N0, N1, N2, and
N3 represent 0, 160, 320, and 480 kg·ha−1 nitrogen fertilizer.
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3.5. Correlation Analysis between Various Indicators of Spring Maize

The yield of spring maize mainly comes from the photosynthetic products during
the filling period [31], so the root and crown growth and photosynthetic gas exchange
parameters during the grain filling period are selected as evaluation indicators. Figure 10
showed a significant positive correlation (p < 0.05) between yield and water consumption,
transpiration rate, above-ground biomass, root biomass, root-to-shoot ratio, urease, and
sucrase under degradable plastic film coverage. The yield under plastic film coverage
was positively correlated with water consumption, above-ground biomass, root biomass,
root-to-shoot ratio, urease, and sucrase (p < 0.05) and negatively correlated with pH.

Figure 10. Correlation analysis between various indicators of spring maize under different treatments,
* Significant difference at p < 0.05 level. D represents degradable plastic film, P represents ordinary
plastic film, Y represents yield, ET represents crop evapotranspiration, Pn represents net photo-
synthetic rate, Tr represents transpiration rate, Gs represents stomatal conductance, DY represents
above-ground biomass, R represents root biomass, R/S represents root to shoot ratio, U represents
urease, and S represents sucrase.

3.6. Construction of a Comprehensive Growth Evaluation Model for Spring Maize
3.6.1. Comprehensive Evaluation Hierarchy Model

They were using Yaaph software to establish a hierarchical model for the compre-
hensive evaluation of spring maize (Figure 11). The total growth index (C) target layer
includes four criteria layers: yield and water use index (C1), photosynthetic index (C2),
root and crown growth index (C3), and soil index (C4). The yield indicators include two
indicator layers: yield (C11) and water consumption (C12). The photosynthetic indicators
include three indicator layers: net photosynthetic rate (C21), transpiration rate (C22), and
stomatal conductance (C23). The root cap growth indicators include three indicator layers:
above-ground dry matter mass (C31), root mass (C32), and root cap ratio (C33). Soil quality
indicators include three indicator layers: urease (C41), sucrase (C42), and pH (C43).

Figure 11. Comprehensive growth evaluation model diagram of spring maize.
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3.6.2. Indicator Weights
AHP Method for Determining Indicator Weights

After establishing the hierarchical model, a judgment matrix is specified using a scale
of 1–9. According to Figure 10, values are assigned to each indicator, and the consistency
of the judgment matrix is checked. The judgment matrices for the comprehensive growth
indicator (C), yield indicator (C1), root and crown growth indicator (C3), and soil indicator
(C4) are as follows:

Degradable plastic film:

C =

⎡
⎢⎢⎣

1.0000 2.0000 2.5000 3.0000
0.5000 1.0000 0.5000 0.5000
0.4000 2.0000 1.0000 2.0000
0.3333 2.0000 0.5000 1.000

⎤
⎥⎥⎦C1 =

[
1.0000 2.0000
0.5000 1.0000

]

C2 =

⎡
⎣1.0000 0.5000 1.0000

2.0000 1.0000 2.0000
1.0000 0.5000 1.0000

⎤
⎦C3 =

⎡
⎣1.0000 2.0000 1.5000

0.5000 1.0000 1.1000
0.6667 0.9091 1.0000

⎤
⎦

C4 =

⎡
⎣1.0000 0.5000 1.5000

2.0000 1.0000 1.5000
0.6667 0.6667 1.0000

⎤
⎦

Ordinary plastic film:

C =

⎡
⎢⎢⎣

1.0000 2.0000 2.5000 2.0000
0.5000 1.0000 0.5000 1.5000
0.4000 2.0000 1.0000 2.0000
0.5000 0.6667 0.5000 1.000

⎤
⎥⎥⎦C1 =

[
1.0000 1.5000
0.6667 1.0000

]

C2 =

⎡
⎣1.0000 2.0000 2.5000

0.5000 1.0000 0.5000
0.4000 2.0000 1.0000

⎤
⎦C3 =

⎡
⎣1.0000 2.5000 1.5000

0.4000 1.0000 0.5000
0.6667 0.9091 1.0000

⎤
⎦

C4 =

⎡
⎣1.0000 0.3333 0.5000

3.0000 1.0000 2.0000
2.0000 0.5000 1.0000

⎤
⎦

The consistency test coefficients CR of the comprehensive growth index (C), yield
index (C1), root and shoot growth index (C3), and soil index (C4) of the two plastic film
mulchings were all less than 0.1, indicating that the consistency test results were good. The
established judgment matrix was reliable and reasonable (Table 6, λmax is the maximum
eigenvalue). The results showed that the weight of each index under degradable plastic film
mulching was in the order of yield, water consumption, above-ground dry matter quality,
sucrase, transpiration rate, root-shoot ratio, root quality, urease, pH, net photosynthetic
rate, and stomatal conductance. The weight of each index under ordinary plastic film
mulching was in the order of yield, water consumption, above-ground dry matter quality,
net photosynthetic rate, root-shoot ratio, sucrase, stomatal conductance, root quality, pH,
transpiration rate, and urease.

Table 6. Weight calculation results of AHP Analytic Hierarchy Process.

Degradable Plastic Film Ordinary Plastic Film

Local
Weights

Final Weight
Consistency Check

Parameters
Local

Weights
Final Weight

Consistency Check
Parameters

Target
layer C

0.4435 0.4435
CR = 0.0664 < 0.1
λmax = 4.1774

0.4115 0.4115
CR = 0.0477 < 0.1
λmax = 4.1274

0.1360 0.1360 0.1781 0.1781
0.2493 0.2493 0.2604 0.2604
0.1713 0.1713 0.1460 0.1460
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Table 6. Cont.

Degradable Plastic Film Ordinary Plastic Film

Local
Weights

Final Weight
Consistency Check

Parameters
Local

Weights
Final Weight

Consistency Check
Parameters

Criterion
layer C1

0.6667 0.2957 CR = 0.0000 < 0.1
λmax = 2.0000

0.6000 0.2469 CR = 0.0000 < 0.1
λmax = 2.00000.3333 0.1478 0.4000 0.1646

Criterion
layer C2

0.2500 0.0340
CR = 0.0000 < 0.1
λmax = 3.0000

0.5232 0.0932
CR = 0.0904 < 0.1
λmax = 3.0940

0.5000 0.0680 0.1928 0.0343
0.2500 0.0340 0.2840 0.0506

Criterion
layer C3

0.4641 0.1157
CR = 0.0157 < 0.1
λmax = 3.0163

0.4797 0.1249
CR = 0.0036 < 0.1
λmax = 3.0037

0.2636 0.0657 0.1805 0.0470
0.2723 0.0679 0.3398 0.0885

Criterion
layer C4

0.2918 0.0500
CR = 0.0516 < 0.1
λmax = 3.0536

0.1634 0.0239
CR = 0.0088 < 0.1
λmax = 3.0092

0.4632 0.0793 0.5396 0.0788
0.2451 0.0420 0.2970 0.0434

Entropy Weight Method for Determining Indicator Weights

The weights of various indicators of spring maize were calculated using Matlab pro-
gramming, as shown in Table 7. According to the table, the consequences of multiple
indicators under degradable plastic film cover, in descending order, were: pH, stomatal
conductance, root-to-shoot ratio, root mass, net photosynthetic rate, urease, water con-
sumption, above-ground dry matter mass, yield, sucrase, and transpiration rate. Under
ordinary plastic film cover, the weights of various indicators were in descending order: pH,
stomatal conductance, net photosynthetic rate, root mass, above-ground dry matter mass,
urease, sucrase, and water consumption root-to-shoot ratio, yield, and transpiration rate.

Table 7. Single index weights of spring maize calculated based on Entropy Weight Method.

Treatments Index C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43

D Weight 0.0797 0.0837 0.0922 0.0754 0.1102 0.0834 0.0923 0.0983 0.0864 0.0785 0.1199
P 0.0787 0.0817 0.0980 0.0717 0.0999 0.0858 0.0862 0.0802 0.0834 0.0822 0.1522

Combination Weight Determination Based on the Game Theory

To avoid the influence of subjective factors on evaluation, an essential weight set
formula was constructed based on two weighting values obtained from the AHP method
and the entropy weighting method:

w =
l

∑
k=1

αk × wT
k(αk > 0)

where αk, wk are the weights obtained from the AHP method and the entropy weight method.
Calculate the weight set model based on game theory and derive the formula for the

game model: Min = ‖ i
∑

j=1
aj × uT

i − uT
i ‖(i = 1, 2). The normalized combination coefficients

of the formula can be obtained using Matlab: a1 = 0.8507, a2 = 0.1493 (D); a1 = 0.7881,
a2 = 0.2119 (P). Thus, the combined weight vector was obtained, and the final result is
shown in Table 8. As shown in the table, the weights of various indicators under degradable
plastic film cover in descending order were yield, water consumption, above-ground dry
matter mass, sucrase, root-to-shoot ratio, root mass, transpiration rate, urease, pH, stomatal
conductance, and net photosynthetic rate. Under ordinary plastic film cover, the weights of
various indicators in descending order were yield, water consumption, above-ground dry
matter mass, net photosynthetic rate, root-to-shoot ratio, sucrase, pH, stomatal conductance,
root quality, transpiration rate, and urease.
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Table 8. Determination of Single Index Weights for spring maize Based on Game Theory through
Combination Weighting.

Treatments Index C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43

D Weight 0.2634 0.1382 0.0427 0.0691 0.0454 0.1109 0.0697 0.0724 0.0554 0.0792 0.0536
P 0.2113 0.1470 0.0942 0.0422 0.0610 0.1166 0.0553 0.0867 0.0365 0.0795 0.0665

3.6.3. Comprehensive Growth Evaluation of Spring Maize Based on TOPSIS Method

Established a TOPSIS comprehensive evaluation model with combined weighting,
normalize the decision matrix, established a weighted matrix, and calculated the ideal
solution and fit degree Ci of the evaluation index. The calculation results were shown
in Table 9. As shown in the table, DN3 treatment had the highest comprehensive index
of adhesion (0.8522) for spring maize, followed by PN2 treatment (0.8435), and DN0
treatment had the lowest bonding (0.0194), indicated that poor comprehensive performance
of spring maize.

Table 9. Comprehensive indicators and ranking of spring maize based on TOPSIS method. S+

represents the ideal solution, S− represents the inverse perfect solution, D+ represents the distance
between each processing and the ideal solution, and D− represents the distance between each
processing and the inverse perfect solution.

Treatments C11 C12 C21 C22 C23 C31 C32 C33 C41 C42 C43 D+ D− Ci Sorted

DN0 0.3963 0.4774 0.4066 0.3435 0.3685 0.3703 0.3066 0.4288 0.2998 0.3930 0.5091 0.2023 0.0040 0.0194 8
DN1 0.4772 0.4936 0.4678 0.4821 0.4175 0.4647 0.4181 0.4666 0.4263 0.4792 0.5048 0.1245 0.0825 0.3985 5
DN2 0.5647 0.5114 0.5147 0.5557 0.5381 0.5979 0.6614 0.5719 0.5664 0.5485 0.4941 0.0322 0.1855 0.8522 1
DN3 0.5443 0.5166 0.5924 0.5838 0.6327 0.5380 0.5420 0.5209 0.6384 0.5613 0.4918 0.0413 0.1755 0.8097 4

S+ 0.5647 0.5166 0.5924 0.5838 0.6327 0.5979 0.6614 0.5719 0.6384 0.5613 0.5091
S− 0.3963 0.4774 0.4066 0.3435 0.3685 0.3703 0.3066 0.4288 0.2998 0.3930 0.4918

PN0 0.3999 0.4757 0.4121 0.3700 0.3570 0.3846 0.3169 0.4255 0.3284 0.4162 0.5091 0.1781 0.0043 0.0235 7
PN1 0.4749 0.4931 0.4568 0.4995 0.4165 0.4567 0.4325 0.4875 0.4408 0.4731 0.5055 0.1130 0.0689 0.3789 6
PN2 0.5599 0.5121 0.5216 0.5318 0.5623 0.5880 0.6452 0.5640 0.5586 0.5452 0.4928 0.0300 0.1616 0.8435 2
PN3 0.5487 0.5180 0.5911 0.5751 0.6188 0.5457 0.5443 0.5131 0.6211 0.5530 0.4925 0.0323 0.1584 0.8308 3
S+ 0.5599 0.5180 0.5911 0.5751 0.6188 0.5880 0.6452 0.5640 0.6211 0.5530 0.5091
S− 0.3999 0.4757 0.4121 0.3700 0.3570 0.3846 0.3169 0.4255 0.3284 0.4162 0.4925

4. Discussion

4.1. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Root and
Shoot Growth

Crop root and shoot growth is more sensitive to nitrogen fertilizer. Increasing nitrogen
fertilizer application can accelerate crop growth, root and shoot growth and development,
and increase nitrogen uptake. However, excessive or insufficient nitrogen application can
change crop growth morphology, affecting dry matter distribution and accumulation [32,33].
In the early stage of maize growth, degradable plastic film and ordinary plastic film
coverage can form a “diaphragm effect” to significantly promote maize growth. In the later
growth stage, degradable plastic film coverage degrades, which is beneficial for rainfall
infiltration. In addition, the same amount of irrigation provides a good water and fertilizer
environment for maize growth, with little impact on crop reproductive growth. Therefore,
the effect of ordinary plastic film coverage and the application of nitrogen fertilizer with
plastic film coverage on crop root and crown growth is consistent; under the same nitrogen
application level, there was no significant difference in the root and crown growth of maize
covered with degradable plastic film and ordinary plastic film, which was similar to the
research conclusions of Huang et al. [34] and Wang et al. [21]. The root system is the
main organ for crops to absorb nutrients. Increasing nitrogen fertilizer application can
promote the growth of maize roots and increase root biomass, and the relationship between
root biomass and nitrogen application is non-linear. When nitrogen application exceeds
320 kg·ha−1, it will inhibit root growth and development and reduce root biomass. This
was consistent with the research conclusion of Qi et al. [35], which indicated that reasonable
nitrogen fertilizer management measures can contribute to the formation of maize root
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morphology and increase root quality. The results of this study also indicated that there
was a non-linear relationship between the accumulation of above-ground dry matter in
maize and nitrogen application; that is, nitrogen application exceeding 320 kg·ha−1 will
affect maize growth and reduce above-ground biomass, which was consistent with the
research results of Li et al. [36]. Appropriate nitrogen fertilizer management measures
can promote the development of maize roots, benefit the accumulation of above-ground
biomass, form a reasonable root cap ratio, and lay the foundation for high crop yield.

4.2. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Photosynthetic Gas
Exchange Characteristics

Photosynthesis is the process by which crops convert inorganic substances in the
atmosphere, such as water and carbon dioxide, into organic matter and release oxygen.
Crops automatically adapt to environmental changes and develop in a direction that is
conducive to photosynthesis [37]. The future way to increase crop yield will mainly rely on
the increase in photosynthetic conversion rate [38]. The results of this study indicated that
increasing nitrogen fertilizer application can significantly enhance the photosynthetic ca-
pacity of maize leaves, and the photosynthetic gas exchange parameters (net photosynthetic
rate, transpiration rate, and stomatal conductance of maize) showed an approximately
linear relationship with increasing nitrogen application rate. At a nitrogen application level
of 480 kg·ha−1, net photosynthetic rate, transpiration rate, and stomatal conductance were
the highest, rising by 2.87~45.71%, 5.06~69.97%, and 12.70~71.24% under the degradable
plastic film mulching, and 2.17~43.44%, 4.62~55.42%, and 9.79~73.64% under the ordinary
mulching, respectively. This is because nitrogen can enhance the activity of mesophyll
cells; increasing the SPAD value of leaves can improve photosynthesis [39], which was
similar to the research conclusion of Gao et al. [40], and indicated that nitrogen fertilizer can
improve the photosynthetic capacity of maize leaves. However, the degree of improvement
varies due to factors such as crop variety, nitrogen fertilizer management measures, and
the experimental environment. At the same time, this study also found that there was no
significant difference in the photosynthetic gas exchange parameters between degradable
plastic film-covered leaves and ordinary plastic film at the same nitrogen application level
from the jointing stage to the grain-filling phase, indicating that the “diaphragm effect”
formed by degradable plastic film and ordinary plastic film is the same [41], which can
replace average plastic film to some extent.

4.3. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Maize Yield and
Water and Nitrogen Use Efficiency

Reasonable nitrogen fertilizer management measures can promote root nutrient ab-
sorption, enhance crop assimilation, and increase yield. This study showed that the yield
changed with nitrogen application rate in a quadratic parabolic relationship, and the yield-
increasing effect slowed down with an increase in nitrogen application rate, which was
in line with the diminishing returns effect. Moreover, excessive nitrogen application will
reduce yield because it will affect crop nitrogen absorption efficiency, reduce nitrogen
transport rate, and even affect root water absorption, resulting in a decreased yield [42,43].
Increasing the application of nitrogen fertilizer can enhance the water absorption capacity
of the root system [44]. The results of this study indicated that increasing the application of
nitrogen fertilizer can improve the water use efficiency and irrigation water use efficiency
of maize. However, with the increase in nitrogen application level, the agronomic use
efficiency and partial productivity of nitrogen fertilizer tended to decrease, which was
consistent with the research conclusions of Li et al. [1]. Therefore, the appropriate amount
of nitrogen fertilizer application provided a good soil environment for root growth, which
improved crop yield and water use efficiency.
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4.4. Effect of Film Mulching Combined with Nitrogen Fertilizer Application on Soil Enzyme
Activity and pH

Soil enzyme activity, as an essential component of soil microbial activity and soil
fertility, plays a critical catalytic role in soil nutrient cycling and energy conversion and
can reflect the impact of fertilization on soil fertility and quality [45]. The results of
this study indicated that the coverage area affected urease and sucrase activities. Under
the same nitrogen application level, soil urease and sucrase activities under ordinary
plastic film cover were higher than those under degradable plastic film, but there was no
significant difference. This was similar to the research conclusions of Yang et al. [46] and
Chen et al. [47]. Still, the reduction amplitude varies due to factors such as experimental
materials, the experimental area environment, and field management measures. The
application of nitrogen fertilizer can significantly increase the activities of urease and
sucrase, which were due to the promotion of microbial activity by nitrogen fertilizer,
changes in microbial composition, and thus affected soil enzyme activity [48], which was
consistent with the research findings of Li et al. [48]. This study also found that increasing
nitrogen fertilizer application can control soil salinity, reduce soil pH, and avoid soil
salinization, which was consistent with the findings of Fudjoe et al. [49]. Increasing the
application of nitrogen fertilizer can promote root development, enhance soil microbial
activity, improve soil fertility, and reduce soil salinity, which is conducive to the sustainable
development of agriculture.

5. Conclusions

Plastic film mulching and nitrogen fertilizer application are essential in agricultural
production. The results of this study indicated that although the root and shoot growth,
photosynthesis, and grain yield of spring maize under degradable plastic film mulching
were lower than those under ordinary film mulching, there was no significant difference
found. Nitrogen fertilizer was the main factor affecting spring maize growth and grain yield
formation. When the nitrogen application rate approached 320 kg·ha−1, spring maize root
growth and root biomass might be promoted, and there was no significant difference in net
photosynthetic rate, transpiration rate, and stomatal conductance compared to the nitrogen
application rate of 480 kg·ha−1. Under the nitrogen application level of 320 kg·ha−1, the
yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50%
and 2.05~40.02%, respectively, while spring maize had the highest water use efficiency
and irrigation water use efficiency. However, nitrogen fertilizer’s agronomic utilization
efficiency and partial productivity showed a decreasing trend. At the same time, there was
no significant difference in soil enzyme activity between the nitrogen application level and
480 kg·ha−1. After conducting a comprehensive evaluation of the impact of plastic film
mulching combined with nitrogen fertilizer on the growth of spring maize, using multiple
indicators, it was found that the best overall growth of corn was achieved by using a nitro-
gen application rate of 320 kg·ha−1 with degradable plastic film mulching. Therefore, this
strategy is optimal for plastic film mulching combined with nitrogen fertilizer application.
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Abstract: Measuring canopy height is important for phenotyping as it has been identified as the
most relevant parameter for the fast determination of plant mass and carbon stock, as well as crop
responses and their spatial variability. In this work, we develop a low-cost tool for measuring plant
height proximally based on an ultrasound sensor for flexible use in static or on-the-go mode. The
tool was lab-tested and field-tested on crop systems of different geometry and spacings: in a static
setting on faba bean (Vicia faba L.) and in an on-the-go setting on chia (Salvia hispanica L.), alfalfa
(Medicago sativa L.), and wheat (Triticum durum Desf.). Cross-correlation (CC) or a dynamic time-
warping algorithm (DTW) was used to analyze and correct shifts between manual and sensor data
in chia. Sensor data were able to reproduce with minor shifts in canopy profile and plant status
indicators in the field when plant heights varied gradually in narrow-spaced chia (R2 = 0.98), faba bean
(R2 = 0.96), and wheat (R2 = up to 0.99). Abrupt height changes resulted in systematic errors in height
estimation, and short-scale variations were not well reproduced (e.g., R2 in widely spaced chia was
0.57 to 0.66 after shifting based on CC or DTW, respectively)). In alfalfa, ultrasound data were a better
predictor than NDVI (Normalized Difference Vegetation Index) for Leaf Area Index and biomass
(R2 from 0.81 to 0.84). Maps of ultrasound-determined height showed that clusters were useful for
spatial management. The good performance of the tool both in a static setting and in the on-the-
go setting provides flexibility for the determination of plant height and spatial variation of plant
responses in different conditions from natural to managed systems.

Keywords: plant spatial variation; canopy height; stress response monitoring

1. Introduction

Plant height is the result of many genetic, environmental, and management factors
and is one of the most important traits in plant ecology [1]. It has been discussed in
terms of strategy linked to latitude and correlations with environmental variables. It
affects the ability of species and individuals to compete for light and, therefore, to acquire
carbon through photosynthesis and is a determinant of water evapotranspiration and seed
dispersion [2,3]. A general relationship between height and biomass of vegetation across a
range of ecosystems has been proposed [4] as a way to assess aboveground carbon stocks
in natural systems. The height of plants is a very useful parameter in agronomy; it is a
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commonly recognized indicator of crop growing status. It is related to crop yield [5] and is
the most relevant parameter for the fast determination of crop response to management and
crop variability alone or in conjunction with other plant characteristics [6]. Phenotyping
for the selection of high-yielding or stress-resistant genotypes uses plant height as one of
the fast indicators of plant response. In wheat breeding programs, the importance of plant
height has long been recognized [7]. Height variability at early stages of development could
be used as a proxy of crop establishment and productive performances [8]. Monitoring
plant growth at a high spatial density is essential in precision agriculture [9].

However, measuring plant height repeatedly during the season and at high resolution
is a long and expensive task if performed manually. Technologies currently used to provide
this parameter are as follows: stereo vision, laser image detection and ranging (LiDAR),
and ultrasonic sensors. Stereo vision is a method of distance measurement based on the
different perspectives on the same scene [10,11]. Its use is in expansion, related to the
increasing diffusion of drones, but requires expensive computation [12]. The LiDAR yields
a distance measure based on the time of flight of a laser beam emitted by the sensor and
captured back by a photodetector [13]. It has been used to estimate features of herbaceous
vegetation like crop density [14] and weed infestation [15]. Terrestrial LiDAR offers high
resolution and cover, but its cost is still high. Like the LiDAR, an ultrasonic sensor is
capable of detecting the distance from an obstacle indirectly by measuring the time of
flight (TOF) of an ultrasonic pulse emitted by the sensor and echoed back by an obstacle.
Compared to LiDAR, ultrasonic sensors are less expensive and do not involve possible
harm to the naked eye. LiDAR, on the other hand, can make measurements at a larger
distance and features narrow point detection; this can be a pro as it gives a higher accuracy
but also a con as given objects may be missed in a prospection. Ultrasonic sensors have
been used in agriculture to provide cheap and repeatable distance information related to
crop biomass [16], canopy density, to optimize pesticide applications [17], and for weed
detection [18].

Ultrasonic devices are still underutilized in agriculture and can offer, at low cost, very
useful information to researchers and farmers. Integrating crop sensors through open-
source hardware projects might help fill this gap. Open hardware platforms are easy to
realize and use; their low cost, coupled with the increasing amount of information sharing,
supports the rapid development of new-generation, inexpensive, and very flexible scientific
instrumentations [19,20]. Ultrasound-based high-throughput sensors or platforms have
been proposed for use in different crops [21–27], mostly in the on-the-go mode.

Montazeaud and co-authors [28] recently proposed a low-throughput sensor intended
for manual use for small-scale applications such as plot experiments where measurements
of the height of individual plants are needed. They tested it on single-plant measurements
on sorghum. The device is easy to use although limited to static measurements.

We aimed to devise a low-cost system for measuring plant height which could be used
in a flexible way, both on-the-go and in static mode, and to prove its usefulness in different
applications from single plants to plots and whole fields. We therefore aimed to test the
device across a range of vegetation types, from crop row transects to whole-field mapping.

2. Results

2.1. Lab Tests

Figure 1 reports the results of laboratory testing. Ultrasound-derived height (hus)
followed the contour of manually measured height (h) with a significant correlation (r = 0.86,
p-value < 0.05). However, a slight shift in data was observed and the sensor overestimated
the height of shortest targets by 0.89 cm on average (Figure 1).
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Figure 1. Comparison of sensor-determined and measured height of parallelepipeds in the laboratory.
ultrasonic data (hus = orange line) overlaid by ground truth data (h = blue line).

The sample cross-correlation shows that the highest correlation (r = 0.88) occurs at lag 1.
Hence, a one-lag shift between the two series slightly improved the overall correlation. The
Dynamic Time Warping Normalized Distance (DTW) between sensor data and manually
measured height was 0.39.

2.2. Faba Bean (Vicia faba L.)

Figure 2 reports ultrasound-measured heights as a function of ground truth data for
Vicia faba L. Plant heights were significantly (p < 0.05) related to sensor-measured height data
with high R2 values (0.96 for the regression of pooled data), which were not significantly
improved by dividing var. major from var. minor data. Values for single varieties were
substantially aligned (Figure 3b,c).

Figure 2. Height measurements in a Vicia faba L. field setting. (a) bivariate plot of ultrasound-
measured heights as a function of ground truth data for Vicia faba L. var. major (blue dots) and Vicia
faba L. var. minor (orange dots); (b) bivariate plot of ultrasound-measured heights as a function of
ground truth data for Vicia faba L. var. major by variety; (c) bivariate plot of ultrasound-measured
heights as a function of ground truth data for Vicia faba L. var. minor by variety.
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Figure 3. Height measurements in Salvia hispanica L. field setting. (a) row with plants spaced 5 cm:
bivariate plot of ground truth data (blue dots), ultrasound-measured heights (orange dots) and
ultrasound-measured heights shifted of 1 lag distance (black dots), data from dynamic time-warping
(green dots); (b) row with plants spaced 5 cm: regression between measured height and ultrasound-
measured height (orange dots and regression equations), ultrasound-measured height shifted of
1 lag distance (black dots and regression equations), and data from dynamic time-warping (green
dots and regression equation); (c) row with plants spaced 30 cm: bivariate plot of ground truth data
(blue dots) ultrasound-measured heights (orange dots), ultrasound-measured height shifted of 2 lag
distance (black dots), data from dynamic time-warping (green dots); (d) row with plants spaced
30 cm: regression between measured height and ultrasound-measured height (orange dots) and
ultrasound-measured height shifted of 2 lag distance (black dots and regression equations); data from
dynamic time-warping (green dots and regression equations).

2.3. Chia (Salvia hispanica L.)

In Salvia hispanica field transect on rows with 5-cm plant spacing (Figure 3a,b) the
crop height pattern obtained with manual measurements (Figure 3a blue dots) was closely
reproduced by ultrasound-derived height (Figure 3a orange dots) in the zone between
40 and 260 cm of distance along the transect, but underestimated plant height of about
4.4 cm. At the transect edges (About 40 cm from each end of the row) sensor data failed to
reproduce the height profile and differences were higher. The sample cross-correlation was
maximum at lag 1 therefore a second series of height data derived from shifting ultrasound
data by one lag was created (Figure 3a black dots). The use of a dynamic time warping
algorithm yielded a DTW distance of 3.38, and data corrected for DTW are shown in
Figure 3a as black dots.

Across the whole transect, including edges, regression between hus and ground truth
(h) values (Figure 3b) yielded a significant relationship (p < 0.05) both at 0 (raw data)
and 1 lag (respectively, orange and black dots and regression lines). The non-significant
intercept was removed, and the regression line was forced to pass through the origin
yielding high values of R2 even for raw data (almost 0.97 in Figure 3b, orange dots), and
slightly improved (0.98) for data shifted by 1 lag (Figure 3b black dots) and DTW-warped
(Figure 3b green dots).

In the case of plant spacing of 30 cm (Figure 3c,d), hus data (orange dots) follow
the overall crop profile but fail to reconstruct short-scale variability in plant height, and
especially bare-soil points (e.g., at 50, 85 and 115 cm along the transect) and a whole
bare-soil stretch between cm 165 and 215 along the transect. The maximum correlation is
found at lag 2 but even data shifted in 2 lags (black dots in Figure 3c,d) do not reproduce
short-scale variability and relevant very low height or zero values. The use of a dynamic
time warping algorithm yielded a DTW distance of 7.94, and a better reproduction of the
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pattern of manual data is found with a data series calculated with dynamic time-warping
(Figure 3c green dots). However, very low and zero values are not reproduced. The
correlation between manual and sensor data is lower for plants spaced at 30 cm than for
those at 5 cm but is still significant (p-value = 0.04). The univariate regression model still
explains a considerable amount of the total variability if the line is forced to pass through
the origin (R2 = 0.57 for data after 2-lag shifting and 0.66 for data after DTW correction).
Sensor data overestimate height by about 14.0 cm on average in this transect after 2-lag
shifting (black dots) and 7.3 cm after correction with DTW (green dots).

2.4. Alfalfa (Medicago sativa L.)

Figure 4 shows maps of ultrasound-measured canopy height at three plant heights
(Figure 4) in an alfalfa (Medicago sativa L.) field.

 
Figure 4. Maps of ultrasound-measured canopy height in a Medicago sativa L. field at (a) plant
maximum height 12.07 cm; (b) maximum plant height 16.75 cm; (c) maximum plant height 57.56 cm.
Left: plant height (hus) maps. Right: frequency distributions.

Values of ultrasound-measured plant height ranged between 2.51 and 12.07 cm on
the first date, between 3.97 and 16.75 am on the second, and between 8.02 and 57.76 cm
on the third. Plant height showed an unimodal frequency distribution at all three dates
(Figure 4 right), but values were not spatially distributed at random in the field: maps show
that clusters of low values (blue areas) were found in the top and left field zones, and high
values (red areas) in the center of the field in the first two dates, whereas at the third date
high values (red areas) were found at the top edge and in a strip inside the field, and low
values (blue areas) in the center, and frequencies were slightly skewed to the left: height
values lower than the mode were less frequent.

Figures 5–7 report data collected in the ground-truth areas and summary statistics for
plant biometrics and sensor indices are reported in Table 1.
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Figure 5. Bivariate plots of alfalfa biometrics as a function of plant height: (a) fresh biomass; (b) dry
biomass; (c) Leaf Area Index; (d) leaf/stem mass ratio.

Figure 6. Bivariate plots of alfalfa biometrics as a function of NDVI: (a) fresh biomass; (b) dry biomass;
(c) Leaf Area Index; (d) leaf/stem mass ratio.

Table 1. Plant biometrics and sensor indices in the ground-truth areas for Medicago sativa L. St dev
= standard deviation; CV% = coefficient of variation; h = plant height; hus = ultrasound-measured
plant height.

LAI of
Alfalfa

Fresh
Biomass

Dry Biomass NDVI
Leaf/Total

Mass Ratio
h hus

(m2 m−2) (g m−2) (g m−2) (g g−1) (cm) (cm)

Min 0 128.00 26.40 0.21 0.44 13.02 6.11
Max 4.56 1592.00 440.00 0.98 0.69 54.28 45.07

Mean 2.03 714.25 196.65 0.57 0.55 32.47 27.14
St dev 1.44 479.58 143.55 0.26 0.08 15.56 14.84
CV% 47.91 67.14 73.00 45.92 14.44 47.91 54.66

Values showed a high variability: the coefficient of variation ranged between 45.82% of NDVI and 73.00% of plant
dry mass, with the exception of the leaf/total mass ratio where values were lower than 15%.
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Figure 7. Relationships between alfalfa biometrics and ultrasound-measured plant height (hus):
(a) hus as a function of manually measured plant height (h); (b) NDVI as a function of hus; (c) Leaf
Area Index as a function of hus; (d) fresh mass as a function of hus; (e) dry mass as a function of hus;
(f) leaf to stem mass ratio as a function of hus.

Figure 5 shows the relationships between manually measured plant height (h) and
other biometrics. Significant (p < 0.05) linear regressions with R2 values higher than 0.9
were found with fresh and dry mass and LAI (Figure 5a–c), and a power regression with
leaf/stem ratio (Figure 5d).

The same regression models were fitted for relationships between normalized differ-
ence vegetation index (NDVI) and other biometrics (Figure 6), which were all significant
(p < 0.05) and linear for fresh and dry mass and LAI (Figure 6a–c), and power regression
for leaf/stem ratio (Figure 6d). Values of R2 were lower than those found for regressions
with plant height (Figure 5).

Figure 7 shows the relationships between manually (h) and ultrasound-measured
(hus) plant height (Figure 7a) and between hus and other biometrics (Figure 7b–f). For
all tested models, the highest R2 values were found for linear regressions, and they were
all significant (p < 0.05). Sensor-derived height (hus) was significantly related to ground-
truth plant height (h) (Figure 7a), and the model explained 89 to 98% of the variability
if the intercept is kept or removed, respectively. The hus variable was also significantly
related to NDVI with a 0.72 R2 value (Figure 7b). Regressions of LAI and biomass with
hus (Figure 7c–e) were characterized by R2 values higher than those of the same variables
with NDVI (Figure 6) and lower than those with h (Figure 5). The regression of leaf/stem
ratio with hus (Figure 7f) was linear and had a higher R2 than those with h (Figure 5d) and
NDVI (Figure 6d).

2.5. Wheat (Triticum durum Desf.)

Results from the wheat experimental field are reported in Figures 8 and 9. Maps of
sensor values across the experimental field at the end of tillering are reported in Figure 8.
A number of 481 to 493 values were acquired in each plot and the maps of hus (Figure 8a)
and NDVI (Figure 8d) show differences between plots of the C and W treatments. In the
C plot, the blue color dominates, corresponding to low values (color-scales for hus and
NDVI at Figure 8b and e respectively), whereas in the W plots, the dominant color is red,
corresponding to high values. Maps also show within-plot variability with different shades
of blue in the C plots and colors from green to black in the W plots. Frequency distributions
of values for the whole field (Figure 8b,e) were bimodal, corresponding to the different
modes of the treatments, respectively for hus 4.14 cm in C and 12.98 cm in W, and for NDVI
values of 0.11 in C and 0.27 in W. Average values of the W plots were more than twice those
of the C plots for ìboth hus and NDVI. Data from single transects at the same phenological
stage, when maps were made (end of tillering), are summarized across the whole field in
Table 2.
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Figure 8. Maps of the experimental field of wheat; (a) hus values across the field; (b) hus values
frequency distribution; (c) hus in each plot: colored bars = average values. Line bars: standard
deviation; (d) NDVI values across the field; (e) NDVI values frequency distribution; (f) NDVI in each
plot: colored bars = average values. Line bars: standard deviation. C1, C2, and C3 = three replicate
plots of treatment C = wheat cut at stage 30 of the Zadoks scale; W1, W2, W3 = three replicate plots of
treatment W: uncut wheat plants.

Figure 9. Height of wheat plants from manual measurements (h) or derived from an ultrasound
sensor (hs). Values represent averages of treatments C = wheat cut at stage 30 of the Zadoks scale and
W: uncut wheat plants. (a): the end of tillering; (b) booting; (c) grain filling. Different letters indicate
significant (p < 0.05) differences in Tukey’s post-hoc test.

Figure 9 reports averages of plant heights from cut (C) and uncut (W) treatments. Values
were significantly (p< 0.05) different throughout the growth cycle for both h and hus.

At the end of tillering (Figure 9a) sensor data (hus) were not significantly different from
manually measured heights for both cut and uncut wheat, whereas hus was significantly
lower than h at the booting stage (Figure 9b) and significantly higher within cutting
treatment at grain filling (Figure 9c). Nevertheless, the overall linear regression between h
and hus on data from the three phenologoical stages was significant (p < 0.05) and explained
96% of the variability (hus = 1.0031 h + 1.68 R2 = 0.96).
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Table 2. Plant biometrics and sensor indices in Triticum durum Desf. transects. hus = ultrasound-
measured plant height; NDVI = normalized difference vegetation index. LAI = Leaf area Index. St
dev = standard deviation; CV% = coefficient of variation. Summary statistics are calculated on all
data across the experimental field.

hus h NDVI LAI

(cm) (cm) (m2 m−2)

Min 5.53 6.02 0.10 0.32
Max 24.57 24.92 0.26 2.02

Mean 13.68 14.37 0.18 1.02
St dev 7.02 7.24 0.08 0.61
CV% 51.27 50.41 42.89 60.19

The variability of measurements across the whole experimental field, regardless of treatments, was quite high,
with coefficients of variation ranging from 42.89% for NDVI to 60.19% for LAI. Significant (p < 0.05) linear regressions
are found between h and hus (hus = 0.9638 h − 0.1637 R2 = 0.99), and between hus and the leaf area index (LAI = 0.0731
hus + 0.034 R2 = 0.79) and the normalized difference vegetation index (NDVI = 0.0103 hus + 0.042 R2 = 0.98).

3. Discussion

In our data the bivariate relationship between ultrasound-measured height and man-
ual data was always significant, therefore our sensor can be considered a useful tool, and
hus can be taken as a proxy of plant height across a range of canopy types, from rows of
spaced plants (e.g., S. hispanica) to canopies spread over whole fields (e.g., M. sativa), and
this may be extended to different conditions of crops or natural vegetation.

This agrees with data in the literature where ultrasound measurements provide reliable
plant height data in a range of crops, and in static or on-the-go modes [21–28].

Our sensor performed with different accuracy in the different modes we tested: the
regression models explained up to 99% of the variability in wheat at the end of tillering,
but as little as 54 to 66% of the variability when used on-the-go on wide-spaced chia
plants (Figure 3c,d). Sharp variation of the target’s contour are not completely caught as
in lab setting (Figure 1) or at the edge of chia rows (Figure 3) or in case of wide-spaced
chia plants (Figure 3c,d) where the sensor was much less accurate in reconstructing short
scale variability in plant height and did not pick up narrow canopy voids. This is due
to interference of neighboring features within the sensor’s field of view and has been
documented in the literature (e.g., [15]). More gradual height changes were reproduced by
the sensor with higher accuracy, as in the chia transect at 5-cm plant spacing where changes
in height corresponded to gradual variations in chia plant tops, or to the presence of shorter
Amaranthus retroflexus L. plants which represented the main segetal species in the field.

No systematic error was recorded in some cases for both static or on-the go measure-
ments (e.g., in faba bean, Figure 2 or alfalfa, Figure 7a or wheat during tillering, Figure 9a).
Nevertheless they emerged in other cases: under-or over-estimation and minor shifts were
found in laboratory measurements (Figure 1) and in chia (Figure 3a,d). A measure of mis-
alignment was obtained by cross correlation or using a dynamic time warping algorithm.
After quantifying misalignments, we used cross-correlation or dynamic time-warping
distance (DTW) to shift hus measurements one of one or few lags and obtained a better
correspondence of sensor and measured data (e.g., Figure 3c,d for chia plants spaced at
30 cm). Cross correlation is a feature-based measure of similarity between data series [29]
and was used in this work to shift sensor data with respect to manual data in order to
improve data matching. The need to shift data series can be ascribed to a lag time in
data collection or ground-positioning system (gps) data recording linked to the speed of
the moving sensor. The dynamic time warping algorithm is a shape-based procedure to
measure similarity between data sequences, through quantifying the distance between
similar elements in different series of data [29]. It originates from time-series analysis [30]
but can be applied to shape-matching, and in particular to find out if similarity or matching
in shape can be found between two data sequences which are out of phase. The Dynamic
Time Warping (DTW) distance is therefore a measure of the level of dissimilarity between
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data series. In our data the DTW-normalized distance was 0.39 in lab setting, 3.38 in the
chia row at 5-cm spacing and 7.94 in the chia row with 30-cm spacing, this showing an
increasing level of dissimilarity between sensor and manually determined height.

Even where alignment between sensor and manual data series is improved through
shifts based on cross-correlation or analyzed through time-warping, the problem of over-
or under- estimation persists. In our data for instance the chia transect with plants spaced
30 cm (Figure 3c,d) showed overestimation of 7.3 to 14.4 on average, respectively for data
after shifting based on DTW or cross-correlation. This was due to inability to detect very
low or zero values when interspersed with tall plants. In Salvia hispanica (Figure 3) hus
values closely reproduced plant height except for at the edges of measured transect. In this
experiment the edges of transects corresponded to plot edges, therefore to regions where
bare soil and/or segetal species were found, with height different from chia. We hypothesize
that in this case specific edge effects coupled with shifts and systematic errors in sensor
measurements we recorded in this dataset may be due to an imperfect perpendicularity
of the sensor, which may have picked up reflections from bare soil at the beginning of the
transect, thus underestimating plant height, and reflections from the crop at the transect
end, thus overestimating plant height.

Ultrasound measurements underestimated wheat height at booting (Figure 9b), and
overestimated it at grain filling (Figure 9c) and this may be ascribed to general factors
and specific issues linked to the method of height measurement. For the booting stage
the flag leaf possibly was not a consistent enough target for the ultrasound beam to pick
it up completely. This is consistent to the type of underestimation explained by Sui and
Thomasson [31] as occurring when the sensor is not centered on the top or top-leaf of the
plant (And this may happen frequently for on-the go measurements): in such cases the
closest leaf that echoes back the signal would not be the highest. At the wheat booting
stage (Figure 3c) a lower h is explained by the fact that it did not include awns as described
in the Materials and Methods section.

In general, biases between manual and sensor measures could have been caused by
several reasons ranging from sensor misalignment, to soil micro-topography and to the
influence of temperature, which we didn’t consider in our analysis. Several factors can
reduce ultrasonic accuracy: the presence of systematic features like ridges and furrows,
the influence of air temperature and the inherent sensor transducer accuracy. Canopies
are porous, hierarchical structures, therefore the echoing of the signal depends on leaf
morphology, angle and canopy architecture. Also inconsistencies might be due to the
multiple reflected signals within the signal field of view [31]. All these issues lead to a
cumulative error, and must be taken into account if quantitative predictions are needed.
Our data confirm that a crop- and even a crop-stage specific calibration would always be
required [32,33]. Having experimented our sensor in a range of modes from static (faba
bean) to on-the-go at the row (chia, wheat), plot (wheat, alfalfa) and field (alfalfa) scale
and having found different merits and drawbacks of each model, we can add that sensors
should be tested in different conditions and modes.

Nevertheless in our data even overall regression models encompassing different
growth stages or crop varieties were significant and explained a large part of the variability
(e.g., 96% in wheat across growth stages and in faba bean across botanical and varieties,
accessions and commercial varieties) Also, even where the sensor systematically under-
estimated or overestimated canopy height, areas where canopy height changed could be
well mapped (Figures 2, 3a,b and 4–9), except for very narrow variations as in chia spaced
plants (Figure 3c,d), and differences between experimental treatments were well quantified
(Figures 8 and 9).
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In our measurement settings we aimed at different conditions: we tested it on broadleaf
(e.g., faba bean) and narrowleaf (wheat), plants with large (e.g., chia) or small (e.g., al-
falfa) laves and on a wide range of plant heights over which the sensor was tested, not
only between but also within experiments, as quantified by high values of coefficients of
variation. We had satisfactory to excellent agreement with ground-truth data, and this
confirms the sensor is a good tool for different herbaceous vegetation types and can pick
up field variability and possibly help in spatial applications. Applications in ecology
include the spatial distribution of primary production and of plant light interception. A
general relationship between height and biomass of vegetation across a range of ecosystems
has been proposed [4] as a way to assess aboveground carbon stocks in natural systems,
and our sensor may provide a flexible tool for height measurements over large areas or
along transects.

Monitoring plant growth at a high spatial density is essential in precision agricul-
ture [8] therefore height maps as those we show for alfalfa (Figure 4) or wheat (Figure 8)
can be of assistance in precision farming operations.

Important crop biometrics other than manually measured height are well related to
ultrasound measurements in our data, such as the leaf area index (R2 = 0.79 in wheat
and 0.81 in alfalfa) and the NDVI (R2 = 0.98 in wheat and 0.72 in alfalfa). Plant height
proved to be a better predictor of biomass than NDVI in alfalfa, where both h (Figure 5)
and hus (Figure 7) showed higher R2 values in the bivariate regression models with fresh
(Figures 5a and 7d) and dry (Figures 5b and 7e) mass than than NDVI (Figure 6a,b). As
vegetative biomass is the commercial product of alfalfa, a map of biomass corresponds to a
map of forage yield in this crop. Yield maps are crucial tools for driving precision farming
operations [34], and given the high predictive value of hus over biomass (R2 = 0.81 for
fresh and 0.84 for dry mass, Figure 7a,e), maps of ultrasound-determined height can be
considered proxies of yield maps and used for driving delineation of uniform management
zones in spatially-aware farming [35].

A relationship between ultrasound-measured height and biomass in forage crops has
also been found by Fricke and co-authors [15] but with lower R2 than in our case. Other
measurements on forage crops [36,37] were less accurate than in our case with R2 values
between 0.7 and 0.8, but over a wide range of conditions, and results nare also discussed in
terms of vehicle speed. Authors, though, stress higher accuracy compared to other non-
desctructive methods for predictiong forage biomass like the rising-plate meter [37] and
airborne or satellite-based radiometric methods constrained by equipment cost, expertise
and/or meteorological conditions.

In our data hus was significantly (p < 0.05) and strongly related to LAI (R2 = 0.79 for
wheat to 0.81 for alfalfa), therefore ultrasound-measured height may also be used as a fast
measurement for agronomic decisions related to leaf area as Leaf Area Index is a crucial
parameter for crop modeling and input management, especially irrigation (e.g., [38]. In the
case of alfalfa we also found an inverse relationship of height with the leaf to shoot ratio,
which is a parameter of forage quality, and this widens the range of agronomic decisions
our sensor may assist with.

The board used for our sensor is especially amenable for flexible uses and therefore to
address error sources linked to different settings (e.g., [39]) and for use in mono-sensors
or for multi-sensor platform (e.g., [40]) Internet of Things applications given the different
connectivity modes from Wi-Fi to Bluetooth Classic and Bluetooth Low Energy (BLE), Sim
card or Ethernet support and additional interfaces, including UART, SPI, I2C, and ADC,
enabling connection to a wide range of peripheral devices. Flexibility is also given by a high
number of General-Purpose Input/Output pins and a large flash memory for programming
and storage, and compatibility with other boards and development platforms.
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4. Materials and Methods

4.1. Ultrasound Sensor Platform

The platform used in this study was composed of:

(1) An ESP32 board (Espressif Systems, Singapore) with a dual-core microcontroller.
Tensilica Xtensa 32-bit LX6 microprocessor with wireless connectivity Wi-Fi: 802.11
b/g/n/e/i (802.11n @ 2.4 GHz up to 150 Mbit/s) and Bluetooth: v4.2 BR/EDR and
Bluetooth Low Energy (BLE). The current cost of an ESP32 board ranges from 1.75 to
8 Euros depending on the source.

(2) An ultrasound sensor was an HC-SR04 (Picaxe, Revolution Education Ltd, Bathh, UK)
transmitting at 40 KHz frequency, and operating between 3 and 400 cm of distance
with accuracy of 3 mm with a cone of 45 degrees from the sensor. The HC-SR04
rapidly generates a series of ultrasound pulses which propagate in a straight line
in front of the sensor. The ultrasounds hit an object in front of the sensor and are
reflected back towards the sensor, which detects the time taken for the ultrasound
pulses to travel from their source to the object and back. The sensor uses the elapsed
time to calculate the distance between itself and the object as:

Distance = (Elapsed time × Speed of sound)/2

The current cost of an HC-SR04 ranges from 2 to 10 Euros depending on the source,

(3) A Zs-040 module which sends data via Bluetooth. This was added in order to simplify
hardware and make data easily available in real time thanks to transmission to a PC or
smartphone. The current cost ranges from 0.3 to 10 m Euros depending on the source.

Connections of electronic circuits are depicted in Figure 10.

Figure 10. Diagram of connections between components of the platform.

All the electronic components were enclosed in a protective plastic case (current cost
5 Euros). The whole device can be easily powered through the USB-C port. We connected a
7860 mAh power bank, commonly used for charging smartphones, to the USB port (current
cost 15 Euros), which allowed its use for several hours.

4.2. Data Collection

Ultrasound data were collected in both lab (static measures) and field setting (static or
on-the-go).

Static measurements were made after mounting the sensor on a pole at a fixed distance
from the ground (e.g., Figure 11a).

210



Plants 2024, 13, 1085

Figure 11. Sites of field measurements and sensor modes of data acquisition: (a) pole-mounted for
static measurements in a faba bean filed; (b) mounted on a quad for on-the go or static measuremts
in an alfalfa field; (c) mounted on a wheeled chassis for on-the-go measurements in wheat plots. The
latter setting was used in a chia field.

On-the-go measurements were collected connecting a differential GPS and the sensor
was mounted either on a quad (Figure 11b) or on straddle wheeled chassis (Figure 11c),
kept at a fixed distance above the ground (sensor distance = hs) pointing vertically down
to the row, and towed manually across the field.

4.3. Sensor Testing

To test the ultrasonic sensor accuracy data have been ground-calibrated taking manual
measurements of target height.

In all tests the height of target objects or vegetation from ultrasound measurements
(hus) was calculated as:

hus = hs − usd (cm)

where
hs = height of sensor from the ground

usd = ultrasound-measured distance between target objects or vegetation and sensor.

The sensor was tested in conditions of different complexity:

4.3.1. Lab Test

The sensor was mounted on a wheeled chassis at the distance of 30 cm from the floor
where dark boxes of heights from 2.5 to 8 cm were aligned in a transect, and the chassis was
shifted along the transect at an average speed of 0.1 m s−1. The ultrasonic sensor triggered
5 measures per second, e.g., a measurement every 0.02 m.

Field tests were conducted at four sites in Southern Italy as indicated in Figure 11 on
crops of different geometry and namely:

4.3.2. Faba Bean (Vicia faba L.)

The field was located at Lavello (Italy (Lat. N 41◦07′28.49′′, Long E 15◦91′89.59′′)
and texture data were: 31% sand, 33% silt, 36% clay, and organic matter amounted to
16.4 g kg−1. Measurements were made in static mode on row-planted single plants of faba
bean (Vicia faba L.). For the botanical variety Vicia faba (L.) var. maior (Harz) Beck, we used
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the commercial variety Aguadulce and accessions sourced from the germplasm collection
of the Institute of Biosciences and Bioresources (IBBR) of the Italian National Research
Council (CNR) in Bari, Italy:

• Vma1 = Accession number 112906 from USA Vma1
• Vma2 = Accession number 103235 from Italy
• Vma3 = Accession number 107620 from Greece.
• Vma4 = Accession number 106374 from Algeria

For the botanical variety Vicia faba L. var. minor (Harz) Beck we used the commercial
variety Prothabat and accessions sourced from the germplasm collection of the Institute
of Biosciences and Bioresources (IBBR) of the Italian National Research Council (CNR) in
Bari, Italy:

• Vmi1 = Accession number 113620 from Germany
• Vmi2 = Accession number 113620 from Germany
• Vmi3 = Accession number 109322 from Ethiopia
• Vmi4 = Accession number 118952 from Afghanistan

Measurements were made for Vicia faba (L.) var. maior at phenological stage 20 (no
side shoots) for the BBCH scale and for Vicia faba (L.) var. minor at phenological stage
21 (Beginning of side shoot development: first side shoot detectable) for the BBCH scale.
Acquisitions were made in static mode with the ultrasound sensor mounted on a pole and
placed above single plants at 80 cm distance from the ground (Figure 10). For ground-truth
height measurements (h) were made manually with a rigid measuring tape on the same
plant where ultrasound data were acquired. The variable h = plant height was the distance
between the ground and the top of the uppermost plant structure.

4.3.3. Chia (Salvia hispanica L.)

The field was located at Masserie Saraceno (Atella, Italy, Lat. N 40◦51′37.59′′,
Long. E 15◦38′49.43′′) on loam soil with the following characteristics: sand 43.6%, silt
34.2%, clay 22.1%. The broad leaf crop Salvia hispanica L. was sown in rows with plant
spacing of 5 cm or 30 cm on the row. One transect for each of the plant spacing treat-
ments was chosen based on the presence of gradients of plant height and/or areas of
bare soil along the row. Sensor measurements were acquired on-the-go with the ultra-
sound sensor mounted on straddle wheeled chassis and moved at an average speed of
0.25 m s−1. The ultrasonic sensor triggered 5 measures per second, e.g., a measurement
every 0.05 m. Ground-truth measurements were made manually with a rigid measuring
tape every 0.05 m along the transect. This corresponded to plant tops or lateral leaves or
bare soil, or to Amaranthus retroflexus L. plants which represented the main segetal species
in the field and were found along chia rows or beyond the edges of the plot. Data points
were geo-referenced with a RTK GPS k9t (Kolida Instrument Co., Ltd, Guangzhou, China)
with an accuracy of ±2 cm. Sensor and manual measurements were paired after retrieving
from the sensor dataset observations at the closest location to measured data.

4.3.4. Alfalfa (Medicago sativa L.)

Measurements were made in a 7-ha alfalfa (Medicago sativa L. cv. Altiva) stand in
Palomonte (Italy, Lat N 40◦61′39.52′′ Long E 15◦30′32.64′′) at 210 m asl. The soil was
classified as a Typic Eutrudept fine, mixed, thermic Calcaric Cambisols (Soil Survey Staff,
1999; IUSS Working Group WRB, 2006). The average soil texture within the first 0.5 m layer
was 41.29% sand, 17.14% silt, 41.57% clay; the average soil organic matter content was
26 g kg−1. The stand was planted at a seeding rate of 40 kg ha−1.

Crop height was mapped on-the-go after mounting the ultrasound sensor on a quad
at 0.6 m distance from the ground. Data points were geo-referenced with a RTK GPS
k9t (Kolida Instrument Co., Ltd., Guangzhou, China) with an accuracy of ±2 cm. Maps
were obtained at three times corresponding to three different heights of the alfalfa stand:
a. maximum plant height 12.07 cm; b. maximum plant height 16.75 cm; c. maximum
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plant height 57.56 cm. On the latter date ground truth data for sensor testing were taken in
16 areas in the field which were chosen across the whole range of crop height values ob-
tained from on-the-go maps with a surface-response-sampling method [41]. The following
plant biometric and radiometric measurements were made:

NDVI

A radiometric Greenseeker® (Trimble, Sunnyvale, CA, USA) sensor was used to
meaasure reflected radiation in the red (~660 nm) and near infrared (~770 nm) wavelengths
for the calculation of the Normalized Differences Vegatation Index (NDVI):

NDVI = (NIR − VIS)/(NIR) + (VIS)

where
NIR = reflectance in the infrared band (~770 nm)

VIS = reflectance in the red band (~660 nm).

Leaf Area Index

Leaf area index (LAI m2 m−2) was measured with a LI-COR 2200c (LI-COR, Lincoln,
NE, USA) field leaf-area meter.

Vegetation Height

Vegetation height was measured with a rigid measuring tape as the distance from the
ground of a 10-cm diameter disk mounted to a stick and placed on top of the canopy every
0.1 m on a 0.5 × 0.5 m area.

Biomass

Above-ground plant parts were harvested on 0.5 × 0.5 m areas and weighed fresh and
after oven-drying at 65 ◦C until constant weight.

4.3.5. Wheat (Triticum durum Desf.)

Measurements were made in a hard wheat (Triticum durum Desf. cv. Tirex) stand
in Genzano di Lucania (Italy Lat N 40◦49′24.9′′ Long E 16◦05’33.8′′. The average soil
texture within the first 0.5 m layer was: sand 18.8%, silt 52.7%, clay 28.5%; organic matter
20.17 g kg−1. The stand was planted in rows at a distance of 15 cm and at a seeding rate of
230 kg ha−1.

Six plots of 2 × 3 m were set up to compare the height of wheat plants grown for grain
(W = whole) with that of plants grown as a dual-purpose crop and, therefore, cut at the
end of tillering at 0.07 m from the ground level (C = cut). Measurements were made at the
end of tillering-beginning of stem elongation, booting, and grain filling stages (respectively
stages 30, 41, 71) of the Zadoks scale [42]. Sensor measurements were acquired on the go
along a row of each of the plots with the ultrasound sensor mounted on a straddle wheeled
chassis. At the end of tillering and booting, plant height (h) was measured with a rigid
measuring tape, which was the distance from the ground of a 10-cm diameter disk mounted
to a stick and placed on top of the canopy. At grain filling, plant height (h) was measured
manually with a rigid measuring tape as the distance from the ground to the top of the ear.

At the Zadoks stage, 30 ultrasound measurements were made along a row where LAI
and NDVI were also measured with methods described in Section 4.3.3, and on the whole
plots, where NDVI was also measured with methods described in Section 4.3.3.

4.4. Statistical Analysis

Data from the ultrasound sensor were analyzed in comparison with ground-truth
height data and other plant biometrics with univariate regression models. On data from the
wheat plot experiment, analysis of variance was conducted, and means were separated with
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the post-hoc test of Tukey. Where horizontal shifts of sensor data compared to manual data
were found, we calculated feature-based and shape-based distance measures: respectively
cross-correlation distance and Dynamic Time Warping normalized Distance (DTW) to
account for possible misalignment between series [30]; DTW is based on the Euclidean
distance computed after using dynamic programming to find the minimal path in a distance
matrix between similar elements in two compared series [2]. All statistical analyses were
performed within the R environment for statistical computing (version 3.1.2 [43]).

5. Conclusions

We devised and tested a low-cost platform for measuring plant height with an ultra-
sound sensor designed to be used in different modes, from static to on-the-go.

We generated point measurements with the static setting on faba bean, with a high
regression coefficient where the ultrasound sensor proved able to reproduce height regard-
less of genotype and phenological stage, thus showing the potential of the platform for
static single-plant measurements.

High regression coefficients were also shown in the on-the-go mode for settings with
a quite continuous plant cover, such as narrow-spaced chia, wheat, and alfalfa, whereas
sensor data were not able to closely reproduce crop height where sharp variations were
found, such as in widely spaced chia.

We were able to quantify and correct some systematic errors, such as data misalign-
ment with feature-based (cross-correlation) or shape-based (dynamic time-warping) mea-
sures of similarity between data series.

Ultrasound-measured plant height proved to be a better predictor than NDVI for plant
biometrics relevant to water relations and yield behavior, such as Leaf Area Index and
biomass in alfalfa.

Overall, ultrasound-measured height with our platform proved to be a fast and
low-cost method of estimating crop parameters that is useful in ecological research or
agriculture applications.

Important characteristics of our platform are that it is simple and flexible, given the
possibility to be employed by users with different skills and inclinations for technology and
in different settings, from mounted on simple poles for single-point static measurements to
towed manually for the complete characterization of plots or rows in experiments. Further,
the platform may be carried on vehicles for mapping large surfaces like open fields, prairies,
and natural herbaceous vegetation sites, providing maps useful for spatial management
and characterization of spatial variation of plant responses in different conditions from
natural to managed systems.

One of the features of the platform’s ESP32 board is wide connectivity. Therefore,
future developments may include the design of a multi-sensor platform with the same
flexibility of use in different settings.

Future work should also focus on the analysis and correction of errors linked to field
settings and modes of platform use, such as data misalignment.
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Abstract: The rapid growth of industrialization and urbanization in China has led to an increase
in soil heavy metal pollution, which poses a serious threat to ecosystem safety and human health.
The advancement of spectral technology offers a way to rapidly and non-destructively monitor soil
heavy metal content. In order to explore the potential of rice leaf spectra to indirectly estimate soil
heavy metal content. We collected farmland soil samples and measured rice leaf spectra in Xushe
Town, Yixing City, Jiangsu Province, China. In the laboratory, the heavy metals Cd and As were
determined. In order to establish an estimation model between the pre-processed spectra and the
soil heavy metals Cd and As content, a genetic algorithm (GA) was used to optimise the partial least
squares regression (PLSR). The model’s accuracy was evaluated and the best estimation model was
obtained. The results showed that spectral pre-processing techniques can extract hidden information
from the spectra. The first-order derivative of absorbance was more effective in extracting spectral
sensitive information from rice leaf spectra. The GA-PLSR model selects only about 10% of the bands
and has better accuracy in spectral modeling than the PLSR model. The spectral reflectance of rice
leaves has the capacity to estimate Cd content in the soil (relative percent difference [RPD] = 2.09)
and a good capacity to estimate As content in the soil (RPD = 2.97). Therefore, the content of the
heavy metals Cd and As in the soil can be estimated indirectly from the spectral data of rice leaves.
This study provides a reference for future remote sensing monitoring of soil heavy metal pollution in
farmland that is quantitative, dynamic, and non-destructive over a large area.

Keywords: rice; soil-crop system; heavy metal contamination; spectral technique; genetic algorithm;
indirect estimation

1. Introduction

Soil serves both as the basis for the growth of crops and as a vital natural resource for
the sustenance and production of human beings [1]. However, soil environmental pollution
has increased significantly in China due to rapid industrialization and urbanization [2].
Among various pollutants, soil heavy metal contamination stands out due to its slow
migration, high toxicity, and irreversible nature [3]. Over time, heavy metals accumulate in
the food chain and pose severe health risks when ingested and accumulated by humans [4,5].
According to the 2014 Chinese Soil Pollution Status Report, the overall pollution excess rate
of soil in China is 16.1% [6]. This alarming statistic has profound implications for China’s
food security as heavy metal pollution in soil leads to an annual loss of approximately
12 million tons of grain crops [7]. As a result, both the government and scholars have shown
widespread concern regarding soil heavy metal pollution [8,9]. Quantitative monitoring
of heavy metal content plays an important role in understanding the extent and sources
of heavy metal pollution in a region [10]. It also offers a theoretical foundation for the
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remediation and management of such pollution [11,12]. While traditional chemical analysis
methods are highly accurate in detecting soil heavy metal content, they are time-consuming,
labor-intensive, and costly. Consequently, they fail to support the demands of real-time
and large-scale monitoring for efficient heavy metal content assessment [13]. Fortunately,
the advancement of remote sensing technology has paved the way for nondestructive and
rapid soil heavy metal monitoring using spectral remote sensing [14,15]. This technique,
characterized by its high-resolution and ability to capture details of the object’s spectral
information, holds great potential in enabling fast and efficient monitoring of soil heavy
metal content [16].

Spectral remote sensing applications for monitoring soil heavy metal contamination
include two main approaches: direct and indirect. Direct monitoring focuses on the
mechanism where soil heavy metal are adsorbed by soil organic matter, iron-manganese
oxides and clay minerals [17]. These components affect soil spectral morphology and
reflectance, leading to specific soil spectral absorption features. At present, more research
has been conducted on direct monitoring [18–22]. The direct monitoring method is not
without its limitations, although it results in high model accuracy and stable models.
Firstly, it is a time-consuming and cumbersome process that requires field soil sampling
and laboratory processing to obtain soil spectral data. In addition, due to soil drying,
grinding, and sieving, the spectral features of heavy metals extracted from laboratory
soil spectra often differ from those obtained from remote sensing images. This difference
complicates the direct application of these models to large-scale soil pollution monitoring
using aerospace images [23]. Therefore, a more convenient and practical approach for
widespread application is to use spectral data from plant leaves or canopies for indirect
estimation of soil heavy metal contamination [24]. The approach is based on the principle
that heavy metals move from the soil to the plants, accumulating there [25]. Under the
stress of heavy metals, the protein and chlorophyll content of the plants are affected, which
leads to a discernible difference in the reflectance spectra [26,27]. Related research has
made significant progress. For example, Shi et al. [28] developed a multivariate spectral
vegetation index based on rice canopy spectra for the estimation of arsenic (As) in farmland
soil. Zhong et al. [29] estimated leaf Cu content using leaf hyperspectra and then inverted
the Cu content of other parts of wheat and soil using bioconcentration factors. Wang
et al. [30] observed that wheat canopy Cu increased with increasing soil Cu concentration,
accompanied by distinct variations in spectral reflectance, providing a foundation for
indirect estimation of soil Cu conten. However, the feasibility and accuracy of indirect
estimation of soil heavy metals from rice leaves are not yet clear.

In this study, we will explore the potential of rice leaf spectra for estimating soil heavy
metals. Firstly, we collected soil samples from farmland and also measured the spectral data
of rice leaves in Xushe Town, Yixing City, Jiangsu Province, China. Then, we processed the
leaf spectra with various spectral transformations and screened the spectral feature bands
using a genetic algorithm (GA). Next, we used partial least squares regression (PLSR) to
model soil Cadmium (Cd) and As content for for the spectra after different pre-processing.
Finally, we evaluated the accuracy of the models and obtained the best estimation models.

2. Results

2.1. Statistics of Soil Samples

Figure 1 shows the content of the soil Cd and As of the sampling sites in the study
area. The average value of soil pH at the sampling site was 5.86. The Cd content was
between 0.13 to 0.97 mg kg−1 with a average value of 0.29 mg kg−1, and the high values
were located in the eastern and central parts of the study area. The As content was between
3.23 to 9.32 mg kg−1 with a average value of 5.64 mg kg−1, and the high values were mainly
located in the central part of the study area. The correlation coefficient between Cd and As
content at the sampling sites was 0.33.
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Figure 1. Distribution of Cd and As content at sampling sites in the study area.

2.2. Characterization of Spectral Curves of Rice Leaves

Figure 2 shows the spectra of rice leaves after different pre-processing. From the raw
spectra (R) (Figure 2a), it can be seen that the spectral curve of rice leaves is significantly
different in the 760–1120 nm band. It has a green light reflection peak at 550 nm, blue-violet
light absorption valleys at 450 nm, and red light absorption valleys at 670 nm. This is due
to the fact that chlorophyll absorbs weakly in the green band of light and strongly in the
blue-violet and red bands of light. There is a high reflectance in the 760 nm to 1120 nm
near-infrared band, which may be caused by multiple reflections within the leaf structure.

Figure 2. Characteristics of the spectral curves of rice leaves with different pre-processing.

Compared with R, the shape of the first-order derivative (FD) spectrum curve (Figure 2b)
changed significantly, with a valley of absorption at 1129 nm and peaks of reflectance at
516 nm and 705 nm. The shape of the second-order derivative (SD) spectrum curve (Figure 2c)
also changed significantly, with valleys of absorption at 712 nm and 1119 nm and peaks of
reflectance at 503 nm and 686 nm. The absorbance transformation (AT) spectrum (Figure 2d)
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has high reflectance in the 400–510 nm band, low reflectance in the 730–1100 nm band, a
valley of absorption at 553 nm, and a peaks of reflectance at 673 nm. The first-order derivative
of absorbance (AFD) spectrum (Figure 2e) has valleys of absorption at 516 nm and 693 nm,
and a reflection peak at 572 nm. The second-order derivative of absorbance (ASD) spectrum
(Figure 2f) has valleys of absorption at 503 nm and 679 nm, and peaks of reflectance at 446 nm,
526 nm, 560 nm, 709 nm, and 1123 nm. The trend of the multiplicative scatter correction (MSC)
spectrum curve (Figure 2g) is the same as that of the original spectrum, but the difference
in the spectral curve of the 380–700 nm band is enlarged. The trend of the standard normal
variate (SNV) spectrum curve (Figure 2h) is similar to that of the original spectrum, but the
spectra are denser, indicating the ability of the SNV transform to reduce background noise.

2.3. Spectral Feature Bands Selected by GA

Rice leaf spectral feature bands were screened using GA as shown in Figure 3. Un-
der different spectral pre-processing, GA selected 17–25 feature bands of soil Cd and
15–30 feature bands of soil As among 230 full bands. The soil Cd feature bands are mostly
concentrated in 400–410 nm, 520–580 nm, 630–650 nm, 690–770 nm, 870–925 nm, and
970–1000 nm; the soil Cd feature bands are mostly concentrated in 400–440 nm, 815–860 nm,
890–920 nm, 970–990 nm, 1005–1030 nm, and 1065–1135 nm.

Figure 3. The feature bands of rice leaves spectral screened by GA.

2.4. Comparison of GA-PLSR and PLSR Modeling Results

Using the GA-PLSR and PLSR models, the modeling and analysis of rice leaf spec-
tra under different pre-processing were carried out, and the cross-validation results are
shown in Table 1. Compared with the PLSR model established directly using the full
band, the PLSR model established by first screening the bands with GA has the same or
reduced number of PCs, indicating that GA can select rice leaf spectral bands that are
more meaningful to the PLSR model. Compared with the PLSR model, the R2

cv value
of estimating soil Cd content under different pre-processing spectra using the GA-PLSR
model increased by 6.25~33.96%, and the RMSEcv value decreased by 0.00~50.00%. The
R2

cv value of estimating soil As content increased by 14.29~53.19%, and the RMSEcv value
decreased by 3.33~69.64%. The results indicate that using GA for spectral wavelength
selection before establishing a model for estimating heavy metal content in rice leaf spectra
can improve model accuracy and stability.

2.5. Best Estimate Model

A cross-validation and an external validation were carried out on the GA-PLSR model
to estimate the heavy metal content of the soil, and the results are presented in Table 2. The
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results of the soil Cd content estimation model show that, compared with R, the accuracy
of each indicator was improved to different degrees in the cross-validation and external
validation of the 7 transformed spectra. This indicates that the accuracy and stability of
the Cd content estimation model have been improved after different spectral transforma-
tions. Among them, the RPD values for R, FD, SD, ASD, and MSC spectral preprocessing
are all less than 1.50, suggesting poor accuracy in estimating soil Cd content. The RPD
values of AT and SNV spectral preprocessing ranges between 1.50 and 2.00, indicating the
possibility to discriminate between soil with high and low Cd content. The AFD spectral
preprocessing has the highest model accuracy, with R2

cv, RMSEcv, R2
ev, RMSEev, and RPD

of 0.71, 0.07 mg kg−1, 0.77, 0.06 mg kg−1, and 2.09, respectively, indicating the ability to
approximate soil Cd content estimation.

Table 1. Comparison of the accuracy of GA-PLSR and PLSR models for estimating soil Cd and As
content in rice leaves.

Heavy Metal Pre-Processing Number of
Bands

GA-PLSR PLSR

PC R2
cv RMSEcv/(mg kg−1) PC R2

cv RMSEcv/(mg kg−1)

Cd

R 22 2 0.34 0.16 2 0.32 0.18
FD 21 3 0.46 0.15 3 0.39 0.15
SD 25 1 0.42 0.15 2 0.35 0.17
AT 17 2 0.53 0.15 2 0.45 0.15

AFD 25 5 0.71 0.07 8 0.53 0.14
ASD 22 2 0.47 0.13 4 0.38 0.17
MSC 16 1 0.47 0.15 3 0.40 0.16
SNV 26 2 0.52 0.15 2 0.45 0.15

As

R 21 2 0.50 1.18 3 0.41 1.27
FD 20 1 0.52 1.15 2 0.42 1.22
SD 21 2 0.55 1.16 3 0.44 1.25
AT 15 2 0.56 1.16 2 0.49 1.20

AFD 23 5 0.89 0.34 9 0.61 1.12
ASD 23 2 0.72 0.82 6 0.47 1.44
MSC 22 4 0.58 1.15 4 0.42 1.27
SNV 30 2 0.70 0.93 6 0.51 1.17

Table 2. Accuracy of GA-PLSR models for estimating soil Cd and As content in rice leaves.

Heavy Metal Pre-Processing
Cross-Validation External Validation

R2
cv

RMSEcv/(mg
kg−1)

R2
ev

RMSEev/(mg
kg−1)

RPD

Cd

R 0.34 0.16 0.41 0.11 1.30
FD 0.46 0.15 0.52 0.10 1.44
SD 0.42 0.15 0.47 0.10 1.37
AT 0.53 0.15 0.59 0.09 1.56

AFD 0.71 0.07 0.77 0.06 2.09
ASD 0.47 0.13 0.53 0.09 1.46
MSC 0.47 0.15 0.49 0.10 1.40
SNV 0.52 0.15 0.62 0.08 1.62

As

R 0.50 1.18 0.57 0.65 1.52
FD 0.52 1.15 0.68 0.56 1.77
SD 0.55 1.16 0.66 0.58 1.71
AT 0.56 1.16 0.64 0.60 1.66

AFD 0.89 0.34 0.89 0.30 2.97
ASD 0.72 0.82 0.71 0.53 1.86
MSC 0.58 1.15 0.64 0.60 1.66
SNV 0.70 0.93 0.76 0.48 2.06
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The results of the model for estimating soil As content show that the cross-validation
and external validation of the seven transformed spectra improve the accuracy of each index
to varying degrees compared to R. This indicates that the different spectral transformations
have improved the accuracy and stability of the As estimation models. Among them, the
R, FD, SD, AT, ASD, and MSC spectral preprocessing have an RPD values between 1.50
and 2.00, indicating the possibility of distinguishing between soil with high and low As
content. The RPD values of SNV spectral preprocessing is 2.06, indicating the ability to
approximate soil As content estimation. The AFD spectral preprocessing has the highest
level of model precision, with R2

cv, RMSEcv, R2
ev, RMSEev, and RPD of 0.89, 0.34 mg kg−1,

0.89, 0.30 mg kg−1, and 2.97, respectively, indicating good ability to estimate soil As content.

3. Discussion

3.1. Effect of Spectral Pre-Processing and Feature Selection for Modeling Performance

Modelling results from different spectral preprocessing techniques show that most
preprocessed spectra show varying degrees of accuracy improvement over the original
spectra. This improvement can be attributed to the fact that external disturbances can
introduce noise when collecting spectral data, making it difficult to accurately represent
the spectral characteristics of objects [31]. Spectral pre-processing approaches efficiently
reduce spectral noise and improve the information about the spectral features [32,33]. For
indirect soil heavy metal content estimation using rice leaf spectra, AFD is the optimal
spectral transformation method for both Cd and As estimation. This is because of the FD
spectral transform, which can effectively extract and enhance the hidden information in the
spectrum [34]. Yao et al. [35] found that derivative transformations were able to highlight
the spectral features more compared with MSC, SNV and Continuum removal. Meanwhile,
the absorbance transformation can further improve the inversion accuracy of As content,
which is consistent with our ability to obtain a good estimation of soil As content using
AFD spectra.

In this study, the number of feature bands selected by GA in the optimal inversion mod-
els for soil Cd and As contents were 25 and 23, respectively, only about 10% of the bands
were used. Moreover, higher accuracy was achieved by utilizing GA for selecting spectral
characteristic bands compared to PLSR modelling. The reason for this approach is that spec-
tral data have properties of redundancy and collinearity, and direct modelling with PLSR is
susceptible to being disturbed by significant amounts of redundancy information [36]. GA
improves model quality and stability by successfully filtering feature bands from the full
spectrum [37]. The results of Sun and Zhang [38], Sun et al. [39], and Zhong et al. [17], who
also showed that GA-PLSR outperforms PLSR in estimating heavy metal concentration
using soil spectral data, are consistent with this methodology. It indicates that the method
applied to the spectral modelling of heavy metal content in agricultural soils. In addition,
Zhang et al. [40] in the estimation of soil heavy metal Cd, the accuracy of R2 was 0.88 by
PLSR modelling using soil spectral features associated with organic matter extracted using
GA. Wei et al. [41] in the estimation of soil heavy metal As, the accuracy of R2 was 0.82 and
0.70 for Honghu City and Daye City in Hubei Province, China, after selecting the feature
bands by using the stable competitive adaptive reweighting sampling algorithm coupled
the successive projections algorithm followed by PLSR modelling. Bian et al. [42] in the
estimation of a variety of soil heavy metals, PLSR and extreme learning machine models
obtained the best accuracy for Cd (R2 of 0.89) and As (R2 of 0.86), respectively. These
studies generally obtained good model accuracies, but they mainly used laboratory soil
spectra for direct monitoring of soil heavy metal content. Our study used rice leaf spectra
to indirectly estimate soil heavy metal Cd and As contents, which is of significant value
in the future development of field soil heavy metal hyperspectral instrumentation and in
the exploration of aerospace hyperspectral remote sensing for monitoring soil heavy metal
contamination on a large scale.
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3.2. Application and Perspectives of Spectral Techniques in Heavy Metal Inversion in
Soil-Rice System

Spectral data are characterized by high spectral resolution, which can obtain fine
spectral information about the object. Using spectral analysis technology, it can highlight
the subtle differences between spectra, which is conducive to extracting spectral features
and finally constructing models to invert the information of the object [23]. In the soil-
crop system, heavy metals migrate from the soil and accumulate in the crop. When the
concentration of heavy metals in the soil increases, the content of heavy metals in different
parts of rice usually increases as well, resulting in a stress effect [43]. As the stress of
heavy metals in rice increases, some of the cellular structures are damaged, resulting in
a decrease in chlorophyll content, which is reflected in differences in leaf spectra [44,45].
Therefore, we successfully inverted the content of heavy metals (Cd and As) in soil by
spectral transformation, characteristic analysis, and modeling of rice leaf spectra. This
study can help to develop soil heavy metal monitoring instruments in the future directly
through rice leaf spectra, and thereby improve the detection efficiency of soil heavy metals.
Meanwhile, in the future, attempts can be made to expand this indirect monitoring approach
to aerospace spectral remote sensing, further combining space-air-ground spectral remote
sensing data. This is conducive to making full use of the characteristics and laws of ground-
based spectral indirect monitoring, while giving full play to the characteristics of aerospace
spectral remote sensing in terms of dynamics and wide range. This will be helpful to form
a multi-scale monitoring and validation system for soil-crop heavy metal pollution [17].

3.3. Limitations and Future Work

In this study, we used rice leaf spectra to indirectly estimate the content of soil heavy
metals Cd and As, but there are still some limitations that we would like to explore and
improve in future work, such as: (1) We studied and tested our method based on spectral
data at only one sampling time, and the stability and applicability of the method need
to be further validated. In the future, the indirect estimation method of soil heavy metal
content in this study can be further explored for application at different time and spatial
scales. (2) We only selected two typical pollutant elements in the study area for our study,
and the potential of other heavy metal elements in spectral monitoring needs to be further
explored in subsequent studies. (3) The mechanisms of uptake, transport and accumulation
of heavy metal elements in the soil-crop system can be further explored in the future,
which will provide more basis for the indirect monitoring of soil heavy metal content using
crop spectra.

4. Materials and Methods

4.1. Study Area

The study area is in the town of Xushe (31◦18′–31◦27′ N, 119◦31′–119◦44′ E), west of
Yixing City, Jiangsu Province (Figure 4), and the total area is about 1.8 × 104 hm2. The
region features a subtropical monsoon climate with well-defined seasons, ample rainfall,
and an average annual temperature of 16.0 ◦C, accompanied by precipitation of 1434.0 mm.
The topography of the region is characterized by higher elevation in the western areas and
lower elevation in the eastern areas, consisting mainly of plains and hills. With a cultivated
area of 1.2 × 104 hm2, Xushe Town is the largest agricultural town in Yixing City, primarily
used for cultivating rice and wheat. Paddy, fluvo-aquic and yellow-brown soils are the
three main soil types.

4.2. Data Collection and Processing
4.2.1. Soil Sampling and Data Determination

We collected 22 surface (0–20 cm) soil samples in September 2019 in the study area
using a five-point mixing method (Figure 3). At the time of sampling, we determined
and recorded the location of each sampling point using a hand-held GPS device. The
soil samples were then returned to the laboratory in sealed bags. In the laboratory, all
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soil samples were dried, ground and sieved (0.15 mm pore size) and divided equally into
two parts. A part of the soil samples was used for the measurement of the pH by the
potentiometric method (NY/T 1377-2007) [46]. The other part was weighed at 0.2 g of soil
sample, put into the bottom of the PTFE digestion tank, added 5 mL of nitric acid, 2 mL of
hydrogen peroxide, and 2 mL of hydrofluoric acid, and microwaved digested for 15 min.
After the digestion solution was clarified, it was fixed to 50 mL and filtered. Finally, the
Cd and As contents were determined by inductively coupled plasma mass spectrometry
(ICP-MS) [47].

Figure 4. Location of the study area and distribution of sampling sites.

During the soil sampling process, we collected spectral data of rice leaves using a
portable field spectrometer (UniSpec, PP systems, Haverhill, MA, USA) between 11:00 a.m.
and 2:00 p.m. Beijing time. The spectrometer had a spectral range of 301–1145 nm and a
spectral resolution of 3.3 nm. At each sampling site, five rice plants were randomly selected,
and three fully expanded leaves from each rice were selected for spectral measurement under
sunny and light wind conditions. White calibration was carried out before each spectral
measurement and five measurements were repeated. For each sampling site, 75 spectral data
points were collected from rice leaves and averaged to obtain the spectral data.

4.2.2. Spectral Pre-Processing

Firstly, the spectral data of the rice leaf are stripped of the noisy edge bands below
380 nm. At each sampling site, the bands between 380 and 1145 nm are selected for
spectral data processing and analysis. Next, the leaf spectral data of rice is processed using
Savitzky-Golay smoothing. The smoothed spectral data is referred to as raw spectrum R.
Finally, based on the R spectra, the spectral pre-processing was carried out by applying
mathematical transform methods such as AT, SNV, MSC, FD, AFD, SD, and ASD [48].

4.3. Research Methods
4.3.1. Genetic Algorithm

The GA is an evolutionary algorithm used for solving optimization problems. It
simulates the mechanisms of genetics and natural selection, assessing individuals with
superior fitness, selecting, crossing, and mutating them using genetic operators to generate
individuals in the new generation of the population. In order to find the optimal solution,
the iterative process is repeated until the convergence criteria have been met [49]. Simulta-
neously, GA can avoid the overfitting problem of general iterative methods, which may fall
into the local minimum.

Prior to modeling, feature bands are selected using GA in order to reduce redundancies
and optimize model performance [50]. In feature selection using GA, each band is treated
as a gene, and a specific number of bands are designated as chromosomes. Next, a subset
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of the samples is taken to form the initial population. Then, crossing and mutation are used
to simulate the genetic and evolutionary processes of random populations in nature, while
the fitness function is used to assess the model’s performance in predicting outcomes. After
conducting tests, the GA parameters for population size, crossover probability, mutation
probability, and genetic generation were set to 40, 0.5, 0.01, and 100, respectively. We
repeated the process 10 times to minimize the influence of randomness. We used the root
mean squared error of cross-validation (RMSEcv) for PLSR as the fitness criterion. As the
individual’s fitness increases, the RMSEcv decreases.

4.3.2. Partial Least Squares Regression

The PLSR is one of the most commonly used methods for processing spectral data to
estimate soil heavy metal content [51]. In this method, the independent variable and the
dependent variable are projected onto a new coordinate system. The principal component,
which has the strongest explanatory power, is extracted and used to construct a new
linear model. This helps reduce collinearity and noise effects and makes the model more
robust [52]. During the process of PLSR modeling, cross-validation is utilized to identify
the number of most efficient principal components.

The spectra after different pre-processing were used to select the characteristic bands
using GA and estimate the heavy metal content using PLSR. The 22 data samples are
divided into two parts, with one sample selected from every 4 samples for validation.
In all, 17 samples were used for modeling, and 5 samples were used for validating the
accuracy of the model. The GA feature band selection and the PLSR modelling were
done in R-Studio 3.5.3 (https://posit.co/products/open-source/rstudio/ (accessed on
6 November 2019)).

4.3.3. Model Assessment

This study used the coefficient of determination (R2
cv) and the RMSEcv for model

cross-validation. The R2
ev, RMSEev, and relative percent difference (RPD) were chosen

for model external validation. The closer R2
cv and R2

ev are to 1, the lower RMSEcv and
RMSEev are, and a higher RPD indicates a better model fit and accuracy. The five-layer
interpretation method proposed by Williams et al. [53] was adopted for the evaluation
criteria of RPD. If the RPD exceeds 3.00, the model has excellent ability to estimate. If the
RPD ranges from 2.50 to 3.00, the model is considered to have good predictive performance.
If the RPD ranges from 2.00 to 2.50, the model can be used for an approximate quantitative
estimate. If the RPD ranges from 1.50 and 2.00, the model has the ability to discriminate
between high and low values. If the RPD is less than 1.50, the model has a poor ability
to estimate.

5. Conclusions

By combining spectral preprocessing, feature selection and modelling methods, this
study fully explored the potential of rice leaf spectra for indirect estimation of soil heavy
metals Cd and As, and the following conclusions were drawn:

(1) Spectral preprocessing technology enhances the modeling accuracy by revealing
hidden information in the spectrum, leading to varying degrees of improvement
compared to the original spectrum. When modeling rice leaf spectra, the most ef-
fective estimation models for soil Cd and As content are obtained through AFD
spectral preprocessing. These results highlight the advantages of mathematical trans-
formations, such as derivative transformation and absorbance, in extracting spectral
sensitive information.

(2) The GA-PLSR model demonstrates superior performance compared to the PLSR
model in modeling of rice leaf spectra. Specifically, compared to the PLSR model,
GA-PLSR used only approximately 10% of the bands and enhanced the R2

cv val-
ues for estimating soil Cd and As content by 0.00% to 50.00% and 3.33% to 69.64%,
respectively, for the different preprocessed spectra. These findings illustrate that
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incorporating a GA for spectral band selection before establishing a model for estimat-
ing soil heavy metal content can significantly enhance the accuracy and efficiency of
the model.

(3) In the modeling of soil Cd content using rice leaf spectra, the best estimation model is
the combination of AFD and GA-PLSR, with R2

ev, RMSEev, and RPD values of 0.77,
0.06 mg kg−1, and 2.09, respectively, which has the ability to approximate estimation.
The best estimation model for soil As content is also the combination of AFD and GA-
PLSR, with R2

ev, RMSEev, and RPD values of 0.89, 0.30 mg kg−1, and 2.97, respectively,
which has good estimation ability.
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