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Abstract: The present study aims at predicting future land use/land cover (LULC) and quantifying
and mapping the ecosystem services (ESs) of water yield, outdoor recreation opportunity and
food production in current (here, 2017) and future landscapes in Northern Iran, using the InVEST,
Recreation Opportunity Spectrum (ROS) and yield models. To that end, two LULC scenarios known
as business as usual (BAU) and protection-based (PB) plan were applied for 2028, using the Markov
Artificial Neural Network and Multi-objective land allocation (MOLA) models. The results show that
rapid urbanisation, caused by the expansion of human settlements and industrial areas, has led to a
decline in the ESs in the region. Compared to the ESs in 2017, the service of water yield increases
as urban expansion increases, whereas food production and recreation services decrease as urban
expansion increases, under the BAU scenario. On the other hand, in the PB scenario, relatively better
conditions can be observed for all three ESs. Considering that the ecological structures of this region
have been severely affected by rapid urban expansion, the results of this research will be useful for
maintaining the existing ESs and can greatly affect planning and decision-making regarding future
development towards urban sustainability.

Keywords: land use scenario; ecosystem services; Markov Artificial Neural Network; MOLA model;
urban expansion; Karaj landscape

1. Introduction

As a functional and dynamic unit of the biosphere, an ecosystem consists of living
organisms and the physical environment in which interaction and material exchanges
are witnessed [1]. Ecosystems, with the goods and services they provide, underlie all
aspects of human, cultural, social and economic well-being [2] and provide an important
material basis for development [3]. However, they are under threat from anthropogenic
drivers including climate change, urbanisation and agricultural intensification and expan-
sion [4], which have serious effects on nature (which provides such goods and services [5]).
Meanwhile, since changes in ecological parameters are not tangible to most humans and
development decision-makers, ecosystem services (ESs) are used to link ecological or
biophysical changes to economic and social consequences [6].

ESs refer to delivering services to human beings through special ecosystems under
appropriate ecological situations and functional and structural integrity [7]. ESs provide
a large number of satisfaction-related advantages to human beings, such as well-being,
selection, social relationships, personal security, social sustainability and human needs.
Thus, ESs are indispensable to human health and sustainable development [8] and comprise
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four categories: provisioning services, regulating services, supporting services and cultural
services [5].

Urban expansion, resulting from the development of human activities such as industri-
alization and urbanization, reduces the construction of ecological and natural infrastructure
of a region and, thus, causes a decrease in the provision of ESs [9,10]. In this regard,
urban expansion refers to a dynamic process, growing towards the surrounding natural
regions [11], that leads to land use/land cover (LULC) change and the alteration of ecosys-
tems and their services [12]. Due to human activities, especially in terms of land use or land
management change, ESs undergo significant variation [13]. The changes in ESs reflect
the impacts of anthropic activities on the ecological environment and directly or indirectly
affect patterns, processes and ecosystem functions [14].

Therefore, investigating the effects of urban development on ESs has become an urgent
and significant task in the better realisation of urban ecology and achieving urban stability
and sustainable urban development [15,16]. In addition, evaluating and predicting the
current and future condition of ES supply based on different plausible scenarios can assist
decision-makers [17] in taking efficient measures to deal with environmental issues in a
more informed way [18].

In a wide variety of studies, possible scenarios have been programmed based on
local LULC policies or only focused on improving one particular ES [19]. In this regard,
scenario-based modelling [20] and mapping [18] of multiple ESs has aroused widespread
attention, leading to specific research aimed at implementing the concept of ESs [21]. In this
research, due to the proximity of natural and urban areas where the supply and demand of
ESs are exchanged, this approach was performed in a mixed urban/natural landscape.

In recent years, the evaluation and modelling of urban ecosystem services have also
been taken into consideration. In most studies, regulating services (carbon sequestration
and air pollution removal services) were the most common subjects [22–26]. In the mean-
time, a small number of studies were associated with food provision, recreation services
and water yield. Considering the importance and priority of these services for city resi-
dents, this research focused on their modelling. In this sense, water yield is critical in water
resource management [27] and the health and well-being of the urban population [28].
Outdoor recreational opportunity is also an important factor in human well-being [29].
Food production is vital to ensuring food safety and urban stability [30]. Thus, quantifying
and modelling these services are essential in urban planning [31].

However, studies that have been performed on the effects of urban expansion on
these services (food provision, outdoor recreational opportunity and water yield) are still
insufficient. In this regard, Reference [16] investigated the effects of urban expansion
on several ESs in a metropolitan area. It was found that food supply services, habitat
quality, carbon storage and soil conservation decrease with increased urbanisation and
water service increases as urbanisation increases. Similarly, Reference [32] modelled urban
expansion and its relationship with multiple ESs (recreation opportunity, carbon storage,
biodiversity conservation) in the Wuhan metropolitan area. They found that, to a large
extent, global urban expansion causes the destruction of ESs and changes in relation to
exchanges and synergies. Reference [33] found that the services of food production, water
supply, raw materials, air quality and climate regulation are greatly affected by urbanisation,
while recreation and habitat quality are less affected by urbanisation. By reviewing various
studies, it was found that, in different parts of the world, especially the areas that face
unplanned and unstable urban growth, natural and ecological structures and assets have
been severely damaged. Consequently, people’s livelihoods and well-being have been
threatened due to the lack of supply of ecosystem goods and services.

A wide variety of methods has been used to model important ESs in urban ecosys-
tems. For example, the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)
water yield model has been extensively used by water resource managers to model the
hydrological balance [34,35]. Moreover, the most common methods used in modelling
recreation services are the InVEST model [36,37] and Recreation Opportunity Spectrum
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(ROS) [12,38–40]. Eventually, various factors are involved when investigating food produc-
tion, yield quality, nutritional value and the amount of land [41]. Therefore, food supply
quantification has been performed in different ways, including the use of statistical data
of the agricultural yield [42], the comprehensive evaluation of agricultural suitability by
indicators [43], harvested energy [44] and a yield model [19].

Although ES studies in Iran have recently focused on urban ecosystems, these stud-
ies are limited and in their early stages. Meanwhile, in more advanced countries, the
quantification of urban ESs has received much attention.

The dominant composition of the recent Karaj landscape has been green cover and it is
known as a ‘garden city’. The proximity of the Karaj metropolis to the capital city and com-
munication highways to the west and south of the country has caused increased growth of
the city’s area and population density (beyond its capacity). The natural resources available
have been dramatically degraded because of the rapidly growing population that migrated
to this city due to rapid industrialisation. This means that ecological structures have been
threatened, causing damage to the sustainability of the urban environment, so that the con-
tinuity of citizens’ lives and their social well-being has decreased. In fact, the city of Karaj,
near the capital of Iran, suffers from development instability, especially in terms of damage
to its infrastructure and ecological assets. In this sense, urban expansion, LULC change,
destroyed urban green spaces, recent droughts, the characteristics of climate seasonality,
lack of rainfall, increased evapotranspiration, reduced water supply and increased water
stress have all greatly reduced the capacity of ESs in this area. Accordingly, this city was
chosen as a case study. Herein, we believe that the application of the ESs approach, as an
integrated economic-social and ecological strategy, can greatly affect planning and decision-
making regarding future developments towards urban sustainability. This investigation is
the first attempt at quantifying and assessing ESs in the Karaj landscape, which has been
experiencing dramatic urban change and intense environmental change.

In this research, the LULC map was initially generated using satellite imagery data of
the Karaj landscape in 2006, 2011 and 2017. Afterwards, considering two different scenarios,
an LULC simulation map was prepared for 2028. In this sense, the present study aims to
predict future LULC by quantifying and mapping the ESs of water yield, outdoor recreation
opportunity and food production in current and future landscapes. Comparing the results
can contribute to proposing the most effective policy related to landscape-cover changes
and sustainable urban development policies, achieving a sustainable city in the study area.

2. Materials and Methods

2.1. Study Landscape

The Karaj landscape (35◦46′–36◦09′ N, 50◦46′–51◦21′ E) covers an area of 117,520 ha
in the east of Alborz Province, Iran. Karaj city is the fourth-largest city in Iran and the
first populated city in Alborz Province, with a population of 1,592,492 people, according
to the 2017 census. Moreover, about 96.2% of the population live in urban regions, with
3.8% living in rural areas (https://amar.org.ir/english, 20 January 2018). This region is
mountainous, with an average altitude of 1300 m above sea level. The average annual
rainfall and temperature are 247 mm and 14.4 ◦C, respectively. According to the Köppen–
Geiger classification system, the Karaj metropolis is categorised as having a cold semi-arid
climate. To better examine ESs and the influencing mechanism of urbanisation, the case
study area was divided into two districts: upstream (ES supply locations) and downstream
(ES demand locations) landscapes. In this regard, the upstream landscape is mainly covered
by mountains, forest, grassland and gardens, which have a high potential for ecotourism.
Regarding Alborz Province, there are two important water sources: the Karaj River and the
Amir Kabir Dam; the Central Alborz Protected area is also in this district. The Karaj River
is the most important waterway in the Alborz province and Karaj metropolis. Furthermore,
most of the water in this river is transferred to Tehran city after being restrained in the
Karaj dam. In addition, despite massive water production in the Amir Kabir Dam, a small
part of it is consumed in the Karaj landscape but most of it is allocated to agriculture and
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drinking purposes in Tehran province. In addition, the popular Chalous Road—one of the
busiest recreational roads—connects the district to the north of Iran. It is worth mentioning
that the Karaj metropolis and agricultural land are located in the downstream landscape
(Figure 1).

Figure 1. Location of the study area.

2.2. Data Sources and Methods to Quantify the ESs

In this study, three ESs were selected: water yield, food production and outdoor
recreation opportunity. The selection of ESs was based on their importance in the region,
data availability, interviews with local stakeholders, the knowledge of scientists from
different disciplines and research centres and literature reviews for the ESs in an urban
context [23,45]. The InVEST software tool was applied to model water yield [16,33], food
production was evaluated with the Sun and Li yield model [19], and the ROS model was
used to quantify outdoor recreation opportunity [37].

In addition, the Markov Artificial Neural Network (ANN)—Multi-objective land
allocation (MOLA) model was used to model the future LULC (year 2028) in the first
and second scenarios. The first scenario was defined on the basis that the process of
LULC change will continue, compared to previous years, without any restrictions. On
the other hand, the definition of the second scenario was based on the intervention of the
government to prevent the destruction of agricultural land to stop the current process
of LULC change. The second scenario, based on the protection of natural assets, was
defined by assuming the existence of limits for the unsustainable development of human
and industrial infrastructure and, if implemented, it is expected to change the current
unsustainable development process towards gradual sustainability.

The sources and input data for ES assessment and LULC modelling are presented in
Table 1. Moreover, the general structure of the study is indicated in Figure 2.
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Table 1. The input data and sources for ES assessment and land use modelling.

Data Types Model Input Data Description

LULC
Support Vector Machines

(SVM)
Markov Chain

MOLA

LULC data

Landsat 5 and Landsat 8
satellite images were

downloaded for 2006, 2011
and 2017 from the United
States Geological Survey

(www.usgs.gov, 1 June 2006,
2011 and 2017).

Digital elevation model Aster satellite

Provisioning Service
Water yield

InVEST model
[46]

LULC map A GIS raster dataset with an
LULC code for each cell

Precipitation (mm)

A GIS raster dataset with a
non-zero value for average

annual precipitation for each
cell.

Average annual reference
evapotranspiration (mm)

A GIS raster dataset with an
annual average

evapotranspiration value for
each cell.

Root restricting layer depth
(mm)

A GIS raster dataset with an
average root restricting layer

depth value for each cell.

Plant available water (PAWC)
A GIS raster dataset with a

plant available water content
value for each cell.

Watersheds One polygon per watershed
(shape file).

Sub-watersheds

A shape file with one polygon
per sub-watershed within the
main watersheds specified in

the Watersheds shape file.

Biophysical Table
Tables of LULC classes,

including data on biophysical
coefficients used in this tool.

Demand Table
A table of LULC classes

showing consumption water
use for each LULC type.

Food production Yield model
[19] LULC map A GIS raster dataset with an

LULC code for each cell.

Cultural Service
Outdoor recreation

opportunity

ROS model
[37,38,47]

Cultivated land Number of
fruit-producing tress

Statistical information on
agricultural and garden

products obtained from the
Statistics Centre of Iran.

Natural area Degree of naturalness:
Hemeroby index

Water component
Water bodies (extracted from

LULC)
River (extracted from LULC)

proximity Road network
Urban areas (extracted from

LULC)
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Figure 2. The general structure of the models used for urban expansion simulation and quantifying
ESs.

2.3. LULC Changes and Future Scenarios in the Karaj Landscape

The Landsat images were classified using the Support Vector Machines (SVM) algo-
rithm [11,48,49] in the ENVI 5.3 software. The generated LULC were categorised into ten
classes: Human-made (including rural settlements, urban areas, industrial land and mining
land); Agriculture (all areas used for crop production); Garden; Water bodies (the deep
and shallow waters of the Amir Kabir Lake dam); Low dense grassland (including sparse
vegetation surface); Dense grassland (including moderate to good vegetation and shrubs);
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Barren (including uncovered, unutilised and barren land); Rocky outcrop; Greenspace
(parklands); and River (Karaj River).

In order to confirm the accuracy of the classification, the kappa standard, kappa
location, kappa no. and FoM in the IDRISI VALIDATE module were calculated. FoM is a
number between 0 and 1, indicating complete overlap (1) and no overlap (0) between the
simulated and real maps, respectively. FoM was obtained using Equation (1) [50].

FoM =
Hits

Misses + Hits + False Alarms
(1)

where Hits denotes the correct pixels where land use change has occurred in the observed
and simulated data; Misses means the pixels that were fixed in the simulated data, although
in the observed data they have changed; and False Alarms are errors that the model predicts
changed but did not do so in observation.

2.3.1. Future Scenarios in the Karaj Landscape
Business as Usual Scenario (BAU)

This scenario was created based on a recent investigation [51] that considered the
continuation of the present transformation trend of natural and green covers (agriculture,
garden and grassland) to human-made areas. The comparison of the current status (2017)
and base map (2006) indicated that agricultural lands have been dramatically reduced and
rapidly replaced by human-made classes. In this sense, Markov and ANN models were ap-
plied to simulate LULC in 2028, using the LCM tool in IDRISI Terrset 16.3 software [52–56].
The transition potential of each LULC was modelled using ANN. The output of this step
was used as the input for the Markov model. The Markov chain model is a stochastic
process model that explains how likely one state is to change into another. In addition,
the transition probability matrix is created from the Markov chain analysis in the LCM
model (for more details, see [57]). The combination of ANN and Markov models is a robust
approach that can be used to successfully simulate future urban expansion [58].

In the present research, the LULC map in 2017 was modelled using LULC maps from
2006 and 2011 and applying Markov and ANN models. The accuracy of this model was
90% compared to the real LULC map in 2017. Afterwards, the LULC map in 2028 was
modelled based on the maps from 2006 and 2017, utilising the integrated method.

Protection-Based Scenario (PB)

This scenario modelled the interference of governmental conservation policies towards
preserving agricultural and garden lands that are at risk of being converted to human-made
areas. Applying this scenario will prevent the conversion of 1316.97 ha of agricultural
lands and 161.42 ha of garden lands to built-up areas. To implement this scenario, MOLA
was used to simulate land use in 2028. This method was conducted to dedicate new land
use transfer and predict variations [59]. It is worth mentioning that MOLA authorises the
utilisation of suitability maps, according to Multi-Layer ANN, to help divide the amount of
variation predicted by Multicriteria decision analysis (MCDA) in various LULC classes [60].
Moreover, the main purpose of using the MCDA method is to provide a basis for evaluating
a number of alternative electoral possibilities, based on multiple criteria [59]. Furthermore,
an Analytical Hierarchy Process (AHP) method was used to determine the weight of the
criteria [59] and the Weighted Linear Combination (WLC) method was used to overlay
maps [61,62].

2.4. Assessing ESs
2.4.1. Water Yield

The model was developed using InVEST software, based on precipitation, storage and
evapotranspiration data [38]. In fact, this model shows how variation in LULC patterns
influences the annual water yield [12]. Regarding the InVEST model, evapotranspiration
is the main parameter in computing the water yield depth under the assumption that
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precipitation is constant [34]. Evapotranspiration is interceded by transpiration through
plants [63] and the shading effect of vegetation cover also changes heat fluxes in the soil,
consequently leading to a reduction in evaporation [34,64]. The amount of rainwater
permeating into the watershed’s subsoil and groundwater is calculated through soil depth,
the available water content for plants and root depth [29]. The calculation of annual water
yield is based on Equation (2).

Yx = (1 − AETx
Px

). Px (2)

where Y(x), AET(x) and P(x) refer to water yield, the annual actual evapotranspiration of
grid unit x and the annual precipitation amount of grid unit x, respectively. Moreover,
AET(x)/P(x) represents vegetation evapotranspiration [35]. In order to calculate the mean
annual evapotranspiration, the ‘Modified Hargreaves’ equation [17] was applied, using:

• Daily average, maximum and minimum temperatures.
• Mean daily maximum and minimum differences.
• Extra-terrestrial radiation.

All information was acquired from the Karaj synoptic meteorological station. The
data were collected from the Iranian Meteorology Organization’s daily database (http:
//irimo.ir/far/, 17 June 2017). The factors related to the soil, such as plant available
water and soil depth [46], were not accessible and so, accordingly, we used data from
the Harmonized World Soil Database (HWSD) provided by FAO [17,65]. Moreover, plant
available water was obtained from HWSD and then divided by soil depth in order to
determine the plant available water content (PAWC) fraction throughout the landscape.
PAWC is the fraction of water content in the soil profile that is available for plants [46].
Notably, the model assumptions are based on the processes at watershed and sub-watershed
scales. The whole landscape was considered to be one large watershed containing five
sub-watersheds. Regarding each LULC class, plant evapotranspiration coefficients (Kc)
were computed based on the existing coefficients in the relevant literature: Human-made
= 0.10; Agriculture = 0.65; Garden = 0.70; Low dense grassland = 0.80; Dense grassland =
0.90; Barren = 0.50; Water bodies, Rocky outcrop, Greenspace and River = 1.00 [38].

The total water demand was calculated as the quantity of water consumption in agri-
cultural land and human-made areas. Consumptive water in farmland was assumed to be
the water used by agricultural activities that are not returned to the watershed. Considering
the human-made area, water-use was calculated according to the water consumption per
person, multiplied by the relative population density per square km and generalised to
each pixel of the raster map with a resolution of 30 m [1]. Water consumption was also
calculated according to the water demands for each type of crop in the irrigation plan of the
Karaj metropolis. Various biophysical variables for model implementation are represented
in Table 1 and further information related to the water yield model can be found in the
InVEST user guide [46].

2.4.2. Food Production

Food production was examined for the current situation (CU), the business as usual
scenario (BAU) and the protection-based scenario (PB) in two steps, as described below.

Calculation of Food Production Using the Yield Model

In this step, the production of fruits and grains was considered in the area. Food
production was calculated using the yield model (Equations (3) and (4)) [19].

PROG = ∑i
i=1Ai × RGi × PGi (3)

PROF = ∑i
i=1Ai × RFi × PFi (4)

8
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where PROG and PROF indicate the production of fruits and grains, respectively. Ai is the
area of district i in the Karaj landscape; RFi and RGi indicate the area proportions of fruits
and grains in the range of i, respectively, and PFi and PGi indicate the yields of fruits and
grains per area unit for each district, respectively.

Calculation of the Relevant Capacity of LULC Classes for Food Production

To calculate the present level of ES delivery produced by each LULC class, the view-
points of thirty scientists were collected from various sectors of governmental institutions
(five of these scientists were members of the Iranian Association for Environmental As-
sessment (http://www.iraneia.ir/en, 24 August 2018)). In this regard, a questionnaire
was designed based on the opinions of Burkhard et al. [66,67]. The questionnaire included
a matrix specifying the relationship or disaffiliation between each LULC class and food
production service. Afterwards, each participant was asked to specify the disaffiliation or
relationship between each LULC class and food production by signing ‘Yes’ or ‘No’ in a
matrix, to identify the resources producing this ecosystem service. Subsequently, they gave
a score for the effective resourcing of food supply in the range of 0 to 5: 0 = no capacity to
supply the selected ESs; 1 = very low capacity; 2 = low capacity; 3 = medium capacity; 4 =
high capacity and 5 = very high capacity. The scores were averaged and then the values of
average capacity were transferred to Arc GIS software to prepare a food production map
for current, BAU and PB scenarios for the study landscape.

2.4.3. Outdoor Recreation Opportunity

Outdoor recreation opportunities refer to an ecosystem’s capacity [37] to provide
outdoor recreation activities such as walking, running, outdoor sports and enjoyment in
watching plants and animals. Therefore, the ROS model was conducted to determine the
outdoor recreation service. The model simulates recreation opportunities provided by
nature at a local level, as categorised in the ESs cascade [68]. This method was undertaken
to assess outdoor recreation in the European Union [69]. Recreation potential covers three
essential aspects of people’s behaviour and preferences for outdoor activities [47]. This
model is estimated according to two indicators: the recreation potential index (RPI) and
the remoteness/accessibility index (RAI).

The first component of the RPI relates to people’s preferences for more natural regions
and concerns the degree of naturalness [12,19,38]. The second component of the RPI refers
to the protected regions, as they indicate a high natural value [70], and the third one is the
attractiveness of water bodies [71]. The degree of naturalness is simulated according to the
Hemeroby index [38], which determines the human effect on vegetation and landscape,
ranging from 1 (natural) to 7 (artificial). Moreover, the degree of naturalness was obtained
for each LULC class [37,72,73]. The protected natural regions are scored based on the
management classes of the International Union for Conservation of Nature (IUCN) [74].
The protected areas were classified by focusing on their significance for recreation aims
in the range between 1 (with the highest natural value) and 0 (the lowest). In this regard,
the protected areas were mapped using information from the database of the Department
of Environment of Iran. Based on the database, there are two protected areas (the Central
Alborz Area and Karaj River) in the study area.

The water landmark is considered a natural key factor for leisure and recreation
activities [75]. The attractiveness of water bodies was determined by measuring the distance
to all surface water bodies [38]. Two layers of distance from the river and from water
sources were prepared with a buffer function. The layers were then standardised using the
decreasing linear fuzzy method (Table 2).
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Table 2. The shape of membership functions and control points of different factors.

Criteria Shape of Membership Functions
Control Points

a b c d

Distance from River Decreasing linear - - 500 1000
Distance from Water bodies Decreasing linear - - 30 2000

Distance from Human-Made Decreasing linear - - 2000 5000
Distance from Roads Decreasing linear - - 500 5000

Moreover, in this method the remoteness/accessibility index (RAI) or access to the
recreation sites was examined [19]. The RAI was determined by applying the proximity
analysis in the ArcGIS toolbox to compute the straight distance from roads and human-
made areas with a buffer function [12,19]. Table 2 shows the control points and the selected
membership function.

The final RAI map was prepared according to the parameters presented in Table A1
(Appendix A) [47]. Notably, this method was slightly modified to augment the precision of
spatial distributions of recreation potential. The final ROS was obtained by combining the
RPI and RAI, based on the parameters in Table A2 (Appendix B).

3. Results

3.1. LULC in CU Situation and Two Scenarios

Kappa indexes (K standard = 0.92; k location = 0.94 and k no. = 0.95) and FoM
coefficient (0.89) indicate satisfactory results of the Markov chain and MOLA models
in LULC modelling. The results confirm that these models are suitable for modelling
urban expansion. From 2017 to 2028, the proportion of different classes was as follows
(from the highest to the lowest, respectively): dense grasslands, rocky outcrop land, low
dense grassland, human-made, garden, agriculture, rivers, and green space. It is worth
mentioning that water bodies and barren land had the lowest proportion of LULC class
in the Karaj landscape. As shown in Figure 2, the BAU scenario, agricultural, garden
and low dense grassland increased in the downstream landscape and, in some parts, they
were converted to human-made land. On the contrary, in the upstream landscape, dense
grassland decreased, which can be related to overgrazing. According to the BAU scenario
from 2017 to 2018, agricultural lands, gardens, dispersed grasslands and dense grassland
decreased, while agricultural land and gardens experienced the highest reduction. Based
on this scenario, it was expected that the area of agricultural lands would experience a
reduction from 6511.86 ha to 5199.85 ha (i.e., a 20% reduction of agricultural lands in the
next 11 years). Furthermore, the garden areas will be reduced by 202.38 hectares. According
to this scenario, the development of human-made areas will continue to increase in the
future. Thus, the area of this class will increase by 29%, from 14,478.66 ha to 18,729.64,
compared to that of 2017 (CU situation).

In the PB scenario, applying efficient management practices will prevent the trans-
formation of gardens and farmland to the human-made class (conserving 1273.31 ha of
agricultural lands and 161.42 ha of gardens). In this scenario, human-made areas are
still increasing because of high demand for settlements due to a high population, but the
intensity of the increase is less than that of the BAU scenario. In general, regarding the
current scenario, 12, 13 and 14% of the land area are under the human-made, agricultural
and water body classes, respectively.

The modelling results indicate that, in the PB and BAU scenarios, 10% and 12% are
agricultural and garden lands, and the remaining 76% and 73% are covered by natural land
cover and water ecosystems, respectively. However, the spatial distribution of the landscape
elements is different for each scenario (Figure 3). Moreover, the findings showed that the
most significant LULC change was manifested by urban growth and garden, grassland and
agricultural land reduction in the Karaj landscape during 2017–2028 (Table 3).
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Figure 3. Spatial distributions of LULC in the Karaj landscape under CU and different scenarios.

Table 3. Changes in LULC in the Karaj landscape under each scenario.

Land Use Type Area (ha)
CU BAU PB

Human-made 14,478.66 18,729.64 17,630.64
Agriculture 6511.86 5199.85 6473.16

Garden 7036.67 6834.29 6995.71
Water body 326.97 326.97 325.5

Low dense grassland 22,584.96 20,197.93 19,899.67
Dense grassland 40,167.09 39,810.59 39,774.65

Barren 227.43 227.43 226.63
Rocky outcrop 24,393.78 24,401.78 24,402.09

Green space 802.42 801.36 801.79
River 990.36 990.36 990.36

3.2. Changes to ES Flows
3.2.1. Water Yield

The outputs of the InVEST water yield model were the volume of water yield in the
sub-watershed scale and the estimated water yield per pixel. One of the outputs is in the
form of a shapefile and a table containing biophysical output values per sub-watershed
and the other is in the form of a raster map. In CU and the two scenarios, the ESs were
assessed at the sub-watershed scale and the results of the water balance are presented in
Table 4. The results show that the average water balance and the amount of available water
will be enhanced in all scenarios, since green areas and natural cover transformation (low
dense grassland, dense grassland) lead to decreasing evapotranspiration. The increase in
water yield due to the reduction in evapotranspiration is not a positive result for water but
it signifies the sudden release of water due to the destruction of grassland and gardens,
instead of being stored in plant tissue and then being gradually released throughout the
year.
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Table 4. The effects of changes in precipitation and evapotranspiration on landscape water yield in
CU and two scenarios.

Average Precipitation
(mm)

Average Evapotranspiration
(mm)

Water-Related
(Million m3/Year)

Water Yield Water Supply Water Demand

CU 523.21 288.08 235.10 −105.62 340.72
BAU 523.19 282.58 240.61 −106.98 347.59
PB 523.19 283.75 238.41 −108.26 346.67

According to the model predictions, although the water yield would increase, the
water demand outweighs the water resource due to the excessive water consumption in the
region. This may result in increased access to groundwater aquifers, subsequently leading
to a decrease in groundwater storage. The PB scenario indicates a minimum decrease in
water supply potential, signifying more efficiency in terms of water consumption compared
to the BAU scenario. Moreover, regarding the BAU scenario, the highest enhancement in
water demand can follow. Due to the arid and semi-arid climatic conditions in the area,
on the one hand, and the rapid development of man-made areas, on the other, a water
supply deficit is witnessed in the current situation and, also, under both future scenarios.
However, under the PB scenario, despite maintaining the existing farms, the demand for
irrigation of the protected farms is reduced compared to the BAU scenario; this indicates
the greater efficiency of our conservation (PB) scenario for optimal water management in
the area. On the other hand, the amount of food production in farms also increases, which
is an advantage for all stakeholders.

The volume of water production and other related variables in the five water basins in
the Karaj landscape are shown in Table 5.

Table 5. The volume of water production and other related variables in the water basins in the Karaj
landscape.

Sub-Basin Code 1 2 3 4 5

Area (ha) 76,114.00 963.18 3131.216 34,540.50 2771.277
Average Precipitation

(mm/year) 573.62 407.49 407.44 431.46 454.05

Evapotranspiration (mm/pixel)
Potential 550.91 127.31 273.22 450.4 597.59

Actual 338.77 92.26 139.98 198.6 245.32
Water yield volume (million m3/year)

CU 234.7 315.2 267.5 232.9 208.7
BAU scenario 233.3 331.9 277.3 253.1 208.7
PB scenario 234.6 314.4 269.4 247.4 208.7

Water supply (million m3/year)
CU 121.1 −868.8 −813.9 −539.0 134.4

BAU scenario 119.8 −666.1 −698.1 −556.7 131.5
PB scenario 120.0 −871.6 −830.5 −610.3 134.3

Water demand (million m3/year)
CU 113.6 1184.0 1081.4 771.9 74.3

BAU scenario 113.5 998.0 975.4 809.8 77.2
PB scenario 114.6 1186.0 1099.9 857.7 75.4

In CU and the two scenarios, sub-basins 1 and 5 (possessing more than 120 million
m3/year) and sub-basins 2 and 3 (with 1000 million m3/year) indicate the highest water
supply and demand, respectively. In the BAU scenario, the water demand in watersheds
4 and 5 will increase by up to 38 million m3/year and 3 million m3/year, respectively. In
watershed 1, the conditions will be the same as those of the CU situation, indicating the
least effects on water-related ESs due to LULC transformation. Moreover, other watersheds
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show a decrease in water demand. In the PB scenario, the water supply potential is the
same as the CU situation; however, the water demand will increase in all watersheds,
especially in 3 (from 1081 to 1099 million m3/year) and 4 (from 771 to 857 million m3/year),
because of the increasing agricultural activities.

Figure 4 shows the pixel-based (30 × 30 m) map of the water balance of the ecosystem
in the study area. Water balance is higher in all three scenarios in the upstream landscape
because the rainfall in these areas is greater than the evapotranspiration. In the northwest
part of the upstream area, the water yield increases between 2017 and 2028. Significantly,
in the central part of the study area, the water yield is low and the majority of change
occurs in the central and downstream parts of the study area. The water yield decreases
downstream (from 2017 to 2028) because of the transformation of vegetation cover to other
LULC classes with higher water demand and, also, due to the fact that evapotranspiration
is higher and precipitation is lower than the upstream areas. The results indicate that the
volume of water produced in each of the three scenarios is 1259, 1304 and 1274 million
m3/year, respectively. Accordingly, in 2028, the volume of water production in the BAU
and PB scenarios will increase by 45 and 15 million m3/year, respectively.

3.2.2. Food Production

Food production showed various distribution patterns. In this sense, grain planting
was only provided by the downstream landscape in the rather flat and fertile areas. In the
west and southwest of the region, there is the least human habitation. Fruit production
was mainly provided by the upstream landscape (Figure 4). Accordingly, from 2017 to
2028, grain production decreased in both the BAU and PB scenarios by 19% and 0.6%,
respectively. Total grain production in the Karaj landscape will decrease in both BAU
and PB scenarios. In this regard, grain production is 110,024.95, 88,170.88 and 109,271.36
tons per hectare for the CU situation and BAU and PB scenarios, respectively. During
the 2017–2028 period, the cultivated lands decrease in the BAU and PB scenarios by
1312.01 and 38.7 ha, respectively. The expansion of urban and industrial areas of the
downstream landscape is the reason for this decrease. The crop yield also decreases, mainly
due to the reduction in cultivated land. Considering the fruit production, an increasing
trend is seen in the upstream landscape (from 56,602.34 to 57,588.55 ton/ha), while in
the downstream landscape—from the CU situation to the BAU scenario—a significant
reduction is witnessed (from 1259.22 to 1015.15 ton/ha) and, in the PB scenario, it reaches
the highest value (1361.53 ton/ha). In general, the total fruit production in the Karaj
landscape decreases in the BAU scenario and increases in the PB scenario. Fruit production
in the CU situation is 57,861.56 ton/ha and for the BAU and PB scenarios, it could be
57,774.38 and 58,950.91 ton/ha, respectively. During the 2017–2028 period in the upstream
region, the area of garden land reduces in the BAU and PB scenarios by up to 74.15 and
70.23 ha, respectively. On the contrary, regarding the downstream area, the area of garden
land experiences a reduction in the BAU scenario (from 930.7 to 802.47 ha) but a specific
increase in the PB scenario (from 930.7 to 959.97 ha) (Table 6). The reason for this decrease
is rooted in the massive villa construction and road expansion in the upstream area and the
urbanisation of the downstream area. In general, the results indicate that the amount of
food production will only improve under the PB scenario.

Table 6. Changes in food production under different scenarios.

Food

Landscape
District

Area Agriculture and Garden Land (ha) Production (Ton/ha)

CU BAU PB CU BAU PB

Grains (Agriculture
land)

upstream 0 0 0 0 0 0
downstream 6511.8 5199.8 6473.1 110,024.9 88,170.88 109,271.3

Fruits
(Garden land)

upstream 6105.9 6031.8 6035.7 56,602.3 56,759.23 57,588.5
downstream 930.7 802.4 959.9 1259.2 1015.15 1361.5
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3.2.3. Outdoor Recreation Opportunity

Figure 5 shows the percentage of land within each ROS category. It can be seen that
categories 9 (high provision–not easily accessible) and categories 3 (low provision–not
easily accessible) are the largest and smallest areas, respectively. From 2017 to 2028, the
value of the outdoor recreation opportunity index in the BAU scenario decreased, but in
the PB scenario it increased.

Despite no considerable variation in recreation potential, this service represented
clear spatial heterogeneity. Additionally, recreation services decreased from the upstream
landscape to the downstream landscape because in the upstream landscape there are
natural and semi-natural habitats such as water bodies, grassland, lakes, etc. It is worth
mentioning that most of this area is mountainous with forest cover. Moreover, regions
with a low population and high distance from the roads and urban areas always presented
higher values of outdoor recreation opportunity. However, this service became worse in the
downstream landscape. The rapid growth of the human-made class decreased recreational
opportunity. The parts of the downstream landscape with green spaces showed a high
recreation opportunity (Figure 4). According to the results, the PB scenario would be more
favourable than the BAU scenario.

Figure 4. Cont.
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Figure 4. Spatial patterns of the ESs in the Karaj landscape.

Figure 5. Percentage of land within each ROS category and the indicator value of outdoor recreational
opportunity index in the Karaj landscape.
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4. Discussion

4.1. Changes to LULC under Scenarios in the Future

Scenario simulation is one of the essential methods for predicting ES delivery [76],
which can provide recommendations for LULC planning scenarios [77]. Therefore, in this
paper, the effects of LULC changes were investigated on multiple ES delivery and supply
under the current situation and two other scenarios in the future (BAU and PB scenarios).

There are some limitations in previous studies. Some researchers, such as [78,79], did
not perform scenario analysis, which usually leads to different results. Additionally, in the
studies that considered scenario analysis, such as Gao et al. [80], they did not study LULC
effects on ESs in future scenarios.

The development of human-made settlements and infrastructure, due to urbanisa-
tion, will be the main LULC change in the Karaj landscape under both scenarios in 2028.
Another important change is the reduction in agricultural and garden areas in the BAU
scenario and their increase in the PB scenario. This augmentation can be attributed to
lower anthropogenic pressure on the agricultural, garden and grassland areas as a result of
better management practices followed by all stakeholders in the PB scenario. Furthermore,
rapid economic development and population growth in the Karaj metropolis significantly
changes the LULC.

4.2. Spatial Distribution of ESs in the Karaj Landscape
4.2.1. Spatial Distribution of Water Yield

In the InVEST model, the raster output is used to interpret and identify areas with
water balance, as compared to areas facing water stress. Considering the problems of
drought and lack of water output, our model indicates that, in the current situation, a major
part of the downstream area suffers from water stress. By implementing the protection
scenario and preserving the existing natural assets, it can be hoped that the water stress
situation in the studied area will not worsen. Based on the yield, supply and demand of
water in the sub-basins (Table 5), the water balance status of the Karaj landscape can be
classified into three categories: balanced, water stressed and critical. In the CU situation and
two scenarios, sub-basins 1 and 5 are in the balanced class, sub-basin 4 is in the water-stress
class, and sub-basins 2 and 3 are in the critical class. Sub-basin 1 is dominated by green
cover, mountainous and blue areas located in the upstream landscape, and sub-basins
2, 3 and 4 are dominated by agricultural lands and urban areas in the downstream area,
which demand the most water. Overall, due to the topographic conditions [26,81,82] and
LULC coverage [83–87], the water balance in the upstream landscape is higher than in the
downstream area.

The water yield in the central parts of the downstream area is higher than other parts.
This includes Karaj city and urban areas. The expansion of human-made areas increases the
impervious region and, accordingly, a large amount of precipitation is collected and stored
in the form of runoff, which decreases land surface evaporation and results in a high water
yield depth in the urban area [88]. Therefore, in this section, urban growth was conducive
to the augmentation of water yield [34]. In general, regarding the Karaj landscape, the
destruction and conversion of green cover (such as agriculture and gardens) can be seen
but the rate of this conversion is higher in the downstream region. The result of these LULC
changes leads to evapotranspiration reduction, consequently increasing water yield [33,84]
and floods [89] in the arid region of Karaj. In total, LULC change has a little positive
impact on water yield but a powerful negative impact on water demand, water supply and,
consequently, water stress. The positive effect of LULC change on water yield is mainly
via decreased evapotranspiration and vegetation. This result is also compatible with the
results of studies performed by [17,89–91]. On the other hand, rapid urban expansion and
population growth have led to an increased water demand. In fact, population change has
caused a change in water supply and demand, its increase leading to an increase in water
demand. Therefore, in the Karaj landscape, despite the large supply of water, there is no
balance between supply and demand. The mismatch between water supply and demand
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limits sustainable development and the economy of the region [79]. In this regard, given
that most water resources in the region have been used more than the existing capacity,
the need to pay attention to water resources and their management is very important for
informing decision- and policy-makers regarding regional water security.

4.2.2. Spatial Distribution of Food Production

In terms of food supply, large amounts of fruit and grain production were dispensed in
the upstream and downstream. According to the results (Table 6), although the cultivation
level of garden products in the upstream decreases by 74.15 and 70.23 ha in 2028 compared
to 2017, production in both scenarios is higher than the base year. Increasing garden
products, despite reducing the area under cultivation of crops, indicates an increase in
production per unit area and a productivity improvement. Generally, compared to the
ESs in 2017, food production will decrease under the BAU scenario but will increase
under the PB scenario in 2028. According to the different results of food production in
the two scenarios, it can be argued that food production is dependent on intact natural
LULC [92,93]. However, food production was also affected by other factors, such as the
amount of land, yield, food quality, soil properties, climate, management practices and
agricultural technology [19]. Herein, the model shows that grain production will decrease
in the Karaj landscape by 2028. Due to the fact that there is no possibility of agricultural
activities in the upstream areas, downstream agricultural activities must be developed and
the preservation of these lands must be accompanied by strict management to ensure food
security in the region. [87] argued that grain production decreases due to the degradation
of agricultural land, particularly in developing countries. Consequently, managing the
relationship between food security, urban construction and ecological conservation is vital
in all countries [94].

4.2.3. Spatial Distribution of Outdoor Recreation Opportunity

The classification of LULC percentage in each ROS class (Figure 4) is based on the two
factors of provision and accessibility. According to this classification, the easier the access
and the more the provision, the higher the value of the recreational potential of the area
would be. The total area percentage of these two categories in the region is 21%, 19% and
23% in the CU situation and BAU and PB scenarios, respectively. Based on the ROS map
(Figure 5), the highest outdoor recreation opportunities were observed in the northeast, east
and southeast parts and a few parts of the northwest upstream, in both future scenarios.
The dominant coverage of these areas is natural habitats, water bodies and river areas,
gardens and dense grassland. On the other hand, considering the downstream area of
the region in both future scenarios, areas with high recreational value are distributed in
parts of the north, southeast, southwest and a few parts of the centre that are urban parks.
Although the spatial distribution of this service is the same in both future scenarios, the
area of high recreational value is much more distributed in the PB scenario than in the BAU
scenario. Overall, the identified recreation area is almost fine for both scenarios, despite
obvious spatial heterogeneity. However, in the BAU scenario, compared to the PB scenario,
the Karaj landscape would have lower recreational opportunities.

Outdoor recreation opportunities were highly influenced by topography. Due to its
mountainous nature and other natural attractions in the upstream landscape, there are
more recreation opportunities than downstream, which is located at lower elevations and
is predominantly covered by the human-made class. Therefore, in confirmation of previous
studies [12,19,40], outdoor recreation opportunities are affected by LULC changes.

4.3. The Impact of Urban Expansion on ESs

LULC is a determinative variable causing changes in ESs which are affected by the
intensity of variations in the composition, patterns and structure of LULC [95]. When
compared to the ESs in 2017 (CU situation), the water yield increases as urban expansion
increases, whereas food production and recreational services decline as urban expansion
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increases, under the BAU scenario in 2028. On the other hand, in the PB scenario, water
yield, food production and recreational opportunities increase.

Regarding the continuation of unsustainable urban development through extensive
conversion of natural land cover to man-made uses, the ecological infrastructure of the
studied metropolis has been threatened. This is because the management of natural assets,
such as grassland, gardens, etc., is not in a favourable condition. Under these conditions,
even with the implementation of protection scenarios, it is a difficult task to control LULC
changes in the areas that are facing increasing demand for the creation of human and
industrial infrastructures. However, in this study, it was shown that by adopting the
conservation scenario, even if it is not possible to completely continue the current trend
towards more sustainable LULC changes, it can be hoped that by preserving existing
natural assets, the rate of deterioration of ESs and natural functions will be reduced as
much as possible. Our modelling shows the PB scenario with fewer adverse consequences
for ESs, indicating that the protection scenario is an approach that can establish a more
sustainable form of urban development, compared to the scenario of the continuation of
the existing situation in the future time perspective (year 2028).

Previous studies have demonstrated that the increase in the water yield due to LULC
change, high precipitation and urban expansion [16,19,26,34,84,87] decreases outdoor recre-
ation opportunity due to urban expansion and LULC change [39,40,96], as well as food
production due to urban expansion [1,30,43,76,97].

In the current research, it was found that the rapid and wide variation of LULC types,
urban expansion and the absence or weak implementation of sustainable urban LULC plan-
ning methods cause some specific changes to the spatial distribution of ESs. Undoubtedly,
these changes will cause the Karaj landscape to move from having an ecological function
to a sociological one and reduce the sustainability of ecological networks [98]. Therefore,
by adopting effective management policies and creating a balance between ecological and
sociological functions, it is possible to achieve the sustainability of the urban ecosystem
and, consequently, reduce the effects of urban expansion on ESs. In this sense, it is worth
mentioning that urban expansion is one of the most significant reasons for changes in ES
functions (increasing water yield and reducing outdoor recreation opportunity and food
production) in the Karaj landscape. These results validate the results of previous investiga-
tions [7,12,16,17,24,26,99,100]. Significantly, the increased water yield, which can increase
nutrient transport and flood risk [16], will have negative effects on urban sustainability
and social well-being. On the other hand, water balance and the regional water cycle
(which are vital in urban areas [101]) have been disrupted in the Karaj landscape due to
excessive water consumption. Therefore, planners and managers of water resources should
implement appropriate strategies and policies to deal with water supply deficiencies in the
Karaj landscape. In addition, recreation potential is important for citizens’ well-being [102].
Thus, due to the reduction of this service in the Karaj landscape, and in order to improve
the quality of the recreational and mental comfort in society, urban expansion strategies
should increasingly aim to strengthen the natural and artificial network of green spaces by
planting more trees, increasing the diversity of plant combinations and properly managing
green spaces. Finally, it is worth mentioning that food can be regarded as a basic material
for a good life [15]. The lack of food production will further deteriorate food safety in the
Karaj landscape. Considering that there is no possibility for agriculture in the upstream
areas and the reduction of the area of these lands, along with the garden lands in the
downstream areas (especially the eastern and western parts), a significant decrease will be
experienced in the capacity of the land to provide food for the city’s residents. Thus, urban
planners must provide appropriate protection and sustainable plans for these uses.

Urbanisation leads to the spatial heterogeneity of ESs as a result of urban growth and
population settlement [30]. Therefore, regarding the urban growth process in the Karaj
landscape, the loss of ESs that were affected by LULC changes can negatively influence
urban sustainability and, consequently, human well-being. However, this negative effect in
the PB scenario was significantly reduced. It is due to the fact that, in this scenario, future
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management policies and land use planning were implemented. In this regard, to achieve
favourable welfare, the planners and managers of Karaj should end the continuation of the
current process by defining more informed protection and management scenarios, such as
our protection scenario.

4.4. Limitations

In this study, there are restrictions in the InVEST model and the ROS model that result
in less accurate parameters. These tools were applied due to the limited available data and
information for the case study area. Moreover, InVEST models have the potential to beget
a basic underpinning for decision- and policy-making [103]. Although the InVEST annual
water supply does not contain the precipitation patterns all over the year, it overrates
runoff and neglects groundwater recharge [37]. Moreover, the limitation of the stout
testing restricts their credit [103]. The ROS method focuses on the recreational activities of
natural infrastructure (usually the water component) but overlooks the recreational value
of artificial substructures in the human-made areas [19]. Therefore, these limitations can
lead to wrong approximations of ES supply [38]. Furthermore, we were able to support the
accuracy of our estimations with the results provided in the literature and the experimental
data, arranged to downgrade the inaccuracies. In this study, we did not consider the
demand for recreation and food due to a lack of data. We suggest that the demand for these
ESs be considered in future studies.

5. Conclusions

The research presented proposes a framework to evaluate spatial-temporal variations
of multiple ESs in the Karaj landscape from 2017 to 2028. Models which are used to
quantify ESs in Iran, although previously used for natural areas, have not yet been used in
the urban landscape. Therefore, this study can form a good model to highlight key research
priorities in urban ESs and can be considered as a basic study in urban landscapes for other
researchers in Iran.

According to the results, fast urban growth will lead to a kind of decline in provisioning
and support services in the Karaj landscape in the future—since urban expansion will
destroy the grassland, farmlands and gardens. In contrast, water yield increases and water
balance is disrupted in the region because of the process of urban expansion. In this regard,
changes in water yield increase in most of the Karaj landscape, while outdoor recreation
opportunity and food production mainly occur in the downstream areas and have spatial
consistency with urban expansion.

Herein, recommendations were provided for urban planners in order to manage
ESs. Generally, urban planners should take measures to improve food production in
the downstream, especially in the western parts; outdoor recreation opportunities in the
downstream areas, especially in the central region; and water supply in the central region
and the western and northwestern parts of the downstream. Hence, regarding the process
of fast urbanisation, the government must efficiently protect the sustainable capacity of ESs
and logically plan for LULC, especially in places where the urban ecosystem is adjacent to
natural lands and changes the natural structures in the appearance of Karaj’s landscape.

Scenario analysis shows that the PB scenario has a better performance in providing ESs.
Consequently, urban ESs are spatially heterogeneous within the region, vary in relation to
different scenarios, and highlight important issues in ESs, amounting to sustainable urban
expansion policies and schematisation. Overall, the results presented in this study justify
further research to ensure multiple ESs in the Karaj landscape. In addition, the present
study gives a comparative result to areas having a similar scale. Finally, it is hoped that the
results presented in this study will help managers and urban planners to make sensible
decisions in ecosystem management and achieve urban sustainability. Regarding future
research, we will present the effects of urban expansion on ESs in the Karaj landscape in
several conservation and management scenarios, to provide urban planners with guidelines
for urban sustainability and balanced development.
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Appendix A

Table A1. Remoteness/accessibility (proximity) parameters.

Distance From Roads (KM)

Distance from human-made areas (KM)

<1 1–5 5–10 >10

<5 1 2 2 4
5–10 2 2 2 4

10–25 3 3 3 4
25–50 3 4 4 4
>50 4 4 4 5

1 Neighbourhood
2 Proximity
3 Almost far
4 Remote
5 Very remote

Appendix B

Table A2. Parameters for the recreational opportunity spectrum.

Recreation Potential Index (RPI)

Remoteness/accessibility (proximity)

1 2 3
<0.19 0.19–0.25 >0.25

1 Neighbourhood 1 4 7
2 Proximity 1 4 7
3 Almost far 2 5 8
4 Remote 3 6 9
5 Very remote 3 6 9

1 Low provision—easily accessible
2 Low provision—accessible

3 Low provision—not easily accessible
4 Medium provision—easily accessible

5 Medium provision—accessible
6 Medium provision—not easily accessible

7 High provision—easily accessible
8 High provision—accessible

9 High provision—not easily accessible
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Abstract: Urban parks are a rich source of microbial diversity, as they are heavily used by city
residents. In this study, we sampled a Mediterranean park and were able to isolate bacteria that
have the ability to inhibit the growth of control microorganisms. Out of the 560 bacteria we tested,
many displayed antibacterial activity, particularly against Salmonella sp. and K. pneumoniae. These
results suggest that the microorganisms in the park are in close proximity to the human population.
Additionally, the isolated bacteria demonstrated diverse enzymatic activities, possibly as a response
to the environmental substances available to them, which could aid in the degradation of different
compounds of interest. The study of the spatial distribution of soil parameters and the inhibition
against relative-safe pathogens in an urban park in València (Spain) demonstrated a higher proportion
of isolates in certain areas. These spatial data maps can help researchers understand the behaviors
of bacterial populations on a regional level, which can assist in the creation of novel antimicrobial
agents and promote advancements in public health.

Keywords: urban garden; protease; lipase; DNase; lipase; spatial statistics

1. Introduction

Urban gardens play a role in maintaining biodiversity in anthropogenic areas. Their
potential value may be considerable, as they can function as semi-natural habitats that
offer a sanctuary for bacterial biodiversity [1]. Some of these bacteria include strains that
are able to produce antibiotics and other interesting products for the industry, such as
extracellular enzymes [2]. Additionally, anthropogenic activities frequently impact urban
garden soils, potentially leading to bacterial community composition variations distinct
from those observed in conventional agriculture. Such variations can manifest in antibiotic-
producing soil strains [2]. Urban gardens often constitute a significant proportion of green
spaces in urbanized cities, with some cities having 23 to 36% of their areas dedicated to
these gardens [3–5]. These gardens provide support for numerous local, landscape, and
sociopolitical features that aid in the preservation of biodiversity. By comprehending spatial
connectivity, it is possible to anticipate bacterial resource diversity, abundance, distribution,
composition, and species distribution. Opportunistic pathogens that are typically present
in soil microbiota or those that colonize it (enteric pathogens) can contaminate the soil
through the deposition of human or animal excreta. Animal-based excreta, such as manure,
and the improper disposal of human excrement in gardens can introduce substantial
quantities of enteric pathogens into the soil environment. The emergence of antimicrobial
resistance in urban areas should not be ruled out either [6]. One of the major global health
concerns is antibiotic-resistant bacteria with ubiquitous phenotypes and genotypes in parks
and gardens [7]. Matthiessen et al. [8] advocate that the high prevalence of antibiotic-
resistant bacteria in the environment is one of the most important threats to public health
today due to their direct contact with humans. The overuse and misuse of antibiotics
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have inevitably increased the environmental concentration of antibiotic resistance among
bacteria, especially among enterobacteria [9,10]. The problem of antimicrobial resistance
in parks is only becoming worse [11]. John Snow’s work on cholera and the acceptance of
germ theory show that urban dwellers interact with microbes in markedly different ways
than those living in rural areas [12]. Microbes in an urban environment are a potential
source of contagion [13], and certain conditions, such as allergies, are associated with
increasing urbanization [14]. It is more than evident that cities (and, thus, their parks and
gardens) have an impact on human health. The mechanisms of this impact are variable
and not well understood. The analysis and mapping of microbial dynamics in these
urban environments outside pandemics have only just begun [15]. The use of maps for
analyzing and illustrating the occurrence of bacterial pathogens at a national level has been
employed on a European-wide basis since 1999 [16]. Their contribution to predicting urban
environments will enable significant new research on the impact of urban microbiomes on
human health [17].

The present investigation scrutinized bacterial resources within an urban garden
situated in València (Eastern Spain) to establish the relationship between alterations in
soil composition and bacterial abundance, as well as the spatial distribution of bacteria
within the garden. Benicalap park is one of the most important green spaces in the city
of València. It is an outdoor space that has large sports areas, swimming pools, a theater
forum, and children’s areas. The park was built in 1983 on the periphery of the city. It
covers an approximate area of 80,000 m2. Vegetation is present in most of the park in the
form of Mediterranean wooded groves, e.g., olive trees, cypresses, pines, laurels, holm
oaks, mulberry trees, and strawberry trees. The park can be accessed via Burjassot Avenue,
Luis Braille Street, and Andreu Alfaro Street. In this study, the microbiological biodiversity
was specifically tested, e.g., fungi and bacteria (Enterobacteria). In total, 28 samples were
studied extensively in terms of soil bacteria composition, antibiotic effects against test
strains, and the ability to produce extracellular hydrolytic enzymes. Bacteria and fungi
are incapable of performing endocytosis processes, which prevents them from ingesting
nourishing particles or taking advantage of macromolecules in suspension in the external
environment as sources of nutrients. It is not uncommon for these microorganisms to
produce and excrete medium enzymes with the ability to extracellularly hydrolyze various
types of macromolecules, producing smaller molecules (monomers, dimers, oligomers) that
will later be incorporated by active transport to the cytoplasm. Moreover, we examined the
relationship between bacterial abundance, spatial distribution, and other soil characteristics,
such as pH and color.

2. Materials and Methods

2.1. Sample Collection

During the 2018 and 2019 seasons, soil sampling was carried out in an urban commu-
nity park located in Benicalap, València, Spain (Figure 1). The garden utilized municipal
and rainwater for irrigation, which is a common practice in many urban community gar-
dens throughout València. To isolate bacteria, a total of 28 soil samples were collected from
a depth of 0–10 cm and transferred to screw tubes, following the procedures detailed in a
prior publication [18]. The unused samples were kept at 4 ºC for subsequent analysis.
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Figure 1. Park in Benicalap. Geolocation of sampling points (Google Maps).

2.2. Soil Characterization
2.2.1. pH Measurement

To determine soil pH, 1 g of soil was dissolved in 5 mL of distilled water, agitated for
2 min, and allowed to settle for 30 min. The soil pH was determined in triplicate using a
pH meter (Consort, Turnhout, Belgium) (Figure 2).

Figure 2. Kriging distribution of pH measurements (black dots) at Benicalap park.
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2.2.2. Color and Texture Determination

The soil color was assessed through a visual examination of the samples and compared
against a Munsell standard table [19]. The texture of the soil was determined to enable
classification based on the sizes of the constituent particles, as described elsewhere [20–22].

2.3. Isolation and Antibiosis Characterization of Soil Bacteria

To prepare serial dilutions, 1 g of the sample was suspended in 10 mL of sterile water,
and 0.1 mL of the resulting 1:10 to 1:100,000 dilutions were plated on 10% trypticase soy
agar (TSA, Conda, Spain). After an incubation period of 48 h, 15–20 random colonies
were chosen and transferred onto a fresh TSA “mother” plate using a grid. Calibrated
suspensions of safe relatives (Escherichia coli CECT101, Bacillus cereus CECT495, Salmonella
sp. CECT443, Staphylococcus aureus CECT4013, Pseudomonas fluorescens CECT378, Klebsiella
pneumoniae CECT143, Enterobacter cloacae CECT194, or Enterococcus faecalis CECT184) were
spread on TSA plates using sterile swabs. All grown microorganisms from the mother grid
plate were individually replicated on these plates using sterile toothpicks to evaluate their
antibiotic effects.

2.4. Microbial Identification
2.4.1. 16S rDNA Partial Sequence

Bacterial DNA was extracted and amplified following the method described by Arahal
et al. [23]. The 16S rRNA gene was amplified using primers SWI-F (5′-AGAGTTTGATCCTG
GCTCAG-3′) and SWI-R (5′-GGTTACCTTGTTACGACTT-3′) [24]. The amplification re-
action was performed in a Primus 25 thermocycler (MWG, Ebersberg, Germany). Ampli-
fication products were separated by electrophoresis on a 1% (w/v) agarose gel. The PCR
amplifications were purified and washed using a high-pure PCR product amplification
kit (Boehringer, Mannheim, Germany). The direct sequencing of the PCR products was
carried out using the ABIPrism BigDye Terminator Cycle Sequence Ready Reaction Kit
(Applied Biosystems, Stafford, TX, USA) at the SCSIE service (Universitat de València,
Paterna, Spain). The sequences were aligned using the BLAST program with complete 16S
rDNA gene sequences obtained from the EMBL nucleotide sequence data libraries [25].

2.4.2. MALDI-TOF

The bacterial strain identification was conducted following the recommended proto-
col by Bruker Daltonics (http://www.bdal.de) utilizing the extended direct transfer method.
Freshly cultured strains were analyzed using the matrix-assisted laser desorption/ionization-
time of flight mass spectrometry (MALDI-TOF MS) technique. A Microflex L20 mass
spectrometer (Bruker Daltonics) equipped with an N2 laser was utilized, and all spectra
were acquired in a positive linear ion mode with an acceleration voltage of 20 kV [26].
The spectra were acquired as the sum of 240 shots per target within the mass range of
2000–20,000 Da. Three spectra were obtained per strain using the MALDI Biotyper Real-
time Classification (RTC) method, and the resulting identification against the database MBT
7854 and MBT 7311_RUO (Bruker Daltonics) corresponded to the profile with the highest
log score.

2.5. Assays for Extracellular Hydrolytic Enzymes Production

To demonstrate the production of extracellular enzymes (hydrolases), the microorgan-
isms were grown in a standard culture media, provided with the basic nutrients necessary
for good growth of the strain, and supplemented with the macromolecule under inves-
tigation (proteins, polysaccharides, lipids, or nucleic acids). After timely incubation, the
presence of the macromolecule was investigated using an appropriate reagent to show
its presence. Sometimes the presence of the macromolecule gives the environment a
characteristic aspect (opacity, solidity). This disappearance will indicate that hydrolysis
has occurred.
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All of the strains isolated in this project were spread onto four replicated Petri plates
using sterile toothpicks, each containing media with the following composition in g L−1.

• Casein agar: 10 bacteriological peptone, 4 NaCl, 3 meat extract, 15 agar; 10% of skim
milk was sterilized in a separate vessel. Once sterile, both parts were poured onto
Petri plates. The plates were incubated at 28 ºC for 3 days. The presence of casein gives
the environment an opaque appearance that disappears when casein is hydrolyzed. A
transparent halo must appear in the middle of the proteolytic microorganisms grown
on casein. The non-proteolytic ones do not produce a change in the original aspect of
the environment.

• TWEEN-80 agar: This medium consists of a synthetic lipid containing ester links
between sorbitol and oleic acid (Tween-80) and calcium salts. When microorganisms
possessing esterase activity (lipase) are present, they can hydrolyze the ester link,
leading to the release of oleic acid from Tween-80. In the presence of an excess amount
of Ca2+, the released oleic acid forms small crystalline oleate crystals that create an
opaque halo around the growth area.

• Starch Agar: To reveal the presence of starch, it was necessary to dye it with Lugol.
We added 2 milliliters of Lugol to the plate and observed the development of the dark
violet color in areas where there was starch. If transparent halos appeared around the
growth of a microorganism, this indicated that there was polysaccharide hydrolysis.

• DNase agar: 20 tryptose, 2 deoxyribonucleic acid, 5 sodium chloride, 12 agar. The agar
medium was inoculated and incubated with the organisms, then the surface growth
was flooded with 1N hydrochloric acid. Polymerized DNA, which is present in the
medium, will precipitate in the presence of 1N HCl and cause the medium to become
opaque. If the organisms produce enough DNase enzymes to hydrolyze the DNA,
clear zones will be observed around the colonies. As a control, Staphylococcus aureus
CECT4013 was used.

2.6. Kriging Method for Biological Spatial Statistics

Spatial statistics is a collection of methods used to analyze and interpret geographical
data by using various interpolation techniques such as inverse distance weighted (IDW),
splines, and Kriging. IDW is a simple technique that predicts outcomes based on nearby
sample values, but it can produce a bull’s-eye pattern and an uneven surface. Splines also
create a smooth surface by fitting a mathematical function to the input data, but they are
deterministic methods. Kriging, on the other hand, is a statistical method that incorporates
spatial autocorrelation and is preferred for spatial interpolation [27].

The soil samples yield valuable information that is recorded as a dataset linking
specific locations to the GPS coordinates, longitude, and latitude. The data are represented
by the number of colonies or isolates that inhibit the growth of control strains at a given
location x, denoted as Y(x). The dataset is defined as Y(x), , x ∈ D, where D includes all of
the locations being analyzed. Kriging techniques [28] are then utilized on this dataset to
facilitate spatial analysis.

3. Results and Discussion

Urban park soil is capable of sustaining microbial life in different degrees and condi-
tions. Depending on the degree of anthropogenization, areas with higher concentrations of
microorganisms are observed (top-right and bottom-left extremes) Figure 3.
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Figure 3. Kriging mapping of isolated microorganisms at the park in Benicalap.

Based on the possible different characteristics of these soils, different tests were carried
out and they allowed us to characterize them minimally. On the one hand, one of the most
significant properties of the soil, the color, was determined. It was generally conditioned
by the existence and proportion of organic and mineral compounds.

Organic matter produces dark colors, usually blackish or brown. Most of the world’s soils
are dominated by two large lineages of bacteria, i.e., Proteobacteria and Actinobacteria [29]. They
are very efficient competitors for organic carbon, which is a limiting resource in the soil.
Therefore, their abundance increases the concentrations of organic carbon. The darker
the soil, the greater the chance of finding a large number of microorganisms. Most of the
analyzed soils showed a dark or brownish-dark coloration, which suggests a great number
of organic compounds and, consequently, high numbers of microorganisms (Table 1).

Although the samples were taken at different depths, ranging from the surface to
10 cm, similar results were observed. The soil type is strongly associated with pH, which is
determined by the constituents of the soil. The pH value influences the type of microor-
ganisms that can be found in each soil sample. Bacteria prefer neutral or slightly alkaline
conditions, while fungi are more abundant at acidic pH [29]. In the soils in Mediterranean
regions, the calcium content is high and the pH is alkaline [30]. The pH values in these
soils are linked to the presence or absence of CaCO3 [31].

The soils analyzed exhibited a range of pH from 6.79 to 9.24. We decided to only
isolate bacteria for further experiments, following previous strategies [32,33].
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Table 1. Geo-location and basic soil characterization.

Sample Code GPS Coord Depth pH Color Texture Total ufc·g−1

PKB01 39.4986, −0.3973 2–5 8.71 Dark Sandy-loam 1.70 × 105

PKB02 39.4974, −0.3982 0–2 8.46 Brown Sandy-loam 4.70 × 106

PKB03 39.4979, −0.3976 0–2 8.63 Brownish dark Sandy-loam 6.00 × 106

PKB04 39.4981, −0.3958 2–5 7.60 Grey Sandy-loam 9.00 × 106

PKB05 39.4971, −0.3981 0–2 8.57 Brown Sandy-loam 9.40 × 105

PKB06 39.4968, −0.3978 0–2 8.53 Dark Sandy-loam 3.20 × 106

PKB07 39.4985, −0.3960 5–10 8.48 Dark Sandy-loam 4.00 × 106

PKB08 39.4965, −0.3972 2–5 8.19 Dark Sandy-loam 1.20 × 107

PKB09 39.4967, −0.3957 2–5 7.80 Dark Sandy-loam 7.40 × 105

PKB10 39.4979, −0.3955 0–2 8.13 Brown Sandy-loam 7.00 × 105

PKB11 39.4957, −0.3965 2–5 7.50 Dark Sandy-loam 6.60 × 105

PKB12 39.4958, −0.3963 2–5 6.79 Brownish dark Sandy-loam 9.70 × 104

PKB13 39.4973, −0.3950 2–5 8.68 Brownish dark Sandy-loam 6.40 × 106

PKB14 39.4957, −0.3965 0–2 7.21 Brownish dark Sandy-loam 5.70 × 106

PKB15 39.4963, −0.3968 0–2 7.33 Brown Sandy 6.60 × 105

PKB16 39.4988, −0.3967 2–5 8.00 Dark Sandy 4.60 × 105

PKB17 39.4975, −0.3969 0–2 8.33 Dark Sandy-loam 3.00 × 105

PKB18 39.4979, −0.3968 0–2 8.28 Bright Sandy 4.90 × 105

PKB19 39.4978, −0.3961 2–5 8.09 Dark Sandy-loam 1.20 × 106

PKB20 39.4972, −0.3974 0–2 7.89 Dull Sandy 5.60 × 105

PKB21 39.4966, −0.3963 0–2 7.63 Light Sandy 1.20 × 105

PKB22 39.4975, −0.3965 5–10 9.24 Dull Sandy-loam 9.30 × 105

PKB23 39.4990, −0.3975 2–5 7.85 Dark Sandy 4.30 × 104

PKB24 39.4980, −0.3978 0–2 7.55 Brownish dark Sandy-loam 6.80 × 105

PKB25 39.4983, −0.3978 2–5 8.11 Brownish dark Sandy-loam 4.10 × 106

PKB26 39.4969, −0.3959 2–5 8.06 Dull orange Sandy 7.20 × 105

PKB27 39.4976, −0.3976 2–5 7.47 Grey Sandy-loam 3.30 × 106

PKB28 39.4969, −0.3970 0–2 9.00 Dull orange Sandy-loam 7.30 × 105

Microorganisms living in soil are in constant competition with other microbiota that
share their niche. To evaluate the ability of soil bacteria to inhibit the growth of other
bacteria, inhibition tests were performed [33]. After a 24-hour incubation period, calibrated
suspensions of safe bacterial strains, including E. coli, S. aureus, K. pneumoniae, Salmonella
sp., P. fluorescens, and Ent. cloacae, were spread on TSA plates using sterile swabs. The
grown microorganisms from the mother grid plate were then individually replicated on
these plates using sterile toothpicks to check for antibiotic effects (Table 2). A Kriging
representation of these results is shown in Figure 4.

Among the 560 bacteria analyzed, a variable amount of antibiosis was detected, with
Salmonella sp. and K. pneumoniae having the highest number of microorganisms with
antibiotic effects. On the other hand, antibiosis against P. fluorescens and Ent. cloacae were
almost anecdotal.

However, urban parks are home to a large number of microorganisms that can be
sources of enzymes with industrial applications. A set of four biochemical tests was
performed to detect possible enzyme producers of interest with DNase, lipase, amylase,
and protease activities among all isolated bacteria (Table 3). Between 10 and 24 isolates
tested positive. For the distribution of the results (Kriging representation), see Figure 5.
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Figure 4. Kriging mapping of inhibition against different pathogens: (a) E. coli, (b) S.aureus, (c) K.
pneumoniae, (d) Salmonella sp., (e) P. fluorescens, and (f) Ent. cloacae.

Table 2. Inhibition against relative safe pathogens (number of positive isolates).

Sample E. coli S. aureus K. pneumoniae Salmonella sp. P. fluorescens Ent. cloacae

PKB01 0 0 0 0 0 0
PKB02 0 3 3 3 0 0
PKB03 0 0 0 0 0 0
PKB04 1 1 0 1 0 0
PKB05 0 0 3 2 0 0
PKB06 1 2 4 2 0 0
PKB07 0 0 0 0 0 0
PKB08 1 1 2 2 0 0
PKB09 3 2 3 3 0 0
PKB10 0 1 3 0 0 0
PKB11 0 0 0 0 0 0
PKB12 2 1 4 3 0 0
PKB13 1 1 0 1 0 0
PKB14 1 0 1 1 0 0
PKB15 0 0 2 2 1 0
PKB16 0 0 1 2 1 0
PKB17 0 0 0 1 0 0
PKB18 3 2 1 1 2 0
PKB19 0 0 0 1 1 0
PKB20 0 0 1 2 0 0
PKB21 0 0 2 1 0 0
PKB22 0 0 1 1 0 0
PKB23 1 1 0 3 0 0
PKB24 0 2 1 1 0 0
PKB25 0 1 2 1 0 1
PKB26 0 2 1 2 0 2
PKB27 0 1 0 1 0 1
PKB28 0 0 0 0 1 0

Total 14 21 35 37 6 4
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Figure 5. Kriging mapping of positive activities in different cultures: (a) DNase, (b) lipase, (c) amylase,
and (d) Protease.

Table 3. Positive activities in different media cultures.

Sample DNase Lipase Amylase Protease

PKB01 0 0 0 0
PKB02 0 3 3 3
PKB03 0 0 0 0
PKB04 1 1 0 1
PKB05 0 0 3 2
PKB06 1 2 4 2
PKB07 0 0 0 0
PKB08 1 1 2 2
PKB09 3 2 3 3
PKB10 0 1 3 0
PKB11 0 0 0 0
PKB12 2 1 4 3
PKB13 1 2 0 1
PKB14 1 0 1 1
PKB15 0 1 1 1
PKB16 1 0 1 1
PKB17 1 0 0 2
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Table 3. Cont.

Sample DNase Lipase Amylase Protease

PKB18 1 0 1 1
PKB19 1 0 1 0
PKB20 1 0 1 1
PKB21 1 0 1 1
PKB22 1 0 1 0
PKB23 2 0 1 1
PKB24 1 0 0 1
PKB25 1 2 1 1
PKB26 0 1 1 1
PKB27 1 1 1 1
PKB28 0 0 1 1

Total 10 12 24 19

Typically, a DNase reaction is an indication of pathogenicity for staphylococci and
other pathogenic bacteria in clinical assays [34]. However, some soil-isolated bacteria
produce transparent halos. Organisms other than staphylococci, Serratia, and aeromonads
can produce DNase. The presence of extracellular DNA in soil or the availability of plasmid
or chromosomal DNA from other soil bacteria that share the same ecological niche can
be useful for specialized microbial populations with potential industrial applications, as
described previously. [35].

4. Conclusions

Parks are indispensable elements of urban environments. Their soils, and the micro-
biota that inhabit them, have significant physical, chemical, and biological influences on
their characteristics. Thus, urban parks play an important ecological role in preserving
microbial diversity, giving the soil the capacity to self-purify pathogenic microorganisms,
regulate the greenhouse effect, and perform other functions [36,37]. The ecological func-
tions of the soil are directly linked to the vital activities of bacterial communities that thrive
in them. For this reason, the study of these urban parks is of paramount importance.

In this study, we investigated the microbial communities existing in one of the most
emblematic urban parks in the city of València. The park is a green space and serves
as a recreational area, so microbial exchanges must be frequent. As it is surrounded by
busy streets in a completely urban environment, the park’s ecological function could be
under threat due to continuous use for many generations. To this end, we determined the
microbial concentration, particularly bacterial, at various points in the park by conducting
a globalized study using the Kriging strategy.

Despite the soils being a mixture of various origins, the amount of bacteria detected
is fairly uniform, with no levels higher than 1.20 × 107 in any of the samplings carried
out. The population density allowed us to reach a number of global conclusions. On the
one hand, in a significant number of sampling points, the isolation of bacteria capable of
inhibiting the growth of control microorganisms has been obtained. This led us to believe
that the microorganisms that inhabit the park are in intimate contact with the human
population. Moreover, the isolated individuals possessed different enzymatic activities,
perhaps in response to the environment, allowing them to degrade different compounds
of interest.
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Received: 22 August 2023

Revised: 7 September 2023

Accepted: 18 September 2023

Published: 19 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Investigating the Spatial Heterogeneity and Influencing Factors
of Urban Multi-Dimensional Network Using Multi-Source Big
Data in Hangzhou Metropolitan Circle, Eastern China

Jing Zhang 1, Lei Li 1, Congmou Zhu 2,*, Qi Hao 1, Xinming Chen 3, Zhoulu Yu 4, Muye Gan 1 and Wuyan Li 5

1 Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource
Sciences, Zhejiang University, Hangzhou 310058, China; zj1016@zju.edu.cn (J.Z.); 22114167@zju.edu.cn (L.L.);
22014175@zju.edu.cn (Q.H.); ganmuye@zju.edu.cn (M.G.)

2 Collaborative Innovation Center of Statistical Data Engineering Technology & Application,
Zhejiang Gongshang University, Hangzhou 310018, China

3 Territorial Consolidation Center in Zhejiang Province, Department of Natural Resources of Zhejiang Province,
Hangzhou 310007, China; 0922664@zju.edu.cn

4 Zhejiang Digital Governance Space Planning and Design Co., Ltd., Hangzhou 310000, China; yuzl@zju.edu.cn
5 The Institute of Land and Urban-Rural Development, Zhejiang University of Finance and Economics,

Hangzhou 310018, China; liwuyan@zufe.edu.cn
* Correspondence: congmouzhu@zjgsu.edu.cn

Abstract: Exploring the spatial heterogeneity of urban multi-dimensional networks and influencing
factors are of great significance for the integrated development of metropolitan circle. This study
took Hangzhou metropolitan circle as an example, using multi-source geospatial big data to obtain
urban population, transportation, goods, capital, and information flow information among sub-cities.
Then, spatial visualization analysis, social network analysis, and geographical detector were applied
to analyze the differences in spatial structure of multiple urban networks and influencing factors in
Hangzhou metropolitan circle, respectively. The results showed that (1) the network connections
of population, traffic, goods, and capital flows transcended geographical proximity except that of
information flow, and population and traffic flow networks were found to be more flattened in
Hangzhou metropolitan circle than in other urban networks; (2) the comprehensive urban network
of Hangzhou metropolitan circle was imbalanced across sub-cities, presenting hierarchical and
unipolar characteristics; and (3) the influence of traffic distance on the network spatial structure of
Hangzhou metropolitan was stronger than the geographical distance, and the interactions between
traffic distance and socioeconomic factors would further enhance the regional differentiation of the
network spatial structure. This study could provide scientific reference for constructing a coordinated
and integrated development pattern in a metropolitan circle.

Keywords: urban network; spatial structure; influencing factor; multi-source big data; Hangzhou
metropolitan circle

1. Introduction

A metropolitan circle is a regional network with a megacity as the core where cities are
spatially and functionally connected [1,2]. It has become an important spatial development
strategy for competition in the global economy to reconstruct the metropolitan area across
cities or provincial boundaries through the construction of intercity infrastructure and re-
gional cooperation [3]. Its purpose is not only to expand the scale of population and urban
space but also to increase the mobility of population, goods, capital, and information to
strengthen intercity connections and improve resource allocation efficiency [2]. The spatial
structure of a city or a region refers to the arrangement of a certain space in the urban form
composed of population, materials, information, and a series of relationships generated
by their interactions [4,5]. With the rapid progress of information technology and the
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internet, the complex interaction between real space and virtual networks has enormously
reshaped the metropolitan circles’ spatial structure [6,7]. Castells [8] put forward the key
concept of the “flow space”, indicating that regional development increasingly depends
on network interactions of various element flows. China had long adopted a strategy of
giving priority to the development of urban agglomerations [6], but the construction of
metropolitan circles had been neglected. This phenomenon has led to a series of devel-
opment constraints in metropolitan circles, such as insufficient links between cities, the
weak influence of core cities, and obstacles to the implementation of urban agglomera-
tion planning [2,9]. According to Outline of the 14th Five-Year Plan (2021–2025) for National
Economic and Social Development and Vision 2035 of the People’s Republic of China (the 14th
Five-Year Plan), China was striving to build a system of metropolitan areas centered on
provincial capitals or central cities in order to improve the quality of urbanization and
promote regional integrated development during the 14th Five-Year Plan period. Thus, it
is of great significance to decipher the heterogeneity of spatial structure and influencing
factors of metropolitan circles from the perspective of various “flow space”, which are
critical for optimizing the spatial structure of metropolitan circle and promoting regional
integration and coordinated development.

The traditional view holds that the spatial structure of a city or region reflects regional
differences and similarities in socioeconomic, political, or cultural attributes [10,11]. Early
studies on regional spatial structure aimed at distinguishing clustering areas with similar at-
tributes (e.g., natural and economic status) by using factor analysis and cluster analysis [12].
It allows us to reveal regional differences and identify specific morphologies of regional
spatial structure, such as single-core, sectorial, or multi-core configurations [13]. The second
view concentrates more on the spatial agglomeration and dispersion of regional structure,
cartography, and spatial analysis, such as spatial auto-correlation analysis, geographically
weighted modeling, and hotspot detection, are usually used [14,15]. Compared with the
traditional views, this viewpoint simultaneously focuses on the attributes of specific spatial
units and their spatial dependencies with adjacent units, thereby identifying the core and
edge structure of an area [16]. However, it tends to measures local connections, but ignores
the structural configuration of the entire area, without focusing on the spatial association
between the target unit and nonadjacent unit [17]. In the era of globalization and infor-
mation, regional interactive relationships have transformed from focusing on neighboring
space to flow space. From the perspective of “flow space”, the spatial structure of a city or
region is viewed as an interconnected network, and more attention is paid to the nodes,
backbone, and connections of the network [7,18]. It provides a new understanding of
regional spatial structure, that is, city or sub-city divisions are nodes, and various element
flows are links [19,20]. Based on the network perspective, the spatial relationships between
two units are determined by a network composed of multiple element flows, rather than
predetermined by the similarity of attributes or proximity of geographic distances [21,22].

There are various networks in regional spatial development, including natural connec-
tions, economic connections, cultural links, and administrative links [23,24], which form
a complex connected network. Recent network-based studies concentrate on the spatial
structure of a single network in a city or a region, such as the population flow network [25],
goods flow network [26], information flow network [27], and traffic flow network [28].
These empirical studies have explored the specific roles of particular nodes [11], the spatial
arrangement of various links, and the network organization of node city on the urban
agglomeration or national scale [29–31]. A series of methods including network visual-
ization and mapping technology, gravity models, and social network analysis have been
developed [22,23,32]. However, existing related studies pay less attention to the scale of the
metropolitan circle, and neglect the spatial heterogeneity of urban multi-dimensional flow
networks [27,31]. Regional spatial structure is determined by various flow networks [33].
By only relying on the measurement of a single flow network, we cannot accurately position
the role and competitiveness of a city in a regional network. Moreover, it is not conducive
for providing effective decision support for formulating spatial structure optimization and
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development strategies in the metropolitan circle. Many studies apply prefecture-level
city network data to explore the spatial structure of a large region, such as the intercity
transportation infrastructure, relational data for company headquarters and branches,
intercity linkages for population, and goods mobility [34]. However, it is not adequately
accurate to investigate the large-scale regional network structure using prefecture-level
cities as spatial units, which may ignore the variations in the connections among sub-cities.
Especially in China, the administrative scope of a city often includes several districts and
counties. In the era of information, multi-source big data with high-resolution locational
information are emerging, such as social media data, mobile phone signal data, and POI
data [6,35,36]. These big data provide various flow network information among sub-cities
that can contribute to the analysis of county-scale spatial structure.

The spatial structure of urban multi-dimensional networks in metropolitan circles
is comprehensively influenced by the social economy and proximity factors [37]. In so-
cioeconomic terms, the development level of economic, urbanization rate and population
size are the core factors that affect the interactions between sub-cities [25,38]. Industrial
development and financial investment affect financial and economic exchanges and cooper-
ation between cities [39], further influencing the city’s influence and service level in the
surrounding areas. Meanwhile, the level of social consumption is an important intermedi-
ary and complementary factor for the interaction between cities [31]. These socioeconomic
factors significantly influence the role of a city in regional network structure to a certain
extent. The first law of geography states that all things are related, and things in close
proximity are more closely related to each other, so that cities that are close to each other
are more frequently connected [40,41]. Furthermore, the improvement in transportation
has shortened the “space–time” distance between cities, and the proximity of industries
also may strengthen the network links between cities, which can be considered the “indus-
trial” distance [39]. However, to our knowledge, existing studies have usually focused on
socioeconomic factors [39,42], and the influence of multi-dimensional distance on regional
spatial network connections is easily ignored [43]. This is a clear and critical research
gap, especially as the rapid progress of information technique and transportation in China
promotes closer network connections between cities. Investigating the determining factors
of the spatial network structure of various flows could provide policy supports for the
integrated development of metropolitan circles.

To address these research gaps, this study attempts to consider the Hangzhou metropoli-
tan circle, an area with early formation and rapid development, as an example, and then
uses multiple internet data application platforms and web crawler technology to obtain
five kinds of representative flow network information in Hangzhou metropolitan circle,
including population, traffic, goods, information, and capital flows. Spatial mapping analy-
sis, social network analysis, and geographical detector are applied to systematically explore
the spatial networks of the metropolitan circle and the determining factors. The remaining
part of this article is organized as follows. The second part presents the study area and
data sources, the third part describes the various research methods adopted in this study,
the fourth part describes the major findings, the fifth part shows the discussion and policy
implications, and the sixth part concludes the paper.

2. Materials and Methods

2.1. Study Area

The Hangzhou metropolitan area is composed of four prefecture-level cities that
are Hangzhou, Shaoxing, Jiaxing, and Huzhou (Figure 1), which is located in the south
of the Yangtze River Delta urban agglomeration and in the northern part of Zhejiang
Province. The research objective is to be attained at the county level, including four urban
districts and 20 sub-cities in four prefecture-level cities (Figure 1). The district is the most
important economic and political center of a prefecture-level city, so it is regarded as the
central city of a prefecture-level city, and the others are regarded as sub-cities. The division
of Hangzhou’s central city is based on the Hangzhou 14th Five-Year Plan. Hangzhou
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metropolitan circle covers an area of 34,585 km2, in the proportion of 33.21% of the total
area of Zhejiang Province; it has a resident population of 23.28 million, which is 39.81%
of the total population of Zhejiang Province; its GDP reached CNY 3.07 trillion in 2020,
which is 47.5% of the total provincial GDP; and its per capita GDP was CNY 129,000, which
was 1.2 times the provincial average. In 2007, the first joint meeting of mayors of the
Hangzhou Metropolitan Economic Circle was held, marking the start of the construction
of the Hangzhou Metropolitan Circle. In 2014, the National Development and Reform
Commission (NDRC) approved a comprehensive reform pilot project for the economic
transformation and upgradation of the Hangzhou Metropolitan Circle. Owing to long-
term regional cooperation and coordinated development, the co-urbanization effect of
these four cities has become increasingly significant. Hangzhou metropolitan circle has
become one of the most populous and open regions in China. Spatial network elements
such as population flow, goods flow, and information flow are closely related in this
metropolitan circle. However, it also suffers from some development constraints, such
as widening regional development gaps, weak regional division and cooperation, and a
lack of regional coordination and consultation mechanisms [44]. Therefore, investigating
the spatial heterogeneity and influencing factors of urban multi-dimensional networks in
Hangzhou metropolitan circle is of strategic significance to promote the integration and
coordinated development among sub-cities and form an orderly cooperative relationship
within the region.

 
Figure 1. Location of four prefecture-level cities and 24 sub-city divisions in the Hangzhou metropoli-
tan circle, China.

2.2. Data Sources and Preprocessing

In this study, the following five urban big data were used to identify the spatial
networks of the metropolitan circle.

(1) Human flow: Population flow is the most frequent connection between sub-cities.
Communication is the demand of human daily behavior, and Baidu’s migration plat-
form could map the population flow trajectory and spatial distribution through the
positioning information of Internet users based on the positioning service technology.
The population flow data in this platform has been widely used in China’s popula-
tion flow research [45]. In our study, the population flow data were collected from
1 October 2020 to 18 January 2021. Considering that the data reflects only the relative
value of in-migration and out-migration, this paper used the travel index to calculate
the floating population matrix among four prefecture cities in Hangzhou metropoli-
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tan circle. Then, the population proportions within the 24 sub-cities were counted
to construct a 24 × 24 population proportion matrix. Finally, the relative mobile
population value between sub-cities was calculated to construct a 24 × 24 human
flow matrix [46].

(2) Goods flow: Goods flow refers to the process of transferring goods from the supply
location to the receiving location. In this study, the POI points of all logistics expressed
in the region were used to construct the logistics matrix. The data were collected
in 2020 from 10 major logistics companies in the study area, including ShunFeng,
Zhongtong, Yunda, Jingdong, Tiantian, Shentong, Yuantong, Deppon, Baishi, and
Jutu. In this study, the method proposed by Taylor [47] was used to construct a
24 × 24 goods flow matrix.

(3) Capital flow: Similar to the goods flow data, all branch institutions of five banking
companies in the Hangzhou metropolitan circle, including the Industrial and Com-
mercial Bank of China, Bank of China, Agricultural Bank, Construction Bank, and
Postal Savings Bank, were selected for this study [33]. Based on the chain model
in urban network analysis, bank POI points were divided into five categories and
assigned different values to construct a 24 × 24 capital flow matrix [48].

(4) Information flow: With the development of internet technology, information con-
nection has become an increasingly important method of communication between
sub-cities, and sub-cities within metropolitan circles are organically connected through
networks.58.com (accessed on 1 September 2023) website is the largest classified in-
formation website in China, and has the unique advantage of mutual search among
sub-cities [46]. Therefore, this study used the average daily search volume of 58.com
in 2020 by using the selenium library in Python to construct a 24 × 24 information
flow matrix.

(5) Traffic flow: Traffic flow reflects the connection intensity of sub-cities in the trans-
portation network. The railway is the most important and popular transportation
mode for Chinese residents. In this study, the information on the number of station
locations and passing trains was obtained from the China Railway Customer Service
Center, which is the largest railway information publishing website in China. The
distance traveled by car between sub-cities was obtained from Gaode Map. These two
kinds of data were jointly applied to construct a 24 × 24 traffic flow matrix [49].

2.3. Methods
2.3.1. Strength Analysis of Multiple Urban Flow Networks

Based on the above matrix information of multiple flow networks between sub-cities,
the flow space network measuring method proposed by Taylor et al. (2004) was applied
to measure the connection strengths of various urban flow networks [47]. Furthermore,
we normalized the flow connection strength and summed these data to measure the
strength of the comprehensive flow network of the metropolitan circle. The specific formula
was as follows:

S = Rij × Rji

S′ = (S − Smin)/(S − Smax)

Fi = ∑
j

S′
ij

(1)

where S denotes the connection strength of the flow network between sub-city i and j, Rij
denotes the amount of “flow data” from sub-city i to sub-city j, and Rji denotes the amount
of “flow data” from sub-city j to sub-city i. S′ is the normalized value of the network
connection strength, Smin is the minimum value of the network connection strength, and
Smax is the maximum value of the network connection strength. Fi is the connection strength
of the comprehensive flow network of sub-city i, and S′ij is the connection strength between
sub-city i and j. Considering that various urban flow networks are equally important
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for the integration development of metropolitan circles, each element flow [31] is given
a weight of 0.2.

2.3.2. Social Network Structure Analysis

(1) Dominant flow analysis

In this study, the dominant flow analysis method was employed to identify the
general spatial structural patterns of flow networks according to the maximal flow rank
relationship [50]. The higher value indicates the leading position of a sub-city in the regional
flow network. This study selected the top two orders (first and second) to identify the
regional main backbone network. The specific formula was as follows:

PC = RCi/∑
n

RCi (2)

where PC is the relative centrality index, and RCi is the strength of the flow connection
under the i-th order.

(2) Connectivity influence degree

This method comprehensively measures the total influence of a sub-city in regional
spatial structure. The higher the value is, the stronger the node effect of a sub-city, and
the wider the network interaction range. This index has been widely used to reflect the
influence of a sub-city in regional spatial networks [51]. The specific formula was as follows:

PI =

5
∑

i=1
RCi

VAD + 3VSD
(3)

where PI is the influence index of a sub-city in regional flow networks, and VAD and VSD
are the average value and standard deviation value of RCi, respectively, and RCi is the flow
connection strength between sub-cities under the i-th order.

(3) Dominant structural index

Based on the spatial structure algorithm of regional poly-centricity proposed by
Hanssens et al. [51], this paper employed a spatial structure dominance index to reflect
the network dominance level. The index is in the range of 0 to 1, where 0 suggests a dis-
tinct unipolar development trend in the regional spatial structure, and 1 suggests obvious
multiple polar features in regional spatial structure. The specific formula was as follows:

SSI =

{
(2 − SD/SDrc)/2, SD ≤ SDrc

SDrc/2SD, SD > SDrc
(4)

where SSI is the regional spatial structure index, SD is the standard deviation value of the
connection strength of flow in a sub-city, and SDrc is the standard deviation value of the
connection strength of flow in all sub-cities after ranking.

(4) Visual analysis of combined geographic–topological networks

In this study, we visualized the flow connection by using the chord diagram, the length
of the arc was used to represent the size of the element attribute, and the thickness of the
connections among the nodes was used to reflect the strength of the connections, which can
directly reveal the topological interactions among unit nodes. Meanwhile, the distribution
patterns of multiple flow strength were superimposed with geographic space, and the
structure of flow connection was displayed to explore the spatial networks’ mechanism of
the metropolitan circle by using the ArcGIS spatial analysis platform.

2.4. Geographical Detector

(1) Model construction
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In this study, we applied the geographical detector to identify the factors that influence
the spatial structure of urban multi-dimensional networks in the metropolitan circle. The
principle of geographic detectors is to assume that the independent variable and the
dependent variable are similar in spatial distribution, and then the independent variable has
a significant impact on the dependent variable [52,53]. This study used the factor detector
and interactive detector modules to explore the formation mechanism of the urban multi-
dimensional networks in the metropolitan circle. The detailed formula was as follows:

q = 1 − 1
Nσ2

L

∑
n=1

Nhσ2
h (5)

where q measures the interpretative power of the independent variable, h is the stratification
of the dependent or independent variable, and Nh and σh denote the number of sub-
cities and variance in strata h, respectively. The q value is in the range of 0 to 1. A
higher q value represents a stronger explanatory power of the independent variable on the
dependent variable.

Furthermore, the interactive detector was used to measure the interactions between
driving factors and to reveal the impact of the joint effects of explanatory variables on
the explanatory power of dependent variable. The judgment types of interaction between
two factors can be classified into univariate nonlinear weakening, nonlinear weakening,
bivariate enhancement, and independent and nonlinear enhancement [54].

(2) Selection of driving factors

Based on the above analysis, this study selected twelve representative factors as
drivers along four dimensions: population, economy, society, and distance. Population
size (x1), size of working-aged population (x2), and population urbanization rate (x3)
were selected to reflect the demographics of a sub-city; GDP per capita (x4), gross output
value of enterprise above the designated size (x5), and total retail sales of social consumer
goods (x6) were selected to measure the economic development of a sub-city; number of
hospital beds (x7), road density (x8), and social security expenditure and employment
fiscal expenditure (x9) were selected to measure the social development of a sub-city;
and geographic distance (x10), traffic distance (x11), and industrial distance (x12) were
selected to measure the distances between sub-cities. Specifically, geographical distance
was measured by the linear distance between the administrative centers of sub-cities; traffic
distance was calculated by the shortest railway transportation time; industry distance was
represented by industrial structural similarity index [39,43].

3. Results

3.1. The Strength of Multiple Urban Flow Networks in the Metropolitan Circle

Figure 2 shows the connection strengths of multiple flow networks of 24 sub-cities
within four (prefecture-level) cities in Hangzhou metropolitan circle. As shown, the con-
nection strengths of the population and goods flow networks were generally higher than
the others, and the connection strength of information flow network was the lowest. In
terms of the five flow networks, the spatial connections of population, traffic, goods, and
capital flows showed a network radial distribution pattern with Central Hangzhou as
the core, indicating that the four flow networks transcended geographical proximity. The
information flow connections between sub-cities were mainly distributed within the city,
indicating that the information flow did not form an open network spatial structure within
Hangzhou metropolitan area. In terms of the connection strength, the top three sub-cities
with the strongest connection strength of population, information, and capital flow were
the Central Hangzhou, Xiaoshan, and Yuhang, indicating that these sub-cities were the
main concentrated areas of population, information, and capital in Hangzhou metropolitan
area. Regarding the traffic flow, the connection strength in Central Shaoxing was stronger,
it was attributed to the fact that Shaoxing city is the central hub of the Hangzhou and
Ningbo metropolitan areas in Eastern China, and has complete high-speed and railway
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transportation. In terms of the goods flow, Zhuji, one of the important production bases of
small commodities in Zhejiang Province, became one of the top three sub-cities with the
strongest connection strength, indicating that the rapid growth of online retail industry has
greatly enhanced the position of Zhuji in the goods network.

Figure 2. Strength of multiple spatial networks of Hangzhou metropolitan circle.

3.2. The Hierarchical Structure of Multiple Urban Flow Networks in the Metropolitan Circle

We used the connectivity influence degree to measure the connection influence of flow
networks among sub-cities (Figure 3a–e). The high-value areas of connection influence
of population and information flow networks were in Central Hangzhou, Xiaoshan, and
Yuhang, indicating that the three sub-cities were dominant in the population and informa-
tion flow networks of the Hangzhou metropolitan circle. Remote areas, such as Chun’an,
Jiande, Xinchang, and Anji, showed low connectivity influence degree of regional popula-
tion and information flow networks. The connection influence of traffic flow network in
Central Hangzhou and Xiaoshan was at a high level, indicating that these two sub-cities
took the lead in regional traffic flow network. While the low-value areas of traffic flow
network were mainly distributed in the northwestern and southwestern areas. In terms of
the goods network, the high-value areas of connection influence were in Central Hangzhou,
Fuyang, and Zhuji, indicating that these three sub-cities had a greater influence on regional
goods flow network. Regarding the capital network, Central Hangzhou, Xiaoshan, and
Zhuji were the high-value areas of connection influence, indicating that the three sub-cities
were in a leading position in regional capital network. While the low-value areas were
located in the periphery of the metropolitan circle. Furthermore, the dominant structural
index was used to identify the spatial hierarchical structure of multiple flow networks. The
SSI value of the goods network was the smallest, at 0.295, followed by the capital flow
network, indicating that the two flow networks presented a more pronounced unipolar
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development trend. The SSI value of traffic flow networks was higher than 0.50, indicating
that its structure was relatively discrete.

 

Figure 3. The connection influence and structure of multiple urban networks in Hangzhou metropoli-
tan circle.

To further identify the structural model of multiple flow networks, the dominant flow
analysis method was used to identify the first- and second-largest dominant flow networks
(Figure 3). Specifically, the first-largest dominant networks of population, traffic, goods,
and capital flow presented a radial network axis with Central Hangzhou, Xiaoshan, Yuhang,
Zhuji, and Fuyang as the hubs. While the first-largest network of information flow was
mainly concentrated in Hangzhou city, and considered Central Hangzhou, Xiaoshan, and
Yuhang as the hubs, confirming that the influence of information flow has not yet overcome
the restrictions of administrative boundaries. In terms of the second-largest dominant
network, different element flows presented distinct patterns of spatial structure. The
second-largest dominant networks of population and traffic flow were mainly distributed in
the east and north of Hangzhou metropolitan circle, considering some sub-cities of Huzhou
and Jiaxing as nodes. The second-largest dominant network of goods and information flow
connected most sub-cities in a decentralized form, taking some sub-cities of Hangzhou
as nodes. The second-largest dominant network of capital flow mainly distributed in
Hangzhou and Shaoxing cities, and took Lin’an, Yuhang, and Pinghu as nodes.

3.3. Spatial Pattern of the Comprehensive Urban Flow Network in the Metropolitan Circle

The strength and pattern of the urban comprehensive flow network in Hangzhou
metropolitan circle is described in Figure 4. The distribution of connectivity influence was
imbalanced across sub-cities, presenting a hierarchical structure in the Hangzhou metropoli-
tan circle. Three sub-cities, from Hangzhou, including Central Hangzhou, Yuhang, and
Xiaoshan, had the highest values of connectivity influence on the comprehensive flow
network, with the other sub-cities showing a decreasing trend in distance from Cen-
tral Hangzhou. This indicated that the comprehensive flow network of the Hangzhou
metropolitan circle presented an obvious spatial structure of core–periphery. These im-
balanced distributions of comprehensive flow network were may be due to the varying
locations, population, and economic sizes of sub-cities. In terms of the structural pattern of
the comprehensive flow network, its first-largest dominant network considered Central
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Hangzhou, Xiaoshan, and Yuhang as hubs, and was mainly distributed in Hangzhou and
Shaoxing cities. This indicated that the connection between Hangzhou and Shaoxing was
more close. The second-largest dominant network considered Fuyang, Keqiao, and Central
Shaoxing as nodes, suggesting that the three sub-cities served as a “bridge” connecting the
center and the peripheries.

Figure 4. The strength and pattern of the comprehensive flow network in Hangzhou metropolitan circle.

3.4. Factors Influencing Comprehensive Flow Network of Metropolitan Circle

We used a geographic detector to identify the dominant factors on the distribution
pattern of the comprehensive flow network in metropolitan circle. In this study, the
dependent variable was the connection strength of the comprehensive flow network in
Hangzhou metropolitan circle, and the independent variables included the twelve above-
mentioned representative factors from four dimensions of population, economy, society,
and distance. Significant influencing factors and their interpretative powers (q-values) are
shown in Table 1.

Table 1. Influencing factor detection of spatial differentiation of the comprehensive spatial network.

Variables q Statistics Rank Variables q Statistics Rank

X1 0.8398 *** 2 X8 0.6562 ** 7
X3 0.8353 *** 3 X9 0.6094 ** 8
X5 0.7302 *** 6 X10 0.7561 *** 5
X6 0.8535 *** 1 X11 0.8275 *** 4

Note: ***: p < 1%, **: p < 5%, where p represents the level of significance, p < 5% means significant difference, and
p < 1% means significant difference.

From a horizontal comparison point of view, the spatial differentiation of the compre-
hensive flow network was influenced by a combination of socioeconomic and geographic
distance. The top four factors influencing the spatial differentiation of the comprehensive
flow network were, in order, the total retail sales of social consumer goods, population
urbanization rate, size of working-aged population, and traffic distance, which can be
regarded as the dominant factors. This indicated that regional economic development,
population growth, and transportation connections were the dominant factors affecting the
connection strength of the comprehensive flow network of Hangzhou metropolitan circle.
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An interactive detector was used to reveal the interpretative power of the interaction
between two influencing factors on the spatial heterogeneity of the comprehensive flow
network. Compared with the influence of a single factor, the interpretative power of most
two-factor interactions was stronger (Table 2), indicating that the two-factor interaction
enhanced the spatial heterogeneity of the comprehensive flow network of the Hangzhou
metropolitan circle. Specifically, the interaction type of the population size and the other
significant factors was bivariate enhanced, indicating that the interaction between popula-
tion increase and other socioeconomic factors enhanced the spatial differentiation of the
comprehensive flow network. The interaction between population size and gross output
value of enterprise above the designated size was stronger than that with other factors. In
the interaction between population urbanization rate and the other factors, their interaction
type was bivariate enhanced, except for the interaction between population urbanization
rate and road density. The interaction between population urbanization rate and total
retail sales of social consumer goods was stronger, and the interaction between population
urbanization rate and road density was the weakest. The main interaction type between
the gross output value of enterprise above the designated size, the total retail sales of social
consumer goods, and other factors was the bivariate enhancement type, indicating that the
dual effect of economic development and other socioeconomic factors promoted the spatial
differentiation of the comprehensive flow network. The interaction type between gross
output value of enterprise above the designated size above the designated size and road
density was single-factor nonlinear attenuation with the weakest status, indicating that the
interaction between them weakened the regional differentiation of the comprehensive flow
network. The interaction type of road density, social security and employment fiscal expen-
diture, and other factors was bivariate enhanced, and the interaction between road density
and social security and employment fiscal expenditure was the weakest. The interaction
type between geographic distance and traffic distance was also bivariate enhancement,
indicating that the interaction between them enhanced the spatial differentiation of the
comprehensive flow network.

Table 2. Interactive influence results of spatial differentiation of the comprehensive spatial network.

Xi∩Xj q (Xi∩Xj) Interaction Type Xi∩Xj q (Xi∩Xj) Interaction Type Xi∩Xj q (Xi∩Xj) Interaction Type

X1∩X3 0.9125 Bivariate
enhancement X3∩X9 0.8801 Bivariate

enhancement X6∩X9 0.9013 Bivariate
enhancement

X1∩X5 0.9250 Bivariate
enhancement X3∩X10 0.8925 Bivariate

enhancement X6∩X10 0.9048 Bivariate
enhancement

X1∩X6 0.8621 Bivariate
enhancement X3∩X11 0.8675 Bivariate

enhancement X6∩X11 0.9301 Bivariate
enhancement

X1∩X8 0.8603 Bivariate
enhancement X5∩X6 0.9626 Bivariate

enhancement X8∩X9 0.7605 Bivariate
enhancement

X1∩X9 0.9018 Bivariate
enhancement X5∩X8 0.7129

Single-factor
Nonlinear

attenuation
X8∩X10 0.8742 Bivariate

enhancement

X1∩X10 0.9240 Bivariate
enhancement X5∩X9 0.9581 Bivariate

enhancement X8∩X11 0.8320 Bivariate
enhancement

X1∩X11 0.9152 Bivariate
enhancement X5∩X10 0.8202 Bivariate

enhancement X9∩X10 0.8250 Bivariate
enhancement

X3∩X5 0.9176 Bivariate
enhancement X5∩X11 0.9266 Bivariate

enhancement X9∩X11 0.9139 Bivariate
enhancement

X3∩X6 0.9208 Bivariate
enhancement X6∩X8 0.8592 Bivariate

enhancement X10∩X11 0.8409 Bivariate
enhancement

X3∩X8 0.8187
Single-factor

nonlinear
attenuation

4. Discussion

Under the tide of globalization and information, the interactive relationships between
cities have transformed from spatial proximity to a connection network dominated by
time proximity [55]. Compared with the traditional statistical data-based spatial structure
model, this study used the geospatial big data and social network analysis to identify the
various urban flow networks of metropolitan circle, which can provide a new perspective
and method to comprehensively evaluate the spatial development of the metropolitan
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circle in the context of single flow-led studies [7]. Furthermore, considering that the
connection strength between sub-cities is significantly affected by location conditions and
socioeconomic development, this study used the geographical detector to identify the
determining factors of the flow networks in the metropolitan circle, which contributes to
providing references for the integration development of the metropolitan circle.

The results of our study indicated that the connection strengths of the population
and traffic flow networks were higher, and this finding is confirmed in other related
studies of metropolitan circles and urban agglomerations [25,26]. They pointed out that
population and goods flows were the most frequent in the flow networks between cities.
Furthermore, this study found that there were significant differences in the connection
strength of different types of flow networks in Hangzhou metropolitan circle, especially
the information flow, and its connection strength between sub-cities was limited by the
administrative boundaries of prefecture-level cities. This phenomenon indicated that
information network in Hangzhou metropolitan circle was not strong, reflecting the limited
development of metropolitan circle [33]. Furthermore, the results showed that the flow
connections between sub-cities from Hangzhou, Jiaxing, and Shaoxing was stronger than
other sub-cities. This is because the local government proposed the development strategies
of Hangzhou–Shaoxing and Hangzhou–Jiaxing integration development in 2018 and 2020,
respectively. The construction of intercity transportation and public service facilities and
the coordinated division of industries have strengthened the connection of multiple flows
between these sub-cities [30,56].

Regarding the structural characteristics of various urban flow networks in Hangzhou
metropolitan circle, the spatial urban network of the metropolitan circle presented hierar-
chical and unipolar characteristics. This characteristic is quite different from the dual-center
or multi-center structure exhibited by urban agglomerations [39,55]. Corresponding with
the Hangzhou metropolitan circle, three sub-cities from Hangzhou city, including central
Hangzhou, Xiaoshan, and Yuhang, had the strongest connection influence in the flow
networks, which means that various flow networks reinforce the existing urban system.
This finding indicated that there is a positive correlation between flow network connections
and the hierarchy of sub-cities with a metropolitan circle, where sub-cities with higher
administrative levels would play stronger roles in urban network connections [57]. Ad-
ditionally, this study also discovered that some sub-cities with advantageous industries
played important roles as nodes in regional flow network. For example, Zhuji was regarded
as the hub of goods network in Hangzhou metropolitan circle. This is due to the fact that
there are many small commodity manufacturers in Zhuji, and the rapid development of
the online retail industry has greatly enhanced its status in the goods network.

In the analysis of influencing factors, the dominant factors influencing the spatial
differentiation of the network structure were population, social consumption, and traffic
distance. This result is consistent with the findings of Zheng et al. [39]. Earlier work noted
that in highly urbanized cities, social and economic activities are more prosperous, and
various element flows tend to be more frequent [58]. With the continuous improvement
of traffic infrastructure, the impact of traffic distance on the spatial differentiation of
the regional flow network structure was found to be stronger than that of geographical
distance, which is in line with Chen et al. [59]. Furthermore, the results also suggest
that the interactions between socioeconomic and traffic distance have an influence on
reinforcing the status of cities. This is because that in the process of regional development,
the interactions between socioeconomic activities and transportation infrastructure can
accelerate the flow and aggregation of various elements, promoting the status of a city in
the regional network structure [39,60].

Based on the above study results, some policy implications to promote the integrated
development of metropolitan areas could be suggested. First, using multi-source big data,
this study found that the connection strengths of the population, goods, and traffic flow
networks between sub-cities were strong, while the connections of the information and
capital flow networks were relatively weak. Therefore, the government ought to increase
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investment in information network infrastructure and apply information technologies such
as artificial intelligence, cloud computing, and big data to accelerate the development of
digital financial networks [49]. Second, according to the results of this study, the spatial
structure of urban network in Hangzhou metropolitan circle was characterized by a core–
periphery structure. Numerous population, capital, technology, and other resources flow
into Central Hangzhou, resulting in limited development of marginal areas. Therefore, in
order to transform the regional spatial structure into a balanced “network–node” pattern,
the government should support the free-flow enhancement of the radiation and driving
role of hubs and core nodes, and focus on developing the linkage ability of peripheral
sub-cities to connect with extra-regional networks [33,51]. Finally, the results showed that
traffic distance and geographical distance were found to have significant impacts on the
spatial network structure of metropolitan circles, and the interactions of traffic distance with
population size and economic development would reinforce their influence. Thus, local
governments could promote the development of transportation infrastructure represented
by high-speed railways, expressways, and intercity intelligent transportation, which can
greatly shorten the space-time distance between sub-cities. Additionally, provincial govern-
ment could innovatively develop more cross-regional and closely related group areas to
rationally allocate population and industries, information infrastructure and public service
facilities can be improved to accelerate the flow and connection of regional resources. These
series of cross-regional construction measures contribute to promoting the polycentric
development of regional spatial structure.

The contributions of this study to the analysis of regional flow networks include two
aspects. First, this study employed multi-source big data to systematically investigate the
connections and structures of various flow networks between sub-cities in the metropolitan
circle, which is conducive to analyze the spatial structure of metropolitan circles and its
differences from the perspective of different element flow. Most studies identify regional
spatial structure by using data from a single flow category [22,55], and fail to reveal the
multi-dimensional spatial network structure. The second contribution is that this study
quantitatively explored the distance and socioeconomic factors that influence the spatial
differentiation of the connection strength of comprehensive flow network, which could
provide policy inspiration for promoting the integrated development of metropolitan circles.
It is worth pointing out that as far as we know, there are few studies on the analysis of the
determinants of regional flow network connections combining geographic, demographic,
social, and economic dimensions as a result of the limitation of big data and methods. This
study is an attempt to fulfil these research gaps in this regard.

Overall, this study also faces two limitations. First, although the big data used in this
study are for the sake of data availability and convenience, the accuracy of the results is
still slightly insufficient. For example, the population flow ignores the travel data of private
cars, and the goods flow does not consider large-scale material transportation. Thus, future
research needs to refine the comprehensiveness and accuracy of the data. Second, this
study does not consider the temporal evolution of the spatial network structure of the
metropolitan circle, and it is essential to reveal the internal mechanism of regional spatial
structure from a time-across perspective [61]. Future research needs to investigate the
spatiotemporal characteristics of the spatial network structure of metropolitan circles based
on spatiotemporal panel data.

5. Conclusions

The connection strengths and spatial structure of multiple flow networks between
sub-cities in metropolitan circles is a critical basis to evaluate the integrated development
of metropolitan circles. Considering the Hangzhou metropolitan circle as a case study
area, this study examined the spatial network structure of the metropolitan circle based
on multiple big data, and determining factors influencing the spatial differentiation of
the comprehensive flow network between sub-cities in metropolitan circle were identified
using a geographical detector.
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The following are the main findings of this study. The connection strengths and
spatial distribution vary in different types of elements in the metropolitan circle. Central
Hangzhou, Yuhang, and Xiaoshan from Hangzhou city as well as some sub-cities with
characteristic industrial advantages were identified as regional nodes in different flow
networks. The distribution of the connectivity influence on comprehensive flow network
presented hierarchical and unipolar characteristics in the metropolitan circle, which is quite
different from the multi-center structure of urban agglomerations. The spatial differen-
tiation of the connection strength of comprehensive flow network was strongly affected
by distance and socioeconomic factors in Hangzhou metropolitan circle, especially the
traffic distance, and its interactions with socioeconomic factors would strongly enhance the
spatial differentiation of flow network.
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Abstract: Nowadays, European program Copernicus’ Sentinel missions have allowed the devel-
opment of several application services. In this regard, to strengthen the use of free satellite data
in ordinary administrative workflows, this work aims to evaluate the feasibility and prototypal
development of a possible service called Sen4MUN for the distribution of contributions yearly allo-
cated to local municipalities and scalable to all European regions. The analysis was focused on the
Aosta Valley region, North West Italy. A comparison between the Ordinary Workflow (OW) and the
suggested Sen4MUN approach was performed. OW is based on statistical survey and municipality
declaration, while Sen4MUN is based on geospatial deep learning techniques on aerial imagery
(to extract roads and buildings to get real estate units) and yearly Land Cover map components
according to European EAGLE guidelines. Both methods are based on land cover components which
represent the input on which the financial coefficients for assigning contributions are applied. In
both approaches, buffers are applied onto urban class (LCb). This buffer was performed according to
the EEA-ISPRA soil consumption guidelines to avoid underestimating some areas that are difficult
to map. In the case of Sen4MUN, this is applied to overcome Sentinel sensor limits and spectral
mixing issues, while in the case of OW, this is due to limits in the survey method itself. Finally, a
validation was performed assuming as truth the approach defined by law as the standard, i.e., OW,
although it has limitations. MAEs involving LCb, road lengths and real estate units demonstrate
the effectiveness of Sen4MUN. The developed approach suggests a contribution system based on
Geomatics and Remote sensing to the public administration.

Keywords: Sen4MUN; geomatics for public administration; Sentinel-1 & Sentinel-2; AGEA orthophoto;
ArcGIS Pro; land cover; money assignment to local entities; Europe; Italy; Alpine region

1. Introduction

The European Space program Copernicus, with its Sentinels missions, has allowed the
creation of many research projects and prototypes aiming at developing several services,
many of them already available based on earth observation data [1–6]. Unfortunately, there
are still few available or prototype services based on an applied use of geomatics and
remote sensing, despite an expansion of Space Economy. The distribution systems of re-
gional contributions to municipalities are overwhelmingly based on territorial components.
Therefore, the geospatial component and the technological transfer offered by the growing
development of geomatics and remote sensing in this sector would be enormous, allowing
for important impacts on administrative processes currently carried out with systems that
are often onerous, as well as poorly efficient and inaccurate. To achieve real digitalization
in public administration is necessary to develop services capable of responding to ordinary
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questions in a modern way, guaranteeing scalability and a certain degree of standardization.
In fact, nowadays there is a growing need of standardization and validation procedures of
geographical and earth observation data/product/services with special concerns about the
expected roles they can have within monitoring/control actions from institutional subjects
(e.g., CAP controls. natural hazards, etc.).

One of these, still under development, and one of the few that aims to use remote
sensing in a highly economic key is the Sen4CAP system for the payment of contribution
and control in agriculture, according to the Common Agricultural Policy (CAP) in light
of EU regulation (N. 746/2018) [7–9]. The EU’s Common Agricultural Policy (CAP) seeks
to raise agricultural productivity in Europe in a sustainable manner while maintaining
a respectable level of living for EU farmers. The CAP, which has an annual budget of
about EUR 59 billion, uses a variety of strategies such as direct payments, market reforms,
and rural development, to improve the sustainability and competitiveness of agriculture
in Europe [10]. The Integrated Administration and Control System (IACS) oversees and
manages the majority of the CAP budget with the goal of protecting the program’s fi-
nances and assisting farmers in submitting their declarations. [11]. Earth observation (EO)
satellites are regarded to play a bigger part in the CAP reform satellite’s enhancement
and cost-effectiveness of the IACS. It is important to note that the CAP reform has estab-
lished the role of EO data as being of utmost importance. Their adoption is expected to
be required in 2024–2025, and may also extend to future planned missions like IRIDE,
which the Italian Space Agency (ASI) and the European Space Agency (ESA) are working
on together. Sentinel missions—Sentinel-1 and Sentinel-2 (hereinafter called Sentinels)
in particular—play a major role. In the years after 2020, the initiative will give special
consideration to demonstrating how data obtained from Sentinels may help modernize
and streamline the CAP. Sen4CAP was established by the ESA in response to requests from
European payment agencies like other EO services [12–14].

Also, other space agencies worldwide like NASA (US), JAXA (Japan), CNES (France),
DLR (Germany), and more recently the ASI (Italy) with the ambitious program IRIDE,
have developed or have planned to strengthen their services addressed to the private
and public sector, not only for research purposes, but to promote technological transfer
in many sectors [15], but at the present time fewer are related to contribution systems in
different sectors which play a huge role. The space race has opened up new frontiers of
investment for individuals and enterprises at different levels, not only the large economic
giants of the ICT and geospatial services such as Planet, SatVu, Albedo, Maxar, e-Geos, etc.
Despite several services being available from forest management monitoring to precision
agriculture, to the management of migratory flows passing through the management of
urban areas and planning of smart cities and much more [16], almost none are related to
contributions system. The reason is related to the fact that, on one hand, many services and
products offered are often too general and not specific, or worse, without solid scientific
validation. On the other hand, public administration is too slow to embrace the new
opportunities offered by applied sciences. It is often incapable of understanding them
because they are not transferred in the correct way or suitable for use as a support and
then a replacement for old methods without creating big changes (especially when it comes
to money). Added to all this is bureaucracy and the need to legislate on new approaches
so that they become operational and can complement and replace conventional ones. It
is therefore not surprising that more bureaucratic countries are often slower to assimilate
the news. Added to this is the need for foresight on the part of the political sector and
of regional managers and technicians capable of understanding and getting involved,
abandoning safe but often obsolete paths to support new ones that require hard work,
experimentation, and continuous understanding [17].

Therefore, this work aims to create a tentative service based on European EO data
and geospatially based processing about the distribution of contributions intended for
municipalities called Sen4MUN, where Sen means Sentinels for municipalities. It is worth
noting that in Italy, as in other EU countries, the municipalities receive income from
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different types according to different criteria [18]. Current incomes of taxes, contributions,
and equalization nature are made up of four income items: taxes, duties, and similar
income; tax sharing; equalization funds from central administrations; equalization funds
from the region or autonomous province. Generally, equalization funds from central
administrations and regions or autonomous provinces are the most important and the
main core of the approach suggested [19,20]. Concerning contribution delivered by regions
to municipalities, they are assigned following two possible approaches; the first one is
based on the estimated expenditure, taking into account the previous year (the more you
spend the more you receive money for local development within a budget defined at the
regional and governmental level); the second is a little more rigorous, based on indicators
of territorial development (in which, at least in Italy, the more the urbanized area develops,
roads, housing units, factories and more in general areas for urban use, the higher the
revenues) as a function of the resident population without going into the criticisms of
the present approaches, which certainly should be reviewed from the point of view of
environmental sustainability dealing with SDGs goals [21]. Since the second approach
permits an exploitation of the possibility offered by EO data and GIS updated data; a system
similar to the idea at the base of Sen4CAP has been suggested in this work. Urbanized
components, like other territorial bio-physical surfaces, can potentially be mapped to the
temporal resolution of Sentinels by translating the information produced by a medium-high
resolution land cover into a datum that can be used by administrations at an economic
level [22]. To date, the monitoring of land cover is carried out only from an environmental
point of view (to map the territory or quantify land consumption or for other research
purposes), but without, up to now, deriving any form of economic quantification. To try to
bridge this gap, the Sen4MUN has been designed.

Sen4MUN aims to create a single and standardized approach for the item concerning
government revenue or, as in the case of this study, regional revenues for local authorities
considering also the environmental issues. Sen4MUN aims to replace the approach cur-
rently based on the estimation of territorial indicators obtained from statistical analyzes
or very rough estimates used up to now by suggesting a more rigorous, efficient, and
objective approach, based on the technology transfer offered by EO data trying to suggest
new approaches by space economy and the actual and expected roles of geomatics within
the next generation EU framework from science to public services.

In this regard, therefore, to strengthen the use of free European satellite data in
Ordinary administrative workflows such as Sen4CAP, this work has been focused to assess
the feasibility and prototypal development of a possible service called Sen4MUN for the
distribution of contributions yearly allocated to local municipalities and scalable to all
European regions.

The analysis was focused on Valle d’Aosta Region, North West Italy, considered
complex in land cover mapping because of its geo-morphology and Sentinels geometrical
resolution limits in alpine areas linked to SAR distortions [23] and spectral mixing, as
well as phenology detection in pixels located in high slope degree in multispectral remote
sensed data [24].

A comparison between the ordinary methodology based on the estimation of territorial
indicators (OW), with the buffer zone retrieved with statistical surveys and the Sen4MUN
approach, which is based on yearly land cover classification according to EAGLE guidelines,
has been performed. Finally, due to the fact that some roads cannot be correctly mapped
by Sentinels due to a GSD limiting factor, updated GIS geodatabases were included in the
Sen4MUN prototypal approach.

2. Materials and Methods

2.1. Study Area

Sen4MUN was realized and tested within the Aosta Valley Region in the North West
of Italy. Aosta Valley is a region in northwestern Italy which hosts the highest peaks in the
whole alpine chain and in general in Europe. The region borders France in the Western
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part and Switzerland in the Northern. Figure 1 has reported Aosta Valley’s location in
respect to Italy. Though it is the smallest in Italy, its geomorphology makes it one of the
most complex. It is situated in the Western Alps [25].

Figure 1. Area of study, involving the Region Valle d’Aosta, NW Italy. False color Sentinel-2 imagery
2022 meteorological summer composite (NIR, Red, Green).

2.2. Ordinary Workflow

This approach adopts municipality declaration and statistical data obtained from re-
gional or national offices that starts from building practices or territorial surveys performed
within a time range (for example every 5 years [26]. In the most likely cases, data comes
from GIS databases (like the cadastre of buildings real estate units and municipalities
streets lengths), and the land cover areas divided into three marco-classes derived from
municipality declarations. These three land cover components are: urban areas which
are the most important, semi-anthropic areas, and sterile areas, buffered 10–20 or 30 m
(over-estimated) due to inhomogeneity data collection through the different times [22].
Nowadays, Ordinary Workflow (hereinafter called OW) does not use deep learning pro-
cessing to update the GIS geodatabase and earth observation data. In fact, almost the
entire OW data collection is based on municipality declaration and statistical surveys at
different level with yearly temporal gaps. This is the case of the Aosta Valley region that
follows the Cerutti’s approach since 1979, which is entirely based on statistical surveys and
declarations [27–29]. This approach considered the following patterns: the municipal area,
the urban and anthropic areas, the semi-anthropic areas (that includes all vegetated areas
cultivated and not cultivated by humans), the sterile areas (that means all land unproduc-
tive surfaces, like water bodies and courses, snow and ice, rocks), roads lengths, and finally
real estate units. All these components are properly weighted and normalized according to
financial criteria defined at regional, national, and European levels. The financial criteria
are based on the resources made available by the annual regional budget on the basis of a
legal resolution, the expenses made in the current year, the actual resident population and
the municipal area. These indicators, based on state and regional tax formulas, which vary
over time because they are the result of political economy choices, define the coefficients
to be applied to the territorial development components covered by this study and which
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characterize the contributions paid. In fact, the financial criteria are defined and regulated
by national law and regional regulations, leaving greater freedom in their calculation to
regions with special statutes such as the Valle d’Aosta Autonomous Region.

Therefore, OW is based on data collection campaigns for statistical purposes and
declarations from municipalities. The municipal offices are required to communicate
certain parameters such as the municipal area, resident population, roads belonging to the
municipality and real estate units present in the municipality. The poor communication
between offices at various levels often makes these data not always representative and
homogeneous in qualitative terms for all municipalities.

It is worth noting that OW is based on a simple weighted sum of factors that sum to
total land cover as reported in financial land components workflow in Figure 1 which is
used also in Sen4MUN using a different collection data method. In this regard, the role of
remote sensing and GIS is to properly map these areas instead of using periodic surveys as
it happens nowadays and in the issue previously discussed. Equations (12) and (13) are
the core of this approach, and each variable cab be obtained weighing each component
(representing the input variable) properly mapped. Table 1 shows how each variable was
obtained for the only purpose of complete clarity, although the procedure is as described
previously, a simple weighing of weighed remote sensed variables.

Table 1. Ordinary Workflow equations adopted to retrieve territorial inputs for the financial contribu-
tion counting. It is worth to note that these equations are adopted also in Sen4MUN approach.

Description Algorithm

Land Cover Areas (LCA)

d = e + g + i (1)
where,
e = urban and anthropic area
g = semi-anthropic areas
i = sterile areas
d = municipality’s administrative boundaries

LCA Weights

f = e × α (2)
where,
e = urban and anthropic area
α = weight (in this case = 3)
f = urban weighted area

h = g × β (3)
where,
g = semi-anthropic area
β = weight (in this case = 1.5)
h = semi-anthropic weighted area

l = i × γ (4)
where,
i = sterile area
γ = weight (in this case = 0.5)
l = sterile weighted area

Weighted areas

m = f + h + l (5)
where,
f = urban weighted area
h = semi-anthropic weighted area
l = sterile weighted area

n = m
∑n

i=1 m × 100 (6)
where,
m = conventional municipality area
∑n

i=1 m = sum of all the municipalities in the regional areas
n = conventional weighted municipality area
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Table 1. Cont.

Description Algorithm

Weighted areas

o = n × δ (7)
where,
n = conventional weighted municipality area
δ = weight (in this case = 50%)
o = sub-conventional weighted municipality area

Roads length

q =
p

∑n
i=1 p × 100 (8)

where,
p = roads length
∑n

i=1 p = sum of all the municipalities in the regional areas
q = roads weighted length

r = q × ε (9)
where,
q = roads weighted length
ε = weight (in this case = 30%)
r = sub-conventional weighted roads length

Real estate units

t = s
∑n

i=1 s × 100 (10)
where,
s = real estate units
∑n

i=1 s = sum of all the municipalities real estate units
t = real estate weighted units

u = t × ζ (11)
where,
t = real estate weighted units
ζ = weight (in this case = 20%)
u = sub-conventional weighted real estate units

The sub-conventional parameters, respectively obtained by Equations (7), (9) and (11)
are used to obtain algorithms reported in Equations (12) and (13), respectively. These
are adopted by the regional Aosta Valley Autonomous offices to assess the municipality
contributions according to the financial budget foreseen annually.

v = o + r + u (12)

where,
v = sum of all sub-conventional weighted parameters,

z = v × η (13)

where,
η = a financial weight in this case 11.50%.

2.3. Sen4MUN

The Sen4MUN approach is based on remote sensing and, in particular, yearly land
cover, GIS-updated geodatabases, and deep learning to assess the parameters necessary as
input in the OW.

2.3.1. Earth Observation Data and Processing

In this regard, urban and anthropic areas, semi-anthropic areas, and sterile areas are
computed from Aosta Valley yearly land cover classes aggregation available at SCT regional
geoportal and eoVdA webpages. Road lengths are obtained by the GIS viability monthly
update geodatabase, as well as real estate units also including deep learning (this part will
be further discussed). The reference year 2020 was considered. Land cover (LC) complies
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with EAGLE guidelines and is realized according to the following methods [30] and it is
based on Sentinels missions (S1–S2) [31–34] adopting Aosta Valley land cover [25,30]. It
is worth to note that, to assist the semantic and technological foundation of a European
harmonized information management capability for land monitoring, the EAGLE Group
has been working on a solution and proof of concept since 2008. Mostly, but not only,
in their capacities as Eionet members, land monitoring specialists from many European
Environment Agency (EEA) member nations have formed the self-initiated and public
EAGLE Group. As a result, the EAGLE Group uses a bottom-up methodology to compile
information and experiences from current land cover (LC) and land use (LU) categorization
methodologies and projects. The Copernicus Land Monitoring Service recognizes EAGLE
as a key and necessary element to facilitate a broad change in emphasis from categorization
to characterization. This has resulted in the enforcement of EAGLE compliance in new
CLMS products. The EAGLE guidelines envisage dividing the land cover components
according to a pyramidal hierarchical approach, starting from macro classes to reach
detailed components.

Since LC classes are more detailed than those reported in the Cerutti’s approach (which
are the same at EAGLE at macro-level), they were aggregated according to the Cerutti’s
description to integrate the Sen4MUN approach into the OW as follows in Table 2.

Table 2. Comparison between Land Cover EAGLE and Cerutti’s classes.

Land Cover EAGLE Class Cerutti Class

Urban and anthropic areas urban and anthropic area
Shrubland and transitional woods semi-anthropic areas
Woody crops semi-anthropic areas
Water surfaces sterile areas
Water courses sterile areas
Needle-leaved forests semi-anthropic areas
Broad-leaved forests semi-anthropic areas
Mixed forests and moors semi-anthropic areas
Permanent snow and ice sterile areas
Natural grasslands and alpine pastures semi-anthropic areas
Lawn pastures semi-anthropic areas
Bare rocks sterile areas
Discontinuous herbaceous vegetation of medium-low altitude semi-anthropic areas
Sparse herbaceous vegetation at high altitudes semi-anthropic areas
Alpine wetlands sterile areas

2.3.2. Geospatial Deep Learning Data and Processing

Roads and real estate units were extracted both from cadastral maps and deep learning
adopting open-source libraries and Python scripts integrated with ESRI ArcGIS Pro v.2.9
for object detection and classification [35–38]. Roads and building footprints [39–43] were
extracted using Convolutional Neural Network (CNN) techniques [44–47] onto the AGEA
(Agency for Disbursements in Agriculture) 2020 ortho-rectified imagery, yearly available at
the national level. In particular, ArcGIS pretrained deep learning models were adopted
to extract roads and real estate units (that has been assigned from cadastre and municipal
declaration of habitability to building footprint extracted using these models). Concerning
road extraction, the deep learning model to extract roads from high resolution satellite
imagery named: Road Extraction—Global in ESRI ArcGIS Pro v.2.9 was adopted. The
implementation is based on the Sat2Graph model by [48]. Sat2Graph relies on a novel
encoding scheme. It is capable of creating a three-dimensional tensor from the road network
graph. This capability is named as Graph Tensor Encoding (GTE). By combining the benefits
of segmentation-based and graph-based techniques, this graph-tensor encoding scheme
enables the training of a basic, non-recurrent neural network model to directly translate
the input satellite/aerial images into the road network graph (i.e., edges and vertices). In
the case of a road network graph G = {V, E} covering a region measuring W meters by
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H meters, GTE employs a W−λ × H−λ × (1 + 3 · Dmax) 3D-tensor (represented as T) to
hold the graph’s encoding. In this case, Dmax is the maximum number of edges that can
be encoded at each λ × λ grid, and λ is the spatial resolution, which limits the encoded
graph so that no two vertices can be co-located within a λ × λ grid. The two spatial axes
in the two-dimensional plane are represented by the first two dimensions of T. To encode
the graph information, we utilize the vector at each spatial point, ux,y = [Tx,y,1, Tx,y,2,...,
Tx,y, (1 + 3·Dmax)]T. Its first element (vertexness), pv ∈ [0, 1], specifies the likelihood that
a vertex would exist at point (x, y). Dmax 3-element groups, which encode the data of
a possible outgoing edge from location (x, y), come after the initial element. The first
element pei ∈ [0, 1] (edgeness) of the i-th 3-element group encodes the likelihood of having
an outgoing edge toward (dxi, dyi), that is, an edge pointing from (x, y) to (x + dxi, y +
dyi). Since vertices with degrees greater than six are extremely uncommon in road network
graphs, we have set Dmax to six in this instance. GTE only use the i-th 3-element group to
encode edges pointing toward a 360 Dmax-degree sector from (i − 1) · 360 Dmax degrees
to i · 360 Dmax degrees in order to minimize the number of possible distinct isomorphic
encodings of the same input graph. It is simple to encode a road network graph into GTE.
The encoding algorithm first interpolates the straight road segment in the road network
graph for the purpose of road network extraction. To keep the distance between consecutive
points under d meters, it chooses the bare minimum of equally spaced intermediate spots.
By controlling the edge vector’s length in GTE, this interpolation technique stabilizes the
training process.

Interpolation for stacked roads may result in vertices from two overlapped road
segments at the same location. When this occurs, the pre-trained model in ArcGIS permits
to move the endpoint vectors of the two edges using an iterative conflict-resolution process.
The objective is to ensure that the separation between any two vertices (derived from
the two edges that overlap). The GTE decoding technique returns a graph’s anticipated
GTE, which is frequently noisy, to the standard graph format (G = {V,E}). There are two
steps in the decoding algorithm: (1) vertex extraction and (2) edge connection. It has been
considered vertices and edges with a probability larger than a threshold (referred to as pthr),
since both the edgeness and verticeness predictions are real numbers between 0 and 1.

During the vertex extraction phase, the decoding algorithm locates the local maxima of
the vertexness map in order to extract possible vertices. The algorithm takes into considera-
tion just those local maxima whose vertexness exceeds pthr. The decoding algorithm joins
the outgoing edges of each candidate vertex v ∈ V to other vertices in the edge connection
stage. The following distance function (reported in Equation (14)) is used by the algorithm
to calculate the distance of the i-th edge of vertex v ∈ V to all other neighboring vertices u.

d(v, i, u) =
∣∣∣∣(vx + dxi, vx + dyi)−

(
ux, uy

)∣∣∣∣+
+w·cosdist

(
(dxi, dyi),

(
ux − vx, vy − vy

)) (14)

where w is the weight of the cosine distance in the distance function and cosdist(v1, v2)
is the cosine distance of the two vectors. In this case, we set w to a high value, like 100,
to prevent erroneous connections. Once this distance has been calculated, the decoding
algorithm inserts an edge between v and u 0 and selects a vertex, u 0, that minimizes the
distance function d(v, i, u). In order to prevent false edges from being added to the graph
when there are no suitable candidate vertices nearby, we specified a maximum distance
criterion of 15 m. Finally, Sat2Graph uses cross-entropy loss (denoted as LCE) and L2-loss.
The vertexness channel (pv) and edgeness channels are subjected to the cross-entropy loss.

pei i ∈ {1, 2,..., Dmax}), and the edge vector channels ((dxi, dyi) i ∈ {1, 2,..., Dmax}) get
the L2-loss. GTE varies across extended road sections.

In this instance, distinct ground truth labels in the GTE format can be mapped to the
same road structure. We only calculate the losses for edgeness and edge vectors at position
(x, y) when there is a vertex at that location in the ground truth due to this discrepancy. The
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overall loss function is displayed below in Equation (15) (ground truth is represented by T̂
p̂v, p̂ei, d̂xi, and d̂yi).

L
(
T, T̂

)
= ∑

(x,y)∈[1..W]×[1..H]
(LCE(pv, p̂v)+

+T̂x,y,1 ×
(

Dmax
∑

i=1
(LCE

(
pei, p̂ei

)
+ L2

(
(dxi, dyi),

(
d̂xi, d̂yi

))
)

)
)

(15)

Concerning building footprints, these were obtained using the deep learning model
to extract building footprints from high-resolution aerial and satellite imagery named:
Building Footprint Extraction—New Zealand. In this last case, real estate extraction is based
on the Mask R-CNN model architecture implemented using ArcGIS API for Python [49].

Developed on top of Faster R-CNN, Mask R-CNN is a state-of-the-art model for
instance segmentation. A region-based convolutional neural network called Faster R-
CNN [50] provides bounding boxes together with a confidence score for each object’s
class identification. Mask R-CNN works on two-stage mainly based on Faster R-CNN
architecture: (a) (phase 1): there are two networks in the first stage; a region proposal
network and a backbone network (ResNet, VGG, Inception, etc.) to provide a collection of
region suggestions, these networks execute once for each image. The feature map’s regions
that contain the object are called region proposals; (b) (phase 2): The network predicts object
classes and bounding boxes for every suggested region that was acquired in phase one.
While fully linked layers in the networks always need a constant size vector to produce
predictions, each proposed region might have a variable size. The RoIAlign technique or
RoI pool, which is quite similar to MaxPooling, are used to fix the size of these proposed
regions. When segmenting scenes or objects with irregular borders, segmentation models
may produce boundaries that are too smooth and may not be accurate. A point-based
rendering neural network module named PointRend has been included as an upgrade into
the pre-trained model in order to obtain a clear segmentation border. This module provides
the segmentation problem with a rendering perspective, utilizing techniques from classical
computer graphics. Labels are frequently predicted by image segmentation models on
a regular grid with low resolution, such as 1/8th of the input. To upscale the forecasts
to the original resolution in these models, interpolation is used. PointRend, on the other
hand, upscales the predictions using an iterative subdivision technique by having a trained
tiny neural network predict the labels of points at certain places. This technique efficiently
produces output with great resolution [51].

In this work, in order to improve the quality of the results obtained and, in particular,
the extraction of a building footprint to get real estate units, PointRend has been adopted
into the pre-trained model. To enable PointRend within Mask R-CNN in the ESRI Ar-
cGIS front-end or scripting console, the following parameters has been set as reported in
Equation (16):

model = MaskRCNN(data = data, pointrend = True) (16)

An 8-bit, 4-band high resolution (0.20 m GSD) aerial AGEA imagery of 2020 of the
whole Aosta Valley was adopted. Due to the high computation necessary to extract the
features in the whole region, the processing was conducted in a workstation with the
following main characteristics: 64 GB CPU memory; 2 TB SSD storage and with a graphic
card Nvidia RTX A4000 16 GB GDDR6.

Then, from the roads extracted, they were checked with the viability geodatabase, and
only municipality roads and areas were considered (as specifically reported in the regional
laws) for the road length computation. Then, the land cover areas and roads were buffered
20 m for the following reasons: some sparse urban areas are difficult to map due to the GSD
limits of Sentinels [52–59], then this threshold is adopted both in OW procedure and ISPRA
Land Units in the case of soil consumption estimation [29]. Finally, the areas obtained were
used as inputs in the OW equations reported in Table 1.
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2.4. Validation

The validation of the Sen4MUN approach and in particular of the surface estimated
adopting GIS [60–64] and earth observation data to retrieve the parameters adopted in the
OW was realized by computing the Mean Absolute Error (MAE) according to Equation (17)
here reported:

MAE =
∑n

i=1|pi − oi|
n

(17)

where pi is the prediction (Sen4MUN component area), oi is the OW component areas
estimated without remote sensing methods, and n is the number of municipalities in the
Aosta Valley autonomous area equal to 74).

It is worth noting that the EAGLE classification starts from the same macro-classes
identified by Cerutti’s. The unique difference in the two approaches is represented by
the names adopted (despite the description is perfectly the same). Therefore, the EAGLE
approach starts from macro to arrive to detail with sub-classes while Cerutti’s stops to
macro-level.

This is a key point because it permits comparability between the two methods even if
different technical approaches are followed.

In order to sum up the suggested newer approach, a workflow of the Sen4MUN
approach is provided in Figure 2.

Figure 2. Sen4MUN workflow.
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3. Results

The Sen4MUN approach was validated by computing the MAE compared to the
surfaces calculated with the traditional method from statistical surveys. It is worth noting
that, for the reference year 2020, the main surfaces and inputs were computed both with
OW and Sen4MUN for each municipality within the Aosta Valley. Furthermore, also deep
learning pre-trained models concerning on roads and real estate units have been evaluated.
The pre-trained ESRI ArcGIS model Building Footprint Extraction—New Zealand has
produced an F1 score of 86.20 all over the region, with an overall precision of 0.885 and
a recall of 0.861. Despite many building footprints being available in ArcGIS, this is one
that works better in geomorphological complex areas, while the pre-trained ESRI ArcGIS
model Road Extraction—Global showed a precision score of 0.804 in the area of study.
However, including results without PointRend as reported in Equation (16), it had a score
of 0.873. Excluding false positives due to rocks artifacts and after a manual refining due
to photointerpretation, the final layer had an overall accuracy of 0.961. It is worth noting
that a 4-bands aerial imagery was adopted to perform the extraction. In particular, to
refine the accuracy of the models in ArcGIS Pro in order to reach a threshold score of 0.80,
hyperparameter optimization has been performed, fine-tuning the hyperparameters of the
model, such as learning rate, batch size, and optimizer settings, to improve the training
process and enhance the model’s performance. Moreover, a repeat cycle approach has been
followed by iteration through the training, evaluation, and refinement steps multiple times
until the model’s performance reaches an acceptable level. Finally, MAEs were computed
for land cover components, road length and real estate units.

Since urban areas play a major role in the present regional regulation in terms of
township incomes, MAEs involving each municipality were computed also considering
their road length and real estate units. The results obtained are reported in Table 3 and a
general Table A1 in Appendix A and in the graphs concerning on the MAEs reported in
Figure 3.

Table 3. Overall MAEs and areas computed with both OW and Sen4MUN.

Urban & Anthropic Areas (km2) Road Length (km) Real Estate Units

Sen4MUN OW MAE Sen4MUN OW MAE Sen4MUN OW MAE

103.9 92.1 0.16 1686.7 1626.4 0.81 303,049 293,214 133

Table 3 reports the overall MAE computed considering the same component retrieved
with OW and Sen4MUN.

Figure 3 shows the MAEs for the three territorial components used for the calculation
of municipal contributions by the Valle d’Aosta Autonomous Region. In particular, the
following are reported in the section: (A) the MAEs for urban and anthropic areas expressed
in square km; (B) the MAEs for the length of municipal roads expressed in km; (C) the
MAEs for real estate units expressed in units. In all three sections of Figure 3, it is interesting
to note that the largest MAEs generally occur in municipalities with fragmented urban
areas with scattered villages and houses and roads in steep areas due to the limitations of
the sensor and processing techniques or errors inherent in the traditional method, such as
to cause the imbalances as illustrated below.

As reported in Table 3, an overall MAE of 0.16 km2 was obtained involving urban and
anthropic areas, while 0.81 km was obtained for road length and 11 units in the case of real
estate units. An overall MAE of 0.82 km2 was computed involving all EAGLE Land cover
classes, respecting those computed with Cerutti’s approach. All the values obtained are
significant and seem to suggest a validity of Sen4MUN. The values obtained in Table 3 for
the two approaches are not very distant as indicated by the MAEs. It should be highlighted
that the standard for assigning contributions is currently OW because it is regulated at
a legislative level. It is worth noting that the errors came from Cerutti’s approach which
overestimate some areas due to limits in this approach itself. Furthermore, it is interesting
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to note that in all the components, for example urbanized areas, road lengths and real
estate units, MAEs are associated with municipalities that underwent more changes in at
least one of the components in the reference year and with sparse villages. Unlike what
can be derived from the MAEs here computed, the Sen4MUN system is more effective in
monitoring territorial changes because it is based on satellite and GIS data updated at a high
temporal frequency than the ordinary system. The MAEs obtained allow the transferability
of the new approach and possible replacement of the ordinary one even in an Alpine reality
such as the one investigated. In fact, MAEs are generally higher in mountainous areas than
those obtainable in lowland areas due to the limiting factors affecting some remote sensing
applications (land cover mapping in particular).

Figure 3. MAEs computed per each municipality in Aosta Valley Autonomous Region comparing
Sen4MUN with OW considering (A) Urban and anthropic areas; (B) Road length; (C) Real estate units.
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4. Discussions

The results show the consistency of the methods. Furthermore, the procedure adopts
free worldwide coverage data. The creation of land covers on an annual, biennial, or
monthly basis or even on a time scale of Sentinels (potentially every 5 days) allows the
continuous monitoring of territorial dynamics. Moreover, this activity is part of the actions
that each European country carries out for the monitoring of soil consumption and that
the regions or provinces carry out to offer detailed products according to the guidelines of
the European Environmental Agency. Furthermore, the availability for the administration
of a regional air flight with very high resolution imagery (like an AGEA flight), albeit for
agricultural purposes, allows this type of data to be integrated into other service chains.
Such as in the case of Sen4MUN, to extract the footprint of buildings and roads thus makes
public spending more efficient through the expansion of derivable products and services.
Certainly, it is complex to create universally valid models, and locally suitable models are
always preferable. But it must also be said that to create standards such as the Sen4CAP
adopted by the European Union, compromises must be reached. Sen4MUN was specifically
developed in a complex area such as to make it scalable in a much simpler way to plain
and hilly areas which are the majority at a European level. The fact that the approach
returns interesting results in an alpine and geomorphologically complex context is certainly
encouraged from a scalability perspective. It should be remembered that the largest MAEs
occur in municipalities that have more scattered settlements with isolated houses mixed
with woods. Areas by which their nature are complex to map at Sentinel scale are not so
numerous. Finally, it should also be remembered that many of the differences are linked not
to a lack of accuracy and precision of Sen4MUN, which from a purely photo-interpretative
analysis proved to be more performing than the traditional OW approach, but precisely as
a result of errors in the dataset from statistical investigations of OW. This dataset, despite
the errors it suffers from, was taken as a reference base as current regulations require this to
be the data collection tool for the purposes of assigning contributions. During the analyses
in some municipalities with high MAEs, it was found that Sen4MUN, on the contrary,
mapped components that had escaped OW.

Naturally, the critical points in the Sen4MUN approach result in a correct mapping
and knowledge of geomatics and remote sensing and their limits, such as the most suitable
approach (hierarchical, single-directed, data fusion, etc.), the classification algorithms, as
well as the input data that best respond to the components to be mapped, etc. Furthermore,
the definition of the optimal number of training areas validation sets according to the
area to be mapped is crucial [65–76] in obtaining high accuracies and minimization of
errors [77–87]. Despite this work, a ready land cover has been adopted with an overall
accuracy upper than 0.94, the whole procedure considering all these issues has been tackled
in previous scientific literature involving the Aosta Valley territory [88]. In fact, in the case
of a stand-alone and not prototype of this service at an application level not only on a
regional or national scale, but on a European scale given the characteristics of the continent,
the optimal solution would be to implement a regulated procedure, but which gives a
certain degree of freedom in the algorithms and training sets (providing only thresholds) so
that chains capable of responding best according to the area to be mapped are developed.
Sen4CAP has been excessively standardized also in the algorithms making it underperform
in the mountain areas [89]. The need to standardize as much as possible a procedure
that moves economic contributions is crucial for large-scale regulation [47], but this is
performed with the support of researchers, technicians, and academic experts and after
several experiments in UE, to better define the operational leans and freedoms useful for
developing consistent products and services for each European reality without creating
disparities and differences. As far as the authors are aware, there are no applications in
scientific literature for the monetarization of land cover and usage or AI geospatial deep
learning at a national, regional, or local contribution scale for services provided by the
public administration, therefore a comparison of the results obtained to date is extremely
difficult. At the same time, fewer are scientific works on monetary attribution to the
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components of the coverage for the estimation of ecosystem services and nature based
solutions [90,91], but with the intent of estimates of mere research and not of actual transfer
of technological application to the public sector. Furthermore, the works themselves are
on a large and non-municipal scale and involve geographical areas different from those
under study. Therefore, we hope that this work will stimulate the Italian, European and
international scientific and technical community to deepen and explore the application
potential of geomatics in the operational workflows of public administration by offering
new services and comparing the results and approaches obtained for the purpose of
continuous improvement.

The use of the prototypal Sen4MUN Aosta Valley has made it possible to make the
procedure for assigning contributions to municipalities more objective through the use
of Sentinel data and updated GIS geodatabases, favoring technology transfer and the
implementation of a possible new service within the Copernicus program and other future
programs, such as an IRIDE capable of offering increasingly high spatial and temporal
resolution data [37] useful for direct applications to the public sector [92–96].

5. Conclusions

Sen4MUN can be used as a standard procedure for assigning contributions to munic-
ipalities. The procedure is consistent and in line with the ordinary territorial workflow
based on statistical surveys without the use of earth observation data, deep learning, and
geodatabase. Although the system has been tested and used on a prototype level in the
Aosta Valley, it can be scaled up to other Italian and European regions. The hope is that this
service will become operational and spread to all member countries of the European Union
as well as other national realities. Sen4MUN could join other services; coming from various
Earth observation programs such as Copernicus, favoring an ever more massive technology
transfer to the public sector by rationalizing activities and processes with plural activities
with a view to the ever-increasing importance of geomatics in management flows and
implementation planners of local, national and European policies. Finally, Sen4MUN seems
to be capable of providing useful data for contribution purposes to public administration.
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Appendix A

The data used to realize the histogram available in Figure 3 are reported here below in
Table A1.
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Table A1. MAEs and areas computed with both OW and Sen4MUN (S4M).

Aosta Valley
Municipalities

Urban Areas (km2) Roads Length (km) Real Estate Units

S4M OW MAE S4M OW MAE S4M OW MAE

Allein 0.28 0.33 0.05 16.37 15.32 1.05 643 638 5
Antey-Saint-André 1.04 1.00 0.04 17.98 15.67 2.31 3250 3208 42
Aosta 9.58 9.57 0.01 106.26 104.55 1.71 65,073 65,050 23
Arnad 1.68 1.41 0.27 29.34 26.73 2.61 2614 2601 13
Arvier 0.87 0.66 0.21 22.73 22.02 0.71 1970 1971 1
Avise 0.45 0.50 0.05 12.59 11.58 1.00 899 890 9
Ayas 2.84 2.85 0.01 21.28 19.04 2.24 10,022 10,021 1
Aymavilles 1.37 1.39 0.01 31.05 30.03 1.02 3349 3346 3
Bard 0.26 0.20 0.06 3.04 2.56 0.49 320 315 5
Bionaz 0.55 0.58 0.03 15.22 13.95 1.26 626 622 4
Brissogne 2.11 0.79 1.32 19.78 18.46 1.32 1510 1499 11
Brusson 1.55 1.86 0.31 28.91 28.75 0.16 5229 5222 7
Challand-Saint-Anselme 0.85 0.93 0.08 19.30 15.49 3.81 3231 3230 1
Challand-Saint-Victor 0.63 0.70 0.07 16.93 15.66 1.27 1776 1770 6
Chambave 1.39 0.88 0.52 24.36 25.13 0.77 1804 1799 5
Chamois 0.17 0.33 0.16 3.15 3.15 0.00 568 562 6
Champdepraz 0.94 0.65 0.29 17.60 15.78 1.81 1411 1412 1
Champorcher 0.69 1.00 0.31 22.97 21.72 1.25 2355 2351 4
Charvensod 1.55 1.42 0.13 9.95 9.90 0.05 3897 3890 7
Châtillon 2.97 2.28 0.69 47.63 43.32 4.31 7515 7510 5
Cogne 2.10 1.72 0.38 25.21 22.44 2.78 5528 5527 1
Courmayeur 3.37 2.90 0.47 53.52 52.90 0.62 15,334 15,301 33
Donnas 1.90 1.72 0.18 26.89 28.21 1.32 4069 4048 21
Doues 0.60 0.70 0.10 24.41 27.03 2.62 1329 1317 12
Emarèse 0.29 0.34 0.06 13.57 12.85 0.72 984 977 7
Etroubles 0.70 0.57 0.13 18.90 14.89 4.01 1314 1302 12
Fénis 1.47 1.28 0.18 27.13 26.30 0.83 3409 3405 4
Fontainemore 0.66 1.47 0.81 26.91 26.74 0.16 1560 1535 25
Gaby 0.61 0.80 0.19 9.51 9.25 0.26 1394 1337 57
Gignod 1.37 1.23 0.15 30.44 30.14 0.30 2692 2673 19
Gressan 2.84 2.52 0.32 27.43 26.26 1.17 8330 8313 17
Gressoney-La-Trinité 0.82 0.88 0.06 4.18 3.80 0.38 1944 1912 32
Gressoney-Saint-Jean 1.86 1.97 0.10 18.56 16.32 2.25 5350 5347 3
Hône 1.16 0.89 0.27 13.00 14.51 1.52 2226 2226 0
Introd 0.56 0.53 0.03 13.87 13.33 0.54 1444 1435 9
Issime 0.77 1.02 0.25 10.47 9.56 0.91 1263 1260 3
Issogne 1.50 1.08 0.42 26.35 30.83 4.48 2305 2291 14
Jovençan 0.72 0.43 0.28 10.45 13.32 2.87 974 959 15
La Magdeleine 0.28 0.36 0.08 5.46 5.62 0.16 1157 1101 56
La Salle 2.25 1.95 0.29 42.81 36.21 6.59 7445 7419 26
La Thuile 1.77 1.44 0.33 27.23 24.94 2.28 7223 7205 18
Lillianes 0.52 0.98 0.46 19.48 22.28 2.80 1160 1147 13
Montjovet 1.62 1.42 0.21 39.41 38.81 0.60 3271 3262 9
Morgex 2.33 1.66 0.67 22.97 19.41 3.57 6982 6973 9
Nus 2.44 1.88 0.56 54.40 51.67 2.73 5125 5125 0
Ollomont 0.42 0.55 0.13 8.80 7.68 1.12 965 960 5
Oyace 0.27 0.26 0.01 3.50 1.93 1.57 475 473 2
Perloz 0.46 0.91 0.45 19.45 21.95 2.51 1248 1237 11
Pollein 2.11 1.16 0.95 10.27 14.13 3.86 2217 2206 11
Pontboset 0.33 0.47 0.14 10.31 11.32 1.01 809 791 18
Pontey 1.17 0.50 0.67 6.80 4.72 2.07 1296 1294 2
Pont-Saint-Martin 2.00 1.61 0.39 21.39 21.49 0.10 5165 5160 5
Pré-Saint-Didier 1.10 0.91 0.19 20.58 19.46 1.13 5925 5917 8
Quart 3.90 2.56 1.34 59.69 58.83 0.86 6495 6489 6
Rhêmes-Notre-Dame 0.31 0.39 0.08 6.28 5.58 0.70 719 707 12
Rhêmes-Saint-Georges 0.31 0.39 0.08 6.19 5.57 0.62 820 808 12
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Table A1. Cont.

Aosta Valley
Municipalities

Urban Areas (km2) Roads Length (km) Real Estate Units

S4M OW MAE S4M OW MAE S4M OW MAE

Roisan 0.66 0.66 0.01 13.44 12.45 0.99 1455 1447 8
Saint-Christophe 2.98 1.93 1.04 44.18 44.32 0.15 5519 5511 8
Saint-Denis 0.49 0.53 0.04 9.98 6.92 3.06 1163 1161 2
Saint-Marcel 1.46 1.19 0.27 34.99 34.13 0.86 2308 2299 9
Saint-Nicolas 0.46 0.48 0.02 19.19 17.17 2.02 1184 1175 9
Saint-Oyen 0.35 0.22 0.14 7.68 5.72 1.96 556 555 1
Saint-Pierre 2.22 1.82 0.41 40.67 37.22 3.45 5225 5222 3
Saint-Rhémy-en-Bosses 0.88 0.73 0.15 19.48 18.51 0.98 1274 1266 8
Saint-Vincent 2.32 2.13 0.20 40.48 39.29 1.19 8956 8943 13
Sarre 2.74 2.18 0.56 41.53 40.33 1.21 6616 6591 25
Torgnon 1.10 1.10 0.00 21.17 19.56 1.61 4332 4313 19
Valgrisenche 0.36 0.54 0.17 14.00 13.78 0.22 859 851 8
Valpelline 0.60 0.62 0.02 13.58 14.25 0.67 1322 1300 22
Valsavarenche 0.48 0.66 0.18 8.46 9.29 0.83 1036 1023 13
Valtournenche 2.76 2.66 0.10 37.56 37.51 0.05 13,870 13,861 9
Verrayes 1.76 1.59 0.17 26.29 26.12 0.17 3218 3210 8
Verrès 2.14 1.27 0.87 13.50 10.74 2.77 3956 3953 3
Villeneuve 1.43 1.01 0.42 28.31 30.04 1.73 2192 2187 5
TOTAL 103.9 92.1 0.16 1686.7 1626.4 0.81 303,049 293,214 11
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Abstract: Since the beginning of the new century, there has been a notable enhancement in China’s
ecological environment quality (EEQ), a development occurring in tandem with climate change and
the extensive ecological restoration projects (ERPs) undertaken in the country. However, compre-
hensive insights into the spatial and temporal characteristics of China’s EEQ, and its responses to
both climate change and human activities over the past two decades, have remained largely elusive.
In this study, we harnessed a combination of multi-source remote-sensing data and reanalysis data.
We employed Theil–Sen median trend analysis, multivariate regression residual analysis, and the
Hurst index to examine the impacts and changing patterns of climatic factors and human activities
on China’s EEQ during the past two decades. Furthermore, we endeavored to forecast the future
trajectory of EEQ. Our findings underscore a significant improvement in EEQ across most regions
of China between 2002 and 2019, with the most pronounced enhancements observed in the Loess
Plateau, Northeast China, and South China. This transformation can be attributed to the combined
influence of climatic factors and human activities, which jointly accounted for alterations in EEQ
across 78.25% of China’s geographical expanse. Human activities (HA) contributed 3.93% to these
changes, while climatic factors (CC) contributed 17.79%. Additionally, our projections indicate that
EEQ is poised to continue improving in 56.70% of China’s territory in the foreseeable future. However,
the Loess Plateau, Tarim Basin, and Inner Mongolia Plateau are anticipated to experience a declining
trend. Consequently, within the context of global climate change, the judicious management of
human activities emerges as a critical imperative for maintaining EEQ in China. This study, bridging
existing gaps in the literature, furnishes a scientific foundation for comprehending the evolving
dynamics of EEQ in China and informs the optimization of management policies in this domain.

Keywords: EEQ; Chinese High-Resolution Ecological Quality Dataset (CHEQ); climate change; ERPs;
human activities

1. Introduction

The ecological environment serves as the fundamental underpinning of human sur-
vival and progress. Since the advent of the new century, China’s trajectory towards mod-
ernization has continued its forward momentum, accompanied by rapid socio-economic
growth and urbanization. These developments have exerted substantial pressure on the
ecological environment [1]. To address this challenge, in November 1998, the State Council
introduced the China Ecological Environment Construction Plan (CECP). This visionary
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plan outlines a comprehensive strategy spanning 50 years, aimed at instigating nationwide
ERPs. The overarching goal is to enhance China’s ecological environment and facilitate
the sustainable development of both societal and natural systems [2]. A recent study has
underscored the remarkable outcome of these long-term ERPs, revealing that China has
contributed to 25% of global greening efforts [3]. Nevertheless, despite this achievement, a
comprehensive knowledge of the ecological and environmental benefits accrued from ERPs
over the past two decades remains elusive. Henceforth, it becomes imperative to illumi-
nate the spatial and temporal evolution of ecological environment quality (EEQ) in China
during the preceding 18 years. Additionally, it is essential to investigate the respective
contributions of human activities and climate change to variations in EEQ. Such insights
hold profound practical significance as they inform the development and implementation
of future ERPs, bolster ecological conservation initiatives, and advance the realization of
sustainable development goals within China.

ERPs are designed to rehabilitate and enhance ecosystems that have suffered damage
through the application of artificial interventions and ecological technologies [4]. This
endeavor serves several vital objectives, including the promotion of biodiversity, bolster-
ing ecosystem stability, fortifying resilience against natural disasters and anthropogenic
disruptions, and upholding ecosystem security [5]. Since 1998, China has been steadfast
in its pursuit of significant advancements in land greening through large-scale initiatives.
Notably, the nation has embarked on the construction of nine major ERPs. The compre-
hensive enhancement of afforestation in terms of both quantity and quality has been a
concurrent focus. As of 2023, China has successfully accomplished afforestation on a
staggering 6800 × 104 ha of land. This concerted investment in ecological restoration has
yielded evident environmental benefits [6]. Noteworthy examples include the transforma-
tive effects of initiatives like converting farmland back into forests, restoring pastures to
grasslands, safeguarding natural forests, and implementing soil and water conservation
measures. These efforts have demonstrably improved land quality, elevated vegetation
coverage, enhanced water retention, and mitigated the incidence of climatic and geological
catastrophes, such as sandstorms and mudslides. Furthermore, ERPs have also conferred a
diverse array of ecological functions and services. These include serving as carbon sinks,
regulating climate, and managing resources. These multifaceted contributions promote the
sustainable development of the ecological environment [7]. According to statistics from the
State Forestry Administration, China’s forest coverage increased from 16.55% in 2000 to
23.04% in 2020, and grassland vegetation coverage expanded from 44% in 2000 to 56.1%
in 2020. The culmination of these extensive ecological restoration initiatives in China has
played an instrumental role in elevating the quality of the country’s ecological environment
and has made substantial contributions to ecosystem protection [6].

In the realm of EEQ assessment, China’s Ministry of Environment introduced the
Ecological Environment Status Index (EI) in 2006. This comprehensive index comprises
various components, including water quality, soil quality, forest coverage, and pollution
levels. Nonetheless, the EI encounters challenges associated with data acquisition com-
plexities and a laborious calculation process [8]. The rapid advancement of remote-sensing
technology has significantly streamlined the monitoring and investigation of EEQ on a
large scale [9,10]. In 2013, Xu et al. proposed the EEQ evaluation index, known as the
Remote Sensing Ecological Index (RSEI) [11]. This index offers the distinct advantages of
objectivity, simplicity, and accessibility, rendering it a widely adopted tool in EEQ assess-
ment and research. Although some scholars have used the RSEI model to assess the EEQ in
China, most of the previous studies have focused on the analysis of specific regions and
the assessment of space only for specific situations, and the applicability of the model in
China remains to be studied [12]. And the RSEI index lacks integration with the national EI
index for accuracy verification. Moreover, it exhibits limitations, such as the incomplete
coverage of evaluation criteria and the omission of dominant ecosystem service functions
in specific regions when applied to diverse geographic areas [12,13]. Consequently, there is
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an urgent need to devise a method characterized by temporal and spatial universality to
quantitatively assess EEQ across various Chinese regions.

To address these challenges, this study utilizes a combination of multi-source remote-
sensing datasets and reanalysis datasets. Considering the complex climatic and geo-
graphic environment of China, we added numerous environmental variables to obtain
EEQ data based on the original RESI model construction, and constructed the Chinese
High-Resolution Ecological Quality Dataset (CHEQ). These data sources serve as the foun-
dation for an in-depth assessment of the spatial and temporal characteristics of EEQ and
the associated influencing mechanisms in China during the period spanning 2002 to 2019,
employing residual analysis as the primary analytical tool. The specific objectives of our
research encompass three key areas: (1) to generate a comprehensive, high-precision, long
time-series dataset documenting EEQ in China, spanning the past two decades, and to
elucidate the spatial and temporal patterns characterizing China’s EEQ during this period;
(2) to investigate the respective contributions of human activities and climate change to
fluctuations in China’s EEQ over the past 18 years; and (3) to forecast the anticipated trends
and spatial distribution patterns of China’s EEQ in the future.

This study introduces two principal innovations. First, it presents a high-precision,
gridded ecological quality assessment model for China, verified using data from over
2000 ground stations. This model has led to the creation of China’s inaugural high-
resolution, high-precision long-term ecological quality dataset, offering invaluable scientific
data support for scholarly research. Second, our study is the first to investigate the spa-
tial and temporal variations in China’s ecological quality and their underlying drivers,
employing traditional methods as a foundation while utilizing the high-precision dataset.

2. Data

Data Sources

The data used in this study include Chinese administrative division data; MOD13A2
Normalized Vegetation Index data (NDVI); MOD17A3 Net Primary Productivity (NPP)
of vegetation; data on climatic elements: precipitation (PRE), actual evapotranspiration
(AET), potential evapotranspiration (PET), solar radiation (SRAD), atmospheric pressure
(VAP), saturated water vapor pressure difference (VPD), wind speed (VS), surface runoff
(RO), drought index (DI), soil moisture (SOIL), drought index (PDSI), water deficit (DEF),
surface temperature (TEMP), maximum temperature (TMMN), and minimum temperature
(TMMX) [14–16]. These climate data come from the Terraclimate dataset. A detailed
description of the data used in this study is shown in Table 1.

Table 1. Detailed description of data.

Data Name Time Period Date Type
Spatial

Resolution
Time Scale Data Sources

Ecological Restoration Project
Boundary Data / shp / / NTPDC a

EI 2018 / / Annual MEE ab

MOD13A2 2002–2019 HDF 1000 m Annual NASA c

MOD17A3 2002–2019 HDF 1000 m Annual NASA c

MOD09A1 2002–2019 HDF 1000 m Annual NASA c

MCD12Q1 2002–2019 HDF 1000 m Annual NASA c

TerraClimate 2002–2019 Necdef 4600 m Monthly GEE d

Note: a. National Tibet Data Center (https://data.tpdc.ac.cn/home (accessed on 2 May 2023)). b. MEE: Ministry
of Ecology and Environment of the People’s Republic of China (https://www.mee.gov.cn/ (accessed on 2 May
2023)). c. NASA: National Aeronautics and Space Administration (https://www.nasa.gov/ (accessed on 2 May
2023)). d. GEE: Google Earth Engine: (https://earthengine.google.com/ (accessed on 2 May 2023)).
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In this study, the relevant data from 2002–2019 were selected and processed as follows:
data cropping, scale conversion, standardization of indicators, synthesis of annual data
by monthly mean temperature, and setting all data to the same spatial resolution and
coordinate system.

3. Methods

Figure 1 shows the workflow of this study, including the distribution map of EEQ in
China from 2002–2019, and the contribution analysis of EEQ (natural factors and human
activities). The specific steps are as follows: (1) Obtain basic data through multi-source
remote-sensing technology, extract, crop, synthesize, resample, standardize, and perform
principal component analysis (PCA) and other preprocessing to obtain the specific situ-
ation of China’s EEQ from 2002 to 2019, and then obtain the observed overall trend of
China’s EEQ; (2) Based on the climate dataset and observed EEQ values, perform multiple
linear regression and residual trend analysis to obtain residual and simulated EEQ values;
(3) Obtain China’s residual and simulated EEQ trend changes through Theil–Sen median;
(4) Based on regression models and climate data calculations, the contribution degree of
climatic factors (CC) is obtained, and the difference between the observed EEQ and the
predicted EEQ is used to represent the contribution degree of human activities (HA).

Figure 1. Research method flowchart. The methodological process consists of two parts, i.e., EEQ
mapping, as well as EEQ driver analysis.
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3.1. Estimation of EEQ

The building of an ecological civilization is inextricably linked to the optimization of
habitat quality and the maintenance of biodiversity. Habitat quality indicates the ability of
an ecosystem to provide sustained survival for species or groups of species.

In this study, we developed a new EEQ evaluation model based on the RSEI model
proposed by Xu et al. [12] and generated high-resolution EEQ data in China. And we
assessed the applicability of RSEI and CHEQ. Compared to the RSEI index, we additionally
introduced the AI index in the calculation of CHEQ, which is derived from the “Technical
Criterion for Ecosystem Status Evaluation”.

EEQ =
PC1 − PC1min

PC1 − PC1max
(1)

PC1 = PCA(NDVI, NDBSI, LST, WET, AI) (2)

This study utilized PCA. PCA is a commonly used data analysis method: PCA can
be used to extract the main feature components of the data and is often used for dimen-
sionality reduction of high-dimensional data. This is a commonly used information system
data-processing method that can extract the most representative principal components from
multiple variables, thereby simplifying the data analysis process and improving the inter-
pretation ability of the data. Based on the results of PCA, the variation patterns and potential
factors of the data can be explained for data interpretation and application. where PC1 is the
first principal component, PC1min is the minimum value of PC1, PC1max is the maximum
value of PC1, NDVI is the Normalized Vegetation Index data, NDBSI is the Normalized
Difference Built-Up Index, LST is the land surface temperature, WET is the humidity, and
AI is the abundance index. NDVI and LST are MOD13A2 and MOD11A1 products, respec-
tively, and both NDBSI and WET are calculated based on the MOD09A1. For the formulae
of NDBSI and WET, please refer to https://www.indexdatabase.de/ (accessed on 2 May
2023). For the calculation process of AI index, please refer to https://www.mee.gov.cn/
(accessed on 2 May 2023).

3.2. Theil–Sen Median Trend Analysis

In this investigation, we primarily employed the Theil–Sen median (TSM) trend analy-
sis method [12], a robust non-parametric statistical approach extensively applied for trend
assessment. Particularly well-suited for determining the median trend within datasets,
TSM minimizes the impact of outliers while simultaneously offering high computational
efficiency. It finds frequent application in trend analyses concerning lengthy time-series
data [17–19]. The outcomes derived through the TSM technique contribute significantly to
delineating the temporal trajectory of EEQ within the time series.

Slope = Median
(CHEQj − CHEQi

j − i

)
, 2002 ≤ i < j ≤ 2019 (3)

where slope, in this context, signifies the directional course of EEQ across time. Here,
CHEQj and CHEQi denote the CHEQ values for years j and i, respectively. When the slope
value is less than 0, it signifies a diminishing trend in EEQ over the designated time span.
This conveys a state of decline or deterioration in EEQ during this interval. Conversely, a
positive slope value greater than 0 indicates an upswing in ecosystem quality throughout
the specified period. This suggests an enhancement or elevation in ecosystem quality over
the same interval.

3.3. Mann–Kendall Model

The Mann–Kendall test, a rank-based nonparametric examination, is adept at scruti-
nizing both linear and nonlinear trends within datasets [20,21]. In the context of this study,
the Mann–Kendall test served as a tool to ascertain the significance of trends in CHEQ. The
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resultant statistical values, denoted as S and ZSlope, were calculated utilizing the following
formulae:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
CHEQj − CHEQi

)
(4)

sgn
(
Xj − Xi

)⎧⎨⎩
1, CHEQj − CHEQi > 0
0, CHEQj − CHEQi = 0
−1, CHEQj − CHEQi < 0

(5)

Var(S) =
n(n − 1)(2n + 5)

18
(6)

ZSlope =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(7)

where CHEQi signifies the CHEQ values corresponding to years j and i within the time se-
ries. The symbol “n” designates the length of this series, which, in this case, is 19 years. The
test statistic ZSlope is constrained within the range of (−∞, +∞). At a specified significance
level α, the alterations within the time series attain significance if |ZSlope| surpasses Z1−α/2.
For this study, a significance level of α = 0.05 is selected. Consequently, it is determined
that, if ZSlope exceeds 1.96 (Z1−0.05/2), namely, ZSlope > 1.96, a discernible trend in China’s
CHEQ within the 2002–2019 timeframe can be confidently deemed significant at the 0.05
confidence level.

3.4. Multiple Regression Residual Analysis

The central objective of this study is to holistically evaluate the collective ramifications
of diverse climate shifts on ecosystems, while concurrently dissecting the proportional
influence attributed to human interventions. Prior investigations have predominantly cen-
tered on modeling the ecological repercussions of climate change employing precipitation
and temperature data [22–24]. Nonetheless, the real-world impact on ecosystems stems
from an amalgamation of factors, encompassing saturated water vapor pressure, soil mois-
ture, actual evapotranspiration, and other climatic elements. To address this complexity,
the present study adopts a multiple regression residuals approach for a comprehensive
quantitative examination of the mutual contributions posed by climatic factors and human
activities towards shifts in ecosystem quality. The ensuing sequence delineates the specific
procedural framework:

1. A multivariate linear regression model was constructed to establish the interrelation
between climate factor indicators and CHEQ, utilizing CHEQ as the dependent
variable. This model encompassed diverse factors—TEMP, PRE, AET, PET, DEF,
RO, PDSI, VAP, VPD, SRAD, VS, and SOIL—as independent variables. Through
this approach, the regression link between climate factor indicators and CHEQ was
established.

2. By integrating the regression model coefficients with climate data, the anticipated
CHEQ value (denoted as CHEQCC: CHEQ influenced solely by climate change) was
computed.

3. To distinctly delineate the CHEQ impact attributable solely to human activities, the
disparity between the observed CHEQ value and the projected CHEQ value was
computed as the CHEQ residual (designated as CHEQHA).

The corresponding formula is provided below:

CHEQCC = ∑n
i=1 aixi + b (8)
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CHEQHA = CHEQobs − CHEQCC (9)

where CHEQCC denotes the forecasted value of CHEQ as determined by the regression
model, where xi represents the climate factor, and ai and b stand as parameters within the
regression model equation. The disparities between the observed value CHEQobs and the
projected value CHEQCC are referred to as CHEQHA residuals.

3.5. Analysis of the Determination of the Drivers of CHEQ Changes

This study endeavors to discern the primary influencers steering alterations in China’s
CHEQ. This endeavor encompasses computing the contributions attributed to climatic
factors and human activities regarding CHEQ adjustments, as detailed in Table 2 [25]. The
precise calculation procedure is elucidated within the confines of Table 2, with the respective
terminologies illustrated as follows: “CC” signifies climate factors, “HA” signifies human
activities, “Slope(CHEQobs)” represents the observed CHEQ trend, “Slope(CHEQCC)” sig-
nifies the trend of CHEQ predictions (reflecting changes under the sway of climate factors),
and “Slope(CHEQHA)” signifies the trend of CHEQ residuals (pertaining to changes influ-
enced by human activities) [26,27].

Table 2. Criteria for determining the drivers of CHEO change and calculation of contribution rate.

Trend (CHEQobs)
Driving
Factors

Classification Criteria for Driving Factors Contribution Rate of Driving Factors/%
Trend (CHEQCC) Trend (CHEQHA) Climatic Factors Human Activities

Greater than 0
CC&HA >0 >0 Slope(CHEQCC)

Slope(CHEQobs)
Slope(CHEQHA)
Slope(CHEQobs)

CC >0 <0 100 0
HA <0 >0 0 100

Less than 0
CC&HA >0 <0 Slope(CHEQCC)

Slope(CHEQobs)
Slope(CHEQHA)
Slope(CHEQobs)

CC >0 >0 100 0
HA <0 <0 0 100

3.6. Hurst Index

The anticipation of China’s future CHEQ evolution holds paramount importance for
guiding forthcoming ERPs [28]. The Hurst index, widely employed across disciplines such
as climatology and ecology, serves as a tool to assess the sustained patterns within extensive
time-series data [29,30]. The advantages of the Hurst index lie in its self-similarity and
long-term dependence attributes exhibited within measurement index time series. In this
study, we adopt the R/S analysis of the Hurst index to evaluate the persistency of China’s
CHEQ data across an extensive time span, subsequently employing this information to
prognosticate future CHEQ shifts based on the trends observed between 2002 and 2019.

The Hurst index (H) manifests in three primary forms: (1) 0.5 < H < 1, indicating a
continuous sequence within the time series. A proximity to 1 signifies enhanced continuity,
implying that future changes align with past trends; (2) H = 0.5, denoting a stochastic
sequence in CHEQ’s time series, thereby suggesting a lack of long-term correlation; and
(3) 0 < H < 0.5, reflecting inverse persistence within the time series. This inversely persistent
state implies a future trend contrary to past patterns. Greater proximity to 0 amplifies the
strength of this inverse persistence.

4. Results and Analysis

4.1. Accuracy Verification of EEQ

In this investigation, we employ the 2018 county-level eco-index data, as provided by
the Ministry of Ecology and Environment of China, to assess the validity and precision
of the grid-scale CHEQ data generated within the confines of this research. As illustrated
in Figure 2, a comparative analysis of accuracy between the CHEQ and RSEI models is
conducted across six distinct regions in China. Upon careful examination of the figure, it
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becomes evident that the CHEQ model exhibits a notably superior degree of conformity
when contrasted with the conventional RSEI model across various regions. It is worth
noting, however, that the CHEQ model does exhibit a higher root mean square error (RMSE)
compared to RSEI, with the exception of the eastern region, as well as the central and
southern regions. In summary, the CEHQ model, as introduced in this study, demonstrates
an enhanced level of generalizability when compared to existing approaches.

Figure 2. Comparison of the accuracy of CHEQ and RSEI models for six regions in China. China
partition data from the Resources, Environment, Science and Data Centre. (a): Northeast China;
(b): North China; (c): East China; (d): Northwest China; (e): Southwest China; (f): Central South
China. (https://www.resdc.cn/Default.aspx (accessed on 2 May 2023)).

Furthermore, we utilized the MCD12Q1 land use data to contrast the longitudinal
variations of CHEQ and RSEI across distinct land use and vegetation types. As illustrated
in Figure 3, notable disparities emerge in the mean values of RSEI and CHEQ across
various land use categories. Specifically, RSEI exhibits higher mean values in bare soil
and built-up areas, while CHEQ displays a more consistent and gradual decline in built-
up areas. Conversely, in natural areas encompassing both vegetation and water bodies,
CHEQ demonstrates higher mean values compared to RSEI. These observations collectively
suggest that CHEQ excels in characterizing EEQ across diverse land cover types. Of
paramount significance, it is noteworthy that the standard deviation of CHEQ consistently
registers lower values than that of RSEI across all land classes. This disparity signifies that
CHEQ maintains superior stability and continuity when assessed on a time-series scale. In
summation, CHEQ emerges as the more apt choice for applications in large-scale ecological
and environmental studies in China when compared to RSEI.
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Figure 3. Characteristics of long time-series variation of CHEQ and RSEI under different land use
types and vegetation types. The box plot represents the mean and standard deviation of CHEQ and
RSEI over multiple years.

4.2. Characteristics of Spatial and Temporal Changes in the EEQ

In general, the trend in EEQ change across China during the period from 2002 to 2019
remains relatively stable, as depicted in Figure 4. To further elucidate the distribution of
these EEQ trends during the same timeframe, Figure 5 offers a comprehensive breakdown.
Figure 6 shows the trend of EEQ distribution in China from 2002–2019. Figure 5a illustrates
the spatial distribution of observed EEQ trends, Figure 5b portrays the spatial distribution
of EEQ trends as derived from climate indicator simulations, and Figure 5c delineates the
trends in residual EEQ, representing the impact of human activities exclusively.
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Figure 4. Temporal trends in EEQ in China during 2001–2019.

Figure 5. Trend distribution of EEQ in China from 2002 to 2019. (a) Spatial change trend map of
original CHEQ. (b) Map of spatial trends in CHEQ under the influence of climate change. (c) Map of
spatial trends in CHEQ under the influence of human activities.

As illustrated in Figure 5a, a pronounced spatial heterogeneity characterizes the trends
in EEQ change across China during the period spanning from 2002 to 2019. Broadly, the
majority of regions within China have exhibited improvements in their EEQ over the past
18 years, a trend in line with the findings of Liao [31]. Noteworthy upward EEQ trends
are discernible in Northeast China, the northern portions of North China, Central China,
the central regions of East China, South China, as well as rapid growth trends in the Loess
Plateau, Sichuan, Qinghai, Gansu, and the middle and lower reaches of the Yangtze River.
These patterns are closely linked to a series of ERPs and environmental protection strategies
carried out in China in recent years [9]. The Loess Plateau stands as a prominent ecological
restoration area in China, grappling with severe soil erosion and degradation resulting from
decades of excessive cultivation and unsustainable human activities [32]. To ameliorate the
local ecological environment, China initiated extensive ERPs, such as converting farmland
back into forests and grasslands, and implementing water conservation measures aimed at
mitigating soil erosion through vegetation restoration and land preservation. These efforts
have notably enhanced the quality of the local ecological environment [33]. In another
example, the construction of eco-friendly infrastructures, including wetland restoration,
the rehabilitation of natural habitats, and riverbank stabilization, has been implemented
in the middle and lower reaches of the Yangtze River in the past decade. These measures
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have contributed to improved local water quality and ecosystems, providing the necessary
conditions for enhancing local EEQ [34]. Meanwhile, over the last 18 years, China has
witnessed a significant decline in EEQ in certain regions, including the Yangtze River
Delta, Hunan, Jiangxi, the Junggar Basin in Xinjiang, the eastern and western parts of
Inner Mongolia, and parts of southern Tibet. The acceleration of industrialization in
China, accompanied by expanding urban areas, has resulted in substantial emissions of
industrial and urban pollutants, exacerbating ecological and environmental challenges [35].
Furthermore, the Yangtze River Delta, as the central hub of China’s economic development,
has adversely affected local vegetation through the extensive use of impermeable surface
materials during urbanization and construction processes [36]. Conversely, the central and
western regions of China, situated inland and distant from the ocean, grapple with low
precipitation levels and densely populated localized areas [37]. Consequently, issues such as
water scarcity and pollution are prevalent, contributing to localized ecosystem imbalances.

Figure 6. Accuracy assessment of simulated CHEQ during 2002–2019. The color mapping in the
figure maps values from 0–1.

The spatial distribution of the simulated EEQ trend is illustrated in Figure 5b. Remark-
ably, the spatial distribution pattern of both observed and simulated EEQ values in China
from 2002 to 2019 closely aligns. This alignment implies that climate change and natural
factors have predominantly governed the enhancement of EEQ in China over the past
18 years [13]. Conversely, EEQ changes attributable to human activities exhibit a markedly
distinct distribution pattern during the period from 2002 to 2019, as depicted in Figure 5c.
The regions demonstrating increased EEQ are primarily situated in the Loess Plateau,
Northeast China, Central China, and South China. Northeast China has implemented an
array of ERPs, including the establishment of the Three-North Protective Forest System, the
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Natural Forest Resource Protection Project, and initiatives focused on wetland preservation
and restoration. Concurrently, they have undertaken an extensive policy of converting
farmland into forests and grasslands. These efforts have revitalized vegetation cover, im-
proved local soil quality, effectively mitigated land degradation, and, thereby, elevated
local EEQ [22]. In the central and southern regions, collaborative inter-regional efforts have
been initiated. This includes the implementation of projects such as the Protection Forest
System in the Yangtze River Basin (Phase II and Phase III), the Protection Forest System in
the Pearl River Basin, and the Comprehensive Management of Karst Rocky Desertification
in Southwest China. These initiatives have effectively safeguarded local flora and natural
ecological environments, reducing the impacts of industrial and agricultural discharges on
local EEQ [7]. Moreover, the central region, in tandem with economic development, has
embarked on soil and water conservation and river management projects to mitigate the
adverse effects of land degradation and water scarcity on EEQ [38].

4.3. Contribution of Human Activities and Natural Factors

To assess the scientific robustness and applicability of the residual trend analysis
model developed in this investigation, we conducted a validation exercise to gauge the
accuracy of the simulated EEQ values. As evident from Figure 6, both R2 and the slope
closely approach the value of 1, indicative of the model’s effectiveness in capturing the
influence of climatic elements on EEQ [26]. Consequently, the TSS-RESTREND model
employed in this research is substantiated, scientifically sound, and universally applicable.
This model serves as a valuable tool for scrutinizing the driving forces behind the temporal
variations in EEQ across China.

The contributions of climatic factors and human activities to the changes in EEQ in
China between 2002 and 2019 are depicted in Figure 7. In this context, “CC” signifies the
influence of climatic factors alone, “HA” represents the influence of human activities alone,
and “HA&CC” denotes the combined influence of climatic factors and human activities.

Figure 7. Trend distribution of natural factors and human activities on EEQ changes in China during
2002–2019.
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As delineated in Figure 7, approximately 78.25% (750.60 × 104 km2) of the EEQ alter-
ations in China over the past 18 years can be attributed to the joint influence of HA&CC.
Among these changes, HA&CC synergistically promoted 29.26% (280.41 × 104 km2) of the
area, primarily concentrated in the Yunnan–Guizhou Plateau, Loess Plateau, and the north-
eastern, central, eastern, and southern regions of China. The Loess Plateau and Yungui
Plateau, characterized by intricate topography and diverse climates, have witnessed the
implementation of extensive soil and water conservation measures, including terracing,
row-break planting, and protective forest construction. These efforts have substantially
improved the local ecological environment and, in turn, the quality of EEQ [39]. Similarly,
several nature reserves and scenic areas have been established in Northeast, Central, East,
and South China to mitigate the disruption of the natural environment by human activities.
Furthermore, a series of ecological restoration strategies have been undertaken to safeguard
and sustain ecosystem stability [7,40]. Moreover, with the progression of urbanization,
these regions have begun to recognize the vital role of the ecological environment in ur-
ban development. Consequently, they have introduced ecological protection policies that
encompass restricting industrial pollutant emissions, intensifying urban greening and
ecological development, promoting the utilization of energy-efficient and low-emission
clean energy sources, and deploying intelligent detection equipment and pollution control
technologies. These measures have notably contributed to enhancing local EEQ [41]. Con-
versely, the area jointly influenced by HA&CC and experiencing suppression encompasses
48.99% (470.07 × 104 km2) of the total area, mainly situated in the northern regions of
the Inner Mongolia Plateau, Tarim Basin, and Sichuan Basin within China. These areas
contend with severe natural climatic conditions, including drought and rising temperatures,
which exacerbate grassland degradation. Additionally, water scarcity, over-exploitation,
and irrational resource allocation have contributed to environmental challenges in these
regions. Human activities have further compounded these issues, with overgrazing leading
to excessive land use and grassland degradation, impairing vegetation growth and recovery.
Frequent construction projects have disrupted land integrity, further unsettling the local
ecological balance [12].

The EEQ change area influenced solely by climatic factors accounts for 17.79%
(170.55 × 104 km2) of the total, with these areas generally characterized by lower population
densities and, thus, fewer human activities. Among them, 7.26% (69.65 × 104 km2) of the
area is predominantly found in the Shanxi, Shaanxi, and Qinghai regions. These areas enjoy
ample sunshine, a variety of suitable land types for diverse plant categories, four distinct
seasons, and moderate rainfall, all contributing to the water requirements of vegetation [42].
In contrast, the area experiencing inhibition amounts to 10.53% (100.90 × 104 km2) and is
primarily distributed along the Tibetan Himalayan border and in the Xinjiang Altay region.
These regions grapple with harsh climates, aridity, soil fragility, stoniness, and nutrient
deficiencies, rendering plant establishment difficult. Rapid water evaporation compounds
these challenges, further hindering local vegetation growth [43].

Finally, EEQ alterations driven solely by human activities encompass 3.96%
(38.02× 104 km2) of the total area. Within this subset, 1.73% (16.6 × 104 km2) is facil-
itated by human activities, while 2.23% (21.42 × 104 km2) is inhibited. On the whole,
climatic factors and human activities together have significantly shaped EEQ changes
across the majority of China, with climatic factors exerting a more substantial influence on
EEQ compared to human activities.

The contributions of climatic factors and human activities to the changes in EEQ
across China from 2002 to 2019 are illustrated in Figure 8. Specifically, Figure 8a portrays
the spatial distribution map of the influence of climatic factors on EEQ evolution, while
Figure 8b delineates the spatial distribution map of the impact of human activities on EEQ
evolution. As discernible in the figures, climatic factors emerge as the principal drivers of
EEQ alterations across the majority of China. Regions where climatic factors account for
nearly 100% of the influence are predominantly concentrated in the northern part of Inner
Mongolia, the Loess Plateau, and Tibet. These areas exhibit lower population densities and

85



Land 2024, 13, 110

reduced human activity, yet they benefit from favorable climates and ample precipitation,
providing conducive conditions for local plant growth and ecosystem rehabilitation [39–44].
In contrast, the impact of human activities on EEQ changes in China is relatively modest,
echoing the findings in Figure 8. The regions with more pronounced contributions from
human activities to EEQ are primarily situated in central China, the northern Sichuan Basin,
and the Junggar Basin. These areas are closely linked to a succession of ERPs initiated across
China, including the Natural Forest Resources Protection Project and the construction of the
Three-North Protective Forest System [45]. Additionally, these regions have progressively
adopted advanced agricultural technologies such as intelligent agricultural machinery and
drip irrigation, further supporting ecological development [46]. Overall, EEQ changes
in China over the past 18 years have been jointly shaped by climatic factors and human
activities. Climatic factors have accounted for approximately 79.19% of the contribution,
whereas human activities have contributed approximately 20.81%. Notably, the influence
of climatic factors has outweighed that of human activities in driving EEQ changes.

Figure 8. Spatial distribution of the contribution of natural factors and human activities to the trend
of EEQ change in China during 2002–2019.

5. Discussion

5.1. Ecological and Environmental Benefits of ERPs

Since 1998, China has undertaken numerous ERPs (Table A1). Among them, there
are nine ecological restoration projects (ERPs) with the highest investment and the most
outstanding ecological benefits (Figure 9). These initiatives encompass a range of com-
prehensive undertakings: the Beijing–Tianjin Sand Source Comprehensive Control Project
(BTSSCP), the Three-North Protective Forest Construction Project (TNSDP), the
Sanjiangyuan Ecological Protection and Construction Project (SEPCP), the Natural Forest
Resource Protection Project (NFRPP), the Returning Ploughland to Forestry Project (RPFP),
the Returning Pasture to Grassland Project (RPGP), the Southwestern Karst Desertification
Comprehensive Treatment Project (SKRDCTP), the Yangtze River Basin Protection Forest
System (YRBPFSCP), the Pearl River Basin Protection Forest System, and several other
major projects (PRBPFSCP) [17]. Across the nation’s expanse, these ecological restoration
endeavors span all 31 provinces, collectively covering an extensive land area of approxi-
mately 924.8 × 104 km2 [2].
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Figure 9. Spatial distribution of 9 ERPs in China. (A): the Beijing–Tianjin Sand Source Comprehensive
Control Project (BTSSCP), (B): the Three-North Protective Forest Construction Project (TNSDP),
(C): the Sanjiangyuan Ecological Protection and Construction Project (SEPCP), (D): the Natural Forest
Resource Protection Project (NFRPP), (E): the Returning Ploughland to Forestry Project (RPFP),
the Returning Pasture to Grassland Project (RPGP), (F): the Southwestern Karst Desertification
Comprehensive Treatment Project (SKRDCTP), (G): the Yangtze River Basin Protection Forest System
(YRBPFSCP), (H): the Pearl River Basin Protection Forest System, (I): several other major projects
(PRBPFSCP).

Figure 10 provides a comprehensive view of the spatio-temporal dynamics of EEQ
within various ecological restoration project areas across China over the past 18 years.
The dotted line denotes the average EEQ value for all ERP areas in China. Overall, there
has been a discernible upward trend in China’s EEQ during the 2002–2019 period. No-
tably, significant EEQ improvements are observed in regions associated with SKRDCTP,
SEPCP, and PRBPFSCP. These areas are predominantly located in Hubei, Jiangxi, Guangxi,
Guangdong, and Qinghai within China. They boast high vegetation coverage, particularly
Qinghai, which has implemented a suite of ecological protection and restoration measures
in recent years. These measures encompass initiatives like returning farmland to forests
and grasslands, ecological compensation policies, soil and water conservation projects, and
the encouragement of land restoration and resource rationalization. As a result, Qinghai’s
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comprehensive vegetation cover in grasslands has reached 57.9%, encompassing 57.67%
of Qinghai Province’s area and 14.92% of China’s grassland area, directly attributable to
China’s ecological restoration endeavors [47]. Furthermore, local EEQ in Guangxi and
Guangdong, bolstered by PRBPFSCP and the SKRDCTP, has also seen remarkable en-
hancement. These regions are dedicated to restoring the water-sourcing function of the
karst areas, ensuring a stable water supply, and providing water security for local plant
growth. Additionally, they have implemented afforestation and grassland restoration initia-
tives, augmenting plant species diversity and population numbers, enhancing vegetation
coverage, and fostering a conducive growth environment for indigenous plants [48,49].
Conversely, the progress of TNSDP and RPGP has been relatively sluggish. These areas
grapple with complex climatic and ecological dynamics, with multiple ecological elements
interplaying. Moreover, their climates are characterized by aridity and low temperatures,
imposing constraints on vegetation growth due to factors like temperature and precipita-
tion. The region’s infertile soil further hampers plant growth, resulting in slow progress
in ecological recovery. Consequently, substantial improvements in the local ecological
environment in these areas may require an extended time frame and ongoing maintenance
efforts to yield noticeable effects [50].

Figure 10. Spatio-temporal dynamics of EEQ in China during 2002–2019 (Numbers 1–9 denote 9
ERPs, of which 1. BTSSCP, 2. TNSDP, 3. SEPCP, 4. NFRPP, 5. RPFP, 6. RPGP, 7. SKRDCTP, 8.
YRBPFSCP, 9. PRBPFSCP). The white dotted line represents the trend of the average annual EEQ
of the nine ecological restoration projects in the last 20 years, and the corresponding values can be
found on the upper axis.

5.2. Trends in EEQ for ERPs

Figure 11 provides insights into the extent of contribution from ERPs and the trends in
EEQ changes across various districts and counties in China spanning from 2002 to 2019.
Figure 11a delineates the number of ERPs implemented and the corresponding recovery of
EEQ in each district and county across China. The horizontal axis represents the count of
overlapping ERPs in China, while the vertical axis employs a five-tier grading system to
facilitate the visualization of EEQ recovery in these regions throughout the study period.
Examining the figure reveals a positive correlation between the number of ecological
restoration project overlaps and EEQ recovery. Areas that experienced six instances of
ERP coverage are predominantly situated within China’s Yunnan–Guizhou Plateau, while
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regions with five ERP overlaps are primarily located in the central provinces of China,
including Sichuan, Chongqing, Hubei, Henan, and others. Notably, these regions exhibit
more pronounced EEQ improvements, consistent with the findings depicted in Figure 7.
China’s Yunnan–Guizhou region is characterized by its high-altitude plateau terrain. In
recent years, the local government has actively pursued industrial restructuring efforts to
curtail the overexploitation of natural resources and mitigate pollution. Moreover, they
have initiated large-scale ERP implementations and established an ecological compensation
mechanism. These measures have contributed significantly to the notable EEQ recovery in
the region. On the other hand, the central region of China, located inland and marked by
relatively scarce water resources, has intensified water resource management. This involves
the robust construction of water conservancy projects and improved utilization of water
resources, effectively safeguarding the local ecological equilibrium and promoting EEQ
enhancements [25].

Figure 11. Degree of contribution of ERPs in China and the trend of EEQ by district and county,
2002–2019. (a): delineates the number of ERPs implemented and the corresponding recovery of EEQ
in each district and county across China; (b): illustrates the relationship between the frequency of ERP
coverage in specific districts and counties and their corresponding EEQ; (c): illustrates the temporal
trends in the geographical coverage of nine major ERPs in China spanning from 2002 to 2019, along
with the EEQ; ((c): Numbers 1–9 denote 9 ERPs, of which 1. BTSSCP, 2. TNSDP, 3. SEPCP, 4. NFRPP,
5. RPFP, 6. RPGP, 7. SKRDCTP, 8. YRBPFSCP, 9. PRBPFSCP).

Figure 11b illustrates the relationship between the frequency of ERP coverage in
specific districts and counties and their corresponding EEQ. The Y-axis represents the
number of districts covered by ERPs and the X-axis represents the number of times covered
by ERPs. The blue bars represent districts and counties with EEQ greater than 0, while
the red bars represent those with EEQ less than 0. The number of districts and counties
with an ERP coverage of 0 is the lowest (115 districts and counties with EEQ greater than
0 and 113 districts and counties with EEQ less than 0), while the number of districts and
counties with a coverage of 2 and 5 is the highest (299 and 306 districts and counties with
EEQ greater than 0 and 256 and 219 districts and counties with EEQ less than 0). These
regions are primarily situated in the central and eastern parts of China. The yellow dashed
line illustrates the proportion of China’s EEQ recovery trend exceeding 0, while the blue
dashed line represents the average EEQ value associated with China’s ERPs. It is evident
that, as the number of ecological restoration project coverages increases, both the overall

89



Land 2024, 13, 110

trend of EEQ recovery and the average value exhibit an upward trajectory. Consequently, it
can be deduced that China’s EEQ progressively improves with the ongoing advancement
of ERPs.

Figure 11c illustrates the temporal trends in the geographical coverage of nine major
ERPs in China spanning from 2002 to 2019, along with the EEQ. Notably, the reforestation
initiative on retired farmland boasts the broadest presence, encompassing a noteworthy
1205 districts and counties with an EEQ greater than 0, while 1063 districts and counties
exhibit an EEQ lower than 0. In contrast, SEPCP exhibits the most restricted geographical
span, with a mere 2 districts and 19 counties displaying an EEQ greater and lower than
0, respectively. The yellow dashed line delineates the percentage of China experiencing
an EEQ recovery trend surpassing 0, with the highest proportion evident in PRBPFSCP
and the lowest proportion observed in SEPCP and Construction Project. Concurrently,
the blue folded line traces the average EEQ value across ERPs in China. It is evident
that PRBPFSCP demonstrates a more pronounced increase, while the SEPCP exhibits a
comparatively slower rate of enhancement. Located primarily in the coastal regions of
Guangdong and Guangxi provinces in southern China, PRBPFSCP benefits from favorable
climatic conditions, essential for local vegetation restoration. Additionally, the relevant
authorities have promulgated a series of favorable policies and regulations to facilitate a
comprehensive assessment of the local climate and natural conditions. This has enabled
the determination of optimal vegetation planting types, modes, and densities through the
utilization of modern scientific and technological tools for the real-time monitoring and
analysis of protection forest distribution and growth status. Timely measures are then
implemented to contribute to the restoration of local EEQ [7,9]. Conversely, SEPCP is
predominantly situated in China’s Qinghai region, characterized by a complex ecosystem
encompassing climate, soil, vegetation, and wildlife dimensions. Frequent natural disasters
and climate fluctuations in the region further impede the recovery of local EEQ [42]. In
summary, the development of ERPs in China necessitates a scientifically grounded approach
based on the specific geographical attributes of each locality. This approach should involve
the formulation of rational policies, the prioritization of long-term sustainability, and a
commitment to achieving substantial outcomes.

5.3. China’s Future EEQ Forecast

The prediction of China’s future ecological effectiveness quotient (EEQ) development
holds paramount significance for pertinent governmental agencies tasked with formu-
lating environmental protection policies and sustainable development strategies. Such
forecasts are instrumental in steering the trajectory of future development while facilitating
a scientifically rigorous evaluation of ecological and environmental impacts. In this investi-
gation, we employ the Hurst index rescaled polarity method (R/S) to project forthcoming
EEQ changes in China, building upon the observed trends from 2002 to 2019 [29,30]. As
illustrated in Figure 12, the projected area earmarked for EEQ improvement amounts to
544.00 × 104 square kilometers, constituting 56.70% of China’s total land area. This implies
that over half of China’s territory is anticipated to witness enhanced EEQ in the future.
Concurrently, the region projected to experience EEQ deterioration encompasses approx-
imately 409.45 × 104 square kilometers, representing 42.72% of China’s landmass. The
most substantial change, spanning 311.18 × 104 square kilometers and comprising 32.43%
of China’s total land area, is primarily situated in the Loess Plateau, Tarim Basin, Inner
Mongolia Plateau, and Tibet. These regions are poised to gradually restore their ecological
quality due to the progression of ERPs. Conversely, regions expected to transition from
high to low EEQ cover an area of roughly 132.81 × 104 square kilometers, making up
13.88% of China’s total land area. These areas are primarily concentrated in the central and
eastern parts of China and may impede future EEQ development owing to the rapid pace
of urbanization.
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Figure 12. Spatial distribution of future EEQ in China.

Based on the aforementioned analysis, this paper presents the following recommenda-
tions: (1) Regions experiencing a decline in EEQ within China should consider adjusting
their development strategies. Emphasis should be placed on achieving sustainable devel-
opment by establishing a robust environmental monitoring system that enables real-time
assessment of environmental quality. Concurrently, fostering collaboration among regions
to collectively address challenges and facilitate resource sharing and environmental protec-
tion synergies is essential. (2) The ecological restoration strategy has played a pivotal role
in enhancing China’s EEQ since its inception. China should continue to implement this
strategy and institute an ecological compensation mechanism to facilitate the necessary
conditions for ecological restoration efforts. (3) The establishment of an ecological red line
is imperative in order to rigorously regulate the exploitation and overgrazing of China’s
Inner Mongolian Plateau, Loess Plateau, and Tibetan Plateau. In regions characterized by
delicate climatic and natural environments, tailored recovery strategies must be developed
to ameliorate the local ecological landscape.

5.4. Contribution of the Study

RSEI was first proposed by Xu et al. in 2013 [11], who aimed to remedy the cum-
bersome calculation process of the EI index (proposed by the Ministry of Ecology and
Environment of China) by creating a simple index that can be equivalently substituted with
the EI index. Since its introduction, the RSEI has been widely used in China and other parts
of the world to monitor the quality of ecosystems. However, we have not yet seen any
article exploring the applicability of the RSEI index in China. For this reason, with the help
of the Ministry of Ecology and Environment of China, we conducted the first evaluation
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study on the applicability of the RSEI index in China and found that the RSEI index is not
suitable for regions with poor ecological environments, which is mainly due to the lack
of indicators that can characterize regional ecosystem services in the evaluation system
of the RSEI index. Therefore, we combined the RSEI and EI indices and introduced the
land-use abundance index to create the CHEQ, a universal ecological quality index for
China, which compensates for the low applicability of the RSEI index and the cumbersome
calculation of the EI. In addition, we analyzed the drivers of spatial and temporal changes
in EEQ in China in the last two decades from the perspectives of both climate change
and human activities. Combined with the analyses in Sections 5.1–5.3, our study not only
provides reference value for the implementation of future ecological restoration projects in
China, but is also expected to provide certain valuable suggestions for scholars to carry out
research on the mechanism of the impact of ecological restoration projects on EEQ.

6. Recommendation and Conclusions

6.1. Recommendation

Concerning the prospective development of China’s EEQ, it is noteworthy that the
projected EEQ improvement encompasses 56.70% of China’s total land area. However,
there remain regions exhibiting a declining trend in EEQ. These areas are primarily sit-
uated within the Loess Plateau, Tarim Basin, Inner Mongolia Plateau, and Tibet region
of China, characterized by fragile ecosystems influenced by intricate climatic factors and
geographic conditions. Consequently, pertinent authorities should establish more scientifi-
cally informed and rational ecological planning approaches. This should be coupled with
a steadfast commitment to advance ERPs, emphasizing large-scale land conversion from
farming to afforestation and grassland rejuvenation, averting soil degradation, and striking
a harmonious balance between economic development and ecological preservation [25,39].
Furthermore, as urbanization continues to advance in China, regions of high economic
development such as the Yangtze River Delta and the Pearl River Delta may encounter
future declines in EEQ. These areas are especially vulnerable to EEQ degradation due
to high population density and the gradual expansion of urban areas. To ameliorate the
quality of the local ecological environment in these urban settings, the incorporation of
resilient green spaces, including parks, gardens, and green infrastructure, is recommended
in order to increase urban green space coverage, elevate the city’s greening ratio, and
mitigate the urban heat island effect.

6.2. Conclusions

This study focuses on unveiling the spatial and temporal characteristics of EEQ in
China, exploring its response to both climate change and human activities spanning from
2002 to 2019. Our findings reveal a substantial improvement in EEQ across most regions
of China over the past 18 years, with a particularly pronounced recovery observed in the
northeastern, Loess Plateau, and southern regions. This improvement can be attributed
to the successive launch of ERPs, including TNSDP, NFRPP, and wetland protection and
restoration initiatives. Together, climatic factors and human activities account for 78.82% of
the EEQ variation in China, significantly contributing to its overall enhancement. Notably,
climatic factors exert a greater influence, representing approximately 79.19% of the total
impact, while human activities contribute to the remaining 20.81%.

The outcomes of this research offer valuable insights into the dynamics of China’s
ecological quality and the factors influencing it. Our quantitative analysis, assessing the
respective contributions of ecological restoration efforts and climate change, furnishes
policymakers and stakeholders with actionable recommendations. The knowledge derived
from this study can effectively guide efforts to promote ecological well-being and sustain-
able development in China, as the nation navigates the delicate balance between economic
expansion and ecological preservation.
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Abbreviations

EEQ Ecological environment quality
ERPs Ecological restoration projects
HA Human activities
CC Climatic factors
CHEQ Chinese High-Resolution Ecological Quality Dataset
EI Ecological Environment Status Index
RSEI Remote Sensing Ecological Index
NDVI Normalized Vegetation Index data
NPP Net primary productivity
PRE Precipitation
AET Actual evapotranspiration
PET Potential evapotranspiration
SRAD Solar radiation
VAP Atmospheric pressure
VPD Saturated water vapor pressure difference
VS Wind speed
RO Surface runoff
DI Drought index
SOIL Soil moisture
PDSI Drought index
DEF Water deficit
TEMP Surface temperature
TMMN Maximum temperature
TMMX Minimum temperature
PCA Principal component analysis
TSM Theil–Sen median
TEMP Temperature
NDBSI Normalized Difference Built-Up Index
LST Land surface temperature
WET Humidity
AI Abundance index
H Hurst index
Root Mean Square Error RMSE
BTSSCP The Beijing–Tianjin Sand Source Comprehensive Control Project
TNSDP The Three-North Protective Forest Construction Project
SEPCP The Sanjiangyuan Ecological Protection and Construction Project
NFRPP The Natural Forest Resource Protection Project
RPFP The Returning Ploughland to Forestry Project
RPGP The Returning Pasture to Grassland Project
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SKRDCTP
The Southwestern Karst Desertification Comprehensive
Treatment Project

YRBPFSCP The Yangtze River Basin Protection Forest System

PRBPFSCP
The Pearl River Basin Protection Forest System, and several other
major projects

Appendix A

Table A1. Ecological restoration projects in China in the past two decades.

Restore Object ERPs Period Pilot Area
Investment

(Billion CNY)

Forest

Natural Forest
Protection project 1998–2010

Yunnan, Sichuan, Chongqing, Guizhou,
Hunan, Hubei, Jiangxi, Shanxi, Shannxi,

Gansu, Qinghai, Ningxia, Xinjiang,
Inner Mongolia, Jilin, Heilongjiang,

Hainan, Henan

962.02

Reclaimed
Farmland to

Forest project
1999–2021

Gansu, Inner Mongolia, Guizhou,
Shanxi, Shannxi, Hunan, Hubei,

Sichuan, Chongqing, Yunnan
4311.30

Three-North
Shelter Forest

Program
2001–2010

Xinjiang, Qinghai, Gansu, Ningxia,
Inner Mongolia, Shannxi, Shanxi, Hebei,

Liaoning, Jilin, Heilongjiang, Beijing,
Tianjin

354.12

Shelter Forest
System in the
Yangtze River

Basin

2001–2010
Jiangxi, Hubei, Hunan, Sichuan,

Guizhou, Yunnan, Shannxi, Gansu,
Qinghai

205.61

Beijing–Tianjin
Sandstorm Source

Control Project
2001–2010 Beijing, Tianjin, Hebei, Shanxi, Inner

Mongolia 558.65

Coastal Shelter
Forest System

Project
2001–2010 Liaoning, Heibei, Zhejiang, Fujian,

Guangdong, Hainan, Guangxi 39.09

Taihang
Mountain

Greening Project
2001–2010 Shanxi, Hebei, Henan, Beijing 35.97

Plain Greening
Project 2001–2010 More than 900 plains in China 12.47

Coastal Shelter
Forest Project 2006–2015 Liaoning, Heibei, Zhejiang, Fujian,

Guangdong, Hainan, Guangxi 99.84

Wetland

National Wetland
Protection Project 2005–2010 473 wetlands in China 90.04

Reclaimed
Farmland to Lake 1998–2005 Cover the whole country —

Grassland Reclaimed
Pasture to Grass 2003–2007 Xinjiang, Xizang, Inner Mongolia,

Qianghai, Gansu, Ningxia 143.00

Important ecological
functions

Ecological
Protection and
Construction of
Sanjiangyuan

Nature Reserve

2005–2010 Qinghai 75.00

National Nature
Reserve 1999–2010 Cover the whole country 4.80
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Abstract: Land-use and land-cover (LULC) change detection (CD) is a pivotal research area in remote
sensing applications, posing a significant challenge due to variations in illumination, radiation,
and image noise between bi-temporal images. Currently, deep learning solutions, particularly
convolutional neural networks (CNNs), represent the state of the art (SOTA) for CD. However,
CNN-based models require substantial amounts of annotated data, which can be both expensive
and time-consuming. Conversely, acquiring a large volume of unannotated images is relatively easy.
Recently, self-supervised contrastive learning has emerged as a promising method for learning from
unannotated images, thereby reducing the need for annotation. However, most existing methods
employ random values or ImageNet pre-trained models to initialize their encoders and lack prior
knowledge tailored to the demands of CD tasks, thus constraining the performance of CD models.
To address these challenges, we introduce a novel feature-differencing-based framework called
Barlow Twins for self-supervised pre-training and fine-tuning in CD (BTCD). The proposed approach
employs absolute feature differences to directly learn unique representations associated with regions
that have changed from unlabeled bi-temporal remote sensing images in a self-supervised manner.
Moreover, we introduce invariant prediction loss and change consistency regularization loss to
enhance image alignment between bi-temporal images in both the decision and feature space during
network training, thereby mitigating the impact of variation in radiation conditions, noise, and
imaging viewpoints. We select the improved UNet++ model for fine-tuning self-supervised pre-
training models and conduct experiments using two publicly available LULC CD datasets. The
experimental results demonstrate that our proposed approach outperforms existing SOTA methods
in terms of competitive quantitative and qualitative performance metrics.

Keywords: Barlow Twins loss function; land use/land cover change detection; pre-training;
self-supervised contrastive learning

1. Introduction

Land-use and land-cover (LULC) change detection (CD) is applied to identify surface-
related changes using bi-temporal remote sensing images, making it crucial for earth
observation. The generated information can aid in the monitoring of urban develop-
ment, natural resources, minerals, and assessments of military damage [1–4]. To date,
many theoretical models and technical methods for diverse LULC CD applications have
been proposed, including traditional algebraic comparison, change vector analysis, post-
classification comparison, object-oriented image analysis, time series image analysis, and
machine-learning-based methods [2]. Similar to other remote sensing image interpretation

Land 2024, 13, 927. https://doi.org/10.3390/land13070927 https://www.mdpi.com/journal/land97



Land 2024, 13, 927

tasks, LULC CD involves dealing with multi-scene remote sensing images that cover an
area at different times. Data sources can include both homologous and heterologous situa-
tions. Data processing involves radiometric and geometric preprocessing, CD algorithms,
threshold segmentation, and accuracy evaluation [1,2].

In recent years, the emergence of remote sensing big data and the rapid development
of artificial intelligence have led to a new academic trend in LULC CD research [5–12]. Deep
learning has revolutionized traditional methods, as it adopts an end-to-end learning mode
that directly extracts change area information from bi-temporal remote sensing images, thus
avoiding the dependence on difference images. Furthermore, the features extracted by deep
networks have strong noise robustness, making them suitable for handling bi-temporal
images from the same sensor or different sources. A representative method is the fully
convolutional Siamese network [10]. The key to its effectiveness lies in a large number of
manually labelled variation samples, which are time-consuming to collect and annotate
from bi-temporal remote sensing images and require professional domain knowledge. To
overcome this challenge, many researchers have attempted transfer learning strategies that
leverage the knowledge learned from a large-scale natural image dataset, ImageNet [13].
However, while pre-trained ImageNet models achieve better results than those trained
from scratch, they still face significant limitations due to the domain gap between natural
images and remote sensing images. To tackle these issues, the idea of utilizing a small set
of manually labelled samples or even completely unlabeled samples has gained increasing
popularity in LULC CD applications, and there are two main research directions. The
first involves the construction of massive remote sensing image datasets (such as Million
AID [14], fMoW [15], and BigEarthNet [16]), which usually come with sparsely noisy or
clean labelled data. These datasets are leveraged for supervised remote sensing pre-training
to acquire transferable image representations, which can then be tailored to downstream
LULC CD tasks with only a few labelled samples. The other main direction involves
utilizing unsupervised contrastive learning to pre-train an encoder on unlabeled massive
remote sensing image datasets (such as SeCo [17] and SSL4EO-S12 [18]) to obtain well-
initialized parameters for downstream CD tasks. As a unique form of unsupervised
learning, self-supervised contrastive learning (SSCL) trains models through self-designed
proxy tasks and sometimes produces better CD results than related supervised methods.
However, gathering remote sensing imagery data on a scale of millions is costly, and
carrying out unsupervised contrastive learning on such a dataset demands substantial GPU
computing resources.

Recently, SSCL methods have made significant improvements in the field of computer
vision, allowing for the learning of useful representations from unlabeled data [19–25]. This
approach has become increasingly popular, particularly in situations where labelling is
costly, such as in medical and satellite imaging. Self-supervised contrastive pre-training
can learn meaningful feature representations by utilizing a large amount of unlabeled
remote sensing image data. These meaningful feature representations can improve the
performance of various downstream CD tasks, which has drawn the attention of many
researchers [26,27]. Although self-supervised contrastive pre-training holds great potential,
many advanced SSCL methods are currently difficult to implement in practice. They require
a large number of data samples and computational resources for effective application, lim-
iting their practicality. For instance, while SimCLR [21] and its improved versions achieve
state-of-the-art (SOTA) performance on ImageNet classification tasks, they necessitate a
batch size of 4096. Similarly, BYOL [24] achieves cutting-edge performance through posi-
tive contrastive learning, symmetric networks, and stop-gradient methods, but demands
64 graphical processing units (GPUs). MoCo [22] tackles negative samples by introducing
momentum encoders and queue sampling strategies, yet its computation speed is hindered
by the necessity of sampling negative samples across the entire queue. SimSiam [20],
foregoing the need for negative samples, employs asymmetric network structures and
cross-gradient updates to counter trivial solutions. However, it requires more computa-
tional resources and exhibits sensitivity to hyperparameters. SwAV [23], leveraging online
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clustering, circumvents the need for negative samples via multi-view prediction encoding,
presenting advantages in high-label-cost scenarios. Nevertheless, it imposes high computa-
tional resource requirements and a relatively complex training process due to its utilization
of online clustering algorithms. In contrast to the aforementioned methods, Barlow Twin
(BT) [25] introduces innovative thinking into SSCL. Unconstrained by batch sample size
limitations and devoid of the need for negative samples, BT focuses on the embedding
itself to avoid asymmetric structural design. By computing the cross-correlation matrix
of augmented samples and utilizing a loss function to reduce redundancy, BT ensures
that the cross-correlation matrix closely approximates the identity matrix. This ensures
that different augmented versions of the same sample possess similar feature vectors and
minimize redundancy across different dimensional components, thereby enhancing the
efficiency of feature representation.

Due to the advantages of BT, we adopted it as an SSCL objective in our proposed LULC
CD framework, as it does not require large negative samples to avoid trivial solutions [25].
Here, we introduce the feature-differencing-based BT self-supervised pre-training and
fine-tuning CD (BTCD) framework in this paper. Our proposed method utilizes feature
difference to learn discriminatory representations that correspond to areas of change, which
is highly beneficial for CD tasks. In addition, we introduce the invariant prediction (IP) loss
and change consistency regularization (CCR) loss to enhance image alignment between
bi-temporal images in the decision and feature space during network training, thereby
reducing the effects of variation in radiation conditions, noise, and imaging viewpoints. In
the proposed framework, an SSCL method is used to pre-train the encoder of the improved
UNet++ model [4]. This encoder has excellent parameter initialization and can effectively
solve downstream CD tasks. The SSCL algorithm does not require CD label images. Instead,
bi-temporal images are used to construct sample pairs for comparison, and a powerful
encoder can be pre-trained for downstream CD tasks. Our contributions can be summarized
as follows:

(1) We propose a novel framework called BTCD, which consists of two cascaded stages:
self-supervised contrastive pre-training and fine-tuning. In the first stage, the algo-
rithm leverages an absolute feature difference self-supervised pre-training method
to learn task-specific change representation for CD. In the second stage, the pre-
trained encoder undergoes fine-tuning, which effectively enhances the downstream
CD network by taking advantage of favorable parameter initialization.

(2) To mitigate the impact of radiation differences, noise variation, and imaging perspec-
tive differences caused by bi-temporal images, we incorporate an IP loss and a CCR
loss into the self-supervised contrastive pre-training of the original BT loss function.
This approach improves the performance of the pre-training process.

(3) We evaluated the proposed approach on two publicly available LULC CD datasets and
demonstrated that fine-tuning using only the pre-trained encoder surpasses ImageNet
supervised pre-training methods and several recently proposed SSCL pre-training
methods without requiring additional data.

(4) We verified the effectiveness of self-supervised pre-training under insufficiently la-
belled sample data. When labelled data were insufficient, the proposed pre-training
method significantly improved CD model performance.

In the following sections, we present our proposed BTCD method and experimental
details (Section 2), present comparison results (Section 3), discuss our findings (Section 4),
and conclude our work (Section 5).

2. Materials and Methods

2.1. BTCD Framework

Figure 1 provides an overview of our proposed BTCD framework. We assume
that X1

train and X2
train are bi-temporal images of the same geographic location captured

at times t1 and t2, respectively. We pre-train a model on the unlabeled training set{
U =

(
X1

train, X2
train

)
i

}N
i=1 using a self-supervised algorithm, so that the pre-trained en-
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coder can be easily fine-tuned on the labelled training set
{

L =
(
X1

train, X2
train, Ytrain

)
i

}N
i=1.

The proposed framework consists of two distinct stages. During the SSCL stage, only
bi-temporal images X1

train and X2
train are used for training. In the subsequent CD stage, the

framework is trained using both bi-temporal images X1
train and X2

train, as well as labelled
images Ytrain from the training set. The overall framework is enhanced in two key steps:
the first CNN is trained on a pretext task, the encoder component that provides the best
features for CD is selected, and the selected encoder is utilized by the second CNN to
perform CD.

 

Figure 1. Pipeline of the proposed LULC CD Framework.

(1) Self-supervised Pre-training Stage. In this stage, we initialize our proposed self-
supervised pre-training models with the supervised ImageNet weights instead of
random initialization. An encoder Eθ is trained, where θ is a learnable parameter used
to solve a pretext task. The BTCD algorithm uses three objective functions during the
training process: BT loss, IP loss and CCR loss. Self-supervised by the hybrid loss
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function Loss of a pretext task “contrasting”, the parameters θi of the encoder Eθ for
the i-th iteration are updated as follows:

θi+1 = θi − κ
∂Loss

∂θi (1)

where κ represents the learning rate. Ultimately, we obtain a pre-training encoder EΦ with
well-initialized parameters.

(2) Fine-tuning CD Stage. In this stage, we utilize the pre-trained encoder EΦ to train
the improved UNet++ model end-to-end. The improved UNet++ model extracts
features from the given bi-temporal images X1

train and X2
train and classifies them as

either “changed” or “unchanged” to predict the change map Ŷtrain.

Ŷtrain = Dϕ(EΦ(X1
train), EΦ(X2

train)) (2)

where Dϕ represents the decoder and the CD head, and ϕ is a learnable parameter. With
parameters Φ and ϕ, the improved UNet++ model is updated as follows:

Φi+1 = Φi − κ
∂LossCD(Ŷtrain, Ytrain)

∂Φi (3)

ϕi+1 = ϕi − κ
∂LossCD(Ŷtrain, Ytrain)

∂ϕi (4)

where LossCD represents the loss function and Ytrain represents the ground truth.

2.2. BTCD Pretraining Method
2.2.1. BTCD

The primary objective of CD is to detect and identify changes in surface objects between
bi-temporal images. Therefore, the radiometric space of the bi-temporal images must be
aligned with the low-level features of the CD network. This alignment poses a significant
challenge because regions of change are highly susceptible to variation in seasons and noise.
To facilitate low-level feature alignment between bi-temporal images, we employed a self-
supervised pre-training algorithm as the baseline model utilizing the BT loss function [25].
By maximizing the cross-correlation between unchanged regions, this function implicitly
minimizes the differences between the bi-temporal images in the feature space. The BT
loss function was selected because it intersects with other competitive self-supervised
contrastive learning algorithms while requiring only a few negative samples to learn robust
representations. To strengthen the correlation between bi-temporal images, we developed
a self-supervised pre-training algorithm that uses the absolute feature difference to learn
essential representations for CD. Figure 2 provides an overview of the BTCD algorithm.

The developed BTCD algorithm takes bi-temporal images (X1, X2) as inputs and
applies color distortion and Gaussian blur transformation to obtain augmented image pairs
(X1 → X′

1, X′′
1 , X2 → X′

2, X′′
2 ) . Random clipping was excluded from preprocessing of the

training set, as areas of change are significantly smaller than unchanged areas. The BTCD
algorithm has a Siamese architecture that uses ResNet50 (excluding the final classification
layer) as a feature extractor, followed by a projector network. The input image, sized
at 256 × 256 × 3, undergoes several stages of processing through ResNet50. Initially, it
passes through multiple layers of convolution and pooling operations. Additionally, dilated
convolutions are applied to enhance the receptive field without increasing the number of
parameters significantly. The stride of 16 is then used to reduce the dimensionality of the
input image, resulting in a more compact representation. This series of operations ultimately
produces a feature vector with dimensions of 16 × 16 × 2048, effectively capturing essential
features while maintaining computational efficiency and a wide context range. Then, we
applied 2D adaptive average pooling to the feature vector and passed it to the projection
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head. The projector network comprises two linear layers, each with a hidden layer size of
512 output units. Due to high computational requirements, the output of the projection
network was modified to achieve an embedding size of 256, while the BT network had
an embedding size of 8192 [25]. The first layer of the projector was followed by a batch
normalization layer and rectified linear unit. Afterward, we applied the absolute difference
to the output embeddings to obtain the difference embeddings. We used the BT loss
function on the difference embeddings of size 1 × 256 to generate a cross-correlation matrix
of size 256 × 256. The Siamese encoder (Eθ), which has shared parameters θ, was employed
to extract the feature vectors E′

1 and E′
2 from bi-temporal images. Next, nonlinear projection

Gφ was applied to the encoded feature vectors E′
1 and E′

2 to produce the representations Z′
1

and Z′
2. Then, the absolute feature difference was applied to the projection outputs to learn

representations of changed features between input images and is described as follows:

D1 =
∣∣Z′

1 − Z′
2

∣∣ = ∣∣G(
E
(
X′

1
))− G(E(X′

2))
∣∣

D2 =
∣∣Z′′

1 − Z′′
2

∣∣ = ∣∣G(
E
(
X′′

1
))− G

(
E
(
X′′

2
))∣∣ (5)

Figure 2. Flow chart of the BTCD algorithm.

We assumed that the semantic changes between the bi-temporal image features
(X′

1, X′
2) and (X′′

1 , X′′
2 ) should remain consistent. Therefore, we constrained our model

to ensure D1 	 D2, regardless of the image enhancement method applied. To achieve
this, we applied the BT objective function (Section 2.2.2) on the difference feature rep-
resentations D1 and D2 to maximize the cross-correlation of the change features. This
encouraged the model to learn specific information about the changes that occur between
the bi-temporal images. After the self-supervised pre-training stage was complete, the
encoder (EΦ) parameters were passed on to the downstream CD task.

2.2.2. Loss Function

BT Loss. The algorithm uses the BT loss function proposed by Jure et al. [25] for self-
supervised training. However, unlike those authors, who maximized the cross-correlation
of the augmented views of the same input image to be closer to the identity matrix,
we maximized the information of the difference representations (D1, D2) between the
corresponding bitemporal images to be similar in the feature space. Afterwards, the model
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was trained in a self-supervised manner using the modified BT loss function LossBT, which
is defined as follows:

LossBT � ∑
i
(1 − Cii)

2

︸ ︷︷ ︸
invariance term

+ λ ∑
i

∑
j 
=i

C2
ij︸ ︷︷ ︸

redundancy reduction term

(6)

Cij �
∑b (D1)b,i(D2)b,j√

∑b

(
(D1)b,i

)2
√

∑b

(
(D2)b,j

)2
(7)

where λ is the trade-off constant, b indexes batch samples, i, j index the vector dimensions of
the network outputs, and C is the cross-correlation matrix calculated between the difference
representations D1 and D2.

IP Loss. When performing CD using bi-temporal imagery, we ensured that samples
with semantic similarity produced similar predictions, regardless of different radiation
conditions. To achieve IP, we enhanced the features between the augmented views (X′

1, X′′
1 )

and (X′
2, X′′

2 ) of the bi-temporal imagery. To accomplish this, we used Jensen-Shannon
divergence DJS as the objective to achieve IP [28].

DX1
JS =

1
2
× (

DKL(σ(Z′
1))

∣∣∣∣AP1 + DKL(σ(Z′′
1 ))

∣∣∣∣AP1
)
=

1
2
× (

DKL(P′
1)
∣∣∣∣AP1 + DKL(P′′

1 )
∣∣∣∣AP1

)
(8)

DX2
JS =

1
2
× (

DKL(σ(Z′
2))

∣∣∣∣AP2 + DKL(σ(Z′′
2 ))

∣∣∣∣AP2
)
=

1
2
× (

DKL(P′
2)
∣∣∣∣AP2 + DKL(P′′

2 )
∣∣∣∣AP2

)
(9)

AP1 =
P′

1 + P′′
1

2
(10)

AP2 =
P′

2 + P′′
2

2
(11)

LossIP = DX1
JS + DX2

JS (12)

where σ is the softmax function, DKL is the Kullback–Leibler divergence [29], and AP1 and
AP2 are the average probabilities belonging to the corresponding features. We utilized the
loss function LossIP during network training to compel the model to learn features that are
resilient to radiometric differences between bi-temporal images.

CCR Loss. CD is challenging because bi-temporal images can be heavily influenced
by noise, seasonal changes, and differences in imaging angles. Therefore, it is critical to
strengthen the similarity between images in the feature space, because the probability of
change between images is typically lower than the probability of no change. To strengthen
the similarity between images, we developed a CCR that preserved the semantic similarity
between the temporal image pairs in the feature space. Specifically, the network encoder
in the BTCD algorithm was coerced into producing similar activations for the bi-temporal
images, thus incorporating temporal invariance into the network model. This, in turn,
implicitly enhanced the model’s robustness to noise variation during the pre-training
stage. The BTCD network encoder generated activation maps from input images X1
that underwent augmented transformations. These activation maps are represented by
E′

1 ∈ R
b×c×h×w and E′′

1 ∈ R
b×c×h×w, where b denotes the batch size, c denotes the number

of output channels, and h and w denote the spatial dimensions. Similarly, the network
encoder generated activation maps for transformed X2 images, represented by E′

2 and E′′
2 .

To maintain temporal consistency between the input images X1 and X2 in the feature space,
we constructed a pairwise similarity matrix G′ =

〈
E′

1, E′
2
〉

between the feature maps E′
1
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and E′
2. Similarly, we construct a pairwise similarity matrix G′′ =

〈
E′′

1 , E′′
2
〉

between the
feature maps E′′

1 and E′′
2 . We defined the CCR loss function as follows:

LossCCR =
‖G′ − G′′ ‖2

F
b2 (13)

where ‖.‖F is the Frobenius norm and 〈., .〉 is the dot product [30].
Overall Loss. As shown in Figure 2, the output of the projector was utilized to

calculate the IP loss before the differences are computed, while the CCR loss was applied
to the output of the feature extractor. We developed a weighted combination of three loss
functions (BT, IP, and CCR) to derive the final network loss function:

LossTotal = LossBT + αLossIP + βLossCCR (14)

where α and β are the loss balancing weights.

2.3. CD Algorithm

We evaluated the performance of a self-supervised pre-trained model through fine-
tuning using an existing CNN-based CD algorithm. We selected the improved UNet++
model [4] due to its ability to achieve SOTA results with CD datasets. The improved
UNet++ model can capture multi-scale features using skip connections and integrate them
via feature superposition. It utilizes an encoder–decoder architecture that includes a spatial
and channel squeeze and excitation (scSE) module [31]. To train the model, the bands of
the bi-temporal images were superimposed to create a new image with twice the number
of bands, which was then fed into the improved UNet++ model. This approach has the
advantage of allowing the model to learn both low- and high-level features of the input
images, which is not possible with Siamese networks. It also simplifies the CD problem
into a semantic segmentation task.

2.4. Experimental Datasets

To assess the BTCD algorithm, we utilized two publicly available datasets, LEVIR-
CD [12] and SYSU-CD [32]. LEVIR-CD consists of 637 pairs of highly detailed very high-
resolution (0.5 m/pixel) Google Earth image patches, each measuring 1024 × 1024 pixels.
These bi-temporal images were collected from 20 distinct areas across Texas, USA, span-
ning the years 2002 to 2018. Images from different regions may have been captured at
different times, ranging from 5 to 14 years apart, and exhibit notable changes in land
use, particularly in building structures. LEVIR-CD encompasses various types of con-
structions, including villa residences, high-rise apartments, small-scale garages, and large
warehouses, with a specific focus on changes related to buildings, such as growth and
demolition [12]. To prepare for training, we randomly partitioned the images into three
non-overlapping sets: a training set of 7120 image pairs, a validation set of 1024 image pairs,
and a testing set of 2048 image pairs, all of which were further divided into patches of size
256 × 256. Examples of the LEVIR-CD dataset are shown in Figure 3. The SYSU-CD dataset
comprises 20,000 pairs of aerial images, each measuring 256 × 256 pixels, captured in
Hong Kong between 2007 and 2014, with a resolution of 0.5 m per pixel. The primary
types of changes documented in the dataset include (a) newly erected urban structures;
(b) the expansion of suburban areas; (c) preliminary groundwork prior to construction;
(d) alterations in vegetation cover; (e) widening of roads; and (f) construction activities in
marine environments [32]. We used 12,000 image pairs for training, 4000 for validation,
and 4000 for testing. Examples of the SYSU-CD dataset are shown in Figure 4.
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Figure 3. Examples of the LEVIR-CD dataset. (a) Remote sensing images at time T1. (b) Remote
sensing images at time T2. (c) Ground truth.

 

Figure 4. Examples of the SYSU-CD dataset. (a) Remote sensing images at time T1. (b) Remote
sensing images at time T2. (c) Ground truth.

2.5. Implementation Details and Evaluation Metrics

We utilized the PyTorch framework to implement the BTCD algorithm and conducted
experiments on a workstation featuring a 12th Gen Intel Core i9–12900K @ 3.19 GHz
processor, 64 GB RAM, and a NVIDIA GeForce RTX 3090 (24 GB) graphics card. To
optimize the model, we followed the BT protocol of two previous studies [25,33]. During
the SSCL stage, we trained the ResNet50 model using image pairs from the training and
validation sets without labels. We set the batch size to 40 and used the LARS optimizer
to train for 400 epochs. The initial learning rate was 0.003, which was adjusted through
multiplication with the batch size and division by 256. We incorporated a learning rate
warm-up period of 10 epochs, followed by a reduction in the learning rate by a factor of
1000 using a cosine decay schedule following Ramkumar et al. [33]. The trade-off parameter
λ of the loss function was set to λ = 5 × 10−3, and we used a weight decay parameter
value of 1.5 × 10−6. We set the hyperparameters α and β to 100 and 2000, respectively.
The sensitivity analysis results for these hyperparameters are presented in the Section 4.
Further experimental details can be found in Section 4.2.

We assessed the performance of the BTCD algorithm on downstream CD tasks through
fine-tuning. For consistency, we used ResNet50 as the feature extractor and fine-tuned with
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the SOTA UNet++ model. We applied data augmentation techniques, including random
flipping, clipping, and Gaussian blurring. We employed the AdamW optimizer with an
initial learning rate of 0.003, batch size of 30, and 150 epochs. We employed the hybrid loss
function developed in a previous study [34], which combines weighted cross-entropy and
dice loss with equal weights. In the CD stage, we also applied the cosine decay schedule.
We compared the performance of our algorithm to SOTA methods using four metrics:
precision, recall, F1 score, and intersection over union (IoU). These metrics are defined
as follows:

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

F1 =
2 × precision × recall

precision + recall
(17)

IoU =
TP

TP + FP + FN
(18)

where TP denotes true-positive values, TN denotes true-negative values, FP denotes false-
positive values, and FN denotes false-negative values.

2.6. Comparison to SOTA Approaches

We compared our proposed method for CD with several SOTA approaches, including
FC-EF [10], FC-Siam-Diff [10], FC-Siam-Conc [10], DASNet [11], STANet [12], SNUNet [34],
DSIFN [35], DSAMNet [32], SRCDNet [36], BiDateNet [37], and the latest transformer-based
methods BIT [38], ChangeFormer [39], MSTDSNet-CD [40], and Hybrid-TransCD [41].
We fine-tuned the improved UNet++ model on the LEVIR-CD and SYSU-CD datasets
using three strategies: random initialization (Rand-init), supervised ImageNet pre-training
(ImageNet-sup), and pre-training with BTCD. To evaluate the effectiveness of the proposed
pre-training method, we conducted a detailed comparative analysis with several other
self-supervised pre-training approaches, namely CMC [19], MoCo v2 [22], SimCLR [21],
and BT [25].

3. Experimental Results

3.1. Performance Comparison for the LEVIR-CD Dataset

Our method achieved the highest F1 score (91.30%) and IoU (83.81%) among all
tested methods (Table 1). Hybrid-TransCD and ChangeFormer had the second- and third-
highest F1 score (90.06% and 90.04%, respectively) and the third- and second-highest IoU
(81.92% and 82.48%, respectively). Both methods use self-attention mechanisms, which
can effectively capture global information and map it to multiple spaces using Multi-
Head, thereby enhancing the models’ expressive power. Thus, Hybrid-TransCD and
ChangeFormer achieved better CD results than CNN-based methods.

Our developed method does not employ transformer-based global self-attention mech-
anisms but instead uses the improved UNet++ model framework to address the problem
of varying change area scales. In the encoder, we used an efficient ResNet 50, while the
decoder embedded the scSE module. The dense skip connections in the improved UNet++
model effectively captured multi-scale and multi-level feature information, ensuring the
efficient utilization of fine-grained local features. This enhanced the model’s ability to
perceive change areas. This approach was more suitable for handling local variations in
images compared to the global self-attention mechanism of transformers, which may fall
short in capturing subtle local features. Furthermore, the scSE module applied attention
weighting to the spatial and channel dimensions of the feature map, highlighting important
features while suppressing irrelevant information. This module enhanced the utilization of
more useful and discriminative features, enabling the generation of more accurate feature
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maps of the change area. This demonstrates that the combination of dense skip connections
in the improved UNet++ and the scSE module can effectively improve the accuracy of CD
results. For the LEVIR-CD dataset, we found that ImageNet pre-training did not signifi-
cantly improve the accuracy of CD results compared to random initialization. By contrast,
our SSCL method, which involved BTCD, outperformed ImageNet pre-training.

Table 1. Performance comparison for the LEVIR-CD dataset.

Methods
LEVIR-CD

Precision Recall F1 IoU

FC-EF 86.91 80.17 83.40 71.53
FC-Siam-Diff 89.53 83.31 86.31 75.92

FC-Siam-Conc 91.99 76.77 83.69 71.96
DASNet 80.76 79.53 79.91 74.65
STANet 83.81 91.00 87.26 77.40
DSIFN 94.02 82.93 88.13 78.77

SNUNet 89.18 87.17 88.16 78.83
BiDateNet 85.65 89.98 87.76 78.19

BIT 89.24 89.37 89.31 80.68
ChangeFormer 92.05 88.80 90.04 82.48
MSTDSNet-CD 85.52 90.84 88.10 78.73

Hybrid-TransCD 91.45 88.72 90.06 81.92
Ours (UNet++ with Rand-init) 88.89 86.74 87.80 78.25

Ours (UNet++ with ImageNet-sup) 89.99 85.92 87.91 78.43
Ours (UNet++ with BTCD) 92.03 90.59 91.30 83.81

Developed as part of the present study. All values are percentages. Bold red text indicates highest, bold blue text
indicates second-highest, and bold black text indicates third-highest performances.

To evaluate the effectiveness of different pre-training methods, we fine-tuned down-
stream CD network (the improved UNet++) using the pre-trained models CMC, MoCo
v2, SimCLR, and BT. To ensure a fair comparison, we only used the pre-trained model
parameters to initialize the backbone part of the improved UNet++ model, i.e., the ResNet
50 encoder’s parameters. Furthermore, we compared our BTCD method with several
mainstream self-supervised pre-training methods, including random initialization, and
ImageNet pre-training. These mainstream self-supervised pre-training methods were pre-
trained using the ResNet-50 model on the ImageNet dataset and achieved good parameter
initialization. We fine-tuned the encoder part of the ResNet-50 model obtained by these
methods and used it for downstream CD tasks. Our pre-training method achieved the
highest F1 score (91.30%) and IoU (83.81%) (Table 2). MoCo v2 and BT had the second-
and third-highest F1 scores (89.19% and 89.06%, respectively) and IoU (80.49% and 80.28%,
respectively) (Table 2). Visual comparison results for the LEVIR-CD dataset are shown in
Figure 5. These scenes reflect the growth of buildings, mainly including changes from soil,
grassland, and paved ground to new building areas. Because CMC, MoCo v2, SimCLR,
and BT are all self-supervised pre-training methods based on the ImageNet dataset, they
lack prior knowledge about CD tasks, which, to some extent, limits the performance of
CD models. Considering the domain gap between ImageNet and remote sensing images,
our BTCD method directly trained on the LEVIR-CD training dataset for self-supervised
contrastive pre-training to learn representations within the domain. The results show that
this pre-training strategy is more suitable for downstream CD tasks.
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Table 2. Performance of the improved UNet++ model on the LEVIR-CD dataset using different
pre-training methods.

Methods
LEVIR-CD

Precision Recall F1 IoU

Backbone
ResNet50

Reliant on the ImageNet dataset

CMC 89.92 86.32 88.08 78.71
MoCo v2 90.32 88.09 89.19 80.49
SimCLR 89.23 88.49 88.86 79.96

BT 89.86 88.28 89.06 80.28
Not reliant on the ImageNet dataset BTCD 92.03 90.59 91.30 83.81

All values are percentages. Bold red text indicates highest, bold blue text indicates second-highest, and bold black
text indicates third-highest performances.

Figure 5. Visual comparisons of the UNet++ model applied to the LEVIR-CD dataset using different
pre-training methods. (a) Images at time T1, (b) images at time T2; (c) Ground Truth; (d) Rand-init;
(e) ImageNet-sup; (f) CMC; (g) SimCLR; (h) BT; (i) MoCo v2; and (j) BTCD. Gray: TN pixels; Green:
TP pixels; Blue: FP pixels; Red: FN pixels.

3.2. Performance Comparison for the SYSU-CD Dataset

Our method achieved the highest F1 score (81.69%) and IoU value (69.04%). MSTDSNet-
CD ranked second with an F1 score of 80.33% and an IoU of 67.13%, while Hybrid-TransCD
ranked third with an F1 score of 80.13% and an IoU of 66.84%. MSTDSNet-CD combines
a multi-scale Swin Transformer and a deep supervision network for CD tasks, while the
Hybrid-TransCD method adopts a hybrid multi-scale transformer module that simulates
the multi-scale mixed attention representations of bi-temporal images using fine-grained
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self-attention mechanisms. Both methods can enhance the models’ expressive ability, thus
achieving better CD results compared to CNN-based methods.

For the SYSU-CD dataset, the F1 score of the ImageNet pre-training method was
slightly higher than that of the random initialization method, but the difference was not
significant. Due to the significant distribution difference between the ImageNet dataset
and the SYSU-CD dataset, domain shift occurs. Therefore, training a universal model in an
unsupervised manner is more effective and robust for downstream CD tasks. Obtaining
an ImageNet pre-trained model requires millions of labelled samples for supervised learn-
ing. The results in Table 3 further demonstrate that our BTCD method achieved the best
detection performance and higher accuracy compared to other methods.

Table 3. Performance comparison for the SYSU-CD dataset.

Methods
SYSU-CD

Precision Recall F1 IoU

FC-EF 74.32 75.84 75.07 60.09
FC-Siam-Diff 89.13 61.21 72.57 56.96

FC-Siam-Conc 82.54 71.03 76.35 61.75
DASNet 68.14 70.01 69.14 60.65
STANet 70.76 85.33 77.37 63.09

DSAMNet 74.81 81.86 78.18 64.18
SRCDNet 75.54 81.06 78.20 64.21
BiDateNet 81.84 72.60 76.94 62.52

BIT 82.18 74.49 78.15 64.13
MSTDSNet-CD 79.91 80.76 80.33 67.13

Hybrid-TransCD 83.05 77.40 80.13 66.84
Ours (UNet++ with Rand-init) 80.67 75.82 78.17 64.16

Ours (UNet++ with ImageNet-sup) 80.92 77.94 79.40 65.84
Ours (UNet++ with BTCD) 85.80 77.95 81.69 69.04

Developed as part of the present study. All values are percentages. Bold red text indicates highest, bold blue text
indicates second-highest, and bold black text indicates third-highest performances.

For the SYSU-CD dataset, we fine-tuned downstream CD networks (the improved
UNet++) using the pre-trained models CMC, MoCo v2, SimCLR, and BT. Our BTCD pre-
training method achieved the highest F1 score (81.69%) and IoU (69.04%) (Table 4). MoCo
v2 method ranked second with an F1 score of 81.31% and an IoU of 68.50%, while BT
ranked third with an F1 score of 80.35%) and an IoU of 67.19%. The visual comparison
results for the SYSU-CD dataset are shown in Figure 6. These scenes depict various types
of changes, including newly constructed urban buildings, preliminary groundwork before
construction, and offshore construction activities. The CD results obtained using methods
based on random initialization, ImageNet-sup, and CMC had more omissions (columns
4–6 in Figure 6). By contrast, MoCo v2 and BTCD performed better and provided more
complete detection results. Rows 1–3 in Figure 6 demonstrate that for complex CD scenarios,
our BTCD method was better able to detect the contour information than the other tested
methods. Overall, our BTCD method had fewer errors and greater robustness than all other
tested methods, providing superior performance for CD tasks.
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Table 4. Performance of the improved UNet++ model on the SYSU-CD dataset using different
pre-training methods.

Methods
SYSU-CD

Precision Recall F1 IoU

Backbone
ResNet50

Reliant on the ImageNet dataset

CMC 83.69 76.26 79.80 66.39
MoCo v2 82.45 80.19 81.31 68.50
SimCLR 82.33 76.84 79.49 65.96

BT 82.03 78.71 80.35 67.19
Not reliant on the ImageNet dataset BTCD 85.80 77.95 81.69 69.04

All values are percentages. Bold red text indicates highest, bold blue text indicates second-highest, and bold black
text indicates third-highest performances.

Figure 6. Visual comparisons of the UNet++ model applied to the SYSU-CD dataset using different
pre-training methods. (a) Images at time T1, (b) Images at time T2; (c) ground truth; (d) Rand-init;
(e) ImageNet-sup; (f) CMC; (g) SimCLR; (h) BT; (i) MoCo v2; and (j) BTCD. Gray: TN pixels; green:
TP pixels; blue: FP pixels; red: FN pixels.

4. Discussion

4.1. Ablation Experiment

We fine-tuned the UNet++ model on the LEVIR-CD and SYSU-CD datasets through
three strategies: Rand-init, ImageNet-sup, and pretraining with BTCD. To gauge the
efficacy of our proposed pretraining method, we conducted a comprehensive comparative
analysis against several other self-supervised pretraining approaches, including CMC,
MoCo v2, SimCLR, and BT. According to the results in Table 5, our proposed pretraining
method (BTCD) yields the best performance. Compared to Rand-init, applying our BTCD
pretraining process increases the F1 score of LEVIR-CD by nearly 3.50%, and the IoU by
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approximately 5.56%; for SYSU-CD, the F1 score rises by around 3.52%, with IoU increasing
by approximately 4.88%. On the ImageNet dataset, utilizing CMC, MoCo v2, SimCLR, and
BT for self-supervised contrastive pretraining outperforms ImageNet-sup when transferred
to LEVIR-CD and SYSU-CD datasets in terms of F1 score and IoU. Specifically, on the LEVIR-
CD dataset, our proposed pretraining method surpasses the best self-supervised contrastive
pretraining method, MoCo v2, by 2.11% in performance and increases IoU by nearly 3.32%.
For the SYSU-CD dataset, our proposed pretraining method is roughly equivalent to
MoCo v2 in terms of F1 score and IoU, with slight improvement. In summary, ablation
experiments demonstrate that our proposed self-supervised contrastive pretraining method
for unlabeled images can achieve or even surpass widely used pretraining methods based
on the ImageNet dataset. Furthermore, our method mitigates the domain shift problem
caused by transferring knowledge from ImageNet weights obtained through pretraining
with datasets vastly different from CD datasets. Qualitative and quantitative comparisons
indicate that our proposed BTCD exhibits significant effectiveness and superiority for
CD tasks.

Table 5. Results of ablation experiments on LEVIR-CD and SYSU-CD datasets.

Methods Pretraining ImageNet Dataset
LEVIR-CD SYSU-CD

F1 IoU F1 IoU

Backbone
ResNet50

Rand-init × × 87.80 78.25 78.17 64.16
ImageNet-sup � � 87.91 78.43 79.40 65.84

CMC � � 88.08 78.71 79.80 66.39
MoCo v2 � � 89.19 80.49 81.31 68.50
SimCLR � � 88.86 79.96 79.49 65.96

BT � � 89.06 80.28 80.35 67.19
BTCD � × 91.30 83.81 81.69 69.04

All values are percentages. × signifies steps excluded during the training process, while �denotes their inclusion.

4.2. Hyperparameter Sensitivity Analysis

Inspired by the observation that the predictions of semantically similar remote sensing
images should be similar irrespective of different lighting conditions, to achieve invariant
prediction, we utilized the IP loss function to compel the BTCD model to learn features
unaffected by imaging lighting conditions. Additionally, in order to mitigate the impact of
lighting, noise, seasonal variations, and differences in remote sensing imaging angles on
CD results, we employed the CCR Loss function. This dual approach not only enhances the
alignment of bi-temporal images in both decision and feature spaces but also diminishes
the influence of these confounding factors on CD results. To further analyze the impact of
different loss balance hyperparameter settings on the final results, akin to the approach by
Tung and Mori [30], we determined the CD accuracy results of different hyperparameter
settings for the SYSU-CD dataset (Table 6). To evaluate the performance of the IP loss,
we kept the coefficient β of the CCR loss constant and varied the α value. Increasing
the α value had a limited impact on the downstream CD task performance of the BTCD
method (Table 6). Consequently, we fixed the α value at 100 and further analyzed the final
impact on CD task accuracy by changing the coefficient of the CCR loss, i.e., by modifying
β. Because the scale of the CCR loss is smaller compared to the BT loss and IP loss, we
increased β in increments of 1000 to balance losses on the same scale. Increasing β initially
slightly improved the performance (Table 6). When α = 100 and β = 2000, the BTCD
method achieved the highest F1 score and IoU for the SYSU-CD dataset. After further
increasing β, the effect reached saturation. Therefore, the optimal settings for α and β for
the SYSU-CD dataset were 100 and 2000, respectively. Subsequently, we also applied the
same loss function hyperparameter values to the LEVIR-CD dataset and obtained good CD
results. This suggests that the performance of the BTCD algorithm developed in the present
paper is not too sensitive to the hyperparameters of the final loss function. Furthermore,
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the parameters can be further optimized by cross-validating the validation sets of the
two CD datasets.

Table 6. Table of sensitivity analysis for different loss balance hyperparameter settings for the
SYSU-CD dataset.

Method α β F1 (%) IoU (%) Method α β F1 (%) IoU (%)

BTCD
100 0 80.28 67.06

BTCD
100 1000 79.42 65.86

500 0 79.95 66.60 100 2000 81.69 69.04
1000 0 79.68 66.23 100 3000 80.35 67.19

4.3. Efficiency under Limited Labels

Manually marking areas of change is an expensive process that requires a significant
amount of manpower and resources. Therefore, the lack of access to large-scale annotated
data remains a major challenge in using bi-temporal remote sensing images for CD. We
tested multiple proportions of training data (20%, 40%, 60%, and 100%) and attempted
various pre-training methods for the LEVIR-CD and SYSU-CD datasets. Compared to the
pre-training methods Rand-init, ImageNet-sup, CMC, MoCO v2, SimCLR, and BT, our
BTCD pre-training method performed well on both datasets, even with limited annotated
data (Figure 7). The F1 score gradually improved as the percentage of training data
increased. When using 60% of the training data, the BTCD method achieved F1 scores
of 0.8973 and 0.788 when applied to the LEVIR-CD and SYSU-CD datasets, respectively,
both of which were higher than the F1 scores of CNN-based methods using all training
data. When the percentage of training data was further reduced to 40%, BTCD achieved an
F1 score of 0.8943 when applied to the LEVIR-CD dataset, which was only slightly lower
than those achieved by ChangeFormer and Hybrid-TransCD, and an F1 score of 0.7787
when applied to the SYSU-CD dataset, which was comparable to the performance metrics
of DSAMNet, SRCDNet, and BIT. When the percentage of training data was reduced
to 20%, BTCD achieved F1 scores of 0.8486 and 0.7504 when applied to the LEVIR-CD
and SYSU-CD datasets, respectively, which were slightly higher than F1 scores of FC-EF,
FC-Siam-Diff, FC-Siam-Conc, and DASNet. We demonstrate that our developed BTCD
pre-training method can significantly improve the generalization ability and data efficiency
of downstream CD models. It is worth noting that we achieved competitive results using
only 20% of the training samples for model training. In summary, when annotated data
for CD are limited, our pre-training method can significantly enhance the robustness and
general performance of CD models.

 
(a) (b) 

Figure 7. Performance (F1-score) of different pre-training methods evaluated using the improved
UNet++ model under varying label availability. (a) LEVIR-CD. (b) SYSU-CD.
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4.4. Evaluation of Model Generalization Performance

The LULC CD mandates that models exhibit genuine generalization capabilities.
To validate the generalization performance of the proposed BTCD framework, we con-
ducted experiments on the extensive WHU Building CD (WHU-BCD) dataset [42]. This
dataset encompasses an area impacted by a 6.3-magnitude earthquake in February 2011,
which was subsequently reconstructed over the following years. Our research focuses
on Christchurch, New Zealand, a city that has seen significant new construction since
the earthquake. The dataset includes aerial images captured in April 2012, covering
20.5 km2 and featuring 12,796 buildings (16,077 buildings in the 2016 dataset within
the same area). The images have a ground sampling distance of 0.2 m/pixel. Addi-
tionally, the dataset provides reference change masks and a pair of co-registered aerial
images with a combined size of 15,354 × 32,507 × 3 pixels. The 2012 and 2016 re-
mote sensing images are depicted in Figure 8a and 8b, respectively, while the ground
truth for building changes is shown in Figure 8c. In this figure, black areas indicate
unchanged regions, and white areas denote changed building regions. We cropped the
bi-temporal images into smaller patches of 256 × 256 × 3 pixels, resizing edge patches to
256 × 256 × 3 pixels, resulting in a total of 7620 pairs of image patches.

  
(a) (b) 

  
(c) (d) 

Figure 8. The WHU-BCD dataset. (a) An old temporal image from 2012; (b) a new temporal image
from 2016; (c) ground truth; (d) the prediction CD map.

During the self-supervised pre-training stage, we utilized these 7620 pairs of unlabeled
image patches for SSCL. SSCL involves designing an instance discrimination task to identify
the most similar images to the input features within the dataset. It maximizes the similarity
between two positive instances while increasing the distance between positive and negative
instances. In the fine-tuning CD stage, the trained encoder, equipped with robust feature
representations, is transferred to the downstream CD task. We conducted experimental
analysis on the WHU-BCD dataset using the improved UNet++ model. The results were
stitched together based on the relative positions of the cropped image patches, and the
edge patches were resized back to their original size. The final experimental results on
the WHU-BCD dataset are shown in Figure 8d. We evaluated the accuracy of the results,
yielding a precision of 0.7674, a recall of 0.7771, an F1 score of 0.7722, and an IoU of 0.6289.
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Both quantitative and qualitative experimental outcomes demonstrate that the proposed
BTCD framework possesses strong generalization performance in practical applications.

Furthermore, it is noteworthy that our method was pre-trained on RGB images due
to the nature of the two public datasets employed, which only include RGB imagery.
Consequently, we had to exclude information beyond the visible light spectrum. However,
in practical scenarios, most remote sensing images encompass not only RGB bands but also
information beyond the visible light spectrum. This limitation affects the application of
our method to multispectral satellite image data such as that from Sentinel-2 and Landsat.
In future work, we plan to extend the proposed BTCD algorithm and investigate various
strategies for adapting from RGB images to multispectral images, thereby enhancing the
method’s broad applicability.

5. Conclusions

When performing LULC CD in bi-temporal remote sensing images, deep learning
models based on supervised paradigms require a large amount of annotated data. Un-
fortunately, collecting and annotating samples that contain the desired areas of change
is both time-consuming and labor-intensive. Transfer learning of pre-trained models is
an effective method that can alleviate this problem. In the present study, we developed
the BTCD framework, which is composed of a self-supervised contrastive pre-training
stage and a fine-tuning stage and can learn the inherent differential features of original
bi-temporal remote sensing images in a self-supervised manner. Our method can be eas-
ily integrated with existing SOTA CD methods. We conducted extensive analyses using
two public remote sensing CD datasets and demonstrated the superiority of BTCD over
other commonly used ImageNet pre-training and self-supervised pre-training methods.
In addition, BTCD does not require additional image data. Our proposed self-supervised
pre-training strategy is effective even when using a limited sample size of labelled data,
which is particularly valuable for CD applications for which obtaining labelled data for
changed regions is difficult and expensive. In the future, we plan to replace the original
ResNet50 encoder component of BTCD with a vision transformer to further improve the
accuracy of the CD results.
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Abstract: This study provides a detailed analysis of land use and land cover (LULC) changes at
the district level within the Delhi–Mumbai Industrial Corridor (DMIC) from 2001 to 2021. Using
the Indian Meteorological Department’s sub-divisional framework and MODIS data across seven
primary LULC classes, the analysis is instrumental in informing infrastructure planning for existing
and future smart cities and industrial clusters within the DMIC. The key findings reveal a yearly
increase of 3031.40 sq. km. per year in agricultural land, with decreases in shrubland, grassland,
and bareland of −1774.72 sq. km. per year, −1119.62 sq. km. per year, and −203.76 sq. km. per
year, respectively. On the other hand, forests grew by a modest 148.14 sq. km. per year, while
waterbodies and built-up lands saw minor increases of 55.73 sq. km. and 21.48 sq. km. per year.
Ecologically Sensitive Areas (ESAs) were evaluated for LULC changes. The smart cities of Pune and
Thane serve as excellent examples of balanced urban development and natural growth management.
However, the study also highlights the need for further research to investigate LULC impacts on
climatic variables, advocating for a regional planning approach in the DMIC.

Keywords: Delhi–Mumbai industrial corridor; land use and land cover; remote sensing; smart cities
mission; Indian Meteorological Department

1. Introduction

The Delhi–Mumbai Industrial Corridor (DMIC) stands as a testament to India’s com-
mitment to economic growth and sustainable development. It is a monumental infrastruc-
ture project, one of the country’s largest and most ambitious, to foster economic growth
and sustainable development in the region (NICDC, 2021) [1]. Spanning over 1483 km and
encompassing several states and Union Territories (UTs), this mega-regional project holds
immense potential to impact existing land use and land cover significantly (LULC), as well
as climatology in the affected areas (Jain, 2014; Jain, 2021) [2,3].

The zone of influence (ZoI) encompasses eight states and three Union Territories (UTs),
covering fourteen Indian Meteorological Department (IMD) sub-divisions, as shown in Ta-
ble 1. It also encompasses 24 smart cities under the Smart Cities Mission (SCM) program [4]
and 121 other districts. The plan for the ZoI includes investment regions (minimum
200 sq. km.) and industrial areas (minimum 100 sq. km.), integrated with road and rail for
freight transit. These investment regions and investment areas are estimated to generate
3500 sq. km. of built-up land, excluding supporting feeder roads and infrastructure.

Land 2024, 13, 957. https://doi.org/10.3390/land13070957 https://www.mdpi.com/journal/land117



Land 2024, 13, 957

Table 1. IMD sub-divisions, zone of influence, and smart cities within the DMIC.

IMD
Sub-Division/Union Territory

Total Area under
the DMIC ZoI in

Total Area
Under the

Total #
of Districts

Smart Cities 1

sq. km. DMIC ZoI in %

Chandigarh, 61,339.00 9.47% 30 Faridabad, Karnal, and
Haryana, New Delhi
and Delhi
Dadra and 622.25 0.10% 3 Diu and Silvassa 2

Nagar Haveli 2

East Madhya 3630.25 0.56% 1
Pradesh
East 156,423.75 24.15% 23 Ajmer
Rajasthan
East Uttar 285.50 0.04% 1 Agra
Pradesh
Gujarat 91,741.00 14.17% 18 Ahmedabad, Dohad,
Region Gandhinagar, Surat,

and Vadodara
Konkan and 23,403.25 3.61% 5 Thane
Goa
Madhya 66,206.00 10.22% 8 Nashik
Maharashtra
Marathwada 464.00 0.07% 1 Pune
Punjab 1293.75 0.20% 3
Saurashtra and 52,533.25 8.11% 7 Rajkot
Kachh
Uttarakhand 11,374.50 1.76% 7 Dehradun
West 17,077.75 2.64% 8
Madhya
Pradesh
West 92,522.00 14.29% 7 Jaipur, Kota, and
Rajasthan Udaipur
West Uttar 68,711.50 10.61% 23 Aligarh, Bareilly,
Pradesh Moradabad, and

Saharanpur

15 IMD sub-divisions 647,627.75 100.00% 145 24 Smart Cities
1. Smart cities under the Smart Cities Mission (https://smartcities.gov.in/cities-profiles, accessed on 1 March
2024) 2. Diu and Silvassa are smart cities in the Dadra and Nagar Haveli Union Territory, which is within the
DMIC zone of influence.

The DMIC aims to foster regional economic growth by maximizing existing capacities
and improving the investment climate by developing supportive, long-term infrastructure.
The Government of India (GoI, 2007) [5] has planned a project area with a potential zone of
influence (ZoI) of 150 to 200 km on either side of the Western Dedicated Freight Corridor
(WDFC).

The DMIC’s topographical and climatic diversity necessitates a methodological ap-
proach that transcends state or UT administrative boundaries for analysis. The IMD
sub-divisions offer a suitable framework for this purpose, providing a uniform basis for
facilitating a more accurate assessment of local ecosystems and climate changes in the
14 sub-divisions and the UT of Dadra and Nagar Haveli within the DMIC. Identifying
sub-division-specific impacts of LULC changes enables policymakers to craft policies ad-
dressing the impact of environmental dynamics and infrastructural development on the
region’s ecological and socio-economic systems.

Under the SCM in India, a city qualifies as “smart” by meeting several critical indi-
cators and criteria focused on sustainable and inclusive development. Launched in June
2015, the SCM aims to leverage technology to enhance citizens’ quality of life and economic
prospects, emphasizing sustainable environment practices such as waste management and
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energy efficiency. The integration of comprehensive urban planning, focusing on land use
and spatial planning, ensures balanced regional development. These criteria collectively
contribute to creating technologically advanced, environmentally sustainable, and socially
inclusive urban spaces. Therefore, evaluating existing smart cities within the DMIC for
baseline LULC conditions and changes is critical.

Upon its full development, experts classify the DMIC as a mega-region [6], encom-
passing mega-cities like Delhi and Mumbai (with populations exceeding 10 million) and
cities poised to become mega-cities by 2030, such as Ahmedabad, in addition to various
smaller townships and rural agricultural zones. Experts anticipate that the DMIC’s devel-
opment will catalyze substantial economic growth, urbanization, and industrialization in
the forthcoming decades.

1.1. Remote Sensing and GIS in LULC Studies

Previous studies have demonstrated the utility of remote sensing in analyzing urban
sprawl, particularly in Ajmer City, revealing key metrics and relationships essential for
environmental monitoring. These studies have used metrics to understand urban expansion
and its environmental impact (Jat et al., 2008) [7]. MODIS has significantly contributed to
environmental studies, with refinements in data collection and analysis methods enhancing
our understanding of land surface dynamics. The improvements in MODIS data provide a
clearer picture of land cover changes over time (Sulla-Menashe et al., 2019) [8]. Lal et al.
(2022) [9] highlighted the effects of LULC changes on hydro-climatic variables, noting
significant cooling impacts in major regions and variations in the atmosphere’s lower
boundary. The study emphasizes the importance of monitoring these changes for better
climate predictions.

In an urban context, Mathan and Krishnaveni (2019) [10] observed substantial urban
expansion in the Chennai Metropolitan Area, with marked decreases in green areas and
waterbodies, as seen in other global urbanization trends. Urbanization has resulted in signifi-
cant environmental changes, particularly affecting surface air temperature and contributing
to the cooling impacts observed in Chennai. The study showcases how urban expansion
modifies local climate conditions. Similarly, Sahana, Ahmed, and Sajjad (2016) [11] analyzed
the Sundarban Biosphere Reserve, finding that land cover shifts led to increased surface
temperatures, a pattern echoed by Nayak (2021) [12] in central India, where changes favored
agricultural and dense forests over small vegetation lands and open forests.

While these urban studies provide critical insights into urban expansion and its
environmental consequences, comparable studies are needed to understand similar impacts
in a rapidly developing industrial corridor such as the DMIC.

1.2. LULC Change Dynamics in India

In recent years, research has focused on land use and land cover change (LULCC)
across different regions of India, highlighting the spatio-temporal dynamics and envi-
ronmental repercussions of such transformations. Duraisamy, Bendapudi, and Jadhav
(2018) [13] investigated the semi-arid Mula Pravara river basin in Maharashtra, identifying
significant LULCC driven by factors enhancing water resource access. Garai and Narayana
(2018) [14] explored the Godavari basin’s LULC changes, highlighting significant envi-
ronmental impacts from industrial activities. The satellite data revealed how industrial
activities have altered land use and cover, leading to environmental degradation. Moulds,
Buytaert, and Mijic´ (2018) [15] developed high-resolution land use/cover maps for In-
dia from 1960 to 2010, utilizing a regional change model informed by district-level data,
marking a methodological advance in tracking LULCC.

These studies collectively paint a complex picture of LULC in India, reflecting both
natural ecosystem alterations and anthropogenic influences, with varying implications
for local and regional climates, hydrology, and biodiversity. Further, these regional stud-
ies underscore the varied drivers of LULC changes across different ecological zones in
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India. However, a gap remains in understanding these drivers within the context of
mega-infrastructure projects like the DMIC.

1.3. Focused Studies on DMIC

Previous studies on the DMIC have utilized remote sensing techniques and geospatial
analysis to evaluate impacts, emphasizing the importance of these tools for comprehensive
assessments. This review is helpful and important for monitoring regional planning and
development in the DMIC (Jain, 2014) [2]. Mukhopadhyay (2017) [6] evaluated the DMIC
as a mega-region, emphasizing the use of various tools to assess the impacts of this exten-
sive industrial corridor on regional development and environmental sustainability. The
study underscores the DMIC’s role in restructuring spatial development and accelerating
industrialization. Regional planning plays a crucial role in reducing spatial disparities, par-
ticularly in large cities where inadequate urban infrastructure often exacerbates inequalities.
Evaluation tools have highlighted these disparities, providing insights for better urban
planning and infrastructure development (Jain, 2019) [16].

Ramachandran (2019) [17] reviewed issues with intrastate corridor development,
focusing on the utilization of evaluation tools to address challenges in planning and
implementation. These tools are critical for overcoming obstacles and achieving effective
development outcomes in intrastate corridors. Williams et al. (2019) [18] analyzed the
implementation of the DMIC in Gujarat, restructuring spatial development to accelerate
urbanization and industrialization. The study details significant changes in land use
patterns, which are indicative of broader regional development strategies. The impact of
urbanization on surface air temperature has been modeled using weather research and
forecasting, which highlight the critical role of LULC changes in influencing temperature
variability (Jain, 2021) [3].

Kumar and Sharma (2018) [19] investigated land transformation due to urbanization
in the DMIC region, highlighting the rapid changes in land use driven by highway pe-
ripheral developments. The study emphasizes the need for effective land management
to mitigate adverse environmental impacts. Biswas et al. (2019) [20] examined the LULC
impact in the vicinity of industrial areas, employing spatio-temporal analysis to assess how
industrialization has accelerated urban land cover changes globally and locally. The study
provides a detailed temporal analysis of land cover changes, crucial for understanding
urbanization trends.

Despite these prior studies, research focusing on LULC changes at the district level
and implications for smart cities within the DMIC framework remains sparse.

1.4. Comparative Studies: DMIC and BRI

The DMIC in India benefits from land use research on international mega-projects
such as China’s Belt and Road Initiative (BRI). While the BRI is significantly larger and
transboundary and the DMIC is within India, both projects alter LULC in their respective
zones of influence, especially due to the expected increase in built-up land and urbanization.

Recent BRI-related studies have increasingly focused on its impacts on land use land
cover change (LULCC), trade, and ecosystem services across Central Asia, highlighting the
multifaceted consequences of large-scale infrastructure projects. Zhang et al. (2022) [21]
demonstrated that the Belt and Road Initiative (BRI) significantly influences agricultural land
use, confirming earlier findings about the increase in trade activities and economic develop-
ment driving land use changes. The study highlights the BRI’s role in reshaping agricultural
landscapes and its broader economic implications. Complementing this perspective, Zhang
et al. (2022) [22] explored the spatio-temporal dynamics of LULC in BRI regions, utilizing the
Landscape Ecological Risk Index to assess how the initiative impacts land cover and ecological
risks over time. The study provides a comprehensive analysis of ecological risks associated
with the BRI, emphasizing the need for sustainable land management.

Adding a monitoring dimension, Naboureh et al. (2020) [23] reviewed the challenges
associated with LULCC mapping in the China–Central Asia–West Asia Economic Corridor
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(a critical component of the BRI), emphasizing the need for improved methodologies to
address issues in accuracy and consistency. The study highlights the importance of accurate
mapping for effective land use planning and the development of robust environmental
policies. Chen et al. (2018) [24] examined spatio-temporal changes in cultivated land in
China, utilizing FAO statistics and GlobeLand30 data to highlight significant fluctuations
in land use over recent decades. This analysis is crucial for understanding agricultural
trends and planning for sustainable land management.

Dong et al. (2021) [25] analyzed the environmental and socioeconomic drivers of LUCC
in the China–Mongolia–Russia Economic Corridor, identifying key factors influencing land
use changes between 1992 and 2015. The study emphasizes the role of economic activities
and policy decisions in shaping land use patterns. In a parallel vein, Zuo et al. (2020) [26]
investigated the effects of land use changes on ecosystem services, quantifying significant
changes and their implications for environmental sustainability. The study highlights the
critical need to balance development and ecosystem conservation. Teo et al. (2019) [27]
characterized how several types of infrastructure development affect other components of
the Earth’s systems, including the atmosphere, hydrosphere, geosphere, and biosphere.

These BRI findings underscore the importance of monitoring and understanding
LULC changes in large infrastructure projects. Lessons from BRI studies can inform the
approach to analyzing and mitigating similar impacts within the DMIC.

1.5. Research Gap

Many LULC-based studies have been conducted in India, primarily focused on specific
regions or smaller research areas. However, a comprehensive understanding of LULC
changes across the entire DMIC, particularly concerning the impact of large-scale infrastruc-
ture development, is still lacking. As a significant economic corridor in India, it is crucial to
study the changes in land use and their ecological impacts within the DMIC.

The primary objective of this study is to provide a comprehensive analysis of the cur-
rent LULC patterns within the DMIC and to understand how these patterns have evolved
over the last two decades. Additionally, the study aims to investigate the specific changes
in LULC within the IMD sub-divisions of the DMIC to identify regional variations. Another
key objective is to compare the LULC changes in smart cities with other districts within the
DMIC, highlighting the impacts of urbanization and infrastructure development. Further-
more, the study looks at the Ecologically Sensitive Areas (ESAs) within the DMIC, thereby
providing valuable insights for sustainable land use planning and policy formulation.

Despite prior studies, as detailed above, research focusing on LULC changes at the
district level and implications for smart cities within the DMIC framework remains sparse.
This gap highlights a critical need for detailed examination, particularly in understanding
the spatio-temporal dynamics of large-scale infrastructure projects. This paper aims to
fill the research gap by analyzing the baseline conditions in LULC in the DMIC before its
significant and accelerated expansion over the next few decades. Accordingly, our study
discusses the following:

1. What are the current LULC patterns within the DMIC, and how have they changed in
the last two decades?

2. How have the IMD sub-divisions within the DMIC experienced changes in LULC?
3. How do changes in LULC in smart cities compare with other districts within the

DMIC?

This research provides a baseline reference for land use decision-makers in the DMIC
and equips them with the necessary insights to formulate effective land use development
and optimization policies. By ensuring sustainable land use development and protecting
the ecological environment, this study has the potential to significantly impact the DMIC’s
future. Further, synthesizing the spatio-temporal dynamics documented in Indian contexts
and comparative international projects like the BRI, this study contributes to understanding
the relationship between large-scale infrastructure development and land use changes.
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2. Materials and Methods

The inter-relationships between various LULC classes are complex, presenting chal-
lenges in identifying the most appropriate methods to analyze their connections over time
(Hansen, 2013) [28]. Researchers have employed machine learning (ML) models to enhance
the understanding of this relationship and the accuracy of LULC prediction. In the DMIC
region, the study utilized various machine-learning models, notably the Support Vector
Machine (SVM) (Cortes and Vapnik, 1995) [29], the Random Forest (Breiman, 2001) [30],
and the Classification and Regression Tree (Breiman, 1984) [31]. This information can
contribute to assessing the land allocation aspects of urban planning (Ouma, 2022) [32] and
determining the priorities of different policy measures in retaining the overall ecological
balance in the DMIC region.

The study employs these three advanced classification techniques to ensure the accu-
racy and reliability of the LULC classification results (Foody and Mathur, 2004; Congalton
and Green, 2008) [33,34]. During ground truthing, multiple classifiers are tested sepa-
rately to identify the most accurate individual classifier, thus improving overall prediction
accuracy (Mountrakis et al., 2011) [35].

This study employs various frameworks and concepts to enhance the accuracy and
reliability of LULC classification results. Key frameworks include using IMD sub-divisions
as analytical units, which provide a uniform basis for assessing local ecosystems and climate
changes at the district level. Integrating remote sensing and GIS techniques is central to
this study, enabling detailed spatio-temporal analysis. Figure 1 displays the methodology
flowchart, detailed in the following sections.

Figure 1. Methodology flowchart.
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2.1. Study Area

The DMIC runs adjacent to the WDFC, connecting Dadri in the National Capital
Region to Mumbai’s Jawaharlal Nehru Port, and is approximately 1483 km in length. As
shown in Figure 2, the corridor lies between 17◦13′ N and 30◦17′ N latitude and between
70◦22′ E and 79◦18′ E longitude.

Figure 2. The study area (DMIC) with the smart cities and IMD sub-divisions.

Regarding land mass, the DMIC covers an extensive region passing through states such
as Gujarat, Haryana, Madhya Pradesh, Maharashtra, Uttar Pradesh, and Rajasthan. The ZoI
of 647,627.75 sq. km. also includes portions of the UT of Daman and Diu, Dadra and Nagar
Haveli, the National Capital Territory (NCT of Delhi), and parts of Uttarakhand and Punjab
states. In terms of IMD sub-divisions under the ZoI, East Rajasthan (24.15% and 23 districts),
West Rajasthan (14.29% and 7 districts), Gujarat Region (14.17% and 18 districts), West Uttar
Pradesh (10.61% and 23 districts), and Madhya Maharashtra (10.22% and 8 districts) have
the largest shares.

The region’s topography is diverse and includes parts of the Indo-Gangetic Plain, the
Thar Desert, the Aravalli Range, and the Western Ghats. Major rivers, such as the Yamuna,
Chambal, and Sabarmati, traverse the region. Additionally, a range of Ecologically Sensitive
Areas, including national parks, wildlife sanctuaries, biosphere reserves, wetlands, rivers,
grasslands, and coastal ecosystems, are bound by the DMIC. These areas span multiple
districts and IMD sub-divisions, reflecting the region’s rich biodiversity and ecological
significance. Effective conservation strategies and sustainable development practices are
essential to protect these valuable natural resources while promoting economic growth
within the DMIC. As the DMIC extends towards the south, the elevation decreases, and the
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corridor approaches the coastline of the Arabian Sea. Coastal areas within the DMIC’s ZoI
include Mumbai and the Gulf of Khambhat in Gujarat.

2.2. Data Collection

We used Google Earth Engine (GEE) to acquire MODIS satellite imagery with a
resolution of 500 m for the 20-year “lookback period” from 2001 to 2021. Concurrently,
we sourced shapefiles delineating DMIC Buffer, District, and IMD sub-divisions through
ArcGIS digitization.

2.3. Data Analysis Methods

The study employs machine learning models, notably the Support Vector Machine
(SVM), the Random Forest (RF), and the Classification and Regression Tree (CART), to
enhance the understanding and accuracy of LULC classification. Ground truthing was
conducted using high-resolution base maps to validate the accuracy of the classifications,
with a Kappa coefficient of 0.85 as the benchmark for acceptable agreement.

2.4. Study Process/Steps
2.4.1. Data Acquisition and Integration

We combined the processed satellite data with the digitized GIS data to create an
integrated dataset, forming a comprehensive base for further analysis. GEE was used in
this study as it offers a variety of tools and algorithms for image classification, change
detection, time series analysis, and machine learning, making it an ideal platform for
conducting comprehensive studies on land use and land cover changes, land surface
temperature variations, and other environmental applications (Donchyts et al., 2016) [36].
The study used Land Cover Type 1 from the Annual International Geosphere-Biosphere
Programme (Schneider et al., 2013; IGBP, 2022) [37,38]. LULC classes, measured in square
kilometers, were derived from the MODIS data and aggregated from monthly to annual
scales (Friedl et al., 2010) [39]. The observed seventeen LULC classes were compressed into
seven classes critical for the baseline analysis (Congalton and Green, 2008) [34], as noted in
Table 2.

Table 2. IGBP classifications of land cover and reclassification.

LC # LC Description Reclassification Description

1
Evergreen Needleleaf Forests: dominated by evergreen conifer trees
(canopy > 2 m).
Tree cover > 60%.

Combined into Forests

2 Evergreen Broadleaf Forests are dominated by evergreen broadleaf and
palmate trees (canopy > 2 m). Tree cover > 60%. Combined into Forests

3 Deciduous Needleleaf Forests: dominated by deciduous needleleaf
(larch) trees (canopy > 2 m). Tree cover > 60%. Combined into Forests

4 Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees
(canopy > 2 m). Tree cover > 60%. Combined into Forests

5 Mixed Forests: dominated by neither deciduous nor evergreen (40–60%
of each) tree type (canopy > 2 m). Tree cover > 60%. Combined into Forests

6 Closed Shrublands: dominated by woody perennials (1–2 m height)
>60% cover.

Reclassified and combined into
Shrublands

7 Open Shrublands: dominated by woody perennials (1–2 m height)
10–60% cover.

Reclassified and combined into
Shrublands

8 Woody Savannas: tree cover 30–60% (canopy > 2 m). Reclassified and combined into
Grasslands/Savannas

9 Savannas: tree cover 10–30% (canopy > 2 m). Reclassified and combined into
Grasslands/Savannas

10 Grasslands: dominated by herbaceous annuals (<2 m). Reclassified and combined into
Grasslands/Savannas
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Table 2. Cont.

LC # LC Description Reclassification Description

11 Permanent Wetlands: permanently inundated lands with 30–60% water
cover and >10% vegetated cover. Combined into Waterbody

12 Croplands: at least 60% of area is cultivated cropland. Combined into Agriculture

13 Urban and Built-up Lands: at least 30% impervious surface area
including building materials, asphalt and vehicles. Renamed as Built-up Land

14 Cropland/Natural Vegetation Mosaics: mosaics of small-scale
cultivation 40–60% with natural tree, shrub, or herbaceous vegetation. Combined into Agriculture

15 Permanent Snow and Ice: at least 60% of area is covered by snow and
ice for at least 10 months of the year. No Change

16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil)
areas with less than 10% vegetation. Renamed as Bareland

17 Water Bodies: at least 60% of area is covered by permanent
waterbodies. Combined into Waterbody

The research derived seven classes from the original seventeen by combining similar
land covers, as noted in the “Reclassification Description” column. Table 3 shows the
combined LULC classes and the associated area in the DMIC ZoI.

Table 3. Combined LULC classes and area in the DMIC ZoI.

LC # LULC Class Area in sq. km. and Percent of Area (%)

1 Agriculture 514,503.25 (79.44%)
2 Bareland 10,916.5 (1.69%)
3 Built-up land (including urban) 10,949.5 (1.69%)
4 Forest 37,446.25 (5.8%)
5 Grassland 55,838.5 (8.6%)
6 Shrubland 13,892.75 (2.15%)
7 Waterbody 4081.00 (0.63%)

647,627.75 (100%)

2.4.2. Classifier Application

Three ML classifiers were applied to these seven classes to ensure the accuracy and
reliability of the LULC classification results. These classifiers include SVM, RF, and CART.
SVM is a supervised learning method for constructing optimal separating hyperplanes
in multi-dimensional space. RF is an ensemble learning method that constructs multiple
decision trees and combines their results to improve the overall prediction accuracy. CART
is a decision tree-based classifier that recursively splits the dataset into subsets based on
the most significant feature to minimize the Gini impurity.

2.4.3. Accuracy Assessment via Ground Truthing

Next, to validate the accuracy of the LULC classification, ground truthing was con-
ducted using high-resolution base maps (Congalton and Green, 2008) [34]. This process
involves comparing the classified satellite images with the reference data obtained from
the ground or other reliable sources. Researchers evaluate the classification accuracy using
measures like the Kappa coefficient (Jensen, 2005) [40], with a Kappa coefficient of 0.85 as
the benchmark for acceptable agreement. Landis and Koch (1977) [41] and Congalton and
Green (2008) [34] categorize a Kappa value above 0.80 as a high agreement and a value
between 0.40 and 0.80 as moderate to substantial agreement. In this study, the Random
Forest (RF) Kappa score of 0.88 surpassed those of SVM (0.86) and CART (0.84), leading to
the selection of RF for further analysis.
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2.5. Time-Series Trend Analysis

Using the LULC classified via RF, a time-series analysis [42] was run on the 2000–2021
period to detect trends in LULC changes. In the time-series trend analysis, we first applied
the Mann–Kendall test to determine statistically significant trends in LULC, followed
by Sen’s slope method to quantify the magnitude of these trends. The study conducted
trend analysis for LULC changes across the DMIC ZoI, its 14 IMD sub-divisions, and
145 districts, which include 24 smart cities and 121 other districts. The utilization of the
Mann–Kendall trend test and Sen’s slope estimator played a crucial role in the analysis of
climatic trends, such as in identifying and measuring alterations in surface air temperatures,
precipitation, and various ecological factors in diverse geographical areas. Notably, studies
have shown their efficacy in investigating temperature and precipitation patterns in Iraq,
uncovering statistically significant climatic fluctuations over time (Roboaa, 2015) [43].
Researchers utilized comparable approaches to assess temperature trends in Gombe State,
addressing local climatic dynamics (Alhaji, 2018) [44]. The use of the Mann–Kendall test
with innovative trend methodologies for water quality parameters in Turkey demonstrates
the versatility and relevance of these techniques in environmental investigations (Kisi,
2014) [45].

Kendall’s tau and Sen’s slope (Sen, 1968) [46] are non-parametric statistical methods
in time-series analysis, notably in environmental studies that handle non-normally dis-
tributed data or outliers. Kendall’s tau assesses the strength and direction of the monotonic
relationship between two variables. A significant p-value indicates a monotonic trend. The
tau value suggests the strength and direction of the LULC change trend—a positive value
indicates an increasing trend, and a negative value indicates a decreasing trend. The study
further employs Sen’s slope to estimate the magnitude of Kendall’s tau trend. This value,
representing the median of all slopes between pairs of time points, offers a robust estimate
of the rate of change over time. Table 4 displays a p-value and associated probabilities for
evaluating Kendall’s tau significance. For each p-value noted in the table, a symbol (+, *, **,
***) has been assigned and used throughout Section 3.

Table 4. Alpha (p-value) symbols in Kendall’s tau and associated probabilities used in the study.

Alpha (p-Value) Symbols Used in Kendall’s Tau Significance Probability

0.10 For p-value <= 0.1, the symbol used is + 90.00%
0.05 For p-value <= 0.05, the symbol used is * 95.00%
0.01 For p-value <= 0.01, the symbol used is ** 99.00%
0.001 For p-value <= 0.001, the symbol used is *** 99.90%

3. Results

3.1. Overall LULC Changes in the DMIC ZoI

Our analysis of land use and land cover changes over two decades has provided valu-
able insights into the dynamics of different land use classes. The findings in Table 5 high-
light important trends in LULC changes. Graphs for Sen’s slopes for the DMIC have been
included in Supplementary Section A (Sen’s slope graphs for the DMIC, smart cities, and
other districts). This section summarizes the results and discusses the following questions:

Table 5. LULC changes during 2001–2021 in the DMIC ZoI.

LULC Classes
Current LULC Area in
sq. km. as of 2021 (%
of Total)

Kendall’s tau (LULC
Changes during
2001–2021)

p-Value (Significance
Symbol) 1

Sen’s Slope in sq. km.
per Year Change
during 2001–2021

Agriculture 514,503.25 (79.44%) 0.676 <0.0001 (***) 3031.40
Bareland 10,916.5 (1.69) −0.667 <0.0001 (***) −203.76
Forest 10,949.5 (1.69%) 0.343 0.031 (*) 148.14
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Table 5. Cont.

LULC Classes
Current LULC Area in
sq. km. as of 2021 (%
of Total)

Kendall’s tau (LULC
Changes during
2001–2021)

p-Value (Significance
Symbol) 1

Sen’s Slope in sq. km.
per Year Change
during 2001–2021

Grassland 37,446.25 (5.8%) −0.819 <0.0001 (***) −1119.62
Shrubland 55,838.5 (8.6%) −0.505 0.001 (***) −1774.72
Built-up (including
urban) 13,892.75 (2.15%) 1.000 <0.0001 (***) 21.48

Waterbody 4081 (0.63%) 0.619 <0.0001 (***) 55.73

647,627.75 (100%)
1 For p-value <= 0.05, significance symbol = * (95% probability) and for p-value <= 0.001, significance symbol = ***
(99.9% probability).

“What are the current LULC patterns within the DMIC, and how have they changed in the
last two decades?”

3.1.1. Current LULC Patterns

In 2021, agricultural land is the largest LULC class with 514,503.25 sq. km, which is
79.44% of the total land mass of 647,627.75 sq. km. covered under the ZoI of the DMIC.
Shrubland is the next-largest LULC class at 55,838.50 sq. km. (8.6% of total DMIC ZoI).
Grassland is the third-largest LULC class with 37,446.25 sq. km. (5.78% of total DMIC ZoI).
Built-up land with 13,892.75 sq. km. (2.15% of total DMIC ZoI), forests with 10,949.5 sq. km.
(1.69% of total DMIC ZoI), and bareland with 10,916.5 sq. km. (1.69% of total DMIC ZoI) are
the next-largest classes represented in the DMIC. The waterbody is the smallest LULC class
with a total area of 4081.00 sq. km. (0.63% of total DMIC ZoI). The infrastructure developed
under the DMIC program is estimated at a minimum of 3500 sq. km.—a significant addition
of 25% over the current built-up area of 13,892.75 sq. km.

Therefore, agriculture dominates the current landscape of the DMIC. All other classes
are significantly less and limited. Therefore, any greenfield infrastructural development
must consider the paucity of natural land classes and the limited built-up land and water-
body areas.

3.1.2. Decadal Changes in LULC

Between 2001 and 2021, agriculture experienced a positive trend, with a Kendall’s tau
of 0.676***, indicating a moderate, statistically significant correlation with an increase of
3031.40 sq. km. per year in the DMIC ZoI. Built-up areas (including urban) were the only
category to demonstrate a perfect positive trend, with a Kendall’s tau of 1.0***, indicating
a strong correlation that is statistically significant with an increase of 21.48 sq. km. per
year. The waterbody exhibited a positive trend, with a Kendall’s tau of 0.619***, indicating
a moderate, statistically significant correlation with an increase of 55.73 sq. km. per year.
Forest areas exhibited a positive trend, with a Kendall’s tau of 0.343*, indicating a weak
correlation that is statistically significant with an increase of 148.14 sq. km. per year.

During this period, bareland showed a negative trend, with a Kendall’s tau of −0.667***,
indicating a moderate correlation that is statistically significant with a reduction of
−203.76 sq. km. per year. Grassland revealed a negative trend, with a Kendall’s tau
of −0.819***, indicating a strong correlation that is statistically significant with a reduction
of −1119.62 sq. km. per year. Shrubland showed a negative trend, with a Kendall’s tau of
−0.505***, indicating a moderate correlation that is statistically significant with a reduction
of −1774.72 sq. km. per year.

Notably, all observed changes except for the forest category had p-values well below
0.001, indicating highly significant trends. The considerable expansion in agricultural
land highlights the substantial impact of human intervention on land use patterns. The
statistically significant negative trend in grassland and shrubland suggests conversions to
other land uses due to agricultural expansion and increased built-up areas.
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The reduction in bareland, alongside the increase in waterbodies, may reflect changes
in land management practices, climate change impacts, or both. These shifts are essential
for understanding ecological balances, water resource management, and conservation
efforts. The strong positive correlation observed in urban built-up areas, with a statistically
significant p-value, underscores the pace of urbanization requiring careful urban planning
and policy interventions to mitigate environmental impacts.

3.1.3. Land Use Transfer Matrix

In addition to the time-series analysis, a correlation test was run to understand how
land cover types relate over time. This provides insights into land use patterns and land
cover change dynamics.

Understanding the relationships between different LULC classes is crucial for sustain-
able land management and planning. This study examines the land use transfer matrix
for various LULC classes within the DMIC to identify significant direct and inverse rela-
tionships. The LULC classes analyzed include forest, shrubland, grassland, waterbody,
agriculture, built-up, and bareland, as shown in Table 6 for the entire DMIC at a 95%
confidence level.

Table 6. Land use transfer matrix.

LULC Class Forest Shrubland Grassland Waterbody Agriculture Built-Up Bareland

Forest 1 −0.095 −0.333 0.267 0.152 0.343 −0.390
Shrubland −0.095 1 0.514 −0.619 −0.829 −0.505 0.495
Grassland −0.333 0.514 1 −0.648 −0.686 −0.819 0.581
Waterbody 0.267 −0.619 −0.648 1 0.676 0.619 −0.610
Agriculture 0.152 −0.829 −0.686 0.676 1 0.676 −0.552
Built-up 0.343 −0.505 −0.819 0.619 0.676 1 −0.667
Bareland −0.390 0.495 0.581 −0.610 −0.552 −0.667 1

The positive correlation between waterbody and agriculture (r = 0.676) indicates that
regions with significant agricultural activities also have substantial waterbodies. This
relationship highlights the importance of sustainable water management practices in
agricultural areas to ensure water availability for crop production. The positive correlation
between forests and built-up areas (r = 0.343) suggests a link between urban development
in certain regions and forest conservation or afforestation efforts, albeit a weak association.
This relationship might indicate a trend towards integrating green spaces within urban
environments, focusing on sustainable urban planning practices.

Furthermore, the positive correlation between waterbody and built-up areas (r = 0.619)
suggests that urban regions within the DMIC might be designed with waterbodies, pos-
sibly for aesthetic or recreational purposes. This trend may reflect efforts to incorporate
natural water features into urban landscapes, contributing to improved urban livability
and environmental quality. The positive correlation between grassland and bareland
(r = 0.581) suggests that regions with significant grassland areas also tend to have con-
siderable bareland. This relationship might indicate transitional zones where bareland is
gradually converted to grassland or vice versa, underscoring the dynamic nature of land
cover changes.

Conversely, the strong negative correlation between shrubland and agriculture
(r = −0.829) indicates that an increase in agricultural activities is associated with a signifi-
cant reduction in shrubland areas. This relationship underscores the pressure on shrubland
ecosystems due to the expansion of agricultural lands, which can affect biodiversity and
ecosystem services. Similarly, the strong negative correlation between grassland and built-
up areas (r = −0.819) suggests that urban expansion is often at the expense of grassland.
This highlights the competition between urban development and natural land covers,
raising concerns about the loss of grassland habitats due to urbanization.
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The negative correlation between grassland and waterbody (r = −0.648) indicates
that increases in grassland areas are associated with decreases in waterbodies. This rela-
tionship might be due to land conversion practices affecting water retention or drainage
patterns, emphasizing the need for integrated land and water management strategies. The
negative correlation between bareland and agriculture (r = −0.552) suggests that areas
with higher agricultural activities tend to have less bareland, reflecting the conversion of
bareland to cultivated fields. This relationship indicates active land use changes aimed at
increasing agricultural productivity but also points to potential land degradation issues if
not managed sustainably.

Additionally, the negative correlation between shrubland and waterbody (r = −0.619)
suggests that increased waterbodies are associated with reduced shrubland areas. This rela-
tionship could indicate the inundation of shrubland areas or changes in land use priorities
that favor water retention and management over maintaining shrubland ecosystems.

3.2. LULC Changes in the IMD Sub-Divisions

The Sen’s slope for each LULC class within various IMD sub-divisions reflects the
same general growth or decline patterns as the overall DMIC ZoI. Table 7 documents the
LULC changes at the IMD sub-division level, where Kendall’s tau shows the statistical
significance for each Sen’s slope listed. This section provides a summary of the results and
discusses the following question:

Table 7. IMD sub-divisions and Sen’s slope for LULC changes between 2001 and 2021.

Sen’s Slope for LULC Changes in sq. km. per Year 1

No.
IMD Sub-Division
2 Agriculture Bareland Forest Grassland Shrub-Land Built-Up Waterbody

1 Chandigarh,
Haryana, and Delhi 64.33 - 1.07 (34.60) (33.44) 7.50 0.08

2 East Madhya
Pradesh 4.69 (0.45) - (4.50) - - 0.29

3 East Rajasthan 599.14 (1.64) 8.46 (288.24) (317.25) 2.27 6.35
4 East Uttar Pradesh 0.29 (0.06) - (0.25) - - -
5 Gujarat Region 423.85 (7.14) 35.48 (253.98) (177.06) 3.08 15.37
6 Konkan and Goa (151.05) (0.64) 56.47 85.95 - 3.05 4.65

7 Madhya
Maharashtra 123.84 (7.04) 41.12 (172.29) (4.37) 2.19 5.71

8 Marathwada 0.14 - - (0.15) - - -
9 Punjab (0.03) - - 0.02 (0.03) - -

10 Saurashtra and
Kachh 361.18 (48.44) 8.72 (187.55) (117.66) 0.48 22.08

11 Uttarakhand (25.28) (0.06) 24.72 5.21 - 1.61 0.74

12 West Madhya
Pradesh 38.50 (0.24) 0.67 (37.36) (2.13) 0.07 0.17

13 West Rajasthan 1593.31 (137.90) (28.57) (232.98) (1122.79) 0.93 0.05
14 West Uttar Pradesh (3.29) (2.80) (3.42) 2.15 - 5.92 0.12

1 Sen’s slopes for LULC changes in sq. km. per year shown in the table are associated with p-values of lesser
than 0.1 (90% to 99.90% probability), 2 Dadra and Nagar Haveli is a Union Territory within the DMIC zone of
influence. This Union Territory was also modeled as it has two smart cities, Diu and Silvassa. The Sen’s slope for
LULC changes for Dadra and Nagar Haveli for agriculture is (1.51) sq. km. per year, for bareland is (0.15) sq. km.
per year, for grassland is 1.11 sq. km. per year, for built-up land is 0.31 sq. km. per year, and for waterbody is
0.23 sq. km. per year.

“How have the IMD sub-divisions within the DMIC experienced changes in LULC?”
Highlights for each of the IMD sub-division LULC changes are noted below:

1. Chandigarh, Haryana, and Delhi: Noteworthy is the increase in agriculture with a
Sen’s slope of 64.33 sq. km. per year. Concurrently, grassland and shrubland decreased
at a rate of −34.60 sq. km. per year and −33.44 sq. km. per year, respectively. The
area also witnessed the highest increase in built-up land at 7.50 sq. km. per year.
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2. East Madhya Pradesh: Noteworthy is the increase in agriculture, with a Sen’s slope of
4.69 sq. km. per year, and a concurrent decrease in grassland, at a rate of −4.50 sq. km.
per year.

3. East Rajasthan: This IMD sub-division witnessed the second-highest increase in agri-
culture, with a Sen’s slope of 599.15 sq. km. per year. The data show the third-highest
increase in waterbodies among all the IMD sub-divisions, at 6.35 sq. km. per year.

4. East Uttar Pradesh: There are minor increases in agriculture of 0.29 sq. km. per year,
with decreases in bareland of −0.06 sq. km. per year and grassland of −0.25 sq. km.
per year.

5. Gujarat Region: This IMD sub-division witnessed the third-highest increase in agri-
culture, with a Sen’s slope of 423.85 sq. km. per year. The study notes significant
decrease in grassland (253.98 sq. km. per year) and shrubland (−177.06 sq. km. per
year). The Gujarat Region also has the second-highest increase in waterbodies among
all the IMD sub-divisions, at 15.37 sq. km. per year.

6. Konkan and Goa: Amongst all IMD sub-divisions, Konkan and Goa exhibited the
highest increase in forest with a Sen’s slope of 56.47 sq. km. per year with the highest
decrease in agriculture at −151.05 sq. km. per year.

7. Madhya Maharashtra: Agriculture has increased by 123.84 sq. km. per year, with a
concurrent decrease in grassland of −172.49 sq. km. per year. It also witnessed the
second-highest increase in forest, with a Sen’s slope of 41.12 sq. km. per year

8. Marathwada: A minor increase in agriculture with a Sen’s slope of 0.14 sq. km. per
year was offset by a decrease of −0.15 in grassland for this IMD sub-division.

9. Punjab: There are minor increases in agriculture of 0.03 sq. km. per year, with a
concurrent decrease in shrubland of −0.03 sq. km. per year.

10. Saurashtra and Kachh: The data show a considerable increase in agriculture of
361.18 sq. km. per year and significant decreases in grassland by −187.55 sq. km.
and shrubland by −117.66 sq. km. per year. The data show the highest increase in
waterbodies among all the IMD sub-divisions, at 22.08 sq. km. per year.

11. Uttarakhand: The data show the second-highest increase in forest among all the IMD
sub-divisions at 24.72 sq. km. per year. Concurrently, the second-highest decrease in
agriculture among all IMD sub-divisions is −25.28 sq. km. per year.

12. West Madhya Pradesh: Agriculture sees modest increases, at 38.50 sq. km. per year.
Concurrently, grassland decreases by −37.36 sq. km. per year.

13. West Rajasthan: Amongst the IMD sub-divisions, West Rajasthan shows the highest
increase in agriculture at 1593.31 sq. km. per year. The area also witnessed the highest
decreases in shrubland at −1122.79 sq. km. per year, a decrease in grassland at
−232.98 sq. km. per year, and a decrease in bareland at −137.90 sq. km. per year.

14. West Uttar Pradesh: There is a minor decrease in agriculture of −3.29 sq. km. per
year and forests of 3.42 sq. km. per year. The area also witnessed the second-highest
increase in built-up land at 5.92 sq. km. per year.

A substantial agricultural expansion was witnessed in West Rajasthan during 2001–2021,
potentially reflecting successful agricultural policies or shifts in land use, but this comes
with losses in shrubland. East Rajasthan, the Gujarat Region, and Saurashtra and Kachh are
other IMD sub-divisions with notable higher-than-average increases in agricultural land. A
decline in natural land covers (grassland and shrubland) with a higher-than-average growth
in agricultural land in the Gujarat Region may reflect the impact of human activities and
necessitate measures for ecological conservation. The Gujarat Region is also an area with
the second-highest increase in waterbody due to effective water resource management or
changing patterns in precipitation and hydrology.

Urban development remained fairly stable in most IMD sub-divisions, with the
Chandigarh, Haryana, Delhi, and West Uttar Pradesh regions registering a higher-than-
average increase in built-up land. The dominance of rural areas within the DMIC ZoI and
the 500 m spatial resolution of MODIS data may necessitate further research with higher
resolutions to accurately determine the extent of urban LULC changes.
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The results suggest that while some IMD sub-divisions have experienced significant
agricultural growth, others show a decline in natural land covers, indicating potential
overuse or conversion to other land uses. There is limited evidence of planned conservation
and ecological maintenance. These findings highlight the need for a regional strategy to
balance economic development with environmental conservation within the DMIC.

3.3. LULC Changes in the Smart Cities and the District Level

The study area encompasses 121 districts and 24 smart cities. The study conducted
further analysis at the district level for each of the seven LULC classes, identifying smart
cities and districts with notable LULC changes. The smart cities and districts with notable
changes in LULC are identified. The complete list of 121 districts and 24 smart cities, along
with the associated Kendall’s tau, p-value, and Sen’s slope, can be found in Supplementary
Section B (Summary of time series for smart cities and other districts-Table S1. Summary of
Kendall’s tau and Sen’s slope for time series analysis of decadal LULC changes for smart
cities in the DMIC, and Table S2. Summary of Kendall’s tau and Sen’s slope for time series
analysis of decadal LULC changes for districts in the DMIC). This section summarizes the
results and discusses the following questions:

“How do changes in LULC in smart cities compare with other districts within the DMIC?”

3.3.1. Changes in Agricultural LULC

Agricultural land is the largest class in the area (514,503.25 sq. km. or 79.44% of DMIC
ZoI), and changes in this LULC can significantly impact regional economic development
and ecological balance. In general, throughout the DMIC ZoI, the agricultural land in-
creased in size, with some exceptional decreases in smart cities or other districts. The
change was throughout the study area. Details of the findings on smart cities and other
districts are stated below.

Smart Cities: A significant positive trend in agricultural land change was observed in
the analysis of smart cities within the DMIC. The top two cities belonging to the IMD sub-
division of the Gujarat Region with the most substantial positive trends were Ahmedabad,
with a Kendall’s tau of 0.92*** and a Sen’s slope of 139.60 sq. km. per year, and Vadodara,
with a Kendall’s tau of 0.86*** and a Sen’s slope of 51.45 sq. km. per year. These districts
displayed strong positive correlations between time and agricultural land area increase,
signaling the robust growth of farming from 2001 to 2021.

Conversely, Thane in the Konkan and Goa IMD sub-division, with a Kendall’s tau
of −0.80*** and a Sen’s slope of −36.07 sq. km. per year, showed a significant decline in
agricultural land.

Other Districts: Among other districts within the study area, the top districts exhibiting
positive trends in agricultural land change were Churu, with a Kendall’s tau of 0.60*** and
a Sen’s slope of 437.74 sq. km. per year; Jodhpur, with a Kendall’s tau of 0.52*** and a
Sen’s slope of 403.42 sq. km. per year; and Nagaur, with a Kendall’s tau of 0.62*** and
a Sen’s slope of 315.85 sq. km. per year. These figures indicate considerable increases in
agricultural land, with strong statistical significance.

On the other end of the spectrum, the districts with negative trends were Raigarh,
with a Kendall’s tau of −0.88*** and Sen’s slope of −69.33 sq. km. per year; Ratnagiri, with
a Kendall’s tau of −0.86*** and a Sen’s slope of −44.58 sq. km. per year; and Valsad, with a
Kendall’s tau of −0.75*** and a Sen’s slope of −12.00 sq. km. per year.

The overall trends suggest that while some districts within the DMIC are experiencing
growth in agricultural land, others face challenges that may lead to stagnation or decline.
Figure 3 shows the changes in agricultural land area in contiguous districts (for example,
West Rajasthan) within the individual IMD sub-divisions, with some exceptions. The factors
driving these changes may vary significantly across the regions, and further investigation
is required to understand these trends’ underlying causes and develop region-specific
strategies for sustainable land use management.
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Figure 3. Agricultural LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s Slope
—Agriculture LULC Changes in Smart Cities. (B) Sen’s Slope—Agriculture LULC Changes in
Other Districts.

3.3.2. Changes in Bareland LULC

Bareland is one of the smallest classes in area size (10,916.5 sq. km. or 1.69% of the
DMIC ZoI), and changes in this LULC can indicate conversions to other LULCs, such as
urban or agricultural land. Throughout the DMIC ZoI, the bareland areas decreased in size,
with lesser decreases in smart cities and more decreases in other districts. Across the region,
the changes in bareland were heterogenous, as noted in Figure 4. Details of the findings on
smart cities and other districts are stated below.

Smart Cities: For the smart cities, the trend in the bareland LULC class showed a
significant decline. The top three districts with the most pronounced negative trends, as
indicated by Kendall’s tau with corresponding p-values, were Ahmedabad, with a Kendall’s
tau of −0.60*** and a Sen’s slope of −3.54 sq. km. per year; Pune, with a Kendall’s tau
of −0.66*** and a Sen’s slope of −2.83 sq. km. per year; and Nashik, with a Kendall’s
tau of −0.58** and a Sen’s slope of −2.48 sq. km. per year. All other smart cities showed
reductions in bareland.

Other Districts. The analysis of other districts within the DMIC also showed a higher
decline in bareland areas than in smart cities. The top three districts with significant
negative trends were Jodhpur, with a Kendall’s tau of −0.54*** and a Sen’s slope of
−96.97 sq. km. per year; Kachchh, with a Kendall’s tau of −0.56*** and a Sen’s slope
of −44.10 sq. km. per year; and Bikaner with a Kendall’s tau of −0.64*** and a Sen’s slope
of −37.63 sq. km. per year. Unlike the smart cities, which had only declined, some districts
showed positive trends in bareland areas. These include Alirajpur, with a Kendall’s tau of
0.44** and a Sen’s slope of 0.20 sq. km. per year; Neemuch, with a Kendall’s tau of 0.48**
and a Sen’s slope of 0.11 sq. km. per year; and Pali, with a Kendall’s tau of 0.47** and a
Sen’s slope of 0.10 sq. km. per year.
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Figure 4. Bareland LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s
Slope—Bareland LULC Changes in Smart Cities. (B) Sen’s Slope—Bareland LULC Changes in
Other Districts.

The decline in bareland in urban agglomerations such as Thane, Pune, and Nashik (all
smart cities) is contiguous, as seen in Figure 4.

3.3.3. Changes in Forest LULC

Forests are one of the smallest classes in area size (37,446.25 sq. km. or 1.69% of the
DMIC ZoI), and changes in this LULC can have critical implications on biodiversity and
carbon sequestration. The forest areas increased in size in most of the smart cities but with
substantial decreases in certain of the other districts of the DMIC ZoI. Figure 5 shows the
distinction between smart cities and other districts regarding changes in forests. Details of
the findings on smart cities and other districts are noted below.

Smart Cities: This loss of forest cover has implications for biodiversity and carbon
sequestration. For the smart cities in the DMIC, forest area changes from 2001 to 2021
indicate increases but with varying trends. The top three districts with the greatest increases
in forest area, as denoted by Kendall’s tau and Sen’s slope, are Pune, with a Kendall’s tau
of 0.600*** and Sen’s slope of 28.46 sq. km. per year; Thane, with a Kendall’s tau of 0.562***
and a Sen’s slope of 15.60 sq. km. per year, suggesting notable afforestation or reforestation
activities; and Surat, with a Kendall’s tau of 0.752*** and a Sen’s slope of 12.62 sq. km. per
year, which could reflect successful environmental policies or natural forest regeneration.

Other Districts: Within the DMIC, other districts exhibit the largest increases in forest
areas, notably Raigarh, with a Kendall’s tau of 0.79*** and a Sen’s slope of 21.25 sq. km. per
year; Ratnagiri, with a Kendall’s tau of 0.75*** and a Sen’s slope of 18.97 sq. km. per year;
and Garhwal, with a Kendall’s tau of 0.84*** and a Sen’s slope of 16.74 sq. km. per year.

These districts exhibit significant positive trends indicative of effective forest conser-
vation strategies or natural reforestation.

On the contrary, the districts with the greatest decline in forest areas are Nagaur, with
a Kendall’s tau of −0.48** and a Sen’s slope of −30.32 sq. km. per year; Anand, with a
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Kendall’s tau of −0.59*** and Sen’s slope of −3.92 sq. km. per year; and Baghpat, with a
Kendall’s tau of −0.60*** and a Sen’s slope of −3.45 sq. km. per year.

Figure 5. Forest LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s SlopeForest
LULC Changes in Smart Cities. (B) Sen’s Slope—Forest LULC Changes in Other Districts.

These reductions may be due to several factors, including land use change, agriculture-
driven deforestation, or urban development pressures.

The reductions in forests are heterogeneous, as seen in Figure 5. However, the southern
part of the DMIC, which includes the smart cities of Thane and Pune and the districts
Raigarh, Ratnagiri, and Satara, has homogeneous increases in forests. Expanding forest
areas in these districts demonstrates the potential for ecological recovery and the success of
green initiatives. Conversely, the decline in other regions emphasizes the need for enhanced
conservation efforts and the careful evaluation of land use policies to mitigate the loss of
forested lands.

3.3.4. Changes in Grassland LULC

After agricultural land and shrubland, grassland is the third-largest class in the area
(55,838.5 sq. km. or 5.78% of DMIC ZoI), and changes in this LULC can significantly impact
the alteration of ecosystems. In general, throughout the DMIC ZoI, the grassland areas
decreased with some exceptions. Figure 6 shows the heterogeneous spread of the grassland
changes. Details of the findings on smart cities and other districts are noted below.

Smart Cities: For the smart cities, the greatest increases in grassland include Thane,
with a Kendall’s tau of 0.72*** and a Sen’s slope of +20.80 sq. km. per year; Karnal, with a
Kendall’s tau of 0.58*** and a Sen’s slope of +0.88 sq. km. per year; and Moradabad, with
a Kendall’s tau of 0.43** and a Sen’s slope of +0.86 sq. km. per year. Notably, Sen’s slope
drops from Thane to Karnal by a significant margin.

The greatest declines in grassland are in Ahmadabad, with a Kendall’s tau of −0.81***
and a Sen’s slope of −96.91 sq. km. per year; Rajkot, with a Kendall’s tau of −0.82*** and a
Sen’s slope of −51.15 sq. km. per year; and Vadodara, with a Kendall’s tau of −0.87*** and
a Sen’s slope of −49.88 sq. km. per year.
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Figure 6. Grassland LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s
Slope—Grassland LULC Changes in Smart Cities. (B) Sen’s Slope—Grassland LULC Changes in
Other Districts.

Other Districts: The different districts with the greatest increases in grassland include
Raigarh, with a Kendall’s tau of 0.86*** and Sen’s slope of +45.80 sq. km. per year;
Hanumangarh, with a Kendall’s tau of 0.44** and a Sen’s slope of +19.41 sq. km. per year;
and Ratnagiri, with a Kendall’s tau of 0.56*** and a Sen’s slope of +19.38 sq. km. per year.

For the other districts, the greatest decreases in grassland include Nagaur, with a
Kendall’s tau of −0.71*** and a Sen’s slope of −122.56 sq. km. per year; Surendranagar,
with a Kendall’s tau of −0.91*** and a Sen’s slope of −121.29 sq. km. per year; and Bharuch,
with a Kendall’s tau of −0.93*** and a Sen’s slope of −44.96 sq. km. per year.

The reduction in grassland areas and increases in agricultural land point to a significant
transformation of natural and semi-natural landscapes, raising concerns about the loss of
biodiversity and alteration of ecosystems.

3.3.5. Changes in Shrubland LULC

After agricultural land, shrubland is the largest class in the area (13,892.75 sq. km. or
8.62% of DMIC ZoI), and changes in this LULC can significantly impact local biodiversity,
soil stability, and microclimate regulation. Throughout the DMIC ZoI, shrubland areas
had the highest decreases in most districts. Figure 7 shows the homogeneous spread
of the shrubland changes. Details of the findings on smart cities and other districts are
noted below.

Smart Cities: In smart cities, Ahmadabad, Jaipur, and Ajmer exhibit decreases in
shrubland, with a Kendall’s tau of −0.67*** and a Sen’s slope of −35.43 sq. km. per
year for Ahmadabad; −0.67*** and −16.50 sq. km. per year for Jaipur; and −0.68*** and
−8.27 sq. km. per year for Ajmer.
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Figure 7. Shrubland LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s
Slope—Shrubland LULC Changes in Smart Cities. (B) Sen’s Slope—Shrubland LULC Changes
in Other Districts.

Other Districts: Jind displayed the sole increase in shrubland, marked by a Kendall’s
tau of 0.70*** and a modest Sen’s slope of 0.045 sq. km. per year. The districts of Mewat,
Tapi, Morena, and Bid indicated no change in the Sen’s slope for shrubland. The decreases
in shrubland, on the other hand, were fairly substantial: Jodhpur had a Kendall’s tau of
−0.42** and Sen’s slope of −243.21 sq. km. per year; Jalor had a Kendall’s tau of −0.61***
and a Sen’s slope of −197.94 sq. km. per year; and Nagaur had a Kendall’s tau of −0.50**
and a Sen’s slope of −159.88 sq. km. per year. This rounded out the list of highest decreases
in shrubland in other districts of the DMIC ZoI.

As seen in Figure 7, the shrubland reductions are homogeneous within the IMD sub-
divisions of West Rajasthan, East Rajasthan, and the Gujarat Region. These shrubland
changes may affect local biodiversity, soil stability, and microclimate regulation. The
transformation of shrublands raises concerns about the loss of these unique ecosystems,
which often serve as important habitats for wildlife.

3.3.6. Changes in Built-Up LULC

Built-up land (including urban areas) is one of the smallest classes in area size
(10,949.5 sq. km. or 2.15% of the DMIC ZoI). Throughout the DMIC ZoI, the urban ar-
eas increased, with no decreases in smart cities or other districts. Figure 8 illustrates the
increase in homogeneity across built-up land, marked by green-shaded areas in small
increments. The detailed findings on smart cities and other districts are noted below.

Smart Cities: The Sen’s slope data for urban and built-up land LULC changes in the
DMIC region show an increase in urbanization, particularly in districts near cities such as
Thane, Pune, Surat, Ahmedabad, Faridabad, and Jaipur. Built-up areas for any smart cities
within the DMIC ZoI did not decrease.

The highest increases were Thane, with a Kendall’s tau of 1.00*** and Sen’s slope of
2.11 sq. km. per year; Pune, with a Kendall’s tau of 0.99*** and a Sen’s slope of 1.91 sq. km.
per year; and Surat, with a Kendall’s tau of 0.99*** and a Sen’s slope of 1.16 sq. km. per year.
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Figure 8. Built-up LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s Slope—Built-Up
LULC Changes in Smart Cities. (B) Sen’s Slope—Built-Up LULC Changes in Other Districts.

Other Districts: The other districts saw larger increases in built-up land than the
smart cities, e.g., Gautam Buddha Nagar, with a Kendall’s tau of 0.99*** and a Sen’s slope
of 4.35 sq. km. per year; Gurgaon, with a Kendall’s tau of 0.99*** and a Sen’s slope of
2.38 sq. km. per year; and Udham Singh Nagar, with a Kendall’s tau of 0.97*** and a Sen’s
slope of 1.21 sq. km. per year. Districts like Gandhinagar, Udaipur, and Bareilly suggest
a more moderated or planned urban growth due to their low Sen’s slopes yet significant
Kendall’s tau results. The negligible changes in areas like North Delhi and South Delhi
might reflect development saturation. Also, the expansion of built-up areas in urban
settings is typically in brownfield areas and may be lesser than the minimum mapping unit
for MODIS land cover products.

Hence, further research is recommended using the highest available imagery (30 m or
higher resolution).

3.3.7. Changes in Waterbody LULC

Waterbodies are the smallest class in area size (4081 sq. km. or 0.63% of the DMIC
ZoI). Throughout the DMIC ZoI, the waterbody LULC class increased, with no decreases
in the smart cities or other districts. The increase can be seen in Figure 9 and is noteworthy
as the upper half of the DMIC ZoI seems to have no districts with a statistically significant
(p-value < 0.1) growth, except for Jhajjar. A notable observation is the correlation between
the increase in urban and built-up areas and waterbody areas in several adjacent districts
in the lower half of the DMIC ZoI. Details of the findings on smart cities and other districts
are noted below.

Smart Cities: Among the smart cities were Pune, with a Kendall’s tau of 0.47** and a
Sen’s slope of 2.56 sq. km. per year; Thane, with a Kendall’s tau of 0.47** and a Sen’s slope
of 2.41 sq. km. per year; and Ahmadabad, with a Kendall’s tau of 0.76*** and a Sen’s slope
of 2.31 sq. km. per year.

Other Districts: Other districts included Kachchh, with a Kendall’s tau of 0.50** and
a Sen’s slope of 15.32 sq. km. per year; Bhavnagar, with a Kendall’s tau of 0.94*** and a
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Sen’s slope of 4.80 sq. km. per year; and Panch Mahals, with a Kendall’s tau of 0.70*** and
a Sen’s slope of 2.71 sq. km. per year.

Figure 9. Waterbody LULC changes between 2000 and 2021 in the DMIC ZoI—(A) Sen’s
Slope—Waterbody LULC Changes in Smart Cities. (B) Sen’s Slope—Waterbody LULC Changes
in Other Districts.

The changes in waterbody areas across the smart cities and other districts within the
DMIC from 2001 to 2021 reveal distinct patterns. Pune and Thane, with moderate increases
in waterbody areas, might reflect efforts in water conservation or the result of seasonal
variability captured over the years. Ahmadabad’s higher Sen’s slope suggests improved
water management strategies.

Large-scale water conservation projects or changes in land use practices that favor
waterbody expansion could explain the notable increases in waterbody areas in Kachchh
and Bhavnagar.

4. Discussions

4.1. Implications for Smart Cities and Planned Industrial Clusters
4.1.1. Smart Cities

Smart cities, such as Ahmedabad (Gujarat Region), Jaipur (East Rajasthan), and Pune
(Madhya Maharashtra), show significant positive trends in urban growth. This rapid
urbanization, while driving economic development and infrastructure improvement, also
poses challenges such as increased pollution, higher energy consumption, and pressure
on existing urban services. For example, Pune’s substantial urban sprawl often leads to
encroachment on agricultural and natural lands, impacting local biodiversity and water
resources. The rapid expansion of urban areas reduces green spaces, affecting the local
climate and air quality and increasing the urban heat island effect.

Many cities, including Agra (West Uttar Pradesh), Ahmedabad (Gujarat Region), and
Nashik (Madhya Maharashtra), show significant increases in agricultural land. While
this boosts food production and supports local economies, it often comes at the cost of
natural habitats. In Ahmedabad, agriculture has expanded significantly, converting natural
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ecosystems into farmlands. This expansion can lead to soil degradation, water scarcity due
to increased irrigation demands, and biodiversity loss as native species are displaced by
monocultures. Reducing natural habitats such as wetlands and forests can also disrupt
local water cycles, exacerbating the effects of droughts and floods.

The decline in natural land cover, particularly forests and shrublands, is notable
in cities like Faridabad (Chandigarh, Haryana, Delhi IMD sub-division), Gandhinagar
(Gujarat Region), and Jaipur (East Rajasthan). Gandhinagar, for instance, has experienced a
marked decrease in shrubland. This loss of natural habitats disrupts local flora and fauna,
reducing biodiversity. Shrinking green spaces affect ecosystem services, climate regulation,
and recreational spaces for urban populations.

4.1.2. Industrial Clusters and Industrial Areas Planned for the DMIC

The DMIC encompasses several projects that may significantly impact natural land
cover. Here, we analyze five such projects based on current LULC changes and recom-
mend whether they should proceed as greenfield or brownfield developments to minimize
environmental impacts:

Faridabad-Palwal (Chandigarh, Haryana, Delhi IMD sub-division): The baseline
conditions in this area indicate a substantial reduction in forest cover and shrubland,
accompanied by increased urbanization and industrial activities. The decrease in natu-
ral habitats has fragmented ecosystems and increased human-wildlife conflict, reducing
biodiversity and essential ecosystem services like air purification. Given the extensive
urban and industrial infrastructure, the Faridabad-Palwal project, under the auspices of the
DMIC, should proceed as a brownfield development, focusing on revitalizing degraded
areas. Implementing green belts and reforestation projects will help mitigate the adverse
environmental impacts and enhance local biodiversity.

Jaipur-Dausa (East Rajasthan IMD sub-division): The Jaipur-Dausa project area has
experienced significant declines in shrubland and savanna, driven by expanding agriculture
and urban areas since 2001, as indicated in the study. These changes have disrupted local
flora and fauna, especially species dependent on these habitats. This project should be
approached as a brownfield initiative to minimize further environmental degradation and
repurposing existing agricultural lands and urban spaces. Establishing green corridors
and incorporating sustainable urban planning can help maintain ecological balance and
support biodiversity conservation efforts.

Vadodara-Ankleshwar (Gujarat Region IMD sub-division): The area has reduced
natural waterbodies and forest cover due to increased industrial and agricultural activi-
ties. These changes have impacted aquatic ecosystems and terrestrial biodiversity, with
industrial activities contributing to pollution. Given the existing industrial landscape, a
brownfield development approach is recommended. This will limit the conversion of
remaining natural habitats, and incorporating advanced water management systems and
pollution control measures will be essential to mitigate environmental impacts and protect
local ecosystems.

Nashik-Sinnar (Madhya Maharashtra IMD sub-division): Urban expansion and agri-
cultural development in the Nashik-Sinnar project area have significantly declined forest
and shrubland areas. This loss of natural habitats has led to deforestation, reduced biodi-
versity, and exacerbated the urban heat island effect. The project should be developed as a
brownfield initiative, focusing on existing urban and agricultural lands to prevent further
habitat loss. Integrating extensive green spaces and sustainable land management practices
within the urban planning framework will mitigate environmental impacts and enhance
the area’s ecological resilience.

Pali-Marwar (West Rajasthan IMD sub-division): The area has extensive agricultural
expansion and decreased natural forest and shrubland, with urban growth further im-
pacting these habitats. The conversion of natural lands to agricultural and urban uses
has disrupted local ecosystems and reduced biodiversity. The Pali-Marwar project should
be developed as a brownfield initiative, utilizing converted agricultural and urban lands
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to minimize additional habitat loss. Implementing sustainable agricultural practices and
creating conservation areas within the development plan will help preserve remaining
natural habitats and support local biodiversity.

The assessment of these DMIC projects highlights the significant negative impacts on
natural land cover due to LULC changes. Adopting brownfield development strategies
for these projects will help minimize further environmental degradation. By focusing on
sustainable urban planning, green infrastructure, and conservation efforts tailored to each
project’s unique context, these developments can balance economic growth with ecological
preservation, ensuring long-term environmental sustainability and resilience.

The LULC changes within the DMIC highlight a clear trend of the depletion of natural
land cover due to anthropogenic activities. The observed trends call for urgent policy
interventions to mitigate the adverse impacts on biodiversity and ecosystem services.
Strategies such as implementing conservation corridors, enforcing land-use regulations,
and promoting sustainable agriculture practices are essential to preserve the remaining
natural habitats and ensure the long-term ecological health of the DMIC region.

4.2. Ecologically Sensitive Areas

The DMIC encompasses several ESAs in the 121 other districts, where the analysis
of LULC changes reveals significant trends in the depletion of natural resources due to
anthropogenic expansions. A complete list of the ESAs, their profiles, locations, and LULC
changes is included in Supplementary Section C (Table S3 Summary of time series for
Ecologically Sensitive Areas in the DMIC). This study utilizes Kendall’s tau and Sen’s slope
statistics to quantify these changes, highlighting the transition from natural land covers to
anthropogenic land uses. The key findings are noted below:

Forest to Agriculture Conversion: In Ranthambhore National Park (Sawai Madhopur
district in East Rajasthan IMD sub-division) and the Gulf of Khambhat (Districts of Anand,
Bharuch, and Surat in the Gujarat Region), forests exhibit a statistically significant decline.
Simultaneously, agriculture in these regions has shown substantial growth, indicating that
forested areas are being converted to agricultural land, driven by the demand for food
production and economic development. The decline in forest cover in Ranthambhore National
Park could lead to habitat loss for Bengal tigers and leopards, reducing their available hunting
grounds and increasing human–wildlife conflict. The conversion of forests to agriculture in
the Gulf of Khambhat may affect the habitat of diverse bird species and mangrove ecosystems,
which are crucial for many fish species’ breeding and nursery grounds.

Shrubland and Grassland Depletion: The depletion of shrubland and grassland is
particularly notable in several regions. In the Nalsarovar Bird Sanctuary (Districts of
Ahmedabad in Gujarat Region and Surendranagar in Saurashtra and Kacchh IMD sub-
division), shrubland has declined significantly, paralleled by a substantial decrease in
grassland. Concurrently, agricultural expansion suggests that these natural habitats are
being transformed into cropland. This trend is consistent in the Kumbhalgarh Wildlife
Sanctuary (Districts of Rajsamand, Udaipur, Pali, and Sirohi in West Rajasthan IMD sub-
division), where shrubland and grassland are being supplanted by agriculture. The loss
of shrubland and grasslands in Nalsarovar Bird Sanctuary could impact the habitat of
migratory birds, such as flamingos, disrupting their breeding and feeding grounds. The
reduction in shrubland and savanna in Kumbhalgarh Wildlife Sanctuary may lead to a
decline in herbivorous species like the Indian gazelle and negatively affect predator species
like the Indian wolf that rely on these prey species.

Impact on Waterbodies: While natural land cover classes such as forests, shrublands,
and savannas are declining, there is a concurrent increase in waterbodies driven by the
development of irrigation and other water management projects. For example, in the Rann
of Kutch (Districts of Kachchh, Surendranagar, Banas Kantha, in the Saurashtra and Kacchh
IMD sub-division), the area covered by waterbodies has increased significantly, reflecting
efforts to enhance water resources for agricultural and urban use. Increased waterbodies
can benefit aquatic plants and provide habitat for species like the Indian wild ass and
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various migratory birds. However, it may also lead to the displacement of terrestrial flora
and fauna due to changing landscapes.

Bareland Reduction: In Velavadar Blackbuck National Park (Bhavnagar district in
Saurashtra and Kutch IMD sub-division), bareland has significantly decreased while agri-
culture has increased. This suggests that previously uncultivated lands are being brought
under agricultural production, driven by the expansion needs of the agrarian economy. The
conversion of bareland to agricultural fields can disrupt the habitat of the blackbuck and
other grassland species, leading to reduced grazing areas and increased human-wildlife
conflict in the national park.

4.3. Comparison of LULC Changes with Other Large-Scale Infrastructure Projects

Our observation of a substantial increase in agricultural land, a trend also found in
studies such as Meiyappan et al. (2016) [47], underscores the significance of the DMIC and
BRI in the context of global infrastructure projects. Like the DMIC, the BRI has significantly
altered land use patterns, particularly by converting natural habitats into agricultural and
industrial zones. Both projects have grappled with the challenge of balancing economic
development with environmental sustainability. However, the BRI’s scale and geographic
diversity present unique challenges, such as transnational coordination and varying envi-
ronmental regulations across countries, that are not as prominently seen in the DMIC.

Our findings on the DMIC underscore the role of economic development in driving
land use changes—a crucial point that needs to be addressed in sustainable planning.
Increased trade activities and economic development are key drivers of these changes.
This is further supported by Zhang et al. (2022) [21], who demonstrated that the BRI
significantly influences agricultural land use, confirming earlier findings. Their study
explored the spatio-temporal dynamics of LULC in BRI regions, utilizing the Landscape
Ecological Risk Index to assess how the initiative impacts land cover and ecological risks
over time, which can be the subject of further research in the DMIC.

The decreases in shrubland and grassland observed in our study are not isolated
incidents; they are consistent with global patterns seen in other large-scale infrastructure
projects. For instance, due to infrastructure development, the BRI regions have experienced
similar reductions in natural landscapes. Our findings, which corroborate these trends and
highlight the impacts of the DMIC’s industrial activities on local vegetation, contribute to
the global urbanization and environmental change discourse, adding a valuable regional
perspective.

Our observations on the DMIC underscore the importance of strategic planning to
minimize negative ecological impacts. Teo et al. (2019) [27] supports this by characterizing
the impacts of several BRI infrastructure projects on local ecosystems and proposing a
typology to understand better and mitigate environmental disruptions.

Additionally, our study on the DMIC highlights challenges in LULCC mapping,
emphasizing the need for improved methodologies to address issues in accuracy and
consistency. This is consistent with findings by Naboureh et al. (2020) [23], who reviewed
similar challenges and underscored the importance of accurate mapping for effective land
use planning and the development of robust environmental policies.

The modest increase in forest areas observed in our study indicates the success of
afforestation and reforestation efforts by smart cities such as Pune and Surat. This is
consistent with similar global initiatives, such as China’s Green Great Wall project, which
aims to combat desertification through large-scale tree planting. The difference is that
the Green Great Wall is federally funded in China, while it is enabled as a local city-level
reforestation initiative in India.

The European Union’s reforestation efforts, part of their broader environmental sus-
tainability goals, also provide a useful comparison. The EU has implemented extensive
programs to restore natural habitats and enhance biodiversity. These efforts in the EU are
driven by strong policy frameworks and significant investment in environmental restora-
tion, demonstrating the importance of governance in successful reforestation initiatives.
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Similar trends of urban expansion and increased built-up areas have been noted in the
context of the European Union’s Trans-European Transport Network (TEN-T). However,
the EU’s regulatory framework and environmental impact assessments provide a more
structured approach to mitigating negative impacts than the DMIC. Our findings highlight
the need for enhanced regulatory mechanisms governing the construction and operational
phases of the DMIC to balance development with sustainability. This can be achieved
through enhancing the SCM Livability Index and aligning DMIC with the Sustainable
Development Goals (SDGs).

4.4. Implications for Policy and Planning

The observed trends in LULC changes, particularly the expansion of agricultural land
and the reduction of natural landscapes, call for targeted policies that balance economic
growth with environmental conservation. Promoting sustainable agricultural practices, en-
hancing green urban spaces, and implementing stringent land-use regulations are essential
strategies to mitigate the adverse effects of urbanization and industrialization. Two policies
can regulate the construction and operational phases of the DMIC.

Our findings emphasize the need for sustainable land management practices in the
DMIC, highlighting significant fluctuations in land use over recent decades. Although our
approach utilized MODIS data, this finding aligns with the work of Chen et al. (2018) [24], who
examined spatio-temporal changes in agricultural land in China using alternative approaches
such as the Food and Agriculture Organization (FAO) statistics and GlobeLand30 data.

4.4.1. The SCM City Livability Index

Integrating LULC studies into the SCM Livability Index Model significantly impacts
urban sustainability and compliance monitoring. Specifically, incorporating LULC metrics
into indices such as the Mixed Use and Compactness Index, Open Space Index, Housing
and Inclusiveness Index, Pollution Index, and Mobility Index can support a better under-
standing of land transformation’s effects on ecosystems. These indices track changes like
green space conversion and habitat fragmentation, essential for developing balanced land
use strategies, preserving biodiversity, and reducing urban sprawl.

4.4.2. Sustainable Development Goals

In India, Niti Aayog is the nodal governmental agency that sets the data collection
and reporting framework, whereas the individual states have annual implementation re-
sponsibilities. While SDGs are not applied to large infrastructure projects, several elements
of the program, particularly in the context of monitoring LULC changes, can be considered:

• Sustainable Urbanization (SDG 11.3): Monitoring the ratio of the land consumption
rate to the population growth rate and ensuring participatory urban planning pro-
cesses to create inclusive, sustainable communities.

• Climate Resilience (SDG 13.1 and 13.2): Integrating climate change adaptation mea-
sures and disaster risk reduction strategies into the project planning and implementa-
tion phases. This would include time-series analysis, as conducted in this study.

• Conservation of Terrestrial Ecosystems (SDG 15.1 and 15.3): Ensuring the conservation
and sustainable use of forests and wetlands, combating land degradation, and striving
for land degradation neutrality by monitoring changes in forest cover and protecting
important biodiversity sites.

• Protection of Water-related Ecosystems (SDG 6.6): Protecting and restoring water-
related ecosystems impacted by the DMIC projects, such as rivers and wetlands, to
maintain biodiversity and water quality.

• Sustainable Infrastructure (SDG 9.1): Developing resilient infrastructure that supports
economic development while minimizing environmental impact, ensuring equitable
access to infrastructure for all communities.
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By aligning the DMIC project with these SDGs, the initiative can foster sustainable
development that balances economic growth with environmental conservation and social
well-being.

4.5. Limitations and Future Research Directions

Future research should address several limitations of our study. The dominance of
rural areas within the DMIC ZoI and the 500 m spatial resolution of MODIS data may
necessitate further research with higher resolutions (30 m) to determine the extent of urban
LULC changes. Utilizing higher-resolution data and more advanced machine-learning
models would also enhance the accuracy and granularity of LULC analyses. Future re-
search should explore the causal mechanisms behind the correlations and develop targeted
interventions to address the district-specific identified challenges. Extending the temporal
scope beyond 2021 would provide a more comprehensive view of the ongoing changes and
their long-term impacts. Additionally, more comparative studies with other large-scale
infrastructure projects globally could enrich our understanding of LULC dynamics and
further validate our findings.

5. Conclusions

This study examines LULC changes over 2 decades in 121 districts and 24 smart
cities under the DMIC’s zone of influence. The methodology provides a robust framework
for LULC analysis over a two-decade span, enabling the high-accuracy assessment of
changes and trends. Integrating satellite imagery and GIS digitization, overlaid upon the
IMD sub-divisional framework and advanced statistical tests, ensures that the results are
scientifically reliable and can inform future land management and policy decisions.

While agricultural land has expanded year-on-year, shrubland and grassland areas
have declined. Major infrastructure projects developing built-up and urban areas in the
DMIC over the next few decades must consider this baseline of LULC changes observed
over the last two decades.

Our study documents the effectiveness of reforestation efforts within the specific
context of smart cities in the DMIC, providing a model for similar initiatives elsewhere.
This regional success story can inform policy and practice in other regions pursuing similar
environmental restoration goals.

This study’s regional analysis goes beyond administrative boundaries by using the
IMD sub-divisions as a framework. The IMD sub-divisions represent contiguous, cohesive,
and homogenous tracts of land, transcending administrative boundaries. This approach
enables our LULC analysis and is useful for the short-term and long-term monitoring of
LULC changes in the DMIC. The IMD sub-divisional approach is unique compared to other
research that uses political boundaries, such as states, provinces, or countries.

Further, the IMD framework as an analytical unit is foundational for other agroeco-
logical, climatic, meteorological, and environmental research. The IMD also publishes
internationally accepted datasets that researchers can use to integrate with this DMIC study
for additional outcomes. The dominance of rural areas within the DMIC ZoI and the 500 m
spatial resolution of MODIS data may necessitate further research with higher resolutions
to determine the extent of urban LULC changes accurately and accordingly, further research
is needed to refine the LULC classification at higher spatial resolutions. Additionally, more
in-depth studies should explore the relationship between LULC changes and land surface
temperature, precipitation, and relative humidity to better understand the potential effects
on population settlements in the DMIC study area.

This study offers significant insights and methodologies that can be applied to other
infrastructure projects globally, such as the Chennai Bengaluru Industrial Corridor in
India and the Eastern Economic Corridor in Thailand. By systematically analyzing the
LULC dynamics, this study provides critical insights into the anthropogenic drivers of land
cover changes. These findings serve as a valuable reference for policymakers, conserva-
tionists, and researchers engaged in sustainable development planning within the DMIC.
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The balance between urban growth and conservation remains crucial for the sustainable
development of these rapidly evolving smart cities.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/land13070957/s1, Supplementary Section A. Sen’s slope
graphs for the DMIC, smart cities, and other districts. Supplementary Section B. Summary of time
series for smart cities and other districts. Table S1. Summary of Kendall’s tau and Sen’s slope for
time series analysis of decadal LULC changes for smart cities in the DMIC. Table S2. Summary of
Kendall’s tau and Sen’s slope for time series analysis of decadal LULC changes for districts in the
DMIC. Supplementary Section C. Table S3. Summary of time series for Ecologically Sensitive Areas
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Abstract: The European Copernicus Land Monitoring Service (CLMS) has been producing datasets
on imperviousness every 3 years since 2006. However, for 2018, the input for the production of the
imperviousness dataset was switched from mixed inputs to the Sentinel constellation. While this
led to an improvement in the spatial detail from 20 m to 10 m, this also resulted in a break in the
time series as the 2018 update was not comparable to the previous reference years. In addition, the
European CLMS has been producing a new dataset from 2018 onward entitled CLC+ Backbone,
which also includes a sealed area thematic class. When comparing both datasets with sampled
reference data, it appears that the imperviousness dataset substantially underestimates sealed areas
at the European level. However, the CLC+ dataset is only available from 2018 and currently does not
include any change layer. To address these issues, a harmonized continental soil sealing combined
dataset for Europe was produced for the entire observation period. This new dataset has been
validated to be the best current dataset for monitoring soil sealing as a direct input for European
policies with an estimated total sealed area of 175,664 km2 over Europe and an increase in sealed
areas of 1297 km2 or 0.7% between 2015 and 2018, which is comparable to previous time periods.
Finally, recommendations for future updates and the validation of imperviousness degree geospatial
products are given.

Keywords: imperviousness; change detection; Copernicus Land Monitoring Service; pixel counting;
area estimation

1. Introduction

Soil sealing is part of the land take process, i.e., when natural or agricultural land is
converted to settlements, infrastructure and commercial or industrial use. The process
covers the ground by an impermeable material such as asphalt or concrete. Imperviousness
is the state of soil where it cannot be penetrated by air and water and in practice soil sealing
and imperviousness are terms used synonymously. However, while soil sealing indicates
an anthropogenic process, imperviousness also refers to natural impenetrable surfaces like
rocks and glaciers. Hence, all sealed surfaces are impervious, but some impervious surfaces
are not sealed.

Soil sealing often affects fertile agricultural land, and as sealed areas cannot be pen-
etrated by air and water, the process puts biodiversity at risk. Soil sealing also increases
the risk of flooding in urban areas in case of flash floods and it creates urban heat islands,
which impacts human health. European policy making urges data providers to monitor
soil sealing to be informed on development, agriculture, environment or sustainability at
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multiple levels of government. Given the importance of soils to the European Union’s (EU)
policy objectives on climate change mitigation and adaptation, food security and biodiver-
sity, soils contribute to achieving the main objectives of the European Green Deal, as set
out in the EU Soil Strategy for 2030. To support efforts to improve soil health, the European
Commission has undertaken two key initiatives. Firstly, they established a mission on soil
that utilizes a network of living laboratories to test solutions for improving soil. Secondly,
in 2023, the commission proposed a Soil Monitoring Law. This law mandates monitoring
of land take and soil sealing indicators across the EU [1]. While not directly regulating
soil sealing itself, the data collected through this monitoring will be crucial for developing
informed policies to address this issue.

Several regularly updated datasets based on land monitoring are available to measure
imperviousness at the European scale. They are based on in situ monitoring, remote sensing
or a combination of both. The Land Use/Cover Area frame Survey (LUCAS) is an in situ
land monitoring program [2] that provides harmonized and comparable statistics on land
use and land cover across the whole of the EU’s territory. It provides every 3 years data on
land cover and land use through some 300,000 field observations sampled from a 2 by 2 km
grid covering the EU. However, LUCAS does not cover European Environment Agency
(EEA) cooperating countries. In addition, the definition of the artificial thematic class in
LUCAS is only partially related to sealed surfaces and there are too few LUCAS points over
urban areas to make accurate estimates of changes in soil sealing.

Datasets based on remote sensing are available from the Copernicus Land Monitoring
Service (CLMS) and include the CLMS CORINE Land Cover + Backbone (CLC+ BB) for
2018 [3] (2021; available at end of 2024) and the time series of the imperviousness degree
layer [4], every 3 years from 2006 to 2018 (2021; available at end of 2024). Other global data
sources exist, such as the Global Human Settlement Layer (GHSL) described in [5] and the
World Settlement Footprint (WSF) [6]. However, both GHSL and WSF are global products
and their respective definitions are more focused on assessing built-up areas, with a focus
on buildings, whereas roads or parking spaces are not considered when disaggregating
population census data into a gridded product.

There is a natural tendency from the remote sensing user community to extract area
statistics from such spatial datasets (i.e., “pixel counting”) from earth observation (EO)-
based geospatial products to produce statistical indicators for various purposes as discussed
in [7]. However, geospatial map products suffer from misclassification errors and “pixel
counting” can be strongly biased unless the accuracy of such map products reaches a
level when these misclassification errors can be considered negligible. There has been a
considerable effort in the remote sensing community to assess the accuracy of map products
against reference data to ensure that the maps could reach a sufficient level of accuracy.
Despite substantial advances in this topic in the scientific literature in recent years notably
with paper [8], this has yet to be fully implemented in operational projects. In addition,
even if map accuracy assessment is performed correctly, high accuracy does not necessarily
mean that area statistics can be directly extracted from a map as highlighted in [9]. This
happens because the requirement level is not the same for mapping accuracy and for
statistics. It may happen that an 80% mapping accuracy is considered good enough for a
thematic map, but this may lead to up to an unacceptable 20% bias in the area estimates if
commission and omission errors are strongly unbalanced with commission errors defined
as areas classified as the theme of interest but should be classified as something else and
omission errors defined as areas that should be classified as the theme of interest but
were classified as something else. One way to address this is to apply a so-called Model
Assisted Regression or Regression estimator as detailed in [10], which combines reference
observations with EO-based products. However, applying such an approach is dependent
on the availability of reference data at a disaggregated level.

In addition, even though CLMS products are probably the best available datasets to
monitor soil sealing over Europe, the 2018 imperviousness degree layer was produced on
a 10 m spatial resolution, taking advantage of the availability of Sentinel 2 data, whereas
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earlier layers are provided on 20 m resolution. Unfortunately, the upgrade to 10 m from
20 m spatial resolution has resulted in a break in the IMD-based areal statistics; the 20 m
resolution IMD time series (2006–2009–2012–2015) could be successfully harmonized and
have shown a credible evolution in sealed cover. The IMD2018 dataset exhibits significantly
more sealed structures than previous layers; thus, the amount of sealed cover is showing
an unrealistic growth compared to former status.

Therefore, the aim of this paper is to use the time series and available sample reference
data [11] for the development of a reliable spatially explicit time series dataset of sealed
area in Europe. In this context, Europe is the study area represented by all EEA member
and cooperating countries and the UK and further referred to in this paper as EEA38 +
UK. The total area covered represents 5.85 million km2 with the exception of the French
overseas regions located in south and central America and the Indian Ocean. The objectives
of this study are three-fold: (i) assess the level of bias from existing sealing datasets as
compared to available reference data, (ii) make use of the available reference data to develop
a suitable approach for harmonization including the provision of a freely accessible and
harmonized time-series dataset and (iii) make recommendations for future developments
of earth observation-based products.

2. Data

2.1. Available Soil Sealing Geospatial Data Layers

The pan-European CLMS portfolio includes two kinds of image classifications contain-
ing detailed information about the extent and structure of artificially sealed areas: the High-
Resolution Layer (HRL) Imperviousness [4] and the CLC+ Backbone raster [3] datasets.

2.1.1. CLMS Imperviousness Degree Layers

Imperviousness data are at the time of publication of this paper available for the
reference years 2006, 2009, 2012, 2015 and 2018, and contain two types of products: status
and change layers referred to as the HRL IMperviousness (IMD) and IMperviousness
Classified Change (IMCC), respectively. The IMD layers capture the spatial distribution
of artificially sealed areas, including the level of sealing of the soil per area unit. The
level of sealed soil (imperviousness degree: 1–100%) is produced using an automatic
algorithm based on the calibrated Normalized Difference Vegetation Index (NDVI) as
described in [12,13]. The percentage of sealed area is mapped for each status layer for the
five reference years. The IMD status layers are available in 10 m spatial resolution (2018)
and 20 m spatial resolution (2006–2015) and as aggregated 100 m datasets. Two types of
IMCC products are available for each of the 3-year periods between the five reference years
(2006–2009, 2009–2012, 2012–2015, 2015–2018):

• A simple layer mapping the percentage of sealing increase or decrease for those pixels
that show sealing change during the period covered. This product is available in 20 m
and 100 m pixel sizes.

• A classified change product that maps the most relevant categories of sealing change
(no sealing, new cover, loss of cover, unchanged sealed, increased sealing, decreased
sealing). This product is available in the 20 m pixel size only.

2.1.2. CLMS CLC+ Backbone Layer

The CORINE Land Cover (CLC) product has been the flagship of the Copernicus Land
Monitoring Service for almost thirty years (1990–2018), providing users with harmonized
land cover/land use data at the continental scale. However, CLC has a relatively coarse
spatial resolution, and a lack of detail in certain land cover categories. In response, the
European Environment Agency has developed a suite of new products and applications,
known collectively as CLC+. Among these new products, the CLC+ Backbone (BB) 2018
dataset provides a wall-to-wall land cover map of Europe on 10 m resolution, for each pixel
showing the dominant land cover among the 11 basic land cover classes. The dataset is
available as a 10 m raster. The semantic content of class 1 (sealed areas) is by definition
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very similar to the semantic content of IMD data. The planned update cycle of CLC+ BB
data is a minimum of 2 years after the foreseen 2021 update—comparable to IMD.

Figure 1 shows the comparison of the IMD layer for 2015 and 2018 and the 2018 CLC+
BB artificial layer converted to 100 m against the Bing aerial dataset. Some of the differences
between the IMD2015 and 2018 layers are not due to changes but more likely related to
omission in the lower-resolution 2015 layer. For example, much of the road network was
omitted in 2015 and some of it appears in 2018; these roads were not built in those 3 years
but the low-resolution 2015 layer does not capture these landscape elements. In addition,
the CLC+ BB layer appears to provide even more spatial details in 2018 when compared to
the IMD 2018 layer.

  
(a) (b) 

  
(c) (d) 

Figure 1. Extract over Hazebrouck in northern France of (a) CLMS IMD2015, (b) CLMS IMD2018,
(c) CLC + BB 2018 artificial sealed and (d) Bing aerial. Grey = not impervious; red = impervious.

2.2. Reference Data
2.2.1. Sample Design and Stratification

An extensive validation exercise was performed as part of a dedicated CLMS project
with more than 20,000 Primary Sample Units (PSUs, Figure 2) collected to assess the accu-
racy of imperviousness data layers. A two-stage sampling approach was implemented by
selecting PSUs and Secondary Sampling Units (SSUs) within the PSUs. Two-stage sampling
is considered suitable for accuracy assessment of land cover maps or area estimation [14]
and can be adopted in certain cases because it represents a good compromise between the
ease of data collection and a good geographic distribution. In our work, 1 ha square PSUs
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were selected and a grid of 5 × 5 SSUs was applied to facilitate the data collection as shown
in Figure 2.

 
Figure 2. An example of a PSU (area of the image) and SSUs (red dots) within. SSUs are organized in
a 20 m grid (25 sampling points) to assess impervious surfaces implemented by the CLMS service
providers in the validation of the IMD layers.

The approach for drawing PSU locations was based on the LUCAS 2 × 2 km grid
representing a total of 1,100,000 points across Europe [15]. The LUCAS point is then used to
define the top left corner of the 1 ha PSU. However, considering the different characteristics
and class definition of the imperviousness layers, the thematic information of LUCAS
points was not used directly with the exception of the LUCAS landscape photos, which
proved to be particularly useful for clarifying certain cases when they were available. The
main advantage of using a LUCAS-based approach is that a systematic approach ensures
full traceability and it is also possible that sampling units will be shared for several products,
providing potential economies of scale.

Impervious areas remain relatively rare over Europe, covering less than 5% of the
area (even though it has increased steadily over the years). Therefore, in case of the HRL
images, a suitable stratification approach was required to ensure that sufficient reference
observations are available. For both status and change layers, CORINE Land Cover artificial
classes (CLC [16] and Open Street Map (OSM) road network) were used and converted to a
binary layer to identify potential omission errors. Relevant OSM road types were selected
and rasterized to 100 m (for example, abandoned, construction, cycleway, path, planned,
trail, track. . .were removed) to obtain potential sealed area candidates. Using the relevant
selection of OSM road types lead to a better spatialization of artificial and impervious areas.

CLC impervious classes were defined as follows based on CLC2018:

1.1.1 = continuous urban fabric;
1.1.2 = discontinuous urban fabric;
1.2.1 = industrial, commercial areas;
1.2.3 = ports;
1.2.4 = airports.

The following stratification approach was adopted based on omission/commission
strata for the Imperviousness Status and change layers and is defined as follows:

• Stratum 1, commission status strata, where the imperviousness degree is between
1 and 100% in the 2015 layer.
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• Stratum 2, High-Probability Omission strata, where the imperviousness degree is 0%
in the 2015 reference year but where the Open Street Map and the traditional CLC
2015 layers indicate “impervious classes”.

• Stratum 3, Low-Probability Omission strata covering the rest of the area.
• Stratum 4, commission Change Strata with all changes between 2006–2009, 2009–2012,

2012–2015 and 2015–2018 [gain, loss, increased and decreased were combined due to
the very small area covered].

At first, the number of PSUs to allocate to each stratum was calculated as a function of
the stratum area in a so-called proportional allocation. Then, for small strata, a minimum
number of PSUs were allocated as suggested in [8]. This was achieved by densifying the
LUCAS grid to achieve the required number. Similarly for very large strata, there may be
too many PSUs and the required number was achieved by subsampling the LUCAS grid.

In the second phase, selected PSUs were overlaid with countries or groups of countries
with an area greater than 90,000 km2 (see Figure 3 below) to ensure that a required minimum
of 50 PSUs were available for each stratum. If not, additional PSUs were selected for those
countries or group of countries. The purpose was to be able to assess any heterogeneity in
the quality of the data across different regions.

 

Figure 3. The level of reporting by country or aggregated countries (smaller countries were aggre-
gated to ensure a minimum area of 90,000 km2) as applied in the Copernicus Land Monitoring Service
external validation contract.

As explained in [17] and applied in [18], this stratified systematic sampling approach
leads to unequal sampling intensities between different strata, which need to be accounted
for by applying a weight factor (wi ) to each sample unit based on the ratio between
the number of sample units and the area of the stratum considered: ŵi =

n.Ni
ni .N

, where i
corresponds to a given stratum, N is the total number of possible units (population) and n
is the number of PSUs. Not applying this correction would result in underestimating or
overestimating map accuracies.

There were several iterations performed for the validation of IMD products, starting
with the IMD 2012 layer for which the initial methodology was developed as described
in [10]. When the 2015 IMD status layer was produced, the 2006, 2009 and 2012 status layers
were reprocessed and the whole time series was validated with an initial total number
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of 18,005 PSUs across EEA38 + UK. In addition, change layers were also validated with
an additional set of PSUs, resulting in a total of 22,777 PSUs as described in [19]. For the
validation of the 2018 layers, the initial set of 18,005 PSUs were used but the interpretation
was performed by a different team and for the validation of the 2015–2018 change layer, a
subset of 10,005 PSUs was used with an overall total of 25,777 individual PSUs selected
across all time periods as described in [20]. However, it should be noted that not all PSUs
were used for any given time period due to missing data or cloud cover.

2.2.2. Response Design

Response design is the methodology used to obtain the reference data for the sample
units [21]. Ref. [14] asserted that accuracy assessment is often made relative to some
“higher quality determination of land cover”. Ref. [22] indicated that visual interpretation is
acceptable if the spatial resolution of EO data is sufficiently better compared to the thematic
classification system. For this exercise, the visual interpretation of selected sample units
will be used as a basis of the response design. The response design follows the definition
of the products to be assessed both in terms of geometric and thematic characteristics.
Therefore, the following characteristics are strictly followed and closely monitored as part
of the visual interpretation:

• Minimum Mapping Unit (MMU);
• Minimum Mapping Width (MMW);
• Class definition (what is an impervious surface?);
• Ensure that the image data used are as close as possible temporally to that used for

the map production.

Reference data can be collected with a double-blind protocol (without knowledge of
the classes reported in the EO product (land cover map or classified image)) or following
a plausibility approach. The plausibility approach considers that there can be errors in
the reference data collected through visual interpretation as well as in the map itself. The
plausibility approach reduces the amount of identified errors by comparing the sample
with the map, thus adding another source of information for the photo-interpreter who
then judges if it is reasonably coherent with the reality observed on finer spatial and/or
temporal resolution images.

Statistical theory assumes that both EO and reference data are independent. Therefore
a double-blind approach is preferable. However, double-blind data collection may produce
major distortions in the presence of co-registration inaccuracy or conceptual uncertainty
in the application of class labels. In the case of the imperviousness degree, conceptual
uncertainty is low when a point has been perfectly located, but there may be a distance up to
10–20 m between the photo-interpreted reference point and the center of the corresponding
pixel in a classified image. The apparent disagreement may be due to location inaccuracy
rather than image classification errors. The use of 1 ha clusters as the PSUs (Figure 2)
strongly reduces this anomaly.

Ref. [23] concluded that ignoring visual interpretation errors would result in under-
estimating the variance of the area estimate and developed an area estimator considering
interpretation errors based on seven interpreters assessing the same sample. This would be
difficult to implement over very large areas, but interpretation errors should be minimized
as much as possible. Therefore, as a Quality Assurance and Control measure, at the start
of the visual interpretation process, a certain number of samples (at least 10–20%) was
interpreted twice and analyzed to identify the reasons for discrepancies. The percentage of
samples interpreted twice decreases as the interpretation process progresses and as a result
discrepancies decrease.

To ensure full traceability and transparency of the whole process, a double-blind
approach was first applied, and a plausibility approach was applied at the end of the
interpretation process on PSUs that disagreed with the map product.

In addition, some of the samples (around 10%) were interpreted by separate quality
control interpretation teams as suggested in [23,24] and specific training sessions were
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organized to confront discrepancies occurring between different interpretation teams to
ensure that a consensus is reached.

3. Methods

3.1. Accuracy Assessment

Thematic accuracy is usually presented in the form of an error matrix containing the
results of the interpretation. To be valid, a confusion or error matrix should be derived from
a probability sample and additionally an unequal sampling intensity resulting from the
stratified systematic sampling approach should be accounted for. This requires applying a
weight factor (wi) to each sample unit based on the ratio between the number of samples
and the size of the stratum considered as described at the end of Section 2.2.1.

A number of accuracy metrics can be computed from the error or confusion metrics
such as overall, producer (related to omission errors) and user (related to commission
errors) accuracies. In this case, we are dealing with a single theme.

Previously, the CLMS imperviousness degree layer was validated by applying a 30%
threshold, thus transforming the impervious degree layer into a binary layer [11]. However,
this does not consider the full range of values. Using continuous disagreement values
requires an adaptation of the approach to compute confusion matrices [25,26].

Among the possible disagreement indicators, we propose to quantify the disagreement
at the PSU level as the differences between the map value mi and the reference ri. The Mean
Absolute Error (MAE), MAE = ∑i wi |mi−ri |

∑i wi
, where wi is the extrapolation weight (inverse

of the sampling intensity), and Root Mean Square Error (RMSE), RMSE =

√
∑i wi (mi−ri)

2

∑i wi
,

are common metrics used in this context and are currently used to assess the accuracy of the
Global Human Settlement Layer (GHSL, [27] also now produced as part of the Copernicus
Global Land initiative). In addition, if the map value is larger (lower) than the reference
value for a PSU, it will contribute to the commission (omission) error as illustrated in
Figure 4.

Figure 4. Commission and omission errors with continuous data between 0 and 1 (source: adapted
from [28]).

For the MAE, the commission ϕ would be computed as ϕ = ∑i wi pos(mi−ri)
∑i wi

and

omission ψ as ψ = ∑i wi pos(ri−mi)
∑i wi

with pos(x) as the positive part function. The same
approach can also be applied to RMSE to distinguish between omission and commission
errors. This approach will allow us to assess commission and omission errors for the full
range of the imperviousness degree layer values.

Using pos(mi − ri) and pos(ri − mi) as disagrerement indicators is similar to the con-
cept of quantity disagreement proposed in [29] using the PSU as a measurement unit.

3.2. Harmonization of Sealing Layers
3.2.1. Biased and Unbiased Area Estimates

Biased area estimates are typically pixel counts where, in our case, area statistics are
extracted from the HRL 100 m imperviousness degree layers and reported for the selected
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areas by taking the average imperviousness degree value of all pixels over a selected area.
This value can then be multiplied by the total area in km2 of the selected area to provide
the biased area estimate. For the imperviousness change layers, the same procedure can be
applied for pixels identified as gain or loss. It should also be noted that another important
drawback of pixel counting is the absence of possibility of calculating the uncertainty of
the resulting estimates.

Unbiased area estimates can be derived directly from the field data alone using the
so-called direct expansion method [30], as long as the reference data have been collected
based on a probabilistic sample and we assume that reference data are accurate. In the case
of Simple Random Sampling (SRS) with equal probability, the estimate of proportion (y)
of class (c) is given by yc =

1
n yi and its variance is var(yc) =

(
1 − n

N
) 1

n(n−1) ∑n
i=1(yi − yc)

2,
where yi is the proportion of segment i (100 m pixels) covered by class c, N is the total
number of segments in the region and n is the number of segments in the sample. The
proportion of the study region sampled (n/N) is the sample fraction. The variance calcula-
tion above assumes a single-stage sampling; if a two-stage sampling is applied, this needs
to be accounted for as described in [31]. The estimate of class area (Z) in the study area
(D) is as follows: Ẑc = D ∗ yc; and variance is var

(
Ẑc

)
= D2 ∗ var(yc), where D is the area

of the region. The direct expansion estimators are calculated for each stratum present in
the AoI (area of interest) and the total estimate just corresponds to the weighted average
of the proportions according to the area covered by each stratum. The standard error for

the whole area is then as follows: σTotal =
√

D2
h.Varh, where Dh is the stratum area. The

95% confidence interval (CI) is usually computed as +/− 1.96* σTotal ., although the level of
confidence can be smaller if sample size in each stratum is not large enough [32].

As a starting point for the harmonization procedure, the direct estimator applied on
the 2018 sample validation data (described in Section 2.2.1) provides a total estimated sealed
area of 160,434 ± 7495 km2 (95% CI) at the EEA38 + UK level as shown in Table 1. The total
sealed area mapped by CLMS IMD2018 is close to 109,000 km2, while CLC+ BB reports
175,000 km2. Therefore, CLMS IMD2018 is underestimating sealed areas by approximately
51,000 km2 (or 44,00 km2 if we consider the 95% CI). Even larger differences are observed
for the previous years. However, the difference between CLC+ BB and the direct estimate
is much smaller with CLC+ BB slightly overestimating sealed areas by ca. 15,000 km2 (or
7000 km2 with the 95%CI). It should be noted that two estimates are available for each
year because years were assessed as pairs and not all sample units are always covered
due to missing data or cloud cover from the IMD layer. However, both estimates are not
statistically different with overlapping 95% confidence intervals (Table 1). For 2015, the
differences are greater, because the IMD layer for 2015 was reprocessed following the 2018
production. In addition, the validation data for the 2015–2018 assessment were based on a
smaller and different number of PSUs as compared to the previous years.

As explained in Section 2.2.1, there were different versions of the reference dataset
for the status layer validation and the change layer validation. For consistency, the results
for the status layer validation presented in Table 1 were based on the change validation
dataset, which was deemed to be more accurate considering the greater number of sample
units and the fact that it was produced after the reference dataset for the validation of the
status layer. The results for gains presented in Table 2 are also based on the same dataset.

For 2006–2015, the change layers are either within the bounds of the 95% confidence
interval of the CLMS validation data change area estimates or less than 20% above (Table 2).
For 2015–2018, the differences are greater than 150%. This confirms the expectation that
there is a discontinuity in the dataset with 2018 and even though 2006–2009 is also po-
tentially problematic, this is far less critical by a factor close to 9 (268 km2 vs. 2316 km2).
Therefore, our efforts concentrated on correcting the 2015–2018 IMCC data, and the change
data from previous time periods especially for 2009–2012 and 2012–2015 was considered
as acceptable. In addition, the focus was on correcting the gain data because losses can
be considered negligible in comparison (there are very few areas where sealed surfaces a
re-naturalized).
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Table 1. Assessment of difference in area (km2) between available status layers and CLMS validation
data for the EEA countries + UK.

Area (km2) 2006 2009 2012 2015 2018

HRL IMD pixel count estimate 82,289 83,872 85,410 86,453 108,996

CLC+ Backbone pixel count estimate n/a n/a n/a n/a 175,664

CLMS validation estimate and 95%
confidence interval (CI) n/a 158,370 ± 4247 159,212 ± 4262 161,382 ± 4275 160,434 ± 7495

Second CLMS validation estimate
and 95% CI 157,177 ± 4242 157,659 ± 4242 160,544 ± 4271 159,258 ± 7492 not available

Difference with upper/lower limit of
95% CI for IMD 70,646 69,545 69,540 65,313 43,943

Difference with upper/lower limit of
95% CI for CLC + BB 7735

n/a: not available.

Table 2. Assessment of differences in area (km2) between the IMCC dataset and CLMS Validation
data for gains for the EEA38 countries and the UK (Red and amber, respectively, indicate large and
smaller difference with upper limit of 95% CI).

Area (km2) 2006–2009 2009–2012 2012–2015 2015–2018

HRL IMCC pixel count estimate 1715 1627 1126 3808

CLMS validation estimate and 95%
confidence interval (CI) 1197 ± 251 1553 ± 509 1226 ± 369 1176 ± 314

Difference with upper limit of 95% CI 267 0 0 2318

3.2.2. Harmonization Approach

The following subsections describe the approach that was adopted to produce what is
referred to as the harmonized imperviousness change/time series.

Based on the results above, the CLC+ BB sealed class appears to be more accurate than
the IMD2018 layer. Therefore, a first step to correct overall impervious areas for 2018 relied
on the extraction of CLC+ BB artificial class 1 into a binary 10 m layer.

The harmonization of the 2015–2018 change layer is based on calculating the areas
of gain in dedicated calibration units and a subsequent filtering out of omission errors in
gains through a reclassification procedure of the 2015–2018 IMCC as detailed as follows.

Step 1—Calculating the areas of gain for each of the 91 combinations of production/bioregions:

Based on experience, it is known that there is potentially substantial spatial variability
in the quality of the IMCC layer. Therefore, an initial approach was to assess the level of
change based on the CLMS validation data for each of the 91 combinations of production
units (ca 300 × 300 km2) and environmental zones [33], which we can refer to as calibration
units (Figure 5). This represents a reasonable compromise between the level of spatial
details and a sufficient number of PSUs available for each calibration unit (the total number
is 95, but for the time being, the French overseas regions were excluded from the analysis).

This approach is similar to that of [34] for soybean mapping in the United States in
which reference data were collected within 20 × 20 km blocks and the resulting soybean area
estimates within each block were used to calibrate the soybean map. In our case, sealing
areas and sealing change are much rarer phenomena to map. Therefore, our calibration
units are larger with a smaller number of observations. Adjustments were estimated for all
calibration units with two exceptions, (i) calibration units for which no gain was detected
based on the validation data; and (ii) calibration units for which the level of gain from
the map layer is less than for the validation data, and therefore would require us to add
missing gain area, which is not possible with the adopted procedure.
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Figure 5. The description of calibration units based on the combination of 300 by 300 km production
units and environmental zones [33].

Step 2—Discriminating function to separate actual gain from omission from previous periods.

In order to correct the large differences seen at the EEA38 + UK level and at the
calibration units’ level, some discriminating function needs to be applied to the gain data
to separate real changes from other detected gain areas. There are several ways this could
be achieved notably based on Machine/Deep Learning approaches, but this would require
the input satellite imagery used in the production and considerable resources that were not
available for this work.

Ref. [35] applied different thresholds locally to the density values to adjust the area
covered by the Global Forest Change dataset from [36] and reduce the amount of bias,
concluding that at the national level, a 70% threshold applied to the dataset was a closer
depiction of the actual 30% threshold from the national forest definition, but for some areas,
a more localized threshold adaptation was needed. Ref. [34] used the probability layer from
an initial soybean classification in the USA to apply a separate threshold for each stratum
to produce a binary layer that matched the soybean area estimates from collected field data.

As mentioned earlier, in our case, no reliable density or probability layers were
available and a different approach was adopted based on the assumptions that most
gains typically occur in the vicinity of existing sealed areas and that many of the detected
omissions are often linked to the road network, which are further away from existing sealed
objects. Therefore, an approach based on the distance of objects from the current vectorized
change layer and the 100 m 2015 sealing status layer was applied as illustrated in Figure 6.
The average Euclidian distance of each gain area polygon (red in Figure 6) from the IMCC
layer for 2015–2018 to existing sealed area in 2015 was calculated and stored as an attribute.
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Figure 6. (Top): distance layer from 2015 imperviousness degree status layer (gray tones, with darker
areas representing smallest distance) and candidate gain areas in red from 2015–2018 imperviousness
classified change layer. (Bottom): a corresponding is Sentinel 2 image.

A distance threshold was then applied interactively to gain objects for each calibration
unit to obtain, as close as possible, the required adjustment. Gain objects within the distance
threshold to existing sealed areas (in the 2015 layer) were classified as actual gain and
objects outside were classified as omissions as shown in Figure 7. Most omissions appear
to represent either road segments now classified using the higher spatial resolution of the
Sentinel 2 input data or some large objects. In the enlarged extract shown, green objects are
classified as omissions because the mean Euclidian distance of these objects is above the
threshold set for these calibration units, whereas red objects are classified as change.
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Figure 7. Existing sealed areas are shown in blue whilst potential gains are classified as actual gain in
red and omission in green.

The main output from this stage is a reclassified vector IMCC1518 sealing gain dataset
in which gain polygons were either classified as ‘omissions’ or ‘actual gains’.

Step 3—Production of revised sealed 100 m spatial resolution time series 2006–2018:

The harmonized gain IMCC layers for 2015–2018 and the binary sealed layer derived
from the 2018 CLC+ BB raster layers are used to produce a new 2015 status layer at 10 m
resolution and layers for previous years by applying the following procedure:

1. The reclassified vector IMCC1518 layer is rasterized as a 10 m layer, only keeping
values classified as ‘actual sealing’ gains.

2. This new sealing gain layer is combined with the losses and stable areas from the
original IMCC1518 layer at 10 m to create a revised IMCC1518 layer.

3. Gain areas are removed from and losses added to the binary sealed layer derived
from the CLC+ BB sealed 2018 10 m layer to create a new revised 2015 status layer.

4. Subsequent status layers for year n (e.g., year 2012) are produced from combining the
status layer from the consecutive year (e.g., 2015) with the corresponding IMCC layer
(e.g., IMCC 2012–2015) at 10 m resolution.

5. All 10 m layers are aggregated to 100 m spatial resolution, thus producing the harmo-
nized dataset.

It should be stated that the 10 m layers produced from the procedure above should
not be used directly because they result from a statistical calibration procedure, and the
discrimination between omission and actual change even if correct at the production unit
level may not be spatially correct. In addition, the reference dataset PSUs used for the
calibration procedure are at 100 × 100 m. Therefore, it is thought that the harmonized
imperviousness change 100 m aggregated layers are expected to be more accurate.

4. Results and Discussion

4.1. Validation of Status and Change Layers

Both datasets, the CLMS IMD and the harmonized imperiousness change at 100 m
resolution were validated based on the available CLMS validation data using the blind
interpretation because the plausibility analysis was performed on the IMD and not on the
harmonized imperiousness change data (see Table 3).
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Table 3. Comparison of validation results for blind interpretation CLMS IMD layers and harmonized
imperiousness change datasets (Red and Green, respectively, indicate the worst and best results
whilst amber indicates intermediate result or a result relatively close to the best one).

CLMS IMD Harmonized Imperiousness Change

RMSE MAE MAE > 0 RMSE MAE MAE > 0

2006

Overall 4.48 1.76 37.22 3.80 1.37 8.22
Commission 0.81 0.11 2.30 2.57 0.66 3.96
Omission 4.40 1.65 34.92 2.80 0.71 4.27

Diff
Com-Om −3.59 −1.54 −32.63 −0.24 −0.05 −0.31

2009

Overall 4.46 1.75 36.57 3.82 1.37 8.17
Commission 0.82 0.11 2.30 2.60 0.67 3.99
Omission 4.38 1.64 34.27 2.80 0.70 4.18

Diff
Com-Om −3.56 −1.53 −31.97 −0.20 −0.03 −0.19

2012

Overall 4.45 1.75 36.16 3.78 1.36 8.06
Commission 0.85 0.11 2.37 2.57 0.66 3.94
Omission 4.37 1.64 33.80 2.77 0.69 4.12

Diff
Com-Om −3.52 −1.52 −31.43 −0.20 −0.03 −0.18

2015

Overall 4.60 1.77 36.29 3.75 1.35 8.01
Commission 0.84 0.11 2.32 2.42 0.65 3.85
Omission 4.52 1.66 33.97 2.86 0.70 4.16

Diff
Com-Om −3.68 −1.55 −31.65 −0.44 −0.05 −0.32

2018

Overall 4.13 1.60 27.64 3.50 1.27 7.84
Commission 1.07 0.15 2.65 2.09 0.56 3.47
Omission 3.99 1.44 24.99 2.81 0.71 4.37

Diff
Com-Om −2.92 −1.29 −22.35 −0.73 −0.15 −0.90

From the table above, the harmonized imperiousness change dataset provides the
most balanced results overall as compared with CLMS IMD with much more omission for
CLMS IMD. This is particularly highlighted when PSUs classified as non-sealed in both
the validation and map layers are excluded from the analysis (MAE > 0). This is because
non-sealed areas dominate the landscape with more than 97% of the area identified as
non-sealed in the reference data. For the validation of thematic classes covering a relatively
small proportion of a study area such as impervious areas, the MAE > 0 is preferable
for the validation of continuous thematic layers and clearly identifies the most accurate
dataset. However, if the dataset is to be used to extract area statistics, a balance between
omission and commission errors is necessary as exhibited by the harmonized impervious
change dataset.

The conclusion was that the harmonized imperiousness change dataset provided a
more realistic picture of the spatial–temporal distribution of sealed areas across Europe and
was therefore used in subsequent steps.

4.2. Change Area Estimation

Regarding total sealed areas, the production of the 100 m harmonized imperviousness
change dataset by applying the harmonization process as described in Section 3.2 appears
to produce pixel count estimates that are much closer to the change validation dataset by
almost a factor 9 as shown in Table 4.

However, the picture is slightly more contrasted when assessing area statistics for
member states or a group of member states for smaller countries as illustrated in Figure 8.
The harmonized imperiousness change 2018 dataset is still much closer to the reference
data overall except for three countries/a group of countries (Benelux + Denmark, Czech
Republic + Slovakia and Germany) for which the CLMS IMD2018 dataset is closer to the
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reference data. Otherwise, the harmonized imperiousness change 2018 dataset is always
closer to the reference data and 12 out of 22 countries/country groupings are in fact within
the 95% confidence intervals of the reference data. This was true for only 4 countries in case
of the CLMS IMD2018 dataset. These results would suggest that even though the CLC+
artificial class (used as a basis for constructing the harmonized imperiousness change 2018
dataset) is more accurate overall than the IMD2018, this is not always the case locally and
CLC+ appears to be substantially overestimating sealed areas in the three countries/groups
of countries for which the IMD2018 dataset is closer. In all other cases, the IMD2018 is
underestimating sealed areas as compared with the reference dataset. This considers that
the level of change is still relatively small.

Table 4. Assessment of differences in area (km2) between CLMS IMD and harmonized imperiousness
change status layers and CLMS Validation data for the EEA38 countries and the UK (Red and Green,
respectively, indicate the worst and best results).

(km2) 2006 2009 2012 2015 2018

CLMS IMD pixel count estimate 82,289 83,872 85,410 86,453 108,996

Harmonized sealing time series
pixel count 169,969 171,684 173,311 174,437 175,664

CLMS validation estimate and 95%
confidence interval (CI) n/a 158,370 ± 4247 159,212 ± 4262 161,382 ± 4275 160,434 ± 7495

Second CLMS validation estimate
and 95% CI 157,177 ± 4242 157,659 ± 4242 160,544 ± 4271 159,258 ± 7492 n/a

Status layer blind validation dataset 170,488 171,035 172,162 174,552 181,093

Difference with upper/lower limit of
95% CI for CLMS IMD 70,646 69,545 69,540 65,313 43,943

Difference with upper/lower limit of
95% CI for harmonized
imperviousness change

8550 9067 9837 8780 7735

With respect to change areas between 2015 and 2018 for which there was a major
discontinuity in the IMD dataset as illustrated in Table 2, the harmonized imperiousness
change dataset also appears to provide a better characterization of gain as illustrated in
Table 5. The total gain area resulting from the adjustment procedure resulted in 1297 km2,
close to the estimated 1273 km2 estimated based on the validation data, as opposed to
3806 km2 from the IMCC dataset.

Table 5. Comparison between imperviousness gain area estimates from CLMS validation data, initial
CLC+ BB/IMCC layers and revised harmonized CLC+ BB/IMCC layer. (Red and amber, respectively,
indicate large and smaller difference with upper limit of 95% CI).

km2 2006–2009 2009–2012 2012–2015 2015–2018

CLMS validation 1197 ± 251 1553 ± 509 1226 ± 369 1176 ± 314

Initial CLC+ BB/IMCC 1715 1626 1126 3808

Difference with upper limit of 95%
confidence interval 267 0 0 2318

Harmonized imperviousness change 1716 1626 1126 1297

Difference with upper limit of 95%
confidence interval 267 0 0 0

The gain areas are now in line with the validation data for 2015–2018. It was already
the case for 2009–2012 and 2012–2015, but the status layers for 2015, 2012, 2009 and 2006
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should now exhibit less omission errors. The 2006–2009 layer is slightly overestimating
gains and would benefit from a similar approach to that of the initial 2015–2018 IMCC,
but the difference is not as large (268 km2 versus 2316 km2). These results are broadly
confirmed when disaggregated at the level of countries/groups of countries as illustrated
in Figure 9 with a few exceptions.

Figure 8. Percentages of impervious areas for large countries and groups of countries from EEA38
+ UK for the validation reference, imperviousness degree and harmonized imperiousness change
datasets for 2018 with the 95% confidence interval for the reference data.

Overall, the harmonized imperiousness change time series is much closer to the refer-
ence dataset with exceptions in Türkiye, Bulgaria, Austria, Switzerland and Liechtenstein
and Iceland for which the CLMS IMD dataset is closer. In all other cases, the harmonized
imperiousness change dataset is much closer to the reference data with 16 out of 22 coun-
tries/groups of countries within the 95% confidence interval range against only 8 out of 22
for the CLMS IMD dataset. This should also consider that the confidence intervals are quite
large due to the relatively small number of samples classified as change for most coun-
tries/groups of countries. Nevertheless, this may suggest that the discriminating function
applied to correct the 2015–2018 IMCC layer based on distance does not always appear
to be sufficiently accurate and alternative approaches based on using confidence layers
(which were not at our disposal) or a more sophisticated procedure based on Machine
Learning/Deep Learning should further improve the quality of the results.
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Figure 9. Total gain in impervious areas for countries/group of countries for 2015–2018 from EEA38
+ UK for validation reference, CLMS IMD and harmonized imperiousness change datasets for 2018
with 95% confidence interval for reference data.

5. Conclusions and Recommendations

The development and application of a harmonization methodology based on the
combination of CLMS datasets with available reference sample observations were applied
to the IMD dataset for the purpose of developing robust environmental indicators. The
resulting datasets provide a much more temporally and spatially consistent time series
than the original CLMS dataset:

• The level of omission errors is reduced for all status layers.
• The level of commission errors is slightly increased but remains low and at a similar

level to the level of omission errors, meaning that area statistics as extracted from the
datasets should be close to reality, which was not the case previously.

• The discontinuity in the time series between 2015 and 2018 is now resolved with
changes in line with the expected level of increase over EEA38 + UK.

The use of CLC+ BB to improve the CLMS IMD status layers was a major improvement,
but there are still some areas/countries for which the CLMS IMD areas appear closer to
the reference data. Therefore, some more sophisticated data fusion approaches should be
applied combining the best of the two datasets. The approach developed in this study is
applicable to other datasets whenever spatio-temporal consistency is required and can be
applied as long as suitable reference data (i.e., observations obtained from a probabilistic
sample) are available to calibrate the changes.

Even if the area statistics from the harmonized change layer are more reliable, there is
a substantial amount of error for both omission and commissions and the future production
of more accurate 10 m change layers should be prioritized as part of the CLMS production.
More sophisticated approaches based on confidence layers, Machine Learning/Deep Learn-
ing methods, image-to-image change detection methods and/or manual enhancements
if required should be applied. Status layers should be produced from the combination of
the previous status layer with the new change detection and not the other way around,
meaning that the change layer should be produced first and detailed product specifications
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should be defined that ensure that the product is accurate but also that there is a balance
between omission and commission errors. In addition, the historical dataset should be
reproduced every time that a new status layer becomes available as long as its quality is
improved. The historical layers can easily be reprocessed based on the accounting approach
starting from the most recent layer and integrating the change layers for each time period
as done in this study.

In addition, a reliable reference dataset should be produced and made available to
provide a basis for calibrating the production of the change and status layer. The LUCAS
dataset has the potential to provide this, but the specifications of LUCAS should be more
closely related to those of the CLMS IMD layer in terms of the thematic definition as well
as spatial support. Finally, the issue of calibrating EO-based layers at a more disaggregated
level such as NUTS (Nomenclature des Unités Territoriales Statistiques/Nomenclature of
Territorial Units for Statistics) level 3 for Europe is necessary to produce relevant statistical
indicators and the development of small-area estimators as described in [37] should be
considered in the production of a suitable reference dataset.
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Abstract: Reasonable land use planning and management efficiently allocates land resources, pro-
motes socio-economic development, protects the ecological environment, and fosters sustainable
development. It is a crucial foundation for achieving harmonious coexistence between humans
and nature. Optimizing land use is key to land use planning and management. Four scenarios are
established: an economic development scenario (EDS), an ecological protection scenario (EPS), a
natural development scenario (NDS), and a coordinated development scenario (CDS). This study
simulates land use patterns under these scenarios through the coupling of the GMOP and PLUS
models. It analyzes the land use efficiency transformation index, landscape ecological index, com-
prehensive land use benefits, and ecosystem service value (ESV) for each pattern. The optimal land
use pattern is determined by balancing these factors. The results indicated that under the CDS,
the areas of wasteland, grassland, forest land, water bodies, construction land, and unused land in
Lvliang City were 6724.29 km2, 6664.74 km2, 6581.84 km2, 126.94 km2, 1017.33 km2, and 0.42 km2,
respectively. This represented the optimal land use plan for Lvliang City. The plan minimized human
interference with the landscape pattern, achieved the highest land use efficiency transformation index,
and reached a reasonable balance between land use benefits and ESV. The research findings provide
valuable insights and decision support for regional land use planning, territorial space planning, and
related policy formulation.

Keywords: land use optimization; MOP model; PLUS models; ecosystem service values; Lvliang city

1. Introduction

China possesses extensive land resources; however, the significant population leads to
a limited availability of land per capita. Additionally, inefficiencies in land use structures
are evident, manifesting as low land use efficiency, loss of farmland, and an imbalance
between urban and rural land distribution [1–3]. The land use structure illustrates the
distribution and proportion of diverse land use types within a defined area, thereby reflect-
ing the composition of land designated for various purposes in a specific spatial context.
An inadequate land use structure directly hinders regional economic development and
disrupts the harmonious functioning of ecosystems, thereby affecting the sustainability
of the region [4]. Land use structure optimization involves the utilization of scientific
methodologies to improve the allocation and management of finite land resources. This
process requires the consideration of multiple development objectives and strives to attain
an optimal balance among different regions and land uses. By doing so, the efficiency of
land resource utilization is enhanced, the ecological environment is preserved, the quality
of life for residents is improved, and sustainable development is promoted across economic,
social, and environmental dimensions [5,6]. With the rapid progression of urbanization,
land utilization and development are essential components of urban construction. Nev-
ertheless, the intensification of land development inevitably exerts a negative impact on
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the environment. Activities such as deforestation, the encroachment on farmland, over-
grazing, and coal mining significantly disrupt the balance between economic advancement
and environmental conservation [7–10]. Severe impacts on the ecosystem are inevitably
caused by inefficient land use, and significant depletion of ESV is likewise occasioned by
excessive land development and inappropriate land use type conversions. The conflict
between economic development and environmental preservation is mitigated through the
optimization of land use structures and layouts. This approach simultaneously addresses
multiple objectives, such as promoting economic growth, ensuring ecological protection,
and fostering social harmony, thus contributing to sustainable regional development.

There has been extensive research on land use optimization both domestically and
internationally. Land use structure optimization is primarily divided into quantitative
structure optimization and spatial layout simulation optimization [11,12]. The main
tools for quantitative structure optimization include GM (1, 1), system dynamics models,
and Markov chains. However, these models have drawbacks such as high data require-
ments, simple model assumptions, sensitivity to external factors, and limited prediction
ranges [13–15]. The GMOP model, on the other hand, can simultaneously consider mul-
tiple objectives and factors, has strong data processing capabilities and flexibility, and
can simulate land use changes under different policy implementations, providing more
scientific and reasonable predictions for land use planning [16,17]. Many scholars have
conducted extensive research on using GMOP for land use structure optimization. For
example, Zhu et al. [18] developed a multi-objective, constrained regional land use structure
model known as PLUS-GMOP, in which three scenarios were hypothesized. This model
facilitated the selection of the optimal land use strategy for the Wuhan metropolitan area,
providing an innovative technical framework for the sustainable development of large
urban regions; Li et al. [19] developed a grey linear programming optimization model
designed to improve the land use structure in the Sichuan-Yunnan ecological barrier region.
This model aimed to maximize ecological value while also enhancing economic benefits,
utilizing the current land use conditions in the study area. This approach offered a clear
methodology for optimizing ecological service value within large ecological functional
zones; Mo et al. [20] employed the gray linear multi-objective programming approach,
framed within the context of production–living–ecological space (PLES), to develop the
GMOP-Markov-PLUS model. This model effectively predicted future land use patterns
across various scenarios. Additionally, it proposed three distinct long-term land use strate-
gies for the study area, which included considerations for ecological conservation, economic
growth, and sustainable development prospects.

Multi-objective linear programming effectively addresses the quantitative aspects
of land use optimization, generating appropriate schemes for land use quantities. The
predominant models for simulating land structure optimization scenarios currently en-
compass the CA–Markov model [21], the CLUES model [22], and the FLUS model [23].
Nonetheless, these models are encumbered by challenges such as low spatial resolution,
omission of local details, inadequate local adaptability of model parameters, and an absence
of dynamic adaptability. While they attain high precision in simulations of small-scale
land use, their performance is diminished in larger-scale simulations. The PLUS model
primarily functions as a simulation tool for forecasting future alterations in land use. It
integrates a module for analyzing land expansion strategies along with a cellular automata
model that is influenced by various classes of stochastic patch seeds. It is distinguished
by its user-friendly interface and simplicity of operation. The PLUS model is particularly
effective for large-scale regional land use simulations. Its integration with GIS enables a
detailed analysis of spatial heterogeneity, characteristics, and temporal dynamics within
land use structures. As a result, this integration significantly improves the optimization of
spatial configurations in land use patterns [24,25].

As urban development progresses and various social factors drive change, the pattern
of land use is becoming increasingly complex and uncertain, making the study of land
use structure optimization a hot topic. Zhong et al. [26] combined the GMOP and PLUS
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models, considering the existing land use layout and policy constraints, and concluded that
the land pattern under the balanced development (BD) scenario ensured economic growth
without compromising ecological benefits. Shu et al. [27] employed the ESV, GMOP, and
PLUS models to forecast land use changes and ESV across various development scenarios.
Their findings indicated that the sustainable development (SD) scenario was likely more
appropriate for future regional advancements. While the ESV was marginally lower
compared to the ecological land protection (ELP) scenario, there was a notable increase
in economic benefits. Luan et al. [28] conducted simulations of land use patterns across
different scenarios by integrating the NSGA-II and PLUS models. Their analysis revealed
that the most significant variations among the scenarios were predominantly observed
in the areas designated for forest land and cultivated land. Meng et al. [29] utilized a
combination of the GMOP and PLUS models to simulate land use configurations across
four distinct scenarios. Their analysis focused on changes in ecological benefits, economic
advantages, and carbon emissions, enabling the identification of the most favorable land
use arrangement.

Previous studies primarily used the PLUS model to simulate land use configurations
under various development scenarios, and then conducted a basic analysis of ecosystem
service value (ESV) and land use benefits to identify the optimal land use structure. How-
ever, these studies did not examine the conversion efficiency between ESV and land use
benefits as land use patterns evolved, nor did they account for the impact of changing land
use patterns on landscape configurations. This study is based on the coupling of the GMOP
and PLUS models, establishing different scenarios and constraints to predict the land use
structure of Lvliang City in 2035. A land use benefit conversion index is constructed to
explore the conversion efficiency between land use benefits and ESV during the transi-
tion from the current land use pattern to future patterns. The sustainable development
potential is evaluated under various development scenarios, and the optimal land use
structure for Lvliang City is determined through a comprehensive analysis of the land
use benefit conversion index, land use benefits, landscape pattern indices, and ESV across
different scenarios.

2. Study Area and Data Sources

2.1. Study Area

Lvliang City, a prefecture-level city under the administration of Shanxi Province,
boasts abundant mineral resources and favorable metallogenic conditions, with coal, iron,
and dolomite being the primary minerals (Figure 1). It is distinguished by multiple metal-
logenic epochs, extensive distribution, varied mineral types, significant reserves, superior
quality, and ease of extraction. Spanning latitudes from 36◦43′ to 38◦43′ North and longi-
tudes from 110◦22′ to 112◦19′ East, Lvliang City is adjacent to Taiyuan and Jinzhong in the
east, separated from Shaanxi Province by the Yellow River to the west, and borders Linfen
and Xinzhou to the south and north, respectively, with a total area of 21,000 square kilome-
ters. The city possesses a favorable climate, with local economic development primarily
dependent on activities such as coal mining and agricultural cultivation. However, human
activities like mineral resource extraction pose a threat to the ecological environment. To
address the conflict between local economic growth and environmental protection, Lvliang
City was chosen as the study area to optimize a land use pattern that considers both
economic advancement and ecological preservation.
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Figure 1. Map of the study area.

2.2. Data Sources

The data utilized in the study primarily consisted of spatial and textual information.
Spatial data includes land use, topographical, and meteorological datasets, while textual
data encompasses the Lvliang Statistical Yearbook (2017–2023) and the Land Spatial Plan-
ning (2021–2035) datasets. Based on the relevant classification criteria, the present land use
data were classified into six main categories. Processing of the spatial data is conducted
using the ArcGIS 10.8 platform, with further details provided in Table 1. The data em-
ployed in this study were sourced from reputable websites. Extensive research carried
out by numerous scholars utilizing these datasets has confirmed their scientific rigor and
objectivity, establishing their relevance for investigations into land use optimization.

Table 1. Data sources and description.

Data Type Data Content Data Description Data Source

Land Use Type Land use monitoring data for
Lvliang City, 2005, 2010 and 2020

The spatial resolution is 30 m × 30 m,
and it was divided into six categories
according to the purpose of the study

https://www.resdc.cn/,
accessed on 16 March 2024.

Topographic Data

Soil Type Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

DEM Initial resolution of 250 m × 250 m https://www.resdc.cn/,
accessed on 16 March 2024.

Slope Initial resolution of 250 m × 250 m Generated by DEM

River Data vector data https://www.webmap.cn/,
accessed on 16 March 2024.

Meteorological Data
Rainfall Data Image element size is 1000 × 1000 https://www.resdc.cn/,

accessed on 16 March 2024.

Temperature Data Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.
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Table 1. Cont.

Data Type Data Content Data Description Data Source

Social Data

GDP Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

Population Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

County Government Locations Image element size is 1000 × 1000 https://www.resdc.cn/,
accessed on 16 March 2024.

Primary roads
Secondary roads

Tertiary roads
Road vector data https://www.webmap.cn/,

accessed on 16 March 2024.

3. Design Framework and Methodology

3.1. Data Processing
3.1.1. Research Framework

The research methodology presented in this paper included three main components
(Figure 2):

(1) Prediction of Land Use Quantity Structure: The prediction of land quantity structure
involves forecasting the proportions of different land types within a specific area
in the future. Four different development scenarios are initially set, as follows: a
natural development scenario (NDS), an economic development scenario (EDS), an
ecological protection scenario (EPS), and a coordinated development scenario (CDS).
The prediction of land use structure under the NDS is based on the land use data of
Lvliang City from 2005 and 2020. Using the Markov Chain model, the land area for
each type of land use in Lvliang City in 2035 is predicted. This process is implemented
in the PLUS model. The EDS and EPS fall under single-objective planning problems,
as each of these scenarios requires maximizing either economic or ecological benefits
as the sole objective. By calculating and predicting the economic and ecological benefit
coefficients for each land type in 2035 and setting constraints for each type of land
use, the solution is achieved using LINGO20.0 software. LINGO, developed by Lindo
System, Inc. (Chicago, IL, USA) in the United States, is an interactive solver for both
linear and general optimization. It effectively addresses nonlinear programming
challenges in addition to solving various linear and nonlinear equations, making it a
highly versatile tool and an optimal choice for tackling complex optimization models.
The CDS falls under multi-objective planning problems, solved using the NSGA-II.

(2) Simulation of Land Use Structure Layout: Based on the predicted land use quantity
structures under different scenarios, and using the 2020 land use data as the baseline,
the spatial layout of land use in Lvliang City under various future development
scenarios is simulated.

(3) Analysis of Land Use Layout: Based on the predicted areas of each land type un-
der different scenarios, the benefits of land use are calculated using ecological and
economic benefit coefficients. The ESV is calculated using the Xie Gaodi equivalent
factor method. In this study, four landscape pattern indices are selected to analyze
the land use layout under different scenarios. These indices include the aggregation
index (AI), the largest patch index (LPI), the landscape division index (DIVISION),
and the Shannon Diversity Index (SHDI), all calculated using Fragstats4.2 software.
These landscape pattern indices reflect the aggregation and dispersion states of the
landscape under different development scenarios. Additionally, a land use benefit
conversion index is constructed to analyze the efficiency of conversion between ESV
and land use benefits. Finally, a comprehensive analysis of land use benefits, ESV,
landscape pattern indices, and land use benefit conversion indices under different
scenarios is conducted to determine the optimal land use structure.
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Figure 2. Diagram of the research idea.

3.1.2. Verification of Simulation Accuracy

The spatial distribution of land use in Lvliang City in 2020 was obtained by simulat-
ing land use data from 2010 (Figure 3). The analysis indicated a strong correspondence
between the land use pattern simulated for 2020 by the PLUS model and the actual land
use conditions. The arrangement of the six simulated land use categories demonstrated
significant agreement with real-world observations. The model’s accuracy was evaluated
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by comparing the simulated outcomes with the actual 2020 land use data, resulting in a
Kappa coefficient of 0.88 and an overall accuracy of 91.60%. These findings underscore the
high precision of the PLUS model, confirming its effectiveness in forecasting future land
use changes within the study area.

Figure 3. Comparison of land use modeling with actual data for 2020.

3.2. Methodology
3.2.1. The GMOP Model

The GMOP model is developed by integrating the GM (1, 1) model with the MOP
model. Within this framework, the GM model predicts the eco-efficiency and economic
coefficients of potential land use types, thereby establishing a foundation for the formu-
lation of the objective function. Meanwhile, the MOP model addresses multi-objective
optimization challenges across different scenarios [30], yielding the area allocated to each
land use type by the year 2035 under various conditions. The MOP model, a pivotal model
in the study of land use optimization, is predicated on constrained data and objective laws
to facilitate scientifically grounded predictions. It provides a method for optimizing one or
multiple objectives [31]. The detailed model is delineated below:

F1(x) = max
n

∑
j=1

ajxj (1)

F2(x) = max
n

∑
j=1

bjxj (2)

s.t =

⎧⎨
⎩

n
∑

j=1
cijxj = (≥, ≤)di (i = 1, 2, 3 . . . , m)

xj ≥ 0 (j = 1, 2, 3 . . . , n)
(3)

where F1(x) and F2(x) denote the functions for land economic benefits and ecological
benefits, respectively. Here, xj represents the area allocated to each land use type, while n
indicates the total number of variables. The coefficients aj and bj relate to the economic and
ecological benefit coefficients for each respective land use type. The notation “s.t” indicates
the constraints imposed on land use for each category, with cij representing the coefficient
associated with the j-th variable in the i-th constraint, and m signifying the total number of
constraint conditions. Finally, di pertains to the i-th constraint condition.

3.2.2. The PLUS Model

The PLUS model, operating as a grid-based cellular automaton (CA), is used to
simulate land use and land cover (LULC) changes. This model integrates a land expansion
analysis strategy (LEAS) within the CA framework, enabling the exploration of different
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land use transitions. It supports the creation of various scenarios to forecast and analyze
future land use dynamics [32].

(1) Adaptation Probability. The LEAS module incorporates a stochastic sampling mech-
anism designed to reduce computational costs while simultaneously utilizing the
random forest algorithm to assess the development probabilities associated with
various land use types. The formula is presented as follows:

Pd
i,k(X) =

M
∑

n=1
I[hn(X) = d]

M
(4)

where M denotes the total count of decision trees, X represents the vector that com-
prises the driving factors, hn(X) indicates the predicted land use type generated by
the n-th decision tree, and d takes on a value of either 0 or 1.

(2) Adaptive Inertia Coefficient. This coefficient is adaptively adjusted during repeated
runs, based on the discrepancy between the expected land type data and the actual
land type data. This mechanism effectively mitigates the uncertainties and com-
plexities associated with natural processes and human activities involved in land
use conversion. Consequently, it improves the accuracy of the simulation model
and attains the intended outcomes regarding land use types [33]. The formula is
as follows:

Dt
k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dt−1
k

(∣∣∣Gt−1
k

∣∣∣) ≤
∣∣∣Gt−2

k

∣∣∣)
Dt−1

k × Gt−2
k

Gt−1
k

(
0 > Gt−2

k > Gt−1
k

)
Gt−1

k × Gt−1
k

Gt−2
k

(
Gt−1

k > Gt−2
k > 0

) (5)

where Dt
k signifies the inertia coefficient for the k-th land use type at time t. Addition-

ally, Gt−1
k and Gt−2

k represent the discrepancies between the actual land amount and
the demand at times t − 1 and t − 2, respectively.

(3) Optimization of Land Use Layout. Twelve factors, encompassing elevation, slope,
population, soil type, GDP, road networks, rivers, and distance to the county gov-
ernment seat, are identified as driving forces for land use change. Concurrently,
water bodies are designated as restricted areas during the optimization process. The
precision of the model is assessed through two primary parameters: overall accuracy
and the Kappa coefficient.

3.2.3. Constructing the Objective Function

(1) Economic Benefit Function. The economic advantages of land are primarily defined
by the economic output per unit area for each category of land. This study utilizes
statistical yearbooks from Luliang City spanning the years 2017 to 2023. The output
for cultivated and forest land is indicated by the values of agricultural and forestry
production, respectively. The output for grassland is denoted by the value derived
from animal husbandry, while the output for aquatic areas is represented by the fishery
output value. Furthermore, the economic impact of construction land is demonstrated
through the output values generated by the secondary and tertiary industries.

(2) Ecological Benefit Function. The ecological benefit coefficients of land are primarily
assessed using the equivalent factor method, as suggested by researchers such as
Xie Gaodi. This methodology primarily captures the ESV provided by land. Since
the supply services of land ecosystems are already incorporated into the economic
benefits, the ecological advantages encompass the regulatory, supporting, and cultural
services of ecosystems. This study employs the terrestrial ESV equivalent factor
method, as recommended by scholars, including Xie Gaodi [34], for the purpose of
evaluation. Additionally, the equivalent factor table is adjusted based on the ratio of
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the NPP level in Lvliang City compared to the national average [35]. Data regarding
the prices of local food crops and their yield per unit area are obtained by consulting
the Lvliang Statistical Yearbook from 2016 to 2022. The ESV is quantified at one-
seventh of the economic value linked to grain production per unit area of farmland.
This value encompasses a range of ecosystem services, including supply, regulatory,
supporting, and cultural services. Acknowledging that supply services are included
within economic benefits, ecological benefits are delineated by regulatory, supporting,
and cultural services. Annual coefficients for land ecological benefits are calculated,
and these coefficients are projected for Lvliang City in 2035 using the GM (1: 1) model.
To ensure the reliability of the revised eco-efficiency coefficients for land, a sensitivity
index is employed to evaluate how variations in these coefficients affect the total
ESV for each land type. The sensitivity of ESV to these coefficients is evaluated by
modifying the eco-efficiency coefficients for each land type by ±50 percent. The
formula is as follows:

Cs =
(E2 − E1)/E1

(V2i − V1i)/V1i
(6)

where CS denotes the sensitivity index that measures the response of a specific land
type to the value of land ecosystem services. E1 and E2 represent the ESV in Lvliang
City prior to and following the adjustment, respectively. V1i and V2i indicate the
ecological benefit coefficients for the i-th land type before and after the adjustment,
respectively. A CS value of less than 1 indicates that the ESV is inelastic regarding the
ecological benefit coefficients of that land type. Lower CS values suggest a diminished
responsiveness of the assessment of land ESV to the precision of the ecological benefit
coefficients, thereby indicating a higher degree of rationality in the coefficients [36].
Relevant parameters are shown in Tables 2 and 3.

Table 2. Parameters of economic and ecological benefits per unit area of land use type
(unit: RMB/km2).

Efficiency Farmland Forest Grassland Waterbody Construction Land Unused Land

economic efficiency 808.48 167.74 247.83 44.76 164,272.42 0.01
eco-efficiency 33.88 215.17 92.42 1316.57 0 2.47

Table 3. Sensitivity coefficients for each land use type.

Year Farmland Forest Grassland Waterbody
Construction

Land
Unused

Land

2005 0.0043 0.0268 0.0096 0.0036 0 0.0001
2020 0.0015 0.0093 0.0037 0.0011 0 0.0001

3.2.4. Restrictive Condition

The constraints are primarily established in accordance with a series of land use poli-
cies and regulations promulgated by Lvliang City and Shanxi Province, including but not
limited to “The Overall Planning of Lvliang City’s Territorial Space (2021–2035)”, the State
Council’s approval of “The Territorial Spatial Planning of Shanxi Province (2021–2035),”
and “The Action Plan for Lvliang City to Create a National Forest City”. These constraints
delineate a series of conditions for socio-economic development and ecological protection,
as specified in Table 4.
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Table 4. Constraint information.

Constraint Prerequisite Foundation

Total land area X1 + X2 + X3 + X4 + X5 + X6 = 21,115.57 km2 Total land area constraint.

Farmland 4165.34 km2 ≤ X1 ≤ X1
+, X1

+ is the area of
farmland in Lvliang City in 2020

The Lvliang City Territorial Spatial Master Plan (2021–2035)
calls for farmland holdings of 4165.342 km2.

Forest 6334.67 km2 ≤ X2 ≤ 7528.98 km2
Action Programme for the Creation of a National Forest City in
Lvliang City: Lvliang citywide forest cover of more than 30 per

cent, which is less than 1.1 times the current value in 2020.

Grassland 6453.09 km2 ≤ X3 ≤ 6906.55 km2 Greater than projected under natural development conditions
and less than 1.1 times the current value in 2020.

Waterbody 121.17 km2 ≤ X4 ≤ 129.76 km2 Greater than the current value in 2020 and less than the
projected value of natural development.

Construction land 898.41 km2 ≤ X5 ≤ 1167.94 km2

The State Council’s approval of the “Shanxi Province Land
Space Planning (2021–2035)” requires that the expansion of the
urban development boundary be controlled within 1.3 times
the size of the urban construction land based on 2020, with

1.3 times the existing construction land in Lvliang City as the
upper boundary, and the lower boundary as the status quo

value in 2020.

Unused Land 0.37 km2 ≤ X5 ≤ 0.52 km2 Greater than the current value in 2020 and less than the
projected value of natural development.

4. Results

4.1. Analysis of the Quantitative Structure of Land Use

According to the statistical data presented in Table 5, the NDS indicated a substantial
increase in built-up land, which rose by 55.05% compared to 2020. Furthermore, grassland,
water bodies, and unused land experienced increases of 27.78%, 7.09%, and 39.13%, respec-
tively. In contrast, farmland and forest land decreased by 4.39% and 5.43%, respectively,
compared to 2020. The NDS encompassed land use changes from 2005 to 2020, which
were used to predict the areas of various land types in 2035. During this period, the areas
of farmland and forest land decreased, while the areas of built-up land, grassland, water
bodies, and unused land increased. Consequently, the anticipated changes in land areas by
2035 reflected the trends observed between 2005 and 2020. In this context, the unrestricted
expansion of built-up land encroached upon both farmland and forest land, highlighting a
distinctly unreasonable land use strategy.

Table 5. Changes in land quantity structure under different development scenarios (unit: km2).

Land Type 2020

Development Scenarios

Natural
Development

Economic
Development

Ecological
Protection

Coordinated
Development

Farmland 6972.40 6666.23 6972.40 5651.49 6724.29
Forest 6844.53 6473.01 6334.67 7528.98 6664.74

Grassland 6278.68 6453.08 6519.02 6906.55 6581.84
Waterbody 121.17 129.76 121.17 129.76 126.94

Construction land 898.41 1392.96 1167.94 898.41 1017.33
Unused Land 0.37 0.52 0.37 0.37 0.42

In the EDS, forest land experienced a notable reduction, declining by 7.45% relative
to 2020. Areas set aside for cropland, water bodies and unused land remain unchanged.
In contrast, grassland saw an increase of 3.83%, while construction land expanded signifi-
cantly by 30%. Construction land is a vital component supporting economic development,
hence the substantial increase. Lvliang City’s agricultural economy is well-developed, so
under the EDS, efforts were made to maintain farmland. Additionally, a slight increase in
grassland area was observed, attributed to the high output value of animal husbandry in
Lvliang City. In this development scenario, although the growth of built-up land slowed,
it continued to increase at an unsustainable rate. The area of farmland did not exhibit
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a significant decrease; however, the area of forest land declined markedly, which posed
serious challenges to ecological protection efforts.

In the EPS, the farmland area underwent a significant decrease of 18.95% compared to
2020. In contrast, both forest land and grassland increased by 10% relative to the same year.
The areas designated for construction land and unused land remained stable, while water
bodies experienced an increase of 7.09%. As demonstrated in Table 2, forest land and water
bodies were associated with greater ecological benefits. Consequently, under the EDS, these
areas were expanded, while construction land and unused land, which have low ecological
benefits, were maintained at their existing levels. In comparison to economic benefits, the
ecological benefits of farmland are negligible, leading to its substantial reduction. In this
scenario, although the expansion of built-up land area was minimal, substantial increases
were noted in both forest and grassland areas. Conversely, the cultivated land area faced a
notable decline. Considering the importance of construction and agricultural lands for the
economic development of Lvliang City, this development scenario, although advantageous
for ecological preservation, was evidently insufficient to support the local economy.

In the CDS, both farmland and forest land areas underwent slight reductions, decreas-
ing by 3.69% and 2.70%, respectively, relative to 2020. Conversely, grassland and water
body areas demonstrated increases of 4.61% and 4.55%, respectively. The area allocated
for construction experienced a significant growth of 11.69%, whereas the extent of unused
land expanded by 12.54%. When compared to the EDS, the increase in construction land
was more modest, and the areas of grassland and water bodies saw modest increases.
In comparison to the EPS, the decrease in farmland was less substantial, and the change
in forest land area was minimal. Consequently, the land use pattern established in this
development scenario effectively addressed the requirements for economic growth while
also reducing the conflict between economic development and ecological preservation.

4.2. Simulation Analysis of Spatial Layout of Land Use Structure

The land-use pattern simulation of the four scenarios is shown in Figure 4. In the NDS,
a significant increase in construction land was observed, primarily reflecting an outward
expansion from the city center in all directions. The most pronounced growth occurred in
the southern region, where forested areas and farmland were notably reduced to accommo-
date this expansion. Additionally, the southeastern sector experienced considerable growth
in construction land, mainly resulting from the encroachment upon farmland. Significant
reductions were observed in both forest and farmland areas, whereas the grassland area
experienced an increase, predominantly concentrated in the northern region, characterized
by the encroachment on forest land.

In the EDS, a rapid expansion of construction land was observed, predominantly char-
acterized by an outward extension from the city center in all directions. The southern region
of Lvliang City experienced particularly significant growth in construction land, largely at
the expense of forested areas. Conversely, the southeastern region did not exhibit notable
changes in construction land, as it was primarily composed of farmland, which remained
stable under this scenario. Consequently, no substantial expansion of construction land
occurred in that area. Additionally, an increase in grassland was documented, especially
in the central-western and western regions, with the latter showing a more pronounced
growth, largely due to encroachment on forested land.

In the EPS, notable increases were recorded in both forest and grassland areas. The
northwestern region experienced substantial expansion of forest land, which was character-
ized by diffusion in various directions. Similarly, the central-eastern area also saw a rise
in forest land, primarily due to encroachment upon farmland. Grassland expansion was
predominantly concentrated in the northwest, largely at the expense of agricultural fields.
Overall, the area of farmland diminished significantly, with major reductions documented
in the northwest and central-eastern regions, attributed to the encroachment of both forest
and grassland. In contrast, the southeastern region did not display significant contraction
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in farmland. Additionally, the area designated for construction remained stable, while the
water body area increased.

Figure 4. Land use simulation of Lvliang City under different development scenarios in 2035.

In the CDS, an expansion of construction land was observed, predominantly marked
by the urban area’s extension in multiple directions. In the southern region, although
construction land expanded, the pace of growth was relatively gradual. Importantly, there
were no substantial decreases in the areas designated for arable or forest land. Conversely,
an increase in grassland was noted in both the central and northern regions.

Figure 5 indicates that the EPS demonstrated the highest LPI, whereas the EDS
recorded the lowest LPI. Generally, a higher LPI indicates the presence of a greater number
of large patches in the landscape, with less human disturbance to natural landscapes. The
LPI for the CDS was more like that of 2020 and exceeded the values observed in both
the NDS and EDS. This finding suggests that the landscape in the CDS experienced less
impact from human activities than that in the EDS. This result indicated a greater degree of
landscape patch aggregation in the CDS relative to the EPS. With regard to the SHDI, the
NDS demonstrated the highest value. In contrast, the CDS was found to be comparable
to both the EDS and the land use pattern of 2020, while surpassing the EPS. This finding
indicated that the CDS supported greater species diversity. Regarding the DIVISION, no
notable differences were observed across the various development scenarios. Overall, in
the CDS, the land use pattern was characterized by lower levels of human disturbance. The
landscape patches were more cohesively clustered, biodiversity was richer, and the quality
of the ecological environment was higher.

178



Land 2024, 13, 1335

Figure 5. Landscape index for different development scenarios in Lvliang, 2035. (a) Largest patch
index; (b) Aggregation index; (c) Shannon Diversity Index; (d) Landscape division index.

4.3. Land Use Benefits and ESV

Using the projected economic and ecological benefit coefficients for land use in Lvliang
City in 2035, as detailed in prior sections, the benefits of land use across different develop-
ment scenarios for that year are calculated. The ESV equivalents from the years 2016 to 2022
were applied, and the GM (1: 1) model was used to predict the ESV equivalents for Lvliang
City in 2035. These predictions, along with the updated equivalent factor table, facilitated
the calculation of ESV for the simulated land use patterns across different scenarios in 2035.

As indicated in Table 6, the NDS yielded the highest land use benefits; however, the
corresponding ESV were comparatively low. In contrast, the EDS demonstrated increased
land use benefits but recorded the lowest ESV. Conversely, the EPS achieved the highest
ESV, albeit with the lowest land use benefits. This outcome, while satisfying ecological pro-
tection standards, proved detrimental to economic development. The CDS demonstrated
both high land use benefits and high ESV, capable of balancing economic growth with
environmental quality.

Table 6. Land use benefits and ESV under different scenarios in 2035 (Unit: million yuan).

Development Scenario Land Use Benefits Ecosystem Services Values

Natural Development Scenario 23,929.02 263.08
Economic Development Scenario 20,254.13 260.87
Ecological Protection Scenarios 15,775.43 286.65

Coordinated Development Scenario 17,553.64 268.61
2020 Land Use Pattern 15,837.95 270.14
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Numerous studies indicate that changes in land use patterns within a region signifi-
cantly affect ESV and land use benefits [37,38]. Improvements and optimizations in land
use enhance the capacity for ecosystem services. However, during the transition of land
use patterns, economic development and ecological protection within a region often appear
mutually exclusive, with economic development frequently occurring at the expense of
the environment. To examine the economic benefits that can be obtained at the cost of
ecological benefits, this study uses land use benefits to represent economic benefits and ESV
to represent ecological benefits. An index for land use benefit conversion (I) is established
to explore the conversion efficiency between land use benefits and ESV when land use
patterns transition to different scenarios in 2020. A larger index (I) indicates that for each
unit of ecological benefit sacrificed, greater economic benefits are achieved, suggesting
that the transformation of land use patterns in these scenarios has greater developmental
potential and is more conducive to sustainable development. The formula is as follows:

I =
∣∣∣∣ LUE2 − LUE1

E4 − E3

∣∣∣∣ (7)

where LUE2 denotes the land use benefits associated with various development scenarios,
while LUE1 reflects the land use benefits derived from the 2020 land use pattern as projected
for 2035. Similarly, E4 indicates the ESV corresponding to different development scenarios,
and E3 represents the ESV of the 2020 land use pattern projected for 2035.

Figure 6 illustrates that the conversion rate associated with the NDS was the highest.
However, this scenario’s land use pattern underwent significant expansion of construction
land, surpassing the established constraints and failing to align with the future development
objectives of Lvliang City. The conversion rate observed in the CDS approached that of
the NDS, while it was markedly higher than those recorded for both the EDS and EPS.
This indicated that transitioning from the 2020 land use pattern to the pattern under the
CDS would yield the highest land use benefits per unit sacrifice of ESV, suggesting a high
potential for land development and greater sustainability under this pattern.

 

Figure 6. Conversion rates of ESV to land use benefits under different development scenarios.
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5. Discussion

This study used land use data from 2005 and 2020 along with GMOP and PLUS
models to simulate both the quantity and spatial distribution of land use, predicting land
use patterns for 2035 under various development scenarios. Previous research primarily
identified optimal land use patterns by analyzing ecosystem service value (ESV) and land
use benefits across different development scenarios [39,40]. However, these studies did
not account for the conversion efficiency between ESV and land use benefits during the
transition from the current land use pattern to future scenarios, nor did they consider the
impact of land use pattern changes on landscape configurations [41]. Consequently, this
study introduced a land use benefit conversion index to represent the conversion efficiency
between ESV and land use benefits for the first time. A comprehensive analysis of ESV,
land use benefits, landscape pattern indices, and the land use benefit conversion index
was performed to evaluate these indicators and identify the optimal land use pattern.
The research findings provide scientific theoretical support for land use optimization and
ecological protection in Lvliang City and offer a methodological example for land use
optimization in other regions.

However, the study has some limitations. The land use categories were divided
into six primary categories, which, while reflecting changes in various land types under
different scenarios in Lvliang City, do not fully explain the relationship between economic
development, ecological protection, and mining development in a city rich in mineral
resources. The construction land category should be further detailed into types such as
mining land to explore its relationship with the economy and ecology. The ESV in this study
was calculated based on the equivalent factor table by Xie Gaodi. Although the equivalent
factors are simple, widely applicable, and have low data requirements [42], they have
certain limitations in accuracy, dynamism, complexity, and regional applicability. A more in-
depth analysis combined with other methods is needed to improve the comprehensiveness
and accuracy of the assessment.

Given the limitations of this study, future research should develop a more targeted
land use classification system and conduct a thorough analysis of the relationships among
economic development, ecological protection, and mining activities in mineral resource-
based cities. Additionally, the objective and comprehensive assessment of ESV within a
region, along with the reduction of errors introduced by subjective factors, necessitates
further exploration and analysis in future studies to improve the accuracy and objectivity
of the evaluation results.

6. Conclusions

In this study, a multi-objective structural optimization model that integrates GMOP
and PLUS was developed to achieve a balance among the economic, social, and ecological
benefits of land use. Various scenarios regarding land use structures were derived for
different development contexts in Lvliang City, based on specific constraints. The key
findings of this research are summarized as follows:

(1) The GMOP and PLUS coupling models are used to determine land use structure
and spatial distribution under various development objectives. By employing this
coupled approach, land use patterns for Lvliang City are derived across four distinct
development scenarios.

(2) From the perspective of landscape patterns, the land use pattern under the CDS is
characterized by minimal human disturbance, enhanced patch aggregation, greater
species diversity, and improved ecological quality.

(3) The land use benefits under the NDS, EDS, EPS, and CDS are 2392.902 billion yuan,
2025.413 billion yuan, 1577.543 billion yuan, and 1755.364 billion yuan, respectively.
The ESV are 26.308 billion yuan, 26.087 billion yuan, 28.665 billion yuan, and 26.861 bil-
lion yuan, respectively. This shows that the CDS can meet economic development
needs while also considering ecological environment protection.
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(4) Under the CDS, when the areas of cultivated land, grassland, forest land, water
bodies, construction land, and unused land are 6724.29 km2, 6664.74 km2, 6581.84 km2,
126.94 km2, 1017.33 km2, and 0.42 km2, respectively, the land use benefit conversion
index is at its highest.

The research method outlined in this paper provides a valuable reference for optimiz-
ing urban land use structures. The findings establish a foundation for developing land use
planning and management policies in resource-based cities.
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Abstract: Optimizing urban land use is of significant practical importance for promoting economic
development, enhancing the standard of living for individuals residing in metropolitan areas, en-
hancing urban infrastructure and public services, driving urban transformation and upgrading, and
attaining synchronized progress of the economy, society, and environment. This paper uses the
super-efficiency SBM model to measure the urban land use efficiency (ULUE) of 13 cities in the
Beijing–Tianjin–Hebei (BTH) urban agglomeration from 2005 to 2020 and explores the spatiotemporal
evolution characteristics and influencing factors of ULUE in this urban agglomeration using analysis
of spatial data and application of geographic detector methods. The results show that (1) from 2005
to 2020, the ULUE of the BTH urban agglomeration had an initial rise followed by a decline; however,
the overall efficiency score is above 1, suggesting an overall effective state; (2) a distribution pattern
with Beijing as its core was established, exhibiting greater ULUE in the northern region and poorer
efficiency in the southern region, with significant correlation characteristics in efficiency values be-
tween adjacent cities; and (3) capital input, labor input, social welfare, and ecological environment are
all influencing factors that promote the improvement in ULUE in the BTH region, and the interaction
of any two factors explains the ULUE in this region better than a single factor. The empirical research
results can provide useful references for improving the input–output ratio of land units and further
spatial planning and policy formulation in the BTH region.

Keywords: sustainability; urban land use efficiency; SBM-DEA

1. Introduction

With the advancement of modernization and industrialization, a large amount of farm-
land, forests, and other lands have been used for development and construction, exacerbating
the continuous reduction of land resources and making the scarcity of land resources increas-
ingly apparent. Especially in urban areas, the conflict between land resources and human
social and economic development is more pronounced [1,2], specifically manifesting in issues
such as insufficient urban land carrying capacity, soil erosion, ecological environment deterio-
ration, and inefficient land use [3]. However, to attract capital investment and talent influx
to promote economic growth, land expansion has become common in both developed and
developing countries [4]. Therefore, under the constraint of scarce land resources, increasing
the input–output ratio per unit of land is the key to achieving sustainable economic develop-
ment [5]. By improving urban ULUE, more economic value and social benefits can be created
in a limited space [6,7]. One of the main reasons China has been able to achieve the miracle
of rapid economic growth is the significant increase in land resource investment [8]. As the
capital of China, Beijing and its surrounding areas have historically held an important politi-
cal and strategic position, with a deep cultural heritage and a long history of development,
gathering a large amount of capital, technology, and talents, while also bearing the important
responsibility of spreading traditional Chinese culture and modern civilization to the world.
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With 2.4% of the country’s land carrying 8.1% of the country’s resident population and pro-
ducing about 8.5% of the country’s GDP, the Beijing–Tianjin–Hebei region is one of China’s
most vibrant, most open, most innovative, and most populous regions and is an important
engine for pulling China’s economy forward. In 2014, the strategy of Beijing–Tianjin–Hebei’s
coordinated development had risen to the height of national strategy. The realistic needs and
strategic tasks of urbanization development have placed unprecedented pressure on land
use in the Beijing–Tianjin–Hebei region. Therefore, strengthening the research on land use
efficiency in the Beijing–Tianjin–Hebei region is of great value in addressing the problems and
challenges faced in the new era and in realizing the sustainable and coordinated development
of urban economic, social, and ecological benefits.

To rationally allocate land resources and improve the efficiency of land use, many
theories have been gradually formed in the academic world. The basic theory on urban
land use efficiency can be traced back to the early 20th century, when the ecological location
school of thought established concentric circles, fan-shaped, and multi-core models based
on human ecology [9]. In the 1960s and 1970s, the economic location school of thought built
a monocentric, exogenous, dynamic model based on neoclassical economics [10–12]. The
social location school of thought has built a theory of decision analysis and interaction based
on behavioral science [13]. In the 1970s and 1980s, the political location school of thought
emphasized social relations of production and government intervention [14,15], arguing that
social relations of production, political power, and government intervention are key factors in
determining changes in the spatial structure of urban land use [16]. From the 20th century
to the present, modern concepts such as compact cities and smart growth have culminated
in an effort to reduce transportation demand, increase resource efficiency, and improve
environmental quality [17,18].

Based on the above theories, scholars have mainly focused on land green use ef-
ficiency [19], factors affecting land green use efficiency [20], the impact of land use on
ecosystem services [21,22], and measurement methods of land use efficiency [23]. At
present, a unified evaluation index system for urban land use efficiency has not yet been
formed, but in general, the evaluation indexes are gradually developing from single indica-
tors to multi-dimensional indicators, and non-desired output factors such as environmental
constraints are included in the examination. In terms of research methods, the compre-
hensive evaluation method has developed into parametric and non-parametric methods,
and DEA models [24,25] have been fully applied to the measurement of land use efficiency,
using kernel density estimation, Terrell’s index, exploratory spatial data analysis, and
center of gravity models to analyze the spatial and temporal variations in urban land use
efficiency [26–29]. The factors affecting land use efficiency were also studied through re-
gression models such as the Tobit model, spatial panel econometric model, and geodetector
model. The research scale mainly focuses on provincial units or single cities; for example,
Kuang [30] measured the provincial arable land use efficiency of 31 provinces in China from
2000 to 2017, and Fu [31] analyzed and studied the urban land use efficiency of Jiangsu
Province, China, from 2006 to 2017, by using the data envelopment analysis method and
the information entropy method. The regional synergistic development of urban agglom-
erations is less involved. From the results of studies, it is clear that economic [2,32] and
social factors [33,34] are the main factors affecting the efficiency of urban land use. For
example, Masini studied 417 metropolitan areas in Europe and found a positive corre-
lation between the level of economic development and land use efficiency [35]. Using a
spatial panel model, Gao found that regional economic integration in metropolitan areas
contributes to the optimal allocation of resources in socio-economic transformation, which
improves urban land use efficiency [36]. Cao found a positive correlation between land
use efficiency and factors such as the level of comprehensive economic development, fixed
asset investment and environmental protection [37].

Therefore, this paper makes the following marginal contributions: Firstly, the land-
averaged carbon emissions of cities are included in the rating index system of land use
efficiency, and the SBM-DEA model is used to measure the land use efficiency of the Beijing–
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Tianjin–Hebei city cluster. This method overcomes the subjectivity in the process of determin-
ing the weights of the comprehensive evaluation indexes, makes the determination of the
efficiency boundary clearer, and can better identify the less efficient parts. Considering that
the correlation between the independent and dependent variables may come from spatial
similarity, this paper explores the spatial and temporal evolution characteristics of land use
efficiency and its influencing factors in this urban agglomeration using exploratory spatial
data analysis as well as geodetectors.

2. Study Area and Datasets

2.1. Overview of the Study Region

The Beijing–Tianjin–Hebei metropolitan agglomeration is situated in the North China Plain
(longitude 113◦04′–119◦53′ E, latitude 36◦01′–42◦37′ N), covering a total area of 218,000 km2.
The cultivated land, forest land, grassland, and wetlands in BTH are 64,400 km2, 75,500 km2,
19,700 km2, and 1800 km2, respectively, encompassing 13 cities including Beijing, Tianjin, Baod-
ing, Tangshan, and Shijiazhuang (as shown in Figure 1). In terms of economic development,
the GDP of the BTH region in 2020 was 8639.3 billion yuan, accounting for 8.5% of the national
GDP. In terms of technological research and development, the region had 37 invention patents
per 10,000 permanent residents in 2020. In terms of transportation, the total length of express-
ways in the three provinces and cities of BTH reached 10,307 km in 2020. The coordinated
division of labor and cooperation among Tianjin and Hebei ports has continued to deepen, with
Tianjin Port focusing on container trunk transportation and optimizing the structure of bulk
cargo transportation, Hebei ports consolidating functions for the transportation of energy and
raw materials, and all nine planned airports in BTH, including Beijing Daxing International
Airport, being put into operation. This region is one of the most dynamic, open, innovative, and
populous areas in China. From 2005 to 2020, the area of construction land in the BTH region
increased by approximately 6275.89 km2. As the coordinated cooperation of the BTH urban
agglomeration deepens, problems such as environmental degradation and soil damage will
become increasingly prominent. Therefore, it is imperative to measure the ULUE of the BTH
urban agglomeration, which can provide more targeted reference and guidance for improving
the input–output ratio per unit of land and further spatial planning and policy formulation.

Figure 1. Location of BTH urban agglomeration.
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2.2. Data Sources

This paper collected and preprocessed the input and output indicators such as capital,
land, and labor of 13 cities in the BTH urban agglomeration from 2005 to 2020. The data
are sourced from the China Statistical Yearbook, China City Statistical Yearbook, China
Population and Employment Statistical Yearbook, China Urban Construction Statistical
Yearbook, provincial and municipal statistical yearbooks, and the CNKI statistical database.
The carbon dioxide emission data were obtained from the China Cities Greenhouse Gas
Working Group (CCG).

3. Analysis Method

3.1. ULUE Evaluation Index System

Production efficiency refers to the amount of output achieved per unit of input [38]. There-
fore, ULUE is the input–output ratio that includes production factors such as labor, capital,
and land. This paper, referencing Liao [39], constructs an evaluation index system for ULUE
in the BTH urban agglomeration based on inputs, desired outputs, and undesired outputs.
While focusing on the economic and social benefits produced by land development in the
BTH urban agglomeration, it also comprehensively considers the negative environmental
impacts of land development and utilization. In terms of index selection, the per unit land
fixed capital investment is used as the capital input index [24], the proportion of built-up land
area as the land input index [39], and the number of urban employees per unit land area as
the labor input index [40] (Table 1). Among them, the per unit land fixed asset investment can
measure the economic development level and capital input situation of a region, reflecting
the relationship between the accumulation of fixed assets and the economic development
level of a region. The built-up area proportion is the ratio of the built-up area, which en-
compasses buildings, transportation facilities, and other urban planning elements, to the
overall area of a city or region. This ratio serves as a measure of urbanization and urban
land utilization. The number of urban employees per unit land area refers to the average
number of urban employees within a unit area, which can measure the degree of urbanization
and the employment situation of a region. For output index selection, economic benefits,
social welfare, and ecological environment [41] are chosen as desired output indicators, while
per unit land sewage discharge and per unit land carbon emissions are chosen as undesired
output indicators. In terms of desired outputs, per unit land GDP and the average wages
of on-the-job employees reflect the economic development level of a region from macro and
micro perspectives, respectively, and are thus used to reflect the economic benefits of the
BTH urban agglomeration. Healthcare and education are key to people’s welfare, so the
number of beds in public health institutions per unit land and the number of primary and
secondary schools per unit land are selected to reflect the social welfare of the BTH urban
agglomeration. The green coverage rate of built-up areas and per capita green area reflect
the ecological livability from macro and micro dimensions [42], respectively, and hence, they
are utilized to mirror the ecological conditions of the BTH urban agglomeration. In terms of
undesired outputs, sewage discharge and greenhouse gas emissions are two major factors
that negatively affect the environment during production activities. Therefore, per unit land
sewage discharge and per unit land carbon emissions are chosen as indicators to measure
undesired outputs.

Table 1. Construction of the ULUE evaluation index system for the BTH urban agglomeration.

Primary
Indicators

Secondary
Indicators

Tertiary Indicators Calculation Method

Input Indicators
Capital Fixed Capital Investment Per Unit Land

Area (x1)

Total Social Fixed Asset Investment in
the Urban Area/Area of the Urban

Area
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Table 1. Cont.

Primary
Indicators

Secondary
Indicators

Tertiary Indicators Calculation Method

Land Proportion of Built-up Land Area (x2) Built-up Area of the Urban Area/Area
of the Urban Area

Labor Number of Urban Employees Per Unit
Land Area (x3)

Number of Urban Employees/Area of
the Urban Area

Desired Outputs

Economic Benefits
GDP Per Unit Land Area (x4) GDP of the Urban Area/Area of the

Urban Area

Average Wages of On-the-job Employees
(x5)

Total Wages of On-the-job
Employees/Number of On-the-job

Employees

Social Welfare
Number of Beds in Public Health

Institutions Per Unit Land Area (x6)

Number of Beds in Public Health
Institutions in the Urban Area/Area of

the Urban Area

Education Level Per Unit Land Area (x7)
Number of Primary and Secondary

Schools in the Urban Area/Area of the
Urban Area

Ecological
Environment

Per Capita Public Green Area (x8)
Public Green Area in the Urban

Area/Total Population of the Urban
Area

Green Coverage Rate of Built-up Areas
(x9)

Total Green Area in the Urban
Area/Area of the Urban Area

Undesired Outputs Sewage Discharge Sewage Discharge Per Unit Land Area
(x10)

Sewage Discharge/Area of the Urban
Area

Carbon Emissions Carbon Emissions Per Unit Land Area
(x11)

Total Carbon Emissions/Area of the
Urban Area

3.2. SBM-DEA Model

The Slacks-Based Measure (SBM) model, introduced by Tone, represents a sophis-
ticated extension of the conventional Data Envelopment Analysis (DEA) approach. It
addresses the inherent limitations of radial and angular measures employed in traditional
DEA models by focusing on slack variables—indicators of inefficiency derived from the
excess inputs required or the deficient outputs produced by a decision-making unit (DMU)
to achieve optimal efficiency. This methodology offers a more nuanced and comprehensive
assessment of efficiency, particularly in scenarios involving multiple inputs and outputs.
Specifically, the super-efficiency SBM model extends the basic SBM framework to evaluate
DMUs that already lie on the efficiency frontier, as determined by traditional DEA models.
By excluding each DMU from its own reference set during evaluation, the model enables
a more discriminating analysis of efficiency among these ostensibly efficient units. The
following is the formula used for calculation:

ρ =
1 + 1

n ∑n
i=1

r−i
xik

1 − 1
r1+r2

(
∑r1

m=1
rg

m
yg

mk
+ ∑r2

m=1
rb

m
yb

mk

) s.t. (1)

⎧⎨
⎩ (

xk≥XA−r−
yg

k≤Yg A+rg)

(
zg

k≥Zg A−rb

r−≥0,rg≥0,rb≥0,A≥0
)

(2)

Among them, ρ is the measured ULUE value; n is the number of input indicators; r1 is
the number of desired output indicators; r2 is the number of undesired output indicators;
r− is the slack variable for inputs; rg is the slack variable for desired outputs; rb is the slack
variable for undesired outputs; x is the input value; yg is the desired output value; zb is
the undesired output value; A is the weight vector; X is the input matrix; Yg is the desired
output matrix; and Zb is the undesired output matrix.

189



Land 2024, 13, 1508

3.3. Exploratory Spatial Data Analysis

The ESDA method involves describing and visualizing the spatial distribution patterns
of phenomena or objects to discover spatial clustering in the data and reveal the spatial
interaction mechanisms between the subjects of study, thereby providing reference and
guidance for more effectively solving some current practical problems [43]. This paper
uses the Moran’s I index to explore whether there is spatial clustering or heterogeneity
in the ULUE of the BTH urban agglomeration, analyzing and comparing the interaction
relationships and degree of differentiation between various cities. The following is the
formula used for calculation:

I =
n∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
∑n

i=1 ∑n
j=1 Wij

(
Xi − X

) (3)

In the formula, I is the global spatial autocorrelation coefficient; n represents the
number of municipal administrative units; Xi and Xj are the observed values of city i and
city j; X is the average value of the observed values Xi; and Wij is the spatial weight matrix,
using the Queen contiguity spatial weight matrix. When I > 0, there is a positive spatial
correlation; when I = 0, there is no spatial autocorrelation, when I < 0 there is a negative
spatial correlation.

Further, the local Moran’s I index is used to analyze the spatial clustering charac-
teristics of local areas within the BTH urban agglomeration, reflecting the interaction
relationships and degree of differentiation between various cities. The following is the
formula used for calculation:

Ii =
Xi − X

∑n
i=1,j 
=1

(
Xj − X

)2/n − 1

n

∑
j=1,i 
=1

Wij
(
Xj − X

)
(4)

In the formula, Ii is the local spatial autocorrelation coefficient, and the other variables
have the same meaning as in Formula (3). When Ii > 0, it indicates a positive spatial
correlation among local areas, and the larger the value is, the more evident the spatial
correlation; when Ii < 0, it indicates a negative spatial correlation among local areas, and
the larger the value is, the more evident the spatial differentiation; when Ii = 0, it indicates
a random spatial distribution.

3.4. Efficiency Evolution Analysis

Early DEA models were used for evaluating enterprise efficiency, comparing the
efficiency of similar enterprises in the same period. Therefore, they were mainly used for
cross-sectional data processing. The emergence of panel data has expanded the application
scenarios of DEA models, making them suitable not only for macro data analysis but
also for the construction and decomposition of productivity indices. Therefore, this paper
selects the GML model to measure the ULUE of the BTH urban agglomeration, addressing
the shortcomings of the super-efficiency SBM model in dynamic efficiency analysis of time
series data, thereby enabling a comprehensive analysis of the dynamic evolution of ULUE
in the BTH urban agglomeration from 2005 to 2020. The specific formula is as follows:

M
(
xt, yt, xt+1, yt+1) = √

(Mt ∗ Mt+1) =

√[
Dt+1(xt+1,yt+1)

Dt(xt ,yt)
× Dt+1(xt+1,yt+1)

Dt(xt ,yt)

]

=
Dt+1(xt+1,yt+1)

Dt(xt ,yt)
×

√[
Dt(xt ,yt)

Dt+1(xt ,yt)
× Dt(xt+1,yt+1)

Dt+1(xt+1,yt+1)

] (5)

In the formula, Dt(xt, yt) and Dt(xt+1, yt+1) respectively represent the distance func-
tions of the decision-making unit between periods t and t + 1 when the base period is
taken as a reference; Dt+1(xt, yt) and Dt+1(xt+1, yt+1) respectively represent the distance
functions of the decision-making unit between periods t and t + 1 when period t + 1 is
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taken as the base period; and M
(
xt, yt, xt+1, yt+1) represents the change in ULUE of the

decision-making unit between periods t and t + 1. When M > 1, it indicates an improve-
ment in urban ULUE; otherwise, it indicates a decline. The GML index can be further
decomposed into changes in catch-up efficiency and technological progress. EC reflects
the efficiency changes caused by factors such as factor allocation and management under
the existing technological level, while TC refers to the efficiency changes brought about by
technological progress. When EC > 1, it signifies that the decision-making unit’s technical
efficiency has experienced a relative improvement; otherwise, it indicates that the technol-
ogy has not been fully utilized. When TC > 1, It signifies that the decision-making entity
has achieved advancements in technology; otherwise, it indicates technological regression.

3.5. Geographical Detector

The geographical detector can effectively explore spatial differentiation characteristics.
Therefore, this paper uses the factor detector and interaction detector in the geographical
detector to investigate the relationship between ULUE (Y) and influencing factors (X) in the
BTH urban agglomeration. The factor detector is capable of identifying the impact of various
factors on the spatial arrangement of specific items, thereby resolving the issue of causation in
the heterogeneous spatial distribution among diverse objects. The results of the factor detector
are measured by the q value, which is calculated using the following formula:

q = 1 − 1
Nσ2

L

∑
h=1

Nhσ2
h (6)

In the formula, h = 1, 2, · · · , L represents the stratification of the driving factors; Nh is
the number of layers on h; and Nσ2 and Nσ2

h respectively represent the total variance of the
entire observation area and the sum of the intra-layer variances. The value of q ranges from
[0, 1], with a larger q value indicating a greater driving effect of the factor on the improve-
ment of ULUE, and vice versa. Additionally, this paper introduces interaction detection to
explore the interactive explanatory effect of factor combinations on the dependent variable,
i.e., whether the explanatory power of two factors on the dependent variable is enhanced
or weakened when they interact. The results of the interaction between two factors can be
divided into five categories (as shown in Table 2).

Table 2. Types of interactions between two independent variables and dependent variables.

Judgement Criteria Interaction Effect

q(X1 ∩ X2) < min(q(X1), q(X2)) Nonlinear weakening
min(q(X1), q(X2)) < q(X1 ∩ X2) < max(q(X1), q(X2)) Univariate nonlinear weakening

q(X1 ∩ X2) > max(q(X1), q(X2)) Bivariate enhancement
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Nonlinear enhancement

4. Results and Analysis

4.1. Spatial Temporal Analysis of Land Use Changes in BTH Urban Agglomeration
4.1.1. Temporal Evolution Characteristics

This paper utilizes the MAXDEA Ultra 8.0 software to measure the land use efficiency
of the BTH urban agglomeration in 2005, 2010, 2015, and 2020 (as shown in Figure 2).
Overall, the ULUE of the three regions of Beijing, Tianjin, and Hebei varies, with Beijing
consistently leading and being significantly higher than the average of the BTH urban ag-
glomeration. Specifically, Beijing’s ULUE generally shows an inverted “N” pattern, where
it is first decreasing, then increasing, and decreasing again, reaching a trough of 1.30 in
2010 and a peak of 1.32 in 2015. As Beijing’s urbanization has accelerated, the expansion
of urban construction land has encroached on ecological land, leading to environmental
degradation, which in turn caused a decline in Beijing’s ULUE from 2005 to 2010. With the
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transformation of the economic development model and the introduction of various envi-
ronmental regulations, Beijing has gradually moved towards green development, resulting
in an increase in ULUE from 2010 to 2015. However, due to the impact of the COVID-19
pandemic, economic activities were restricted, leading to a decline in Beijing’s ULUE in
2020. The ULUE of Tianjin generally shows an inverted “U” pattern, first increasing and
then decreasing, with a peak of 1.07 in 2010. From 2005 to 2010, with economic develop-
ment, Tianjin’s construction land was fully utilized, and the ULUE increased accordingly.
However, from 2010 to 2015, land use efficiency declined, possibly due to the devastating ex-
plosion at Tianjin Port in 2015, which claimed over a hundred lives, damaged 304 buildings,
12,428 vehicles, and 7533 containers, significantly impacting Tianjin’s social governance.
In 2020, Tianjin’s land use efficiency also declined due to the COVID-19 pandemic. The
ULUE of Hebei Province generally shows an inverted “U” pattern, first increasing and then
decreasing, reaching a peak of 1.09 in 2015, which is consistent with the overall trend of
the BTH urban agglomeration. From 2005 to 2015, Hebei’s ULUE significantly improved,
surpassing Tianjin in 2015. However, it is worth noting that there was a sharp decline in
the ULUE in 2020, indicating that Hebei’s development resilience is still lacking. Overall,
the BTH urban agglomeration was affected by the COVID-19 pandemic in 2020, resulting
in an overall decline in ULUE.

Figure 2. ULUE values of the BTH urban agglomeration from 2005 to 2020.

4.1.2. Spatial Evolution Characteristics

This paper uses ArcGIS10.8 and the natural breaks method to classify the ULUE of
13 cities in the BTH urban agglomeration in 2005, 2010, 2015, and 2020 into four categories:
low-level areas, lower-level areas, higher-level areas, and high-level areas (as shown in
Figure 3). The ULUE of the BTH urban agglomeration shows significant spatial distribution
differences, presenting a spatial distribution pattern of high in the north and low in the
south, forming a polarization of the development characteristic centered on Beijing. Among
them, Beijing and Chengde in Hebei Province are the regions with high and relatively stable
ULUE in the entire BTH urban agglomeration. Undoubtedly, as the capital of China, Beijing
is far ahead of other cities in terms of development model, environmental regulations,
and resource utilization efficiency. Chengde’s “advantage lies in ecology, potential lies in
ecology, hope lies in ecology”. Currently, the city has a forest area of 35.56 million mu,
accounting for more than one-third of the BTH region. The forest coverage rate stands at
60.03%, surpassing the national average by 36 percentage points and the province average
by 25 percentage points, giving it a great advantage in green development.
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Figure 3. Spatial pattern of ULUE in the BTH urban agglomeration during 2005−2020.

From the temporal cross-section, the cities with high and higher ULUE levels in
the BTH urban agglomeration in 2005 were Beijing, Chengde, Langfang, Tangshan, and
Cangzhou. Due to its status as the political, cultural, and international exchange and the
technological innovation center, Beijing leads in ULUE. Chengde has always adhered to
the concept of green development and is a green barrier for the BTH urban agglomeration,
hence its high ULUE. Cities with a certain industrial base require substantial capital, labor,
and land investments in the early stages of development, and the extensive economic model
leads to lower ULUE. In 2010, the cities with high and higher ULUE levels in the BTH urban
agglomeration were Beijing, Chengde, Langfang, and Cangzhou, indicating that the urban
scale of Cangzhou and Langfang had initially formed, no longer requiring substantial
factor inputs, and effectively undertaking the industrial transfer from Beijing and Tianjin,
which alleviated Beijing’s non-capital functions. In 2015, The quantity of cities exhibiting
elevated and even more elevated ULUE levels inside the BTH urban agglomeration has
risen, including Beijing, Chengde, Langfang, Tangshan, Qinhuangdao, Baoding, Hengshui,
and Xingtai. This indicates that the BTH urban agglomeration has begun to transform into
an intensive development model, significantly improving overall ULUE. The cities in the
BTH urban agglomeration that had elevated levels of ULUE in 2020 were Beijing, Chengde,
Zhangjiakou, Baoding, Cangzhou, and Handan. The COVID-19 pandemic had a substantial
impact on Qinhuangdao, Tangshan, Cangzhou, and Xingtai, leading to a decrease in ULUE
levels. It is worth noting that in 2020, Zhangjiakou and Handan showed a leap in ULUE
levels. Further exploration of the reasons is provided in the following text.

4.2. Spatial Agglomeration Characteristics of Urban ULUE

To further analyze the spatial correlation of the BTH urban agglomeration, Geoda
1.20 software was used to calculate the global Moran’s I index values for the ULUE of
the BTH urban agglomeration in 2005, 2010, 2015, and 2020, which were −0.134, −0.157,
0.016, and −0.182, respectively (Table 3). Except for 2005, all passed the 10% significance
level test in statistical terms. The results show that urban ULUE in 2010 and 2020 exhibited
a negative spatial correlation, while in 2015, it showed a positive spatial correlation. This
indicates that the spatial distribution of ULUE in the BTH urban agglomeration exhibits
certain spatial homogeneity or heterogeneity characteristics, but the stability is weak. The
negative Moran’s I index in 2010 indicates that the initial development level of the region
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was low, with significant differentiation. The development of high-level cities would create
an echo effect on surrounding cities, attracting talent and capital inflow from neighboring
areas, thus leading to the aggregation of high- and low-level regions. With the overall
improvement in economic levels and infrastructure enhancement, the expansion diffusion
effect would increase, leading to aggregation among regions of the same level. This is
evidenced by the transition of the Moran’s I index from negative to positive in the BTH
urban agglomeration in 2015. In 2020, the Moran’s I index once again shifted from positive
to negative, indicating that the region was affected by external factors or that a particular
city implemented institutional innovations, causing production factors to be attracted to
high levels again, resulting in the echo effect surpassing the diffusion effect once more.
While the global Moran’s I index for 2005 did not meet the criteria for statistical significance,
it does not necessarily imply that the ULUE in the BTH urban agglomeration has no spatial
correlation at all. Spatial correlation may be a complex phenomenon that could exist
in specific areas but not in others, or positive and negative correlations may offset each
other, leading to insignificance overall. Therefore, it is not possible to simply judge the
presence of spatial correlation based on the outcomes of the global Moran’s I index. To more
comprehensively understand the spatial relationships between different regions within the
BTH urban agglomeration, it is necessary to calculate the local Moran’s I index. By using
the local Moran’s I index, significant spatial correlation hotspots and cold spots can be
identified, revealing the spatial distribution patterns of ULUE in local areas. This analytical
method can help us deeply explore the spatial characteristics of ULUE within the BTH
urban agglomeration, providing more targeted reference and guidance for further spatial
planning and policy formulation.

Table 3. Moran’ I index values.

Year Global Moran’ I z-Value p-Value

2005 −0.134 −1.0041 0.116
2010 −0.157 −1.6525 0.048
2015 0.016 2.4379 0.034
2020 −0.182 −1.9430 0.012

The local spatial association characteristics of ULUE in the BTH urban agglomeration
are shown in Figure 4. In 2005, Tianjin was a high-high cluster, while Xingtai was a low-low
cluster. Tianjin, with its significant seaport and airport, serves as an important transporta-
tion hub in the BTH urban agglomeration, thus forming a high-level cluster. Xingtai and
neighboring cities are far from the central cities, with underdeveloped urban scale and
insufficient resource allocation capabilities, resulting in a low-level cluster. In 2010, Tianjin
was a high-high cluster, while Zhangjiakou was a low-high cluster. Located in the northern
part of the BTH urban agglomeration, Zhangjiakou is an important ecological conservation
area and environmental protection barrier for the urban agglomeration. Compared to cities
in the central and southern parts with an industrial base, the economic benefits of green
investments in Zhangjiakou may not be immediately apparent and require more input
of production factors, thus forming a low-high cluster spatially. In 2015, Xingtai was a
high-low cluster, while Zhangjiakou was a low-high cluster. In 2015, Xingtai ranked first in
the province for reducing the number of days with severe or worse pollution and achieved
an online monitoring data transmission efficiency of 99.45% for key national pollution
sources, exceeding the national target of 75% and ranking first among prefecture-level cities
in the province. Specific environmental protection measures, including strengthening air
pollution control, promoting energy conservation and emission reduction in industrial
enterprises, enhancing water resource protection and management, and improving the
rural ecological environment, led to improvements in Xingtai’s non-expected outputs and
increased ULUE, thus forming a high-low cluster spatially. In 2020, Beijing exhibited a
high-high cluster spatial distribution pattern, gradually forming the prototype of a world-
class urban agglomeration centered on the capital, with green, smart, and livable urban
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development as the goal of the BTH urban agglomeration. However, overall, more than 80%
of the cities did not show significant spatial clustering characteristics, indicating that there
is still considerable room for improvement in the ULUE of the BTH urban agglomeration.

 

Figure 4. Local spatial association characteristics of ULUE in the BTH urban agglomeration during
2005−2020.

4.3. Spatial Evolution Characteristics of Urban Land Use Decomposition Efficiency

This paper uses the cumulative change values and geometric averages of the Global
Malmquist–Luenberger (GML), efficiency change (EC), and technological progress (TC)
indices from the Malmquist model for the years 2005–2020 to reflect the cumulative changes
and annual average changes of each index (Table 4).

Table 4. Malmquist exponent and its decomposition value.

Area
Cumulative Change Value Geometric Mean

GML EC TC GML EC TC

Beijing 0.023243 0.05835 0.050747 1.041754 1.026142 1.061249
Tianjin −0.03632 −0.02563 −0.01072 1.04487 1.006557 1.046793

Shijiazhuang −0.43522 −0.60078 0.797856 1.327282 1.154614 1.274292
Tangshan 0.239769 0.077758 0.19746 1.174296 0.933307 1.254153

Qinhuangdao −0.17902 −0.13814 1.595069 1.453172 1.008462 1.466284
Handan 2.012282 0.065909 0.497505 1.518747 1.032557 1.48238
Xingtai −0.77352 −0.14715 0.672346 1.247653 1.009416 1.199544
Baoding 0.057511 0.045378 0.040746 1.122156 1.030264 1.08913

Zhangjiakou 0.576365 1.346611 0.094204 1.213028 1.287217 1.108462
Chengde 0.035983 0.199405 −0.09262 1.094533 0.966801 1.104921

Cangzhou 0.04915 0.002258 0.050815 0.992872 0.980843 1.016284
Langfang −0.30318 −0.13193 −0.07892 1.119244 0.943493 1.183914
Hengshui −0.02581 −0.14726 0.115111 1.187391 1.015924 1.172685

BTH region 0.095481 0.046522 0.302277 1.195154 1.03043 1.189238

From 2005 to 2020, the Global Malmquist–Luenberger in the BTH region increased
cumulatively by 9.55%, and ULUE improved (as shown in Figure 5). Specifically, the ULUE
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of seven cities increased, while six cities saw a decrease in ULUE. Among them, Handan
had the largest increase at 2.01, while Xingtai had the largest decrease at −0.77. Using
ArcGIS 10.8 software, the spatial evolution maps of the Global Malmquist–Luenberger,
catch-up efficiency, and technological progress in the BTH region from 2005 to 2020 were
drawn. From the perspective of the Global Malmquist–Luenberger, during the period
2005–2010, there were more areas with efficiency decline and fewer areas with efficiency
improvement; during the period 2010–2015, the areas with efficiency decline decreased,
while the areas with efficiency improvement increased; during the period 2015–2020, the
areas with efficiency decline further decreased, while the areas with efficiency improve-
ment further increased. This indicates that the overall efficiency level of the BTH urban
agglomeration is showing an upward trend. Specifically, from 2005 to 2010, 9 out of the
13 cities in the BTH urban agglomeration showed efficiency improvement, while Chengde,
Zhangjiakou, Baoding, and Cangzhou experienced efficiency decline. From 2010 to 2015,
12 out of the 13 cities in the BTH urban agglomeration showed efficiency improvement,
with only Cangzhou showing efficiency decline. From 2015 to 2020, 9 out of the 13 cities
in the BTH urban agglomeration showed efficiency improvement, while Qinhuangdao,
Langfang, Shijiazhuang, and Xingtai experienced efficiency decline.

Figure 5. Spatiotemporal evolution of GML in BTH region from 2005−2020.

From the perspective of EC, during the period from 2005 to 2010, most regions in the
BTH urban agglomeration showed a downward trend in efficiency, with only a few areas
experiencing an increase, indicating an overall decline in the efficiency level of the BTH
urban agglomeration (as shown in Figure 6). During the period from 2010 to 2015, the areas
with declining efficiency decreased, while the areas with increasing efficiency increased,
indicating that the overall efficiency level of the BTH urban agglomeration began to rise.
During the period from 2015 to 2020, the areas with declining efficiency further decreased,
while the areas with increasing efficiency further increased, indicating a significant upward
trend in the overall efficiency level of the BTH urban agglomeration. This indicates that
the ULUE of the urban agglomeration is highly dependent on scale effects, leading to
issues of land resource waste. For cities with declining catch-up efficiency, it is necessary
to strengthen the input of production factors and pay attention to the benefits brought
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by scale effects. It is worth noting that the trend of efficiency changes in the BTH urban
agglomeration is not uniform. Some regions showed an upward trend in efficiency at
an earlier stage, while others began to show an upward trend at a later stage. This may
be related to the development strategy and industrial structure adjustment of the BTH
urban agglomeration.

 

Figure 6. Spatiotemporal evolution of EC in BTH region from 2005−2020.

From the perspective of TC, from 2005 to 2010, most regions in the BTH urban agglom-
eration experienced a decline in efficiency, with only a few areas showing an improvement
(as shown in Figure 7). From 2010 to 2015, the areas with declining efficiency decreased,
while the areas with improving efficiency increased. From 2015 to 2020, the areas with
declining efficiency further decreased, while the areas with improving efficiency further
increased. This indicates that the overall efficiency level of the BTH urban agglomeration
has shown an upward trend in recent years. Specifically, from 2005 to 2010, most cities
in the BTH urban agglomeration experienced a decline in efficiency, mainly concentrated
in the northern regions of Hebei Province and parts of Tianjin. This may be due to the
over-reliance on traditional industries in these areas, leading to slow industrial structure
adjustments and efficiency declines. From 2010 to 2015, the BTH urban agglomeration be-
gan implementing a series of industrial transformation and upgrading policies, promoting
industrial structure adjustment and optimization, and strengthening regional coordinated
development, which improved the overall efficiency of the urban agglomeration. By the
period from 2015 to 2020, the trend of efficiency improvement in the BTH urban agglomer-
ation became more evident, with further reductions in areas with declining efficiency and
further increases in areas with improving efficiency. This indicates that the industrial struc-
ture adjustment and regional coordinated development in the BTH urban agglomeration
have achieved significant results.
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Figure 7. Spatiotemporal evolution of TC in BTH region during 2005−2020.

4.4. Geographical Detector
4.4.1. Factor Detection and Result Analysis

Using the geographical detector, ULUE is taken as the explained variable, and input
indicators and expected outputs are taken as explanatory variables to study the impact of
factors influencing the ULUE of the BTH region when acting alone. The results are shown
in Table 5.

Table 5. Factor recognition results of geographical detector.

x1 x2 x3 x4 x5 x6 x7 x8 x9

q statistic 0.7904 0.1165 0.7761 0.6771 0.9486 0.8764 0.3580 0.0477 0.1246
p value 0.000 0.1151 0.000 0.000 0.000 0.000 0.2571 0.5259 0.1360

The per capita fixed capital investment (x1), the per capita urban employment number
(x3), the per capita GDP (x4), the average wage of on-the-job employees (x5), and the
per capita number of beds in public health institutions (x6) all passed the 1% significance
test in statistical terms. The ranking of the influence intensity of the spatiotemporal
differentiation factors of ULUE in the BTH urban agglomeration is as follows: average wage
of on-the-job employees (0.9486) > per capita number of beds in public health institutions
(0.8764) > per capita fixed capital investment (0.7904) > per capita urban employment
number (0.7761) > per capita GDP (0.6771). Specifically, the level of average wages for on-
the-job employees affects ULUE. Higher wages mean higher productivity and innovation
capability, which can promote more effective land use methods. The number of beds in
public health institutions per capita also impacts ULUE; sufficient health resources can
improve residents’ quality of life, thereby influencing land use demand and methods.
The amount of per capita fixed capital investment reflects the level of regional economic
development. High levels of fixed capital investment drive industrial upgrading and
technological innovation, thus affecting ULUE. The increase in urban employment numbers
drives the urbanization process, impacting land use patterns and efficiency. Cities with
higher per capita GDP have more funds and resource allocation capabilities, enabling more
effective planning and utilization of land resources. Moreover, with the increase in per
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capita GDP, environmental awareness and investment in the region are enhanced. Regions
that pay more attention to environmental protection and sustainable development tend to
adopt more scientific and reasonable land use methods to ensure the sustainable use and
protection of land.

4.4.2. Interaction Detection Results and Analysis

The results of the factor interaction detector indicate that the explanation of ULUE
in the BTH region by single factors does not act independently. The interaction values of
two factors are greater than the q values of single factors, indicating that the interaction of
two factors enhances the explanatory power of ULUE in the BTH region, either through
bivariate enhancement or nonlinear enhancement. Based on the thermal map resulting
from the interactive influence of the driving factors in the geographic detector, the darker
the color, the more intense the interaction effect (as shown in Figure 8). It can be observed
that the interaction value between the wage level of on-the-job employees and the per capita
public green space area is the highest, reaching 0.9674. This interaction result indicates that
in the process of land use and development, it is essential to ensure that each unit of land
brings economic benefits to every city resident while also considering the protection of the
ecological environment, especially the green space resources each resident can enjoy. The
interaction value between the proportion of built-up area and the per capita public green
space area is the lowest, indicating that in the land development process in the BTH region,
there may be development at the expense of environmental destruction. The expansion of
construction land does not adequately meet the ecological needs of residents.

Figure 8. Heatmap of interaction effects of driving factors detected by geographical detector.

5. Discussion

5.1. Conclusions

This paper analyzes the spatiotemporal characteristics of ULUE in 13 cities of the BTH
urban agglomeration based on the municipal scale. The GML model is used to decompose
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the evolution of efficiency, and the geographical detector is employed to analyze the factors
driving the improvement in ULUE. The following conclusions are drawn:

First, from 2005 to 2020, the ULUE of the BTH urban agglomeration exhibited an
inverted “U”-shaped evolution pattern, initially increasing and then decreasing. The overall
level was relatively low, with significant regional differences, indicating substantial room
for improvement. Second, the ULUE of the BTH urban agglomeration showed significant
spatial distribution differences, presenting a pattern of higher efficiency in the north and
lower in the south, forming a polarized development characteristic centered on Beijing. The
northern cities of Chengde and Zhangjiakou, serving as green barriers for the region, had
higher ULUE than the industrial cities in the central and southern parts of the BTH region.
Local areas showed a high-high clustering evolution characteristic converging towards
Beijing. Third, the ULUE of the BTH urban agglomeration cumulatively increased by 9.55%.
The ULUE in the Beijing–Tianjin region was effectively improved through the combined
effects of catch-up efficiency and technological progress. Fourth, the geographical detector
indicated that the main factors driving the improvement in ULUE in the BTH region were
the per unit fixed capital investment, per unit urban employment number, per unit GDP,
average wage of on-the-job employees, and per unit number of beds in public health
institutions, with the average wage of on-the-job employees having the greatest impact.
Improving residents’ income while ensuring that green space resources are available to
each resident can better enhance ULUE.

5.2. Theorical Implications

The theoretical implications of this paper mainly have two aspects. Firstly, the measure-
ment methods of ULUE mainly use the DEA model, SFA model, and SBM model [44–46]. The
efficiency measured by the traditional DEA model is often affected by unexpected factors.
The SFA model cannot match the real production process well and can only calculate the
unique output efficiency. The SBM model can consider the expected output and non-expected
output in the production process, and the introduction of relaxation variables makes the
measurement of land use efficiency more accurate. In this paper, considering China’s carbon
peaking and carbon neutrality goals, the average carbon emission in the ground is introduced
into the index of efficiency measurement, and the interaction between influencing factors is
revealed through the geographical detector model, to improve the scientific evaluation results.
Secondly, the development of urban agglomerations has a strong correlation in space, similar
endowments in the natural environment, similar cultures in historical development, similar
systems in transportation, and coordinated development strategies in policymaking. Research
based on the scale of urban agglomerations is of great value to enrich, develop, and improve
the evaluation of urban land use efficiency.

5.3. Practical Implications

Considering the conclusions above, the potential policy recommendations are pro-
posed. Firstly, it can be deduced from the research conclusion that the Beijing–Tianjin–Hebei
region is mainly developed centering around Beijing, and it is highly necessary to remove
the non-capital functions of Beijing. The central urban area adheres to the characteristic
development orientation of service economy, knowledge economy, and green economy.
The suitability of natural conditions and the carrying capacity of resources and the en-
vironment should be fully considered. Attention should be paid to the orderly growth
of the intensity of land development and the spatial and temporal scale. Secondly, it is
essential to integrate the industrial layout and enhance the efficiency of land utilization.
Considering the conclusions above, the main factors driving the improvement in ULUE
in the BTH region were the per unit fixed capital investment, per unit urban employment
number, per unit GDP, and so on. It is of great significance to evaluate the required land,
capital, and manpower, as well as the jobs and GDP contribution that can be obtained by
the determined industrial land scale to achieve sustainable development.
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5.4. Limitations and Future Research

Firstly, this paper examines data from the Beijing–Tianjin–Hebei urban cluster covering
the period from 2005 to 2020. Future studies may extend the analysis to additional cities,
focusing on micro and meso levels including counties, cities, industrial parks, economic de-
velopment zones, and various city types. The observation period could also be lengthened
to identify more universally applicable patterns. Secondly, limited data availability means
this paper has shortcomings in selecting evaluation indicators and influencing variables
for land use efficiency. Finally, the use of geographic detectors to discuss the factors influ-
encing land use efficiency in this paper may have resulted in omissions in the selection of
explanatory variables. Therefore, further research is needed to enhance the selection of
indicators and variables.
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Abstract: Globally, urbanization is accelerating, with China witnessing a significant 40% rise in urban-
ization rate over the past 4 decades. However, the dynamic changes in the spatial coupling between
infrastructure and utilization intensity during the early, middle, and late stages of urbanization are
not clear. The trajectory of development and coupling within the urbanization process is crucial
for understanding issues such as urban over-saturation and urban shrinkage. Using Hegang in
Northeastern China as an example, we utilized high-resolution remote sensing data, examined the
construction intensity of urban land use, analyzed the degree of coupling with utilization efficiency,
and clarified the dynamic evolution of the binary relationship system between development and cou-
pling. Results show that Hegang’s construction intensity has seen a continuous rise from 1992 to 2000,
with a 200.06% increase over 28 years, while its coupling with utilization efficiency has experienced
a significant drop in the 21st century, suggesting a persistent decline in the utilization of buildings
and a notable urban shrinkage phenomenon. Considering development status and coupling degree,
we delineate a characteristic urbanization state curve for Hegang, reflecting its progression through
stages of “Underdeveloped, Highly coupled,” to “Underdeveloped, Weakly coupled”, and finally
to “Highly developed, Weakly coupled”, offering insights into its urban development path. This
research not only establishes a foundational data groundwork for future land-use planning in Hegang
but also presents a replicable template for urbanization path analysis in other cities, contributing to a
broader understanding of urban development dynamics.

Keywords: built-up land; spatial coupling; construction intensity; nighttime light data; Hegang

1. Introduction

Urbanization is one of the most significant human activities, representing a complex
process where rural populations migrate to urban areas and land cover transitions from
natural to human-dominated landscapes [1], marking a lifestyle change from agricultural
to modern urban living [2–4]. Since the year 2000, an estimated 1.57 billion individuals
have transitioned from rural to urban lifestyles, comprising 20.2% of Earth’s populace
by the year 2020. This demographic shift has led to a 56.4% escalation in urban dwellers
throughout the 21st century. Concurrently, there has been a 150% expansion in the world’s
impervious surface expanse, reaching 108,710 square kilometers. However, the rate of
land urbanization does not always align with the rate of population urbanization [1],
with urban land expansion either outpacing or lagging behind population growth [5,6].
Additionally, the physical infrastructure of a city, as indicated by its building volume,
does not always align with the vitality of its socio-economic status. A low ratio of these
two variables indicates an overburdened urban system, which can lead to environmental
degradation, food security issues, and climate change challenges [7–9]. Conversely, a large
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ratio suggests urban shrinkage, which involves socio-economic issues like population
loss [10], economic stagnation [11], and social depression [11] due to factors such as dein-
dustrialization, aging, and suburbanization [12]. Therefore, assessing the spatial coupling
between physical construction space and socio-economic vitality over the past decades
of urbanization, understanding the relationship between development and coupling, and
deploying appropriate mitigation strategies for the increasingly severe urban shrinkage in
recent years are essential.

Since the 1980s, China has undergone reform and opening up, compressing into a
few decades what normally would take several times longer for urbanization. However,
China appears to have experienced excessive urban land expansion [13]. Since 2000, the
urban population has increased by 3.8 million (76%), while the urban built-up land area has
increased by nearly 300% [1]. Meanwhile, cities in China’s northeastern region, with Hegang
being the most severe, have experienced significant population outflow, economic decline,
and industrial stagnation in the last decade, leading to the emergence of ghost cities and an
increasing risk of urban shrinkage. Thus, it represents a typical area worthy of studying the
coupling of physical space with socio-economic elements at various stages of urbanization.
According to existing research, many scholars typically employ panel data to calculate urban
land-use efficiency within the boundaries of an administrative division by integrating various
input–output indicators. Common input indicators encompass the area of built-up land [14],
fixed asset investment, labor intensity, and energy consumption [15,16]. The output indicators
usually include newly added construction land, urban population [17], Gross Domestic
Product (GDP), government revenue, and environmental pollution [18]. The models and
methods frequently applied include Data Envelopment Analysis (DEA) [16], the Slacks-Based
Measure (SBM) model [15], and Stochastic Frontier Analysis (SFA) [18]. However, panel data
are characterized by temporal lag and are constrained by administrative boundaries, which
limit the richness of information over time and across geographic areas. These limitations
make it difficult to capture long-term annual change information and also complicate the
identification of specific spatial details at a fine-grained or building-stock level.

Remote sensing data, known for their high spatial and temporal resolution, have
become a prevalent tool in urban land use studies, effectively compensating for the short-
comings of panel data. A multitude of land cover products contribute significantly to the
comprehensive analysis of urban growth and the transformation of land use and land
cover (LULC) [19,20]. Building height data enhance the examination of urban morphology
from a vertical perspective, serving as a crucial dimension for assessing the expansion of
urban construction volume [21,22]. The year when impervious surfaces were converted
provides this study with a timeline of building construction, which aids in the analysis of
temporal changes [23]. Moreover, nighttime light data consistently show a robust positive
association with population growth and economic vitality [24] and exhibit a strong link to
various urban dynamics, including urban form and growth patterns [25], energy usage [26],
and carbon emission levels. Gridded Gross Domestic Product (GDP) data can represent
the economic activities within each grid cell. These data offer high-resolution, fine-scale in-
sights into urbanization processes over time, surpassing the spatial and temporal precision
achievable with traditional panel data analysis. Furthermore, they provide a perspective on
long-term coupling dynamics, which is distinct from the single time-point focus of previous
studies. Therefore, this study utilizes long-term, high-resolution remote sensing data to
focus on the urbanization process in Hegang city from 1992 to 2020, a city that is facing one
of the most severe cases of urban shrinkage in the nation. By clarifying the coupling degree
between the intensity of infrastructure construction and the city’s socioeconomic vitality
within each 1km grid cell, this study employs GDP as an indicator of economic output
and qualitatively categorizes each grid within a binary framework of development and
coupling. This approach delineates a representative urbanization state curve for Hegang,
providing insights into its urban development trajectory. Thereafter, we offer suggestions
according to the spatial heterogeneity of construction intensity and coupling degree. The
research provides technological guidance for evaluating coupling by fusing multi-source
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spatial data and lays a foundational data groundwork for future land-use planning in
Hegang, offering a replicable template for urbanization path analysis in other cities.

2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area

The research was conducted in Hegang, which is located in the northeastern part
of Heilongjiang Province, China (Figure 1). The city has six districts and two counties,
covering a total area of 14,684 square kilometers. Situated within the “Northeast Sanjiang
Plain” formed by the Heilong River, the Songhua River, and the Lesser Khingan Mountains,
Hegang borders Russia to the north across the Heilong River. Hegang’s economy has
historically relied on coal mining and processing, with abundant high-quality coal reserves
establishing it as a significant coal production base in China. Historically, the city has
been a central energy industrial hub in northeastern Heilongjiang Province. However, the
decline of the coal industry has led to significant economic challenges, including population
outflow and an urgent need for economic transformation. According to the 2020 census
data, the population of Hegang City decreased from 1,058,665 in 2010 to 891,271, a reduction
of 167,394 people, which is a 15.81% decrease. Hegang is facing one of the most severe
population losses and urban shrinkages in China. How has the coupling of construction
intensity and utilization efficiency changed over the last three decades? How has the binary
relationship system of development and coupling in Hegang evolved dynamically from
1992 to 2020?

Figure 1. Location of the study area. (a) The entire territory of China, (b) Heilongjiang Province,
(c) Hegang City, (d) A schematic diagram of rooftops in the center of Hegang City.

In view of the above, this study takes Hegang as an example and tries to analyze the
spatio-temporal coupling relationship between its land-use intensity and efficiency, with
the hope of providing a reference basis for the construction and development of shrinking
cities in China.

2.1.2. Data

The China Building Rooftop Area (CBRA) dataset [27] encompasses a multi-annual
collection of rooftop area data with a resolution of 2.5 m, derived from Sentinel-2 satellite
imagery spanning from 2016 to 2021. This CBRA dataset is the first to provide full coverage
and multi-annual Building Rooftop Area (BRA) data across China. The high resolution of
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the data allows for a more precise depiction of the density of planar buildings. Furthermore,
this study utilizes the GAIA dataset, produced by Gong et al. [23], to attribute construction
years to the CBRA, thereby extracting high-precision building horizontal extents for every
two years from 1992 to 2020. The building height data, as reported by Wang et al. [22],
complement the three-dimensional form of urban buildings from a vertical perspective. By
integrating the horizontal CBRA data, the vertical building height data, and the construc-
tion year information from GAIA, a comprehensive three-dimensional dataset of urban
buildings constructed year by year is delineated.

The Nighttime Light data (NTL), spanning from 1992 to 2021, is sourced from the
unified Global Night Time Lights dataset as reported by Li et al. [28]. The DMSP-OLS
and NOAA-VIIRS have been capturing light data from the night sky since 1992 and 2012,
respectively. However, due to variations in the spatial detail and sensing technology used
by these two sources, a calibration process is essential to ensure data compatibility. The
resulting dataset offers a seamless, calibrated sequence of nighttime illumination with a
resolution of ~1 km. To mitigate the impact of scattered pixels of nighttime illumination in
suburban areas, the study area is further refined. By identifying natural urban boundaries
produced by Li et al. [29], a spatially contiguous urban space is selected, thereby avoiding
interference from scattered impervious surface pixels in agricultural and ecological spaces.

To characterize the level of urban economic development, we utilized GDP raster data
with a spatial resolution of 1 km and a temporal span from 1992 to 2019 [30]. Additionally,
we employed the 1 km GDP raster data for China created by Yang et al. as the data source
for the final year of our study. Terrain data are collected from SRTMDEM 90M resolu-
tion raw elevation data, which is part of the Shuttle Radar Topography Mission (SRTM),
an international project executed by NASA and the National Geospatial-Intelligence
Agency (NGA). The administrative boundary data are collected from http://www.resdc.cn/
(accessed on 10 July 2024). The specific data types and sources are shown in Table 1.

Table 1. Data and sources.

Data Type Resolution Unit Source

China Building
Rooftop Area

(CBRA)
Raster 2.5 m 0/1 Liu et al. [27]

GAIA Raster 30 m Year Gong et al. [23]
Building height data Raster 1 km m Wang et al. [22]

Nighttime Light
Data (NTL) Raster 1 km DN value

Harmonized Global Night
Time Lights

(1992–2021)—awesome-gee-
community-catalog

[28]
Urban boundaries Vector / / Li et al. [29]

GDP Raster 1 km Yuan

Chen et al. [30] &
https://doi.org/10.6084/m9

.figshare.21485682.v1
(accessed on 10 July 2024)

DEM Raster 90 m m http://www.gscloud.cn/
(accessed on 10 July 2024)

Administrative
boundary Vector / / http://www.resdc.cn/

(accessed on 10 July 2024)

2.2. Methodology Framework

This study is structured into four steps, conducting a long-term sequence analysis
of land-use changes in Hegang from 1992 to 2020 across four dimensions: construction
intensity (measured by Built-up Volume, BUV), its coupling with actual utilization intensity
(measured by Lighted Building Index, LBI), the evolution of the binary relationship between
coupling and development over the past three decades, and the spatial autocorrelation of
both BUV and LBI annually. The detailed technical framework is shown in Figure 2.
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Figure 2. Technical framework.

2.2.1. Construction Intensity of Urban Built-Up Land

We used the 2021 CBRA to represent the existing rooftop areas as of that year. Since
GAIA indicates the year of construction for buildings (ranging from 1985 to 2022 on an
annual basis), overlaying the CBRA with GAIA allows us to assign the construction date
information from GAIA to the corresponding locations in the CBRA. This enables us to
obtain rooftop area data for any desired analysis year, resulting in Built-up Area (BUA) for
every two-year interval from 1992 to 2020. The intensity of urban construction land use
is represented by Built-up Volume (BUV) [31,32]. BUV is calculated as the product of the
Built-up Area (BUA) on the horizontal plane and the Built-up Height (BUH) on the vertical
plane within a 1 km by 1 km grid. The formula is as follows:

BUV = BUA × BUH, (1)

where BUA represents the total area of building rooftops within a 1 km grid for each year,
measured in square meters (m2); BUH represents the average height of buildings within the
1 km grid, measured in meters (m); BUV represents the total volume of buildings within
a 1 km grid for each year, measured in cubic meters (m3). BRA refers to the Constructed
Building Rooftop Area with a 2.5 m resolution data set within the 1 km grid for each
year. TA is the total area of the 1 km grid. Calculations are performed for every even year
between 1992 and 2020, encompassing a total of 15 years of data.
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2.2.2. Lighted Building Index

We utilize Nighttime Light data (NTL) to characterize the actual utilization of urban
construction land within each 1km grid cell. The Lighted Building Index (LBI) is a metric
we have developed in this study to reflect the efficiency of light utilization per unit of
construction volume. It is calculated by taking the ratio of Nighttime Lights (NTL) to Built-
up Volume (BUV). This study employs LBI to quantify the coupling between construction
intensity and actual utilization, attempting to conduct a long-term coupling analysis from
1992 to 2020 (Equation (3)).

LBI =
NTL
BUV

, (2)

where LBI represents Lighted Building Index (unit: DN value/m3); NTL refers to Night-
time Light data, which is typically derived from the fusion of two commonly used remote
sensing sources, DMSP-OLS and NPP-VIIRS. BUV represents the total volume of build-
ings within a 1 km grid for each year, calculated in Section 2.2.1. To mitigate the impact
of scattered pixels of nighttime illumination in suburban areas during the calculation of
the Landscape Biodiversity Index (LBI), the study area is further refined. By identifying
natural urban boundaries, a spatially contiguous urban space is selected, thereby avoiding
interference from scattered impervious surface pixels in agricultural and ecological spaces.

2.2.3. Bivariate Quadrant Trajectory Analysis

We conducted an integrated analysis of the binary relationship between the total
GDP and the Lighted Building Index (LBI) in Hegang City from 1992 to 2020. The two-
dimensional space defined by these two indicators was divided into four quadrants, repre-
senting ‘Highly developed, Highly coupled’, ‘Highly developed, Weakly coupled’, ‘Un-
derdeveloped, Highly coupled’, and ‘Underdeveloped, Weakly coupled’. By performing
pixel-by-pixel time series analysis and spatial time series analysis on the GDP and LBI data
for every other year over the 1992–2020 period, spanning 15 phases, we mapped out the
developmental trajectories across different years. From these analyses, we summarized the
evolution of the relationship between coupling and development.

2.2.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis, including Moran’s I and Local Moran’s I, are utilized
to examine the variability in spatial distribution of Built-up Volume (BUV) and the Lighted
Building Index (LBI). Moran’s I assesses the overall spatial clustering within the data,
identifying whether values are concentrated in specific areas or dispersed randomly. Local
Moran’s I, on the other hand, identifies specific spatial units with high or low values relative
to their neighbors, revealing distinct spatial association patterns. The calculation of Moran’s
I is as follows:

I =
n

∑n
i=1 ∑n

j=1 wij
× ∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)2 , (3)

where I represents Moran’s I, which is calculated based on the number of spatial units n
within the study area. The value of the ith spatial unit is represented by xi, while x repre-
sents the average value across all units. The matrix of spatial weights is denoted by wij. The
selection of the weight matrix is to serve the purpose of explaining spatial autocorrelation.
In this study, we considered the use of the adjacency matrix, which effectively reflects the
adjacency relationships between observations in spatial data. Specifically, the adjacency
matrix is defined based on the boundary contact between regions. If two regions share a
boundary, we set wij = 1; otherwise, wij = 0.

The calculation of Local Moran’s I is as follows:

Ii =
xi − x

(∑n
i=1(xi−x)2

n )
× ∑n

i=1 ∑n
j=1 wij

(
xj − x

)
, (4)
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where the Local Moran’s I index for the ith spatial unit, denoted as Ii, uses the same
parameters as previously defined for the Moran’s I calculation.

3. Results

3.1. Spatiotemporal Construction Intensity of Urban Built-Up Land

Integrating the horizontal expansion and vertical height of construction land, the
results of Built-up Volume (BUV) are illustrated in Figure 3. The construction intensity
in Hegang city has been increasing year by year from 1992 to 2020, characterized by a
gradual increase in the number of pixels containing buildings and a year-on-year increase
in the construction intensity of existing building pixels. Spatially, the northwest region,
dominated by the mountainous area of the Lesser Khingan Range, has rugged terrain
and less construction land; the southern main urban area is the region with the highest
construction intensity in the city; the eastern region is a grain planting development area,
mainly plain, with scattered patches of construction land. Over time, the average BUV in
Hegang has risen from 204.5 × 103 m3 in 1992 to 410.3 × 103 m3 in 2020, an increase of
200.6% over 28 years. Based on the natural break method, construction land is divided into
10 categories. Taking the BUV distribution in 1992 and 2020 as examples, the top 1 category
of BUV values (BUV > 240 × 103 m3) is mainly concentrated in the central area of Hegang
city and the centers of various counties, accounting for 22.2% of the total construction
land area in 1992 and 45.5% in 2020; In contrast, the lowest category of BUV values
(BUV < 1 × 103 m3) is mainly sporadically found in rural construction land, accounting for
13.5% of the total construction land area in 1992 and 1.9% in 2020. Construction land with
moderate BUV exists in the transitional areas between the aforementioned two, that is, the
urban–rural fringe areas on the edge of the city. The construction intensity has surged over
the span of 28 years, affecting not only the city center but also the suburban areas and the
scattered rural construction sites.

Figure 3. Spatiotemporal distribution of Built-up Volume (BUV) in Hegang city from 1992 to 2020.
(a,b) represent the spatial distribution of BUV for construction land in Hegang for the year 1992 and
2020, respectively; (c) BUV statistics of build-up land pixels per year.

3.2. The Coupling Between Construction and Actual Utilization

The Lighted Building Index (LBI) in Hegang city has shown an overall trend of in-
creasing initially and then decreasing (Figure 4), representing a pattern where the coupling
degree between urban construction volume and actual utilization first increased and then
decreased. Between 1992 and 1998, both the average and median LBI values in Hegang
increased significantly. However, from 2000 to 2020, there was a noticeable decline. By
2020, the mean LBI had dropped to 1.68 × 10−3, which is only 40.5% of its value in 1992
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(4.15 × 10−3), indicating a severe phenomenon of urban shrinkage in Hegang during the
21st century. By 2020 (Figure 4b), the pixels with the lowest LBI values were concentrated
in the central area of Hegang city, suggesting that the city center, which should be the most
vibrant, is now the most affected by urban shrinkage. This central decline in the LBI is
indicative of a larger trend where the areas that were once economic and social hubs are
now experiencing a significant reduction in activity and investment. The concentration of
low LBI values in the city center could be a result of various factors such as depopulation,
economic downturn, or a shift in economic activities to other regions within or outside the
city. Moreover, Figure 4c tracks the changes in the LBI over the 28-year period for the top 10
1 km pixels with the highest LBI values in 1992. The top three pixels experienced a dramatic
decrease in LBI after the turn of the century. The combined LBI of the top 10 pixels was 1.35
in 1992, with an average value of 0.13; by 2020, this sum and average had reduced to 0.18
and 0.02, respectively. These figures represent only 13.3% and 15.4% of their values in 1992,
indicating a more severe decline than the overall mean LBI value for all pixels in Hegang.

Figure 4. Spatiotemporal distribution of the Lighted Building Index (LBI) in Hegang city from 1992
to 2020. (a,b) represent the spatial distribution of the LBI for construction land in Hegang for the year
1992 and 2020, respectively; (c) LBI statistics of build-up land pixels per year; (d) Temporal changes
in the LBI from 1992 to 2020 for the top 10 pixels with the highest LBI values in Hegang in 1992.

3.3. The Evolution of the Relationship Between Coupling and Development

The average LBI and the total GDP from 1992 to 2020 can reflect the urban land-use
coupling degree and the level of economic development, respectively (Figure 5a). Over the
period from 1992 to 2020, the coupling degree generally showed a downward trend, while
GDP, despite a decline in 2014, has generally been on an upward trajectory. In terms of
spatial correlation, Figure 5b shows that pixels with higher GDP in the city center have a
lower LBI, whereas pixels with lower GDP in the urban–rural fringe and suburban areas
have a higher LBI. This phenomenon may be attributed to excessive construction in the city
center due to overconfidence on the part of local governments and fiscal incentives.
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Figure 5. The spatiotemporal differentiation of GDP and LBI in Hegang. (a) Time series changes
in GDP and LBI from 1992 to 2020; (b) The spatial correspondence between GDP and LBI; (b1) The
center of Hegang City; (b2) Sub-center of Hegang City.

We utilized the biennial LBI and GDP of Hegang as the two axes, dividing the space
into four quadrants, which represent ‘Highly developed, Highly coupled’, ‘Highly devel-
oped, Weakly coupled’, ‘Underdeveloped, Highly coupled’, and ‘Underdeveloped, Weakly
coupled’. Based on the changes in the two factors for Hegang each year, we can delineate
its position within the four quadrants. By connecting these positions over time, we can
illustrate the transformation trajectory of Hegang over the past 28 years. Overall, Hegang
has experienced three developmental stages from 1992 to 2020: “Underdeveloped, Highly
coupled”, “Underdeveloped, Weakly coupled”, and “Highly developed, Weakly coupled”
(Figure 6). Initially, before the 21st century, Hegang was limited by traditional economic
constraints, resulting in a low GDP, lower construction intensity, and lower urban building
utilization. However, the Lighted Building Index (LBI), an indicator of the utilization per
unit of construction volume, was relatively high, suggesting a state of low-level coupling.
Thereafter, in the first decade of the 21st century, driven by the broader economic environ-
ment in China, Hegang’s economy began to improve rapidly. With the incentive of land
finance, a large number of new buildings were constructed, but actual utilization did not
keep pace with construction intensity, reflected by a decrease in the LBI, indicating a state of
low-level decoupling. After 2010, Hegang’s economy further improved, with the total GDP
exceeding 200 billion yuan. Although GDP declined in 2014, it can be generally recognized
that the city entered a high-level stage. However, facing significant population outflow
and urban shrinkage, LBI saw a sharp decline, with the 2020 LBI being approximately
one-quarter of that in 2010, indicating a state of high-level decoupling. Therefore, in the
development process over the past 30 years, Hegang has gone through three stages, with
the notable absence of a high-level coupling state.

Figure 6. The transformation pathways of Hegang between four coupling−development models
from 1992 to 2020.
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3.4. Spatial Autocorrelation

Based on Moran’s I, BUV and the LBI are positively spatially correlated, respectively,
i.e., the higher values of BUV are associated with a greater tendency for pixels to cluster,
while the lower LBI values are associated with a greater tendency for pixels to cluster.
Specifically, the Moran’s I value for BUV from 1992 to 2020 ranges from 0.325 to 0.417,
while for the LBI it ranges from 0.054 to 0.214. The results from the Local Moran’s I
analysis reveal the spatial clustering of Built-up Volume (BUV) and the Lighted Building
Index (LBI), highlighting the spatial characteristics of built-up land construction intensity
(Figure 7a,c,e,g) and the coupling between building and utilization (Figure 7b,d,f,h). Both
BUV and the LBI exhibit spatial agglomeration. The spatial pattern of agglomeration for
BUV and the LBI is such that they share the same spatial locations but exhibit opposite
values. This implies that pixels which are high-high clusters for BUV are, in contrast,
low-low clusters for the LBI. This phenomenon illustrates that areas with high construction
intensity, primarily centered around the city center, are paradoxically areas of low coupling,
as shown in the low LBI values. This is corroborated by the GDP high-value areas in
2020 (as depicted in Figure 5b), which also coincide with lowLBI-value areas, illustrating a
disconnect between the physical space and economic vitality in the city of Hegang from
two different perspectives.

Figure 7. Local Moran’s I of BUV and LBI in 1992, 2000, and 2020.

4. Discussion

4.1. Analyzing Longitudinal Urbanization from the Perspective of Spatial Coupling

Relying on long-time, high-resolution remote sensing images, the aim of this study is
to analyze the spatial coupling between the physical space of a shrinking city and its actual
utilization. While gridded GDP data inevitably introduce errors during their production
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and distribution process, making them less accurate in reflecting utilization intensity com-
pared to nighttime light data (NTL), NTL, on the other hand, consistently show a robust
positive association with population growth and economic vitality [24] and exhibit a strong
link to various urban dynamics, including urban form and growth patterns [25], energy
usage [26], and carbon emission levels. We employ a 1 km resolution NTL dataset spanning
from 1992 to 2020. This dataset is instrumental in analyzing the actual utilization corre-
sponding to the Built-up Volume (BUV) within 1 km grids. Our methodology incorporates
a biennial monitoring frequency, an approach that adeptly captures temporal dynamics
without redundancy, thus making it scalable to broader regions. Additionally, we have
scaled up 2.5 m resolution rooftop data to align with the 1 km grid scale of our NTL data.
This upscaling process is critical as it harmonizes with the NTL dataset and minimizes
granular errors, ensuring a more accurate representation of BUV. In the calculation of
BUV within the 1 km grids, the precision of horizontal building footprints is paramount,
significantly influencing the determination of building volume. Recognizing the absence
of Chinese regional building contour data in several globally recognized datasets, such
as Microsoft’s [33] and Google’s dataset [34], we have opted for 2.5 m resolution building
rooftop data [27]. These higher-resolution data provide a precise delineation of each build-
ing’s outline, enhancing the precision of construction intensity calculations. By comparing
the LBI and GDP within the identical 1 km grid locations, we qualitatively categorized each
grid within a binary framework of development and coupling. Utilizing time series data
from 1992 to 2020, we have classified the urbanization states of individual grids and the city
as a whole over this period. Our findings reveal that Hegang has traversed an urbanization
trajectory characterized by stages of “Underdeveloped, Highly coupled”, “Underdevel-
oped, Weakly coupled”, and “Highly developed, Weakly coupled”, now confronting an
escalated risk of urban contraction. Previous studies typically employ panel data to cal-
culate urban land-use efficiency within the boundaries of an administrative division by
integrating various input–output indicators. However, panel data are characterized by
temporal lag and are constrained by administrative boundaries, which limit the richness of
information over time and across geographic areas. This study addresses these challenges
by utilizing multi-source long-term and high-resolution remote sensing data, which not
only sets a precedent for urbanization studies but also lays a foundational data groundwork
for future land-use planning in Hegang, offering a replicable template for urbanization
path analysis in other cities.

4.2. Policy Implications

Over the past 28 years, the construction intensity of Hegang city has continuously
increased, yet the actual utilization per unit of building space, as indicated by the Lighted
Building Index (LBI), has been decreasing throughout this century. Moreover, the spatial
heterogeneity demonstrates that areas with high construction intensity, primarily centered
around the city center, are paradoxically areas of low coupling, as shown in the low LBI
values. This is corroborated by the GDP high-value areas in 2020, which also coincide with
low-LBI-value areas, illustrating a disconnect between the physical space and economic
vitality in the city of Hegang from two different perspectives. Temporally, the degree of
mismatch between the city’s physical space and its economic vitality has been escalating,
with Hegang facing some of the most severe urban shrinkage issues observed both nation-
ally and globally. The Moran’s I value for BUV and the LBI both increased, demonstrating
that spatial heterogeneity within the administrative region of Hegang is becoming more
severe. Against this backdrop, the Hegang government’s continued reliance on traditional
incremental planning is likely to exacerbate the disconnection between people and the land
in the future. Looking ahead, the local government of Hegang should shift from the tradi-
tional land finance-driven extensive growth model to a more refined and sustainable urban
development strategy. Like many other resource-oriented cities such as Karamay [35] and
Datong [36], Hegang needs to transition into a more compact city. This includes enhancing
the optimization of existing building spaces, improving the intensity and efficiency of
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actual use of construction and focusing on elevating the quality of life for residents to create
a more livable urban environment. The government must prioritize a balance between
urban planning and land use, curb unregulated expansion, and mitigate the disconnection
between urban spaces and human-land relationships. Through these measures, Hegang
can gradually alleviate the pressures of urban contraction and forge a path of sustainable
development that meets the demands of the new era. This study provides insights for the
development and construction of second-tier cities, as well as for the allocation of national
land use indicators.

5. Conclusions

This study utilizes long-term, high-resolution remote sensing data to focus on the
urbanization process in Hegang city from 1992 to 2020. By clarifying the coupling degree
between the intensity of infrastructure construction (BUV, which has seen a continuous
rise with a 200.06% increase over 28 years) and the city’s socioeconomic vitality (NTL), we
conducted a quantitative analysis of the Lighted Building Index (LBI) across each 1 km
grid cell over the past 28 years. Our findings indicate that the LBI initially increased and
subsequently decreased, with a significant drop in the 21st century, suggesting a persistent
decline in the utilization of buildings and a notable urban shrinkage phenomenon. Addi-
tionally, the study uses GDP as an economic output indicator and qualitatively categorizes
each grid within a binary framework of development and coupling. This methodology has
allowed us to delineate a characteristic urbanization state curve for Hegang, reflecting its
progression through stages of “Underdeveloped, Highly coupled”, to “Underdeveloped,
Weakly coupled”, and finally to “Highly developed, Weakly coupled”, offering insights into
its urban development path. The spatial autocorrelation results reveal that the local Moran’s
I for BUV and the LBI share the same spatial locations but exhibit opposite values. That is,
pixels identified as high-high clusters for BUV are, conversely, low-low clusters for the LBI,
indicating that the central urban construction areas are the most severely affected by hol-
lowing out and the emergence of ghost towns. Accordingly, we provide recommendations
tailored to the spatial heterogeneity of construction intensity and coupling degree.

This study, while offering novel insights, has some limitations. For example, the
Nighttime Light (NTL) data we relied upon are susceptible to the spatial saturation ef-
fect, which can overstate the brightness levels in areas with lower nighttime illumination.
Moreover, the NTL values, being based on artificial light emissions, may not accurately
reflect the economic activity in industrial zones and commercial districts with minimal
nighttime activity, potentially leading to an underestimation of their actual utilization.
Moreover, building rooftop data are selected as the focus of this research; however, the
study does not differentiate between urban and rural rooftops. Consequently, a notable
portion of rural built-up land with low BUV is inadvertently included in the analysis.
In future work, we will refine our methodology to mitigate the limitations of NTL data,
employing additional datasets and analytical techniques to provide a more accurate and
comprehensive assessment of urban spatial dynamics. Moreover, we plan to expand our
research framework to include a broader geographical scope, aiming to analyze urban
coupling degrees across different cities on a regional and national scale. This will enable a
comparative study of urban development trends and spatial coupling evolution over the
past three decades, offering valuable data for urban planning and policymaking, steering
towards sustainable urban growth. Overall, this research offers technical guidance for eval-
uating coupling by integrating multi-source spatial data, establishing a foundational data
groundwork for future land-use planning in Hegang. It also presents a replicable template
for urbanization path analysis in other cities, contributing to a broader understanding of
urban development dynamics.
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