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Preface

We are pleased to present the reprint of the Special Issue “Power System Analysis, Control, and

Operation,” a comprehensive exploration of the emerging challenges and opportunities in modern

power systems. This collection brings together cutting-edge research to address the increasing

complexity of integrating renewable energy resources (RERs), energy storage systems (ESRs), and

electric vehicles (EVs) into power grids. With a growing emphasis on demand response and sector

coupling, these topics are vital to improving efficiency, reliability, and flexibility in energy systems.

The scope of this reprint spans a wide range of topics, including optimal power flows,

the integration of distributed energy resources, data analytics for load and renewable generation

forecasting, and cross-sector coordination between power and transportation systems. It also

highlights strategies for enhancing grid sustainability, resiliency, and adaptability, offering insights

into innovative solutions for advancing energy system operations.

This Special Issue was made possible through the contributions of leading researchers, whose

efforts we deeply appreciate. We would also like to express our gratitude to the reviewers for their

constructive feedback, as well as to the editorial team at energies for their unwavering support in

bringing this reprint to fruition.

The reprint is intended for a diverse audience, including researchers, industry professionals, and

policymakers, all of whom play a pivotal role in shaping the future of sustainable energy systems. We

hope this collection will serve as an invaluable resource and inspire continued advancements in the

field.

Bing Yan, Marialaura Di Somma, and Jianxiao Wang

Guest Editors
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A Comprehensive Tool for Scenario Generation of Solar
Irradiance Profiles

Amedeo Buonanno 1, Martina Caliano 1, Marialaura Di Somma 1,*, Giorgio Graditi 2 and Maria Valenti 1

1 Department of Energy Technologies and Renewable Energy Sources, ENEA, 80055 Portici, NA, Italy
2 Department of Energy Technologies and Renewable Energy Sources, ENEA, 00123 Rome, Italy
* Correspondence: marialaura.disomma@enea.it

Abstract: Despite their positive effects on the decarbonization of energy systems, renewable energy
sources can dramatically influence the short-term scheduling of distributed energy resources (DER)
in smart grids due to their intermittent and non-programmable nature. Renewables’ uncertainties
need to be properly considered in order to avoid DER operation strategies that may deviate from the
optimal ones. This paper presents a comprehensive tool for the scenario generation of solar irradiance
profiles by using historical data for a specific location. The tool is particularly useful for creating
scenarios in the context of the stochastic operation optimization of DER systems. Making use of the
Roulette Wheel mechanism for generating an initial set of scenarios, the tool applies a reduction
process based on the Fast-Forward method, which allows the preservation of the most representative
ones while reducing the computational efforts in the next potential stochastic optimization phase.
From the application of the proposed tool to a numerical case study, it emerged that plausible
scenarios are generated for solar irradiance profiles to be used as input for DER stochastic optimization
purposes. Moreover, the high flexibility of the proposed tool allows the estimation of the behavior
of the stochastic operation optimization of DER in the presence of more fluctuating but plausible
solar irradiance patterns. A sensitivity analysis has also been carried out to evaluate the impact
of key parameters, such as the number of regions, a metric, and a specific parameter used for the
outlier removal process on the generated solar irradiance profiles, by showing their influence on their
smoothness and variability. The results of this analysis are found to be particularly suitable to guide
users in the definition of scenarios with specific characteristics.

Keywords: scenario generation; scenario reduction; solar irradiance profiles; smart grid

1. Introduction

The sustainability objectives set by the European Green Deal require the increasing
use of generation systems based on renewable energy sources (RES), as well as the use of
electricity as the main energy vector. The pathway to reducing carbon emissions by 2030
will require efforts across society and sectors. With the European Green Deal as the main
plan to implement for promoting this change, the European Union (EU) finalized its master
program to fight carbon emissions, namely, the “Fit for 55” package [1]. Released in two
batches in July and December 2021, the package drafts of EU climate and energy legislation
underpin the bloc’s political pledge to cut emissions by at least 55% by 2030 compared
with 1990 levels. This target is more ambitious than the previous one of a 40% reduction
for 2030 and is the key to achieving carbon neutrality in the EU by 2050. In view of this
scenario, solar energy will become one of the key players in the electricity generation
sector, thanks to its viability in combating global warming and its effectiveness in reducing
pollution caused by fossil-fuel-based generation and diversifying the energy mix to ensure
energy security. In particular, the installed capacity of solar photovoltaics (PV) has grown
rapidly over the past decade due to the great improvements in PV technology performance,
reductions in cost, and the development of efficient business models that have fostered new

Energies 2022, 15, 8830. https://doi.org/10.3390/en15238830 https://www.mdpi.com/journal/energies1
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investments in this technology. This trend is expected to continue in the future, affecting
not only large-scale centralized solar farms but, above all, small-/medium-scale PV at the
distribution level, where the number of PV applications owned by residential and industrial
prosumers (power producers and consumers) will also expand, driven by environmental
policies and economic incentives.

From a range of studies, solar PV is expected to contribute 36% to 69% of European
electricity consumption by 2050 [2], and its role is predominant in Energy Communities [3].
Due to the variability and intermittent nature of the solar PV output, such a high share of
solar PV will impact the overall system costs due to the increase in operating costs and the
infrastructure needed. This problem is aggravated by the inaccuracy of the methodologies
in modeling renewables’ uncertainties, which are related to the uncertainty of weather
conditions for RES [4], which represent a key factor to be properly handled in the smart
grid environment. In fact, they may influence how distributed energy resources (DER)
are scheduled in the short term to provide the available flexibility for system balancing
at all times [5–8]. If such uncertainties are not identified and handled properly in the
operation scheduling of DER, their operation strategies may deviate from the optimal ones
by causing a number of issues, such as an increase in operational costs or system stability
and security. Modeling RES uncertainties in the stochastic operation optimization of DER
is thus extremely important [9–12].

Several works in the literature deal with different sources of uncertainties, such
as renewables, electricity consumption, electric vehicles, etc. [13–17]. The objective of
uncertainty-modeling methods is to evaluate the impact of uncertain input parameters
on system output parameters. These methods can be subdivided into several groups, as
suggested in [18,19]:

• Probabilistic: the probability density functions (PDFs) of the input parameters
are used;

• Possibilistic (fuzzy): the uncertainty of the input parameters is modeled with a mem-
bership function (MF);

• Hybrid probabilistic and possibilistic: both probabilistic and possibilistic approaches
are used;

• Based on Information Gap Decision Theory (IGDT): it measures the deviation of the
estimation error;

• Robust optimization: the uncertainty of the input parameters is described using
uncertainty sets;

• Interval analysis: the uncertain inputs can assume values in a known interval (similar
to the probabilistic approach with uniform PDFs).

The approaches to estimating solar irradiance can be grouped into linear, nonlinear,
Artificial Neural Network (ANN)-based, and Fuzzy Logic (FL) techniques [20]. For linear
and nonlinear models, the authors have created associations between solar irradiance and
other variables, such as meteorological ones [21–23]. In ANN-based approaches [24,25],
the usual inputs used are geographical coordinates, meteorological data, and information
related to the current date and time. In FL approaches, the input to the estimation model
is the classified sky condition. Moreover, other authors have applied statistical methods
to study the hourly variation in solar irradiance data considering different climatic loca-
tions [26] or empirical models to estimate solar irradiance on a monthly basis for different
locations [27,28]. In [29], the authors state that FL can yield better estimation results when
the data available for estimation are ambiguous and vague.

Among the probability distributions, beta is considered one of the most effective for
modeling solar irradiance [30–33] and is often employed in planning studies related to PV sys-
tems [34–36]. Other works propose the Weibull distribution for modeling solar irradiance [37].

The contribution of this paper is the presentation of a comprehensive tool to generate
solar irradiance profiles using a scenario generation approach and historical data for a
specific location. The methodology is general and highly replicable and can thus be applied
in several contexts for generating 24 h solar irradiance scenarios, which are useful for the
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stochastic operation optimization of DER. The tool has been completely implemented in
Python, and it is suitable for transformation into a Web Service to generate solar irradiance
profiles related to a particular geographical region and a time period of interest.

The historical hourly solar irradiance data were fitted using the beta distribution, and
the Roulette Wheel mechanism [38] was used to generate an initial set of scenarios; then,
a reduction process based on the Fast-Forward method [39,40] was applied in order to
preserve the most representative ones while reducing the computational efforts in the next
potential stochastic optimization phase. The generation and reduction phases are ruled by
certain parameters, such as the number of regions, a metric, and a specific parameter used
for an optional process for outlier removal that can be modified. Moreover, a sensitivity
analysis was performed to evaluate the impacts of the variations in these parameters on the
solar irradiance scenarios generated. The numerical results of the analysis show that these
parameters have a visible effect on the smoothness and variability of the generated scenarios.
Based on the current scientific literature, there are no previous works that examined these
aspects, thereby highlighting the importance of this study, which could be useful as a guide
for tuning the scenario generation process with the aim of obtaining scenarios with certain
characteristics. In the case study, the proposed tool is found to be efficient in generating
plausible scenarios for daily solar irradiance profiles with 1 h as the time-step to be used as
input for DER stochastic operation optimization purposes. Moreover, the high flexibility
of the proposed tool allows the estimation of the behavior of DER stochastic operation
optimization in the presence of more fluctuating—but plausible—solar irradiance profiles.
The current paper extends the results presented in [41] by including additional results in
the case study, as well as introducing a new verification system of the plausibility of the
reduced scenarios.

In the following, the dataset, data preprocessing, data fitting, and methods for scenario
generation and reduction are discussed in Section 2. The results of varying certain key
parameters in the scenario generation and reduction processes are presented in Section 3.
In Section 4, the sensitivity analysis is discussed, along with the obtained results.

2. Materials and Methods

The tool proposed in this paper is based on a statistical approach used to model
solar irradiance based on historical data. By using the Roulette Wheel method [38], an
initial set of scenarios is first generated, and then, through a reduction process, the most
representative ones are preserved.

A scheme for describing the proposed tool is shown in Figure 1. In particular, the
dataset retrieved from the Photovoltaic Geographical Information System (PVGIS) [42]
(Section 2.1) is preprocessed by using an optional process for outlier removal and min–max
scaling, as described in Section 2.2. For each hour, a data-fitting process (Section 2.3) is
performed in order to obtain a probability distribution for each hour. From each hourly
probability distribution, a sample is extracted to obtain 24 randomly sampled values,
the so-called 24 h solar irradiance scenario (Section 2.4). This process is performed nS
times in order to obtain nS scenarios. In order to reduce the computational complexity of
the following optimization task, the generated scenarios have to be reduced by using an
approach that preserves the “information content” present in the original set of scenarios.
This is performed by using the procedure described in Section 2.5.

3
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Figure 1. Overall description of the proposed tool. In square parentheses, the parameters that affect
the considered step are reported.

2.1. Dataset Description

The hourly solar irradiance data from 2005 to 2016 for the city of Turin (Italy) were
gathered using PVGIS [42]. In order to model both the winter and summer seasons, January
and July were selected as months of interest.

The daily patterns of solar irradiance for the days in July and January from 2005 to
2016 are shown in Figures 2 and 3, respectively.

From the figures, it is possible to observe the great variability in each hour, which will
be modeled by means of a probability distribution that fits the data.

Figure 2. Box-whisker plot of solar irradiance for the days in July from 2005 to 2016. The bold points
represent values identified as outliers following Equation (1) with p = 1.5. To each hour is associated
a different color of box.

4
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Figure 3. Box-whisker plot of solar irradiance for the days in January from 2005 to 2016. The bold
points represent values identified as outliers following Equation (1) with p = 1.5. To each hour is
associated a different color of box.

2.2. Data Preprocessing

The hourly data for each considered month were normalized using min–max scaling
in order to map the values observed in the range [0, 1].

To reduce the variability in the observations, the outliers can be removed using the
Interquartile Range (IQR) method [43], according to which the values are considered
outliers—and hence removed—when they are outside of the following range:

[Q1 − p · IQR, Q3 + p · IQR] (1)

where Q1 and Q3 are the 1st and 3rd quartiles (25th and 75th percentiles), respectively;
IQR = Q3 − Q1; and p is a value that permits the expansion or restriction of the range and
hence the consideration of fewer or more values as outliers.

However, it is the user’s choice to enable (or not) the outlier removal process, as well
as the value of p.

2.3. Data Fitting

The normalized hourly irradiance data were fitted using several probability distribu-
tions, namely, Weibull, beta, logistic, and arcsine. Among the tested distributions, beta was
found to be the best fit for most hours in January and July, confirming what was observed
in the relevant literature for solar irradiance data [32,33].

Beta is a continuous probability distribution with support in [0, 1], and its PDF is
defined as in [44]:

fS(x, a, b) =
xa−1(1 − x)b−1

B(a, b)
(2)

where B(a,b) is the beta function, formulated as:

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

(3)

where Γ(x) is the gamma function, formulated as:

Γ(x) =
∫ ∞

0
ux−1e−udu (4)

Different values of a and b allow uniform (a = 1, b = 1), bimodal (a < 1, b < 1), or
unimodal (a > 1, b > 1) distributions to be obtained. nR regions, or bins, are defined to
divide the support of the distribution.

5
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Figure 4 shows the fitting results of data related to the hour 12:00 p.m. in July using
the beta distribution and dividing its support into 7 regions.

Figure 4. Data fitting using beta distribution with 7 regions: (blue bars) histograms of the empirical
distribution; (green bars overlaid with transparency) histograms of the fitted beta distribution; (red
line) the line connecting the central points of all regions.

2.4. Roulette Wheel Method

The Roulette Wheel method [38] was used to extract a set of samples from the fitted
probability density functions with their supports divided into nR regions [45].

The probability of the occurrence of a particular region r (r ∈ {1, . . . , nR}) at time t (the
hour of the day, t ∈ {0, . . . , 23}) can be computed as the product of width wt,r (width of
region r at time t) and height ht,r (height of region r at time t): αt,r = wt,r · ht,r, appropriately
normalized as reported in Equation (5).

α̂t,r =
αt,r

∑nR
ρ=1 αt,ρ

(5)

The probabilities of the occurrence for all regions of a particular hour were sorted in
descending order and cumulated.

In order to sample from the beta distribution with its support divided into nR regions,
it is possible to sample a value from a uniform distribution ( v ∼ U(0, 1)) and, comparing
it with the cumulative probability of occurrence, select one of nR possible regions that v
belongs to (this method is also known as the Inverse Transform [46]).

The central value of the selected region is the value sampled from the beta probability
distribution with support divided into nR regions. The procedure described above was
performed for each hour, obtaining 24 sampled values that compose the scenario. To be
precise, not all 24 values were sampled in this way because, in some hours, the observed
solar irradiance was constantly zero, and this behavior was maintained in the scenario
generation process.

The binary variable Wk,t,r is used to contain the information on whether region r is
selected for a scenario sk at hour t (Wk,t,r = 1) or not (Wk,t,r = 0).

The main assumption of the proposed model is that, at a specific hour, the solar irradi-
ance is independent of the values observed in the previous hours. With this assumption,
the probability of the occurrence of scenario sk, πk, is the product of the probabilities of the
regions that compose it [45]:

πk =
∏23

t=0 ∑nR
r=1
{

Wk,t,r · α̂t,r
}

∑nS
k=1 ∏23

t=0 ∑nR
r=1
{

Wk,t,r · α̂t,r
} , k = 1, . . . , nS (6)

6
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The independence assumption can be relaxed, considering that the solar irradi-
ance assumed at a particular hour depends on the solar irradiance values of previous
hours. The methodology described here is, however, still valid, and this extension is
reported elsewhere.

2.5. Scenarios’ Reduction Process

From an initial set of nS scenarios with their probabilities πk (with k = 1, . . . , nS), it is
necessary to obtain a reduced set of nP scenarios to use in the successive potential stochastic
optimization phase. The considered reduction method is the Fast-Forward method [39,40].
The algorithm creates a subset of scenarios with the minimum Kantorovich distance from
the initial set. After computing the distance (with respect to a metric defined as the mean
absolute distance, Euclidean distance, etc.) between all pairs of scenarios, the scenario with
the minimum weighted distance (the weights are the probabilities of the occurrence of
each scenario) from all of the other ones is selected. The probability of the occurrence of all
removed scenarios is absorbed by the preserved scenario that is nearest to them.

The main steps of the Fast-Forward algorithm are described in the Algorithm 1 box [39].

Algorithm 1. Fast-Forward

Step 1

1.
For each pair of scenarios (sk and su), the distance is computed by using the metric cT .
The generic element Ck,u of matrix C in step 1 is:

2. C[1]
k,u = cT(sk, su), k, u = 1, . . . , nS (7)

3. The metric usually used is the �q-Norm of RT , which can be defined as:

4. cT(sk, su) =

(
T

∑
t=1

∣∣∣sk
t − su

t

∣∣∣q) 1
q

(8)

5.
Each scenario su is associated with the weighted distance to any other scenario sk, where
the weights are the probabilities of occurrence πk:

6.
z[1]u =

nS

∑
k=1
k �=u

πkC[1]
k,u, u = 1, . . . , nS (9)

7.

For example, the z values for scenarios s1 and s2 are the following:

z[1]1 = π2C[1]
21 + π3C[1]

31
+ π4C[1]

41 + . . .

z[1]2 = π1C[1]
12 + π3C[1]

32
+ π4C[1]

42 + . . .

8. Among the results, the index of the scenario with the minimum value of z is selected (u1):

9. u1 ∈ argminu∈{1,...,nS} z[1]u (10)

7



Energies 2022, 15, 8830

Algorithm 1. cont.

10.
Then, su1 is preserved (operatively, u1 is removed from the indexes of scenarios to delete
in step 1, J[1]):

11. J[1] = {1, . . . , nS}\{u1} (11)

Step i

12.
Using the information from previous steps, the distance matrix is updated using
Equation (12), new values of z are computed using Equation (13), and a new scenario is
selected to be preserved (sui ) using Equations (14) and (15):

13. C[i]
ku = min

{
C[i−1]

ku , C[i−1]
kui−1

}
, k, u ∈ J[i−1] (12)

14.
z[i]u = ∑

k∈J[i−1]\{u}
πkC[i]

ku, u ∈ J[i−1] (13)

15. ui ∈ argminu∈J[i−1]z
[i]
u (14)

16. J[i] = J[i−1] \ {ui} (15)

Step nP + 1

17.
In the final step, the list of scenarios to remove J = J[nP ] is completed. Each scenario to
be removed will be linked to a preserved scenario that will “substitute” it. In fact, j(i) is
the index of the preserved scenario nearest to the removed scenario si:

18. j(i) ∈ argminj/∈J cT(si, sj), ∀i ∈ J (16)

19.
The set of indexes of the removed scenarios that have sj as the nearest preserved
scenario can be defined as follows:

20. J(j) = {i ∈ J : j = j(i)} (17)

21.
Using the optimal redistribution rule [40], the probability of the occurrence πj of the
preserved scenario sj is computed:

22. πj = πj + ∑
i∈J(j)

πi (18)

23.
The probabilities of the occurrence of the removed scenarios nearest to sj are added to
the initial value of πj.

3. Numerical Results

In this section, the numerical results of the scenario generation process carried out
considering different values of nR, metric, and p are presented.

Due to the randomness of sampling from uniform random variables in the Roulette
Wheel method, two successive executions of the scenario generation process with the same
parameters could return different scenarios unless fixing the seed for sampling from the
uniform distribution. In order to compare the several generated scenarios with different
parameters, the same seed was used for all trials related to the same month.

3.1. Outlier Removal

Figures 5 and 6 show the results obtained by using nS = 1000, nP = 10, nR = 7, and
metric = �2-Norm and by varying p.

8
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Figure 5. Median scenarios (blue) with box-whisker plot for scenarios generated for July using
nS = 1000, nP = 10, nR = 7, and metric = �2 -Norm and varying p: 1.5 (a), 1 (b), 0.5 (c), and 0.15 (d).

Figure 6. Median scenarios (blue) with box-whisker plot for scenarios generated for January using
nS = 1000, nP = 10, nR = 7, and metric = �2 -Norm and varying p: 1.5 (a), 1 (b), 0.5 (c), and 0.15 (d).

3.2. Number of Regions

Figures 7 and 8 show the results obtained by considering nS = 1000, nP = 10, and
metric = �2-Norm without outlier removal and by varying nR.

9
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Figure 7. Median scenarios (blue) with box-whisker plot for scenarios generated for July using
nS = 1000, nP = 10, and metric = l2-Norm without outlier removal and varying the number of
regions (nR): 3 (a), 5 (b), 11 (c), and 21 (d).

Figure 8. Median scenarios (blue) with box-whisker plot for scenarios generated for January using
nS = 1000, nP = 10, and metric = �2 -Norm without outlier removal and varying the number of
regions (nR): 3 (a), 5 (b), 11 (c), and 21 (d).

3.3. Metric

Figures 9 and 10 show the results obtained by using nS = 1000, nP = 10, and nR = 7
without outlier removal and varying the metric used to compare two scenarios. For that,

10
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several �q-Norms were tested (Equation (8)): �1-Norm (q = 1), �2-Norm (q = 2), �4-Norm
(q = 4), and �∞-Norm (Equation (19)).

cT(sk, su) = max
t

∣∣∣sk
t − su

t

∣∣∣ (19)

Figure 9. Median scenarios (blue) with box-whisker plot for scenarios generated for July using
nS = 1000, nP = 10, and nR = 7 without outlier removal and varying the type of metric: �1 -Norm (a),
�2 -Norm (b), �4 -Norm (c), and �∞ -Norm (d).

Figure 10. Median scenarios (blue) with box-whisker plot for scenarios generated for January using
nS = 1000, nP = 10, and nR = 7 without outlier removal and varying the type of metric: �1 -Norm (a),
�2 -Norm (b), �4 -Norm (c), and �∞ -Norm (d).

11
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4. Discussion

In order to show the impact of the parameters p, nR, and metric on the preserved
scenarios (in terms of smoothness and variability in the same hour), a sensitivity analysis
was performed.

For the estimation of the variability in the preserved scenarios, the average (for all
hours excluding those in which irradiance is always zero) of the difference between the
97.5th and 2.5th percentiles of the preserved scenarios was considered. The trends of
the average of the difference between the 97.5th and 2.5th percentiles for the different
trials described in Sections 3.1–3.3 for July (summer) and January (winter) are shown in
Figures 11 and 12, respectively.

 

Figure 11. Trend of average of the difference between 97.5th and 2.5th percentiles for preserved
scenarios for the summer: (blue) nR = 7 and metric = �2-Norm and varying p: 1.5, 1, 0.5, and 0.15;
(green) nR = 7, without outlier removal and varying metric: �2-Norm, �1-Norm, �4-Norm, and
�∞-Norm; (orange) metric = �2-Norm, without outlier removal and varying nR: 3, 5, 7, 11, and 21. The
text in the graph indicates the values assumed by the varied parameters.

Figure 12. Trend of average of the difference between 97.5th and 2.5th percentiles for preserved
scenarios for the winter: (blue) nR = 7 and metric = �2-Norm and varying p: 1.5, 1, 0.5, and 0.15; (green)
nR = 7, without outlier removal and varying metric: �2-Norm, �1-Norm, �4-Norm, and �∞-Norm;
(orange) metric = �2-Norm, without outlier removal and varying nR: 3, 5, 7, 11, and 21. The text in the
graph indicates the values assumed by the varied parameters.
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Regarding the outlier removal process, when reducing p, more samples for each hour
are considered outliers (and hence removed). For the solar irradiance distributions with
small hourly IQRs and many values outside IQRs, as in July, where the average IQR is
about 111 W/m2 (Figure 2), removing outliers and reducing the value of p lead to generated
scenarios with small variability (Figure 5 and blue line in Figure 11). For the solar irradiance
distributions where hourly IQRs are high and few observations are outside IQRs, as in
January, where the average IQR is about 460 W/m2 (Figure 3), the outlier removal process
does not have, in general, a high impact (Figure 6 and the blue line in Figure 12).

Regarding the impact of the number of regions (nR), the variability is increased
for both seasons when nR is increased from 3 to 7 (Figures 7 and 8 and orange lines in
Figures 11 and 12). With a value of nR that is higher than 7, the variability is quite stable.
This can be explained by the fact that, even though the support of the beta distribution has
been divided using more regions, more of them have a low probability of occurrence and,
hence, do not impact the resulting variability.

Regarding the impact of several metrics for comparing two scenarios during the reduc-
tion process (Figures 9 and 10 and green lines in Figures 11 and 12), it is possible to observe
that very different results are obtained from different metrics in the two considered seasons
(e.g., �2-Norm produces scenarios with high variability in summer and low variability in
winter, �4-Norm produces scenarios with lower variability than �2-Norm in summer and
higher variability than �2-Norm in winter, etc.), and the variability obtained with �∞-Norm
is close to that obtained with �2-Norm.

The user of the method can select the best combination of the presented parame-
ters in order to obtain the best trade-off between the variability among preserved sce-
narios and their plausibility. To verify the plausibility of the preserved scenarios, the
user can plot them in the box-whisker plot obtained from the real solar irradiance data
(Figures 1 and 2) and verify that the generated values of hourly solar irradiance for the
particular scenario do not deviate too much from the boxes and whiskers. (In the box-
whisker plot, the box describes the range between Q1 and Q3, the upper whisker is on
Q3 + 1.5 · IQR, and the lower whisker is on Q1 − 1.5 · IQR. The values outside the range
defined by the whiskers can be considered outliers). In this case, this means that the
generated values of hourly solar irradiance for that scenario can be considered inliers with
respect to the observed data.

The scenarios obtained with nS = 1000, nP = 10, and nR = 7, �2-Norm metric and
without the outlier removal step are shown in Figure 13 for summer and Figure 14 for winter.
Figures 15 and 16 show the preserved scenarios plotted over the box-whisker plot of the
observed solar irradiance. In these images, it is possible to see that the preserved scenarios
are almost completely contained in the boxes (representing the IQR of the observed solar
irradiance), and almost all values that are outside the boxes are confined to the variability
range observed in the real data (the range between the two whiskers) and hence can be
considered plausible.
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Figure 13. Ten generated scenarios reduced from one thousand initial scenarios using Fast-Forward
algorithm with 7 regions, �2-Norm metric, and without outlier removal. The historical data are related
to July for the city of Turin (Italy) from 2005 to 2016. Different line colors represent different scenarios.

Figure 14. Ten generated scenarios reduced from one thousand initial scenarios using Fast-Forward
algorithm with 7 regions, �2-Norm metric, and without outlier removal. The historical data are related to
January for the city of Turin (Italy) from 2005 to 2016. Different line colors represent different scenarios.
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Figure 15. Ten preserved scenarios plotted over the box-whisker plot of the observed solar irradiance
for the days in July from 2005 to 2016. Different line colors represent different scenarios.

Figure 16. Ten preserved scenarios plotted over the box-whisker plot of the observed solar irradiance
for the days in January from 2005 to 2016. Different line colors represent different scenarios.

5. Conclusions

In this work, a comprehensive tool to generate solar irradiance profiles is presented.
The proposed approach is based on a scenario generation process aimed at generating 24 h
solar irradiance scenarios using the historical data of solar irradiance for a specific location.

In the case study, the proposed method was applied to generate a set of daily solar irra-
diance scenarios for the months of January and July for the city of Turin (Italy). The Roulette
Wheel mechanism was used to generate the initial set of scenarios, and the Fast-Forward
method for the reduction process was applied to preserve the most representative scenarios
and reduce the computational efforts associated with the potential stochastic operation
optimization phase. The results demonstrate the flexibility of the method in generating
scenarios for solar irradiance and in assessing their plausibility. These characteristics make
the proposed approach an effective tool to be used for the stochastic operation optimization
of DER.

Moreover, the results of the sensitivity analysis show the influence of the variation
in the key parameters on the results in terms of increasing the variability and/or the
smoothness of the generated scenarios, which could be very effective in estimating the
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behavior of the stochastic operation optimization of DER in the presence of more fluctuating
but plausible solar irradiance patterns.

Given the generality of the proposed method, it can be easily adapted to model solar
irradiance profiles for different locations and use cases, and hence, it can serve as a guide
to users for the definition of scenarios with specific characteristics. Moreover, the proposed
pipeline can be implemented as a Web Service queryable by users in order to generate solar
irradiance scenarios with their probability of occurrence, which is fundamental for the
stochastic optimization of DER.
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Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Networks
DER Distributed energy resources
FL Fuzzy Logic
IGDT Information Gap Decision Theory
IQR Interquartile Range
MF Membership function
PDF Probability density function
PV Photovoltaic
PVGIS Photovoltaic Geographical Information System
RES Renewable energy sources
Nomenclature

αt,r Probability of occurrence of a particular region r at time t
α̂t,r Normalized probability of occurrence of a particular region r at time t
πk Probability of occurrence of scenario sk

Γ(x) Gamma function
cT Metric used to compute the distance between two scenarios
ht,r Height of region r at time t
nP Number of preserved scenarios
nR Number of regions (bins) used to divide the support of the distribution
nS Number of generated scenarios
p Parameter used to define outliers
r Number of considered regions (r ∈ {1, . . . , nR})
sk k-th scenario (signal containing 24 irradiance values)
t Hour of the day (t ∈ {0, . . . , 23})
wt,r Width of region r at time t
z[m]

u Weighted distance of scenario su from all other scenarios in step m
B(a,b) Beta function with parameters a and b
C Matrix containing the distances between all pairs of scenarios

C[m]
k,u (k,u)th entry of matrix C, representing the distance between scenarios sk and su in step m

J(j) Set of indexes of the removed scenarios that have sj as the nearest preserved scenario
J[m] List of indexes of deleted scenarios in step m
Q1 1st quartile, 25th percentile of observed values
Q3 3rd quartile, 75th percentile of observed values
Wk,t,r Binary variable that describes whether region r of scenario sk is selected at time t
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Abstract: The large-scale integration of photovoltaic (PV) power can bring a greatly negative influence
on the grid-connected system’s voltage stability. To study the static voltage stability (SVS) of PV
grid-connected systems, the traditional SVS index, L-index, was re-examined. It was firstly derived
and proved that the PV active output Ppv is proportional to the voltage phase angle of the PV station’s
POI (Point of Interconnection), based on a simplified two-node system integrated with a PV station
operating in PV (active power—voltage) mode or PQ (active power—reactive power) mode with unit
power factor. Then a novel voltage stability sensitivity index LPAS-index was proposed that takes the
derivative of the L-index with respect to the POI’s voltage phase angle, so as to reflect the influence
degree of Ppv on the SVS of each load node. A SVS zoning analysis method for the PV grid-connected
system was designed according to the classification results of load nodes based on the proposed
LPAS-index, the power grid can be zoned into three kinds of areas that reflect different correlations
between the SVS and Ppv: strong correlation, moderate correlation and weak correlation. Since the
LPAS-index is less impacted by Ppv, the SVS zoning results are relatively unchanged. On the basis of
a classic 14-node system with PV, the practicability of the zoning analysis method was verified. The
simulation results show that the PV access point in general falls within the strongly or moderately
associated area with Ppv. When most of the load nodes fall within the weakly associated area with
Ppv, it is not necessary to consider the impact of Ppv and load power is still the main influencing
factor on the SVS. In the multi-PV case, owing to the expansion of areas more affected by Ppv, an
excessive Ppv can cause adverse influence on the SVS of the whole power grid; and an effective PV
power-shedding measure is proposed to solve this problem. The proposed SVS zoning analysis
method can be used for reference by power grid dispatchers.

Keywords: static voltage stability (SVS); photovoltaic (PV) active output; Point of Interconnection
(POI); sensitivity index; zoning analysis

1. Introduction

In order to alleviate problems such as energy shortage and environmental pollution
and achieve the goal of ‘dual carbon’, China has made great efforts to develop photo-
voltaic (PV) power generation technology in recent years [1,2]. With the maturity of PV
grid-connected technology and the continuous reduction of installation costs, PV power
generation shows a development trend of large-scale grid-connected operation and be-
comes the main new-energy in the construction of modern power systems [3]. In China,
according to the latest data released by the National Energy Administration, the installed
capacity of grid-connected PV power generation reached 392.04 GW by the end of 2022, and
centralized PV accounts for about 60 percent of the total installed capacity. The PV power
output is greatly affected by natural and meteorological factors and has a strong random
fluctuation and intermittence [4,5]. Meanwhile, the integration of large-scale PV intensifies
the power electronic characteristics and reduces the power system inertia, and brings more
effects and challenges to the static and dynamic stability of the power system [6–8], in
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particular the static-state (steady-state), small-disturbance, transient-state and long-term
voltage stability [9–11].

Static voltage stability (SVS) refers to the voltage stability when the power system
sustains various small disturbances (such as small changes in load power) without consid-
ering the dynamic characteristics of each electric element [12]. In recent years, the studies
on the SVS of traditional AC power systems have been still a hot spot and various machine
learning algorithms are applied to the SVS prediction issue [13–15].

In the context of the integration of large-scale PV power stations, what are the main
factors affecting the SVS of the power grid? How to determine the fluctuation range of
SVS critical point, SVS domain and SVS margin; how to analyze the impact of PV power
fluctuation on the weakest SVS area; how to design a novel SVS index (or criterion) that can
apply to the PV power fluctuation and how to use certain appropriate control strategies to
improve the system’s SVS are all the main concerns.

The research on the SVS issue of the large-scale PV station grid-connected system
has been reported in relevant references. In Reference [16], the impacts of multiple factors
were studied on the SVS, including PV transmission line length, PV active output, and PV
topological structure, etc. In Reference [17], the impacts of several factors such as solar
irradiance, PV generation power factor, PV installed capacity and PV transmission line
impedance, were further studied.

In Reference [18], the SVS margin of the IEEE 14-node system with PV under the two
modes of unity power factor operation and constant voltage operation was calculated, and
it is considered that the integration of large-scale PV is conducive to improving the SVS
margin. However, it was pointed out that too much PV active output can decrease the SVS
margin in Reference [9]. In Reference [19], an assessment for the probabilistic SVS margin
was studied, by using the probabilistic model of PV/wind power and the Monte-Carlo
simulation method.

Several novel indexes that are suited for the SVS analysis in the system with large-scale
PV stations were proposed. In Reference [20], the influence of the PCC (Point of Common
Coupling) of the PV station on the SVS was studied by defining a sensitivity index of load
node voltage—PCC active power that can reflect the impact of PV penetration rate on
the SVS. In Reference [21], an improved NVSI-index based on the traditional IVSI-index
was used to measure the SVS of PCC, which directly considers the impact of PC/wind
injection power. A short-circuit ratio index was proposed in Reference [22], which is more
related to the SVS of a weak sending-end system with PV. In Reference [23], a synthetical
application framework was proposed to measure the SVS of a PV grid-connected system,
considering the critical eigenvalue by modal analysis, the reactive power margin by QV
(reactive power—voltage) analysis and the line-loss by power flow analysis.

The SVS control for the system with a large-scale PV station was also explored. In
Reference [24], a SVS fuzzy controller was designed, synthetically adopting the load node
voltage and the load-margin index considering PV power fluctuation as the fuzzy input
variables. In Reference [25], SSSC (Static Synchronous Series Compensator) was used to
improve the SVS of weak nodes considering the integration of high penetration PV/wind.

In the above references, the influence law of PV power size and fluctuation on the SVS
of load nodes, load areas and the whole power grid is not studied. In the SVS analysis of
large-scale PV grid-connected systems, in addition to the frequently-used small disturbance
condition of gradually increasing load power, the impact of PV power output should also
be considered when the system load is at a certain level.

From the above concerns, a traditional SVS index, L-index [26], is re-examined in
this paper. Firstly, the relationship between the L-index and PV active output Ppv is
derived. Then a novel sensitivity index of L-index of each load node relative to Ppv is
proposed. According to the numerical level of the proposed sensitivity index value, a
zoning method for the SVS analysis is proposed and verified. Compared with previous
studies, the proposed zoning analysis method can reveal the influence degree on the SVS
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of different areas in the power grid by Ppv, and some effective measures can be suggested
to improve the SVS according to the zoning results.

2. A Novel Sensitivity Index of L-Index Relative to PV Active Output

2.1. The Traditional L-Index

The traditional L-index is a local SVS index and was first proposed by Kessel [26], which
is used to monitor and evaluate the SVS of load nodes in the traditional power system.

For a large-scale PV grid-connected system, the node-voltage equation of the system
is given below: ⎡⎢⎣

.
IL.
IG

0

⎤⎥⎦ =

⎡⎣YLL YLG YLC

YGL YGG YGC

YCL YCG YCC

⎤⎦
⎡⎢⎣

.
VL.
VG.
VC

⎤⎥⎦ (1)

In Equation (1):
YLL, YLG, YLC, YGL, YGG, YGC, YCL, YCG and YCC correspond to the sub-matrices of

the grid-connected system’s node admittance matrix, respectively.
.
VL and

.
IL are the load nodes’ voltage and current vectors, respectively.

.
VG and

.
IG are the power nodes’ voltage and current vectors, respectively, including

slack bus, PV (active power—voltage) bus of synchronous generator, and POI (Point of
Interconnection) of PV or PV converter outlet bus.

.
VC and

.
IC are the contact nodes’ voltage and current vectors respectively, and the

contact node is the node with neither power supply nor load demand.
By eliminating the contact nodes in Equation (1), we can get:[ .

VL.
IG

]
= H ·

[ .
IL.
VG

]
=

[
ZLL FLG

KGL YGG

]
·
[ .

IL.
VG

]
(2)

where ZLL, FLG, KGL and YGG are the block sub-matrices of the H-matrix, thereinto FLG is
the load participation factor sub-matrix.

Then the L-index of each load node can be given below:

Lj =
∣∣∣L̃j

∣∣∣ =
∣∣∣∣∣∣∣∣1 −

∑
i∈aG

F̃ji ·
.

Vi

.
Vj

∣∣∣∣∣∣∣∣ (3)

where i and j are the number of power nodes and load nodes, respectively;
.

Vi and
.

Vj are
the voltage phasors of node i and node j respectively; αG is the set of power nodes, F̃ji is the
load participation factor (complex form); L̃j is the complex expression of L-index.

Virtually, the L-index is in the complex form L̃j, and its modulus is taken as the
practical index in order to measure the SVS of each load node. The range of Lj is between 0
and 1. When the value of Lj trends to 0, the SVS of load node j trends to more stability.

In general, the voltage fluctuations of load nodes and power nodes caused by the PV
power fluctuation are very small, so the L-index value is less affected by the PV active
output Ppv. The synchronous generator (set as PV bus) is the same.

2.2. The Relationship between PV Active Output and POI’s Voltage Phase Angle

In the SVS analysis, the PV power can be regarded as a negative load power, so that the
Thevenin equivalent can be carried out from the POI of the PV station. Then a simplified
PV station grid-connected two-node system is formed, as shown in Figure 1.

In Figure 1, Ppv and Qpv are the active output and reactive output of PV, respec-
tively; Vpv and δ are the voltage amplitude and phase angle of POI, respectively. Z is the
impedance modulus of the equivalent power grid line and θ is the impedance angle. E is
the potential of an equivalent electric source.
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Figure 1. The simplified PV grid-connected two-node system.

In this paper, all electrical quantities are in per-unit value (pu) and the phase angle’s
unit is rad.

Then we can get:

−Ppv − jQpv = Vpv∠δ
(

E∠0−Vpv∠δ
Z∠θ

)∗
=

EVpv
Z cos(δ + θ)− V2

pv
Z cos θ + j

[
EVpv

Z sin(δ + θ)− V2
pv
Z sin θ

] (4)

The followings can be obtained by arranging Equation (4):

cos(δ + θ) =
Vpv

E
cos θ − Z

EVpv
Ppv (5)

sin(δ + θ) =
Vpv

E
sin θ − Z

EVpv
Qpv (6)

In normal operation of the grid-connected system, δ is a positive or negative value,
and its absolute value is generally small (around 0 rad); while θ is generally large (close to
π/2 rad), therefore (δ + θ) is greater than 0 rad and less than π rad.

The PV station’s operation mode can generally be divided into PV (active power—vol-
tage) mode and PQ (active power—reactive power) mode [18,27]. PV mode is the constant
voltage operation mode and the voltage amplitude of the POI or PV inverter outlet bus
is set as a constant value. When Ppv changes, the POI’s voltage phase angle will change.
PQ mode is the constant generation power factor operation mode. When Ppv changes, the
voltage amplitude and voltage phase angle of POI will change.

2.2.1. PV Mode

In Figure 1, if the PV station operates in PV mode, Vpv is constant. According to
Equation (5), with the increase of Ppv, cos(δ + θ) gradually decreases, (δ + θ) gradually
increases. It can be known that δ gradually increases since θ is a constant, that is, δ is
proportional to Ppv.

2.2.2. PQ Mode

If the PV station operates in PQ mode, the situation is more complicated. Now, we
only consider that Ppv takes the unit power factor, that is, Qpv = 0 pu. Considering the
effect of equivalent line resistance, then θ is greater than 0 rad and less than π/2 rad.

From Equation (6), we can get:

d[sin(δ + θ)]

dPpv
=

sin θ

E
dVpv

dPpv
(7)

Since dVpv
dPpv

decreases monotonically from a positive value to a negative value (over
0) with the increase of Ppv (the derivation process is given in Appendix A), sin(δ + θ) first
increases and then decreases monotonically. Whereas (δ + θ) is greater than 0 rad and less
than π rad, δ changes from small to large, that is, δ is proportional to Ppv.
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By summarizing the above results, it can be concluded that the active output Ppv of
the PV station operating in PV mode or PQ mode with unit power factor is proportional to
the voltage phase angle δ of POI.

2.3. A Novel Voltage Stability Sensitivity Index LPAS

Since the PV active output, Ppv is directly proportional to the POI’s voltage phase
angle δ, we can take the derivative of L-index with respect to δ to reflect the influence
degree of Ppv on the SVS of each load node.

Set F̃ji = Fji∠αji,
.

Vi = Vi∠δi and
.

Vj = Vj∠δj, then Equation (3) can be expressed below:

Lj =

∣∣∣∣∣1 − 1
Vj

∑
i∈aG

FjiVi[cos(αji + δi − δj) + j sin(αji + δi − δj)]

∣∣∣∣∣ (8)

The sensitivity of the L-index of load node j relative to the voltage phase angle of
power node i can be obtained by taking the partial derivative of the complex expression
of L-index (L̃j) with respect to the voltage phase angle δi and taking the modulus value.
According to the verification, the partial derivative of the modulus expression of L-index
(Lj) with respect to δi is the same as it, so we can obtain:

∂Lj

∂δi
=

∣∣∣∣∣∂L̃j

∂δi

∣∣∣∣∣ = FjiVi

Vj

∣∣sin(αji + δi − δj)− j cos(αji + δi − δj)
∣∣ = FjiVi

Vj
(9)

Equation (9) represents the coupling degree between the L-index of each load node
and the voltage phase angle of each power node (including synchronous generators and
PV stations). The influence of voltage phase angle change Δδi of each power node on the
L-index of each load node can be expressed below:

⎡⎢⎢⎢⎣
ΔL1
ΔL2

...
ΔLm

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
∂L1
∂δ1

∂L1
∂δ2

· · · ∂L1
∂δn

∂L2
∂δ1

∂L2
∂δ2

· · · ∂L2
∂δn

...
... · · · ...

∂Lm
∂δ1

∂Lm
∂δ2

· · · ∂Lm
∂δn

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

Δδ1
Δδ2

...
Δδn

⎤⎥⎥⎥⎦ (10)

where m is the maximum number of load nodes and n is the maximum number of power nodes.
For a PV station in the system, set the number of POI as k and its voltage amplitude as

Vpvk. Then, a voltage stability sensitivity index (named LPAS-index), namely the derivative
of L-index with respect to POI’s voltage phase angle can be defined below:

LPASj =
FjkVpvk

Vj
(11)

where j is the number of load nodes.
Equation (11) reflects the sensitivity of the L-index of each load node relative to POI’s

voltage phase angle of each PV station, that is, the sensitivity of the L-index relative to Ppv.
By calculating the LPAS-index, the relationship between the SVS of each load node and Ppv
can be explored.

In a known power grid, if the power grid’s structure does not change, the load
participation factor Fjk will remain unchanged. For a PV station operating in PV mode,
since Vpvk is constant, the LPAS-index value is mainly affected by the load node voltage
Vj. For a PV station operating in PQ mode with a unit power factor, the LPAS-index value
is affected by the POI’s voltage Vpvk and the load node voltage Vj at the same time. It is
noteworthy that the voltage fluctuations of load nodes and POI caused by the PV power
fluctuation are very small normally, so the LPAS-index value is less affected by Ppv. The
same is true for the synchronous generator (set as PV bus).
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3. Static Voltage Stability Zoning Analysis Method

In the system with a large-scale PV station, if the PV station operates in PV mode or
PQ mode with a unit power factor, for each load node, the sensitivity of the L-index relative
to Ppv can be obtained by calculating the corresponding LPAS-index. According to the
numerical level of the LPAS-index value, the whole system can be zoned into several areas
which can reflect the correlations between the SVS and Ppv. On the other hand, the weakest
SVS area and the weakest node can be determined by calculating the L-index value. Then
according to the zoning results, the SVS analysis and control aiming at the weakest area
and the whole power grid can be conducted.

Figure 2 is the flow chart of the SVS zoning analysis method based on the LPAS-index.

Figure 2. Flow chart of the SVS zoning analysis method.
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The main steps of the SVS zoning analysis method are as follows:

(1) Get the sets of power nodes, load nodes and contact nodes by assessing the node
types, and calculate the admittance matrix of the grid-connected system, find the
sub-matrix FLG of load participation factor and obtain the participation factor of each
load node relative to the POI of each PV station.

(2) According to Equations (3) and (11), the L-index and LPAS-index of each load node
can be calculated. By ranking the L-index values of all load nodes, determine the
weakest SVS area and the weakest node.

(3) Load nodes are classified according to the numerical level of LPAS-index value, which
can be generally classified into three types of nodes whose SVS is greatly, moderately
and less affected by Ppv. According to the classification results for load nodes, the PV
grid-connected system can be zoned into three kinds of SVS areas that are strongly,
moderately and weakly associated with Ppv.

The numerical level of LPAS-index value can be classified according to the standard:
greater than 50% (corresponding to the strong association area), from 20% to 50% (corre-
sponding to the moderate association area), and less than 20% (corresponding to the weak
association area). However, the classification standard is not unchangeable and should be
determined according to the actual situation of the PV grid-connected system.

(4) According to the classification results for load nodes, the PV grid-connected system
can be zoned into three kinds of SVS areas that are strongly, moderately and weakly
associated with Ppv. As the LPAS-index value of the load node is less affected by Ppv
and other generators, the zoning results are relatively unchanged.

(5) Analyze the SVS of the whole power grid and the weakest SVS area on the basis of the
zoning results, and find out the rules that are affected by Ppv. Based on the analysis
results, some useful control strategies can be proposed to improve the SVS of the
weakest area and the whole system.

If most load nodes fall within the weakly associated area with Ppv, the impact of Ppv
on the SVS can be neglected, and the change of load power is the main influencing factor
on the SVS of the whole power grid. Similar to the traditional power grid, reactive power
compensation or other effective measures can be used to improve the SVS.

If more load nodes fall within the strongly or moderately associated area with Ppv, the
impact of Ppv on the SVS has to be valued. Load-shedding or other effective measures can
be taken when necessary, and we will use a new PV power-shedding measure.

4. Simulation Verification for the Zoning Analysis Method

In order to verify the rationality and practicability of the above zoning analysis method,
we take the IEEE 14-node system as the test example, as shown in Figure 3. The 14-node
system is a sub-transmission system [18], and its voltage classes are 69 kV (including Node
1~Node 5), 13.8 kV (including Node 6, Node 7, and Node 9~Node 14), and 18 kV (Node 8).

See Figure 3, Node 1 is the slack bus (swing bus), Node 2 is a PV bus. SC1~SC3 are
synchronous condensers. Set the base power as 100 MVA and the initial power of the total
load as 2.59 + j0.814 pu. Set the voltage amplitude of Node 2 as 1.045 pu and the initial
active output of generator Gen 2 (PG2) as 1 pu.

See the dotted line in Figure 3, three plans about the centralized PV station integrated
into the 14-node system will be adopted:

Plan A: PV station A is integrated into Node 5 by a PV transmission line, and the corre-
sponding POI is POI_A;
Plan B: PV station B is integrated into Node 14 by a PV transmission line, and the corre-
sponding POI is POI_B;
Plan C: PV station B is integrated into Node 14, the generator Gen 2 is replaced with
PV station C (operating in PV mode), and the corresponding POI is Node 2. This is a
multi-PV case.
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Figure 3. The classic IEEE 14-node system with PV station.

PpvA, PpvB and PpvC represent the active output of PV stations A, B and C, respectively,
and the maximum active output of them are 1 pu, 0.3 pu and 1 pu, respectively.

4.1. Verification for the Relationship between PV Active Output and Voltage Phase Angle of POI

Section 2.2 proved that the PV active output Ppv is proportional to the POI’s voltage
phase angle δ, now we take Plan A as an example to verify it. When PV station A operates
in PV mode, the PV inverter outlet bus voltage amplitude is set as 1.05 pu. When PV station
A operates in PQ mode with a unit power factor, its reactive power is set as 0 pu. The
PpvA—δA (δA is the voltage phase angle of POI_A.) curve is shown in Figure 4, we can see
that PpvA is proportional to δA under the two operation modes.

Figure 4. PpvA—δA (active output of PV station A—voltage phase angle of POI_A) curve.
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4.2. Index Calculation
4.2.1. Plan A and Plan B

Firstly, Plan A and Plan B are investigated. Now take PV stations A and B operating
in PV mode as an example. Set PpvA = 1 pu, PpvB = 0.3 pu (The capacity of PV station
integrated into 13.8 kV node can’t be too large). Set the current load multiple of the whole
system lm = 1 pu. Calculate the L-index values of all load nodes when the PV station adopts
Plan A and Plan B, respectively, and does not integrate into the 14-node system, the results
are listed in Table 1.

Table 1. L-index values of load nodes under Plan A and Plan B (Load multiple lm = 1 pu).

Node Number
L-Index Value

Plan A (PpvA = 1 pu) Plan B (PpvB = 0.3 pu) Without PV

14 0.0760 0.0297 0.0784
9 0.0646 0.0532 0.0681

10 0.0619 0.0526 0.0649
11 0.0351 0.0303 0.0366
13 0.0316 0.0209 0.0321
4 0.0293 0.0283 0.0307

12 0.0238 0.0185 0.0241
5 0.0197 0.0194 0.0209

It can be seen from Table 1 that when the PV station is not integrated into the system,
Node 14 is the weakest node and Node 5 is the strongest node. Node 9, Node 10 and Node
14 compose the weakest SVS area.

When Plan A is carried out, the weakest SVS area is still composed of Node 9, Node
10 and Node 14, Node 14 and Node 5 are still the weakest node and the strongest node.

When Plan B is adopted, the weakest SVS area is composed of Node 9 and Node
10. The weakest node becomes Node 9, this is because the SVS of Node 14 is observably
enhanced after integrating with PV station B. The strongest node is still Node 5.

It can be seen that the change of Ppv has a minor impact on the L-index from Figure 5
(Node 5 in Plan A and Node 14 in Plan B are taken as examples). According to the
computing results, the variable amplitude of the L-index is less than 0.1%. Therefore, when
Ppv changes, the determined weakest SVS area can remain consistent.

Figure 5. PV active output Ppv—L-index curves (Load multiple lm = 1 pu).
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See Table 1, when a PV station is integrated into the system, compared with the system
without a PV station, the L-index values of all load nodes are relatively reduced, indicating
that the SVS of load nodes is improved to a certain extent. Moreover, when the PV station
is integrated into different load nodes, the weakest SVS area and the weakest node can
be changed.

As shown in Table 2, the LPAS-index values of all load nodes, respectively, relative to
POI_A and POI_B are sorted from large to small under Plan A and Plan B.

Table 2. LPAS-index values of load nodes under Plan A and Plan B (Load multiple lm = 1 pu).

Plan A (PpvA = 1 pu) Plan B (PpvB = 0.3 pu)

Node Number LPAS-Index Node Number LPAS-Index

5 23.17% 14 61.23%
4 14.18% 9 18.71%
9 5.95% 10 15.48%
10 4.92% 13 14.05%
14 3.78% 11 7.85%
11 2.49% 12 6.97%
13 0.85% 4 3.15%
12 0.42% 5 1.93%

Figure 6 shows the Ppv—LPAS-index curves (Node 5 in Plan A and Node 14 in Plan B
are taken for examples). To the same load node, the change of Ppv has a minor impact on
the LPAS-index value. Other active power supplies are similar such as a generator. In a
general way, the variable amplitude of the LPAS-index is less than 1% when Ppv changes.
Therefore, aiming at the changes of Ppv, the classification of load nodes and the SVS zoning
results can remain unchanged.

Figure 6. PV active output Ppv—LPAS-index curves (Load multiple lm = 1 pu).

In summary, the maximum active output of the PV station can be directly selected to
calculate the LPAS-index and L-index of load nodes, so as to carry out the classification of
load nodes and the determination of the weakest SVS area.

4.2.2. Plan C

In Plan C, PV station B has remained, and Gen 2 is replaced with PV station C. PV
station C operates in PV mode, and the voltage of Node 2 remains as 1.045 pu. When
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PpvB = 0.3 pu, PpvC = 1 pu, the values of L-index and LPAS-index relative to Node 2 (namely
POI of PV station C) and POI_B are listed in Table 3. Node 9 is the weakest node and Node
12 is the strongest node. Node 9 and Node 10 compose the weakest SVS area.

Table 3. The values of L-index and LPAS-index of load nodes under Plan C (Load multiple lm = 1 pu).

Plan C (PpvB = 0.3 pu and PpvC = 1 pu)

Node Number L-Index LPAS-Index (to Node 2) LPAS-Index (to POI_B)

5 0.0194 38.58% 1.93%
4 0.0283 38.18% 3.15%
9 0.0532 14.33% 18.71%

10 0.0526 11.86% 15.48%
11 0.0303 6.01% 7.85%
14 0.0297 3.99% 61.23%
13 0.0209 0.92% 14.05%
12 0.0185 0.45% 6.97%

Similarly, the active output of PV station C (PpvC) has a minor impact on the values
of the L-index and LPAS-index. For example, in Plan C, the LPAS-index values of Node 5
relative to Node 2 and Node POI_B are 0.3859 and 0.0193, respectively, when PpvC = 0.3 pu
and PpvB = 0.3 pu, and are approximately equal to the corresponding LPAS-index values
when PpvC = 1 pu and PpvB = 0.3 pu, as shown in Table 3.

4.3. SVS Zoning and Analysis

According to the data in Tables 2 and 3, the load nodes can be classified and the
14-node system with PV can be zoned.

4.3.1. Plan A

See Table 2, in Plan A, only the LPAS-index value of Node 5 is greater than 20% and
less than 50%, illustrating that the SVS of Node 5 is moderately affected by PpvA. The
LPAS-index values of other load nodes (including Node 4, Node 9, Node 10, Node 11, Node
12, Node 13 and Node 14) are all less than 20%, illustrating that the SVS of these nodes are
all less affected by PpvA.

Furthermore, the LPAS-index value of Node 5, namely the access point of PV station A,
is not too big, indicating that the PV access point is not necessarily greatly affected by Ppv.

Figure 7 shows the zoning chart of Plan A. The system can be zoned as a moderately
associated area (including Node 5) and a weakly associated area (including other load
nodes) with PpvA. Owing to the LPAS-index and L-index are less affected by Ppv and PG2,
the zoning results of Plan A are relatively unchanged.

See Figure 7, the weakest SVS area (composed of Node 9, Node 10 and Node 14) falls
within the area that is weakly associated with PpvA, so this area’s SVS is less affected by
PpvA. In fact, since the overwhelming majority of load nodes (except Node 5) are falls with
the weakly associated area with PpvA, the SVS of the whole power grid is less affected by
PpvA, and more attention should focus on the impact of load power change on the SVS.

As the impact of Ppv on the L-index is minimal, we select the system load-margin
index ILM to measure the SVS and verify the above conclusion. The load-margin index ILM
can be calculated by Equation (12):

ILM = 1 − 1
λMAX

(12)

where λMAX is the maximum load margin parameter that corresponds to the critical point
of the SVS.

The value range of ILM is 0~1. 0 means voltage collapse, and 1 means absolute vol-
tage stability.
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Figure 7. Static voltage stability zoning chart of Plan A.

Now set PG2 = 0.4 pu. The values of ILM are given in Table 4. When the system load
multiple lm is 1 pu, the system operates in a normal state (namely a low load level). When
PpvA changes from 0 to 1 pu, the ILM values keep almost unchanged (Adjoining variation
amplitude is less than 1%).

Table 4. Values of system load-margin index (Plan A, active output of Gen 2 PG2 = 0.4 pu).

PpvA/pu
Load Multiple lm = 1 pu Load Multiple lm = 1.5 pu

λMAX/pu ILM λMAX/pu ILM

0 2.5846 0.6131 1.7346 0.4235
0.1 2.5957 0.6147 1.7444 0.4267
0.2 2.6068 0.6164 1.7536 0.4297
0.3 2.6163 0.6178 1.7625 0.4326
0.4 2.6251 0.6191 1.7708 0.4353
0.5 2.6330 0.6203 1.7787 0.4378
0.6 2.6400 0.6212 1.7861 0.4401
0.7 2.6460 0.6221 1.7921 0.4420
0.8 2.6508 0.6228 1.7976 0.4437
0.9 2.6542 0.6232 1.8032 0.4454
1 2.6560 0.6235 1.8085 0.4471

When the load multiple lm is 1.5 pu, the system operates in a heavy load (namely
a high load level). See Table 4, with the change of PpvA, the ILM values still keep almost
unchanged. However, compared to the normal operation state (lm = 1 pu), the ILM values
and the SVS margin significantly reduce, indicating that the SVS of the whole system
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(including the weakest area) is mainly affected by the load power. The load-shedding
method can be used to improve the SVS [24].

4.3.2. Plan B

See Table 2, in Plan B, the LPAS-index value of Node 14 (the access point of PV station
B) is greater than 50%, so the SVS of Node 14 is greatly affected by PpvB. However, the
LPAS-index values of other load nodes (including Node 4, Node 5, Node 9, Node 10,
Node 11, Node 12 and Node 13) are all less than 20%, so the SVS of these nodes is less
affected by PpvB.

Figure 8 shows the zoning chart of Plan B. Node 14 can be set as a strongly associated
area with PpvB, and other load nodes can be set as a weakly associated area with PpvB. The
weakest SVS area (composed of Node 9 and Node 10) falls within the area that is weakly
associated with PpvB.

Figure 8. Static voltage stability zoning chart of Plan B.

See Table 5, with the change of PpvB, the variation amplitudes of ILM value are still
very small under normal state and heavy load, and the SVS of the whole power grid is
mainly affected by the load power. It is similar to the case in Plan A, more attention should
focus on the impact of load power change on the SVS.

Table 5. Values of system load-margin index (Plan B, active output of Gen 2 PG2 = 0.4 pu).

PpvB/pu
Load Multiple lm = 1 pu Load Multiple lm = 1.5 pu

λMAX/pu ILM λMAX/pu ILM

0 2.5272 0.6043 1.6961 0.4104
0.1 2.5695 0.6108 1.7239 0.4199
0.2 2.6089 0.6167 1.7504 0.4287
0.3 2.6459 0.6221 1.7751 0.4367
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4.3.3. Plan C

See Table 3, in Plan C, the LPAS-index values of Node 4 and Node 5 relative to PpvC is
greater than 20% and less than 50%, so the two nodes can compose a moderately associated
area with PpvC. The LPAS-index values of other load nodes relative to PpvC are all less than
20%, so they can compose a weakly associated area with PpvC. However, the LPAS-index
value of Node 14 relative to PpvB is greater than 50%, so we can neglect the impact of PpvC
and zone Node 14 as a strongly associated area with PpvB. Ultimately, Node 9~Node 13 can
be determined to compose a weakly associated area with PpvB and PpvC. The zoning chart
of Plan C is shown in Figure 9.

Figure 9. Static voltage stability zoning chart of Plan C.

The weakest SVS area (composed of Node 9 and Node 10) falls within the weakly asso-
ciated area with PpvB and PpvC, so the impact of Ppv on the weakest area can be neglected.

See Figure 9, what is different from Plan A and Plan B is that the areas more affected
by Ppv are significantly enlarged in Plan C. Especially, Node 4 and Node 5 (69 kV voltage
class) fall within a moderately associated area with PpvC, so the impact of Ppv on the SVS
should be further investigated.

Now we set PpvB = 0.3 pu, and PpvC changes from 0 to 1 pu.
The ILM values are listed in Table 6. It can be seen that when the system operates

in a normal state (lm = 1 pu), with the gradual increase of PpvC from 0 to 0.5 pu, the ILM
value gradually increases too, indicating that the SVS is gradual enhanced with the increase
of PpvC. However, with the gradual increase of PpvC from 0.6 pu to 1 pu, the ILM value
gradually decreases and the SVS is gradually weakened. When PpvC reaches the maximum
(1 pu), the impact of Ppv on the ILM value is very obvious (decreases to 0.4597), and the SVS
becomes as weak as the status that the system operates in heavy load.
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Table 6. Values of system load-margin index (Plan C, active output of PV station B PpvB = 0.3 pu).

PpvC/pu
Load Multiple lm = 1 pu Load Multiple lm = 1.5 pu

λMAX/pu ILM λMAX/pu ILM

0 2.5846 0.6131 1.7378 0.4246
0.1 2.6138 0.6174 1.7505 0.4287
0.2 2.6343 0.6204 1.7608 0.4321
0.3 2.6451 0.6219 1.7692 0.4348
0.4 2.6459 0.6221 1.7751 0.4367
0.5 2.6321 0.6201 1.7787 0.4378
0.6 2.5960 0.6148 1.7791 0.4379
0.7 2.5171 0.6027 1.7761 0.4370
0.8 2.3401 0.5727 1.7685 0.4345
0.9 2.1311 0.5308 1.7557 0.4304
1 1.8507 0.4597 1.7343 0.4234

See Table 6, when the system operates under heavy load (lm = 1.5 pu), the ILM value
gradually increases with the increase of PpvC from 0 to 0.6 pu, and gradually decreases
with the increase of PpvC from 0.7 pu to 1 pu, but the variation amplitude is very small.

Now we set PpvC = 1 pu, and PpvB changes from 0 to 0.3 pu. The ILM values are listed
in Table 7. It can be seen that excessive PV power can evidently weaken the SVS when the
system operates in a normal state (lm = 1 pu). When the system operates under heavy load
(lm = 1.5 pu), the increase of PpvB only can slightly improve the SVS and has no negative
impact on the SVS.

Table 7. Values of system load-margin index (Plan C, active output of PV station C PpvC = 1 pu).

PpvB/pu
Load Multiple lm = 1 pu Load Multiple lm = 1.5 pu

λMAX/pu ILM λMAX/pu ILM

0 2.1028 0.5244 1.6760 0.4033
0.1 2.0303 0.5075 1.6978 0.4110
0.2 1.9583 0.4894 1.7173 0.4177
0.3 1.8507 0.4597 1.7343 0.4234

From the above analyses, it is concluded that in a multi-PV case, excessive PV active
power can evidently weaken the SVS when the system operates in a normal state, and only
slightly impact the SVS when the system operates under heavy load.

A PV power-shedding method can be used in time to maintain the SVS when the system
operates at a low load level and an excessive PV power. For example, when lm = 1 pu,
PpvB = 0.3 pu and PpvC = 0.95 pu, the value of ILM is 0.4958 by calculation. Then the PV
active power control system can execute a series of power-shedding operations and the
shedding quantity is 0.1 pu each time, PpvC will be reduced to 0.55 pu, and the value of ILM
will recover to 0.6180. The system’s SVS is improved effectively after power-shedding.

Moreover, reducing the rated installation capacity of PV station is also a valid solution
to this problem.

5. Conclusions

Firstly, this paper derives and proves that the POI’s voltage phase angle of the PV
station is proportional to the PV active output Ppv, based on a simplified two-node system
with PV. From this, a novel sensitivity index LPAS-index of the traditional L-index relative
to the voltage phase angle of POI is proposed, and the LPAS-index can be used to reflect
the influence degree of Ppv on the SVS of load nodes. A PV grid-connected system can be
zoned into different areas: strongly, moderately and weakly associated with Ppv for the
SVS according to the numerical level of LPAS-index value. Based on the zoning results,
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the SVS analysis method is applied, by taking the classic 14-node system integrated with a
centralized PV station as an example. The following conclusions can be obtained:

(1) The LPAS-index value of one load node is less affected by Ppv or PG (active output of
generator), so the SVS zoning results are relatively unchanged. However, by changing
the location of the PV access point or the numerical classification standard of the
LPAS-index value, the SVS zoning results can change.

(2) The access point of the PV station is not always greatly affected by Ppv, so it can
fall within the strongly associated area with Ppv, and also fall within the moderately
associated area with Ppv.

(3) If most of the load nodes except for the PV access point fall within the weakly asso-
ciated with Ppv, the impact of Ppv on the SVS can be neglected and more attention
should be focused on the impact of load power.

(4) In the multi-PV case, more load nodes may fall within the areas more affected by Ppv.
If no excessive PV power flows into the power grid, the increase of Ppv can improve
the SVS to a certain extent. However, excessive PV active power can evidently weaken
the SVS when the system operates at a low load level, and PV power-shedding can
make the system maintain the SVS. On the other hand, excessive PV active power has
a minor impact on the SVS when the system operates under heavy load.

(5) In addition, when the system load is constant, the change in Ppv has a minor impact
on the L-index. It is necessary to design a novel SVS index for load nodes that can
better adapt to the fluctuation of Ppv in the follow-up work.
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Nomenclature

Vectors, matrices and sets
.
VL,

.
VG,

.
VC Voltage vectors of load nodes, power nodes and contact nodes

.
IL,

.
IG,

.
IC Current vectors of load nodes, power nodes and contact nodes

YLL, YLG, YLC,
YGL, YGG, YGC, Sub-matrices of power system’s node admittance matrix
YCL, YCG, YCC

H H-matrix generated from node admittance matrix by a partial inversion
ZLL, FLG, KGL Sub-matrices of H-matrix
αG Set of power nodes
Parameters and variables
i, j Number of power nodes and load nodes
Lj, L̃j Modulus form and complex form of L-index of load node j
.

Vi,
.

Vj Voltage phasors of power node i and load node j [pu, pu]
Vi, δi Voltage amplitude and phase angle of power node i [pu, rad]
Vj, δj Voltage amplitude and phase angle of load node j [pu, rad]

Fji, F̃ji
Modulus form and complex form of load participation factor of load
node j relative to power node i

Ppv, Qpv PV active power output and reactive power output [pu, pu]

34



Energies 2023, 16, 2808

Parameters and variables

Vpv, δ
Voltage amplitude and phase angle of PV station’s POI in a Thevenin
equivalent two-node system [pu, rad]

Z, θ Impedance modulus and angle of equivalent line [pu, rad]
E Potential of equivalent electric source [pu]
m, n Maximum number of load nodes and maximum number of power nodes
k Number of PV stations
Vpvk Voltage amplitude of POI of PV station k [pu]
Fjk Load participation factor of load node j relative to POI of PV station k
LPASj LPAS-index of load node j
lm Current load multiple of the whole power grid [pu]
ILM Load-margin index
λMAX Maximum load margin parameter [pu]
PG Active power of synchronous generator [pu]
Abbreviations
SVS Static voltage stability
PV Photovoltaic, photovoltaic station
POI Point of Interconnection of PV station
PCC Point of Common Coupling of PV station
PV bus Power bus (node) with constant active power output and voltage amplitude

PV mode
Operation mode of PV station with constant active power output and
voltage amplitude

PQ mode
Operation mode of PV station with constant active power output and
reactive power output

Appendix A

The derivation process for monotonicity of dVpv
dPpv

is as follows.
After eliminating δ from Equations (5) and (6), we can get:

V4
pv −

(
2Z cos θPpv + E2

)
V2

pv + Z2P2
pv = 0 (A1)

Solving Equation (A1) and removing the unreasonable solution, we get:

Vpv =

√
2Z cos θPpv + E2 +

√
Δ

2
(A2)

where, Δ = −4Z2 sin2 θP2
pv + 4ZE2 cos θPpv + E4.

Δ should be greater than or equal to 0, when Δ = 0, the system is at the critical point of
voltage collapse.

Now set a = −4Z2 sin2 θ, b = 4ZE2 cos θ, and set Δ > 0, then we can obtain:

dV2
pv

dPpv
= 2Z cos θ +

2aPpv + b

2
√

Δ
(A3)

d
dPpv

(
dV2

pv

dPpv
) =

4aE4 − b2

4Δ
√

Δ
< 0 (A4)

It can be seen from Equations (A3) and (A4) that
dV2

pv
dPpv

decreases monotonically from
positive to negative (over 0) with the increase of Ppv.

Since
dV2

pv
dPpv

= 2Vpv
dVpv
dPpv

, and Vpv > 0, we can obtain the conclusion that dVpv
dPpv

and
dV2

pv
dPpv

have the same monotonicity with the increase of Ppv.
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Abstract: The European Union’s vision for energy transition not only foresees decarbonization of
the electricity sector, but also requires commitment across different sectors such as gas, heating, and
cooling through an integrated approach. It also sets local energy communities at the center of the
energy transition as a bottom-up approach to achieve these ambitious decarbonization goals. The
energy hub is seen as a promising conceptual model to foster the optimization of multi-carrier energy
systems and cross-sectoral interaction. Especially in the context of local energy communities, the
energy hub concept can enable the optimal design, management, and control of future integrated and
digitalized networks where multiple energy carriers operate seamlessly and in complementarity with
each other. In that sense, the optimal design and operation of energy hubs are of critical importance,
especially under the effect of multiple objectives taking on board not only technical, but also other
aspects that would enable the sustainability of local energy communities, such as economic and
environmental. This paper aims to provide an in-depth review of the literature surrounding the
existing state-of-the-art approaches that are related to the design and operation optimization of
energy hubs by also exploring their interaction with the external network and multiple markets.
As the planning and operation of an energy hub is a multifaceted research topic, this paper covers
issues such as the different optimization methods, optimization problems formulation including
objective functions and constraints, and the hubs’ optimal market participation, including flexibility
mechanisms. By systematizing the existing literature, this paper highlights any limitations of the
approaches so far and identifies the need for further research and enhancement of the existing
approaches.

Keywords: energy hubs; energy markets; integrated energy system; optimal design and operation;
sector coupling

1. Introduction

1.1. The Background and the Sector Coupling Need

The European Union (EU) set ambitious environmental and energy goals to design a
low-carbon energy system by the middle of the 21st century. The EU Climate and Energy
Framework aims to reduce greenhouse gas (GHG) emissions by 55% by 2030, improve
the share of renewable electricity by 32%, and improve energy efficiency by 32.5%. These
goals can be achieved through the development of integrated energy systems that foster the
protection of the environment and the creation of market-oriented energy services, while
guaranteeing security, reliability, and resilience of the energy supply [1].
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Energies 2023, 16, 4018

The basic idea of an integrated energy system is to switch from a single energy carrier
to multiple energy carriers to take advantage of the synergistic effects of interactions to
increase the efficiency of the energy resources used [2]. The integrated energy systems con-
cept was introduced in the European Technology & Innovation Platforms Smart Networks
for Energy Transition (ETIP SNET) Vision 2050 [3]. Their main feature is the integrated
management of various carriers beyond electricity including heating, cooling, hydrogen,
and mobility. In detail, this system can be seen as a “system of systems,” where various
energy carriers coexist in an integrated infrastructure that is supported by the electrical
system. Therefore, electrical networks are coupled with gas, heating, and cooling networks
and this integration is made possible through energy conversion processes and storage of
different types. This sector coupling is related to both the linking energy carriers with each
other, and to end-use sectors including residential, tertiary, industry, and transportation.
With this in mind, different types of energy technologies are managed with strong synergy
to meet multi-energy needs, and the services can be supplied by the most convenient sector
and related carrier. In addition, the increase in efficiency in the use of energy resources
achieved thanks to the exploitation of synergies among energy carriers can lead to the
reduction of renewable energy sources (RES) curtailment [4]. For instance, power-to-X
technologies can act as a reservoir for excess electricity, using available energy in a cyclic
and cost-effective manner. Integrating electricity and gas/hydrogen sectors (power-to-gas,
power-to-hydrogen) will help exploit and retrofit existing gas infrastructures for renewable
energy transport, thereby reducing the needs to expand power transmission through the
storage of gas to deal with the seasonal changes in supply and demand of renewable
energy. In fact, the gas generated with RES can be a resource as a low-carbon back-up
capacity to supply electricity in power plants or fuel cells when there is no availability of
other RES. Power-to-heat technologies such as heat pumps (HPs) allow achieving efficient
heating and cooling processes of buildings from both energetic and economic points of
view through the reduction of primary energy consumption. If thermal storage is coupled
with HPs, it could allow for a change in thermal energy production in the event of an excess
of renewable electricity.

Based on this premise, sector coupling is today considered a key to responding to the
needs of the energy system, which is characterized by strong electrification of final con-
sumption and high penetration of RES. This will bring several challenges for the operation
of the power system, which in principle would need additional flexibility, reinforcement,
and new investments for the transmission and distribution networks.

In the longer term, PRIMES (price-induced market equilibrium system) model re-
sults [5] show that 70% of the gas mixture could be renewable by 2050 [6], and this can be
achieved only through sector coupling [7]. Further deployment of RES in collaboration and
coordination with emerging technologies such as HPs or hydrogen production and storage
from other carriers than electricity is considered more critical than ever for decarbonizing
the whole energy system, as seen in the RePowerEU plan [8].

1.2. The Energy Hub Concept at the Service of Need

Due to the importance of sector coupling solutions, the energy hub (EH) concept,
which allows the coupling/integration of different carriers at a local level, has been drawing
researchers’ attention in recent years. An EH is a conceptual unit where multiple energy
carriers can be converted, conditioned, stored, and consumed. EHs can exchange energy
at their interfaces, e.g., with electricity and natural gas external networks, and provide
certain required energy services such as power, heating, cooling, mobility services, ancillary
services, etc. Within the hub, energy is converted and conditioned by technologies such
as combined heat and power (CHP), transformers, power electronic devices, compressors,
heat exchangers, and storage, among others [9]. A series of technical, economic, and
environmental advantages of the EH concept is summarized in Table 1, making EHs a
perfect fit for the architectural concept basis of the future integrated grids.
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Table 1. An overview of energy hubs’ advantages.

Categories Main Advantages of EHs

Technical
advantages

Enhanced efficiency for energy islands, i.e., systems with
weak or no interconnections with the upstream grid;

No size limitation. The size of an energy hub can vary
from a building level (single house) to a community

level (city—island);
Increased system reliability;

Increased load flexibility;

Economic
advantages

Reduction of operating costs;
Reduction of electrical grid congestion;

Environmental
advantages

Reduction in GHG emissions;
Reduction of fossil fuel use with the increased renewable

energy penetration;
Increase in energy efficiency.

The energy technologies that are implementable and are building blocks of EHs can
be classified as seen in [10]:

• Distributed generation technologies: renewable technologies to decarbonize energy
supply systems;

• “End-user” sector coupling technologies: energy conversion technologies for the
electrification of the end-uses that enable the flexibility of end-users/prosumers to
be activated;

• “Cross-vector” sector coupling technologies: technologies that allow the integration of
multiple energy carriers. The main technology that can be easily implemented in most
energy hubs is the CHP, which can be installed both at the prosumer level (buildings,
shopping centers, industries) and at the city/neighborhood level (district heating);

• Energy storage technologies of different energy carriers (electrical, thermal, mobility).

1.3. The Need for This Review and Its Contribution

The optimal design, operation, and interconnection of different energy carriers result
in cost-efficient uses of local resources, aiming at maximizing the efficiency of the energy
conversion processes. On top of that, EHs hosting storage facilities enable conversion
to a greater extent between different energy carriers and thus offer higher demand-side
flexibility potential. Therefore, optimal design and operation of the EHs are of primary
importance to maximize their advantages. This especially holds true within the context of
integrated local energy communities (ILECs). Within ILECs, a set of energy users need to
agree on common choices in terms of satisfying their energy needs, maximizing the benefits
derived from this collegial approach, thanks to the implementation of different multi-carrier
technologies and the optimized management of energy flows. The optimal design and
operation of such complex systems is a non-trivial task due to several aspects. For instance,
for the design phase, the interest of developers in achieving a system configuration with the
lowest costs might conflict with one of the EU energy legislations in public welfare in terms
of sustainability of the energy supply, and this would require a multi-objective approach
for guaranteeing the economic and environmental sustainability of such solutions. On the
other hand, operation optimization is also challenging, not only for the need to consider
multiple and conflicting objectives, but also to capture the interaction between energy
carriers (e.g., electricity, heat, cooling, etc.) while satisfying the time-varying user demands.
Last but not least, the interaction with external networks and multiple markets is also a key
topic for EHs to optimize their benefits for larger systems.

So far, several reviews related to the EHs have been produced, but most of them
are focused on the technical aspects of the configuration and the conversion technologies
included in the EHs [11–13]. For instance, reference [14] focuses only on the aspects of
the storage facilities and the flexibility that they have to offer within the EH, whereas
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reference [15] addresses the different demand response (DR) schemes served by EHs.
Reference [16] touches upon the modeling of EHs based on multi-objective optimization
for their design and operation without relating to an external framework such as the
grid or the market, as it focuses on the uncertainty’s impact. Reference [17] reviews the
management techniques of the EHs, although it excludes heuristic methods. This means
that the optimal operation of the EHs in relation to external factors such as the networks
and the markets also under a multi-objective approach has not been systematized before or
carefully reviewed.

The latter is significantly important to consider in the real context of an ILEC’s planning
and operation, where the multi-objective approach can foster different drivers such as
technical, social, environmental, etc., along with the market interaction, on which the
sustainability of the business cases relies. To overcome this existing review gap, the
contribution of this paper is to present a comprehensive review related to the planning and
operation of EHs holistically, considering a wide set of transversal aspects listed below:

• Analysis of the technologies and energy carriers in EHs;
• Analysis of the design and operation optimization of EHs, considering the full chain

of relevant topics, i.e., problem formulation with constraints, objective functions
overview, multi-objective approach and solution methodologies, solvers and modeling
frameworks considering heuristic methods, uncertainty, and risk aversion, manage-
ment of flexibility sources, and simulation methods for electric vehicles (EVs);

• Analysis of the EHs’ interaction with multiple markets, from energy and balancing
markets to peer-to-peer (P2P) markets, along with business models and interaction of
EHs with the external network; and

• Analysis of collateral aspects such as temporal and spatial scopes.

For the analyzed aspects, limitations of the existing approaches and methodologies
are also discussed, along with the need for further research and enhancement.

This paper is structured as follows. Section 2 presents the methodology used for
this review. Section 3 presents a detailed analysis of EHs configuration in the literature.
Section 4 analyzes the objective functions for optimal design and operation of EHs, while
Sections 5 and 6 review the constraints and the optimization problems modeling for EHs,
respectively. Section 7 presents the multi-objective optimization approach and methods.
Section 8 focuses on heuristic models, while Section 9 provides an overview of optimization
solvers and modeling environments. Section 10 focuses on uncertainties and risk aversion.
Section 11 offers insights related to the interaction of EHs with external networks and
multiple markets, with a key focus on P2P architectures and related markets. Section 12
presents the business landscape of EHs. Section 13 analyzes collateral concerns when
setting up the operation frameworks of an EH, and Section 14 concludes the paper and
summarizes limitations or gaps found in the current literature, while also providing insights
on research pathways.

2. The Methodology Used for This Review Paper

In order to perform this systematic review, the following methodology with related
steps has been adopted:

• Collect all the documents related to optimization problems, including multi-objective
approaches, multi-carrier energy systems, and EHs configurations. In detail, 128
related documents were collected from the most popular and impactful research
repositories of the research and innovation (R&I) community;

• Identify a list of topics of interest to focus on. The EH concept is a multi-faceted
research question that entails different topics to be further investigated. Therefore,
an exhaustive list of 18 topics of interest that are related to EHs has been developed.
Within this list, the topics have been further categorized as “setting the background”
topics or/and “research and innovation” topics. Background topics are the ones that
formulate the state of the art of this review and establish the baseline knowledge
of this effort, whereas “research and innovation” topics are classified as such to
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formulate further innovation pathways and the research questions that are analyzed
in detail. Of course, a topic can be characterized as both “background” and “research
and innovation”;

• An extensive review of the topics for each of the documents in order to capture
the holistic approach of this review and the connection of EHs with the external
framework, such as the networks, the market, and the business models; and

• Compilation of brief reports per topic for both state-of-the-art and innovation ap-
proaches before developing this review.

Figure 1 presents the methodology steps with the list of topics.

Figure 1. The methodology of performing this review.

In addition, Figure 2 presents a graph capturing the distribution of the topics against
the current works in the literature. From the blocks below, we can derive what has been
mentioned earlier, i.e., the gaps in the literature in addressing the interaction of the EHs with
the networks, markets, and business-model-related topics. It is also seen that no paper—
research or review—has yet addressed all topics at the same time, thereby highlighting the
main novelty of the current work.
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Figure 2. Matrix of analyzed works in the literature vs. topics.

Table 2 shows the distribution of the related papers throughout the years. It is evident
that in the last years, the multi-carrier energy approach has resulted in more scientific work
around the topic of EHs.

Table 2. The distribution of the literature through the years.

Year Total Number of References Percentage [%]

2023 2 1.52
2022 11 8.33
2021 27 20.45
2020 23 17.42
2019 25 18.94
2018 11 8.33
2017 7 5.30
2016 6 4.55
2015 7 5.30
2014 4 3.03
2013 3 2.27
2012 3 2.27
2011 0.00
2010 2 1.52
2009 0.00
2008 0.00
2007 0.00
2006 1 0.76

3. The EH Configuration in the Literature

As it is important for the optimization of both design and operation, this section
provides a detailed overview of the EH configuration that is mainly seen in the litera-
ture focusing on carriers and different technologies. Special mention is given to storage
technologies and the demand flexibility potential under such configurations.
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3.1. Energy Carriers of an EH

In all reviewed papers, electricity is considered the backbone carrier. Then, the elec-
tricity carrier is combined with other energy carriers such as natural gas, heating, cooling,
hydrogen, and/or domestic hot water. Table 3 shows the distribution of the energy carrier
combinations throughout the analyzed works in the literature. It can be observed that the
electricity carrier is mostly combined with heating and cooling.

Table 3. Combination of considered energy carriers in the literature.

References

Energy Carrier Combinations

Electricity Heating/Cooling Hydrogen Natural Gas
Domestic
Hot Water

[18–31]
√ √

[32]
√ √ √

[33–38]
√ √ √

[39–44]
√ √ √ √

[45]
√ √ √ √

3.2. Cluster of EHs

Some papers in the literature [11,17,46,47] also discuss the benefits and challenges re-
lated to the integration of the energy carriers and the creation of a network of interconnected
EHs identified as clusters of EHs.

The main benefits of such a clustering are as follows:

• Advanced security of energy supply;
• Increased provision of system services to neighboring systems, such as balancing and

ancillary services;
• Reduced RES curtailment and therefore reduced GHG emissions;
• Increased system reliability;
• Increased load flexibility;
• Self-sufficiency and minimization of costs related to energy exchange with the upper grid.

On the other hand, the main challenges identified when integrating energy carriers
and interconnecting of EHs that need to be addressed are specified below:

• Cost of the required infrastructure and the connecting technologies;
• The ownership of the interconnected networks has to be adequately defined;
• Advanced communication, data acquisition, and management infrastructure is needed

for the optimum operation of the interconnected networks;
• The high initial investment with a long time for payback;
• Lack of cases and proper business models;
• Lack of regulations regarding functionalities and operation, including roles

and responsibilities;
• Public acceptance of the interconnection and interaction between the EHs.

3.3. Energy Conversion Technologies

Different energy carrier conversion technologies are considered in the literature. Re-
garding heating and cooling carriers, the most considered technologies are CHPs [14,19,21–
32] and gas-fired boilers [14,19–21,23–25,27,29,31,32]. As far as hydrogen technology is
concerned, most papers consider hydrogen production through electrolysis [18,20]. For
example, hydrogen produced by electrolysis can be used to produce methane via a metha-
nation process, which can then be injected into the natural gas network [28]. Other thermal
generation technologies considered are HPs [21,22,27,29,32] and chillers [21,26,29,32]. When
it comes to the electricity carrier, both RES and conventional energy technologies may well
be considered. In most cases, the largest amount of energy comes from RES [22,40,41,48],
including photovoltaic systems (PV), wind turbines, solar thermal, and biomass. Energy
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generation technologies of the electricity carrier interact with the generation technologies
of other energy carriers and can be combined with other generation technologies such as
diesel generators, natural gas generators, and fuel cells. In addition, power-to-gas (P2G) is
considered in [23], while gas-fired generation is also included in [49]. Hydrogen by means
of fuel cells is used to produce not only electricity, but also thermal energy, as seen in [50].
In Table 4, the distribution of the different technologies per carrier is shown with a detailed
overview of the existing literature.

Table 4. The distribution of technologies per carrier based on the existing literature.

Energy Carrier

Electricity Heating/Cooling Hydrogen Natural Gas Domestic Hot Water

Te
ch

no
lo

gy

PV systems
[23,27,38,40,41,43–45,48,51–61]

CHP
[12,14,17,19,21–31]

H2 generator from fossil
fuels [50]

P2G
[23]

Heat recovery from
CHP [33–37,39–44,52,59]

Wind turbines [48,51,53,61] Gas boilers
[14,19–21,23–25,27,29,31,32,38,45]

H2 electrolyzer (P2G)
[18,20,23]

Methanation processes
and devices (biogas)

[28,49]

Solar thermal
[39–41,44,58,62]

Solar thermal
[39–41,44,58,62,63]

Heat Pumps
[19,21,22,25–27,29,31,32,45]

Gas boilers
[38,61,64]

Biomass
[33,34,39–41,52]

Absorption chillers
[21,25,26,29,31,32,45]

Biomass boilers
[39–41,43,44,59]

Diesel generators
[65–68]

Electric boilers
[69]

Fuel cells [58,70]

In Figure 3, a general configuration of an EH, including different energy carriers and
their respective conversion technologies, is presented.

Figure 3. The general configuration of an EH.
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3.4. Energy Storage and Flexibility Potential

As already mentioned in the previous sections, the EH concept is characterized by
high flexibility potential that can be derived from storage or loads of different carriers.
Regarding the storage facilities, in most of the reviewed papers [71–79], the configurations
include at least electrical storage capabilities, combining other forms of storage in several
cases, such as thermal storage and natural gas storage for providing better flexibility
potential. Electrical storage may include any type of battery, EV, plug-in hybrid electric
vehicle (PHEV), compressed air energy storage (CAES), or pumped hydro storage (PHS).
In addition, fuel cells with hydrogen (H2) storage are considered for storage purposes in
some cases, as seen in [58,70]. In other cases, hot water storage for heating purposes has
been employed in [69,80].

Table 5 shows the combination of storage facilities per carrier for the complete list of
the literature.

Table 5. Storage facilities per carrier based on the existing literature.

Energy Carriers

References Electricity Heating/Cooling Hydrogen Natural Gas
Domestic Hot

Water

St
or

ag
e

fa
ci

lit
ie

s

[27,29,51,56,65,67,81] Batteries
[21,24–26,30,31,38,41,43,55,57,

61,71,75,78,79,82–85] Batteries Thermal Storage

[72] Batteries Thermal Storage H2 storage
[20] Batteries Thermal Storage H2 storage Natural gas storage Thermal Storage

[18,23] Batteries H2 storage
[40,44,64] Batteries Thermal storage Thermal storage

[74] Batteries Thermal storage Natural gas storage
[80] PHS Thermal storage Natural gas storage
[54] Batteries, EV Thermal storage
[73] Batteries, CAES

[32] Batteries, CAES,
PHEVs Thermal storage H2 storage

[58] Batteries, CAES Thermal storage H2 storage Thermal storage
[19] PHEV Thermal storage

[76] Flywheel,
batteries, CAES

[42,86] Thermal storage
[69] Thermal storage H2 storage Thermal storage
[70] H2 storage
[87] Natural gas storage
[88] Thermal storage
[45] V2G EVs

From the reviewed papers, a specific focus is found on the concept of flexibility
of different energy carriers of an EH. Very often, the supply-side flexibility is managed
using only storage systems, such as a battery or thermal storage [41,43,51,54,55,58,79,89].
However, some of this research has been constrained in terms of supply-side flexibility
because of the loose coupling of various energy carriers that were structured within their
EH. For example, in some research, the CHP plant was the only technology that interacted
with both the electricity and heating carrier [62].

On the other hand, in several works, demand-side flexibility is addressed by consid-
ering incentive-based programs and energy-price strategies [26,37] such as time-of-use
electricity price or time-of-day unit price for electricity for demand response [19,25,32,42,43,
78,82,90]. In these cases, EVs and batteries are considered, but their collaboration strategy
with other co-existing storage facilities in the EH is of primary importance.

The literature on EHs flexibility also focuses on flexibility coming from residential
assets, i.e., appliances. Regarding the appliances (apart from the non-interruptible ones),
three types that offer flexibility are analyzed: shiftable appliances, shapeable appliances,
and thermostatically controlled appliances. Shiftable appliances are flexible and can shift
consumption between time intervals. The operation of these appliances can be shifted to
off-peak periods without affecting the consumer’s comfort, such as washing machines and
dishwashers [91,92]. Shapeable appliances are flexible appliances that can change their
shape to store energy or minimize their consumption (the latter is known as interruptible
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load) [65]. Finally, thermostatically controlled appliances are the appliances that can be
controlled by a thermostat, such as heating and cooling loads in buildings. The main
objective of this control is the minimization of energy consumption [81].

As already seen, the EHs concept can cover much more than just a residential building
and thus their flexibility assets. For example, an EH can cover a whole region under the
ILEC concept exploiting flexibility from the different assets of the carriers that can be
communally owned.

3.5. Flexibility Potential of EVs

Many different approaches are present in the literature dealing with the simulation
and modeling of EVs within the EH environment for exploiting their flexibility potential.
Functions foreseen, such as controllable charging/discharging and vehicle-to-X operation
(V2X) representing the flexibility potential, and how they are modeled, may have a sig-
nificant impact on the obtained results. Therefore, a major challenge when dealing with
modeling plug-in EVs (PEVs) or PHEVs is the representation of the vehicles’ availability
and energy use while they are away. Indeed, those factors are dependent on the users’
behavior and habits.

PEVs can be represented either as loads under the grid-to-vehicle (G2V) or as dis-
tributed storage when equipped with V2X technology. Therefore, in most cases, EVs and
PHEVs are modeled as batteries, as in [45,75,82]; as a part of a large-size equivalent battery,
as in [76]; as different peers in a bilateral trading system based on P2P, as in [48]; as a part
of the end-users’ load profile, as [89]; or as a flexible/shapeable load for electrical networks,
as in [65,81].

Another major concern when modeling EVs is the availability of data and energy use,
as well as their availability and status during the day. Some works assume that the vehicles
depart and arrive at given times [32,60]. For example, in [60], EVs are assumed to be
plugged out at 8 a.m. (approximately full battery) and plugged in at 4 p.m. (quite empty).
From 4 p.m. to 8 a.m., the battery can store electric energy when it is more convenient
(during low-price hours) and uses its energy during high-price hours. In order to ensure
that at 8 a.m., the EV has a good charge level, a dissatisfaction term is considered that
is directly proportional to the difference between the maximum level of charge and the
level of charge at 8 a.m. Other works divide the PEVs into clusters [54], each with specific
characteristics: (1) battery capacity, (2) arrival and departure times at/from the charging
stations, (3) the state-of-charge (SOC) at the arrival time, and (4) the SOC desired at the
departure time. Some works, such as [33], use a probabilistic approach representing the
EVs’ availability by a normal distribution and a probability function based on survey
data. In addition, these data are used in a stochastic model predictive control (MPC) to
control the local energy system, allowing for planning for the EV availability with refined
scenarios for each hour. In [19], the uncertainty of the time intervals during which the EV
owners are at home and can therefore charge or discharge the EV battery is considered by
means of a Monte Carlo approach. The daily driving distance of each EV is modeled as a
log-normal distribution function, whereas the home arrival and departure times of each EV
are modeled as a normal distribution.

3.6. Key Challenges for the EH Configuration in the Literature

Through the analysis of the literature on the EH configuration, it is perceived that
some key challenges arise which must be addressed to achieve their efficient and reliable
operation. The most important key challenges are presented below:

• Limited connection between various energy sectors/carriers. Although may diverse
carriers can be present in the different EHs structures, the interconnectivity among
them is low in many cases. This means that the full potential of employing the
advantages of the integration as described in the introduction remains unused.

• Limited economic incentives in order to encourage the use of flexibility, focusing only
on the electricity carrier. This results in a limited number of technologies participat-
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ing in flexibility management, such as batteries, whereas the thermal part and their
flexibility potential are neglected in most cases;

• Management or/and pricing schemes of other energy carriers beyond electricity. This
results in more complex and decentralized schemes for energy carriers other than
electricity that are now not represented;

• The inclusion of EVs in ILECs can make their management more difficult. Even if
there is some coordination, there will always be several more constraints than for a
simple battery storage system;

• The stochastic nature of EV operation that intertwines with behavioral aspects can
affect the stability of the system as well in case of high EV penetration.

4. Objective Functions for Optimal Design and Operation of EHs

The optimal configuration for a multi-energy system is a complex problem due to
the wide variety of technology options, energy price variations, and significant daily and
annual fluctuations in energy consumption. Additionally, as environmental issues are
becoming increasingly important in the analysis of these systems, they should also be taken
on board through the appropriate variables and constraints. However, conflicting objective
functions may arise when it comes to such a complex problem.

The literature discusses different optimization approaches leading to single or multi-
objective functions with mostly having a twofold focus, i.e., minimization of system cost
and environmental emissions (mostly CO2 reduction). In detail, a significant part of the
analyzed papers aims to minimize several objective functions. In most cases, multi-objective
optimization problems have at least two different objectives. The first one is cost-related,
and the second one is usually environmental-related, e.g., CO2 emissions reduction and
the maximum integration of RES. Moreover, most EHs use electricity and gas as energy
carriers, and their coordination is performed through an optimization model in which both
economic and environmental objectives may be considered. Representative references are
discussed below.

The following references explore multi-objective optimization approaches for energy
systems. References [40,42,70] focus on minimizing energy costs and CO2 emissions.
References [44,54,58,59,62,93,94] also prioritize CO2 emissions reduction as the primary
objective, but with different secondary objectives such as minimizing total annual costs,
including investment, operation, and maintenance costs, maximizing profits for the energy
system operator, and minimizing energy costs. Reference [77] prioritizes economic targets,
followed by a second objective related to system reliability. Reference [78] presents a non-
dominated sorting genetic algorithm for optimizing both economic benefits and energy
efficiency. Reference [79] details a fuzzy multi-objective decision and two-stage adaptive
robust optimization method. Reference [82] proposes a fuzzy decision-making approach
to minimize procurement costs and carbon emissions for interconnected energy systems.
Reference [84] aims to strike a balance between operational costs and exergy efficiency
using a three-stage optimization process. Reference [95] seeks to minimize the operational
cost of interconnected energy systems, as well as the amount of freshwater used. Finally,
reference [96] proposes a multi-objective optimization problem to minimize the operational
cost and total emissions of an energy system. While using multiple objectives in problem
formulation can lead to better outcomes, it can also increase complexity, as objectives may
conflict and require trade-offs.

On the other hand, some papers present a single-objective optimization problem.
When it comes to single-objective optimization functions, the minimization of cost, be
it investment cost or operation cost, is dominant. The maximization of revenues for the
different actors of the energy value chain is also a common pursuit. Therefore, works such
as [23,32,41,57,81,92,97–100] aim to minimize the operational cost of the EH, while, for
instance, Refs. [28,29] deal with the minimization of total investment and operating costs.
These representative papers are included here for the sake of completeness.
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In summary, Table 6 shows the complete list of references with multi-objective opti-
mization functions, while Table 7 presents the full list of references with single-objective
optimization functions.

Table 6. Objective functions in multi-objective optimization of EHs in the literature.

Reference Multi-Objective Optimization Functions

[88,95]
• Minimization of operational cost;
• Minimization of freshwater extracted from the reservoirs;

[94]
• Energy loss minimization;
• Minimization of operational cost;
• Minimization of CO2 emissions;

[78]
• Minimization of operational cost;
• Maximization of the total energy efficiency;

[79]

• Minimization of investment, operation, and carbon
emission costs;

• Maximization of the grid integration level, i.e., the
interaction between the grid and the multi-carrier system;

[39,41,84]
• Minimization of energy costs;
• Maximization of exergy efficiency;

[40,42,70,82,96]
• Minimization of energy costs;
• Minimization of CO2 emissions;

[54,93]
• Minimization of CO2 emissions;
• Maximization of the EH/aggregator operator’s profit;

[43]

• Minimization of the total annual cost as the sum of
annualized investment costs of all technologies, energy
costs, and O&M costs of all technologies in the EH;

• Minimization of total primary energy input to the EH;

[44,58,59,62]

• Minimization of CO2 emissions;
• Minimization of the total annual cost as the sum of

annualized investment costs of all technologies, energy
costs, and O&M costs of all technologies in the EH;

[65]
• Two-phase algorithm for minimization of the generation

cost and of the thermal losses by rescheduling users’
shapeable loads and distributed energy resources (DER).;

[30]

• Minimization of the unit commitment cost (start-up and
shutdown cost of the CHP units, HPs, and natural gas
boilers), the cost of purchased electricity and natural gas,
and the dispatch cost;

• Maximization of the robustness of the solutions, i.e., by
finding the worst case in terms of the increase in the cost
due to the uncertainty.
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Table 7. Objective functions in single-objective optimization of EHs in the literature.

Reference Single-Objective Optimization Function

[55] Maximization of the EH/aggregator operator’s profit;

[23,27,32,41,45,57,81,92,97–100] Minimization of operational cost;

[51] Maximization of the utilities of the customers in a P2P energy-sharing trading;

[52] Maximization of the social welfare given by the sum of the profits of all
participants in the P2P energy trading;

[56] Minimization of the total energy expenditure of all individual customers in the EH;

[91] Minimization of the total social energy cost to derive the optimal energy-sharing
profiles for the building cluster;

[28] Minimization of the cost of device operation, energy storage, energy transaction,
and curtailment power of wind and PV;

[29] Minimization of the total investment cost and total operating costs of energy
technologies in the EH.

The objective function is the key factor of any optimization problem and defines
its general target and the influencing parameters and variables. In the analyzed works,
the main objective is—in most cases—related to economic targets expressed as the max-
imization of revenues or profits or, similarly, the minimization of the costs (capital and
operational) and the minimization of energy losses.

In a single-objective optimization problem, the space of solutions is usually easily iden-
tifiable since there is a unique optimal solution. The introduction of an additional objective
function in an optimization problem (multi-objective optimization) and the requirement of
simultaneous optimization between each other results in both an increase in the number of
solutions (the best solution is not one but many) and difficulty in accurately determining
the space of the solutions.

5. Optimization Problem Constraints

Constraints have a central role in optimization problems. Indeed, they limit the solu-
tion space while defining the choice and/or operation of the components of the modeled
system. In energy system modeling, they are used to determine the performance character-
istics and limitations of the considered energy conversion and storage technologies and of
the elements through which the energy carriers are transported and distributed. They also
regulate the interaction between the system and the considered commodity, grid services,
and ancillary markets. Due to the complexity of the interaction of the active resources in
the EHs and the surrounding energy systems, it is necessary to define a set of physical,
technical, economic, and environmental constraints that allow delimiting the optimization
problem to viable search space.

Therefore, this section aims to discuss the equality and inequality constraints that have
been used in the analyzed optimization problems in the literature so far. The constraints
can be classified into four categories: technology constraints, network constraints, market

constraints, and other constraints.
Technology constraints can be divided into three different subcategories, as can be seen

in Table 8. Specifically, these are operational constraints, design constraints, and selection
of the technologies in the EH configuration. Most of the reviewed papers use operational
constraints, while fewer papers use design constraints in conjunction with operational
constraints. As seen in [41,43,44,85], it mainly depends on whether the optimization
problem aim is focused on the operation or design of an EH. Some constraints simply
describe technology modeling in terms of their efficiency and capacity limits, as seen in [85].
Other models are more detailed for the various technologies that they consider. Commonly
modeled technologies include PV [23,27,57], wind turbine [23,57], electric chiller [32,57],
solar thermal [59], absorption chiller [32,57], gas boiler [10,27,46], gas turbine [59], diesel
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generator [50], fuel cell [50], CHP [27,50,56], and HPs [27,56]. Storage technologies are also
common, such as batteries [23,27,32,57,99], or other electricity storage, such as compressed
air [32], heat storage [32], and hydrogen storage [56]. Other conversion technologies, such
as P2G, can also be found in [32]. In addition to the technologies that convert or store
energy, some works also add details to the modeling of loads. The EVs, which act either
as load or storage, are often modeled as in [32,81]. A major reason to include detailed
modeling of the loads is to consider their flexibility potential. Shiftable loads are modeled
in [32,92], while [81] makes a distinction between non-interruptible and thermostatically
controlled appliances.

Table 8. Technology constraints.

Technology Constraints References

Operational constraints (e.g., capacity constraints, ramp-rate
constraints, storage constraints)

[19,21–33,35–39,41–44,47,49–51,54–62,65–72,74–86,88,90,92–
94,96,99,101–116]

Design constraints (e.g., device availability and
available sizes in the market) [41,43,44,85]

Selection of the technologies in the configuration [58,105,117,118]

Network constraints are presented in Table 9 and are divided into three subcategories.
The network constraints represent mainly import and export limits to the different grids or
markets [32,57]. Other network-related restrictions, such as the difference in temperature
between the inlet and outlet of heat pipes and gas or power flow equations, can also
be found, though more rarely [22]. Some models use a constraint to explicitly forbid
simultaneous import and export, as seen in [57]. Reference [92] includes a constraint
representing the possibility for the grid operator to limit their export to the electric grid if
there are grid security concerns. The network flow constraints include the limits of energy
flow, limits of imported/exported energy, and use of the share of the network between the
energy providers and users, etc., as in [19,21,23–25,27,32,36,39–44,47,50–52,54–59,62,65,67–
72,74–76,78,79,82–85,88,90,91,93,94,101–105], the transmission limits, which mainly include
boundaries of active and reactive power in transmission lines, and gas flow equations
in active and passive pipelines [46,49,54,97,101], and finally, the nodal limitations at EH
level [19,22,27,30,49,86,88,90,92,106].

Table 9. Network constraints.

Network Constraints Description References

Network flow constraints

Electricity (active and reactive power),
gas, heating, cooling, domestic hot water,

energy flows

[21,23–25,27,32,35,36,39–44,47,51,54–
59,62,66–72,75,76,78–80,82–
85,88,90,91,93,94,101–105]

Network usage charge between the seller
and the buyer [52,101]

Lower and upper limits of
imported/exported energy and natural

gas from/to utility companies
[19,32,35,39,56,65,83,90]

Non-convex branch flow model to model
the distribution network [87]
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Table 9. Cont.

Network Constraints Description References

Transmission limits (active and reactive
power limits in electricity networks,
maximum mass flow rate in gas and
heating networks, power, gas, and

thermal flow equations, single
flow direction)

Boundaries of the active and reactive
power in the transmission lines [46,49,54]

Gas flow equations in active and passive
pipelines [49,97]

Single direction for the flow of energy in
pipeline and pipeline capacity [101]

Nodal limitations at the EH level

Mass balances for each node [22,86]

End-users constraints [88,90]

Active and reactive power balance
equations in the hub [27,106]

Maximum and minimum nodal voltages,
maximum and minimum gas pressure,
maximum and minimum supply and

return temperature

[19,30,49]

Constraint on feed-in power when grid
security concerns [92]

Market constraints are presented in Table 10, and they are less commonly encountered
in the reviewed documents. They are sometimes used to represent the estimation of the
internal price in models, including P2P energy sharing. Other types of market constraints
include the constraint of not buying and selling energy in the same period [36,57,85], the
revenue from selling electricity by-products on the spot market [86], and the internal price
of electricity [81,92].

Table 10. Market constraints.

Market Constraints References

Energy trading balance between crowdsources [65]
Prevent buying and selling electricity in the same time period [36,57,85]

Selling electricity by-products on the spot market [86]
Estimation of the internal price [81,92]

Constraints related to mutual energy sharing [19,41,50,91]

Other types of constraints used in optimization models of EHs are presented in
Table 11, and they include inequality constraints about the trading participants and the
platform service charge, the established target for the RES penetration levels, and the
ε-constraint (parametric optimization method) and integer cut constraints (ICC).

Table 11. Other constraints.

Other Constraints References

Inequality constraints about the trading and the platform service charge [52]
Target the renewable penetration level [49]

ε-constraint (parametric optimization method) and ICC [104]

The identification of constraints is a critical step when formulating the optimization
problem of the EHs due to the complexity of the system itself. The literature shows that
the identification of operational constraints is dominant for both the EH per se and for
the efficient operation of the upper grid. In most optimization models, the objectives
of the problem formulation are transformed into operational constraints. It needs to be
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highlighted that only a few papers combine both the operational and design constraints of
the EHs. This is an important consideration to be taken, especially when setting up an EH
or planning its expansion. Constraints should be carefully identified when considering the
interaction of the EHs with other parties, such as the markets or other EHs as well. So far,
this has been considered only for one type of interaction, i.e., one type of electricity market,
thereby neglecting different types or gas markets. This makes the problem formulation
more demanding, but it is needed for a realistic representation of the EHs’ role.

6. Optimization Problems Modeling

Based on the reviewed works, it is found that some papers formulate the optimization
problem as a linear programming (LP) model, but most of them formulate the optimization
problems using a mixed-integer linear programming (MILP) or mixed-integer nonlinear
programming (MINLP) approach. Others present both linear and nonlinear problems
(MILP&MINLP) formulation. A detailed discussion of MILP, MINLP, and MILP&MINLP
approaches follows.

6.1. MILP

MILP problems are LP problems that include integer variables but are much harder to
solve. Binary variables are the most widely used type of integer variable in MILP problems.
These types of problems usually employ solution techniques, such as branch- and bound
or branch and cut, to obtain the optimal value. Binary variables can be used for several
purposes. In some cases, they represent a yes/no investment decision for a particular
technology, e.g., by easily considering fixed investment costs in the objective function.
In addition, these variables can also be employed to decide on the status (on/off) of an
energy conversion technology in each period of the problem’s time horizon. Similarly, they
can be used to consider start-up costs and minimum uptime or downtime of an energy
conversion technology. Sometimes, binary variables are used to control investment in grid
connection and ensure no simultaneous import and export of electricity from/to the upper
grid. Restricting the number of binary variables permits limiting the computation time.

Several papers address the problem of EH optimization using MILP formulations, such
as [19–23,26–28,30–35,47,50,63,67,68,72,74,81,82,90,95,104,105,111–115,117–121]. In particu-
lar, Ref. [19] presents a MILP model to minimize the EH’s total cost. A similar approach
-that also considers the optimal size of an EH- is seen in [20]. The authors of [21] formulate
the optimal sizing problem of a multi-energy urban EH as a multi-objective MILP problem
aimed at minimizing both costs and carbon emissions. Authors in [22] give an overview
of the integrated electricity and heat systems (IEHS) modeling and solution methods for
optimal operation and compare the main differences between the possible solutions. Au-
thors in [27,32] propose a planning model for a multi-energy microgrid formulated as a
MILP problem, while in [28], the day-ahead scheduling of an electricity–hydrogen–gas–
heat integrated energy system (EHGHS) is formulated as a scenario-based MILP problem.
In [33], the day-ahead scheduling of an EH is formulated as a MILP problem aimed at
minimizing the system’s operation cost. The MILP problem is solved on a rolling horizon
basis under a model predictive control strategy so as to cope with uncertainty. In [34],
a MILP formulation for the optimal design of an industrial manufacturer’s EH is used.
In [35], a MILP formulation for the optimal operation of an EH under different electricity,
heating, and cooling scenarios is considered. In [68], authors use binary variables to control
investment in a grid connection and ensure no simultaneous import and export of electricity
through a MILP approach.

On the other hand, in [111], a MILP framework is proposed for the robust optimization
of smart multi-energy districts under uncertainty with different energy conversion and
storage technologies (e.g., PV, EHP, CHP, electric and thermal energy storage, and gas
boilers) and detailed integrated electricity, heat, and gas network mathematical models.
In [90], a MILP model of an EH considering CHPs, HPs, air conditioners (ACs), EVs, RES,
and community energy storage (CES) is presented, with the main objective of minimizing
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the overall operating cost of the system. The authors of [114] use a MILP formulation for
the optimal operation of an EH considering downside risk constraints. References [115,
117,118] use MILP formulations for the optimal design of EHs from scratch, i.e., with no
predetermined system structure, carriers, or technologies mix. Reference [105] proposes a
robust MILP (RMILP) model for optimizing the operation of an EH. In [63], the potential
for improvement of a residential multi-carrier microgrid is analyzed via scenario-based
simulations under different management strategies.

6.2. MINLP

MINLP problems are still very challenging today, especially if they are non-convex, i.e.,
the objective functions and/or constraints are defined by non-convex functions. Usually,
MINLP problems are relaxed and reformulated as, e.g., mixed-integer second-order cone
programming (MISOCP), mixed-integer quadratically constrained (MIQCP), and MILP
problems and solved by appropriate decomposition techniques. Several works in the
literature formulate the optimization problem as an MINLP problem due to the nonlinear
nature of the objective functions and/or constraints, such as [23,25,36,46,49,70,76,96,97,102,
106–110,122]. In particular, Ref. [25] defines the network-constrained scheduling problem
of an EH as an MINLP problem, which is reformulated as an MISOCP problem and solved
by the use of the partial surrogate cuts method. In [36], an MINLP model for the day-
ahead scheduling of electricity and natural gas networks is presented by considering three
downward EHs and a P2G system. An MINLP model is developed in [49] with a multi-
objective approach to finding trade-off solutions between maximizing RES penetration
and minimizing costs in the optimal scheduling of an EH. The authors in [97] present
a nonlinearly constrained optimization problem to optimize the couplings/connections
among the different networks of an EH. The authors highlight the usual complications that
may appear when using MINLP formulations, such as the solution dependency of the initial
values of variables or the large number of suboptimal solutions that are not all technically
reasonable or feasible. The necessary procedures to overcome the problems mentioned
above usually require ad hoc solutions that cannot be implemented elsewhere. The authors
in [102] formulate the day-ahead scheduling problem of four urban EHs as an MINLP
problem, which is reformulated as an MISOCP problem, which in turn, is decomposed
into a second-order cone programming (SOCP) problem and a mixed-integer quadratic
programming (MIQP) problem. These problems are solved sequentially and iteratively,
using the results of each program as input variables to the other. In [122], an MINLP model
is developed for the multi-objective operation optimization of an EH consisting of district
heating, cooling, and electricity networks interconnected among them. The presented
methodology is general enough to be applied to several objective functions, and in the case
study, operating costs and carbon emissions are considered objectives.

6.3. MILP & MINLP

In the literature, there are also several works formulating the optimization problem by
using a mixed approach based on both MILP and MINLP. Among the analyzed works using
this approach, in [24], the multi-objective optimization problem is solved in two stages,
in the first stage through a MILP and in the second stage through an MINLP. In [65], the
optimization problem is defined through a SOCP relaxation. In [83], all the mathematical
expressions in the optimization problem are formulated as linear equations. However, the
employed solution method uses a meta-heuristic model (bacterial foraging optimization)
to solve the problem. In [84], the optimization problem for the day-ahead dispatch is
formulated as a MILP model, whereas the intraday scheduling is formulated as a nonlinear
model. In [88], the optimization problem is formulated as an MINLP model. In [92], a
bi-level optimization model is employed. The upper level is not formulated via an objec-
tive function but is solved through an iterative algorithm. The authors in [123] analyze
the optimal scheduling of a coupled electrical–natural gas network feeding a distributed
electrical load in a combined day-ahead market and real-time operating conditions. The
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problem is formulated via a data-driven distributionally robust optimization (DDRO),
considering wind data uncertainty. On the other hand, reference [124] reviews existing op-
timization techniques and their applications in power systems, focusing on multi-objective
optimization in power system planning.

Table 12 summarizes all screened documents according to the approach used to
formulate the optimization problems.

Table 12. Modeling approaches used for the optimization problems formulation in the existing literature.

Approach References

MILP [19–23,26–28,30,32–35,39–41,43–45,47,50,54,56–
59,62,63,66,67,69,72,74,75,79,81,82,86,88–90,93,95,101,105,111–115,117–121]

MINLP [23,25,29,36,46,49,70,76,78,80,96–98,102,106–110,122]

MILP & MINLP [24,65,83,84,88,92,123,124]

6.4. Key Challenges for the Optimization Problems Modeling

From the reviewed papers, it emerges that MILP formulations are the most widely used
for the design and operation optimization of EHs. Nevertheless, some variables that may
be present in EHs respond to a nonlinear behavior, e.g., power flow variables, and to non-
convexities, e.g., commitment status of energy conversion and storage units. The accurate
representation of the physical phenomena taking place in the energy conversion and storage
units of an EH and of their design and operational decisions may require the use of MINLP
formulations. As already mentioned, the solution to MINLP problems is a challenging and
computationally hard task. Usually, MINLP problems are relaxed and reformulated as
MIQCP, MISOCP, or MILP problems and solved using proper decomposition techniques.
The solutions of such approaches are not guaranteed to be optimal, nor do they represent
with precision some physical phenomena taking place in the energy conversion and storage
units of the multi-carrier energy system. To summarize, in the context of EHs, very detailed
models of energy technologies and energy flows cannot be the best solution to adopt since
they limit the effectiveness of the optimization models and methods employed to solve the
problem. It is, therefore, necessary to find a good trade-off between model fidelity and the
complexity of the optimization process.

7. Multi-Objective Optimization Problems and Methods

The design and management of EHs need to respond to different stakeholders’ partici-
pation requirements and preferences. Therefore, the objectives are usually formulated from
different perspectives and can be in conflict with each other. For instance, an economic
optimization that serves developers’ needs cannot ensure that the EH configuration or the
operation strategies obtained are optimal from an environmental point of view that would
serve the energy community’s needs. This intrinsic conflict existing between different
objectives calls for the need to establish a multi-objective approach when dealing with the
optimal design and operation of EHs.

In practice, in the context of a multi-objective problem, obtaining a unique solution is
only possible if the objectives do not conflict with each other, but in most real cases, this
does not happen, and there are multiple aims represented by objective functions, which
need to be traded off. Due to the multiple objectives, there is no single optimal solution
but a set of non-inferior solutions (a 1D set for two objectives, a 2D set for three objectives,
etc.). This set defines the so-called Pareto front, and it can be used to assess solutions by the
relative meaning of the objectives. Non-inferior solutions are solutions where one objective
cannot be improved without making another objective worse.

In order to identify a single solution for the multi-objective problem for the design or
operation of an EH, two steps need to be followed, i.e., the optimization and the decision-
making steps. According to the order used for these steps, two methods are derived as
specified below [107]:
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• The preference-based approach in which the decision-making is performed before
the optimization. This approach requires a good knowledge of the preferences of
decision-makers that need to be respected in the optimization problem formulation.
Quantifying these preferences is a challenge;

• The second approach is considered ideal. The optimization is performed before the
decision-making. This approach is more desirable than the previous one, as it is less
subjective and leaves the final decision to the decision-makers.

In many cases, the multi-objective problem is simplified into a single-objective problem
by modifying the objective function or combining specific constraints. In this case, a second
objective is added to the first one thanks to a conversion factor. For example, in [34,97],
where multi-energy systems are investigated, emission minimization is included in the cost
minimization models. Another option is represented by the epsilon constraint method,
as seen in [72,85]. In detail, a primary objective is employed, while the other objectives
are converted into inequality constraints where the right-hand side is a factor that is
wide-ranging to obtain various solutions. Meta-heuristic models can also be applied for
multi-objective optimization [125], but they do not guarantee the optimality (non-inferiority
for multi-objective problems) of the solutions found.

From the analysis of the relevant literature, the most used method for multi-objective
optimization problems in EHs is the weighted-sum method, as in [66,86,101]. This method
combines the different objectives into a weighted sum. The weighting factor can be varied
from 0–1 to obtain the Pareto front with the best possible trade-off solutions between
two objectives. In addition, objectives can be normalized, as seen in [86,101], to simplify
the process and the knowledge of the weights. This method allows for the use of the
second, ideal approach described earlier, with the identification of the Pareto front through
the optimization process. Therefore, the final choice is left to decision-makers to make
informed choices and select an appropriate solution on the Pareto front from a wider range
of alternatives.

The various multi-objective optimization methodologies analyzed in the literature are
categorized in Table 13.

Table 13. Multi-objective optimization methods used in the context of EHs in the literature.

Method Description References

MO-MFEA-II

The multi-objective multifactorial evolutionary algorithm II (MO-MFEA-II) is a
multitasking method where multiple multi-objective problems are optimized
simultaneously. Each component of the multi-objective problems contributes
to a unique factor affecting the evolution of a population of individuals. This

algorithm uses the concept of non-dominated rank (NR) and crowding
distance (CD) in the non-dominated sorting genetic algorithm (NSGA-II) to

define the fitness of each individual.

[94]

Pareto-based
multi-objective

evolutionary
algorithms (MOEAs)

A Pareto-based multi-objective solution uses evolutionary algorithms to find
non-dominated solutions on the Pareto front, which considers multiple

objective functions at the same time as trade-offs. This method guarantees
good performance in numerous application areas. This algorithm is, in fact,

easy to implement since it does not require detailed knowledge of the domain
of the case under study.

[34,97,107,124]

Modified teaching–
learning-based
optimization

algorithm (MTLBO)

In the MTLBO algorithm, the methods of the teaching phase and learning
phase are, respectively, modified to enhance the disturbance potential of search

space, and a new “self-learning” method is presented to enhance the
innovation ability of the learner and the global exploration performance.

[96,108,109]
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Table 13. Cont.

Method Description References

NSGA-II algorithm

The NSGA-II is employed to guarantee the feasibility and accuracy of the
model solution. In this methodology, elitism and a maintenance methodology
are used to increase diversity. A classification of the solutions according to an
order of dominance is used. The assignment of a level or a front of dominance
to all the solutions of one population is the basis of the NSGA-II. This method

is more appropriate for dealing with nonlinear problems, which are more
complex to overcome with other multi-objective optimization methods.

[77,78,107,110,125]

VIKOR

The multi-criteria decision-making method, VlseKriterijumska Optimizacija I
Kompromisno Resenj (Vikor), can be employed to select the optimal solution
from Pareto solutions. This technique is specific to selecting alternatives with
respect to conflicting criteria based on an aggregating function that measures

the distance to the best solutions.

[78]

ε-constraint
The ε-constraint method optimizes the main objective while other objectives
are assumed as constraints of the problem. This approach is influenced by

constraints choice; in addition, it can solve non-convex optimization problems.
[14,46,58,72,79,85]

Weighted-sum method

A single-objective function is formulated as a weighted sum of the objective
functions. This method is employed to find the Pareto front, consisting of the

best feasible trade-offs between the objectives that can be discovered by
varying the weight in the interval 0–1.

[39–44,54,66,86,93,96,
98,101,106,107]

Compromise
programming method

The application of the compromise programming method aims to the
modification of the decision model to include only one objective. The optimum

solution can be identified as the one with the shortest distance to the
optimum value.

[62,70]

Based on the conducted analysis, the main limitations related to the multi-optimization
methods described in the previous table are reported below.

The most important limitation of the ε-constraints method and compromise pro-
gramming method lies within the need to transform multi-objective problems into single-
objective problems based on good knowledge of the decision-makers. The most common
approach, as shown in Table 12, is the weighted-sum method, thanks to the ease and
straightforward way of obtaining multiple points on the Pareto-optimal front. In this
case, the challenge is the selection of a weighting criterion ensuring that the points are
spread evenly on the Pareto front. Taking into account the nature of different flexibility
resources present in EHs, the method which transforms the multi-objective problem into a
single-objective problem to be easily solved could be considered.

Definitively, choosing the most suitable method depends on the complexity and scale
of the problem. In this case, the challenge in deciding the best methodology to solve a
multi-objective optimization problem is to perform a detailed study of the algorithms and
the characteristics of the problem before applying the optimization approach. In particular,
the selected method must always find and provide all Pareto-optimal solutions, consider
weights to express preferences, as well as employ the utopia point or its approximation.

8. Heuristic Methods

A heuristic method can be defined as a procedure for solving a well-defined math-
ematical problem by an intuitive approach in which the structure of the problem can be
interpreted and exploited intelligently to obtain a reasonable solution. Heuristic methods,
unlike optimization methods discussed in previous sections, are not able to guarantee
the optimality of the decisions but can, if designed and tuned correctly, provide enough
adequate solutions faster and/or with fewer computational resources than by using an
optimization model. For example, Ref. [124] mentions its utilization in power systems con-
texts, with a special focus on multi-objective optimization for power system planning. The
heuristic methods discussed in this literature review are categorized into simple heuristics
and meta-heuristics, as shown in Table 14 below.
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Table 14. Categorization of heuristic methods.

Heuristic Method Characteristics Examples

Simple heuristics Faster calculation of solution;
Prone to get stuck in local optima.

Local search;
Greedy algorithms;

Hill climbers.

Meta-heuristics

Attempts to obtain a better solution in a
pre-defined neighborhood;

Many methods are based on
biological metaphors.

Evolutionary algorithms;
Genetic algorithms

Simulated annealing;
Particle swarm;

Tabu search;
Ant colony;

Hybrid algorithms.

Simple heuristics come in the form of local search, greedy algorithms, and/or hill
climbers. Meta-heuristics try to go beyond the local search for the best solution. Many
of them are based on some biological metaphor, are bio-inspired, and are in the form of
genetic algorithms (GA) and evolutionary algorithms (EA), simulated annealing, tabu
search, ant colony, hybrid algorithms, fuzzy programming, neural networks, etc. A meta-
heuristic creates a set of candidate solutions (population), checks the value of the objective
function for each of them, and applies a heuristic for generating a second population. The
heuristic varies between the methods but is often based on the most promising elements of
the previous generation. Those steps are repeated until a stop criterion is satisfied. Meta-
heuristics can be applied to planning problems, as seen in [31]. There, the robust planning of
the energy system of an EH is tackled using quantum particle swarm optimization (QPSO).
This meta-heuristic is also compared to the performances of PSO and GA approaches
and shows the superiority of the proposed method in terms of convergence speed and
global search ability. Similarly, Ref. [125] uses an elitist GA (a variant of NSGA-II) in a
multi-objective planning problem. The objective considered is minimizing the primary
energy demand and investment costs for RES installation in a building.

In [67], a fuzzy inference system has been used to solve the energy storage system (ESS)
scheduling problem in the microgrid energy management (MGEM) system. Reference [78]
developed a multi-strategy gravitational search algorithm (MSGA-II) for optimizing the
operation of integrated energy systems with electro-thermal DR mechanisms. In [83],
a modified bacterial foraging optimization (MBFO) is used to solve the ESS scheduling
problem considering the economic and environmental objective functions simulating the
trade-off between conflicting objectives. In [96,109], a variation of a fuzzy decision-making
method is proposed, merged with the well-known modified teaching–learning-based
optimization algorithm.

In P2P systems, energy sharing has the potential to facilitate local energy balance
and self-sufficiency. In [81], an evaluation of the performance of some P2P energy-sharing
systems based on a multiagent-based simulation framework was performed. In order to
facilitate the convergence of the algorithm, two heuristic techniques were considered: a
step length control and a learning process involvement.

Other methods are used in the context of local energy markets, such as central-
ized/decentralized optimization, hybrid, continuous trading, auction-based, etc. [99]. They
specifically occur when modeling multiple agents competing in a market or in decentral-
ized or distributed approaches, such as in [65], where different optimization models such
as the alternating direction method of multipliers (ADMM), Stackelberg game, and Nash
game approaches were utilized.

The environmental/economic dispatch problem involves conflicting objectives, and it
is known to be highly constrained, as already mentioned. In order to tackle this challenge,
a method combining traditional optimization and a meta-heuristic method is presented
in [103]. It combines convex optimization and meta-heuristics in a method named scenario-
based branch and bound. This method is used to obtain reliable solutions in a model
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predictive-based MINLP with coupled timesteps. The meta-heuristic used is a modified
version of the real coded genetic algorithm (RCGA) that is chosen over GA because it
converges faster. The meta-heuristic is used to solve single steps independently, and
their compatibility over the prediction horizon is checked afterward. In [106], a hybrid
multi-objective optimization algorithm is presented based on particle swarm optimization
(PSO) and differential evolution (DE). They showed the effectiveness and potential of the
algorithm, comparing it with different techniques reported in the literature and by the
application to the standard IEEE 30-bus test system.

Reference [107] mentions that these problems are usually difficult to solve using
traditional mathematical methods, therefore EA is a good alternative. EA handles sets
of possible solutions simultaneously and, as a result, permits the identification of several
solutions of the Pareto front at once. Hence, EA is recognized as a natural way of solving
multi-objective problems efficiently.

Heuristic/meta-heuristics methods can also be used in various aspects related to EHs,
for example, for the operation/control of the EHs, as they are often able to handle problems
in a shorter computational time. Reference [108] uses a modified teaching–learning-based
optimization algorithm for solving the optimal power flow problem in multi-carrier energy
systems, while reference [110] solves optimal energy flow problems (OEF) via a multi-agent
genetic algorithm (MAGA) for decomposing the multi-carrier optimal power flow (OPF)
problem into separate OPF problems.

A summary of the utilized heuristics methods per reference can be seen in Table 15.

Table 15. Heuristic methods used in the context of EHs in the literature.

Reference Purpose Method

[16] Operation and control of EH Does not apply (literature review)
[31] Planning Quantum particle swarm optimization (QPSO)
[65] P2P exchange Alternating direction method of multipliers (ADMM)
[67] Scheduling of ESS Fuzzy inference system
[78] Optimize electro-thermal DR Multi-strategy gravitational search algorithm (MSGA-II)
[81] P2P exchange Step length control and learning process involvement
[83] Optimize operative costs Modified bacterial foraging optimization (MBFO)
[96] Minimize costs and emissions Fuzzy decision-making
[99] Energy markets Does not apply (literature review)

[103] Scheduling of DER Scenario-based branch and bound
[106] Environmental/economic dispatch Particle swarm optimization (PSO) and differential evolution (DE)
[107] Planning Does not apply (literature review)
[108] MO-OPF Modified teaching–learning-based optimization algorithm
[109] MO-OPF Fuzzy decision-making
[110] MO-OPF Multi-agent genetic algorithm (MAGA)
[124] Planning Does not apply (literature review)
[125] Optimize RES mix Elitist benetic algorithm

As already mentioned in the limitations of the previous section, in a multi-carrier
energy system, the operation management considering multi-objective functions is a large-
size problem and, in general, is nonlinear, non-convex, non-smooth, and of high dimension.
Employing different mathematical techniques in such problems could lead to being trapped
in local minima. Hence, a well alternative to deal with large-size problems is to use evo-
lutionary techniques. However, a significant limitation when using heuristics techniques
to solve multi-objective optimization problems is the complexity of setting up their pa-
rameters to afford an efficient performance. Along with this, the fact that it is not possible
to obtain the optimal solution with these techniques is the main issue to consider when
employing them.
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9. Optimization Solvers and Modeling Environments

Based on the literature review, the most used optimization modeling environments
and solvers with related optimization algorithms in EH contexts are summarized in Table 16.
It is found that researchers employ more proprietary software (MATLAB, GAMS, LINGO,
X-press, IBM ILOG CPLEX) than open-source (CVXPY) tools to formulate, create, configure,
and solve the proposed optimization problems. Table 15 shows that most works use
MATLAB as a framework for modeling their approaches due to its capability to handle
both linear and nonlinear problems through its proprietary optimization tools. However,
other works combine MATLAB as an interface with other modeling environments such
as GAMS or YALMIP to implement the optimization models, using commercial solvers
such as CPLEX or GUROBI to solve them. A few papers also formulate their models in
environments developed under Python language such as CVXPY or RLLab, the latter
for developing and evaluating reinforcement learning algorithms, with the limitation
that larger models are hardly handled by open-source solvers, e.g., GLPK, IPOPT, CBC,
ECOS, SCIP, etc., leading to an infeasible convergence or getting stuck in local minima.
Therefore, using a particular modeling environment strongly depends on the expertise of
the researcher, development time, ease of model implementation, and maintenance. As
the environments enable the user to express complex algebraic expressions concisely, they
employ more memory than an optimization application programming interface (API), e.g.,
CPLEX or GUROBI object-oriented Python API, to create the model.

Table 16. Optimization solvers with related optimization algorithms and modeling environments
used in EH contexts in the literature.

Optimization Solver (Algorithm Used) Modeling Environment References

Not available * MATLAB (Optimization toolbox) [21,47,60,71,77,91,92,94,108,111]
Gurobi (barrier and simplex algorithms) MATLAB [27,59,84,101]

BMIBNB (branch and bound) MATLAB (YALMIP toolbox) [84]
Not available * MATLAB [79]

CPLEX (simplex and branch and bound algorithms) MATLAB (YALMIP toolbox) [50,56]

Not available *
MATLAB + GAMS: MATLAB was used to
develop the system operation model, and

GAMS was used for the optimization phase
[34,125]

CPLEX (simplex and branch and bound algorithms) MATLAB [19,28,72]

CPLEX (simplex and branch and bound algorithms)
GAMS

[23–26,30,45,57,58,64,67,74,75,82,90,102,
112,113]

DICOPT (outer-approximations algorithm) [29,32,36,51,56,78,80,88]
BARON (branch and reduce algorithm) [102]

CPLEX (simplex and branch and bound algorithms) IBM ILOG CPLEX [33,39–44,54,55,81,93,114]
Not available * X-press [62]
Not available * LINGO [70]
Not available * MATPOWER TOOL [52,110]
Not available * CVXPY [65]

Gurobi (barrier and simplex algorithms) Python + GAMS/SCENRED tool for
reduction of scenarios [38,69,85]

Not available * Python (RLLab) [87]

* Optimization solver was not mentioned in these works.

10. Uncertainties and Risk Aversion

10.1. Uncertainties

When considering uncertainties in the context of EHs, most of the analyzed research
has considered the behavior of variable renewable energy (VRE), be it wind or PV, or the
variations in consumption patterns among different users, be it by the representation of
electrical and/or thermal loads. Added to this, some of the works have also considered
variations in the market energy price. There is some research focusing also on thermal load
uncertainties. In order to categorize these references according to the uncertainties that
were tackled, a summary is provided in Table 17.
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Table 17. Uncertainties in the context of EHs in the literature.

Uncertainties References

Renewable
generation [16,24,28,31,38,40,45,46,49,50,55,61,65,77,85,86,90,91,99,111,114,116,123]

Consumption [11,13,20,28,30,36,38,40,41,45,46,60–62,65,72,76,77,79,85–
87,91,99,100,111,114,115]

Storage and EVs [19,31,33,67,123]
Energy price [11,13,19,38–40,46,52,55,60,61,64,76,85–87,99,100,105,114,115,126]

Failure [77]
Thermal load [127,128]

In order to consider uncertainties in the problem formulation, different methodologies
have been proposed in the literature that can be divided into three categories, as explained
in [108], which are as follows:

• Stochastic optimization discretizes the continuous stochastic parameters into a tree of
scenarios, whose nodes of uncertainty are assumed to be known;

• Robust optimization defines the solution according to more adverse scenarios regard-
less of the probability of occurrence;

• Chance-constrained optimization introduces probabilistic constraints for obtaining a
trade-off between the optimal value and the robustness of the solution.

Among the analyzed references, the most frequent methodology uses stochastic op-
timization models. From these, the utilization of the Monte Carlo simulations [19,20,36,
40,46,57,59,71,82,85] has stood out as the most common way of dealing with uncertainties,
which randomly samples scenarios from historical data or probability distributions, albeit
other sampling methods have also been utilized, as in [94] with Latin hypercube sampling
or [111] with the average sampling approximation. In the latter, the authors propose a
two-stage framework that combines a stochastic optimization model and robust techniques
to identify solutions to the problem that are robust and flexible in terms of uncertainty. In
the case of [33], a two-step approach is used for the operation of an EH, using stochastic
optimization in the first step and an MPC strategy in the second step. The authors in [114]
propose a stochastic optimization combined with a novel risk assessment approach called
the downside risk constraints method for the modeling of the risk imposed by uncertain
parameters.

Robust optimization techniques are found in the works [30,31]. The authors of [30]
consider the uncertainty of each variable through a suitable uncertainty set or prediction
interval that is defined as a function of the forecast value and the forecast error. The
authors consider different degrees of robustness and different magnitudes of the forecast
error. In [31], the authors use a robust method based on a QPSO approach for solving the
optimization problem.

As for chance-constrained optimization, the authors of [50] solve the optimization
problem using a distributionally robust chance-constrained model. Further, the authors
of [67] made a forecast of uncertain parameters that were then used in a fuzzy inference
system to make charging and discharging decisions for an ESS with the goal of simplifying
the optimization of the energy system.

10.2. Risk Aversion

Risk-averse formulations interpolate between the classical expectation-based stochastic
and minimax optimal control. This means that they are flexibly managing uncertainty from
the worst case up to the expected (risk-neutral). In this way, risk-averse problems aim
at hedging against extreme events of low probability without being overly conservative.
There are two main approaches followed in dealing with this issue in the literature:

• The first one considers risk metrics that provide a grade of risk to moderate the decision;
• The second one is through distributionally robust optimization.
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In general, the decision-maker may trade performance for safety by interpolating
between the conventional stochastic and worst-case formulations looking forward to ro-
bustness to load and renewable power prediction errors.

In [71], the presence of uncertainties in the zero-carbon multi-energy system (ZCMES)
influences its scheduling performance and brings some particular operational risks. Thus,
in the operational-cost objective function, Markowitz’s mean-variance theory is employed
to simultaneously minimize and maintain a balance between economy and risk.

The information gap decision theory (IGDT) is a practical strategy with no need for
a probability distribution function of the uncertain parameters that models the positive
and negative aspects of uncertainty based on the known and unknown information. For
example, in [84], positive and negative outcomes that may cause risk are modeled using two
functions of information gap decision theory called robustness and opportunity functions.
In [74], IGDT may be used either from risk-averse or risk-seeking perspectives. In risk-
averse IGDT, the decision-maker would be satisfied if the cost is equal to or less than a
pre-specified critical value.

Reference [114] presents a stochastic model for risk assessment that utilizes a flexible
methodology to mitigate risks associated with uncertain environments. This is achieved by
slightly increasing the operational costs, as demonstrated in various tables that compare
the operation costs of the hybrid energy system (HES) under different scenarios with the
risk control parameter.

In addition, data-driven solutions are utilized to coordinate the scheduling of multi-
energy coupled systems (MECS) by taking into account the correlation and distribution
characteristics of uncertainties. This approach reduces the conservativeness of decision-
making and improves the operation reliability of coordination scheduling for MECS. Ref-
erence [123] employs the data-driven robust optimization (DDRO) method to address
uncertainties while obtaining less conservative minimum cost solutions.

The table below (Table 18) presents the risks with the associated parameters, as seen
in the literature.

Table 18. Risks and related parameters in the context of EHs in the literature.

Risks Related Parameters

Financial risks

Electrical loads;
Thermal loads;

Solar irradiation;
Electricity prices.

Reliability and power quality risks

Deviations of demands;
PV power;

Wind power;
Electricity prices.

10.3. Key Challenges in Handling Uncertainties and Risk Aversion

To handle uncertainty in the context of EHs, scenario-based optimization (SO) and
robust optimization (RO) methods are dominant. However, they provide certain challenges.
SO needs to utilize scenarios while considering the probability of them occurring. Other-
wise, the end-up solutions can be conservative and/or their costs suboptimal. RO assumes
known uncertainties per node. However, treating the uncertainties from different sources
independently leads to over-conservative strategies as well. By combining the advantages
of SO and RO, the distributionally robust optimization (DRO) methods can be promising
when solving optimization problems with uncertainties (renewable generation and loads).
There are different approaches to solving these kinds of problems, typically by reducing the
constraints formulation to be solved via MILP, where the distribution information is useful
to obtain a less conservative solution. These data-driven approaches can be combined with
risk-averse methods to identify realistic and operationally efficient solutions.
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11. Interaction of EHs with Multiple Markets and Networks

The aim of this section is to analyze the interactions of EHs with external entities and
markets, which include not only the existing power grid and gas utility networks, but also
thermal networks and, in some cases, other neighboring EHs.

The exchanged energy and the involved external networks differ between the analyzed
literature, depending—to a great extent—on the existing energy carriers and local resources
of the EH. In the review papers [11,13,17], it is possible to gain a general idea of the
entities with which different EHs can interact. EHs can exchange energy among them
(electricity, gas, thermal, and hydrogen) through external networks, as seen in [58]. In
contrast, EHs can also send and receive electrical and thermal energy between each other
(named transactive energy) without considering any utility or third-party network, as seen
in [88]. However, most of the revised literature considers the interaction of a unique EH
with at least one external network and energy market. In [129,130], the EH through the
aggregator role interacts with more than one different operator and provides multi-energy
bids to participate in multiple energy markets.

These energy exchanges could be performed efficiently by means of the conventional
wholesale markets, P2P markets, and/or other kinds of market mechanisms that allow
the exchange of different forms of energy other than electricity (natural gas, fuel, thermal
energy, and hydrogen). Due to the higher complexity of coupling and integration of the EH
with the external grids, synergies with multiple markets, and novel operational schemes
should be further investigated.

11.1. Involvement of EHs in Multiple Wholesale Markets

According to the literature, two approaches are mainly followed to consider the
interaction of the EHs with the surroundings and can be evaluated from the market and
the network perspective. The market approach refers to the monetary/financial energy
transactions between the EH and the surrounding energy system or market of interest,
while the network approach is limited to the physical interaction and constraints regarding
the amount of energy exchange between those two main systems.

By focusing on the technical network-constrained approach, it is included in the
strategy of optimal coordination of flexible resources to maintain reliability and stability
in EHs’ operation. Still, most of the literature within the EHs’ scope has been focused on
demonstrating an optimal operation of such resources, where market rules were scarcely
designed or omitted altogether [67,71].

In this first network approach, the optimization models have to impose technical
constraints associated with the electrical and gas networks, such as [19,23,30,36,49,96,97,
116,123], and load balancing to guarantee the stability, operational security, and energy
balance of the EHs. On top of these, in [129,130], technical constraints for heat networks are
also considered. These constraints include power and energy balance at the electrical point
of common coupling (PCC), an admissible voltage range, transmission line capacity, and op-
erational limits related to the gas sub-network. For example, in [123], economic costs have
been considered, such as generation cost, start-up/shutdown cost, upward/downward
reserve cost, and real-time operation cost (regulation cost, curtailment/shedding penal-
ties), where a co-optimization between the power system and the natural gas system is
presented. Similarly, in [116], the electric power, natural gas, and district heating systems
are coordinated to achieve the optimal economical operation of the whole system (energy
and reserve scheduling) with minimum wind curtailment, both in the day-ahead and
real-time stages. In [130], possible energy imbalances and reserve shortages due to network
violations are minimized for the combined space of multi-carrier systems. In [49], the
model for optimal scheduling of P2G and gas-fired generation (GfG) is evaluated on the
IEEE standard power transmission grid integrated with a gas transmission grid that would
form an EH. Reference [25] proposes a network-constrained optimal scheduling model
for a power distribution network and district heating network (DHN) with consideration
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of the DR, in which gas is imported upstream for thermal needs covering. More details
regarding the involved constraints are reported in previous Section 4.

There is another trend of research that assesses the impact of the interaction of the con-
sidered EHs with the electrical distribution grids in terms of grid stability or performance,
but not from a market perspective. Grid integration level (GIL) is evaluated in [79], where a
strong interaction via importing/exporting electrical power in large quantities may result in
a destabilization and performance degradation of the grid, and it can reduce the economic
performance of the EH with high GIL rates. In [49], the renewable penetration level into the
EH and optimal scheduling of P2G and GfG is decided by the grid operator considering
the cost that comes with it. Other works evaluate and solve these grid issues inside the EH
and not under the upstream utility network perspective. In [116], simultaneous energy and
reserve scheduling is performed to minimize the operation costs, while accommodation
of wind power production is achieved through reserves in the second stage (real time).
In [123], the power output and up/down reserve capacity of gas-fired units is determined
in the day-ahead scheduling stage in the multi-energy coupled system for handling wind
power uncertainty, which influences the operation feasibility of the gas system and the
availability of reserve of gas-fired units in real time. In both works [116,123], the reserve
availability is used to manage uncertainties inside EHs, but not as a network service to
the grid. Reference [66] estimates the ancillary service fees and other chargers Inside the
EHs, depending on the energy schedule, but does not apply the issue upstream in the
utility grid.

Hereafter, the market approach is presented in-depth, covering the wholesale electric-
ity markets consecutively, balancing/grid services, gas market/trading, and
DR mechanisms.

As for the literature that has been studied, EHs participate in the day-ahead elec-
tricity market (DAM), considering variable costs and/or different timeframes. A single
EH is usually connected to the utility grid at the PCC, assuming the existence of the
wholesale market [25,26,31,39,50,57,58,63,66,68,70,72,74,78,79,82,83,85,86,88,94,97,104,114,
119,120,125]. The interaction with the DAM can be asymmetric by considering energy
imports exclusively, as in [27,30,33,40,44], or the EH is enabled to import energy and ex-
cess export energy [100] to the wholesale market, as in [19,28,32,35,49,54,55,69,84,93]. In
the latest case, the energy exports can be the result of surplus generation from a CHP
in [86], the available electrical flexibility of DERs in [55], or EVs in vehicle-to-grid (V2G)
operations [54]. Reference [88] addresses multi-EHs operation to minimize grids’ cost of
operation and carbon emission through electricity price signal. Reference [40] provides a
stochastic model for the optimal operation scheduling of a DER system, including renew-
ables, considering economic and environmental aspects. In [54], local multi-energy systems
cover the electricity and thermal needs of a building cluster with a fleet of PHEVs, where
DERs are dispatched (including optimized charging/discharging strategies of PHEVs) in
order to maximize the operator’s profit while also reducing CO2 emissions. Reference [63]
addresses hourly scheduling for a multi-apartment residential microgrid operation.

Other works also cover the design stage, for instance, in [32], where a planning model
is presented for a multi-energy microgrid that supplies the electricity, heating, and cooling
loads, including flexible demands and hydrogen energy storage. Reference [68] addresses
the optimal microgrid design, including optimal technology portfolio, placement, and
dispatch, for multi-energy microgrids, including annualized investment costs of discrete
and continuous technologies, the total cost of electricity purchase inclusive of carbon
taxation, demand charges, electricity export revenues, and generation cost for electrical,
heating, or cooling technologies. The interaction of thermal or electricity carriers between
multiple EHs is presented in [57], where a non-profit entity named the local market operator
(LMO) trades various forms of energy in local P2P markets between EHs and manages
the aggregated demand—supply curves in the wholesale and thermal district markets.
Despite the fact that the majority of the models consider electricity markets to purchase or
sell electricity, authors use historical day-ahead electricity prices to model the electricity

63



Energies 2023, 16, 4018

market in its simplest version, as seen, for example, in [86,104]. Usually, the fluctuation
of hourly wholesale electricity prices has a direct influence on the objective functions, in
contrast to [79], where the electricity price is considered relatively stable.

After the DM, the intraday market (IDM) is represented as the second stage, where
deviations from the DAM schedule and operation can be corrected in the IDM. Not many
works consider electricity markets closer to operation, such as IDM or real-time markets [27,
50,66,84,116,123]. The market interaction is modeled in [19,103] through the day-ahead and
real-time prices, but wholesale electricity markets are not addressed for each timeframe.
In contrast, Ref. [103] aims to reduce energy utilization from the utility grid through a
real-time price-based DR scheme. Similarly, in [19], the EH is allowed to purchase or sell
electricity so as to meet its own electricity and heat demand and to minimize the cost,
in which the uncertainties of “real-time prices” are highly correlated to the DAM prices.
In [27], the intraday schedule is adjusted (such as increasing the purchase of electricity
and gas) to reduce the energy differences between the supply and demand inside the
multi-energy system.

IDM is incorporated in [66] via real-time pricing data for both electricity import
and export (wholesale electricity prices, distribution and transmission charges, and other
ancillary service fees), according to different projections of grid carbon intensity and cost.
Reference [50] proposes a chance-constrained problem designed for DAM EH energy
management with multiple uncertainties and taking account of risks in intraday real-
time transactions. The electricity and gas purchases are optimized and presented at daily
and intraday timeframes. Reference [84] considers a multi-stage optimization with three
temporal horizons: day-ahead dispatch with 1 h resolution and intraday operation with
15 min and 5 min beforehand scheduling intervals to adjust short-term cost and efficiency
based on forecast updates of local generation and load. This market design representation is
closer to the realistic market dispatch. Reference [35] proposes a robust chance-constrained
framework for optimal EH management in the presence of uncertainties, where the time
resolutions of 60 min, 30 min, 15 min, and 1 min have been simulated to present a close-to-
real operation model. Additionally, local electricity markets are presented as a mechanism
to deal with uncertainty in prices, demand, and renewable production, which usually use
an intraday timescale and only a few combined multiple timeframes [99]. Reference [130]
optimizes an aggregator’s portfolio by considering the technical constraints of the networks
(electricity, gas, heat) and it enables trading in day-ahead electricity, natural gas, green
hydrogen, and carbon markets, considering their intraday activation of the bidding as well.

Figure 4 illustrates the common timeline for energy scheduling of the wholesale
electricity markets: day-ahead and intraday, including temporal horizon and discretization.

Figure 4. Day-ahead and intraday schedule.

Apart from the wholesale electricity markets, other ancillary services should be con-
sidered as well in favor of network operators, such as grid congestion, reserve, balancing
markets, frequency control, or voltage regulation. In this regard, reference [99] reports
different TSO-DSO coordination schemes to solve balancing problems and grid congestion
at the local level. Nevertheless, ancillary or grid services are hardly considered in the
literature under the scope of EHs [49,65,131]. In [131], the participation of a distributed
multi-energy system in providing ancillary services for the reserve market is assessed as a
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function of the economic parameters (availability fee and exercise fee), while maintaining
the end-use energy demand at a constant level and thus without affecting the consumers’
comfort. The availability and exercise fees are established by the market operator rules.
A P2G system is proposed in [36] to increase system flexibility, contribute to the supply
of the network load in contingent events, and prevent the loss of the excessive power
generated by the wind turbine. In [65], the network operator is in charge of operating the
controllable energy resources to perform real-time grid management while maintaining the
grid’s stability after the P2P and day-ahead scheduling.

Additionally, DR mechanisms [37] (via incentives, mainly via time-of-use (TOU) tar-
iffs [25,58,70]) are mostly included to provide flexible EH operation. However, these studies
do not model the DR mechanisms from the market or network operation point of view.

The DR is addressed in the literature as follows: electrical and thermal demand
response programs for shiftable loads are included in [19], the day-ahead and real-time
demand-based prices during peak periods are considered in [103], shifting loads from high-
price times to low-price times to reduce operational costs are modeled in [88], shiftable
and transferrable loads are considered during peak demand to the off-peak periods in [71],
deferrable and critical loads are also included in [26], electrical V2G flexibility from PHEVs
is provided in the wholesale market in [54], fast ramping capabilities (fast ramp up- and
downtime) are provided by PEM electrolyzer in [34], and the available electrical flexibility
of DERs is modeled in [55]. TOU tariffs to end-users and white certificates (WC), derived
from the Italian incentive scheme, are included in [93] for CHPs oriented to primary energy
saving. Additionally, in [58], the TOU prices and the transmission and distribution costs
are distributed among end-users. In [120], electricity-load shifting, and flexible electrical
heating/cooling supply are included, and it demonstrates the effectiveness of the planning
and design method to show the influence of nodal energy prices. Following another
approach, Ref. [29] considers the EH participating in DR programs by changing its behavior
in response to a TOU tariff. Reference [119] incorporates responsive thermal and electrical
loads, and their effects on EH planning (optimal configuration and sizing) are investigated.
Furthermore, Ref. [82] addresses TOU prices to end-users as an incentive scheme to reduce
their operational costs by shifting load from high- to low-price times, while in [78], both
electrical and thermal loads enhance the flexibility of demand-side load management
based on users’ comfort. In [27], emergency measures such as power curtailment and load
shedding have to be taken for real-time adjustment. Other commodities may be considered
as well, such as gas trading [19,23,25,27,28,30,31,33,35,36,39,40,44,49,54,55,57,58,70,72,74,
78,79,82–85,88,93,97,104,116,119,120,123,125]. However, the upstream gas network is only
modeled by means of a gas price, not as an internal or external gas network.

In contrast, the downstream electricity and gas sub-networks inside or between the
EHs are presented in [23,36,49,96,97,116,123], in view of the growing influence of RES in
power systems and the mutual effects of the gas and electricity networks. For example,
several EHs connected to a 33-bus radial distribution network and a 14-node gas network
are considered in [36], where the internal system operator defines upper transaction limits
for each EH in its day-ahead operation. Afterward, each EH optimizes its own operation in
the wholesale markets. P2G is also studied in [49,116], and incorporating hydrogen into
the gas network is studied in [23]. In [44], thermal needs are exchanged between different
local energy communities through a common thermal network, while hot water exchange
and gas tariff schemes are included in [70].

Table 19 summarizes the literature and the interaction considered with the external entities.
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Table 19. Interaction of EHs with multiple markets in the literature and information available.

Reference DAM IDM
Ancillary

(Grid) Service
Gas/Fuel
Trading

Demand
Response

Other Markets or
Resources

[63,69,86,94,114] Price-based Thermal needs
Biogas [94]

Hydrogen [69]
Solar thermal [63]

[32,34,71,103] Price-based Thermal needs DR, TOU (all)
Fast ramp [34] Hydrogen [32,34]

[28,31,33,35,39,40,44,50,72,
74,79,82–85,88,104,125] Price-based Price-based

[35,50,84]
Gas price-based Water [88]

Biomass [39]

[19,26,27,29,54,55,57,58,70,
78,93,119,120] Price-based Price-based

[27] Gas price-based
DR, TOU (all)

V2G [55]
Shedding [27]

[25] Network DHN network DR, TOU
[30,49,96,97] Network Gas network
[23] Network Gas network Shedding Hydrogen
[36] Network Contingency Gas network
[116,123] Network Price-based Reserve Gas network
[66] Price-based Price-based Grid fee Gas price-based

[65] Price-based Price-based
System

operator
Control

[131] Price-based Reserve

[129,130] Price-based Price-based Reserve Network and
gas market -

Green hydrogen
and carbon

markets

11.2. P2P Markets

In the literature, three main P2P architectures [48,53,99] are proposed in the context
of EHs according to how the decisions of the energy trading process are taken and their
communication characteristics.

In a centralized P2P architecture, a central coordinator dictates the energy transactions
and their prices among the peers in the community. The decision-making process is
generally based on an optimization algorithm aimed at maximizing the overall benefit
of the community. Peers only communicate with the coordinator, as seen in Figure 5.
Once the transactions have been made effective, the central coordinator is in charge of
distributing the obtained revenues among the participants [36,37]. The coordinator also
acts as an intermediary between the community and the rest of the system. For instance,
Ref. [52] proposes a novel centralized P2P energy trading model named operator-oriented
P2P trading to lower the barriers to entering into the transaction while accommodating
various customers. The operator decides the marginal/trading price and trading schedules
that are defined with the objective of maximizing the social welfare given by the sum of
the profits of all participants. In [65], another centralized P2P architecture is proposed for
the real-time operation of the distribution network where the network operator has direct
control over the DERs of crowdsources. The objective is to minimize the generator’s cost
function in addition to the thermal losses and crowdsources’ disutility function designed to
compensate for the inconvenience caused by rescheduling shapeable load. Reference [90]
defines a centralized system that searches for optimization of the electricity and gas costs
of a neighborhood, including technologies such as CHPs, HPs, heating, ventilation and
air-conditioning (HVACs), EVs, and RES.
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Figure 5. Centralized P2P architecture.

In a decentralized P2P architecture, peers can directly communicate with each other
and negotiate energy transactions among themselves without the involvement of a central
coordinator. The decision-making process for defining the amount of energy exchanged
and the price is taken by each peer, generally based on an optimization algorithm to
minimize its individual electricity costs or maximize its revenues, as shown in Figure 6.
In addition to the centralized architecture described above, Reference [65] also proposes
a solution based on a decentralized architecture for the day-ahead operation in which
direct energy trading between crowdsources is carried out. These energy transactions
are included within the optimization algorithm of the network operator as constraints.
Reference [51] defines a decentralized architecture where customers can trade and exchange
energy with other customers. All customers can communicate with each other using a
two-way communication system. The optimization is based on two stages. The first stage
allows a decision on whether a customer should participate or not in the P2P energy-
sharing trading system based on the maximization of social welfare. The second stage
allows for maximizing the payoff of the involved customers. Reference [91] considers a
fully decentralized P2P system where smart energy buildings can share energy among
themselves without the need to have a coordinator. A two-stage P2P energy-sharing
strategy for a building cluster is developed. In the first stage, the optimal energy-sharing
profiles of the buildings aim to minimize the total social energy cost. In the second stage,
the clearing prices are calculated based on mutual energy sharing via a non-cooperative
game.

Figure 6. Decentralized P2P architecture.
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In a distributed P2P architecture, a coordinator communicates with each peer and
manages a local energy trading market set for the transactions among them. However,
in contrast to a centralized P2P architecture, the coordinator does not have control over
the amount of energy exchanged. It just tries to influence participating peers by sending
suitable price signals. Each peer carries out the optimization process according to the
received internal P2P market signal sent by the coordinator to minimize its individual
electricity costs or maximize its individual revenues within the P2P energy-sharing system.
It represents a hybrid approach between centralized and decentralized P2P architectures,
as shown in Figure 7. For example, Ref. [81] proposes a distributed architecture where the
operator only provides a local market platform with necessary functions, in which all the
prosumers trade or share energy with each other in order to maximize their own benefits
individually. Hence, prosumers have full authority over their distributed energy resources
(DERs), eliminating the need for any supplementary incentives to encourage prosumer
participation. The article proposes three distinct pricing approaches for determining the
P2P market’s internal trading price: the supply and demand ratio (SDR), mid-market rate
(MMR), and bill sharing (BS).

Figure 7. Distributed P2P architecture.

In [92], a P2P architecture is proposed, consisting of two types of agents: (i) P2P PV
prosumers who trade energy among themselves, and (ii) an energy-sharing provider (ESP)
responsible for coordinating the sharing activities. The ESP interacts with the utility grid by
purchasing the required electricity or selling excess power production of the energy-sharing
zone using a dynamic internal pricing model within the EH. In [56], a P2P distributed
architecture is defined, utilizing blockchain technology to implement transactions. The
transaction process involves four stages: (i) customer demand forecasting, (ii) initiation
of the transaction, (iii) security check, and (iv) trading execution. In [57], a distributed
P2P architecture is considered, where EHs participate in a local market managed by the
LMO. EHs also have access to district markets (electricity utility, gas utility, district heating,
district cooling) where they can trade various forms of energy. However, EHs prioritize
exchanging the maximum energy in local markets due to more beneficial market clearing
prices for both buyers and sellers.

Some other studies focused on the P2P electricity market and its pricing structure in
which peers are able to sell their excess production and trade for a better electricity price
than the one offered by the retailer, as seen in [41–44,54,58,62,93]. Table 20 shows the key
factors among the three P2P architectures.
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Table 20. Comparison of P2P architectures in the EH context.

Centralized Architecture Decentralized Architecture Distributed Architecture

Provides direct setpoints to which the
consumption must adjust to;

Allows for a more straightforward network
operation;

Most intrusive method;
Allows for a coordinated response;

More complexity in the optimization algorithm.
It can imply a very high computational burden.

No supervisory figure in the energy exchange;
Minimal exchange of information;

Not able to perform coordinated actions for
external actors.

Allows a certain degree of influence on consumer patterns;
Cannot establish a specific setpoint;

Less demand for communication infrastructure;
It requires the definition of a suitable pricing mechanism by the

coordinator to manage the internal energy trading market;
Slow convergence of the P2P market algorithm to reach an

agreement about the energy transactions may occur.

A centralized P2P architecture offers several advantages, such as maximizing the
total welfare of the community and providing better support for grid operator services.
However, it may have higher management complexity and computational burden, particu-
larly when many peers are involved. Additionally, confidentiality concerns may arise as
prosumers need to share all information with the central coordinator. On the other hand,
a decentralized P2P architecture enables prosumers to have complete control over their
DERs and make decisions at the prosumer level. This architecture is also highly scalable. In
contrast, as there is no coordinator, the overall welfare of the community is less optimized.
Distributed P2P architecture shares the advantages of the previous two architectures. There
exists a coordinator that, through sending suitable price signals, influences the participation
of the prosumers while the decision-making process is still maintained at the prosumer
level. The amount of information to be exchanged with the coordinator is less than in a
centralized architecture, so prosumers can better maintain their privacy. It is very scalable
and more compatible with the existing regulatory framework [48,53,99]. This architecture
requires the definition of a suitable pricing mechanism by the coordinator to manage the
internal energy trading market. Different approaches can be applied for the calculation of
internal prices, such as (i) SDR, where the internal trading price is defined as a piecewise
function [81,92]; (ii) MMR, where the internal trading price is set as the average of retail and
export prices [81]; (iii) BS, where a pro-rata cost-sharing mechanism is defined in which
the income and cost of each participant are proportional to its electricity production and
consumption throughout the time horizon [81]; and (iv) auction-based pricing strategy,
where EHs independently decide on the amount and price of energy to be traded in the
local markets and express their interest in local trading through submitting their offers/bids
to the coordinator [57,99].

11.3. Key Challenges for the Interaction of EHs with Multiple MARKETS and Networks

Several limitations and challenges are identified regarding the interaction of EHs with
multiple markets. Firstly, although there are studies in the literature that consider electrical
and gas networks, their approach does not elaborate and implement extensive market rules
and constraints. In most cases, electrical and gas networks are referred to as internal EH
or between EHs networks, without considering the upstream utility grids and associated
market model. Therefore, there is a lack of studies that integrate grid distribution models
and complex market mechanisms between several EHs.

Secondly, although most models consider electricity markets to purchase or sell elec-
tricity, authors use historical day-ahead electricity prices to model the electricity market in
its simplest version. Additionally, few published articles consider electricity markets closer
to operation, such as IDM or real-time markets, needed to adjust EH supply and demand
under intrinsic uncertainty. In conclusion, a clear market framework is not presented (i.e.,
the framework of the European single market), which should include the main features of
market mechanisms such as market bids, closure times, market clearing process, real-time
power setpoint, or grid needs. There is a lack of sensible and realistic interaction with en-
ergy markets or upward networks. A further necessary step would be the specific-country
analysis for a more realistic cost-benefit scenario.

Thirdly, several key challenges have been identified regarding thermal and gas net-
works. Most research papers usually have common characteristics as follows: (i) well-
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known natural gas price signal; (ii) natural gas or other fuel is only bought to satisfy the
local thermal needs; and (iii) heating and cooling networks (if modeled) are only considered
inside the EHs, and a central control is implemented to purchase and sell electricity in the
utility grid. Regarding (i), in fact, only natural gas price and thermal load are considered
in the optimized operation of the EHs in most papers, but without any gas market struc-
ture, gas transactions, gas scarcity, or shortage. According to (ii), gas or thermal energy
is purchased according to internal EH needs. Moreover, hydrogen as an energy carrier is
not commonly included in the EHs. Nowadays, a bidirectional electricity carrier is most
common to purchase renewable generation, whereas bidirectional flows should be enabled
for all energy carriers. Regarding (iii), thermal needs are mostly satisfied with internal
heating and cooling networks fed by natural gas or other fossil fuel, but existing thermal or
gas infrastructure downstream of the EH is not modeled.

Fourthly, DR is widely addressed, although it should be oriented more toward the
upstream grid needs. In contrast, ancillary grid services are hardly considered in the litera-
ture under the scope of EHs to support the upstream utility network. After the consulted
literature, the reserve market established by the market operator rules is conducted in [131]
and to support contingent events in [36]. Few other research papers solve grid problems
inside the EH without any market design, i.e., reserve availability [116,123] provided by a
conventional generator to manage uncertainties inside EHs, but not to provide valuable
services to the upstream grid. In conclusion, further research is required on how EHs may
interact with multiple energy markets, assuming knowledge of grid network constraints,
considering the market design, and evaluating mutual coupling with other energy vectors
and markets.

Based on the reviewed literature on P2P, it is concluded that the establishment of a
P2P energy-sharing mechanism benefits both prosumers, which can reduce their electricity
bill and allow them to benefit from cleaner energy, and the system, which can obtain new
sources of flexibility contributing to reducing peak load and improving system security
through the participation in ancillary service markets [53]. However, there are several
challenges that should be tackled to implement a P2P system efficiently.

The adoption of feasible and effective optimization algorithms and pricing schemes
within the P2P system to automatize energy transactions is challenging. In the centralized
architecture, there might be scalability problems with the optimization algorithm if many
peers are involved because it could require a high computational effort to reach the optimal
solution. In the distributed one, the proper P2P pricing mechanism should be adopted
to incentivize prosumers’ participation and help to maximize the overall welfare of the
community. Several pricing schemes proposed in the literature can show convergence
problems, such as SDR, MMR, and BS. These are based on iterative bidding processes in
which the bids provided by the prosumers change in response to the dynamic internal price.
It is possible that the energy bids and internal price values do not converge to a fixed point
after a finite number of iterations. Therefore, it is necessary to implement mechanisms that
ensure the convergence of these algorithms in the required time. It is essential that the
implemented optimization algorithms include models that accurately simulate the behavior
of the flexible resources and, therefore, can identify the available flexibility under different
control actions in an accurate way. This represents a challenge since the flexibility depends
on many factors, several of them subject to a high degree of uncertainty (e.g., end-users’
behavior, weather conditions, etc.).

12. Business Models of EHs

From the reviewed works, it emerges that business models are mostly based on the
different objectives of the systems under study. Many works focus on a single objective,
usually consisting of the minimization of the cost of the energy carriers involved or of
the total investment or operating cost of the systems. Among others, Ref. [19] aims to
reduce the total cost of an EH by deciding on the electrical and thermal load dispatch,
for electricity, heat generation, and storage units, to meet a specific electricity and heat
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demand at a minimum cost. The EH is allowed for such a purpose as to purchase/sell
electricity from/to the upper grid. In [56], the business model aims to minimize the total
energy expenditure of all individual customers in the microgrid. Similarly, in [65], the main
objective is to minimize electricity costs by employing local resources from the community
energy system in a way that does not violate any network constraints. In [75], the model
employs a transactive energy scheme as a business model. Each building tends to charge
more for the energy supplies to other buildings and pay less for the energy demands
from other buildings; therefore, the clearing prices should be equilibrium prices such
that each building will pay/charge for the energy demands/supplies. The objective is to
minimize the daily operation cost, considered to be composed of three parts: net electricity
purchasing cost, gas purchasing cost, and carbon emission cost. In [105,108], the business
model is focused on the reduction of the total operating cost, while in [111], it is based on
the reduction of the expected time-ahead energy costs.

Many works deal with two or more objectives, considering economic objectives associ-
ated with the minimization of the cost of emissions, cost of power loss, and CO2 emissions.
For instance, in [70], the business model is focused on the minimization of energy cost with
the minimization of environmental impact, which is assessed in terms of CO2 emissions,
while in [97,109,110], the business model is focused on reducing the total cost of generation
and environmental emissions.

Relating to the literature on energy markets and P2P schemes, in [48], three business
models are discussed: C2C (consumer-to-consumer), on which a distributed P2P scheme
would be based; B2C (business-to-consumer), which could portray a traditional scheme
in which the consumer buys electricity from the retailer; and B2B (business-to-business),
which would imply an exchange between different commercial entities. Regarding P2P
energy trading, in [52], the business model is focused on the maximization of profits (P2P
energy trading). In [57], the EHs have access to district markets, in which they can trade
various forms of energy. Additionally, they have access to a local market, which allows
the EHs to trade energy among themselves in a P2P market. EHs first try to exchange
the maximum energy in the local markets because market clearing prices are assumed to
be more beneficial for both seller and buyer EHs than the prices of district markets. As
noted in [99], business models for energy sharing via local electricity markets are still very
rarely put into commercial practice. This work presents the existing barriers in current
regulatory frameworks focusing on the Portuguese energy market after analyzing the P2P
energy-sharing business model of the project Community S (S stands for sharing, solar,
storage, sustainable, and smart).

Table 21 summarizes the business models for all analyzed works.

Table 21. Business model per reference.

Reference Business Model Objective

[19] B2C, C2C Reduce the total cost of the EH
[46,105,108] B2C Minimize operational costs

[48,57,87] B2C, C2C P2P exchange
[52] B2C Maximize profits (P2P energy trading)
[56] B2C, C2C Minimize the total energy expenditure
[60] C2C P2P exchange
[62] B2C Minimize costs and emissions
[65] B2C, C2C Minimize electricity costs
[67] B2C, C2C P2P exchange, minimize energy costs
[70] B2C, C2C Minimize energy costs and emissions
[75] C2C Minimize the daily operation cost
[90] B2B, B2C Trade between EH, minimize costs and emissions
[93] B2C Maximize the operator’s profit and reduce the CO2 emissions

[97,109,110] B2C Minimize costs and emissions
[99] B2C, C2C P2P energy sharing

[106] B2C, C2C Reduction of the fuel cost and emission
[111] B2C Reduction of the expected time-ahead energy costs
[124] B2C Minimize costs and emissions (literature review)
[125] B2C Maximize RES output
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Based on the reviewed papers, the business models of EHs have as a basis the reduction
of the energy cost and/or of the total investment and operating costs of the EHs. In some
papers, the reduction of the carbon emission cost is taken into consideration as well. In
most cases, business models are limited to the electricity carrier, some include gas or heat,
and they rarely focus on multi-carrier technical aspects such as the inclusion of additional
energy carriers.

Relating to the literature on energy markets and P2P schemes, it emerges that business
models are mostly limited to a single energy carrier, which is electricity, or do not go
in-depth into the specificities of other energy markets. Therefore, the main challenge is to
provide innovative business models that could reflect the different energy carriers present
in the EHs and the synergies among them. This means fully exploiting the potential to
participate in different markets, considering their specificities.

13. Other Collateral Concerns

13.1. Temporal Scope for the Operation Optimization of EHs

This section discusses the time horizons and time resolution that the analyzed works
in the literature consider for the operation optimization of the EHs. The most commonly
used time horizon among the papers considered in this study is either one year or one day,
depending on the scope of the optimization. Many documents use one year [31,38,41,44,47–
49,58,62,63,68–72,85,86,89,93,95,104,113,115,125] and focus on long-term energy system
planning. However, this is not always performed in the same way. Indeed, a complete
year can be too computationally challenging, and some models reduce the complexity by
representing a year with representative days. The number of representative days varies
depending on the model; references [41,44,71] simplify the annual scope by the use of one
representative day per season, while [62] uses one week per month to study the whole
year. Reference [68] uses three days for each month in a year corresponding to weekday,
weekend, and peak, while [70,85,101] use only three typical days in total. Models with a
stronger operational focus use more detailed descriptions and may choose only to use a
horizon of one day, such as [19,23–25,28–30,33,34,40,42,43,46,48,50,54,55,57,61,74,75,80,83,
84,90,92,94,96,98,102,105,114,116,123].

Other models need to account for the future trends in price and demands, e.g., using a
longer horizon, five years, in the case of [64,66]. In addition, Ref. [66] compares the use of 4
day-types (summer weekday, summer weekend, winter weekday, and winter weekend)
and 39 day-types (weekdays, Saturday, and Sunday for 13 periods for every 4 weeks).
Finally, some documents use particular horizons, for example, seven weeks, as in [60].

In addition to the time horizon, the literature adequately describes the time resolu-
tion used in the various cases. The most common temporal resolution is one hour, as
in [19–21,23,25,26,28–30,36,38,40,42,43,46,47,49,50,54,55,57,60,61,63,67,68,72,74,75,77,79,80,
83,90,92,94,98,102,104,105,113,115,123,125]. An hourly resolution allows the capture of
some of the variability in the demand and renewable generation and also fits well with
the structure of the day-ahead markets. Nevertheless, Refs. [35,66,103] use a half-hourly
resolution, as it is the time resolution in the UK’s DAM. Even finer resolutions can also
be rarely found. For example, Refs. [112,116,122] use 15 min, Refs. [65,91] use a time
resolution between 5 and 15 min, Ref. [35] uses a time resolution of 1 min, and Ref. [87]
uses a time resolution of half a minute. The greater the granularity, the deeper the level of
detail that increases the reliability and accuracy of the model, although this causes higher
computational efforts. In fact, some models use a lower resolution as a way to reduce the
computational burden; for example, Ref. [101] uses 2 h, Ref. [86] 4 h, and Ref. [85] divides
each day into 6 periods which do not have to be the same length.

Table 22 summarizes the different temporal resolutions used in the analyzed works in
the literature dealing with the operation optimization of EHs.
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Table 22. Temporal resolutions used in the analyzed works in the literature dealing with the operation
optimization of EHs.

Temporal Resolution References

Half min [87]
One min [35]
Five min [65,91]
Fifteen min [112,116,122]
Half hour [103]

One hour
[19–21,23,25,26,28–30,36,38,40,42,43,46,47,49,
50,54,55,57,60,61,63,67,68,72,74,75,77,79,80,83,
90,92,94,98,102,104,105,113,115,123,125]

Two hours [101]
Four hours [86]
Six periods per day [85]

13.2. Spatial Scope for the Design and Operation Optimization of EHs

The spatial scope varies greatly between models due to different goals, locations,
technologies, and sectors (e.g., residential, industrial, commercial sectors) of the EH. In
addition, it is not always reported precisely in the analyzed works and can focus on different
types of information: for instance, some documents report a geographical location while
others provide a physical description of the local system, and others provide no information
at all.

Many models focus solely on an individual energy system, be it a single building
([66,125]) or a single area (neighborhood) [72,74,75,97,104,105]. The number of buildings
can vary greatly, e.g., 4 in [101], 6 in [85], 25 in [113], and 29 in [47]. A few models focus
more on the interaction between different energy systems inside a larger one. For example,
in [46], 4 smart EHs are included in the IEEE 33-bus network. Similarly, the model presented
in [36] is applied in a 33-bus radial distribution network and a 14-node gas network, 3 smart
EHs, and a P2G system. The IEEE 30-bus network is also used in [96] with 5 generators, 4
tap-transformers, and 2 shunt capacitors.

A different approach Is taken in [86,90], where authors consider a grid of intercon-
nected nodes. The microgrid considered in the latter has 21 nodes, 6 of which are EHs, each
comprising a natural gas boiler, a CHP unit, an HP, and a heat storage unit. In other nodes
of the microgrid, there are three wind generators, two batteries, and electrical loads.

Table 23 summarizes the different spatial scopes used in the reviewed papers found in
the literature.

Table 23. Spatial scopes used in the analyzed works in the literature dealing with the design and
operation optimization of EHs.

Spatial Scope References

Single building [66,125]
Single area [72,74,75,97,104,105]

Interaction between different energy systems inside a larger one [36,46,47,85,96,101,113]
Grid of interconnected nodes [30,86]

14. Discussion and Conclusions

14.1. Summary of Challenges and Limitations

This review paper presents the optimal design and operation of EHs and their
interaction with external networks and multiple markets, tackling all aspects of this
multi-faceted theme.

Based on the reviewed literature, there are some important limitations and challenges
related to the EH configuration that need to be addressed in order to optimize the planning
and operation of such systems in the future, especially considering the RePowerEU plan
objectives. Past research papers focus mainly on the electricity carrier as a backbone while
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limited other carriers and conversion technologies are considered in single studies. The
optimal placement of the different energy technologies in the EH is an important aspect of
the design optimization of EHs, especially in the case of thermal storage, whose location in
a DHN can impact thermal losses and, therefore, energy consumption and related costs
and emissions. However, in many cases, it is not addressed.

Also, based on the literature findings, the MILP approach is the most widely used to
optimize the design and operation of multi-carrier energy systems. Nevertheless, some of
the different variables that may be present in EHs respond to a nonlinear behavior, e.g.,
power flow variables, and to non-convexities, e.g., commitment status of energy conversion
and storage units. The accurate representation of the physical phenomena taking place
in the energy conversion and storage units of a multi-carrier energy system and of their
design and operational decisions may require the use of MINLP formulations. Of course,
the solution to MINLP problems is still today a challenging and computationally hard
task, especially when the configuration is complex, as said. Usually, MINLP problems are
relaxed and reformulated as MIQCP, MISOCP, or MILP problems and solved using proper
decomposition techniques. However, very detailed models of energy technologies can limit
the effectiveness of the optimization models and methods used to solve the problem, and
a good compromise should be found between model fidelity and the complexity of the
optimization process. As for the use of multi-objective approaches aimed at finding good
compromise solutions that satisfy the needs of the different stakeholders taking part in the
decision-making process of EHs, an ideal approach should be used where the optimization
is performed before the decision-making. In this way, the final decision to select the
trade-off between conflicting objectives on the Pareto front is left to the decision-maker.

Regarding the EHs’ interaction with the markets, the most important limitation found
in the literature is that ancillary grid services are hardly considered under the scope of
EHs to support the upstream utility network. The day-ahead wholesale market is the most
usual, but only a few papers consider intraday or real-time scheduling. Therefore, there is
a lack of sensible and realistic interaction with markets or upward utility networks beyond
EHs. A second limitation found in the studied works is the lack of a real electricity market
setting in the EHs’ interaction. Generally, when selling/purchasing electricity in the day-
ahead electricity spot market, the EH or a proxy acting on EH’s behalf, e.g., a market agent,
must submit selling/buying bids before the market gate closure (usually the day before
the electricity delivery/withdrawal). In between the gate closure time of the day-ahead
electricity spot market and the time of delivery of the energy cleared in such a market,
several intraday electricity markets are celebrated where the market agent representing the
EH can submit selling or buying bids to modify the generation schedule of the day-ahead
electricity spot market or the previous intraday market. This setting is mainly disregarded
by the literature so far, whereas it has been partly addressed by the latest [130] where
day-ahead and real-time optimization strategies have been combined for an aggregator
representing multi-energy assets. Of course, more actors under different realistic business
models shall be investigated along with different market settings, e.g., balancing, P2P,
etc. The third limitation found in the revised works is analogous to the second one but
refers to the natural gas market setting. Natural gas supply and consumption are also
negotiated in day-ahead and intraday markets or sessions. The time horizon and temporal
resolution of the day-ahead and intraday gas market sessions are not the same as those
of the day-ahead and intraday electricity markets. Gas imbalances are also computed in
the gas market. The gas sold/purchased in each market or market session in which the
agent has participated is settled at the market clearing price (usually marginal), whereas
the excess/deficit gas imbalances are cleared at the imbalance price (usually different for
excess and deficit imbalances). Again, reference [130] considers not only electricity markets,
but also the day-ahead gas market through multi-energy biddings. Still, the gas intraday
is not considered, and thus none of the revised papers have considered the entire process
so far. All papers—where the gas price is considered—use a single gas price, presumably
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corresponding to the day-ahead gas market price. The uncertainty of gas prices is not
considered in any of the revised papers.

Finally, regarding the P2P markets, there are fruitful studies in the literature on the
maximization of social welfare and increase in individual profits, which allow users to
negotiate the excess electricity that is being produced as well as to choose who they are
going to buy it from. Still, the interaction between users with other outside actors is either
reduced to the minimum that is needed or nonexistent.

14.2. Research Pathways

Overall, EH is a promising concept that could serve the energy transition under the
cross-sectoral view that is needed. Based on the findings, there is a need for studying
realistic approaches, e.g., proper configuration, market interaction, actors’ interaction, etc.,
so that EHs potential can be unfolded. In detail:

• Different types of EH configurations with a wide range of conversion technologies
that compile general solutions and can be replicable and scalable should be considered.
Energy storage and its flexibility potential are of high importance, and EHs’ future
configuration models need to consider the optimization of their sizing and placement,
including potential alternative means of storage such as EVs and hydrogen. On top of
that, as the interaction of different energy carriers affects the nonlinearity and noncon-
vexity of the problem, a more complex configuration shall lead to higher sensitivity
of initial conditions that affect the problem formulation and solution. This challenge
should be faced as the integrated grid approach needs the high interconnection of
many different carriers;

• The optimization of the design and operation of an EH is a complicated task that has
been considered in the past under different prisms as already analyzed. It is also well
established that in order to address the needs of the most related actors in an EH,
the multi-objective approach is the way forward. What is the most challenging so
far is the accurate representation of physical phenomena that would add complexity
to an already multi-faceted problem. Therefore, it seems that the optimization of
design and operation should be tackled in layers and in a distributed way with loops
of interaction that would allow the different layers to be in accordance. The layers
could address physical carriers and/or hierarchical layers of governance where the
complexity is built based on the pursuit of the actors involved. As an example,
distributed optimization could be dealt with within the EH on the prosumers’ side
while being in good collaboration with the central optimization at the central level
of the ILEC. An example of this innovative approach is tested under the approach
proposed in the eNeuron H2020 project (November 2020–October 2024, ID: 957779),
which has the main goal to develop an innovative toolbox for the optimal design and
operation of local energy communities, integrating DERs and multiple energy carriers
at different scales;

• Last but not least, regarding the EHs’ interaction with the markets, a further necessary
step would be the specific-country cost–benefit analysis feeding sustainable business
models. Moreover, further research is required on how EHs may interact with mul-
tiple energy markets, assuming knowledge of grid network constraints, considering
the market design, and evaluating mutual coupling with other energy carriers and
markets, including gas markets. Especially for P2P markets, when considering users’
interaction, local but centralized resources, as well as different energy carriers, should
be involved. A good baseline for further investigation under the EH scope could be
the consideration of the electricity–carbon integrated P2P market as presented in [132].
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Abbreviation

Acronym Meaning Acronym Meaning

AC Air conditioners LMO Local market operator

ADMM
Alternating direction method of
multipliers

LP Linear programming

B2B Business-to-business MAGA Multi-agent genetic algorithm

B2C Business-to-consumer MBFO
Modified bacterial foraging
optimization

BS Bill sharing MECS Multi-energy coupled systems
C2C Consumer-to-consumer MES Multi-energy system
CAES Compressed air energy storage MGEM Microgrid energy management

CD Crowding distance MILP
Mixed-integer linear
programming

CES Community energy storage MINLP
Mixed-integer nonlinear
programming

CHP Combined heat and power MIQCP
Mixed-integer quadratically
constrained

DAM Day-ahead electricity market MISOCP
Mixed-integer second-order cone
programming

DDRO
Data-driven distributionally
robust optimization

MMR Mid-market rate

DE Differential evolution MOEA
Multi-objective evolutionary
algorithms

DER Distributed energy resource
MO-
MFEA-II

Multi-objective multifactorial
evolutionary algorithm II

DHN District heating network MPC Model predictive control

DRO
Distributionally robust
optimization

MSGA-II
Multi-strategy gravitational
search algorithm

DRP Demand response programs MTLBO
Modified
teaching–learning-based
optimization algorithm

EA Evolutionary algorithms NR Non-dominated rank

EH Energy hub NSGA
Non-dominated sorting genetic
algorithm

EHGHS
Electricity–hydrogen–gas heat
integrated energy system

nZED Net-zero energy districts

ESP Energy-sharing provider O&M Operation and maintenance
ESS Energy storage system OEF Optimal energy flow

ETIP
SNET

European Technology &
Innovation Platforms Smart
Networks for Energy Transition

P2G Power-to-gas

EU European Union P2P Peer-to-peer
EV Electric vehicle PCC Point Of common coupling
GA Genetic algorithms PCM Phase change materials
GfG Gas-fired generation PHEV Plug-in hybrid electric vehicle

GHG Greenhouse gas PRIMES
Price-induced narket
equilibrium system
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Acronym Meaning Acronym Meaning

GIL Grid integration level PSO Particle swarm optimization
HER Heat-to-electricity ratio PV Photovoltaic

HES Hybrid energy system QPSO
Quantum particle swarm
optimization

HP Heat pump RCGA Real coded genetic algorithm

HVAC
Heating, ventilation, and
air-conditioning

RES Renewable energy sources

ICC Integer cut constraints RMILP Robust MILP
IDM Intraday market SDR Supply and demand ratio

TOU Time of use
IGDT Information gap decision theory V2G Vehicle-to-grid

ILECs
Integrated local energy
communities

VIKOR

Vlsekriterijumska optimizacija i
kompromisno resenj
multi-criteria decision-making
method

KPI Key performance indicator VRE Variable renewable energy
LAES Liquid air energy storage WC White certificates

LEC Local energy community ZCMES
Zero-carbon multi-energy
system
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Abstract: In real-time electricity markets, locational marginal prices (LMPs) can be determined by
solving multi-interval economic dispatch problems to manage inter-temporal constraints (i.e., ramp
rates). Under the current practice, the LMPs for the immediate interval are binding, while the prices
for the subsequent intervals are advisory signals. However, a generator may miss the opportunity
for higher profits, and compensatory uplift payments are needed at the settlement. To address these
issues, the “temporal locational marginal pricing (TLMP)” that augments LMP by incorporating
multipliers associated with generators’ reported ramp rates was developed. It was demonstrated that
it would result in zero uplift payments, showing great potential as a good pricing scheme. Numerical
examples also showed that “the generators had incentives to reveal their ramp rates truthfully”. In
this paper, the incentive compatibility of TLMP with respect to ramp-rate reporting is discussed. Our
idea is to develop numerical examples to investigate whether reporting the true ramp rates is the
best option for generators. The results indicate that TLMP is not incentive compatible, and there are
market-clearing scenarios where not reporting true ramp rates may be beneficial.

Keywords: multi-interval economic dispatch; locational marginal pricing; incentive compatibility;
ramp-rate constraints

1. Introduction

In real-time electricity markets, locational marginal prices (LMPs) can be determined
by solving rolling-window multi-interval economic dispatch (ED) with reported generator
parameters and bids to manage inter-temporal constraints, i.e., ramp rates [1–3]. Under the
rolling-window framework, LMPs for the immediate interval are binding and used at the
market settlement, while the prices for subsequent intervals are advisory signals. It has
been shown that multi-interval dispatch improves operational flexibility and system relia-
bility as compared with single-interval dispatch since it considers system needs in future
intervals [4–8]. However, the major challenge with the rolling-window multi-interval
dispatch is the disparity between the settlement prices and advisory prices, as the ED prob-
lem is solved repeatedly with updated information to account for operational uncertainty.
As a result, a generator may miss the opportunity for higher profits when it is asked to
hold back generation to provide ramping support or to generate more, but the settlement
prices may not support such dispatch decisions. Thus, out-of-market discriminatory uplift
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payments, such as lost opportunity costs (LOCs) are needed to compensate for generators
at settlement based on the solutions to the profit maximization problems of individual
generators. Otherwise, this might create a dispatch-following issue, where a generator may
have incentives to deviate from the ISO dispatch. Therefore, a good pricing scheme should
guarantee zero LOC while being incentive compatible.

Several approaches have been reported to reduce uplift payments [5–9]. In [5,6], the
past opportunity costs that are represented by the dual variables of the past interval’s
optimization problem are added to the current interval’s optimization objective. In this
way, the past opportunity costs are reflected in the current interval’s clearing price. A
multi-settlement system is developed in [7,8] to coordinate between day-ahead (DA) and
real-time (RT) markets in multi-interval pricing. Under this scheme, the DA schedule is
financially binding, and the RT prices are used to settle the deviation from the DA market
clearing. Market participants are only exposed to the RT price volatility by locking the
DA clearing prices. In [9], a pricing model that minimizes uplift payments is developed,
which uses prices as decision variables and coordinates between multi-period and single-
period dispatches. However, none of the above-mentioned approaches [5–9] can guarantee
zero LOC.

As reviewed in Section 2, the temporal locational marginal pricing (TLMP) was re-
cently developed [10,11]. It augments LMPs by incorporating multipliers associated with
generators’ reported ramp-up and -down rates (which could be different), leading to in-
dividualized pricing, which is uncommon in power systems [5,6,8]. TLMP shows great
potential as a good pricing scheme with zero LOC, regardless of rolling-window or one-shot
(the prices for all the intervals are binding) dispatch, and of perfect or imperfect forecasts.
With the same value for a generator’s ramp-up and -down rates and linear generation
costs, numerical testing shows that “the generators had incentives to reveal their ramp
rates truthfully” [11]. However, rather than linear generation costs, piecewise linear or
quadratic cost functions are usually used in most practical electricity markets.

The aim of this paper is to investigate the incentive compatibility of TLMP with
respect to ramp-rate reporting through numerical examples. The incentive compatibility
with respect to ramp-rate reporting is defined as a profit-maximizing generator that has no
incentive to misreport its ramp rates. Following the testing examples in [10,11] as closely
as possible, the incentive compatibility of TLMP is analyzed through numerical examples
with different ramp-up and -down values and with piecewise linear and quadratic costs
in Section 3. The incentive compatibility results with different costs are analyzed and
discussed. Results show that a generator could be better off by not reporting its true ramp
rates, leading to possible infeasibility in ED.

2. Temporal Locational Marginal Pricing

In this section, TLMP [10,11] is briefly reviewed. The ISO’s one-shot ED problem is to
minimize the total dispatch cost subject to the power balance as well as the ramp rate and
generation capacity constraints of the bid-in generators but no transmission constraints for
simplicity [10]. It is formulated (following Equation (3) in [10]) as

Min
G=[git ]

F(G), with F(G) ≡
N

∑
i=1

T

∑
t=1

fit(git), (1)

s.t. (λt ) :
N

∑
i=1

git = dt, ∀t ∈ 1, ..., T, (2)

(
μD

it , μU
it

)
: −ri ≤ gi(t+1) − git ≤ ri, ∀t ∈ 0, ..., T − 1, i ∈ 1, ..., N, (3)

(
ρMin

it , ρMax
it

)
: 0 ≤ git ≤ gi, ∀t ∈ 1, ..., T, i ∈ 1, ..., N. (4)
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where fit is generator i’s bid-in cost at time t (assumed convex and differentiable); git is
the generation level; gi is the maximum generation limit (the minimum is assumed to be
zero for simplicity); ri and ri are bid-in ramp-up/-down rates per time interval (could be
different); and dt is the system demand. In the above, the dual variables are shown in front
of the corresponding constraints.

The TLMP of generator i at interval t is defined as the marginal benefit of generator i
at git = g∗it (obtained by solving the above ED):

πit = − ∂

∂git
F−it(G∗), (5)

where F−it(G) = F(G)− fit(git) is the partial cost that excludes generator i’s cost at t. With
git fixed at g∗it, the modified ED is to minimize F−it(G). Based on the envelope theorem,
TMLP is the sum of the multipliers associated with g∗it (Proposition 2 of [9]):

πit = − ∂

∂g∗it
F−it(G∗) = λ∗

t + Δμ∗
it − Δμ∗

i(t−1) = λ∗
t + Δ∗

it, (6)

where Δ∗
it ≡ Δμ∗

it − Δμ∗
i(t−1) with Δμ∗

it ≡ μU∗
it − μD∗

it is the increment of the shadow prices
associated with the ramp-rate constraints.

With optimal multipliers, the Lagrangian function in the dual space can be obtained as

L = ∑
i,t

(
fit(git)− (λ∗

t + Δ∗
it)git + (ρMax∗

it − ρMin∗
it )git

)
+ · · · (7)

where the rest of the terms are independent of git. Now, Equation (7) clearly shows
that under TLMP πit = λ∗

t + Δ∗
it, the multi-interval dispatch problem is decoupled into

individual single-interval dispatch problems because the multipliers associated with the
time-coupling ramp-rate constraints have been incorporated into TLMP.

To further understand TLMP, consider a special case when only the ramp-down
constraint is binding at t − 1, i.e., LMP plus the marginal cost if the generator can ramp
down more. TMLP is given as

πit = λ∗
t + μD∗

i(t−1). (8)

Given TLMP, the profit maximization (PM) problem of generator i is to maximize the
total profit over all intervals without knowing other generators’ costs. As described earlier
in Equation (6), the multipliers associated with ramp rates are incorporated as a part of
TLMP after solving ED. When solving PM, the multipliers associated with the ramp rates
are zero according to the KKT conditions [10]. The multipliers with the capacity constraints
at the minimum and maximum sides are the same as ρMin∗

it and ρMax∗
it , respectively. Op-

timal generation in PM is thus identical to g∗it (Theorem 3 of [10]). Consequently, LOC
is guaranteed to be zero, implying that TLMP satisfies market clearing and individual
rationality conditions (Definition 2 of [10]). As the multipliers associated with the ramp-
rate constraints in PM are all zero, the multi-interval dispatch is decoupled in time. LOC
is thus zero regardless of rolling window or one shot, or perfect or imperfect forecasts
(Theorems 3 and 4 of [10]).

The truthful reporting of ramp rates was discussed via numerical examples based on
a three-generator system in [11]. For each generator, a linear marginal cost was considered,
and the same value was used for its ramp-up and -down rates. Results showed that “under
TLMP, profits of all generators grew as the revealed ramping limits grew to their true
values” [11]. This implies that “the generators had incentives to reveal their ramp limits
truthfully” [11]. However, linear costs may not be practical in current electricity markets.
In addition, a generator’s ramp-up and -down rates could be different.
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3. Numerical Testing on Incentive Compatibility of TLMP

In this section, numerical examples are developed to investigate the incentive compat-
ibility of TLMP with respect to ramp-rate reporting under piecewise linear and quadratic
costs, following [10,11] as closely as possible.

3.1. Data for Numerical Testing

Consider the three-generator system used in Section 5 (Performance) of [11]. The three
generators are connected to a single bus, and their capacities, true ramp rates (same for
up and down), and linear costs presented in [11] are shown in Table 1 below. It is shown
in [11] that when the cost is linear, the profit of a generator grows when the revealed ramp
rate grows to its true value. However, linear costs are not practical in the current electricity
markets. Hence, in our study, for each generator, the piecewise linear cost is approximated
from its linear cost and consists of two blocks (40 MW and 60 MW). Then, its quadratic
cost function is approximated from the piecewise linear cost. The above two costs are
also shown in Table 1. The system demand over 24 h to be shown later is approximated
from the average demand curve presented in Figure 2 of [11] , which was generated from
300 scenarios of a CAISO load profile.

Table 1. Generator parameters.

G Capacity
(MW)

True Ramp
Rate

(MW/h)

Linear
Costs

($/MW)

Piecewise
Linear

Costs ($/MW)

Quadratic
Cost Functions ($)

G1 100 25 28 (28,29) 0.008568g2 + 28.7897g

G2 100 60 30 (30,31) 0.007g2 + 29.9626g

G3 100 60 40 (40,41) 0.008568g2 + 39.7897g

Following [11], two generators report their true ramp rates (same for up and down),
but the third generator might not report truthfully. In our study, it is assumed that the
third generator reports its true ramp-up rate but it may not report its true ramp-down
value. With the reported ramp rates, the ED problem is solved in a rolling-window manner
with a window size of four intervals, where only the first interval is binding following [11].
Then, the PM problem is solved in a one-shot manner with the true ramp rates given TLMP
for all intervals. The results with piecewise linear and quadratic costs are presented in
Sections 3.2 and 3.3, respectively.

3.2. Incentive Compatibility of TLMP with Piecewise Linear Costs

In this subsection, the piecewise linear costs presented in Table 1 are considered. It is
assumed that generators G2 and G3 report their true ramp-up and -down rates (the same),
and G1 reports its true ramp-up rate (25 MW/h). It is also assumed that G1 may report its
ramp-down rate as 25 MW/h (the true value) or 5 MW/h (a low value). The ED problem is
solved twice with the true and low values of the reported down-up rate of G1. For each
scenario, the G1 PM problem is solved with its true ramp rate given the corresponding
TLMP for all intervals. Then, the same process is repeated for scenarios where G2 or G3
may not report its true ramp-down value. The results are presented in Table 2 and Figure 1
below. It can be shown that each generator makes a higher profit by revealing a lower
ramp-down rate. This implies that revealing ramping rates truthfully may not be in the
best interest of the generators when their costs are piecewise linear.
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Table 2. Profits with piecewise linear costs.

G
Report Truth Under-Report

RD (MW/h) Profit ($) RD (MW/h) Profit ($)

G1 25 7460 5 8260

G2 60 3340 5 3420

G3 60 0 5 120

Figure 1. Generator profits with piecewise linear costs.

To further illustrate the results in Table 2, consider G2 as an example. Figure 2 shows
the TLMP values when G2 reports a ramp-down rate of 60 MW/h (the true value) and
when it reports 5 MW/h (a low value). With the low ramp-down rate, the TLMP values
are higher during time intervals 4 to 8 and for intervals 18 and 21. This is because G2
cannot ramp down fast enough when demand decreases for these intervals, resulting in
binding ramping-down constraints and thus higher prices. This indicates that a generator
can obtain higher prices by under-reporting its ramp-down rate.

Figure 3 shows the power output of G2 when the reported ramp-down rate is 60 MW/h
and when it is 5 MW/h. With the true ramp-down rate, it can be seen that the power output
of G2 becomes 0 MW when demand is lower than 100 MW (intervals 5 to 8) and G2 does
not get paid. However, with the low reported ramp-down rate, the power output of G2
decreases slowly from 30 MW to 15 MW and does not reach 0 MW. As seen in Figure 2, the
TLMP values for these intervals are higher than the marginal cost of G2 ($30 for the first
block). Therefore, G2 is paid between intervals 5 and 8. The above shows that G2 can get
paid more by under-reporting its ramp-down rate.
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Figure 2. Demand and TLMP of G2 under different reported ramp-down rates.

Figure 3. Demand and power output of G2 under different reported ramp-down rates.

Figure 4 shows the profits of G2 under different reported ramp-down rates. During
intervals 4 to 8 and for intervals 18 and 21, the profits with the low reported ramp-down
rate are higher than those with the true value. As mentioned early in Figure 2, when G2
reports a low ramp-down rate, it obtains higher prices because it cannot ramp down fast
enough when the demand decreases during these intervals. From Figure 3, for intervals
4 to 8, it is clear that the power output of G2 when under-reporting its ramp-down rate
is higher than that when reporting truthfully. During intervals 4 to 8, the combination of
higher prices and higher power output results in higher profits for G2 when it reports a low
ramp-down rate. For intervals 18 and 21, high profits are caused by high prices. The results
are similar for generators G1 and G3. This demonstrates that a generator can make higher
profits by under-reporting its ramp-down rate when reporting its ramp-up rate truthfully
under the TLMP pricing scheme.
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Figure 4. Demand and profits of G2 under different reported ramp-down rates.

3.3. Incentive Compatibility of TLMP with Quadratic Costs

In this subsection, the quadratic cost functions presented in Table 1 are considered.
Again, it is assumed that generators G2 and G3 report their true ramp-up and -down rates
(the same), and G1 reports their true ramp-up rate (25 MW/h). It is also assumed that G1
may report its ramp-down rate as 25 MW/h (the true value) or 5 MW/h (a low value).
The ED and PM problems are solved in the same way described above in Section 3.2. The
ED problem is solved twice with the true and low values of the reported down-up rate
of G1. For each scenario, the G1 PM problem is solved with its true ramp rate given the
corresponding TLMP for all intervals. Then, the same process is repeated for scenarios
where G2 or G3 may not report their true ramp-down value. The results are presented in
Table 3 and Figure 5 below. Similar to what is presented in Section 3.2, each generator
makes a higher profit by revealing a lower ramp-down rate. This implies that revealing
ramping rates truthfully may not be in the best interest of the generators when their costs
are quadratic under the TLMP pricing scheme.

In summary, when the generation costs are linear, TLMP is incentive compatible with
respect to ramp-rate reporting, and the generator profits are not affected [11]. However,
when the generation costs are piecewise linear or quadratic, TLMP is not incentive compat-
ible. A generator might be able to make higher profits by under-reporting its ramp-down
rate. This under-reporting of ramp-down rates could result in the possible infeasibility of
ED. This may affect the reliability, stability, and overall performance of the grid, leading to
operational difficulties within power systems.

Table 3. Profits with quadratic costs.

G
Report Truth Under-Report

RD (MW/h) Profit ($) RD (MW/h) Profit ($)

G1 25 6884 5 7075

G2 60 2774 5 3153

G3 60 25 5 76
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Figure 5. Generator profits with quadratic costs.

4. Conclusions

This paper discusses the incentive compatibility of TLMP with respect to ramp-rate
reporting through numerical examples following [11], where it was shown that generators
have the incentive to reveal their ramp rates truthfully when the marginal costs of gener-
ators are linear. As the linear costs used in [11] are not practical in the current electricity
markets, piecewise linear and quadratic costs are considered. In addition, it is assumed
that a generator may report different values for its ramp-up and -down rates. The results
show that a generator can achieve higher profit by under-reporting its ramp-down rate
while reporting its true ramp-up rate when costs are either piecewise linear or quadratic.
It is implied that revealing the ramp rate truthfully may not be beneficial for a generator
under the TLMP pricing scheme, resulting in the possible infeasibility of ED. This may
affect the reliability, stability, and overall performance of the grid, leading to operational
difficulties within power systems.
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Abstract: The article is devoted to the use of Park’s vector method for operational control of the
rotor condition of induction motors of traction and auxiliary drives of railway rolling stock. In the
course of the analysis, it was established that in order to increase the reliability and efficiency of the
operation of vehicles, it is necessary to improve and implement diagnostic systems for monitoring
the current state of the most damaged elements of induction electric motors built into the drive.
This paper presents the development of a new approach to monitoring the state of a squirrel-cage
rotor, which is based on the use of Park’s vector approach. In the course of the research, the issue of
taking into account the asymmetric power supply of the engine during the diagnostic period during
industrial operation was solved, which affects the accuracy of determining the degree of damage to
the rotor. On the basis of the conducted research, the algorithm of the module for diagnosing the state
of the squirrel-cage rotor of an induction motor has been developed for practical use in the built-in
on-board systems of vehicles, which allows us to determine the degree of damage and monitor the
development of the rotor defect during operation, including in automated mode.

Keywords: induction motor; fault detection; Park’s vector approach; rotor diagnostics; transport
equipment monitoring; on-board diagnostic system

1. Introduction

1.1. Motivation and Relevance

Increasing the operational efficiency and reliability of vehicles is an important modern
problem, which depends not only on the fulfillment of logistical tasks but also on ensuring
the safety of all types of transportation. The development of new, and the improvement of
existing systems of current diagnosis of the condition of electrical equipment of vehicles is
the main factor in solving this issue. Prompt detection of damage to elements of vehicle
equipment provides an opportunity to take timely measures to eliminate or replace them
during pre-planned repair or maintenance. A greater share of transport equipment failures,
taking into account the difficult operating conditions, is due to the electric motors of drives
of various mechanisms and devices, where the main element is the electric motor.

At present, induction motors with squirrel-cage rotors of various capacities are used
mainly as part of the main and auxiliary equipment of modern vehicles.

They are used as traction engines in railway transport, for driving compressors,
machine-fans used for cooling traction engines, and for other equipment on rolling stock of
railways and water transport [1–4]. Despite the fairly high reliability of induction electric
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motors with a squirrel-cage rotor among other types of electric motors, they are variously
vulnerable to damage that affects their performance and failure during operation [5–7].
Especially for the operation of the transport infrastructure, the reduction of emergency
failures is an important influential factor in the implementation of logistics technologies [8].
In the locomotive industry, the assessment of the state of road safety and the reliability of
transportation in most cases is carried out while taking into account the volume of work
performed by the locomotive; that is, relative indicators of the volume of transportation are
used [9]. The development and implementation of systems for the continuous monitoring
of the state of the main elements of induction electric motors during their operation will
increase the reliability and efficiency of the use of vehicles and decrease emergency failures.

1.2. Literature Review

The problems of controlling the current state during the operation of induction motors
are the subject of research by many scientists. The authors of the research use various
methods for monitoring the state of electrical machines, however, the need to monitor data
on the state of the engine during operation, to predict the uptime remains relevant [10,11].
Thus, in [12], a method of constant monitoring of the condition of an induction motor
using the analysis of electrical characteristics is proposed. The given technique is capable
of predicting various types of failures, i.e., rotor failures, stator phase misalignments, and
power cable failures in the early stages. The authors of [13] cite a study of defects that
cause changes in the vibration signature over time. The methods of vibration monitoring
considered in the work allow for diagnosing the condition of the electric machine from
such damages as bearing defects and wear of the rotor and stator. However, research [14]
indicates a number of limitations when using vibration diagnostic methods for industrial
conditions. Ref. [15] gives an overview of the methods of early diagnosis of induction motor
faults based on sounds and acoustic emission for four types of damage: bearings, rotor,
stator, and element connections. Effective results of diagnostics of the main elements of an
induction motor are obtained using current methods, which seem to be the most appropriate
for practical implementation and use in diagnostic monitoring systems that meet modern
operational requirements. The authors in [16] cite a study on engine diagnostics using
the spectral characteristics of the engine stator current and engine speed. The diagnosis
of the main elements of the engine–stator, rotor, and bearings–was performed using an
automatically adjusted algorithm of reference vectors with arbitrary characteristics. Ref. [17]
presents the results of research on the example of diagnosing damage to the rotor of
an induction motor by five different techniques of signal processing using the stator
current. The most effective results are obtained by Park’s vector approach and the Hilbert
transformation method. However, the use of the Hilbert transform method involves a
quality power system used in stationary conditions, i.e., bench tests of equipment.

Works [18–20] show the effectiveness of using the current method of Park’s vector
approach to detect multiple malfunctions of induction motors. The main difference from
the simple spectral analysis of current signals in the formation of Park’s vector module
spectra is that any characteristic frequency of the amplitude-modulated signal is taken
into account in Park’s vector spectrum only once. The harmonics in the current spectrum,
which correspond to different types of faults, differ from each other. Thus, the detection
of characteristic harmonics in the current spectrum reliably and unambiguously indicates
the presence of specific defects in the electric machine. In [21], the authors presented the
results of studies on the effective use of the Park vector method for diagnosing an interturn
short circuit in the stator winding with the determination of the number of closed turns in
a low-quality motor power supply system.

Thus, Park’s vector method is the most effective and promising current method for
detecting engine damage in the early stages for use in monitoring systems. However,
the identification of malfunctions of various engine elements with the determination of
the type and degree of their damage for various power and load conditions using Park’s
vector approach is complex and requires further research. The main disadvantages of
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using Park’s method is the difficulty of detecting damage in the idling mode and its
identification with an asymmetric power system. When using this method in the built-in
monitoring systems of transport equipment, it is not expected to establish malfunctions in
the idle mode. Conducting research on the development of control modules for the main
elements of an induction motor for use in the built-in systems of on-board diagnostics of
the induction electric machines of vehicles using Park’s vector method is a relevant and
promising modern task.

1.3. Contribution

This article is devoted to the development of an algorithm based on the proposed
method of determining damage to the squirrel-cage rotor winding of an induction mo-
tor. Park’s vector approach is used to detect core rotor damage. Damage to the rotor is
determined by the thickness of the ring of the Park’s pattern. The proposed algorithm
takes into account the power supply of the machine from a non-sinusoidal and asymmetric
voltage system, which is relevant for diagnostics in industrial conditions. Identification of
the degree of damage to the rotor is determined by recalculating the stator currents to the
orthogonal circular basis and calculating the difference between the maximum value of the
Park’s vector for the outer circle and the minimum value for the inner circle. The use of
Park’s method makes it possible to obtain information about the current state of the engine
rotor from the moment of damage and to control the degree of development of the defect
during operation. This will allow early diagnosis of damage to the rotor winding as part of
the diagnostic system of transport equipment during the operation of induction motors
to predict the period of trouble-free operation. The use of Park’s vector approach has also
shown effective results for diagnosing the stator winding and mechanical damage of an
induction motor and can be considered one of the most reliable and convenient diagnostic
methods.

1.4. Organization of the Paper

The work has the following structure: in Section 2, an analysis of the damage of the
main elements of the induction motor is carried out with a more detailed consideration
of rotor damage; Section 3 presents the theoretical principles of Park’s vector approach,
constructs the Park’s vector diagram by means of mathematical modeling, and develops a
methodology and algorithm for determining the degree of damage to the squirrel-cage rotor
winding for use in built-in diagnostic systems of transport; Section 4 provides a discussion
of the obtained results and the direction of further scientific research; conclusions are
presented in Section 5.

2. The Main Elements of Monitoring the State of an Induction Electric Motor

The main elements of the engine that require state control during engine operation,
which are among the most necessary to be included in the diagnostic monitoring system
according to modern review studies, are stator winding, squirrel-cage rotor winding, and
bearings [22,23].

According to the operational statistics [12,16,22], a quantitative analysis of the damage
of asynchronous motors with a squirrel-cage rotor was carried out, the averaged results
of which are combined into groups taking into account the most frequent failures and are
presented in the Figure 1.

The largest share of failures of an induction motor with a squirrel-cage rotor (47%) is a
consequence of damage to the stator winding. The main cause of failures is the occurrence
of a turn-to-turn short circuit in the winding phase [20,21,24]. Turn-to-turn short-circuits
refer to defects that are difficult to diagnose in the early stages, in which the induction
motor continues to work with the deterioration of performance characteristics and energy
indicators. At the same time, this defect can develop over time, and when a certain number
of short-circuited turns is reached, insulation breakdown occurs as a result of which the
electric machine fails. From this, it follows that the presence of a turn-to-turn short-circuit
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control module in the stator windings in the diagnostic system built into the drive is a
necessary component. To determine the turn-to-turn shorting of the stator winding, a
number of studies using current methods are presented [6,16,17]. The most effective results
were obtained using the Park’s vector method [19–21]. In [21], the authors presented
research on the use of the Park’s vector method to determine the number of closed turns in
the stator phase winding of an induction motor using stator currents. In continuation of
these studies, in [23], an algorithm and a functional scheme were developed for the practical
implementation of the stator winding state control module to the diagnostic embedded
system based on Park’s vector approach.

Figure 1. Distribution of induction motor failures.

The proportion of bearing damage is 21% of all electric machine failures (Figure 1).
Given the small size of the air gap, bearing defects eventually lead to the engagement of the
rotor with the stator, which leads to significant consequences in the condition of the engine.
In addition, the appearance of vibration due to damage to the bearing has a destructive
effect on all elements of the engine structure. Various methods of vibration diagnostics are
widely used to control the vibration state of an electric machine.

Another important structural element of an induction motor, which affects the reli-
ability of the machine and is subject to monitoring, is rotor winding. During operation,
the rotor is exposed to centrifugal forces, thermal expansion, shock current loads, and
electrodynamic forces, and in some cases, the “squirrel cage” of the rotor loses its struc-
tural integrity. Damage to the rotor winding, according to the given general statistics (see
Figure 1), makes up 12% of engine failures, but for powerful traction engines, rotor failures
have significantly greater values. Damage to the rotor winding manifests in the form of
the breakage of some rods or the destruction of contact in the rods of the “squirrel cage”.
Structurally, the rods of the “squirrel cage” at the exit from the rotor grooves are connected
to short-circuited rings located at some distance from the rotor core on both sides. When
the rotor rotates, significant mechanical forces occur, which contribute to the creation of
rod breaks at the exit from the rotor core or near short-circuited rings, especially during the
start-up or limit load periods of rotors with copper or brass rods. For rotors with a winding
made of aluminum, rod breaks occur more often in the grooves. Figure 2 shows images of
rotor damage for various “squirrel cage” designs.

When operating machines with a broken “squirrel cage” structure, pulsation of cur-
rents occurs in the stator with a slip frequency, which creates vibration and affects the
torque of the machine. At the same time, the frequency of rotation of the rotor fluctuates
even with changes in small loads.

The occurrence of a contact failure in individual rods leads to an increase in the load
on other rods remaining in the structure of the “squirrel cage” and increases their heating.
Increased overheating during start-ups and significant engine loads leads to further de-
struction of the rods of the rotor winding structure, leading to emergency engine failure.
In addition, the separated rods, under the action of centrifugal forces, are prone to dis-
placement and exit from the grooves in the direction of the air gap (see Figure 2a,b), which
leads to their engagement with the winding or the stator core and additional financial
costs during engine restoration. The necessary current monitoring of the state of the rotor
winding during operation as part of the built-in diagnostic system will reduce the proba-
bility of emergency failure and contribute to the timely identification of the appearance
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of a defect before the development and failure of the equipment. To solve the problem of
early detection of the type and degree of damage to the rotor winding with a poor-quality
power supply system in industrial conditions, the most effective is application of current
diagnostic methods [17].

  
a  b  

Figure 2. Damage to the rotor winding: (a) cast winding; (b) welded winding.

3. Development of an Algorithm for Determining the State of the Squirrel-Cage Rotor
Winding of an Induction Motor

3.1. Using the Park’s Vector Method for Rotor Diagnostics

A number of works [21,25,26] of modern researchers are devoted to the use of Park’s
vector approach, which belongs to current diagnostic methods for diagnosing elements of
electric machines and drives.

The basis of Park’s vector approach is the transformation of the three-phase coordinate
system of the stator currents into a two-dimensional moving system (dq-coordinates). The
trajectory described by the end of the created vector on the coordinate plane with the
corresponding axes of the stator current Isd and Isq when the power supply frequency
changes has diagnostic signs of both electrical and mechanical engine defects.

Park’s vector currents Isd and Isq are determined from ratios based on the previously
measured stator phase currents IA, IB, and IC [17]:

Isd =

√
2
3

IA −
√

1
6

IB −
√

1
6

IC (1)

Isq =

√
1
2

IB −
√

1
2

IC (2)

Then, in the dq-coordinate system, the Park’s vector for the engine describes a figure
centered at the origin according to the equation:

Is = Isd + J · Isq (3)

In the presence of a working electric machine, all currents are balanced and have no
deviations from the normal mode. Then, under the condition of power supply from a
strictly symmetrical voltage system, the Park’s vector pattern has a regular circle centered
at the origin of the dq system coordinates [18–20].

Depending on the degree of damage to the stator winding, rotor winding, bearings,
or a violation of the symmetry of the supply voltage system, three-phase stator currents
result in a changed form of the Park’s vector pattern [27]. Despite the simplicity of damage
detection using Park’s vector approach, the identification of different types of damage from
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a graphical representation of the presence of off-state modes of operation is too difficult.
The vector pattern is affected by the quality of the power supply, the engine’s operating
mode, the type of load, and many other factors. The most effective results were obtained
for diagnosing the stator with the determination of the number of closed turns in case of
a turn-to-turn short circuit in the phase of the stator winding, taking into account a poor-
quality power supply system [21]. In these studies, the authors developed an algorithm for
the practical use of the module for establishing the state and degree of the stator winding
as part of the built-in diagnostic system [23]. The construction of a Park’s vector ring is
provided using a mathematical model of an induction motor with the addition of a Park’s
vector hodograph block.

The considered principle of using the Park’s vector method also makes it possible
to determine the defects of the rotor winding of an induction motor with high accuracy.
In [26], the authors presented a study of the influence of this type of malfunction on the
phase current of the machine using the Park’s vector transformation method with analysis
using complex wavelets. Determining the defect by the considered method is possible for
stationary and bench conditions without the influence of external interference, especially
if the induction motor operates at low slip values, when the characteristic frequency
components of the rotor fault are very close to the main frequency component. The use
of this method does not allow determination of the state of the rotor during operation
with poor engine power. The development of this study is given in [18,26,28], where the
analysis of the graphic drawing of the Park’s vector in case of rotor damage is carried out
using different approaches. In the studies cited in [26] regarding the diagnosis of rotor rod
breakage in induction motors, an increase in the width of the Park’s vector ring is used
using more complex signal processing methods. In this work, it is shown that the result of
defect detection depends on the magnetic poles and the number of rotor grooves, for which
it is necessary to introduce a new approach with signal filtering, which greatly complicates
the operational determination of the type of damage, and it is difficult to implement control
in an automated mode. The authors of [28] use the deformation of the Park’s vector pattern
as an indicator for predicting the condition using different magnetic saturation in a working
and faulty induction motor with a squirrel-cage rotor for rotor diagnostics. This approach
does not allow us to accurately identify the degree of damage to the rotor and does not
take into account the changes in parameters associated with a poor power supply system.
This issue is partially resolved in [29], where the conducted studies established that the
degree of failure depends on the width of the ring of the Park’s vector pattern and gradually
increases as the severity of the rotor malfunction increases. By monitoring the relative
width of Park’s vector patterns, it is possible to identify rotor defects and control their
development in an automated control mode. The authors propose to measure the width of
the ring by monitoring the amplitude of a specific frequency in the frequency spectrum of
the Park’s vector module, where rotor faults create spectral components in the left and right
parts of the main frequency spectrum of linear currents. Control of these sidebands in the
current spectra leads to an increase in the width of the Park’s vector trajectory. However,
the work does not take into account the effect of an asymmetric system of voltages on the
change of spectral components, which are informative for assessing the degree of damage
to the engine rotor.

Figure 3 shows the difference between the Park’s vector patterns for an undamaged
AIR132 M4 engine with a power of 11 kW (Figure 3a) and with simulated damage to
the rotor rods (Figure 3b) with a symmetrical power supply system. A simulation model
of an induction motor with a squirrel-cage rotor, made in the MATLab 2018b software
environment and presented in [21,30] with the established adequacy of the simulation
results [31], was used to construct the hodograph of the Park’s vector. In order to obtain
reliable research results, a stable mode of operation of the engine without the influence of
transient processes was considered. 2018b
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a  b  

Figure 3. Hodographs of the Park’s vector with a symmetrical induction power supply system of an
electric machine: (a) for an intact rotor; (b) with one damaged rod rotor.

3.2. Development of a Technique for Determining Rotor Damage by the Park’s Vector
Hodograph Method

As can be seen from Figure 3a, with a symmetrical system of the power supply
voltages of an induction motor, the hodograph of the Park’s vector describes a circle, and
the thickening of the Park’s vector line means that there is damage in the rotor. It is possible
to determine the presence of rotor damage by calculating the thickness of the Park’s vector
line. According to the conducted simulation, when the supply voltage system is not
symmetrical, the trajectory of the Park’s vector describes an ellipse even with symmetrical
stator windings and an intact rotor. The effect of rotor damage for an unbalanced power
system on the Park’s vector pattern is also observed. If the rotor is not damaged, the ellipse
will be described by a thin line, and if the rotor is damaged, the line of the ellipse will
thicken. In addition to the creation of an ellipse, when the symmetry of the supply voltage
is violated, the slope of the ellipse is created with an angle that depends on the degree
of asymmetry of the supply voltages, which also affects the accuracy of the calculation
of the thickness of the Park’s vector pattern. To determine the thickness of the ellipse
line—which depends on the accuracy of quantifying the degree of damage—in the presence
of asymmetry in the supply voltage system, the trajectory of the Park’s vector should be
transferred from an orthogonal elliptical basis (Figure 4b) to an orthogonal circular one
(Figure 4a).

Isd

Isq

Ip.exIp.in

Ip

 
a  b  

Figure 4. The trajectory of the Park’s vector with a damaged rotor: (a) with a symmetrical power
system; (b) with an asymmetric power system.
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The following designations are accepted in Figure 4:
Ip.ex—Park’s vector of the external circle (Figure 4a);
Ip.in—Park’s vector of the inner circle (Figure 4a);
Ip.ex.max—the maximum value of the Park’s vector for the external circle (Figure 4b);
Ip.ex.min—the minimum value of the Park’s vector for the external circle (Figure 4b);
Ip.in.max—the maximum value of the Park’s vector for the inner circle (Figure 4b);
Ip.in.min—the minimum value of the Park’s vector for the inner circle (Figure 4b);
Id.ex—projection of the Park’s vector of the external circle onto the d-axis (Figure 4b);
Id.in—projection of the Park’s vector of the inner circle onto the d-axis (Figure 4b);
ε—angle of ellipticity;
θ—angle of inclination of the ellipse.
To determine the degree of damage to the rotor with a symmetrical power system (see

Figure 4a), the thickness of the circle line of the Park’s vector is calculated according to the
formula:

ΔIp = Ip.ex − Ip.in, (4)

where:
Ip.ex—Park’s vector of the external circle;
Ip.in—Park’s vector of the inner circle.
Since, with the symmetry of the supply voltage system, the modulus of the Park’s

vector is the instantaneous value of the phase current of phase A, then expression (4) takes
the following form:

ΔIp = IsAmax − IsAmin, (5)

where:
IsAmax—the maximum instantaneous value of the stator phase current of phase A;
IsAmin—the minimum instantaneous value of the stator phase current of phase A.
A value of ΔIp = 0 will mean that the rotor is intact. A value of Δip > 0 will indicate

the presence of damage in the rotor, and the larger the value of Δip, the more damaged the
rotor.

When determining the thickness of the ellipse line in the presence of asymmetry
in the supply voltage system, the calculation is performed in the following sequence to
convert the Park’s vector pattern from an orthogonal elliptical basis (Figure 4b) to an
orthogonal-circular one (Figure 4a).

Transition from three-phase to two-phase dq coordinate system according to formulae:{
Isd = IsA · cos(ω · t +ϕ)− 1√

3
· IsB · sin(ω · t +ϕ)− 1√

3
· IsC · sin(ω · t +ϕ);

Isq = IsA · sin(ω · t +ϕ) + 1√
3
· IsB · cos(ω · t +ϕ)− 1√

3
· IsC · cos(ω · t +ϕ),

(6)

where:
IsA—the instantaneous value of the stator phase current of phase A;
IsB—the instantaneous value of the stator phase current of phase B;
IsC—the instantaneous value of the stator phase current of phase C;
ω—the angular frequency of the supply voltage;
ϕ—the phase shift between phase voltages and currents.
Formula (6) determines the maximum and minimum values of the Park’s vector Ipmax

and Ipmin, respectively. The value with the max index corresponds to the Park’s vector of
the outer circle, and the value with the min index corresponds to the Park’s vector of the
inner circle.

When projecting the obtained maximum value of the outer circle of the Park’s vector
Ipmax onto the d-axis, Id.ex is determined. Based on the values of the Park’s vector for the
outer circle Ipmax and its projection on the d-axis Id.ex, the angle of inclination of the ellipse
of the drawing of the Park’s vector is determined (see Figure 4b):

θ = arccos
id.ex
ipmax

. (7)
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Since the ellipses of the external and inner circles have the same angles of inclination
(Figure 4b), it is not necessary to determine the angle of inclination for the inner circle.

Then, the transition from an orthogonal elliptical basis (see Figure 4b) to an orthogonal
circular one (see Figure 4a) can be carried out using the formulae:

i′d0ex = (cos ε0 · cos θ0 − j · sin ε0 · sin θ0) · Ipmax · cos θ+ j · (cos ε0 · sin θ0 − j · sin ε0 · cos θ0) · Ipmax · sin θ, (8)

i′q0ex =
(
cos(−ε0) · cos

(
θ0 +

π
2
)− j · sin(−ε0) ·

(
θ0 +

π
2
)) · Ipmax · cos θ+

+j · (cos(−ε0) · sin
(
θ0 +

π
2
)− j · sin(−ε0) · cos

(
θ0 +

π
2
)) · Ipmax · sin θ,

(9)

where ε0—the angle of ellipticity of the basic single vector along the d-axis in the new basis
(along the q-axis, the value of this angle is ε0. For an orthogonal-circular basis ε0 = π/4); θ0—
the angle of inclination of the basic single vector ellipse along the d-axis in the new basis
(along the q-axis, the value of this angle is equal to θ0 + π/2). For an orthogonal-circular
basis θ0 = 0.

The maximum value of the Park’s vector for the inner circle is determined by the
expression (Figure 4b):

Ip.in.max =
Id.in
cos θ

=
Ipmin

cos θ · sin θ
. (10)

Substitution of expression (10) in (8) and (9) gives the following results:

i′d0in = (cos ε0 · cos θ0 − j · sin ε0 · sin θ0) ·
ipmin

sin θ
· cos θ+ j · (cos ε0 · sin θ0 − j · sin ε0 · cos θ0) · ipmax ·

ipmin

cos θ
, (11)

i′q0in =
(
cos(−ε0) · cos

(
θ0 +

π
2
)− j · sin(−ε0) ·

(
θ0 +

π
2
)) · ipmin

sinθ+

+j · (cos(−ε0) · sin
(
θ0 +

π
2
)− j · sin(−ε0) · cos

(
θ0 +

π
2
)) · ipmin

cosθ .
(12)

Then, the projections of the Park’s vector of the external circle in the new basis can be
defined as: ⎧⎨⎩ i′d0ex =

√(
Re
(
i′d0ex

))2
+
(
Im
(
i′d0ex

))2;

i′q0ex =
√(

Re
(
i′d0ex

))2
+
(
Im
(
i′d0ex

))2.
(13)

Projections of the Park’s vector of the inner circle in the new basis are defined as:⎧⎨⎩ i′d0in =
√(

Re
(
i′d0in

))2
+
(
Im
(
i′d0in

))2;

i′q0in =
√(

Re
(
i′d0in

))2
+
(
Im
(
i′d0in

))2.
(14)

If I′d0ex = I′q0ex and I′d0in = I′q0in are equal, and if I′d0ex �=I′d0in and I′q0ex �=I′q0in, there
will be damage in the rotor of the induction motor. When I′d0ex �=I′q0ex and I′d0in �=I′q0in
and I I′d0ex �=I′d0in and I′q0ex �=I′q0in, damage will occur in both the stator and the rotor. If
I′d0ex �=I′q0ex and I′ I′d0in �=I′q0in and I′d0ex = I′d0in and I′q0ex = I′q0in, damage will occur only
in the stator [21].

Since it was found that when only the rotor of the induction motor is damaged,
I′d0ex = I′q0ex and I′d0in = I′q0in, the thickness of the Park’s vector line can be calculated
using the expression:

Δip = i′d0ex − i′d0in, (15)

or by expression:
Δip = i′q0ex − i′q0in. (16)

Calculation of the figure thickness of the Park’s vector according to expressions (15)
and (16) according to the proposed method allows us to obtain the value of ΔIp, which can
be used to quantitatively assess the degree of damage to the rotor winding of an induction
electric machine with a sufficiently high reliability, regardless of the quality of the power
supply system.
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3.3. Algorithm for Using Park’s Method for Rotor Diagnostics in Built-In Diagnostic Systems

In accordance with the proposed method of calculating the thickness of the Park’s
vector figure, an algorithm for diagnosing damage to the rotor of an induction motor in the
built-in vehicle diagnostics system has been developed. When compiling the algorithm, we
considered the option of sharing the same sensors for the stator interturn diagnostic module
and determining the state of the rotor using the Park’s vector method.The algorithm for
diagnosing damage to the rotor of an induction motor for practical implementation is
shown in Figure 5.

Figure 5. Algorithm for diagnosing damage to the rotor of an induction motor.

To obtain the value of the phase currents, three current sensors—DIsA, DIsB, and DIsC—
are used. It is typical for transport systems that an induction electric motor receives power
from an autonomous voltage inverter, so the supply voltage system can be non-sinusoidal
in nature. Therefore, to determine the amplitude and phase of the first (fundamental)
harmonic of the stator phase currents (IsA1, IsB1, IsC1, ϕIsA1, ϕIsB1, ϕI), a fast Fourier
transform block is used to correctly obtain the stator current diagrams.

The amplitudes of the first harmonics of the stator phase currents (IsA1, IsB1, IsC1)
are sent to the block where they are converted from the three-phase coordinate system
to the two-phase moving dq coordinate system with the receipt of Isd and Isq currents in
accordance with (5). After determining Ipmax and its projection on the d-axis (Id.ex), the
angle of inclination of the ellipse of the drawing of the Park’s vector from (6) is determined.
If the angle is θ = 0, then the induction motor has a symmetrical quality supply, and the
stator currents are used to determine the damage element of the motor. In case of damage
to the rotor winding, the difference between the maximum instantaneous phase current of
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the stator IsAmax and the minimum instantaneous phase current IsAmin gives the value of
the parameter ΔIp (5), which determines the degree of damage to the rotor.

At the set value of the angle of inclination of the shape of the trajectory of the Park’s
vector (Figure 4b), the electric machine receives low-quality power; therefore, in order to
accurately determine the parameter ΔIp, it is necessary to recalculate the current values
Isd and Isq for the transition from the orthogonal elliptical basis to the orthogonal circular
basis according to the ratios (7)–(11).

After determining the values of the projections of the stator currents of the Park’s
vector figure on the d-axis (Isd0) and on the q-axis (Isq0), the damaged machine element is
set. If the values of current projections are uneven, the stator winding of the machine is
damaged. In the case of the Isd0=Isq0 equation, the maximum instantaneous value of the
phase current projection Isd0max and the minimum instantaneous value of the stator phase
current projection Isd0min are compared. When the values of the current projections differ,
the parameter ΔIp is calculated, which can be called the “rotor damage criterion” in the
future. An increase in the ΔIp parameter indicates an increase in the level of damage to
the squirrel-cage rotor winding, the development of which can be monitored during the
operation of the electric machine.

4. Discussion

The Park’s vector hodograph method is the most promising method for monitoring
the state of the main elements of an induction motor during operation using the automation
of the diagnostic process. The advantage of the method is the ability to obtain reliable
diagnostic parameters despite the quality of the power supply system being disturbed at
the earliest stages of their appearance. In the proposed rotor condition control algorithm, it
is possible to establish the current technical condition of the rotor by comparing the width
of the ring of the Park’s vector circle with the reference value for this type of engine and
to control the development of the degree of damage to the rotor by increasing the width
of the ring of the Park’s vector figure. To control the development of rotor defects during
the operation of the electric machine, the damage criterion ΔIp is used. When powering
the machine through an inverter with a non-sinusoidal signal, the algorithm provides for
the use of a fast Fourier transform block to determine the amplitude and phase of the
first (main) harmonic of the phase currents to obtain correct diagnostic results. The main
disadvantage of using Park’s method in diagnostics is the difficulty of detecting damage
in idling modes or with a slight engine load. However, for the use of the method in the
built-in diagnostic systems of vehicles, this is not decisive. In order to identify the degree
of severity of damage to the squirrel-cage rotor winding and to determine the number of
damaged rods based on the value of the parameter ΔIp, it is necessary to conduct additional
research by means of mathematical modeling. At the same time, already at this stage, it is
possible to predict the period of trouble-free operation of the engine based on the deviation
of the value of ΔIp. In addition, when using Park’s method, some current sensors and a
part of the calculation blocks are used to determine the state of the stator winding to ensure
the diagnostic processes of both important engine elements.

The use of Park’s vector method is also possible for the detection of mechanical
damage, which demonstrates the universality and perspective of the method for use in the
built-in diagnostic monitoring systems of all important elements of an induction motor.

The next work will be devoted to research on determining the number of damaged
rotor winding rods via the proposed method. This is necessary for making a prognosis of
trouble-free operation during the period of operation of the electric machines of vehicles
and planning the recovery period in the event of damage.

5. Conclusions

The work provides statistics of damage to the main important elements of induction
electric machines that are subject to control during the period of operation to ensure the
efficiency and safety of transportation. Research on the development of a methodology
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and algorithm for the practical application of Park’s vector approach for diagnosing rotor
damage during engine operation is also presented.

In the course of research, a procedure was developed for recalculating the values of
the amplitudes of the phase currents of the stator—obtained with a poor-quality power
supply system—to the actual values of the currents of the symmetrical system of the supply
voltages of the induction motor in order to correctly determine the degree of damage to
the rotor.

A means of determining the thickness of the circle of the trajectory of the Park’s vector
is proposed for determining the degree of rotor damage by the difference between the
maximum and minimum values of the phase currents of the Park’s vector pattern, which
correspond to the outer and inner size of the circle of the vector trajectory.

The algorithm of the module for monitoring the presence of damage in the squirrel-
cage rotor winding has been developed for practical implementation in diagnostic systems
with possible use together with the module for monitoring the stator from common sensors
and part of the blocks.

The proposed control approach allows us to determine the degree of damage to the
squirrel-cage rotor winding and to monitor the development of the defect during operation
using an automated mode, regardless of the quality of the power supply system.
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Abstract: Wakes between neighboring wind turbines are a significant source of energy loss in wind
farm operations. Extensive research has been conducted to analyze and understand wind turbine
wakes, ranging from aerodynamic descriptions to advanced control strategies. However, there is a
relatively overlooked research area focused on characterizing real-world wind farm operations under
wake conditions using Supervisory Control And Data Acquisition (SCADA) parameters. This study
aims to address this gap by presenting a detailed discussion based on SCADA data analysis from
a real-world test case. The analysis focuses on two selected wind turbines within an onshore wind
farm operating under wake conditions. Operation curves and data-driven methods are utilized to
describe the turbines’ performance. Particularly, the analysis of the operation curves reveals that
a wind turbine operating within a wake experiences reduced power production not only due to
the velocity deficit but also due to increased turbulence intensity caused by the wake. This effect
is particularly prominent during partial load operation when the rotational speed saturates. The
turbulence intensity, manifested in the variability of rotational speed and blade pitch, emerges as
the crucial factor determining the extent of wake-induced power loss. The findings indicate that
turbulence intensity is strongly correlated with the proximity of the wind direction to the center of
the wake sector. However, it is important to consider that these two factors may convey slightly
different information, possibly influenced by terrain effects. Therefore, both turbulence intensity and
wind direction should be taken into account to accurately describe the behavior of wind turbines
operating within wakes.

Keywords: wind energy; wind turbines; wakes; data analysis; SCADA; condition monitoring.

1. Introduction

Wake interactions between nearby wind turbines represent the most important cause
of producible energy loss in an operating wind farm. It is well known that the wind intensity
downstream of a rotor gets reduced and that, if nearby wind turbines are not sufficiently
spaced, the velocity deficit does not completely recover, thus affecting power production. In
particular, on the one hand for offshore installations, it is convenient to maintain the layout
of a wind farm as sufficiently compact to reduce Operation and Maintenance (OandM)
costs but, on the other hand, if the layout is too compact the wake losses might reach
10–20% of the Annual Energy Production (AEP) [1,2].

In this regard, the offshore Lillgrund wind farm has become a paradigmatic test case
which has been extensively studied in the literature [3,4]. It is composed of 48 Siemens SWT-
2.3-93 wind turbines, with 2.3 MW of rated power. The layout is approximately square and
the lowest distances between nearby wind turbines are 3.3 and 4.3 rotor diameters. In [5], it
is estimated that the wake effects account for a 28% AEP loss. Another paradigmatic test
case is the Horns Rev wind farm [6–9]. In that wind farm, the turbine spacing is higher (7,
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9.3, and 10.4 rotor diameters) and the particular interest of the test case is in the fact that
the wind farm is very large (80 Vestas V80 wind turbines).

The behavior of wind turbines under wake is also a factor to be accounted for by
Transmission System Operators (TSOs) because the increasing wind energy penetration
requires wind power plants to provide ancillary services [10–12]. For example, in [13], a
control algorithm is formulated to distribute the power contribution of each turbine to
minimize the wake effects and thus maximize the power reserve. On the other way round,
if a wind turbine is requested to provide frequency support services, its wake behavior is
affected [14]. Taking into account the wake effects is also an improvement for short-term
wind power forecasts [15,16], which have crucial importance in electrical grid management.

Given this premise, it is evident that the analysis of wind turbine wakes is a topic that
has attracted an extremely vast amount of literature, dealing with several aspects. Some of
the most important are wind tunnel analysis [17–19], wind farm control [20,21], numerical
simulations [22–26], and so on.

Nevertheless, some aspects are overlooked in the literature, namely those dealing
with the exploitation of wind turbine Supervisory Control And Data Acquisition (SCADA)
data [27,28] for the characterization of wind turbine operation under wake. To the best of
the authors’ knowledge, there are only a few papers on the topic. In [29], the authors relate
meteorological data from a long-range lidar measurement campaign to the key SCADA
parameters of offshore wind turbines. The main result of the work is that there is a good
correlation between the standard deviation of the active power in the units of the average
power, and in the ambient turbulence intensity (TI). Similar considerations are formulated
in [30]. In [31], data-driven power curve models are formulated for a cluster of wind
turbines extracted from a larger wind farm. It is shown that a graph model, accounting for
wake interactions between wind turbines, largely diminishes the mismatch between model
estimates and measurements.

Based on the aforementioned considerations, this paper aims to contribute to the
identification of crucial SCADA parameters for characterizing wind turbine behavior in
wake conditions. This work distinguishes itself from state-of-the-art ones in the type of
employed data and in the methodologies. In particular, in [29,30], the fluctuations of
wind turbine operation under wake are put in relation to meteorological data collected
by a LiDAR. Yet, the use of this kind of sensor for wind farm OandM is at present still
discouraged by economic considerations and it is therefore valuable to identify what can
be understood by using solely SCADA data, as in this present work. The work in [31]
moves from a consideration similar to the starting point of this work, which is the mismatch
between nominal and real-world power curves in different environmental conditions [32].
In [33], a meaningful example is reported, which is the power curve of two wind turbines
of the same model placed in different environments (moderately vs. highly turbulent).
Those two curves appear remarkably different and this occurs not only for performance
issues, but also because the measurement of the nacelle wind speed is a critical point. Not
only are the nacelle wind speed measurements taken behind the rotor span and must be
renormalized to estimate the free stream wind speed [34], but these measurements are
also influenced by environmental conditions, including the turbulence generated by wake
interactions. In fact, for example, the works of [35,36] highlight the effects of turbulence
intensity on wind turbine power curves. Therefore, if on the one hand it is reasonable to
construct power curve models taking into account the wake interactions (as done in [31]),
on the other hand, for a deeper comprehension of the behavior of the wind turbines, it is
meaningful to also consider curves based only on operation variables, developing further
the approach used in previous studies such as [37].

Particularly, this work presents a real-world test case discussion using one year of
SCADA data from an onshore wind farm located in Italy. The wind farm consists of nine
turbines, each with a rated power of 3.3 MW. The turbine behavior under wake conditions is
analyzed separately from operation under free stream conditions, based on the computation
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of waked sectors defined by the International Electrotechnical Commission (IEC). Several
meaningful test cases are then examined.

As an anticipation of the specific contributions collected in this study, it can be stated
that, also using solely SCADA data, it is possible to highlight how turbulence intensity
plays a significant role in determining notable differences in operational behavior under
wake conditions. Recent state-of-the-art works confirm this view and analyze in detail
the role of turbulence intensity by employing mainly numerical simulations [38,39]. It is
therefore valuable to investigate what can be concluded in this regard through the analysis
of a real-world industrial case. In this present work, turbulence intensity is shown to have a
strong correlation with wind direction in the wake sector, meaning that the closer the wind
direction aligns with the line connecting the involved turbines, the higher the turbulence
intensity. However, this study demonstrates that these two variables, namely distance from
the wake center and turbulence intensity, provide slightly different information. Therefore,
a non-trivial insight achieved in this work is that both variables are required for accurate
data-driven modeling of wind turbine power output in waked operations.

The structure of this paper is as follows: Section 2 provides a description of the
employed methodology, whereas Section 3 analyzes the test case wind farm and the dataset.
Section 4 discusses the obtained experimental results, and finally, Section 5 summarizes the
main conclusions.

2. Methodology

2.1. The Data-Driven Approach

The methodology formulated in this work consists of several key steps, including the
identification of the wake sector, characterization of wind turbine operation within the
wake, and quantification of wake losses. Figure 1 provides an illustrative example of the
target of the proposed methodology, showcasing a reference wind turbine generator (WTG)
surrounded by two other WTGs. The red and green colored angular sectors represent the
wake sectors of the reference WTG with respect to the neighboring WTGs (j-th and k-th).
Particularly, these colored angular sectors are identified and analyzed to estimate the wake
energy losses.

Figure 1. Visualization of wake sectors, where wind turbine i is affected by the operations of j (red)
and k (blue).

The key steps of the proposed method go in sequence and proceed as follows:

• Identify the wake sectors by employing SCADA data (Section 2.2).
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• Characterize the behavior of the wind turbines under wake through the analysis of
appropriate operation curves (Section 2.3). This step is inspired by the IEC analysis
of the power curve but generalizes it to further curves which are meaningful for the
comprehension of the behavior under wake. Furthermore, this analysis allows for
identifying limitations for the use of the power curve and therefore motivates the
following step. Indeed, the nacelle wind speed measurements are affected by the
amount of turbulence intensity and therefore it is unreliable to employ two average
power curves measured under different conditions (e.g., in free stream vs. wake) to
estimate the amount of power production loss caused by the wake.

• Formulate a reliable data-driven method for estimating the production loss caused
by the wake interactions (Section 2.4.1). This is achieved by training a data-driven
regression for the power of the target wind turbine as a function of the power of a
reference wind turbine by using the free stream data. When simulating through the
model the power of the target wind turbine when it is in wake, the quantification of
the wake loss is substantially different from the model estimate (which is a simulation
of the power that should have been produced if the wind turbine was not in wake)
and the produced power.

• Employ the knowledge matured with the previous steps by formulating a method for
characterizing, in general, the behavior under wake (Section 2.4.2). This step starts by
employing only the measurements which are not biased by the presence of the wake.
Namely, the nacelle wind speed measurements are excluded and only the operation
variables and features elaborated from them are considered. A Sequential Features
Selection is employed for identifying the key factors for describing accurately the
power variability under wake.

2.2. Identification of the Wake Sectors

The center of a waked sector θteo
ij is the direction connecting straightly two wind

turbines i and j and the amplitude in degrees of the sector [40] is defined in Equation (1):

α = 1.3
180 arctan

(
2.5 D

L + 0.15
)

π
+ 10, (1)

where D is the rotor diameter and L is the distance between the wind turbines. For the sake
of clarity, Figure 2 shows an example of α and θteo

ij . Through Equation (1), by elaborating
the nacelle wind direction measurements, it is possible to establish if a wind turbine is
operating in free stream or subjected to a single or multiple wakes. Namely, the procedure
goes as follows:

• Consider a target i-th wind turbine;
• Set a counter to 0;
• For each wind turbine j = 1, . . . , N, where N is the number of wind turbines in the

farm and j �= i, compute αij using Equation (1);
• For each wind turbine j = 1, . . . , N, where N is the number of wind turbines in the farm

and j �= i, compute the theoretical angle of the wake sector center as θteo
ij = arctan

yi−yj
xi−xj

;

• If the nacelle wind direction θi of the target i-th wind turbine is comprised in the
interval [θteo

ij − 1
2 αij, θteo

ij + 1
2 αij], increase the counter.

If, upon cycling j from 1 to N, the counter is 0, the measurement corresponds to the
operation in the free stream of the i-th wind turbine. If the counter is 1, the operation is
under a single wake (i.e., only of one wind turbine), and so on. In this study, only sectors
of free stream operation and single wake have been considered, and the corresponding
datasets are indicated in general as Df ree and Dwake.
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Figure 2. Visualization of α and θteo
ij .

2.3. Characterization of Wind Turbine Operation under Wake

The common ground for a general comprehension of the wind turbine behavior under
wake is the generalization of the binning method, which the IEC has codified for the
analysis of the power curve [41].

In the case of the power curve, the point is simply averaging the power measurements
per interval of the nacelle wind speed. The amplitude of the bin is typically selected as 0.5
or 1 m/s. The former is selected in this work. Therefore, given Nj measurements occurring
in the j-th bin of wind intensity, the average Pj is simply given in Equation (2):

Pj =
1
Nj

Nj

∑
i=1

Pi,j (2)

where Pi,j is the i-th measurement occurring in the j-th bin. The average power curve is
therefore given by the points

(
vj, Pj

)
, where vj is the center of the j-th wind speed bin. The

data are pre-filtered from cut-in (vcut−in) to rated wind speed (vrated). In principle, other
pre-processing methods could be necessary in case of power curtailments [42], but this is
not the case for the selected wind farm.

The above method can be generalized by considering whatever couple of quantities
(X, Y) whose relation is considered relevant. The principle is the same, i.e., averaging Y
per interval of X.

In order to characterize the waked sectors, some features can be computed from the
raw SCADA measurements, as, for example, the turbulence intensity, which is defined
in Equation (3):

I =
vσ

v
(3)

as the ratio between the standard deviation (vσ) of the nacelle wind speed on a 10-minute
time basis and the average wind speed (v) on the same time interval.

Another meaningful feature that can be computed from the raw data is the angular
distance between the center of the wake sector and the measured wind direction θ. This
quantity is defined in Equation (4):

θd = θteo − θ. (4)

The curves considered of interest for the purposes of this present work are therefore
summarized in Table 1, where the range of X and the bin amplitudes are reported.
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Table 1. Analyzed operation curves.

Curve X Y X Range X bin

Power Curve v P [vcut−in, vrated] m/s 0.5 m/s

Turbulence Intensity Curve v I [vcut−in, vrated] m/s 0.5 m/s

Rotor-Power Curve ω P [ωmin, ωmax] rpm 0.5 rpm

Power-Blade Pitch Curve P β [0, Prated] kW 0.1 Prated

Angular Distance-Turbulence Intensity θd I [θc − 0.5θa, θc + 0.5θa] 5◦

Angular Distance-Residuals θd R [θc − 0.5θa, θc + 0.5θa] 5◦

The curves indicated in Table 1 have an intuitive explanation, except for those involv-
ing the use of the angular distance with respect to the center of the wake. The necessary
details about the use of such a curve are reported in Section 4.

2.4. Characterization of the Waked Sectors and of the Wake Losses
2.4.1. Estimation of the Wake Losses

The computation of the wake losses needs an estimate of how much a wind turbine
would have produced if it were not in wake. In this regard, the idea proposed in this work
is learning this from the data by exploiting the fact that the wind turbines are grouped in
clusters. Namely, the procedure goes as follows:

• Filter the data for the selected wind turbine pair where both turbines are operating in
free stream conditions. To achieve this, as discussed in Section 2.2, ensure that for each
turbine pair i and j, the wind directions θi and θj do not fall within any wake sector
created by other turbines in the farm.

• Create a filtered dataset, denoted as Df ree, containing the selected turbine pairs.
• Train a data-driven model with the power of the reference upstream wind turbine

Pupstream as the input and the power of the target downstream wind turbine Pdownstream
as the output.

• Consider the dataset describing the downstream wind turbine affected by a single
wake of an upstream one, referred to as Dwake for brevity.

• Use the trained model to simulate the output, denoted as y f ree, by inputting the power
of the reference wind turbine from the Dwake dataset.

• Compare the model estimates y f ree with the actual measurements y.

The selected type of model is a Support Vector Regression (SVR) with Gaussian
Kernel. It has been selected because it has desirable characteristics for this kind of applica-
tion [43–45]: robustness to outliers, relatively fast convergence, and nonlinearity.

The rationale of this approach to the estimate of the wake losses is that, by training
the model with the Df ree dataset, the model learns the relation between the power of the
reference and target wind turbines when both are in free stream. By feeding as input to
the model the data Dwake, the model simulates how much the target wind turbine would
produce if it were not in wake for a given power of the reference wind turbine (which is in
a free stream in the Dwake dataset). In other words, the estimate of the wake losses can be
retrieved from the difference between measurements and model estimates. In particular,
the loss relative to the Annual Energy Production is estimated in Equation (5):

Eperc.loss. =
∑Dwake

y − y f ree

∑Dtot y
, (5)

where y is the power measurements of the target wind turbine and y f ree are the estimates of
the model, which simulates the free stream data-driven relation. The numerator is the sum
of the residuals in the Dwake dataset, while the sum at the denominator should be intended
on the whole yearly dataset considered in this study (indicated as Dtot).
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2.4.2. Features Classification

This analysis is aimed at identifying the key SCADA parameters which are required
for a thorough characterization of the operation under wake. In general, in the wind power
sector, there are several problems that can be stated as the necessity of determining the most
relevant features for predicting an output which in general has a multivariate dependence
on several factors [46]. In particular, for the present application, due to the critical points
related to the wind speed measurements which are affected by the level of turbulence
intensity, we have decided to employ only operation variables which are not affected by
such kinds of biases. Namely, the starting set of features is listed in Table 2 and constitute
a matrix of P features: X = {x1, . . . , xj, . . . , xP}. The amount of turbulence intensity is
resembled in the variability of the operation variables, such as the rotational speed and
blade pitch. Notice that this selection is quite standard, in that all the modern wind turbines
collect the measurements needed to construct the features in Table 2. Therefore, the selection
can be considered general and not linked to the specific test case.

Table 2. Starting set of features for the characterization of the operation under wake.

Rotor Speed (Average, Minimum, Maximum, Std Dev) ω (rpm)

Blade Pitch (Average, Minimum, Maximum, Std Dev) β (◦)

Direction Distance with respect to the wake center θd (◦)

In order to classify the above features, these preliminary steps are applied:

• Select a portion of a waked dataset; reasonably, the most populated;
• Divide it in a training and testing portion (two-thirds and one-third);
• Feed the input variables of Table 2 in the training dataset to a sequence of SVRs whose

output is the power of the downstream wind turbine in waked operation.

Thereafter, the importance of the features is classified through a Sequential Features Se-
lection (SFS) algorithm, whose objective is determining sequentially what features provide
a decrease in a loss function and by how much. At each round of the algorithm, the most
desirable input variable to the model (and thus the most important feature at that round) is
the one which, if added to the model, leads to the highest decrease in a loss function. The
loss function selected in this work is the Root Mean Square Error (RMSE), which is defined
in Equation (6):

RMSE =

√
∑N

i (R[i]− R̄)2

N
, (6)

where R[i] is the i-th difference between measurement y and model estimates ŷ and R̄ are
the average residual on the considered testing set. Namely, the precise steps of the SFS are
the following:

• Initialize a matrix XM=0 with null dimensions to store the most significant predictors
from the set XM=0 = x1, . . . , xj, . . . , xP, where P represents the number of input
variables. Set a vector of output y, a counter variable M set to 1, and RMSEM=0 to ∞.

• Repeat until RMSEM > RMSEM−1:

1. Iterate for each j-th variable xj, where j ∈ [1, |XM−1|]:
(a) Divide the training set XM−1 using K-fold cross-validation.
(b) For each k ∈ [1,K], build a SVR-based model using the k-th training set,

and merge the variables of XM−1 with the j-th variable xj in the set XM−1.
Test each j-th model on each one of the K− 1 folds.

(c) Compute the average loss function across the K sample-sets for each j-th
model.

(d) Sort the |XM−1| models and select the variable from XM−1 associated
with the lowest loss function.
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2. Remove the selected variable from XM−1 and merge it with the variables in
XM−1 to create XM.

3. Increase the counter M of one unit.

• End the algorithm when the loss function stops decreasing.

The interest in the application of this algorithm is twofold:

• The most meaningful features for modeling the power of the test case wind turbine in
wake are identified using a particular dataset;

• One could employ the above features on other waked sectors and inquire how much
the selected set is appropriate.

The selected accuracy metrics are the RMSE (defined in Equation (6)) and the Mean
Absolute Error (MAE), which is defined in Equation (7):

MAE =
1
N

N

∑
i
|R[i]|, (7)

as simply the average of the absolute differences between model estimates and measurements.

3. Case Study

The test case wind farm features nine wind turbines with D = 117 meters of rotor
diameter. The machines have variable rotational speeds which are controlled through
hydraulic blade pitch actuation. The rated power of each wind turbine is 3.3 MW. The wind
farm is sited onshore on a gentle terrain and the layout is reported in Figure 3, where the
inter-turbine distance is indicated in units of rotor diameters.
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Figure 3. The layout of the selected wind farm. The target wind turbines are indicated, with the
waked sectors with respect to the nearby ones.

The available SCADA-collected data have ten minutes of averaging time and go from
1 January to 31 December 2020. The measurement channels at disposal are listed in Table 3.

Table 3. SCADA-collected measurements at disposal for the study.

Nacelle wind speed v (Average, Minimum, Maximum, Std Dev) (m/s)

Nacelle wind direction θ (Average) ◦

Rotor Speed ω (Average, Minimum, Maximum, Std Dev) (rpm)

Blade Pitch β (Average, Minimum, Maximum, Std Dev) (◦)

Active Power P (Average, Minimum, Maximum, Std Dev) (kW)
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3.1. Selection of the Wake Sectors

The waked sectors have been computed for each wind turbine with each other turbine
in the farm. Based on these methods, the sectors indicated in Table 4 have been selected (and
plotted in Figure 3) for the analyses of this work. In those sectors, the downstream wind
turbine is under the wake of only one wind turbine, namely the upstream one indicated
in Table 4.

Evidently, a wind turbine layout is designed in order to minimize the occurrence of
operation under wake and therefore the waked sectors in general occur rarely. These target
wind turbines (T04 and T08) have been selected because they were more characterized
by the occurrence of measurements describing their operation under a single wake of a
nearby wind turbine. The wind roses measured by the nacelle anemometer of T04 and T08
are indeed reported, respectively, in Figures 4 and 5, and the population of the sectors is
reported in Table 4.

Table 4. Selected single wake sectors.

Sector Name Upstream Downstream Center θc
Amplitude

θa

N. Measure-
ments

T04 North T05 T04 54◦ 64.3◦ 1897

T04 South T03 T04 160◦ 59◦ 5529

T08 North T09 T08 58.7◦ 66.9◦ 1626

T08 West T07 T08 265◦ 59.3◦ 1064

Figure 4. The wind rose measured by the T04 nacelle anemometer.
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Figure 5. The wind rose measured by the T08 nacelle anemometer.

3.2. Operation Curves

In Table 5, the values of the X variables listed in Table 1 are reported for the specific
case study of this work.

Table 5. Range of the variables for the operation curve analysis

Variable Value

vcut−in 4 m/s

vrated 13 m/s

ωmin 6 rpm

ωmax 13 rpm

Prated 2 MW

3.3. Estimation of the Wake Losses

In Table 6, the input and output variables of the model for the wake losses estimation
are reported for the case of interest, in relation to Table 4 and Figure 3.

Table 6. Input and output for the data-driven model for estimating the wake losses.

Sector Name Input Output

T04 North P T05 P T04

T04 South P T03 P T04

T08 North P T09 P T08

T08 West P T07 P T08

3.4. Features Classification

For the selected case study, the features classification for the characterization of the
operation under wake has been run using the T04 South case because it is the most popu-
lated (see Table 4). The crosscheck of the method has been pursued by computing accuracy
metrics on two datasets: the testing part of the T04 South dataset and the T04 North dataset.
This comparison is particularly interesting in this test case, in light of the different character-
istics of these two waked sectors (which are discussed in detail in the following Section 4).
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4. Experimental Results

4.1. Characterization of Wind Turbine Operation under Wake

Given the line of reasoning in [29], which is summarized in Section 1, the first analysis
is inquiring if the selected waked sectors can be distinguished as regards the turbulence
intensity. Therefore, in Figure 6, the average curve of the turbulence intensity as a function
of the wind speed is reported for the four datasets of Table 4. Interestingly, it arises that
for each target wind turbine, there is a sector with higher turbulence (T04 South and T08
North) and a sector with lower turbulence (T04 North and T08 West).
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Figure 6. The average turbulence intensity for the two waked sectors for the two target wind turbines.

Therefore, in Figure 7 we investigate if there are differences related to the waked
sectors in the most important operation curve, which of course is the power curve. For
brevity, the curve for only T04 is reported, but the situation is similar also for T08. The
interpretation of the power curve of Figure 7 is somehow counter-intuitive. From that
curve, one would be led to argue that the power curve measured in wake is slightly
better than in free stream and the effect is slightly higher for the waked sector with higher
turbulence. Likely, as discussed for example in [33], the increased turbulent kinetic energy
is not captured by the nacelle anemometer and this leads to an effect of under-estimation of
the wind intensity. Therefore, the fact that the power curve in the waked sectors in Figure 7
looks slightly higher than in free stream is most likely due to wind speed measurement
issues. This supports the fact that a consistent interpretation of wind turbine performance
in complex conditions requires the analysis of further operation curves [37].

In Figures 8 and 9, two fundamental curves describing wind turbine operation are
reported, which are the rotor speed-power and the power-blade pitch curve (see Table 1).
From Figure 8, it arises that when there is higher turbulence (thus in wake), the extracted
power for a given rotational speed is slightly higher. It looks as if, in the full aerodynamic
load regime, higher turbulence for a given wind speed could even be slightly favorable
for power extraction. From Figure 9, it arises that the average blade pitch does not change
remarkably in wake or in free stream up to more or less 2 MW, which for this wind turbine
model is the point at which the rotational speed saturates. When in partial aerodynamic
load, if the turbulence is higher then the average blade pitch is also higher, which means
that the aerodynamic efficiency is lower, and thus a higher incoming wind kinetic energy
is required to extract a certain power output. In other words, the increased turbulence in
waked operation is remarkably unfavorable in the partial aerodynamic load. An expla-
nation of this behavior is that, when the wind turbine regulates the rotational speed and
the blade pitch (full aerodynamic load), it can follow the rapid fluctuations induced by
the wake in the form of increased turbulence. When the rotational speed is held fixed and
only the blade pitch can vary (partial aerodynamic load), the wind turbine is not capable
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anymore to follow the variability of the highly turbulent wind, and the efficiency of the
power conversion is therefore lower.
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Figure 7. The average power curve for the target T04 wind turbine, for the two waked sectors, and
for the free stream case.
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Figure 8. The average rotor speed-power curve for the target T04 wind turbine, for the two waked
sectors and for the free stream case.
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Figure 9. The average power-blade pitch curve for the target T04 wind turbine, for the two waked
sectors, and for the free stream case.
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4.2. Characterization of the Waked Sectors and of the Wake Losses

A meaningful quantity for characterizing the operation under wake is how much
the wind direction deviates with respect to the center of the wake (Equation (4)), i.e., to
the values reported in Table 4. In Figure 10, we report the distribution of such a quantity
for the four considered cases. The four waked sectors have quite different features. The
T04 North case is completely skewed negatively, while T04 South is similar but with a
non-negligible occurrence of measurements along the center of the wake. The T08 North
has a practically uniform distribution from −30◦ to +20◦, while the T08 West is completely
positively skewed.
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Figure 10. The distribution of distances from the center of the waked sectors for the four test cases.

Figure 11 reports the average turbulence intensity as a function of the distance from the
wake center for the four considered waked sectors. The turbulence intensity is measured
through the nacelle anemometer of the turbine downstream (T04 and T08, respectively).
Figure 11 is interesting because for three cases out of four (T04 North, T04 South, and T08
West) the turbulence intensity is observed to increase when the wind direction approaches
the center of the wake, which is a reasonable result. For the T08 North case, the turbulence
intensity is quite constant as a function of the direct distance from the wake center. This
is most probably due to the effect of the terrain. It is interesting to notice that this kind of
effect, which is somehow expected in complex terrain [47], indeed, occurs also in cases such
as the one selected in this work, where the terrain is quite gentle. This result provides a
qualitative indication of the fact that it is very likely that turbulence intensity and direction
distance from the wake center are well-correlated quantities, but this is not assured and in
general, those two quantities might convey slightly different information.

Figure 12 reports the difference between the power measurements of the downstream
wind turbine in waked operation and the corresponding simulation in free stream condi-
tions as a function of the angular distance with respect to the wake center. As described
in general in Section 2 and specified in Section 3 for this test case, the free stream simu-
lation for the target T04 or T08 wind turbines is obtained by generating the output of a
data-driven model taking as input the power of the upstream wind turbine (see Table 4)
when both wind turbines are upstream. In Figure 12, such a set of residuals is averaged per
intervals of θd, thus leading to the Angular Distance–Residual curve indicated in Table 1.
Figure 12 quite fairly agree with Figure 11 because of the higher the turbulence intensity
and the higher the wake losses. The most relevant loss occurs for T04 in the South sector
at the center of the wake (up to 250 kW on average). It is interesting to notice that there
is practically no loss when the absolute value of the direction distance with respect to the
wake center is higher than 20◦, for the T04 North, T04 South, and T08 West cases. Instead,
for the T08 North case there is a relevant loss along all the wake sectors, which is likely
related to the fact that the turbulence intensity does not decrease when the distance from
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the wake center increases. The case of T04 South is further analyzed in Figure 13, where the
residuals between model estimates and measurements are averaged per power intervals of
the upstream wind turbine T03. From Figure 13, it arises that the wake losses are higher for
powers of T03 higher than 2 MW. This can be seen as a different way of characterizing the
behavior reported in Figure 9: in this case, using the relative performance with respect to
the upstream wind turbine.

The wake losses reported in Figure 12 can then be averaged and reported to the
measured AEP (Equation (5)), thus obtaining the estimates of Table 7. Coherently with the
above results, the wake sectors non-negligibly affecting the AEP are T04 South and T08
North, i.e., those characterized by higher average turbulence intensity.

Finally, the analysis of the factors influencing the behavior under wake is pursued by
determining the input variables which are required for modeling the power with the lowest
possible error. As described in Section 2 and specified in Section 3, a Sequential Features
Selection is employed starting from the dataset T04 South, which is selected because it
is the most populated. The selected input variables are reported in Table 8. The level of
turbulence intensity is accounted for by the presence of minimum, maximum, and standard
deviations on the 10-minutes time interval. It is worth noticing that the distance from
the wake center is selected as the input variable. This means that this variable provides
additional information which is not merely already contained in the variability over the
time interval of the rotational speed and the blade pitch.
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Figure 11. The distribution of turbulence intensity as a function of the distance from the center of the
waked sectors for the four test cases.
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Figure 12. The distribution of the residuals between power measurements and simulations as a
function of the distance from the center of the waked sectors for the four test cases.
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Figure 13. The residuals between model estimates and measurements for T04 South case, as a function
of the power of the upstream wind turbine (T03).

Table 7. Wake losses in percentage of the AEP, as estimated from the data-driven model.

Case Production Loss

T04 North +0.11%

T04 South −1.13%

T08 North −0.59%

T08 West +0.04%

Table 8. Selected input variables for modeling the power under wake operation.

Rotor Speed (Average, Minimum) (rpm)

Blade Pitch (Average, Minimum, Maximum, Std Dev) (◦)

Direction Distance with respect to the wake center (◦)

Finally, the so-obtained model is tested on a portion of the T04 South dataset and on
the T04 North dataset. The accuracy metrics for such testing are reported in Table 9. It
arises that the metrics for the T04 North dataset are only in the order of 10% higher than for
the testing subset of the T04 South dataset. Considering that a part of the T04 South dataset
is the training dataset and that the behavior of the T04 North wake sector is peculiar as
regards the distribution of turbulence intensity (Figure 11), this result is remarkable in the
sense that it tells that the set of input variables indicated in Table 8 captures features of the
wake behavior that can be considered quite general.

Table 9. The accuracy metrics of the model for the power of wind turbine T04. The model is trained
on two-thirds of the data from T04 South and tested on the remaining third and on the T04 North
wake sector.

Metric kW

MAE T04 South 56.3

MAE T04 North 61.1

RMSE T04 South 97.4

RMSE T04 North 107.1
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5. Conclusions

This work has dealt with the characterization of wind turbine operation under wake
through SCADA data analysis and has been organized as a real-world test case discus-
sion. Actually, two wind turbines from an onshore wind farm have been selected and
their behavior in the waked sectors has been analyzed and compared to the free stream
operation. The general motivation of this work is that the identification of the key SCADA
parameters describing the behavior of wind turbines in wake is an overlooked topic, which
otherwise would be important for advanced wind farm control applications and for man-
aging the power variability in case the wind farms are requested to contribute to grid
ancillary services.

The characterization of wind turbine operation in wake has been pursued through the
analysis of appropriate operation curves and through data-driven methods. The turbulence
intensity is individuated as the key factor determining the observed behavior. Actually, the
operation curve analysis highlights that a wind turbine in wake not only loses production
because the wind intensity decreases while passing through the upstream rotor but also
because, for a certain wind intensity, the higher turbulence induced by the wake stresses the
wind turbine control. In particular, in the full aerodynamic load operation (i.e., when the
wind turbine regulates the blade pitch and the rotational speed) the increased turbulence
does not cause appreciable losses, while it does when the aerodynamic load is partial (i.e.,
the rotational speed is rated and the wind turbine regulates the load through the blade
pitch). Indeed, a deviation of approximately 1◦ of blade pitch in the partial aerodynamic
load region is observed for the wake sectors characterized by higher turbulence intensity.

The above interpretation has been confirmed by a data-driven model for the wake
losses estimate, taking as input the power of the nearby wind turbine. The model is trained
to learn the data-driven relation between a couple of nearby wind turbines when both
are in free stream and is employed to simulate the output when the downstream wind
turbine is in the wake of the upstream one. The difference between model estimates and
measurements therefore allows for estimating the losses. It results that the wake losses are
negligible for the two sectors with average turbulence intensity less than 10%, while the
impact is meaningful for the two sectors (T04 South and T08 North) for which the average
turbulence intensity is in the order of 13%.

The waked sectors have been subsequently characterized by analyzing how the turbu-
lence intensity distributes as a function of the wind direction, specifically focusing on the
proximity of wind intensity to the center of the wake. It was observed that, in general, the
closer the direction to the center of the wake, the higher the turbulence intensity. However,
it is important to consider the distance of the wind direction from the wake center and the
turbulence intensity as separate factors when explaining the observed power variability.
Terrain effects can make the relationship between these two quantities non-trivial also
in the absence of evident complexity, as observed in this work in one of the analyzed
waked sectors.

In general, therefore, the recommendation arising from this work is that a robust
comprehension of how the power of wind turbine generators varies in the presence of
wakes requires non-trivial data analysis methods. It should be taken into account that in
an offshore environment there could be further factors to take into account, for example
the influence of waves [48,49], but the approach proposed in this study can be easily
generalized by including further features affecting the extracted power. The results of this
study can be beneficial for further advancements in the general field of wake active control
and for short or ultra-short-term wind power forecasts. Actually, for those applications, it
is important to determine through real-world test cases what are the factors determining
the behavior of wind farms in highly variable and highly uncertain operation conditions.
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IEC International Electrotechnical Commission
MAE Mean Absolute Error
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SVR Support Vector Regression
TSO Transmission System Operators
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Abstract: The emission reduction of global greenhouse gases is one of the key steps towards sustain-
able development. Demand response utilizes the resources of the demand side as an alternative of
power supply which is very important for the power network balance, and the virtual power plant
(VPP) could overcome barriers to participate in the electricity market. In this paper, the optimal
scheduling of a VPP with a flexibility margin considering demand response and uncertainties is
proposed. Compared with a conventional power plant, the cost models of VPPs considering the
impact of uncertainty and the operation constraints considering demand response and flexibility
margin characteristics are constructed. The orderly charging and discharging strategy for electric
vehicles considering user demands and interests is introduced in the demand response. The research
results show that the method can reduce the charging cost for users participating in reverse power
supply using a VPP. The optimizing strategy could prevent overload, complete load transfer, and
realize peak shifting and valley filling, solving the problems of the new peak caused by disorderly
power utilization.

Keywords: virtual power plant (VPP); flexibility margin; demand response; uncertainties; integrated
energy system; renewable energy

1. Introduction

With the increasing energy crisis and pollution problems, new technologies such as
the smart grid, energy internet, energy hub, integrated energy system (IES), and virtual
power plant (VPP) have been introduced to realize the multi-energy coordinated supply
and cascade utilization of energy [1,2]. Meanwhile, a high proportion of wind power and
photovoltaic power generation are connected to the power grid, resulting in a large increase
in flexibility demands [3]. The traditional scheduling strategy relies on the improvement
of a rotating reserve capacity to ensure the stable operation of a power system which is
unable to cope with the rapidity of net load changes. Therefore, demand responses and
flexibility loads have gradually become one of the research hotspots of current power
system optimization scheduling. Moreover, the concept of a virtual power plant was
proposed to integrate different energy resources such as distributed generations, energy
storage systems, and flexibility loads to provide system support services [4,5].

A VPP benefits from the electricity market or dynamic pricing to shift energy de-
mand [6–8]. A VPP always focuses on economic benefits and the optimization of VPP
operation is closely related to it. Many researchers have conducted a lot of research on
it and have also achieved many excellent results. The scheduling optimization of VPPs
usually aims to minimize operating costs and maximize operating benefits. Moreover, a
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lot of papers focus on multiple objectives such as cost, benefits, and power grid stability
through methods such as the fuzzy multi-objective method [9]. The currently used optimal
algorithms include the linear optimization algorithm [10], mixed integer linear program-
ming algorithm [11,12], hierarchical optimization algorithm [13], differential evolution
algorithm [14], adaptive heuristic algorithm [15,16], and robust optimization algorithm [17].
Li et al. analyzed the feasibility of VPPs by means of local renewable energy plant construc-
tion and the updating of high-efficiency appliances located at electricity customers [18].
Some scholars use the data envelopment analysis method to consider the comprehensive
efficiency of the candidate units for economy, environmental protection, stability, and
reliability, and they select the units to build a VPP according to the results [19]. Sousa et al.
proposed a simulated annealing approach to address energy resource management from
the point of view of a VPP, and the results showed that a VPP can purchase additional
energy from a set of external suppliers [20].

The VPPs aggregate a lot of equipment which include wind power, photovoltaic power
(PV), electric boilers, air conditioners, electric vehicles, flexibility loads, and so on [21–23].
Moreover, the uncertainties of renewable energy output, energy demand, and market
price bring a huge challenge to the optimal scheduling of VPPs [24,25]. The uncertainty of
renewable energy output mainly includes wind and photovoltaic power. The uncertainty
of wind power output is mainly due to the randomness of wind speed, and the uncertainty
of photovoltaic power output is mainly due to solar radiation. Moreover, the weather can
affect renewable energy output, especially on a rainy day. Energy demands are uncertainty
in VPP optimization problems which derive from prediction and measurement errors.
The uncertainties of market price include electricity price, natural gas price, and heating
price which have very strong fluctuations. A lot of optimization approaches considering
uncertainty have been studied by different scholars. These include the Monte Carlo
simulation [26,27], robust optimization [28], rolling horizon, stochastic dominance [29],
fuzzy chance constraint programming constraints [30], and point estimation methods [31].
Some scholars focused on the fluctuation problem of VPP output. Hooshmand et al. [32]
introduced the user side of power stations in a virtual power plant and built a double-layer
model to increase revenues and to provide backup service to the energy system.

Previous research has already studied the optimization of VPP operation and achieved
a lot of results. However, some studies only considered the uncertainty of wind power
and PV, and the method could only handle the constraint conditions without stochastic
variables. In this paper, a flexibility margin considering demand response and uncertainties
is analyzed with a stochastic chance constrained planning method. Moreover, the demand
response of electric vehicles and traditional loads are optimized to guide customers’ power
consumption behavior.

This paper is structured as follows: Section 2 describes an overview of the VPP’s
structure, which includes the model formulation, constraint conditions, and objective
function. Section 3 describes the flexibility margin considering demand response. Section 4
gives an example to analyze the VPP. Section 5 concludes this research study by describing
challenges and future work.

2. VPP Structure

As shown in Figure 1, the VPP consists of a distributed photovoltaic system, combined
heat and power system, gas-fired boiler, absorption refrigeration unit, refrigeration unit,
electric boiler, electric vehicle, cooling storage, electric storage, thermal storage, electrical
load, cooling load, heating load, electricity market, and so on. The VPP operator is obligated
to satisfy the demands of consumers by purchasing energy from the electricity market. In
the electricity market, the VPP operator allows consumers to participate in the market to
alleviate supply pressure, inducing load reductions by incentivizing consumers. Moreover,
the VPP serves as a backup that shifts loads from peak to off-peak periods.
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Figure 1. Basic structure of VPP.

2.1. Model Formulation of the VPP
2.1.1. Distributed Photovoltaic System

The power output of the distributed photovoltaic system is greatly affected by environ-
mental factors. The power output is determined by light intensity and ambient temperature
in an ideal situation which is shown as follows:

PPV = fpvPPVR
G
GS

[1 + αPV(T − TS)] (1)

where PPV represents the power output of the photovoltaic power system, MW. fpv and
PPVR represent the reduction coefficient and rated power output in the standard state.
G and GS represent the illumination intensity of the current position and the standard
state. αPV is the power temperature reduction coefficient in the standard state. T and Ts
represent the temperature on the surface of the photovoltaic panel and the temperature of
the photovoltaic surface in the standard state.

2.1.2. Combined Heat and Power System

The combined heat and power (CHP) system generates electricity and heating energy
by burning natural gas. Collecting the heating energy could improve the energy utilization
rate of the gas turbine field in the CHP. Moreover, the output of heating and power energy
are proportional to the consumption of natural gas. The calculation formulas are as follows:

PEGT = ηEFGT (2)

PHGT = ηH FGT (3)

ηE + ηH + ηloss = 1 (4)

where PEGT and PHGT are the electric power output and thermal power output by the CHP,
MW. ηE, ηH , ηloss indicate the electric efficiency, thermal efficiency, and heat loss rate of the
CHP, respectively. FGT represents the energy of gas combustion.
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2.1.3. Gas-Fired Boiler

The gas-fired boiler consumes natural gas to produce thermal power which meets
thermal balance. The thermal output of the gas boiler is proportional to the natural gas
consumption, which is as follows:

PGB = ηGBFGB (5)

where PGB is the thermal output power of the gas boiler. ηGB indicates the gas utilization
efficiency of the gas boiler. FGB is the consumption of natural gas.

2.1.4. Refrigeration Unit

The electric refrigeration unit could supply cooling to the consumer, and the output of
the refrigerator is proportional to the input electric power which is as follows:

PCEC = ηECPEC (6)

where PEC is the cooling output of the electric refrigeration unit. ηEC indicates the utilization
efficiency of the electric refrigeration unit.

The absorption refrigeration unit utilizes the working medium to release cooling. The
cooling output is directly proportional to the input thermal power and electric power,
which are as follows:

PHRC = ηRCPRC (7)

where PHRC and PRC are the cooling output and heating input of the absorption refrigeration
unit. ηRC is the refrigeration efficiency.

2.1.4.1. Energy Storage Unit

The VPP includes electric, heating, and cooling storage units, which meet the loads’
demands. The energy storage unit has the function of balancing peaks and valleys which
could improve the coefficient of energy utilization. The mathematical models are as follows:

EES(t) = (1 − ηES)EES(t − 1) + (PESCηESC − PESD/ηESD)Δt (8)

αESC + αESD ≤ 1 (9)

0 ≤ PESC ≤ αESCPESC max (10)

0 ≤ PESD ≤ αESDPESD max (11)

EES min ≤ EES(t) ≤ EES max (12)

where EES(t) and EES(t − 1) represent the electric energy stored by the electric energy
storage unit at time t and time t − 1. PESC and PESD are the charging power and discharge
power. ηES, ηESC, ηESD are the self-discharge ratio, charging efficiency, and discharge
efficiency, respectively. PESC max and PESD max are the rated charging power and the rated
discharge power, respectively. EES min and EES max are the lower and upper climbing limits.

Moreover, Heating exchanges of thermal storage unit are as follows:

QTS(t) = (1 − ηTS)QTS(t − 1) + (PTSCηTSC − PTSD/ηTSD)Δt (13)

αTSC + αTSD ≤ 1 (14)

0 ≤ PTSC ≤ αTSCPTSC max (15)

0 ≤ PTSD ≤ αTSDPTSD max (16)

QTS min ≤ QTS(t) ≤ QTS max (17)

128



Energies 2023, 16, 5833

where QTS(t) and QTS(t − 1) represent the thermal stored by thermal storage unit at time t
and time t − 1. QTS(t) and QTS(t − 1) are the charging heating and discharge heating at
time t and time t − 1. ηTS, ηTSC, ηTSD are the self-discharge ratio, charging efficiency and
discharge efficiency, respectively. PTSC max and PTSD max are the rated charging thermal
and the rated discharge thermal, respectively. EES min and EES max are the lower and upper
climbing limits.

2.2. Objective Function

The VPP was modelled using the mixed integer linear programming (MILP) method in
LINGO software. The objective of the optimization was to maximize the VPP profit, which
consists of the incomes of participating power and gas markets, benefits from demand
sides, carbon emission fees, and unbalanced penalties. Therefore, the objective function is
defined as follows:

maxCm=
T

∑
t=1

cd(t)Pd(t)−
T

∑
t=1

Fcarbon(t)ηcarbon +
T

∑
t=1

cl(t)Pl(t)−
T

∑
t=1

Feco(t)Pc,a(t)−cco(t)
T

∑
t=1

PTS(t)− Cb

(18)

where cd(t) is the prices in the electricity market. ηcarbon is the fee of carbon emissions,
yuan/t CO2. cl(t) is the price for VPP’s users. Cco(t) is the fee of energy storage loss and
Cb is the unbalanced penalty cost.

The operating cost is the sum of the purchased energy cost and equipment maintenance
cost which are showed as follows:

Feco = Cop + Cen (19)

where Feco is the operation cost. Cop is the maintenance cost. Cen is the purchased energy
cost which is shown as follows:

Cop = ∑T
t=1 [λ WT PWT(t) + λPV PPV(t)+λGT PGT(t) + λGBPGB(t)+

λECPEC(t) + λRCPRC(t) + λESPES(t) + λTSPTS(t)]Δt
(20)

Cen = δgas∑T
t=1[FGT(t) + FGB(t) ]Δt + δel∑T

t=1 Pgrid(t)Δt (21)

where PX(t) represents the average power output of X. λX represents the cost coefficient
of operation and maintenance. δgas and δel are the prices of natural gas and electricity,
respectively. FGT(t), FGB(t), Pgrid(t) indicate the average combustion ratio of natural gas in
CHP, the average combustion ratio of natural gas in the gas boiler, and the average input of
the power grid, respectively.

The carbon emissions of a VPP could be calculated using the following equation:

Fcarbon = ∑T
t=1 {λ gas[FGB

(t) + FGT(t)]+λel Pgrid(t)}Δt (22)

where Fcarbon represents the carbon emissions of the VPP, t CO2. λgas, λel are the carbon
emission coefficients of natural gas and the power grid, t CO2/MW.

2.3. Constraint Conditions

In order to make the energy network safe and stable, the variables in the energy
network need to meet certain constraints in the VPP. The energy conservation constraints
include

Pgrid + PWT + PPV + PEGT = PE + PEC + PESC(−PESD) (23)

PHGT + PGB = PH + PRC + PTSC(−PTSD) (24)
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ηECPEC + ηRCPRC = PC (25)

where Pgrid is the power supply of the power gird. PE, PH , PC are the electric load, thermal
load, and cooling load.

All equipment operates between the maximum output and the minimum output to
ensure long-term safe operation in VPP. The constraints include

0 ≤ PGT ≤ PGT max (26)

0 ≤ PGB ≤ PGB max (27)

0 ≤ PCEC ≤ PCEC max (28)

0 ≤ PHRC ≤ PHRC max (29)

0 ≤ Pgrid ≤ Pgrid max (30)

0 ≤ FGB + FGT ≤ Fmax (31)

where PGT max, PGB max, PCEC max, PHRC max are the maximum output of the CHP, gas boiler,
and refrigeration unit. Pgrid max and Fmax represent the maximum electric power supplied
by the power grid and the maximum ratio of natural gas supplied by the natural gas
pipeline.

The energy storage unit constraints include electric, heating, and cooling storage
balance constraints which are as follows:

EES(t) = (1 − ηES)EES(t − 1) + (PESCηESC − PESD/ηESD)Δt (32)

αESC + αESD ≤ 1 (33)

0 ≤ PESC ≤ αESCPESC max (34)

0 ≤ PESD ≤ αESDPESD max (35)

EES min ≤ EES(t) ≤ EES max (36)

QTS(t) = (1 − ηTS)QTS(t − 1) + (PTSCηTSC − PTSD/ηTSD)Δt (37)

αTSC + αTSD ≤ 1 (38)

0 ≤ PTSC ≤ αTSCPTSC max (39)

0 ≤ PTSD ≤ αTSDPTSD max (40)

QTS min ≤ QTS(t) ≤ QTS max (41)

where αESC, αESDαTSC, αTSD are binary parameters (0–1) which could constrain the energy
storage unit so that it could not charge and discharge simultaneously.

3. Flexibility Margin Considering Demand Response

Terminal customers are a strong uncertainty, and the load could be divided into the
interruptible, adjustable, and sensitive loads [15,33,34]. We have divided the load demand
into certainty and uncertainty loads. The certainty load means the invariable load which
must be supplied, and the uncertainty loads are variable loads in the flexibility margin.
According to the theory of uncertainty, the electricity price is described by the probability
distribution. The output of renewable energy is analyzed by weather prediction.
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3.1. Flexibility Margin

The flexibility of the VPP refers to the degree of balance between the supply and
demand of energy. The difference between the power load and the output of photovoltaic
power is described as the net load. We can describe the VPP flexibility requirement as being
calculated by

Ft = Pnetload,t+1 − Pnetload,t (42)

Pnetload,t = Pload,t − PPV,t (43)

Ft
up = {Ft| Ft > 0}

Ft
down = {Ft| Ft < 0} (44)

where PPV,t is the actual output of photovoltaic power generation at time t. Ft
up, Ft

down

are the upward and downward flexibility requirements at time t. Pnetload,t, Pload,t are the
power load and net load at time t. Pnetload,t+1 is the net load at time t + 1. Moreover, the
prediction error of the photovoltaic system output satisfied the normal distribution, which
is described as ΔPPV,t ∼ N(0, σPV,t).

3.2. Flexibility Indicators

The flexibility margin is described as the difference between flexible supply and
demand. The direction includes up and down.{

Fru_up = Fup
gong,t − Fup

t
Fru_down = Fdown

gong,t − Fdown
t

(45)

where Fru_up, Fru_down are the upward and downward flexibility margins, respectively.

4. Example Analysis

There is a community which has the data showing electricity load, cooling load,
heating load, light radiation, and temperature in Beijing. The time scale is one hour. The
charging price of electric vehicles refers to the charging standard of Beijing electric vehicles.
The valley periods are 23:00–7:00, the usual periods are 8:00–10:00, 16:00–18:00, and 22:00,
and the peak periods are 11:00–15:00 and 19:00–21:00, which are shown in Table 1. The
electricity price of users is shown in Table 2. The valley periods are 23:00–6:00, 7:00–9:00,
12:00–18:00, 10:00–11:00–11:00, and 19:00–22:00, and the selling price of energy storage
equipment to the grid is set at 0.45 yuan/kWh, which is higher than the electricity price of
both valleys and lower than the usual price of both.

Table 1. Charging price of the electric vehicles.

Times Prices (yuan/kWh)

valley period 0.3946
usual period 0.685
peak period 1.0044

Table 2. Purchase electricity price of users.

Times Prices (yuan/kWh)

valley period 0.284
usual period 0.52
peak period 0.89

Moreover, the carbon emission of the CHP unit is 0.798 t/(MWh), and the carbon
trading price is 52.78 yuan/t. The peak power load of the user is 150 kW, the peak cooling
load is 201 kW, the peak heating load is 672 kW, and the PV installation capacity is within
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the range of 0.5~2 times of the power capacity. Considering the charging demand of
electric vehicles, the installed capacity of the battery is 4000 Ah, the installed capacity of
air conditioning is 220 kW, the installed capacity of ice storage equipment is 500 kWh, the
installed capacity of the electric boiler is 70 kW, and the installed capacity of heat storage
tank equipment is 120 kWh. The cost parameters of the energy unit are shown in Table 3.

Table 3. The cost parameters of the energy unit.

Technical Equipment
Installation Cost

yuan/kW
Running Costs

yuan/kWh

Efficiency
Period (Year)

Electrical Efficiency Heating Efficiency

Internal combustion engine 5000 0.072 0.4 0.45 30
Photovoltaic system 7500 0.01 0.12 0 25

Energy storage system 4000 0.0022 0.81 15

In our model, the prices of different energies are shown in Figure 2. The gas price
and photovoltaic feed-in tariff do not change with time. However, the electricity prices
in different voltages change at different times. Moreover, the charging load of the electric
vehicle benchmark is shown in Figure 3. It changes with a normal distribution.
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0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Lo
ad

M
W

Time h

Charging loads

Figure 3. Charging load of electric vehicle benchmark.

The typical daily operation is shown in the following figure which is the power balance
in the traditional model without a VPP. At the low price, the charging station buys electricity
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from the power grid, and the CHP system starts and stops twice a day. The photovoltaic
output is small in the morning and evening, and at noon, when the photovoltaic output
is large, the renewable energy is fully used. There are no power exchanges with the
power grid.

The photovoltaic system outputs energy during the day. At the peak time, buying
electricity from the grid is not economical. Therefore, it integrates photovoltaic systems into
the charging stations, showing a good economy. The gas internal combustion engine in the
CHP system is easy to start and stop, which could increase the power safety and stability
of charging stations. According to the gas price and the safety and stability requirements of
the charging station, it has more benefits with the appropriate gas generator sets. According
to the above analysis, the mode of grid-connected and non-connected VPPs is adopted. For
the charging station, a 10 MW photovoltaic system, 2 MW CHP unit, and 1 MW energy
storage system are arranged to calculate the gas price. The price of the gas is 2 yuan/m3,
and the charging cost of the electric vehicle is 1.4 yuan/kWh. The operation strategy is
shown in traditional model in Figure 4. As shown in Figure 5, the energy storage station
saves energy during the low electricity price at night and discharges during the daytime
peak. In the case of the photovoltaic system, when the energy supply of the energy system
is higher than the load demand, the energy storage increases the efficient operation of the
energy system.

Figure 4. Power balance in traditional model without VPP.
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Figure 5. Power balance in the model with VPP.
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According to the above, the VPP is modelled in Section 2. The typical daily operation
situation is shown in Figure 6. Since all the power comes from the photovoltaic, CHP, and
energy storage systems, the selected installed capacity must meet the real-time demand
of the charging load. The equipment capacities are set relatively high, and the overall
investment cost of the system is high. From the perspective of operation, the transmission
power exceeds the demand in the low load period. The high output of renewable energy is
greater than the load demand at noon. The energy storage system mainly stores renewable
energy and releases electricity during the load peak period in the evening.
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Figure 6. Power balance in the model with VPP and electric vehicle.

Figures 4–6 are the different scenarios of the traditional model, VPP model, and the
VPP model with an electric vehicle. In Figure 4, there are no power exchanges with the
power grid. The power exchanges with the power grid are shown in Figures 5 and 6.
Moreover, the huge power exchanges are shown in Figure 6 which illustrates more profits
for the VPP operator.

The orderly charging and discharging strategy are adopted in the VPP shown in
Figure 7. The power interaction by electric vehicle load is changing, and the load distribu-
tion is more reasonable. Peak load filling is carried out, and no new load peak is generated
which is conducive to keeping the safe operation of the power grid. The transformer has
no overload. In the peak period of electricity consumption, the discharge is conducted by
electric vehicle according to the demand of the users. It not only reduces the load rate of
the transformer but also improves the income of the users.
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Figure 7. Power interaction between power grid and electric vehicle.
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Figures 8 and 9 are the benefits of the proposed VPP model. We could give the
conclusion that the charging price is the key point for the electric vehicle, which is the
flexibility resources of the VPP. The CHP system has more income in the night when the
power load is at its peak. Moreover, the flexibility resources based on the flexibility margin
have more benefits all day.

0

1000

2000

3000

4000

5000

0.80 0.9 1 1.1 1.2 1.3 1.4

Pr
of

ita
bi

lit
y

10
4

yu
an

Charging prices yuan/kWh)

Annual profits

Figure 8. The annual profit of VPP with different charging prices.
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5. Conclusions

This paper puts forward the orderly charging and discharging strategy of electric
vehicles in a VPP considering the needs and interests of users based on the flexibility margin
in the VPP. The numerical results showed that the proposed VPP optimization method
reduced the operation cost very well. The strategy could prevent overload, complete load
transfer, realize peak shifting and valley filling, and solve the problems of peaks and new
peaks caused by disorderly power utilization. Moreover, the VPP strategy proposed in this
paper changes the multi-objective function into a single-objective function by optimizing
the load model of electric vehicles which could increase the economic efficiency of the VPP.
Finally, the orderly charging and discharging strategy of electric vehicles could reduce the
charging cost for users participating in the peak-regulating auxiliary services market.
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Abbreviations

αPV the power temperature reduction coefficient in the standard state
ηE the electric efficiency CHP
ηEC the utilization efficiency of the electric refrigeration unit
ηES the self-discharge ratio
ηESC the charging efficiency
ηESD the discharge efficiency
ηH the thermal efficiency CHP
ηGB the gas utilization efficiency of the gas boiler
ηloss the heat loss rate of CHP
ηRC the refrigeration efficiency
EES min the lower climbing limits (MW/h)
EES max the upper climbing limits (MW/h)
EES(t) The electric energy stored by the electric energy storage unit at time t (MW)
EES(t − 1) the electric energy stored by the electric energy storage unit at time t − 1 (MW)
fpv the reduction coefficient
FGB the consumption of natural gas (m3)
FGT the energy of gas combustion (MW)
Fru_up the upward flexibility margin (MW)
Fru_udown the downward flexibility margin (MW)
G the illumination intensity of the current position (W/m2)
GS the illumination intensity of the standard state (W/m2)
PC the cooling load (MW)
PE the electric load (MW)
PEC the cooling output of the electric refrigeration unit (MW)
PEGT the electric power output by CHP (MW)
PESC the charging power output (MW)
PESD the discharge power output (MW)
PESC max the rated charging power output (MW)
PESD max the rated discharge power output (MW)
Pgrid the power supply of the power gird (MW)
PGB The thermal output power of the gas boiler (MW)
PH the thermal load (MW)
PHGT the thermal power output by CHP (MW)
PHRC the cooling output of the absorption refrigeration unit (MW)
PPV the power output of the photovoltaic power system (MW)
PPVR the rated power output in the standard state (MW)
PRC the cooling output and heating input of the absorption refrigeration unit (MW)
T the temperature on the surface of the photovoltaic panel (◦C)
Ts the temperature of the photovoltaic surface in the standard state (◦C)
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Abstract: A novel approach to power scheduling is introduced, focusing on minimizing both eco-
nomic and environmental impacts. This method utilizes deep contextual reinforcement learning
(RL) within an agent-based simulation environment. Each generating unit is treated as an inde-
pendent, heterogeneous agent, and the scheduling dynamics are formulated as Markov decision
processes (MDPs). The MDPs are then used to train a deep RL model to determine optimal power
schedules. The performance of this approach is evaluated across various power systems, including
both small-scale and large-scale systems with up to 100 units. The results demonstrate that the
proposed method exhibits superior performance and scalability in handling power systems with a
larger number of units.

Keywords: power scheduling; unit commitment; reinforcement learning; agent-based simulation

1. Introduction

Electrical energy generated from fossil fuels emits significant amounts of greenhouse
gases (GHGs), including carbon dioxide (CO2), sulfur dioxide (SO2), and nitrous oxide
(N2O). These emissions have detrimental effects on human health and contribute to climate
change and global warming. However, the prevailing focus on economic concerns in
power generation often results in higher emission levels since economic costs and envi-
ronmental impacts tend to be inversely related. This effect has been amplified since the
implementation of the global emissions trading scheme (ETS) in 2005, aimed at controlling
GHGs [1,2]. As a result, power generation based solely on economic costs leads to increased
financial penalties for emissions, along with adverse environmental impacts. Therefore,
the traditional approach of scheduling power generation based solely on economic costs,
which overlooks environmental ETS, is no longer acceptable [2]. Consequently, it becomes
imperative to determine an efficient and environmentally friendly power generation sched-
ule that might have lower emission costs, indicating that it generates fewer GHGs or other
pollutants during its operation. The primary objective of environmentally friendly power
scheduling is to achieve a sustainable cost and emission balance, where economic concerns
are considered without compromising environmental sustainability. This means effectively
meeting electricity demand while minimizing the environmental impact, especially in terms
of greenhouse gas emissions (GHGs) and other pollutants. By adopting this approach,
not only does the profitability of power generation increase, but it also leads to reduced
emission levels through efficient management and scheduling of generating units [1,2].

Prior research has explored various model-based approaches, such as conventional and
dynamic programming and stochastic optimizations, to address the challenges in power
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scheduling [3]. However, these methods often face the curse of the dimensionality problem,
which leads to the use of heuristic rules and simplifications that may not effectively handle
real-sized problems [3–5]. As power systems continue to grow in size and complexity, even
small improvements in efficiency achieved through enhanced power scheduling methods
can yield significant economic and environmental benefits [4].

Recently, artificial intelligence (AI) has shown promise in learning optimal strategies
without prior knowledge. Particularly, reinforcement learning (RL) can achieve this by
employing self-play learning and adapting decision-making policies over time based on
feedback from dynamic environments [4,6]. Furthermore, RL does not rely on precise
mathematical models [4], making it more suitable for real-world scenarios where power
generation dynamics may be uncertain or challenging to accurately model.

However, despite the potential of RL-based models to offer improved power schedul-
ing solutions, only a few studies (such as [4–10]) are available in the literature. These
RL-based models tend to prioritize economic costs and overlook environmental impacts,
leading to excessive carbon emissions and neglecting long-term consequences [6]. Addi-
tionally, scalability remains a challenge for both the model- and RL-based approaches, as
the dimensionality grows exponentially with an increasing number of units [11]. Conse-
quently, simplified power scheduling definitions are often used, which may not adequately
represent realistic power systems.

This study aims to address these limitations by proposing a novel deep RL-based
method for power scheduling that minimizes both economic and environmental costs. The
algorithm utilizes an agent-based contextual simulation environment, where generating
units are represented as agents. The simulation environment automatically corrects ille-
gitimate commitments and adjusts supply capacity to meet demand, enabling agents to
learn optimal behaviors more efficiently. Furthermore, the proposed method mitigates
the dimensionality problem associated with large-scale problems, distinguishing it from
existing approaches in the literature. The power scheduling dynamics are simulated using
a Markov decision process (MDP), and the results are fed into a deep Q-network (DQN)
with separate output nodes (ON and OFF) for each agent, allowing for effective decision
making. The remainder of this article is organized as follows: The description of the
power scheduling problem is presented in Section 2. Then, Section 3 provides the technical
details of the proposed methodology, which is demonstrated with a numerical example in
Section 4. Concluding remarks follow in the Section 5.

2. Problem Description

Given a power system with n generating units and a power scheduling horizon of
24 h, let zit ∈ {0, 1} denote the commitment (ON/OFF) status of unit i at period t, and
pit ∈ [0, ∞) be the optimal power output of unit i at period t (MW).

2.1. Objective Function

The operating cost of power production at each period t is often defined by the sum
of the production costs (cprod

it ), start-up costs (cON
it ), and shutdown costs (cOFF

i ) of all units.
This definition of total operation cost ignores environmental constraints, which depend
on local regulation and emission allowance trading market schemes [12]. A properly
represented power scheduling model should also include other costs that are not linked
to fuel prices but related to fuel consumption and technological efficiency [3]. Hence, it is
necessary to include emission costs (cemis

it ) as part of the total operation cost [13]. In the
existing models, the environmental impact of power generation is primarily addressed
in the form of emissions constraints and penalties. Emission constraints involve setting
limits on the maximum allowable GHGs and other pollutants, whereas the penalty method
assigns penalty costs to units emitting beyond the allowed limits. However, a common
issue with both the emission constraint and penalty methods is their lack of flexibility, as
they do not account for dynamic adjustments based on real-time changes, such as demand
fluctuations, outages of units, and fuel and other operational expenses. Both methods
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tend to prioritize compliance with emission limits rather than actively pursuing emission
reduction strategies. To address these limitations, this study proposes the adoption of
emission cost parameters integrated into the main objective function. By representing the
emissions produced per MW for different types of units, this approach offers a continuous
and gradual representation of environmental impacts [13]. This not only allows for more
nuanced and flexible decision making by treating emissions as a continuous variable rather
than a binary constraint, but it also enables the assessment of the emission-reduction
potential of different power plants.

Thus, the objective function representing the total operational economic and environ-
mental costs of the entire planning horizon (𝒞) can be expressed as Equation (1):

𝒞 =
24

∑
t=1

n

∑
i=1

{
zit

(
cprod

it + cemis
it

)
+ zit(1 − zi,t−1)cON

it + (1 − zit)zi,t−1cOFF
i

}
(1)

where
cprod

it = αi p2
it + βi pit + δi (2)

cemis
it = pit

m

∑
h=1

φhψih (3)

cON
it =

{
chot,ON

i , 𝓉down
i* ≤ 𝓉OFF

i,t−1 ≤ 𝓉down
i* + 𝓉cold

i*
ccold,ON

i , 𝓉OFF
i,t−1 > 𝓉down

i* + 𝓉cold
i*

(4)

Equation (2) is the production cost function of unit i at period t where αi, βi, and δi
are the corresponding quadratic, linear, and constant coefficients, respectively. Next, the
emission cost of m types of pollutants released by unit i is represented in Equation (3).
Since three emission types (namely, CO2, SO2, and NOx) have been considered, m = 3
in this study. The emissions level is often directly related to the fuel consumption and
technological efficiency [3]. As a result, the cost of emissions can be expressed as a linear
function of the power outputs [13], where φh is the external cost of emission type h ($/g),
and ψih is the hth emission factor of unit i (g/MW). Finally, the start-up cost given in
Equation (2) is a function of the time duration for which unit i has been continuously offline
(OFF) until the period t, 𝓉OFF

i,t−1. The shutdown costs are fixed but usually negligible [14] and
mostly considered zero [3].

2.2. Constraints

The objective function in Equation (1) is required to be minimized subject to different
unit-specific and system level constraints as presented in Equations (5)–(9):

Capacities : zit pmin
i∗ ≤ pit ≤ zit pmax

i∗ (5)

Ramp rates : zi,t−1zit

(
pi,t−1 − pdown

i∗
)
≤ pit ≤ zi,t−1zit

(
pi,t−1 + pup

i∗
)

(6)

Operating times : 𝓉ON
it ≥ 𝓉up

i∗ and 𝓉OFF
it ≥ 𝓉down

i∗ (7)

Load Balance :
n

∑
i=1

zit pit = dt (8)

Reserve :
n

∑
i=1

zit pmax
it ≥ (1 + 𝓇)dt (9)

The unit constraints in Equations (5)–(7) affect each unit taken separately, which
collectively accounts for the technical specifications of generating units, and the system
constraints in Equations (8) and (9) are used to balance the power supply and demand
during each period. Due to the non-convexity of the objective function, the combinatorial
nature of commitments, and the time-dependent technical characteristics of the power
supply units, solving the objective function in Equation (1) subject to the constraints in
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Equations (5)–(9) using classical methods is highly computationally demanding even for
a moderate number of units and might also stack in some local optima. As a result, the
power scheduling problem remains a strongly NP-hard problem, causing the curse of
dimensionality, and the implicit burden of computation has limited the scope of numerical
optimization [3]. A model-free RL approach may provide a promising methodological
framework for solving the power scheduling problem [5].

3. Proposed Methodological Framework

A novel multi-agent deep contextual RL algorithm for power scheduling is proposed
by constructing a specialized environment called an “agent-based contextual simulation en-
vironment”, whose main peculiarities are explained in Section 3.1. Within the environment,
the generating units are represented as cooperative types of RL agents [15]. The agents
are active in observing the contextual changes in the environment, and they can make
independent decisions regarding their commitment status and optimal power outputs. On
the other hand, the agents collaborate to satisfy demand, including the reserve availability
at each hour (timestep) described in Equations (8) and (9), and the total operation cost of
the entire planning horizon (episode) is to be minimized. The power scheduling dynamics
from the agent-to-environment interactions follow an agent-based simulation strategy [16]
because the agents are heterogeneous, active, and autonomous. These dynamics are sim-
ulated in the form of a Markov decision process (MDP), whose key elements are defined
below, and then fed as inputs for the deep RL model.

3.1. The Power Scheduling Dynamics as an MDP

Since the planning horizon is an hourly divided day, each hour is considered a
timestep t, ∀t. For each timestep t of an episode, the system will be state 𝓈t consisting
of different components: current timestep t, minimum capacities (pmin

it ; ∀i), and maximum
capacities (pmax

it ; ∀i) based on the maximum ramp-down (pdown
i∗ ; ∀i) and ramp-up (pup

i∗ ; ∀i)
rates of the units, current operating (online/offline) time durations (tit; ∀i) of the units
based on the minimum up-time duration

(
𝓉up

i∗ ; ∀i ) and down-time duration
(
𝓉down

i∗ ; ∀i )
of the units, and the demand (dt) to be satisfied. The state 𝓈t at timestep t is defined as
𝓈t =

(
t, pmin

t , pmax
t , 𝓉t, dt

)
where t is the current timestep, pmin

t is a vector of minimum capac-
ities, pmax

t is a vector of maximum capacities, 𝓉t is a vector of current (online/offline) time
duration, and dt is the demand. Overall, the system’s state space for the entire episode can
be described as 𝒮 =

(
t, Pmin, Pmax, T, d

)
. There are two possible actions (switch-to/stay

ON or switch-to/stay OFF) for each of the n agents. This implies, there are a total of 2n

action combinations (i.e., unit commitments) in the action space 𝒜. Thus, each agent i will
decide their optimal action (𝒶it ∈ {0, 1}) at timestep t (or in state 𝓈t). Then, the decisions of
all the n agents together constitute an n-dimensional vector 𝒶t = {0, 1}n ∈ 𝒜. This actions
vector 𝒶t is the change of the switch (ON/OFF) status zt of units at period t to zt+1 at the
next period t + 1. Once the agents take actions 𝒶t ∈ 𝒜 in the current state 𝓈t ∈ 𝒮, there is
a transition (or probability) function 𝒫(𝓈t+1|𝓈t,𝒶t) that leads to the next state 𝓈t+1. The
transition function must satisfy all the constraints.

At each timestep t of the planning horizon, the agents first observe the state
𝓈t =

(
t, pmin

t , pmax
t , 𝓉t, zt, dt

) ∈ 𝒮. Then, each agent can decide to be either ON or OFF,
which would result in 2n combinations of unit commitment found in an action space 𝒜.
The decisions of all agents constitute the action vector 𝒶t = {0, 1}n ∈ 𝒜. Then, the agents
get an aggregate reward rt ∈ R that can lead to the next state 𝓈t+1 ∈ 𝒮 through a tran-
sition (probability) function 𝒫(𝓈t+1 = 𝓈′|𝓈t = 𝓈,𝒶t). Therefore, these power scheduling
dynamics can be represented as a 4-tuple (𝒮,𝒜,𝒫, r) Markovian decision process where
𝒮 is a state space, 𝒜 is an action space, 𝒫 is a transition (or probability) function, and r is
a reward.
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3.2. Agent-Based Contextual Simulation Environment Algorithm

The structure of agent-based simulation environment is roughly similar to an OpenAI
Gym as described below.

Step 1. The parameters of supply units are initialized as 𝓈0 =
(
0, pmin

0 , pmax
0 , 𝓉0, z0, d0

)
.

Step 2. The minimum and maximum marginal costs of all agents are determined
based on the average production cost, Equation (10).

λmin
i = αi pmax

i∗ + βi +
δi

pmax
i∗

and λmax
i = αi pmin

i∗ + βi +
δi

pmin
i∗

; ∀i (10)

Step 3. The must-ON (u1
it) or must-OFF ( u0

it
)

agents are identified based on the
operating times, Equation (11).

u1
it =1 if 0 < 𝓉it < 𝓉up

i∗ ; and u0
it =1 if − 𝓉down

i∗ < 𝓉it < 0; ∀i. (11)

Step 4. The agents execute their action 𝒶t in state 𝓈t, and then pass to the next state
𝓈t+1 through a transition (or probability) function, 𝒫(𝓈t+1|𝓈t,𝒶t), satisfying all constraints.

Step 4.1. The legality of action 𝒶it ∈ 𝒶t of each agent is confirmed and legalized if there
are any violations of the constraints specified in Equation (11), as shown in Equation (12).

𝒶it = 1 if 𝒶it = 0
∣∣∣ u1

it =1; and 𝒶it = 0 if 𝒶it = 1
∣∣∣ u0

it = 0 , ∀i. (12)

Step 4.2. The aggregate supply capacity of agents is checked for sufficiency in satisfy-
ing the demand and future demands when OFF units have not completed their downtime.
Then contextual capacity adjustments are made if necessary, and if possible.

� If ∑n
i=1 𝒶it pmax

it < (1 + 𝓇)dt, then set each 𝒶it = 1
∣∣u1

it = 0 based on the increasing or-
der of λmin

i ’s of Equation (10) until ∑n
i=1 𝒶it pmax

it ≥ (1 + 𝓇)dt. If the capacity shortage
is not fully corrected due to unconstrained OFF units, then 𝓈t is labeled as a terminal
state (𝓈+t ) that would result an incomplete episode (I[𝓈+t ] = 1).

� If ∑n
i=1 𝒶it pmin

it > (1 + 𝓇)dt, then set each 𝒶it = 0
∣∣u0

it = 1 as per the decreasing order
of λmin

i ’s of Equation (10) until ∑n
i=1 𝒶it pmin

it ≤ (1 + 𝓇)dt. If the excess capacity is not
yet fully adjusted due to an insufficient number of unconstrained ON units, it results
in an incomplete episode (I[𝓈+t ] = 1) as the state 𝓈t is terminal (𝓈+t ).

� If the current capacity does not satisfy future demands, set each 𝒶it = 1
∣∣∣(𝓉it ≥ 𝓉up

i*

)
as per the decreasing order of λmin

i ’s of Equation (10). The current state 𝓈t is also
labeled as terminal (𝓈+t ) if the future demands cannot be meet while the offline units
must still be OFF due to an insufficient number of unconstrained OFF units.

Step 5. The total operation cost at timestep t is determined. First, start-up and
shutdown costs are obtained based on the action 𝒶t. Second, a lambda iteration algorithm
is used for solving the optimal power loads pit, in Equation (2), which are then used to
estimate the emission costs specified in Equation (3). Lastly, the total operation cost is
obtained using Equation (13) where zi,t+1 = 𝒶it, ∀i.

𝒞t =
n

∑
i=1

{
zi,t+1(c

prod
it + cemis

it ) + zi,t+1(1 − zit)cON
it + (1 − zi,t+1)zitcOFF

i

}
(13)

Step 6. The agents get an aggregate reward according to the predefined function given
in Equation (14), which is the negative of the normalized total operation cost scaled to 100.

rt = ℛ(𝓈t,𝒶t, 𝓈t+1) =

⎛⎝1 −
(

1 − I[𝓈+t ]

)
𝒞t + I[𝓈+t ]𝒞

+
t −𝒞min

𝒞max −𝒞min

⎞⎠× 100 (14)

In the episodic task of RL, incomplete episodes need to be avoided, and large penalties
are recommended by [11]. For this purpose, while the cost function in Equation (13) is
used for non-terminal states, the cost for terminal states is defined as 𝒞+

t = 𝒞max − t
23(

𝒞max −𝒞pmax
)

where 𝒞max =
n
∑

i=1
λmax

i pmax
i* and 𝒞pmax

is the sum of Equations (2) and (3),
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assuming pit = pmax
i* . This provides evenly distributed penalties, maintaining the desired

proximity to the final timestep.
Step 7. If the current state is terminal (i.e., I[𝓈+t ] = 1) or t ≥ 24, then go to Step 1

to re-initialize the environment and restart a new episode to state 𝓈0. But, if t < 24 and
I[𝓈+t ] = 0, the agents pass to the next state 𝓈t+1 =

(
t + 1, pmin

t+1, pmax
t+1 , 𝓉t+1, zt+1, dt+1

)
where

zt+1 = 𝒶t is a vector commitment status; pmin
t+1 = max

{
pmin

* , z′tzt+1

(
pt − pdown

*

)}
is a vector

of minimum capacities; pmax
t+1 = min

{
pmax

* , z′tzt+1

(
pt + pup

*

)
+ I[z′tzt+1=0]p

max
*

}
is a vector

of maximum capacities; 𝓉t+1 = (𝓉t + 1 if zt+1 = 1|𝓉 t > 0, −1 else if zt+1 = 0|𝓉 t > 0, 1
else if zt+1 = 1|𝓉 t < 0, 𝓉t − 1 if zt+1 = 0|𝓉 t < 0) is a vector of operating time durations.

Step 8. Update the must-ON and must-OFF agents for the next timestep t + 1 as defined
in Equation (11): u1

i,t+1 =1 if 0 < 𝓉i,t+1 < 𝓉up
i* , and u0

i,t+1 =1 if −𝓉down
i* < 𝓉i,t+1 < 0;∀i.

Step 9. The execution of 𝒶t in the environment returns the next state (𝓈t+1), the reward
(rt), indicates whether the state is terminal (I[𝓈+t ]) and loads dispatch information together
with the legally confirmed action (𝒶t, pt).

It should be noted that action 𝒶t returned in Step 9 is not necessarily the same as
the action 𝒶t executed in Step 4 since the environment makes contextual corrections in
Step 4.1 and 4.2 using the idea of a contextual search [17]. This agent-based contextual
simulation environment, one of the main contributions of this study, can be highly effective
in reducing the computing and training time of the multi-agent deep contextual RL model
described below.

3.3. Deep Contextual Reinforcement Learning

At each timestep t ∈ 𝒯, the agents observe a state 𝓈t from 𝒮 and select their re-
spective actions 𝒶t from the action space 𝒜 according to a policy π(𝒶t|𝓈t), where π is a
mapping from states 𝓈t to actions 𝒶t. The agents then receive a reward rt and proceed
to the next state 𝓈t+1. This process continues until the agents finish the entire episode or
reach a terminal state, both of which reinitialize the environment. The agents’ goal is to
learn a policy π(𝒶t|𝓈t) that maximizes the long-run cumulative sum of rewards called
return, defined as Gt

.
= ∑∞

k=0 γkrt+k where γ is a discount rate γ ∈ [0, 1] of the MDP. The
expected return of action, 𝒶t in the state 𝓈t can be expressed as an action-value function
Qπ(𝓈t,𝒶t) = E(Gt|𝓈t,𝒶t). It can be approximated using a deep Q-network (DQN) which
can be applied in a high-dimensional state and/or action space [18]. The action-value
function can now be written as Q(𝓈t,𝒶t|θ), where θ consists of the parameters of the DQN
model whose inputs are the power scheduling dynamics simulated from the environment
in the form of MDPs. The size of action space 𝒜 is 2n, which may render an exponential
growth in computation. Thus, it is impractical to parameterize the model into 2n out-
put nodes. Instead, it is parameterized into 2n output nodes corresponding to the two
possible actions (ON/OFF) of each agent. As a result, the model estimates action-values
for 2n output nodes, and then the decisions of agents made using an exponential decay
epsilon-greedy exploration strategy collectively constitute the action vector 𝒶t.

In a power scheduling problem, the action in a particular state affects the rewards
and a set of future states, which yields serial correlations among the MDPs. In such cases,
direct application of DQN may not be efficient, as it might result in unstable and slow
learning processes [11]. Employing the notion of experience replay, the autocorrelation
among the states may be properly addressed, and the training process can be expedited
and stabilized [19]. After storing a transition tuple (𝓈t,𝒶t, rt, 𝓈t+1) to a replay buffer B,
a batch b of experiences (𝓈,𝒶, r, 𝓈′) is sampled to approximate the action-value function
Q(𝓈,𝒶|θ) and the target network Q(𝓈′,𝒶′|θ′), where 𝓈 and 𝓈′ are of size (b × 2n), and the
sizes of 𝒶 and r are (b × n) and (b × 1), respectively. The DQN algorithm minimizes the
mean-squared loss (i.e., temporal difference) Le(θ) defined by

Le(θ) = E(𝓈,𝒶,r,𝓈′)∼B

[
r + γmax

a′
Q
(
𝓈′,𝒶′∣∣θ′)− Q(𝓈,𝒶|θ)

]2
(15)
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where θ′ is the parameter of target network, which is periodically updated from the
Q-network parameters θ, and e denotes the iteration index.

4. Demonstrative Example

The applicability of the proposed deep contextual RL method is demonstrated with the
power system investigated in [20]. The test system consists of five units, for which supply
and demand profiles and emission parameters can be found in [20]. The deep RL utilizes a
feedforward neural network featuring a rectified linear unit (ReLU) activation function on
both the hidden and output layers. The learning rate and discount factor were set to 0.0001
and 0.99, respectively, and the Adam’s optimizer was used. Employing the popular genetic
algorithm, the optimal cost in [20] was $430,331, summing up the start-up, production, and
emission costs of $3140 (0.7%), $289,178 (67.2%), and $138,010 (32.1%), respectively. On the
other hand, the proposed method in this study yields an improved optimal operation cost
of $413,122 as shown in Table 1 and Figures 1 and 2, corresponding to $16,808 (4.0%) lower
daily operation cost than the results reported in [20] as compared in Table 2 and Figure 3.
The total cost is composed of $2230 (0.5%) for start-up costs, $275,962 (66.8%) for production
costs, and $134,931 (32.6%) for emission costs. It is also asserted that the proposed method
may be computationally efficient by adopting the experience replay. The scalability of
the proposed method may thus be tested with a large-scale power system comprising a
large number of generating units. Duplicating the five-unit test system multiple times and
scaling the demands proportionately, the proposed method has been applied to obtain the
optimal power scheduling scheme of individual units. The optimal costs of duplicated
large-scale power systems are summarized in Table 3. It is worth noting that the optimal
operating cost of each test system is lower than the scaled optimal operating cost of the
original five-unit system. It is implied that the proposed method may easily be extended to
render an economically and environmentally better solution for larger-scale power systems.

Table 1. Optimal commitments, optimal loads, and available reserve of test power system I using the
proposed method.

Hour
(t)

Optimal Commitments Optimal Loads (MW) 𝓇
(%)z1t z2t z3t z4t z5t p1t p2t p3t p4t p5t

1 1 0 0 0 0 400.0 0 0 0 0 13.8
2 1 0 1 0 0 426.5 0 23.5 0 0 30.0
3 1 0 1 0 0 450.9 0 29.1 0 0 21.9
4 1 0 1 0 0 455.0 0 45.0 0 0 17.0
5 1 0 1 0 0 455.0 0 75.0 0 0 10.4
6 1 1 1 0 0 455.0 36.6 58.4 0 0 30.0
7 1 1 1 0 0 455.0 52.0 73.0 0 0 23.3
8 1 1 1 0 0 455.0 62.3 82.7 0 0 19.2
9 1 1 1 0 0 455.0 72.6 92.4 0 0 15.3

10 1 1 1 1 0 455.0 77.7 97.3 20 0 22.3
11 1 1 1 1 0 455.0 93.1 111.9 20 0 16.9
12 1 1 1 1 0 455.0 103.3 121.7 20 0 13.6
13 1 1 1 1 0 455.0 77.7 97.3 20 0 22.3
14 1 1 1 0 0 455.0 72.5 92.5 0 0 15.3
15 1 1 1 0 0 455.0 62.3 82.7 0 0 19.2
16 1 1 1 0 0 455.0 36.6 58.4 0 0 30.0
17 1 0 1 0 0 455.0 0 45.0 0 0 17.0
18 1 0 1 1 0 455.0 0 75.0 20 0 20.9
19 1 0 1 1 0 455.0 0 125.0 20 0 10.8
20 1 0 1 1 1 455.0 0 130.0 55 10 10.8
21 1 0 1 1 0 455.0 0 125.0 20 0 10.8
22 1 0 1 1 0 455.0 0 75.0 20 0 20.9
23 1 0 1 0 0 455.0 0 45.0 0 0 17.0
24 1 0 1 0 0 426.4 0 23.6 0 0 30.0

145



Energies 2023, 16, 5920

Figure 1. Optimal loads of test power system I using the proposed method.

Figure 2. Costs of test power system I using the proposed method.
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Table 2. Comparison of the optimal costs (start-up cost, production cost, emission cost, and total cost)
of test power system I between genetic algorithm (GA) [20] and the proposed RL method.

Hour
(t)

Genetic Algorithm [20] Proposed RL

Start-Up Production Emission Total Start-Up Production Emission Total

1 0 8466 4824 13,290 0 7553 4241 11,793
2 0 8466 4828 13,294 560 9061 4702 14,324
3 60 10,564 5044 15,668 0 9560 5004 14,564
4 0 10,564 5044 15,608 0 9893 5170 15,063
5 1120 11,327 5825 18,271 0 10,395 5401 15,797
6 0 11,327 5825 17,151 1100 11,427 5555 18,082
7 0 11,327 5825 17,151 0 11,930 5786 17,717
8 60 13,425 6045 19,529 0 12,267 5940 18,207
9 0 13,425 6045 19,469 0 12,604 6094 18,699

10 340 13,523 6145 20,008 340 13,591 6251 20,183
11 30 15,621 6365 22,016 0 14,099 6483 20,582
12 0 15,621 6365 21,986 0 14,439 6637 21,076
13 0 13,523 6145 19,668 0 13,591 6251 19,843
14 30 13,425 6045 19,499 0 12,604 6094 18,699
15 1100 13,456 6045 20,601 0 12,267 5940 18,207
16 0 11,358 5825 17,182 0 11,427 5555 16,982
17 0 11,358 5825 17,182 0 9893 5170 15,063
18 0 11,358 5825 17,182 170 11,213 5481 16,865
19 340 13,554 6145 20,039 0 12,059 5866 17,926
20 0 13,554 6145 19,699 60 13,862 6085 20,007
21 0 13,554 6145 19,699 0 12,059 5866 17,926
22 0 11,358 5825 17,182 0 11,213 5481 16,695
23 60 10,564 5044 15,668 0 9893 5170 15,063
24 0 8466 4824 13,290 0 9061 4702 13,764

Total 3140 289,178 138,013 430,331 2230 275,962 134,931 413,122

Figure 3. Radar plot of the hourly optimal costs using the genetic algorithm (GA) and the proposed
reinforcement learning (RL).
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Table 3. Optimal costs of power production for large-scale systems.

Number of Units
Cost ($)

Start-Up Production Emission Total

10 4840 545,837 270,724 821,401
20 9300 1,083,979 540,476 1,633,754
30 14,370 1,622,473 811,866 2,448,710
40 18,980 2,160,114 1,082,666 3,261,760
50 31,660 2,744,090 1,329,071 4,104,821
80 51,320 4,369,093 2,129,526 6,549,939

100 58,960 5,456,700 2,674,207 8,189,867

5. Concluding Remarks

This article presents a novel RL-based algorithm designed to optimize the economic
and environmental cost of power scheduling. The algorithm utilizes a contextually cor-
rective agent-based RL environment, which simulates power scheduling dynamics using
the framework of MDP. To evaluate the applicability and performance of the proposed
method, the algorithm is tested on different test systems comprising up to 100 generating
units. It is demonstrated that the algorithm provides superior solutions and is scalable to
handle larger power systems. The potential for incorporating renewable power sources
and investigating their impacts further highlights the versatility and applicability of the
proposed method in addressing real-world power scheduling challenges.
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Nomenclature

Indices
n: Number of units.
m: Number of emission types.
T = {1, 2, . . . , n}: Indices of all units, i ∈ T.
ℳ = {1, 2, . . . , m} Indices of all types of emissions, h ∈ ℳ.
𝒯 = {1, 2, . . . , 24}: Indices of all periods, t ∈ 𝒯.
Units and Demand Profiles
pmax

i∗ , pmin
i∗ : Max, min capacity of unit i (MW).

pmax
it , pmin

it : Max, min capacity of unit i at period t (MW).
pit: Power output of unit i at period t (MW).
𝓉up

i∗ , 𝓉down
i∗ : Min online, offline duration of unit i (hour).

𝓉it: Operating (online/offline) duration of unit i at period t (hour).
𝓉ON

it , 𝓉OFF
it : Online (up), offline (down) duration of unit i at period t (hour).

u1
it,u

0
it: Indicator if unit i must − ON, must − OFF at time t.

dt: Demand at period t (MW).
𝓇: Percentage of demand for reserve capacity.
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Objective Function
𝒞,𝒞t: Total generation cos t function of a day and at period t.
αi, βi, δi: Quadratic, linear, constant parameters of cost function of unit i.
φh, ψih: Externality cost of emission type h ($/g), emission factor of unit i

for type h (g/MW).
cON,

it , cOFF
i : Start − up cos t at period t, shutdown cos t of unit i.

Others
E: Expected value.
I: Indicator function.
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Abstract: Hydropower plants (HPP) in the Amazon basin suffer from issues caused by trees and
sediments carried by the river. The Jirau HPP, located in the occidental Amazon basin, is directly
affected by high sediment transportation. These materials accumulate in the water intakes and
obstruct the trash racks installed in the intake system to prevent the entry of materials. As a result,
head losses negatively impact the efficiency of the generating units and the power production capacity.
The HPP operation team must monitor these losses and take action timely to clear the intakes. One of
the possible actions is to stop the GU to let the sediment settle down. Therefore, intelligent methods
are required to predict the downtime for sediment settling and restoring operational functionality.
Thus, this work proposes a technique that utilizes hidden Markov models and Bayesian networks to
predict the fifty Jirau generation units’ downtime, thereby reducing their inactive time and providing
methodologies for establishing operating rules. The model is based on accurate operational data
extracted from the hydropower plant, which ensures greater fidelity to the daily operational reality
of the plant. The results demonstrate the model’s effectiveness and indicate the extent of the impact
on downtime under varying sediment levels and when neighboring units are generating or inactive.

Keywords: Bayesian networks; correlation techniques; hidden Markov models; hydropower genera-
tion units operational downtime; sediment decantation

1. Introduction

Hydropower plants (HPP) offer a convenient solution for meeting energy demands,
taking advantage of renewable water resources [1]. Moreover, the hydropower plant’s
operation is closely tied to efficiently using available water resources [2].

The HPPs operation can be categorized as run-of-river or reservoir systems, using
single or multiple reservoirs—operating independently or in cascade [3]. The run-of-
river HPPs have minimal water storage volumes, and, consequently, in opposition to the
reservoir systems HPP, the water resources cannot be stored and must flow along the course
of the river.

Accurately determining the availability of generation units (GUs) is essential for opti-
mizing energy generation using water resources [4,5]. Furthermore, establishing operating
rules based on the GUs’ operational status is crucial for effectively allocating generation
resources [6].

Several factors can impact the availability of GUs, including maintenance operations
aimed at preventing issues and correcting failures that may reduce the productive capacity
of the GUs or render them unusable [7].
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In specific basins, like the Madeira River basin, a significant amount of sediment is
transported downstream, including elements such as trees, branches, algae and debris.
These substances can accumulate on trash racks, potentially leading to adverse effects on
power generation efficiency [8,9].

The Jirau HPP installed in this basin is directly affected by the sediment accumulation
problem. During the flood season, the volume of material transported by the river is
extremely high. Over time, the sediment accumulates in the water intakes and gradually
reduces the GUs efficiency, making the unit unavailable for power generation.

Efforts are made to address or mitigate the impacts of such accumulation. One of these
approaches is to clear the trash racks using cleaning claws to remove a substantial portion
of the accumulated sediment. Another method is stopping the GU for a certain period,
allowing the sediment to settle and reducing the obstruction of the trash racks.

However, cleaning using the claws is only performed occasionally due to the opera-
tional cost and effort involved. Therefore, plant operators more frequently opt to stop the
GUs for decanting. The challenge lies in determining the optimal downtime required for
the decanting process to be effective. The stoppage time is also influenced by neighboring
GUs, directly affecting the duration needed to reduce the sediment volume.

This work presents an innovative technique using hidden Markov models and Bayesian
networks to estimate the ideal stopping time of the GUs, ensuring that the decantation
process achieves its objective within the shortest possible downtime. Considering the vast
amount of information associated with each GU, correlation techniques were employed
to select the most relevant parameters for analysis. The study also explored the impact of
neighboring GUs’ operational states, whether active or inactive, on the downtime of the
GU under investigation.

Using hidden Markov models enables the prediction of expected obstruction levels
after a GU is stopped for cleaning. Bayesian networks contribute to achieving more
accurate results by considering the influence of neighboring GUs. Moreover, historical
data utilization facilitates the development of models that align more closely with the
operational realities of the HPP.

With the resulting models, it is possible to estimate the required time for sediment
decantation more accurately, taking into account the specific conditions of the plant. Fur-
thermore, the proposed technique can be employed to develop improved operational rules,
thereby enhancing the pre-operation process through a systematized process and leading
to operational benefits.

The main contributions of this study are as follows:

• Development of a hidden Markov model to estimate the required downtime for GUs;
• Modeling of a Bayesian network to calculate conditional probabilities for estimating

the necessary decanting downtime under various scenarios;
• Use of correlation techniques to reduce the number of analyzed variables while

maintaining the quality and relevance of the information;
• Investigation of the influence of neighboring GUs on sediment movement when they

are stopped;
• Improvements in pre-operation processes enhancing GUs performance.

The work is structured as follows: Section 2 presents the problem definition. Section 3
presents related works. Section 4 presents the proposed solution. Section 5 shows the
discussions and results obtained, and Section 6 concludes the work.

2. Problem Definition

Hydropower plants installed in the Amazon basin suffer from problems caused by
trees and sediments transported by the river [10]. These sediments reach the HPP operation
area and, over time, accumulate in the GUs water intake trash racks (to prevent the entry of
materials). The sediment accumulation causes a pressure loss at the turbine inlet, reducing
the available net head. Another issue stemming from this accumulation of materials is the
proportional increase in force exerted on the trash racks.

152



Energies 2023, 16, 6354

Usually, there is a safety limit for the force exerted on the trash racks, and this limit is
represented by the HPP operation teams by the head loss in meters. Exceeding this limit
poses safety risks as the trash racks may break, adversely affecting the plant.

The Jirau HPP is directly affected by sediment-related problems, and the case study
presented in this work was carried out in this plant. It is installed in the Madeira River basin,
one of the main sub-basins of the Amazon basin, covering an area of over 1.3 million km2.
Figure 1 presents the hydrography of the Madeira River basin, where it is possible to
observe the main tributaries of this basin: the Guaporé, Mamoré, Beni, Abunã and Madre
de Dios rivers, with the headwaters located in Brazil, Bolivia and Peru [11,12].

The Amazon basin is the largest in the world, with around 7 million m2, covering
seven countries in South America. The legal territory of the Amazon is divided into the
occident and orient Amazon basin [13].

The occident Amazon basin has approximately 2,400,000 km2. Its most important
rivers are the Solimões and Madeira Rivers, and they share essential characteristics such as
large dimensions, large flows, low slopes and significant variations in level and flow from
droughts to flood periods [14].

Figure 1. Hydrography of the Madeira River basin where the Jirau HPP is located.

Following the Brazilian government’s determination, the Madeira River basin has a
tiny passing reservoir at the HPP dam with low regulation capacity. However, this reser-
voir has a high flow speed to carry many materials, especially trees and sediments [15,16].
The volumes of precipitation received by the Madeira River vary between 500 and 5000 mm
per year. Figure 2 presents the average monthly flows of Madeira River [10]. The govern-
ment also regulates the levels for the damn operation throughout the different flow seasons
throughout the year.

The Jirau HPP is approximately 120 km from Porto Velho, the capital of Rondônia,
Brazil. Figure 3 shows the annual temperature history of Porto Velho, which varies between
21 and 34 degrees Celsius and is rarely lower than 18 or higher than 36 degrees.

The plant consists of 50 bulb-type turbines with an installed capacity of 75 MW
each, totaling an installed capacity of 3,750 MW. The plant has a dam that stretches over
7875 m. An important aspect of the Jirau HPP is its run-of-river reservoir type without
storage capacity, which means all inflow must be either used for generation or released
downstream [17].

Jirau is the fourth-largest hydropower plant in Brazil in terms of installed capacity and
the largest in the world in terms of the number of GUs [18]. However, the immense structure
of the HPP presents significant operational challenges. Furthermore, the construction
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of the plant was carried out with precautions to preserve the biodiversity and natural
characteristics of the river by allowing the passage of transported trees.

Figure 2. Average monthly flows of Madeira River at Porto Velho. Adapted from [10].

Figure 3. Porto Velho annual temperature history: temperature in the region ranges between 21 and
34 degrees Celsius. Gray bars: daily range of recorded temperatures; red and blue lines: daily highs
and lows, respectively.

A complex set of equipment, referred to as auxiliary services, is essential for the proper
functioning, operation and power generation of the HPP GUs. These auxiliary services
encompass refrigeration systems, pressure control mechanisms, protection and control
systems, temperature sensors and more. Figure 4 provides an aerial view, illustrating the
physical dimensions of the HPP.

The HPP infrastructure of sensors, relays, actuators and systems totals more than
100,000 information points. All data collected from these components within the plant are
directed to a SCADA system and stored in a relational database. The AVEVA Osisoft PI
System software was acquired a few years ago to enable fast historical data access and
reliable information retrieval. In addition, it also provided a solution for managing the
large volume of data collected from GUs and their auxiliary services.

The PI System is a comprehensive software portfolio designed for collecting, storing,
visualizing, analyzing and sharing operational data internally and externally. It includes a
temporal database for information storage using tags with time stamps. Additionally, it
offers a tool for effectively organizing the existing assets, displaying them in a tree format
that aligns with the company’s organizational structure.
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Figure 4. Aerial view of HPP Jirau. Right margin with 28 UGs on the left of the image. Left margin
with 22 UGs on the right of the image.

Due to the characteristics of the Madeira River, whose beds carry a great deal of
material that usually leads to head losses in the water intakes of the GUs, stops are per-
formed to allow the settling of accumulated sediment. During the GU operation, level
measurements are performed before and after the trash racks, and the difference between
these measurements represents the head loss in meters.

Regression analysis using the power information and the observed head of the GU
is carried out to determine the flow rate of each unit. This regression is based on the
GU hill curve. The obtained regression flow value and the previously recorded head loss
information in meters are used to calculate K, representing the trash racks’ obstruction
factor. An increase in the K factor indicates a greater accumulation of sediments deposited
on the trash racks. The formula for K is expressed in (1),

Δhgra = Kgra.
( qi

2 )
2

2.A2
gra.g

(1)

where:
Δhgra = Head loss on the rack [m];
Kgra = Dimensionless coefficient relative to the rack;
Agra = Trash rack cross-sectional area;
g = Gravity;
qi = turbine flow in unit i [m3/s].
According to studies conducted at the HPP, the trash racks installed at the water intake

can support a maximum head loss of up to 1.5 m. As a result, operators typically continue
operating the GU until the obstruction level reaches this maximum safety limit. Any further
accumulation could break the trash racks, causing damage to the GUs and their associated
systems, resulting in significant financial losses.

An operation rule was devised for the HPP to deal with the obstruction level issue,
where the electrical power dispatch is reduced whenever the head loss reaches the safety
limit. This reduction consequently reduces the flow, which causes a decrease in the head
loss in meters as it is proportional to the flow. This process is repeated when the limit is
reached until the dispatch exceeds the minimum operating limits of the GU. When the
maximum obstruction level is reached, cleaning the trash racks or stopping the GU for
sediment settling is necessary.
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Therefore, accurately estimating the downtime is extremely important for the plant
as it enables proper planning and utilization of the GU. Given the large amount of existing
data related to the operation of the plant, the status of the GUs and their auxiliary systems,
an automated and innovative method has been developed to predict the GU downtime and
thus systematize a random process that was carried out based on the operator knowledge
and experience. The technique allows the establishment of more consistent operating
rules that align with the plant’s actual conditions. It makes it possible to provide reli-
able data to the pre-operation team, enabling better allocation of resources for efficient
power generation.

In addition to the downtime forecasting, the work’s main contribution lies in the
fact that the proposed analysis also considers the impact of neighboring GUs activity in
addition to time-series data, instead of only considering the time-series as in other methods,
such as ARIMA, dynamic regressions, state space models, etc.

The HMM usage in this work is intended to infer the future level of obstruction in the
trash racks after some elapsed time, considering that the previous UG obstruction level is
known. As HMMs do not capture the influence factors on the future clogging level, BN
models are used to map and capture the neighboring GUs relationship in the decantation
process. The integrated approach trumps the separate use of techniques. The HMM
considers the temporal sequences of obstruction levels, while the BNs incorporate the
modeling of uncertainties. This results in enriched forecasting modeling integrating the
two techniques.

3. Related Work

Although some works deal with the sediments subject, to the best of our knowledge,
these studies do not address the impacts caused by sediments on the GUs’ operational
performance. This fact makes it difficult to compare the proposed work with the literature.

As examples of work dealing with sediments-related problems, we cite [9] that ex-
plores the cost-effective aspects of the sediment abrasion effect, the possible disturbances,
ecological relevance and the sediment bypass systems. The work of [19] analyses the
reduction in the downstream sediment caused by installing hydropower dams, impact-
ing one of the world’s largest freshwater fisheries, which supports 17 million livelihoods.
Furthermore, in [20], reservoirs’ water storage capacity decrease is studied, resulting
from the human activities and climatic changes that accelerate soil erosion and increase
reservoir sedimentation.

3.1. Hidden Markov Models

The hidden Markov model (HMM) is a stochastic process in which states are hidden
or not directly observable. They can only be inferred through the sequence of symbols
produced by an underlying stochastic process. This probabilistic modeling technique is
commonly used to handle uncertainty by representing a system as a Markov process with
hidden states that are not explicitly visible [21,22].

A triple π, A and B typically represents the HMM, consisting of an initial probability
vector over states π, a transition probability matrix A that defines the set of possible
states and an emission probabilities matrix B that represents the observation probability
distribution over the hidden states [21,22].

A review is completed exploring various applications of HMMs in the context of
energy production and associated problems.

One such application, presented in [23], proposes an approach for situation analysis
and anomaly detection using a hierarchy of hidden semi-Markov models. The methodology
models the expected behavior of a system to detect contextual anomalies in SCADA systems,
aiming to predict and prevent potential risks of attacks that could disrupt or damage water
supply or power grid systems structures.

Modeling and forecasting electricity prices are proposed in [24]. The technique is
based on input–output HMM. It considers the uncertainty of some involved variables,
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such as competitor behavior in the energy market, power source availability, water inflows,
system energy demand and related costs. The market states are modeled as hidden states,
and a conditional probability transition matrix is used to estimate probabilities when a
new market session is opened. Finally, the paper reviews other electricity price models,
and related works utilizing each type of model are presented, highlighting the strengths
and weaknesses of each approach.

Integrating intermittent renewable energy sources into the power grid presents new
challenges. To tackle these challenges, [25] conducted a study that focuses on modeling
the power output of a wind farm. The author used discrete HMMs and inferred the
model parameters from available data. By incorporating measurement data from multiple
turbines and capturing the interdependencies between their outputs, the developed models
successfully replicated crucial features of wind farm power output with high accuracy.

Non-intrusive load monitoring (NILM) is a technique used to identify appliance
consumption at a disaggregated level. In [26], a hierarchical HMM framework is pro-
posed to model home appliances and anticipate load characteristics at low voltage levels
and distinct power consumption profiles in devices with multiple built-in operational
modes. In addition, models were also built using dynamic Bayesian network representa-
tion. An expectation–maximization approach using the forward–backward algorithm was
applied in the HMM fitting process. Tests related to the estimation of energy disaggregation
showed that the proposed solution using HMM and a dynamic Bayesian network could
effectively handle the modeling of appliances with multiple functional modes.

Islanding, a problem faced by power system engineers in smart grids, is addressed
in [27] using an HMM-based algorithm approach to predict the probability of islanding
events. The underlying process maps standard or faulty cases as a sequence of states.
The HMM can help detect these states despite them not being directly observable but
follow a pattern. Phasor measurements from the smart grid are used, and statistical
analysis is conducted to determine the HMM parameters and tests were conducted in
an IEEE nine-bus system. A trained artificial neural network provides HMM emission
probabilities, enabling the prediction of islanding events based on posterior probabilities.

Reliability analysis of phasor measurement units is presented in [28] as another appli-
cation of HMMs. The proposed methodology computes the transient probability, allowing
for better monitoring systems during transient states. This ability enables faster and more
effective restorative initiatives, providing a reliable method for operating, monitoring
and controlling wide-area measurement systems.

The oil-immersed power transformers fault diagnosis using dissolved gases analysis
is properly and commonly used. This technique is used with HMMs to estimate the health
state of power transformers to infer operation failures in the work of [29]. In addition, a
dynamic fault prediction technique is proposed where a Gaussian mixture model is used
as a clustering method to extract health state features from datasets with 1600 days of
operation. The HMM transition probability was calculated and analyzed to relate different
health states. The results showed the proposed solution’s effectiveness in predicting fault
in a condition-based operation.

An alternative method for faults classification is proposed in [30], utilizing an HMM
algorithm to process electrical signals in multivariate time series. A comparative analysis
between the proposed technique and artificial neural network, support vector machine,
K-nearest neighbor and random forest is presented. When considering a significance level
of α = 5%, the results indicated that only the artificial neural network (ANN) and random
forest (RF) classifiers achieved results comparable to the HMM algorithm. Compared
to other classifiers, the presented algorithm significantly reduced computational costs,
with processing time reduced by over 90%.

The massive integration of plug-in electric vehicles into the power distribution net-
works directly affected the planning, control and operation processes. To contribute to
understanding the power needs of this kind of vehicle, the work of [31] presents an ana-
lytical approach for modeling PEV travel behaviors and charging demand. Monte Carlo
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simulation was employed considering the temporal travel purposes and state of charge
of vehicles. The Markov model and HMM formulated the probabilistic correlation be-
tween multiple PEV states and state of charge ranges. The technique was tested using an
IEEE 53-bus test network with field data, with results demonstrating the benefits of the
proposed modeling.

3.2. Bayesian Networks

Bayesian networks (BNs) have emerged as a powerful technique to address uncertainty
problems in scenarios characterized by randomness, indeterminism or lack of predictabil-
ity [32].

Specifically, within the context of energy generation and its associated tasks, several
studies have presented approaches using BNs to address maintenance-related issues [33],
stakeholder decision support [34], watershed management [35] and solar plant failure
detection [36], among others.

This section provides an overview of BNs and their applications related to power
production and associated problems.

The work of [37] employed statistical approaches to analyze runoff and sediment
characteristics in China’s Three Gorges Reservoir (TGP). The study utilizes cumulative
anomaly analysis, Fisher-ordered clustering and maximum entropy spectral analysis to
study variations and forecast flow and sedimentary load using hydrological series of
several decades. The ARIMA model is used to build the prediction model over the monthly
average runoff and sediment inflow. The findings indicate a decreasing trend in runoff and
sediment, with notable changes observed in 1991 and 2001.

Another case study combining BNs, neural networks and a multiagent system is
presented in [38] to support and improve the automatic control of solar power plants.
The BN model provides probabilistic values to aid operators in making informed decisions
regarding remote control of the solar power plant, offering an optimized solution through
distributed artificial intelligence technologies in industrial control systems for facilities
based on solar photovoltaic energy sources.

In [39], a dynamic BN model is proposed for predicting the generation reserve size in
renewable energy environments. This technique considers factors such as the availability
of conventional generator capacity, weather conditions and market prices. Additionally,
a new dynamic metric for calculating the reliability level of the power grid is introduced,
serving as a real-time stochastic decision support tool. The approach is validated using
seven years of historical data from the Australian Energy Market Operator, demonstrating
improved accuracy in forecasting the risk of involuntary load shedding.

An agent-based model utilizing BNs is proposed in [40] to address the problem of
short-term strategic bidding in a generation company’s power pool. The agents employ
probabilistic models based on dynamic BNs and online learning algorithms to train the
model and estimate optimal bidding strategies, leveraging incomplete public information
to infer the future state of the market correctly. The model was tested on two different
time scales: hour ahead and day ahead. According to the results, the agents predicted the
market equilibrium in advance with acceptable errors using incomplete information data.

Furthermore, a BN-based approach is applied in [41] to predict wind power ramp
events, employing an imprecise conditional probability estimation method. The proposed
solution utilizes the maximum weight spanning tree, a greedy search method to fit the
observed data with the highest degree, and a modified version of the Dirichlet model to
estimate the network parameters. Given the meteorological conditions, the proposed solu-
tion is meant to detect the possibility of a random ramp event, quantifying the uncertainty
of the event. The method’s effectiveness is demonstrated through tests using three-year
operational data from a real wind farm.

Additionally, a BN is employed in the work of [42] for fault detection in power trans-
formers. The model analyzes dissolved gases in oil, using concentration ratios of specific
gases to identify normal deterioration and electrical and thermal failures. The solution
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used a historical database in the learning process, and, compared to data in the literature,
the BN presented a high degree of reliability.

Lastly, the study in [43] discusses a BN-based approach for estimating faulty sections
in transmission power systems within blackout areas. Three BN models are proposed,
capable of testing the faultiness of components using uncertain or incomplete data and
knowledge about power system diagnosis. The model uses a similar error backpropagation
algorithm employed in artificial neural networks, with priors requiring domain experts’
knowledge and network structure modeling.

In conclusion, the applications and case studies presented highlight the versatility
and effectiveness of BNs in addressing uncertainty and decision making challenges in
various power-related domains. Using BNs allows for improved complex systems analysis,
prediction and control.

3.3. Analysis Summary

After a comprehensive review of the existing literature across three key subjects:
HMMs, BNs and sediment transportation downstream, to the best of our knowledge, no
prior work has sought to integrate these distinct topics in analyzing the impacts on the
operational efficiency in HPPs caused by riverbed material transportation.

Notably, the critical challenge of sediment transportation prevails in the Amazon
basin, where two of Brazil’s largest HPPs are installed: Jirau and Santo Antonio. These
plants hold the respective ranks of the fourth and fifth largest HPPs regarding installed
capacity within the country. Although our contribution does not introduce new techniques,
the innovation lies in the amalgamation of BNs and HMMs harnessed to address a pressing
predicament within the Brazilian power sector. Such a fusion of methodologies offers a
solution to an imperative issue, underscoring the novelty and significance of our work.

4. Methods

4.1. Data Selection

Due to the large amount of equipment-related data, using all available information
in any forecasting technique is practically infeasible. This limitation arises from the time
required for data processing and the computational resources consumed in performing
such tasks. Pearson’s correlation technique is used to identify the degree of dependence
between the analyzed variables. This approach aims to reduce the data required while
representing the relevant attributes of interest.

The correlation coefficient quantifies the relationship between variables, with values
ranging between −1, indicating a strong negative relationship, 1, indicating a strong
positive relationship and zero indicating no relationship. Pearson’s correlation coefficient
formula is expressed in (2).

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(2)

This work uses data collected from the 50 GUs at Jirau HPP. The database encompasses
three months, from November 2021 to January 2022, with a sampling interval of 10 min.
Figure 5 illustrates the dispatch power and efficiency attributes derived from the data set.

In the first analysis attempt, numerous attributes of the GUs were used. However,
the strong correlation between the attributes reduced the set to a few elements, which can
still represent the necessary information. The resulting attributes from the analysis were
net head, dispatch power, efficiency, calculated flow and racks loss (head loss on the trash
racks), in which the last attribute represents the generation power loss related to sediment
in the water intakes.
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Figure 5. Monthly efficiency and dispatch power readings extracted from the dataset.

Applying the Pearson correlation formula to the data set, the heat map correlation
shown in Figure 6 is obtained. It is possible to visualize a strong correlation between net
head and current power and calculated flow and current power and to notice that the
relationship between net head and calculated flow is weak. However, the calculated flow
strongly correlates with the rack loss.

Figure 6. Attributes correlation heat map.

4.2. HMM—Hidden Markov Models

The HMM is applied to predict the GUs obstruction factor after a specific time stopped,
given the head loss observed when the GU was stopped. As a result, it is possible to detect
a relationship dependency between the GU obstruction level and the required decanting
time. The application of HMM modeling allows the extraction of this relationship.

Once the relevant attributes are identified, the HMM is developed by creating the
initial probability vector, the transition probability matrix and the emission probability
matrix. The HMM states are mapped using the K factor, and four value ranges are defined
for their use in the model. These ranges include the cleanest range S1, where K reanges
from 0 to 1−6, the S2 range from 1−6 to 4−6, the S3 range from 4−6 to 5−6 and the most
obstructed range S4 for values above 5−6.

During the operating period of the GU, the K factor and the head loss in meters can be
calculated. Once the obstruction level on the trash racks reaches the maximum supported
value, the operator stops the unit for decanting.
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Four intervals are created to map the necessary GU downtime: interval H1 from 1 to 4
downtime hours, interval H2 from 4 to 8, interval H3 from 8 to 12 and interval H4 above
12 h.

Given the obstruction level at the stop, the HMM presents the GU probabilities of
being in each mapped obstruction level interval over time.

It is important to emphasize that the probability vector, the transition and emission
matrices were derived from HPP historical data so that the results from the model reflect
the reality of the GU downtime for decanting.

The historical data are divided into two sets, one representing the training set and the
other the test set. Separation is necessary to evaluate the model using a different group
from the one used in training, thus avoiding data overfitting.

In the HPP, it is impossible to determine the current level of GU obstruction after
decanting for a few hours. Therefore, the HMM is used in this scenario to estimate the GU
obstruction level through probabilities to determine whether it is possible to restart the
GU operation.

For the model creation, the following information is inferred from historical data: the
prior or initial probability vector, the transition probability and emission probability matrices.

The initial probability vector denotes the probability of the GU being in a specific
initial obstruction state, serving to determine the most probable initial state for the GU.
The initial probabilities are defined based on the ratio between the number of decanting
stops and the obstruction level when the GU was stopped. Consequently, the obtained
initial state distribution vector, presented in Table 1, confirms the expected observation that
decanting stops for the GU are more frequent when the obstruction level is higher.

Table 1. Initial state distribution vector.

S1 S2 S3 S4

π = 0.08 0.12 0.30 0.50

The transition probability matrix represents the likelihood of the GU transitioning
from one state to another. As the GU downtime increases, there is a higher probability of
transitioning from a more obstructed state to a lesser one. Since the current obstruction
level is not directly observable, it is considered a hidden state. The resulting transition
probability matrix can be seen in Table 2.

Table 2. Initial probability matrix.

S1 S2 S3 S4

A =

S1 0.80 0.11 0.08 0.01
S2 0.48 0.44 0.01 0.07
S3 0.43 0.42 0.10 0.05
S4 0.15 0.44 0.06 0.34

On the other hand, the emission probability matrix corresponds to the observed
information related to the GU’s current obstruction level. This information is the elapsed
decanting time since the GU was stopped. As time progresses, GU’s trash racks become
cleaner, which aligns with expectations. Thus, the HMM model utilizes the probability
vector and matrices to estimate the GU’s obstruction level after a random time. Table 3
presents the resulting emission probability matrix.

The HMM implementation is carried out using the Pomegranate, a Python package for
probabilistic models [44]. The model construction involved the three entities: π, A and B.
Once the model is trained, given a sequence of observations O, the model determines a
score for the observed sequence using the so-called forward algorithm, or α-pass, using the
dynamic programming concept.
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Table 3. Emission probability matrix.

H1 H2 H3 H4 H5 H6

B =

S1 0.11 0.066 0.198 0.077 0.022 0.527
S2 0.088 0.099 0.198 0.187 0.033 0.396
S3 0.053 0.105 0.105 0.211 0.053 0.474
S4 0.279 0.131 0.158 0.153 0.049 0.23

After obtaining the score for the observed sequence, the next step is to reveal the most
probable sequence of states given the presented observations. Given the GU stop elapsed
time, the Viterbi algorithm is used to expose the hidden states, representing the actual K fac-
tor. The Viterbi algorithm generates the most likely sequence of hidden states for a given list
of observations, using dynamic programming to generate the output sequence recursively.

4.3. Bayesian Networks

Bayesian networks offer the possibility of representing a domain problem through
a graphical structure composed of nodes comprising a set of random domain variables.
The arcs connect the nodes through pairs, meaning the direct dependence of the variables.
The conditional probability distribution of each associated node governs the strength of the
relationship between the variables.

Using BNs in this work makes it possible to represent the variables directly affecting
the required downtime to decrease the GU obstruction level.

The following variables are considered in the BN modeling: K factor before the unit
stops, an indication if the left, the right or both neighboring GUs are in operation during the
analyzed GU stopped time, and the power at which the neighboring units were operating
if it is the case.

The resulting BN diagram, designed to reflect information about the GUs, is shown in
Figure 7.

Figure 7. Bayesian network diagram.

The K factor is discretized using the same four obstruction level intervals defined
in Section 4.2. The BN model can be queried by one or more variables, obtaining the
conditional probability according to the provided inputs.

To account for the neighboring operating time while the analyzed GU is stopped, all
the intervals of each working neighboring are added up to obtain the relationship between
the neighboring working time by the analyzed GU stopped time.
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For example, if the analyzed GU is stopped for 12 h and the right neighbor operates
for 3 h, then the neighbor operates for 25% of the analyzed GU stopped time. Therefore,
the operating time of the neighboring GUs was divided into four ranges, the range T1 up
to 25% of the time, T2 from 25% to 50%, range T3 from 50% to 75% and range T4 from 75%
to 100%.

The average is used to compute the neighboring operating power during left or right
GU usage hours. If both neighbors are operational, the average hourly power each neighbor
generated is used. Finally, the same four intervals shown in Section 4.2 are used to infer the
necessary GU downtime information.

The conditional probabilities distributions (CPD) related to each model variable are ob-
tained through parameter learning using the provided data and model structure. The maxi-
mum likelihood estimation (MLE) algorithm is used in this work for CPD extracting using
a data set [45,46].

The Bayesian model and CPDs make inferences using several scenarios to validate
the proposed technique and compare the obtained model results with the plant opera-
tional data.

5. Results and Discussions

5.1. Results

After elaborating on the proposed models using the techniques presented, study cases
are performed to verify their performance. In this section, the obtained results are provided
below.

The obtained results through the HMM application for GU 2 are outlined in Table 4
and provide a comprehensive representation of the probabilities associated with specific
hidden states. These hidden states correspond to varying levels of obstruction caused by
the accumulation of sediments. The likelihood of the GU being in distinct hidden states
can be ascertained by analyzing the data within each observed hourly interval.

Table 4. HMM results for GU 2: state probability after given time elapsed. Columns represent
obstruction levels, and lines represent the time elapsed.

S1 S2 S3 S4

H1 48.4 38.5 42.1 41.0
H2 26.9 35.2 31.6 31.1
H3 17.2 18.7 15.8 13.1
H4 7.5 7.6 10.5 14.8

Whenever the GU is in state S4, which means it has the highest level of obstruction,
the transition probability towards a less obstructed state becomes evident only after the
time interval H3. This outcome aligns with the plant’s operational practice when they
usually keep the unit offline for extended periods when the obstruction level reaches a
higher degree.

Alternatively, if the same GU currently has the obstruction level S2 and the GU remains
inactive for the time interval H3, there is a significantly higher probability (18.7%) of it
remaining in that state. The GU transition to a state cleaner than S2 demands a more
extended downtime due to the characteristics of the sedimentation process, in which denser
materials take more time to settle.

At the S1 obstruction level, the unit can remain in the same state, or, sometimes, the
evolution is identified to a higher obstruction level, changing to S2. This event may occur
due to the operation of neighboring GUs, which contributes to the movement of sediments,
migrating material to the stopped GU.

In an ideal scenario for the HPP operation, a GU at the highest obstruction level should
remain stopped until it is at the lowest dirt level, when it can return to activity. A study
case was performed to obtain the probability of the GU migrating from the initial state S4
to S1 as its final state. The result is presented in Table 5.
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Table 5. Probability of the GU 2 migrating from initial state S4 to S1 as its final state.

S4 → S1

H1 7.80%
H2 18.25%
H3 24.99%
H4 30.20%

It is possible to notice that the provided scenario is more likely to occur only after the
H3, with a probability of 24.99%, and it is most probably, with 30.20%, at H4. As expected,
it is not common to reach S1 starting from S4 after the H1 or H2 periods, corresponding to
1 to 4 h or 4 to 8 h intervals.

To analyze the differences in downtime between the different GUs, Table 6 presents in-
formation relating to the level of obstruction and the downtime for GUs 1 and 3, respectively.

Table 6. HMM results for GUs 1 and 3: state probability after time elapsed. Columns represent
obstruction levels, and lines represent the time elapsed.

GU 1 GU 3

S1 S2 S3 S4 S1 S2 S3 S4

H1 62.0 34.1 27.3 28.1 59.0 37.5 28.9 31.1
H2 32.4 24.5 26.9 25.9 35.2 26.4 26.4 28.1
H3 3.7 22.9 25.6 23.4 4.1 15.1 23.9 20.9
H4 1.9 18.5 20.2 22.6 1.7 21 20.8 19.9

The following considerations can be conducted through data analysis and using the
same study case performed on GU 2 to obtain the probability of the GU migrating from the
initial state S4 to S1 as its final state:

The probability of remaining in state S4 shows a balanced dispersion over time for GU
1. This pattern indicates situations where the GU transitions to a cleaner state even within
the H1 interval. Conversely, there are cases where a significant time lapse, such as H4, is
required for the transition. This variance can be attributed to GU 1’s proximity to the dam’s
ravine, potentially contributing to sediment accumulation in specific circumstances.

Concerning GU 3, the likelihood of persisting in state S4 during the H1 and H2
intervals is higher, registering values of 31.1% and 28.1%, respectively. The prevailing trend
is for GU 3 to transition to a cleaner state only after the H3 interval.

The dissimilar behaviors observed between GUs 2 and 3 can be attributed to the
following factors: GU 1 absorbs sediment from the riverbank and can consequently transfer
sediment to GU 2, explaining why GU 2 shifts to a cleaner state only after a more extended
downtime. Conversely, GU 3 is unaffected by the same issue due to its greater distance
from GU 1, illustrating the impact of neighboring GUs on the sediment decantation process.

Probability outcomes for GUs 31 and 32 are shown in Table 7.

Table 7. HMM results for GUs 31 and 32: state probability after time elapsed. Columns represent
obstruction levels, and lines represent the time elapsed.

GU 31 GU 32

S1 S2 S3 S4 S1 S2 S3 S4

H1 35.4 38.5 42.1 41 46.9 44.3 45.7 43.2
H2 26.9 35.2 31.6 31.1 32.7 31.9 36.1 34
H3 27.2 18.7 15.8 13.1 15.2 17.6 11.1 12.7
H4 10.5 7.6 10.5 14.8 5.2 6.2 7.1 10.1
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The behaviors of GUs 31 and 32 differ from those presented for GUs 1 to 3. This differ-
ence can be attributed to these GUs being on different margins, separated by kilometers,
and to the curvature of the river displayed on the left margin where these GUs are installed.
It is possible to observe a certain similarity between the probabilities for GUs 31 and 32,
with slight variations in the required time to change between states. Generally, there is
migration between states only after the H3 interval, which can be associated with the type
of material accumulated in the trash racks.

When the generation units (GUs) exhibit a notably high degree of obstruction, a preva-
lent trend emerges: substantial clearance of the trash racks occurs only after prolonged
GUs downtime. Specifically, if the GU experiences a brief stop time upon resumption of
operational activity, a considerable amount of material is expected to obstruct the trash
racks persistently.

Observations reveal that units positioned near the riverbank experience a notably
higher sediment accumulation, leading to a more pronounced obstruction of the trash racks.
Adjacent GUs also experience a residual effect from this sediment accumulation, albeit with
a lesser impact.

It is essential to highlight that the HMM technique cannot consider whether neighbor-
ing GUs are in operation, nor does it account for the GUs operating power or the time it
was generating.

For this reason, BNs are used to consider the factors that directly affect the operation
and consequently alter the sediment flow during the GU stop time. Separated BNs are
created for each GU to reflect the specificities of each one.

Below are presented the obtained results for different types of BNs queries. For exam-
ple, Table 8 shows the CPDs for GU 2.

Table 8. BN results for GU 2: state probability after given time elapsed. Columns represent time
elapsed, and lines represent obstruction levels.

H1 H2 H3 H4

S1 0.172 0.269 0.075 0.484
S2 0.187 0.385 0.077 0.352
S3 0.158 0.316 0.105 0.421
S4 0.41 0.311 0.131 0.148

Utilizing models derived from BN offers a significant advantage due to their inherent
query capabilities. Queries involving any model attributes mapped within the network
can be completed, thereby facilitating the prediction of posterior values. Specifically, these
models empower the prediction of the obstruction level for each distinct downtime interval.

This predictive capacity enhances the ability to forecast and anticipate the progression
of obstruction levels during various operational downtimes. In essence, BNs allow for a
comprehensive exploration of the network’s attributes, enabling the generation of valuable
insights into the system’s expected behavior over time.

Using the BN network shown in Figure 7, it is possible to estimate the resulting ob-
struction level using a given scenario to verify which parameters influence the decantation
process the most.

Below are the values entered for the BN parameters.

• A = [K_Previous: S4]
• B = [K_Previous: S4, Right: T3]
• C = [K_Previous: S4, Right: T3, Left: T1]
• D = [K_Previous: S4, Both: T4]

Data referring to UG 2 were used. In all scenarios, it is considered that the UG is at the
highest level of obstruction, S4.

Scenario A is parameterized only with this S4 obstruction information.
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Scenario B is configured with the additional ‘Right’ information, whose defined value
is T3, which comprises the value ranging from 50% to 75% of the time.

The information ‘Right’, ‘Left’ or ‘Both’ refers to the percentage of time that the
adjacent unit operated when the GU was stopped for decantation. In this case of scenario
B, the analyzed GU is the 2, and the ‘Right‘ neighbor GU is the 3.

Scenario C is configured with the same value for the ‘Right’ parameter: T3. Ad-
ditionally, the ‘Left’ information is set to T1, which comprises the value up to 25% of
the time.

Scenario D is configured with the value for the ‘Both’ parameter equal to T4, which
means that both the ‘Right’ and ‘Left’ GUs, in this case, 3 and 4, respectively, operated
for the time interval comprising the 75% to 100% of time in which the GU 2 was stopped
for decantation.

The results are presented in Table 9.

Table 9. BN results for GU 2: probabilities obtained for scenarios A, B, C and D, using S4 as the initial
obstruction level.

K Posterior A B C D

S1 0.0935 0.0803 0.4008 0.484
S2 0.3883 0.3232 0.2703 0.352
S3 0.3297 0.3077 0.2594 0.421
S4 0.1885 0.2888 0.0695 0.148

In scenario A, the probabilities that GU 2, stopped at the worst obstruction level, will
resume operation at levels S2 and S3 are approximately 38.8% and 32.9%, respectively.
In scenario B, these values are close, 32.3% and 30.7%, respectively. The operation of the
neighboring GU, in this case, GU 3, did not significantly impact the obstruction level of
GU 2.

In scenario C, the most favorable cleaning results were obtained, with a 40% probability
that the UG would return at the cleanest level of obstruction: S1. The probable explanation
for such behavior may be that the operation of the left GU, in this case, GU 1, has pulled
the sediment from GU 2, migrating the GU more quickly to a lower level of obstruction.

Finally, in scenario D, both neighbors were in operation for the entire time GU 2 was
stopped. The results demonstrate a more uniformly distributed probability between levels
S1, S2 and S3, with values of 48.4%, 35.2% and 42.1%, respectively.

The results show that the decantation process when the GU is stopped is significantly
influenced by the neighboring GUs. This relationship changes depending on the time the
neighboring GUs were operating and the level of dirt when the GU stopped.

The BN was parameterized to present modeling outputs for each final obstruction level
when resuming GU operation for all available downtimes to enable a more comprehensive
view of data, including more complete probability results. The obtained results are shown
in Table 10.

Given that the GU was stopped at the higher obstruction level S4, the following
behavior can be observed in the table for many scenarios: after stopping time H1, the highest
probability is that the GU resumes operation still at level S4. For time H3, the restart must
occur at level S2, and, finally, the stop for time H4 increases the probability of resuming at
level S1.

Only on the H2 stop time interval does this pattern not hold. Instead of resuming at
level S3, the GU remains at level S4, demonstrating that stopping the GU for short intervals
does not influence the level of obstruction so strongly.

5.2. Discussions

The main feature of HMMs is their suitability for use with sequential data, where the
order of observations is essential. In this work, the HMMs captured temporal dependen-
cies and transitions between different states, which evidenced the relation between the
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obstruction level and elapsed time when GUs are stopped for decanting. The flexibility of
HMMs enabled usage with time-series input data, while levels of obstruction are mapped
as states in the model.

Table 10. BN results for GU 2: for each scenario A through D, and for each time interval H1 through
H4, the probabilities of the GU returning to operation at dirt levels S1 through S4 are presented, using
S4 as the level of initial obstruction.

Hours K Posterior A B C D

H1 S1 0.056 0.033 0.029 0.039
H1 S2 0.056 0.033 0.029 0.039
H1 S3 0.139 0.083 0.072 0.097
H1 S4 0.167 0.100 0.087 0.117

H2 S1 0.019 0.019 0.017 0.019
H2 S2 0.019 0.019 0.017 0.019
H2 S3 0.094 0.096 0.083 0.096
H2 S4 0.113 0.115 0.099 0.115

H3 S1 0.019 0.028 0.024 0.023
H3 S2 0.096 0.139 0.120 0.114
H3 S3 0.019 0.028 0.024 0.023
H3 S4 0.038 0.056 0.048 0.046

H4 S1 0.095 0.143 0.200 0.145
H4 S2 0.049 0.079 0.021 0.081
H4 S3 0.010 0.010 0.105 0.010
H4 S4 0.012 0.018 0.025 0.018

The two main advantages of HMMs are related to the probabilistic modeling and the
incorporation of hidden states. The first feature captures the uncertainties, which fits the
objectives of this work: map the ratio of accumulated sediment and the required downtime
to settle this material. The second maps the unobserved obstruction levels underlying
processes as hidden states, enabling the estimation of the sediment settlement according to
the elapsed time.

On the other hand, the limitations of HMMs in this model are, once the transition
probabilities are influenced by the neighboring GU, the Markov property is directly af-
fected and may not hold. The Markov property can also struggle to capture long-range
dependencies effectively.

Another limitation is related to the fixed state space: the number of hidden states
was determined in advance and may not represent the best possible scenario. Choos-
ing the appropriate number of states was challenging since it could affect model perfor-
mance. A significant effort was required to ensure that the selected state space reflects the
best option.

The results showed that the expressiveness of the HMM technique alone is limited
since the models might not effectively capture complex relationships between variables.
The training complexity represents a time bottleneck since a new training cycle must be
performed with each new parameter and state mapping variation.

The Bayesian networks’ advantages rely on the fact that BNs provided a natural and
intuitive way to model uncertainties and dependencies in data obtained from the real HPP
operation. As the BN is a probabilistic framework, it was possible to infer even when some
variables appear unrelated.

The causal inference of BNs allowed for understanding how the neighboring GU usage
affected other variables. That feature was valuable for decision making about using the GUs
while the next ones are stopped for sediment settling. With the help of problem domain
experts of the Jirau HPP, it was possible to validate prior beliefs and causal relationships
obtained by the resulting modeling.
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BNs allowed exploratory analysis and efficient inference related to sediment behavior,
which helped to uncover hidden patterns that were not immediately apparent from the raw
data and compute probabilities of different scenarios, providing query evidence. As the
real operational data from the HPP were available, it was possible to use the BN to learn the
conditional probabilities parameters from these data, which makes the model consistent
with the plant reality.

Bayesian networks present some limitations, such as the heavy dependence on the
graph structure. It was challenging to correct specifying the design, which required domain
expertise since the model might not effectively capture the true relationships without
expert input.

The needed training time was a bottleneck to realize parameter variations during
the modeling because the high number of GUs represents a computational complexity
problem. Finally, the correlation and causation relationships represented a challenge
because assuming causation based on correlation could sometimes be dangerous.

A strength of the presented work is the union of the HMM with the BN, which made it
possible to take advantage of the main characteristics of each of the techniques. The model’s
robustness allows probability information extraction. It brings to light details related to the
behavior of the obstruction in the trash racks, including the neighboring GU impact in the
sediment settling behavior.

Because it is a pioneering work, which addresses the problem of obstruction of trash
racks with consequent impact on the operation of hydroelectric plants, studies still need to
be conducted for contextual reference and comparison. This sediment issue is specific to
HPPs located within the Amazon basin. In the case of the Jirau plant, the challenge of high
sediment transport rates arises only during particular periods of the year. For this reason,
only data referring to flood seasons are used.

6. Conclusions

This paper proposes techniques to estimate the ideal stopping time of the GUs in the
Jirau HPP using hidden Markov models and Bayesian networks as inference methods.
Field operational data are used to obtain the presented models. The results demonstrate
consistency with daily plant operation, allowing the use of the model in the operator’s
decision making, thus helping to operate the high number of existing GUs in the Jirau HPP.

An essential advantage of the presented methodology is that it allows systematized
and data-based means to model information inferring, enabling more consistent operating
rules at the HPP.

As the Jirau is a run-of-river plant and does not allow water resources storage, the pre-
sented proposal in this work offers methods that enable using a robust model in the plant
operation planning under several possible scenarios, extracting the resulting probability
under each perspective.

This innovative proposal aims to bring greater clarity and robustness to the operating
rules extraction for HPPs whose accumulation of materials on the trash rack can negatively
influence daily operations, especially those in the Amazon basin.

The applied methodology in this work can be used in other HPPs, both for operating
rules extraction and for HMM and BN modeling. In addition, the resulting model can help
to identify factors that alter the GUs operational efficiency, providing tools and methods to
operate the plant efficiently.

Although the generated models use HPP operating data, the training was offline. As fu-
ture work, it is proposed to integrate plant data for online model training, presenting real-
time information to assist operators in decision making and minimizing GUs downtime.
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Abstract: The integration of renewable energy systems in buildings leads to a reduction in energy
bills for end users and a reduction in the carbon footprint of such buildings, usually referred to as
prosumers. In addition, the installation of charging points for the electric vehicles of people working
or living in these buildings can further improve the energy efficiency of the whole system if innovative
technologies, such as vehicle-to-building (V2B) technologies, are implemented. The aim of this paper
is to present an Energy Management System (EMS) based on mathematical programming that has
been developed to optimally manage a prosumer building equipped with photovoltaics, a micro
wind turbine and several charging points for electric vehicles. Capabilities curves of renewable power
plant inverters are modelled within the EMS, as well as the possibility to apply power curtailment
and V2B. The use of V2B technology reduces the amount of electricity purchased from the public grid,
while the use of smart inverters for the power plants allows zero reactive power to be drawn from
the grid. Levelized cost of electricity (LCOE) is used to quantify curtailment costs, while penalties
on reactive power absorption from the distribution network are evaluated in accordance with the
current regulatory framework. Specifically, the model is applied to a prosumer building owned by
the postal service in a large city in Italy. The paper reports the main results of the study and proposes
a sensitivity analysis on the number of charging stations and vehicles, as well as on the consideration
of different typical days characterized by different load and generation profiles. This paper also
investigates how errors in forecasting energy production from renewable sources impact the optimal
operation of the whole system.

Keywords: prosumer building; vehicle-to-building; solar energy; wind energy; reactive power
management; curtailment

1. Introduction

The building sector is a major consumer of energy, accounting for approximately 40%
of final energy consumption and 36% of Greenhouse Gas (GHG) emissions in the European
Union (EU). Specifically, the electricity consumption constitutes 35% of the energy use in
buildings [1,2].

To address this issue, governments have implemented various measures in recent
years to reduce energy consumption in buildings and promote the adoption of Renewable
Energy Sources (RESs). The European Commission has introduced the so-called “Fit for
55” package, which aims to reduce GHG emissions by at least 55% by 2030 (compared to
1990 levels) and increase the market share of renewable energy by up to 40%. Specifically,
within the building sector, the target is to achieve a 49% share of RES energy consump-
tion [3].

In addition, private transportation accounts for 15% of CO2 emissions in the EU. The
“Fit for 55” package proposes a gradual reduction plan for CO2 emissions from private
vehicles, with a goal of achieving a 100% reduction by 2035. This implies that all new
cars and vans entering the market after 2035 should be zero-emission vehicles, leading
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to reduced pollution and improved air quality, especially in densely populated areas [3].
National governments will play a crucial role in this transition by promoting the adoption
of Electric Vehicles (EVs) and RESs, starting with public facilities and buildings such as
schools, universities, and government offices [4].

RES technologies will play a leading role in boosting this transition: in particular, in
dealing with the building sector, small-scale applications of RESs will be needed. The most
suitable technologies for this application are Photovoltaic (PV) units and Wind Turbines
(WTs). PV units are one of the major sources of distributed renewable energy and are
usually involved in domestic rooftop installations, allowing the exploitation of previously
unused spaces [5]. This trend is favoured due to the continuous decrease in PV installation
prices and the incentives issued by governments.

Small-size WTs are typically positioned in close proximity to facilities in order to
minimize potential wind disturbances caused by buildings but can also be installed on the
rooftops of high-rise buildings to exploit the high wind speed. In urban areas, wind speed
estimation is very important in order to evaluate the suitability of WT installation [6].

However, due to their inherent unpredictability, RESs are unable to instantly follow
the profile of the demand. In order to cope with the imbalance between generation and
load, Energy Storage Systems (ESSs) such as Battery Energy Storage Systems (BESSs) are
commonly installed, enhancing the flexibility of the system. Anyway, in smaller-scale
applications such as buildings, the integration of BESSs can significantly impact both
installation and operational costs.

Within this regulatory and technical framework, so-called “Prosumption” is gaining
increasing importance. “Prosumption” is the combination of both the consumption and the
production of energy, and those who are involved in these activities are called “Prosumers”.
In addition to consuming their own renewable energy surplus, users have the option
to sell it to the external power grid and receive compensation from the market operator.
Prosumers are simultaneously consumers, producers and sellers of renewable energy [7].

Small-scale prosumers are residential facilities with PV units and BESS or PV units
and EVs. Larger-scale applications of prosumption are represented by public institutions
and small/medium enterprises that may exploit larger-size facilities, like larger PV units,
WTs and BESSs and a fleet of EVs.

Besides the economic advantage deriving from the sale of surplus electricity to the ex-
ternal network, other forms of revenue may come from the provision of ancillary balancing
services to the distribution system operator, like Frequency Containment Reserve (FCR)
and automatic Frequency Restoration Reserve (aFRR), well suited for integrated PV-battery
prosumers, as shown in [8] and references therein. Prosumers also offer distributed energy
capacity, as highlighted in [9].

RESs are exploited not only to generate active power but also to satisfy the reactive
power request of the load, thanks to the reactive power exchange capability of the inverters;
in addition, by adjusting their reactive power injection/absorption, they provide voltage
regulation at the node at which they are connected, even during night [10,11].

EVs are progressively substituting traditional combustion engine vehicles. In order to
fully exploit the advantage of this technology, EVs can be connected to buildings, enabling
the so-called Vehicle-to-Building (V2B) functionality: in this application, EVs do not behave
only like a load but, when in idle mode, their battery can provide power to the building or
absorb surplus power from the building, thanks to the bidirectionality of the power flow.
V2B represents an alternative to non-mobile BESSs, also in Local Energy Communities
(LECs) [12].

V2B applications have several positive effects on the vehicle–building system: they con-
tribute to the dumping of the oscillation and unpredictability of the production of RESs [13],
allowing the time shifting of energy and increasing the level of RES self-consumption
for the user [14]; peak shaving is possible with V2B, reducing the grid peak generation
power [15]. In addition, EVs can be used as a backup source in case of power outages [16].
Moreover, acting as storage systems, they can be used to reduce RES curtailment [17] and
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to supply energy to buildings in residential districts [18] where they stay parked for a long
time. Enabling V2B technologies for EV fleets opens the door for the participation of EVs in
primary frequency regulation, acting as spinning resources that are able to comply with
national grid codes in terms of effectiveness and promptness [17,18].

The complexity of a system composed of a building and one or several EVs, with
the possibility of performing V2B, means that an Energy Management System (EMS) is
required in order to optimize the power flows between all the units.

Several examples of EMS applied to V2B can be found in the literature. In [19], a
building EMS is proposed in order to integrate EVs with the aim of levelling the peak
load demand to the off-peak hours. In [20] and in therein references, several EMSs and
advanced control strategies are proposed, focusing in particular on the integration of
buildings and EVs. In [21], the authors focus on optimal strategies for the smart charging
of EVs in facilities that couple unpredictable RESs and infrastructure for electric mobility,
while in [22], the authors investigated how the number of EVs in commercial buildings
impacts electricity bills and how they can act as storage systems in buildings operating in
the island mode. In [23], the proposed control strategy is designed to enable the effective
interaction of a PV system, stationary batteries, and an EV within a prosumer installation.
Assuming that the storage system works according to a fixed charging and discharging
schedule, the proposed algorithm controls the operation of the EV battery, taking into
account trip data introduced by the driver in order for the EV battery to reach the planned
level of state of charge before the time of driving. In [24], the authors propose heuristic
vehicle-to-home charging strategies with the goal of increasing self-sufficiency, vehicle
availability and traction battery lifetime in different scenarios characterized by different EV
driver behaviours. An EMS designed to optimize demand response in a prosumer building
is described in [25], where the EV fleet is modelled considering stochastic characteristics,
and PV production is modelled under uncertainty using actual data collected via smart
meters. In [26], an EMS designed for the microgrids of building prosumers is described,
considering both active and reactive power exchange.

An EMS for a public building with RES generation from PV and WT units and an
EV for mail delivery is proposed in [27]. The present paper represents an extension of the
model proposed in [27]. The main objective of this paper is to define an EMS that ensures
the optimal operation and scheduling of a postal service-owned building located in a large
city in Italy. The building is connected to the medium-voltage distribution network and is
also fed by two small-size RES units: a PV unit and a WT unit; it acts like a prosumer of
electricity, thanks to the bidirectional connection to the network. Several Electric Delivery
Vehicles (EDVs) are allocated to the facility for mail transportation; each vehicle has a
dedicated charging station. Innovative aspects of the model are represented through the
modelling of the capability curves of the RES inverters within the EMS to optimally manage
reactive power flows, as well as via the introduction of costs related to RES curtailment
and reactive power absorption in the objective function. By running the EMS over an entire
year with an hourly time resolution, the study aims to evaluate the impact of the number of
EVs on the operation of the building, both from an energy and an economic point of view.
Three scenarios are analysed, considering the number of EDVs equal to 10, 50 and 100. A
sensitivity analysis is developed by varying the price of sale and purchase of electricity, as
well as the number of Equivalent Operating Hours (EOHs) of the renewable power plants.

This paper is structured as follows: Section 2 describes the whole system, providing
essential data and assumptions that have been made by the authors, and presents a compre-
hensive description of the optimization mathematical model that has been set up. Section 3
shows the results of the study and discusses them by comparing the three scenarios. Some
concluding remarks, together with a discussion of potential future developments, are
provided in Section 4.
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2. Materials and Methods

2.1. System Description and Input Data

The developed mathematical model is an EMS, which makes it possible to apply
optimal management strategies to the daily operation of a prosumer building equipped
with renewable energy systems (mainly PV and WTs) and charging points for EVs. RES
power plants are connected to the AC network through smart inverters able to manage
both active and reactive powers, while EV charging stations are of the V2B type. As shown
in Figure 1, the whole system is modelled as a microgrid connected to the medium-voltage
distribution network, and each EV has a dedicated charging station. The EMS is based on a
Mixed-Integer Linear Programming (MILP) model, having a time horizon consisting of T
time intervals (t = 1 . . . T), each one with a duration equal to Δ.

Figure 1. Electric system scheme.

The main input data of the model are:

• The number of RES power plants, indicated by J;
• The number of EVS, which coincides with the number of charging points, denoted

as N;
• The size ARES

j [kVA] of the inverter associated with the j-th RES plant;

• The estimated average power PRES,av
j [kW] that can be generated by the j-th RES plant

at time t;
• the curtailment cost cRES,curt

j [EUR/kWh] of the j-th RES plant, represented by its
Levelized Cost of Electricity (LCOE);

• The rated capacity CEV
n [kWh] of the battery installed inside the n-th EV, together with

its minimum state of charge SOCEV,min
n [%];

• The average energy consumption FEV
n [kWh/km] of the n-th EV;

• The transportation demand DEV
n,t of the n-th EV in the time interval t, measured in

[km];
• Information on the presence of the vehicles at the facility, as expressed by the factor

yEV
n,t , which is equal to 1 when the n-th EV can be connected to its charging point and

equal to 0 when the vehicle is not present;
• The minimum power PEV,ch,min

n [kW] that can be delivered to the n-th EV;
• The maximum power PEV,ch,max

n [kW] that can be delivered to the n-th EV;
• The minimum power PEV,dch,min

n [kW] that can be supplied by the n-th EV when it is
operated in V2B mode;

• The maximum power PEV,dch,max
n [kW] that can be supplied by the n-th EV when it is

operated in V2B mode;
• The charging ( ηEV,ch

)
and discharging ( ηEV,dch

)
efficiencies of EVs;

• The electrical load profiles of the building, in terms of active (PL
t ) [kW] and inductive

reactive power (QL
t ) [kVAr];

• The size Agrid [kVA] of the transformer which connects the microgrid to the medium
voltage distribution network;
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• The active energy purchase and selling prices, respectively, pgrid
t [EUR/kWh] and rgrid

t
[EUR/kWh];

• The penalty qgrid
t [EUR/kVArh] on reactive energy absorbed from the distribution

network, as set by the authority.

It is assumed that every RES power plant can exchange both active and reactive power
in accordance with its capability curve, which is characterized by the shape of a semi-circle
in the first two quadrants of the plane, with the reactive power on the horizontal axis and
the active power on the vertical axis. Charging points for EVs work at a unitary power
factor. Reactive power can be exchanged by the microgrid with the distribution network,
thus enabling the transformer to operate in the four quadrants of the reactive/active power
plane. The building does not present manageable loads apart from the EV charging points,
whose scheduling can be optimized via the EMS. As further described in Section 2.2, the
main goal of the EMS is that of managing RES power plants and EV charging points in order
to minimize global Net Costs (NCs) and reduce the curtailment of RES sources. Among the
costs, one is represented by the penalties related to the reactive power absorbed from the
distribution network; to minimize this term, the role of inverters of RES plants in providing
inductive reactive power is investigated.

2.2. Mathematical Model

In the mathematical model, RES power plants, EV charging points and the transformer
are modelled by a set of linear constraints given by equalities or inequalities correlating
with the decision variables, both integer and continuous.

The main decision variables that refer to the operation of j-th RES power plant at time
t are:

• PRES,out
j,t [kW]: generated active power;

• PRES,curt
j,t [kW]: curtailed active power;

• QRES,in
j,t [kVAr]: inductive reactive power absorbed from the microgrid;

• QRES,out
j,t [kVAr]: inductive reactive power supplied to the microgrid.

The relative constraints are defined from (1) to (2). The energy balances (1) set that
the active power available from each RES plant is given by the sum between the generated
power and the curtailed one, while constraints (2) guarantee that the maximum curtailed
power is the available one. Constraints from (3) to (7) are defined to linearize the circu-
lar capability curve of inverters in the active power/reactive power plane, as shown in
Figure 2a. The operating points lay in the ochre-colored area. In particular, constraints (3)
and (4) fix the upper bounds of the inductive reactive power (absorbed and supplied) as a
function of the rated apparent power ARES

j , whereas constraints (6) and (7) represent the
two tangents to the capability curve, respectively, in the first and in the second quadrants
at the points of coordinates (

√
2

2 ·ARES
j ,

√
2

2 ·ARES
j

)
and (−

√
2

2 ·ARES
j ,

√
2

2 ·ARES
j

)
. The set of

binary variables yRES,in
j,t and yRES,out

j,t is introduced to avoid the simultaneous absorption
and supply of inductive reactive power at time t, as ensured by constraints (5).

PRES,av
j,t − PRES,out

j,t − PRES,curt
j,t = 0 ∀j = 1 . . . J, ∀t = 1 . . . T (1)

0 ≤ PRES,curt
j,t ≤ PRES,av

j,t ∀j = 1 . . . J, ∀t = 1 . . . T (2)

0 ≤ QRES,in
j,t ≤ ARES

j ·yRES,in
j,t ∀j = 1 . . . J, ∀t = 1 . . . T (3)

0 ≤ QRES,out
j,t ≤ ARES

j ·yRES,out
j,t ∀j = 1 . . . J, ∀t = 1 . . . T (4)
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yRES,in
j,t + yRES,out

j,t ≤ 1 ∀j = 1 . . . J, ∀t = 1 . . . T (5)

PRES,out
j,t ≤ −QRES,out

j,t +
√

2·ARES
j ∀j = 1 . . . J, ∀t = 1 . . . T (6)

PRES,out
j,t ≤ −QRES,in

j,t +
√

2·ARES
j ∀j = 1 . . . J, ∀t = 1 . . . T (7)

 

(a) (b) 

Figure 2. Capability curve linearization for RES plants (a) and distribution network coupling (b).

The decision variables that describe the active and reactive power exchanged between
the microgrid and the distribution network at time t are:

• Pb
t [kW]: active power withdrawn from the distribution network;

• Ps
t [kW]: active power injected into the distribution network;

• Qb
t [kVAr]: inductive reactive power absorbed from the distribution network.

• Qs
t [kVAr]: inductive reactive power provided to the distribution network.

Moreover, a set of auxiliary binary variables are needed to avoid the simultaneous
absorption and injection of power from/into the distribution network. Specifically, xb

t and
xs

t are used for active power, while yb
t and ys

t for reactive power. The constraints from (8)
to (17) model the interaction between the microgrid and the distribution network and are
based on the linearization of the transformer capability curve, as reported in Figure 2b. In
particular, constraints (8) and (9) limit the maximum active power that can be exchanged,
while constraints (11) and (12) do the same for the reactive power. Constraints (10) and (13)
ensure the non-simultaneity between absorptions and withdrawals, while constraints (14)
to (17) define the limits imposed by the four oblique segments reported in Figure 2b.

0 ≤ Pb
t ≤ Agrid·xb

t ∀t = 1 . . . T (8)

0 ≤ Ps
t ≤ Agrid·xs

t ∀t = 1 . . . T (9)

xb
t + xs

t ≤ 1 ∀t = 1 . . . T (10)

0 ≤ Qb
t ≤ Agrid·yb

t ∀t = 1 . . . T (11)

0 ≤ Qs
t ≤ Agrid·ys

t ∀t = 1 . . . T (12)

yb
t + ys

t ≤ 1 ∀t = 1 . . . T (13)
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Pb
t ≤ −Qb

t +
√

2·Agrid ∀t = 1 . . . T (14)

Pb
t ≤ −Qs

t +
√

2·Agrid ∀t = 1 . . . T (15)

Ps
t ≤ −Qb

t +
√

2·Agrid ∀t = 1 . . . T (16)

Ps
t ≤ −Qs

t +
√

2·Agrid ∀t = 1 . . . T (17)

As far as electric mobility is concerned, the decision variables that refer to the operation
of EV charging stations at time t are:

• PEV,ch
n,t [kW]: active power supplied to the n-th EV;

• PEV,dch
n,t [kW]: active power provided by the n-th EV when operated in V2B mode;

• EEV
n,t [kWh]: energy content of the battery in the n-th EV.

The constraints on PEV,ch
n,t and PEV,dch

n,t can be defined as follows:

PEV,ch
n,t ≥ PEV,ch,min

n ·xEV,ch
n,t ∀n = 1 . . . N, ∀t = 1 . . . T (18)

PEV,ch
n,t ≤ PEV,ch,max

n ·xEV,ch
n,t ∀n = 1 . . . N, ∀t = 1 . . . T (19)

PEV,dch
n,t ≥ PEV,dch,min

n ·xEV,dch
n,t ∀n = 1 . . . N, ∀t = 1 . . . T (20)

PEV,dch
n,t ≤ PEV,dch,max

n ·xEV,dch
n,t ∀n = 1 . . . N, ∀t = 1 . . . T (21)

where the binary variables xEV,ch
n,t and xEV,dch

n,t become equal to 1 when the n-th vehicle is
charging or discharging at time t, respectively. Obviously, as defined in (22), each vehicle
can be charged or discharged only when present at the facility (yEV

n,t = 1).

xEV,ch
n,t + xEV,dch

n,t ≤ yEV
n,t ∀n = 1 . . . N, ∀t = 1 . . . T (22)

Then, it is necessary to set lower and upper bounds for EEV
n,t , as shown by constraints

(23) and (24).

EEV
n,t ≥ 0.01·SOCEV,min

n ·CEV
n ∀n = 1 . . . N, ∀t = 1 . . . T (23)

EEV
n,t ≤ CEV

n ∀n = 1 . . . N, ∀t = 1 . . . T (24)

The energy balance of the battery installed in the n-th EV can be written as:

EEV
n,t+1 = EEV

n,t + Δ·
(

PEV,ch
n,t ·ηEV,ch − PEV,dch

n,t
ηEV,dch

)
− FEV

n ·DEV
n,t

∀n = 1 . . . N, ∀t = 1 . . . T − 1
(25)

where the quantity of EEV
n,1 is assumed to be known for all vehicles. It is important to say

that the vehicles can be charged only when using the dedicated charging points at the
facility.
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The remaining set of constraints, (26) and (27), are introduced to represent the active
and reactive power balances of the whole system, and are studied with a single bus model
given the limited extent of the prosumer power grid.

Pb
t +

J

∑
j=1

PRES,out
j,t +

N

∑
n=1

PEV,dch
n,t = PL

t + Ps
t +

N

∑
n=1

PEV,ch
n,t ∀t = 1 . . . T (26)

Qb
t +

J

∑
j=1

QRES,out
j,t = QL

t + Qs
t +

J

∑
j=1

QRES,in
j,t ∀t = 1 . . . T (27)

The objective function (Obj) of the optimization model consists of the minimization of
total NCs, which is evaluated as follows:

Obj = Δ·
T

∑
t=1

[
pgrid

t ·Pb
t + qgrid

t ·Qb
t + α·

J

∑
j=1

(
cRES,curt

j ·PRES,curt
j,t

)
− rgrid

t ·Ps
t

]
(28)

where the multiplication factor α can be chosen as desired to give more or less weight to
RES curtailment costs.

3. Results

This section presents the results of this study. It is divided into four subsections: the
first part presents the numerical values that have been chosen for the input quantities; the
second one shows a comparison between the three scenarios, as defined by varying the
number of EVs owned by the company; the third one shows some results for four typical
days, as defined according to the combination of working/weekend days and to the high
or low generation coming from RESs, with a number of EDVs equal to 50; and finally, the
last subsection presents the results of the cost-sensitivity analysis, carried out considering
50 EDVs.

3.1. Assumptions

In this section, the outcomes of the optimization performed throughout the entire year
are presented, assuming a time interval of one hour (Δ = 1 h). Before showing the results, it
is necessary to describe some numerical input data to facilitate the reader’s understanding.

The EMS has been implemented using the Matlab R2022b/Yalmip (R20210331 re-
lease) [28] environment and solved by calling the Gurobi solver.

The considered generation technologies include a PV plant featuring an inverter with
a power rating of 29 kVA and a vertical axis WT equipped with an inverter with a power
rating of 14 kVA.

The profiles of PV active power available generation and the wind speed profile, from
which the WT active power available generation profile is obtained, have been downloaded
from the PVGIS Online Tool database [29]. In this scenario, the EOHs of the PV plant are
equal to 1348 h, whilst for the WT plant, they are equal to 1000 h.

Possible forecasting errors related to the production of RES power plants are taken
into account by means of an hourly random correction coefficient, which is used to scale up
and down the hourly RES productions derived from PVGIS. According to this variability,
four scenarios have been defined in addition to the base one, according to the different
combinations of the different EOHs of the plants. These scenarios are outlined in Table 1.

The EDVs considered for the analysis are E-NV200 models manufactured by Nissan
(Yokohama, Japan) and equipped with a battery capacity equal to 40 kWh. The vehicles
have been divided into two categories in terms of different average transportation demand
and availability at the facility: Category I (EDVs-I) and Category II (EDV-II). EDVs-I
represents 40% of the overall number of EDVs, whilst EDVs-II accounts for 60% of the fleet.
The daily average transportation demand is presented in Table 2 for the two categories
of vehicles.
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Table 1. Uncertainty scenarios.

High WT EOH Low WT EOH

High PV EOH
Scenario I Scenario III
PV: 1415 h PV: 1293 h
WT: 1102 h WT: 1102 h

Low PV EOH

Scenario II Scenario IV
PV: 1415 h PV: 1293 h
WT: 916 h WT: 916 h

Table 2. Transportation demand for EDV categories.

Working Days Holidays Preholiday Days

EDV-I 14.5 km 0 km 6.25 km
EDV-II 21.75 km 0 km 9.375 km

EDVs-I are available at the facility throughout the holidays; on working days, they are
unavailable from 8 a.m. to 12 p.m. and from 1 p.m. to 5 p.m.; on pre-holiday days, EDVs-I
are not available from 8 a.m. to 12 p.m. The availability of EDVs-II shifted twelve hours
forward in time when compared to EDVs-I because they are supposed to operate mainly
during the night.

The transportation demand has been assumed based on the typical work behaviour of
a postman in an Italian countryside area. The technical data of the EDV model have been
derived from the manufacturer’s datasheet.

The load profile of the building, both for active and reactive power, is determined
by scaling a real measured load profile of a building located in the Savona Campus of the
University of Genoa. It is adjusted to reflect the smaller size of the postal service building
and its specific location.

The aforementioned data are summarized in Table 3.

Table 3. Load and generation data.

Annual Energy

Available from PV [kWh] 39,102
Available from WT [kWh] 13,996
Active power load [kWh] 72,646

Reactive power load [KVArh] 72,157

To evaluate the costs reported in the objective function of the optimization model,
some input data have to provided:

• pgrid
t has been set equal to 0.40 [EUR/kWh] during peak hours and equal to 0.27

[EUR/kWh] during off-peak hours, pre-holiday days and holidays;
• qgrid

t has been set equal to 0.0027 [EUR/kVArh] for the whole year;

• rgrid
t has been set equal to 0.20 [EUR/kWh] for the whole year.

Curtailment costs for the RESs have been considered equal to the LCOE for those
sources: for PV, a value of 0.128 [EUR/kWh] has been chosen, whilst for WTs, a value of
0.60 [EUR/kWh] has been assumed [30].

3.2. EMS Results: Sensitivity on the Number of EDVs

This subsection presents the main energy and economic results related to the sensitivity
analysis carried out by varying the number of EDVs (N) from 10, passing through to 50 and
then up to 100. The annual results are summarized in Table 4.

The capability curves of the inverters connected to the PV and to the WT unit are shown
in Figures 3 and 4, where QPV and QWT, respectively, represent QPV,out

t and QWT,out
t , while
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PPV and PWT refer to PPV,out
t and PWT,out

t . Both the actual curve and the linearized one are
depicted in the figures. As previously mentioned, the linearized curve has been modelled in
order to be able to use linear programming models. As it is evident from the pictures, for a
few hours during the whole year, the inverters are saturated or overloaded. The two figures
do not report the second quadrant since no inductive reactive power is absorbed by RES
plants in the case study. The provision of reactive power by RES allows zero reactive energy
withdrawal from the distribution network in all the examined scenarios. Due to the fact the
RES plants almost never produce the maximum active power, it is not necessary to apply
curtailment to provide reactive power within the constraints of the linearized capability
curve. As far as the injection of active power into the distribution network is concerned,
surplus generation from RES only occurs in the scenario with 10 vehicles, whereas in the
other two scenarios, this surplus is used to charge the most numerous vehicles.

Table 4. Annual results.

[-] NEDV = 10 NEDV = 50 NEDV = 100

PV active energy generation [kWh] 39,102

PV curtailed energy [kWh] 0

PV reactive energy generation [kVArh] 44,654

WT active energy generation [kWh] 13,996

WT curtailed energy [kWh] 0

WT reactive energy generation [kVArh] 27,503

Bought active energy [kWh] 34,209 73,585 124,630

Sold active energy [kWh] 14,604 0 0

Bought reactive energy [kVArh] 0

Energy charged to EDVs [kWh] 21,700 62,536 113,581

Energy discharged from EDVs [kWh] 84,985

NCs [EUR] 8944 19,868 33,650

 
Figure 3. PV inverter capability curve. Blue circles represent the hourly operating points of the
inverter. The red circular line represents the non-linearized capability curve of the inverter. The
yellow line represents the sloped portion of the linearized capability curve of the inverter.
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Figure 4. WT inverter capability curve. Blue circles represent the hourly operating points of the
inverter. The red circular line represents the non-linearized capability curve of the inverter. The
yellow line represents the sloped portion of the linearized capability curve of the inverter.

3.3. Comparison of EMS Results Taking into Account Forecasting Uncertainty

The present subsection presents the main results of the EMS over the whole year
when varying the number of EOHs of the two RES power plants in accordance with the
correction coefficient introduced in order to take into account the forecasting uncertainty of
RES production. The number of EDVs has been considered equal to 50.

The main results are reported in Table 5.

Table 5. Annual results for different scenarios.

[-] Scenario I Scenario II Scenario III Scenario IV

PV active energy generation [kWh] 41,046 41,046 37,507 37,507

PV curtailed energy [kWh] 0 0 0 0

PV reactive energy generation [kVArh] 43,601 42,850 45,753 44,837

WT active energy generation [kWh] 15,424 12,820 15,424 12,820

WT curtailed energy [kWh] 0 0 0 0

WT reactive energy generation [kVArh] 28,556 29,307 26,402 27,321

Bought active energy [kWh] 70,034 72,737 73,817 76,527

Sold active energy [kWh] 0 0 0 0

Bought reactive energy [kVArh] 0 0 0 0

Energy charged to EDVs [kWh] 61,845 62,228 62,783 63,191

Energy discharged from EDVs [kWh] 79,872 82,708 86,813 89,828

NCs [EUR] 18,909 19,639 19,931 20,662

According to the previously defined scenarios, the RES production is alternatively
increased and reduced when compared to the historical data considered in the base scenario.
Scenario I is characterized by increased RES production when compared to the base scenario,
leading to a reduced energy exchange between the EDVs and the building; Scenario I is also
characterized by the lowest NCs. Scenario IV presents reduced RES production to emulate
the possible over-estimation of RES production in the base scenario; in this configuration,
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the NCs are the highest among all the scenarios, and the exchange of active energy between
the EDVs and the building is large because the V2B facility has to compensate for the lack
of renewable energy. For the same reason, the amount of energy bought from the network
is the highest as well. Scenario II and Scenario III represent intermediate scenarios, with
moderate values of NCs, V2B energy exchange and energy purchased from the network.
In all scenarios, active energy is never sold to the network due to the large transportation
demand of EDVs.

It is important to highlight that the aim of the present study is to simulate the annual
operation of the building in order to investigate the benefits deriving from RES generation
and V2B techniques: for this reason, the proposed EMS is not designed as a real-time
EMS; instead, it is developed in order to be run for the 8760 h of a whole year in order to
make global technical and economic considerations. As evident from the results, possible
uncertainty in the forecasting of RES generation has a limited impact on the NCs (−4.8%
in Scenario I and +4% in Scenario IV). Even variation in the energy exchange between the
building and EDVs is limited: in Scenario I, V2B flow is reduced by −6%, and the B2V flow
is reduced by −1.1%; in Scenario IV, V2B exchange is increased by +5.4% while the B2V
exchange is increased by +1.05%.

3.4. Comparison of EMS Results for Different Typical Days

The present subsection shows the daily results of the EMS for four typical days,
defined according to the combination of two criteria: working day/holiday and high
RES production/low RES production. For this analysis, the number of EDVs has been
considered equal to 50. Regarding EOHs, the base scenario with no uncertainty has
been selected.

The days that have been selected according to the aforementioned criteria are summa-
rized in Table 6, highlighting the energy production of the RES sources.

Table 6. Typical days.

Working Days Holidays

Low RES production
Wednesday in December Sunday in October

19.56 kWh 45.11 kWh
Figure 5 Figure 6

High RES production
Friday in June Sunday in September

379.73 kWh 366.73 kWh
Figure 7 Figure 8

Figures 5–8 show the optimal active power profiles determined using the EMS for
the selected days. In these figures, the power associated with EDVs is considered positive
when the vehicles are in discharge mode, whilst the charging of the EDVs is considered as
a load and, therefore, associated with negative values.

During the working day with low RES penetration (see Figure 5), it is evident that
in order to satisfy the transportation demand of the EDVs, power has to be bought from
the network. The purchase of electricity from the network is very significant, especially
during the night and early in the morning, for two main reasons: one is that the PV unit
is not working and the WT is delivering a very low power; the second reason is that
EDVs-II (mainly, but also EDVs-I in some hours) are used as “mobile” BESSs: once they
have reached the facility after having fulfilled their duty, they are recharged in order to
exploit the low off-peak electricity price, and then they are discharged during the day, to
avoid buying electricity from the network. When the RES production is very low, a part
of the purchased energy is used to charge the EDVs-I so that they are able to satisfy their
transportation demand during the day.

182



Energies 2023, 16, 7213

 

Figure 5. Active power profiles of the 4 December.

During holidays with low RES production (see Figure 6), a large amount of energy
must again be purchased from the network, using EDVs as storage systems and exploit-
ing their full availability at the facility throughout the day. Since during holidays, the
transportation demand is set to 0, the purchased energy is lower when compared to work-
ing days.

 
Figure 6. Active power profiles of the 6 October.

During working days with high RES penetration (see Figure 7), it is evident that a much
lower power has to be purchased from the network. Thanks to the high RES generation,
the EDVs are not discharged during the day, but they are (globally) continuously charged
in order to satisfy the transportation demand. The only hours when a more significant
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amount of power is taken from the network are during the night in order to allow EDVs-II
to carry out their service.

 
Figure 7. Active power profiles of the 7 June.

Finally, during holidays with high RES penetration (see Figure 8), some energy is
bought from the network at the beginning of the day and stored in the EDVs to be used
for the services of the following day. During the day, the EDVs are continuously charged
in order to avoid the curtailment of RESs, to which a minimal, but still existing, cost
is associated.

 
Figure 8. Active power profiles of the 29 September.
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There is never an excess of electricity sold to the network; this is due to the large
number of EDVs that, when exploiting B2V service, charge their batteries in order to use
the stored energy to satisfy transportation demands.

V2B services are convenient and have a significant role when RES penetration is low;
therefore, they can be used primarily during the winter in order to avoid the purchase
of electricity from the network, especially during peak hours, when the cost of energy
is higher.

4. Conclusions

The purpose of the present paper was to develop an EMS for the efficient management
of a prosumer building connected to the distribution network. The building is owned by
the postal service and is equipped with two RESs, namely a PV system and a WT unit, and
is equipped with a large fleet of EDVs for postal delivery that can be charged at dedicated
charging points installed at the facility. The primary goal of the EMS is to minimize the
overall costs associated with the operation of the building, such as those related to the
exchange of active and reactive power between the distribution network and the building
over the whole year.

Three sensitivity analyses were developed. The first analysis aimed to evaluate the
impact of the number of EDVs on the operation of the building while also comparing the
annual energy quantities and the NCs. The fleet of EDVs was considered to be composed
of either 10, 50 or 100 vehicles. The second analysis was performed in order to evaluate
the impact of RES generation forecasting errors on the operation of the building; when
considering a number of EDVs equal to 50, the PV and WT generations were alternatively
scaled up and down in order to emulate possible underestimations and overestimations in
terms of RES forecasting. Then, a third analysis was carried out to analyse the behaviour of
the building and the optimal active power profiles with a number of EDVs equal to 50 when
considering four different typical days, as identified according to RES generation (high or
low) and the considered day (working day or holiday). Moreover, the impact of errors in
forecasting renewable energy production on the EMS results was also investigated.

This paper showed how increasing the dimension of the EDV fleet affected energy
and cost, highlighting the fact that V2B applications are necessary in order to fully exploit
the consumption of RES-derived energy.

Future developments could involve the modification of the load profile of the building
and the behaviour of the EDVs in terms of availability and transportation demand in
order to investigate different scenarios and different types of users. In addition, to expand
the proposed EMS, other technical implementations could also be included, such as the
possibility for EVs to exchange reactive power with the building and the implementation
of a model of the building’s electric network in order to take power losses into account.
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Abstract: Reverse electrodialysis (RED), an emerging membrane-based technology, harnesses salinity
gradient energy for sustainable power generation. Accurate characterization of electrical param-
eters in RED stacks is crucial to monitoring its performance and exploring possible applications.
In this study, a DC electronic load module (DCELM) is implemented in a constant current condition
(CC mode) for characterization of lab scale RED process, using a RED prototype in-house designed
and manufactured (RU1), at different data capture setups (DCS), on which the total number of steps
for data capture (NS) and the number of measurements per step (ρ) are the parameters that were
modified to study their effect on obtained electrical parameters in RED. NS of 10, 50, and 100 and
ρ of 10 and 20 were used with this purpose. The accuracy of resulting current and voltage steps
can be enhanced by increasing NS and ]ρ values, and according to obtained results, the higher
accuracy of resulting output current and voltage steps, with low uncertainty of the average output
steps (AOS) inside the operational region of power curve, was obtained using a DCS of NS = 100
and ρ = 20. The developed DCELM is a low-cost alternative to commercial electronic load devices,
and the proposed methodology in this study represents an adaptative and optimizable CC mode
characterization of RED process. The results obtained in this study suggest that data capture condi-
tions have a direct influence of RED performance, and the accuracy of electrical parameters can be
improved by optimizing the DCS parameters, according to the required specifications and the scale
of RED prototypes.
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1. Introduction

Humanity is currently searching for alternative energy sources to fossil fuels, to
reduce CO2 emissions and other greenhouse gases that are producing the climate change
phenomenon [1,2]. Among several renewable energies sources, salinity gradient energy
(SGE) is widely spread along littorals and coasts all over the world, wherever a freshwater
stream is discharged into the ocean. The amount of thermodynamic energy released from
the mixing process (ΔGmix) is proportional to the concentration gradient and the chemical
potential difference between the initial state and the mixed state of the solutions [3,4]. SGE
has remarkable advantages regarding other renewable energies, some of which are related
to its availability in both diurnal and nocturnal periods over the year if the employed
feed waters become from natural sources [5,6], the possibility of regulate the amount
of power generated with process parameters without CO2 emissions and the fact that it
can be obtained from residual streams of other process, such as reverse osmosis brines
or municipal waste water treatment plants [7,8]. However, only a fraction of theoretical
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potential of rivers and oceans can be recovered in a practical form, which is known as world
technical potential and its value is around 0.2–1 TW, according to the employed technique
for energy harvest and the concentration of feed solutions [3,9].

Reverse electrodialysis (RED) is an emerging technology that allows converting some
part of the ΔGmix of two water streams (with a different salt concentration) into electricity,
through an ion exchange membranes (IEM) stack and redox reactions. Figure 1 shows a
schematic representation of a RED unit, which is composed of a membrane stack and the
electrode system [10–12].

Figure 1. Schematic diagram of a RED unit.

In RED, the cation exchange membrane (CEM) and the anion exchange membrane
(AEM) are stacked alternately between two electrodes (anode and cathode), and the in-
termembrane space is flooded with high concentration (HC) and low concentration (LC)
solutions, which flow in sequence one after the other. By this, a membrane cell pair (or
simply just a cell) is formed.

A RED stack normally uses a large number of cells (around dozens to hundreds) [5,11] and
when an external load (RL) is connected to the RED unit, the electrode system transforms the
available electromotive force into electricity, using charge transfer process on the electrodes
surfaces [11,13–15]. As soon as ions move through the membrane stack, they encounter
the electrode rinse solution (ERS) at the electrode compartment, which is recirculated
across the end plates of the RED unit and is normally composed of a highly reversible
redox pair [16,17]. As a result, electrons can be transferred from the anode to the cathode
across the equivalent circuit formed (a representation of equivalent circuit is provided in
Figure S1).

RED Process Parameters and Characterization

To obtain RED process performance curves, several RL values must be used to deter-
mine the maximum power output that the system can generate to cover an electrical service
or application. The Nernst equation can be used to obtain the theoretical electromotive force
per cell (ECell) and of the whole stack (OCVTheo) [3,5,10,18]. Equation (A1) of Appendix A
shows the Nernst equation and its parameters.

The amount of energy that can be obtained from a RED unit is determined by the
output voltage (which is the actual potential that the RED device delivers to RL), at a
determined current demand condition, and the internal resistance (Ri) of the RED unit.
In principle, Ri is composed of the ohmic and non-ohmic components on the membrane
stack resistance (RStack) and the electrode system resistance (RElec) [5,11,13]. Normally RStack
represents the main contribution to Ri, while RElec is not critical if the proper electrode
material is selected and if the stack is composed of several cells [5,17]. Equations (A3) and
(A4) of Appendix A describe the Ri components.
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In RED, several variables have a direct influence on OCVTheo, Ri, and (consequently)
the obtained power density (Pd). The input parameters can be classified into those that
depend on “feed parameters” and those that depend on “RED unit parameters” [5,11,18,19].
Figure 2a shows a schematic representation of the RED process parameters classification.

Figure 2. (a) Considered parameters in reverse electrodialysis process; (b) voltage vs. current
relationship (polarization curve) and (c) power density vs. current relationship (power curve)
obtained in a typical RED process.

The feed parameters describe the properties of feed solutions (concentration, tem-
perature, and flow regime), while RED unit parameters are referred to the characteristics
of the RED stack and the electrode system (cell number (N), properties of IEM used to
conform the stack (ion exchange capacity, permselectivity, intrinsic resistance, etc.), the
intermembrane space (δ), and the electrode material) [5,11,18]. The linear flow velocity (v)
can be defined as the fluid velocity inside one flow compartment formed by the spacer and
is related to the residence time and hydrodynamic behavior of the feed solutions. Based
on the stack dimensions, this parameter can be obtained for determined volumetric flow
conditions [11]. Equations (A12) and (A13) of Appendix A describes how to calculate v.
The proper selection of the electrode material assures that the electron transfer process at
the surface will be reversible at the lowest overpotential possible [13,17]. Although the
membrane properties are normally considered as the limiting parameters of a RED unit,
the rest of the components also have a relevant effect on EStack and Ri on a different level.
In the case of a RED operation, the apparent permselectivity (ᾱ) can be considered for both
CEM and AEM as an average parameter that describes in a general form the ability of the
membranes to allow the pass to counter-ions and inhibit it for co-ions [5,20], as can be seen
in Equation (A14) of Appendix A.

The output parameters can be referred to as electrical parameters. They describe the
current–voltage response generated by the RED unit at different RL conditions. The slope of
the output voltage (U) vs. output current (I) relationship (also called the polarization curve)
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represents an approximation of Ri, as can be seen in Figure 2b. The open circuit voltage
(OCV) condition occurs when the RL value is very high concerning Ri, so electrons cannot
be transferred from the anode to the cathode across the circuit. The short circuit current
(SCC) is a condition where RL is close to zero, so I have a maximum intensity value while U
drops close to zero. The Pd can be defined as the product of current times voltage, divided
by the membrane active area (as is described in Equations (A10) and (A11) of Appendix A),
and can be represented as a power curve (Figure 2c) by plotting Pd vs. I. Thus, the top of
the curve represents the maximum power density (Pd max) that can be generated under a
determined input parameters condition.

To determine the electrical parameters of RED devices several methods are reported in
the literature. Table 1 describes some examples of the mentioned characterization methods
for RED devices reported in the literature. In all these methods, the purpose is to determine
polarization curves, which can be used to obtain Ri and experimental open circuit voltage
(OCVStack), power curves which can be used to define the operation zone of the RED unit,
and the maximum power density (Pd max) that can be produce.

Table 1. Characterization methods for RED process reported in the literature.

Instruments Employed for RED Characterization Data Capture Conditions Ref.

Rheostat
Voltage: Multimeter UNI-T (UT71D))

Current: Fluke 45 Dual Display Multimeter

• OCV condition: 5 min
• Time for stabilization until data capture: 120 s [21]

Rheostat
Voltage and Current: Multimeter Amprobe AM-520

• Resistance Range: 0.5–100 Ω [22]

Rheostat
Voltage: Datalogger (LabVIEW™, National Instruments)

Current: external Amperemeter

• Resistance Range: 0–22 Ω
• OCV condition: ~5 min
• 1 h of operation from OCV until OCV/2
• Data capture at a frequency of 1 Hz

[23]

Rheostat: Five-decade resistance box (COPRICO)
Voltage: 3 1/2 Digital multimeter (Veleman, DVM760)
Current: 6 1/2 Digital multimeter (Agilent, 34422A)

• OCV, Ri and Pd max were determined by means of
linear regression and parabolic correlation [24]

Potentiostat/Galvanostat (HAB-151). Recorded data were
processed using a data logging system (midi LOGGER

GL200, GRAPHTEC Co.)

• Current range: From OCV until SCC
• Scan rate: 0.4 mA s−1 [25]

Potentiostat/Galvanostat (Ivium Technologies) in the
galvanostatic mode

• Current range: From OCV until SCC
• Scan rate: 2 mA s−1 [26]

Potentiostat/Galvanostat Metrohm Autolab PGSTAT302N
equipped with an FRA module

• Current range: 0–40 A m−2

• Current steps: 17
• Time per step: 40 s

[27]

Potentiostat/Galvanostat (Ivium Technologies) using a
chronopotentiometric method

• Current range: 0–40 A m−2

• Current steps: 20
• Time per step: 30 s

[28]

Electronic load in CC mode (Chroma Systems
Solutions 63103A)

• OCV condition: ~5 min
• Current rate: 0.025 A
• Values were obtained until the system reach a

steady-state

[10]

Electronic load in CC mode (Chroma Systems
Solutions 63103A)

• Current range: 0–1 A
• Values were obtained until the system reach a

steady-state
[29]
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Table 1. Cont.

Instruments Employed for RED Characterization Data Capture Conditions Ref.

Electronic load in CC mode (Chroma Systems
Solutions 63103A)

• Values were obtained until the system reach a
steady-state [8]

Electronic load in CC mode (Chroma Systems
Solutions 63103A)

• OCV condition: ~5 min
• Current rate: 0.025 A
• Values were obtained until the system reach a

steady-state

[19]

Electronic load (PLZ 164 W, Kikusui electronics corp.) in
I–V mode and CC mode

• Current range: From OCV until SCC
• I–V mode, Scan rate: 8.1 mA s−1

• CC mode, Current steps: 7, Time per step: 40 min
[7]

In some works, a rheostat with fixed electrical resistance values is connected to the
RED unit for a defined time condition, and the corresponding values of output voltage
and current are recorded using an external voltmeter and amperemeter or by using a data
logger for data capture [21–24]. Although this method is the simplest and cheapest way for
RED characterization, there is no way to control or limit the voltage or the current that the
load consumes. The resolution of the resulting polarization and power curves depends on
the number of resistances used as well as if their values are suitable to the power supply
capacity of the RED unit, which depends on its internal resistance. In other words, if the
RED input parameters changes, the selected external resistance values may not be suitable
for the new experimental conditions, so adapting to changes in test requirements with
fixed resistors is a time-consuming task that requires many resistors. Avci et al. [24] used
several fixed resistances for RED characterization, employing a linear regression method to
determine OCVStack as also Ri. However, since the selected resistance values, only a small
portion of the power curve was experimentally determined, and a quadratic correlation
was used to estimate the entire power curve and the corresponding Pd max value. Although
this method represents a valid approximation, Pd max obtained does not represent a precise
experimental value because of the limited experimental points used to obtain the quadratic
correlation, which was a consequence of the selected resistance values for characterization.

Other authors have reported the use of potentiostat/galvanostat to perform a current
scan from OCV condition to SCC condition at a defined scan rate, measuring the corre-
sponding voltage values [25,26]. Moreover, potentiostat/galvanostat has been employed
using chronopotentiometric methods defining a current demand range, divided in several
steps at a specific time per step, and by this evaluate the output voltage at every current
demand step [27,28]. The use of potentiostat/galvanostat is a more precise method to
obtain a high resolution polarization and power curves, since the whole current–voltage
relationship from OCV until SCC conditions can be obtained, at the same data capture
conditions on every test. Still, the cost of these devices is considerably higher than fixed
resistances method since there are normally used to perform several electrochemical tests
besides power supply devices characterization.

Lastly, in other studies, a similar technique has been carried out by using an DC
electronic load, where a current demand condition can also be defined. A DC electronic load
is a programable test instrument designed to characterize DC power supplies by emulating
multiple load profiles, offering high flexibility to adapting to changes on experimental
conditions. Normally, these devices have several modes of operation, were the most
common are constant current condition (CC mode), constant voltage condition (CV mode),
constant resistance condition (CR mode), and constant power condition (CP mode) [30].
In case of RED characterization, the most relevant modes reported in the literature are CC
mode, where a current demand is established and keep it constant until a new value is
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requested, and also changing current condition (I–V mode), where the demanded current
is gradually increased at a defined scan rate [7,8,10,19,29].

While potentiostat/galvanostat and DC electronic load devices can be programmed
to set data capture conditions on every experiment, the fixed resistances method requires
an appropriate data capture software, which is not always reported in the literature and
normally this task is performed manually by the operator using a digital multimeter,
increasing the uncertainty related to human random errors in the results.

Focusing on characterization using a DC electronic load, while I–V mode is normally
used for lab scale characterization of the RED process, where several process parameters
are usually compared without considering an equilibrium condition, CC mode results
represents a behave of a steady state regime in a long-term operation, which has its
relevance for bench scale and pilot plant scale tests [7]. Nevertheless, as can be seen from
Table 1, until now there is no direct or undirect consensus on employed method used for
RED process characterization, which can lead to a degree of uncertainty in the comparison
of results between different groups, despite the use of same input parameters.

In this study, the influence of data capture conditions on a lab scale RED process
were analyzed by means of a DC electronic load module (DCELM), which works as an
actuator/data capture system, allowing to the reducing of human random error on data
capture compared to conventional fixed electrical resistance methods, as also representing
a low-cost alternative to commercial potentionstat/galvanostat and electronic load devices.
The system was developed on an Arduino platform, controlled by an interface in MATLAB®

(Ver. R2022b) and operated in the CC mode. The total number of steps for data capture
(NS) and the number of measurements per step (ρ) are the data capture setup (DCS)
parameters that were modified to compare their influence on accuracy and uncertainty of
the determined electrical parameters in RED. The described method in this study represents
a quick and reliable tool for RED process analysis, which can used on lab scale conditions,
as well as be optimized and adapted to steady state experiments.

2. Materials and Methods

2.1. Reverse Electrodialysis Unit Design (RU1)

A RED unit was designed and built, based on schematics and diagrams available in
the literature [20,31], using Nylamid M as base material to conform the end plates of the
prototype. A picture of the developed RED prototype (RU1) is presented in Figure S2.
Figure S2a correspond to the manufactured endplates while Figure S2b correspond to an
image of the prototype before assembly. The stack was composed of five cells and the RED
unit parameters used for the experiments are summarized in Table 2.

Table 2. Considered RED unit parameters.

RED Unit Parameters RU1

Effective area per cell 0.0049 m2

Effective area of the stack 0.0245 m2

Cell number (N) 5
Intermembrane distance (δ) 255 μm

CEM (outer membrane) Nafion® 324 (Dupont, Wilmington, DE, USA)
CEM (stack) Fuji Type 10 CEM (Fujifilm, Tilburg, The Netherlands)
AEM (stack) Fuji Type 10 AEM (Fujifilm)

Electrode material Pt/Ti mesh electrode
Torque applied 2.5 N·m

The effective area per cell was 0.0049 m2. The intermembrane distance was defined by
a silicon gasket with a PES mesh-type spacer of the same thickness (δ = 255 μm). As for IEM,
Fuji Type 10 membrane (Fujifilm Manufacturing Europe BV, the Netherlands) was used as
CEM and AEM in the stack, while Nafion®324 (Dupont, Wilmington, DE, USA) was used
as an outer CEM to reduce the permeation of the electrode rinse solution (ERS) from the
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electrode compartment to the stack, according to Scialdone et al. [16]. The properties of the
employed IEM in the stack are reported in Table S1.

The ERS was composed of 0.05 M K4[Fe(CN)6], 0.05 M K3[Fe(CN)6] (Aldrich, purity > 99%)
and 0.25 M NaCl (Fermont, Mexico City, Mexico. Composition > 99.5%) as supporting elec-
trolyte in deionized water (Fermont, Mexico. Specific Conductance: 1.8 × 10−6 Ω−1 cm−1).
A pH of 7.22 was determined for the ERS using a pHmeter PC45 (Conductronic, Puebla,
Mexico). Titanium mesh with platinum coating (Pt/Ti mesh) was employed as working
electrode material. The electrodes were prepared by sticking Pt/Ti mesh (Fuellcellstore,
College Station, TX, USA) and an 1

4 inch Ti bar (used as a connector) with a conductive
epoxy resin SG-3100 S (MG Chemicals, Burlington, ON, Canada). Once the resin was
applied, the electrodes were heated until 65 ◦C for 3 h in an oven (Memert, Schwabach,
Germany), and they were cooled at room temperature. Next, they were covered by a
nonconductive epoxy resin to capsulate the conductive epoxy resin area. This has the
purpose of isolating and protecting the joint from corrosion. Figure S3 shows a picture
of in-house built electrodes before their use. The electrodes were assembled to the end
plates and sealed with an acrylonitrile–butadiene–styrene (ABS) solution (ABS saturated in
ketone) and left to dry for 24 h.

2.2. DC Electronic Load Module for RED Applications

A DC electronic load module (DCELM) was designed and integrated for RED applica-
tions (a picture of the DCELM is provided in Figure S4). The DCELM is a current demand
emulator device and data acquisition system designed to characterize reverse electrodialy-
sis prototypes and power generation systems up to 0.5 Amperes. It is composed of three
parts: a communication module, a data acquisition and signal conditioning module and a
power module. Together, these components allow the generation of a voltage signal that
activates the power circuit, which imposes a load to an external power supply to determine
the voltage and current generated. The communication module allows communication
between the DCELM and the user through an interface developed in MATLAB® for its
control and data capture, as represented in Figure 3.

Figure 3. Schematic diagram of DCELM.

The power module is based on a directly polarized N-channel metal-oxide-semiconductor
field-effect transistor (MOSFET), configurated to operate on its Ohmic region and by this
obtain iload and Vload (which represent the output current and voltage values of the power
generation device). The MOSFET has three terminals: source (s), drain (d), and gate (g).
The g terminal controls the transistor activation, the d terminal is connected to the positive
terminal of the power supply device, and the s terminal is connected in serial to a current
sensor conformed by a shut—resistance of 0.01 Ω, connected with the negative terminal of
the power supply device. This is represented in Figure 4a.
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Figure 4. (a) Schematic diagram of the directly polarized circuit in the MOSFET and (b) operational
regions and the current demand response of the MOSFET according to the voltage supply Vgs.

In general terms, the MOSFET has three operational modes, as it is described in
Figure 4b.

Cut region: In this mode there is no current continuity, and the voltage difference
between d and s terminals (Vds) has a maximum value (OCV condition) and the voltage
difference between g and s terminals (Vgs) is minor or equal to zero.

Ohmic region: In this region the MOSFET works as a nonlinear variable resistance
whose value is a function of the Vgs applied, allowing electrons to flow through the
transistor and, by this, obtaining a theoretical drain current (ID). This region is physically
delimited by a threshold voltage in the g terminal (Vgs(th)), which is the minimum voltage
necessary for the electron flow to occur, and the saturation voltage in the g terminal (Vgs(on)).
As the ID increases, the resistance of the transistor decreases as well as the voltage Vds. On
the contrary, if ID decreases, the internal resistance of the transistor rises, increasing the
voltage Vds at the transistor terminals.

Saturation region: At this condition Vgs > Vgs(on), so the MOSFET overpasses the
Ohmic region of operation and while ID remains constant, its value does not depend on the
applied Vgs anymore. The system conducts the maximum current value allowed by the
transistor, where Vds is theoretically close to 0 V (SCC condition).

The mentioned parameters (Vgs(th) and Vgs(on)) are proportionated by the transistor
manufacturer and are characteristic of the MOSFET model employed (IRFZ44N in our
experiments) and are reported in Table S2. The transconductance coefficient of the MOSFET
was calculated and then was used to determine the relation between Vgs, which represents
the supplied voltage to the MOSFET, and the ID demanded to the power generation device.
By this, an operating region of the DCELM can be estimated by stablishing a Vgs range
between Vgs(th) and Vgs(on).

ID demanded can be divided into a total number of steps for data capture (NS),
according to the desired number of experimental points for the characterization. To assure
the stabilization of the output current and voltage signals among the transition between
the current steps, a control step cycle was incorporated to set a number of repetitions at this
condition, which is denominated number of measurements per step (ρ), in order to obtain
an average value at the corresponding step condition in data capture.

On the other side, the data acquisition and signal conditioning module is integrated by
a coupling circuit between the g terminal and a 12- bits digital—analogical converter (DAC),
which can generate voltage steps from 1.22 × 10−3 V up to 1.5 V proportional to 500 mA,
which is the maximum current demand of the device and by this generating the signals.
It is composed by an ATmega2560 to generate a voltage reference (refVgs[ρ]) through I2C
communication with the analogical—digital converter (ADC), in order to measure the
current and voltage response of the power generation device (ILoad[ρ] and ULoad[ρ]). By this,
the DCELM can obtain the output voltage of the RED unit at a defined current demand
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condition, dividing output current range into several steps and measurements per step and
operate as a CC mode system.

2.3. The RED Process Characterization

Figure 5 shows a schematic representation of the lab scale RED process. Three working
solutions were used: HC and LC solutions as feed waters and ERS. The feed waters flow in
a continuous-flow mode through the system, while the ERS flow in a recycle loop between
electrode compartments at the endplate and a dark container to isolate it from light.

Figure 5. Schematic diagram of lab scale RED process.

All working solutions are fed through one peristaltic pump Masterflex L/S (Cole
Parmer, USA) by assembling two pump heads to the same rotor. One of the pump heads
has a double channel for HC and LC solutions, so the volumetric flow of each stream is
the same, while the other has a single channel for ERS. Figure S5 shows a picture of the
lab scale experimental setup of the RED test bench, on which the three main components
are indicated: the working solutions system, the RED unit, and the DCELM. The feed
parameters are shown in Table 3.

Table 3. Considered feed parameters.

Feed Parameters RU1

High concentration solution (HC) 0.5133 M
Low concentration solution (LC) 0.0171 M

Electrode rinse solution (ERS) [Fe(CN)6]−4/[Fe(CN)6]−3 0.05 M/0.05 M
and NaCl 0.25 M as supporting electrolyte

Temperature (T) 298 K
Linear flow velocity (v) 1.0 cm s−1 (46 mL min−1)

Pure NaCl (Fermont, Mexico. Composition > 99.5%) solutions were used for all the
experiments. The concentrations selected represent synthetic river water (0.0171 M) and
synthetic seawater (0.5133 M) [32]. All solutions were prepared using deionized water
(Fermont, Mexico. Specific Conductance: 1.8 × 10−6 ohm−1 cm−1). For temperature
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control, a hot plate magnetic stirrer C-MAG HS7 (IKA, Königswinter, Germany) and glass
thermometers were employed.

The DCELM was connected to the RED unit by a DB9 adaptor with alligator clips. Data
capture was performed at a frequency of 0.5 Hz, equivalent to 2 s per measurement. In order
to evaluate the differences on data capture setup (DCS) conditions, RED experiments were
performed in the Ohmic region of the MOSFET. The resulting current output is divided
in a total number of steps for data capture (NS) of 10, 50, and 100 with a number of
measurements per step (ρ) of 10 and 20 for each DCS. For all experiments, a temperature of
298 K was used, the pump was calibrated to operate at a linear flow velocity of 1.0 cm·s−1

and the system was operated for ten minutes at OCV conditions until the voltage signal
was completely stable. After that, data capture begins and the output current and voltage
raw data are recorded for its processing and plotting. The experiments were repeated three
times for every experimental condition described.

2.4. Data Processing of RED Results

Based on the total number of steps for data capture (NS) and the number of measure-
ments per step (ρ) selected on the DCS, the data raw captured were analyzed as follows.
An average value of the output current and voltage raw data was calculated for each step
condition, according to the ρ selected. For the first step condition, the average values of
current and voltage were obtained as is described in Equation (1):

Ms =
∑

ρ
i=1 Mi

ρ
(1)

where Mi and Ms are the raw measurements and the resulting average measurement per
step, respectively, (which can be output current or voltage) at the first step condition.
Because of the structure of the MATLAB® script prepared for this work, for the following
steps after first, one measurement less than the ρ selected must be considered. Then,
according to the Ms of each step, considering the ρ selected and the adjustment after the
first step, the percentage of standard deviation per step (%DS) was calculated for each
step as it is showed in Equation (2), and by this the repeatability of the measurements that
composed a step was evaluated:

%DSi =

⎛⎝⎛⎝√∑
ρ
i=1(Mi − Ms)

2

ρ − 1

⎞⎠ ÷ Ms

⎞⎠× 100 (2)

To estimate the general uncertainty related to the repeatability of measurements
per step inside the operational region of the RED unit, a general percentage of standard
deviation per step (%GDS) was considered as an average of individual %DS values between
a selected output current range.

%GDS =
∑S

i=1(%DS)i
S

(3)

where S is the number of steps considered for analysis and its value depends on the DCS
selected and the resulting polarization and power curves. The S values are described
in Section 3 for every set of experiments. After this, the average general percentage of
standard deviation per step (%AGDS) was obtained according to Equation (4), where E
is the number of experiments performed at a defined condition, in order to evaluate the
average general uncertainty of the obtained output steps for all experiments performed
under a certain condition.

%AGDS =
∑E

i=1 (%GDS)i
E

(4)

The resulting average measurement per step, obtained by means of Equation (1),
represents the obtained output current and voltage values per step and were used to obtain
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the corresponding Pd values, using Equations (A10) and (A11) of Appendix A. After this, an
average output step (AOS) value was calculated as its own standard deviation for average
output step (DAOS) by means of Equations (5) and (6), respectively:

AOS =
∑E

n=1 Mn

E
(5)

DAOS =

√
∑E

n=1(Mn − AOS)2

E − 1
(6)

where Mn are the resulting output values per step and it can be referred to I, U, or Pd; E is the
number of experiments performed. The AOS values were used to plot the corresponding
polarization and power curves at each DCS tested and the DAOS was used to evaluate the
individual uncertainty related to the repeatability of the AOS, which values are expressed in
terms of error bars. DAOS value was also obtained in terms of percentage (%DAOS), and a
general percentage of standard deviation for average output steps (%GDAOS) was obtained.

%GDAOS =
∑S

i=1(%DAOS)i
S

. (7)

where S is the number of steps considered for analysis selected in Equation (3), based on the
obtained output current range. This parameter was used to evaluate the general uncertainty
related to the repeatability of results in performance curves inside the operational region of
the RED unit.

3. Results and Discussion

Evaluation of Data Capture Setup

The output current and voltage raw data obtained using RU1 at the described feed
parameters in Table 3, were recorded by the MATLAB® interface, and then exported
for processing and plotting to evaluate the influence of DCS on accuracy of electrical
parameters. Table 4 describes the DCS studied and compared.

Table 4. Data capture setup employed for RED experiments.

Data Capture Setup (DCS)
Steps Considered for

Analysis (S)N◦ Steps (NS)
Number of Measurements

per Step (ρ)

10 10
410 20

50 10
1550 20

100 10
30100 20

The DCELM was operated only in the Ohmic region of the MOSFET and Figure 6
shows the measurements that conform the steps considered for analysis (S) of one rep-
resentative experiment at each DCS, between an output current range of approximately
0.007–0.06 A. The raw experimental data are grouped in different colors according to the
obtained current and voltage step. For every DCS, two plots are shown: the left side
describes current raw data vs. number of measurements while the right side describes
voltage raw data vs. number of measurements. As can be seen, the resulting steps are
delimited by the ρ selected and one transition measurement between one step to the next it
is present.
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Figure 6. Obtained raw data for current (left side plots) and voltage (right side plots) vs. number of
measurements, in a current range from 0.007–0.06 A, at different DCS: (a) NS = 10, ρ = 10; (b) NS = 10,
ρ = 20; (c) NS = 50, ρ = 10; (d) NS = 50, ρ = 20; (e) NS = 100, ρ = 10 and (f) NS = 100, ρ = 20. (NS: Total
number of steps for data capture; S: steps considered for analysis and ρ: Number of measurements per
step). Data are grouped in different colors according to the corresponding current and voltage step.

In order to evaluate the influence of DCS on the repeatability of output current and
voltage raw measurements per step, the %DS was calculated for every current and voltage
step condition in a range of approximately 0.007–0.06 A for each experiment and then the
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%GDS was obtained at this current range for every set of results. Later, the %AGDS of three
experiments (E = 3) was obtained from the %GDS values and these results are presented
in Table 5. According to them, the %AGDS decreases when a ρ of 20 measurements per
step is selected compared to a ρ of 10 measurements per step, as well as if a higher number
of steps is employed (10, 50, or 100 steps). This trend was attributed to the time it takes
to the RED unit to achieve stability on its electromotive force, so as the ρ increases, the
uncertainty of obtained output steps will do it too, increasing the precision of results. In
the same way, as a higher number of steps are used, the transition from one step to the next
one will be shorter, allowing to the RED unit achieve a stability condition in a shorter time,
enhancing repeatability and by this the precision of the resulting steps.

Table 5. Average general percentage of standard deviation per step (%AGDS) for current and voltage
steps, obtained at each DCS.

%AGDS
NS = 10 NS = 10 NS = 50 NS = 50 NS = 100 NS = 100

ρ = 10 ρ = 20 ρ = 10 ρ = 20 ρ = 10 ρ = 20

Current 13.38 9.97 4.83 3.07 2.20 1.50
Voltage 9.08 5.90 1.88 1.70 1.30 1.01

For visualization and comparison of the electrical parameters at each DCS, the resulting
output values per step, obtained by means of Equation (1), were used to determine the
AOS with the results of three experiments (E = 3) using Equation (5). The calculated AOS
were used to construct polarization and power curves at each DCS, as is shown in Figure 7.
With the aim of assessing the individual uncertainty related to the repeatability of the AOS,
the corresponding DAOS was calculated for every step plotted of each data set (the values
of which are represented by error bars in Figure 7), according to Equation (6).

Figure 7. Voltage (mV) vs. current (mA) (blue color, left) and power density (W m−2) vs. current
(mA) (red color, right) obtained from the average output steps, at different DCS: (a) NS = 10, ρ = 10;
(b) NS = 10, ρ = 20; (c) NS = 50, ρ = 10; (d) NS = 50, ρ = 20; (e) NS = 100, ρ = 10 and (f) NS = 100, ρ = 20.

Linear regression was used to calculate the slope of all polarization curves and by
this obtain the internal resistance of RU1 under the described RED process parameters,
according to Equation (A7) of the Appendix A. The corresponding linear regression and
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resulting values are also indicated. According to these, for all measurements conditions an
OCVstack between 694–711 mV was obtained, as well as an Ri between 8.6–10.9 Ω. As for
Pd max, the obtained results were between 0.47–0.58 W m−2. The output current range for
analysis (approximately 0.007–0.06 A) was selected based on the Pd max obtained in the
resulting power curves (Figure 7), who was around 40 mA, so our analysis focused on most
of the steps before the top of the power curve (which is the maximum power generation
zone) and only a few after, since from a technical perspective, it results more convenient to
operate the RED unit at lower currents than at higher to generate the same power, because
the system is more stable and the deviation values are lower. The %GDAOS for output
current, voltage, and power density steps were obtained, at the mentioned output current
range, using Equation (7). These values, as the rest of the considered electrical parameters,
are indicated in Table 6.

Table 6. Electrical parameters and general percentage of standard deviation for average output steps
(%GDAOS) obtained at each DCS.

Electrical Output
Parameters

NS = 10 NS = 10 NS = 50 NS = 50 NS = 100 NS = 100
ρ = 10 ρ = 20 ρ = 10 ρ = 20 ρ = 10 ρ = 20

OCVStack (mV) 694.65 702.24 703.4 710.61 710.82 711.73
OCVTheo (mV) 838.4
Pd max (W m−2) 0.5323 0.4806 0.5813 0.4928 0.4956 0.4766

Ri (Ω) 9.03 10.3 8.67 10.47 10.43 10.91
ᾱ (%) 82.85 83.75 83.89 84.75 84.78 84.89

%GDAOS—I 5.78 2.17 1.62 4.63 10.46 2.08
%GDAOS—U 7.55 3.49 1.27 5.44 5.18 3.94

%GDAOS—Pd max 8.38 5.02 1.26 7.10 8.60 4.63

Theoretical open circuit voltage (OCVTheo) was calculated using the Nernst equation
and based on its value the apparent permselectivity (ᾱ) was obtained. Both equations can
be consulted in Appendix A.

For all cases, the OCVStack (and consequently ᾱ) increases as a greater NS and ρ
are selected, moving towards the calculated OCVTheo and specific permselectivity values
provided by the manufacturer (presented in Table S1), firstly because the RED device has
twice the time and measurements per step to stabilize the output current and voltage
signals, and secondly because it allows the system to have lower changes on the transition
between one step to the next, improving the stabilization among these and decreasing the
uncertainty of obtained output steps. Moreover, as a greater number of steps the resolution
of the resulting polarization and power curves its enhanced, allowing a more refined
identification of the operational region and the Pd max value. This would be translated in a
higher trueness linear regression since it is composed by a greater number of output steps,
so the resulting Y interception and slope are more representative of the OCVStack and Ri
values, respectively.

In accordance with the results presented on Figure 7 and Table 6, for polarization
and power curves obtained at NS = 100, the operational region has the best resolution,
allowing to identify more precisely the maximum power generation zone and the Pd max
value. When selected ρ is increased at this NS, the uncertainty of resulting electrical
parameters decreases notoriously in both %AGDS and %GDAOS values. In this sense,
the lowest %AGDS of all DCS studied was obtained using NS = 100 and ρ = 20, and in
case of AOS, at this DCS the resulting %GDAOS for I, U and Pd max were lower than 5%.
Hence, by considering the precision of the resulting output current and voltage steps and
the uncertainty of AOS, a DCS of NS = 100 and ρ = 20 represents the most accurate and
reliable approximation of electrical parameters of RU1 using CC mode at the described
RED process parameters, among the DCS studied for lab scale RED characterization.

On the other hand, when a DCS of NS = 10 and ρ = 20 was used, the obtained Pd max
value was 0.4806 W·m−2, while at NS = 50 and ρ = 20 the obtained result was 0.4928 W·m−2,
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even though the Ri obtained by linear regression was lower at the first DCS mentioned
(10.3 Ω and 10.47 Ω, respectively). When the resulting polarization and power curves
are compared, in the first case (NS = 10, ρ = 20) the low NS employed on data capture
does not allow to define with more precision the maximum power generation zone, so
even when the reported Pd max represents the highest value among the AOS obtained at
this DCS, when the continuous line that corresponds to basic quadratic fitting is observed,
this experimental point is located at the right side of the top of power curve, so its value
might result in a underestimation of the real Pd max under the described RED process
parameters. In the second case (NS = 50 and ρ = 20), maximum power generation zone is
more well defined and the resulting highest value in power curve is a more representative
approximation of Pd max in RED at those conditions. Nevertheless, as can be seen in error
bars of resulting plots at this DCS, the uncertainty of AOS was larger, and values obtained
by linear regression would be expected to be less accurate.

Furthermore, the selected number of measurements on every step must be considered
given that, as greater ρ selected, the %DS decreases along the operational region of the RED
unit, which is traduced in a lower %AGDS for resulting output current and voltage steps
and represents higher accuracy on the results used to construct polarization and power
curves, the same as the resulting OCVStack and Ri, consequently. This could be observed
when a DCS of NS = 50 and ρ = 10 was selected, given that although the lowest %GDAOS
values for I, U, and Pd max were obtained, in this scenario the %AGDS for current and
voltage steps was higher than by using a larger NS or ρ values. This suggests a poorer
stabilization of the output current and voltage raw data, which would cause a higher
uncertainty of the obtained steps, producing an overestimation of Pd max. In this sense,
when the NS and ρ selected increases, estimated Ri trends to rise and Pd max to fall, and a
lower %AGDS is obtained as is showed in Tables 5 and 6.

The obtained results suggest that data capture conditions have a direct influence on the
obtained electrical parameters and its accuracy. Thus, even when the most accurate results,
among the studied DCS, were obtained at NS = 100 and ρ = 20 according to the employed
methodology, it is clear that by exploring more DCS the accuracy of results can be improved.
In case of apparent permselectivity, despite the fact that this parameter describes in a general
form the ability of the membranes to allow the pass to counter-ions and inhibits it for co-
ions, assuming that both CEM and AEM have the same value, the obtained ᾱ at NS = 100
and ρ = 20 (ᾱ = 84.89%) was lower than the specific permselectivities values proportioned
by the manufacturer (reported in Table S1). In this sense, according to the trend of ᾱ results
in Table 6, if the NS and ρ are increased this could lead to an improvement on stabilization
and repeatability of resulting steps, which would be translated into a lower uncertainty
and higher accuracy of linear regression values such as OCVStack. In another aspect, it must
also be considered that the employed electrodes in RU1 were not a commercial type, but
in-house built. This is relevant since, although commercial Pt/Ti mesh was selected as
electrode material, the type of joint employed between the Pt/Ti mesh and the Ti connector,
based on a conductive epoxy resin and a conventional epoxy capsulate, might considerably
increase the resistance associated with the electrode system, and by this the Ri of the RED
unit. This would increase the overpotential of redox reactions, reducing the resulting output
voltage on the load and by this reducing the obtained OCVStack and ᾱ. One way to confirm
this last would be to include reference electrodes between the stack and the Pt/Ti mesh
electrodes, to determine the OCV condition generated only by the membrane stack without
considering the losses in working electrodes, as has been proved in the literature [20,26].

On the other hand, the DC electronic load module (DCELM) developed for this study
can be adapted for bench scale or pilot plant scale RED devices, such as others power supply
systems, such as Li-ion batteries or fuel cells, taking into account the following require-
ments: The power module must be scaled according to the current demand range required
by the new power supply system, considering that it would need a power dissipation
system according to the new demand, which implies adding a forced air or liquid cooling
subsystem. Another aspect to be considered is that, in the case of signal acquisition and

201



Energies 2023, 16, 7282

conditioning module, the direct measurement on the shut resistance (Figure 4a) should be
replaced by an indirect measurement, such as a Hall effect sensor, to isolate the system and
protect the circuit against high voltages that may be obtain from the power supply system.

4. Conclusions

The influence of data capture conditions on electrical parameters in reverse electrodial-
ysis (RED) were analyzed employing a DC electronic load module (DCELM), designed and
build it for this purpose, and operated in a constant current condition (CC mode). The de-
veloped DCELM represents a low-cost alternative to commercial potentiostat/galvanostat
and electronic load devices, whose parameters can be controlled to optimize the accuracy
of RED characterization. Several data capture setups (DCS) were tested for characterization
of lab scale RED process, using an in-house built RED unit prototype (RU1), under the
same process parameters. The described methodology in this study evaluates the precision
and uncertainty of experimental results, being a quick and reliable option for obtaining
a more accurate estimation of the electrical parameters in the RED process on lab scale
conditions. In this sense, more DCS might be explored to perform steady state regime tests
in benchmark scale or pilot plant scale RED devices. According to results, the accuracy of
the resulting current and voltage steps can be enhanced by increasing the total number
of steps for data capture (NS), since the repeatability of the measurements within each
step increases because the system undergoes fewer changes during the transition from one
step condition to the next. Furthermore, as a larger NS is selected, the resolution of the
resulting polarization and power curves improves. This enables a clearer identification of
the maximum power generation zone in the power curve, as well as more trueness and
representative results obtained through linear regression, because the resulting polarization
curves are constructed from a greater number of average output steps (AOS). As for the
number of measurements per step (ρ), larger values provide the system with additional
time for stabilization and a greater number of measurements for step composition, leading
to a reduction in the uncertainty of each step, and, by this, increasing its precision and the
precision of the AOS consequently. Among the employed DCS in this study, a condition of
NS = 100 and ρ = 20 represented the most accurate setup for data capture at the described
experimental conditions using RU1, since the average general percentage of standard devi-
ation per step (%AGDS), of current and voltage steps, were the lowest from all DCS, and
the general percentage of standard deviation for average output step (%GDAOS) for output
current (I), output voltage (U), and power density (Pd max) were below a 5%, obtaining a
high precision and a low uncertainty of the determined electrical parameters inside the
operational region of the RED unit. Obtained results in this study suggest that accuracy
of electrical parameters can be improved by optimizing the DCS parameters, according to
the required specifications and the scale of RED prototypes. Regarding this last, since data
capture conditions have a direct influence on results, it may be necessary to define and agree
a standardized and feasible methodology of characterization of RED process, which make
possible a more representative comparation of results among different research groups.
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Nomenclature

Nomenclature Description Unit

AOS Average output step A, V or W·m−2

DAOS Deviation of average output step A, V or W·m−2

E Number of experiments performed -
ECell Theoretical electromotive force per cell V
I Output current A
ID Theoretical drain current A
Mi Raw measurements A or V
Mn Resulting output values per step A, V or W·m−2

Ms Resulting average value at a determined step condition A or V
N Number of cells -
NS Total number of steps for data capture -
OCV Open circuit voltage V
OCVStack Experimental open circuit voltage of the stack V
OCVTheo Theoretical open circuit voltage of the stack V
Pd Power density W·m−2

Pd max Maximum power density W·m−2

RElec Electrode system resistance Ω
Ri Internal resistance of the RED unit Ω
RL Load resistance Ω
RStack Membrane stack resistance Ω
S Number of steps considered for analysis -
SCC Short circuit current A
T Temperature K
U Output voltage V
v Linear flow velocity cm·−1

Vds Voltage difference between d and s terminals V
Vgs Voltage difference between g and s terminals V
Vgs(on) Saturation voltage in the g terminal V
Vgs(th) Threshold voltage in the g terminal V
ΔGmix Change in Gibbs Free energy upon solutions mixing kJ
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ᾱ Apparent permselectivity %
δ Intermembrane distance μm
ρ Number of measurements per step -
%AGDS Average general percentage of standard deviation per step %
%DAOS Percentage of deviation for average output step %
%DS Percentage of standard deviation per step %

%GDAOS
General percentage of standard deviation for average

%
output step

%GDS General percentage of standard deviation per step %

Abbreviations

Abbreviations Description

ABS Acrylonitrile—Butadiene—Styrene
ADC Analogical—digital converter
AEM Anion Exchange Membrane
CC—mode Constant current condition
CP—mode Constant power condition
CR—mode Constant resistance condition
CV—mode Constant voltage condition
CEM Cation Exchange Membrane
d Drain terminal
DAC Digital—analogical converter
DCELM DC-Electronic Load Module
DCS Data Capture Setup
EMF Electromotive Force
ERS Electrode Rinse Solution
g Gate terminal
HC High Concentration
IEM Ion Exchange Membrane
I–V mode Changing current condition
LC Low Concentration
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
PES Polyether Sulphone
Pt/Ti mesh Titanium mesh with platinum coating
RED Reverse Electrodialysis
RU1 RED Unit 1
s Source terminal
SGE Salinity Gradient Energy

Appendix A

The Nernst Equation (A1) describes the electromotive force (EMF) available by each
IEM according to the salinity gradient value [10,11,33].

ECEM = αCEM·R·T
z·F ·Ln

aHCNa+

aLCNa+

= αCEM· R·T
zNa+ ·F

·Ln
γHCNa+

CHCNa+

γLCNa+
CLCNa+

(A1)

ECEM is the EMF generated across the CEM, αCEM is the membrane permselectivity,
z the valence of the ionic specie considered (z = 1 for Na+ and Cl-), R the universal ther-
modynamic constant (8.314 J·mol−1 K−1), T the temperature in K, F the Faraday constant
(96 485 C·mol−1), and aHCNa+

and aLCNa+
are the activities of Na+ on the HC and LC solu-

tions, respectively. This last values can be obtained as the product of activity coefficients
(γHCNa+

, γLCNa+
), which value is equal to 1 for ideal solutions, and the concentration of

sodium ion on HC and LC solutions (CHCNa+
, CLCNa+

) in mol·m−3 [10,11,33]. The Nernst
equation can also be expressed in terms of Cl- for EAEM, the addition of both ECEM and EAEM
give as result the cell potential (ECEM + EAEM = ECell) [5,10,11]. The theoretical electrical
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potential of the RED unit at the open circuit voltage condition (OCVTheo) can be obtained as
by ECell times the number of cells (N):

OCVTheo = N·ECell (A2)

The amount of energy that can be obtained on the RED unit its limited by the available
EMF and its internal resistance (Ri). In principle, Ri its conformed by the Ohmic (ROhm) and
non-Ohmic (Rnon-Ohm) components of the RED stack resistance (RStack) and the electrode
system resistance (RElec). All these parameters are expressed in Ohms:

Ri = RStack + RElec = N·ROhm + Rnon−Ohm + RElec (A3)

The non-Ohmic component of Ri is associated with diffusional boundary layer (DBL)
effects and concentration changes across the intermembrane space. On the other hand,
the Ohmic components (Equation (A4)) are referred to intrinsically resistance of CEM and
AEM (RCEM and RAEM) and the resistance of the flow channels (RHCC and RLCC) in Ω·cm2,
the term Amem refers to effective area of membrane expressed in cm2 [5,11,18].

ROhm =
1

Amem
·[RAEM + RCEM + RHCC + RLCC] (A4)

The resistance of the flow channels can be obtained using Equations (A5) and (A6),
where δ is the intermembrane space (in cm), CHC and CLC are the molar concentrations
of the high concentration and low concentration solutions (mol·cm−3), σ is the molar
conductivity of the species in solution (S·cm−1 mol−1), and ε is the obstruction factor, a
coefficient that increases the resistance in consideration of the negative effects of the spacer
to ion transfer [33,34]. From the literature, σ value is 0.08798 S·cm−1 mol−1 [34].

RHCC = ε
δ

σ·CHC
(A5)

RLCC = ε
δ

σ·CLC
(A6)

When an external load (RL) is connected to the RED unit, the voltage output (U) in
Volts can be calculated as the open circuit voltage condition (OCVTheo), less voltage drop
across the internal resistance of the RED unit:

U = OCVTheo − I·Ri (A7)

where I is the electrical current (in Ampers) generated by the RED unit. By the other side,
U can also be calculated from the voltage drop on the external load (RL):

U = I·RL (A8)

Since Equations (A7) and (A8) are equivalent, we can resolve the I term and by
this obtain the theoretical current value at different values of external load. By this the
theoretical value of I can be obtained [10,11,33]:

I =
OCVTheo
Ri + RL

(A9)

The gross power (Pg) obtained over RL can be calculated from the product of current
and voltage output, according to Equation (A10) [33]:

Pg = I·U (A10)
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Pg can be normalized by dividing its value by the total active area of a cell in the stack,
obtaining the power density (Pd). Here, Amem is the membrane active area per cell and N is
the number of cells [5,11,18]:

Pd =
Pg

N·Amem
(A11)

Linear flow velocity (v) is defined as the fluid speed inside the flow compartments
formed in the intermembrane space, as is expressed in m·s−1 according to Equation
(A12) [11]:

vi =
φi

ε·N·W·δ (A12)

where φi is volumetric flow of HC or LC feed stream in m3, ε is the spacer porosity, N is the
number of cells, W is the wide of active area on membrane in m, and δ is the intermembrane
space in m. Based on stack dimensions and number of cells, it is possible to define an
operative v and estimate the volumetric flow required for HC and LC solutions, so Equation
(A13) can be reordered as:

φHC = φLC = v·ε·N·W·δ (A13)

The apparent permselectivity (ᾱ) is a parameter that describes in a general form the
ability of the membranes to allow the pass to counter-ions and inhibits it for co-ions (i.e.,
for CEM Na+ is the counter-ion while Cl− is a co-ion) [5,20]. The ᾱ value can be calculated
as in Equation (A14), where OCVStack represents the experimental OCV value.

α =
OCVstack
OCVTheo

× 100 (A14)
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