Journal of
-
W Cybersecurity
\—o o— .
=~ and Privacy

Topical Collection Reprint

Machine Learning and Data
Analytics for Cyber Security

Edited by
Phil Legg and Giorgio Giacinto

mdpi.com/journal/jcp/topical_collections

Machine Learning and Data Analytics
for Cyber Security

Machine Learning and Data Analytics
for Cyber Security

Collection Editors

Phil Legg
Giorgio Giacinto

/
rM\D\Pu Basel e Beijing « Wuhan e Barcelona e Belgrade e Novi Sad e Cluj ¢ Manchester
G

Collection Editors

Phil Legg Giorgio Giacinto

School of Computing and Department of Electrical and
Creative Technologies Electronic Engineering
University of the West of England ~ University of Cagliari
Bristol Cagliari

United Kingdom Italy

Editorial Office

MDPI AG

Grosspeteranlage 5
4052 Basel, Switzerland

This is a reprint of the Topical Collection, published open access by the journal
Journal of Cybersecurity and Privacy (ISSN 2624-800X), freely accessible at: https://www.mdpi.
com/journal/jcp/topical_collections/MachineLearning_Cybersecurity.

For citation purposes, cite each article independently as indicated on the article page online and as
indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3359-7 (Hbk)
ISBN 978-3-7258-3360-3 (PDF)
https://doi.org/10.3390/books978-3-7258-3360-3

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms
and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)
license (https:/ /creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

Aboutthe Editors
Preface

Mohamed Ali Kazi
Detecting Malware C&C Communication Traffic Using Artificial Intelligence Techniques
Reprinted from: J. Cybersecur. Priv. 2025, 5, 4, https://doi.org/10.3390/jcp5010004

Filippo Sobrero, Beatrice Clavarezza, Daniele Ucci and Federica Bisio
Towards a Near-Real-Time Protocol Tunneling Detector Based on Machine Learning Techniques
Reprinted from: J. Cybersecur. Priv. 2023, 3, 35, https:/ /doi.org/10.3390/jcp3040035

Andey Robins, Stone Olguin, Jarek Brown, Clay Carper and Mike Borowczak
Power-Based Side-Channel Attacks on Program Control Flow with Machine Learning Models
Reprinted from: J. Cybersecur. Priv. 2023, 3, 18, https:/ /doi.org/10.3390/jcp3030018

Raghvinder S Sangwan, Youakim Badr andSatish M Srinivasan
Cybersecurityfor Al Systems: A Survey
Reprinted from: |. Cybersecur. Priv. 2023, 3, 10, https:/ /doi.org/10.3390/jcp3020010

Laurens D’hooge, Miel Verkerken, Tim Wauters, Filip De Turck, Bruno Volckaert
Characterizing the Impact of Data-Damaged Models on Generalization Strength in Intrusion
Detection

Reprinted from: J. Cybersecur. Priv. 2023, 3, 8, https://doi.org/10.3390/jcp3020008

Shadi Sadeghpour and Natalija Vlajic

ReMouse Dataset: On the Efficacy of Measuring the Similarity of Human-Generated Trajectories
for the Detection of Session-Replay Bots

Reprinted from:]. Cybersecur. Priv. 2023, 3, 7, https:/ /doi.org/10.3390/jcp3010007

Maha Alghawazi, Daniyal Alghazzawi and Suaad Alarifi

Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature
Review

Reprinted from: |. Cybersecur. Priv. 2022, 2, 39, https:/ /doi.org/10.3390/jcp2040039

A M Mahmud Chowdhury and Masudul Haider Imtiaz
Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review
Reprinted from: J. Cybersecur. Priv. 2022, 2, 36, https:/ /doi.org/10.3390/jcp2030036

Griffith Russell McRee
Improved Detection and Response via Optimized Alerts: Usability Study
Reprinted from: J. Cybersecur. Priv. 2022, 2, 20, https:/ /doi.org/10.3390/jcp2020020

Emmanuel Aboah Boateng and J. W. Bruce
Unsupervised Machine Learning Techniques for Detecting PLC Process Control Anomalies
Reprinted from: J. Cybersecur. Priv. 2022, 2, 12, https:/ /doi.org/10.3390/jcp2020012

Laura Genga, Luca Allodi and Nicola Zannone

Association Rule Mining Meets Regression Analysis: An Automated Approach to Unveil
Systematic Biases in Decision-Making Processes

Reprinted from: J. Cybersecur. Priv. 2022, 2, 11, https:/ /doi.org/10.3390/jcp2010011

Andrew McCarthy, Essam Ghadafi, Panagiotis Andriotis and Phil Legg

Functionality-Preserving Adversarial Machine Learning for Robust Classification in
Cybersecurity and Intrusion Detection Domains: A Survey

Reprinted from: |. Cybersecur. Priv. 2022, 2, 10, https:/ /doi.org/10.3390/jcp2010010 242

Maryam Taeb and Hongmei Chi
Comparison of Deepfake Detection Techniques through Deep Learning
Reprinted from: J. Cybersecur. Priv. 2022, 2, 7, https:/ /doi.org/10.3390/jcp2010007 279

Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr. and Kalyan Perumalla
CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model
Reprinted from: J. Cybersecur. Priv. 2021, 1, 31, https:/ /doi.org/10.3390/jcp1040031 297

Pooria Madani and Natalija Vlajic
RSSI-Based MAC-Layer Spoofing Detection: Deep Learning Approach
Reprinted from: J. Cybersecur. Priv. 2022, 1, 23, https:/ /doi.org/10.3390/jcp1030023 320

Paul M. Simon, Scott Graham, Christopher Talbot and Micah Hayden
Model for Quantifying the Quality of Secure Service
Reprinted from: J. Cybersecur. Priv. 2021, 1, 16, https:/ /doi.org/10.3390/jcp1020016 337

vi

About the Editors

Phil Legg

Phil Legg is a Professor of Cyber Security at the University of the West of England (UWE
Bristol), UK. His research interests span across cyber security, machine learning, visualization, and
human-computer interactions to better understand the detection and mitigation of security threats.
He has led various research activities related to cyber security, including insider threat detection,
adversarial attacks on ML systems, software security testing, and privacy-based learning, supported by
DSTL, NCSC, UKRI, CCAYV, CPNI, along with industry and academic collaborators. He has published
over 60 academic journal and conference papers across his research interests, with successful research
funding of over GBP 2.2M. He is Co-Director of the NCSC-supported Academic Centre of Excellence
in Cyber Security Education, and the Cyber Security research theme lead within the Computer Science
Research Centre, with previous roles including Programme Leader of the NCSC-certified MSc Cyber
Security at UWE. Before joining UWE in 2015, his previous academic posts were held at the University
of Oxford, Swansea University, and Cardiff University. He holds a Ph.D. in computer science (2010)
and a B.Sc. in computer science (2006), both from Cardiff University, Wales, UK.

Giorgio Giacinto

Giorgio Giacinto is a Full Professor of Computer Engineering at the University of Cagliari, Italy,
and a Guest Professor at Lulea University of Technology, Sweden. He is the Co-Director of the
cybersecurity research area within the sAlfer Lab, a joint initiative between the University of Genoa
and the University of Cagliari. In 1995, he joined the Pattern Recognition and Applications Lab at the
Dept. of Electrical and Electronic Engineering, University of Cagliari, Italy; in 2000, he was appointed
a permanent faculty position as an Assistant Professor from 2000 to 2004, and as an Associate Professor
from 2005 to 2017. He obtained a Ph.D. in information engineering in 1999 from the University of
Salerno, Italy.

vii

Preface

Cyber security is primarily concerned with the protection of digital systems and their respective
data. Therefore, how we analyze and monitor such systems are continual challenges that require
innovation to keep pace with the modern technological world and ensure that systems are continually
protected. Machine learning, as a form of artificial intelligence and data analysis, has been utilized
in various ways within the field of cyber security, due to its ability to process and analyze vast
volumes of information, therefore creating actionable intelligence for security analysts. This Topical
Collection on “Machine Learning and Data Analytics for Cyber Security” invited papers that address
the topics of machine learning and data analytics, as well as their applications in emerging challenges
in cyber security. We are pleased to have welcomed a range of papers since the Collection first
began in 2021, covering topics such as large language models for cybersecurity claim classification,
adversarial machine learning attacks against intrusion detection systems, the detection of PLC process
control anomalies, identifying session-replay bots compared to human users, and mitigating against
side-channel attacks. In this Special Issue, we present 16 papers that have been published in the Topical
Collection between 2021 and 2025.

Phil Legg and Giorgio Giacinto
Collection Editors

Journal of
Cybersecurity
and Privacy

Article

Detecting Malware C&C Communication Traffic Using Artificial
Intelligence Techniques

Mohamed Ali Kazi

Academic Editors: Phil Legg and
Giorgio Giacinto

Received: 26 November 2024
Revised: 10 January 2025
Accepted: 14 January 2025
Published: 18 January 2025

Citation: Kazi, M.A. Detecting
Malware C&C Communication Traffic
Using Artificial Intelligence Techniques.
J. Cybersecur. Priv. 2025, 5, 4. https://
doi.org/10.3390/jcp5010004

Copyright: © 2025 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/

licenses /by /4.0/).

Department of Computer Science, School of Computing and Communications, Faculty of Science, Technology,
Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; m.a kazi@open.ac.uk

Abstract: Banking malware poses a significant threat to users by infecting their computers
and then attempting to perform malicious activities such as surreptitiously stealing confi-
dential information from them. Banking malware variants are also continuing to evolve
and have been increasing in numbers for many years. Amongst these, the banking malware
Zeus and its variants are the most prevalent and widespread banking malware variants
discovered. This prevalence was expedited by the fact that the Zeus source code was
inadvertently released to the public in 2004, allowing malware developers to reproduce the
Zeus banking malware and develop variants of this malware. Examples of these include
Ramnit, Citadel, and Zeus Panda. Tools such as anti-malware programs do exist and are
able to detect banking malware variants, however, they have limitations. Their reliance on
regular updates to incorporate new malware signatures or patterns means that they can
only identify known banking malware variants. This constraint inherently restricts their
capability to detect novel, previously unseen malware variants. Adding to this challenge
is the growing ingenuity of malicious actors who craft malware specifically developed to
bypass signature-based anti-malware systems. This paper presents an overview of the Zeus,
Zeus Panda, and Ramnit banking malware variants and discusses their communication
architecture. Subsequently, a methodology is proposed for detecting banking malware
C&C communication traffic, and this methodology is tested using several feature selection
algorithms to determine which feature selection algorithm performs the best. These feature
selection algorithms are also compared with a manual feature selection approach to deter-
mine whether a manual, automated, or hybrid feature selection approach would be more
suitable for this type of problem.

Keywords: banking malware; Zeus malware variants; machine learning; binary classification
algorithms; automated feature selection; manual feature selection

1. Introduction

Cybercrime poses a serious danger to cybersecurity [1], and according to [2], the cost
of cybercrime reached USD 8 trillion in 2023, with malware such as banking malware
accounting for a large proportion of this total cost. In recent years, banking malware has
emerged as a major concern, because malicious actors can make huge profits from these
types of malware variants [3], and the cost to businesses is high. For instance, Emotet
banking malware infections can cost up to USD 1 million per incident to remediate [4].
Banking malware attacks are continuing to rise [5], and the discovery of new banking
malware variants is also continuing to increase. For example, over a thousand variants of
the banking malware Godfather were discovered in 2023 alone [6].

J. Cybersecur. Priv. 2025, 5, 4

https:/ /doi.org/10.3390/jcp5010004

J. Cybersecur. Priv. 2025, 5, 4

The Zeus banking malware has emerged as one of the most notorious banking malware
variants ever developed [7], and since the release of the Zeus source code, many additional
variants of Zeus have been developed and have emerged, including Ramnit, Zeus Panda,
and Ramnit [8].

1.1. Need for Detecting Banking Malware

New malware variants are always being discovered and are becoming more sophis-
ticated in the way that they attack systems [9], and they will continue to increase [10].
Banking malware follows the same trajectory, and, in this category, Zeus and its variants are
still the most prevalent and widespread of all the banking malware variants discovered. For
example, Figure 1 shows that Zeus and Ramnit were amongst the top ten banking malware
variants discovered in Q3 of 2022 [11]. Figure 2 depicts the number of banking malware
attacks that were detected during the same time, and an upward trend is clearly visible [11].

Percentage of banking malware attacks
detected in Q3 2022
19 1414 11
2.1_/"\

5.8 _— 4 \\“

B Ramnit m Zeus o IcedID = CliptoShuffler m Trickbot

m SpyEye 1 RTM m Danabot m Tinba B Gozi

Figure 1. Top ten malware discovered in Q3 of 2022. This is the proportion of distinct users who
experienced this malware family relative to the total number of users targeted by financial malware.

Banking Malware Attacks Detected in 2022
between July and September

42,500
42,000
41,500
41,000
40,500
40,000
39,500
39,000
38,500
38,000

37,500
July 22 August 22 September 22

Figure 2. Banking malware attacks detected in Q3 of 2022.

J. Cybersecur. Priv. 2025, 5, 4

Banking malware have also diversified their tactics, expanded their capabilities, and,
over time, evolved into more sophisticated software tools that leverage several attack
vectors to cause financial loss. The fact that threat actors can use Malware-as-a-service
(Maa$) providers to target victims has also led to their increased prevalence, and some of
these Maa$S providers can charge up to USD 4000 per month for their services [12].

Many strategies exist to detect banking malware, and these include signature-based,
anomaly-based, behavior-based, and heuristic-based approaches [13], but these do have
limitations [14]. These approaches and limitations are explored further over the next few
sections, however, some of these limitations include the following:

The need to update signature-based malware systems.
The inability of these systems to detect newer malware variants.
The inability to detect malware that uses sophisticated obfuscation techniques.

The inability to detect zero-day malware.

This research paper is broken down into the following sections. Firstly, a review is
conducted of the Zeus, Zeus Panda, and Ramnit banking malware variants and then a
banking malware family tree is proposed. The purpose of this review is to understand
the similarities and differences between these various banking malware variants. Next, a
literature review of related research is provided, followed by a problem statement. Finally,
this paper proposes a machine learning approach for detecting banking malware and also
proposes a feature section approach that supports the proposed machine learning approach.

1.2. Paper Contribution and Rational

The main objectives of this paper are to develop a methodology and approach for
detecting several banking malware variants’ Command and Control (C&C) communication
network traffic and to distinguish this from benign network traffic using binary classifi-
cation machine learning (ML) algorithms. For this research, machine learning algorithms
are used rather than deep learning algorithms or neural networks. The rationale for this is
that, firstly, machine learning algorithms are preferred for smaller datasets. This is because
machine learning algorithms can perform well even with limited data. Deep learning algo-
rithms require large amounts of data to perform effectively and have many parameters that
need to be tuned. Machine learning algorithms also require fewer computational resources
and can be deployed quickly, which could help to identify malware more rapidly and
effectively [15,16]. Ref. [17] also conducted extensive research in this area and compared
several binary classification and deep learning algorithms, using these to detect banking
malware C&C communication traffic. The paper demonstrated that machine learning
algorithms are more than capable of detecting banking malware, and in fact, in many
cases, machine learning algorithms performed much better than deep learning algorithms.
The authors also discovered that developing and tuning deep learning algorithms can be
complex, time consuming, and increases the training time.

Many other researchers have used machine learning algorithms in their research, and
some of these are discussed in Section 2. It is clear from these research findings that machine
learning algorithms are effective at detecting many different types of malware variants,
including several banking malware variants.

Three ML algorithms and an ensemble approach are all examined, analyzed, and
compared in this paper, and these include the decision tree (DT), random forest (RF), and K-
Nearest Neighbors (KNN) ML algorithms. The ensemble approach combines all three of the
above algorithms, and the rationale for selecting these three algorithms is that, in [17], many
common machine learning algorithms were tested, and it was determined that the random
forest, decision tree, and KNN machine learning algorithms performed the best when
used for detecting malware C&C communication traffic. Ref. [17] also demonstrated that

J. Cybersecur. Priv. 2025, 5, 4

these ML algorithms performed better than or similar to several deep learning approaches.
Ref. [18] also concluded in their research that, out of over 179 ML algorithms tested, the
KNN, SVM, random forest, and decision tree algorithms performed the best.

This paper aims to develop a machine learning approach that will detect the Zeus
banking malware and its variants. It will then test and compare the detection results of
several binary ML classification algorithms to determine which one provides the best
detection results when used to detect the Zeus banking malware’s C&C communication
traffic. It will also examine, test, and compare the detection results of other banking
malware C&C communication traffic to understand whether the methodology proposed in
this paper works. This research also identifies the minimal number of features that could be
used to identify these banking malware variants. This paper aims to achieve the following:

e From all the ML algorithms being analyzed, identify which one performs the best.

e Establish whether the features used to detect the Zeus banking malware can also be
used to detect the other banking malware variants.

e Determine a minimum set of features that could be used for detecting Zeus.

e Determine a minimum set of features that could be used for detecting other variants
of the Zeus malware.

e Compare the performance results of all the ML algorithms.

e Compare the classification results with other research examined in Section 2.

1.3. Overview of the Zeus Banking Malware

Zeus, also known as Zbot, is a notorious banking malware designed to steal financial
information such as online banking credentials through methods like keylogging, screen
capturing, and the real-time manipulation of web sessions (man-in-the-browser attacks).
It spreads via phishing emails, malicious downloads, and software vulnerabilities. Once
installed, Zeus establishes persistence, evades detection using rootkits and encrypted
communication, and connects to a remote Command and Control (C&C) server to send
stolen data and receive instructions [19]. Known for its modular architecture, Zeus can be
customized for specific targets and often forms botnets for large-scale cybercrime operations.
Its source code leak in 2011 led to numerous variants, making it one of the most impactful
and studied banking malware families in cybersecurity history.

Once the Zeus malware gets onto a device, it needs to perform several actions to
infect the device. The Zeus bot inserts malicious code into the winlogin.exe process after
copying itself to the system 32 directory, and this is achieved by escalating its privileges and
manipulating the winlogin.exe and svchost processes. Two files are created, local.ds, which
is used to download the configuration file, and user.ds, which is used to transmit stolen
data back to the threat actors” C&C servers. The additional code injected into the svchost
process is used by the Zeus bot for communication purposes, and Zeus communicates
using a Command and Control (C&C) channel which can either use a centralized or P2P
architecture. In the centralized architecture, the IP address of the C&C server is hardcoded
into the bot’s binary file, which leaves the bot vulnerable, because if the C&C channel
is discovered and blocked, the Zeus bot becomes inactive and is unable to recover [20].
Modern-day variants of the Zeus malware use a P2P architecture, as this is more resilient to
disconnections and is much harder to detect and block [21]. One reason is simply because
the IP address is not hardcoded into the bot binary and because, in the P2P network,
multiple bots can act as C&C servers. This architecture also allows stolen data to be
routed through the bot network via these intermediary C&C bots and, crucially, allows
bots to recover from failures [22]. This recovery is possible, because each peer C&C bot
can essentially provide support to a failed bot, for example, by sending the failed bot an
updated IP address to help it resume malicious communications.

J. Cybersecur. Priv. 2025, 5, 4

1.4. Overview of the Zeus Panda Banking Malware

Zeus Panda, a variant of the original Zeus malware, is a sophisticated banking mal-
ware designed to steal sensitive financial data through techniques such as keylogging,
web form data theft, and man-in-the-browser (MITB) attacks. It primarily propagates
via phishing emails, malicious attachments, and compromised websites, often targeting
financial institutions and systems in specific regions [19]. Panda communicates with remote
Command and Control (C&C) servers to exfiltrate data and receive instructions, using
encrypted communication and Domain Generation Algorithms (DGAs) for resilience. Its
modular design allows it to adapt to various targets, and it employs advanced evasion tech-
niques like anti-debugging and polymorphism to avoid detection, making it a significant
threat in the cybersecurity landscape.

The Zeus Panda banking malware portrays similar characteristics to the Zeus banking
malware. Research shows that it infects devices using spam emails and exploit kits, and
it has been known to spread like a virus [19]. Zeus Panda’s communication architecture
is similar to the Zeus banking malware architecture, and its communication is generally
encrypted using RC4 or AES [19]. Zeus Panda’s authors have also enhanced the code
to allow it to detect and evade security protection tools such as anti-virus software and
firewalls [23]. Zeus Panda is intelligent enough to detect that it is running in a virtual
environment, and upon sensing such an environment, it can disable itself to ensure that
researchers are unable to detect communication patterns [23]. The Zeus Panda malware
is difficult to detect and can persist on a device for a long time, and researchers have
concluded that Zeus Panda is a sophisticated variant of the Zeus malware [23].

1.5. Overview of the Ramnit Banking Malware

Ramnit is a versatile and persistent malware that evolved from a worm in 2010 into a
sophisticated banking Trojan targeting financial institutions and sensitive data. It spreads
through phishing emails, malicious attachments, exploit kits, and infected files, using tech-
niques like man-in-the-browser (MITB) attacks and web injections to steal online banking
credentials and other personal information. Ramnit communicates with Command and
Control (C&C) servers via encrypted channels, enabling data exfiltration and command exe-
cution. Its modular architecture allows for adaptability, while advanced evasion techniques,
such as polymorphism and rootkits, make it difficult to detect. Despite law enforcement
disruptions, Ramnit has resurfaced over the years with enhanced capabilities, posing a
significant threat to global cybersecurity.

Ramnit is an enhanced version of the Zeus malware and incorporates code from the
Zeus banking malware [24]. The C&C communication channel is encrypted, and this is
usually achieved using custom encryption techniques [25]. Ramnit can also use HTTPS
to obfuscate the communication channel and hide any data that are transmitted between
systems. Ramnit is sophisticated enough to detect and evade security tools, and once
it infects a device, it can persist on the device for a long time [25]. Ramnit can also use
evasion techniques to avoid detection, and some of these include the use of anti-debugging
techniques, polymorphism, and encryption [26].

1.6. Banking Malware Communication (C&C) Architecture

Zeus, Zeus Panda, and Ramnit are all sophisticated malware families targeting finan-
cial institutions, employing similar techniques like phishing-based propagation, Command
and Control (C&C) communication, a modular architecture, and advanced evasion meth-
ods such as polymorphism and MITB attacks to steal banking credentials and personal
data. While Zeus is the foundational banking Trojan known for its widespread botnet use,
Zeus Panda enhances targeting with tailored regional attacks and advanced MITB capa-

J. Cybersecur. Priv. 2025, 5, 4

bilities. Ramnit, evolving from a worm, extends its reach with broader infection methods,
including USB and executable file propagation, exhibiting a stronger persistence through
polymorphic techniques and rootkit functionality. Despite their similarities, each malware
family has unique traits that make it distinct in its evolution and attack strategies.

Banking malware use C&C communication channels to communicate between the
infected device and malicious entity, and the focus of this study is to identify these com-
munication patterns. Once a device becomes infected, outgoing communication is hard
to detect, as it can very easily obfuscate itself with the normal traffic flows of the network,
thus making the malware hard to detect.

Banking malware variants are made up of bots that communicate with the C&C
server and, initially, these communication channels are centralized, because each bot will
communicate with the C&C server directly. These bots are also controlled directly by
the C&C server, and this architecture uses a push model for communication purposes.
Instructions and malicious commands are all pushed from the C&C server to the bot [27].
The C&C channel always remains active in the ‘connect mode’, as the bot needs to be ready
to receive commands [27]. This communication uses the HTTP/HTTPS protocol and can
also use other protocols such as DNS tunneling, which makes the malware more difficult to
detect. The bots also reach out to the C&C server at predefined intervals, and this ensures
that the C&C server maintains communication with these bots. The centralized C&C
architecture has limitations, and the key one is that, if the C&C server becomes inactive, all
the bots fail, and the bot network becomes inactive.

The centralized architecture evolved into a peer to peer (P2P) architecture in which the
bots build a decentralized network of bots. This means that the bots can receive commands
from other bots, and there is no longer a reliance on a centralized C&C server. This P2P
network is more difficult to detect and take down [28], and makes the botnet more resilient.
If a bot in a botnet loses communication, it can automatically try other bots or domains
to resume communication. Also, this bot failure does not affect the botnet, as the botnet
remains active and other bots are still able to communicate with each other. There are some
weaknesses inherent in this type of network, and one of them is that updates can take
longer to propagate across the network, as these updates have to be routed through many
other bots. Also, stolen data that need to be routed back to the malicious attacker can also
face similar challenges.

Machine learning (ML) is critical for detecting the C&C communicating traffic used
by malware due to its ability to overcome the limitations of traditional detection methods.
Unlike signature-based approaches, which struggle in detecting zero-day malware, poly-
morphic threats, or encrypted traffic, ML focuses on patterns, behaviors, and anomalies
in network communications. By analyzing network features such as packet sizes, traffic
flow, and timing intervals, ML models can identify malicious communications even when
the data are obfuscated. Furthermore, machine learning enables real-time detection ca-
pabilities and can efficiently scale to handle vast amounts of network traffic. It can also
adapt to evolving threats, as ML models can be retrained on new data. It is particularly
effective against decentralized P2P C&C architectures, like the Zeus banking malware,
as it can model peer relationships and detect botnet traffic. Supervised algorithms such
as random forest and unsupervised methods like clustering can help to optimize feature
selection, improving detection accuracy while reducing computational overhead. By lever-
aging behavioral analysis, ML provides a robust and dynamic solution for identifying and
mitigating sophisticated malware C&C activities.

J. Cybersecur. Priv. 2025, 5, 4

1.7. Proposed Banking Malware Tree

This section examines and discusses the relationships between the three banking
malware variants that were discussed above and establishes a timescale of when they
emerged. Figure 3 shows that Zeus was discovered in 2006 [29], Ramnit was discovered
in 2010, and Zeus Panda was discovered in 2016 [30], and research indicates that they all
share similar code and perform similar actions. Based on this research [30-36], this paper
proposes that all banking malware variants belong to a specific family of banking malware,
and this proposed family tree can be seen in Figure 4. A historical timeline of a selection of
banking malware variants can be seen in Figure 3, which suggests that all banking malware
variants can be traced back to one of the parent banking malware variants, Zeus, Snifula,
and Gozi, as shown in Figure 4.

Snifula Goznym
Gameover Zeus
& & &
Zeus Gozi Ramnit Citadel Cridex Neverquest Dridex Zeus Panda
1 | | I] I I |
[! L I [I I 1
2006 2007 2010 2011 2012 2013 2014 2016

Figure 3. Banking malware timeline.

Snifula
Family

Zeus
Family

S A S R S
RSSO R AR

Figure 4. Banking malware tree.

The key conclusions from this research reveal that most banking malware variants
belong to one of the three primary families identified in Figure 4. These variants frequently
borrow code from one another, with newer malware still sharing similarities in code and be-
havior with those outlined in Figure 4. Despite these overlaps, banking malware continues
to evolve, becoming increasingly sophisticated and more effective at targeting victims.

The rest of the paper is organized as follows: Section 2 discusses some of the key
research that has been conducted in this field. In Section 3, a problem statement is presented.
Section 4 proposes a framework to detect the banking malware variants discussed in
Sections 1.2-1.4, Section 5 analyzes and compares the research findings, and Section 6
concludes with a summary and conclusion.

2. Related Studies

Malware detection approaches can be categorized using several methods. However,
the method discussed by [37] is used in this paper, which is that malware detection can
either be signature-based, heuristic-based, or behavioral-based. Also, malware detection
tools can either be host-based or network-based [38], and this research examines a network-
based approach, as it focuses on C&C network communication traffic.

J. Cybersecur. Priv. 2025, 5, 4

The authors in [39] used the SVM machine learning algorithm to develop an intrusion
detection system which uses the NSL-KDD dataset to classify network traffic. To select
appropriate features, ref. [39] used a hybrid feature selection approach which ranks features
using a feature selection approach called Information Gain Ratio (IGR) and then refined
this further by using the k-means classifier. They achieved an accuracy of 99.32 and 99.37
when used with 23 and 30 features.

A simple yet effective method was developed by [40], which involved extracting
statical features called ‘function call frequency” and ‘opcode frequency’ from Windows
PE files. These features were extracted from both the executable files” header and from
the executables’ payload, and the features were extracted from a total of 1230 executable
files. The dataset contained 800 malware and 430 non-malware executable files, and the
experimental work was conducted using a tool called WEKA. Several classifiers were
experimented with, and the results of these experiments can be seen in Table 1.

Table 1. Test results from [40] when using the SVM ML algorithm.

Classifier FP FN Accuracy
Kstar 0.275 0.026 88.69
J48 0.156 0.026 92.84
DT 0.14 0.031 97.47

Research was carried out by [41], who used an unsupervised machine learning al-
gorithm to detect botnet communication traffic. They used datasets obtained from the
University of Georgia which contained botnet traffic from both the Zeus and Waledac
malware variants. Features were extracted from the dataset by using a tool called Netmate,
which extracts traffic as flows and then analyzes each flow to calculate their statistical
features. The datasets were analyzed using WEKA and all the experimental analyses were
also conducted using this tool. The experimental results can be seen in Table 2.

Table 2. Test results from [41] when using an unsupervised ML algorithm.

Malware Variant FP TN FP FN Accuracy
Zeus 1 14,678 4352 969 1 0.9515
Zeus 2 14,663 4341 991 5 0.9502

Waledac 1 14,536 4500 963 1 0.9518
Waledac 2 14,521 4525 963 1 0.9523
Storm 1 10,139 4499 501 1386 0.8858
Storm 2 2300 503 247 3 0.9181

BotOnus is a tool developed by [42] which can extract a set of flow specific features
and then, by using an online fixed-width clustering algorithm, can arrange these features
into unique clusters. These clusters are examined and analyzed for suspicious behaviors.
Suspicious botnet clusters are defined as flow clusters that have at least two members that
have been identified as potentially suspicious. This is determined using an intra-cluster
similarity score which is set to a predefined threshold. BotOnus is an online detection
technique that makes use of unsupervised machine learning algorithms and can identify
unknown botnets. Table 3 shows the experimental results obtained by BotOnus.

RCC Detector (RCC3) is a tool developed by [43] that uses a multi-layer perceptron
(MLP) and a temporal persistence (TP) classifier to analyze the traffic flows from a host,
and the aim is to identify malware communication traffic. The botnet detection system
was trained and tested using the DETER testbed and two datasets were used, the DARPA
and LBNL datasets. The authors aimed to predict Zeus, Blackenergy, and normal traffic,

J. Cybersecur. Priv. 2025, 5, 4

and the key to this paper was that RCC examined traffic generated from a host. The tool
achieved a detection rate of 97.7%.

Table 3. Test results from [42] when using an unsupervised ML algorithm.

Botnet Average Detection Rate Average False Alarm Rate
HTTP-based 0.95 0.041
IRC-based 0.96 0.033
P2P-based 0.91 0.037

Classification of Network Information Flow Analysis (CONIFA) is a tool developed
by [44] which was used to identify and detect the Zeus banking malware. For the experi-
mental analysis, ref. [44] used a standard framework, a cost-sensitive, and a cost-insensitive
version of the C4.5 machine learning algorithm. For the cost-sensitive experimental analysis,
the following parameters were used.

e Lenient version with cost settings of 10, 20, and 30
e Strict version with a cost setting of 10, 20, and 30

Two Zeus datasets were used for training and testing, and these comprised 432 samples
of the Zeus v1 malware and 144 samples of the Zeus v2 malware. The prediction results
of the tests conducted using the standard framework can be seen in Table 4, and the test
results of using the cost-sensitive and cost-insensitive versions of C4.5 can be seen in Table 5.
Table 5 demonstrates an improvement in the recall score and shows that the cost-sensitive
and cost-insensitive versions of C4.5 performed better than the standard framework at
predicting the Zeus malware.

Table 4. Test results of using the standard framework.

Algorithm Recall Score Precision Score F-Measure Score
Standard 0.556 0.964 0.705

Table 5. Test results of CONIFA using the cost-sensitive and -insensitive versions of C4.5.

Botnet Recall Score Precision Score F-Measure Score
Lenient with cost 10 0.556 0.964 0.705
Lenient with cost 20 0.667 0676 0671
Lenient with cost 30 0.667 0.686 0.676

Strict with cost 10 0.667 0.952 0.787
Strict with cost 20 0.611 0.989 0.755
Strict with cost 30 0.611 0.989 0.755

Table 4 demonstrates that, when the standard framework was evaluated against the
Zeus v2 dataset after being trained on the Zeus v1 dataset, the detection results decreased.
About half of the Zeus flows were incorrectly identified, with a recall rate of approximately
56%. As seen in Table 5, CONIFA showed improvement during the same experiment, with
the recall rate rising to almost 67%.

The authors in [45] used the Symbiotic Bod-Based (SBB) and C4.5 machine learning
algorithms to create a framework for detecting malware communication traffic. Features
were extracted from the communication (C&C) channels of various malware variants,
which included the C&C communication traffic of the Zeus banking malware. The samples
were obtained by generating C&C communication traffic to known malware domains.
Additional malware samples were obtained from various sources, including NETRESEC

J. Cybersecur. Priv. 2025, 5, 4

and Zeustracker, and these were used in the experimental analysis. Table 6 shows the
datasets that were used for the experimental analysis.

Table 6. Information about the datasets used by [45].

Benign Samples Benign Samples Malware Samples Benign Samples

Dataset Used for Training Used for Testing Used for Training Used for Testing
Zeus-1 6099 6099 2614 2614
Zeus-2 611 611 262 262
Zeus (NETRESEC) 252 252 108 108,100
Zeus (Snort) 100 100 43 43
Conficker 28,951 28,951 12,386 12,416
Torpig 1864 1856 794 800

After the data were collected, a program called Softflowd was used to extract the
features that were used during the experimental analysis. Two feature sets were used, and
these are depicted in Figure 5.

Softflowd set.1 & 2 Softflowd set.2 only

Duration Flag-A
Total number of packets (Pkts) Flag-P
Total number of bytes (Byts) Flag-R
Flows Flag-S
Type of Service (TOS) Flag-F
Bits per second (bps) Flag-U

Packets per second (pps)
Bytes per packet (Bpp)

Figure 5. The two feature sets used by [45] during their experimental analysis.

The results obtained during the experimental analysis can be seen in Tables 7 and 8.
Table 7 shows the classification results when the ML algorithms were trained and tested
using the features in feature set 1 and 2. Table 8 shows the results obtained when the ML
algorithms were trained and tested using the features in feature set 1 only. For brevity, only
the results for the Zeus malware are shown. The results depicted in both Tables 7 and 8
show good prediction results across all the datasets. The highest true positive rate was
achieved when the algorithms were trained and tested using the features from the Softflowd
set.1 and 2 feature set, and was obtained by both the C4.5 and SBB machine learning
algorithms. The true positive scores obtained were 99% and 98%, respectively. Table 8
shows that the highest true positive rate achieved was 100%, and this was achieved by the
SBB machine learning algorithm.

Auto-mal is a product developed by [46] which analyzes binary codes and identifies a
set of features that are used to identify malware such as the Zeus banking malware. These
features are then used to automatically classify the malware samples into malware families,
and this is performed by using several machine learning algorithms. These algorithms
include the Support Vector Classification (SVM), logistic regression (RG), Classification Tree
(CT), and K-Nearest Neighbor (KNN) machine learning algorithms. Auto-mal captures
and categorizes network traffic by using information such as the IP address, port numbers,

10

J. Cybersecur. Priv. 2025, 5, 4

and protocol types, and during this experimental analysis, 1.980 Zeus malware samples
were analyzed. The Zeus samples were split into two datasets, one of which was used
for training and the other was used for testing. For testing, 979 samples of Zeus and
1000 normal samples were used, and the testing results showed that the SVM algorithm
performed the best and was able to correctly identify 95% of the Zeus malware samples.
The decision tree algorithm produced a high false negative result, and from this, ref. [46]
concluded that the decision tree algorithm was limited in its usefulness.

Table 7. Classification results when used with Softflowd set.1 and 2.

Dataset and Algorithm B;I;,i;{c‘m B;l;,i;{gn M_arll‘:{: re M;l;;{a re
Zeus-1—C4.5 86 17 83 14
Zeus-2—C4.5 96 1 99

Zeus (NETRESEC)—C4.5 97 3 97
Zeus (Snort)—C4.5 98 12 88 2
Zeus-1—SBB 80 27 73 20
Zeus-2—SBB 96 1 99
Zeus (NETRESEC)—SBB 93 13 87 7
Zeus (Snort)—SBB 98 2 98

Table 8. Classification results when used with Softflowd set.2.

Dataset and Algorithm B;r;)il;gn B;rll)ilgn M?rll‘:;: re M;l;vRare
Zeus-1—C4.5 90 16 84 10
Zeus-2—C4.5 97 3 97

Zeus (NETRESEC)—C4.5 97 6 94
Zeus (Snort)—C4.5 97 1 99
Zeus-1—SBB 73 18 82 27
Zeus-2—SBB 94 0 100 6
Zeus (NETRESEC)—SBB 87 7 93 13
Zeus (Snort)—SBB 100 0 100 0

An XAl-driven antivirus software was developed by [47], which essentially uses
Explainable Artificial Intelligence (XAI) to create Al models. This XAl-driven antivirus
software was designed to identify the Citadel banking malware, which is a variant of the
Zeus banking malware. Ref. [47] highlights the limitations of traditional antivirus programs
and argues that an Al-driven approach is more robust, accurate, and proactive in detecting
new and evolving malware variants of the Citadel banking malware. XAI uses multiple
Extreme Learning Models (mELMs) to detect the Citadel banking malware, and mELM
is a morphological technique used for digital image processing. Ref. [47] adopted this in
their software program to detect Citadel and concluded that mELM is a viable technique
that can be used to detect malware. The software achieved an accuracy of 98% and was
also quick at training and learning. One of the key characteristics of XAl is that the authors
provided some insights into how the algorithm works, and these insights can help other
researchers in their research projects.

11

J. Cybersecur. Priv. 2025, 5, 4

The authors in [48] used a Convolutional Neural Network (CNN) to classify malware
samples which included the banking malware variant Ramnit. The authors transformed
the malware binary files into grayscale images, which then enabled the CNN to detect
patterns that could be used to classify the malware. Ref. [48] built a CNN network which
consisted of a convolutional layer, pooling layer, and fully connected layer. Features were
generated by analyzing the executable files, and although many techniques exist to perform
this, ref. [48] used the following methodology. First, 1600 unique opcodes were created,
which then allowed [48] to use the opcode frequency as the discriminatory feature for the
experimental work. To select the optimal number of features for the experimental work,
ref. [48] used different dimensionality reduction techniques, which included the variance
threshold approach, a single layer auto-encoder, and a three-layer stacked auto encoder.

The authors in [49] used both machine learning and deep learning algorithms to build
several models to train, test, and classify malware. The machine learning algorithm used
was the random forest algorithm, and three deep learning models were used. The three
deep learning models were architected using two hidden layers (DNN-2L), four hidden
layers (DNN-4L), and seven hidden layers (DNN-7L). Ref. [48] used several criteria to
measure the performance of the algorithms and models used, and these included accuracy,
recall (true positive rate (TPR)), true negative rate (TNR), and precision (positive predictive
value (PPV)). The experimental analysis produced good results. The lowest score was
a precision score of 87.97%, achieved by the DNN-7L model, and the highest score was
achieved by the RF model, with a PPV /precision score of 100.

Fingerprinting Windows API system function calls is an approach developed by [49],
in which the frequency of Windows API system function calls are captured and analyzed to
identify malicious patterns. This approach also allows for various malware variants to be
categorized based on their relationships. The relationship is determined by understanding
and grouping common behaviors and patterns that are identified during the analysis stage.
Around 65,000 malware samples were analyzed, and this was conducted using the Cuckoo
Malware Sandbox, which allowed [49] to identify the name of the API calls being called
and the number of times each API call was made. Ref. [49] used several machine learning
algorithms to train and test samples, and these included KNN, logistic regression, and
the decision tree ML algorithm. The detection results obtained were good, and for the
Ramnit.gen!A malware, an accuracy of 79.495% was achieved, and for the Ramnit.gen!C
malware, an accuracy of 95.473% was achieved.

Similar research was conducted by [50], who created a machine learning model that
was able to classify and identify malware and also able to group malware variants based
on their relationships. These included several variants of the banking malware Ramnit.
Ref. [50] extracted features from the malware samples using an approach called static
analysis. This approach enabled them to extract features without having to execute or run
the malware executable. The authors claimed that this approach allowed them to achieve
a better performance with a low computational risk. Using the static approach, features
could be extracted from two files within the executable, the hex file or the byte code file.
During their research, ref. [50] extracted the features from the byte code files. This was
performed using the n-gram feature extraction approach, which analyzed the byte sequence
or opcode patterns within the malware executable files and then represented these patterns
as words, in this case using the hex format. Ref. [50] used the K-Nearest Neighbor, logistic
regression, random forest, and XGboost machine learning algorithms to train, test, and
classify the malware, and for the evaluation, accuracy and log-loss were used to measure
the performance of the machine learning algorithms. Table 9 shows the classification results
obtained when classifying the malware using the byte file features. Table 9 shows that the

12

J. Cybersecur. Priv. 2025, 5, 4

XGBoost and decision tree ML algorithms performed the best, achieving an accuracy of
98.76 and 97.98, respectively.

Table 9. Experimental results of the algorithms when classified using byte file features.

Algorithm Test Log-Loss (%) Misclassification Rate Accuracy
KNN 0.24 4.5 95.5
Logistic regression 0.528 12.32 77.68
Random forest 0.085 2.02 97.98
XGBoost 0.078 1.24 98.76

3. Problem Statement

The goal of this study is to develop a methodology and create a framework for pre-

dicting banking malware using machine learning approaches. Many malware detection ap-
proaches already exist and have been researched and used by researchers. Some of these in-
clude signature-based approaches [51,52] and anomaly-based detection approaches [53,54],

however, these do have limitations [55]. Some of these limitations include the following.

Signature-based systems are unable to detect zero-day malware or unknown
malware variants.

Signature-based systems must be updated frequently to accommodate newly emerging
malware variants.

Malware uses various obfuscation techniques to evade detection.

There can be a time delay between discovering new malware and creating a signature
to identify the malware.

Signature databases can consume significant system resources and have a
slow performance.

Modern malware can dynamically change its structure (polymorphic malware) or
rewrite its code (metamorphic malware) to avoid signature-based malware systems.
As the malware landscape evolves, maintaining and updating the signature database
becomes increasingly complex.

Effective and continuous tuning is required to reduce false positives.

The network has to be baselined, and normal communication traffic needs to
be identified.

Network traffic must be constantly monitored.

Malware can hide within the normal traffic flows, making these malware types difficult
to detect.

Machine learning has been used to resolve these issues, and while researchers have

used machine learning algorithms to detect banking malware [35,44—47], there has been

minimal research aimed at detecting a wide range of banking malware variants using a

model trained exclusively on one dataset containing a single banking malware variant.
This study seeks to address this gap by developing a machine learning model trained on a
single dataset representing one variant of banking malware. The primary objectives of this

research are as follows:

Cross-Variant Detection: To apply the trained model to identify other banking malware
variants and evaluate its generalizability.

Algorithm Performance Evaluation: To compare the detection performances of various
machine learning algorithms in this context.

13

J. Cybersecur. Priv. 2025, 5, 4

e Feature Optimization: To determine the minimum set of features required to achieve
satisfactory prediction results, thereby optimizing computational efficiency and sim-
plifying the detection process.

This approach aims to advance the understanding of cross-variant malware detection
and provide insights into the effectiveness of machine learning algorithms and feature
selection when used to detect diverse banking malware threats.

4. Research Methodology

This research paper aims to classify C&C network traffic flows as belonging to Zeus,
which indicates that the C&C network traffic is malicious. The high-level activities include

the following steps:

e Obtain pcap samples of the Zeus banking malware and benign traffic.
e Extract features from the pcap samples.

e Train and test the algorithms with the data.

e Compare and discuss the results.

Bot samples are collected as pcap files, and these pcap files are made up of network
flows. A flow is defined as a sequence of packets flowing between a source and a destina-
tion host. Each flow is referred to as an ML sample, and the features are extracted from
these samples. For this research, supervised ML algorithms are chosen, as these algorithms
are well-suited for solving predication and classification problems such as the one being re-
searched in this paper [56]. This paper analyzes three supervised ML algorithms, which are
the decision tree (DT), random forest (RF) and K-Nearest Neighbor (KNN) ML algorithms,
and examines an ensemble approach. The approach and methodology are explained in the
next few sections.

4.1. Machine Learning Algorithms

Artificial intelligence (AI) is made up of several fields, which include deep learning,
neural networks, and machine learning. Figure 6 depicts the various fields of Al [57].

Supervised Unsupervised Reinforced
Machine Learning Machine Learning Machine Learning

Regression Clustering Decision Making

Decision Tree (e

Random Forest Linear Regression Density-based Clustering Deep Q-Network
Support Vector Decision Tree Regression Distribution-based Clustering Soft Actor-Critic{SAC)
K Nearest Neighbor Random Forest Regression Hierarchical clustering
Naive Baynes

Figure 6. Machine learning approaches with example algorithms.

The most widely used approaches in machine learning are supervised, unsupervised,
and reinforced learning, and Figure 7 illustrates the various types of machine learning
approaches [58] that can be used. For this paper, supervised ML approaches are used.

14

J. Cybersecur. Priv. 2025, 5, 4

Collect
Datasets

Feature Selection

Data Pre- Exract
Processing. Features

=

Record Performance
Metrics

Figure 7. System architecture.

There are several types of supervised ML approaches that could be considered for the
problem being researched in this paper, and these are as follows [58]:

e Binary classification—Two possible classifications can be predicted, for example, an
email can either be spam or not spam. The two possible classes are usually either
normal or abnormal.

e Multi-Class classification—Multiple classes are involved, and each data point is classi-
fied into one of the available class options.

e Multi-Label classification—Multiple classes can be predicted for each data point. For
example, a house could be present in multiple photos.

For this research, the binary classification approach was selected, as this has been
used by many researchers to solve similar problems, as discussed in Sections 1 and 2.
For the supervised ML algorithms used in this research, a brief description of these is
provided below.

One of the most effective and noteworthy machine learning methods for predictive
modeling is the decision tree (DT) algorithm, which performs exceptionally well when
dealing with binary classification problems [59]. The decision tree algorithm operates by
splitting data into subsets based on the value of the input features. This results in a treelike
structure, where each node represents a feature, each branch represents a decision rule,
and each leaf node represents an outcome. This hierarchical structure facilitates a straight-
forward interpretation and visualization of decision-making processes. Traditionally, the
decision tree algorithm did not produce optimum results, however, recent advances utilize
techniques to construct optimal decision trees and are able to balance the accuracy and
complexity of the trees built and used [60]. Since this research aims to ascertain whether the
network flow is malicious (banking malware traffic) or benign, the decision tree technique
is a good fit for this prediction problem. Additionally, the decision tree algorithm learns
and makes predictions extremely quickly [59].

In comparison to the decision tree algorithm, the random forest (RF) algorithm can
be more effective, can produce better prediction results, and can lessen the likelihood of
overfitting [61]. The random forest algorithm is a robust ensemble learning method that
enhances the performances of decision trees by constructing a multitude of trees and then
aggregating these results. This approach mitigates the overfitting commonly associated
with individual decision trees and improves predictive accuracy. The ensemble approach
used by RF reduces variance and enhances model stability. Each tree is trained on a

15

J. Cybersecur. Priv. 2025, 5, 4

different sample of the dataset, and RF randomly selects the features for training, which
promotes diversity among the trees [62]. When utilizing the RF method, it is crucial to
adjust the parameters of the algorithm in order to improve the prediction accuracy. It can
be challenging to foresee the ideal values in advance, and the parameters are chosen by
experimentation. One of these parameters is the quantity of the trees constructed during
the training and testing phases, and research shows that constructing more than 128 trees
can raise the cost of training and testing while offering no appreciable improvement in
accuracy [63]. Constructing between 64 and 128 trees has been shown to be the ideal
number of trees that should be used, so, the experimental analysis for this research also
used between 64 and 128 trees [63].

The K-Nearest Neighbors (KNN) algorithm is a supervised learning algorithm that
can be utilized for both classification and regression tasks. It operates on the principle
that data points with similar features are likely to belong to the same class or share similar
output values. For a given input, KNN computes the distance between this input and
all other instances in the training dataset, which enables KNN to make predictions [64].
KNN is a non-parametric method [65], meaning that it makes no assumptions about the
underlying data. Following the computation of the distance between each new data point
and every other training data point, the algorithm can classify the new data point in
relation to the trained data points [66]. KNN is a simple and adaptable ML algorithm
that can solve various predication problems such as multi-class and binary classification
problems, like the one being researched in this paper. However, research shows that KNN
can be computationally complex to run, and the distance between points can become less
meaningful in high-dimensional spaces [67].

An ensemble approach [68] is also used in this research, and for this, the random
forest, decision tree, and the K-Nearest Neighbor ML algorithms are all used together in the
ensemble approach. A voting classifier was used to combine the results of all the models,
and for this research, a soft vote [69] was used for predicting the malware. The soft voting
approach is useful, because it can select the average probability of each class [70].

4.2. System Architecture and Methodology

The system architecture shown in Figure 8 depicts the steps that are completed for the
experimental work conducted during this research. These include the following:

The datasets are identified and collected.

Features are extracted from these datasets.

The extracted features are transferred to a CSV file and prepared.

The features are selected for training and testing.

The algorithm is trained and tested, and a model is created. Only one dataset is used
for the training.

The model is tuned, trained, and tested again if required.

e The model is used to test and evaluate the remaining datasets.
e The final model is deployed, all the data samples are tested, and a report highlighting
the evaluation metrics is created.

RUN SCript 1o extract ot Tic (et
flow and metric Y Prepare and
' (e ' produced * Scel * e Export to csv

Run script to extract fle /
* -out import to
flow and metric [d
roduced EXCe repare an
. (TEEHED * R * & * clean data *E"W‘ tocsy

Figure 8. Process for extracting and computing flow statistics.

16

J. Cybersecur. Priv. 2025, 5, 4

4.3. Data Samples

In this study, a variety of datasets were collected, and these datasets represent real-
world activity that was captured by various reputable organizations. These datasets are
represented as pcap files. Six datasets were used for this research, and these were collected
from Zeustracker [71], Stratosphere [72], Abuse.ch [73], and Dalhousie University [74].
Abuse.ch correlates samples from commercial and open-source platforms such as VirusTotal,
ClamAYV, Karspersky, and Avast [73]. Dalhousie University’s botnet samples are part of
the NIMS botnet research project and have been widely utilized by many researchers [74].
Table 10 defines all the data sets that were used during this research and provides some
information around the banking malware variants collected and used during this research.
Table 10 also specifies the year that the samples were detected and categorized by the
antivirus vendor and depicts the number of flows extracted from these samples.

Each pcap file is made up of network flows, and for this research, the network charac-
teristics for each flow were extracted from these pcap files. A flow is a sequence of packets
flowing between a source and a destination (IP and port combination) during a certain
period of time. Figure 9 shows the process used to extract the characteristics from each flow,
and the first step was to set up and configure Netmate-flowcal on a virtual machine, which
allowed the pcap files to be input into the Netmate-flowcal tool. Netmate-flowcal then
calculated the key statistics of each flow within each pcap file and output these into an .out
file, which had to be converted to a text file and cleaned. The text file was then converted
into an excel file, and the data were prepared, cleaned, and then converted into a CSV file,
which prepared the file for the machine learning algorithm. As there were thousands of
pcap files, a script was developed to automate this process.

Each sample in the CSV files was labeled, and this identified whether the sample was
benign or malware. A label of ‘0" was applied to the benign traffic samples and a label of ‘1"
was applied to the Zeus malware traffic samples. The Pandas library was used to create
and manipulate the data frame and prepare the data for the machine learning tasks.

Zeus Benign
Dataset Dataset

Extract Extract
Features Features

Export to Export to
csv csv
} ,
Label the Label the
flows flows

Combine
csv files

Figure 9. Feature rankings calculated by SelectKBest.

17

J. Cybersecur. Priv. 2025, 5, 4

Table 10. Datasets used in this research.

Malware Name of Dataset for
Dataset Type Name/Year Number of Flows This Paper
Malware Zeus/2019 66,009 Datasetl
Benign N/A 66,009 atase
Malware Zeus/2019 38,282 D 0
Benign N/A 38,282 atase
Malware Zeus/2022 272,425 Dataset3
Benign N/A 272,425 atase
Malware ZeusPanda /2022 11,864 D 4
Benign N/A 11,864 ataset
Malware Ramnit/2022 10,204 D 5
Benign N/A 10,204 atase
Malware Dridex/2018 134,998 D 6
Benign N/A 134,998 ataset

4.4. Feature Selection

The statistical features were extracted and exported into a CSV file, and these were
used as the features. A total of 44 features were extracted, however, not all the features
were used. It is important to select the appropriate and best features, as this helps to reduce
overfitting and computational cost and helps the ML algorithm to learn faster [75,76]. Sev-
eral approaches can be used to identify the appropriate features, and the three predominant
approaches are the following [77]:

o Filter method—Feature selection is independent of the ML algorithm.

o Wrapper method—Features are selectively used to train the ML algorithm, and through
continual experimental analysis, the best features are selected for the final model. This
method can be very time-consuming.

e Hybrid—A fusion of the filter and wrapper approaches.

For this research, the features were analyzed using the filter-based approach, and
three automated feature selection algorithms were used for this analysis, including the
ANOVA [78], CFS [79], and SelectKBest [80] feature selection algorithms.

SelectKBest is a feature selection approach which selects the top K features from
all the features available. This is based on a scoring function based on how well each
feature correlates with the target variable, and for this research, f_classif was used for the
scoring mechanism, which scores each feature and then ranks these based on the score. The
score assigned to the feature measures the relationship between the feature and the target
variable, in this case, malware or benign, and then selects the top K features. The formula
for calculating the f_classif is shown in Equation (1) [81]. K is the number of classes (distinct
target labels), n; is the number of samples in class i, N is the total number of samples in
the dataset, X; is the mean of feature values for class i, X is the overall mean of the feature
across all samples, and x;; is the value of the feature for sample j in class i.

r— Pk ni(x - %) 1)

1 k n; —\2
mz,‘:1 Zj'zl (xij - xi)

SelectKBest compares the mean values of different groups. The two groups considered
are the ‘between-group variances” and ‘within-group variances’. A larger value assigned to
a feature means that the feature is a good candidate for predicting the malware, whereas
a smaller value means that the feature is unlikely to help predict the malware. The top

18

J. Cybersecur. Priv. 2025, 5, 4

10 features calculated by SelectKBest were selected for this research, and this was performed
by setting the K Value to 10. This was based on experimental analysis, and increasing the K
value further did not influence the prediction results. Figure 10 shows the feature rankings
calculated using SelectKBest.

SelectKBest Top Features

mean_fpktl
mean_bpkt!

mean_fiat
mean_biat

std_bpktl
flow_bytes
min_fiat
max_fiat
mean_active
std_active
total_fvolume
total_bvolume
min_active
std_idle
max_active
total_fpackets
total_bpackets
max_biat
max_idle
min_idle

Features

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000
Score

Figure 10. Feature rankings calculated by SelectKBest.

CFS works by considering the correlation between each feature and the target variable
and the correlations between the features themselves. CFS then selects the features that
maximize and minimize the correlation between the features. A subset of these features is
evaluated further, and this is based on the average correlations with the target variable and
the inverse of the correlation between the features themselves. The formula for calculating
the CFS is shown in Equation (2) [82]. S is the subset of selected features, 7. is the
correlation between the selected features and the target variable, r¢f is the correlation
between the features themselves, k is the number of features in the subset S, and m is the

total number of features in the dataset.

.
CFS(S) = % @
i

m

The features with the highest combined score are selected. Figure 11 shows the feature
ranking scores calculated by CFS.

ANOVA is another feature selection approach that was used during this research. In
ANOVA, the data are split into groups, and these groups represent the different categories
being compared. The groups are compared to the target variable, and the differences
between these groups are calculated. Several calculations are performed by ANOVA, and
these can be seen in Equation (3) [83]. The first is SSB, which is the Sum of Squares Between
groups, calculated as follows: k is the number of groups, 1; is the number of observations
in group i, X; is the mean of group i, and ¥ is the overall mean. The second calculation is
SSW, which is the Sum of Squares within Groups and is calculated as follows: Xjj is the
value of the observation in group I and ¥; is the mean of group i. The final calculation is F,

19

J. Cybersecur. Priv. 2025, 5, 4

which is the F-statistics, and in this formula, MSB is the Mean Square Between, MSW is the
Mean Square Within, k is the number of groups, and N is the total number of observations.
k 2
SSB = Z Vli(fi — 7)
i=1

SSW = Z *nz (fij — fl‘)z (3)

_ MsB _ SSB/(k-1)
f= s SSW/(N—K)

Best features calculated using CFS
T

i
mean_fpktl N
‘min_fpktl

sflow_fpackets
sflow_fbytes

an_bpl
total_bvolume
std_fpktl
total_bhlen
total_bpackets

-04 -02 0.0 02 04 06
Correlation with Target

Figure 11. Feature rankings calculated by CFS.

A large value suggests that the groups are different and can be considered as a suitable
feature to use for the experimental work, and a small number suggests that the feature
might not be suitable. Figure 12 illustrates the scores calculated by ANOVA, and the scores
are ranked from the highest to the lowest.

Feature ANOVA Scores (Ranked)

mean_fpktl
mean_bpktl
min_fpktl
min_bpktl
mean_fiat
mean_biat
std_fiat
std_biat
flow_pkts
flow_bytes
duration
min_fiat
max_fiat
mean_active
std_active
total_fvolume
total_bvolume
mean_idle
max_idle
min_idle
std_idle
total_fpackets
total_bpackets
max_biat
max_active
min_active
std_fpktl
std_bpkt!

Features

o

20,000 40,000 60,000 80,000 100,000
ANOVA Score

Figure 12. Feature rankings calculated by ANOVA.

J. Cybersecur. Priv. 2025, 5, 4

Several experiments were conducted using different features, and it was determined
that the following ten features would be the most appropriate and minimum number of
features required for predicting the different malware variants: mean_fpktl; min_fpktl;
min_bpktl; min_fiat; mean_fiat; mean_biat; min_biat; sflow_fpackets; sflow_fbytes;
and Duration.

Increasing the number of features does not help to improve the prediction results and
using a lower number of features reduces the efficiency of ML algorithms. The above ten
features were used in the training and testing of the machine learning algorithms, and the
results of the experimental analysis can be viewed in Section 5.

4.5. Evaluation Approach of the Experimental Analysis

The evaluation metrics of precision, recall, and F1-score were used for the experimental
analysis conducted for this research. Precision is the percentage of correctly identified
positive cases from the whole data sample [84], and recall is the percentage of correctly
identified positive cases from the positive samples only [85]. The formulas used are
as follows:

. TP
Precision = TP L EP (4)
P
Recall = ———
eca TP 1IN 5)

The F1-score considers both the positive and negative cases combined, and the formula
used to calculate the Fl-score is set out as follows [86]:

2« (Precision * Recall)

F1-— =
Score Precision + Recall

(6)

A confusion matrix [87], as shown in Table 11, will also be generated for each experi-
ment that is conducted. The confusion matrix calculates the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) scores for each dataset.

Table 11. Confusion matrix that will be used to measure the detection accuracy.

Predicted Benign Predicted Zeus
Actual Benign (Total) TN FP
Actual Zeus (Total) FN TP

5. Results

This section presents the training and testing results for all the ML algorithms and
compares the prediction results for each of the datasets. For each ML algorithm, two
tables are presented. The first table shows the precision, recall, and F1-score results and
the second table depicts the following information: the number of samples tested; the
number of samples correctly classified (true positives); and the number of samples mis-
classified (false negatives). The table also depicts the prediction results of the benign C&C
network samples.

5.1. Training and Testing the Decision Tree Machine Learning Algorithms

The DT ML algorithm was trained using the features defined in Section 4.4 and for the
training, 3 folds were used. A training accuracy of 0.974 was achieved, and Table 12 shows
the testing results and Table 13 depicts a confusion matrix for each of the datasets tested.
By examining the key metric, which is the recall score for the malware, most of the recall
scores were above 95. The lowest recall rate was 66 for dataset 6, and the highest recall
score was 99 achieved by both datasets 3 and 4.

21

J. Cybersecur. Priv. 2025, 5, 4

Table 12. Testing results when using the decision tree ML algorithm.

Malware Malware Malware Benign Benign Benign
Dataset Name Precision Score Recall Score F1-Score PrecisiongScore Recall Sgcore Fl-chre
Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 13. Confusion matrices depicting the testing results of the decision tree ML algorithm.

Malware Malware Benign Benign
Malware Total Samples Samples Total Benign Samples Samples
Dataset Name Samples Tested Classified Classified Samples Tested Classified Classified
Correctly Incorrectly Correctly Incorrectly
Dataset 1 66,009 62,906 3103 66,009 65,722 287
Dataset 2 38,282 36,519 1763 38,282 38,152 130
Dataset 3 272,425 270,328 2097 272,425 271,439 986
Dataset 4 11,864 11,728 136 11,864 11,820 44
Dataset 5 10,204 9941 263 10,204 8759 1445
Dataset 6 134,998 88,500 46,498 134,998 110,167 24,831

5.2. Training and Testing the Random Forest (RF) Machine Learning Algorithm

The results of testing the RF ML algorithm can be seen in Tables 14 and 15. A training
accuracy of 0.997 was achieved, and by examining the key metric, which is the recall score
for the malware, most of the recall results were above 95. The lowest recall score was for
dataset 6, which was 66, and the highest recall score was obtained by datasets 3 and 4,
which 99.

Table 14. Testing results when using the random forest ML algorithm.

Malware Malware Malware Benign Benign Benign

Dataset Name Precision Score Recall Score F1-Score PrecisiongScore Recall égcore Fl-Sc%re
Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 15. Confusion matrices depicting the testing results of the random forest ML algorithm.

Malware Malware Benign Benign
Total Malware Samples Samples Total Benign Samples Samples
Dataset Name Samples Tested Classified Classified Samples Tested Classified Classified
Correctly Incorrectly Correctly Incorrectly
Dataset 1 66,009 65,051 958 66,009 66,003 6
Dataset 2 38,282 37,737 545 38,282 38,278 4
Dataset 3 272,425 272,276 149 272,425 272,401 24
Dataset 4 11,864 11,758 106 11,864 11,863 1
Dataset 5 10,204 9990 214 10,204 8852 1352
Dataset 6 134,998 88,586 46,412 134,998 111,428 23,570

5.3. Training and Testing the K-Nearest Neighbor (KNN) Machine Learning Algorithm

The KNN testing results can be seen in Tables 16 and 17. A training accuracy of 0.950
was achieved, and by examining the key metric, which is the recall score for the malware
traffic, most of the malware recall results were above 90. The lowest malware recall rate
was 50, which was achieved by dataset t6, and the highest malware recall score was 100,
achieved by dataset 3.

22

J. Cybersecur. Priv. 2025, 5, 4

Table 16. Testing results when using the K-Nearest Neighbor (KNN) ML algorithm.

Malware Malware Malware Benign Benign Benign
Dataset Name Precision Score Recall Score F1-Score PrecisiongScore Recall Sgcore Fl-Sctg)re
Dataset 1 1.00 0.90 0.95 091 1.00 0.95
Dataset 2 1.00 091 0.95 091 1.00 0.95
Dataset 3 1.00 1.00 1.00 1.00 1.00 1.00
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.92 0.97 0.95 0.97 0.92 0.95
Dataset 6 0.85 0.50 0.63 0.65 091 0.76

Table 17. Confusion matrices depicting the testing results of the K Nearest Neighbor (KNN) ML

algorithm.
Malware Malware Benign Benign
Total Malware Samples Samples Total Benign Samples Samples
Dataset Name Samples Tested Classified Classified Samples Tested Classified Classified

Correctly Incorrectly Correctly Incorrectly
Dataset 1 66,009 59,476 6533 66,009 66,003 6
Dataset 2 38,282 34,659 3623 38,282 38,278 4
Dataset 3 272,425 272,423 2 272,425 272,401 24
Dataset 4 11,864 11,719 145 11,864 11,863 1
Dataset 5 10,204 9939 265 10,204 9397 807
Dataset 6 134,998 68,156 66,842 134,998 123,232 11,766

5.4. Training and Testing Using the Ensemble Machine Learning Approach

An ensemble approach was used to train and test all the datasets, and the results of

this can be seen in Tables 18 and 19. Again, focusing on the malware recall score for each

dataset, the highest malware recall score was achieved with both datasets 3 and 4, with a

score of 99. The lowest malware recall score achieved was for dataset 6, which was 66.

Table 18. Testing results when using the ensemble machine learning approach.

Malware Malware Malware Benign Benign Benign

Dataset Name Precision Score Recall Score F1-Score PrecisiongScore Recall égcore Fl-chre
Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 19. Confusion matrices depicting the testing results of the ensemble ML approach.

Malware Malware Benign Benign
Dataset Name Total Malware Samples Samples Total Benign Samples Samples
Samples Tested Classified Classified Samples Tested Classified Classified
Correctly Incorrectly Correctly Incorrectly
Dataset 1 66,009 65,051 958 66,009 66,003 6
Dataset 2 38,282 37,737 545 38,282 38,278 4
Dataset 3 272,425 272,276 149 272,425 272,401 24
Dataset 4 11,864 11,758 106 11,864 11,863 1
Dataset 5 10,204 9990 214 10,204 8852 1352
Dataset 6 134,998 88,586 46,412 134,998 111,428 23,570

5.5. Comparing the Predication Results of all the Algorithms Tested

The results obtained from testing all the algorithms are compared in this section.

Figure 13 shows the malware recall results of all the algorithms when tested against all
the datasets and Figure 14 shows the benign traffic recall scores. An expanded view of the
results can be seen in Figures 15 and 16, which show both the recall and precision scores
for both the malware and benign traffic samples.

23

J. Cybersecur. Priv. 2025, 5, 4

Malware Recall Results

1.20

0.80
0.60
0.40
0.20 I
0.00

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6

B DT Malware Recall = RF Malware Recall

B KNN Malware Recall B Ensemble Malware Recal

Figure 13. Comparison of the prediction results for all three ML algorithms.

Benign Recall Results

Dataset1 Dataset2 Dataset3 Dataset4 Dataset5 Dataset6

1.20

m DT Malware Recall m RF Malware Recall

B KNN Malware Recall B Ensemble Malware Recall

Figure 14. Comparison of the prediction results for all three ML algorithms.

Malware Precision Comparison across Algorithms.

—— Decision Tree
s Random Forest

o Ensemble

Malware Precision

080

Dataset
Malware Recall Comparison across Algorithms

o= Deciin ree
== Random roret
mayeh
= Emsenble

Malware Recall

& f} @”0 @’f
& & & & &

Dataset

Figure 15. Malware precision and recall scores.

24

J. Cybersecur. Priv. 2025, 5, 4

Benign Precision Comparison across Algorithms

Benign Precision

& &
& & &
i i g S i i

Dataset

Benign Recall Comparison across Algorithms

s
%
%
%,
%
K
%
%,

& JE
v
& & & & & F

Dataset

Figure 16. Benign precision and recall scores.

The results obtained during the testing phase indicate that the decision tree algo-
rithm performed consistently well across all the datasets, with high accuracy scores for
datasets 1-4. The performance for dataset 6 did decrease slightly, which seems to indicate
that the decision tree algorithm faced some challenges when used for testing on a large
dataset. Similar results were obtained for both the random forest and KNN algorithms.
The results demonstrate that the random forest algorithm performed the best and is the
most suited for this type of problem.

All the results are compared in Figure 17, and the experimental results and the patterns
observed suggest that the random forest and decision tree models were more robust and
consistent across all the datasets, while the K-Nearest Neighbor and ensemble models
may face some difficulties with larger or more complex data. Dataset 6 seems particularly
challenging, reducing performance across all the datasets.

Accuracy Comparison across Algorithms

—e— Decision Tree
—e— Random Forest
—e— KNN

0.95 —e— Ensemble

2
o
S

=)
0
o

Accuracy

=
@
S

0.75

0.70

Dataset

Figure 17. Accuracy comparison across all the algorithms.

This paper has demonstrated an approach that can be used to detect banking malware
and some its variants, and has demonstrated that the methodology does work across
multiple datasets and other variants of the Zeus malware. The research also allows key

25

J. Cybersecur. Priv. 2025, 5, 4

inferences to be made, because one dataset was used for training and to create an ML
model. This model was tested to evaluate its generalization and ability to classify other
various banking malware variants. Metrics such as precision, recall, F1-score, and accuracy
were used to assess the performance across these datasets. The model performed excep-
tionally well on datasets 2—4, achieving a high accuracy (>97%) and balanced F1-scores,
indicating that these datasets share similar feature distributions with dataset 1. However,
its performance declined on datasets 5 and 6, with its accuracy dropping to 92% and 74%,
respectively. The decline in the precision and recall scores suggests that there were some
behavioral differences between the malware samples. This underscores the importance of
using diverse training data and robust ensemble methods to improve generalization across
malware variants.

5.6. Comparing the Predication Results with Previous Research

This section compares the results obtained in this research with the previous research
identified and discussed in Section 2. Several experimental results are compared, and the
first comparison is performed with the research conducted by [44]. The model developed
in this paper is referred to as ‘User Model’. Figure 18 compares the performance of the user
model with that of the models developed by [44].

Integrated Comparison: User Models vs. Azab et al.

—o— Recall (Azabetal)

—e— Precision (Azab et al.)

—e— F-Measure (Azab et al.) :
.9 [—m— Recall (User Model) -
—a— Precision (User Model)

—— F-Measure (User Model)

o
©

Metric Value
=
@

;

Method

Figure 18. Results of [44] compared to the results of this research.

The comparison between the results of this research and the results presented by [44]
reveals several key insights. This research demonstrated a well-balanced performance and
achieves a recall of approximately 0.90, significantly outperforming all the configurations
from [44], where the highest recall was 0.667. This highlights that the model developed
in this research has a greater ability to correctly identify malware patterns. In terms of
precision, the strict configurations from [44] (cost 20 and 30) achieved slightly higher values
(0.989) compared to the precision of 0.93 of this research. However, the trade-off for this
higher precision is a lower recall, resulting in a less balanced performance. The F-measure,
which balances precision and recall, was notably greater in this research (~0.914), exceeding
all configurations from [44], except for the strict configuration with cost 10 (0.787). These
results indicate that the model developed for this research is highly effective and achieves
a balance between detecting true positives and minimizing false positives, making it more
robust for practical implementations.

The results obtained by [45] are also compared with the user model, and Figure 19
compares these results. The comparison reveals that the model developed in this research
had a TPR of 90%, which is competitive with or exceeds most methods tested by [45],
except for the “Zeus (Snort)}—SBB” and “Zeus (Snort)—C4.5”, which both achieved a
TPR of 98%. However, the model developed in this research minimized the false positive

26

J. Cybersecur. Priv. 2025, 5, 4

rate (FPR), maintaining a consistent FPR of 5%, significantly outperforming methods like
“Zeus-1—SBB” (27%) and “Zeus-1—C4.5” (17%). This highlights the robustness of the user
model in accurately identifying true positives while reducing false alarms, making it highly
effective in real-world scenarios. Overall, the user model provides a balanced approach
with a strong performance in both detection and minimizing errors, positioning it as a
reliable alternative to [45].

Comparison of Detection Performance: Haddadi et al. vs. User Model

60 —e— TPR (Haddadi et al)
—=— FPR (Haddadi et al)
-=- TPR (User Model)
40 -=- FPR (User Model)

100

Percentage (%)

o P S ——— <oz e
° Ry) Y ®
o & & & & & 4 &
~ v 2 Q' d v o S
¢ 5 & $ v o & &
5 5 & S &> 4 N
4 ¢ & o v v & S
& 42 N 4
* i

Method

Figure 19. Results of [45] compared to the results of this research.

6. Conclusions

The framework’s ability to identify banking malware and its variants were demon-
strated by the empirical analysis conducted during this research. The research showed that
the methodology and framework used for this study can identify both older and newer
versions of the Zeus banking malware. It is possible that this approach can be used to
detect a large number of banking malware variants without having to examine each one
in order to understand its characteristics. This is because the framework and technique
developed during this research identified key features that could be used and may also
predict other banking malware variants. Also, this research showed that a reduced set of
features can be used for detecting banking malware, and this should help to increase the
performance and time required for training and testing machine learning or deep learning
algorithms, especially for large datasets. This research will also benefit other researchers,
as they should be able to adopt this approach in their own research and will have a good
base to begin conducting experiments of a similar nature.

It may be possible to advance this research in the future by improving the methodology
to include more banking malware variants, especially variants belonging to a different
banking malware family. Additionally, more research may be conducted to identify other
malware types and increase the prediction accuracy of these predictions. The results of this
study may also be utilized by researchers to develop an intrusion detection system (IDS)
that can identify a variety of malware, and by anti-virus manufacturers to support their
development of malware detection tools. Once an infection has been identified, action can
also be taken against malicious communications. Researchers can improve their work by
using the results of this study to create their own malware prediction systems.

Funding: This research received no external funding.
Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

27

J. Cybersecur. Priv. 2025, 5, 4

References

1. Wadhwa, A_; Arora, N. A Review on Cyber Crime: Major Threats and Solutions. Int. |. Adv. Res. Comput. Sci. 2017, 8, 2217-2221.

2. Morgan, S. Cybercrime to Cost the World 8 Trillion Annually in 2023. Cybercrime Magazine. 17 October 2022. Available online:
https:/ /cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/ (accessed on 7 December 2024).

3. Banking Malware Threats Surging as Mobile Banking Increases—Nokia Threat Intelligence Report. n.d. Nokia. Available
online: https://www.nokia.com/about-us/news/releases/2021/11/08 /banking-malware-threats-surging-as-mobile-banking-
increases-nokia-threat-intelligence-report/ (accessed on 7 December 2024).

4. Kuraku, S;; Kalla, D. Emotet malware—A banking credentials stealer. IOSR]. Comput. Eng. 2020, 22, 31-41.

5. Etaher, N.; Weir, G.R.S.; Alazab, M. From zeus to zitmo: Trends in banking malware. In Proceedings of the 2015 IEEE Trust-
com/BigDataSE/ISPA, Helsinki, Finland, 20-22 August 2015; Volume 1, pp. 1386-1391.

6. Godfather Banking Trojan Spawns 1.2K Samples across 57 Countries. Darkreading.com. 2024. Available online: https://www.
darkreading.com/endpoint-security /godfather-banking-trojan-spawns-1k-samples-57-countries (accessed on 16 January 2025).

7. Nilupul, S.A. Evolution and Impact of Malware: A Comprehensive Analysis from the First Known Malware to Modern-Day
Cyber Threats. Cyber Secur. 2024. [CrossRef]

8. Mishra, R.; Butakov, S.; Jaafar, F; Memon, N. Behavioral Study of Malware Affecting Financial Institutions and Clients. In
Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-
gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17-22 August 2020; pp. 79-86.

9. Owen, H; Zarrin, J.; Pour, S.M. A survey on botnets, issues, threats, methods, detection and prevention. J. Cybersecur. Priv. 2022,
2,74-88. [CrossRef]

10. Boukherouaa, E.B.; Shabsigh, M.G.; AlAjmi, K.; Deodoro, J.; Farias, A.; Iskender, E.S.; Mirestean, M.A.T.; Ravikumar, R.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance; International Monetary Fund: Washington,
DC, USA, 2021.

11. AMR. IT Threat Evolution in Q3 2022. Non-Mobile Statistics. Securelist.com. Kaspersky. 18 November 2022. Available online:
https:/ /securelist.com/it-threat-evolution-in-q3-2022-non-mobile-statistics /107963 / (accessed on 16 January 2025).

12. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing the performance of supervised machine learning algorithms when used with a
manual feature selection process to detect Zeus malware. Int. J. Grid Util. Comput. 2022, 13, 495-504. [CrossRef]

13. Punyasiri, D.L.S. Signature & Behavior Based Malware Detection. Bachelor’s Thesis, Sri Lanka Institute of Information Technology,
Malabe, Sri Lanka, 2023.

14. Gopinath, M.; Sethuraman, S.C. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev.
2023, 47,100529.

15. Alaskar, H.; Saba, T. Machine learning and deep learning: A comparative review. In Proceedings of Integrated Intelligence Enable
Networks and Computing: IIENC 2020; Springer: Singapore, 2021; pp. 143-150.

16. Madanan, M.; Gunasekaran, S.S.; Mahmoud, M.A. A Comparative Analysis of Machine Learning and Deep Learning Algorithms
for Image Classification. In Proceedings of the 2023 6th International Conference on Contemporary Computing and Informatics
(IC3I), Gautam Buddha Nagar, India, 14-16 September 2023; Volume 6, pp. 2436-2439.

17. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing and analysing binary classification algorithms when used to detect the Zeus
malware. In 2019 Sixth HCT Information Technology Trends (ITT); IEEE: Piscataway, NJ, USA, 2019; pp. 6-11.

18. Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision
tree, and long short term memory algorithms in machine learning. Decis. Anal.]. 2022, 3, 100071. [CrossRef]

19. Kazi, M.; Woodhead, S.; Gan, D. A contempory Taxonomy of Banking Malware. In Proceedings of the First International
Conference on Secure Cyber Computing and Communications, Jalandhar, India, 15-17 December 2018.

20. Falliere, N.; Chien, E. Zeus: King of the Bots. 2009. Available online: https:/ /www.google.co.uk/url?sa=t&source=webé&rct=
j&opi=89978449&url=https:/ /pure.port.ac.uk/ws/portalfiles /portal /42722286 /Understanding_and_Mitigating_Banking_
Trojans.pdf&ved=2ahUKEwizroXLwZqJAxU-VUEAHdgzKqEQFnoECDMQAQ&usg=AOvVaw15t11bbRwbhYj9IB4VdQv4
(accessed on 19 October 2024).

21. Lelli, A. Zeusbot/Spyeye P2P Updated, Fortifying the Botnet. Available online: https://www.symantec.com/connect/blogs/
zeusbotspyeye-p2p-updated-fortifying-botnet (accessed on 5 November 2019).

22. Cluley, G. GameOver Zeus Malware Returns from the Dead. Graham Cluley. 14 July 2014. Available online: https:/ /grahamcluley.
com/gameover-zeus-malware/ (accessed on 16 January 2025).

23. Brumaghin, E. Poisoning the Well: Banking Trojan Targets Google Search Results. [online] Cisco Talos Blog. 2017. Available
online: https://blog.talosintelligence.com/ zeus-panda-campaign/#More (accessed on 16 January 2025).

24. Lamb, C. Advanced Malware and Nuclear Power: Past Present and Future; No. SAND2019-14527C; Sandia National Lab. (SNL-NM):

Albuquerque, NM, USA, 2019.

28

J. Cybersecur. Priv. 2025, 5, 4

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

De Carli, L.; Torres, R.; Modelo-Howard, G.; Tongaonkar, A.; Jha, S. Botnet protocol inference in the presence of encrypted traffic.
In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1-4 May 2017;
pp- 1-9.

Lioy, A.; Atzeni, A.; Romano, F. Machine Learning for Malware Characterization and Identification. Master’s Thesis, Politecnico
di Torino, Turin, Italy, 2023.

Paganini, P. HTTP-Botnets: The Dark Side of a Standard Protocol! Security Affairs. 22 April 2013. Available online: http:
/ /securityaffairs.co/wordpress /13747 / cyber-crime /http-botnets-the-dark-side-of-an- (accessed on 16 January 2025).

Sood, A.K.; Zeadally, S.; Enbody, R.J. An empirical study of HTTP-based financial botnets. IEEE Trans. Dependable Secur. Comput.
2014, 13, 236-251. [CrossRef]

Niu, Z.; Xue, J.; Qu, D.; Wang, Y; Zheng,].; Zhu, H. A novel approach based on adaptive online analysis of encrypted traffic for
identifying Malware in IIoT. Inf. Sci. 2022, 601, 162-174. [CrossRef]

Black, P.; Gondal, I; Layton, R. A Survey of Similarities in Banking Malware Behaviours. Comput. Secur. 2018, 77, 756-772.
[CrossRef]

Pilania, S.; Kunwar, R.S. Zeus: In-Depth Malware Analysis of Banking Trojan Malware. In Advanced Techniques and Applications of
Cybersecurity and Forensics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 167-195.

CLULEY, Graham. Russian Creator of NeverQuest Banking Trojan Pleads Guilty in American Court. Hot for Security. 2019.
Available online: https://www.bitdefender.com/en-us/blog/hotforsecurity /russian-creator-of-neverquest-banking-trojan-
pleads-guilty-in-american-court/ (accessed on 16 January 2025).

Fisher, D. Cridex Malware Takes Lesson from GameOver Zeus. Threatpost.com. Threatpost. 15 August 2014. Available online:
https:/ /threatpost.com/cridex-malware-takes-lesson-from-gameover-zeus/107785/ (accessed on 16 January 2025).

Tlascu, I. Softpedia. 16 August 2014. Available online: https://news.softpedia.com/news/Cridex-Banking-Malware-Variant-
Uses-Gameover-Zeus-Thieving-Technique-455193.shtml (accessed on 16 January 2025).

Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly resilient peer-to-peer botnets are here: An analysis of
gameover zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas”
(MALWARE), Fajardo, PR, USA, 22-24 October 2013; pp. 116-123.

Sarojini, S.; Asha, S. Botnet detection on the analysis of Zeus panda financial botnet. Int. |. Eng. Adv. Technol. 2019, 8, 1972-1976.
[CrossRef]

Aboaoja, F.A; Zainal, A.; Ghaleb, F.A.; Al-Rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware detection issues, challenges, and
future directions: A survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

Chen, R; Niu, W.; Zhang, X.; Zhuo, Z.; Lv, F. An effective conversation-based botnet detection method. Math. Probl. Eng. 2017,
2017,4934082. [CrossRef]

Jha, J.; Ragha, L. Intrusion detection system using support vector machine. Int. J. Appl. Inf. Syst. (IJAIS) 2013, 3, 25-30.

Singla, S.; Gandotra, E.; Bansal, D.; Sofat, S. A novel approach to malware detection using static classification. Int. J. Comput. Sci.
Inf. Secur. 2015, 13, 1-5.

Wu, W.; Alvarez, J.; Liu, C.; Sun, H.M. Bot detection using unsupervised machine learning. Microsyst. Technol. 2018, 24, 209-217.
[CrossRef]

Yahyazadeh, M.; Abadi, M. BotOnus: An Online Unsupervised Method for Botnet Detection. ISeCure 2012, 4, 51-62.

Soniya, B.; Wilscy, M. Detection of randomized bot command and control traffic on an end-point host. Alex. Eng. J. 2016, 55,
2771-2781. [CrossRef]

Azab, A. The effectiveness of cost sensitive machine learning algorithms in classifying Zeus flows. Int. |. Inf. Comput. Secur. 2022,
17, 332-350. [CrossRef]

Haddadji, F.; Runkel, D.; Zincir-Heywood, A.N.; Heywood, M.I. On botnet behaviour analysis using GP and C4. 5. In Proceedings
of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada,
12-16 July 2014; pp. 1253-1260.

Mohaisen, A.; Alrawi, O. Unveiling zeus: Automated classification of malware samples. In Proceedings of the 22nd International
Conference on World Wide Web, Rio de Janeiro, Brazil, 13-17 May 2013; pp. 829-832.

Wang, J.; Yang, Q.; Ren, D. An intrusion detection algorithm based on decision tree technology. In Proceedings of the 2009
Asia-Pacific Conference on Information Processing, Shenzhen, China, 18-19 July 2009; Volume 2, pp. 333-335.

Sajjad, S.; Jiana, B. The use of Convolutional Neural Network for Malware Classification. In Proceedings of the 2020 IEEE 9th
Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20-22 November 2020; pp. 1136-1140.
Walker, A.; Sengupta, S. Malware family fingerprinting through behavioral analysis. In Proceedings of the 2020 IEEE International
Conference on Intelligence and Security Informatics (ISI), Arlington, VA, USA, 9-10 November 2020; pp. 1-5.

Ramakrishna, M.; Rama Satish, A.; Siva Krishna, P.S.S. Design and development of an efficient malware detection Using ML. In
Proceedings of International Conference on Computational Intelligence and Data Engineering: ICCIDE 2020; Springer: Singapore, 2021;
pp- 423-433.

29

J. Cybersecur. Priv. 2025, 5, 4

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.
72.

73.
74.

75.

76.

77.

Ghafir, I.; Prenosil, V.; Hammoudeh, M.; Baker, T.; Jabbar, S.; Khalid, S.; Jaf, S. BotDet: A System for Real Time Botnet Command
and Control Traffic Detection. IEEE Access 2018, 6, 38947-38958. [CrossRef]

Agarwal, P,; Satapathy, S. Implementation of signature-based detection system using snort in windows. Int. |. Comput. Appl. Inf.
Technol. 2014, 3, 3-93. [CrossRef]

He, S.;; Zhu, J.; He, P; Lyu, M.R. Experience report: System log analysis for anomaly detection. In Proceedings of the 2016
IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23-27 October 2016;
pp. 207-218.

Zhou, J.; Qian, Y.; Zou, Q.; Liu, P.; Xiang, J. DeepSyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding and
Metadata. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3051-3061. [CrossRef]

Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

Sharma, P,; Said, Z.; Memon, S.; Elavarasan, R.M.; Khalid, M.; Nguyen, X.P,; Arici, M.; Hoang, A.T.; Nguyen, L.H. Comparative
evaluation of Al-based intelligent GEP and ANFIS models in prediction of thermophysical properties of Fe304-coated MWCNT
hybrid nanofluids for potential application in energy systems. Int. |. Energy Res. 2022, 46, 19242-19257. [CrossRef]

Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.E.; Campbell, J.P. Introduction to machine learning, neural networks,
and deep learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [PubMed]

Ahsan, M.; Nygard, K.E.; Gomes, R.; Chowdhury, M.M.; Rifat, N.; Connolly,].E. Cybersecurity Threats and Their Mitigation
Approaches Using Machine Learning—A Review. |. Cybersecur. Priv. 2022, 2, 527-555. [CrossRef]

Elmachtoub, A.N.; Liang, J.C.N.; McNellis, R. Decision trees for decision-making under the predict-then-optimize framework. In
Proceedings of the International Conference on Machine Learning, Virtual, 12-18 July 2020; pp. 2858-2867.

Liberman, N. Decision Trees and Random Forests. Towards Data Science. 27 January 2017. Available online: https:
/ /towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991 (accessed on 16 January 2025).

Demirovi¢, E.; Lukina, A.; Hebrard, E.; Chan, |.; Bailey, J.; Leckie, C.; Ramamohanarao, K.; Stuckey, PJ. Murtree: Optimal decision
trees via dynamic programming and search.]. Mach. Learn. Res. 2022, 23, 1-47.

Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata . 2020, 20, 3-29. [CrossRef]

Oshiro, T.M.; Perez, P.S.; Baranauskas,].A. How many trees in a random forest? In Machine Learning and Data Mining in Pattern
Recognition, Proceedings of the 8th International Conference, MLDM 2012, Berlin, Germany, 13-20 July 2012; Proceedings 8; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 154-168.

Halder, RK.; Uddin, M.N.; Uddin, M.A ; Aryal, S.; Khraisat, A. Enhancing K-nearest neighbor algorithm: A comprehensive
review and performance analysis of modifications. J. Big Data 2024, 11, 113. [CrossRef]

Suyal, M.; Goyal, P. A review on analysis of k-nearest neighbor classification machine learning algorithms based on supervised
learning. Int. J. Eng. Trends Technol. 2022, 70, 43—48. [CrossRef]

Aggarwal, C.C. (Ed.) Data Classification; Springer International Publishing: New York, NY, USA, 2015.

Kazi, M.A.; Woodhead, S.; Gan, D. Detecting Zeus Malware Network Traffic Using the Random Forest Algorithm with Both
a Manual and Automated Feature Selection Process. In IOT with Smart Systems: Proceedings of ICTIS 2022, Volume 2; Springer
Nature Singapore: Singapore, 2022; pp. 547-557.

Chung, J.; Teo, J. Single classifier vs. ensemble machine learning approaches for mental health prediction. Brain Inform. 2023, 10, 1.
[CrossRef] [PubMed]

Salur, M.U.; Aydin, 1. A soft voting ensemble learning-based approach for multimodal sentiment analysis. Neural Comput. Appl.
2022, 34, 18391-18406. [CrossRef]

Jabbar, H.G. Advanced Threat Detection Using Soft and Hard Voting Techniques in Ensemble Learning. . Robot. Control (JRC)
2024, 5,1104-1116.

Shomiron. Zeustracker. Available online: https:/ /github.com/dnif-archive/enrich-zeustracker (accessed on 25 July 2022).
Stratosphere. Stratosphere Laboratory Datasets. Available online: https://www.stratosphereips.org/datasets-overviewRetrieved
(accessed on 20 September 2024).

Abuse.ch. Fighting Malware and Botnets. Available online: https://abuse.ch/ (accessed on 13 May 2022).

Haddadi, F.; Zincir-Heywood, A.N. Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification.
IEEE Syst.]. 2014, 10, 1390-1401. [CrossRef]

Kasongo, S.M.; Sun, Y. A deep learning method with filter based feature engineering for wireless intrusion detection system.
IEEE Access 2019, 7, 38597-38607. [CrossRef]

Miller, S.; Curran, K.; Lunney, T. Multilayer perceptron neural network for detection of encrypted VPN network traffic. In
Proceedings of the 2018 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cyber SA),
Glasgow, UK, 11-12 June 2018; pp. 1-8.

Kazi, M.A.; Woodhead, S.; Gan, D. An Investigation to Detect Banking Malware Network Communication Traffic Using Machine
Learning Techniques. J. Cybersecur. Priv. 2023, 3, 1-23. [CrossRef]

30

J. Cybersecur. Priv. 2025, 5, 4

78.

79.

80.

81.
82.
83.
84.
85.

86.

87.

Nasiri, H.; Alavi, S.A. A Novel Framework Based on Deep Learning and ANOVA Feature Selection Method for Diagnosis of
COVID-19 Cases from Chest X-Ray Images. Comput. Intell. Neurosci. 2022, 2022, 4694567. [CrossRef] [PubMed]

Alshanbari, H.M.; Mehmood, T.; Sami, W.; Alturaiki, W.; Hamza, M.A.; Alosaimi, B. Prediction and classification of COVID-19
admissions to intensive care units (ICU) using weighted radial kernel SVM coupled with recursive feature elimination (RFE). Life
2022, 12, 1100. [CrossRef] [PubMed]

Kavya, D. Optimizing Performance: SelectKBest for Efficient Feature Selection in Machine Learning. Medium. 16 February 2023.
Available online: https:/ /medium.com/@Kavya2099/optimizing-performance-selectkbest-for-efficient-feature-selection-in-
machine-learning-3b635905ed48 (accessed on 16 January 2025).

dos Santos, C.H.M.; de Lima, S.M.L. XAlI-driven antivirus in pattern identification of citadel malware. |. Comput. Sci. 2024,
82,102389. [CrossRef]

Liu, Z.; Wang, C.; Li, G. Feature Selection Algorithm Based on CFS Algorithm Emphasizing Data Discrimination. preprint 2023.
[CrossRef]

St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259-272.

Luan, H.; Tsai, C.C. A review of using machine learning approaches for precision education. Educ. Technol. Soc. 2021, 24, 250-266.
Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, PA, USA, 25-29 June 2006; pp. 233-240.

Fourure, D.; Javaid, M.U.; Posocco, N.; Tihon, S. Anomaly detection: How to artificially increase your fl-score with a biased
evaluation protocol. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer International
Publishing: Cham, Switzerland, 2021; pp. 3-18.

Visa, S.; Ramsay, B.; Ralescu, A.L.; Van Der Knaap, E. Confusion matrix-based feature selection. Maics 2011, 710, 120-127.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

31

Journal of
Cybersecurity
and Privacy

Article

Towards a Near-Real-Time Protocol Tunneling Detector Based

on Machine Learning Techniques

)

Filippo Sobrero *, Beatrice Clavarezza , Daniele Ucci * and Federica Bisio

Citation: Sobrero, F.; Clavarezza, B.;
Ucci, D.; Bisio, F. Towards a
Near-Real-Time Protocol Tunneling
Detector Based on Machine Learning
Techniques. J. Cybersecur. Priv. 2023,
3,794-807. https://doi.org/10.3390/
jcp3040035

Academic Editor: Marina L.

Gavrilova

Received: 29 August 2023
Revised: 17 October 2023
Accepted: 24 October 2023
Published: 6 November 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

aizoOn Technology Consulting, 10146 Turin, Italy; beatrice.clavarezza@aizoongroup.com (B.C.);

federica.bisio@aizoongroup.com (E.B.)

* Correspondence: filippo.sobrero@aizoongroup.com (ES.); daniele.ucci@aizoongroup.com (D.U.)

t This paper is an extension of our paper published in IEEE Symposium Series on Computational Intelligence,
Orlando, FL, USA, 5-7 December 2021.

Abstract: In the very recent years, cybersecurity attacks have increased at an unprecedented pace,
becoming ever more sophisticated and costly. Their impact has involved both private/public com-
panies and critical infrastructures. At the same time, due to the COVID-19 pandemic, the security
perimeters of many organizations expanded, causing an increase in the attack surface exploitable by
threat actors through malware and phishing attacks. Given these factors, it is of primary importance
to monitor the security perimeter and the events occurring in the monitored network, according to
a tested security strategy of detection and response. In this paper, we present a protocol tunneling
detector prototype which inspects, in near real-time, a company’s network traffic using machine
learning techniques. Indeed, tunneling attacks allow malicious actors to maximize the time in which
their activity remains undetected. The detector monitors unencrypted network flows and extracts
features to detect possible occurring attacks and anomalies by combining machine learning and deep
learning. The proposed module can be embedded in any network security monitoring platform
able to provide network flow information along with its metadata. The detection capabilities of the
implemented prototype have been tested both on benign and malicious datasets. Results show an
overall accuracy of 97.1% and an F1-score equal to 95.6%.

Keywords: passive network analysis; DNS tunneling; anomaly detection; machine learning;
deep learning

1. Introduction

Cybersecurity attacks keep increasing year over year at an unprecedented pace, be-
coming ever more sophisticated and costly [1,2]. The growth between 2021 and 2022 has
resulted in a rise of attacks” volume and impact on both private/public companies and
critical infrastructures. Companies comprise digital service providers, public administra-
tions, and governments and include businesses operating in the finance and health sectors.
In particular, service providers have experienced a raise of more than 15% in intrusions
(infamous is the case of Solarwinds [3]) compared to 2021 [1], a trend destined to grow in the
next years [4]. At the same time, due to the COVID-19 pandemic, the security perimeters of
many organizations expanded to cope with the new needs of remote working, causing an
increase in the attack surface exploitable by attackers [4]. The European Union Agency for
Cybersecurity estimates that more than 10 terabytes of data are stolen monthly from target
assets that are made unavailable, until a ransom is payed [1], while IBM calculates that the
average cost of these attacks is USD 4.54 M, increasing up to USD 5.12 M [2]. On the other
hand, malware attacks are still on the rise after the pause recorded during the pandemic,
and phishing continues to be the common attack vector for initial access [1].

Given these factors, it is of primary importance to monitor the security perimeter and
the events occurring in the network, according to a tested security strategy of detection

J. Cybersecur. Priv. 2023, 3, 794-807. https:/ /doi.org/10.3390/jcp3040035 32

https:/ /www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2023, 3

and response. According to Gartner [4], newly proposed solutions should be automated
as much as possible, since human errors continue to play a crucial role in most security
breaches. In this context, machine learning turned out to be a natural choice for automated
analyses and prevention of this kind of threats [5]. The strength of machine learning lies in
its ability to identify hidden patterns and correlations in large volumes of raw data and
leverage such features to recognize previously unseen attacks. In this paper, we present
a protocol tunneling detector prototype which inspects—in near real-time—a company’s
network traffic using machine learning. Tunneling techniques allow attackers to create a
tunnel through a network by encapsulating traffic inside another protocol [6]; hence, it can
be used to let infected machines contact their corresponding command-and-control centers.
Thus, by abusing legitimate network traffic protocols, like DNS [7], the attacker maximizes
the time in which the infection remains undetected. In this work, we rely on a commercial
network security monitoring platform for detecting and investigating potentially malicious
or anomalous activities [8-11], but the proposed solution can be easily integrated into any
network security monitoring platform able to provide network flow information along with
its metadata. The platform we employ is responsible for collecting, processing network
flows, and dispatching them to one or more advanced cybersecurity analytics (ACAs) which
are able to recognize the signals of possible occurring attacks and anomalies. In this scenario,
the detector monitors only clear-text protocols, but it works jointly with an ACA responsible
for analyzing encrypted traffic [11]. Indeed, while some clear-text protocols are extensively
used (i.e., DNS), nowadays, the vast majority of Internet traffic is encrypted [12-16]: this
enabled threat actors to perform malware campaigns relying on HTTPS for delivering
malware and contacting command-and-control centers [17]. Just in 2020, 67% of malware
has been delivered via encrypted HTTPS connections [18]. Along with malware delivery,
malicious secure communications are used to exfiltrate data and steal sensitive information
from private and public companies [19-21]. While the analytics dealing with encrypted
traffic has been extensively described in [11], we extend this previous work by backing
up secure connection analysis to the monitoring of clear-text protocols. As mentioned
before, the latter can be used to discover the abuse of such protocols and signal network
packets’ contents which are not usually observed in the monitored network. The module
presented in this paper extracts a sequence of N bytes from each single network packet and
computes features associated to the collected stream of bytes. Through the combination of
deep learning and machine learning, each network packet is assigned to a specific network
protocol; if a connection exhibits anomalies (e.g., an interleaving of different protocols), a
security analyst is notified about the discovered inconsistency. More specifically:

e weimplement a protocol tunneling detector prototype which analyzes, in near real-
time, a byte sequence of the packets flowing in the monitored network.
e the proposed prototype combines

— an artificial neural network (ANN), based on [22], that accurately classifies
clear-text protocols and identifies possible anomalies in network connections;

— asupport vector machine that is able to detect compressed/encrypted traffic
within unencrypted connections.

e we design and implement an input sanitization module, which automatically removes
inconsistent data from models’ training sets to significantly increase the models’ per-
formance.

With respect to [22], we changed both the input byte sequences we provide to the ANN
and their sizes in bytes (as detailed in Sections 4.1 and 5). The performance of the proposed
approach has been evaluated on different datasets that either contain legitimate traffic or
simulate DNS tunneling attacks, which are the most common [7]. The obtained overall
accuracy of the proposed prototype is 97.1%, along with an F1-score equal to 95.6%. It is
worth noting that, being the prototype trained with only legitimate traffic, it is potentially
able to identify zero-day attacks that deviate from the usual traffic observed in the network.

33

J. Cybersecur. Priv. 2023, 3

The rest of the paper is organized as follows: Section 2 discusses related work, while
Section 3 introduces basic notions that will be later used to detail the proposed approach
(Section 4). The experimental evaluation is reported in Section 5, followed by Section 6,
where we discuss the strengths of our prototype and some key design choices we made.
Finally, Section 7 concludes the paper.

2. Related Work

Tunneling attacks are a specific typology of network attacks in which an attacker
creates a tunnel through a network by encapsulating traffic inside another protocol [6].
This allows the attacker to bypass traditional network security controls and potentially
exfiltrate sensitive information. Therefore, as discussed in Section 1, using clear-text
network protocols may pose a significant risk when these are abused by malicious actors.
In this context, DNS tunneling represents one of the most common techniques employed
for covertly exfiltrating data from a network, by encoding the data in DNS queries and
responses. Since this method is becoming increasingly prevalent, a growing body of
research aims at detecting and mitigating DNS tunneling attacks. In [23], the authors review
detection technologies from a perspective of rule-based and model-based methods with
descriptions and analyses of DNS-based tools and their corresponding features, covering
detection approaches developed from 2006 to 2020 by means of a comparative analysis.

Latest works in the area of DNS tunneling detection mainly cover three main categories,
i.e., detection approaches via machine learning, real-time detection approaches, and detection
of DNS tunneling variants (e.g., fast flux [9] and domain generation algorithms (DGAs) [8]).

Regarding the first group, researchers have recently proposed both machine and deep
learning algorithms for detecting DNS tunneling traffic, such as support vector machines
(SVMs), random forests and Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), respectively. Do et al. have proposed an SVM to identify DNS
tunneling attacks within mobile networks, by using features such as time, traffic source
and destination, and length of DNS queries [24]. Other researchers have proposed a ran-
dom forest classifier to detect this kind of attack [25]. They included in their features the
number of answers provided by a DNS response and the time between two consecutive
packets and responses for a specific domain. Random forests are also employed in hybrid
solutions like the one proposed in [26], where a 100-trees random forest is paired with a
CNN; they achieved good performance on their dataset, and it is worth noting that, during
their experiments on traffic collected from a real network, they were able to identify a
domain associated to a command-and-control center. In [27], the authors developed a novel
DNS tunneling detection method employing a Convolutional Neural Network (CNN) to
analyze DNS queries and responses and identify DNS tunneling activities. The proposed
approach is evaluated using a dataset of real-world DNS traffic and shows promising
results in detecting DNS tunneling attacks with high accuracy. The work of [28] applies
both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
for detecting DNS tunneling traffic. The authors have shown that these algorithms can
effectively spot and identify malicious patterns.

The second group of studies has focused on developing real-time detection systems
for DNS tunneling. These systems use a combination of several detection techniques to
timely identify malicious DNS traffic [29]. In [30], the authors presented an overview of
principal countermeasures for DNS tunneling attacks.

Regarding the state of the art of approaches that analyze encrypted communications,
it has already been presented in [11].

The approach we present and evaluate in the next sections passively extracts both
sequential and statistical features from network flows to detect tunneling attacks in clear-
text protocols. As sequential features, we refer to those characteristics obtained from raw
flow sequences. Most works rely on similar features, like domain-based features [23,29,30],
including the domain name itself [27,28] and payload and volumetric features [23,30].
These can only be obtained when the entire packet has been reconstructed by a network

34

J. Cybersecur. Priv. 2023, 3

analyzer. Differently, for each packet, we directly examine a specific sequence of bytes
without requiring to compute and store any packet-related metadata. In addition, we use
artificial neural networks, which are simpler deep learning models and, hence, require less
computing resources to be trained.

3. Background
3.1. DNS Tunneling

Protocol tunneling is an attack technique commonly used to maximize the time in
which the infection remains undetected in a targeted network. In this context, the DNS
protocol is usually abused in order to bypass security gateways and, then, to tunnel
malware and other data through a client-server model [7]. Figure 1 depicts a typical DNS
tunneling scenario: firstly, an attacker registers a malicious domain (e.g., attacker.com,
accessed on 17 October 2023) on a C&C center managed by her; at that point, assuming
that the attacker has already taken control over a machine inside the targeted network
and violated its security perimeter, the infected computer sends a query to the malicious
domain. Since DNS requests are typically allowed to move in and out of the network, the
query through the DNS resolver reaches the attacker’s C&C center, where the tunneling
program is installed. This established tunnel can be used either to exfiltrate data and
sensitive information or for other malicious purposes.

attacker.com
DNS Server

DNS request)
<atcacker. con>] ioie T OO0 w
Compromised User DNS Server Network Security
Monitoring

Platform

Figure 1. A DNS tunneling example.

3.2. Support Vector Machines

The original formulation of support vector machines [31] (SVMs) is related to the reso-
lution of supervised tasks with the objective of finding a maximum margin hyperplane that
separates two or more classes of observations. In the last years, one-class SVMs have also
been shown to represent a suitable choice in the context of anomaly and outlier detection [32].
It is defined as a boundary-based anomaly detection method, which modifies the original
SVM approach by extending it in order to deal with unlabeled data. Like traditional SVMs,
one-class SVMs can also benefit from the so called kernel trick when extended to non-linearly
transformed spaces, by defining an appropriate scalar product in the feature space.

3.3. Artificial Neural Networks

Artificial neural networks (ANNSs) are deep learning models that have been success-
fully applied to a vast number of knowledge fields ranging from computing science to
arts [33]. They are internally constituted by groups of multiple neurons, which can be
thought of as mathematical functions that take one or more inputs. In ANNSs, inputs are
only processed forward and are multiplied by weights within each neuron and summed
up to be then passed to an activation function, which becomes the neuron’s output. In
general, artificial neural networks consist of three different layers: input, hidden, and
output; the first layer accepts inputs, while the hidden layers process them to learn the
optimum weights. Finally, the output layer produces the result.

4. Protocol Tunneling Detector

The proposed architecture splits the burden of processing the traffic of a monitored
network into two different sub-modules: the first mainly deals with secure connections,

35

J. Cybersecur. Priv. 2023, 3

while the second inspects unencrypted traffic. As previously discussed, the former analytics
has been detailed in [11]. At a glance, it detects possible anomalies occurring during an
SSL/TLS handshake between a client, located inside the network monitored by the software
platform outlined in Section 1, and an external server. The SSL/TLS detection analytics
examines information contained in X.509, SSL, and TLS exchanged protocol messages.
Instead, the second module looks for anomalies in unencrypted traffic regarding the
abuse of specific protocols (i.e., tunneling attack techniques). To provide these detection
capabilities, this prototype collects a sequence of bytes from each network packet and
inspects its content. The content, along with its features, is fed to a testing module, which
detects possible anomalies that are signaled to security analysts.

4.1. General Approach

Figure 2 reports the general structure of the proposed anomaly detection methodology,
which runs in near-real-time fashion. Indeed, a delay is introduced both by data processing
and anomaly evaluations that are not performed on the single packet but, rather, on the
entire connection, meaning that the approach has to wait to have enough information to
make a decision. Hence, for each packet observed in the live network traffic, the prototype
collects a sequence of N bytes belonging to the highest network protocol used in the
communication. As an example, in a secure connection which relies on HTTPS, the bytes
returned by the extraction process are the ones related to HTTPS, and not to the other
lower-layer protocols (e.g., TCP).

Extraction of N bytes from Training phase
each network packet

— Training set Training on clear-text Atificial neural network L
protocols
Bit stream l
feature extraction

Training set SVM training Compression/encryption L
balancing detector

Validation phase

— Validation set o
enrichment Models' hyperparameters
tuning
Artificial neural network

Labeled dataset |

Input sanitization
module

Testing phase

Splitting in training and
validation sets

Does the connection
contain packets classified with low h
confidence? No

Grouping by
connection

Artificial neural network

Does the connection contain
more than one protocol?

Protocol tunneling
detection
Trigger alerts to
security analysts

Compression/encryption

“Are all the packets of the
connection encrypted?

SSL/TLS Analytics

Figure 2. Protocol tunneling detector prototype overview.

From the obtained bit stream, we extract the following sequential features (i.e., those
features obtained from raw flow sequences):

e binary representation of collected bytes

36

J. Cybersecur. Priv. 2023, 3

e bit-stream entropy and p-values obtained from statistical tests for random and pseu-
dorandom number generators for cryptographic applications [34]
e statistical properties of the bit-stream hexadecimal representation

and we keep the protocol label associated to the bit stream itself. While the binary rep-
resentation of the N bytes is meant to label the protocol of each packet under analysis,
the sequential features allow to understand if the packet content is either compressed
or encrypted.

After feature extraction, the raw dataset constituted by streams of bits and their
corresponding labels is properly sanitized. Indeed, it is easily possible to lightly label
the network packets belonging to a connection by simply looking either at the ports or
at the connection metadata. However, this labeling may be prone to errors since it either
does not take into account potential custom configurations of services (e.g., SMB protocol
operating on a port different from 445) or intentional misuse of specific protocols by
attackers (as in the case of tunneling). Moreover, clear-text protocols may transfer packets
containing compressed data, whose presence could compromise the identification of the
correct network protocol. Hence, it is paramount to have a refined and clean dataset to let
models perform at their best. During our experimental evaluations, we have found out
that the accuracy of the trained models, after refining the raw dataset, has significantly
increased: 7% for the ANN and 20% for the compression/encryption detector.

To achieve this performance boost, we have specially implemented an input sanitiza-
tion module, shown in Figure 3. In this module, we combine unsupervised and supervised
support vector machines (SVMs) to clean the raw dataset: first, for each network pro-
tocol, we train a one-class SVM both on clear-text and encrypted protocols in order to
filter out outliers from the raw dataset. As an example, in protocols like HTTP and SMB,
requests and responses may contain either the content of (compressed) files or other types
of information that are not strictly correlated with the specific protocol communication
patterns. Thus, in order to exclude these outliers, we build one-class SVMs, one for each
different protocol, whose hyperparameters are properly tuned on the raw labeled dataset.
Trained models are then applied to identify outliers and remove them from the raw dataset.
This refined dataset is then used to train an SVM by applying a one-vs-all classification
for detecting packets which are either compressed or encrypted. This single classifier is
applied to remove both compressed and encrypted packets from clear-text protocols. It
is worth mentioning that, in proxied environments, encrypted packets may be present in
connections labeled as HTTP: indeed, in these scenarios, secure communications also pass
through the proxy, even if these connections are erroneously labeled as HTTP. As already
outlined in Section 3, one-class SVMs are successful in identifying outliers; for this reason,
we have extensively used them to sanitize our training sets with remarkable results.

Input sanitization

Bit stream Bit stream T Gt Per protocol one-class.
feature extraction label correction SVM training

protocol

One-class SVM
for DNS Outler identification and
removal from raw Refined labeled raw dataset
- Iabeled set
One-class SVM
for SSL

SVM training for detecting Inaccurate compression/ Removal of compressed/
compression and encryption e lencypted bitstreams from the|
raw labeled dataset

Figure 3. Input sanitization module.

37

J. Cybersecur. Priv. 2023, 3

This sanitized dataset is then split into training and validation sets to essentially
build two different models: (i) an artificial neural network (ANN) able to classify clear-
text protocols (e.g., DNS) and (ii) an SVM that is a compression/encryption detector for
identifying, respectively, compressed and encrypted packets. As later shown in Section 5,
after construction, the training set is considerably unbalanced towards secure protocols.
For this reason, we apply the SMOTE data augmentation technique [35] to increase the
samples of those protocols belonging to minority classes. During the test phase, performed
light labeling based on connection’s destination port is not taken into account, and the
resulting bit streams are grouped by connection. Each packet is given in input to a trained
ANN (whose training process is detailed in Section 4.3) and the analytics both verifies if,
in the connection, there are some packets that have been classified with low confidence
and more than one protocol is present. While in this latter case, the co-presence of multiple
protocols might signal a possible tunneling attack, when the ANN classifies packets with
low confidence, then, the connection could contain either compressed/encrypted packets
or packets whose byte sequences differ from the ones usually observed in the network.
To distinguish between these two cases, a more in depth verification is carried out: if the
connection is not entirely encrypted, meaning that it is a not a secure communication,
the prototype checks if the packets signaled as anomalous (i.e., with low confidence) by
the ANN are either encrypted or belongs to another protocol. If either encryption or
compression is detected, the anomaly is notified to security analysts. On the other hand,
if the entire connection is encrypted, it is collected and stored in a database, periodically
accessed in order to retrieve data and metadata about X.509, SSL, and TLS exchanged
protocol messages in order to be analyzed by the analytics described in [11]. As outlined
earlier, all the compression/encryption tests are performed using an SVM, capable of
correctly classifying network packets, but the proposed classifier could be substituted with
other valid alternatives, such as random forest models.

4.2. Feature Extraction

As discussed in Section 4.1, sequential features allow us to understand if the content
of a network packet is either compressed or encrypted. We rely on a statistical package
developed by the Information Technology Laboratory at the National Institute of Standards
and Technology, containing a set of 15 tests that measure the randomness of a binary
sequence [34]. These tests have been designed to provide a first step towards the decision
whether or not a generated binary sequence can be used in cryptographic applications,
namely if the sequence appears to be randomly generated. In other words, each new
bit of the sequence should be unpredictable. From a statistical point of view, each test
verifies if the sequence being under analysis is random. This null hypothesis can be either
rejected or accepted depending on the statistic value on the data exceeding or not a specific
value—called critical value—that is typically far in the tails of a distribution of reference.
Test reference distributions used in the NIST tests are the standard normal and the x? dis-
tributions. Even if the statistical package contains 15 tests, we use only 5 of them, because
the length N of the binary sequence we test does not meet the corresponding input size
recommendation in [34]. To each sequence, we apply the following tests: frequency within
a block, longest-run-of-ones in a block, serial test, approximate entropy, and cumulative
sums. In addition, in our experimental evaluations, we extract some statistical proper-
ties and compute the Shannon entropy metrics [36] that, combined with the previously
mentioned tests, have shown to improve the overall accuracy of the classification. As statis-
tical properties, the following features are extracted from the corresponding hexadecimal
representation & of a bit stream of N bytes:

e number of different alphanumeric characters in i normalized over length;
e number of different letters in s normalized over / length;
e longest consecutive sequence of the same character in 1 normalized over 1 length.

38

J. Cybersecur. Priv. 2023, 3

4.3. Input Sanitization

For accurately training machine learning models, the training set should be as much
“clean” as possible. In Section 4.1 we have already discussed how labeling based on connec-
tion metadata could be error prone either due to potential custom configurations of services,
intentional misuse of specific protocols by attackers, or network protocols encapsulating
compressed data. In addition, during our experimental evaluations, we have observed that
in some cases the employed traffic analyzer can assign an empty label or multiple labels to
a single network packet. While in the first case bit streams with empty labels can be easily
discarded for the training phase, in the presence of multi-labels, it is possible to assign a
unique correct label if a protocol that is monitored by the prototype itself exists among the
labels. As an example, if the assigned labels are NTLM, GSSAPI, SMB, and DCE_RPC, the
resulting label is SMB. For these reasons the very first step of the sanitization module is to
correct the multi-labels associated to bit streams and discard the empty ones. Then, we train
an ensamble of one-class SVMs, one for each protocol (see Figure 3): each different classifier
is properly tuned to filter out outliers from the raw dataset. As stated in Section 4.1, HTTP
and SMB requests or responses may contain either the content of (compressed) files or
other types of information that are not strictly correlated with the specific protocol com-
munication patterns. Trained models are then applied to identify these kinds of network
packets, and they are removed from the raw dataset. This preprocessed dataset is used to
train a supervised support vector machine, called compression/encryption detector, by
applying a one-vs-all classification for detecting packets which are either compressed or
encrypted. It is worth noting that all these models are still inaccurate because they are
trained on a “dirty” dataset. Hence, to further increase the quality of the labels and obtain
the final training set, the compression/encryption detector is fed with clear-text bit streams
to remove possible compressed/encrypted packets from clear-text protocols, as in the case
of proxied environments. The result of this sanitization process is a dataset which allows to
train and validate two accurate models: an artificial neural network for clear-text protocols
and an SVM for compressed and encrypted traffic.

4.4. Anomaly Detection

During the test phase (see Figure 2), bit streams are analyzed by the trained ANN. In
turn, the ANN flags three different cases as potential tunneling attacks and alerts security
analysts when these cases occur: (i) the high confidence detection of more than one protocol
in the same connection, (ii) the low confidence detection of one protocol for all the packets
in the same connection, and (iii) the labeling, both with high and low confidence, of one or
more protocols for the packets belonging to the same connection (as in the case of secure
protocols over DNS). As later specified in Section 5, in the ANN, the high/low confidence
threshold ¢ can be dynamically set. In any case, the detection of encrypted packets into a
clear-text connection generates alert notifications enriched with the information about the
presence of encrypted protocol messages. Possibly, notified alerts can be filtered whitelisting
source and/or destination IPs to reduce the false positives caused by well-known machines.

Hence, if some packets of the connection are classified with low confidence, the
corresponding bit stream’s sequential features (refer to Section 4.2) are given in input to
the compression/encryption detector. If all the packets contained in the connection are
encrypted, then the connection and its corresponding metadata are given in input to the
SSL/TLS analytics for further scrutiny [11]. On the contrary, if the connection contains
some compressed/encrypted packets or none of them, depending on the protocol, the
connection is considered anomalous. Indeed, it is worth noting that the combination of two
different protocols is not always a signal of an occurring attack: as already discussed, SMB
and HTTP connections can contain protocol-specific messages along with compressed data;
however, DNS messages interleaved with other protocols are highly suspicious. Finally,
since each single module of the proposed prototype has been trained only with legitimate
traffic, it is potentially able to spot zero-day attacks having features which are different
from the ones usually observed in the network.

39

J. Cybersecur. Priv. 2023, 3

5. Experimental Evaluation

The proposed prototype and the experimental evaluations have been, respectively,
implemented and performed in Python. The size N we have chosen for the byte sequences,
extracted from network packets, is 52 bytes. More in detail, we retrieve the first 64 bytes
of the payload of each TCP/UDP packet, from which we remove the first 12 B: indeed, a
preliminary evaluation has shown that these first bytes had a very low variance in their
binary representation among different packets of the same protocol. The specific selection
of the byte sequence to extract has improved the accuracy of the trained neural network,
increasing its anomaly detection capabilities.

For the experimental evaluation of the proposed prototype, we collected both benign
and malicious datasets. The benign communication dataset contains a subset of legitimate
traffic observed in a real corporate network during a period of about 2 days. From this initial
dataset, we sample connections to start building the models training sets and the dataset
that will be used for testing. Figure 4 summarizes general statistics about the collected
training set in terms of packets, before and after sanitization, while Table 1 reports how the
test set of legitimate network traffic is characterized. The sanitization process makes the
training set, which is obviously unbalanced towards encrypted protocols, balanced: indeed,
after sanitization, the number of packets belonging to, respectively, clear-text and secure
protocols is almost even. It is worth noting that the balanced training set for the ANN,
containing DHCP, DNS, NTP, HTTP, and SMB packets, also comprises data belonging to
the KRB network protocol (i.e., encrypted): our experimental evaluations have shown that
during the test phase, the neural network performs better when it is also trained with
encrypted byte sequences. As an ANN, we use a Keras sequential model with three hidden
layers. The input layer accepts 416 bits (i.e., 52 B) and the output layer consists of six
neurons, one for each clear-text protocol and KRB. Regarding SVMs, we rely on the open-
source library scikit-learn. For completeness, we report in Table 2 the hyperparameters
we have used to train the different SVMs in the sanitization module; in addition, we also
report the hyperparameters we obtained by tuning the compression/encryption detector
in the validation phase. It is worth mentioning that the parameter f, in Table 2, is used
for each protocol one-class SVM as a threshold to filter only those outliers which have a
Shannon entropy greater than .

The intuition behind this filtering is that byte sequences having high entropy do not
specifically belong to clear-text protocol communications; thus, they have to be discarded
from the training set.

I Before balancing
I After balancing

Network Protocol
w
=
m

17.6%
17.8%
& ae

17.8%

I T T T T T T T T
0 2500 5000 7500 10,000 12,500 15,000 17,500 20,000
Packet Count

Figure 4. Packet distribution for each network protocol, before and after balancing.

40

J. Cybersecur. Priv. 2023, 3

Table 1. Benign test set composition.

Statistics Count [(%)]
DNS packets 30,669 (1.10%)
SMB packets 65,944 (2.35%)
HTTP packets 262 (0.01%)
NTP packets 46 (0.002%)
DHCP packets 20 (0.001%)
KRB packets 741 (0.03%)
SFTP packets 69,158 (2.46%)
Not labeled packets 61,552 (2.20%)
SSL packets 2,571,608 (91.84%)
Distinct connections 51,459
Distinct source machines 758
Distinct dest. machines 1566

On the other hand, malicious datasets are constituted by packet captures (PCAPs)
shared by [37-39]. The former dataset contains three different types of DNS tunnels gener-
ated in a controlled environment, whose sizes are approximately 750 MB each. Tunneled
data contain, respectively, SFTP, SSH, and Telnet malicious protocol messages. Each sample
is made up of one single connection containing millions of DNS packets. It is reasonable to
note that such connections would either easily stand out to security analysts or be simply
detectable through well-known statistical approaches (e.g., outlier detection). Subsequently,
as stated in Section 4.1, our approach groups data by connection; therefore, a single mali-
cious packet is enough to flag the entire connection as anomalous. For the above reasons,
we have decided to split each sample in n different connections, composed by approxi-
mately 5000 DNS packets each. The size of the split, reported in Table 3, has been chosen
according to the size of the connections monitored in the controlled environment. The
second malicious dataset, instead, was born by the collaboration between the Bell Canada
company’s Cyber Threat Intelligence group and the Canadian Institute for Cybersecurity.

Table 2. Support vector machine hyperparameter settings.

Model Kernel v v t C
DHCP one-class SVM RBF 0.7 0.03 0.77 —
DNS one-class SVM RBF 0.7 0.03 0.77 -
NTP one-class SVM RBF 0.03 0.1 0.92 —
HTTP one-class SVM RBF 0.08 0.07 0.91 -
SMB one-class SVM RBF 0.06 0.08 0.77 -
KRB one-class SVM RBF 0.04 0.05 0.97 —
SFTP one-class SVM RBF 0.7 0.05 0.97 —
SSH one-class SVM RBF 0.7 0.05 0.97 —
SSL one-class SVM RBF 0.0001 0.0028 0.97 -
Compression/encryption detector RBF 0.01 - - 100

In this dataset, we only take into account DNS packets that, in their payloads, contain
exfiltrations of various types of files and we discard legitimate traffic. Moreover, it is worth
mentioning that all the packets contained in [38] have been truncated at capture time to 96 B;
this has required a slightly different approach to test these samples that will be discussed

41

J. Cybersecur. Priv. 2023, 3

later in this Section. Finally, [39] is a single packet capture to test detection and alerting
capabilities of Packetbeat, Elastic’s network packet analyzer. Malicious packet captures
have been injected into the network security platform in order to be processed and analyzed
as ordinary traffic. Table 3 reports a summary of the malicious assembled datasets: for each
PCAP, we list the number of packets in the capture and which of these packets have been
successfully processed by the platform’s network analyzer (i.e., those packets whose size
is greater or equal than 64 B); in addition, Table 3 depicts the number of connections in
the PCAP and the number of them that have been identified as protocol tunneling attacks
(i.e., true positives TP). Finally, the true positive rate TPR of the proposed detector is
reported for each packet capture. Analogously, Table 4 reports the same information
contained in Table 3, but with reference to the test set described in Table 1. Being legiti-
mate traffic, the last two columns report the connections mistakenly classified as tunnels
(i.e., false positives FP) and the false positive rate FPR. The results of the evaluation,
reported in Tables 3 and 4, show a false positive rate and a true positive rate, respectively,
equal to 5.8% and 96.6%. The overall accuracy of the proposed prototype is 97.1%, while
the resulting F1-score is 95.6%.

We conclude this section by discussing how we slightly modified the proposed ap-
proach, used in the other datasets, to be compliant with [38]. Indeed, the DNS packets
contained in this dataset have been truncated during traffic acquisition, resulting in byte
sequences that do not have the same length. In order to solve this dataset generation
problem, we reduced all the DNS packets to a common length of 44 B, discarding the
shorter byte sequences and trimming the longer ones. The result of the filtering operation
is clearly shown in Table 3, where the number of processed PCAP packets is more than 54%
less than the ones received in input by the traffic analyzer.

Since the bit-stream lengths are different from the datasets [37,39], we retrained our
ANN to be fed with 44 B sequences. On the contrary, for this evaluation, we maintained the
same hyperparameters for the different SVMs, reported in Table 2, and the same threshold
¢, used in the other experiments. In particular, for all our experimental evaluations, we set ¢
t0 0.999999 in order to maximize the algorithm sensitivity and to compensate for the lesser
information provided by the processing of [38]. This explains why, in the experimental
evaluations, we were not able to achieve a very low false positive rate, as shown in Table 4.

Table 3. Malicious test set summary.

Tunnel Type No. of PCAP Packets No. of Processed PCAP Packets No. of Connections TP TPR(%)
Telnet over DNS tunnel [37] 24 M 22M 457 457 100%
SFTP over DNS tunnel [37] 2M M 209 209 100%
SSH over DNS tunnel [37] 28M 27M 545 545 100%
Light file exfiltration [38] 187,500 102,000 7617 7361 96.6%
Heavy file exfiltration [38] 1.34M 765,000 43,964 42,441 96.5%
Data exfiltration over Iodine 438 047 1 1 100%

DNS tunnel [39]

Table 4. Benign test set summary.

No. of PCAP No. of Processed . o
Dataset Packets PCAP Packets No. of Connections FP FPR(%)

Legitimate traffic 54M 28M 51,459 2966 5.8%

However, in context where a high number of false positives could be detrimental, ¢ can
be tuned to obtain a 0.5% false positive rate or lesser without losing accuracy on protocol
tunneling attacks.

42

J. Cybersecur. Priv. 2023, 3

6. Discussion

One of the most relevant challenges in cybersecurity is the detection of zero-day
attacks, which can easily evade all the products based on signature or pattern detection.
The proposed approach leverages various characteristics that are known to perform well
when facing zero-day threats [40] like, for example, the absence of malicious samples in
the training set, the training set sanitization process, and the absence of signature-based
features and filters.

On the other hand, in Section 4.4, we suggested the usage of whitelists as a way of
reducing false positives. While in the experimental evaluation of Section 5, we intentionally
used them as little as possible (i.e., only 11 of the 758 machines in the benign test set were
actually whitelisted), a security analyst could customize such whitelists in order to filter out
machines that do not require monitoring. Adding domain knowledge to machine learning
algorithms in the form of data (in our context, machines) that should not be modeled or
monitored can not only reduce the amount of alerts that an analyst has to evaluate, but
also increase model performance. In conjunction with the integration of whitelists, the
number of false positives generated by our approach can be tuned in two other ways.
The first one is represented by the threshold c which, as already described in Section 5,
controls the sensitivity of the ANN; in turn, it impacts the false positive rate because
the lower the minimum value of the ANN output confidence considered as “high”, the
harder to match the conditions we have defined for the connection to be an anomaly (see
Section 4.4). The second way of reducing false positives is a periodic retraining of proposed
models. As briefly described in Section 7, once the prototype will be included in a streaming
architecture, the training phase will be performed periodically. Real networks changes over
time, so keeping the models updated is the key to maintain an accurate modeling of what
is the current state of the network.

Finally, as already pointed out in Section 3, differently from other approaches, we
extract features directly from the raw traffic without relying on network analyzers that
reconstruct network traffic metadata. This allows to save computing resources and to speed
up the analyses. Furthermore, the use of bit-stream representation is independent from
protocol specific fields (e.g., DNS query field), making the prototype also able to detect
tunneling attacks on different clear-text protocols.

7. Conclusions

In this paper, we proposed a software prototype for detecting protocol tunneling
attacks in a monitored network. Relying on a combination of machine learning and deep
learning techniques, the proposed solution identifies anomalous connections that deviate
from the ones usually established in the network. Since machine learning models are only
built based on legitimate traffic, the proposed solution is therefore able to deal with zero-day
attacks, because malicious traffic is not required for the learning phase. The prototype has
been evaluated both on malicious and benign datasets: results show a very high accuracy
in detecting malicious samples and a low false positive rate on legitimate traffic.

As future work, we plan to optimize the algorithm through a deeper analysis on
how the choice of byte-stream length affects the computational time, in order to find a
value which guarantees the best trade-off between efficiency and accuracy. Indeed, in this
work, we mainly focused on accuracy. Secondly, we envision that the engineered prototype
will be integrated into a streaming architecture, where new data will be analyzed by the
proposed prototype as soon as they are collected to provide the fastest possible response.
In parallel, the models of the protocol tunneling detector are periodically retrained to
keep them up-to-date with possible deviations from the usual behaviour of the monitored
network. It is important to mention that the envisioned streaming architecture can always
count on a trained model to process incoming traffic during possible retrainings; old
models will be available until the new ones are ready. Finally, in Section 6, we discussed
the benefits of IP whitelisting filters. Once in production, the prototype can be easily
extended with other SOC-defined whitelists (e.g., whitelists regarding domains and/or

43

J. Cybersecur. Priv. 2023, 3

autonomous systems), allowing security analysts to enrich the proposed detector with their
domain-specific knowledge, further reducing possible false positives and improving the
overall performance.

Author Contributions: Conceptualization, F.S., D.U. and EB.; methodology, ES. and D.U.; software,
ES. and B.C,; validation, ES., B.C., D.U. and EB.; formal analysis, ES. and B.C.; investigation, E.S. and
B.C.; resources, D.U. and F.B.; data curation, ES. and B.C.; writing—original draft preparation, E.S.,
B.C, D.U. and E.B.; writing—review and editing, E.S., B.C. and D.U.; supervision, D.U. and EB. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Datasets containing DNS tunneling attacks can be found here: https:
/ /s3.eu-central-1.wasabisys.com/dns-tunneling /dns_tunnel_sftp.pcapng, https://s3.eu-central-1.
wasabisys.com/dns-tunneling/dns_tunnel_ssh.pcapng, https://s3.eu-central-1.wasabisys.com/dns-
tunneling/dns_tunnel_telnet.pcapng, https://www.unb.ca/cic/datasets/dns-exf-2021.html, and
https:/ /github.com/elastic/examples/blob/master/Security%20Analytics/dns_tunnel_detection/
dns-tunnel-iodine.pcap, all accessed on 17 October 2023. Regarding the dataset containing the le-
gitimate communications observed in a real corporate network, it is owned by aizoOn Technology
Consulting and cannot be made available due to company policies.

Conflicts of Interest: The authors declare no conflict of interest, given that aizoOn Technology
Consulting has not interfered with their ability to analyze and interpret data. Moreover, for this
research, authors have not received any additional grant or funding.

References

1. ENISA Threat Landscape 2022. Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
(accessed on 6 February 2023).

2. Cost of a Data Breach. A Million-Dollar Race to Detect and Respond. 2022. Available online: https://www.ibm.com/reports/
data-breach (accessed on 6 February 2023).

3. The SolarWinds Cyber-Attack: What You Need to Know. Available online: https:/ /www.cisecurity.org/solarwinds (accessed on
6 February 2023).

4. 7 Top Trends in Cybersecurity for 2022. Available online: https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-
for-2022 (accessed on 6 February 2023).

5. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123-147.
[CrossRef]

6. Protocol Tunneling. Available online: https://attack.mitre.org/techniques/T1572/ (accessed on 6 February 2023).

7. Encrypted Traffic Analysis. Available online: https://www.enisa.europa.eu/publications/encrypted-traffic-analysis (accessed
on 6 February 2023).

8. Bisio, F; Saeli, S.; Lombardo, P.; Bernardi, D.; Perotti, A.; Massa, D. Real-time behavioral DGA detection through machine learning.
In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Madrid, Spain, 23-26 October 2017;
pp. 1-6. [CrossRef]

9. Lombardo, P; Saeli, S.; Bisio, F; Bernardi, D.; Massa, D. Fast Flux Service Network Detection via Data Mining on Passive DNS
Traffic. In Proceedings of the International Conference on Information Security, Guildford, UK, 9-12 September 2018; pp. 463-480.
[CrossRef]

10. Saeli, S.; Bisio, F.; Lombardo, P.; Massa, D. DNS Covert Channel Detection via Behavioral Analysis: A Machine Learning
Approach. In Proceedings of the International Conference on Malicious and Unwanted Software (MALWARE), Nantucket, MA,
USA, 22-24 October 2019; pp. 46-55.

11. Ucci, D.; Sobrero, F.; Bisio, F.; Zorzino, M. Near-real-time Anomaly Detection in Encrypted Traffic using Machine Learning
Techniques. In Proceedings of the IEEE Symposium Series on Computational Intelligence, SSCI 2021, Orlando, FL, USA,
5-7 December 2021; pp. 1-8. [CrossRef]

12. Felt, A.P; Barnes, R.; King, A.; Palmer, C.; Bentzel, C.; Tabriz, P. Measuring HTTPS Adoption on the Web. In Proceedings of the
26th USENIX Conference on Security Symposium, Vancouver, BC, Canada, 16-18 August 2017; pp. 1323-1338.

13. The Relevance of Network Security in an Encrypted World. Available online: https:/ /blogs.vmware.com/networkvirtualization/
2020/09/network-security-encrypted.html/ (accessed on 6 February 2023).

14. Encryption, Privacy in the Internet Trends Report. Available online: https://duo.com/decipher/encryption-privacy-in-the-
internet-trends-report (accessed on 6 February 2023).

15. Keeping Up with the Performance Demands of Encrypted Web Traffic. Available online: https://www.fortinet.com/blog/

industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic (accessed on 6 February 2023).

44

J. Cybersecur. Priv. 2023, 3

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Google Transparency Report: HTTPS Encryption on the Web. Available online: https:/ /transparencyreport.google.com/https/
overview?hl=en (accessed on 6 February 2023).

Cisco Encrypted Traffic Analytics. Available online: https://www.cisco.com/c/en/us/solutions/collateral /enterprise-
networks/enterprise-network-security /nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf (accessed on 6 February 2023).

ENISA Threat Landscape—Malware. Available online: https:/ /www.enisa.europa.eu/publications/malware/at_download/
fullReport (accessed on 6 February 2023).

Taylor, R.W.; Fritsch, E.J.; Liederbach, J. Digital Crime and Digital Terrorism; Prentice Hall Press: Hoboken, NJ, USA, 2014.

Cyber Security Review. Available online: https://www.treasuryandrisk.com/2012/02/01/cyber-security-review/ (accessed on
6 February 2023).

Yadav, T.; Mallari, R.A. Technical aspects of cyber kill chain. arXiv 2016, arXiv:1606.03184.

Applying Machine Learning to Network Anomalies. Available online: https://www.youtube.com/watch?v=qOfgNd-qijI
(accessed on 6 February 2023).

Wang, Y.; Zhou, A.; Liao, S.; Zheng, R.; Hu, R.; Zhang, L. A comprehensive survey on DNS tunnel detection. Comput. Netw. 2021,
197,108322. [CrossRef]

Do, V.T,; Engelstad, P.; Feng, B.; van Do, T. Detection of DNS Tunneling in Mobile Networks Using Machine Learning. In
Proceedings of the Information Science and Applications, Macau, China, 20-23 March 2017; Kim, K., Joukov, N., Eds.; Springer:
Singapore, 2017; pp. 221-230.

Buczak, A.L.; Hanke, P.A.; Cancro, G.J.; Toma, M.K.; Watkins, L.A.; Chavis,].S. Detection of Tunnels in PCAP Data by Random
Forests. In Proceedings of the CISRC’16 11th Annual Cyber and Information Security Research Conference, Oak Ridge, TN, USA,
5-7 April 2016. [CrossRef]

Lambion, D.; Josten, M.; Olumofin, F.; De Cock, M. Malicious DNS Tunneling Detection in Real-Traffic DNS Data. In Proceedings
of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10-13 December 2020; pp. 5736-5738.
[CrossRef]

Palau, F; Catania, C.; Guerra, J.; Garcia, S.; Rigaki, M. DNS tunneling: A deep learning based lexicographical detection approach.
arXiv 2020, arXiv:2006.06122.

Zhang, J.; Yang, L.; Yu, S.; Ma, J. A DNS tunneling detection method based on deep learning models to prevent data exfiltration.
In Proceedings of the Network and System Security: 13th International Conference, NSS 2019, Sapporo, Japan, 15-18 December
2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 520-535.

Ahmed, J.; Gharakheili, H.H.; Raza, Q.; Russell, C.; Sivaraman, V. Real-time detection of DNS exfiltration and tunneling from
enterprise networks. In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
Arlington, VA, USA, 8-12 April 2019; pp. 649-653.

Sanjay; Rajendran, B.; Pushparaj Shetty, D. DNS amplification & DNS tunneling attacks simulation, detection and mitigation
approaches. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore,
India, 26-28 February 2020; pp. 230-236.

Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
Swersky, L.; Marques, H.O.; Sander, J.; Campello, R.J.; Zimek, A. On the evaluation of outlier detection and one-class classification
methods. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal,
QC, Canada, 17-19 October 2016; pp. 1-10. [CrossRef]

Abiodun, O.1,; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]

A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Available online:
https:/ /nvlpubs.nist.gov/nistpubs/legacy/sp /nistspecialpublication800-22rla.pdf (accessed on 6 February 2023).

Chawla, N.V.; Bowyer, KW.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res.
2002, 16, 321-357. [CrossRef]

Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech.]. 1948, 27, 379-423. [CrossRef]

Berg, A.; Forsberg, D. Identifying DNS-tunneled traffic with predictive models. arXiv 2019, arXiv:1906.11246.

Mahdavifar, S.; Hanafy Salem, A.; Victor, P.,; Razavi, A.H.; Garzon, M.; Hellberg, N.; Lashkari, A.H. Lightweight Hybrid Detection
of Data Exfiltration Using DNS Based on Machine Learning. In Proceedings of the ICCNS 2021: The 11th International Conference
on Communication and Network Security, Weihai, China, 3-5 December 2021; pp. 80-86. [CrossRef]

Iodine DNS Tunnel. Available online: https:/ /github.com/elastic/examples/blob/master/Security%20Analytics /dns_tunnel _
detection/dns-tunnel-iodine.pcap (accessed on 6 February 2023).

Ali, S.; Rehman, S.U.; Imran, A.; Adeem, G.; Igbal, Z.; Kim, K.I. Comparative Evaluation of Al-Based Techniques for Zero-Day
Attacks Detection. Electronics 2022, 11, 3934. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

45

Journal of
Cybersecurity
and Privacy

Article

Power-Based Side-Channel Attacks on Program Control Flow
with Machine Learning Models

Andey Robins *, Stone Olguin 2, Jarek Brown 2, Clay Carper 2 and Mike Borowczak !

Citation: Robins, A.; Olguin, S.;
Brown, J.; Carper, C.; Borowczak, M.
Power-Based Side-Channel Attacks on
Program Control Flow with Machine
Learning Models. J. Cybersecur. Priv.
2023, 3, 351-363.
https://doi.org/10.3390/jcp3030018

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 27 May 2023
Revised: 22 June 2023
Accepted: 28 June 2023
Published: 7 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA;
mike.borowczak@ucf.edu

Department of Electrical Engineering and Computer Science, University of Wyoming,

Laramie, WY 82070, USA; aolguinl@uwyo.edu (S.0.); jpbrow125@uwyo.edu (J.B.); ccarper2@uwyo.edu (C.C.)
* Correspondence: ja548335@ucf.edu

Abstract: The control flow of a program represents valuable and sensitive information; in embedded
systems, this information can take on even greater value as the resources, control flow, and execution
of the system have more constraints and functional implications than modern desktop environments.
Early works have demonstrated the possibility of recovering such control flow through power-
based side-channel attacks in tightly constrained environments; however, they relied on meaningful
differences in computational states or data dependency to distinguish between states in a state
machine. This work applies more advanced machine learning techniques to state machines which
perform identical operations in all branches of control flow. Complete control flow is recovered
with 99% accuracy even in situations where 97% of work is outside of the control flow structures.
This work demonstrates the efficacy of these approaches for recovering control flow information;
continues developing available knowledge about power-based attacks on program control flow;
and examines the applicability of multiple standard machine learning models to the problem of
classification over power-based side-channel information.

Keywords: side-channel attack; machine learning; power analysis; cybersecurity; control flow;
dynamic program analysis

1. Introduction

A finite-state machine (FSM) is a computation model commonly used within the
embedded system space; program control flow in embedded devices is often handled
by an FSM. Smaller state machines, those with fewer states and transitions, can exist in
limited purpose devices, such as vending machines, or more complex devices such as
telecommunications devices. Such devices are often the target of Side-Channel Analysis
(SCA), which aims to recover information from an embedded device. Power-based side-
channel data are most commonly measured directly from the device via an instrumented
VCC line. While this method requires direct access to the victim device, it is the most
common method for gathering data for SCA. Other common side-channels utilized in SCA
include system byproducts such as electromagnetic radiation, sound, and heat.

With a constant increase in consumer usage of Internet of Things (IoT) devices, low-
power embedded systems are constantly being put into operation. One popular example
of such a system making use of an FSM are smart locks. Often, these devices allow an
end-user to configure multiple access codes and enable logging when a code is used.
Access may be controlled remotely, allowing for on-the-fly adjustments to user access
permissions. With the growing popularity of smart locks and similar smart devices, if an
attacker were able to reverse-engineer the control flow inherent to the device, they may be
able to influence behavior within the FSM. One informational prerequisite to building out
such an attack would likely include identifying and characterizing the FSM responsible for
whether or not the lock is engaged. Further, being able to exfiltrate sensitive data, such as

J. Cybersecur. Priv. 2023, 3, 351-363. https:/ /doi.org/10.3390/jcp3030018 46

https:/ /www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2023, 3

the secret key that determines the lock’s activation state, could allow an attacker to bypass
the smart lock, granting them unimpeded access to the end-user’s home.

This work extends the previous work of Carper et al. [1], which performed Differential
Power Analysis (DPA) on data collected through the use of the ChipWhisperer hardware
platform [2]. Specifically, the ChipWhisperer Nano was used to gather power-trace data.
An FSM that consisted of two states conducting identical operations, in conjunction with an
oracle-based input guiding program control flow, was utilized for data collection. The re-
sulting power-traces were used to train multiple machine learning classification algorithms.
These trained algorithms were then used to differentiate between state transitions occurring
during code execution on the microcontroller. Further, recovery was successful when
applied to 256 distinct classes of state transitions, resulting in the identification of the
underlying process control flow. This work deviates from the prior foundational work
by exploring additional machine learning backed solutions to the problem of control flow
recovery, as well as exploring homogeneous operations within an individual state’s com-
putations to experimentally determine what degree of divergence in state behavior is
necessary to ensure program control flow recovery.

Contributions of this work seek to answer three research questions. First, is different
behavior required in each state of an embedded state machine in order to completely
recover the transitions? Second, to what degree does the proportion of time spent in control
flow and in a particular state of the FSM impact the recoverability of the state transition
ordering? Finally, how effective are “off-the-shelf,” meaning algorithms with no manual
configuration, machine learning models when applied to the task of recovering control
flow information?

This work is organized as follows. Section 2 motivates the side-channel analysis space
and establishes relevant background information. Section 3 outlines the data collection and
classification process undertaken in this work. Section 4 outlines the classification accuracy
and Section 5 examines the application of results to the research questions. Section 6 con-
cludes this work with an acknowledgment of limitations binding this work and commentary
on future research directions required to better understand the control flow recovery space
using power-based side-channels.

2. Related Works

The history of power-based side-channel attacks has had a number of meaningful
advances coming in the last few decades. Despite the coming exploration into the efficacy
of such power-based attacks, recovery of higher-order, control-level information such as
the execution path through a state machine was under-explored until very recently. Thus,
this section presents a brief overview of relevant findings in power-based side-channels,
along with its applications and crossover with the field of Automated Machine Learning
(AutoML), and characterizes the relevant previous work to motivate the experiments
conducted herein. AutoML, the practice of automatically searching machine learning
pipelines for effective ML configurations, has begun to be applied to other side-channel
problems such as cryptographic key recovery with high success, motivating attempts to
apply AutoML findings to the problem of program control flow recovery.

2.1. SCA Backgrounds

Common side-channel attacks involve attacks on the power usage of a device. The
most common of these are simple power analysis (SPA) and differential power analysis
(DPA) [3]. These methods of side-channel analysis inspired research in device-level SCA;
they have even been referred to as the “bedrock” for SCA research [4]. The direct analysis
of power usage by gathering power traces allows for a user to be able to understand
the implementations of cryptographic operations of a device, and it can allow for the
extraction of a secret key. SPA and DPA are both considered passive attacks as they
entail only observing various properties of the device; however, active attacks are another
avenue explored in the literature. Fault injection attacks, a breadth of attacks which span

47

J. Cybersecur. Priv. 2023, 3

voltage glitching to temperature extremes, are another frequently explored avenue for
SCA [5,6]. Other powerful techniques exist, such as combining different passive and
active attack strategies. For example, a novel analysis tool Differential Behavioral Analysis
(DBA) is a combination of a Safe Error Attack (SEA) and DPA [7]. DBA can be defended
against using traditional bit-masking strategies. This work makes use of passive attacks
exclusively, and specifically employs simple power analysis as a means to recover control
flow information.

One of the most common applications of side-channel attacks is in the subversion of
cryptographic systems. These attacks on crypto-schema employ both active and passive
attacks. The injection of faults has been shown to be able to effectively recover a secret
AES key, and the power observation making use of DPA similarly is able to recover a
secret AES key [8,9]. Many of the early works in SCA demonstrated various ways to
recover secret cryptographic information, either keys or text, to some degree; however,
with the advent of post-quantum cryptography, many of the crypto-systems currently
employed will become insecure and obsolete [10]. For more discussion of the topic, we
refer the curious reader to one of the surveys on the state-of-the-art in the field [11,12]. The
realm of side-channels is evolving in cooperation with these searches for quantum-resistant
algorithms, and early works have demonstrated strong recovery attacks for cryptographic
secrets in post-quantum, lattice-based cryptographic systems [13].

The rising prevalence of SCA in cryptographically sensitive applications and its impact
to the security of a device led to development of different countermeasures against SCA.
Borowczak and Vemuri developed a method to create side-channel resistant finite-state
machines (5*FSMs) [14]. This introduced an algorithm to transform FSMs to side-channel
resistant FSMs. The method of Random Process Interrupts (RPIs) allows for some of the
operations in cryptographic devices to be less vulnerable to timing attacks by implementing
strategic delays in execution [15]. In addition to the RPI method, two other popular
methods of implementing countermeasures against side-channel power include masking
and hiding [16]. Masking involves generating a random “mask” value that will attempt
to conceal any intermediate value during cryptographic operations. Masking removes
correlations between the gathered traces and the cryptographic secret information. Hiding
involves trying to make traces appear to be random. This randomness can appear by
adding noise to the power or implementing random delays or desynchronization. As
a result, the gathered traces are harder to extract secret information. Therefore, many
countermeasures against SCA have been devised, but DPA methods would still find
secure information even with countermeasures in place. In the same work that introduced
RPIs, the countermeasure is still shown to be vulnerable to DPA [15]. Thus, even with
countermeasures in place, improvements of applications of SCA can circumvent these
protections and secret information can still be extracted.

Instead of collecting and analyzing arbitrary power traces to determine the leakage
of information Test Vector Leakage Assessment (TVLA) can be used [17]. TVLA involves
using statistical tests to determine if there is significant evidence to determine if the device
had any leakage. Goodwill et al. utilized the Welch’s t-test to determine if there is a
significant difference between two groups. The hypothesis tested whether the gathered
traces are truly random or if there is leakage present within traces. While this methodology
can be beneficial and has been used recently to show side-channel vulnerabilities in some
of the NIST lightweight cryptography round 2 candidate s-boxes [18,19], TVLA can have
issues demonstrated by relatively high rates of false negatives or false positives, even when
using different tests such as the Pearson)(2 test [20].

Signal Processing also can be used for SCA both as an attack vector and for defensive
countermeasures, as mentioned by Le et al. [21]. In addition, Le et al. also demonstrates
how three different signal processing techniques could be applied to SCA, which would
allow for more ways to implement it. The work also defends using signal processing to
mitigate SCA. There is also a precedent for AutoML being utilized for signal processing;
an example uses the AutoML procedure of acquiring correct hyperparameters for deep

48

J. Cybersecur. Priv. 2023, 3

learning to classify Electroencephalography (EEG) signals [22]. The work also claims that
EEG signal classification is complex enough that machine learning techniques such as deep
learning are “appropriate to find the best solutions”. The hyperparameter tuning and
deep learning from AutoML were stated to have less overfitting, and thus, yielded more
optimized models for classifying the EEG signals.

Time-series forecasting, although prominently implemented with traditional machine
learning methods, has significantly less implementation within AutoML toolchains, being
cited as “still in the development stage” [23]. It is demonstrated in their review article
that there are gaps in traditional time-series forecasting with machine learning in terms
of reapplying AutoML to time-series methods that used traditional machine learning [23].
The article showcases that there are research avenues, such as deep learning or neural
architecture search (NAS), to implement AutoML for time-series analysis.

AutoML has been implemented in analyzing time-series data, as experimented pre-
viously in comparison to rigorous, hand-crafted machine learning models [24]. In this
paper, its authors conclude that in short-term models for time-series predictions, AutoML
does not outperform traditional methods of using Machine Learning by manually tuning
hyperparameters and preprocessing data. However, suggestions for time-series analysis
with AutoML are: validation on the selection strategy with statistical significance tests;
adding permutation strategies; and considering the cost of using AutoML with the benefit
of its implementation. Additional implementation of AutoML utilize the process of NAS to
efficiently search for an effective neural network architecture for utilization on time-series
data [25]. It mentions that AutoML significantly improved the performance of searching
a data-augmented time-series neural network architecture. The significance of NAS’s
performance boost was such that it outperformed other “best” statistical models. In terms
of future possible improvements, the authors mention that further performance enhance-
ments on the data augmentation could come from using other deep learning models such
as GRU-AE and ConvLSTM.

One of the implementations of machine learning for side-channel analysis is named
Deep Learning-based Side-Channel Analysis (DL-SCA) [26]. DL-SCA is a new area of
research, which is signified by a large increase of papers on this topic. An advantage of
DL-SCA includes more powerful analysis by taking up to a factor of five times less data
to break through targets with countermeasures as compared to template attacks. DL-SCA
also requires little to no effort when it comes to preprocessing and preparing the attack
of the side-channel measurements. Related to this deep learning AutoML approach of
side-channel analysis is the Deep Learning Leakage Assessment (DL-LA), a method of
verifying that a trace has significant leakage information [27]. DL-LA implements AutoML
only for the analysis aspect of SCA. An open challenge to using DL-LA is that there are no
clear advantages to DL-LA for the significance of side-channel traces [26]. This challenge
demonstrates that if a significant advantage to leakage assessment is gained by utilizing
DL-LA, then the DL-SCA techniques can also be used with DL-LA.

The increase in popularity of SCA in security has led to developments in both attack
vectors and defensive countermeasures. Starting from DPA [3], to implementing AutoML
methods of deep learning with TVLA [27], the security aspect of SCA from a defensive
and offensive standpoint have increased in scope from simple power analysis to imple-
mentations of machine learning, demonstrating a considerable growth of the research area.
The idea of utilizing AutoML for DPA is a growing research area that has openings for
finding research in time-series data as well as with signal processing. AutoML techniques
are therefore well suited to further application in time-series related tasks for state of the
art DPA and SCA.

2.2. Foundational Experiments

This experiment is conceptualized as an extension to prior control flow recovery
experiments [1]. Power-based side-channel attacks were used to extract information by
using properties from a FSM. In this foundational work, the original experiment made use

49

J. Cybersecur. Priv. 2023, 3

of a single classifier, the k-nearest neighbors (KNN) classifier with heterogeneous states
for the FSM. KNN was able to achieve 81% or higher accuracy of transition classification.
Accuracy would increase as the number of classes decreased. As a result, FSM components
that handle sensitive information could be vulnerable to power-based side-channel attacks,
even with only a single classifier being used to analyze the state machine.

The future work section in this foundational work [1] mentions how an avenue of
research could be with how modifying the input to the states could be explored. In
particular, the modifications to the states to also include homogeneous states as well as
implementing tests using more than a single classifier were used as motivation for the
extensions and further experimentation presented herein.

3. Methods

Analyzing the ability for program control flow to be recovered via power-based SCA
required the creation and capture of a dataset encompassing numerous execution paths
through a program while being able to associate the captured power traces with a training
label for later machine-learning backed analysis of transition order. We explore both aspects
of these experiments in two methodology sub-sections. The first details the adaptation
of data collection from prior works [1] for the purposes of this experiment. The second
details the training and evaluation of various machine learning models for the recovery of
control flow information from the gathered trace data. Additionally, in the absence of a
standard SCA benchmarking suite, and in the interests of reproducability, the entire code
base is made available through a public GitLab repository [28]. Code made available in
this manner is licensed under the GPLv3.

3.1. Data Generation

Data generation made use of the ChipWhisperer [2] family of devices. These are
purpose-built microcontrollers for SCA data collection which contain all of the processing
on-board for the collection of power traces. The ChipWhisperer Nano (CW Nano) is one
such device backed by an STM32F0 microcontroller.

Each instance of the CW Nano device was programmed with a minimal C program
which emulated a two-state state machine. See Figure 1 for a depiction of the FSM. The de-
vice was fed a transition sequence from a host device which communicated with the CW
Nano before and after experimentation to send the oracle transition sequence and retrieve
the power trace captured onboard the device during execution. The state machine transi-
tioned through eight states in accordance with each bit of the oracle: a bit of 0 at position i
of the oracle indicates that the i-th state was state 1 while a 1 indicates the state was state
2. Both states performed integer addition a specific number of times where this number
was determined during compilation and will be referred to as the value w for the firmware.
A firmware where w = 1 indicates that the firmware performed a single addition in each
state while a firmware with w = 16 indicates that the states of that firmware performed the
addition a total of 16 times.

0
(L] L=
1

Figure 1. A diagram of the state machine executed by the target board. Transitions represent the next
value in the oracle text. For instance, if the FSM was in state S; and the next digit was a “1”, then the
state machine would transition to state S, and execute the code associated with that state. If the FSM
was in state 51 and the next digit was a “0”, then the state would transition to state S; and repeat the
previously executed code.

Each CW Nano was paired with a Lenovo ThinkCentre running Ubuntu LTS 22.10.
All collection used Python v3.10.6 and the ChipWhisperer library version 5.7.0 distributed

50

J. Cybersecur. Priv. 2023, 3

by PyPi. The CW Nano device was programmed with firmware version 5.1.0. All version
numbers presented were the latest releases at the time of data collection. The code for
handling the state transitions is presented in Figure 2 and an example of the state code for
firmware (w = 2) is presented in Figure 3.

State Transition Code

for (uint8_t i = 0; i < 8; i++) {
uint8_t state = transitions & Ox1;
transitions >>= 1;
if (state == 0) {
worker (one_zero, zero_one, dest);
} else {
worker (one_zero, zero_one, dest);

}

Figure 2. The C code for turning an oracle byte previously received by the CWNano into a series of
state transitions on the device. The values one_zero, zero_one, and dest are discussed in Section 3.1.

State Code

void worker(int* x, int* y, int* total) {
*total = *x + *y;
*total = *x + *y;

Figure 3. The C code executed in the body of the state-machine. Figure 2 invokes this function with
specially crafted arguments as discussed in Section 3.1. The number of times *total = *x + *y; is
repeated is identified as w, so the code snippet above has a w value of 2.

The inputs to the worker function of each state were specially crafted to ensure an
equal hamming weight of all inputs to prevent the inference of the state transitions from the
contents of the state by the machine learning models later trained. For further discussion
of experiments which utilize differences in state behavior to enable related analysis, see [1].
The value of one_zero is 16 ones followed by 16 zeros, or 4,294,901,760 (base ten). The value
of zero_one was the opposite, 16 zeros followed by 16 ones, or 65,535 (base ten). Thus,
the total hamming weight of operands utilized across the body of the worker function is
constant between states.

All potential oracle values, representing all 256 potential permutations of state transi-
tions, were executed 100 times. Firmware was generated for all w € 1,2,4,8,16,32,64,128
and traces were captured across all oracles and 100 repeated executions and stored for
later analysis. Labeling incorporated both the number of operations executed within each
state of the firmware and the oracle used to generate the trace as well as the order in
the 100 samples to uniquely identify each trace. The resulting data was 5.8 GB for each
firmware, resulting in a total data set measuring approximately 40 GB in size.

3.2. Machine Learning Classification

For the task of recovering control flow information, we reduce the task to one of multi-
class classification; this makes it a suitable task for applied machine learning classifiers.
Each trace is labeled with the oracle byte used to dictate the state transitions, thus a
proper classification would represent a complete recovery of the state transitions executed
by the CW Nano device. As an example, consider a trace labeled with the oracle byte
of 11001100, = 20419. The power-trace presented to the ML model would either be
correctly classified as class 204, indicating a complete recovery of the control flow of

51

J. Cybersecur. Priv. 2023, 3

the program, or be incorrectly classified into another class, representing an inability to
completely recovery the control flow of the application.

Classification was completed by a number of classifiers provided by the Scikit-learn [29]
(SKL) library (version 0.24.2 as packaged by conda forge). The selected classifiers had
minimal configuration beyond the defaults provided by SKL, so further hyperparameter
optimization may find ways to improve the models created by the process described herein.

Each training process was repeated across five folds of cross validation to address
concerns of over-fitting. Eighty percent of the available data was used for training the
classifier while another 20% was used for testing the complete classifier. Unless otherwise
specified, all results presented in the rest of this work refer to metrics obtained by evaluating
the testing dataset. The process was repeated in its entirety for each distinct firmware.

Data were taken directly from the dataset previously generated and split into cross-
validation folds using a stratified k-fold method provided by SKL. No preprocessing was
performed on the data. Four classifiers were then fit to the training data: a random forest
classifier, a decision tree classifier, a KNN classifier, and a logistic regression classifier.
The only configuration provided was to the logistic regression classifier; both a solver and
maximum number of iterations were provided since without them, the process of fitting
data caused convergence failure errors. Convergence failure errors emerged due to the
fact that the provided number of iterations was insufficient to converge to a reasonable
solution and the solver was needed to match the types of data generated by the CW Nano.
Execution of these classification tasks was aided through parallel computation by placing
the entire workflow for each distinct firmware on separate threads (i.e., w = 1 on one
thread, w = 2 on another, etc.).

4. Results

For each firmware, with the exception of firmware where a single execution is per-
formed (w = 1), classification accuracy values approaching 100% are observed for the
random forest classifiers. Accuracy values of 98%-+ are seen for decision trees and logistic
regression. The KNN classifier is the outlier with an observed lower bound on accuracy
values that was slightly greater than 80%.

Firmware with only a single execution of the addition operation (w = 1) was the
exception to these metrics of accuracy. The resulting skew in overall performance is
illustrated in Figure 4 while the exact performance of all four classifiers on each of the folds
of testing is illustrated in Figure 5. The highest observed accuracy for this firmware (w = 1)
was associated with a single fold of validation and the KNN classifier; it was only able to
achieve a maximum accuracy of 3.26%. While this is nearly an order of magnitude more
accurate than randomly guessing the class, it is far from a desirable accuracy. Preprocessing,
ensemble classification, and hyperparameter optimization would be relevant approaches
to addressing this concern if the classification of this firmware were the primary goal;
however, as the goal is characterization of the bounds of potential classification, this is left
for future work. Therefore, we can conclude that when the amount of work performed in
each branch of control flow (i.e., when the amount of work performed by each state) is low,
“off-the-shelf” machine learning models will struggle to determine the underlying program
execution flow.

In stark contrast to the classification accuracy of traces obtained from this firmware
(w = 1), as the w value of the firmware increases, the performance capabilities of sim-
ple machine learning classifiers are well suited to the classification task set before them.
For firmware with w values of 2, 4, and 8, a random forest classifier was able to correctly
recover the program execution flow in all five folds of cross-validation with 100% accu-
racy. For algorithm specific and cross-fold specific performances on firmware with two
executions of addition operations (w = 2), see Figure 6. While all other classifiers achieved
high levels of accuracy on average (99%+) over the same firmware, only the random forest
classifier achieved this level of performance.

52

J. Cybersecur. Priv. 2023, 3

Accuracy Scores for Each Algorithm With Different W Values

1.0~

Classifier

B Random Forest
0.8 4 mmm Decision Tree
EE KNN
B Logistic
0.6
0.4~ -

Accuracy

16

w

Figure 4. A figure which demonstrates the variance, or lack of variance, exhibited by each classifica-
tion algorithm depending upon the number of operations performed by the firmware. The y-axis is
split to emphasize the difference between w = 1 and the other w > 2.

Variations on Accuracy per Classifier Across Multi-fold Validation for Firmware w=1

00325
o
e ..
KNN
00175

00150
Logistic
- 00125
1 2 3 4 5

Fold

0.0300

00275

00250

00225

Classifier

00200

Figure 5. A heatmap demonstrating the accuracy of the testing phase for firmware with a single
operation in each state (w = 1). Most notable is that, while results are better than random guessing,
classification accuracy of 2% is extremely different than the 98%+ accuracy achieved for all other
tested firmware.

Across all classifiers, a decrease in overall accuracy was observed moving from firmware
with 8 executions (w = 8) to firmware with 16 (w = 16). In the case of random forest classifiers,
this is a decrease from an average accuracy of 100% to 99.92%. Both the decision tree classifiers
and logistic regression had their accuracy decrease as the number of operations performed
by the firmware increased, but both remained over 98% classification accuracy on average.
The KNN classifier saw vastly diminishing performance in the move to firmware with more
operations, only achieving a maximum accuracy of 81.4% with an average accuracy of 80.8%.
Similar decreases in performance were observed when moving to the next level of firmware
(w = 32). A visual presentation of the average performance across these various firmware with
more than two operations is available in Figure 7.

53

J. Cybersecur. Priv. 2023, 3

Wariations on Accuracy per Classifier Across Multi-fold Validation for Firmwareﬂ]'.ruzu2
Random Forest
0999
Decision Tree 0.998
5
=
@
K 0ag7
(=)
KNMN
0996
- . o
1

Figure 6. A heatmap demonstrating the accuracy of the testing phase for firmware with two op-
erations executed in each state (w = 2). This firmware exhibits a similar difference between each
classifier as seen in Figure 5 but shifted to the high end of classification accuracy. The random forest
classifier maxes out at 100% accuracy for this firmware.

Classification Accuracy Per Classifier without Firmware w=1

101 ® [[8]] o
0.9 4
o [[]
&
o 08 . .
<
[=4
2
2 07
=
e
b
3 0.6 1 ® Random Forest
» Decision Tree
054 @ KMNearest
® Logistic . .
T T T T T T T
2 B 16 32 B4 128
w

Figure 7. A series of dot plots which illustrate the performance of various classifiers for firmware
with various amounts of computation. Accuracy for firmware of w = 1 is not included since it was
less than 3% for all four tested classifiers. See Figure 5 for specific performance on firmware with
w = 1 for each classification algorithm.

Further hyperparameter optimization might be effective in improving accuracy in
firmware where more operations are performed in each state of the state machine, and au-
tomated approaches to the machine learning for this task could find effective preprocessing
and postprocessing to improve the overall results. However, as a proof of concept and
demonstration that the work performed in each branch of the state machine is not required
to be different in order to recover the transitions, these results are highly significant.

5. Discussion

A number of conclusions can be drawn from the results achieved across these classifi-
cation problems. Beyond the minimal proof of concept that control flow can be significantly
recovered even when the work in different states of a limited purpose finite-state machine

54

J. Cybersecur. Priv. 2023, 3

are identical, these findings suggest that obfuscation techniques may be necessary to ob-
scure the control flow of the program when said control flow conveys security-relevant
information. As an example, an attacker should not be able to purchase a smart lock,
determine the device’s control flow from the embedded finite-state machine, and then
gain the ability to access a home using the same smart lock model. Since the results
show that this information was exfiltrated from the underlying micro-controller, this is a
potential vulnerability that may require more sophisticated protections than traditional,
software-based ones.

One surprising result was the extremely low accuracy while applying machine learning
classifiers to the firmware which has only one operation (w = 1). It was hypothesized before
data analysis was completed that the average accuracy would decrease monotonically as
the number of operations increased. The intuition used to develop this hypothesis was that
as the proportional time spent in the control flow code sections increased, the more accurate
the transition recovery would be. This followed from the observation that, when more
relative time is spent in control flow, more of the data points captured within the power
trace would be directly related to the process of determining state machine transitions.
The subversion of this hypothesized outcome indicates that the number of operations has
much less influence in the classification of transitions than it was initially assumed. It is
clear that the amount of work performed in a state still has influence, as evidenced by the
variation in classification accuracy in correlation with the number of operations within
each state. However, this role may not be nearly as important as the actual work performed
and the state transitions executed by a low-powered device.

The first research question sought to identify whether different behavior is required in
each state of an embedded state machine in order to completely recover the transitions. This
question is answered firmly in the negative. While prior works made use of the different
behavior of a heterogeneous, two-state FSM to more easily perform the classification [1], this
difference is not required. This work clearly demonstrates that, while differences in state
behavior can allow for recoverable transition sequences, it is not strictly necessary since
high transition recovery accuracy was achieved with homogeneous state behavior. Even
when applying the same techniques and classifiers as were used in prior work, meaningful
levels of accuracy were achieved with said states.

This finding suggests that power-based side-channel attacks will be an applicable
tool to recover state transition information regardless of what kind of work is performed
by the states within an FSM. For devices with minimal numbers of states which do a
meaningful amount of work (i.e., they are not comparable to the w = 1 firmware tested in
these experiments), these results suggest it is possible to recover the transition order of the
underlying FSM. As of the time of writing, such behavior is also consistent with speculation
in current literature. Further work will be necessary to determine if these findings are
consistent when expanded to state machines with many states.

The second research question sought to address to what degree the proportion of time
spent in control flow and in a particular state of an FSM would impact the recoverability of
the state transition ordering. It was initially hypothesized that the ratio of time spent in the
state machine versus in the control flow would be the primary predictor of classification
accuracy. While this held true for firmware with more than one operation (w > 2) from
2 to 128, the special case was the firmware with a single operation (w = 1). It can therefore
be concluded that there is a bounded range in which the control flow can be recovered
without more advanced means than are presented here. Further research will be necessary
to determine whether the lower bound is one which can be encountered in production
grade FSM. However, the lower bound of recoverability suggests that minimized states
may evade detection, recovery, and classification. This is demonstrated by the low accuracy
associated with classifying for firmware with a single operation.

The final research question examined how effective “off-the-shelf” machine learning
models are when applied to the task of recovering control flow information. “Off-the-
shelf” machine learning models, specifically more light-weight ones than the deep learning

55

J. Cybersecur. Priv. 2023, 3

approaches common in power-based side-channel attacks, show much promise in their
ability to capture high-level control flow information. Even without hyperparameter
optimization, high levels of accuracy were achieved. With this optimization, it may be
possible to achieve similar accuracy on firmware with more operations. Situations in which
“off-the-shelf” solutions are not sufficient to achieve high classification accuracy must be
further explored to motivate the need for hyperparameter optimization.

The efficacy of random forest algorithms for classification tasks is well known. Yet even
with this reputation, these algorithms’ performance on the collected data is important as it
may suggest their applicability and strong performance on more complex state machines.
When paired with optimization algorithms such as Bayesian Optimization, their capabilities
may continue to be relevant, potentially minimizing the need for more computationally
challenging solutions which make use of deep learning such as DL-SCA.

6. Conclusions

In this work, the program control flow was able to be recovered using SPA. The classi-
fication models used were able to achieve a high level of accuracy, with the random forest
model reaching 100% accuracy for three of the values of w tested; the other models also
reached very high classification accuracy, with several averaging over 98% on firmware
operations with more than one execution (w > 2). This level of performance was achieved
without hyperparameter optimization begin applied, an approach which could lead to
improvements in some situations.

Power-based side-channel analysis is a new potential tool for attackers looking to
recover control flow information from an embedded or otherwise low-powered system.
Due to the recent nature of the development of meaningful recovery attacks on program
control flow information, it remains to be seen to what degree existing counter-measures
will be applicable to the protection of this information. Contrary to the intuition of this
research team, short sections of code were able to evade detection with meaningful impacts
on the accuracy of recovery as exhibited by the results surrounding firmware with a single
execution of operations in this work.

Looking to the future, most current work in power-based control flow recovery has
been done with state machines which have only two states; however, in practice, nearly
all state machines have many more states. Future work should explore the potential
for the current two-state techniques to be extended to multiple homogeneous states as
well as multiple heterogeneous states and variations between the two. Furthermore,
the applicability of automated machine learning pipelines for the task of classifying state
transitions is another avenue for future exploration. While current “off-the-shelf” machine
learning classifiers are sufficient to classify the states under consideration, the ability of
these findings to be transferred to more complex state machines must be examined to
discern where their application breaks down and traditional AutoML pipelines must be
employed. Overall, with the ability for FSM transitions to be recovered clearly established
now, the task must turn to more firmly defining the capabilities and bounds on this avenue
of attack. Variable transition counts, wildly different state computations, more complex
state machines, and further perturbations on the environments data is collected within are
all promising future directions of research at this time. This work should seek to qualify
the limitations of SPA approaches for FSM transition recovery through power analysis.
Finally, historic mitigation techniques applied to combat side-channel attacks must be
re-evaluated to determine to what extent existing mitigations protect against this control
flow recovery attack.

One primary limitation is that the comparative time spent in each state, a by-product
of the number of operations in each state, is constant across a sample. While the question
of whether a simple machine learning model would be sufficient for recovering the control
flow of a program with identical work in each state has been answered in the affirmative in
this paper, future work should certainly address this limitation by determining if a consis-
tent time in each state is necessary for these results to be widely transferable. Perhaps more

56

J. Cybersecur. Priv. 2023, 3

specialized machine learning may be able to improve the classification, but in comparison
to the other models created throughout this process, it is clear that the data captured itself
is the limitation directly responsible for reducing general classifier accuracy.

Additionally, while attempting to make use of “off-the-shelf” machine learning models
was a key research question, it does assume that the benefits of deep learning approaches,
or other AutoML approaches such as NAS, are not of enough importance to justify the com-
putational trade-offs. The strong performance of the algorithms examined in this work may
justify this restriction in this specific scenario, but further examination of their limitations
will be necessary to determine if more modern, advanced, or complex machine learning
pipelines allow for more meaningful state transition recovery in more complex applications.

Author Contributions: Conceptualization, A.R. and C.C.; Methodology, A.R.; Software, A.R.; Valida-
tion, S.0.; Investigation, A.R. and S.0.; Resources, M.B.; Data curation, A.R.; Writing—original draft,
AR,S.0O,]B., C.C.and M.B.; Writing—review & editing, A.R.,S.0.,].B., C.C. and M.B.; Visualization,
AR, S.O. and].B.; Project administration, M.B.; Funding acquisition, M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported through various contracts and gifts including INL Laboratory
Directed Research & Development (LDRD) Program under the DOE Battelle Energy Alliance Standard
Research Contract #249922, I0G, and the University of Wyoming’s Nell Templeton Endowment.

Data Availability Statement: The data presented in this study are openly available in FigShare at
10.6084 /m9.figshare.23635623.

Acknowledgments: The research team would like to acknowledge and thank the Secure Systems
Collaborative for their assistance in revisions and presentation of information.

Conflicts of Interest: Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any agency, sponsor,
or corporate entity.

References

1.

10.
11.
12.

13.

Carper, C.; Robins, A.; Borowczak, M. Transition Recovery Attack on Embedded State Machines Using Power Analysis.
In Proceedings of the 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, CA, USA,
23-26 October 2022; pp. 572-576.

O’flynn, C.; Chen, Z. Chipwhisperer: An open-source platform for hardware embedded security research. In Constructive
Side-Channel Analysis and Secure Design, Proceedings of the 5th International Workshop, COSADE 2014, Paris, France, 13-15 April 2014;
Revised Selected Papers 5; Springer: Berlin/Heidelberg, Germany, 2014; pp. 243-260.

Kocher, P; Jaffe, J.; Jun, B. Differential power analysis. In Advances in Cryptology—CRYPTO ’99, Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15-19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp- 388-397.

Randolph, M.; Diehl, W. Power side-channel attack analysis: A review of 20 years of study for the layman. Cryptography 2020,
4,15. [CrossRef]

Gangolli, A.; Mahmoud, Q.H.; Azim, A. A systematic review of fault injection attacks on IOT systems. Electronics 2022, 11, 2023.
[CrossRef]

Kim, C.H.; Quisquater, J.J. Faults, injection methods, and fault attacks. IEEE Des. Test Comput. 2007, 24, 544-545. [CrossRef]
Balasch, J.; Gierlichs, B.; Reparaz, O. Differential Behavioral Analysis. In Proceedings of the Cryptographic Hardware and
Embedded Systems, Vienna, Austria, 10-13 September 2007.

Tunstall, M.; Mukhopadhyay, D.; Ali, S. Differential fault analysis of the advanced encryption standard using a single fault. In
Information Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless Communication, Proceedings of the 5th IFIP
WG 11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece, 1-3 June 2011; Proceedings 5; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 224-233.

Lo, O.; Buchanan, W.J.; Carson, D. Power analysis attacks on the AES-128 S-box using differential power analysis (DPA) and
correlation power analysis (CPA). J. Cyber Secur. Technol. 2017, 1, 88-107. [CrossRef]

Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188-194. [CrossRef] [PubMed]

Roy, K.S.; Kalita, H.K. A survey on post-quantum cryptography for constrained devices. Int.]. Appl. Eng. Res. 2019, 14, 2608-2615.
Nejatollahi, H.; Dutt, N.; Ray, S.; Regazzoni, E; Banerjee, I.; Cammarota, R. Post-quantum lattice-based cryptography implemen-
tations: A survey. ACM Comput. Surv. (CSUR) 2019, 51, 1-41. [CrossRef]

Mujdei, C.; Wouters, L.; Karmakar, A.; Beckers, A.; Mera,].M.B.; Verbauwhede, 1. Side-channel analysis of lattice-based
post-quantum cryptography: Exploiting polynomial multiplication. ACM Trans. Embed. Comput. Syst. 2022. [CrossRef]

57

J. Cybersecur. Priv. 2023, 3

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Borowczak, M.; Vemuri, R. S*FSM: A paradigm shift for attack resistant FSM designs and encodings. In Proceedings of the 2012
ASE/IEEE International Conference on BioMedical Computing (BioMedCom), Washington, DC, USA, 14-16 December 2012;
pp- 96-100.

Clavier, C.; Coron,].S.; Dabbous, N. Differential power analysis in the presence of hardware countermeasures. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, MA, USA, 17-18 August 2000;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 252-263.

Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks; Springer: Boston, MA, USA, 2007.

Goodwill, G.; Jun, B.; Jaffe,].; Rohatgi, P. A Testing Methodology for Side-Channel Resistance Validation; Cryptography Research Inc.:
San Francisco, CA, USA, 2011; p. 15.

Unger, W.; Babinkostova, L.; Borowczak, M.; Erbes, R. Side-channel Leakage Assessment Metrics: A Case Study of GIFT
Block Ciphers. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA,
7-9 July 2021; pp. 236-241.

Unger, W.; Babinkostova, L.; Borowczak, M.; Erbes, R.; Srinath, A. TVLA, Correlation Power Analysis and Side-Channel
Leakage Assessment Metrics. In Proceedings of the Lightweight Cryptography Workshop 2022, Virtual, 9-11 May 2022; NIST:
Gaithersburg, MD, USA, 2022.

Moradi, A.; Richter, B.; Schneider, T.; Standaert, F.X. Leakage Detection with the x2-Test. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018, 2018, 209-237. [CrossRef]

Le, TH.; Clédiere, J.; Serviere, C.; Lacoume,]J.L. How can signal processing benefit side channel attacks? In Proceedings
of the 2007 IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA,
11-13 April 2007; pp. 1-7.

Aquino-Britez, D.; Ortiz, A.; Ortega, J.; Ledn, J.; Formoso, M.; Gan, J.Q.; Escobar, J.J. Optimization of Deep Architectures for EEG
Signal Classification: An AutoML Approach Using Evolutionary Algorithms. Sensors 2021, 21, 2096. [CrossRef] [PubMed]
Alsharef, A.; Aggarwal, K.; Sonia.; Kumar, M.; Mishra, A. Review of ML and AutoML Solutions to Forecast Time-Series Data.
Arch. Comput. Methods Eng. 2022, 29, 5297-5311. [CrossRef] [PubMed]

Paldino, G.M.; De Stefani, J.; De Caro, F.; Bontempi, G. Does AutoML Outperform Naive Forecasting? Eng. Proc. 2021, 5, 36.
Javeri, 1.Y.; Toutiaee, M.; Arpinar, 1.B.; Miller, TW.; Miller,].A. Improving Neural Networks for Time Series Forecasting using
Data Augmentation and AutoML. In Proceedings of the IEEE International Conference on Big Data Computing Service and
Applications (BigDataService), Oxford, UK, 23-26 August 2021.

Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-based Physical Side-channel Analysis. ACM Comput. Surv.
2023, 55, 1-35. [CrossRef]

Moos, T.; Wegener, F.; Moradi, A. DL-LA: Deep Learning Leakage Assessment: A modern roadmap for SCA evaluations. JACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 552-598. [CrossRef]

Side Channel State Machines. 2023. Available online: https://gitlab.com/UWyo0-SSC/side-channel-state-machines
(accessed on 19 June 2023).

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V,; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine Learning in Python.]. Mach. Learn. Res. 2011, 12, 2825-2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

58

Journal of
Cybersecurity
and Privacy

Review

Cybersecurity for Al Systems: A Survey

Raghvinder S. Sangwan, Youakim Badr * and Satish M. Srinivasan

Citation: Sangwan, R.S.; Badr, Y.;
Srinivasan, S.M. Cybersecurity for AT
Systems: A Survey. |. Cybersecur. Priv.
2023, 3, 166-190. https://doi.org/
10.3390/jcp3020010

Academic Editor: Giorgio Giacinto

Received: 24 January 2023
Revised: 8 March 2023
Accepted: 11 March 2023
Published: 4 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Graduate Professional Studies, The Pennsylvania State University, 30 E. Swedesford Road,
Malvern, PA 19355, USA
* Correspondence: yzb61@psu.edu

Abstract: Recent advances in machine learning have created an opportunity to embed artificial
intelligence in software-intensive systems. These artificial intelligence systems, however, come with a
new set of vulnerabilities making them potential targets for cyberattacks. This research examines the
landscape of these cyber attacks and organizes them into a taxonomy. It further explores potential
defense mechanisms to counter such attacks and the use of these mechanisms early during the
development life cycle to enhance the safety and security of artificial intelligence systems.

Keywords: machine learning; cybersecurity; Al attacks; defense mechanism

1. Introduction

Advances in Artificial Intelligence (AI) technology have contributed to the enhance-
ment of cybersecurity capabilities of traditional systems with applications that include
detection of intrusion, malware, code vulnerabilities and anomalies. However, these sys-
tems with embedded machine learning models have opened themselves to a new set of
vulnerabilities, commonly known as Al attacks. Currently, these systems are prime targets
for cyberattacks, thus compromising the security and safety of larger systems that encom-
pass them. Modern day Al attacks are not only limited to just coding bugs and errors. They
manifest due to the inherent limitations or vulnerabilities of systems [1]. By exploiting
the vulnerabilities in the Al system, attackers aim at either manipulating its behavior or
obtaining its internal details by tampering with its input, training data, or the machine
learning (ML) model. McGraw et al. [2] have classified Al attacks broadly as manipulation
and extraction attacks. Based on the inputs given to the system, the training dataset used
for learning, and manipulation of the model hyperparameters, attacks on Al systems can
manifest in different types, with different degrees of severity. For example, adversarial or
evasion attack can be launched by manipulating the input to the Al system, which results
in the system producing an unintended outcome. A poisoning or causative attack can be
launched by tainting the training dataset, which would result in the Al system exhibiting
unethical behavior.

Therefore, it is important that we start thinking about designing security into Al
systems, rather than retrofitting it as an afterthought. This research addresses the following
research questions:

RQ1: What are the cyberattacks that Al systems can be subjected to?

RQ2: Can the attacks on Al systems be organized into a taxonomy, to better understand
how the vulnerabilities manifest themselves during the system development.

RQ3: What are possible defense mechanisms to prevent Al systems being subjected
to cyberattacks?

RQ4: Is it possible to devise a generic defense mechanism against all kinds of
Al attacks.

To address these research questions and determine the extent of risk to safety and
security of Al systems, we first conducted a systematic literature review looking for Al
attacks on systems reported in the literature. We then organized these attacks into a

J. Cybersecur. Priv. 2023, 3, 166-190. https:/ /doi.org/10.3390/jcp3020010 59

https:/ /www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2023, 3

taxonomy to not only understand the types of vulnerabilities, but also the stage in the
development of Al systems when these vulnerabilities manifest themselves. We then
conducted further literature search looking for any defense mechanisms to counter these
attacks and improve the safety and security of Al systems.

This study is organized as follows. In Section 2, we report the results of the systematic
literature review and identify the attacks, from an Al system development perspective,
and their vulnerabilities. In Section 3, we introduce a taxonomy of Al attacks along with
defense mechanisms and countermeasures to mitigate their threats. Section 4 concludes the
study and highlights major findings.

2. Literature Review

This survey was founded on searching, by keywords, to find related articles to cyberse-
curity of Al systems. The top most used keywords are as follow: cybersecurity, cyberattack,
and vulnerabilities. We searched Scopus, an Elsevier abstracts and citation database, for
articles having titles that matched the search query (“cyber security” OR “cybersecurity”
OR “security” OR “cyberattack” OR “vulnerability” OR “vulnerabilities” OR “threat” OR
“attack” OR “Al attack”) AND (“AI” OR “ML” OR “Artificial Intelligence” OR “Machine
Learning”) AND (“system”)).

The search resulted in a total of 1366 articles. Within these articles, we looked for
those in computer science or computer engineering subject areas that were published in
journals in the English language, leaving us with 415 manuscripts. We carefully reviewed
the abstracts of the papers to determine their relevance. Only articles that discussed the
vulnerabilities of Al systems to attacks and/or their defense mechanisms were considered.

During the learning or training stage, an Al system needs data for training a machine
learning model. The training data are subject to manipulation attacks, requiring that their
integrity be verified. Ma et al. [3] used a visual analytics framework for explaining and
exploring ML model vulnerabilities to data poisoning attacks. Kim and Park [4] proposed a
blockchain-based environment that collects and stores learning data whose confidentiality
and integrity can be guaranteed. Mozaffari-Kermani et al. [5] focused on data poisoning
attacks on, and the defenses for, machine learning algorithms in healthcare.

During the inference or testing stage, an Al system can be subjected to manipulation
attacks by presenting falsified data to be classified as legitimate data. Adversarial or
evasion attacks and/or potential defenses against such attacks are discussed in [6-14].
Chen et al. [15] looked at such attacks in the context of reinforcement learning. Li et al. [16]
proposed a low latency decentralized framework for identifying adversarial attacks in
deep learning-based industrial Al systems. Garcia-Ceja et al. [17] described how biometric
profiles can be generated to impersonate a user by repeatedly querying a classifier and
how the learned profiles can be used to attack other classifiers trained on the same dataset.
Biggio et al. [18] examined vulnerabilities of biometric recognition systems and their
defense mechanisms. Ren et al. [19] also looked at querying-based attacks against black-box
machine learning models and potential defense mechanisms against such attacks. Wang
etal. [20] looked at a variant, termed the Man-in-the-Middle attack, using generative models
for querying. Threats from, and potential defense against, attacks on machine learning
models in 5G networks is discussed in [21,22]. Apruzzese et al. [23] provided an approach
to mitigating evasion attacks on Al-based network intrusion detection systems. Zhang
et al. [24] explored adversarial attacks against commonly used ML-based cybersecurity
systems. Liu et al. [25] discussed how to improve robustness of ML-based CAD systems
against adversarial attacks. Building malware detection systems that are more resilient
to adversarial attacks was the focus of [26,27], and Gardiner and Nagaraja [28] provided
a comprehensive survey on vulnerabilities of ML models in malware detection systems.
Dasgupta and Collins [29] surveyed game theoretical approaches that can be used to make
ML algorithms robust against adversarial attacks.

60

J. Cybersecur. Priv. 2023, 3

During the inference or testing stage, extraction attacks are possible using the feature
vector of a model for model inversion or reconstruction and gaining access to private data
that was used as input or for training an Al system [30].

Hansman and Hunt [31] and Gao et al. [32] proposed a taxonomy of network and com-
puter attacks to categorize different attack types. Their taxonomy includes four dimensions
to categorize attacks on Al systems, including attack classes, attack targets, vulnerabilities
and exploits used by the attacks and whether the attack has a payload or effect beyond
itself. Their taxonomical structure is very comprehensive and can be used to analyze a
system for its dependability, reliability and security.

Despite the benefits of machine learning technologies, the learning algorithms can
be abused by cybercriminals to conduct illicit and undesirable activities. It was shown
in [33,34] that attackers might gain a significant benefit by exploiting vulnerabilities in the
learning algorithms, which can sometimes become a weakest link in the security chain.
Several studies related to attacks on machine learning algorithms have been reported in
the literature using different threat models. Barreno et al. [35,36], Huang et al. [36], Biggio
et al. [37] and Munoz-Gonzalez et al. [38] discussed different attack scenarios against
machine learning models with different attack models. The frameworks they proposed
characterize the attacks according to the attacker’s goal, their capabilities to manipulate the
data and influence the learning system, familiarity with the algorithms, the data used by
the defender and the attacker’s strategy. For example, data poisoning attacks, also known
as causative attacks, are a major emerging security threat to data-driven technologies. In
these types of attacks, it can be assumed that the hacker has control over the training
dataset that is being used by the learning algorithm. The hacker can actively influence
the training dataset in order to subvert the entire learning process, thus decreasing the
overall performance of the system, or to produce particular types of errors in the system
output. For example, in a classification task, the hacker may poison the data to modify the
decision boundaries learned by the learning algorithm, thus resulting in misclassification
of instances, or a higher error rate for a specific type of class. This is a kind of threat that is
related to the reliability of the large amount of data collected by the systems [38,39].

This survey is distinct from [31,39] in studying attacks on an Al system from the
perspective of a software engineering team, that organizes its work around different stages
of an Al system’s development life cycle. For these different stages of an Al system, and
their corresponding attacks, potential defense mechanisms are also provided. Organizing
the literature using this perspective can be valuable to systematically study the design of
Al systems for security purposes, to explore the trade offs that result from using different
defense mechanisms, and to develop a catalog of patterns and tactics for designing Al
systems for security purposes.

Table 1 lists various attacks carried out at different stages of the Al system development
processes and the countermeasures that are taken against these attacks.

Table 1. Attacks on Al systems at different stages of its development.

Attacks Al System Development ~ Vulnerabilities Defense Mechanisms
Poisoning attacks [1,37] = During training of the = Weakness in the federated learning See list of defense mechanisms for both the data and
model algorithms, resulting in stealing of ~ model poisoning attacks.
the data and algorithm from indi-
vidual user devices.
Data poisoning attacks ~During the training Tampering of the featuresand class ~ Adversarial training, Feature squeezing, Transfer-
[38—-40] stage information in the training dataset ability blocking, MagNet, Defense-GAN, Local in-

trinsic dimensionality, Reject On Negative Impact
(RONI), L-2 Defense, Slab Defense, Loss Defense and
K-NN Defense.

61

J. Cybersecur. Priv. 2023, 3

Table 1. Cont.

Attacks AI System Develop- Vulnerabilities Defense Mechanisms
ment
Model poisoning attacks ~ During the training Trustability of the trainer, based on Securely hosting and disseminating pre-trained mod-
[41-44] stage a privately held validation dataset. els in virtual repositories that guarantee integrity to
preclude benevolent models from being manipulated.
Use of pre-trained models that Identifying backdoors in malevolently trained models
are corrupted. acquired from untrustworthy trainers by fine-tuning
untrusted models.
Transfer learning attacks ~ During the training Similarity of the model structures. ~ Obtain pre-trained models from trusted source.
[42,44-46] stage Employ activation-based pruning with different train-
ing examples.
Model poisoning in feder- ~ During the training Obstruct the convergence of the ex- Robust aggregation methods, robust learning rate.
ated learning [41,454748] stage ecution of the distributed Stochastic
Gradient Descent (SGD) algorithm,
Model inversion attack ~ During Inference Models are typically trained L2 Regularizer [49], Dropout and Model Staking [50],

[49-52]

and/or testing stage

on rather small, or imbalanced,
training sets.

MemGuard [51] and Differential privacy [52].

Model extraction attack
[53,54]

During Inference
and/or training stage

Models having similar character-
istics (parameters, shape and size,
similar features etc.)

Hiding or adding noises to the output probabilities
while keeping the class label of the instances intact.
Suppressing suspicious queries or input data.

Inference attack [55]

During Inferencing,
Training, and Testing

Model Leaking information lead-
ing to inferences being made on
private data.

Methods proposed in [55] have leveraged heuristic
correlations between the records of the public data and
attribute values to defending against inference attacks.

Modifying the identified k entries that have large cor-
relations with the attribute values to any given tar-
get users.

The following section systematically explores attacks on Al systems and their defenses
in more detail.

3. Al Attacks and Defense Mechanisms

Research has been carried out to identify new threats and attacks on different levels
of design and implementation of Al systems. Kaloudi and Li [56], stressed the dearth of
proper understanding of the malicious intention of the attacks on Al-based systems. The
authors introduced 11 use cases divided into five categories: (1) next generation malware,
(2) void synthesis, (3) password-based attacks, (4) social bots, and (5) adversarial training.
They developed a threat framework to categorize the attacks. Turchin [57] pointed out
the lack of desired behaviors of Al systems that could be exploited to design attacks in
different phases of system development. The research lists the following modes of failure
of Al systems:

e The need for better resources for self-upgradation of Al systems can be exploited
by adversaries

e Implementation of malicious goals make the Al systems unfriendly

e Flaws in the user-friendly features

e Use of different techniques to make different stages of Al free from the boundaries of
actions expose the Al systems to adversaries

Similar research is carried out by Turchin and Denkenberger [58] where the classifi-
cation of attacks was based on intelligence levels of Al systems. The authors introduced
three levels of Al intelligence with respect to human intelligence: (1) “Narrow AI” which
requires human assistance, (2) “Young Al” which has capability a bit better than human,
and (3) “Mature AI” whose intelligence is super-human. While classifying the intelligence
levels of Al systems, the authors investigated several vulnerabilities during the evolution of
capabilities of Al systems. Yampolsky [59] projected a holistic view of tracks as to why an
Al system could be malicious, classifying the tracks into two stages: (1) Pre-deployment and

62

J. Cybersecur. Priv. 2023, 3

(2) Post-deployment. This includes the intrinsic and extrinsic reasons for Al technologies to
be malicious, such as design flaws, intentional activities, or environmental factors.

3.1. Types of Failures

Shiva Kemar et al. [60] discussed two modes of failures of machine learning (ML)
systems. They claimed that Al systems can fail either due to the inherent design of the
systems (unintentional failures) or by the hand of an adversary (intentional failures).

Unintentional Failures: The unintentional failure mode leads to the failure of an
AI/ML system when the AI/ML system generates formally correct, but completely
unsafe, behavior.

Intentional failures: Intentional failures are caused by the attackers attempting to
destabilize the system either by (a) misclassifying the results, by introducing private
training data, or b) by stealing the foundational algorithmic framework. Depending on
the accessibility of information about the system components (i.e., knowledge), intentional
failures can be further subdivided into different subcategories.

3.1.1. Categories of Unintentional Failures

Unintentional failures happen when AI/ML systems produce an unwanted or unfore-
seen outcome from a determined action. It happens mainly due to system failures. In this
research we further categorize different types of unintentional failures.

¢ Reward Hacking: Reward hacking is a failure mode that an AI/ML system experi-
ences when the underlying framework is a reinforcement learning algorithm. Reward
hacking appears when an agent has more return as reward in an unexpected manner
in a game environment [61]. This unexpected behavior unsettles the safety of the
system. Yuan et al. [62] proposed a new multi-step reinforcement learning framework,
where the reward function generates a discounted future reward and, thus, reduces
the influence of immediate reward on the current state action pair. The proposed
algorithm creates the defense mechanism to mitigate the effect of reward hacking in
AI/ML systems.

e Distributed Shift: This type of mode appears when an AI/ML model that once
performed well in an environment generates dismal performance when deployed to
perform in a different environment. One such example is when the training and test
data come from two different probability distributions [63]. The distribution shift is
further subdivided into three types [64]:

1. Covariate Shift: The shifting problem arises due to the change in input features
(covariates) over time, while the distribution of the conditional labeling function
remains the same.

2. Label Shift: This mode of failure is complementary to covariate shift, such that the
distribution of class conditional probability does not change but the label marginal
probability distribution changes.

3. Concept Shift: Concept shift is a failure related to the label shift problem where
the definitions of the label (i.e., the posteriori probability) experience spatial or
temporal changes.

Subbaswamy and Saria proposed an operator-based hierarchy of solutions that are
stable to the distributed shift [65]. There are three operators (i.e., conditioning, intervening
and computing counterfactuals) that work on a graph specific to healthcare Al These oper-
ators effectively remove the unstable component of the graph and retain the stable behavior
as much as possible. There are also other algorithms to maintain robustness against the
distributed shift. Rojas-Carulla et al. [66] proposed a data-driven approach, where the
learning of models occurs using data from diverse environments, while Rothenhausler
et al. [67] devised bounded magnitude-based robustness, where the shift is assumed to
have a known magnitude.

63

J. Cybersecur. Priv. 2023, 3

e Natural Adversarial Examples: The natural adversarial examples are real-world
examples that are not intentionally modified. Rather, they occur naturally, and result
in considerable loss of performance of the machine learning algorithms [68]. The
instances are semantically similar to the input, legible and facilitate interpretation
(e.g., image data) of the outcome [69]. Deep neural networks are susceptible to natural
adversarial examples.

3.1.2. Categories of Intentional Failures

The goal of the adversary is deduced from the type of failure of the model. Chakraborty
et al. [70] identify four different classes of adversarial goals, based on the machine learning
classifier output, which are the following: (1) confidence reduction, where the target model
prediction confidence is reduced to a lower probability of classification, (2) misclassifica-
tion, where the output class is altered from the original class, (3) output misclassification,
which deals with input generation to fix the classifier output into a particular class, and
(4) input/output misclassification, where the label of a particular input is forced to have a
specific class.

Shiv Kumar et al. [60] identified the taxonomy of intentional failures/attacks, based
on the knowledge of the adversary. It deals with the extent of knowledge needed to trigger
an attack for the AI/ML systems to fail. The adversary is better equipped with more
knowledge [70] to perform the attack.

There are three types of classified attacks based on the adversary’s access to knowledge
about the system.

1 Whiteb ox Attack: In this type of attack, the adversary has access to the parameters
of the underlying architecture of the model, the algorithm used for training, weights,
training data distribution, and biases [71,72]. The adversary uses this information
to find the model’s vulnerable feature space. Later, the model is manipulated by
modifying an input using adversarial crafting methods. An example of the whitebox
attack and adversarial crafting methods are discussed in later sections. The researchers
in [73,74] showed that adversarial training of the data, filled with some adversarial
instances, actually helps the model/system become robust against whitebox attacks.

2 Blackbox Attack: In blackbox attacks the attacker does not know anything about the
ML system. The attacker has access to only two types of information. The first is the
hard label, where the adversary obtained only the classifier’s predicted label, and the
second is confidence, where the adversary obtained the predicted label along with
the confidence score. The attacker uses information about the inputs from the past to
understand vulnerabilities of the model [70]. Some blackbox attacks are discussed in
later sections. Blackbox attacks can further be divided into three categories:

¢ Non-Adaptive Blackbox Attack: In this category of blackbox attack, the adversary
has the knowledge of distribution of training data for a model, T. The adversary
chooses a procedure, P, for a selected local model, T’, and trains the model on known
data distribution using P for T to approximate the already learned T in order to trigger
misclassification using whitebox strategies [53,75].

e Adaptive Blackbox Attack: In adaptive blackbox attack the adversary has no
knowledge of the training data distribution or the model architecture. Rather, the
attacker approaches the target model, T, as an oracle. The attacker generates a selected
dataset with a label accessed from adaptive querying of the oracle. A training process,
P, is chosen with a model, T’, to be trained on the labeled dataset generated by the
adversary. The model T’ introduces the adversarial instances using whitebox attacks
to trigger misclassification by the target model T [70,76].

o Strict Blackbox Attack: In this blackbox attack category, the adversary does not
have access to the training data distribution but could have the labeled dataset (x, y)
collected from the target model, T. The adversary can perturb the input to identify the
changes in the output. This attack would be successful if the adversary has a large set
of dataset (x,y) [70,71].

64

J. Cybersecur. Priv. 2023, 3

Grayb ox attacks: In whitebox attacks the adversary is fully informed about the
target model, i.e., the adversary has access to the model framework, data distribution,
training procedure, and model parameters, while in blackbox attacks, the adversary has
no knowledge about the model. The graybox attack is an extended version of either
whitebox attack or blackbox attack. In extended whitebox attacks, the adversary is partially
knowledgeable about the target model setup, e.g, the model architecture, T, and the training
procedure, P, is known, while the data distribution and parameters are unknown. On the
other hand, in the extended blackbox attack, the adversarial model is partially trained, has
different model architecture and, hence, parameters [77].

3.2. Anatomy of Cyberattacks

To build any machine learning model, the data needs to be collected, processed,
trained, and tested and can be used to classify new data. The system that takes care of
the sequence of data collection, processing, training and testing can be thought of as a
generic AI/ML pipeline, termed the attack surface [70]. An attack surface subjected to
adversarial intrusion may face poisoning attack, evasion attack, and exploratory attack.
These attacks exploit three pillars of the information security, i.e., Confidentiality, Integrity,
and Availability, known as the CIA triad [78]. Integrity of a system is compromised by
the poisoning and evasion attacks, confidentiality is subject to intrusion by extraction,
while availabilty is vulnerable to poisoning attacks. The entire Al pipeline, along with the
possible attacks at each step, are shown in Figure 1.

Stage AI/ML Pipeline Attacks / Failures

PHYSICAL
WORLD
L 4

| data o
collection =« Data poisoning

|

\

DaTA
REPOSITORY
L J
data
preprocessing
|
v

Training Time

FEATURE
SELECTION
A 4
‘ training
data — + Model poisoning
v

LEARNED
MODEL
L 4

Attack Surface

‘ testing
data

v

FINAL MODEL
L 4

unlabeled real-
world data
!

Test Time

Inference
Time

v

INFERENCE /
CLASSIFICATION

« Unintcntional /
intentional failures

* Model inversion

= Model extraction

- Infcrence

Figure 1. ML Pipeline with Cyberattacks Layout.

65

J. Cybersecur. Priv. 2023, 3

3.3. Poisoning Attack

Poisoning attack occurs when the adversary contaminates

the training data. Often ML algorithms, such as intrusion detection systems, are
retrained on the training dataset. In this type of attack, the adversary cannot access the
training dataset, but poisons the data by injecting new data instances [35,37,40] during the
model training time. In general, the objective of the adversary is to compromise the Al
system to result in the misclassification of objects.

Poisoning attacks can be a result of poisoning the training dataset or the trained
model [1]. Adversaries can attack either at the data source, a platform from which a
defender extracts its data, or can compromise the database of the defender. They can
substitute a genuine model with a tainted model. Poisoning attacks can also exploit the
limitations of the underlying learning algorithms. This attack happens in federated learning
scenarios where the privacy on individual users’ dataset is maintained [47]. The adversary
takes advantage of the weakness of federated learning and may take control of both the
data and algorithm on an individual user’s device to deteriorate the performance of the
model on that device [48].

3.3.1. Dataset Poisoning Attacks

The major scenarios of data poisoning attacks are error-agnostic poisoning attacks and
error-specific poisoning attacks. In the error-agnostic type of poisoning attack the hacker
aims to cause a Denial of Service (DOS) kind of attack. The hacker causes the system to
produce errors, but it does not matter what type of error it is. For example, in a multi-class
classification task a hacker could poison the data leading to misclassification of the data
points irrespective of the class type, thus maximizing the loss function of the learning
algorithm. To launch this kind of attack, the hacker needs to manipulate both the features
and the labels of the data points. On the other hand, in error-specific poisoning attacks, the
hacker causes the system to produce specific misclassification errors, resulting in security
violation of both integrity and availability. Here, the hacker aims at misclassifying a
small sample of chosen data points in a multi-class classification task. The hacker aims to
minimize the loss function of the learning algorithm to serve the purpose, i.e., to force the
system into misclassifying specific instances without compromising the normal system
operation, ensuring that the attack is undetected [38,39].

A model is built up from a training dataset. So, attacking the dataset results in
poisoning the model. By poisoning the dataset, the adversary could manipulate to generate
natural adversarial examples, or inject instances with incorrect labels into the training
dataset. The model may learn the pattern on misclassified examples in the data that serves
the goal of the adversary. The dataset poisoning attacks can be further subdivided into two
categories [79].

e Data Modification: The adversary updates or deletes training data. Here, the attacker
does not have access to the algorithm. They can only manipulate labels. For instance,
the attacker can draw new labels at random from the training pool, or can optimize
the labels to cause maximum disruption.

e Data Injection: Even if the adversary does not have access to the training data or
learning algorithm, he or she can still inject incorrect data into the training set. This
is similar to manipulation, but the difference is that the adversary introduces new
malicious data into the training pool, not just labels.

Support Vector Machines (SVMs) are widely used classification models for malware
identification, intrusion detection systems, and filtering of spam emails, to name a few
applications. Biggio, Nelson and Laskov [40] illustrated poisoning attacks on the SVM
classifier, with the assumption that the adversary has information about the learning
algorithm, and the data distribution. The adversary generates surrogate data from the
data distribution and tampers with the training data, by introducing the surrogate data,

66

J. Cybersecur. Priv. 2023, 3

to drastically reduce the model training accuracy. The test data remains untouched. The
authors formed an equation, expressing the adversarial strategy, as:

(1= yife(x) = 1
where x; < x < x, and D = (x;, yi}?:l is the validation data.

The goal of the adversary is to maximize the loss function A(x) with the surrogate
data instance (x, y) to be added into the training set Dy in order to maximally reduce the
training accuracy of classification. g;is the status of the margin, influenced by the surrogate
data instance (x, y).

Rubinstien et al. [80] presented the attack on SVM learning by exploiting training data
confidentiality. The objective is to access the features and the labels of the training data by
examining the classification on the test set.

Figure 2 explains the poison attack on the SVM classifier. The left sub-figure indicates
the decision boundary of the linear SVM classifier, with support vectors and classifier
margin. The right sub-figure shows how the decision boundary is drastically changed
by tampering with one training data instance without changing the label of the instance.
It was observed that the classification accuracy would be reduced by 11% by a mere 3%
manipulation of the training set [81]. Nelson et al. [39] showed that an attacker can breach
the functionality on the spam filter by poisoning the Bayesian classification model. The
filter becomes inoperable under the proposed Usenet dictionary attack, wherein 36% of the
messages are misclassified with 1% knowledge regarding the messages in the training set.

®

k

MAX, A(x) =Y i1 (—8&)

Figure 2. Poisoning attack changing the decision boundary.

Munoz-Gonzalez et al. [38] illustrated poisoning attacks on multi-class classification
problems. The authors identified two attack scenarios for the multi-class problems: (1) error-
generic poisoning attacks and (2) error-specific poisoning attacks. In the first scenario,
the adversary attacks the bi-level optimization problem [40,82], where the surrogate data
is segregated into training and validation sets. The model is learned on the generated
surrogate training dataset with the tampered instances. The validation set measures the
influence of the tampered instances on the original test set, by maximizing the binary class
loss function. It is expressed in the following equation:

———
’ —— =
D: = argmaxD/A<Dx,(7> =L(Dyy, 0)

A -)
Suchas 0 = ming-L(Dy U Dy, 6%)

The surrogate data Dis segregated into training 5\” and validation sets D/v;[. The
model is trained on Dy, along with D; (i.e., the tampered instances). D, is used to measure
the influence of the tainted samples on the genuine data via the function A (D;, 0’) that
explains the loss function, L, with respect to the validation dataset 57,\“1 and the parameters

~~
6 of the surrogate model. In the multi-class scenario, the multi-class loss function is
used for error-generic poisoning attacks.

67

J. Cybersecur. Priv. 2023, 3

In error-specific poisoning attacks, the objective remains to change the outcome of
specific instances in a multi-class scenario. The goal of desired misclassification is expressed
with the equation:

—_———

/ o~
(Die) = ~L(D},, 07

551 is the same as the D/T;l with different labels for desired misclassified instances that the
adversary chose. The attacker aims to minimize the loss of the chosen misclassified samples.
In separate research, Kloft and Laskov [83] explained the adversarial attack on de-
tection of outliers (anomalies), where the adversary is assumed to have knowledge about
the algorithm and the training data. Their work introduced a finite sliding window, while
updating the centre of mass iteratively for each new data instance. The objective is to accept
the poisoned data instance as a valid data point, and the update on the center of mass is
shifted in the direction of the tainted point, that appears to be a valid one. They show that
relative displacement, d, of the center of mass under adversarial attack is lower bounded
by the following inequality when the training window length is infinite:

i
. < —
d; <In(1+ n)

where i and 7 are the number of tampered points and number of training points, respectively.

The intuition behind the use of anomaly detection is to sanitize the data by removing
the anomalous data points, assuming the distribution of the anomalies is different from that
of the normal data points. Koh, Steinhardt, and Liang [84] presented data poisoning attacks
that outsmart data sanitization defenses for traditional anomaly detection, by nearest
neighbors, training loss and singular value decomposition methods. The researchers
divided the attacks into two groups:

e High Sensitive: An anomaly detector usually considers points as anomalous when
the point is far off from its closest neighbors. The anomaly detector cannot identify a
specific point as abnormal if it is surrounded by other points, even if that tiny cluster
of points are far off from remaining points. So, if an adversary/attacker concentrates
poison points in a few anomalous locations, then the anomalous location is considered
benign by the detector.

e Low Sensitive : An anomaly detector drops all points away from the centroid by
a particular distance. Whether the anomaly detector deems a provided point as
abnormal does not vary much by addition or deletion of some points, until the
centroid of data does not vary considerably.

Attackers can take advantage of this low sensitivity property of detectors and optimize
the location of poisoned points such that it satisfies the constraints imposed by the defender.

Shafahi et al. [85] discussed how classification results can be manipulated just by
injecting adversarial examples with correct labels. which is known as the clean-label attack.
The clean-label attack is executed by changing the normal (“base”) instance to reflect the
features of another class, as shown in Figure 3. The Gmail image is marked with blue dots
and lies on the feature space of the target dataset. This poisoned data is used for training
and shifts the decision boundary, as shown in Figure 4.

Due to the shift, the target instance is classified as “base” instance. Here, the adversary
tries to craft a poison instance such that it is indistinguishable from the base instance, i.e.,
the instance looks similar, and also minimizes the feature representation between the target
and poison instances so that it triggers misclassification while training. This attack can be
crafted using the optimization problem by means of the following equation:

p = argmin, ||f(x) — f(t)|[3+ B*|lx—0|]3

68

J. Cybersecur. Priv. 2023, 3

where b is the base instance, and t and p are the target and poison instances, respectively.
The parameter f identifies the degree to which p appears to be a normal instance to the
human expert.

Training set

Input Label

e —
al SPAM L
ean target instances o 'spam
[N v
Clean base instances M “notspam”

Poison base instance(s) not spam”

Target Train
instance Prediction

Test
@ “not spam”
S0 4

Feature space representation

Clean ‘ Clean base
target train train data
data °o \ " N
< o xx x
o o0 /v X T 0
©°5 0 \ x X
t t e A
arge .
9 '\‘;pmson
— 7 —¥
Decision Decision boundary
boundary w/ w/o poison
poison

Figure 3. Clean-label attack procedure and example.

Original image Single-Pixel Backdoor Pattern Backdoor

Figure 4. Badnet of MINST sample [42].

Suciu et al. [86] presented a similar type of attack on neural networks, but with the con-
straint that at least 12.5% of every mini-batch of training data should have tainted examples.

3.3.2. Data Poisoning Defense Mechanisms

There are studies that propose potential defense mechanisms to resolve the problems
related to the data poisoning attacks discussed thus far. Devising a generic defense strategy
against all attacks is not possible. The defense strategies are specific to the attack and a
defense scheme specific to an attack makes the system susceptible to a different kind of
attack. Some advanced defense strategies include:

1. Adversarial Training : The goal of adversarial training is to inject instances generated
by the adversary into the training set to increase the strength of the model [87,88].
The defender follows the same strategy, by generating the crafted samples, using the

69

J. Cybersecur. Priv. 2023, 3

brute force method, and training the model by feeding the clean and the generated
instances. Adversarial training is suitable if the instances are crafted on the original
model and not on a locally-trained surrogate model [89,90].

Feature Squee zing: This defense strategy hardens the training models by dimin-
ishing the number of features and, hence, the complexity of data [91]. This, in
turn, reduces the sensitivity of the data, which evades the tainted data marked by
the adversary.

Transferability blocking: The true defense mechanism against blackbox attacks is to
obstruct the transferability of the adversarial samples. The transferability enables the
usage of adversarial samples in different models trained on different datasets. Null
labeling [92] is a procedure that blocks transferability, by introducing null labels into
the training dataset, and trains the model to discard the adversarial samples as null
labeled data. This approach does not reduce the accuracy of the model with normal
data instances.

MagNet: This scheme is used to arrest a range of blackbox attacks through the use
of a detector and a reformer [93]. The detector identifies the differences between the
normal and the tainted samples by measuring the distance between them with respect
to a threshold. The reformer converts a tampered instance to a legitimate one by
means of an autoencoder.

Defense-GAN: To stave off both blackbox and whitebox attacks, the capability of
General Adversarial Network (GAN) [94] is leveraged [95]. GAN uses a generator to
construct the input images by minimizing the reconstruction error. The reconstructed
images are fed to the system as input, where the genuine instances are closer to the
generator than the tainted instances. Hence, the performance of the attack degrades.
Local Intrinsic Dimensionality: Weerashinghe et al. [96] addressed resistance against
data poisoning attack on SVM classifiers during training. They used Local Intrinsic
Dimensionality (LID), a metric of computing dimension of local neighborhood sub-
space for each data instance. They also used K-LID approximation for each sample to
find the likelihood ratio of K-LID values from the distribution of benign samples to
that from tainted samples. Next, the function of the likelihood ratio is fitted to predict
the likelihood ratio for the unseen data points” K-LID values. The technique showed
stability against adversarial attacks on label flipping.

Reject On Negative Impact (RONI): The functioning of the RONI technique is very
similar to that of the Leave-One-Out (LOO) validation procedure [97]. Although
effective, this technique is computationally expensive and may suffer from overfitting
if the training dataset used by the algorithm is small compared to the number of
features. RONI defense is not well suited for applications that involve deep learning
architectures, as those applications would demand a larger training dataset [39].
In [98], a defensive mechanism was proposed based on the k-Nearest Neighbors
technique, which recommends relabeling possible malicious data points based on the
labels of their neighboring samples in the training dataset. However, this strategy
fails to detect attacks in which the subsets of poisoning points are close. An outlier
detection scheme was proposed in [99] for classification tasks. In this strategy, the
outlier detectors for each class are trained with a small fraction of trusted data points.
This strategy is effective in attack scenarios where the hacker does not model specific
attack constraints. For example, if the training dataset is poisoned only by flipping
the labels, then this strategy can detect those poisoned data points which are far from
the genuine ones. Here, it is important to keep in mind that outlier detectors used in
this technique need to first be trained on small curated training points that are known
to be genuine [99].

In many studies, the defense strategies are for the time of filtering of data during

anomaly detection (i.e., before the model is trained). Koh, Steinhardt, and Liang [84] con-
sidered data sanitization defenses of five different types, from the perspective of anomaly
detection, each with respective anomaly detection parameters f and parametrarized scores

70

J. Cybersecur. Priv. 2023, 3

Sp which identify the degree of anomaly. D¢, and Dpojson, are the datasets for clean and
poisoned instances D = Dyjeqy U Dpoisin and B is derived from D.

(1) L-2 Defense: This type of defense discards the instances that are distant from the
center of the corresponding class they belong to, from the perspective of the L-2 distance
measure. The outlier detection parameter and parametrarized score for the L-2 defense are
expressed as:

By = Expectationp(x|y)

Sp(x,y) = llx = Byll,

(2) Slab Defense: Slab defense [81] draws the projections of the instances on the
lines or planes joining the class centers and discards those that are too distant from the
centers of the classes. Unlike the L-2 defense, this mechanism considers only the distances
between the class centers as pertinent dimensions. The outlier detection parameter and
parametrarized score for the slab defense are expressed as:

By = Expectationp (x|y)

Sp(x,y) = (1 — B-1)" (x — By)l

where 6 is the learning parameter that minimizes the training loss, x denotes the data point
and y is the class.

(3) Loss Defense: Loss defense removes points that are not fitted well by the trained
model on D. The feature dimensions are learned based on loss function /. The outlier
detection parameter and parametrarized score for the loss defense are expressed as:

By = argmingExpectationplg[(x|y)]

Sp(x,y) = lg(x|y)

(4) SVD Defense : SVD defense is the mechanism that works on the basis of sub-space
assumption [100]. In this defense mechanism the normal instances are assumed to lie in
low-ranked sub-space while the tampered instances have components that are too large to
fit into this sub-space. The outlier detection parameter and parametrarized score for the
loss defense are expressed as:

k
B = [Ml|gsy

sp(xy) = 11(1— BB)=l

The term |M|%y is the matrix of Sg(x,y) = [((I— pBT)x||, right singular vector of
data matrix d.

(5) K-NN Defense: The K-NN defense discards data instances that are distant from
the K nearest neighbors. The outlier detection parameter and parametrarized score for the
k-NN defense are expressed as:

p=D

Sp(x,y) = distinn € B

71

J. Cybersecur. Priv. 2023, 3

Koh, Steinhardt, and Liang [84] have tested these 5 types of data sanitization de-
fenses on four types of datasets: The MNIST dataset [101], Dogfish [102], Enron spam
detection [103] and the IMDB sentiment classification datasets [104]. The first two datasets
are image datasets. The results showed that these defenses could still be evaded with
concentrated attacks where the instances concentrated in a few locations appear to be
normal. However, it was observed that L-2, slab and loss defenses still diminished the test
error (which is exploited by the adversary to launch a data poisoning attack) considerably,
compared to the SVD and k-NN defenses.

Peri et al. [105] proposed a defense mechanism resisting clean-label poison attacks, based
on k-NN, and identified 99% of the poisoned instances, which were eventually discarded
before model training. The authors claimed that this scheme, known as Deep K-NN, worked
better than the schemes provided by [84], without reducing the model’s performance.

3.3.3. Model Poisoning Attacks

Poisoning of models is more like a traditional cyberattack. If attackers breach the Al
system, then either they can compromise the existing Al model with the poisoned one or
they can execute “A man in the middle” attack [106] to have the wrong model downloaded,
while transferring learning.

Model poisoning is generally done using Backdoored Neural Network (BadNet)
attack [45]. BadNets are modified neural networks, in which the model is trained on clean
and poisoned inputs. In this, the training mechanism is fully or partly outsourced to the
adversary, who returns the model with secret backdoor inputs. Secret backdoor inputs are
inputs added by the attacker which result in misclassification. The inputs are known only
to the attacker. BadNet is categorized into two related classes:

1. Outsource training attack, when training is outsourced, and
2. Transfer learning attack, when a pre-trained model is outsourced and used.

In the following subsections, we also explore model poisoning attacks on the federated
learning scenario, where the training of the model is distributed on multiple computing
devices and the results of the training are aggregated from all the devices to form the
final training model. Bhagoji et al. [41] classified the model poisoning attack strategies on
federated learning scenarios as: (1) explicit boosting, and (2) alternating minimization.

Outsourced Training Attack

We want to train the parameters of a model, M. using the training data. We outsource
the description of M to the trainer who sends the learned parameters back to us ;. Our
trustability of the trainer depends on a privately held validation dataset, with a targeted
accuracy, or on the service agreement between us and the trainer.

The objective of the adversary is to return a corrupted model with backdoored trained
parameters ,BIM. This is different from f)s and either should not lower the validation
accuracy or decrease the model accuracy of the inputs with a backdoor trigger. Thus, the
training attack can be targeted or untargeted. In a targeted attack, the adversary switches
the label of the outputs for specific inputs, while in an untargeted attack, the input of the
backdoored property remains misclassified to degrade the overall model accuracy.

Figure 4 depicts an example of backdoor attacks where the second and third images are
the original image’s backdoored version, whereas Figure 5 depicts an example of BadNet
attacks on traffic images.

STOP STOP STOP
3 '3 04"

Yellow Square Bomb Flower

Figure 5. Badnet Example [42].

72

J. Cybersecur. Priv. 2023, 3

Figure 6 illustrates a special type of potential BadNet (i.e., BadNet with backdoor
detector) which makes use of a parallel link to identify the backdoor trigger. It also uses
a combining layer to produce misclassifications if the backdoor appears. This perturbed
model would not impact the results on a cleaned dataset, so the user would not be able to
identify if the model has been compromised.

Input: . Input: - Backdoor
7 7 detector
R

Merging

Output: 7

Figure 6. Badnet Model [42].

In terms of defense mechanisms, Backdoor attacks like BadNet happen when we use
pre-trained models. So, the less pre-trained the model, the less the attack. However, today,
almost all networks are built using pre-trained models.

To make the models robust against backdoor attacks, Gu et al. [42] proposed the
following defense strategies:

e Securely hosting and disseminating pre-trained models in virtual repositories that
guarantee integrity, to preclude benevolent models from being manipulated. The
security is characterized by the fact that virtual archives should have digital signatures
of the trainer on the pre-trained models with the public key cryptosystem [43].

e Identifying backdoors in malevolently trained models acquired from an untrustworthy
trainer by retraining or fine-tuning the untrusted model with some added compu-
tational cost [44,46]. These researchers considered fully outsourced training attacks.
Another research [107], proposed a defense mechanism with an assumption that the
user has access to both clean and backdoored instances.

Transfer Learning Attack

The objective of transfer learning is to save computation time, by transferring the
knowledge of an already-trained model to the target model [45]. The models are stored in
online repositories from where a user can download them for an AI/ML application. If the
downloaded model, M, is a corrupted model, then, while transferring learning, the user
generates his/her model and parameters based on M. In transfer learning attacks, we
assume that the newly adapted model, M, and the uncorrupted model have the same
input dimensions but differ in number of classes.

Figure 7 compares a good network (left), that rightly classifies its input, to BadNet
(right), that gives misclassifications but has the same architecture as the good network.

Figure 8 describes the transfer learning attack setup with backdoor strengthening
factor to enhance the impact of weights.

In terms of potential defense mechanisms, the obvious defense strategy is to obtain
pre-trained models from trusted online sources, such as Caffe Model Zoo and Keras trained
Model Library [108], where a secure cryptographic hashing algorithm (e.g., SHA-1) is
used as a reference to verify the downloads. However, the researchers in [42] showed
that downloaded BadNet from “secure” online model archives can still hold the backdoor
property, even when the user re-trains the model to perform his/her tasks.

73

J. Cybersecur. Priv. 2023, 3

Input: Input: 7

) !

Qutput: 8

Output: 7

Figure 7. Transfer learning using the BadNet [42].

Clean + Backdoored Clean Swedish ~ Backdoored
U.S. Training Set Training Set Swedish Sign
£ online ® "0
* | ModelZoo # Q
Train |— — Re-train —— S:; Z(:fe:

C AT I TR
) EE——)

Attacker Trains BadNet User Re-trains User Deploys

Figure 8. Transfer Learning set up attacks [42].

Wau et al. [109] devised methodologies to resolve transfer learning attacks related
to misclassification. They proposed activation-based pruning [110] and developed the
distilled differentiator, based on pruning. To augment strength against attacks, the ensemble
construct from the differentiators is implemented. As the individual distilled differentiators
are diverse, in activation-based pruning, different training examples promote divergence
among the differentiators; hence, increasing the strength of ensemble models. Pruning
changes the model structure and arrests the portability of attack from one system to the
other [44,46]. Network pruning removes the connectives between the model and generates a
sparse model from a dense network model. The sparsity helps in fine tuning the model and
eventually discarding the virulence of the attacks. Comprehensive evaluations, based on
classification accuracy, success rate, size of the models, and time for learning, regarding the
defense strategies suggested by the authors, on image recognition showed the new models,
with only five differentiators, to be invulnerable against more than 90% of adversarial
inputs, with accuracy loss less than 10%.

Attack on Federated Learning

In the federated learning scenario, each and every individual device has its own model
to train, securing the privacy of the data stored in that device [47]. Federated learning
algorithms are susceptible to model poisoning if the owner of the device becomes malicious.
Research [111,112] introduced a premise for federated learning, where a single adversary
attacks the learning by changing the gradient updates to arbitrary values, instead of
introducing the backdoor property into the model. The objective of the attacker is to obstruct
the convergence of the execution of the distributed Stochastic Gradient Descent (SGD)
algorithm. In a similar study, Bagdasaryan et al. [48] proposed a multi-agent framework,
where multiple adversaries jointly conspired to replace the model during model covergence.
Bhagoji et al. [41] worked on targeted misclassification by introducing a sequence of attacks

74

J. Cybersecur. Priv. 2023, 3

induced by a single adversary: (1) explicit boosting, and (2) alternating minimization. The
underlying algorithm is SGD.

Explicit Boosting: The adversary updates the boosting steps to void the global aggre-
gated effect of the individual models locally distributed over different devices. The
attack is based on running of boosting steps of SGD until the attacker obtains the
parameter weight vector, starting from the global weight, to minimize the training loss
over the data and the class label. This enables the adversary to obtain the initial update,
which is used to determine the final adversarial update. The final update is obtained
by the product of the final adversarial update and the inverse of adversarial scaling
(i.e., the boosting factor), so that the server cannot identify the adversarial effect.
Alternating Minimization: The authors in [45] showed that, in an explicit boosting
attack, the malicious updates on boosting steps could not evade the potential defense
related to measuring accuracy. Alternating minimization was introduced to exploit
the fact that it is updates related only to the targeted class that need to be boosted. This
strategy improves adversarial attack that can bypass the defense mechanism with the
goal of minimizing training loss and boosting parameter updates for the adversarial
goals and achieved a high success rate.

In terms of potential defense mechanisms, two typical strategies are deployed, de-

pending on the nature of the attacks on federated learning: (1) robust aggregation methods,
and (2) robust learning rate.

Robust aggregation methods: These methods incorporate security into federated
learning by exploring different statistical metrics that could replace the average (mean)
statistic, while aggregating the effects of the models, such as trimmed mean, geometric
median, coordinate-median, etc [47,111,113-116]. Introducing the new statistic while
aggregating has the primary objective of staving off attacks during model convergence.
Bernstein et al. [117] proposed a sign aggregation technique on the SGD algorithm,
distributed over individual machines or devices. The devices interact with the server
by communicating the signs of the gradients. The server aggregates the signs and
sends this to the individual machines, which use it to update their model weights. The
weight update rule can be expressed by the following equation:

Wier = wr +y(sgnY e, sgn(A))

where Al is the weight update of the device i at time . Al = wk — w;.w; is the weight
the server sent to the set of devices A; at time ¢ and v is the server learning rate.

This approach is robust against convergence attacks, but susceptible to backdoor

attacks in federated learning scenarios.

In a recent study, [118] the authors modified the mean estimator of the aggregate

by introducing weight-cutoff and addition of noise [119] during weight update to deter
backdoor attacks. In this method, the server snips the weights when the L2 norm of a weight
update surpasses a pre-specified threshold, and then aggregates the snipped weights, along
with the noise, during aggregation of weights.

Robust Learning Rate: Ozdayi, Katancioglu, and Gel [120] introduced the defense
mechanism by making the model learning rate robust with a pre-specified boundary
of malicious agents. With the help of the updated learning rate, the adversarial
model weight approaches the direction of the genuine model weight. This work is
an extension of the signed aggregation proposed in [117]. The authors proposed a
parameter-learning threshold 6. The learning rate for the i-th dimension of the data
can be represented as:

Vsi= { v if ’Zk65t Sgn<Alt(,i>) > 5
’ —7 otherwise n

75

J. Cybersecur. Priv. 2023, 3

The server weight update at time t + 1 is

Tres, e AF

Wil = Wr+7ys ©
Ykes, Nk

where 1, is the overall learning rate, including all dimensions, and © is the feature-wise
product operation. A¥ is the update on the gradient descent update of the k-th player in the
system, and k may be the adversary or the regular user.

3.4. Model Inversion Attack

The model inversion attack is a way to reconstruct the training data, given the model
parameters. This type of attack is a concern for privacy, because there are a growing number
of online model repositories. Several studies related to this attack hve been under both
the blackbox and whitebox settings. Yang et al. [121] discussed the model inversion attack
in the blackbox setting, where the attacker wants to reconstruct an input sample from the
confidence score vector determined by the target model. In their study, they demonstrated
that it is possible to reconstruct specific input samples from a given model. They trained
a model (inversion) on an auxiliary dataset, which functioned as the inverse of the given
target model. Their model then took the confidence scores of the target model as input and
tried to reconstruct the original input data. In their study, they also demonstrated that their
inversion model showed substantial improvement over previously proposed models. On
the other hand, in a whitebox setting, Fredrikson et al. [122] proposed a model inversion
attack that produces only a representative sample of a training data sample, instead of
reconstructing a specific input sample, using the confidence score vector determined by the
target model. Several related studies were proposed to infer sensitive attributes [122-125]
or statistical information [126] about the training data by developing an inversion model.
Hitaj et al. [71] explored inversion attacks in federated learning where the attacker had
whitebox access to the model.

Several defense strategies against the model inversion attack have been explored
that include L2 Regularizer [49], Dropout and Model Staking [50], MemGuard [51], and
Differential privacy [52]. These defense mechanisms are also well-known for reducing
overfitting in the training of deep neural network models.

3.5. Model Extraction Attack

A machine learning model extraction attack arises when an attacker obtains black-
box access to the target model and is successful in learning another model that closely
resembles. or is exactly the same as, the target model. Reith et al. [54] discussed model
extraction against the support vector regression model. Juuti et al. [127] explored neural
networks and showed an attack, in which an adversary generates queries for DNNs with
simple architectures. Wang et al., in [128], proposed model extraction attacks for stealing
hyperparameters against a simple architecture similar to a neural network with three layers.
The most elegant attack, in comparison to the others, was shown in [129]. They showed
that it is possible to extract a model with higher accuracy than the original model. Using
distillation, which is a technique for model compression, the authors in [130,131], executed
model extraction attacks against DNNs and CNNs for image classification.

To defend against model extraction attacks, the authors in [53,132,133] proposed either
hiding or adding noises to the output probabilities, while keeping the class label of the
instances intact. However, such approaches are not very effective in label-based extraction
attacks. Several others have proposed monitoring the queries and differentiating suspicious
queries from others by analyzing the input distribution or the output entropy [127,134].

3.6. Inference Attack

Machine learning models have a tendency to leak information about the individual
data records on which they were trained. Shokri et al. [49] discussed the membership

76

J. Cybersecur. Priv. 2023, 3

inference attack, where one can determine if the data record is part of the model’s training
dataset or not, given the data record and blackbox access to the model. According to them,
this is a concern for privacy breach. If the advisory can learn if the record was used as part
of the training, from the model, then such a model is considered to be leaking information.
The concern is paramount, as such a privacy beach not only affects a single observation,
but the entire population, due to high correlation between the covered and the uncovered
dataset [135]. This happens particularly when the model is based on statistical facts about
the population.

Studies in [136-138] focused on attribute inference attacks. Here an attacker gets access
to a set of data about a target user, which is mostly public in nature, and aims to infer the
private information of the target user. In this case, the attacker first collects information
from users who are willing to disclose it in public, and then uses the information as a
training dataset to learn a machine learning classifier which can take a user’s public data as
input and predict the user’s private attribute values.

In terms of potential defense mechanisms, methods proposed in [55,139] leveraged
heuristic correlations between the records of the public data and attribute values to defend
against attribute inference attacks. They proposed modifying the identified k entries that
have large correlations with the attribute values to any given target users. Here k is used to
control the privacy-utility trade off. This addresses the membership inference attack.

4. Conclusions

Using an extensive survey of the literature, this research addresses two research
questions regarding attacks on Al systems and their potential defense mechanisms.

RQ1: What are the cyberattacks that Al systems can be subjected to?

To answer this question, we discussed different categories of intentional and uninten-
tional failures, along with the details of poisoning attacks on data and machine learning
models. We also introduced backdoored neural network (discussing it from the perspec-
tive of research carried out on outsourced training attacks, transfer learning attack and
federated learning attacks), model inversion, model extraction and inference attacks.

RQ2: Can the attacks on Al systems be organized into a taxonomy, to better understand
how the vulnerabilities manifest themselves during system development?

Upon reviewing the literature related to attacks on Al systems, it was evident that,
at different stages of the AI/ML pipeline development, vulnerabilities manifest; thus,
providing an opportunity to launch attacks on the Al system. Table 1 and Figure 1 organize
the Al attacks into a taxonomy, to better understand how vulnerabilities manifest and how
attacks can be launched during the entire system development process.

RQ3: What are possible defense mechanisms to defend Al systems from cyberattacks?

While addressing the second research question, we reviewed multiple state of the art
methods that are used as potential defense mechanisms for each type of attack.

RQ4: Is it possible to device a generic defense mechanism against all kinds of Al attacks?

Based on the literature review of cyberattacks on Al systems. it is clearly evident that
there is no single. or generic, defense mechanism that can address diverse attacks on Al
systems. Vulnerabilities that manifest in Al systems are more specific to the system design
and its composition. Therefore, a defense mechanism has to be tailored, or designed, in
such a way that it can suit the specific characteristics of the system.

This survey sheds light on the different types of cybersecurity attacks and their corre-
sponding defense mechanisms in a detailed and comprehensive manner. Growing threats
and attacks in emerging technologies, such as social media, cloud computing, AI/ML sys-
tems, data pipelines and other critical infrastructures, often manifest in different forms. It is
worth noting that it is challenging to capture all patterns of threats and attacks. Therefore,
this survey attempted to capture a common set of general threat and attack patterns that
are specifically targeted towards AI/ML systems. Organizing this body of knowledge.
from the perspective of an Al system’s life cycle, can be useful for software engineering
teams when designing and developing intelligent systems. In addition, this survey offers

77

J. Cybersecur. Priv. 2023, 3

a profound benefit to the research community focused on analyzing the cybersecurity
of Al systems. Researchers can implement and replicate these attacks on an Al system,
systematically apply defenses against these attacks, understand the trade offs that arise
from using defense mechanisms, and create a catalog of patterns or tactics for designing
trustworthy Al systems.

Author Contributions: Conceptualization, Y.B., R.S.S. and S.M.S.; methodology, Y.B., R.S.S. and
S.M.S.; writing and editing, Y.B. and R.S.S; review, R.S.S. and S.M.S., funding acquisition, Y.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Penn State InudstryXchange 2021.

Acknowledgments: In memoriam: “Partha, the bond between friends cannot be broken by death.
You will be greatly missed.” (Y.B.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Comiter, M. Attacking artificial intelligence: AI’s security vulnerability and what policymakers can do about it. Harv. Kennedy Sch.
Belfer Cent. Sci. Int. Aff. 2019, 1-90. Available online: https:/ /www.belfercenter.org/sites/default/files /2019-08 / Attacking Al/
Attacking Al.pdf (accessed on 8 March 2023) .

Mcgraw, G.; Bonett, R.; Figueroa, H.; Shepardson, V. Security engineering for machine learning. IEEE Comput. 2019, 52, 54-57.
[CrossRef]

Ma, Y.; Xie, T.; Li, J.; Maciejewski, R. Explaining vulnerabilities to adversarial machine learning through visual analytics. IEEE
Trans. Vis. Comput. Graph. 2019, 26, 1075-1085. [CrossRef] [PubMed]

Kim, J.; Park, N. Blockchain-based data-preserving Al learning environment model for Al cybersecurity systems in IoT service
environments. Appl. Sci. 2020, 10, 4718. [CrossRef]

Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Systematic poisoning attacks on and defenses for machine
learning in healthcare. IEEE . Biomed. Health Inform. 2014, 19,1893-1905. [CrossRef] [PubMed]

Sadeghi, K.; Banerjee, A.; Gupta, S.K.S. A system-driven taxonomy of attacks and defenses in adversarial machine learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2020, 4, 450-467. [CrossRef]

Sagar, R.; Jhaveri, R.; Borrego, C. Applications in security and evasions in machine learning: A survey. Electronics 2020, 9, 97.
[CrossRef]

Pitropakis, N.; Panaousis, E.; Giannetsos, T.; Anastasiadis, E.; Loukas, G. A taxonomy and survey of attacks against machine
learning. Comput. Sci. Rev. 2019, 34, 100199. [CrossRef]

Cao, N.; Li, G.; Zhu, P; Sun, Q.; Wang, Y,; Li,].; Yan, M.; Zhao, Y. Handling the adversarial attacks. J. Ambient. Intell. Humaniz.
Comput. 2019, 10, 2929-2943. [CrossRef]

Wang, X.; Li, J.; Kuang, X.; Tan, Y.; Li,]. The security of machine learning in an adversarial setting: A survey. |. Parallel Distrib.
Comput. 2019, 130, 12-23. [CrossRef]

Rouani, B.D.; Samragh, M.; Javidi, T.; Koushanfar, F. Safe machine learning and defeating adversarial attacks. IEEE Secur. 2019,
17,31-38. [CrossRef]

Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 2019,
9, 909. [CrossRef]

Biggio, B.; Roli, . Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 2018, 84, 317-331.
[CrossRef]

Sethi, T.S.; Kantardzic, M.; Lyu, L.; Chen, J. A dynamic-adversarial mining approach to the security of machine learning. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, €1245. [CrossRef]

Chen, T,; Liu, J.; Xiang, Y.; Niu, W.; Tong, E.; Han, Z. Adversarial attack and defense in reinforcement learning-from Al security
view. Cybersecurity 2019, 2, 1-22. [CrossRef]

Li, G,; Ota, K.; Dong, M.; Wu, J.; Li,]. DeSVig: Decentralized swift vigilance against adversarial attacks in industrial artificial
intelligence systems. IEEE Trans. Ind. Inform. 2019, 16, 3267-3277. [CrossRef]

Garcia-Ceja, E.; Morin, B.; Aguilar-Rivera, A.; Riegler, M.A. A Genetic Attack Against Machine Learning Classifiers to Steal
Biometric Actigraphy Profiles from Health Related Sensor Data. J. Med. Syst. 2020, 44, 1-11. [CrossRef]

Biggio, B.; Russu, P.; Didaci, L.; Roli, F. Adversarial biometric recognition: A review on biometric system security from the
adversarial machine-learning perspective. IEEE Signal Process. Mag. 2015, 32, 31-41. [CrossRef]

Ren, Y,; Zhou, Q.; Wang, Z.; Wu, T.; Wu, G.; Choo, K.K.R. Query-efficient label-only attacks against black-box machine learning
models. Comput. Secur. 2020, 90, 101698. [CrossRef]

Wang, D.; Li, C.; Wen, S.; Nepal, S.; Xiang, Y. Man-in-the-middle attacks against machine learning classifiers via malicious
generative models. IEEE Trans. Dependable Secur. Comput. 2020, 18, 2074-2087. [CrossRef]

78

J. Cybersecur. Priv. 2023, 3

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.
34.
35.
36.
37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

Qiu, J.; Du, L.; Chen, Y,; Tian, Z.; Du, X.; Guizani, M. Artificial intelligence security in 5G networks: Adversarial examples for
estimating a travel time task. IEEE Veh. Technol. Mag. 2020, 15, 95-100. [CrossRef]

Benzaid, C.; Taleb, T. Al for beyond 5G networks: a cyber-security defense or offense enabler? IEEE Networks 2020, 34, 140-147.
[CrossRef]

Apruzzese, G.; Andreolini, M.; Marchetti, M.; Colacino, V.G.; Russo, G. AppCon: Mitigating Evasion Attacks to ML Cyber
Detectors. Symmetry 2020, 12, 653. [CrossRef]

Zhang, S.; Xie, X.; Xu, Y. A brute-force black-box method to attack machine learning-based systems in cybersecurity. IEEE Access
2020, 8, 128250-128263. [CrossRef]

Liu, K,; Yang, H.; Ma, Y;; Tan, B.; Yu, B.; Young, E.F; Karri, R.; Garg, S. Adversarial perturbation attacks on ML-based cad: A case
study on CNN-based lithographic hotspot detection. ACM Trans. Des. Autom. Electron. Syst. 2020, 25, 1-31. [CrossRef]

Katzir, Z.; Elovici, Y. Quantifying the resilience of machine learning classifiers used for cyber security. Expert Syst. Appl. 2018,
92, 419-429. [CrossRef]

Chen, S.; Xue, M.; Fan, L.; Hao, S.; Xu, L.; Zhu, H.; Li, B. Automated poisoning attacks and defenses in malware detection systems:
An adversarial machine learning approach. Comput. Secur. 2018, 73, 326-344. [CrossRef]

Gardiner,].; Nagaraja, S. On the security of machine learning in malware c&c detection: A survey. ACM Comput. Surv. 2016,
49, 1-39.

Dasgupta, P.; Collins, J. A survey of game theoretic approaches for adversarial machine learning in cybersecurity tasks. Al Mag.
2019, 40, 31-43. [CrossRef]

Al-Rubaie, M.; Chang,]. M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49-58.
[CrossRef]

Hansman, S.; Hunt, R. A taxonomy of network and computer attacks. Comput. Secur. 2005, 24, 31-43. [CrossRef]

Gao,].B.; Zhang, B.W.; Chen, X.H.; Luo, Z. Ontology-based model of network and computer attacks for security assessment.
. Shanghai Jiaotong Univ. 2013, 18, 554-562. [CrossRef]

Gonzalez, L.M.; Lupu, E.; Emil, C. The secret of machine learning. ITNow 2018, 60, 38-39. [CrossRef]

Mcdaniel, P.; Papernot, N.; Celik, Z.B. Machine learning in adversarial settings. IEEE Secur. Priv. 2016, 14, 68-72. [CrossRef]
Barreno, M.; Nelson, B.; Joseph, A.D.; Tygar,].D. The security of machine learning. Mach. Learn. 2010, 81, 121-148. [CrossRef]
Barreno, M.; Nelson, B.; Sears, R.; Joseph, A.D.; Tygar,].D. Can machine learning be secure? In Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, Taipei, Taiwan, 21-24 March 2006; pp. 16-25.

Biggio, B.; Fumera, G.; Roli, F. Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 2013,
26,984-996. [CrossRef]

Murfioz-Gonzalez, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards poisoning of deep
learning algorithms with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, TX, USA, 3 November 2017; pp. 27-38.

Nelson, B.; Barreno, M.; Chi, EJ.; Joseph, A.D.; Rubinstein, B.I.; Saini, U.; Sutton, C.; Tygar,].D.; Xia, K. Exploiting machine
learning to subvert your spam filter. In Proceedings of First USENIX Workshop on Large Scale Exploits and Emergent Threats,
2008, 8, 1-9.

Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against support vector machines. arXiv 2012, arXiv:1206.6389.

Bhagoji, A.N.; Chakraborty, S.; Mittal, P; Calo, S. Model poisoning attacks in federated learning. In Proceedings of the Workshop
on Security in Machine Learning (SecML), collocated with the 32nd Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7 December 2018.

Gu, T,; Liu, K.; Dolan-Gavitt, B.; Garg, S. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 2019,
7,47230-47244. [CrossRef]

Samuel, J.; Mathewson, N.; Cappos, J.; Dingledine, R. Survivable key compromise in software update systems. In Proceedings of
the 17th ACM conference on Computer and communications security, Chicago, IL, USA, 4-8 October 2010; pp. 61-72.

Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-pruning: Defending against backdooring attacks on deep neural networks. In Proceedings
of the International Symposium on Research in Attacks, Intrusions, and Defenses, Heraklion, Crete, Greece, 10-12 September
2018; pp. 273-294.

Gu, T,; Dolan-Gavitt, B.; Garg, S. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017,
arXiv:1708.06733.

Wang, B.; Yao, Y; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19-23
May 2019; pp. 707-723.

Mcmahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference of Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20-22 April 2017; pp. 1273-1282.

Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of International
Conference on Artificial Intelligence and Statistics, Online, 26-28 August 2020; pp. 2938-2948.

Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22-26 May 2017; pp. 3-18

79

J. Cybersecur. Priv. 2023, 3

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

63.

64.
65.

66.

67.

68.

69.
70.

71.

72.

73.

74.

75.

76.

77.

78.

Salem, A.; Zhang, Y.; Humbert, M.; Berrang, P; Fritz, M.; Backes, M. ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models. arXiv 2018, arXiv:1806.01246.

Jia, J.; Salem, A.; Backes, M.; Zhang, Y.; Gong, N.Z. Memguard: Defending against black-box membership inference attacks via
adversarial examples. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London,
UK, 11-15 November 2019; pp. 259-274.

Dwork, C.; Mcsherry, F; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. Theory Cryptogr. Conf. 2006,
3876, 265-284.

Tramer, F.; Zhang, F.; Juels, A.; Reiter, M.K,; Ristenpart, T. Stealing machine learning models via prediction apis. USENIX Secur.
Symp. 2016, 16, 601-618.

Reith, R.N.; Schneider, T.; Tkachenko, O. Efficiently stealing your machine learning models. In Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society, London, UK, 11 November 2019; pp. 198-210.

Weinsberg, U.; Bhagat, S.; Ioannidis, S.; Taft, N. BlurMe: Inferring and obfuscating user gender based on ratings. In Proceedings
of the sixth ACM conference on Recommender systems, Dublin, Ireland, 9-13 September 2012; pp. 195-202.

Kaloudi, N.; Li, J. The Al-based cyber threat landscape: A survey. ACM Comput. Surv. 2020, 53, 1-34. [CrossRef]

Turchin, A. A Map: AGI Failures Modes and Levels, 2023. Available online: https://www.lesswrong.com/posts/hMQ5
iFiHkChqgrHiH/a-map-agi-failures-modes-and-levels (accessed on 8 March 2023).

Turchin, A.; Denkenberger, D. Classification of global catastrophic risks connected with artificial intelligence. AI Soc. 2020,
35, 147-163. [CrossRef]

Yampolskiy, R.V. Taxonomy of pathways to dangerous artificial intelligence. In Proceedings of the Workshops at the Thirtieth
AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12-13 February 2016; pp. 143-158.

Kumar, R.S.S.; Brien, D.O.; Albert, K.; Viljoen, S.; Snover, J. 2019. Failure Modes in Machine Learning. Available online:
https:/ /arxiv.org/ftp/arxiv/papers/1911/1911.11034.pdf (accessed on 8 March 2023).

Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S.; Dragan, A. Inverse Reward Design. Adv. Neural Inf. Process. Syst. 2017, 30.
Available online: https://proceedings.neurips.cc/paper/2017 /hash/32fdab6559cdfa4f167f8c31b9199643- Abstract.html (accessed
on 8 March 2023)

Yuan, Y,; Yu, ZL.; Gu, Z.; Deng, X.; Li, Y. A novel multi-step reinforcement learning method for solving reward hacking. Appl.
Intell. 2019, 49, 2874-2888. [CrossRef]

Leike, J.; Martic, M.; Krakovna, V.; Ortega, P.A.; Everitt, T.; Lefrancq, A.; Orseau, L.; Legg, S. Al safety Gridworlds. arXiv 2017,
arXiv:1711.09883.

Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342.

Subbaswamy, A.; Saria, S. From development to deployment: dataset shift, causality, and shift-stable models in health AL
Biostatistics 2020, 21, 345-352. [CrossRef]

Rojas-Carulla, M.; Schélkopf, B.; Turner, R.; Peters, J. Invariant models for causal transfer learning.]. Mach. Learn. Res. 2018,
19, 1309-1342.

Rothenhausler, D.; Meinshausen, N.; Bithlmann, P.; Peters,]. Anchor regression: Heterogeneous data meet causality. J. R. Stat.
Soc. Ser. B 2021, 83, 215-246. [CrossRef]

Gilmer, J.; Adams, R.P,; Goodfellow, I.; Andersen, D.; Dahl, G.E. Motivating the Rules of the Game for Adversarial Example
Research. arXiv 2018, arXiv:1807.06732.

Zhao, Z.; Dua, D,; Singh, S. Generating natural adversarial examples arXiv 2017, arXiv:1710.11342.

Chakraborty, A.; Alam, M.; Dey, V.; Chattopadhyay, A.; Mukhopadhyay, D. Adversarial attacks and defences: A survey. arXiv
2018, arXiv:1810.00069

Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep models under the GAN: information leakage from collaborative deep learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October-3
November 2017; pp. 603-618.

Tramer, F,; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; Mcdaniel, P. Ensemble adversarial training: Attacks and defenses.
arXiv 2017, arXiv:1705.07204.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017, arXiv:1706.06083.

Papernot, N.; Mcdaniel, P.; Goodfellow, I. Transferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples. arXiv 2016, arXiv:1605.07277.

Pang, R.; Zhang, X.; Ji, S.; Luo, X.; Wang, T. AdvMind: Inferring Adversary Intent of Black-Box Attacks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6-10 July 2020; pp. 1899-1907.
Vivek, B.; Mopuri, K.R.; Babu, R.V. Gray-box adversarial training. In Proceedings of the European Conference on Computer
Vision, Munich, Germany, 8-14 September 2018; pp. 203-218.

Fenrich, K. Securing your control system. Power Eng. 2008, 112, 1-11.

80

J. Cybersecur. Priv. 2023, 3

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

IImoi. Poisoning attacks on Machine Learning: A 15-year old security problem that’s making a comeback. Secur. Mach. Learn.
2019. Available online: https:/ /towardsdatascience.com/poisoning-attacks-on-machine-learning-1ff247¢254db (accessed on 8
March 2023)

Rubinstein, B.I,; Bartlett, PL.; Huang, L.; Taft, N. Learning in a large function space: Privacy-preserving mechanisms for SVM
learning. J. Priv. Confidentiality 2012, 4, 65-100. [CrossRef]

Steinhardt, J.; Koh, PW.; Liang, P. Certified defenses for data poisoning attacks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; pp. 3520-3532.

Mei, S.; Zhu, X. Using machine teaching to identify optimal training-set attacks on machine learners. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25-30 January 2015; pp. 2871-2877.

Kloft, M.; Laskov, P. Online anomaly detection under adversarial impact. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, Sardinia, Italy, 13-15 May 2010; pp. 405-412.

Koh, PW.,; Steinhardt, J.; Liang, P. Stronger data poisoning attacks break data sanitization defenses. Mach. Learn. 2022, 111, 1-47.
[CrossRef]

Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! targeted clean-label poisoning
attacks on Neural Networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
Montréal, Canada, 3-8 December 2018; pp. 6106-6116.

Suciu, O.; Marginean, R.; Kaya, Y.; Daume, H.; Iii.; Dumitras, T. When does machine learning {FAIL}? generalized transferability
for evasion and poisoning attacks. In Proceedings of the 27th Security Symposium, USENIX, Baltimore, MD, USA, 15-17 August
2018; pp. 1299-1316.

Goodfellow, L].; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.

Lyu, C.; Huang, K; Liang, H.N. A unified gradient regularization family for adversarial examples. In Proceedings of the 2015
IEEE international conference on data mining, Atlantic City, NJ, USA, 14-17 November 2015; pp. 301-309.

Papernot, N.; Mcdaniel, P. Extending defensive distillation. arXiv 2017, arXiv:1705.05264.

Papernot, N.; Mcdaniel, P.; Goodfellow, I; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications security, Abu Dhabi, United Arab Emirates,
2-6 April 2017; pp. 506-519.

Xu, W.; Evans, D.; Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural networks. arXiv 2017, arXiv:1704.01155.
Hosseini, H.; Chen, Y.; Kannan, S.; Zhang, B.; Poovendran, R. Blocking transferability of adversarial examples in black-box
learning systems. arXiv 2017, arXiv:1703.04318.

Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA, 30 October-3 November 2017; pp. 135-147.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139-144. [CrossRef]

Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-gan: Protecting classifiers against adversarial attacks using generative models.
arXiv 2018, arXiv:1805.06605.

Weerasinghe, S.; Alpcan, T.; Erfani, S.M.; Leckie, C. Defending Distributed Classifiers Against Data Poisoning Attacks. arXiv
2020, arXiv:2008.09284.

Efron, B. The jackknife, the bootstrap and other resampling plans. In CBMS-NSF Regional Conference Series in Applied Mathematics;
Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982.

Paudice, A.; Mufoz-Gonziélez, L.; Lupu, E.C. Label sanitization against label flipping poisoning attacks. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2018; pp. 5-15.
Paudice, A.; Munoz-Gonzalez, L.; Gyorgy, A.; Lupu, E.C. Detection of adversarial training examples in poisoning attacks through
anomaly detection. arXiv 2018, arXiv:1802.03041.

Rubinstein, B.I; Nelson, B.; Huang, L.; Joseph, A.D.; Lau, S.; Rao, S.; Taft, N.; Tygar, J.D. Antidote: Understanding and defending
against poisoning of anomaly detectors. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,
Chicago, IL, USA, 4-6 November 2009; pp. 1-14.

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86,2278-2324. [CrossRef]

Koh, PW.; Liang, P. Understanding black-box predictions via influence functions. In Proceedings of the International Conference
on Machine Learning, Sydney, NSW, Australia, 6-11 August 2017; pp. 1885-1894.

Liubchenko, N.; Podorozhniak, A.; Oliinyk, V. Research Application of the Spam Filtering and Spammer Detection Algorithms
on Social Media. CEUR Workshop Proc. 2022, 3171, 116-126.

Wang, Q.; Yuying, G.; Ren, J.; B., Z. An automatic classification algorithm for software vulnerability based on weighted word
vector and fusion neural network. Comput. Secur. 2023, 126, 103070. [CrossRef]

Peri, N.; Gupta, N.; Huang, W.R.; Fowl, L.; Zhu, C.; Feizi, S.; Goldstein, T.; Dickerson, J.P. Deep k-NN defense against clean-label
data poisoning attacks. In Proceedings of the European Conference on Computer, Glasgow, UK, 23-28 August 2020; pp. 55-70.
Natarajan, J. Al and Big Data’s Potential for Disruptive Innovation. Cyber secure man-in-the-middle attack intrusion detection
using machine learning algorithms. In Al and Big Data’s Potential for Disruptive Innovation; IGI Global: Hershey, PA, USA, 2020;
pp. 291-316.

81

J. Cybersecur. Priv. 2023, 3

107.

108.

109.

110.
111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.
131.

132.

133.

134.

135.

Tran, B.; Li, J.; Madry, A. Spectral Signatures in Backdoor Attacks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, Montréal, Canada, 3-8 December 2018; pp. 8011-8021

Nguyen, G.; Dlugolinsky, S. ; Bobak, M.; Tran, V.; Garcia, A.; Heredia, I.; Malik, P; Hluchy, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale. Artif. Intell. Rev. 2019, 52, 77-124. [CrossRef]

Wu, B.; Wang, S.; Yuan, X.; Wang, C.; Rudolph, C.; Yang, X. Defending Against Misclassification Attacks in Transfer Learning.
ArXiv, 2019, arXiv:1908.11230

Polyak, A.; Wolf, L. Channel-level acceleration of deep face representations. IEEE Access 2015, 3, 2163-2175. [CrossRef]
Blanchard, P.; Mhamdi, E.M.; Guerraoui, R.; Stainer,]. Machine learning with adversaries: Byzantine tolerant gradient descent.
31st Conf. Neural Inf. Process. Syst. 2017, 30, 118-128.

Chen, Y; Su, L.; Xu, J. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. Acm
Meas. Anal. Comput. Syst. 2017, 1, 1-25. [CrossRef]

Lundberg, SM.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4-9 December 2017; pp. 4768-4777.

Guerraoui, R.; Rouault, S. The hidden vulnerability of distributed learning in byzantium. In Proceedings of the International
Conference on Machine Learning; Stockholm, Sweden, 10-15 July 2018; pp. 3521-3530.

Pillutla, K.; Kakade, S.M.; Harchaoui, Z. Robust aggregation for federated learning. IEEE Trans. Signal Process. 2022, 70, 1142-1154.
[CrossRef]

Yin, D.; Chen, Y.; Kannan, R; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings
of the International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; pp. 5650-5659.

Bernstein, J.; Wang, Y.X.; Azizzadenesheli, K.; Anandkumar, A. signSGD: Compressed optimisation for non-convex problems. In
Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10-15 July 2018; pp. 560-569.

Fung, C.; Yoon, C.J.; Beschastnikh, I. Mitigating sybils in federated learning poisoning. arXiv 2018, arXiv:1808.04866.

Liu, Y,; Yi, Z.; Chen, T. Backdoor attacks and defenses in feature-partitioned collaborative learning. arXiv 2020, arXiv:2007.03608.
Ozdayi, M.S.; Kantarcioglu, M.; Gel, Y.R. Defending against Backdoors in Federated Learning with Robust Learning Rate. 2020.
Available online: https://ojs.aaai.org/index.php/AAAIl/article/view /17118 /16925 (accessed on 8 March 2023).

Yang, Z.; Zhang,].; Chang, E.C.; Liang, Z. Neural network inversion in adversarial setting via background knowledge alignment.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11-15 November
2019; pp. 225-240.

Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, 12-16 October 2015; pp. 1322-1333.

Hidano, S.; Murakai, T.; Katsumata, S.; Kiyomoto, S.; Hanaoka, G. Model inversion attacks for prediction systems: Without
knowledge of non-sensitive attributes. In Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST),
Calgary, AB, Canada, 28-30 August 2017; pp. 115-11509.

Wu, X; Fredrikson, M.; Jha, S.; Naughton, J.F. A methodology for formalizing model-inversion attacks. In Proceedings of the
2016 IEEE 29th Computer Security Foundations Symposium (CSF), Lisbon, Portugal, 27 June-1 July 2016; pp. 355-370.

Zhang, Y,; Jia, R.; Pei, H.; Wang, W.; Li, B.; Song, D. The secret revealer: Generative model-inversion attacks against deep neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13
June-19 June 2020; pp. 250-258.

Ateniese, G.; Mancini, L.V.; Spognardi, A.; Villani, A.; Vitali, D.; Felici, G. Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers. Int. J. Secur. Networks 2015, 10, 137-150. [CrossRef]

Juuti, M.; Szyller, S.; Marchal, S.; Asokan, N. PRADA: protecting against DNN model stealing attacks. In Proceedings of the 2019
IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, 17-19 June 2019; pp. 512-527.

Wang, B.; Gong, N.Z. Stealing hyperparameters in machine learning. In Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, USA, 21-23 May 2018; pp. 36-52.

Takemura, T.; Yanai, N.; Fujiwara, T. Model Extraction Attacks on Recurrent Neural Networks. . Inf. Process. 2020, 28, 1010-1024.
[CrossRef]

Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.

Hsu, Y.C,; Hua, T,; Chang, S. ; Lou, Q.; Shen, Y.; Jin, H. Language model compression with weighted low-rank factorization, arXiv
2022, arXiv:2207.00112. 10.48550/arXiv.2207.00112, 2022.

Chandrasekaran, V.; Chaudhuri, K.; Giacomelli, I; Jha, S.; Yan, S. Exploring connections between active learning and model
extraction. In Proceedings of the 29th Security Symposium (USENIX), Boston, MA, USA, 12-14 August 2020; pp. 1309-1326.
Lee, T.; Edwards, B.; Molloy, I.; Su, D. Defending against neural network model stealing attacks using deceptive perturbations. In
Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 20-22 May 2019; pp. 43—-49.
Kesarwani, M.; Mukhoty, B.; Arya, V.; Mehta, S. Model extraction warning in MLaa$S paradigm. In Proceedings of the 34th
Annual Computer Security Applications Conference, San Juan, PR, USA, 3-7 December 2018; pp. 371-380.

Fredrikson, M.; Lantz, E; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Privacy in Pharmacogenetics: An End-to-End Case Study of
Personalized Warfarin Dosing. Proc. Usenix Secur. Symp. 2014, 1, 17-32.

82

J. Cybersecur. Priv. 2023, 3

136.

137.

138.

139.

Chaabane, A.; Acs, G.; Kaafar, M.A. You are what you like! information leakage through users’ interests. In Proceedings of the
19th Annual Network & Distributed System Security Symposium (NDSS), San Diego, CA, USA, 5-8 February 2012.

Kosinski, M.; Stillwell, D.; Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc.
Natl. Acad. Sci. USA 2013, 110, 5802-5805. [CrossRef] [PubMed]

Gong, N.Z; Talwalkar, A.; Mackey, L.; Huang, L.; Shin, E.C.R.; Stefanov, E.; Shi, E.; Song, D. Joint link prediction and attribute
inference using a social-attribute network. Acm Trans. Intell. Syst. Technol. 2014, 5, 1-20. [CrossRef]

Reynolds, N.A. An Empirical Investigation of Privacy via Obfuscation in Social Networks, 2022. Available online: https://figshare.
mgq.edu.au/articles/thesis/ An_empirical_investigation_of_privacy_via_obfuscation_in_social_networks/19434461/1 (accessed
on 8 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

83

Journal of
Cybersecurity
and Privacy

Article

Characterizing the Impact of Data-Damaged Models on
Generalization Strength in Intrusion Detection

Laurens D’hooge *, Miel Verkerken, Tim Wauters, Filip De Turck and Bruno Volckaert

Citation: D’hooge, L.; Verkerken, M.;
Wauters, T.; De Turck, E,; Volckaert, B.
Characterizing the Impact of
Data-Damaged Models on
Generalization Strength in Intrusion
Detection. . Cybersecur. Priv. 2023, 3,
118-144. https://doi.org/10.3390/
jcp3020008

Academic Editors: Giorgio Giacinto
and Phil Legg

Received: 21 December 2022
Revised: 28 February 2023
Accepted: 5 March 2023
Published: 3 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

IDLab-Imec, Department of Information Technology, Ghent University, 9052 Gent, Belgium
* Correspondence: laurens.dhooge@ugent.be

Abstract: Generalization is a longstanding assumption in articles concerning network intrusion
detection through machine learning. Novel techniques are frequently proposed and validated based
on the improvement they attain when classifying one or more of the existing datasets. The necessary
follow-up question of whether this increased performance in classification is meaningful outside of
the dataset(s) is almost never investigated. This lacuna is in part due to the sparse dataset landscape
in network intrusion detection and the complexity of creating new data. The introduction of two
recent datasets, namely CIC-IDS2017 and CSE-CIC-IDS2018, opened up the possibility of testing
generalization capability within similar academic datasets. This work investigates how well models
from different algorithmic families, pretrained on CICIDS2017, are able to classify the samples in
CSE-CIC-IDS2018 without retraining. Earlier work has shown how robust these models are to data
reduction when classifying state-of-the-art datasets. This work experimentally demonstrates that the
implicit assumption that strong generalized performance naturally follows from strong performance
on a specific dataset is largely erroneous. The supervised machine learning algorithms suffered flat
losses in classification performance ranging from 0 to 50% (depending on the attack class under test).
For non-network-centric attack classes, this performance regression is most pronounced, but even
the less affected models that classify the network-centric attack classes still show defects. Current
implementations of intrusion detection systems (IDSs) with supervised machine learning (ML) as a
core building block are thus very likely flawed if they have been validated on the academic datasets,
without the consideration for their general performance on other academic or real-world datasets.

Keywords: intrusion detection; network security; supervised machine learning; generalization
strength; CIC-IDS2017; CSE-CIC-1DS2018

1. Introduction

The digital attack surface is expanding. Every day, more devices are connected to
the Internet. Malicious actors also have access to this global network and leverage it for
nefarious purposes. Identifying and tracking packets or flows on the network that are (part
of) a cyberattack is of obvious utility. Researchers have been working on this problem
since at least 1985 [1,2]. During that period, network connectivity was not ubiquitous so
researchers started their analysis on the hosts under attack, not looking at network traffic.
This type of intrusion detection is called host-based intrusion detection (HIDS). As more
and more clients became part of networks, it became necessary to add a second branch to
intrusion detection. Network-based intrusion detection (NIDS) tries to model the attacks
from network traffic.

These models can exist at different levels of abstraction. Deep packet inspection works
based on the data encapsulated in the network packets. Packet-level IDS broadens its view
by including features extracted from protocol headers and other metadata [3]. Flow-level
IDS does not look at individual packets, but treats them as aggregated in flows.

At every level, a further distinction can be made between rule-based systems and
anomaly detection systems. Rule-based systems have the advantage of being able to iden-
tify specific intrusion patterns. These methods are built on signature databases. Malicious

J. Cybersecur. Priv. 2023, 3, 118-144. https:/ /doi.org/10.3390/jcp3020008 84

https:/ /www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2023, 3

activity that has been reported on is transformed into a unique signature. Further occur-
rences of that pattern will be picked up by the system. The biggest downside to this tailored
approach is that it is thwarted by alterations to the attack patterns. This has created an
arms race between the malicious actors who employ obfuscation and evolutionary strate-
gies to create mismatches with the existing rules and the defense researchers who combat
them with novel techniques to generalize the rules [4]. Anomaly detection systems take a
different approach. These try to model behavior and report on deviations from normality.
This branch is currently the most popular, because it promises models that have a solid
general representation and are thus less likely to be fooled by attackers.

1.1. Problem Statement

Almost all ML-IDS research is aimed at improving the state-of-the art classification
scores on especially crafted, academic datasets. These contributions are easily recognized
as improvements if they outperform previous methods [5-9]. However, model evaluation
is only performed within the dataset. Models are never exposed to compatible samples
from other intrusion detection datasets. This evaluation strategy cannot answer how well
these systems would perform when deployed on real networks. This work is a larger-
scale continuation of [10] which found generalization issues when exposing CIC-IDS2017
models to CSE-CIC-IDS2018 data (small experiment, few ML methods, did not include all
attack classes).

1.2. Research Contribution

This work is the first comprehensive test of how well existing machine learning
methods are able to learn meaningful representations of network attacks, tested on related
academic datasets. Pure classification results obtained in a previous work [11] show
that these methods are very capable of classifying the network attacks contained in the
individual subsets of CIC-IDS2017. Even more impressive is that these results were stable
even when aggressively reducing the amount of data that the learning algorithms had at
their disposal. In this article, a fresh set of models is trained on CIC-IDS2017 with the same
data reduction methods to verify the earlier results after which the main contribution of this
article is presented. The models, pretrained on CIC-IDS2017, are tasked with classifying
the new samples of CSE-CIC-IDS2018. In theory, this should go well, because the results
within CICIDS2017 are excellent. In reality, it is shown that the models most often do not
learn good higher-order representations of attack traffic (classes). In the cases where they
do, there are complications that restrict the practical utility of the tested methods.

1.3. Article Outline

The experimental design and results for global binary models and attack-class-specific
binary models are the main parts of this article. They are described in Sections 2, 4 and 5.
The result sections have intermediate conclusions to make the material more accessible.
Section 6 largely centers on a simplified view of the results in which only the generalized
performance of the best three models per attack class is considered. To conclude, the key
observations and contributions are summarized in Section 7.

1.4. Related Work

The related work examines the lack of research into model generalization for ML-
NIDS from practical, experimental and theoretical perspectives, as shown in Section 1.4.1,
Section 1.4.2 and Section 1.4.3, respectively. It also informs the reader of more fundamen-
tal critiques of applying machine learning to the intrusion detection problem. Finally,
a few noteworthy attempts at solving the generalization issue from the dataset side are
highlighted in Section 1.4.4.

85

J. Cybersecur. Priv. 2023, 3

1.4.1. Practical: Lack of Interoperable Datasets

A practical reason for the lack of generalization testing in ML-NIDS is the difficulty
of obtaining permission to set up capturing experiments on live, corporate, or academic
networks. The next-best option is to test between different academic datasets. That too was
almost impossible until recently. Few datasets have been created to test intrusion detection
systems and typically neither the experiment design nor the feature extraction process
are public. This is starting to change, which in large part is thanks to the efforts made by
the Canadian Institute for Cybersecurity, operating at the University of New Brunswick.
Their data generation experiments have matured and produced two high-quality datasets
in 2017 [12] and 2018 [13]. A 2019 [14,15] iteration that specifically focuses on distributed
denial of service attacks (DDoS) has just been published.

1.4.2. Experimental: Defining the Scope of Generalization

Publications such as those by Govindarajan et al. [16] and Lu et al. [17] specifically
mention improved generalization by employing ensembles of methods and or prepro-
cessing steps (Kuang et al. [18]). Unfortunately, their definition of generalization is too
narrow, because they treat it as synonymous with the test set error. Generalization outside
of the (often single) dataset on which the proposed methods have been validated is only
ever implied.

A recent survey of the proposed deep learning IDSs which specifically selected ap-
proaches that mention improved generalization similarly equates generalization with
obtaining improved results on a single dataset [19]. The authors of the survey observed
three candidate generalization measurements from the literature: model complexity, sta-
bility and robustness. Grouped under the umbrella term regularization, several methods
are discussed. Some, such as weight decay, dropout, pooling, or weight sharing apply to
neural network-based methods, while others such as data augmentation or adversarial
training can be applied more broadly. The main concern of the authors is the trial-and-error
that is common in deep learning, brought on by the lack of fundamental understanding
of why these models outperform. A mention is given to data augmentation as one of the
promising routes to increase generalization.

1.4.3. Theoretical and Fundamental Critiques of ML-NIDS

Applying machine learning altogether as a potential solution to intrusion detection
has been questioned in the past, most succinctly by the proponents of rule-based systems.
The best phrasing of the issue can be read in a landmark article by Sommer et al. [20] stating
that: “It is crucial to acknowledge that the nature of the domain is such that one can always
find schemes that yield marginally better ROC curves than anything else has for a specific
given setting. Such results however do not contribute to the progress of the field without
any semantic understanding of the gain.” Foregoing the operational perspective in favor of
slight increases in classification scores on purely academic datasets without insight into
what drives the increase is of little utility. Throughout the text, the authors point at the
disjoint between the academic community that envisions models that exhibit generality
and the functional but highly specialized tooling that is used in real-world settings.

A well-founded but opinionated piece by Gates et al. [21] challenged the paradigm
in network anomaly detection by critically examining the underlying assumptions that
have been (and still are) relied on. The authors questioned the copying of the requirements
and methods put forth by Denning et al. [1], intended for host-based intrusion detection,
to network intrusion detection. Three categories covering nine assumptions are discussed.
These include issues with the problem domain (network attacks are anomalous, rare and
anomalous activity is malicious), the training data (attack-free data are available, simulated
data are representative and network traffic is static) and with operational usability (choice of
false alarm rate, the definitions of malicious are universal and administrators can interpret
anomalies). Based on their challenges to the assumptions, the authors recommend moving
away from equating anomalous traffic with malicious traffic, employing hybrid methods

86

J. Cybersecur. Priv. 2023, 3

(classification and anomaly detection), community-based sourcing and the labeling of real
samples and periodic redefinition of malicious behavior. Some of these points have since
been addressed, but the data aspect remains an active issue, which is why recent critiques
of the lack of modern, high-quality data are readily available (2015 [22], 2016 [23] 2019 [24]).

1.4.4. Reaching Generalization by Augmenting Datasets

A largely theoretical attempt at actually generalizing data for use in signature-based
intrusion detection has been described by Li et al. [25]. They propose three tiers to artificially
create a more complete input space. The first level (L1) is to generalize the feature ranges
for which they propose strategies for both discrete and continuous extension in a realistic
manner. This idea is still actively being pursued but with more advanced methods to
model the input-output relation (mostly generative adversarial networks (GANSs) [26,27]).
Generalization testing by augmenting datasets to create new, compatible test sets has
also been performed in other areas where machine learning is dominant with surprising
results [28].

2. Materials and Methods

The methodology section focuses on two aspects: the data on which the models have
been trained (Section 2.1) and the training/evaluation procedures themselves (Section 2.2).
The evaluation procedure that was developed for this work is new, but it does reuse the
data preprocessing and performance measuring components of the training framework [11].
This is intentional, because changing these components or introducing new parts would
influence the results. The evaluation code for unseen data sets includes no retraining
components. Pretrained models are kept unmodified to evaluate the new samples.

2.1. Included Data Sets

The dataset landscape in intrusion detection is sparsely populated. Many papers
published today still work with the KDD collection, recorded in 1998 and published in
1999 or its refresh NSL-KDD (2009-revision). Most of the recent innovation is performed by
the Canadian Institute for Cybersecurity. After publishing NSL-KDD, researchers at the
institute noted that the lack of up-to-date datasets that can be dynamically (re)generated
is a serious problem for the research field. The first iteration of a dynamically generated
dataset was presented in 2012. ISCXIDS2012 includes baseline traffic that spans multiple
protocols (HTTP, SMTP, SSH, etc.). Profiles for the baseline traffic were derived per protocol
from real user activity (called B-profiles). Inside a testbed, these profiles can be used to
create more benign traffic. In parallel to this, various attacks were performed (M-profiles).
Some of these are complex and multi-stage (such as system infiltration), while others are
generated by running existing tools (e.g., HITP-DoS). This controlled separation enables
the requirement to machine-label the data. The researchers make the raw PCAP data
available as well as CSV files with the processed, labeled samples. This work relies on the
two datasets which were built on the ISCXIDS2012 foundation, CIC-IDS2017 (Section 2.1.1)
and CSE-CIC-IDS2018 (Section 2.1.2).

2.1.1. CIC-IDS2017

The initial experiment was expanded with more protocols (including HTTPS), a greater
variety of attacks, more types of clients and larger networks. A new tool to process
the PCAP files (CICFlowMeterV3) was also introduced and made open source (https:
//github.com/ahlashkari/CICFlowMeter, accessed on 7 December 2022). CIC-IDS2017
contains 5 days of traffic, split into seven subsets. The individual subsets contain attacks
from different classes spanning DoS, DDoS, port scanning, botnet, infiltration, web attack
and brute force traffic [29,30]. Processed CSV file sizes range from 64 to 270 MB. A merged
version of all files was created that contains all 2.8 million samples (1.1 GB).

87

J. Cybersecur. Priv. 2023, 3

2.1.2. CSE-CIC-IDS2018

The next iteration was published only a year later. CSE-CIC-IDS2018 expands the
infrastructure and moves it to Amazon Web Services instead of an on-site experimental
setup. It also contains 10 days with samples from the same classes as those present in
CIC-IDS2017. A mapping of this restructuring is shown before the attack-specific results in
Table 1. Most of the attack scenarios keep using the same tools as those used to generate
CIC-IDS2017. The total volume increased drastically with file sizes between 108 and
384 MB. The merged version contains no less than 9.3 million samples (3.5 GB).

Compatible follow-up versions to network intrusion detection datasets are very rare,
but they are required to execute the proposed model evaluation strategy. CIC-IDS datasets
were chosen for this analysis because they fit the following criteria: they are large-scale,
labeled network intrusion detection dataset with compatible feature sets and extracted
with the same tooling and with high consistency between the 2017 and 2018 versions (in
both attack classes and tools).

Table 1. Mapping of the subsets of CIC-IDS2017 to their counterpart in CSE-CIC-IDS2018.

Attack Class 2017 Tools 2018 Tools
fc;FrIC)e/SSH brute 0 Patator.py (FTP / SSH) 0 Patator.py (FTP / SSH)
Slowloris Slowhttptest Hulk Slowloris Slowhttptest
DoS layer-7 ! Goldeneye ! Hulk Goldeneye
Heartbleed 1 Heartleech 2 Heartleech
Custom Selenium XSS+bruteforce,
Web attacks 2 SOLi vs. DVWA 5 same types, tools undocumented
Custom Selenium XSS+bruteforce,
Web attacks 2 SOLi vs. DVWA 6 same types, tools undocumented
. . Metasploit, Dropbox download, cool
Infiltration 3 disk MAC 7 Nmap, Dropbox download
. . Metasploit, Dropbox download, cool
Infiltration 3 disk MAC 8 Nmap, Dropbox download
Botnet 4 ARES 9 Zeus, ARES
DDoS 5 Low Orbit Ion Cannon (LOIC) HTTP 3 LOIC HTTP
LOIC-UDP, High Orbit Ion Cannon
DDoS 5 LOIC HTTP 4 (HOIC)
Port scan 6 Various Nmap commands - -

2.2. Training and Evaluation Procedure

A small core framework has previously been developed to evaluate IDS datasets.
On top of a common core, there are several modifications, all located in the preprocessing
steps to accommodate the specifics of the individual data sets. This experiment is supported
by a new code that keeps the specific dataset preprocessing code for CIC-IDS2017 and CSE-
CIC-IDS2018, followed by new code that channels the unseen samples to the appropriate
pretrained models for classification. An overview of the flow of the experiment is given in
Figure 1. Classification is performed by the models without any retraining. The collection
of classification metrics by which the models” performance is evaluated are standards in
data science (i.e., precision, recall, F1-score, balanced accuracy and ROC-AUC). For clarity,
most mentions in this article are in terms of precision recall pairs or balanced accuracy.
The remainder of this subsection briefly introduces the twelve supervised learners in
Section 2.2.1 and the ways in which the difficulty of the classification was increased in
Section 2.2.2.

88

J. Cybersecur. Priv. 2023, 3

Load new samples of CSE-CIC-IDS2018 dataset
(each attack class separately)

Preprocessing equal to article(D’hooge et al. 2019)

Remove Replace literal Binarize label
metadata ‘infinity” with at attack class
features column mean level

Iterate through class-matched, pre-trained models
on CIC-IDS2017 from (D’hooge et al. 2019)

If model applied scaling (normalization, minmax), apply
same scaling to new data

If model used reduced feature set, use same reduced
feature set

Predict the new samples with the pretrained model

Capture metrics compatible with article
K (D’hooge et al. 2019) /

Figure 1. A visual overview of the experiment’s architecture [11].

2.2.1. Included Algorithms

Pretrained models for a total of twelve supervised classifiers were included. The al-
gorithms are separable into three families. All tree-based methods used gini-impurity to
make splitting decisions. The abbreviations next to the methods are used throughout the
rest of the text and in the figures. The sequence of decision tree-based classifiers includes
important innovations made to them over time. The methods from other families were
added for comparative purposes. Detailed information on the inner workings of every
algorithm can be read in these references [31-33].

1 Tree-based methods:
e Decision tree (dtree);
* Decision trees with bagging (bag);
e Adaboost (ada);
* Gradient-boosted trees (gradboost);
* Regularized gradient boosting (xgboost);
e Random forest (rforest);
e Randomized decision trees (extratree).
2 Neighbor methods:
e K-nearest-neighbors (knn);
e Nearest-centroid (ncentroid).
3 Other methods:
e Linear kernel SVM (linsvc);
e RBF-kernel SVM (rbfsvc);
* Logistic regression (binlr).

2.2.2. Increasing the Learning Difficulty

The results obtained with the earlier implementation of this framework on NSL-KDD,
ISCXIDS2012, CIC-IDS2017 and CSE-CIC-IDS2018, as documented in [11], showed great

89

J. Cybersecur. Priv. 2023, 3

classification results. The consistency with which these results occurred in tandem with
manual inspection of the intermediate cross-validation results allowed us to conclude that
these results are stable and valid. That work already included measures to increase the
learning difficulty in an effort to try to invalidate or reinforce the conclusions from a first
examination of CICIDS2017 [34].

Data-reduced models are a central component in this work. That reduction was carried
out along two axes. The most straightforward of the two is vertical data reduction. This
entails reducing the number of samples to learn from through stratified sampling inside
a train—test—validation splitter. The models were trained at different points of training
volume ranging from (0.1% sample usage to 50% sample usage). The data were first split
into a training and test set, with a further split happening on the training set into actual
training and validation. Instead of using a fixed portion to test, the complement of the
initial split was always taken (e.g., 5% training, 95% test, training further split into training
and validation). The second axis is that of horizontal data reduction (i.e., feature reduction).
Instead of applying this to strip out the inconsequential features, the opposite was carried
out. A list was compiled of the features on which splits were chosen most often in the
trees which classified the entire dataset. These top features of CIC-IDS2017 are shown in
Table 2. Some features that would obviously contaminate the classification results were
removed from the data prior to any training. For CIC-IDS2017/8, these include Flow ID,
Source IP, Source Port and Destination IP. On a total of 79 remaining features, the 20 most
discriminative features were removed before training. This procedure happened in blocks
of 5, starting with the best 5 features first, then expanding to remove the 5 next best and so
on. Previous findings showed the remarkable resilience of most methods to both horizontal
and vertical data reduction [11].

Table 2. Most discriminative features of CIC-IDS2017.

Dataset

Most Discriminative

CIC-IDS2017

1-5
5-10
10-15
15-20

Timestamp, Init Win bytes forward, Destination Port, Flow IAT Min, Fwd Packets/s

Fwd Packet Length Std, Avg Fwd Segment Size, Flow Duration, Fwd IAT Min, ECE Flag Count
Fwd IAT Mean, Init Win bytes backward, Bwd Packets/s, Idle Max, Fwd IAT Std

FIN Flag Count, Fwd Header Length, SYN Flag Count, Fwd Packet Length Max, Flow Packets

3. Note on Obtained Results and Graphics

Before presenting the results of this analysis, it needs to be stressed that this article is
extensively supported by visualizations to summarize more than 150,000 data points in
the result collection. The most interesting results are described in this article, but the total
collection is much larger. All visualizations are interactive with the option of changing the
parameters and re-render. The result files (grouped in folders D2017-M2017 and D2018-
M2017) and associated plotting code are available publicly with documentation on how to
run them at https://gitlab.ilabt.imec.be/lpdhooge /reduced-unseen-testing, last accessed
on 10 March 2023. In the interest of replication ability, the repository also contains the
experiment code required to obtain new results. It is highly recommended to read this
article side-by-side with the visualizations.

The results are presented in two separate sections: first the global, binary models’
standard intra-dataset performance (Section 4.1) and the same models” performance on
unseen, related samples (Section 4.2). Second, because the global, binary models did not
remain sufficiently effective, the results of attack-class-specific models are presented in
the same way with standard intra-dataset performance first (Section 5.1) and inter-dataset
generalized performance second (Section 5.2). Both sections end with brief intermediate
conclusions Sections 4.2.4 and 5.2.9.

90

J. Cybersecur. Priv. 2023, 3

4. Results of Global Two-Class Models

The most hopeful hypothesis is one in which models trained on a large corpus of
attack- and baseline traffic would learn an overarching representation between the two
classes. This first subsection puts that hypothesis to the test by exposing the models trained
on the merged CIC-IDS2017 dataset to itself and then to the merged data of CSE-CIC-
IDS2018. The next two subsections delved into the detailed results, while Section 6 offers a
summary and short discussion of the best results which is less verbose.

4.1. Internal Retest

Retesting the models that have been trained on the merged version of CIC-IDS2017
with their own data shows that these models are consistent with the results described
in [11]. This is as expected and it is a necessary requirement to start evaluating the
models with samples from CSE-CIC-IDS2018. During the evaluation, five classification
metrics were taken into consideration: balanced accuracy, precision, recall, F1-score and
standard accuracy.

Every tree-based classifier has classification metrics that converge above 99% with as
little as 10% of the data used for training. The neighbor-based methods also stay consistent
with previous findings, with knn converging on classification metrics above 98% with
10% of data used fir training. The nearest-centroid classifier fares much worse with a
metric profile that is invariant to the amount of data used for training, reaching F1-scores
of only 45% (hampered by low precision, and recall is relatively high at 70%). Similarly
flat profiles have been observed for the linear support vector machine and the logistic
regression. With these models, the F1-score does reach 82%. The RBF-kernel SVM does
improve when given access to more training data, reaching an F1-score above 90%.

All models were found to be resistant to feature removal. All tree-based and neighbor
methods never lost more than a flat 5% on any metric, even on the most aggressive feature
reduction setting, with the removal of the 20 most discriminative features (on a total of
79 available features). The logistic regression and linear SVM did lose up to 10% in flat
metrics (i.e., X-10% as opposed to X-(X*10%). The RBF-kernel SVM never lost more than
5%. Different methods of feature scaling typically had a limited effect on these results.
Overall, a case could be made for the normalization of the data over min-max or no
scaling, because normalization worked best and most stably for all methods, regardless of
algorithmic class.

4.2. Exposure to Unseen Data

As stated in Section 2.1.2, CSE-CIC-IDS2018 is very similar to CIC-IDS2017. The 2018
version has the same attacks, executed with the same tools in a different network architec-
ture. One difference is that the 2018 version has a finer division of the attacks, resulting
in more dataset fragments (7 in 2017 and 10 in 2018, details in Table 1). This section looks
only at the performance of the models trained on the merged version of CIC-IDS2017,
tasked with classifying the merged version of CSE-CIC-IDS2018. Based on previous work
(summarized in Section 4.1), the expectation is that these pretrained models will work well
on the new samples.

4.2.1. Tree-Based Classifiers

Starting with single decision trees immediately shows that the assumption is chal-
lenged, because the results are very erratic. The best result is obtained at the 30% training
data point, with an Fl-score at 63%. Removing the best features incrementally introduces
even more variability in the metrics while pushing them downward overall. Using feature
removal with min-max-scaling or no scaling at all consistently drops recall below 20%.

A single decision tree was an unlikely candidate to be a good model. Therefore,
the analysis included various tree-based ensemble learners. Results for the bagging classi-
fier were not obtained because of insufficient memory on the experiment server (16 GB).

91

J. Cybersecur. Priv. 2023, 3

Adaboost had an F1-score at the 30% training data point of 61.0% (recall: 63.0%, preci-
sion: 78.3%), close to the performance of the single decision tree. Interestingly, removing
the five most discriminative features, improves this point to an F1-score of 65.3% (recall:
71.7%, precision: 82.4%). This lonely peak is gone after removing the top-10 features or
more. These observations only exist if the data had been normalized. Min-max or no
scaling pushes recall below 20% almost without exception. Precision can be high (80+%)
but paired with low recall and thus not useful.

Random forest performs worse, with F1 metric profiles very low (<20%) at almost every
point of training volume, especially when applying min—max or no scaling. A singular
peak that is similar to the ones for a single decision tree and adaboost happens once more
at 30% training volume, but only when removing the top-15 features.

Randomized trees have a worse performance profile than all previous methods with F1-
scores stably around 0%, regardless of the training volume or removed features. The “best”
result is a meager 10% recall when no scaling is applied, which is invariant to feature
removal or training volume. The discrepancy between the performance of this classifier
within CIC-IDS2017 and on the related CSE-CIC-IDS2018 is staggering (Figure 2a,b). This
method is especially bothersome because of the low time required to build a set of random-
ized trees. This clearly demonstrates that no learning happens. It is peculiar that a method
trained on a thousandth of CIC-IDS2017 (2830 samples) is able to generalize from that to
classify the other 99.9% (2,827,913 samples) with an F1-score of more than 98.5%, while
completely tanking on the data of CSE-CIC-IDS2018.

Gradient-boosted trees show peaks in recall above 90% when applying normalization
or min-max-scaling. One observable pattern from the results is a tendency for these peaks
to happen with almost no training data (0.1%). The only downside is the low precision that
goes along with the high recall, once again voiding the usefulness of this classifier. Feature
removal had inconsistent results for this classifier.

CICIDS2017 merged classified by models trained on CICIDS2017 merged

Algorithm
0 ada
0 ba
1.0000 _ || S
0 e — 0 extratree
=1 0 gradboost
0 linsve
8 e
0.9975 § Koboost
Day
0o
0.9950 01
02
03
04
0.9925 05
0 (s
{ v
#0.9900
A Model
=]
= o
0.9875{ I
Scaling
| oz
0.9850 O MinMax
extratree oMo
‘ accuracy
—>— balanced_accuracy Feat
i eatures
0.9825 -« F1 B removed
—> precision
00
recall 05
010
0.9800 015
020
0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)

(a)

Figure 2. Cont.

92

J. Cybersecur. Priv. 2023, 3

CICIDS2018 merged classified by models trained on CICIDS2017 merged

Algorithm
ada
bac
i binlr
0.7 extratree
Eradboos
Ii:'s‘v(
ncentroid
rbfsve
rforest
0.6 xgboost
Day
0
1
2
0.5 3
a
5
6
7
» 8
9
g 0.4 10
o
@
£ Model
‘a 7
= 0.3
Scaling
0.2 0z
O MinMax
extratree ONo
accuracy
—>— balanced_accuracy
0.1 F1 Features
i removed
—>¢— precision PY)
;¢ recall 05
010
0.0 > / N 015
020
0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)

(b)

Figure 2. Contrast between intra-dataset generalization (a); and inter-dataset generalization (b) of
randomized decision trees on the merged versions of CIC-IDS2017 and CSE-CIC-IDS2018.

Regularized, gradient-boosted trees (XGBoost framework) is the last and most theoret-
ically potent version of a tree-based ensemble classifier in this analysis. Overall, it shows
more grouped peaks (decent recall and precision) than the other tree-based classifiers.
These results only occur when employing normalization or min-max scaling. The impact
of feature reduction is interesting, because the best results are not found when zero feature
reduction was applied, but rather when they are found at varying points of top feature
removal. The overall conclusion for xgboost remains that it is excessively inconsistent to
be usable.

4.2.2. Neighbor-Based Classifiers

The simple nearest neighbor algorithm is much more consistent than the tree-based
methods. It is only usable when employing normalization, but under that constraint, it
reaches Fl-scores of approximately 65%. For this algorithm, a clear upward trend in the
metrics is observed when increasing the training volume, with diminishing returns starting
after 0.5%. Knn is computationally expensive to run, but it can be included in an ensemble,
based on these results. Removing the best features in a step-wise manner has the expected
result of lowering the classification metrics, but the effect is not drastic and the upward
trend stays intact.

The nearest-centroid classifier had the interesting property of having high recall
(only for normalized or min—max-scaled features) on CIC-IDS2017. This property stays
intact when evaluating the samples of CSE-CIC-IDS2018 with the pretrained models.
With normalization and no feature removal, recall stably sits at 70%, as does balanced
accuracy (precision 49%). Min—max scaling has even higher recall 87%, but worse balanced
accuracy (57.6%, precision 33.7%). Feature removal does not alter the performance when
used with normalization, but the models trained on min-max-scaled features significantly
improve after removing the first five features. This is most probably due to the removal
of the problematic timestamp feature, which was the most discriminative feature in CIC-

93

J. Cybersecur. Priv. 2023, 3

IDS2017. Recall now maxes out at 92.8% with balanced accuracy at 57.8% and precision
at 33.5%. Removing even more of the most discriminative features does not alter this
result. CSE-CIC-IDS2018 has 3.3x the amount of samples that are in CIC-IDS2017 and
more importantly, this classifier converges almost immediately (at 0.5% of the samples of
CIC-IDS2017 used to train).

4.2.3. Other Classifiers

The metrics for a logistic regression show that the features must be normalized to
be a decent classifier. It has an upward trend with respect to the training volume, but it
is not steep. Generally speaking, this upward trend stays intact when removing features.
As expected, the absolute values for the metrics are lowered when reducing features, albeit
not by much. At 30% training volume and top-5 features being removed (among others
contaminating timestamp being removed) on CIC-IDS2017, it manages to classify the
samples of CSE-CIC-IDS2018 with a recall score of 90.3%, precision of 53.8% and balanced
accuracy of 77%. The class separation is well above chance, but still not sufficiently high to
be able to recommend the method as a reliable classifier.

A support vector machine with a linear kernel has results similar to those of the
logistic regression, but there is almost no upward trend and its classification performance
is damaged more by feature removal. Its best result is obtained with normalized features,
the top-5 of which have been removed and at training volumes of between 0.1 and 1%
(recall: 90.5%, precision: 51.5%, balanced accuracy: 77%).

Switching the kernel to the radial basis function has the interesting property of topping
out higher, but only for min—max-scaled features. Recall and precision move in opposite
directions to one another with regard to the amount of data used for training, regardless of
feature removal. With 25% training volume on CIC-IDS2017, recall climbs from 92.2 (top-0
features removed) to 99.45% (top-10 features removed), while precision at the same points
drops from 60.5% to 50.3%. A minority of result points have not been collected for this
algorithm due to the excessive run time of the algorithm (>1 day per run, caused by the
implementation that locks execution to a single core). This classifier could benefit from
feature selection in the standard manner (with the removal of poor features instead of the
removal of top features). It scores the highest overall, but the time required to train and
subsequently evaluate samples holds this algorithm back.

4.2.4. Intermediate Conclusion

From these results, it should be clear that generalization is poor at best and dismal at
worst. The set of tested algorithm families certainly do not provide a silver bullet algorithm
that can be trained to distinguish between benign and malign traffic. Some do have very
high recall, but the accompanying precision is lackluster. Tree-based methods have an issue
of overfitting despite having great intra-dataset generalization, even under strict limiting
conditions. Further research is needed to constrain the tree-based methods to make them
more robust. The neighbor-based methods fall into two classes, knn most consistently had
the highest F1-scores (between 65 and 70%). Furthermore, it did not require many data
points to reach these scores, which is essential for knn, because this is computationally
expensive. The method opposite in run time to it, that of nearest centroids, is better in
terms of recall and worse in terms of precision. This makes it less usable overall. For
the remaining methods, the logistic regression and RBF-kernel SVM have the best results
because of their high recall (90-99%), paired with moderate precision (50-60%), but these
results are not sufficient to be used in real defense systems. The next section presents the
results of testing models specifically trained for each attack class.

5. Results of Attack-Specific Two-Class Models

The inability of overarching models to generalize well or at all leads to a new hypoth-
esis in which models trained on specific attack classes may exhibit a better performance.
This hypothesis was been tested by tasking the models trained on the individual days

94

J. Cybersecur. Priv. 2023, 3

(each containing samples from a distinct attack class) with the data on which they have
been trained, as well as the corresponding data from CSE-CIC-IDS2018. This section’s
subdivisions are rather verbose and therefore quite dense. The summary and discussion of
only the best-overall results are in Section 6.

5.1. Internal Retest

This section describes the results of making the pretrained models reclassify the sam-
ples of the attack class on which they were trained. This is included to test whether the
newly trained models do not suffer from a regression in their performance. The classifica-
tion performance should mirror the results described in this earlier work [11]. The fresh
models tested less points of vertical data reduction over a larger range (13 points between
0.1 and 50% of data used for training, versus 35 points between 0.1 and 33%). No other
variables were altered in the training methodology.

After comparing the original classification results to the new set of results, no perfor-
mance regressions were found in the class-specific models. A short reiteration of the results
is in order to have a baseline for comparison. CIC-IDS2017 has three classes of attack traffic
that were universally well recognized by the tested algorithms.

Models trained on the DDoS, HTTP-DoS and port-scanning traffic subsets are insensi-
tive to reduction in training volume and removal of discriminative features. Put another
way: increasing the learning difficulty by scaling back the amount of data for training on
while also removing the best features from the data, did not hurt the models’ classification
scores much or at all. It logically follows that these models are expected to perform well on
the samples of these classes from CSE-CIC-IDS2018.

Models trained to recognize FTP/SSH brute force attacks, web attack and botnet traffic
are extremely well recognized by tree-based methods, but algorithms from other families
have mixed results. Recall tends to stay high, but precision is lost. For all learners, these
classes were more sensitive to data reduction, with horizontal data reduction having the
biggest negative impact.

The final class, infiltration, is problematic because the subset in CIC-IDS2017 contains
a mere 36 positive samples out of a total of 288,602. Results on the CSE-CIC-IDS2018 of
these models will be reported, but are unlikely to be good.

5.2. Exposure to Unseen Data

The conclusions in Section 5.1 should be promising signs of the good generalization
performance of pretrained models when tasked with classifying unseen samples from a
closely related dataset. This assumption is only slightly undercut to date by the results
from Section 4. Nevertheless, models with increased resolution (i.e., trained to classify only
samples from specific attack classes) could perform better. As mentioned in Section 2.1,
CIC-IDS2017 and CSE-CIC-IDS2018 are very similar, but the latter has more subsets and
volume overall than the former. The mapping between the subsets of these datasets is
shown in Table 1.

5.2.1. FTP/SSH Brute Force

Days 0 of both CSE-CIC-IDS2018 and CIC-IDS2017 contain brute force attacks targeted
at an FTP or an SSH server. These samples serve as a proxy for brute force traffic in general,
because many more service endpoints, both public and non-public exist on the internet
that are susceptible to brute force attempts (e.g., API servers, VPN access points, databases,
RDP servers, etc.).

The very weak performance for most tree-based models is observed with class separa-
bility (balanced accuracy) often at 50%, indicating that the models are no better than chance.
The results are worse when employing normalization, because the values are squeezed into
a range that is too narrow. Even the models trained on very low training volumes (high
vertical data reduction) still overfit on the data. There are some exceptions (subfigures of
Figure 3), most notably (and expectedly) when using very low training volumes (0.1%).

95

J. Cybersecur. Priv. 2023, 3

Recall is typically very low, but the malicious samples in that recalled percentage are classi-
fied with high precision. Models that were trained with the most discriminative features
removed fail immediately.

1.0

0.8

0.6

Metric scores

0.4

0.2

0.0

1.000

0.995

0.990

0.985

Metric scores

0.980

0.975

0.970

CICIDS2018 bruteforce classified by models trained on CICIDS2017 bruteforce

&

\|7<
| =<
on
\

i
¥

dtree
accuracy
balanced_accuracy
F1
precision
recall

Algorithm
gda
a
hirﬂr
dtree
extratree
radboos!

linsve
ncentroid
rbfsve

rforest
xgboost

Day

ComuonsweE o

5

Model

Scaling

oz
@ MinMax
ONo

Features
removed
o0

05

010
015
020

0.0

CICIDS2018 bruteforce classified by models trained on CICIDS2017 bruteforce

0.1 0.2 0.3

0.4 0.5

Volume of dataset used for training (fraction of total # samples)

=
e
—>

rforest
accuracy
balanced_accuracy
F1
precision
recall

Algorithm
gda
a
hirﬁr
dtree
extratree
radboost

linsve
ncentroid
rbfsve
rforest

xgboost

Day

ComuonawN O

5

Model

Scaling

0z
@ MinMax
ONo

Features
removed

00
05
010
015
020

0.0

0.1 0.2 0.3

0.4
Volume of dataset used for training (fraction of total # samples)

0.5

Figure 3. Performance metrics of two tree-algorithms trained on FTP-SSH brute force (CIC-IDS2017),
evaluating FTP-SSH brute force from CSE-CIC-IDS2018.

96

J. Cybersecur. Priv. 2023, 3

A very similar conclusion is reached for the RBE-SVC. It manages to reach moderate
recall (71%) with a high precision of 93.8%, but only with normalized features, and 0.1%
training volume. Increases in training volume lead to very low recall with high precision.
It is more resistant to feature removal than the tree-based methods. The logistic regression
and linear SVM do not have noteworthy results.

Nearest neighbors is useless, because it has low precision and recall, regardless of
the scaling and invariant to training volume. Nearest centroids has stable sections with
precision—recall pairs at approximately 60% and 75%, respectively. These are maintained
fairly well when reducing features, but only if the features were normalized or min—
max-scaled. Without feature scaling, lots of performance is lost quickly after removing
top-features. The classifier seems brittle overall. Curiously, the best recall results, up to
perfect recall, happen when using only 0.1% of data for training.

5.2.2. Layer-7 Denial of Service

CSE-CIC-IDS2018 contains two days of denial of service attacks. The first of which has
malicious packets generated by tools such as slowloris or HULK that abuse web servers by
exhausting their resources. The second day contains traffic exclusively from exploiting the
Heartbleed vulnerability on the affected implementation of OpenSSL (1.0.1-1.0.1f). CIC-
IDS2017 bundles both types of attacks in a single day, using the same tooling. Because the
attacks exist in one day in the 2017-version, the attack types got squashed into binary
classification. It is a good use-case to test whether these attacks should be treated as the
same category or not.

All tree-based methods overfit heavily, as they did on the brute force traffic. Good
performance is only ever recorded for models that had very little data available to train on.
Making matters worse is the inconsistency with which these results occur. In numerical
terms, recall-precision pairs above 60% are very rare for any of the pretrained models.
Once more, the worst results are obtained on models that had normalized features.

Nearest-neighbors has balanced accuracy scores consistently falling in the 70-80%
range. Changes in scaling, training volume or feature reduction do not significantly alter
this result. It is not good enough to be considered. Nearest-centroids separates the classes
worse, indicated by the balanced accuracy of 50-60%. The only results that are better than
chance were observed when using normalized features. Higher training volume or less
feature reduction, do not affect the results.

The logistic regression models trained on min—max-scaled features follow the pattern
that the section introduction put forward. Great generalization performance, with a stable,
straightforward relationship between training volume and classification metrics (Figure 4).
Those metrics are a stable 97.5% recall, paired with 70-75% precision yielding a total of
97.9% balanced accuracy (5 features removed). This amount of class separation is enough
to recommend the classifier as a genuine method to classify unseen layer-7 DoS traffic.
A linear support vector classifier or rbf-kernel SVM (with the same parameters) have
nearly identical results. All models in the other category perform poorly if the features
were standardized.

5.2.3. DoS Heartbleed

Although technically a form of information disclosure and not denial of service,
Heartbleed traffic was included in the DoS category by the authors of both datasets.

Decision trees typically have very erratic metric graphs for this day of traffic. Mod-
els at peak performance in these graphs manage to achieve 80-95% balanced accuracy.
Adaboost has the highest scores, both in absolute terms as well as averaged across the
tested parameters. The changes in classification metrics can be as large as 50% flat and
the relationship to training volume and feature removal is unclear. This unpredictability
considerably lowers the real applicability of these models. The lowest variability models
are randomized decision trees. These reach a flat profile after 1% training volume, with re-
call at 72.4% and precision at 99.5% (Figure 5). This result is also stable with regard to

97

J. Cybersecur. Priv. 2023, 3

feature removal. It should be noted that with 0 features removed (which includes the
problematic timestamp feature from CIC-IDS2017), this model performs no better than
chance. Performance numbers are only good if this feature was removed (‘timestamp’ is
first in the list of top-5 features).

CICIDS2018 DoS classified by models trained on CICIDS2017 DoS

Algorithm
=
1.0 Binle
—_— e — — — diree
extratree
Eradhnos
nn
0.9
0.8
0.7
a
4
o
o
@
L 0.6
=
=
(7]
=
0.5 Scaling
0z
=z @ MinMax
0.4 binir oNo
- accuracy
—*— balanced_accuracy
F1 Features
i removed
0.3 — precision 00
4 recall o5
[
015
020
0.2

0.0

0.1

0.2

04

0.5

" 0.3 .
Volume of dataset used for training (fraction of total # samples)

Figure 4. A rare occurrence of the expected relation between training volume and generalized

model performance.

CICIDS2018 DoS classified by models trained on CICIDS2017 DoS

1.0

0.9

4
©

Metric scores

>

0.7 |

0.6 |

f ko

extratree
accuracy

balanced_accuracy

F1
precision
recall

Algorithm

ada

finsve
ncentroid
rbfsve
rforest
xgboost

Day

ComuoanAWNL O

5

Model

Scaling

oz
@ MinMax
ONo

Features
emoved
oo

o5

010
015
020

0.0

0.1

0.2

0.3

0.4

0.5

Volume of dataset used for training (fraction of total # samples)

Figure 5. A subset of the randomized trees trained to recognize Heartbleed traffic perform stably well.

98

J. Cybersecur. Priv. 2023, 3

Nearest neighbors is an unusable classifier. It has very low recall/precision for all
methods of feature scaling, across all points of feature reduction. It also shows a sudden
decline in performance when using more than 1% of data as training samples. Nearest-
centroids had recall-precision pairs of 60 and 95% within the relevant day of CIC-IDS2017,
on the day containing Heartbleed samples, the model performance drops to precision recall
pairs of 15 and 0% moving balanced accuracy close to blind guessing. This shows just how
brittle the classifier is.

The logistic regression was very performant within CIC-IDS2017 with stable metric
clusters above 95%, step-wise gain with increased training volume up to limit and step-wise
loss in these metrics with increasingly aggressive removal of top features. It has this profile
on the new samples of CSE-CIC-IDS2018. The model only starts to become performant
with at least 5% data as training volume. The method is stable with perfect precision and
95% recall (Figure 6). This would be usable in a real-world system. Removing features has
the expected effect of lowering the overall metrics, but stability is kept. A linear support
vector machine has similar results, but requires normalized features. The RBF-kernel SVM
required min-max-scaling and feature removal impacted precision much more negatively
than it did for binlr.

CICIDS2018 DosS classified by models trained on CICIDS2017 DoS

Algorithm
ada
a
1.0{ s - < < : ¢ e
extratree
gradboos
B — linsve
ncentroid
T
0.9 xgboost
Day
o
08 2
3
4
5
6
0.7 7
@ 8
9
g 10
9
a
206 Model
5
[}
=
0.5 .
Scaling
0z
= @ MinMax
0.4 binlr oo
accuracy
— balanced_accuracy FaatiTES
ul
0.3 H - emoved
—>— precision o
recall 8 5
010
X 015
0.2 020
0.0 0.1 0.2 0.3 0.4 0.5

Volume of dataset used for training (fraction of total # samples)

Figure 6. A subset of the logistic regression models trained to recognize Heartbleed traffic also have

stable, high-performance scores.

Whether it is justified to clump layer-7 DoS and Heartbleed together in CIC-IDS2017
is unclear. The models might be more performant on the individual attacks if they were
trained exclusively on them. The argument in favor of keeping the grouping is that there are
iterations of the models that manage to classify both types. Testing the exact entanglement
could not be deduced from these data, but it is possible by testing models pretrained
on CSE-CIC-IDS2018.

99

J. Cybersecur. Priv. 2023, 3

5.2.4. DDoS Part 1

As with DoS traffic, CSE-CIC-IDS2018 also splits DDoS traffic over two days, whereas
CIC-IDS2017 bundled them. The tooling used in both datasets is the same. The first day of
DDoS samples in the 2018 version contains traffic generated by the Low-Orbit Ion Cannon
(LOIC) tool, with both UDP and HTTP floods. These attacks do not rely on deviant protocol
use, but simply overwhelm the web server(s) on the receiving end. The second day uses
the High-Orbit Ion Cannon tool which also employs HTTP (GET and POST), as well as
LOIC UDP.

All single decision tree models trained on non-scaled features have mirror-image
metrics on the DDoS traffic from CIC-IDS2017 and the first day of CSE-CIC-2018 (Figure 7).
Adaboost has some models with normalized features that are very performant with tight
metric clusters at approximately 97%. Reducing features lowers this performance pulling
precision and recall apart to 100% and 80%, respectively. While this could be interpreted
as a good result, the unpredictable pattern of these metrics in relationship to the training
volume significantly lowers the practical utility of this method. The bagging classifier built
on decision trees shows signs of overfitting. It has good stability (normalized features) as
long as no more than 10% of the DDoS data in CIC-IDS2017 has been used to train the
model. In that low training volume region, the classifier has perfect recall, matched by 80+%
precision. Randomized decision trees, random forests and gradient boosted trees, both
standard and regularized, do not perform well enough to be considered real contenders.

Lots of tree-based methods show signs of overfitting beyond using more than 5% of
data to train on. Methods to improve generalization for tree-based classifiers in intrusion
detection are worth investigating.

CICIDS2017 DDoS classified by models trained on CICIDS2017 DDoS

Algorithm
0 ada
§ o
1.000 8 e
0 gradboos!
& fnn
0 linsve
0 ncentroid
0 rbfsve
Q rforest
0.975 0 xgboost
Day
0o
0
0.950 02
03
04
5
0.925 86
0
g v
&
© Model
5 0.900
] S
=
0.875 Scaling
0z
O MinMax
| dtree oo
0.8501 ¥ > accuracy X
—>— balanced_accuracy
e F1 Features
- emoved
—> precision "
0.825 —<— recall 85
e e X b
020
0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)

(a)

Figure 7. Cont.

100

J. Cybersecur. Priv. 2023, 3

CICIDS2018 DDoS classified by models trained on CICIDS2017 DDoS

Algorithm
ada
bag
1.000 binlr
extratree
Eradhans
Iia;‘v(
ncentroid
Wfsvcl
0.975 Xgboost
Day
o
1
0.950 ;
4
5
6
¥
v 0.925 95
S 10
&
o Model
£ 0.900
=
Scaling
0.875 .
W O MinMax
dtree oo
accuracy
0.850 —>— balanced_accuracy Feat
eatures
% £l . removed
>~ precision
i A ¢ . —— recall gg
0.825 e x
o1
/‘L/(i 015
020
0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)

(b)
Figure 7. A rare occurrence of perfect consistency by pretrained IDS2017 DDoS models the respective

IDS2018 DDoS samples. (a) Singular decision trees within CIC-IDS2017 DDoS; and (b) the same set
of models summarized in figure (a) when evaluating CSE-CIC-IDS2018 DDoS part 1.

Nearest neighbors with normalized features has perfect recall and reaches 89.5%
precision with 10% data used for training. At least a flat 10% loss in precision is observed
compared to the classification performance on CIC-IDS2017. Min—max-scaled models also
perform well, but not beyond 1% training volume. The nearest centroids loses a flat 10-15%
on all metrics compared to the same model’s performance on DDoS 2017, but the stability
is retained. Recall is poor at only 50%.

The logistic regression models work with little training data reaching perfect recall
and 80+% associated precision (only with min-max scaling). Intermittently, there are signs
of overfitting at higher training volumes. The linear support vector classifiers obtain equal
results, but with less stability. The rbf-kernel SVMs have similar results with both types of
scaling. In terms of generalization strength, these methods definitely achieve more stable
and thus better results than the other algorithms.

DDoS was one of the easiest classes within CIC-IDS2017. This does not translate into
one-to-one to classification strength on CSE-CIC-IDS2018 DDoS. The remarkable resistance
to data reduction in all methods of the DDoS class does not hold up. These methods need
more robustness to be practical. Evaluated on the whole, classification strength on this easy
class is better than it is on the harder classes.

5.2.5. DDoS Part 2

The second day of DDoS traffic in CSE-CIC-IDS2018 has very similar traffic. Only
one new tool is introduced, and behind the scenes, it generates requests with the same
protocol. It is odd to split the DDoS traffic over two days, because as the results will show,
performance is alike.

Single decision trees have zones with adequate performance that are interwoven with
zones with very poor performance metrics. It is not exclusively due to overfitting either,
because regions with good performance do exist at higher training volumes. Adaboost
models only work with normalized features, maximally reaching perfect precision and 80%

101

J. Cybersecur. Priv. 2023, 3

recall. As a standalone result, this would make adaboost a viable option, but once again, the
unpredictability with regard to training volume hampers viability. The pretrained bagging
classifiers perform like adaboost at low to very low training volumes and exclusively
with normalized features, however, with even less stability. Conclusions for randomized
trees, random forests and normal gradient-boosted trees can be summarized as lackluster
across all parameters (again with an exception for very low training volumes). Regularized
gradient-boosted trees perform stably with 80% recall and 100% precision insensitive to
feature reduction.

Nearest neighbors has the same result as in the previous section, but with a worse pre-
cision (70+%). HOIC combined with LOIC UDP seems to be harder to classify, because the
centroid suffers from very low (<25%) recall compared to the previous section (regardless
of parameter selection).

Both methods of feature scaling obtain good results for the logistic regression models,
with those trained on min-max-scaled features reaching clusters of perfect metrics. The best
scores are obtained at the lowest training volumes, but the differential is tiny in most cases
(0.5%). The linear kernel SVM has the same performance profile as binlr, with good results
for the models trained on normalized features, but better results on models trained with
min-max-scaled features. Once more, the highest performance is obtained with the lowest
amounts of training data. The ideal classifier for this attack class is the RBF-kernel SVM
with stable, perfect scores. This does require at least 1% data to train on, but shows no signs
of overfitting (min-max-scaling).

It could be concluded that ML-based models are able to distinguish well between
regular and multiple types of DDoS traffic. Unfortunately, due to the loud nature of DDoS
attacks, they are easily detectable by other mechanisms. It might be useful at an aggregate
level (service providers), but an individual business suffering from a DDoS attack will not
need a machine learning model to confirm that.

5.2.6. Web Attacks

The web attacks are a harder attack type to classify within CIC-IDS2017. Most methods
were not able to reach perfect classification scores. Although day 5 and 6 contain web
attacks, the dataset documentation does not mention what the differences between the
two days are. They both contain web brute force attempts, cross-site scripting (XSS) and
structured query language injections (SQLis).

The poor generalization obtained by single decision trees is the root cause for the
feeble results of the methods that build on top of it. Recall is so consistently below 40%,
with spiking precision scores making it impossible to recommend any of these methods.
These results did not improve with more training, different scaling or less feature reduction.
The worst performers are randomized decision trees. There is no learning, because they
do not try to set optimal splitting points. It is clear that for a harder-to-classify attack
class, this method does not work. The web attack models built on decision trees typically
had 90-100% recall after some training within CIC-IDS2017. The relative 50% drop-off
is disconcerting.

Nearest neighbors starts off with some signs of learning, but levels off quickly at low to
very low precision-recall pairs. The method had good scores within CIC-IDS2017 (85-95%
recall and 75-85% precision), but that performance does not carry over into CSE-CIC-
IDS2018. Nearest centroids had robust 85+% recall on the web attack traffic of CIC-IDS2017,
at all combinations of training volume, scaling and feature reduction. The associated
precision was never good, so it is expected that this will continue. Unfortunately, the
nearest centroids loses much in terms of recall. Only the models with min-max-scaled
features stay stable at 57%. Other methods of scaling have recall stable at 15%. All precision
is lost.

The near-perfect recall and moderate precision of logistic regression models within
CIC-IDS2017 is not retained on CSE-CIC-IDS2018. Recall drops below 40%, often crashing
to 0%, and precision is at 0% more often than not. This conclusion also applies to a linear

102

J. Cybersecur. Priv. 2023, 3

SVM and rbf SVM. All of these methods struggled in terms of precision within CIC-IDS2017,
but did reach near-perfect recall. None of this translates into generalization performance
when classifying the web attacks in CSE-CIC-IDS2018, despite the fact that both datasets
contain the same types of web attacks.

It is clear that, for this type of attack, which typically has a lower network footprint
(unless it is a brute force login), is much harder to classify from network-related features.
Within the dataset, however, the performance can be very good and a subsequent recom-
mendation for use in real-world systems would be logical, but ultimately misguided.

5.2.7. Infiltration

Like web attacks, CSE-CIC-IDS2018 contains two days with infiltration traffic. The doc-
umentation does not mention what the differences are between the two days. The labeling
in the data does not provide any additional information apart from ‘infiltration’. A major
caveat when analyzing these results is the lack of samples on which the models were
trained. Day 3 of CIC-IDS2017 has infiltration traffic, but the distribution between be-
nign and malicious is extremely skewed (288602-36). Generalization performance is thus
not expected.

None of the tested algorithms perform at acceptable rates, and metrics are consistently
below 20%. Sometimes, precision spikes high, but the associated recall is so close to zero
that the high precision is meaningless. These results do not vary with changes in the
training volume, feature scaling choice or feature reduction. The results for both days are
close to identical. Some models, especially those built on decision trees, show climbing
trends within CIC-IDS2017, but this is just the classifiers fitting any pattern and certainly
not one that is significant or general.

It will be interesting to investigate whether models trained on the infiltration days
of CSE-CIC-IDS2018 perform well when retested on each other’s data as well as the
2017 infiltration samples.

5.2.8. Botnet Traffic

The botnet class in CIC-IDS2017 is one of the medium-difficulty classes, mainly because
non-tree-based models had low precision and all models suffered from the removal of good
features from the training set. The documentation for the 2017 data lists Ares [35] as the
tested botnet. The 2018 version adds the Zeus [36] botnet.

Single decision trees have very irregular performance. At some points, the metrics
almost reach perfect classification, but it is impossible to reliably tell which parameters
are required. Feature reduction tanks performance across all trained models, most notably
when using min—max-scaling or no scaling. There is one decent set of models (adaboost)
and it requires normalized features and no feature reduction. The resulting models have an
early peak at 0.5-1% training volume of perfect recall and 75% precision. Giving access to
more training data still yields stable models, but the recall is only 50% with 95+% precision.
As soon as features are removed, the classification scores plummet almost to 0. Changing
how the features are preprocessed also had a major impact (summarized in Figure 8).
The bagging classifier built on decision trees, gradient-boosted trees, random forests and
extreme gradient-boosted trees also behave unexpectedly and are not sufficiently potent to
be used as a classifier. Randomized decision trees generate no false positives, but no true
positives either. All normal traffic is properly classified, but the models miss all malicious
instances, leading to a false negative rate of 100% and a total balanced accuracy of 50%.
This happens regardless of the training volume, scaling or feature removal (with very
few exceptions).

103

J. Cybersecur. Priv. 2023, 3

CICIDS2018 botnet classified by models trained on CICIDS2017 botnet
Algorithm

1.0

finsve
ncentroid
rbfsvc

0.8

=g
o

Metric scores

o
IS

Scaling

ez

O MinMax
ada oNo
0.2 “~ accuracy

—— balanced_accuracy
e F1 Features

S removed
—>~ precision
00
— recall 05
010
0.0 by 015
020

0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)
(a) Adaboost botnet normalized features, no feature reduction
CICIDS2018 botnet classified by models trained on CICIDS2017 botnet
Algorithm

binir
1.0 dtree
extratree
gradboos
nn

finsve
ncentroid
bfsve
rforest
xgboost

0.8

0.6

Metric scores

0.4

Scaling

oz
O MinMax
oNo

ada
— accuracy
—% balanced_accuracy

- F1
s 5 removed
—>¢ precision PY)

P / —4 recall 05
&A y 010

015
020

0.2

Features

0.0

0.0 0.1 0.2 0.3 0.4 0.5
Volume of dataset used for training (fraction of total # samples)

(b) Adaboost, pretrained for botnet, no scaling

Figure 8. Cont.

104

J. Cybersecur. Priv. 2023, 3

CICIDS2018 botnet classified by models trained on CICIDS2017 botnet

Algorithm
ad
2
1.0 . Si'li'e
extratree
Eradbons
linsve
ncentroid
rbfsvc
rforest
xgboost
Day
0.8 0
1
2
3
4
| 5
| 6
| 7
" 0.6 | 8
4] \ 9
5 | 10
o
¥ \k’
L) \ Model
5 \
1]
=
0.4
Scaling
0z
O MinMax
ada ONo
0.2 accuracy
—*— balanced_accuracy F
1 eatures
3¢ ¥ emoved
—>— precision
00
recall 05
010
0.0 015
020
0.0 0.1 0.2 0.3 0.4 0.5

Volume of dataset used for training (fraction of total # samples)

(c) Adaboost, pretrained for botnet, still normalized, top 5 features removed

Figure 8. The wild fluctuations between pretrained models when employing different scaling
methods during preprocessing or when removing top-features when classifying a medium-difficulty
class (botnet).

Nearest neighbors has an inverse relationship with training volume because precision—
recall most often stays below 50% and it is not worth considering. The nearest centroids
classifier has many good models that manage a balanced accuracy score of 75-80% and
with very high stability. These models were trained with normalized features and have
recall stable near 100%. Min-max-scaled features yield models with recall at a stable 50%.
Not scaling features before training yields models with a stable recall of 0%. What is most
interesting is that this happened at all considered points of training volume. Even within
CIC-IDS2017, it was not advisable to use it as a classifier for malicious samples, due to its
low precision. This remains unchanged on the botnet data of CSE-CIC-IDS2018.

The results of the logistic regression models and linear SVM are not good enough,
but that was expected because these models performed poorly on the botnet data in CIC-
IDS2017. The only interesting conclusion is the complete loss of recall on the botnet data in
CSE-CIC-IDS2018, whereas these models trained to very high recall values on the 2017 data.
Rbf-svc models have great performance (85% balanced accuracy, perfect recall with 55%
precision) at very low training volumes (mostly with minmax-scaled features). This drops
to approximately 70% balanced accuracy with increased training volume. These results are
stable with regard to feature reduction. The loss in performance is mostly due to a sharp
decline in recall.

5.2.9. Intermediate Conclusion

After the disappointing generalization strength of the global models, as discussed
in Sections 4.2.4, a new hypothesis was formulated which states that models trained on
specific attack classes might generalize better than their global two-class counterparts. This
hypothesis is proven wrong by the results in the previous subsections (Sections 5.2.1-5.2.8).
Model generalization rarely happens and when the pretrained models achieve stable, high
classification metrics, it is most often on the easy classes of CIC-IDS2017.

105

J. Cybersecur. Priv. 2023, 3

There are three major issues that make the use of pretrained models so weak when
it comes to generalization. First, how the features are scaled before training has a large
impact on the model’s performance, but there is no best choice that can be reasonably
recommended. This was no issue for the models when they had to classify the test sets from
CIC-IDS2017. Second, the relationship between training volume and classification scores
is inverted more often than not, leading to a situation wherein models trained on 0.1-1%
of the samples in CIC-IDS2017 perform best. The third and final nail in the coffin is the
rapid loss in classification metrics when the most discriminative features are incrementally
removed. Most models were very robust to this within CIC-IDS2017, especially to classify
the easy classes, but this desirable property does not hold.

6. Discussion

The scope of this investigation has led to a substantial set of results. In the results
(Sections 4 and 5), the classification results for all attack classes as well as the trends
observed from the visualizations are described in detail. Even though both sections end
with intermediate conclusions, they remain dense. This section was included to give a
straightforward view of the results and their implications. Table 3 shows the best three
models per attack class from both a baseline perspective (B rows) and a generalized
performance perspective (G rows). What is best is determined by the ranking of the models
based on an equally weighted combination of balanced accuracy, F1-score and use of
training data (less is better). The numeric columns (except for reduction) are percentages
with a maximum of 100.

Several points stand out in this table. First the baseline scores for all classes except
infiltration (due to poor representation in CIC-IDS2017) are extremely high. Second and
most importantly, pretrained models generalized well to the classes with clear network
footprints such as bruteforce, L7-DoS, DDoS and botnet to some extent. These results are
without any additional training and most often achieved by models that had little access to
training data (% training at or below 1%, further broken down into one third training—two
thirds validation). Third, although tree-based models typically have the highest baseline
scores, the best generalizing models are not always tree-based. There are, however, more
than enough tree-based models that do have great general performance (hence, they did
not overfit) so it is possible. This is mainly interesting from a model interpretability
perspective. Fourth and finally, the discrepancy between the baseline performance and the
general performance for the web attacks would go unnoticed in most analyses, erroneously
concluding that the models perform well on the class. This conclusion also applies to the
global 2-class models.

One crucial remark about Table 3 is that it obfuscates whether the models had a stable,
generalized performance. This is most often not the case (as shown in the detailed results
in Section 5). Improvements that guarantee stable, general class-level models after training
should be sought after. These improvements could come from changes in data preparation
and model selection based on generalization potential (either during or after training) or
algorithmic modifications that improve robustness.

Table 3. Classification metrics for the best 3 models per attack class, both for baseline (B) and
generalized (G) classification, with the mention of the preprocessing parameters.

B/G Class Algorithm Ba}::\cced F1 Precision Recall Scaling Reduction % Train
gradboost 99.84 99.06 98.40 99.73 No 0 0.5
B 0.Bruteforce extratree 99.63 99.24 99.21 99.28 z 0 0.5
extratree 99.64 99.63 99.97 99.28 z 0 1.0
xgboost 100 100 100 100 No 0 0.5
G 0.Bruteforce ~ xgboost 99.97 99.95 99.90 100 No 0 1.0
gradboost 99.06 98.38 96.81 100 MinMax 0 0.1

106

J. Cybersecur. Priv. 2023, 3

Table 3. Cont.

B/G Class Algorithm Baiacrzced F1 Precision Recall Scaling Reduction % Train
xgboost 99.85 99.79 99.71 99.88 No 0 0.5
B 1.L7-DoS xgboost 99.85 99.77 99.66 99.89 Z 0 0.5
xgboost 99.84 99.76 99.61 99.91 MinMax 0 0.5
linsvc 97.80 82.59 71.57 97.63 MinMax 5 1.0
G 1.L7-DoS linsve 97.98 84.93 75.14 97.65 MinMax 5 6.0
linsvc 97.75 81.63 70.10 97.70 MinMax 5 11.0
rforest 99.75 99.81 99.65 99.78 z 20 1.0
G 2.L7-DoS (HeartBleed) linsve 99.49 99.50 99.95 99.04 MinMax 0 0.5
gradboost 99.65 99.72 99.60 99.85 MinMax 10 1
xgboost 97.58 96.92 98.72 95.18 MinMax 0 1.0
B 2.Web Attacks xgboost 98.83 98.75 99.86 97.66 MinMax 0 6.0
extratree 98.89 98.27 98.75 97.80 MinMax 0 6.0
gradboost 64.23 43.37 91.15 28.45 No 10 0.5
G 5.Web Attacks dtree 77.74 38.69 29.69 55.52 No 0 11.0
ada 64.36 41.35 73.76 28.73 No 0 1.0
extratree 61.75 38.05 100 23.50 MinMax 5 0.5
G 6.Web Attacks gradboost 61.66 36.92 88.59 23.32 No 10 0.5
xgboost 61.66 36.82 87.42 23.32 MinMax 10 0.5
dtree 88.89 71.79 66.67 77.78 MinMax 10 11.0
B 3.Infiltration xgboost 93.06 91.18 96.88 86.11 Z 0 35.0
extratree 88.89 86.15 96.55 77.78 MinMax 15 26.0
ncentroid ~ 50.19 17.50 11.33 38.42 Z 20 6.0
G 7 Infiltration binlr 50.46 14.86 11.71 20.34 Z 0 6.0
binlr 49.93 15.22 11.18 23.82 Z 20 6.0
ncentroid ~ 57.75 42.42 35.74 52.16 Z 20 6.0
G 8.Infiltration binlr 55.23 43.21 31.58 68.38 MinMax 15 11.0
linsve 51.09 43.11 28.62 87.29 MinMax 10 11.0
xgboost 98.42 98.19 99.58 96.85 MinMax 0 6.0
B 4.Botnet xgboost 98.14 97.65 99.06 96.29 z 0 6.0
xgboost 97.53 97.32 99.68 95.07 No 0 6.0
ada 98.90 98.40 98.39 98.41 No 0 0.5
G 9.Botnet gradboost 92.11 82.67 70.51 99.91 Z 0 0.5
ada 92.11 82.67 70.51 99.91 0 0.5
extratree 99.89 99.89 99.96 99.82 z 5 0.1
B 5.DDoS extratree 99.87 99.88 99.96 99.79 Z 10 0.1
extratree 99.84 99.86 99.88 99.83 No 10 0.1
dtree 96.30 96.75 96.09 97.42 Z 0 0.5
G 3.DDoS ada 96.30 96.75 96.09 97.42 Z 0 1.0
bag 95.96 96.49 95.58 97.42 Z 0 0.5
binlr 99.86 99.87 99.99 99.75 MinMax 0 0.1
G 4.DDoS binlr 99.86 99.87 99.99 99.75 MinMax 5 0.1
binlr 99.86 99.87 99.99 99.75 MinMax 10 0.1
xgboost 99.82 99.73 99.75 99.70 No 0 0.5
B 7.Global xgboost 99.68 99.62 99.84 99.40 Z 0 0.5
xgboost 99.86 99.80 99.85 99.75 Z 0 1.0
knn 81.36 71.98 64.46 81.47 Z 0 0.1
G 10.Global knn 79.23 69.06 60.65 80.18 z 10 1.0
knn 79.03 68.45 58.49 82.50 z 10 0.5

107

J. Cybersecur. Priv. 2023, 3

7. Conclusions and Future Work

ML-based intrusion detection systems have to be able to accurately classify new
samples to protect live networks. Getting access to these new samples can be tricky, but an
intermediate evaluation is possible. This article tested whether a suite of supervised ML
algorithms trained on CIC-IDS2017 (both global and class-specific models) effectively
generalizes to the very similar, compatible CSE-CIC-IDS2018.

Unfortunately, our experiments demonstrated that the global, two-class models which
had excellent performance on CIC-IDS2017 [11] do not generalize to the follow-up dataset CSE-
CIC-IDS2018.

Even the most data-constrained trained models show clear signs of overfitting (best
results at very low training volume) and an overall very weak performance. The best
two-class models are the logistic regression and linear- and rbf-kernel SVMs. These reach
between 90 and 100% recall with 50-60% precision. This leads to overall class separability
in the 70% range. This is not sufficiently reliable to be used in real network defense systems.

Because the global models are too unreliable, specialized models for all shared attack
classes between CIC-IDS2017 and CSE-CIC-IDS2018 have also been tested. Those results
have pockets of good performance, mostly on the network-centric classes. Some models
are able to classify the novel DoS, DDoS, botnet and brute force samples of CSE-CIC-
IDS2018 with the retention of their strong performance metrics from classification within
CIC-IDS2017 (F1-score > 95%). Section 6 provides a condensed version of the top results
and their implications.

Three key issues still undermine a recommendation to use the tested algorithms in real
network defense systems. First, how features are scaled has a major impact on the models’
performance and the best choice varies too much to give a solid recommendation. This was
no issue for the same models when only classifying the test sets of the data on which they
were trained. Second, almost every model significantly struggles to maintain performance
if a selection of top-features was removed prior to training. This too was much less of
an issue for the models during standard intra-dataset testing. Third, the best-performing
models were most often those trained on very little data (0.1-1% training volume). This
clear sign of overfitting was most prominent for tree-based learners, but affected all other
methods to some extent. Performance regressions by the numbers were erratic and could
dip down to balanced accuracies of 50%.

Losing this invariance to scaling, training volume and feature reduction that made
the models so attractive when classifying only within CIC-IDS2017 has a big implication.
A large collection of models have to be trained and tested before the best models are cherry-
picked. Such a large expenditure of time and computational resources for a relatively low
yield is not defensible.

To summarize: this article experimentally demonstrates that ML-NIDS methods fail
to generalize even just across tightly coupled datasets. Consequently, it is highly unlikely
that they will perform well when deployed on real-world networks. We urge researchers in
the ML-NIDS domain to execute this article’s more rigorous model evaluation strategy to
avoid publishing potentially misleading and overly optimistic results.

Future Work and Hypotheses

Our future research will investigate potential solutions to improve ML-based NIDS
systems until they can consistently classify related and compatible datasets.

An obvious first attempt would be to investigate more powerful classification methods.
Recent ML-NIDS literature borrows neural network architectures that dominate pattern
recognition tasks in other fields [37-39]. Although the results are great, no literature exists
that tests whether they are better at generalization.

Alternatively, more stringent model regularization techniques and/or feature selec-
tion can be tested as potential solutions. Because the feature selection method of [11]
was counter-intuitive, there is room to test optimized models that only kept the most
potent features.

108

J. Cybersecur. Priv. 2023, 3

Finally, instead of trying to build global two-class models or attack-class specific
models, the models could be trained to recognize attacks within specific domains (e.g.,
simultaneously training with differentiation at the protocol and attack level or training
models to recognize traffic from a specific botnet). The major downside to this approach
is that it reduces the range of attacks that it covers, thereby moving closer to signature-
based methods.

Author Contributions: Conceptualization, L.D.; methodology, L.D.; software, L.D.; validation, L.D.;
formal analysis, L.D.; investigation, L.D.; resources, L.D. and IDLab-Imec; data curation, L.D.;
writing—original draft preparation, L.D.; writing—review and editing, L.D., M.V,, TW. and B.V,;
visualization, L.D.; supervision, T.W., B.V. and FD.T; project administration, L.D.; funding acquisition,
T.W., B.V. and ED.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets, both raw and cleaned up, are publicly available at
https://gitlab.ilabt.imec.be/lpdhooge/ids-dataset-collection. The full source code of the analysis
and the complete set of visualizations is available at https://gitlab.ilabt.imec.be/lpdhooge/reduced-
unseen-testing. (both URLs checked on 10 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Denning, D.; Neumann, P.G. Requirements and Model for IDES-a Real-Time Intrusion-Detection Expert System; SRI InternationalL:
Menlo Park, USA 1985; Volume 8.

2. Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, 13, 222-232. [CrossRef]

3. Duessel, P.; Gehl, C.; Flegel, U.; Dietrich, S.; Meier, M. Detecting zero-day attacks using context-aware anomaly detection at the
application-layer. Int. J. Inf. Secur. 2017, 16, 475-490. [CrossRef]

4. Kolias, C.; Kolias, V.; Kambourakis, G. TermID: A distributed swarm intelligence-based approach for wireless intrusion detection.
Int. . Inf. Secur. 2017, 16, 401-416. [CrossRef]

5. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top.
Comput. Intell. 2018, 2, 41-50. [CrossRef]

6. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement
learning-based approach. Int. J. Inf. Secur. 2020, 19, 657-678. [CrossRef]

7. Quadir, M.A ; Christy Jackson, J.; Prassanna, J.; Sathyarajasekaran, K.; Kumar, K.; Sabireen, H.; Ubarhande, S.; Vijaya Kumar, V.
An efficient algorithm to detect DDoS amplification attacks. J. Intell. Fuzzy Syst. 2020, 39, 8565-8572. [CrossRef]

8. Kannari, PR.; Shariff, N.C.; Biradar, R.L. Network intrusion detection using sparse autoencoder with swish-PReLU activation
model. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1-13. [CrossRef]

9. Badji, J.CJ.; Diallo, C. A CNN-based Attack Classification versus an AE-based Unsupervised Anomaly Detection for Intrusion
Detection Systems. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies
(ICECET), Prague, Czech Republic, 20-22 July 2022; pp. 1-7. [CrossRef]

10. D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Inter-dataset generalization strength of supervised machine learning methods
for intrusion detection. J. Inf. Secur. Appl. 2020, 54, 102564. [CrossRef]

11. D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Classification hardness for supervised learners on 20 years of intrusion
detection data. IEEE Access 2019, 7, 167455-167469. [CrossRef]

12. Sharafaldin, I.; CIC. CIC-IDS2017. 2017. Available online: https://www.unb.ca/cic/datasets/ids-2017.html (accessed on
15 November 2022).

13. Sharafaldin, I.; CIC. CIC-IDS2018. 2018. Available online: https://www.unb.ca/cic/datasets/ids-2018.html (accessed on
15 November 2022).

14. Sharafaldin, I.; CIC. CIC-DD0S2019. 2019. Available online: https:/ /www.unb.ca/cic/datasets/ddos-2019.html (accessed on
15 November 2022).

15. Sharafaldin, I; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1-3 October 2019; pp. 1-8.

16. Govindarajan, M.; Chandrasekaran, R. Intrusion detection using an ensemble of classification methods. In Proceedings of the

World Congress on Engineering and Computer Science (WCECS), San Francisco, USA, 24-26 October 2012 Volume 1, pp. 459-464.

109

J. Cybersecur. Priv. 2023, 3

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.
37.
38.

39.

Lu, L.; Teng, S.; Zhang, W.; Zhang, Z.; Fei, L.; Fang, X. Two-Layer Intrusion Detection Model Based on Ensemble Classifier. In
Proceedings of the CCF Conference on Computer Supported Cooperative Work and Social Computing, Kunming, China, 16-18
August 2019; Springer: Singapore, 2019, pp. 104-115.

Kuang, F; Xu, W.; Zhang, S.; Wang, Y.; Liu, K. A novel approach of KPCA and SVM for intrusion detection. . Comput. Inf. Syst.
2012, 8, 3237-3244.

Wickramasinghe, C.S.; Marino, D.L.; Amarasinghe, K.; Manic, M. Generalization of deep learning for cyber-physical system
security: A survey. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society,
Washington, DC, USA, 21-23 October 2018, pp. 745-751.

Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16-19 May 2010, pp. 305-316.

Gates, C.; Taylor, C. Challenging the anomaly detection paradigm: A provocative discussion. In Proceedings of the 2006
Workshop on NEW Security Paradigms, Schloss Dagstuhl, Germany, 19-22 September 2006; pp. 21-29.

Matlowidzki, M.; Berezinski, P.; Mazur, M. Network intrusion detection: Half a kingdom for a good dataset. In Proceedings of the
NATO STO SAS-139 Workshop, Lisbon, Portugal, 1 December 2015.

Vasilomanolakis, E.; Cordero, C.G.; Milanov, N.; Miihlhauser, M. Towards the creation of synthetic, yet realistic, intrusion
detection datasets. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium,
Istanbul, Turkey, 25-29 April 2016; pp. 1209-1214.

Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147-167. [CrossRef]

Li, Z.; Das, A.; Zhou,]. Model generalization and its implications on intrusion detection. In Proceedings of the International
Conference on Applied Cryptography and Network Security, New York, NY, USA, 7-10 June 2005; pp. 222-237.

Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion detection. In Proceedings
of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Chengdu, China, 16-19 May 2022, pp. 79-91.
Newlin, M.; Reith, M.; DeYoung, M. Synthetic Data Generation with Machine Learning for Network Intrusion Detection Systems.
In Proceedings of the European Conference on Cyber Warfare and Security, Coimbra, Portugal on 4- 5 July 2019; pp. 785-XVIIL.
Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do imagenet classifiers generalize to imagenet? In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9-15 June 2019; pp. 5389-5400.

Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108-116.

Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. Towards a reliable intrusion detection benchmark dataset. Softw. Netw.
2018, 2018, 177-200. [CrossRef]

Hastie, T.; Tibshirani, R.; Friedman,].H.; Friedman,].H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.

Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13-17 August 2016; pp. 785-794.

Geurts, P; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3-42. [CrossRef]

D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. In-depth comparative evaluation of supervised machine learning approaches
for detection of cybersecurity threats. In Proceedings of the 4th International Conference on Internet of Things, Big Data and
Security (IoTBDS), Crete, Greece, 2-4 May 2019; pp. 125-136.

Sweetsoftware. Ares. 2017. Available online: https:/ /github.com/sweetsoftware/Ares (accessed on 18 November 2022).
Touyachrist. Evo-Zeus. 2017. Available online: https://github.com/touyachrist/evo-zeus (accessed on 18 November 2022).
Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.
IntelligenCe Mag. 2018, 13, 55-75. [CrossRef]

Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Networks Learn. Syst.
2019, 30, 3212-3232. [CrossRef] [PubMed]

Mighan, S.N.; Kahani, M. A novel scalable intrusion detection system based on deep learning. Int.]. Inf. Secur. 2021, 20, 387-403.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

110

Journal of)
Cybersecurity
and Privacy

Article

ReMouse Dataset: On the Efficacy of Measuring the Similarity
of Human-Generated Trajectories for the Detection of
Session-Replay Bots

Shadi Sadeghpour * and Natalija Vlajic

Citation: Sadeghpour, S.; Vlajic, N.
ReMouse Dataset: On the Efficacy of
Measuring the Similarity of
Human-Generated Trajectories for
the Detection of Session-Replay Bots.
J. Cybersecur. Priv. 2023, 3, 95-117.
https:/ /doi.org/10.3390/jcp3010007

Academic Editors: Giorgio Giacinto
and Phil Legg

Received: 12 January 2023
Revised: 22 February 2023
Accepted: 27 February 2023
Published: 2 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3] 1P3, Canada
* Correspondence: shadisa@cse.yorku.ca

Abstract: Session-replay bots are believed to be the latest and most sophisticated generation of web
bots, and they are also very difficult to defend against. Combating session-replay bots is particularly
challenging in online domains that are repeatedly visited by the same genuine human user(s) in
the same or similar ways—such as news, banking or gaming sites. In such domains, it is difficult
to determine whether two look-alike sessions are produced by the same human user or if these
sessions are just bot-generated session replays. Unfortunately, to date, only a handful of research
studies have looked at the problem of session-replay bots, with many related questions still waiting
to be addressed. The main contributions of this paper are two-fold: (1) We introduce and provide
to the public a novel real-world mouse dynamics dataset named ReMouse. The ReMouse dataset is
collected in a guided environment, and, unlike other publicly available mouse dynamics datasets, it
contains repeat sessions generated by the same human user(s). As such, the ReMouse dataset is the
first of its kind and is of particular relevance for studies on the development of effective defenses
against session-replay bots. (2) Our own analysis of ReMouse dataset using statistical and advanced
ML-based methods (including deep and unsupervised neural learning) shows that two different
human users cannot generate the same or similar-looking sessions when performing the same or a
similar online task; furthermore, even the (repeat) sessions generated by the same human user are
sufficiently distinguishable from one another.

Keywords: behavioral biometrics; mouse dynamics; feature learning; convolutional neural network;
clustering algorithms

1. Introduction

Behavioral biometrics measure and analyze user interactions in the online domain so
as to recognize or verify a person’s unique identity, with the ultimate goal of providing
an imperceptible layer of security to systems and applications [1]. The best-known forms
of behavioral biometrics involve the monitoring and analysis of the following modalities:
mouse cursor movement, keystroke or voice dynamics, the appearance and speed of
signing, etc. The main advantages of mouse movement analysis relative to the other forms
of behavioral biometrics include: (a) mouse movement can be monitored in a manner that is
entirely unobtrusive for the end user; (b) monitoring of mouse movement does not require
the use of additional hardware or software and thus does not incur additional cost; (c) from
the perspective of user privacy, sharing mouse dynamics data is far less problematic than
sharing keystrokes, signatures or voice data [2]; (d) mouse movement has already proven
to be effective, not only in the identification or authentication of end users but also in
the process of determining users” age and gender [3], as well as their emotions and work
productivity [4].

A number of previous studies on mouse dynamics have looked at the importance of dif-
ferent mouse movement characteristics for the purpose of user identification/authentication,
such as hesitation patterns, random and straight movements, etc. [5]. Some of these

J. Cybersecur. Priv. 2023, 3, 95-117. https://doi.org/10.3390/jcp3010007 111

https:/ /www.mdpi.com/journal/jcp

J. Cybersecur. Priv. 2023, 3

studies have also looked at the use of different machine learning methods in user iden-
tification/authentication systems; however, they often rely only on a limited number of
handpicked features extracted from their respective mouse movement datasets. To avoid
the pitfalls of manual feature extraction processes, in this study we propose to tackle the
problem of mouse trajectory classification by using a deep neural network (convolutional
neural network) that utilizes all of the raw mouse movement data. That is, instead of
handpicking the most important features for a set of mouse movement trajectories, we
let the convolution neural network identify these features in an unsupervised manner.
Furthermore, we investigate the use of mouse movement analysis in another important
application area—malicious web-bot detection. Malicious web bots are known to pose a
significant threat to the entire Internet community. One particularly challenging form of
malicious bot are the bots capable of impersonating human behavior in terms of mouse
movement. The latest generation of such human-mimicking malicious bots are synthesized
by means of ‘session replays’ [6-8]. That is, these bots programmatically replay a browsing
session, including the mouse movement trajectory, that was previously executed (and
recorded) by a genuine human visitor to a target/victim web site. The specific goal of
this study is to offer a better insight into: (a) the statistical similarities and differences
between browsing sessions (mouse movement trajectories) generated by different genuine
users on the same target web page; (b) the statistical similarities and differences between
browsing sessions (mouse movement trajectories) repeated by the same genuine user on
the same target web page. We believe that a better understanding of these similarities
and differences is of critical importance for the creation of more effective techniques of
malicious bot detection—in particular the detection of session-replay bots—which in turn
can ensure a safer Internet for everyone.

The specific contributions of the research work presented in this paper can be sum-
marized as follows: (i) We developed an interactive web platform capable of collect-
ing a number of different mouse movement actions and features, including trajectory,
point-click, drag-and-drop, velocity, etc. The platform has been deployed on MTurk
(https:/ /www.mturk.com/, accessed on 25 February 2023) and has allowed us to collect
mouse movement data from several hundred genuine human users (i.e., participants) while
repeating the same/similar online task. We named this dataset ReMouse and are making
it available to the research community on IEEE DataPort [9]. (ii) We conducted statistical
and ML-based analyses of the ReMouse dataset. The results of this analysis have shown
that all mouse dynamics sessions coming from the same genuine human user are relatively
different from each other and that it is highly unlikely that different genuine human users
produce ‘same-looking’ sessions when completing the same/similar online task.

To the best of our knowledge, the ReMouse dataset is the first publicly available mouse
dynamics dataset with repeat sessions generated by the same human user(s). As such, this
dataset can be a very valuable resource for any future research dealing with the problem of
session-replay bots, which are currently known to be the most advanced form of web bots
on the Internet. In this work, we make the first step towards the ReMouse dataset analysis
using statistical and advanced ML-based methods, including deep and unsupervised
neural learning. Given the fact that no prior research on the topic of repeat sessions and/or
session-replay bots has been conducted (i.e., that is available in the literature), we needed
to develop an entirely new research methodology. With this manuscript, we not only try
to close the current research and literature gap, we also highlight the need for further
development and hope to inspire other researchers to work alongside us on this important
area of study.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of previous relevant works on the use of mouse dynamics for the purpose of user
authentication and bot detection, as well as an overview the existing publicly available
mouse dynamics datasets, including our novel ReMouse dataset. In Section 3, we introduce
the web platform that has been used to collect the ReMouse dataset. In Section 4, we present
the results of our analysis of the ReMouse dataset using statistical analysis techniques,

112

J. Cybersecur. Priv. 2023, 3

while in Sections 5 and 6, we summarize our approach and main findings obtained on the
ReMouse dataset using advanced ML techniques. Finally, conclusions and directions for
future work are presented in Section 7.

2. Related Work

Understanding users’” behavior on one or a set of related web pages, including the
usage of mouse cursors, has been essential in many application domains, including ed-
ucational technology, web analytics, e-commerce, digital advertising, and especially bot
detection and user authentication [10,11]. To date, a substantial number of published works
has looked at the importance of mouse dynamics from a number of different research per-
spectives. In this section, we provide a survey of a subset of works which are more closely
related to the topic of our own research. In particular, we provide an overview of published
works that have studied mouse dynamics in the context of user authentication and bot
detection. We also give an overview of several publicly available mouse dynamics datasets.

2.1. Mouse Dynamics for User Authentication

A number of research works have proven the general usefulness of mouse dynamics
in the domain of user authentication. Some of these works have also turned to the use of
machine learning as a promising approach to increasing the accuracy of mouse-movement-
based authentication.

In [12], the authors have provided a comprehensive study on the use of several differ-
ent deep learning architectures, i.e., 1D-CNN (convolutional neural network), 2D-CNN,
LSTM (long short-term memory) and a hybrid CNN-LSTM in biometric-based authentica-
tion systems deploying mouse dynamics data. In particular, the authors have combined
convolutional layers with LSTM layers to build a hybrid neural network capable of model-
ing temporal sequences on a larger but fixed time scale. Another deep learning approach
has been proposed in [13] to address the problem of biometric-based user authentication in
systems with an insider threat. Specifically, to preserve the mouse movement features of
each individual user, a unique mapping method was developed to map all the basic actions,
such as move, click, drag, scroll and stay, into images. The obtained (images) dataset was
then used to train seven-layer CNN classification models.

An authentication system based on a weighted multi-classifier voting technique and
deploying different mouse movement operations (such as movement direction and elapsed
time) has been described in [14]. In [15], the authors have applied a semi-supervised
learning method using a novel feature extraction technique for authentication via mouse
dynamics. The authors of [16] have introduced a user authentication system comprising
two components named ‘enrollment’, responsible for feature learning, and “verification’,
which performs the actual authentication. The authors have employed an FCN (fully
convolutional neural network) for feature learning and an OCSVM (one-class support
vector machine) for authentication.

The use of the Random Forest algorithm for the purpose of user authentication has
been studied in [17]. To predict/determine one’s identity, this study suggests using approx-
imately 1000 mouse actions (60 min of the user’s active mouse movements on average) to
train the model. The findings of this study imply that mouse dynamics should be consid-
ered as an additional security service in the systems, not a single verification indicator.

In [18], the researchers have improved the results of user authentication based on
mouse dynamics by replacing the raw coordinates with directional velocities. Finally, the
effectiveness of using ensemble learning and frequency-domain representations of mouse
dynamics for continuous authentication tasks have been studied in [19].

2.2. Mouse Dynamics for Bot Detection

To date, the use of mouse movement analysis in another important application
area—malicious web-bot detection—has been investigated by several researchers. Acien et al. [20]
have presented a bot detector called BeCAPTCHA-Mouse, which is trained on data gen-

113

J. Cybersecur. Priv. 2023, 3

erated by the neuromotor modeling of mouse dynamics and is claimed to be capable of
detecting highly realistic bot trajectories. To detect web bots, Iliou et al. [21] have proposed
a framework that combines two web-bot detection modules: a web-logs detection module
and a mouse movement detection module. Each module has its own classifier. The fun-
damental idea of the proposed approach is to capture the different temporal properties of
web logs and mouse movements, plus the spatial properties of mouse movements, with the
ultimate goal of creating a more robust detection framework that would be hard to evade.

Other researchers have proved the usefulness of mouse dynamics in detecting ma-
licious bots by employing a deep neural network approach [22]; C4.5 algorithm [8]; a
combined model of unsupervised and supervised ML techniques, including the K-Nearest-
Neighbors algorithm and naive Bayes classifier [23], a classification algorithm based on
distance measures adapted from the Kolmogorov—Smirnov non-parametric test [24] and
sequence learning [25]. Importantly, in [26], the authors have proposed a new web forensic
framework for bot crime investigations. The framework is based on four different types of
human behavioral patterns (timing, movement, pressure and error) to provide evidence of
bad bot activity on web applications.

Although there exists a broad list of machine learning algorithms and data mining
techniques that have been applied to the problem of bot detection, the question/problem
of advanced session-replay web bots remains largely unanswered. According to our
knowledge, the only two research studies that have tackled the problem of session replays
and have attempted to build adequate ML-based countermeasures are [8,27]. However, the
focus of [27] is on session replays in the context of user authentication (and not malicious
web bots), while the results of [8] are based on a proprietary dataset involving blog bots
(one very narrow subcategory of web bots). Moreover, a common drawback of both studies
is that they omit to consider the possibility of web-sites (i.e., online services) in which
genuine human users end up generating similar/repeat sessions, as in the case of news,
banking or gaming web-sites.

2.3. Mouse Dynamics Datasets

In terms of the actual mouse movement datasets analyzed in their studies, different
researchers have employed different approaches to acquiring human-generated mouse
trajectories. They have either used existing publicly available datasets (e.g., [17,28-32]) or
they have collected their own. In general, there are two different approaches to collecting
a mouse movement dataset: (1) by creating a ‘guided environment’, where the users are
asked to perform a specific (same) task with the mouse, or (2) by creating a ‘non-guided
environment’, where users are not guided (i.e., instructed) on how to perform a particular
task [33].

Some of the most commonly studied publicly available mouse movement datasets
include: Balabit [28], Bogazici [29], the Attentive Cursor dataset [30], SapiMouse [31], Chao
Shen [32] and DFL [17]. The following provides a brief description of each dataset.

2.3.1. Balabit Dataset

Published in 2016, the Balabit dataset falls in the category of ‘non-guided environment’
datasets and includes mouse pointer positioning and timing information for 10 users
working over remote desktop clients connected to a remote server. During data collection,
users were asked to perform their regular daily activities. Mouse events were stored in
tuples containing the following data: timestamp, pressed button, mouse state and mouse
pointer coordinates. The primary purpose of collecting the Balabit dataset was to learn how
the involved users utilize their mouse so as to be able to protect them from unauthorized
usage of their accounts.