
mdpi.com/journal/jcp/topical_collections

Topical Collection Reprint

Machine Learning and Data
Analytics for Cyber Security

Edited by

Phil Legg and Giorgio Giacinto

Machine Learning and Data Analytics
for Cyber Security

Machine Learning and Data Analytics
for Cyber Security

Collection Editors

Phil Legg

Giorgio Giacinto

Basel • Beijing • Wuhan • Barcelona • Belgrade • Novi Sad • Cluj • Manchester

Collection Editors

Phil Legg

School of Computing and

Creative Technologies

University of the West of England

Bristol

United Kingdom

Giorgio Giacinto

Department of Electrical and

Electronic Engineering

University of Cagliari

Cagliari

Italy

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Topical Collection, published open access by the journal

Journal of Cybersecurity and Privacy (ISSN 2624-800X), freely accessible at: https://www.mdpi.

com/journal/jcp/topical_collections/MachineLearning_Cybersecurity.

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3359-7 (Hbk)

ISBN 978-3-7258-3360-3 (PDF)

https://doi.org/10.3390/books978-3-7258-3360-3

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

About the Editors . vii

Preface . ix

Mohamed Ali Kazi

Detecting Malware C&C Communication Traffic Using Artificial Intelligence Techniques
Reprinted from: J. Cybersecur. Priv. 2025, 5, 4, https://doi.org/10.3390/jcp5010004 1

Filippo Sobrero, Beatrice Clavarezza, Daniele Ucci and Federica Bisio

Towards a Near-Real-Time Protocol Tunneling Detector Based on Machine Learning Techniques
Reprinted from: J. Cybersecur. Priv. 2023, 3, 35, https://doi.org/10.3390/jcp3040035 32

Andey Robins, Stone Olguin, Jarek Brown, Clay Carper and Mike Borowczak

Power-Based Side-Channel Attacks on Program Control Flow with Machine Learning Models
Reprinted from: J. Cybersecur. Priv. 2023, 3, 18, https://doi.org/10.3390/jcp3030018 46

Raghvinder S Sangwan,Youakim Badr andSatish M Srinivasan

Cybersecurityfor AI Systems: A Survey
Reprinted from: J. Cybersecur. Priv. 2023, 3, 10, https://doi.org/10.3390/jcp3020010 59

Laurens D’hooge, Miel Verkerken, Tim Wauters, Filip De Turck, Bruno Volckaert

Characterizing the Impact of Data-Damaged Models on Generalization Strength in Intrusion
Detection
Reprinted from: J. Cybersecur. Priv. 2023, 3, 8, https://doi.org/10.3390/jcp3020008 84

Shadi Sadeghpour and Natalija Vlajic

ReMouse Dataset: On the Efficacy of Measuring the Similarity of Human-Generated Trajectories
for the Detection of Session-Replay Bots
Reprinted from: J. Cybersecur. Priv. 2023, 3, 7, https://doi.org/10.3390/jcp3010007 111

Maha Alghawazi, Daniyal Alghazzawi and Suaad Alarifi

Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature
Review
Reprinted from: J. Cybersecur. Priv. 2022, 2, 39, https://doi.org/10.3390/jcp2040039 134

A M Mahmud Chowdhury and Masudul Haider Imtiaz

Contactless Fingerprint Recognition Using Deep Learning—A Systematic Review
Reprinted from: J. Cybersecur. Priv. 2022, 2, 36, https://doi.org/10.3390/jcp2030036 148

Griffith Russell McRee

Improved Detection and Response via Optimized Alerts: Usability Study
Reprinted from: J. Cybersecur. Priv. 2022, 2, 20, https://doi.org/10.3390/jcp2020020 165

Emmanuel Aboah Boateng and J. W. Bruce

Unsupervised Machine Learning Techniques for Detecting PLC Process Control Anomalies
Reprinted from: J. Cybersecur. Priv. 2022, 2, 12, https://doi.org/10.3390/jcp2020012 188

Laura Genga, Luca Allodi and Nicola Zannone

Association Rule Mining Meets Regression Analysis: An Automated Approach to Unveil
Systematic Biases in Decision-Making Processes
Reprinted from: J. Cybersecur. Priv. 2022, 2, 11, https://doi.org/10.3390/jcp2010011 213

v

Andrew McCarthy, Essam Ghadafi, Panagiotis Andriotis and Phil Legg

Functionality-Preserving Adversarial Machine Learning for Robust Classification in
Cybersecurity and Intrusion Detection Domains: A Survey
Reprinted from: J. Cybersecur. Priv. 2022, 2, 10, https://doi.org/10.3390/jcp2010010 242

Maryam Taeb and Hongmei Chi

Comparison of Deepfake Detection Techniques through Deep Learning
Reprinted from: J. Cybersecur. Priv. 2022, 2, 7, https://doi.org/10.3390/jcp2010007 279

Kimia Ameri, Michael Hempel, Hamid Sharif, Juan Lopez Jr. and Kalyan Perumalla

CyBERT: Cybersecurity Claim Classification by Fine-Tuning the BERT Language Model
Reprinted from: J. Cybersecur. Priv. 2021, 1, 31, https://doi.org/10.3390/jcp1040031 297

Pooria Madani and Natalija Vlajic

RSSI-Based MAC-Layer Spoofing Detection: Deep Learning Approach
Reprinted from: J. Cybersecur. Priv. 2022, 1, 23, https://doi.org/10.3390/jcp1030023 320

Paul M. Simon, Scott Graham, Christopher Talbot and Micah Hayden

Model for Quantifying the Quality of Secure Service
Reprinted from: J. Cybersecur. Priv. 2021, 1, 16, https://doi.org/10.3390/jcp1020016 337

vi

About the Editors

Phil Legg

Phil Legg is a Professor of Cyber Security at the University of the West of England (UWE

Bristol), UK. His research interests span across cyber security, machine learning, visualization, and

human–computer interactions to better understand the detection and mitigation of security threats.

He has led various research activities related to cyber security, including insider threat detection,

adversarial attacks on ML systems, software security testing, and privacy-based learning, supported by

DSTL, NCSC, UKRI, CCAV, CPNI, along with industry and academic collaborators. He has published

over 60 academic journal and conference papers across his research interests, with successful research

funding of over GBP 2.2M. He is Co-Director of the NCSC-supported Academic Centre of Excellence

in Cyber Security Education, and the Cyber Security research theme lead within the Computer Science

Research Centre, with previous roles including Programme Leader of the NCSC-certified MSc Cyber

Security at UWE. Before joining UWE in 2015, his previous academic posts were held at the University

of Oxford, Swansea University, and Cardiff University. He holds a Ph.D. in computer science (2010)

and a B.Sc. in computer science (2006), both from Cardiff University, Wales, UK.

Giorgio Giacinto

Giorgio Giacinto is a Full Professor of Computer Engineering at the University of Cagliari, Italy,

and a Guest Professor at Luleå University of Technology, Sweden. He is the Co-Director of the

cybersecurity research area within the sAIfer Lab, a joint initiative between the University of Genoa

and the University of Cagliari. In 1995, he joined the Pattern Recognition and Applications Lab at the

Dept. of Electrical and Electronic Engineering, University of Cagliari, Italy; in 2000, he was appointed

a permanent faculty position as an Assistant Professor from 2000 to 2004, and as an Associate Professor

from 2005 to 2017. He obtained a Ph.D. in information engineering in 1999 from the University of

Salerno, Italy.

vii

Preface

Cyber security is primarily concerned with the protection of digital systems and their respective

data. Therefore, how we analyze and monitor such systems are continual challenges that require

innovation to keep pace with the modern technological world and ensure that systems are continually

protected. Machine learning, as a form of artificial intelligence and data analysis, has been utilized

in various ways within the field of cyber security, due to its ability to process and analyze vast

volumes of information, therefore creating actionable intelligence for security analysts. This Topical

Collection on “Machine Learning and Data Analytics for Cyber Security” invited papers that address

the topics of machine learning and data analytics, as well as their applications in emerging challenges

in cyber security. We are pleased to have welcomed a range of papers since the Collection first

began in 2021, covering topics such as large language models for cybersecurity claim classification,

adversarial machine learning attacks against intrusion detection systems, the detection of PLC process

control anomalies, identifying session-replay bots compared to human users, and mitigating against

side-channel attacks. In this Special Issue, we present 16 papers that have been published in the Topical

Collection between 2021 and 2025.

Phil Legg and Giorgio Giacinto

Collection Editors

ix

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 26 November 2024

Revised: 10 January 2025

Accepted: 14 January 2025

Published: 18 January 2025

Citation: Kazi, M.A. Detecting

Malware C&C Communication Traffic

Using Artificial Intelligence Techniques.

J. Cybersecur. Priv. 2025, 5, 4. https://

doi.org/10.3390/jcp5010004

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Detecting Malware C&C Communication Traffic Using Artificial
Intelligence Techniques

Mohamed Ali Kazi

Department of Computer Science, School of Computing and Communications, Faculty of Science, Technology,
Engineering & Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; m.a.kazi@open.ac.uk

Abstract: Banking malware poses a significant threat to users by infecting their computers
and then attempting to perform malicious activities such as surreptitiously stealing confi-
dential information from them. Banking malware variants are also continuing to evolve
and have been increasing in numbers for many years. Amongst these, the banking malware
Zeus and its variants are the most prevalent and widespread banking malware variants
discovered. This prevalence was expedited by the fact that the Zeus source code was
inadvertently released to the public in 2004, allowing malware developers to reproduce the
Zeus banking malware and develop variants of this malware. Examples of these include
Ramnit, Citadel, and Zeus Panda. Tools such as anti-malware programs do exist and are
able to detect banking malware variants, however, they have limitations. Their reliance on
regular updates to incorporate new malware signatures or patterns means that they can
only identify known banking malware variants. This constraint inherently restricts their
capability to detect novel, previously unseen malware variants. Adding to this challenge
is the growing ingenuity of malicious actors who craft malware specifically developed to
bypass signature-based anti-malware systems. This paper presents an overview of the Zeus,
Zeus Panda, and Ramnit banking malware variants and discusses their communication
architecture. Subsequently, a methodology is proposed for detecting banking malware
C&C communication traffic, and this methodology is tested using several feature selection
algorithms to determine which feature selection algorithm performs the best. These feature
selection algorithms are also compared with a manual feature selection approach to deter-
mine whether a manual, automated, or hybrid feature selection approach would be more
suitable for this type of problem.

Keywords: banking malware; Zeus malware variants; machine learning; binary classification
algorithms; automated feature selection; manual feature selection

1. Introduction

Cybercrime poses a serious danger to cybersecurity [1], and according to [2], the cost
of cybercrime reached USD 8 trillion in 2023, with malware such as banking malware
accounting for a large proportion of this total cost. In recent years, banking malware has
emerged as a major concern, because malicious actors can make huge profits from these
types of malware variants [3], and the cost to businesses is high. For instance, Emotet
banking malware infections can cost up to USD 1 million per incident to remediate [4].
Banking malware attacks are continuing to rise [5], and the discovery of new banking
malware variants is also continuing to increase. For example, over a thousand variants of
the banking malware Godfather were discovered in 2023 alone [6].

J. Cybersecur. Priv. 2025, 5, 4 https://doi.org/10.3390/jcp5010004
1

J. Cybersecur. Priv. 2025, 5, 4

The Zeus banking malware has emerged as one of the most notorious banking malware
variants ever developed [7], and since the release of the Zeus source code, many additional
variants of Zeus have been developed and have emerged, including Ramnit, Zeus Panda,
and Ramnit [8].

1.1. Need for Detecting Banking Malware

New malware variants are always being discovered and are becoming more sophis-
ticated in the way that they attack systems [9], and they will continue to increase [10].
Banking malware follows the same trajectory, and, in this category, Zeus and its variants are
still the most prevalent and widespread of all the banking malware variants discovered. For
example, Figure 1 shows that Zeus and Ramnit were amongst the top ten banking malware
variants discovered in Q3 of 2022 [11]. Figure 2 depicts the number of banking malware
attacks that were detected during the same time, and an upward trend is clearly visible [11].

Figure 1. Top ten malware discovered in Q3 of 2022. This is the proportion of distinct users who
experienced this malware family relative to the total number of users targeted by financial malware.

Figure 2. Banking malware attacks detected in Q3 of 2022.

2

J. Cybersecur. Priv. 2025, 5, 4

Banking malware have also diversified their tactics, expanded their capabilities, and,
over time, evolved into more sophisticated software tools that leverage several attack
vectors to cause financial loss. The fact that threat actors can use Malware-as-a-service
(MaaS) providers to target victims has also led to their increased prevalence, and some of
these MaaS providers can charge up to USD 4000 per month for their services [12].

Many strategies exist to detect banking malware, and these include signature-based,
anomaly-based, behavior-based, and heuristic-based approaches [13], but these do have
limitations [14]. These approaches and limitations are explored further over the next few
sections, however, some of these limitations include the following:

• The need to update signature-based malware systems.
• The inability of these systems to detect newer malware variants.
• The inability to detect malware that uses sophisticated obfuscation techniques.
• The inability to detect zero-day malware.

This research paper is broken down into the following sections. Firstly, a review is
conducted of the Zeus, Zeus Panda, and Ramnit banking malware variants and then a
banking malware family tree is proposed. The purpose of this review is to understand
the similarities and differences between these various banking malware variants. Next, a
literature review of related research is provided, followed by a problem statement. Finally,
this paper proposes a machine learning approach for detecting banking malware and also
proposes a feature section approach that supports the proposed machine learning approach.

1.2. Paper Contribution and Rational

The main objectives of this paper are to develop a methodology and approach for
detecting several banking malware variants’ Command and Control (C&C) communication
network traffic and to distinguish this from benign network traffic using binary classifi-
cation machine learning (ML) algorithms. For this research, machine learning algorithms
are used rather than deep learning algorithms or neural networks. The rationale for this is
that, firstly, machine learning algorithms are preferred for smaller datasets. This is because
machine learning algorithms can perform well even with limited data. Deep learning algo-
rithms require large amounts of data to perform effectively and have many parameters that
need to be tuned. Machine learning algorithms also require fewer computational resources
and can be deployed quickly, which could help to identify malware more rapidly and
effectively [15,16]. Ref. [17] also conducted extensive research in this area and compared
several binary classification and deep learning algorithms, using these to detect banking
malware C&C communication traffic. The paper demonstrated that machine learning
algorithms are more than capable of detecting banking malware, and in fact, in many
cases, machine learning algorithms performed much better than deep learning algorithms.
The authors also discovered that developing and tuning deep learning algorithms can be
complex, time consuming, and increases the training time.

Many other researchers have used machine learning algorithms in their research, and
some of these are discussed in Section 2. It is clear from these research findings that machine
learning algorithms are effective at detecting many different types of malware variants,
including several banking malware variants.

Three ML algorithms and an ensemble approach are all examined, analyzed, and
compared in this paper, and these include the decision tree (DT), random forest (RF), and K-
Nearest Neighbors (KNN) ML algorithms. The ensemble approach combines all three of the
above algorithms, and the rationale for selecting these three algorithms is that, in [17], many
common machine learning algorithms were tested, and it was determined that the random
forest, decision tree, and KNN machine learning algorithms performed the best when
used for detecting malware C&C communication traffic. Ref. [17] also demonstrated that

3

J. Cybersecur. Priv. 2025, 5, 4

these ML algorithms performed better than or similar to several deep learning approaches.
Ref. [18] also concluded in their research that, out of over 179 ML algorithms tested, the
KNN, SVM, random forest, and decision tree algorithms performed the best.

This paper aims to develop a machine learning approach that will detect the Zeus
banking malware and its variants. It will then test and compare the detection results of
several binary ML classification algorithms to determine which one provides the best
detection results when used to detect the Zeus banking malware’s C&C communication
traffic. It will also examine, test, and compare the detection results of other banking
malware C&C communication traffic to understand whether the methodology proposed in
this paper works. This research also identifies the minimal number of features that could be
used to identify these banking malware variants. This paper aims to achieve the following:

• From all the ML algorithms being analyzed, identify which one performs the best.
• Establish whether the features used to detect the Zeus banking malware can also be

used to detect the other banking malware variants.
• Determine a minimum set of features that could be used for detecting Zeus.
• Determine a minimum set of features that could be used for detecting other variants

of the Zeus malware.
• Compare the performance results of all the ML algorithms.
• Compare the classification results with other research examined in Section 2.

1.3. Overview of the Zeus Banking Malware

Zeus, also known as Zbot, is a notorious banking malware designed to steal financial
information such as online banking credentials through methods like keylogging, screen
capturing, and the real-time manipulation of web sessions (man-in-the-browser attacks).
It spreads via phishing emails, malicious downloads, and software vulnerabilities. Once
installed, Zeus establishes persistence, evades detection using rootkits and encrypted
communication, and connects to a remote Command and Control (C&C) server to send
stolen data and receive instructions [19]. Known for its modular architecture, Zeus can be
customized for specific targets and often forms botnets for large-scale cybercrime operations.
Its source code leak in 2011 led to numerous variants, making it one of the most impactful
and studied banking malware families in cybersecurity history.

Once the Zeus malware gets onto a device, it needs to perform several actions to
infect the device. The Zeus bot inserts malicious code into the winlogin.exe process after
copying itself to the system 32 directory, and this is achieved by escalating its privileges and
manipulating the winlogin.exe and svchost processes. Two files are created, local.ds, which
is used to download the configuration file, and user.ds, which is used to transmit stolen
data back to the threat actors’ C&C servers. The additional code injected into the svchost
process is used by the Zeus bot for communication purposes, and Zeus communicates
using a Command and Control (C&C) channel which can either use a centralized or P2P
architecture. In the centralized architecture, the IP address of the C&C server is hardcoded
into the bot’s binary file, which leaves the bot vulnerable, because if the C&C channel
is discovered and blocked, the Zeus bot becomes inactive and is unable to recover [20].
Modern-day variants of the Zeus malware use a P2P architecture, as this is more resilient to
disconnections and is much harder to detect and block [21]. One reason is simply because
the IP address is not hardcoded into the bot binary and because, in the P2P network,
multiple bots can act as C&C servers. This architecture also allows stolen data to be
routed through the bot network via these intermediary C&C bots and, crucially, allows
bots to recover from failures [22]. This recovery is possible, because each peer C&C bot
can essentially provide support to a failed bot, for example, by sending the failed bot an
updated IP address to help it resume malicious communications.

4

J. Cybersecur. Priv. 2025, 5, 4

1.4. Overview of the Zeus Panda Banking Malware

Zeus Panda, a variant of the original Zeus malware, is a sophisticated banking mal-
ware designed to steal sensitive financial data through techniques such as keylogging,
web form data theft, and man-in-the-browser (MITB) attacks. It primarily propagates
via phishing emails, malicious attachments, and compromised websites, often targeting
financial institutions and systems in specific regions [19]. Panda communicates with remote
Command and Control (C&C) servers to exfiltrate data and receive instructions, using
encrypted communication and Domain Generation Algorithms (DGAs) for resilience. Its
modular design allows it to adapt to various targets, and it employs advanced evasion tech-
niques like anti-debugging and polymorphism to avoid detection, making it a significant
threat in the cybersecurity landscape.

The Zeus Panda banking malware portrays similar characteristics to the Zeus banking
malware. Research shows that it infects devices using spam emails and exploit kits, and
it has been known to spread like a virus [19]. Zeus Panda’s communication architecture
is similar to the Zeus banking malware architecture, and its communication is generally
encrypted using RC4 or AES [19]. Zeus Panda’s authors have also enhanced the code
to allow it to detect and evade security protection tools such as anti-virus software and
firewalls [23]. Zeus Panda is intelligent enough to detect that it is running in a virtual
environment, and upon sensing such an environment, it can disable itself to ensure that
researchers are unable to detect communication patterns [23]. The Zeus Panda malware
is difficult to detect and can persist on a device for a long time, and researchers have
concluded that Zeus Panda is a sophisticated variant of the Zeus malware [23].

1.5. Overview of the Ramnit Banking Malware

Ramnit is a versatile and persistent malware that evolved from a worm in 2010 into a
sophisticated banking Trojan targeting financial institutions and sensitive data. It spreads
through phishing emails, malicious attachments, exploit kits, and infected files, using tech-
niques like man-in-the-browser (MITB) attacks and web injections to steal online banking
credentials and other personal information. Ramnit communicates with Command and
Control (C&C) servers via encrypted channels, enabling data exfiltration and command exe-
cution. Its modular architecture allows for adaptability, while advanced evasion techniques,
such as polymorphism and rootkits, make it difficult to detect. Despite law enforcement
disruptions, Ramnit has resurfaced over the years with enhanced capabilities, posing a
significant threat to global cybersecurity.

Ramnit is an enhanced version of the Zeus malware and incorporates code from the
Zeus banking malware [24]. The C&C communication channel is encrypted, and this is
usually achieved using custom encryption techniques [25]. Ramnit can also use HTTPS
to obfuscate the communication channel and hide any data that are transmitted between
systems. Ramnit is sophisticated enough to detect and evade security tools, and once
it infects a device, it can persist on the device for a long time [25]. Ramnit can also use
evasion techniques to avoid detection, and some of these include the use of anti-debugging
techniques, polymorphism, and encryption [26].

1.6. Banking Malware Communication (C&C) Architecture

Zeus, Zeus Panda, and Ramnit are all sophisticated malware families targeting finan-
cial institutions, employing similar techniques like phishing-based propagation, Command
and Control (C&C) communication, a modular architecture, and advanced evasion meth-
ods such as polymorphism and MITB attacks to steal banking credentials and personal
data. While Zeus is the foundational banking Trojan known for its widespread botnet use,
Zeus Panda enhances targeting with tailored regional attacks and advanced MITB capa-

5

J. Cybersecur. Priv. 2025, 5, 4

bilities. Ramnit, evolving from a worm, extends its reach with broader infection methods,
including USB and executable file propagation, exhibiting a stronger persistence through
polymorphic techniques and rootkit functionality. Despite their similarities, each malware
family has unique traits that make it distinct in its evolution and attack strategies.

Banking malware use C&C communication channels to communicate between the
infected device and malicious entity, and the focus of this study is to identify these com-
munication patterns. Once a device becomes infected, outgoing communication is hard
to detect, as it can very easily obfuscate itself with the normal traffic flows of the network,
thus making the malware hard to detect.

Banking malware variants are made up of bots that communicate with the C&C
server and, initially, these communication channels are centralized, because each bot will
communicate with the C&C server directly. These bots are also controlled directly by
the C&C server, and this architecture uses a push model for communication purposes.
Instructions and malicious commands are all pushed from the C&C server to the bot [27].
The C&C channel always remains active in the ‘connect mode’, as the bot needs to be ready
to receive commands [27]. This communication uses the HTTP/HTTPS protocol and can
also use other protocols such as DNS tunneling, which makes the malware more difficult to
detect. The bots also reach out to the C&C server at predefined intervals, and this ensures
that the C&C server maintains communication with these bots. The centralized C&C
architecture has limitations, and the key one is that, if the C&C server becomes inactive, all
the bots fail, and the bot network becomes inactive.

The centralized architecture evolved into a peer to peer (P2P) architecture in which the
bots build a decentralized network of bots. This means that the bots can receive commands
from other bots, and there is no longer a reliance on a centralized C&C server. This P2P
network is more difficult to detect and take down [28], and makes the botnet more resilient.
If a bot in a botnet loses communication, it can automatically try other bots or domains
to resume communication. Also, this bot failure does not affect the botnet, as the botnet
remains active and other bots are still able to communicate with each other. There are some
weaknesses inherent in this type of network, and one of them is that updates can take
longer to propagate across the network, as these updates have to be routed through many
other bots. Also, stolen data that need to be routed back to the malicious attacker can also
face similar challenges.

Machine learning (ML) is critical for detecting the C&C communicating traffic used
by malware due to its ability to overcome the limitations of traditional detection methods.
Unlike signature-based approaches, which struggle in detecting zero-day malware, poly-
morphic threats, or encrypted traffic, ML focuses on patterns, behaviors, and anomalies
in network communications. By analyzing network features such as packet sizes, traffic
flow, and timing intervals, ML models can identify malicious communications even when
the data are obfuscated. Furthermore, machine learning enables real-time detection ca-
pabilities and can efficiently scale to handle vast amounts of network traffic. It can also
adapt to evolving threats, as ML models can be retrained on new data. It is particularly
effective against decentralized P2P C&C architectures, like the Zeus banking malware,
as it can model peer relationships and detect botnet traffic. Supervised algorithms such
as random forest and unsupervised methods like clustering can help to optimize feature
selection, improving detection accuracy while reducing computational overhead. By lever-
aging behavioral analysis, ML provides a robust and dynamic solution for identifying and
mitigating sophisticated malware C&C activities.

6

J. Cybersecur. Priv. 2025, 5, 4

1.7. Proposed Banking Malware Tree

This section examines and discusses the relationships between the three banking
malware variants that were discussed above and establishes a timescale of when they
emerged. Figure 3 shows that Zeus was discovered in 2006 [29], Ramnit was discovered
in 2010, and Zeus Panda was discovered in 2016 [30], and research indicates that they all
share similar code and perform similar actions. Based on this research [30–36], this paper
proposes that all banking malware variants belong to a specific family of banking malware,
and this proposed family tree can be seen in Figure 4. A historical timeline of a selection of
banking malware variants can be seen in Figure 3, which suggests that all banking malware
variants can be traced back to one of the parent banking malware variants, Zeus, Snifula,
and Gozi, as shown in Figure 4.

Figure 3. Banking malware timeline.

Figure 4. Banking malware tree.

The key conclusions from this research reveal that most banking malware variants
belong to one of the three primary families identified in Figure 4. These variants frequently
borrow code from one another, with newer malware still sharing similarities in code and be-
havior with those outlined in Figure 4. Despite these overlaps, banking malware continues
to evolve, becoming increasingly sophisticated and more effective at targeting victims.

The rest of the paper is organized as follows: Section 2 discusses some of the key
research that has been conducted in this field. In Section 3, a problem statement is presented.
Section 4 proposes a framework to detect the banking malware variants discussed in
Sections 1.2–1.4, Section 5 analyzes and compares the research findings, and Section 6
concludes with a summary and conclusion.

2. Related Studies

Malware detection approaches can be categorized using several methods. However,
the method discussed by [37] is used in this paper, which is that malware detection can
either be signature-based, heuristic-based, or behavioral-based. Also, malware detection
tools can either be host-based or network-based [38], and this research examines a network-
based approach, as it focuses on C&C network communication traffic.

7

J. Cybersecur. Priv. 2025, 5, 4

The authors in [39] used the SVM machine learning algorithm to develop an intrusion
detection system which uses the NSL-KDD dataset to classify network traffic. To select
appropriate features, ref. [39] used a hybrid feature selection approach which ranks features
using a feature selection approach called Information Gain Ratio (IGR) and then refined
this further by using the k-means classifier. They achieved an accuracy of 99.32 and 99.37
when used with 23 and 30 features.

A simple yet effective method was developed by [40], which involved extracting
statical features called ‘function call frequency’ and ‘opcode frequency’ from Windows
PE files. These features were extracted from both the executable files’ header and from
the executables’ payload, and the features were extracted from a total of 1230 executable
files. The dataset contained 800 malware and 430 non-malware executable files, and the
experimental work was conducted using a tool called WEKA. Several classifiers were
experimented with, and the results of these experiments can be seen in Table 1.

Table 1. Test results from [40] when using the SVM ML algorithm.

Classifier FP FN Accuracy

Kstar 0.275 0.026 88.69
J48 0.156 0.026 92.84
DT 0.14 0.031 97.47

Research was carried out by [41], who used an unsupervised machine learning al-
gorithm to detect botnet communication traffic. They used datasets obtained from the
University of Georgia which contained botnet traffic from both the Zeus and Waledac
malware variants. Features were extracted from the dataset by using a tool called Netmate,
which extracts traffic as flows and then analyzes each flow to calculate their statistical
features. The datasets were analyzed using WEKA and all the experimental analyses were
also conducted using this tool. The experimental results can be seen in Table 2.

Table 2. Test results from [41] when using an unsupervised ML algorithm.

Malware Variant FP TN FP FN Accuracy

Zeus 1 14,678 4352 969 1 0.9515
Zeus 2 14,663 4341 991 5 0.9502

Waledac 1 14,536 4500 963 1 0.9518
Waledac 2 14,521 4525 963 1 0.9523

Storm 1 10,139 4499 501 1386 0.8858
Storm 2 2300 503 247 3 0.9181

BotOnus is a tool developed by [42] which can extract a set of flow specific features
and then, by using an online fixed-width clustering algorithm, can arrange these features
into unique clusters. These clusters are examined and analyzed for suspicious behaviors.
Suspicious botnet clusters are defined as flow clusters that have at least two members that
have been identified as potentially suspicious. This is determined using an intra-cluster
similarity score which is set to a predefined threshold. BotOnus is an online detection
technique that makes use of unsupervised machine learning algorithms and can identify
unknown botnets. Table 3 shows the experimental results obtained by BotOnus.

RCC Detector (RCC3) is a tool developed by [43] that uses a multi-layer perceptron
(MLP) and a temporal persistence (TP) classifier to analyze the traffic flows from a host,
and the aim is to identify malware communication traffic. The botnet detection system
was trained and tested using the DETER testbed and two datasets were used, the DARPA
and LBNL datasets. The authors aimed to predict Zeus, Blackenergy, and normal traffic,

8

J. Cybersecur. Priv. 2025, 5, 4

and the key to this paper was that RCC examined traffic generated from a host. The tool
achieved a detection rate of 97.7%.

Table 3. Test results from [42] when using an unsupervised ML algorithm.

Botnet Average Detection Rate Average False Alarm Rate

HTTP-based 0.95 0.041
IRC-based 0.96 0.033
P2P-based 0.91 0.037

Classification of Network Information Flow Analysis (CONIFA) is a tool developed
by [44] which was used to identify and detect the Zeus banking malware. For the experi-
mental analysis, ref. [44] used a standard framework, a cost-sensitive, and a cost-insensitive
version of the C4.5 machine learning algorithm. For the cost-sensitive experimental analysis,
the following parameters were used.

• Lenient version with cost settings of 10, 20, and 30
• Strict version with a cost setting of 10, 20, and 30

Two Zeus datasets were used for training and testing, and these comprised 432 samples
of the Zeus v1 malware and 144 samples of the Zeus v2 malware. The prediction results
of the tests conducted using the standard framework can be seen in Table 4, and the test
results of using the cost-sensitive and cost-insensitive versions of C4.5 can be seen in Table 5.
Table 5 demonstrates an improvement in the recall score and shows that the cost-sensitive
and cost-insensitive versions of C4.5 performed better than the standard framework at
predicting the Zeus malware.

Table 4. Test results of using the standard framework.

Algorithm Recall Score Precision Score F-Measure Score

Standard 0.556 0.964 0.705

Table 5. Test results of CONIFA using the cost-sensitive and -insensitive versions of C4.5.

Botnet Recall Score Precision Score F-Measure Score

Lenient with cost 10 0.556 0.964 0.705
Lenient with cost 20 0.667 0676 0671
Lenient with cost 30 0.667 0.686 0.676
Strict with cost 10 0.667 0.952 0.787
Strict with cost 20 0.611 0.989 0.755
Strict with cost 30 0.611 0.989 0.755

Table 4 demonstrates that, when the standard framework was evaluated against the
Zeus v2 dataset after being trained on the Zeus v1 dataset, the detection results decreased.
About half of the Zeus flows were incorrectly identified, with a recall rate of approximately
56%. As seen in Table 5, CONIFA showed improvement during the same experiment, with
the recall rate rising to almost 67%.

The authors in [45] used the Symbiotic Bod-Based (SBB) and C4.5 machine learning
algorithms to create a framework for detecting malware communication traffic. Features
were extracted from the communication (C&C) channels of various malware variants,
which included the C&C communication traffic of the Zeus banking malware. The samples
were obtained by generating C&C communication traffic to known malware domains.
Additional malware samples were obtained from various sources, including NETRESEC

9

J. Cybersecur. Priv. 2025, 5, 4

and Zeustracker, and these were used in the experimental analysis. Table 6 shows the
datasets that were used for the experimental analysis.

Table 6. Information about the datasets used by [45].

Dataset
Benign Samples

Used for Training
Benign Samples
Used for Testing

Malware Samples
Used for Training

Benign Samples
Used for Testing

Zeus-1 6099 6099 2614 2614

Zeus-2 611 611 262 262

Zeus (NETRESEC) 252 252 108 108,100

Zeus (Snort) 100 100 43 43

Conficker 28,951 28,951 12,386 12,416

Torpig 1864 1856 794 800

After the data were collected, a program called Softflowd was used to extract the
features that were used during the experimental analysis. Two feature sets were used, and
these are depicted in Figure 5.

Figure 5. The two feature sets used by [45] during their experimental analysis.

The results obtained during the experimental analysis can be seen in Tables 7 and 8.
Table 7 shows the classification results when the ML algorithms were trained and tested
using the features in feature set 1 and 2. Table 8 shows the results obtained when the ML
algorithms were trained and tested using the features in feature set 1 only. For brevity, only
the results for the Zeus malware are shown. The results depicted in both Tables 7 and 8
show good prediction results across all the datasets. The highest true positive rate was
achieved when the algorithms were trained and tested using the features from the Softflowd
set.1 and 2 feature set, and was obtained by both the C4.5 and SBB machine learning
algorithms. The true positive scores obtained were 99% and 98%, respectively. Table 8
shows that the highest true positive rate achieved was 100%, and this was achieved by the
SBB machine learning algorithm.

Auto-mal is a product developed by [46] which analyzes binary codes and identifies a
set of features that are used to identify malware such as the Zeus banking malware. These
features are then used to automatically classify the malware samples into malware families,
and this is performed by using several machine learning algorithms. These algorithms
include the Support Vector Classification (SVM), logistic regression (RG), Classification Tree
(CT), and K-Nearest Neighbor (KNN) machine learning algorithms. Auto-mal captures
and categorizes network traffic by using information such as the IP address, port numbers,

10

J. Cybersecur. Priv. 2025, 5, 4

and protocol types, and during this experimental analysis, 1.980 Zeus malware samples
were analyzed. The Zeus samples were split into two datasets, one of which was used
for training and the other was used for testing. For testing, 979 samples of Zeus and
1000 normal samples were used, and the testing results showed that the SVM algorithm
performed the best and was able to correctly identify 95% of the Zeus malware samples.
The decision tree algorithm produced a high false negative result, and from this, ref. [46]
concluded that the decision tree algorithm was limited in its usefulness.

Table 7. Classification results when used with Softflowd set.1 and 2.

Dataset and Algorithm
Benign

TPR
Benign

FPR
Malware

TPR
Malware

FPR

Zeus-1—C4.5 86 17 83 14

Zeus-2—C4.5 96 1 99 4

Zeus (NETRESEC)—C4.5 97 3 97 3

Zeus (Snort)—C4.5 98 12 88 2

Zeus-1—SBB 80 27 73 20

Zeus-2—SBB 96 1 99 4

Zeus (NETRESEC)—SBB 93 13 87 7

Zeus (Snort)—SBB 98 2 98 2

Table 8. Classification results when used with Softflowd set.2.

Dataset and Algorithm
Benign

TPR
Benign

FPR
Malware

TPR
Malware

FPR

Zeus-1—C4.5 90 16 84 10

Zeus-2—C4.5 97 3 97 3

Zeus (NETRESEC)—C4.5 97 6 94 3

Zeus (Snort)—C4.5 97 1 99 3

Zeus-1—SBB 73 18 82 27

Zeus-2—SBB 94 0 100 6

Zeus (NETRESEC)—SBB 87 7 93 13

Zeus (Snort)—SBB 100 0 100 0

An XAI-driven antivirus software was developed by [47], which essentially uses
Explainable Artificial Intelligence (XAI) to create AI models. This XAI-driven antivirus
software was designed to identify the Citadel banking malware, which is a variant of the
Zeus banking malware. Ref. [47] highlights the limitations of traditional antivirus programs
and argues that an AI-driven approach is more robust, accurate, and proactive in detecting
new and evolving malware variants of the Citadel banking malware. XAI uses multiple
Extreme Learning Models (mELMs) to detect the Citadel banking malware, and mELM
is a morphological technique used for digital image processing. Ref. [47] adopted this in
their software program to detect Citadel and concluded that mELM is a viable technique
that can be used to detect malware. The software achieved an accuracy of 98% and was
also quick at training and learning. One of the key characteristics of XAI is that the authors
provided some insights into how the algorithm works, and these insights can help other
researchers in their research projects.

11

J. Cybersecur. Priv. 2025, 5, 4

The authors in [48] used a Convolutional Neural Network (CNN) to classify malware
samples which included the banking malware variant Ramnit. The authors transformed
the malware binary files into grayscale images, which then enabled the CNN to detect
patterns that could be used to classify the malware. Ref. [48] built a CNN network which
consisted of a convolutional layer, pooling layer, and fully connected layer. Features were
generated by analyzing the executable files, and although many techniques exist to perform
this, ref. [48] used the following methodology. First, 1600 unique opcodes were created,
which then allowed [48] to use the opcode frequency as the discriminatory feature for the
experimental work. To select the optimal number of features for the experimental work,
ref. [48] used different dimensionality reduction techniques, which included the variance
threshold approach, a single layer auto-encoder, and a three-layer stacked auto encoder.

The authors in [49] used both machine learning and deep learning algorithms to build
several models to train, test, and classify malware. The machine learning algorithm used
was the random forest algorithm, and three deep learning models were used. The three
deep learning models were architected using two hidden layers (DNN-2L), four hidden
layers (DNN-4L), and seven hidden layers (DNN-7L). Ref. [48] used several criteria to
measure the performance of the algorithms and models used, and these included accuracy,
recall (true positive rate (TPR)), true negative rate (TNR), and precision (positive predictive
value (PPV)). The experimental analysis produced good results. The lowest score was
a precision score of 87.97%, achieved by the DNN-7L model, and the highest score was
achieved by the RF model, with a PPV/precision score of 100.

Fingerprinting Windows API system function calls is an approach developed by [49],
in which the frequency of Windows API system function calls are captured and analyzed to
identify malicious patterns. This approach also allows for various malware variants to be
categorized based on their relationships. The relationship is determined by understanding
and grouping common behaviors and patterns that are identified during the analysis stage.
Around 65,000 malware samples were analyzed, and this was conducted using the Cuckoo
Malware Sandbox, which allowed [49] to identify the name of the API calls being called
and the number of times each API call was made. Ref. [49] used several machine learning
algorithms to train and test samples, and these included KNN, logistic regression, and
the decision tree ML algorithm. The detection results obtained were good, and for the
Ramnit.gen!A malware, an accuracy of 79.495% was achieved, and for the Ramnit.gen!C
malware, an accuracy of 95.473% was achieved.

Similar research was conducted by [50], who created a machine learning model that
was able to classify and identify malware and also able to group malware variants based
on their relationships. These included several variants of the banking malware Ramnit.
Ref. [50] extracted features from the malware samples using an approach called static
analysis. This approach enabled them to extract features without having to execute or run
the malware executable. The authors claimed that this approach allowed them to achieve
a better performance with a low computational risk. Using the static approach, features
could be extracted from two files within the executable, the hex file or the byte code file.
During their research, ref. [50] extracted the features from the byte code files. This was
performed using the n-gram feature extraction approach, which analyzed the byte sequence
or opcode patterns within the malware executable files and then represented these patterns
as words, in this case using the hex format. Ref. [50] used the K-Nearest Neighbor, logistic
regression, random forest, and XGboost machine learning algorithms to train, test, and
classify the malware, and for the evaluation, accuracy and log-loss were used to measure
the performance of the machine learning algorithms. Table 9 shows the classification results
obtained when classifying the malware using the byte file features. Table 9 shows that the

12

J. Cybersecur. Priv. 2025, 5, 4

XGBoost and decision tree ML algorithms performed the best, achieving an accuracy of
98.76 and 97.98, respectively.

Table 9. Experimental results of the algorithms when classified using byte file features.

Algorithm Test Log-Loss (%) Misclassification Rate Accuracy

KNN 0.24 4.5 95.5

Logistic regression 0.528 12.32 77.68

Random forest 0.085 2.02 97.98

XGBoost 0.078 1.24 98.76

3. Problem Statement

The goal of this study is to develop a methodology and create a framework for pre-
dicting banking malware using machine learning approaches. Many malware detection ap-
proaches already exist and have been researched and used by researchers. Some of these in-
clude signature-based approaches [51,52] and anomaly-based detection approaches [53,54],
however, these do have limitations [55]. Some of these limitations include the following.

• Signature-based systems are unable to detect zero-day malware or unknown
malware variants.

• Signature-based systems must be updated frequently to accommodate newly emerging
malware variants.

• Malware uses various obfuscation techniques to evade detection.
• There can be a time delay between discovering new malware and creating a signature

to identify the malware.
• Signature databases can consume significant system resources and have a

slow performance.
• Modern malware can dynamically change its structure (polymorphic malware) or

rewrite its code (metamorphic malware) to avoid signature-based malware systems.
• As the malware landscape evolves, maintaining and updating the signature database

becomes increasingly complex.
• Effective and continuous tuning is required to reduce false positives.
• The network has to be baselined, and normal communication traffic needs to

be identified.
• Network traffic must be constantly monitored.
• Malware can hide within the normal traffic flows, making these malware types difficult

to detect.

Machine learning has been used to resolve these issues, and while researchers have
used machine learning algorithms to detect banking malware [35,44–47], there has been
minimal research aimed at detecting a wide range of banking malware variants using a
model trained exclusively on one dataset containing a single banking malware variant.
This study seeks to address this gap by developing a machine learning model trained on a
single dataset representing one variant of banking malware. The primary objectives of this
research are as follows:

• Cross-Variant Detection: To apply the trained model to identify other banking malware
variants and evaluate its generalizability.

• Algorithm Performance Evaluation: To compare the detection performances of various
machine learning algorithms in this context.

13

J. Cybersecur. Priv. 2025, 5, 4

• Feature Optimization: To determine the minimum set of features required to achieve
satisfactory prediction results, thereby optimizing computational efficiency and sim-
plifying the detection process.

This approach aims to advance the understanding of cross-variant malware detection
and provide insights into the effectiveness of machine learning algorithms and feature
selection when used to detect diverse banking malware threats.

4. Research Methodology

This research paper aims to classify C&C network traffic flows as belonging to Zeus,
which indicates that the C&C network traffic is malicious. The high-level activities include
the following steps:

• Obtain pcap samples of the Zeus banking malware and benign traffic.
• Extract features from the pcap samples.
• Train and test the algorithms with the data.
• Compare and discuss the results.

Bot samples are collected as pcap files, and these pcap files are made up of network
flows. A flow is defined as a sequence of packets flowing between a source and a destina-
tion host. Each flow is referred to as an ML sample, and the features are extracted from
these samples. For this research, supervised ML algorithms are chosen, as these algorithms
are well-suited for solving predication and classification problems such as the one being re-
searched in this paper [56]. This paper analyzes three supervised ML algorithms, which are
the decision tree (DT), random forest (RF) and K-Nearest Neighbor (KNN) ML algorithms,
and examines an ensemble approach. The approach and methodology are explained in the
next few sections.

4.1. Machine Learning Algorithms

Artificial intelligence (AI) is made up of several fields, which include deep learning,
neural networks, and machine learning. Figure 6 depicts the various fields of AI [57].

Figure 6. Machine learning approaches with example algorithms.

The most widely used approaches in machine learning are supervised, unsupervised,
and reinforced learning, and Figure 7 illustrates the various types of machine learning
approaches [58] that can be used. For this paper, supervised ML approaches are used.

14

J. Cybersecur. Priv. 2025, 5, 4

Figure 7. System architecture.

There are several types of supervised ML approaches that could be considered for the
problem being researched in this paper, and these are as follows [58]:

• Binary classification—Two possible classifications can be predicted, for example, an
email can either be spam or not spam. The two possible classes are usually either
normal or abnormal.

• Multi-Class classification—Multiple classes are involved, and each data point is classi-
fied into one of the available class options.

• Multi-Label classification—Multiple classes can be predicted for each data point. For
example, a house could be present in multiple photos.

For this research, the binary classification approach was selected, as this has been
used by many researchers to solve similar problems, as discussed in Sections 1 and 2.
For the supervised ML algorithms used in this research, a brief description of these is
provided below.

One of the most effective and noteworthy machine learning methods for predictive
modeling is the decision tree (DT) algorithm, which performs exceptionally well when
dealing with binary classification problems [59]. The decision tree algorithm operates by
splitting data into subsets based on the value of the input features. This results in a treelike
structure, where each node represents a feature, each branch represents a decision rule,
and each leaf node represents an outcome. This hierarchical structure facilitates a straight-
forward interpretation and visualization of decision-making processes. Traditionally, the
decision tree algorithm did not produce optimum results, however, recent advances utilize
techniques to construct optimal decision trees and are able to balance the accuracy and
complexity of the trees built and used [60]. Since this research aims to ascertain whether the
network flow is malicious (banking malware traffic) or benign, the decision tree technique
is a good fit for this prediction problem. Additionally, the decision tree algorithm learns
and makes predictions extremely quickly [59].

In comparison to the decision tree algorithm, the random forest (RF) algorithm can
be more effective, can produce better prediction results, and can lessen the likelihood of
overfitting [61]. The random forest algorithm is a robust ensemble learning method that
enhances the performances of decision trees by constructing a multitude of trees and then
aggregating these results. This approach mitigates the overfitting commonly associated
with individual decision trees and improves predictive accuracy. The ensemble approach
used by RF reduces variance and enhances model stability. Each tree is trained on a

15

J. Cybersecur. Priv. 2025, 5, 4

different sample of the dataset, and RF randomly selects the features for training, which
promotes diversity among the trees [62]. When utilizing the RF method, it is crucial to
adjust the parameters of the algorithm in order to improve the prediction accuracy. It can
be challenging to foresee the ideal values in advance, and the parameters are chosen by
experimentation. One of these parameters is the quantity of the trees constructed during
the training and testing phases, and research shows that constructing more than 128 trees
can raise the cost of training and testing while offering no appreciable improvement in
accuracy [63]. Constructing between 64 and 128 trees has been shown to be the ideal
number of trees that should be used, so, the experimental analysis for this research also
used between 64 and 128 trees [63].

The K-Nearest Neighbors (KNN) algorithm is a supervised learning algorithm that
can be utilized for both classification and regression tasks. It operates on the principle
that data points with similar features are likely to belong to the same class or share similar
output values. For a given input, KNN computes the distance between this input and
all other instances in the training dataset, which enables KNN to make predictions [64].
KNN is a non-parametric method [65], meaning that it makes no assumptions about the
underlying data. Following the computation of the distance between each new data point
and every other training data point, the algorithm can classify the new data point in
relation to the trained data points [66]. KNN is a simple and adaptable ML algorithm
that can solve various predication problems such as multi-class and binary classification
problems, like the one being researched in this paper. However, research shows that KNN
can be computationally complex to run, and the distance between points can become less
meaningful in high-dimensional spaces [67].

An ensemble approach [68] is also used in this research, and for this, the random
forest, decision tree, and the K-Nearest Neighbor ML algorithms are all used together in the
ensemble approach. A voting classifier was used to combine the results of all the models,
and for this research, a soft vote [69] was used for predicting the malware. The soft voting
approach is useful, because it can select the average probability of each class [70].

4.2. System Architecture and Methodology

The system architecture shown in Figure 8 depicts the steps that are completed for the
experimental work conducted during this research. These include the following:

• The datasets are identified and collected.
• Features are extracted from these datasets.
• The extracted features are transferred to a CSV file and prepared.
• The features are selected for training and testing.
• The algorithm is trained and tested, and a model is created. Only one dataset is used

for the training.
• The model is tuned, trained, and tested again if required.
• The model is used to test and evaluate the remaining datasets.
• The final model is deployed, all the data samples are tested, and a report highlighting

the evaluation metrics is created.

Figure 8. Process for extracting and computing flow statistics.

16

J. Cybersecur. Priv. 2025, 5, 4

4.3. Data Samples

In this study, a variety of datasets were collected, and these datasets represent real-
world activity that was captured by various reputable organizations. These datasets are
represented as pcap files. Six datasets were used for this research, and these were collected
from Zeustracker [71], Stratosphere [72], Abuse.ch [73], and Dalhousie University [74].
Abuse.ch correlates samples from commercial and open-source platforms such as VirusTotal,
ClamAV, Karspersky, and Avast [73]. Dalhousie University’s botnet samples are part of
the NIMS botnet research project and have been widely utilized by many researchers [74].
Table 10 defines all the data sets that were used during this research and provides some
information around the banking malware variants collected and used during this research.
Table 10 also specifies the year that the samples were detected and categorized by the
antivirus vendor and depicts the number of flows extracted from these samples.

Each pcap file is made up of network flows, and for this research, the network charac-
teristics for each flow were extracted from these pcap files. A flow is a sequence of packets
flowing between a source and a destination (IP and port combination) during a certain
period of time. Figure 9 shows the process used to extract the characteristics from each flow,
and the first step was to set up and configure Netmate-flowcal on a virtual machine, which
allowed the pcap files to be input into the Netmate-flowcal tool. Netmate-flowcal then
calculated the key statistics of each flow within each pcap file and output these into an .out
file, which had to be converted to a text file and cleaned. The text file was then converted
into an excel file, and the data were prepared, cleaned, and then converted into a CSV file,
which prepared the file for the machine learning algorithm. As there were thousands of
pcap files, a script was developed to automate this process.

Each sample in the CSV files was labeled, and this identified whether the sample was
benign or malware. A label of ‘0’ was applied to the benign traffic samples and a label of ‘1’
was applied to the Zeus malware traffic samples. The Pandas library was used to create
and manipulate the data frame and prepare the data for the machine learning tasks.

Figure 9. Feature rankings calculated by SelectKBest.

17

J. Cybersecur. Priv. 2025, 5, 4

Table 10. Datasets used in this research.

Dataset Type
Malware

Name/Year
Number of Flows

Name of Dataset for
This Paper

Malware
Benign

Zeus/2019 66,009
Dataset1N/A 66,009

Malware
Benign

Zeus/2019 38,282
Dataset2N/A 38,282

Malware
Benign

Zeus/2022 272,425
Dataset3N/A 272,425

Malware
Benign

ZeusPanda/2022 11,864
Dataset4N/A 11,864

Malware
Benign

Ramnit/2022 10,204
Dataset5N/A 10,204

Malware
Benign

Dridex/2018 134,998
Dataset6N/A 134,998

4.4. Feature Selection

The statistical features were extracted and exported into a CSV file, and these were
used as the features. A total of 44 features were extracted, however, not all the features
were used. It is important to select the appropriate and best features, as this helps to reduce
overfitting and computational cost and helps the ML algorithm to learn faster [75,76]. Sev-
eral approaches can be used to identify the appropriate features, and the three predominant
approaches are the following [77]:

• Filter method—Feature selection is independent of the ML algorithm.
• Wrapper method—Features are selectively used to train the ML algorithm, and through

continual experimental analysis, the best features are selected for the final model. This
method can be very time-consuming.

• Hybrid—A fusion of the filter and wrapper approaches.

For this research, the features were analyzed using the filter-based approach, and
three automated feature selection algorithms were used for this analysis, including the
ANOVA [78], CFS [79], and SelectKBest [80] feature selection algorithms.

SelectKBest is a feature selection approach which selects the top K features from
all the features available. This is based on a scoring function based on how well each
feature correlates with the target variable, and for this research, f_classif was used for the
scoring mechanism, which scores each feature and then ranks these based on the score. The
score assigned to the feature measures the relationship between the feature and the target
variable, in this case, malware or benign, and then selects the top K features. The formula
for calculating the f_classif is shown in Equation (1) [81]. K is the number of classes (distinct
target labels), ni is the number of samples in class i, N is the total number of samples in
the dataset, xi is the mean of feature values for class i, x is the overall mean of the feature
across all samples, and xij is the value of the feature for sample j in class i.

F =
1
k ∑k

i=1 ni(xi − x)2

1
N−k ∑k

i=1 ∑ni
j=1

(
xij − xi

)2 (1)

SelectKBest compares the mean values of different groups. The two groups considered
are the ‘between-group variances’ and ‘within-group variances’. A larger value assigned to
a feature means that the feature is a good candidate for predicting the malware, whereas
a smaller value means that the feature is unlikely to help predict the malware. The top

18

J. Cybersecur. Priv. 2025, 5, 4

10 features calculated by SelectKBest were selected for this research, and this was performed
by setting the K Value to 10. This was based on experimental analysis, and increasing the K
value further did not influence the prediction results. Figure 10 shows the feature rankings
calculated using SelectKBest.

Figure 10. Feature rankings calculated by SelectKBest.

CFS works by considering the correlation between each feature and the target variable
and the correlations between the features themselves. CFS then selects the features that
maximize and minimize the correlation between the features. A subset of these features is
evaluated further, and this is based on the average correlations with the target variable and
the inverse of the correlation between the features themselves. The formula for calculating
the CFS is shown in Equation (2) [82]. S is the subset of selected features, rc f is the
correlation between the selected features and the target variable, r f f is the correlation
between the features themselves, k is the number of features in the subset S, and m is the
total number of features in the dataset.

CFS(S) =
rc f√

r f f +
k(k−1)

m

(2)

The features with the highest combined score are selected. Figure 11 shows the feature
ranking scores calculated by CFS.

ANOVA is another feature selection approach that was used during this research. In
ANOVA, the data are split into groups, and these groups represent the different categories
being compared. The groups are compared to the target variable, and the differences
between these groups are calculated. Several calculations are performed by ANOVA, and
these can be seen in Equation (3) [83]. The first is SSB, which is the Sum of Squares Between
groups, calculated as follows: k is the number of groups, ni is the number of observations
in group i, xi is the mean of group i, and x is the overall mean. The second calculation is
SSW, which is the Sum of Squares within Groups and is calculated as follows: xij is the
value of the observation in group I and xi is the mean of group i. The final calculation is F,

19

J. Cybersecur. Priv. 2025, 5, 4

which is the F-statistics, and in this formula, MSB is the Mean Square Between, MSW is the
Mean Square Within, k is the number of groups, and N is the total number of observations.

SSB =
k
∑

i=1
ni(xi − x)2

SSW =
k
∑

i=1
∗

ni
∑

j=1

(
xij − xi

)2

f = MSB
MSW = SSB/(k−1)

SSW/(N−k)

(3)

Figure 11. Feature rankings calculated by CFS.

A large value suggests that the groups are different and can be considered as a suitable
feature to use for the experimental work, and a small number suggests that the feature
might not be suitable. Figure 12 illustrates the scores calculated by ANOVA, and the scores
are ranked from the highest to the lowest.

Figure 12. Feature rankings calculated by ANOVA.

20

J. Cybersecur. Priv. 2025, 5, 4

Several experiments were conducted using different features, and it was determined
that the following ten features would be the most appropriate and minimum number of
features required for predicting the different malware variants: mean_fpktl; min_fpktl;
min_bpktl; min_fiat; mean_fiat; mean_biat; min_biat; sflow_fpackets; sflow_fbytes;
and Duration.

Increasing the number of features does not help to improve the prediction results and
using a lower number of features reduces the efficiency of ML algorithms. The above ten
features were used in the training and testing of the machine learning algorithms, and the
results of the experimental analysis can be viewed in Section 5.

4.5. Evaluation Approach of the Experimental Analysis

The evaluation metrics of precision, recall, and F1-score were used for the experimental
analysis conducted for this research. Precision is the percentage of correctly identified
positive cases from the whole data sample [84], and recall is the percentage of correctly
identified positive cases from the positive samples only [85]. The formulas used are
as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

The F1-score considers both the positive and negative cases combined, and the formula
used to calculate the F1-score is set out as follows [86]:

F1− Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(6)

A confusion matrix [87], as shown in Table 11, will also be generated for each experi-
ment that is conducted. The confusion matrix calculates the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) scores for each dataset.

Table 11. Confusion matrix that will be used to measure the detection accuracy.

Predicted Benign Predicted Zeus

Actual Benign (Total) TN FP
Actual Zeus (Total) FN TP

5. Results

This section presents the training and testing results for all the ML algorithms and
compares the prediction results for each of the datasets. For each ML algorithm, two
tables are presented. The first table shows the precision, recall, and F1-score results and
the second table depicts the following information: the number of samples tested; the
number of samples correctly classified (true positives); and the number of samples mis-
classified (false negatives). The table also depicts the prediction results of the benign C&C
network samples.

5.1. Training and Testing the Decision Tree Machine Learning Algorithms

The DT ML algorithm was trained using the features defined in Section 4.4 and for the
training, 3 folds were used. A training accuracy of 0.974 was achieved, and Table 12 shows
the testing results and Table 13 depicts a confusion matrix for each of the datasets tested.
By examining the key metric, which is the recall score for the malware, most of the recall
scores were above 95. The lowest recall rate was 66 for dataset 6, and the highest recall
score was 99 achieved by both datasets 3 and 4.

21

J. Cybersecur. Priv. 2025, 5, 4

Table 12. Testing results when using the decision tree ML algorithm.

Dataset Name
Malware

Precision Score
Malware

Recall Score
Malware
F1-Score

Benign
Precision Score

Benign
Recall Score

Benign
F1-Score

Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 13. Confusion matrices depicting the testing results of the decision tree ML algorithm.

Dataset Name
Malware Total
Samples Tested

Malware
Samples

Classified
Correctly

Malware
Samples

Classified
Incorrectly

Total Benign
Samples Tested

Benign
Samples

Classified
Correctly

Benign
Samples

Classified
Incorrectly

Dataset 1 66,009 62,906 3103 66,009 65,722 287
Dataset 2 38,282 36,519 1763 38,282 38,152 130
Dataset 3 272,425 270,328 2097 272,425 271,439 986
Dataset 4 11,864 11,728 136 11,864 11,820 44
Dataset 5 10,204 9941 263 10,204 8759 1445
Dataset 6 134,998 88,500 46,498 134,998 110,167 24,831

5.2. Training and Testing the Random Forest (RF) Machine Learning Algorithm

The results of testing the RF ML algorithm can be seen in Tables 14 and 15. A training
accuracy of 0.997 was achieved, and by examining the key metric, which is the recall score
for the malware, most of the recall results were above 95. The lowest recall score was for
dataset 6, which was 66, and the highest recall score was obtained by datasets 3 and 4,
which 99.

Table 14. Testing results when using the random forest ML algorithm.

Dataset Name Malware
Precision Score

Malware
Recall Score

Malware
F1-Score

Benign
Precision Score

Benign
Recall Score

Benign
F1-Score

Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 15. Confusion matrices depicting the testing results of the random forest ML algorithm.

Dataset Name Total Malware
Samples Tested

Malware
Samples

Classified
Correctly

Malware
Samples

Classified
Incorrectly

Total Benign
Samples Tested

Benign
Samples

Classified
Correctly

Benign
Samples

Classified
Incorrectly

Dataset 1 66,009 65,051 958 66,009 66,003 6
Dataset 2 38,282 37,737 545 38,282 38,278 4
Dataset 3 272,425 272,276 149 272,425 272,401 24
Dataset 4 11,864 11,758 106 11,864 11,863 1
Dataset 5 10,204 9990 214 10,204 8852 1352
Dataset 6 134,998 88,586 46,412 134,998 111,428 23,570

5.3. Training and Testing the K-Nearest Neighbor (KNN) Machine Learning Algorithm

The KNN testing results can be seen in Tables 16 and 17. A training accuracy of 0.950
was achieved, and by examining the key metric, which is the recall score for the malware
traffic, most of the malware recall results were above 90. The lowest malware recall rate
was 50, which was achieved by dataset t6, and the highest malware recall score was 100,
achieved by dataset 3.

22

J. Cybersecur. Priv. 2025, 5, 4

Table 16. Testing results when using the K-Nearest Neighbor (KNN) ML algorithm.

Dataset Name Malware
Precision Score

Malware
Recall Score

Malware
F1-Score

Benign
Precision Score

Benign
Recall Score

Benign
F1-Score

Dataset 1 1.00 0.90 0.95 0.91 1.00 0.95
Dataset 2 1.00 0.91 0.95 0.91 1.00 0.95
Dataset 3 1.00 1.00 1.00 1.00 1.00 1.00
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.92 0.97 0.95 0.97 0.92 0.95
Dataset 6 0.85 0.50 0.63 0.65 0.91 0.76

Table 17. Confusion matrices depicting the testing results of the K Nearest Neighbor (KNN) ML
algorithm.

Dataset Name Total Malware
Samples Tested

Malware
Samples

Classified
Correctly

Malware
Samples

Classified
Incorrectly

Total Benign
Samples Tested

Benign
Samples

Classified
Correctly

Benign
Samples

Classified
Incorrectly

Dataset 1 66,009 59,476 6533 66,009 66,003 6
Dataset 2 38,282 34,659 3623 38,282 38,278 4
Dataset 3 272,425 272,423 2 272,425 272,401 24
Dataset 4 11,864 11,719 145 11,864 11,863 1
Dataset 5 10,204 9939 265 10,204 9397 807
Dataset 6 134,998 68,156 66,842 134,998 123,232 11,766

5.4. Training and Testing Using the Ensemble Machine Learning Approach

An ensemble approach was used to train and test all the datasets, and the results of
this can be seen in Tables 18 and 19. Again, focusing on the malware recall score for each
dataset, the highest malware recall score was achieved with both datasets 3 and 4, with a
score of 99. The lowest malware recall score achieved was for dataset 6, which was 66.

Table 18. Testing results when using the ensemble machine learning approach.

Dataset Name Malware
Precision Score

Malware
Recall Score

Malware
F1-Score

Benign
Precision Score

Benign
Recall Score

Benign
F1-Score

Dataset 1 1.00 0.95 0.97 0.95 1.00 0.97
Dataset 2 1.00 0.95 0.97 0.96 1.00 0.98
Dataset 3 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 4 1.00 0.99 0.99 0.99 1.00 0.99
Dataset 5 0.87 0.97 0.92 0.97 0.86 0.91
Dataset 6 0.78 0.66 0.71 0.70 0.82 0.76

Table 19. Confusion matrices depicting the testing results of the ensemble ML approach.

Dataset Name Total Malware
Samples Tested

Malware
Samples

Classified
Correctly

Malware
Samples

Classified
Incorrectly

Total Benign
Samples Tested

Benign
Samples

Classified
Correctly

Benign
Samples

Classified
Incorrectly

Dataset 1 66,009 65,051 958 66,009 66,003 6
Dataset 2 38,282 37,737 545 38,282 38,278 4
Dataset 3 272,425 272,276 149 272,425 272,401 24
Dataset 4 11,864 11,758 106 11,864 11,863 1
Dataset 5 10,204 9990 214 10,204 8852 1352
Dataset 6 134,998 88,586 46,412 134,998 111,428 23,570

5.5. Comparing the Predication Results of all the Algorithms Tested

The results obtained from testing all the algorithms are compared in this section.
Figure 13 shows the malware recall results of all the algorithms when tested against all
the datasets and Figure 14 shows the benign traffic recall scores. An expanded view of the
results can be seen in Figures 15 and 16, which show both the recall and precision scores
for both the malware and benign traffic samples.

23

J. Cybersecur. Priv. 2025, 5, 4

Figure 13. Comparison of the prediction results for all three ML algorithms.

Figure 14. Comparison of the prediction results for all three ML algorithms.

Figure 15. Malware precision and recall scores.

24

J. Cybersecur. Priv. 2025, 5, 4

Figure 16. Benign precision and recall scores.

The results obtained during the testing phase indicate that the decision tree algo-
rithm performed consistently well across all the datasets, with high accuracy scores for
datasets 1–4. The performance for dataset 6 did decrease slightly, which seems to indicate
that the decision tree algorithm faced some challenges when used for testing on a large
dataset. Similar results were obtained for both the random forest and KNN algorithms.
The results demonstrate that the random forest algorithm performed the best and is the
most suited for this type of problem.

All the results are compared in Figure 17, and the experimental results and the patterns
observed suggest that the random forest and decision tree models were more robust and
consistent across all the datasets, while the K-Nearest Neighbor and ensemble models
may face some difficulties with larger or more complex data. Dataset 6 seems particularly
challenging, reducing performance across all the datasets.

Figure 17. Accuracy comparison across all the algorithms.

This paper has demonstrated an approach that can be used to detect banking malware
and some its variants, and has demonstrated that the methodology does work across
multiple datasets and other variants of the Zeus malware. The research also allows key

25

J. Cybersecur. Priv. 2025, 5, 4

inferences to be made, because one dataset was used for training and to create an ML
model. This model was tested to evaluate its generalization and ability to classify other
various banking malware variants. Metrics such as precision, recall, F1-score, and accuracy
were used to assess the performance across these datasets. The model performed excep-
tionally well on datasets 2–4, achieving a high accuracy (≥97%) and balanced F1-scores,
indicating that these datasets share similar feature distributions with dataset 1. However,
its performance declined on datasets 5 and 6, with its accuracy dropping to 92% and 74%,
respectively. The decline in the precision and recall scores suggests that there were some
behavioral differences between the malware samples. This underscores the importance of
using diverse training data and robust ensemble methods to improve generalization across
malware variants.

5.6. Comparing the Predication Results with Previous Research

This section compares the results obtained in this research with the previous research
identified and discussed in Section 2. Several experimental results are compared, and the
first comparison is performed with the research conducted by [44]. The model developed
in this paper is referred to as ‘User Model’. Figure 18 compares the performance of the user
model with that of the models developed by [44].

Figure 18. Results of [44] compared to the results of this research.

The comparison between the results of this research and the results presented by [44]
reveals several key insights. This research demonstrated a well-balanced performance and
achieves a recall of approximately 0.90, significantly outperforming all the configurations
from [44], where the highest recall was 0.667. This highlights that the model developed
in this research has a greater ability to correctly identify malware patterns. In terms of
precision, the strict configurations from [44] (cost 20 and 30) achieved slightly higher values
(0.989) compared to the precision of 0.93 of this research. However, the trade-off for this
higher precision is a lower recall, resulting in a less balanced performance. The F-measure,
which balances precision and recall, was notably greater in this research (~0.914), exceeding
all configurations from [44], except for the strict configuration with cost 10 (0.787). These
results indicate that the model developed for this research is highly effective and achieves
a balance between detecting true positives and minimizing false positives, making it more
robust for practical implementations.

The results obtained by [45] are also compared with the user model, and Figure 19
compares these results. The comparison reveals that the model developed in this research
had a TPR of 90%, which is competitive with or exceeds most methods tested by [45],
except for the “Zeus (Snort)—SBB” and “Zeus (Snort)—C4.5”, which both achieved a
TPR of 98%. However, the model developed in this research minimized the false positive

26

J. Cybersecur. Priv. 2025, 5, 4

rate (FPR), maintaining a consistent FPR of 5%, significantly outperforming methods like
“Zeus-1—SBB” (27%) and “Zeus-1—C4.5” (17%). This highlights the robustness of the user
model in accurately identifying true positives while reducing false alarms, making it highly
effective in real-world scenarios. Overall, the user model provides a balanced approach
with a strong performance in both detection and minimizing errors, positioning it as a
reliable alternative to [45].

Figure 19. Results of [45] compared to the results of this research.

6. Conclusions

The framework’s ability to identify banking malware and its variants were demon-
strated by the empirical analysis conducted during this research. The research showed that
the methodology and framework used for this study can identify both older and newer
versions of the Zeus banking malware. It is possible that this approach can be used to
detect a large number of banking malware variants without having to examine each one
in order to understand its characteristics. This is because the framework and technique
developed during this research identified key features that could be used and may also
predict other banking malware variants. Also, this research showed that a reduced set of
features can be used for detecting banking malware, and this should help to increase the
performance and time required for training and testing machine learning or deep learning
algorithms, especially for large datasets. This research will also benefit other researchers,
as they should be able to adopt this approach in their own research and will have a good
base to begin conducting experiments of a similar nature.

It may be possible to advance this research in the future by improving the methodology
to include more banking malware variants, especially variants belonging to a different
banking malware family. Additionally, more research may be conducted to identify other
malware types and increase the prediction accuracy of these predictions. The results of this
study may also be utilized by researchers to develop an intrusion detection system (IDS)
that can identify a variety of malware, and by anti-virus manufacturers to support their
development of malware detection tools. Once an infection has been identified, action can
also be taken against malicious communications. Researchers can improve their work by
using the results of this study to create their own malware prediction systems.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The author declares no conflicts of interest.

27

J. Cybersecur. Priv. 2025, 5, 4

References

1. Wadhwa, A.; Arora, N. A Review on Cyber Crime: Major Threats and Solutions. Int. J. Adv. Res. Comput. Sci. 2017, 8, 2217–2221.
2. Morgan, S. Cybercrime to Cost the World 8 Trillion Annually in 2023. Cybercrime Magazine. 17 October 2022. Available online:

https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/ (accessed on 7 December 2024).
3. Banking Malware Threats Surging as Mobile Banking Increases—Nokia Threat Intelligence Report. n.d. Nokia. Available

online: https://www.nokia.com/about-us/news/releases/2021/11/08/banking-malware-threats-surging-as-mobile-banking-
increases-nokia-threat-intelligence-report/ (accessed on 7 December 2024).

4. Kuraku, S.; Kalla, D. Emotet malware—A banking credentials stealer. IOSR J. Comput. Eng. 2020, 22, 31–41.
5. Etaher, N.; Weir, G.R.S.; Alazab, M. From zeus to zitmo: Trends in banking malware. In Proceedings of the 2015 IEEE Trust-

com/BigDataSE/ISPA, Helsinki, Finland, 20–22 August 2015; Volume 1, pp. 1386–1391.
6. Godfather Banking Trojan Spawns 1.2K Samples across 57 Countries. Darkreading.com. 2024. Available online: https://www.

darkreading.com/endpoint-security/godfather-banking-trojan-spawns-1k-samples-57-countries (accessed on 16 January 2025).
7. Nilupul, S.A. Evolution and Impact of Malware: A Comprehensive Analysis from the First Known Malware to Modern-Day

Cyber Threats. Cyber Secur. 2024. [CrossRef]
8. Mishra, R.; Butakov, S.; Jaafar, F.; Memon, N. Behavioral Study of Malware Affecting Financial Institutions and Clients. In

Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelli-
gence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 79–86.

9. Owen, H.; Zarrin, J.; Pour, S.M. A survey on botnets, issues, threats, methods, detection and prevention. J. Cybersecur. Priv. 2022,
2, 74–88. [CrossRef]

10. Boukherouaa, E.B.; Shabsigh, M.G.; AlAjmi, K.; Deodoro, J.; Farias, A.; Iskender, E.S.; Mirestean, M.A.T.; Ravikumar, R.
Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance; International Monetary Fund: Washington,
DC, USA, 2021.

11. AMR. IT Threat Evolution in Q3 2022. Non-Mobile Statistics. Securelist.com. Kaspersky. 18 November 2022. Available online:
https://securelist.com/it-threat-evolution-in-q3-2022-non-mobile-statistics/107963/ (accessed on 16 January 2025).

12. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing the performance of supervised machine learning algorithms when used with a
manual feature selection process to detect Zeus malware. Int. J. Grid Util. Comput. 2022, 13, 495–504. [CrossRef]

13. Punyasiri, D.L.S. Signature & Behavior Based Malware Detection. Bachelor’s Thesis, Sri Lanka Institute of Information Technology,
Malabe, Sri Lanka, 2023.

14. Gopinath, M.; Sethuraman, S.C. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev.
2023, 47, 100529.

15. Alaskar, H.; Saba, T. Machine learning and deep learning: A comparative review. In Proceedings of Integrated Intelligence Enable
Networks and Computing: IIENC 2020; Springer: Singapore, 2021; pp. 143–150.

16. Madanan, M.; Gunasekaran, S.S.; Mahmoud, M.A. A Comparative Analysis of Machine Learning and Deep Learning Algorithms
for Image Classification. In Proceedings of the 2023 6th International Conference on Contemporary Computing and Informatics
(IC3I), Gautam Buddha Nagar, India, 14–16 September 2023; Volume 6, pp. 2436–2439.

17. Kazi, M.A.; Woodhead, S.; Gan, D. Comparing and analysing binary classification algorithms when used to detect the Zeus
malware. In 2019 Sixth HCT Information Technology Trends (ITT); IEEE: Piscataway, NJ, USA, 2019; pp. 6–11.

18. Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision
tree, and long short term memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [CrossRef]

19. Kazi, M.; Woodhead, S.; Gan, D. A contempory Taxonomy of Banking Malware. In Proceedings of the First International
Conference on Secure Cyber Computing and Communications, Jalandhar, India, 15–17 December 2018.

20. Falliere, N.; Chien, E. Zeus: King of the Bots. 2009. Available online: https://www.google.co.uk/url?sa=t&source=web&rct=
j&opi=89978449&url=https://pure.port.ac.uk/ws/portalfiles/portal/42722286/Understanding_and_Mitigating_Banking_
Trojans.pdf&ved=2ahUKEwizroXLwZqJAxU-VUEAHdgzKqEQFnoECDMQAQ&usg=AOvVaw1St11bbRwbhYj9IB4VdQv4
(accessed on 19 October 2024).

21. Lelli, A. Zeusbot/Spyeye P2P Updated, Fortifying the Botnet. Available online: https://www.symantec.com/connect/blogs/
zeusbotspyeye-p2p-updated-fortifying-botnet (accessed on 5 November 2019).

22. Cluley, G. GameOver Zeus Malware Returns from the Dead. Graham Cluley. 14 July 2014. Available online: https://grahamcluley.
com/gameover-zeus-malware/ (accessed on 16 January 2025).

23. Brumaghin, E. Poisoning the Well: Banking Trojan Targets Google Search Results. [online] Cisco Talos Blog. 2017. Available
online: https://blog.talosintelligence.com/zeus-panda-campaign/#More (accessed on 16 January 2025).

24. Lamb, C. Advanced Malware and Nuclear Power: Past Present and Future; No. SAND2019-14527C; Sandia National Lab. (SNL-NM):
Albuquerque, NM, USA, 2019.

28

J. Cybersecur. Priv. 2025, 5, 4

25. De Carli, L.; Torres, R.; Modelo-Howard, G.; Tongaonkar, A.; Jha, S. Botnet protocol inference in the presence of encrypted traffic.
In Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017;
pp. 1–9.

26. Lioy, A.; Atzeni, A.; Romano, F. Machine Learning for Malware Characterization and Identification. Master’s Thesis, Politecnico
di Torino, Turin, Italy, 2023.

27. Paganini, P. HTTP-Botnets: The Dark Side of a Standard Protocol! Security Affairs. 22 April 2013. Available online: http:
//securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-dark-side-of-an- (accessed on 16 January 2025).

28. Sood, A.K.; Zeadally, S.; Enbody, R.J. An empirical study of HTTP-based financial botnets. IEEE Trans. Dependable Secur. Comput.
2014, 13, 236–251. [CrossRef]

29. Niu, Z.; Xue, J.; Qu, D.; Wang, Y.; Zheng, J.; Zhu, H. A novel approach based on adaptive online analysis of encrypted traffic for
identifying Malware in IIoT. Inf. Sci. 2022, 601, 162–174. [CrossRef]

30. Black, P.; Gondal, I.; Layton, R. A Survey of Similarities in Banking Malware Behaviours. Comput. Secur. 2018, 77, 756–772.
[CrossRef]

31. Pilania, S.; Kunwar, R.S. Zeus: In-Depth Malware Analysis of Banking Trojan Malware. In Advanced Techniques and Applications of
Cybersecurity and Forensics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 167–195.

32. CLULEY, Graham. Russian Creator of NeverQuest Banking Trojan Pleads Guilty in American Court. Hot for Security. 2019.
Available online: https://www.bitdefender.com/en-us/blog/hotforsecurity/russian-creator-of-neverquest-banking-trojan-
pleads-guilty-in-american-court/ (accessed on 16 January 2025).

33. Fisher, D. Cridex Malware Takes Lesson from GameOver Zeus. Threatpost.com. Threatpost. 15 August 2014. Available online:
https://threatpost.com/cridex-malware-takes-lesson-from-gameover-zeus/107785/ (accessed on 16 January 2025).

34. Ilascu, I. Softpedia. 16 August 2014. Available online: https://news.softpedia.com/news/Cridex-Banking-Malware-Variant-
Uses-Gameover-Zeus-Thieving-Technique-455193.shtml (accessed on 16 January 2025).

35. Andriesse, D.; Rossow, C.; Stone-Gross, B.; Plohmann, D.; Bos, H. Highly resilient peer-to-peer botnets are here: An analysis of
gameover zeus. In Proceedings of the 2013 8th International Conference on Malicious and Unwanted Software: “The Americas”
(MALWARE), Fajardo, PR, USA, 22–24 October 2013; pp. 116–123.

36. Sarojini, S.; Asha, S. Botnet detection on the analysis of Zeus panda financial botnet. Int. J. Eng. Adv. Technol. 2019, 8, 1972–1976.
[CrossRef]

37. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-Rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware detection issues, challenges, and
future directions: A survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

38. Chen, R.; Niu, W.; Zhang, X.; Zhuo, Z.; Lv, F. An effective conversation-based botnet detection method. Math. Probl. Eng. 2017,
2017, 4934082. [CrossRef]

39. Jha, J.; Ragha, L. Intrusion detection system using support vector machine. Int. J. Appl. Inf. Syst. (IJAIS) 2013, 3, 25–30.
40. Singla, S.; Gandotra, E.; Bansal, D.; Sofat, S. A novel approach to malware detection using static classification. Int. J. Comput. Sci.

Inf. Secur. 2015, 13, 1–5.
41. Wu, W.; Alvarez, J.; Liu, C.; Sun, H.M. Bot detection using unsupervised machine learning. Microsyst. Technol. 2018, 24, 209–217.

[CrossRef]
42. Yahyazadeh, M.; Abadi, M. BotOnus: An Online Unsupervised Method for Botnet Detection. ISeCure 2012, 4, 51–62.
43. Soniya, B.; Wilscy, M. Detection of randomized bot command and control traffic on an end-point host. Alex. Eng. J. 2016, 55,

2771–2781. [CrossRef]
44. Azab, A. The effectiveness of cost sensitive machine learning algorithms in classifying Zeus flows. Int. J. Inf. Comput. Secur. 2022,

17, 332–350. [CrossRef]
45. Haddadi, F.; Runkel, D.; Zincir-Heywood, A.N.; Heywood, M.I. On botnet behaviour analysis using GP and C4. 5. In Proceedings

of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada,
12–16 July 2014; pp. 1253–1260.

46. Mohaisen, A.; Alrawi, O. Unveiling zeus: Automated classification of malware samples. In Proceedings of the 22nd International
Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 829–832.

47. Wang, J.; Yang, Q.; Ren, D. An intrusion detection algorithm based on decision tree technology. In Proceedings of the 2009
Asia-Pacific Conference on Information Processing, Shenzhen, China, 18–19 July 2009; Volume 2, pp. 333–335.

48. Sajjad, S.; Jiana, B. The use of Convolutional Neural Network for Malware Classification. In Proceedings of the 2020 IEEE 9th
Data Driven Control and Learning Systems Conference (DDCLS), Liuzhou, China, 20–22 November 2020; pp. 1136–1140.

49. Walker, A.; Sengupta, S. Malware family fingerprinting through behavioral analysis. In Proceedings of the 2020 IEEE International
Conference on Intelligence and Security Informatics (ISI), Arlington, VA, USA, 9–10 November 2020; pp. 1–5.

50. Ramakrishna, M.; Rama Satish, A.; Siva Krishna, P.S.S. Design and development of an efficient malware detection Using ML. In
Proceedings of International Conference on Computational Intelligence and Data Engineering: ICCIDE 2020; Springer: Singapore, 2021;
pp. 423–433.

29

J. Cybersecur. Priv. 2025, 5, 4

51. Ghafir, I.; Prenosil, V.; Hammoudeh, M.; Baker, T.; Jabbar, S.; Khalid, S.; Jaf, S. BotDet: A System for Real Time Botnet Command
and Control Traffic Detection. IEEE Access 2018, 6, 38947–38958. [CrossRef]

52. Agarwal, P.; Satapathy, S. Implementation of signature-based detection system using snort in windows. Int. J. Comput. Appl. Inf.
Technol. 2014, 3, 3–93. [CrossRef]

53. He, S.; Zhu, J.; He, P.; Lyu, M.R. Experience report: System log analysis for anomaly detection. In Proceedings of the 2016
IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada, 23–27 October 2016;
pp. 207–218.

54. Zhou, J.; Qian, Y.; Zou, Q.; Liu, P.; Xiang, J. DeepSyslog: Deep Anomaly Detection on Syslog Using Sentence Embedding and
Metadata. IEEE Trans. Inf. Forensics Secur. 2022, 17, 3051–3061. [CrossRef]

55. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

56. Sharma, P.; Said, Z.; Memon, S.; Elavarasan, R.M.; Khalid, M.; Nguyen, X.P.; Arıcı, M.; Hoang, A.T.; Nguyen, L.H. Comparative
evaluation of AI-based intelligent GEP and ANFIS models in prediction of thermophysical properties of Fe3O4-coated MWCNT
hybrid nanofluids for potential application in energy systems. Int. J. Energy Res. 2022, 46, 19242–19257. [CrossRef]

57. Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to machine learning, neural networks,
and deep learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [PubMed]

58. Ahsan, M.; Nygard, K.E.; Gomes, R.; Chowdhury, M.M.; Rifat, N.; Connolly, J.F. Cybersecurity Threats and Their Mitigation
Approaches Using Machine Learning—A Review. J. Cybersecur. Priv. 2022, 2, 527–555. [CrossRef]

59. Elmachtoub, A.N.; Liang, J.C.N.; McNellis, R. Decision trees for decision-making under the predict-then-optimize framework. In
Proceedings of the International Conference on Machine Learning, Virtual, 12–18 July 2020; pp. 2858–2867.

60. Liberman, N. Decision Trees and Random Forests. Towards Data Science. 27 January 2017. Available online: https:
//towardsdatascience.com/decision-trees-and-random-forests-df0c3123f991 (accessed on 16 January 2025).

61. Demirović, E.; Lukina, A.; Hebrard, E.; Chan, J.; Bailey, J.; Leckie, C.; Ramamohanarao, K.; Stuckey, P.J. Murtree: Optimal decision
trees via dynamic programming and search. J. Mach. Learn. Res. 2022, 23, 1–47.

62. Schonlau, M.; Zou, R.Y. The random forest algorithm for statistical learning. Stata J. 2020, 20, 3–29. [CrossRef]
63. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How many trees in a random forest? In Machine Learning and Data Mining in Pattern

Recognition, Proceedings of the 8th International Conference, MLDM 2012, Berlin, Germany, 13–20 July 2012; Proceedings 8; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 154–168.

64. Halder, R.K.; Uddin, M.N.; Uddin, M.A.; Aryal, S.; Khraisat, A. Enhancing K-nearest neighbor algorithm: A comprehensive
review and performance analysis of modifications. J. Big Data 2024, 11, 113. [CrossRef]

65. Suyal, M.; Goyal, P. A review on analysis of k-nearest neighbor classification machine learning algorithms based on supervised
learning. Int. J. Eng. Trends Technol. 2022, 70, 43–48. [CrossRef]

66. Aggarwal, C.C. (Ed.) Data Classification; Springer International Publishing: New York, NY, USA, 2015.
67. Kazi, M.A.; Woodhead, S.; Gan, D. Detecting Zeus Malware Network Traffic Using the Random Forest Algorithm with Both

a Manual and Automated Feature Selection Process. In IOT with Smart Systems: Proceedings of ICTIS 2022, Volume 2; Springer
Nature Singapore: Singapore, 2022; pp. 547–557.

68. Chung, J.; Teo, J. Single classifier vs. ensemble machine learning approaches for mental health prediction. Brain Inform. 2023, 10, 1.
[CrossRef] [PubMed]

69. Salur, M.U.; Aydın, İ. A soft voting ensemble learning-based approach for multimodal sentiment analysis. Neural Comput. Appl.
2022, 34, 18391–18406. [CrossRef]

70. Jabbar, H.G. Advanced Threat Detection Using Soft and Hard Voting Techniques in Ensemble Learning. J. Robot. Control (JRC)
2024, 5, 1104–1116.

71. Shomiron. Zeustracker. Available online: https://github.com/dnif-archive/enrich-zeustracker (accessed on 25 July 2022).
72. Stratosphere. Stratosphere Laboratory Datasets. Available online: https://www.stratosphereips.org/datasets-overviewRetrieved

(accessed on 20 September 2024).
73. Abuse.ch. Fighting Malware and Botnets. Available online: https://abuse.ch/ (accessed on 13 May 2022).
74. Haddadi, F.; Zincir-Heywood, A.N. Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification.

IEEE Syst. J. 2014, 10, 1390–1401. [CrossRef]
75. Kasongo, S.M.; Sun, Y. A deep learning method with filter based feature engineering for wireless intrusion detection system.

IEEE Access 2019, 7, 38597–38607. [CrossRef]
76. Miller, S.; Curran, K.; Lunney, T. Multilayer perceptron neural network for detection of encrypted VPN network traffic. In

Proceedings of the 2018 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (Cyber SA),
Glasgow, UK, 11–12 June 2018; pp. 1–8.

77. Kazi, M.A.; Woodhead, S.; Gan, D. An Investigation to Detect Banking Malware Network Communication Traffic Using Machine
Learning Techniques. J. Cybersecur. Priv. 2023, 3, 1–23. [CrossRef]

30

J. Cybersecur. Priv. 2025, 5, 4

78. Nasiri, H.; Alavi, S.A. A Novel Framework Based on Deep Learning and ANOVA Feature Selection Method for Diagnosis of
COVID-19 Cases from Chest X-Ray Images. Comput. Intell. Neurosci. 2022, 2022, 4694567. [CrossRef] [PubMed]

79. Alshanbari, H.M.; Mehmood, T.; Sami, W.; Alturaiki, W.; Hamza, M.A.; Alosaimi, B. Prediction and classification of COVID-19
admissions to intensive care units (ICU) using weighted radial kernel SVM coupled with recursive feature elimination (RFE). Life
2022, 12, 1100. [CrossRef] [PubMed]

80. Kavya, D. Optimizing Performance: SelectKBest for Efficient Feature Selection in Machine Learning. Medium. 16 February 2023.
Available online: https://medium.com/@Kavya2099/optimizing-performance-selectkbest-for-efficient-feature-selection-in-
machine-learning-3b635905ed48 (accessed on 16 January 2025).

81. dos Santos, C.H.M.; de Lima, S.M.L. XAI-driven antivirus in pattern identification of citadel malware. J. Comput. Sci. 2024,
82, 102389. [CrossRef]

82. Liu, Z.; Wang, C.; Li, G. Feature Selection Algorithm Based on CFS Algorithm Emphasizing Data Discrimination. preprint 2023.
[CrossRef]

83. St, L.; Wold, S. Analysis of variance (ANOVA). Chemom. Intell. Lab. Syst. 1989, 6, 259–272.
84. Luan, H.; Tsai, C.C. A review of using machine learning approaches for precision education. Educ. Technol. Soc. 2021, 24, 250–266.
85. Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International

Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240.
86. Fourure, D.; Javaid, M.U.; Posocco, N.; Tihon, S. Anomaly detection: How to artificially increase your f1-score with a biased

evaluation protocol. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer International
Publishing: Cham, Switzerland, 2021; pp. 3–18.

87. Visa, S.; Ramsay, B.; Ralescu, A.L.; Van Der Knaap, E. Confusion matrix-based feature selection. Maics 2011, 710, 120–127.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

31

Citation: Sobrero, F.; Clavarezza, B.;

Ucci, D.; Bisio, F. Towards a

Near-Real-Time Protocol Tunneling

Detector Based on Machine Learning

Techniques. J. Cybersecur. Priv. 2023,

3, 794–807. https://doi.org/10.3390/

jcp3040035

Academic Editor: Marina L.

Gavrilova

Received: 29 August 2023

Revised: 17 October 2023

Accepted: 24 October 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Towards a Near-Real-Time Protocol Tunneling Detector Based
on Machine Learning Techniques †

Filippo Sobrero *, Beatrice Clavarezza , Daniele Ucci * and Federica Bisio

aizoOn Technology Consulting, 10146 Turin, Italy; beatrice.clavarezza@aizoongroup.com (B.C.);
federica.bisio@aizoongroup.com (F.B.)
* Correspondence: filippo.sobrero@aizoongroup.com (F.S.); daniele.ucci@aizoongroup.com (D.U.)
† This paper is an extension of our paper published in IEEE Symposium Series on Computational Intelligence,

Orlando, FL, USA, 5–7 December 2021.

Abstract: In the very recent years, cybersecurity attacks have increased at an unprecedented pace,
becoming ever more sophisticated and costly. Their impact has involved both private/public com-
panies and critical infrastructures. At the same time, due to the COVID-19 pandemic, the security
perimeters of many organizations expanded, causing an increase in the attack surface exploitable by
threat actors through malware and phishing attacks. Given these factors, it is of primary importance
to monitor the security perimeter and the events occurring in the monitored network, according to
a tested security strategy of detection and response. In this paper, we present a protocol tunneling
detector prototype which inspects, in near real-time, a company’s network traffic using machine
learning techniques. Indeed, tunneling attacks allow malicious actors to maximize the time in which
their activity remains undetected. The detector monitors unencrypted network flows and extracts
features to detect possible occurring attacks and anomalies by combining machine learning and deep
learning. The proposed module can be embedded in any network security monitoring platform
able to provide network flow information along with its metadata. The detection capabilities of the
implemented prototype have been tested both on benign and malicious datasets. Results show an
overall accuracy of 97.1% and an F1-score equal to 95.6%.

Keywords: passive network analysis; DNS tunneling; anomaly detection; machine learning;
deep learning

1. Introduction

Cybersecurity attacks keep increasing year over year at an unprecedented pace, be-
coming ever more sophisticated and costly [1,2]. The growth between 2021 and 2022 has
resulted in a rise of attacks’ volume and impact on both private/public companies and
critical infrastructures. Companies comprise digital service providers, public administra-
tions, and governments and include businesses operating in the finance and health sectors.
In particular, service providers have experienced a raise of more than 15% in intrusions
(infamous is the case of Solarwinds [3]) compared to 2021 [1], a trend destined to grow in the
next years [4]. At the same time, due to the COVID-19 pandemic, the security perimeters of
many organizations expanded to cope with the new needs of remote working, causing an
increase in the attack surface exploitable by attackers [4]. The European Union Agency for
Cybersecurity estimates that more than 10 terabytes of data are stolen monthly from target
assets that are made unavailable, until a ransom is payed [1], while IBM calculates that the
average cost of these attacks is USD 4.54 M, increasing up to USD 5.12 M [2]. On the other
hand, malware attacks are still on the rise after the pause recorded during the pandemic,
and phishing continues to be the common attack vector for initial access [1].

Given these factors, it is of primary importance to monitor the security perimeter and
the events occurring in the network, according to a tested security strategy of detection

J. Cybersecur. Priv. 2023, 3, 794–807. https://doi.org/10.3390/jcp3040035 https://www.mdpi.com/journal/jcp32

J. Cybersecur. Priv. 2023, 3

and response. According to Gartner [4], newly proposed solutions should be automated
as much as possible, since human errors continue to play a crucial role in most security
breaches. In this context, machine learning turned out to be a natural choice for automated
analyses and prevention of this kind of threats [5]. The strength of machine learning lies in
its ability to identify hidden patterns and correlations in large volumes of raw data and
leverage such features to recognize previously unseen attacks. In this paper, we present
a protocol tunneling detector prototype which inspects—in near real-time—a company’s
network traffic using machine learning. Tunneling techniques allow attackers to create a
tunnel through a network by encapsulating traffic inside another protocol [6]; hence, it can
be used to let infected machines contact their corresponding command-and-control centers.
Thus, by abusing legitimate network traffic protocols, like DNS [7], the attacker maximizes
the time in which the infection remains undetected. In this work, we rely on a commercial
network security monitoring platform for detecting and investigating potentially malicious
or anomalous activities [8–11], but the proposed solution can be easily integrated into any
network security monitoring platform able to provide network flow information along with
its metadata. The platform we employ is responsible for collecting, processing network
flows, and dispatching them to one or more advanced cybersecurity analytics (ACAs) which
are able to recognize the signals of possible occurring attacks and anomalies. In this scenario,
the detector monitors only clear-text protocols, but it works jointly with an ACA responsible
for analyzing encrypted traffic [11]. Indeed, while some clear-text protocols are extensively
used (i.e., DNS), nowadays, the vast majority of Internet traffic is encrypted [12–16]: this
enabled threat actors to perform malware campaigns relying on HTTPS for delivering
malware and contacting command-and-control centers [17]. Just in 2020, 67% of malware
has been delivered via encrypted HTTPS connections [18]. Along with malware delivery,
malicious secure communications are used to exfiltrate data and steal sensitive information
from private and public companies [19–21]. While the analytics dealing with encrypted
traffic has been extensively described in [11], we extend this previous work by backing
up secure connection analysis to the monitoring of clear-text protocols. As mentioned
before, the latter can be used to discover the abuse of such protocols and signal network
packets’ contents which are not usually observed in the monitored network. The module
presented in this paper extracts a sequence of N bytes from each single network packet and
computes features associated to the collected stream of bytes. Through the combination of
deep learning and machine learning, each network packet is assigned to a specific network
protocol; if a connection exhibits anomalies (e.g., an interleaving of different protocols), a
security analyst is notified about the discovered inconsistency. More specifically:

• we implement a protocol tunneling detector prototype which analyzes, in near real-
time, a byte sequence of the packets flowing in the monitored network.

• the proposed prototype combines

– an artificial neural network (ANN), based on [22], that accurately classifies
clear-text protocols and identifies possible anomalies in network connections;

– a support vector machine that is able to detect compressed/encrypted traffic
within unencrypted connections.

• we design and implement an input sanitization module, which automatically removes
inconsistent data from models’ training sets to significantly increase the models’ per-
formance.

With respect to [22], we changed both the input byte sequences we provide to the ANN
and their sizes in bytes (as detailed in Sections 4.1 and 5). The performance of the proposed
approach has been evaluated on different datasets that either contain legitimate traffic or
simulate DNS tunneling attacks, which are the most common [7]. The obtained overall
accuracy of the proposed prototype is 97.1%, along with an F1-score equal to 95.6%. It is
worth noting that, being the prototype trained with only legitimate traffic, it is potentially
able to identify zero-day attacks that deviate from the usual traffic observed in the network.

33

J. Cybersecur. Priv. 2023, 3

The rest of the paper is organized as follows: Section 2 discusses related work, while
Section 3 introduces basic notions that will be later used to detail the proposed approach
(Section 4). The experimental evaluation is reported in Section 5, followed by Section 6,
where we discuss the strengths of our prototype and some key design choices we made.
Finally, Section 7 concludes the paper.

2. Related Work

Tunneling attacks are a specific typology of network attacks in which an attacker
creates a tunnel through a network by encapsulating traffic inside another protocol [6].
This allows the attacker to bypass traditional network security controls and potentially
exfiltrate sensitive information. Therefore, as discussed in Section 1, using clear-text
network protocols may pose a significant risk when these are abused by malicious actors.
In this context, DNS tunneling represents one of the most common techniques employed
for covertly exfiltrating data from a network, by encoding the data in DNS queries and
responses. Since this method is becoming increasingly prevalent, a growing body of
research aims at detecting and mitigating DNS tunneling attacks. In [23], the authors review
detection technologies from a perspective of rule-based and model-based methods with
descriptions and analyses of DNS-based tools and their corresponding features, covering
detection approaches developed from 2006 to 2020 by means of a comparative analysis.

Latest works in the area of DNS tunneling detection mainly cover three main categories,
i.e., detection approaches via machine learning, real-time detection approaches, and detection
of DNS tunneling variants (e.g., fast flux [9] and domain generation algorithms (DGAs) [8]).

Regarding the first group, researchers have recently proposed both machine and deep
learning algorithms for detecting DNS tunneling traffic, such as support vector machines
(SVMs), random forests and Convolutional Neural Networks (CNNs) and Recurrent Neu-
ral Networks (RNNs), respectively. Do et al. have proposed an SVM to identify DNS
tunneling attacks within mobile networks, by using features such as time, traffic source
and destination, and length of DNS queries [24]. Other researchers have proposed a ran-
dom forest classifier to detect this kind of attack [25]. They included in their features the
number of answers provided by a DNS response and the time between two consecutive
packets and responses for a specific domain. Random forests are also employed in hybrid
solutions like the one proposed in [26], where a 100-trees random forest is paired with a
CNN; they achieved good performance on their dataset, and it is worth noting that, during
their experiments on traffic collected from a real network, they were able to identify a
domain associated to a command-and-control center. In [27], the authors developed a novel
DNS tunneling detection method employing a Convolutional Neural Network (CNN) to
analyze DNS queries and responses and identify DNS tunneling activities. The proposed
approach is evaluated using a dataset of real-world DNS traffic and shows promising
results in detecting DNS tunneling attacks with high accuracy. The work of [28] applies
both Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
for detecting DNS tunneling traffic. The authors have shown that these algorithms can
effectively spot and identify malicious patterns.

The second group of studies has focused on developing real-time detection systems
for DNS tunneling. These systems use a combination of several detection techniques to
timely identify malicious DNS traffic [29]. In [30], the authors presented an overview of
principal countermeasures for DNS tunneling attacks.

Regarding the state of the art of approaches that analyze encrypted communications,
it has already been presented in [11].

The approach we present and evaluate in the next sections passively extracts both
sequential and statistical features from network flows to detect tunneling attacks in clear-
text protocols. As sequential features, we refer to those characteristics obtained from raw
flow sequences. Most works rely on similar features, like domain-based features [23,29,30],
including the domain name itself [27,28] and payload and volumetric features [23,30].
These can only be obtained when the entire packet has been reconstructed by a network

34

J. Cybersecur. Priv. 2023, 3

analyzer. Differently, for each packet, we directly examine a specific sequence of bytes
without requiring to compute and store any packet-related metadata. In addition, we use
artificial neural networks, which are simpler deep learning models and, hence, require less
computing resources to be trained.

3. Background

3.1. DNS Tunneling

Protocol tunneling is an attack technique commonly used to maximize the time in
which the infection remains undetected in a targeted network. In this context, the DNS
protocol is usually abused in order to bypass security gateways and, then, to tunnel
malware and other data through a client–server model [7]. Figure 1 depicts a typical DNS
tunneling scenario: firstly, an attacker registers a malicious domain (e.g., attacker.com,
accessed on 17 October 2023) on a C&C center managed by her; at that point, assuming
that the attacker has already taken control over a machine inside the targeted network
and violated its security perimeter, the infected computer sends a query to the malicious
domain. Since DNS requests are typically allowed to move in and out of the network, the
query through the DNS resolver reaches the attacker’s C&C center, where the tunneling
program is installed. This established tunnel can be used either to exfiltrate data and
sensitive information or for other malicious purposes.

Figure 1. A DNS tunneling example.

3.2. Support Vector Machines

The original formulation of support vector machines [31] (SVMs) is related to the reso-
lution of supervised tasks with the objective of finding a maximum margin hyperplane that
separates two or more classes of observations. In the last years, one-class SVMs have also
been shown to represent a suitable choice in the context of anomaly and outlier detection [32].
It is defined as a boundary-based anomaly detection method, which modifies the original
SVM approach by extending it in order to deal with unlabeled data. Like traditional SVMs,
one-class SVMs can also benefit from the so called kernel trick when extended to non-linearly
transformed spaces, by defining an appropriate scalar product in the feature space.

3.3. Artificial Neural Networks

Artificial neural networks (ANNs) are deep learning models that have been success-
fully applied to a vast number of knowledge fields ranging from computing science to
arts [33]. They are internally constituted by groups of multiple neurons, which can be
thought of as mathematical functions that take one or more inputs. In ANNs, inputs are
only processed forward and are multiplied by weights within each neuron and summed
up to be then passed to an activation function, which becomes the neuron’s output. In
general, artificial neural networks consist of three different layers: input, hidden, and
output; the first layer accepts inputs, while the hidden layers process them to learn the
optimum weights. Finally, the output layer produces the result.

4. Protocol Tunneling Detector

The proposed architecture splits the burden of processing the traffic of a monitored
network into two different sub-modules: the first mainly deals with secure connections,

35

J. Cybersecur. Priv. 2023, 3

while the second inspects unencrypted traffic. As previously discussed, the former analytics
has been detailed in [11]. At a glance, it detects possible anomalies occurring during an
SSL/TLS handshake between a client, located inside the network monitored by the software
platform outlined in Section 1, and an external server. The SSL/TLS detection analytics
examines information contained in X.509, SSL, and TLS exchanged protocol messages.
Instead, the second module looks for anomalies in unencrypted traffic regarding the
abuse of specific protocols (i.e., tunneling attack techniques). To provide these detection
capabilities, this prototype collects a sequence of bytes from each network packet and
inspects its content. The content, along with its features, is fed to a testing module, which
detects possible anomalies that are signaled to security analysts.

4.1. General Approach

Figure 2 reports the general structure of the proposed anomaly detection methodology,
which runs in near-real-time fashion. Indeed, a delay is introduced both by data processing
and anomaly evaluations that are not performed on the single packet but, rather, on the
entire connection, meaning that the approach has to wait to have enough information to
make a decision. Hence, for each packet observed in the live network traffic, the prototype
collects a sequence of N bytes belonging to the highest network protocol used in the
communication. As an example, in a secure connection which relies on HTTPS, the bytes
returned by the extraction process are the ones related to HTTPS, and not to the other
lower-layer protocols (e.g., TCP).

Figure 2. Protocol tunneling detector prototype overview.

From the obtained bit stream, we extract the following sequential features (i.e., those
features obtained from raw flow sequences):

• binary representation of collected bytes

36

J. Cybersecur. Priv. 2023, 3

• bit-stream entropy and p-values obtained from statistical tests for random and pseu-
dorandom number generators for cryptographic applications [34]

• statistical properties of the bit-stream hexadecimal representation

and we keep the protocol label associated to the bit stream itself. While the binary rep-
resentation of the N bytes is meant to label the protocol of each packet under analysis,
the sequential features allow to understand if the packet content is either compressed
or encrypted.

After feature extraction, the raw dataset constituted by streams of bits and their
corresponding labels is properly sanitized. Indeed, it is easily possible to lightly label
the network packets belonging to a connection by simply looking either at the ports or
at the connection metadata. However, this labeling may be prone to errors since it either
does not take into account potential custom configurations of services (e.g., SMB protocol
operating on a port different from 445) or intentional misuse of specific protocols by
attackers (as in the case of tunneling). Moreover, clear-text protocols may transfer packets
containing compressed data, whose presence could compromise the identification of the
correct network protocol. Hence, it is paramount to have a refined and clean dataset to let
models perform at their best. During our experimental evaluations, we have found out
that the accuracy of the trained models, after refining the raw dataset, has significantly
increased: 7% for the ANN and 20% for the compression/encryption detector.

To achieve this performance boost, we have specially implemented an input sanitiza-
tion module, shown in Figure 3. In this module, we combine unsupervised and supervised
support vector machines (SVMs) to clean the raw dataset: first, for each network pro-
tocol, we train a one-class SVM both on clear-text and encrypted protocols in order to
filter out outliers from the raw dataset. As an example, in protocols like HTTP and SMB,
requests and responses may contain either the content of (compressed) files or other types
of information that are not strictly correlated with the specific protocol communication
patterns. Thus, in order to exclude these outliers, we build one-class SVMs, one for each
different protocol, whose hyperparameters are properly tuned on the raw labeled dataset.
Trained models are then applied to identify outliers and remove them from the raw dataset.
This refined dataset is then used to train an SVM by applying a one-vs-all classification
for detecting packets which are either compressed or encrypted. This single classifier is
applied to remove both compressed and encrypted packets from clear-text protocols. It
is worth mentioning that, in proxied environments, encrypted packets may be present in
connections labeled as HTTP: indeed, in these scenarios, secure communications also pass
through the proxy, even if these connections are erroneously labeled as HTTP. As already
outlined in Section 3, one-class SVMs are successful in identifying outliers; for this reason,
we have extensively used them to sanitize our training sets with remarkable results.

Figure 3. Input sanitization module.

37

J. Cybersecur. Priv. 2023, 3

This sanitized dataset is then split into training and validation sets to essentially
build two different models: (i) an artificial neural network (ANN) able to classify clear-
text protocols (e.g., DNS) and (ii) an SVM that is a compression/encryption detector for
identifying, respectively, compressed and encrypted packets. As later shown in Section 5,
after construction, the training set is considerably unbalanced towards secure protocols.
For this reason, we apply the SMOTE data augmentation technique [35] to increase the
samples of those protocols belonging to minority classes. During the test phase, performed
light labeling based on connection’s destination port is not taken into account, and the
resulting bit streams are grouped by connection. Each packet is given in input to a trained
ANN (whose training process is detailed in Section 4.3) and the analytics both verifies if,
in the connection, there are some packets that have been classified with low confidence
and more than one protocol is present. While in this latter case, the co-presence of multiple
protocols might signal a possible tunneling attack, when the ANN classifies packets with
low confidence, then, the connection could contain either compressed/encrypted packets
or packets whose byte sequences differ from the ones usually observed in the network.
To distinguish between these two cases, a more in depth verification is carried out: if the
connection is not entirely encrypted, meaning that it is a not a secure communication,
the prototype checks if the packets signaled as anomalous (i.e., with low confidence) by
the ANN are either encrypted or belongs to another protocol. If either encryption or
compression is detected, the anomaly is notified to security analysts. On the other hand,
if the entire connection is encrypted, it is collected and stored in a database, periodically
accessed in order to retrieve data and metadata about X.509, SSL, and TLS exchanged
protocol messages in order to be analyzed by the analytics described in [11]. As outlined
earlier, all the compression/encryption tests are performed using an SVM, capable of
correctly classifying network packets, but the proposed classifier could be substituted with
other valid alternatives, such as random forest models.

4.2. Feature Extraction

As discussed in Section 4.1, sequential features allow us to understand if the content
of a network packet is either compressed or encrypted. We rely on a statistical package
developed by the Information Technology Laboratory at the National Institute of Standards
and Technology, containing a set of 15 tests that measure the randomness of a binary
sequence [34]. These tests have been designed to provide a first step towards the decision
whether or not a generated binary sequence can be used in cryptographic applications,
namely if the sequence appears to be randomly generated. In other words, each new
bit of the sequence should be unpredictable. From a statistical point of view, each test
verifies if the sequence being under analysis is random. This null hypothesis can be either
rejected or accepted depending on the statistic value on the data exceeding or not a specific
value—called critical value—that is typically far in the tails of a distribution of reference.
Test reference distributions used in the NIST tests are the standard normal and the χ2 dis-
tributions. Even if the statistical package contains 15 tests, we use only 5 of them, because
the length N of the binary sequence we test does not meet the corresponding input size
recommendation in [34]. To each sequence, we apply the following tests: frequency within
a block, longest-run-of-ones in a block, serial test, approximate entropy, and cumulative
sums. In addition, in our experimental evaluations, we extract some statistical proper-
ties and compute the Shannon entropy metrics [36] that, combined with the previously
mentioned tests, have shown to improve the overall accuracy of the classification. As statis-
tical properties, the following features are extracted from the corresponding hexadecimal
representation h of a bit stream of N bytes:

• number of different alphanumeric characters in h normalized over h length;
• number of different letters in h normalized over h length;
• longest consecutive sequence of the same character in h normalized over h length.

38

J. Cybersecur. Priv. 2023, 3

4.3. Input Sanitization

For accurately training machine learning models, the training set should be as much
“clean” as possible. In Section 4.1 we have already discussed how labeling based on connec-
tion metadata could be error prone either due to potential custom configurations of services,
intentional misuse of specific protocols by attackers, or network protocols encapsulating
compressed data. In addition, during our experimental evaluations, we have observed that
in some cases the employed traffic analyzer can assign an empty label or multiple labels to
a single network packet. While in the first case bit streams with empty labels can be easily
discarded for the training phase, in the presence of multi-labels, it is possible to assign a
unique correct label if a protocol that is monitored by the prototype itself exists among the
labels. As an example, if the assigned labels are NTLM, GSSAPI, SMB, and DCE_RPC, the
resulting label is SMB. For these reasons the very first step of the sanitization module is to
correct the multi-labels associated to bit streams and discard the empty ones. Then, we train
an ensamble of one-class SVMs, one for each protocol (see Figure 3): each different classifier
is properly tuned to filter out outliers from the raw dataset. As stated in Section 4.1, HTTP
and SMB requests or responses may contain either the content of (compressed) files or
other types of information that are not strictly correlated with the specific protocol com-
munication patterns. Trained models are then applied to identify these kinds of network
packets, and they are removed from the raw dataset. This preprocessed dataset is used to
train a supervised support vector machine, called compression/encryption detector, by
applying a one-vs-all classification for detecting packets which are either compressed or
encrypted. It is worth noting that all these models are still inaccurate because they are
trained on a “dirty” dataset. Hence, to further increase the quality of the labels and obtain
the final training set, the compression/encryption detector is fed with clear-text bit streams
to remove possible compressed/encrypted packets from clear-text protocols, as in the case
of proxied environments. The result of this sanitization process is a dataset which allows to
train and validate two accurate models: an artificial neural network for clear-text protocols
and an SVM for compressed and encrypted traffic.

4.4. Anomaly Detection

During the test phase (see Figure 2), bit streams are analyzed by the trained ANN. In
turn, the ANN flags three different cases as potential tunneling attacks and alerts security
analysts when these cases occur: (i) the high confidence detection of more than one protocol
in the same connection, (ii) the low confidence detection of one protocol for all the packets
in the same connection, and (iii) the labeling, both with high and low confidence, of one or
more protocols for the packets belonging to the same connection (as in the case of secure
protocols over DNS). As later specified in Section 5, in the ANN, the high/low confidence
threshold c can be dynamically set. In any case, the detection of encrypted packets into a
clear-text connection generates alert notifications enriched with the information about the
presence of encrypted protocol messages. Possibly, notified alerts can be filtered whitelisting
source and/or destination IPs to reduce the false positives caused by well-known machines.

Hence, if some packets of the connection are classified with low confidence, the
corresponding bit stream’s sequential features (refer to Section 4.2) are given in input to
the compression/encryption detector. If all the packets contained in the connection are
encrypted, then the connection and its corresponding metadata are given in input to the
SSL/TLS analytics for further scrutiny [11]. On the contrary, if the connection contains
some compressed/encrypted packets or none of them, depending on the protocol, the
connection is considered anomalous. Indeed, it is worth noting that the combination of two
different protocols is not always a signal of an occurring attack: as already discussed, SMB
and HTTP connections can contain protocol-specific messages along with compressed data;
however, DNS messages interleaved with other protocols are highly suspicious. Finally,
since each single module of the proposed prototype has been trained only with legitimate
traffic, it is potentially able to spot zero-day attacks having features which are different
from the ones usually observed in the network.

39

J. Cybersecur. Priv. 2023, 3

5. Experimental Evaluation

The proposed prototype and the experimental evaluations have been, respectively,
implemented and performed in Python. The size N we have chosen for the byte sequences,
extracted from network packets, is 52 bytes. More in detail, we retrieve the first 64 bytes
of the payload of each TCP/UDP packet, from which we remove the first 12 B: indeed, a
preliminary evaluation has shown that these first bytes had a very low variance in their
binary representation among different packets of the same protocol. The specific selection
of the byte sequence to extract has improved the accuracy of the trained neural network,
increasing its anomaly detection capabilities.

For the experimental evaluation of the proposed prototype, we collected both benign
and malicious datasets. The benign communication dataset contains a subset of legitimate
traffic observed in a real corporate network during a period of about 2 days. From this initial
dataset, we sample connections to start building the models training sets and the dataset
that will be used for testing. Figure 4 summarizes general statistics about the collected
training set in terms of packets, before and after sanitization, while Table 1 reports how the
test set of legitimate network traffic is characterized. The sanitization process makes the
training set, which is obviously unbalanced towards encrypted protocols, balanced: indeed,
after sanitization, the number of packets belonging to, respectively, clear-text and secure
protocols is almost even. It is worth noting that the balanced training set for the ANN,
containing DHCP, DNS, NTP, HTTP, and SMB packets, also comprises data belonging to
the KRB network protocol (i.e., encrypted): our experimental evaluations have shown that
during the test phase, the neural network performs better when it is also trained with
encrypted byte sequences. As an ANN, we use a Keras sequential model with three hidden
layers. The input layer accepts 416 bits (i.e., 52 B) and the output layer consists of six
neurons, one for each clear-text protocol and KRB. Regarding SVMs, we rely on the open-
source library scikit-learn. For completeness, we report in Table 2 the hyperparameters
we have used to train the different SVMs in the sanitization module; in addition, we also
report the hyperparameters we obtained by tuning the compression/encryption detector
in the validation phase. It is worth mentioning that the parameter t, in Table 2, is used
for each protocol one-class SVM as a threshold to filter only those outliers which have a
Shannon entropy greater than t.

The intuition behind this filtering is that byte sequences having high entropy do not
specifically belong to clear-text protocol communications; thus, they have to be discarded
from the training set.

Figure 4. Packet distribution for each network protocol, before and after balancing.

40

J. Cybersecur. Priv. 2023, 3

Table 1. Benign test set composition.

Statistics Count [(%)]

DNS packets 30,669 (1.10%)

SMB packets 65,944 (2.35%)

HTTP packets 262 (0.01%)

NTP packets 46 (0.002%)

DHCP packets 20 (0.001%)

KRB packets 741 (0.03%)

SFTP packets 69,158 (2.46%)

Not labeled packets 61,552 (2.20%)

SSL packets 2,571,608 (91.84%)

Distinct connections 51,459

Distinct source machines 758

Distinct dest. machines 1566

On the other hand, malicious datasets are constituted by packet captures (PCAPs)
shared by [37–39]. The former dataset contains three different types of DNS tunnels gener-
ated in a controlled environment, whose sizes are approximately 750 MB each. Tunneled
data contain, respectively, SFTP, SSH, and Telnet malicious protocol messages. Each sample
is made up of one single connection containing millions of DNS packets. It is reasonable to
note that such connections would either easily stand out to security analysts or be simply
detectable through well-known statistical approaches (e.g., outlier detection). Subsequently,
as stated in Section 4.1, our approach groups data by connection; therefore, a single mali-
cious packet is enough to flag the entire connection as anomalous. For the above reasons,
we have decided to split each sample in n different connections, composed by approxi-
mately 5000 DNS packets each. The size of the split, reported in Table 3, has been chosen
according to the size of the connections monitored in the controlled environment. The
second malicious dataset, instead, was born by the collaboration between the Bell Canada
company’s Cyber Threat Intelligence group and the Canadian Institute for Cybersecurity.

Table 2. Support vector machine hyperparameter settings.

Model Kernel γ ν t C

DHCP one-class SVM RBF 0.7 0.03 0.77 −
DNS one-class SVM RBF 0.7 0.03 0.77 −
NTP one-class SVM RBF 0.03 0.1 0.92 −
HTTP one-class SVM RBF 0.08 0.07 0.91 −
SMB one-class SVM RBF 0.06 0.08 0.77 −
KRB one-class SVM RBF 0.04 0.05 0.97 −
SFTP one-class SVM RBF 0.7 0.05 0.97 −
SSH one-class SVM RBF 0.7 0.05 0.97 −
SSL one-class SVM RBF 0.0001 0.0028 0.97 −
Compression/encryption detector RBF 0.01 − − 100

In this dataset, we only take into account DNS packets that, in their payloads, contain
exfiltrations of various types of files and we discard legitimate traffic. Moreover, it is worth
mentioning that all the packets contained in [38] have been truncated at capture time to 96 B;
this has required a slightly different approach to test these samples that will be discussed

41

J. Cybersecur. Priv. 2023, 3

later in this Section. Finally, [39] is a single packet capture to test detection and alerting
capabilities of Packetbeat, Elastic’s network packet analyzer. Malicious packet captures
have been injected into the network security platform in order to be processed and analyzed
as ordinary traffic. Table 3 reports a summary of the malicious assembled datasets: for each
PCAP, we list the number of packets in the capture and which of these packets have been
successfully processed by the platform’s network analyzer (i.e., those packets whose size
is greater or equal than 64 B); in addition, Table 3 depicts the number of connections in
the PCAP and the number of them that have been identified as protocol tunneling attacks
(i.e., true positives TP). Finally, the true positive rate TPR of the proposed detector is
reported for each packet capture. Analogously, Table 4 reports the same information
contained in Table 3, but with reference to the test set described in Table 1. Being legiti-
mate traffic, the last two columns report the connections mistakenly classified as tunnels
(i.e., false positives FP) and the false positive rate FPR. The results of the evaluation,
reported in Tables 3 and 4, show a false positive rate and a true positive rate, respectively,
equal to 5.8% and 96.6%. The overall accuracy of the proposed prototype is 97.1%, while
the resulting F1-score is 95.6%.

We conclude this section by discussing how we slightly modified the proposed ap-
proach, used in the other datasets, to be compliant with [38]. Indeed, the DNS packets
contained in this dataset have been truncated during traffic acquisition, resulting in byte
sequences that do not have the same length. In order to solve this dataset generation
problem, we reduced all the DNS packets to a common length of 44 B, discarding the
shorter byte sequences and trimming the longer ones. The result of the filtering operation
is clearly shown in Table 3, where the number of processed PCAP packets is more than 54%
less than the ones received in input by the traffic analyzer.

Since the bit-stream lengths are different from the datasets [37,39], we retrained our
ANN to be fed with 44 B sequences. On the contrary, for this evaluation, we maintained the
same hyperparameters for the different SVMs, reported in Table 2, and the same threshold
c, used in the other experiments. In particular, for all our experimental evaluations, we set c
to 0.999999 in order to maximize the algorithm sensitivity and to compensate for the lesser
information provided by the processing of [38]. This explains why, in the experimental
evaluations, we were not able to achieve a very low false positive rate, as shown in Table 4.

Table 3. Malicious test set summary.

Tunnel Type No. of PCAP Packets No. of Processed PCAP Packets No. of Connections TP TPR(%)

Telnet over DNS tunnel [37] 2.4 M 2.2 M 457 457 100%

SFTP over DNS tunnel [37] 2 M 1 M 209 209 100%

SSH over DNS tunnel [37] 2.8 M 2.7 M 545 545 100%

Light file exfiltration [38] 187,500 102,000 7617 7361 96.6%

Heavy file exfiltration [38] 1.34 M 765,000 43,964 42,441 96.5%

Data exfiltration over Iodine 438 247 1 1 100%DNS tunnel [39]

Table 4. Benign test set summary.

Dataset
No. of PCAP No. of Processed

No. of Connections FP FPR(%)
Packets PCAP Packets

Legitimate traffic 5.4 M 2.8 M 51,459 2966 5.8%

However, in context where a high number of false positives could be detrimental, c can
be tuned to obtain a 0.5% false positive rate or lesser without losing accuracy on protocol
tunneling attacks.

42

J. Cybersecur. Priv. 2023, 3

6. Discussion

One of the most relevant challenges in cybersecurity is the detection of zero-day
attacks, which can easily evade all the products based on signature or pattern detection.
The proposed approach leverages various characteristics that are known to perform well
when facing zero-day threats [40] like, for example, the absence of malicious samples in
the training set, the training set sanitization process, and the absence of signature-based
features and filters.

On the other hand, in Section 4.4, we suggested the usage of whitelists as a way of
reducing false positives. While in the experimental evaluation of Section 5, we intentionally
used them as little as possible (i.e., only 11 of the 758 machines in the benign test set were
actually whitelisted), a security analyst could customize such whitelists in order to filter out
machines that do not require monitoring. Adding domain knowledge to machine learning
algorithms in the form of data (in our context, machines) that should not be modeled or
monitored can not only reduce the amount of alerts that an analyst has to evaluate, but
also increase model performance. In conjunction with the integration of whitelists, the
number of false positives generated by our approach can be tuned in two other ways.
The first one is represented by the threshold c which, as already described in Section 5,
controls the sensitivity of the ANN; in turn, it impacts the false positive rate because
the lower the minimum value of the ANN output confidence considered as “high”, the
harder to match the conditions we have defined for the connection to be an anomaly (see
Section 4.4). The second way of reducing false positives is a periodic retraining of proposed
models. As briefly described in Section 7, once the prototype will be included in a streaming
architecture, the training phase will be performed periodically. Real networks changes over
time, so keeping the models updated is the key to maintain an accurate modeling of what
is the current state of the network.

Finally, as already pointed out in Section 3, differently from other approaches, we
extract features directly from the raw traffic without relying on network analyzers that
reconstruct network traffic metadata. This allows to save computing resources and to speed
up the analyses. Furthermore, the use of bit-stream representation is independent from
protocol specific fields (e.g., DNS query field), making the prototype also able to detect
tunneling attacks on different clear-text protocols.

7. Conclusions

In this paper, we proposed a software prototype for detecting protocol tunneling
attacks in a monitored network. Relying on a combination of machine learning and deep
learning techniques, the proposed solution identifies anomalous connections that deviate
from the ones usually established in the network. Since machine learning models are only
built based on legitimate traffic, the proposed solution is therefore able to deal with zero-day
attacks, because malicious traffic is not required for the learning phase. The prototype has
been evaluated both on malicious and benign datasets: results show a very high accuracy
in detecting malicious samples and a low false positive rate on legitimate traffic.

As future work, we plan to optimize the algorithm through a deeper analysis on
how the choice of byte-stream length affects the computational time, in order to find a
value which guarantees the best trade-off between efficiency and accuracy. Indeed, in this
work, we mainly focused on accuracy. Secondly, we envision that the engineered prototype
will be integrated into a streaming architecture, where new data will be analyzed by the
proposed prototype as soon as they are collected to provide the fastest possible response.
In parallel, the models of the protocol tunneling detector are periodically retrained to
keep them up-to-date with possible deviations from the usual behaviour of the monitored
network. It is important to mention that the envisioned streaming architecture can always
count on a trained model to process incoming traffic during possible retrainings; old
models will be available until the new ones are ready. Finally, in Section 6, we discussed
the benefits of IP whitelisting filters. Once in production, the prototype can be easily
extended with other SOC-defined whitelists (e.g., whitelists regarding domains and/or

43

J. Cybersecur. Priv. 2023, 3

autonomous systems), allowing security analysts to enrich the proposed detector with their
domain-specific knowledge, further reducing possible false positives and improving the
overall performance.

Author Contributions: Conceptualization, F.S., D.U. and F.B.; methodology, F.S. and D.U.; software,
F.S. and B.C.; validation, F.S., B.C., D.U. and F.B.; formal analysis, F.S. and B.C.; investigation, F.S. and
B.C.; resources, D.U. and F.B.; data curation, F.S. and B.C.; writing—original draft preparation, F.S.,
B.C, D.U. and F.B.; writing—review and editing, F.S., B.C. and D.U.; supervision, D.U. and F.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Datasets containing DNS tunneling attacks can be found here: https:
//s3.eu-central-1.wasabisys.com/dns-tunneling/dns_tunnel_sftp.pcapng, https://s3.eu-central-1.
wasabisys.com/dns-tunneling/dns_tunnel_ssh.pcapng, https://s3.eu-central-1.wasabisys.com/dns-
tunneling/dns_tunnel_telnet.pcapng, https://www.unb.ca/cic/datasets/dns-exf-2021.html, and
https://github.com/elastic/examples/blob/master/Security%20Analytics/dns_tunnel_detection/
dns-tunnel-iodine.pcap, all accessed on 17 October 2023. Regarding the dataset containing the le-
gitimate communications observed in a real corporate network, it is owned by aizoOn Technology
Consulting and cannot be made available due to company policies.

Conflicts of Interest: The authors declare no conflict of interest, given that aizoOn Technology
Consulting has not interfered with their ability to analyze and interpret data. Moreover, for this
research, authors have not received any additional grant or funding.

References

1. ENISA Threat Landscape 2022. Available online: https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
(accessed on 6 February 2023).

2. Cost of a Data Breach. A Million-Dollar Race to Detect and Respond. 2022. Available online: https://www.ibm.com/reports/
data-breach (accessed on 6 February 2023).

3. The SolarWinds Cyber-Attack: What You Need to Know. Available online: https://www.cisecurity.org/solarwinds (accessed on
6 February 2023).

4. 7 Top Trends in Cybersecurity for 2022. Available online: https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-
for-2022 (accessed on 6 February 2023).

5. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

6. Protocol Tunneling. Available online: https://attack.mitre.org/techniques/T1572/ (accessed on 6 February 2023).
7. Encrypted Traffic Analysis. Available online: https://www.enisa.europa.eu/publications/encrypted-traffic-analysis (accessed

on 6 February 2023).
8. Bisio, F.; Saeli, S.; Lombardo, P.; Bernardi, D.; Perotti, A.; Massa, D. Real-time behavioral DGA detection through machine learning.

In Proceedings of the International Carnahan Conference on Security Technology (ICCST), Madrid, Spain, 23–26 October 2017;
pp. 1–6. [CrossRef]

9. Lombardo, P.; Saeli, S.; Bisio, F.; Bernardi, D.; Massa, D. Fast Flux Service Network Detection via Data Mining on Passive DNS
Traffic. In Proceedings of the International Conference on Information Security, Guildford, UK, 9–12 September 2018; pp. 463–480.
[CrossRef]

10. Saeli, S.; Bisio, F.; Lombardo, P.; Massa, D. DNS Covert Channel Detection via Behavioral Analysis: A Machine Learning
Approach. In Proceedings of the International Conference on Malicious and Unwanted Software (MALWARE), Nantucket, MA,
USA, 22–24 October 2019; pp. 46–55.

11. Ucci, D.; Sobrero, F.; Bisio, F.; Zorzino, M. Near-real-time Anomaly Detection in Encrypted Traffic using Machine Learning
Techniques. In Proceedings of the IEEE Symposium Series on Computational Intelligence, SSCI 2021, Orlando, FL, USA,
5–7 December 2021; pp. 1–8. [CrossRef]

12. Felt, A.P.; Barnes, R.; King, A.; Palmer, C.; Bentzel, C.; Tabriz, P. Measuring HTTPS Adoption on the Web. In Proceedings of the
26th USENIX Conference on Security Symposium, Vancouver, BC, Canada, 16–18 August 2017; pp. 1323–1338.

13. The Relevance of Network Security in an Encrypted World. Available online: https://blogs.vmware.com/networkvirtualization/
2020/09/network-security-encrypted.html/ (accessed on 6 February 2023).

14. Encryption, Privacy in the Internet Trends Report. Available online: https://duo.com/decipher/encryption-privacy-in-the-
internet-trends-report (accessed on 6 February 2023).

15. Keeping Up with the Performance Demands of Encrypted Web Traffic. Available online: https://www.fortinet.com/blog/
industry-trends/keeping-up-with-performance-demands-of-encrypted-web-traffic (accessed on 6 February 2023).

44

J. Cybersecur. Priv. 2023, 3

16. Google Transparency Report: HTTPS Encryption on the Web. Available online: https://transparencyreport.google.com/https/
overview?hl=en (accessed on 6 February 2023).

17. Cisco Encrypted Traffic Analytics. Available online: https://www.cisco.com/c/en/us/solutions/collateral/enterprise-
networks/enterprise-network-security/nb-09-encrytd-traf-anlytcs-wp-cte-en.pdf (accessed on 6 February 2023).

18. ENISA Threat Landscape—Malware. Available online: https://www.enisa.europa.eu/publications/malware/at_download/
fullReport (accessed on 6 February 2023).

19. Taylor, R.W.; Fritsch, E.J.; Liederbach, J. Digital Crime and Digital Terrorism; Prentice Hall Press: Hoboken, NJ, USA, 2014.
20. Cyber Security Review. Available online: https://www.treasuryandrisk.com/2012/02/01/cyber-security-review/ (accessed on

6 February 2023).
21. Yadav, T.; Mallari, R.A. Technical aspects of cyber kill chain. arXiv 2016, arXiv:1606.03184.
22. Applying Machine Learning to Network Anomalies. Available online: https://www.youtube.com/watch?v=qOfgNd-qijI

(accessed on 6 February 2023).
23. Wang, Y.; Zhou, A.; Liao, S.; Zheng, R.; Hu, R.; Zhang, L. A comprehensive survey on DNS tunnel detection. Comput. Netw. 2021,

197, 108322. [CrossRef]
24. Do, V.T.; Engelstad, P.; Feng, B.; van Do, T. Detection of DNS Tunneling in Mobile Networks Using Machine Learning. In

Proceedings of the Information Science and Applications, Macau, China, 20–23 March 2017; Kim, K., Joukov, N., Eds.; Springer:
Singapore, 2017; pp. 221–230.

25. Buczak, A.L.; Hanke, P.A.; Cancro, G.J.; Toma, M.K.; Watkins, L.A.; Chavis, J.S. Detection of Tunnels in PCAP Data by Random
Forests. In Proceedings of the CISRC’16 11th Annual Cyber and Information Security Research Conference, Oak Ridge, TN, USA,
5–7 April 2016. [CrossRef]

26. Lambion, D.; Josten, M.; Olumofin, F.; De Cock, M. Malicious DNS Tunneling Detection in Real-Traffic DNS Data. In Proceedings
of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 5736–5738.
[CrossRef]

27. Palau, F.; Catania, C.; Guerra, J.; Garcia, S.; Rigaki, M. DNS tunneling: A deep learning based lexicographical detection approach.
arXiv 2020, arXiv:2006.06122.

28. Zhang, J.; Yang, L.; Yu, S.; Ma, J. A DNS tunneling detection method based on deep learning models to prevent data exfiltration.
In Proceedings of the Network and System Security: 13th International Conference, NSS 2019, Sapporo, Japan, 15–18 December
2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 520–535.

29. Ahmed, J.; Gharakheili, H.H.; Raza, Q.; Russell, C.; Sivaraman, V. Real-time detection of DNS exfiltration and tunneling from
enterprise networks. In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
Arlington, VA, USA, 8–12 April 2019; pp. 649–653.

30. Sanjay; Rajendran, B.; Pushparaj Shetty, D. DNS amplification & DNS tunneling attacks simulation, detection and mitigation
approaches. In Proceedings of the 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore,
India, 26–28 February 2020; pp. 230–236.

31. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
32. Swersky, L.; Marques, H.O.; Sander, J.; Campello, R.J.; Zimek, A. On the evaluation of outlier detection and one-class classification

methods. In Proceedings of the 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Montreal,
QC, Canada, 17–19 October 2016; pp. 1–10. [CrossRef]

33. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4, e00938. [CrossRef] [PubMed]

34. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Available online:
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf (accessed on 6 February 2023).

35. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res.
2002, 16, 321–357. [CrossRef]

36. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
37. Berg, A.; Forsberg, D. Identifying DNS-tunneled traffic with predictive models. arXiv 2019, arXiv:1906.11246.
38. Mahdavifar, S.; Hanafy Salem, A.; Victor, P.; Razavi, A.H.; Garzon, M.; Hellberg, N.; Lashkari, A.H. Lightweight Hybrid Detection

of Data Exfiltration Using DNS Based on Machine Learning. In Proceedings of the ICCNS 2021: The 11th International Conference
on Communication and Network Security, Weihai, China, 3–5 December 2021; pp. 80–86. [CrossRef]

39. Iodine DNS Tunnel. Available online: https://github.com/elastic/examples/blob/master/Security%20Analytics/dns_tunnel_
detection/dns-tunnel-iodine.pcap (accessed on 6 February 2023).

40. Ali, S.; Rehman, S.U.; Imran, A.; Adeem, G.; Iqbal, Z.; Kim, K.I. Comparative Evaluation of AI-Based Techniques for Zero-Day
Attacks Detection. Electronics 2022, 11, 3934. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

45

Citation: Robins, A.; Olguin, S.;

Brown, J.; Carper, C.; Borowczak, M.

Power-Based Side-Channel Attacks on

Program Control Flow with Machine

Learning Models. J. Cybersecur. Priv.

2023, 3, 351–363.

https://doi.org/10.3390/jcp3030018

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 27 May 2023

Revised: 22 June 2023

Accepted: 28 June 2023

Published: 7 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Power-Based Side-Channel Attacks on Program Control Flow
with Machine Learning Models

Andey Robins 1,*, Stone Olguin 2, Jarek Brown 2, Clay Carper 2 and Mike Borowczak 1

1 Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA;
mike.borowczak@ucf.edu

2 Department of Electrical Engineering and Computer Science, University of Wyoming,
Laramie, WY 82070, USA; aolguin1@uwyo.edu (S.O.); jbrow125@uwyo.edu (J.B.); ccarper2@uwyo.edu (C.C.)

* Correspondence: ja548335@ucf.edu

Abstract: The control flow of a program represents valuable and sensitive information; in embedded
systems, this information can take on even greater value as the resources, control flow, and execution
of the system have more constraints and functional implications than modern desktop environments.
Early works have demonstrated the possibility of recovering such control flow through power-
based side-channel attacks in tightly constrained environments; however, they relied on meaningful
differences in computational states or data dependency to distinguish between states in a state
machine. This work applies more advanced machine learning techniques to state machines which
perform identical operations in all branches of control flow. Complete control flow is recovered
with 99% accuracy even in situations where 97% of work is outside of the control flow structures.
This work demonstrates the efficacy of these approaches for recovering control flow information;
continues developing available knowledge about power-based attacks on program control flow;
and examines the applicability of multiple standard machine learning models to the problem of
classification over power-based side-channel information.

Keywords: side-channel attack; machine learning; power analysis; cybersecurity; control flow;
dynamic program analysis

1. Introduction

A finite-state machine (FSM) is a computation model commonly used within the
embedded system space; program control flow in embedded devices is often handled
by an FSM. Smaller state machines, those with fewer states and transitions, can exist in
limited purpose devices, such as vending machines, or more complex devices such as
telecommunications devices. Such devices are often the target of Side-Channel Analysis
(SCA), which aims to recover information from an embedded device. Power-based side-
channel data are most commonly measured directly from the device via an instrumented
VCC line. While this method requires direct access to the victim device, it is the most
common method for gathering data for SCA. Other common side-channels utilized in SCA
include system byproducts such as electromagnetic radiation, sound, and heat.

With a constant increase in consumer usage of Internet of Things (IoT) devices, low-
power embedded systems are constantly being put into operation. One popular example
of such a system making use of an FSM are smart locks. Often, these devices allow an
end-user to configure multiple access codes and enable logging when a code is used.
Access may be controlled remotely, allowing for on-the-fly adjustments to user access
permissions. With the growing popularity of smart locks and similar smart devices, if an
attacker were able to reverse-engineer the control flow inherent to the device, they may be
able to influence behavior within the FSM. One informational prerequisite to building out
such an attack would likely include identifying and characterizing the FSM responsible for
whether or not the lock is engaged. Further, being able to exfiltrate sensitive data, such as

J. Cybersecur. Priv. 2023, 3, 351–363. https://doi.org/10.3390/jcp3030018 https://www.mdpi.com/journal/jcp46

J. Cybersecur. Priv. 2023, 3

the secret key that determines the lock’s activation state, could allow an attacker to bypass
the smart lock, granting them unimpeded access to the end-user’s home.

This work extends the previous work of Carper et al. [1], which performed Differential
Power Analysis (DPA) on data collected through the use of the ChipWhisperer hardware
platform [2]. Specifically, the ChipWhisperer Nano was used to gather power-trace data.
An FSM that consisted of two states conducting identical operations, in conjunction with an
oracle-based input guiding program control flow, was utilized for data collection. The re-
sulting power-traces were used to train multiple machine learning classification algorithms.
These trained algorithms were then used to differentiate between state transitions occurring
during code execution on the microcontroller. Further, recovery was successful when
applied to 256 distinct classes of state transitions, resulting in the identification of the
underlying process control flow. This work deviates from the prior foundational work
by exploring additional machine learning backed solutions to the problem of control flow
recovery, as well as exploring homogeneous operations within an individual state’s com-
putations to experimentally determine what degree of divergence in state behavior is
necessary to ensure program control flow recovery.

Contributions of this work seek to answer three research questions. First, is different
behavior required in each state of an embedded state machine in order to completely
recover the transitions? Second, to what degree does the proportion of time spent in control
flow and in a particular state of the FSM impact the recoverability of the state transition
ordering? Finally, how effective are “off-the-shelf,” meaning algorithms with no manual
configuration, machine learning models when applied to the task of recovering control
flow information?

This work is organized as follows. Section 2 motivates the side-channel analysis space
and establishes relevant background information. Section 3 outlines the data collection and
classification process undertaken in this work. Section 4 outlines the classification accuracy
and Section 5 examines the application of results to the research questions. Section 6 con-
cludes this work with an acknowledgment of limitations binding this work and commentary
on future research directions required to better understand the control flow recovery space
using power-based side-channels.

2. Related Works

The history of power-based side-channel attacks has had a number of meaningful
advances coming in the last few decades. Despite the coming exploration into the efficacy
of such power-based attacks, recovery of higher-order, control-level information such as
the execution path through a state machine was under-explored until very recently. Thus,
this section presents a brief overview of relevant findings in power-based side-channels,
along with its applications and crossover with the field of Automated Machine Learning
(AutoML), and characterizes the relevant previous work to motivate the experiments
conducted herein. AutoML, the practice of automatically searching machine learning
pipelines for effective ML configurations, has begun to be applied to other side-channel
problems such as cryptographic key recovery with high success, motivating attempts to
apply AutoML findings to the problem of program control flow recovery.

2.1. SCA Backgrounds

Common side-channel attacks involve attacks on the power usage of a device. The
most common of these are simple power analysis (SPA) and differential power analysis
(DPA) [3]. These methods of side-channel analysis inspired research in device-level SCA;
they have even been referred to as the “bedrock” for SCA research [4]. The direct analysis
of power usage by gathering power traces allows for a user to be able to understand
the implementations of cryptographic operations of a device, and it can allow for the
extraction of a secret key. SPA and DPA are both considered passive attacks as they
entail only observing various properties of the device; however, active attacks are another
avenue explored in the literature. Fault injection attacks, a breadth of attacks which span

47

J. Cybersecur. Priv. 2023, 3

voltage glitching to temperature extremes, are another frequently explored avenue for
SCA [5,6]. Other powerful techniques exist, such as combining different passive and
active attack strategies. For example, a novel analysis tool Differential Behavioral Analysis
(DBA) is a combination of a Safe Error Attack (SEA) and DPA [7]. DBA can be defended
against using traditional bit-masking strategies. This work makes use of passive attacks
exclusively, and specifically employs simple power analysis as a means to recover control
flow information.

One of the most common applications of side-channel attacks is in the subversion of
cryptographic systems. These attacks on crypto-schema employ both active and passive
attacks. The injection of faults has been shown to be able to effectively recover a secret
AES key, and the power observation making use of DPA similarly is able to recover a
secret AES key [8,9]. Many of the early works in SCA demonstrated various ways to
recover secret cryptographic information, either keys or text, to some degree; however,
with the advent of post-quantum cryptography, many of the crypto-systems currently
employed will become insecure and obsolete [10]. For more discussion of the topic, we
refer the curious reader to one of the surveys on the state-of-the-art in the field [11,12]. The
realm of side-channels is evolving in cooperation with these searches for quantum-resistant
algorithms, and early works have demonstrated strong recovery attacks for cryptographic
secrets in post-quantum, lattice-based cryptographic systems [13].

The rising prevalence of SCA in cryptographically sensitive applications and its impact
to the security of a device led to development of different countermeasures against SCA.
Borowczak and Vemuri developed a method to create side-channel resistant finite-state
machines (S*FSMs) [14]. This introduced an algorithm to transform FSMs to side-channel
resistant FSMs. The method of Random Process Interrupts (RPIs) allows for some of the
operations in cryptographic devices to be less vulnerable to timing attacks by implementing
strategic delays in execution [15]. In addition to the RPI method, two other popular
methods of implementing countermeasures against side-channel power include masking
and hiding [16]. Masking involves generating a random “mask” value that will attempt
to conceal any intermediate value during cryptographic operations. Masking removes
correlations between the gathered traces and the cryptographic secret information. Hiding
involves trying to make traces appear to be random. This randomness can appear by
adding noise to the power or implementing random delays or desynchronization. As
a result, the gathered traces are harder to extract secret information. Therefore, many
countermeasures against SCA have been devised, but DPA methods would still find
secure information even with countermeasures in place. In the same work that introduced
RPIs, the countermeasure is still shown to be vulnerable to DPA [15]. Thus, even with
countermeasures in place, improvements of applications of SCA can circumvent these
protections and secret information can still be extracted.

Instead of collecting and analyzing arbitrary power traces to determine the leakage
of information Test Vector Leakage Assessment (TVLA) can be used [17]. TVLA involves
using statistical tests to determine if there is significant evidence to determine if the device
had any leakage. Goodwill et al. utilized the Welch’s t-test to determine if there is a
significant difference between two groups. The hypothesis tested whether the gathered
traces are truly random or if there is leakage present within traces. While this methodology
can be beneficial and has been used recently to show side-channel vulnerabilities in some
of the NIST lightweight cryptography round 2 candidate s-boxes [18,19], TVLA can have
issues demonstrated by relatively high rates of false negatives or false positives, even when
using different tests such as the Pearson χ2 test [20].

Signal Processing also can be used for SCA both as an attack vector and for defensive
countermeasures, as mentioned by Le et al. [21]. In addition, Le et al. also demonstrates
how three different signal processing techniques could be applied to SCA, which would
allow for more ways to implement it. The work also defends using signal processing to
mitigate SCA. There is also a precedent for AutoML being utilized for signal processing;
an example uses the AutoML procedure of acquiring correct hyperparameters for deep

48

J. Cybersecur. Priv. 2023, 3

learning to classify Electroencephalography (EEG) signals [22]. The work also claims that
EEG signal classification is complex enough that machine learning techniques such as deep
learning are “appropriate to find the best solutions”. The hyperparameter tuning and
deep learning from AutoML were stated to have less overfitting, and thus, yielded more
optimized models for classifying the EEG signals.

Time-series forecasting, although prominently implemented with traditional machine
learning methods, has significantly less implementation within AutoML toolchains, being
cited as “still in the development stage” [23]. It is demonstrated in their review article
that there are gaps in traditional time-series forecasting with machine learning in terms
of reapplying AutoML to time-series methods that used traditional machine learning [23].
The article showcases that there are research avenues, such as deep learning or neural
architecture search (NAS), to implement AutoML for time-series analysis.

AutoML has been implemented in analyzing time-series data, as experimented pre-
viously in comparison to rigorous, hand-crafted machine learning models [24]. In this
paper, its authors conclude that in short-term models for time-series predictions, AutoML
does not outperform traditional methods of using Machine Learning by manually tuning
hyperparameters and preprocessing data. However, suggestions for time-series analysis
with AutoML are: validation on the selection strategy with statistical significance tests;
adding permutation strategies; and considering the cost of using AutoML with the benefit
of its implementation. Additional implementation of AutoML utilize the process of NAS to
efficiently search for an effective neural network architecture for utilization on time-series
data [25]. It mentions that AutoML significantly improved the performance of searching
a data-augmented time-series neural network architecture. The significance of NAS’s
performance boost was such that it outperformed other “best” statistical models. In terms
of future possible improvements, the authors mention that further performance enhance-
ments on the data augmentation could come from using other deep learning models such
as GRU-AE and ConvLSTM.

One of the implementations of machine learning for side-channel analysis is named
Deep Learning-based Side-Channel Analysis (DL-SCA) [26]. DL-SCA is a new area of
research, which is signified by a large increase of papers on this topic. An advantage of
DL-SCA includes more powerful analysis by taking up to a factor of five times less data
to break through targets with countermeasures as compared to template attacks. DL-SCA
also requires little to no effort when it comes to preprocessing and preparing the attack
of the side-channel measurements. Related to this deep learning AutoML approach of
side-channel analysis is the Deep Learning Leakage Assessment (DL-LA), a method of
verifying that a trace has significant leakage information [27]. DL-LA implements AutoML
only for the analysis aspect of SCA. An open challenge to using DL-LA is that there are no
clear advantages to DL-LA for the significance of side-channel traces [26]. This challenge
demonstrates that if a significant advantage to leakage assessment is gained by utilizing
DL-LA, then the DL-SCA techniques can also be used with DL-LA.

The increase in popularity of SCA in security has led to developments in both attack
vectors and defensive countermeasures. Starting from DPA [3], to implementing AutoML
methods of deep learning with TVLA [27], the security aspect of SCA from a defensive
and offensive standpoint have increased in scope from simple power analysis to imple-
mentations of machine learning, demonstrating a considerable growth of the research area.
The idea of utilizing AutoML for DPA is a growing research area that has openings for
finding research in time-series data as well as with signal processing. AutoML techniques
are therefore well suited to further application in time-series related tasks for state of the
art DPA and SCA.

2.2. Foundational Experiments

This experiment is conceptualized as an extension to prior control flow recovery
experiments [1]. Power-based side-channel attacks were used to extract information by
using properties from a FSM. In this foundational work, the original experiment made use

49

J. Cybersecur. Priv. 2023, 3

of a single classifier, the k-nearest neighbors (KNN) classifier with heterogeneous states
for the FSM. KNN was able to achieve 81% or higher accuracy of transition classification.
Accuracy would increase as the number of classes decreased. As a result, FSM components
that handle sensitive information could be vulnerable to power-based side-channel attacks,
even with only a single classifier being used to analyze the state machine.

The future work section in this foundational work [1] mentions how an avenue of
research could be with how modifying the input to the states could be explored. In
particular, the modifications to the states to also include homogeneous states as well as
implementing tests using more than a single classifier were used as motivation for the
extensions and further experimentation presented herein.

3. Methods

Analyzing the ability for program control flow to be recovered via power-based SCA
required the creation and capture of a dataset encompassing numerous execution paths
through a program while being able to associate the captured power traces with a training
label for later machine-learning backed analysis of transition order. We explore both aspects
of these experiments in two methodology sub-sections. The first details the adaptation
of data collection from prior works [1] for the purposes of this experiment. The second
details the training and evaluation of various machine learning models for the recovery of
control flow information from the gathered trace data. Additionally, in the absence of a
standard SCA benchmarking suite, and in the interests of reproducability, the entire code
base is made available through a public GitLab repository [28]. Code made available in
this manner is licensed under the GPLv3.

3.1. Data Generation

Data generation made use of the ChipWhisperer [2] family of devices. These are
purpose-built microcontrollers for SCA data collection which contain all of the processing
on-board for the collection of power traces. The ChipWhisperer Nano (CW Nano) is one
such device backed by an STM32F0 microcontroller.

Each instance of the CW Nano device was programmed with a minimal C program
which emulated a two-state state machine. See Figure 1 for a depiction of the FSM. The de-
vice was fed a transition sequence from a host device which communicated with the CW
Nano before and after experimentation to send the oracle transition sequence and retrieve
the power trace captured onboard the device during execution. The state machine transi-
tioned through eight states in accordance with each bit of the oracle: a bit of 0 at position i
of the oracle indicates that the i-th state was state 1 while a 1 indicates the state was state
2. Both states performed integer addition a specific number of times where this number
was determined during compilation and will be referred to as the value w for the firmware.
A firmware where w = 1 indicates that the firmware performed a single addition in each
state while a firmware with w = 16 indicates that the states of that firmware performed the
addition a total of 16 times.

S1 S2

1

0

0 1

Figure 1. A diagram of the state machine executed by the target board. Transitions represent the next
value in the oracle text. For instance, if the FSM was in state S1 and the next digit was a “1”, then the
state machine would transition to state S2 and execute the code associated with that state. If the FSM
was in state S1 and the next digit was a “0”, then the state would transition to state S1 and repeat the
previously executed code.

Each CW Nano was paired with a Lenovo ThinkCentre running Ubuntu LTS 22.10.
All collection used Python v3.10.6 and the ChipWhisperer library version 5.7.0 distributed

50

J. Cybersecur. Priv. 2023, 3

by PyPi. The CW Nano device was programmed with firmware version 5.1.0. All version
numbers presented were the latest releases at the time of data collection. The code for
handling the state transitions is presented in Figure 2 and an example of the state code for
firmware (w = 2) is presented in Figure 3.

State Transition Code

for (uint8_t i = 0; i < 8; i++) {
uint8_t state = transitions & 0x1;
transitions >>= 1;
if (state == 0) {

worker(one_zero, zero_one, dest);
} else {

worker(one_zero, zero_one, dest);
}

}

Figure 2. The C code for turning an oracle byte previously received by the CWNano into a series of
state transitions on the device. The values one_zero, zero_one, and dest are discussed in Section 3.1.

State Code

void worker(int* x, int* y, int* total) {
*total = *x + *y;
*total = *x + *y;

}

Figure 3. The C code executed in the body of the state-machine. Figure 2 invokes this function with
specially crafted arguments as discussed in Section 3.1. The number of times *total = *x + *y; is
repeated is identified as w, so the code snippet above has a w value of 2.

The inputs to the worker function of each state were specially crafted to ensure an
equal hamming weight of all inputs to prevent the inference of the state transitions from the
contents of the state by the machine learning models later trained. For further discussion
of experiments which utilize differences in state behavior to enable related analysis, see [1].
The value of one_zero is 16 ones followed by 16 zeros, or 4,294,901,760 (base ten). The value
of zero_one was the opposite, 16 zeros followed by 16 ones, or 65,535 (base ten). Thus,
the total hamming weight of operands utilized across the body of the worker function is
constant between states.

All potential oracle values, representing all 256 potential permutations of state transi-
tions, were executed 100 times. Firmware was generated for all w ∈ 1, 2, 4, 8, 16, 32, 64, 128
and traces were captured across all oracles and 100 repeated executions and stored for
later analysis. Labeling incorporated both the number of operations executed within each
state of the firmware and the oracle used to generate the trace as well as the order in
the 100 samples to uniquely identify each trace. The resulting data was 5.8 GB for each
firmware, resulting in a total data set measuring approximately 40 GB in size.

3.2. Machine Learning Classification

For the task of recovering control flow information, we reduce the task to one of multi-
class classification; this makes it a suitable task for applied machine learning classifiers.
Each trace is labeled with the oracle byte used to dictate the state transitions, thus a
proper classification would represent a complete recovery of the state transitions executed
by the CW Nano device. As an example, consider a trace labeled with the oracle byte
of 110011002 = 20410. The power-trace presented to the ML model would either be
correctly classified as class 204, indicating a complete recovery of the control flow of

51

J. Cybersecur. Priv. 2023, 3

the program, or be incorrectly classified into another class, representing an inability to
completely recovery the control flow of the application.

Classification was completed by a number of classifiers provided by the Scikit-learn [29]
(SKL) library (version 0.24.2 as packaged by conda forge). The selected classifiers had
minimal configuration beyond the defaults provided by SKL, so further hyperparameter
optimization may find ways to improve the models created by the process described herein.

Each training process was repeated across five folds of cross validation to address
concerns of over-fitting. Eighty percent of the available data was used for training the
classifier while another 20% was used for testing the complete classifier. Unless otherwise
specified, all results presented in the rest of this work refer to metrics obtained by evaluating
the testing dataset. The process was repeated in its entirety for each distinct firmware.

Data were taken directly from the dataset previously generated and split into cross-
validation folds using a stratified k-fold method provided by SKL. No preprocessing was
performed on the data. Four classifiers were then fit to the training data: a random forest
classifier, a decision tree classifier, a KNN classifier, and a logistic regression classifier.
The only configuration provided was to the logistic regression classifier; both a solver and
maximum number of iterations were provided since without them, the process of fitting
data caused convergence failure errors. Convergence failure errors emerged due to the
fact that the provided number of iterations was insufficient to converge to a reasonable
solution and the solver was needed to match the types of data generated by the CW Nano.
Execution of these classification tasks was aided through parallel computation by placing
the entire workflow for each distinct firmware on separate threads (i.e., w = 1 on one
thread, w = 2 on another, etc.).

4. Results

For each firmware, with the exception of firmware where a single execution is per-
formed (w = 1), classification accuracy values approaching 100% are observed for the
random forest classifiers. Accuracy values of 98%+ are seen for decision trees and logistic
regression. The KNN classifier is the outlier with an observed lower bound on accuracy
values that was slightly greater than 80%.

Firmware with only a single execution of the addition operation (w = 1) was the
exception to these metrics of accuracy. The resulting skew in overall performance is
illustrated in Figure 4 while the exact performance of all four classifiers on each of the folds
of testing is illustrated in Figure 5. The highest observed accuracy for this firmware (w = 1)
was associated with a single fold of validation and the KNN classifier; it was only able to
achieve a maximum accuracy of 3.26%. While this is nearly an order of magnitude more
accurate than randomly guessing the class, it is far from a desirable accuracy. Preprocessing,
ensemble classification, and hyperparameter optimization would be relevant approaches
to addressing this concern if the classification of this firmware were the primary goal;
however, as the goal is characterization of the bounds of potential classification, this is left
for future work. Therefore, we can conclude that when the amount of work performed in
each branch of control flow (i.e., when the amount of work performed by each state) is low,
“off-the-shelf” machine learning models will struggle to determine the underlying program
execution flow.

In stark contrast to the classification accuracy of traces obtained from this firmware
(w = 1), as the w value of the firmware increases, the performance capabilities of sim-
ple machine learning classifiers are well suited to the classification task set before them.
For firmware with w values of 2, 4, and 8, a random forest classifier was able to correctly
recover the program execution flow in all five folds of cross-validation with 100% accu-
racy. For algorithm specific and cross-fold specific performances on firmware with two
executions of addition operations (w = 2), see Figure 6. While all other classifiers achieved
high levels of accuracy on average (99%+) over the same firmware, only the random forest
classifier achieved this level of performance.

52

J. Cybersecur. Priv. 2023, 3

Figure 4. A figure which demonstrates the variance, or lack of variance, exhibited by each classifica-
tion algorithm depending upon the number of operations performed by the firmware. The y-axis is
split to emphasize the difference between w = 1 and the other w ≥ 2.

Figure 5. A heatmap demonstrating the accuracy of the testing phase for firmware with a single
operation in each state (w = 1). Most notable is that, while results are better than random guessing,
classification accuracy of 2% is extremely different than the 98%+ accuracy achieved for all other
tested firmware.

Across all classifiers, a decrease in overall accuracy was observed moving from firmware
with 8 executions (w = 8) to firmware with 16 (w = 16). In the case of random forest classifiers,
this is a decrease from an average accuracy of 100% to 99.92%. Both the decision tree classifiers
and logistic regression had their accuracy decrease as the number of operations performed
by the firmware increased, but both remained over 98% classification accuracy on average.
The KNN classifier saw vastly diminishing performance in the move to firmware with more
operations, only achieving a maximum accuracy of 81.4% with an average accuracy of 80.8%.
Similar decreases in performance were observed when moving to the next level of firmware
(w = 32). A visual presentation of the average performance across these various firmware with
more than two operations is available in Figure 7.

53

J. Cybersecur. Priv. 2023, 3

Figure 6. A heatmap demonstrating the accuracy of the testing phase for firmware with two op-
erations executed in each state (w = 2). This firmware exhibits a similar difference between each
classifier as seen in Figure 5 but shifted to the high end of classification accuracy. The random forest
classifier maxes out at 100% accuracy for this firmware.

Figure 7. A series of dot plots which illustrate the performance of various classifiers for firmware
with various amounts of computation. Accuracy for firmware of w = 1 is not included since it was
less than 3% for all four tested classifiers. See Figure 5 for specific performance on firmware with
w = 1 for each classification algorithm.

Further hyperparameter optimization might be effective in improving accuracy in
firmware where more operations are performed in each state of the state machine, and au-
tomated approaches to the machine learning for this task could find effective preprocessing
and postprocessing to improve the overall results. However, as a proof of concept and
demonstration that the work performed in each branch of the state machine is not required
to be different in order to recover the transitions, these results are highly significant.

5. Discussion

A number of conclusions can be drawn from the results achieved across these classifi-
cation problems. Beyond the minimal proof of concept that control flow can be significantly
recovered even when the work in different states of a limited purpose finite-state machine

54

J. Cybersecur. Priv. 2023, 3

are identical, these findings suggest that obfuscation techniques may be necessary to ob-
scure the control flow of the program when said control flow conveys security-relevant
information. As an example, an attacker should not be able to purchase a smart lock,
determine the device’s control flow from the embedded finite-state machine, and then
gain the ability to access a home using the same smart lock model. Since the results
show that this information was exfiltrated from the underlying micro-controller, this is a
potential vulnerability that may require more sophisticated protections than traditional,
software-based ones.

One surprising result was the extremely low accuracy while applying machine learning
classifiers to the firmware which has only one operation (w = 1). It was hypothesized before
data analysis was completed that the average accuracy would decrease monotonically as
the number of operations increased. The intuition used to develop this hypothesis was that
as the proportional time spent in the control flow code sections increased, the more accurate
the transition recovery would be. This followed from the observation that, when more
relative time is spent in control flow, more of the data points captured within the power
trace would be directly related to the process of determining state machine transitions.
The subversion of this hypothesized outcome indicates that the number of operations has
much less influence in the classification of transitions than it was initially assumed. It is
clear that the amount of work performed in a state still has influence, as evidenced by the
variation in classification accuracy in correlation with the number of operations within
each state. However, this role may not be nearly as important as the actual work performed
and the state transitions executed by a low-powered device.

The first research question sought to identify whether different behavior is required in
each state of an embedded state machine in order to completely recover the transitions. This
question is answered firmly in the negative. While prior works made use of the different
behavior of a heterogeneous, two-state FSM to more easily perform the classification [1], this
difference is not required. This work clearly demonstrates that, while differences in state
behavior can allow for recoverable transition sequences, it is not strictly necessary since
high transition recovery accuracy was achieved with homogeneous state behavior. Even
when applying the same techniques and classifiers as were used in prior work, meaningful
levels of accuracy were achieved with said states.

This finding suggests that power-based side-channel attacks will be an applicable
tool to recover state transition information regardless of what kind of work is performed
by the states within an FSM. For devices with minimal numbers of states which do a
meaningful amount of work (i.e., they are not comparable to the w = 1 firmware tested in
these experiments), these results suggest it is possible to recover the transition order of the
underlying FSM. As of the time of writing, such behavior is also consistent with speculation
in current literature. Further work will be necessary to determine if these findings are
consistent when expanded to state machines with many states.

The second research question sought to address to what degree the proportion of time
spent in control flow and in a particular state of an FSM would impact the recoverability of
the state transition ordering. It was initially hypothesized that the ratio of time spent in the
state machine versus in the control flow would be the primary predictor of classification
accuracy. While this held true for firmware with more than one operation (w ≥ 2) from
2 to 128, the special case was the firmware with a single operation (w = 1). It can therefore
be concluded that there is a bounded range in which the control flow can be recovered
without more advanced means than are presented here. Further research will be necessary
to determine whether the lower bound is one which can be encountered in production
grade FSM. However, the lower bound of recoverability suggests that minimized states
may evade detection, recovery, and classification. This is demonstrated by the low accuracy
associated with classifying for firmware with a single operation.

The final research question examined how effective “off-the-shelf” machine learning
models are when applied to the task of recovering control flow information. “Off-the-
shelf” machine learning models, specifically more light-weight ones than the deep learning

55

J. Cybersecur. Priv. 2023, 3

approaches common in power-based side-channel attacks, show much promise in their
ability to capture high-level control flow information. Even without hyperparameter
optimization, high levels of accuracy were achieved. With this optimization, it may be
possible to achieve similar accuracy on firmware with more operations. Situations in which
“off-the-shelf” solutions are not sufficient to achieve high classification accuracy must be
further explored to motivate the need for hyperparameter optimization.

The efficacy of random forest algorithms for classification tasks is well known. Yet even
with this reputation, these algorithms’ performance on the collected data is important as it
may suggest their applicability and strong performance on more complex state machines.
When paired with optimization algorithms such as Bayesian Optimization, their capabilities
may continue to be relevant, potentially minimizing the need for more computationally
challenging solutions which make use of deep learning such as DL-SCA.

6. Conclusions

In this work, the program control flow was able to be recovered using SPA. The classi-
fication models used were able to achieve a high level of accuracy, with the random forest
model reaching 100% accuracy for three of the values of w tested; the other models also
reached very high classification accuracy, with several averaging over 98% on firmware
operations with more than one execution (w ≥ 2). This level of performance was achieved
without hyperparameter optimization begin applied, an approach which could lead to
improvements in some situations.

Power-based side-channel analysis is a new potential tool for attackers looking to
recover control flow information from an embedded or otherwise low-powered system.
Due to the recent nature of the development of meaningful recovery attacks on program
control flow information, it remains to be seen to what degree existing counter-measures
will be applicable to the protection of this information. Contrary to the intuition of this
research team, short sections of code were able to evade detection with meaningful impacts
on the accuracy of recovery as exhibited by the results surrounding firmware with a single
execution of operations in this work.

Looking to the future, most current work in power-based control flow recovery has
been done with state machines which have only two states; however, in practice, nearly
all state machines have many more states. Future work should explore the potential
for the current two-state techniques to be extended to multiple homogeneous states as
well as multiple heterogeneous states and variations between the two. Furthermore,
the applicability of automated machine learning pipelines for the task of classifying state
transitions is another avenue for future exploration. While current “off-the-shelf” machine
learning classifiers are sufficient to classify the states under consideration, the ability of
these findings to be transferred to more complex state machines must be examined to
discern where their application breaks down and traditional AutoML pipelines must be
employed. Overall, with the ability for FSM transitions to be recovered clearly established
now, the task must turn to more firmly defining the capabilities and bounds on this avenue
of attack. Variable transition counts, wildly different state computations, more complex
state machines, and further perturbations on the environments data is collected within are
all promising future directions of research at this time. This work should seek to qualify
the limitations of SPA approaches for FSM transition recovery through power analysis.
Finally, historic mitigation techniques applied to combat side-channel attacks must be
re-evaluated to determine to what extent existing mitigations protect against this control
flow recovery attack.

One primary limitation is that the comparative time spent in each state, a by-product
of the number of operations in each state, is constant across a sample. While the question
of whether a simple machine learning model would be sufficient for recovering the control
flow of a program with identical work in each state has been answered in the affirmative in
this paper, future work should certainly address this limitation by determining if a consis-
tent time in each state is necessary for these results to be widely transferable. Perhaps more

56

J. Cybersecur. Priv. 2023, 3

specialized machine learning may be able to improve the classification, but in comparison
to the other models created throughout this process, it is clear that the data captured itself
is the limitation directly responsible for reducing general classifier accuracy.

Additionally, while attempting to make use of “off-the-shelf” machine learning models
was a key research question, it does assume that the benefits of deep learning approaches,
or other AutoML approaches such as NAS, are not of enough importance to justify the com-
putational trade-offs. The strong performance of the algorithms examined in this work may
justify this restriction in this specific scenario, but further examination of their limitations
will be necessary to determine if more modern, advanced, or complex machine learning
pipelines allow for more meaningful state transition recovery in more complex applications.

Author Contributions: Conceptualization, A.R. and C.C.; Methodology, A.R.; Software, A.R.; Valida-
tion, S.O.; Investigation, A.R. and S.O.; Resources, M.B.; Data curation, A.R.; Writing—original draft,
A.R., S.O., J.B., C.C. and M.B.; Writing—review & editing, A.R., S.O., J.B., C.C. and M.B.; Visualization,
A.R., S.O. and J.B.; Project administration, M.B.; Funding acquisition, M.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported through various contracts and gifts including INL Laboratory
Directed Research & Development (LDRD) Program under the DOE Battelle Energy Alliance Standard
Research Contract #249922, IOG, and the University of Wyoming’s Nell Templeton Endowment.

Data Availability Statement: The data presented in this study are openly available in FigShare at
10.6084/m9.figshare.23635623.

Acknowledgments: The research team would like to acknowledge and thank the Secure Systems
Collaborative for their assistance in revisions and presentation of information.

Conflicts of Interest: Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any agency, sponsor,
or corporate entity.

References

1. Carper, C.; Robins, A.; Borowczak, M. Transition Recovery Attack on Embedded State Machines Using Power Analysis.
In Proceedings of the 2022 IEEE 40th International Conference on Computer Design (ICCD), Olympic Valley, CA, USA,
23–26 October 2022; pp. 572–576.

2. O’flynn, C.; Chen, Z. Chipwhisperer: An open-source platform for hardware embedded security research. In Constructive
Side-Channel Analysis and Secure Design, Proceedings of the 5th International Workshop, COSADE 2014, Paris, France, 13–15 April 2014;
Revised Selected Papers 5; Springer: Berlin/Heidelberg, Germany, 2014; pp. 243–260.

3. Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Advances in Cryptology—CRYPTO ’99, Proceedings of the Annual
International Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 388–397.

4. Randolph, M.; Diehl, W. Power side-channel attack analysis: A review of 20 years of study for the layman. Cryptography 2020,
4, 15. [CrossRef]

5. Gangolli, A.; Mahmoud, Q.H.; Azim, A. A systematic review of fault injection attacks on IOT systems. Electronics 2022, 11, 2023.
[CrossRef]

6. Kim, C.H.; Quisquater, J.J. Faults, injection methods, and fault attacks. IEEE Des. Test Comput. 2007, 24, 544–545. [CrossRef]
7. Balasch, J.; Gierlichs, B.; Reparaz, O. Differential Behavioral Analysis. In Proceedings of the Cryptographic Hardware and

Embedded Systems, Vienna, Austria, 10–13 September 2007.
8. Tunstall, M.; Mukhopadhyay, D.; Ali, S. Differential fault analysis of the advanced encryption standard using a single fault. In

Information Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless Communication, Proceedings of the 5th IFIP
WG 11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece, 1–3 June 2011; Proceedings 5; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 224–233.

9. Lo, O.; Buchanan, W.J.; Carson, D. Power analysis attacks on the AES-128 S-box using differential power analysis (DPA) and
correlation power analysis (CPA). J. Cyber Secur. Technol. 2017, 1, 88–107. [CrossRef]

10. Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. [CrossRef] [PubMed]
11. Roy, K.S.; Kalita, H.K. A survey on post-quantum cryptography for constrained devices. Int. J. Appl. Eng. Res. 2019, 14, 2608–2615.
12. Nejatollahi, H.; Dutt, N.; Ray, S.; Regazzoni, F.; Banerjee, I.; Cammarota, R. Post-quantum lattice-based cryptography implemen-

tations: A survey. ACM Comput. Surv. (CSUR) 2019, 51, 1–41. [CrossRef]
13. Mujdei, C.; Wouters, L.; Karmakar, A.; Beckers, A.; Mera, J.M.B.; Verbauwhede, I. Side-channel analysis of lattice-based

post-quantum cryptography: Exploiting polynomial multiplication. ACM Trans. Embed. Comput. Syst. 2022. [CrossRef]

57

J. Cybersecur. Priv. 2023, 3

14. Borowczak, M.; Vemuri, R. S*FSM: A paradigm shift for attack resistant FSM designs and encodings. In Proceedings of the 2012
ASE/IEEE International Conference on BioMedical Computing (BioMedCom), Washington, DC, USA, 14–16 December 2012;
pp. 96–100.

15. Clavier, C.; Coron, J.S.; Dabbous, N. Differential power analysis in the presence of hardware countermeasures. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, MA, USA, 17–18 August 2000;
Springer: Berlin/Heidelberg, Germany, 2000; pp. 252–263.

16. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks; Springer: Boston, MA, USA, 2007.
17. Goodwill, G.; Jun, B.; Jaffe, J.; Rohatgi, P. A Testing Methodology for Side-Channel Resistance Validation; Cryptography Research Inc.:

San Francisco, CA, USA, 2011; p. 15.
18. Unger, W.; Babinkostova, L.; Borowczak, M.; Erbes, R. Side-channel Leakage Assessment Metrics: A Case Study of GIFT

Block Ciphers. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA,
7–9 July 2021; pp. 236–241.

19. Unger, W.; Babinkostova, L.; Borowczak, M.; Erbes, R.; Srinath, A. TVLA, Correlation Power Analysis and Side-Channel
Leakage Assessment Metrics. In Proceedings of the Lightweight Cryptography Workshop 2022, Virtual, 9–11 May 2022; NIST:
Gaithersburg, MD, USA, 2022.

20. Moradi, A.; Richter, B.; Schneider, T.; Standaert, F.X. Leakage Detection with the x2-Test. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018, 2018, 209–237. [CrossRef]

21. Le, T.H.; Clédière, J.; Servière, C.; Lacoume, J.L. How can signal processing benefit side channel attacks? In Proceedings
of the 2007 IEEE Workshop on Signal Processing Applications for Public Security and Forensics, Washington, DC, USA,
11–13 April 2007; pp. 1–7.

22. Aquino-Brítez, D.; Ortiz, A.; Ortega, J.; León, J.; Formoso, M.; Gan, J.Q.; Escobar, J.J. Optimization of Deep Architectures for EEG
Signal Classification: An AutoML Approach Using Evolutionary Algorithms. Sensors 2021, 21, 2096. [CrossRef] [PubMed]

23. Alsharef, A.; Aggarwal, K.; Sonia.; Kumar, M.; Mishra, A. Review of ML and AutoML Solutions to Forecast Time-Series Data.
Arch. Comput. Methods Eng. 2022, 29, 5297–5311. [CrossRef] [PubMed]

24. Paldino, G.M.; De Stefani, J.; De Caro, F.; Bontempi, G. Does AutoML Outperform Naive Forecasting? Eng. Proc. 2021, 5, 36.
25. Javeri, I.Y.; Toutiaee, M.; Arpinar, I.B.; Miller, T.W.; Miller, J.A. Improving Neural Networks for Time Series Forecasting using

Data Augmentation and AutoML. In Proceedings of the IEEE International Conference on Big Data Computing Service and
Applications (BigDataService), Oxford, UK, 23–26 August 2021.

26. Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-based Physical Side-channel Analysis. ACM Comput. Surv.
2023, 55, 1–35. [CrossRef]

27. Moos, T.; Wegener, F.; Moradi, A. DL-LA: Deep Learning Leakage Assessment: A modern roadmap for SCA evaluations. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2021, 2021, 552–598. [CrossRef]

28. Side Channel State Machines. 2023. Available online: https://gitlab.com/UWyo-SSC/side-channel-state-machines
(accessed on 19 June 2023).

29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

58

Citation: Sangwan, R.S.; Badr, Y.;

Srinivasan, S.M. Cybersecurity for AI

Systems: A Survey. J. Cybersecur. Priv.

2023, 3, 166–190. https://doi.org/

10.3390/jcp3020010

Academic Editor: Giorgio Giacinto

Received: 24 January 2023

Revised: 8 March 2023

Accepted: 11 March 2023

Published: 4 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Review

Cybersecurity for AI Systems: A Survey

Raghvinder S. Sangwan, Youakim Badr * and Satish M. Srinivasan

School of Graduate Professional Studies, The Pennsylvania State University, 30 E. Swedesford Road,
Malvern, PA 19355, USA
* Correspondence: yzb61@psu.edu

Abstract: Recent advances in machine learning have created an opportunity to embed artificial
intelligence in software-intensive systems. These artificial intelligence systems, however, come with a
new set of vulnerabilities making them potential targets for cyberattacks. This research examines the
landscape of these cyber attacks and organizes them into a taxonomy. It further explores potential
defense mechanisms to counter such attacks and the use of these mechanisms early during the
development life cycle to enhance the safety and security of artificial intelligence systems.

Keywords: machine learning; cybersecurity; AI attacks; defense mechanism

1. Introduction

Advances in Artificial Intelligence (AI) technology have contributed to the enhance-
ment of cybersecurity capabilities of traditional systems with applications that include
detection of intrusion, malware, code vulnerabilities and anomalies. However, these sys-
tems with embedded machine learning models have opened themselves to a new set of
vulnerabilities, commonly known as AI attacks. Currently, these systems are prime targets
for cyberattacks, thus compromising the security and safety of larger systems that encom-
pass them. Modern day AI attacks are not only limited to just coding bugs and errors. They
manifest due to the inherent limitations or vulnerabilities of systems [1]. By exploiting
the vulnerabilities in the AI system, attackers aim at either manipulating its behavior or
obtaining its internal details by tampering with its input, training data, or the machine
learning (ML) model. McGraw et al. [2] have classified AI attacks broadly as manipulation
and extraction attacks. Based on the inputs given to the system, the training dataset used
for learning, and manipulation of the model hyperparameters, attacks on AI systems can
manifest in different types, with different degrees of severity. For example, adversarial or
evasion attack can be launched by manipulating the input to the AI system, which results
in the system producing an unintended outcome. A poisoning or causative attack can be
launched by tainting the training dataset, which would result in the AI system exhibiting
unethical behavior.

Therefore, it is important that we start thinking about designing security into AI
systems, rather than retrofitting it as an afterthought. This research addresses the following
research questions:

RQ1: What are the cyberattacks that AI systems can be subjected to?
RQ2: Can the attacks on AI systems be organized into a taxonomy, to better understand

how the vulnerabilities manifest themselves during the system development.
RQ3: What are possible defense mechanisms to prevent AI systems being subjected

to cyberattacks?
RQ4: Is it possible to devise a generic defense mechanism against all kinds of

AI attacks.
To address these research questions and determine the extent of risk to safety and

security of AI systems, we first conducted a systematic literature review looking for AI
attacks on systems reported in the literature. We then organized these attacks into a

J. Cybersecur. Priv. 2023, 3, 166–190. https://doi.org/10.3390/jcp3020010 https://www.mdpi.com/journal/jcp59

J. Cybersecur. Priv. 2023, 3

taxonomy to not only understand the types of vulnerabilities, but also the stage in the
development of AI systems when these vulnerabilities manifest themselves. We then
conducted further literature search looking for any defense mechanisms to counter these
attacks and improve the safety and security of AI systems.

This study is organized as follows. In Section 2, we report the results of the systematic
literature review and identify the attacks, from an AI system development perspective,
and their vulnerabilities. In Section 3, we introduce a taxonomy of AI attacks along with
defense mechanisms and countermeasures to mitigate their threats. Section 4 concludes the
study and highlights major findings.

2. Literature Review

This survey was founded on searching, by keywords, to find related articles to cyberse-
curity of AI systems. The top most used keywords are as follow: cybersecurity, cyberattack,
and vulnerabilities. We searched Scopus, an Elsevier abstracts and citation database, for
articles having titles that matched the search query (“cyber security” OR “cybersecurity”
OR “security” OR “cyberattack” OR “vulnerability” OR “vulnerabilities” OR “threat” OR
“attack” OR “AI attack”) AND (“AI” OR “ML” OR “Artificial Intelligence” OR “Machine
Learning”) AND (“system”)).

The search resulted in a total of 1366 articles. Within these articles, we looked for
those in computer science or computer engineering subject areas that were published in
journals in the English language, leaving us with 415 manuscripts. We carefully reviewed
the abstracts of the papers to determine their relevance. Only articles that discussed the
vulnerabilities of AI systems to attacks and/or their defense mechanisms were considered.

During the learning or training stage, an AI system needs data for training a machine
learning model. The training data are subject to manipulation attacks, requiring that their
integrity be verified. Ma et al. [3] used a visual analytics framework for explaining and
exploring ML model vulnerabilities to data poisoning attacks. Kim and Park [4] proposed a
blockchain-based environment that collects and stores learning data whose confidentiality
and integrity can be guaranteed. Mozaffari-Kermani et al. [5] focused on data poisoning
attacks on, and the defenses for, machine learning algorithms in healthcare.

During the inference or testing stage, an AI system can be subjected to manipulation
attacks by presenting falsified data to be classified as legitimate data. Adversarial or
evasion attacks and/or potential defenses against such attacks are discussed in [6–14].
Chen et al. [15] looked at such attacks in the context of reinforcement learning. Li et al. [16]
proposed a low latency decentralized framework for identifying adversarial attacks in
deep learning-based industrial AI systems. Garcia-Ceja et al. [17] described how biometric
profiles can be generated to impersonate a user by repeatedly querying a classifier and
how the learned profiles can be used to attack other classifiers trained on the same dataset.
Biggio et al. [18] examined vulnerabilities of biometric recognition systems and their
defense mechanisms. Ren et al. [19] also looked at querying-based attacks against black-box
machine learning models and potential defense mechanisms against such attacks. Wang
et al. [20] looked at a variant, termed the Man-in-the-Middle attack, using generative models
for querying. Threats from, and potential defense against, attacks on machine learning
models in 5G networks is discussed in [21,22]. Apruzzese et al. [23] provided an approach
to mitigating evasion attacks on AI-based network intrusion detection systems. Zhang
et al. [24] explored adversarial attacks against commonly used ML-based cybersecurity
systems. Liu et al. [25] discussed how to improve robustness of ML-based CAD systems
against adversarial attacks. Building malware detection systems that are more resilient
to adversarial attacks was the focus of [26,27], and Gardiner and Nagaraja [28] provided
a comprehensive survey on vulnerabilities of ML models in malware detection systems.
Dasgupta and Collins [29] surveyed game theoretical approaches that can be used to make
ML algorithms robust against adversarial attacks.

60

J. Cybersecur. Priv. 2023, 3

During the inference or testing stage, extraction attacks are possible using the feature
vector of a model for model inversion or reconstruction and gaining access to private data
that was used as input or for training an AI system [30].

Hansman and Hunt [31] and Gao et al. [32] proposed a taxonomy of network and com-
puter attacks to categorize different attack types. Their taxonomy includes four dimensions
to categorize attacks on AI systems, including attack classes, attack targets, vulnerabilities
and exploits used by the attacks and whether the attack has a payload or effect beyond
itself. Their taxonomical structure is very comprehensive and can be used to analyze a
system for its dependability, reliability and security.

Despite the benefits of machine learning technologies, the learning algorithms can
be abused by cybercriminals to conduct illicit and undesirable activities. It was shown
in [33,34] that attackers might gain a significant benefit by exploiting vulnerabilities in the
learning algorithms, which can sometimes become a weakest link in the security chain.
Several studies related to attacks on machine learning algorithms have been reported in
the literature using different threat models. Barreno et al. [35,36], Huang et al. [36], Biggio
et al. [37] and Munoz-Gonzalez et al. [38] discussed different attack scenarios against
machine learning models with different attack models. The frameworks they proposed
characterize the attacks according to the attacker’s goal, their capabilities to manipulate the
data and influence the learning system, familiarity with the algorithms, the data used by
the defender and the attacker’s strategy. For example, data poisoning attacks, also known
as causative attacks, are a major emerging security threat to data-driven technologies. In
these types of attacks, it can be assumed that the hacker has control over the training
dataset that is being used by the learning algorithm. The hacker can actively influence
the training dataset in order to subvert the entire learning process, thus decreasing the
overall performance of the system, or to produce particular types of errors in the system
output. For example, in a classification task, the hacker may poison the data to modify the
decision boundaries learned by the learning algorithm, thus resulting in misclassification
of instances, or a higher error rate for a specific type of class. This is a kind of threat that is
related to the reliability of the large amount of data collected by the systems [38,39].

This survey is distinct from [31,39] in studying attacks on an AI system from the
perspective of a software engineering team, that organizes its work around different stages
of an AI system’s development life cycle. For these different stages of an AI system, and
their corresponding attacks, potential defense mechanisms are also provided. Organizing
the literature using this perspective can be valuable to systematically study the design of
AI systems for security purposes, to explore the trade offs that result from using different
defense mechanisms, and to develop a catalog of patterns and tactics for designing AI
systems for security purposes.

Table 1 lists various attacks carried out at different stages of the AI system development
processes and the countermeasures that are taken against these attacks.

Table 1. Attacks on AI systems at different stages of its development.

Attacks AI System Development Vulnerabilities Defense Mechanisms

Poisoning attacks [1,37] During training of the
model

Weakness in the federated learning
algorithms, resulting in stealing of
the data and algorithm from indi-
vidual user devices.

See list of defense mechanisms for both the data and
model poisoning attacks.

Data poisoning attacks
[38–40]

During the training
stage

Tampering of the features and class
information in the training dataset

Adversarial training, Feature squeezing, Transfer-
ability blocking, MagNet, Defense-GAN, Local in-
trinsic dimensionality, Reject On Negative Impact
(RONI), L-2 Defense, Slab Defense, Loss Defense and
K-NN Defense.

61

J. Cybersecur. Priv. 2023, 3

Table 1. Cont.

Attacks AI System Develop-

ment

Vulnerabilities Defense Mechanisms

Model poisoning attacks
[41–44]

During the training
stage

Trust ability of the trainer, based on
a privately held validation dataset.

Use of pre-trained models that
are corrupted.

Securely hosting and disseminating pre-trained mod-
els in virtual repositories that guarantee integrity to
preclude benevolent models from being manipulated.
Identifying backdoors in malevolently trained models
acquired from untrustworthy trainers by fine-tuning
untrusted models.

Transfer learning attacks
[42,44–46]

During the training
stage

Similarity of the model structures. Obtain pre-trained models from trusted source.
Employ activation-based pruning with different train-
ing examples.

Model poisoning in feder-
ated learning [41,45,47,48]

During the training
stage

Obstruct the convergence of the ex-
ecution of the distributed Stochastic
Gradient Descent (SGD) algorithm,

Robust aggregation methods, robust learning rate.

Model inversion attack
[49–52]

During Inference
and/or testing stage

Models are typically trained
on rather small, or imbalanced,
training sets.

L2 Regularizer [49], Dropout and Model Staking [50],
MemGuard [51] and Differential privacy [52].

Model extraction attack
[53,54]

During Inference
and/or training stage

Models having similar character-
istics (parameters, shape and size,
similar features etc.)

Hiding or adding noises to the output probabilities
while keeping the class label of the instances intact.
Suppressing suspicious queries or input data.

Inference attack [55] During Inferencing,
Training, and Testing

Model Leaking information lead-
ing to inferences being made on
private data.

Methods proposed in [55] have leveraged heuristic
correlations between the records of the public data and
attribute values to defending against inference attacks.
Modifying the identified k entries that have large cor-
relations with the attribute values to any given tar-
get users.

The following section systematically explores attacks on AI systems and their defenses
in more detail.

3. AI Attacks and Defense Mechanisms

Research has been carried out to identify new threats and attacks on different levels
of design and implementation of AI systems. Kaloudi and Li [56], stressed the dearth of
proper understanding of the malicious intention of the attacks on AI-based systems. The
authors introduced 11 use cases divided into five categories: (1) next generation malware,
(2) void synthesis, (3) password-based attacks, (4) social bots, and (5) adversarial training.
They developed a threat framework to categorize the attacks. Turchin [57] pointed out
the lack of desired behaviors of AI systems that could be exploited to design attacks in
different phases of system development. The research lists the following modes of failure
of AI systems:

• The need for better resources for self-upgradation of AI systems can be exploited
by adversaries

• Implementation of malicious goals make the AI systems unfriendly
• Flaws in the user-friendly features
• Use of different techniques to make different stages of AI free from the boundaries of

actions expose the AI systems to adversaries

Similar research is carried out by Turchin and Denkenberger [58] where the classifi-
cation of attacks was based on intelligence levels of AI systems. The authors introduced
three levels of AI intelligence with respect to human intelligence: (1) “Narrow AI” which
requires human assistance, (2) “Young AI” which has capability a bit better than human,
and (3) “Mature AI” whose intelligence is super-human. While classifying the intelligence
levels of AI systems, the authors investigated several vulnerabilities during the evolution of
capabilities of AI systems. Yampolsky [59] projected a holistic view of tracks as to why an
AI system could be malicious, classifying the tracks into two stages: (1) Pre-deployment and

62

J. Cybersecur. Priv. 2023, 3

(2) Post-deployment. This includes the intrinsic and extrinsic reasons for AI technologies to
be malicious, such as design flaws, intentional activities, or environmental factors.

3.1. Types of Failures

Shiva Kemar et al. [60] discussed two modes of failures of machine learning (ML)
systems. They claimed that AI systems can fail either due to the inherent design of the
systems (unintentional failures) or by the hand of an adversary (intentional failures).

Unintentional Failures: The unintentional failure mode leads to the failure of an
AI/ML system when the AI/ML system generates formally correct, but completely
unsafe, behavior.

Intentional failures: Intentional failures are caused by the attackers attempting to
destabilize the system either by (a) misclassifying the results, by introducing private
training data, or b) by stealing the foundational algorithmic framework. Depending on
the accessibility of information about the system components (i.e., knowledge), intentional
failures can be further subdivided into different subcategories.

3.1.1. Categories of Unintentional Failures

Unintentional failures happen when AI/ML systems produce an unwanted or unfore-
seen outcome from a determined action. It happens mainly due to system failures. In this
research we further categorize different types of unintentional failures.

• Reward Hacking: Reward hacking is a failure mode that an AI/ML system experi-
ences when the underlying framework is a reinforcement learning algorithm. Reward
hacking appears when an agent has more return as reward in an unexpected manner
in a game environment [61]. This unexpected behavior unsettles the safety of the
system. Yuan et al. [62] proposed a new multi-step reinforcement learning framework,
where the reward function generates a discounted future reward and, thus, reduces
the influence of immediate reward on the current state action pair. The proposed
algorithm creates the defense mechanism to mitigate the effect of reward hacking in
AI/ML systems.

• Distributed Shift: This type of mode appears when an AI/ML model that once
performed well in an environment generates dismal performance when deployed to
perform in a different environment. One such example is when the training and test
data come from two different probability distributions [63]. The distribution shift is
further subdivided into three types [64]:

1. Covariate Shift: The shifting problem arises due to the change in input features
(covariates) over time, while the distribution of the conditional labeling function
remains the same.

2. Label Shift: This mode of failure is complementary to covariate shift, such that the
distribution of class conditional probability does not change but the label marginal
probability distribution changes.

3. Concept Shift: Concept shift is a failure related to the label shift problem where
the definitions of the label (i.e., the posteriori probability) experience spatial or
temporal changes.

Subbaswamy and Saria proposed an operator-based hierarchy of solutions that are
stable to the distributed shift [65]. There are three operators (i.e., conditioning, intervening
and computing counterfactuals) that work on a graph specific to healthcare AI. These oper-
ators effectively remove the unstable component of the graph and retain the stable behavior
as much as possible. There are also other algorithms to maintain robustness against the
distributed shift. Rojas-Carulla et al. [66] proposed a data-driven approach, where the
learning of models occurs using data from diverse environments, while Rothenhausler
et al. [67] devised bounded magnitude-based robustness, where the shift is assumed to
have a known magnitude.

63

J. Cybersecur. Priv. 2023, 3

• Natural Adversarial Examples: The natural adversarial examples are real-world
examples that are not intentionally modified. Rather, they occur naturally, and result
in considerable loss of performance of the machine learning algorithms [68]. The
instances are semantically similar to the input, legible and facilitate interpretation
(e.g., image data) of the outcome [69]. Deep neural networks are susceptible to natural
adversarial examples.

3.1.2. Categories of Intentional Failures

The goal of the adversary is deduced from the type of failure of the model. Chakraborty
et al. [70] identify four different classes of adversarial goals, based on the machine learning
classifier output, which are the following: (1) confidence reduction, where the target model
prediction confidence is reduced to a lower probability of classification, (2) misclassifica-
tion, where the output class is altered from the original class, (3) output misclassification,
which deals with input generation to fix the classifier output into a particular class, and
(4) input/output misclassification, where the label of a particular input is forced to have a
specific class.

Shiv Kumar et al. [60] identified the taxonomy of intentional failures/attacks, based
on the knowledge of the adversary. It deals with the extent of knowledge needed to trigger
an attack for the AI/ML systems to fail. The adversary is better equipped with more
knowledge [70] to perform the attack.

There are three types of classified attacks based on the adversary’s access to knowledge
about the system.

1 Whiteb ox Attack: In this type of attack, the adversary has access to the parameters
of the underlying architecture of the model, the algorithm used for training, weights,
training data distribution, and biases [71,72]. The adversary uses this information
to find the model’s vulnerable feature space. Later, the model is manipulated by
modifying an input using adversarial crafting methods. An example of the whitebox
attack and adversarial crafting methods are discussed in later sections. The researchers
in [73,74] showed that adversarial training of the data, filled with some adversarial
instances, actually helps the model/system become robust against whitebox attacks.

2 Blackbox Attack: In blackbox attacks the attacker does not know anything about the
ML system. The attacker has access to only two types of information. The first is the
hard label, where the adversary obtained only the classifier’s predicted label, and the
second is confidence, where the adversary obtained the predicted label along with
the confidence score. The attacker uses information about the inputs from the past to
understand vulnerabilities of the model [70]. Some blackbox attacks are discussed in
later sections. Blackbox attacks can further be divided into three categories:

• Non-Adaptive Blackbox Attack: In this category of blackbox attack, the adversary
has the knowledge of distribution of training data for a model, T. The adversary
chooses a procedure, P, for a selected local model, T’, and trains the model on known
data distribution using P for T’ to approximate the already learned T in order to trigger
misclassification using whitebox strategies [53,75].

• Adaptive Blackbox Attack: In adaptive blackbox attack the adversary has no
knowledge of the training data distribution or the model architecture. Rather, the
attacker approaches the target model, T, as an oracle. The attacker generates a selected
dataset with a label accessed from adaptive querying of the oracle. A training process,
P, is chosen with a model, T’, to be trained on the labeled dataset generated by the
adversary. The model T’ introduces the adversarial instances using whitebox attacks
to trigger misclassification by the target model T [70,76].

• Strict Blackbox Attack: In this blackbox attack category, the adversary does not
have access to the training data distribution but could have the labeled dataset (x, y)
collected from the target model, T. The adversary can perturb the input to identify the
changes in the output. This attack would be successful if the adversary has a large set
of dataset (x,y) [70,71].

64

J. Cybersecur. Priv. 2023, 3

Grayb ox attacks: In whitebox attacks the adversary is fully informed about the
target model, i.e., the adversary has access to the model framework, data distribution,
training procedure, and model parameters, while in blackbox attacks, the adversary has
no knowledge about the model. The graybox attack is an extended version of either
whitebox attack or blackbox attack. In extended whitebox attacks, the adversary is partially
knowledgeable about the target model setup, e.g, the model architecture, T, and the training
procedure, P, is known, while the data distribution and parameters are unknown. On the
other hand, in the extended blackbox attack, the adversarial model is partially trained, has
different model architecture and, hence, parameters [77].

3.2. Anatomy of Cyberattacks

To build any machine learning model, the data needs to be collected, processed,
trained, and tested and can be used to classify new data. The system that takes care of
the sequence of data collection, processing, training and testing can be thought of as a
generic AI/ML pipeline, termed the attack surface [70]. An attack surface subjected to
adversarial intrusion may face poisoning attack, evasion attack, and exploratory attack.
These attacks exploit three pillars of the information security, i.e., Confidentiality, Integrity,
and Availability, known as the CIA triad [78]. Integrity of a system is compromised by
the poisoning and evasion attacks, confidentiality is subject to intrusion by extraction,
while availabilty is vulnerable to poisoning attacks. The entire AI pipeline, along with the
possible attacks at each step, are shown in Figure 1.

Figure 1. ML Pipeline with Cyberattacks Layout.

65

J. Cybersecur. Priv. 2023, 3

3.3. Poisoning Attack

Poisoning attack occurs when the adversary contaminates
the training data. Often ML algorithms, such as intrusion detection systems, are

retrained on the training dataset. In this type of attack, the adversary cannot access the
training dataset, but poisons the data by injecting new data instances [35,37,40] during the
model training time. In general, the objective of the adversary is to compromise the AI
system to result in the misclassification of objects.

Poisoning attacks can be a result of poisoning the training dataset or the trained
model [1]. Adversaries can attack either at the data source, a platform from which a
defender extracts its data, or can compromise the database of the defender. They can
substitute a genuine model with a tainted model. Poisoning attacks can also exploit the
limitations of the underlying learning algorithms. This attack happens in federated learning
scenarios where the privacy on individual users’ dataset is maintained [47]. The adversary
takes advantage of the weakness of federated learning and may take control of both the
data and algorithm on an individual user’s device to deteriorate the performance of the
model on that device [48].

3.3.1. Dataset Poisoning Attacks

The major scenarios of data poisoning attacks are error-agnostic poisoning attacks and
error-specific poisoning attacks. In the error-agnostic type of poisoning attack the hacker
aims to cause a Denial of Service (DOS) kind of attack. The hacker causes the system to
produce errors, but it does not matter what type of error it is. For example, in a multi-class
classification task a hacker could poison the data leading to misclassification of the data
points irrespective of the class type, thus maximizing the loss function of the learning
algorithm. To launch this kind of attack, the hacker needs to manipulate both the features
and the labels of the data points. On the other hand, in error-specific poisoning attacks, the
hacker causes the system to produce specific misclassification errors, resulting in security
violation of both integrity and availability. Here, the hacker aims at misclassifying a
small sample of chosen data points in a multi-class classification task. The hacker aims to
minimize the loss function of the learning algorithm to serve the purpose, i.e., to force the
system into misclassifying specific instances without compromising the normal system
operation, ensuring that the attack is undetected [38,39].

A model is built up from a training dataset. So, attacking the dataset results in
poisoning the model. By poisoning the dataset, the adversary could manipulate to generate
natural adversarial examples, or inject instances with incorrect labels into the training
dataset. The model may learn the pattern on misclassified examples in the data that serves
the goal of the adversary. The dataset poisoning attacks can be further subdivided into two
categories [79].

• Data Modification: The adversary updates or deletes training data. Here, the attacker
does not have access to the algorithm. They can only manipulate labels. For instance,
the attacker can draw new labels at random from the training pool, or can optimize
the labels to cause maximum disruption.

• Data Injection: Even if the adversary does not have access to the training data or
learning algorithm, he or she can still inject incorrect data into the training set. This
is similar to manipulation, but the difference is that the adversary introduces new
malicious data into the training pool, not just labels.

Support Vector Machines (SVMs) are widely used classification models for malware
identification, intrusion detection systems, and filtering of spam emails, to name a few
applications. Biggio, Nelson and Laskov [40] illustrated poisoning attacks on the SVM
classifier, with the assumption that the adversary has information about the learning
algorithm, and the data distribution. The adversary generates surrogate data from the
data distribution and tampers with the training data, by introducing the surrogate data,

66

J. Cybersecur. Priv. 2023, 3

to drastically reduce the model training accuracy. The test data remains untouched. The
authors formed an equation, expressing the adversarial strategy, as:

MAXx A(x) = ∑k
i=1(1− yi fx(xi)) = ∑k

i=1 (−gi)

where xl ≤ x ≤ xu and D = (xi, yi}k
i=1 is the validation data.

The goal of the adversary is to maximize the loss function A(x) with the surrogate
data instance (x, y) to be added into the training set Dtr in order to maximally reduce the
training accuracy of classification. gi is the status of the margin, influenced by the surrogate
data instance (x, y).

Rubinstien et al. [80] presented the attack on SVM learning by exploiting training data
confidentiality. The objective is to access the features and the labels of the training data by
examining the classification on the test set.

Figure 2 explains the poison attack on the SVM classifier. The left sub-figure indicates
the decision boundary of the linear SVM classifier, with support vectors and classifier
margin. The right sub-figure shows how the decision boundary is drastically changed
by tampering with one training data instance without changing the label of the instance.
It was observed that the classification accuracy would be reduced by 11% by a mere 3%
manipulation of the training set [81]. Nelson et al. [39] showed that an attacker can breach
the functionality on the spam filter by poisoning the Bayesian classification model. The
filter becomes inoperable under the proposed Usenet dictionary attack, wherein 36% of the
messages are misclassified with 1% knowledge regarding the messages in the training set.

Figure 2. Poisoning attack changing the decision boundary.

Munoz-Gonzalez et al. [38] illustrated poisoning attacks on multi-class classification
problems. The authors identified two attack scenarios for the multi-class problems: (1) error-
generic poisoning attacks and (2) error-specific poisoning attacks. In the first scenario,
the adversary attacks the bi-level optimization problem [40,82], where the surrogate data
is segregated into training and validation sets. The model is learned on the generated
surrogate training dataset with the tampered instances. The validation set measures the
influence of the tampered instances on the original test set, by maximizing the binary class
loss function. It is expressed in the following equation:

D∗x = argmaxD′x
A
(

D
′
x, σ

)
= L(

︷ ︸︸ ︷
D̂val ,

︷︸︸︷
θ)

Such as
︷︸︸︷

θ = minw∗L(D̂tr U D
′
x, θ∗)

The surrogate data D̂ is segregated into training D̂tr and validation sets D̂val . The
model is trained on D̂tr along with D

′
x (i.e., the tampered instances). D̂val is used to measure

the influence of the tainted samples on the genuine data via the function A
(

D
′
x, σ

)
that

explains the loss function, L, with respect to the validation dataset D̂val and the parameters︷︸︸︷
θ of the surrogate model. In the multi-class scenario, the multi-class loss function is

used for error-generic poisoning attacks.

67

J. Cybersecur. Priv. 2023, 3

In error-specific poisoning attacks, the objective remains to change the outcome of
specific instances in a multi-class scenario. The goal of desired misclassification is expressed
with the equation:

(
D
′
x, σ

)
= −L(

︷ ︸︸ ︷
D̂∗val ,

︷︸︸︷
θ)

D̂∗val is the same as the D̂val with different labels for desired misclassified instances that the
adversary chose. The attacker aims to minimize the loss of the chosen misclassified samples.

In separate research, Kloft and Laskov [83] explained the adversarial attack on de-
tection of outliers (anomalies), where the adversary is assumed to have knowledge about
the algorithm and the training data. Their work introduced a finite sliding window, while
updating the centre of mass iteratively for each new data instance. The objective is to accept
the poisoned data instance as a valid data point, and the update on the center of mass is
shifted in the direction of the tainted point, that appears to be a valid one. They show that
relative displacement, d, of the center of mass under adversarial attack is lower bounded
by the following inequality when the training window length is infinite:

di ≤ ln(1 +
i
n
)

where i and n are the number of tampered points and number of training points, respectively.
The intuition behind the use of anomaly detection is to sanitize the data by removing

the anomalous data points, assuming the distribution of the anomalies is different from that
of the normal data points. Koh, Steinhardt, and Liang [84] presented data poisoning attacks
that outsmart data sanitization defenses for traditional anomaly detection, by nearest
neighbors, training loss and singular value decomposition methods. The researchers
divided the attacks into two groups:

• High Sensitive: An anomaly detector usually considers points as anomalous when
the point is far off from its closest neighbors. The anomaly detector cannot identify a
specific point as abnormal if it is surrounded by other points, even if that tiny cluster
of points are far off from remaining points. So, if an adversary/attacker concentrates
poison points in a few anomalous locations, then the anomalous location is considered
benign by the detector.

• Low Sensitive : An anomaly detector drops all points away from the centroid by
a particular distance. Whether the anomaly detector deems a provided point as
abnormal does not vary much by addition or deletion of some points, until the
centroid of data does not vary considerably.

Attackers can take advantage of this low sensitivity property of detectors and optimize
the location of poisoned points such that it satisfies the constraints imposed by the defender.

Shafahi et al. [85] discussed how classification results can be manipulated just by
injecting adversarial examples with correct labels. which is known as the clean-label attack.
The clean-label attack is executed by changing the normal (“base”) instance to reflect the
features of another class, as shown in Figure 3. The Gmail image is marked with blue dots
and lies on the feature space of the target dataset. This poisoned data is used for training
and shifts the decision boundary, as shown in Figure 4.

Due to the shift, the target instance is classified as “base” instance. Here, the adversary
tries to craft a poison instance such that it is indistinguishable from the base instance, i.e.,
the instance looks similar, and also minimizes the feature representation between the target
and poison instances so that it triggers misclassification while training. This attack can be
crafted using the optimization problem by means of the following equation:

p = argminx || f (x)− f (t)||22 + β ∗ ||x− b||22

68

J. Cybersecur. Priv. 2023, 3

where b is the base instance, and t and p are the target and poison instances, respectively.
The parameter β identifies the degree to which p appears to be a normal instance to the
human expert.

Figure 3. Clean-label attack procedure and example.

Figure 4. Badnet of MINST sample [42].

Suciu et al. [86] presented a similar type of attack on neural networks, but with the con-
straint that at least 12.5% of every mini-batch of training data should have tainted examples.

3.3.2. Data Poisoning Defense Mechanisms

There are studies that propose potential defense mechanisms to resolve the problems
related to the data poisoning attacks discussed thus far. Devising a generic defense strategy
against all attacks is not possible. The defense strategies are specific to the attack and a
defense scheme specific to an attack makes the system susceptible to a different kind of
attack. Some advanced defense strategies include:

1. Adversarial Training : The goal of adversarial training is to inject instances generated
by the adversary into the training set to increase the strength of the model [87,88].
The defender follows the same strategy, by generating the crafted samples, using the

69

J. Cybersecur. Priv. 2023, 3

brute force method, and training the model by feeding the clean and the generated
instances. Adversarial training is suitable if the instances are crafted on the original
model and not on a locally-trained surrogate model [89,90].

2. Feature Squee zing: This defense strategy hardens the training models by dimin-
ishing the number of features and, hence, the complexity of data [91]. This, in
turn, reduces the sensitivity of the data, which evades the tainted data marked by
the adversary.

3. Transferability blocking: The true defense mechanism against blackbox attacks is to
obstruct the transferability of the adversarial samples. The transferability enables the
usage of adversarial samples in different models trained on different datasets. Null
labeling [92] is a procedure that blocks transferability, by introducing null labels into
the training dataset, and trains the model to discard the adversarial samples as null
labeled data. This approach does not reduce the accuracy of the model with normal
data instances.

4. MagNet: This scheme is used to arrest a range of blackbox attacks through the use
of a detector and a reformer [93]. The detector identifies the differences between the
normal and the tainted samples by measuring the distance between them with respect
to a threshold. The reformer converts a tampered instance to a legitimate one by
means of an autoencoder.

5. Defense-GAN: To stave off both blackbox and whitebox attacks, the capability of
General Adversarial Network (GAN) [94] is leveraged [95]. GAN uses a generator to
construct the input images by minimizing the reconstruction error. The reconstructed
images are fed to the system as input, where the genuine instances are closer to the
generator than the tainted instances. Hence, the performance of the attack degrades.

6. Local Intrinsic Dimensionality: Weerashinghe et al. [96] addressed resistance against
data poisoning attack on SVM classifiers during training. They used Local Intrinsic
Dimensionality (LID), a metric of computing dimension of local neighborhood sub-
space for each data instance. They also used K-LID approximation for each sample to
find the likelihood ratio of K-LID values from the distribution of benign samples to
that from tainted samples. Next, the function of the likelihood ratio is fitted to predict
the likelihood ratio for the unseen data points’ K-LID values. The technique showed
stability against adversarial attacks on label flipping.

7. Reject On Negative Impact (RONI): The functioning of the RONI technique is very
similar to that of the Leave-One-Out (LOO) validation procedure [97]. Although
effective, this technique is computationally expensive and may suffer from overfitting
if the training dataset used by the algorithm is small compared to the number of
features. RONI defense is not well suited for applications that involve deep learning
architectures, as those applications would demand a larger training dataset [39].
In [98], a defensive mechanism was proposed based on the k-Nearest Neighbors
technique, which recommends relabeling possible malicious data points based on the
labels of their neighboring samples in the training dataset. However, this strategy
fails to detect attacks in which the subsets of poisoning points are close. An outlier
detection scheme was proposed in [99] for classification tasks. In this strategy, the
outlier detectors for each class are trained with a small fraction of trusted data points.
This strategy is effective in attack scenarios where the hacker does not model specific
attack constraints. For example, if the training dataset is poisoned only by flipping
the labels, then this strategy can detect those poisoned data points which are far from
the genuine ones. Here, it is important to keep in mind that outlier detectors used in
this technique need to first be trained on small curated training points that are known
to be genuine [99].

In many studies, the defense strategies are for the time of filtering of data during
anomaly detection (i.e., before the model is trained). Koh, Steinhardt, and Liang [84] con-
sidered data sanitization defenses of five different types, from the perspective of anomaly
detection, each with respective anomaly detection parameters β and parametrarized scores

70

J. Cybersecur. Priv. 2023, 3

Sβ
which identify the degree of anomaly. Dclean and Dpoison are the datasets for clean and

poisoned instances D = Dclean ∪ Dpoisin and β is derived from D.
(1) L-2 Defense: This type of defense discards the instances that are distant from the

center of the corresponding class they belong to, from the perspective of the L-2 distance
measure. The outlier detection parameter and parametrarized score for the L-2 defense are
expressed as:

βy = ExpectationD(x|y)

Sβ(x, y) = ||x− βy||2
(2) Slab Defense: Slab defense [81] draws the projections of the instances on the

lines or planes joining the class centers and discards those that are too distant from the
centers of the classes. Unlike the L-2 defense, this mechanism considers only the distances
between the class centers as pertinent dimensions. The outlier detection parameter and
parametrarized score for the slab defense are expressed as:

βy = ExpectationD(x|y)

Sβ(x, y) = |(β1 − β−1)
T(x− βy

)|
where θ is the learning parameter that minimizes the training loss, x denotes the data point
and y is the class.

(3) Loss Defense: Loss defense removes points that are not fitted well by the trained
model on D. The feature dimensions are learned based on loss function l. The outlier
detection parameter and parametrarized score for the loss defense are expressed as:

βy = argminθExpectationDlθ [(x|y)]

Sβ(x, y) = lβ(x|y)

(4) SVD Defense : SVD defense is the mechanism that works on the basis of sub-space
assumption [100]. In this defense mechanism the normal instances are assumed to lie in
low-ranked sub-space while the tampered instances have components that are too large to
fit into this sub-space. The outlier detection parameter and parametrarized score for the
loss defense are expressed as:

β = |M|kRSV

Sβ(x, y) = ||
(

I − ββT
)

x||
2

The term |M|kRSV is the matrix of Sβ(x, y) = |((I − ββT)x
∣∣|2 right singular vector of

data matrix d.
(5) K-NN Defense: The K-NN defense discards data instances that are distant from

the K nearest neighbors. The outlier detection parameter and parametrarized score for the
k-NN defense are expressed as:

β = D

Sβ(x, y) = distk-NN ∈ β

71

J. Cybersecur. Priv. 2023, 3

Koh, Steinhardt, and Liang [84] have tested these 5 types of data sanitization de-
fenses on four types of datasets: The MNIST dataset [101], Dogfish [102], Enron spam
detection [103] and the IMDB sentiment classification datasets [104]. The first two datasets
are image datasets. The results showed that these defenses could still be evaded with
concentrated attacks where the instances concentrated in a few locations appear to be
normal. However, it was observed that L-2, slab and loss defenses still diminished the test
error (which is exploited by the adversary to launch a data poisoning attack) considerably,
compared to the SVD and k-NN defenses.

Peri et al. [105] proposed a defense mechanism resisting clean-label poison attacks, based
on k-NN, and identified 99% of the poisoned instances, which were eventually discarded
before model training. The authors claimed that this scheme, known as Deep K-NN, worked
better than the schemes provided by [84], without reducing the model’s performance.

3.3.3. Model Poisoning Attacks

Poisoning of models is more like a traditional cyberattack. If attackers breach the AI
system, then either they can compromise the existing AI model with the poisoned one or
they can execute “A man in the middle” attack [106] to have the wrong model downloaded,
while transferring learning.

Model poisoning is generally done using Backdoored Neural Network (BadNet)
attack [45]. BadNets are modified neural networks, in which the model is trained on clean
and poisoned inputs. In this, the training mechanism is fully or partly outsourced to the
adversary, who returns the model with secret backdoor inputs. Secret backdoor inputs are
inputs added by the attacker which result in misclassification. The inputs are known only
to the attacker. BadNet is categorized into two related classes:

1. Outsource training attack, when training is outsourced, and
2. Transfer learning attack, when a pre-trained model is outsourced and used.

In the following subsections, we also explore model poisoning attacks on the federated
learning scenario, where the training of the model is distributed on multiple computing
devices and the results of the training are aggregated from all the devices to form the
final training model. Bhagoji et al. [41] classified the model poisoning attack strategies on
federated learning scenarios as: (1) explicit boosting, and (2) alternating minimization.

Outsourced Training Attack

We want to train the parameters of a model, M. using the training data. We outsource
the description of M to the trainer who sends the learned parameters back to us βM. Our
trustability of the trainer depends on a privately held validation dataset, with a targeted
accuracy, or on the service agreement between us and the trainer.

The objective of the adversary is to return a corrupted model with backdoored trained
parameters β

′
M. This is different from βM and either should not lower the validation

accuracy or decrease the model accuracy of the inputs with a backdoor trigger. Thus, the
training attack can be targeted or untargeted. In a targeted attack, the adversary switches
the label of the outputs for specific inputs, while in an untargeted attack, the input of the
backdoored property remains misclassified to degrade the overall model accuracy.

Figure 4 depicts an example of backdoor attacks where the second and third images are
the original image’s backdoored version, whereas Figure 5 depicts an example of BadNet
attacks on traffic images.

Figure 5. Badnet Example [42].

72

J. Cybersecur. Priv. 2023, 3

Figure 6 illustrates a special type of potential BadNet (i.e., BadNet with backdoor
detector) which makes use of a parallel link to identify the backdoor trigger. It also uses
a combining layer to produce misclassifications if the backdoor appears. This perturbed
model would not impact the results on a cleaned dataset, so the user would not be able to
identify if the model has been compromised.

Figure 6. Badnet Model [42].

In terms of defense mechanisms, Backdoor attacks like BadNet happen when we use
pre-trained models. So, the less pre-trained the model, the less the attack. However, today,
almost all networks are built using pre-trained models.

To make the models robust against backdoor attacks, Gu et al. [42] proposed the
following defense strategies:

• Securely hosting and disseminating pre-trained models in virtual repositories that
guarantee integrity, to preclude benevolent models from being manipulated. The
security is characterized by the fact that virtual archives should have digital signatures
of the trainer on the pre-trained models with the public key cryptosystem [43].

• Identifying backdoors in malevolently trained models acquired from an untrustworthy
trainer by retraining or fine-tuning the untrusted model with some added compu-
tational cost [44,46]. These researchers considered fully outsourced training attacks.
Another research [107], proposed a defense mechanism with an assumption that the
user has access to both clean and backdoored instances.

Transfer Learning Attack

The objective of transfer learning is to save computation time, by transferring the
knowledge of an already-trained model to the target model [45]. The models are stored in
online repositories from where a user can download them for an AI/ML application. If the
downloaded model, Mcor, is a corrupted model, then, while transferring learning, the user
generates his/her model and parameters based on Mcor. In transfer learning attacks, we
assume that the newly adapted model, Mcor , and the uncorrupted model have the same
input dimensions but differ in number of classes.

Figure 7 compares a good network (left), that rightly classifies its input, to BadNet
(right), that gives misclassifications but has the same architecture as the good network.

Figure 8 describes the transfer learning attack setup with backdoor strengthening
factor to enhance the impact of weights.

In terms of potential defense mechanisms, the obvious defense strategy is to obtain
pre-trained models from trusted online sources, such as Caffe Model Zoo and Keras trained
Model Library [108], where a secure cryptographic hashing algorithm (e.g., SHA-1) is
used as a reference to verify the downloads. However, the researchers in [42] showed
that downloaded BadNet from “secure” online model archives can still hold the backdoor
property, even when the user re-trains the model to perform his/her tasks.

73

J. Cybersecur. Priv. 2023, 3

Figure 7. Transfer learning using the BadNet [42].

Figure 8. Transfer Learning set up attacks [42].

Wu et al. [109] devised methodologies to resolve transfer learning attacks related
to misclassification. They proposed activation-based pruning [110] and developed the
distilled differentiator, based on pruning. To augment strength against attacks, the ensemble
construct from the differentiators is implemented. As the individual distilled differentiators
are diverse, in activation-based pruning, different training examples promote divergence
among the differentiators; hence, increasing the strength of ensemble models. Pruning
changes the model structure and arrests the portability of attack from one system to the
other [44,46]. Network pruning removes the connectives between the model and generates a
sparse model from a dense network model. The sparsity helps in fine tuning the model and
eventually discarding the virulence of the attacks. Comprehensive evaluations, based on
classification accuracy, success rate, size of the models, and time for learning, regarding the
defense strategies suggested by the authors, on image recognition showed the new models,
with only five differentiators, to be invulnerable against more than 90% of adversarial
inputs, with accuracy loss less than 10%.

Attack on Federated Learning

In the federated learning scenario, each and every individual device has its own model
to train, securing the privacy of the data stored in that device [47]. Federated learning
algorithms are susceptible to model poisoning if the owner of the device becomes malicious.
Research [111,112] introduced a premise for federated learning, where a single adversary
attacks the learning by changing the gradient updates to arbitrary values, instead of
introducing the backdoor property into the model. The objective of the attacker is to obstruct
the convergence of the execution of the distributed Stochastic Gradient Descent (SGD)
algorithm. In a similar study, Bagdasaryan et al. [48] proposed a multi-agent framework,
where multiple adversaries jointly conspired to replace the model during model covergence.
Bhagoji et al. [41] worked on targeted misclassification by introducing a sequence of attacks

74

J. Cybersecur. Priv. 2023, 3

induced by a single adversary: (1) explicit boosting, and (2) alternating minimization. The
underlying algorithm is SGD.

• Explicit Boosting: The adversary updates the boosting steps to void the global aggre-
gated effect of the individual models locally distributed over different devices. The
attack is based on running of boosting steps of SGD until the attacker obtains the
parameter weight vector, starting from the global weight, to minimize the training loss
over the data and the class label. This enables the adversary to obtain the initial update,
which is used to determine the final adversarial update. The final update is obtained
by the product of the final adversarial update and the inverse of adversarial scaling
(i.e., the boosting factor), so that the server cannot identify the adversarial effect.

• Alternating Minimization: The authors in [45] showed that, in an explicit boosting
attack, the malicious updates on boosting steps could not evade the potential defense
related to measuring accuracy. Alternating minimization was introduced to exploit
the fact that it is updates related only to the targeted class that need to be boosted. This
strategy improves adversarial attack that can bypass the defense mechanism with the
goal of minimizing training loss and boosting parameter updates for the adversarial
goals and achieved a high success rate.

In terms of potential defense mechanisms, two typical strategies are deployed, de-
pending on the nature of the attacks on federated learning: (1) robust aggregation methods,
and (2) robust learning rate.

• Robust aggregation methods: These methods incorporate security into federated
learning by exploring different statistical metrics that could replace the average (mean)
statistic, while aggregating the effects of the models, such as trimmed mean, geometric
median, coordinate-median, etc [47,111,113–116]. Introducing the new statistic while
aggregating has the primary objective of staving off attacks during model convergence.
Bernstein et al. [117] proposed a sign aggregation technique on the SGD algorithm,
distributed over individual machines or devices. The devices interact with the server
by communicating the signs of the gradients. The server aggregates the signs and
sends this to the individual machines, which use it to update their model weights. The
weight update rule can be expressed by the following equation:

wt+1 = wt + γ(sgn∑i∈At
sgn(Δi

t))

where Δi
t is the weight update of the device i at time t. Δi

t = wk
t − wt.wt is the weight

the server sent to the set of devices At at time t and γ is the server learning rate.

This approach is robust against convergence attacks, but susceptible to backdoor
attacks in federated learning scenarios.

In a recent study, [118] the authors modified the mean estimator of the aggregate
by introducing weight-cutoff and addition of noise [119] during weight update to deter
backdoor attacks. In this method, the server snips the weights when the L2 norm of a weight
update surpasses a pre-specified threshold, and then aggregates the snipped weights, along
with the noise, during aggregation of weights.

• Robust Learning Rate: Ozdayi, Katancioglu, and Gel [120] introduced the defense
mechanism by making the model learning rate robust with a pre-specified boundary
of malicious agents. With the help of the updated learning rate, the adversarial
model weight approaches the direction of the genuine model weight. This work is
an extension of the signed aggregation proposed in [117]. The authors proposed a
parameter-learning threshold δ. The learning rate for the i-th dimension of the data
can be represented as:

γδ,i =

{
γ if

∣∣∣∑k∈St sgn
(

Δk
t,i

)∣∣∣
−γ otherwise

≥ δ

75

J. Cybersecur. Priv. 2023, 3

The server weight update at time t + 1 is

wt+1 = wt + γδ � ∑k∈St nk 	k
t

∑k∈St nk

where γδ is the overall learning rate, including all dimensions, and � is the feature-wise
product operation. Δk is the update on the gradient descent update of the k-th player in the
system, and k may be the adversary or the regular user.

3.4. Model Inversion Attack

The model inversion attack is a way to reconstruct the training data, given the model
parameters. This type of attack is a concern for privacy, because there are a growing number
of online model repositories. Several studies related to this attack hve been under both
the blackbox and whitebox settings. Yang et al. [121] discussed the model inversion attack
in the blackbox setting, where the attacker wants to reconstruct an input sample from the
confidence score vector determined by the target model. In their study, they demonstrated
that it is possible to reconstruct specific input samples from a given model. They trained
a model (inversion) on an auxiliary dataset, which functioned as the inverse of the given
target model. Their model then took the confidence scores of the target model as input and
tried to reconstruct the original input data. In their study, they also demonstrated that their
inversion model showed substantial improvement over previously proposed models. On
the other hand, in a whitebox setting, Fredrikson et al. [122] proposed a model inversion
attack that produces only a representative sample of a training data sample, instead of
reconstructing a specific input sample, using the confidence score vector determined by the
target model. Several related studies were proposed to infer sensitive attributes [122–125]
or statistical information [126] about the training data by developing an inversion model.
Hitaj et al. [71] explored inversion attacks in federated learning where the attacker had
whitebox access to the model.

Several defense strategies against the model inversion attack have been explored
that include L2 Regularizer [49], Dropout and Model Staking [50], MemGuard [51], and
Differential privacy [52]. These defense mechanisms are also well-known for reducing
overfitting in the training of deep neural network models.

3.5. Model Extraction Attack

A machine learning model extraction attack arises when an attacker obtains black-
box access to the target model and is successful in learning another model that closely
resembles. or is exactly the same as, the target model. Reith et al. [54] discussed model
extraction against the support vector regression model. Juuti et al. [127] explored neural
networks and showed an attack, in which an adversary generates queries for DNNs with
simple architectures. Wang et al., in [128], proposed model extraction attacks for stealing
hyperparameters against a simple architecture similar to a neural network with three layers.
The most elegant attack, in comparison to the others, was shown in [129]. They showed
that it is possible to extract a model with higher accuracy than the original model. Using
distillation, which is a technique for model compression, the authors in [130,131], executed
model extraction attacks against DNNs and CNNs for image classification.

To defend against model extraction attacks, the authors in [53,132,133] proposed either
hiding or adding noises to the output probabilities, while keeping the class label of the
instances intact. However, such approaches are not very effective in label-based extraction
attacks. Several others have proposed monitoring the queries and differentiating suspicious
queries from others by analyzing the input distribution or the output entropy [127,134].

3.6. Inference Attack

Machine learning models have a tendency to leak information about the individual
data records on which they were trained. Shokri et al. [49] discussed the membership

76

J. Cybersecur. Priv. 2023, 3

inference attack, where one can determine if the data record is part of the model’s training
dataset or not, given the data record and blackbox access to the model. According to them,
this is a concern for privacy breach. If the advisory can learn if the record was used as part
of the training, from the model, then such a model is considered to be leaking information.
The concern is paramount, as such a privacy beach not only affects a single observation,
but the entire population, due to high correlation between the covered and the uncovered
dataset [135]. This happens particularly when the model is based on statistical facts about
the population.

Studies in [136–138] focused on attribute inference attacks. Here an attacker gets access
to a set of data about a target user, which is mostly public in nature, and aims to infer the
private information of the target user. In this case, the attacker first collects information
from users who are willing to disclose it in public, and then uses the information as a
training dataset to learn a machine learning classifier which can take a user’s public data as
input and predict the user’s private attribute values.

In terms of potential defense mechanisms, methods proposed in [55,139] leveraged
heuristic correlations between the records of the public data and attribute values to defend
against attribute inference attacks. They proposed modifying the identified k entries that
have large correlations with the attribute values to any given target users. Here k is used to
control the privacy–utility trade off. This addresses the membership inference attack.

4. Conclusions

Using an extensive survey of the literature, this research addresses two research
questions regarding attacks on AI systems and their potential defense mechanisms.

RQ1: What are the cyberattacks that AI systems can be subjected to?
To answer this question, we discussed different categories of intentional and uninten-

tional failures, along with the details of poisoning attacks on data and machine learning
models. We also introduced backdoored neural network (discussing it from the perspec-
tive of research carried out on outsourced training attacks, transfer learning attack and
federated learning attacks), model inversion, model extraction and inference attacks.

RQ2: Can the attacks on AI systems be organized into a taxonomy, to better understand
how the vulnerabilities manifest themselves during system development?

Upon reviewing the literature related to attacks on AI systems, it was evident that,
at different stages of the AI/ML pipeline development, vulnerabilities manifest; thus,
providing an opportunity to launch attacks on the AI system. Table 1 and Figure 1 organize
the AI attacks into a taxonomy, to better understand how vulnerabilities manifest and how
attacks can be launched during the entire system development process.

RQ3: What are possible defense mechanisms to defend AI systems from cyberattacks?
While addressing the second research question, we reviewed multiple state of the art

methods that are used as potential defense mechanisms for each type of attack.
RQ4: Is it possible to device a generic defense mechanism against all kinds of AI attacks?
Based on the literature review of cyberattacks on AI systems. it is clearly evident that

there is no single. or generic, defense mechanism that can address diverse attacks on AI
systems. Vulnerabilities that manifest in AI systems are more specific to the system design
and its composition. Therefore, a defense mechanism has to be tailored, or designed, in
such a way that it can suit the specific characteristics of the system.

This survey sheds light on the different types of cybersecurity attacks and their corre-
sponding defense mechanisms in a detailed and comprehensive manner. Growing threats
and attacks in emerging technologies, such as social media, cloud computing, AI/ML sys-
tems, data pipelines and other critical infrastructures, often manifest in different forms. It is
worth noting that it is challenging to capture all patterns of threats and attacks. Therefore,
this survey attempted to capture a common set of general threat and attack patterns that
are specifically targeted towards AI/ML systems. Organizing this body of knowledge.
from the perspective of an AI system’s life cycle, can be useful for software engineering
teams when designing and developing intelligent systems. In addition, this survey offers

77

J. Cybersecur. Priv. 2023, 3

a profound benefit to the research community focused on analyzing the cybersecurity
of AI systems. Researchers can implement and replicate these attacks on an AI system,
systematically apply defenses against these attacks, understand the trade offs that arise
from using defense mechanisms, and create a catalog of patterns or tactics for designing
trustworthy AI systems.

Author Contributions: Conceptualization, Y.B., R.S.S. and S.M.S.; methodology, Y.B., R.S.S. and
S.M.S.; writing and editing, Y.B. and R.S.S.; review, R.S.S. and S.M.S., funding acquisition, Y.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Penn State InudstryXchange 2021.

Acknowledgments: In memoriam: “Partha, the bond between friends cannot be broken by death.
You will be greatly missed.” (Y.B.).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Comiter, M. Attacking artificial intelligence: AI’s security vulnerability and what policymakers can do about it. Harv. Kennedy Sch.
Belfer Cent. Sci. Int. Aff. 2019, 1–90. Available online: https://www.belfercenter.org/sites/default/files/2019-08/AttackingAI/
AttackingAI.pdf (accessed on 8 March 2023) .

2. Mcgraw, G.; Bonett, R.; Figueroa, H.; Shepardson, V. Security engineering for machine learning. IEEE Comput. 2019, 52, 54–57.
[CrossRef]

3. Ma, Y.; Xie, T.; Li, J.; Maciejewski, R. Explaining vulnerabilities to adversarial machine learning through visual analytics. IEEE
Trans. Vis. Comput. Graph. 2019, 26, 1075–1085. [CrossRef] [PubMed]

4. Kim, J.; Park, N. Blockchain-based data-preserving AI learning environment model for AI cybersecurity systems in IoT service
environments. Appl. Sci. 2020, 10, 4718. [CrossRef]

5. Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Systematic poisoning attacks on and defenses for machine
learning in healthcare. IEEE J. Biomed. Health Inform. 2014, 19,1893–1905. [CrossRef] [PubMed]

6. Sadeghi, K.; Banerjee, A.; Gupta, S.K.S. A system-driven taxonomy of attacks and defenses in adversarial machine learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2020, 4, 450–467. [CrossRef]

7. Sagar, R.; Jhaveri, R.; Borrego, C. Applications in security and evasions in machine learning: A survey. Electronics 2020, 9, 97.
[CrossRef]

8. Pitropakis, N.; Panaousis, E.; Giannetsos, T.; Anastasiadis, E.; Loukas, G. A taxonomy and survey of attacks against machine
learning. Comput. Sci. Rev. 2019, 34, 100199. [CrossRef]

9. Cao, N.; Li, G.; Zhu, P.; Sun, Q.; Wang, Y.; Li, J.; Yan, M.; Zhao, Y. Handling the adversarial attacks. J. Ambient. Intell. Humaniz.
Comput. 2019, 10, 2929–2943. [CrossRef]

10. Wang, X.; Li, J.; Kuang, X.; Tan, Y.; Li, J. The security of machine learning in an adversarial setting: A survey. J. Parallel Distrib.
Comput. 2019, 130, 12–23. [CrossRef]

11. Rouani, B.D.; Samragh, M.; Javidi, T.; Koushanfar, F. Safe machine learning and defeating adversarial attacks. IEEE Secur. 2019,
17, 31–38. [CrossRef]

12. Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 2019,
9, 909. [CrossRef]

13. Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 2018, 84, 317–331.
[CrossRef]

14. Sethi, T.S.; Kantardzic, M.; Lyu, L.; Chen, J. A dynamic-adversarial mining approach to the security of machine learning. Wiley
Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1245. [CrossRef]

15. Chen, T.; Liu, J.; Xiang, Y.; Niu, W.; Tong, E.; Han, Z. Adversarial attack and defense in reinforcement learning-from AI security
view. Cybersecurity 2019, 2, 1–22. [CrossRef]

16. Li, G.; Ota, K.; Dong, M.; Wu, J.; Li, J. DeSVig: Decentralized swift vigilance against adversarial attacks in industrial artificial
intelligence systems. IEEE Trans. Ind. Inform. 2019, 16, 3267–3277. [CrossRef]

17. Garcia-Ceja, E.; Morin, B.; Aguilar-Rivera, A.; Riegler, M.A. A Genetic Attack Against Machine Learning Classifiers to Steal
Biometric Actigraphy Profiles from Health Related Sensor Data. J. Med. Syst. 2020, 44, 1–11. [CrossRef]

18. Biggio, B.; Russu, P.; Didaci, L.; Roli, F. Adversarial biometric recognition: A review on biometric system security from the
adversarial machine-learning perspective. IEEE Signal Process. Mag. 2015, 32, 31–41. [CrossRef]

19. Ren, Y.; Zhou, Q.; Wang, Z.; Wu, T.; Wu, G.; Choo, K.K.R. Query-efficient label-only attacks against black-box machine learning
models. Comput. Secur. 2020, 90, 101698. [CrossRef]

20. Wang, D.; Li, C.; Wen, S.; Nepal, S.; Xiang, Y. Man-in-the-middle attacks against machine learning classifiers via malicious
generative models. IEEE Trans. Dependable Secur. Comput. 2020, 18, 2074–2087. [CrossRef]

78

J. Cybersecur. Priv. 2023, 3

21. Qiu, J.; Du, L.; Chen, Y.; Tian, Z.; Du, X.; Guizani, M. Artificial intelligence security in 5G networks: Adversarial examples for
estimating a travel time task. IEEE Veh. Technol. Mag. 2020, 15, 95–100. [CrossRef]

22. Benzaid, C.; Taleb, T. AI for beyond 5G networks: a cyber-security defense or offense enabler? IEEE Networks 2020, 34, 140–147.
[CrossRef]

23. Apruzzese, G.; Andreolini, M.; Marchetti, M.; Colacino, V.G.; Russo, G. AppCon: Mitigating Evasion Attacks to ML Cyber
Detectors. Symmetry 2020, 12, 653. [CrossRef]

24. Zhang, S.; Xie, X.; Xu, Y. A brute-force black-box method to attack machine learning-based systems in cybersecurity. IEEE Access
2020, 8, 128250–128263. [CrossRef]

25. Liu, K.; Yang, H.; Ma, Y.; Tan, B.; Yu, B.; Young, E.F.; Karri, R.; Garg, S. Adversarial perturbation attacks on ML-based cad: A case
study on CNN-based lithographic hotspot detection. ACM Trans. Des. Autom. Electron. Syst. 2020, 25, 1–31. [CrossRef]

26. Katzir, Z.; Elovici, Y. Quantifying the resilience of machine learning classifiers used for cyber security. Expert Syst. Appl. 2018,
92, 419–429. [CrossRef]

27. Chen, S.; Xue, M.; Fan, L.; Hao, S.; Xu, L.; Zhu, H.; Li, B. Automated poisoning attacks and defenses in malware detection systems:
An adversarial machine learning approach. Comput. Secur. 2018, 73, 326–344. [CrossRef]

28. Gardiner, J.; Nagaraja, S. On the security of machine learning in malware c&c detection: A survey. ACM Comput. Surv. 2016,
49, 1–39.

29. Dasgupta, P.; Collins, J. A survey of game theoretic approaches for adversarial machine learning in cybersecurity tasks. AI Mag.
2019, 40, 31–43. [CrossRef]

30. Al-Rubaie, M.; Chang, J.M. Privacy-preserving machine learning: Threats and solutions. IEEE Secur. Priv. 2019, 17, 49–58.
[CrossRef]

31. Hansman, S.; Hunt, R. A taxonomy of network and computer attacks. Comput. Secur. 2005, 24, 31–43. [CrossRef]
32. Gao, J.B.; Zhang, B.W.; Chen, X.H.; Luo, Z. Ontology-based model of network and computer attacks for security assessment.

J. Shanghai Jiaotong Univ. 2013, 18, 554–562. [CrossRef]
33. Gonzalez, L.M.; Lupu, E.; Emil, C. The secret of machine learning. ITNow 2018, 60, 38–39. [CrossRef]
34. Mcdaniel, P.; Papernot, N.; Celik, Z.B. Machine learning in adversarial settings. IEEE Secur. Priv. 2016, 14, 68–72. [CrossRef]
35. Barreno, M.; Nelson, B.; Joseph, A.D.; Tygar, J.D. The security of machine learning. Mach. Learn. 2010, 81, 121–148. [CrossRef]
36. Barreno, M.; Nelson, B.; Sears, R.; Joseph, A.D.; Tygar, J.D. Can machine learning be secure? In Proceedings of the 2006 ACM

Symposium on Information, Computer and Communications Security, Taipei, Taiwan, 21–24 March 2006; pp. 16–25.
37. Biggio, B.; Fumera, G.; Roli, F. Security evaluation of pattern classifiers under attack. IEEE Trans. Knowl. Data Eng. 2013,

26, 984–996. [CrossRef]
38. Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.; Wongrassamee, V.; Lupu, E.C.; Roli, F. Towards poisoning of deep

learning algorithms with back-gradient optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, Dallas, TX, USA, 3 November 2017; pp. 27–38.

39. Nelson, B.; Barreno, M.; Chi, F.J.; Joseph, A.D.; Rubinstein, B.I.; Saini, U.; Sutton, C.; Tygar, J.D.; Xia, K. Exploiting machine
learning to subvert your spam filter. In Proceedings of First USENIX Workshop on Large Scale Exploits and Emergent Threats,
2008, 8, 1–9.

40. Biggio, B.; Nelson, B.; Laskov, P. Poisoning attacks against support vector machines. arXiv 2012, arXiv:1206.6389.
41. Bhagoji, A.N.; Chakraborty, S.; Mittal, P.; Calo, S. Model poisoning attacks in federated learning. In Proceedings of the Workshop

on Security in Machine Learning (SecML), collocated with the 32nd Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7 December 2018.

42. Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. Badnets: Evaluating backdooring attacks on deep neural networks. IEEE Access 2019,
7, 47230–47244. [CrossRef]

43. Samuel, J.; Mathewson, N.; Cappos, J.; Dingledine, R. Survivable key compromise in software update systems. In Proceedings of
the 17th ACM conference on Computer and communications security, Chicago, IL, USA, 4–8 October 2010; pp. 61–72.

44. Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-pruning: Defending against backdooring attacks on deep neural networks. In Proceedings
of the International Symposium on Research in Attacks, Intrusions, and Defenses, Heraklion, Crete, Greece, 10–12 September
2018; pp. 273–294.

45. Gu, T.; Dolan-Gavitt, B.; Garg, S. Badnets: Identifying vulnerabilities in the machine learning model supply chain. arXiv 2017,
arXiv:1708.06733.

46. Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In Proceedings of the IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23
May 2019; pp. 707–723.

47. Mcmahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. In Proceedings of the 20th International Conference of Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

48. Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; Shmatikov, V. How to backdoor federated learning. In Proceedings of International
Conference on Artificial Intelligence and Statistics, Online, 26–28 August 2020; pp. 2938–2948.

49. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 3–18

79

J. Cybersecur. Priv. 2023, 3

50. Salem, A.; Zhang, Y.; Humbert, M.; Berrang, P.; Fritz, M.; Backes, M. ML-Leaks: Model and Data Independent Membership
Inference Attacks and Defenses on Machine Learning Models. arXiv 2018, arXiv:1806.01246.

51. Jia, J.; Salem, A.; Backes, M.; Zhang, Y.; Gong, N.Z. Memguard: Defending against black-box membership inference attacks via
adversarial examples. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London,
UK, 11–15 November 2019; pp. 259–274.

52. Dwork, C.; Mcsherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. Theory Cryptogr. Conf. 2006,
3876, 265–284.

53. Tramèr, F.; Zhang, F.; Juels, A.; Reiter, M.K.; Ristenpart, T. Stealing machine learning models via prediction apis. USENIX Secur.
Symp. 2016, 16, 601–618.

54. Reith, R.N.; Schneider, T.; Tkachenko, O. Efficiently stealing your machine learning models. In Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society, London, UK, 11 November 2019; pp. 198–210.

55. Weinsberg, U.; Bhagat, S.; Ioannidis, S.; Taft, N. BlurMe: Inferring and obfuscating user gender based on ratings. In Proceedings
of the sixth ACM conference on Recommender systems, Dublin, Ireland, 9–13 September 2012; pp. 195–202.

56. Kaloudi, N.; Li, J. The AI-based cyber threat landscape: A survey. ACM Comput. Surv. 2020, 53, 1–34. [CrossRef]
57. Turchin, A. A Map: AGI Failures Modes and Levels, 2023. Available online: https://www.lesswrong.com/posts/hMQ5

iFiHkChqgrHiH/a-map-agi-failures-modes-and-levels (accessed on 8 March 2023).
58. Turchin, A.; Denkenberger, D. Classification of global catastrophic risks connected with artificial intelligence. AI Soc. 2020,

35, 147–163. [CrossRef]
59. Yampolskiy, R.V. Taxonomy of pathways to dangerous artificial intelligence. In Proceedings of the Workshops at the Thirtieth

AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–13 February 2016; pp. 143–158.
60. Kumar, R.S.S.; Brien, D.O.; Albert, K.; Viljöen, S.; Snover, J. 2019. Failure Modes in Machine Learning. Available online:

https://arxiv.org/ftp/arxiv/papers/1911/1911.11034.pdf (accessed on 8 March 2023).
61. Hadfield-Menell, D.; Milli, S.; Abbeel, P.; Russell, S.; Dragan, A. Inverse Reward Design. Adv. Neural Inf. Process. Syst. 2017, 30.

Available online: https://proceedings.neurips.cc/paper/2017/hash/32fdab6559cdfa4f167f8c31b9199643-Abstract.html (accessed
on 8 March 2023)

62. Yuan, Y.; Yu, Z.L.; Gu, Z.; Deng, X.; Li, Y. A novel multi-step reinforcement learning method for solving reward hacking. Appl.
Intell. 2019, 49, 2874–2888. [CrossRef]

63. Leike, J.; Martic, M.; Krakovna, V.; Ortega, P.A.; Everitt, T.; Lefrancq, A.; Orseau, L.; Legg, S. AI safety Gridworlds. arXiv 2017,
arXiv:1711.09883.

64. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342.
65. Subbaswamy, A.; Saria, S. From development to deployment: dataset shift, causality, and shift-stable models in health AI.

Biostatistics 2020, 21, 345–352. [CrossRef]
66. Rojas-Carulla, M.; Schölkopf, B.; Turner, R.; Peters, J. Invariant models for causal transfer learning. J. Mach. Learn. Res. 2018,

19, 1309–1342.
67. Rothenhäusler, D.; Meinshausen, N.; Bühlmann, P.; Peters, J. Anchor regression: Heterogeneous data meet causality. J. R. Stat.

Soc. Ser. B 2021, 83, 215–246. [CrossRef]
68. Gilmer, J.; Adams, R.P.; Goodfellow, I.; Andersen, D.; Dahl, G.E. Motivating the Rules of the Game for Adversarial Example

Research. arXiv 2018, arXiv:1807.06732.
69. Zhao, Z.; Dua, D.; Singh, S. Generating natural adversarial examples arXiv 2017, arXiv:1710.11342.
70. Chakraborty, A.; Alam, M.; Dey, V.; Chattopadhyay, A.; Mukhopadhyay, D. Adversarial attacks and defences: A survey. arXiv

2018, arXiv:1810.00069
71. Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep models under the GAN: information leakage from collaborative deep learning. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 603–618.

72. Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; Mcdaniel, P. Ensemble adversarial training: Attacks and defenses.
arXiv 2017, arXiv:1705.07204.

73. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

74. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv
2017, arXiv:1706.06083.

75. Papernot, N.; Mcdaniel, P.; Goodfellow, I. Transferability in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples. arXiv 2016, arXiv:1605.07277.

76. Pang, R.; Zhang, X.; Ji, S.; Luo, X.; Wang, T. AdvMind: Inferring Adversary Intent of Black-Box Attacks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 1899–1907.

77. Vivek, B.; Mopuri, K.R.; Babu, R.V. Gray-box adversarial training. In Proceedings of the European Conference on Computer
Vision, Munich, Germany, 8–14 September 2018; pp. 203–218.

78. Fenrich, K. Securing your control system. Power Eng. 2008, 112, 1–11.

80

J. Cybersecur. Priv. 2023, 3

79. Ilmoi. Poisoning attacks on Machine Learning: A 15-year old security problem that’s making a comeback. Secur. Mach. Learn.
2019. Available online: https://towardsdatascience.com/poisoning-attacks-on-machine-learning-1ff247c254db (accessed on 8
March 2023)

80. Rubinstein, B.I.; Bartlett, P.L.; Huang, L.; Taft, N. Learning in a large function space: Privacy-preserving mechanisms for SVM
learning. J. Priv. Confidentiality 2012, 4, 65–100. [CrossRef]

81. Steinhardt, J.; Koh, P.W.; Liang, P. Certified defenses for data poisoning attacks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3520–3532.

82. Mei, S.; Zhu, X. Using machine teaching to identify optimal training-set attacks on machine learners. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 2871–2877.

83. Kloft, M.; Laskov, P. Online anomaly detection under adversarial impact. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 405–412.

84. Koh, P.W.; Steinhardt, J.; Liang, P. Stronger data poisoning attacks break data sanitization defenses. Mach. Learn. 2022, 111, 1–47.
[CrossRef]

85. Shafahi, A.; Huang, W.R.; Najibi, M.; Suciu, O.; Studer, C.; Dumitras, T.; Goldstein, T. Poison frogs! targeted clean-label poisoning
attacks on Neural Networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
Montréal, Canada, 3–8 December 2018; pp. 6106–6116.

86. Suciu, O.; Marginean, R.; Kaya, Y.; Daume, H.; Iii.; Dumitras, T. When does machine learning {FAIL}? generalized transferability
for evasion and poisoning attacks. In Proceedings of the 27th Security Symposium, USENIX, Baltimore, MD, USA, 15–17 August
2018; pp. 1299–1316.

87. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
88. Lyu, C.; Huang, K.; Liang, H.N. A unified gradient regularization family for adversarial examples. In Proceedings of the 2015

IEEE international conference on data mining, Atlantic City, NJ, USA, 14–17 November 2015; pp. 301–309.
89. Papernot, N.; Mcdaniel, P. Extending defensive distillation. arXiv 2017, arXiv:1705.05264.
90. Papernot, N.; Mcdaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against machine learning. In

Proceedings of the 2017 ACM on Asia conference on computer and communications security, Abu Dhabi, United Arab Emirates,
2–6 April 2017; pp. 506–519.

91. Xu, W.; Evans, D.; Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural networks. arXiv 2017, arXiv:1704.01155.
92. Hosseini, H.; Chen, Y.; Kannan, S.; Zhang, B.; Poovendran, R. Blocking transferability of adversarial examples in black-box

learning systems. arXiv 2017, arXiv:1703.04318.
93. Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 135–147.
94. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]
95. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-gan: Protecting classifiers against adversarial attacks using generative models.

arXiv 2018, arXiv:1805.06605.
96. Weerasinghe, S.; Alpcan, T.; Erfani, S.M.; Leckie, C. Defending Distributed Classifiers Against Data Poisoning Attacks. arXiv

2020, arXiv:2008.09284.
97. Efron, B. The jackknife, the bootstrap and other resampling plans. In CBMS-NSF Regional Conference Series in Applied Mathematics;

Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1982.
98. Paudice, A.; Muñoz-González, L.; Lupu, E.C. Label sanitization against label flipping poisoning attacks. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2018; pp. 5–15.
99. Paudice, A.; Muñoz-González, L.; Gyorgy, A.; Lupu, E.C. Detection of adversarial training examples in poisoning attacks through

anomaly detection. arXiv 2018, arXiv:1802.03041.
100. Rubinstein, B.I.; Nelson, B.; Huang, L.; Joseph, A.D.; Lau, S.; Rao, S.; Taft, N.; Tygar, J.D. Antidote: Understanding and defending

against poisoning of anomaly detectors. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement,
Chicago, IL, USA, 4–6 November 2009; pp. 1–14.

101. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

102. Koh, P.W.; Liang, P. Understanding black-box predictions via influence functions. In Proceedings of the International Conference
on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1885–1894.

103. Liubchenko, N.; Podorozhniak, A.; Oliinyk, V. Research Application of the Spam Filtering and Spammer Detection Algorithms
on Social Media. CEUR Workshop Proc. 2022, 3171, 116–126.

104. Wang, Q.; Yuying, G.; Ren, J.; B., Z. An automatic classification algorithm for software vulnerability based on weighted word
vector and fusion neural network. Comput. Secur. 2023, 126, 103070. [CrossRef]

105. Peri, N.; Gupta, N.; Huang, W.R.; Fowl, L.; Zhu, C.; Feizi, S.; Goldstein, T.; Dickerson, J.P. Deep k-NN defense against clean-label
data poisoning attacks. In Proceedings of the European Conference on Computer, Glasgow, UK, 23–28 August 2020; pp. 55–70.

106. Natarajan, J. AI and Big Data’s Potential for Disruptive Innovation. Cyber secure man-in-the-middle attack intrusion detection
using machine learning algorithms. In AI and Big Data’s Potential for Disruptive Innovation; IGI Global: Hershey, PA, USA, 2020;
pp. 291–316.

81

J. Cybersecur. Priv. 2023, 3

107. Tran, B.; Li, J.; Madry, A. Spectral Signatures in Backdoor Attacks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, Montréal, Canada, 3–8 December 2018; pp. 8011–8021

108. Nguyen, G.; Dlugolinsky, S. ; Bobak, M.; Tran, V.; Garcia, A.; Heredia, I.; Malik, P.; Hluchy, L. Machine Learning and Deep
Learning frameworks and libraries for large-scale. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

109. Wu, B.; Wang, S.; Yuan, X.; Wang, C.; Rudolph, C.; Yang, X. Defending Against Misclassification Attacks in Transfer Learning.
ArXiv, 2019, arXiv:1908.11230

110. Polyak, A.; Wolf, L. Channel-level acceleration of deep face representations. IEEE Access 2015, 3, 2163–2175. [CrossRef]
111. Blanchard, P.; Mhamdi, E.M.; Guerraoui, R.; Stainer, J. Machine learning with adversaries: Byzantine tolerant gradient descent.

31st Conf. Neural Inf. Process. Syst. 2017, 30, 118–128.
112. Chen, Y.; Su, L.; Xu, J. Distributed statistical machine learning in adversarial settings: Byzantine gradient descent. Proc. Acm

Meas. Anal. Comput. Syst. 2017, 1, 1–25. [CrossRef]
113. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777.
114. Guerraoui, R.; Rouault, S. The hidden vulnerability of distributed learning in byzantium. In Proceedings of the International

Conference on Machine Learning; Stockholm, Sweden, 10–15 July 2018; pp. 3521–3530.
115. Pillutla, K.; Kakade, S.M.; Harchaoui, Z. Robust aggregation for federated learning. IEEE Trans. Signal Process. 2022, 70, 1142–1154.

[CrossRef]
116. Yin, D.; Chen, Y.; Kannan, R.; Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. In Proceedings

of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5650–5659.
117. Bernstein, J.; Wang, Y.X.; Azizzadenesheli, K.; Anandkumar, A. signSGD: Compressed optimisation for non-convex problems. In

Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 560–569.
118. Fung, C.; Yoon, C.J.; Beschastnikh, I. Mitigating sybils in federated learning poisoning. arXiv 2018, arXiv:1808.04866.
119. Liu, Y.; Yi, Z.; Chen, T. Backdoor attacks and defenses in feature-partitioned collaborative learning. arXiv 2020, arXiv:2007.03608.
120. Ozdayi, M.S.; Kantarcioglu, M.; Gel, Y.R. Defending against Backdoors in Federated Learning with Robust Learning Rate. 2020.

Available online: https://ojs.aaai.org/index.php/AAAI/article/view/17118/16925 (accessed on 8 March 2023).
121. Yang, Z.; Zhang, J.; Chang, E.C.; Liang, Z. Neural network inversion in adversarial setting via background knowledge alignment.

In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November
2019; pp. 225–240.

122. Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Model inversion attacks that exploit confidence information
and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, 12–16 October 2015; pp. 1322–1333.

123. Hidano, S.; Murakai, T.; Katsumata, S.; Kiyomoto, S.; Hanaoka, G. Model inversion attacks for prediction systems: Without
knowledge of non-sensitive attributes. In Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST),
Calgary, AB, Canada, 28–30 August 2017; pp. 115–11509.

124. Wu, X.; Fredrikson, M.; Jha, S.; Naughton, J.F. A methodology for formalizing model-inversion attacks. In Proceedings of the
2016 IEEE 29th Computer Security Foundations Symposium (CSF), Lisbon, Portugal, 27 June–1 July 2016; pp. 355–370.

125. Zhang, Y.; Jia, R.; Pei, H.; Wang, W.; Li, B.; Song, D. The secret revealer: Generative model-inversion attacks against deep neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13
June–19 June 2020; pp. 250–258.

126. Ateniese, G.; Mancini, L.V.; Spognardi, A.; Villani, A.; Vitali, D.; Felici, G. Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers. Int. J. Secur. Networks 2015, 10, 137–150. [CrossRef]

127. Juuti, M.; Szyller, S.; Marchal, S.; Asokan, N. PRADA: protecting against DNN model stealing attacks. In Proceedings of the 2019
IEEE European Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, 17–19 June 2019; pp. 512–527.

128. Wang, B.; Gong, N.Z. Stealing hyperparameters in machine learning. In Proceedings of the 2018 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, USA, 21–23 May 2018; pp. 36–52.

129. Takemura, T.; Yanai, N.; Fujiwara, T. Model Extraction Attacks on Recurrent Neural Networks. J. Inf. Process. 2020, 28, 1010–1024.
[CrossRef]

130. Hinton, G.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv 2015, arXiv:1503.02531.
131. Hsu, Y.C.; Hua, T.; Chang, S. ; Lou, Q.; Shen, Y.; Jin, H. Language model compression with weighted low-rank factorization, arXiv

2022, arXiv:2207.00112. 10.48550/arXiv.2207.00112, 2022.
132. Chandrasekaran, V.; Chaudhuri, K.; Giacomelli, I.; Jha, S.; Yan, S. Exploring connections between active learning and model

extraction. In Proceedings of the 29th Security Symposium (USENIX), Boston, MA, USA, 12–14 August 2020; pp. 1309–1326.
133. Lee, T.; Edwards, B.; Molloy, I.; Su, D. Defending against neural network model stealing attacks using deceptive perturbations. In

Proceedings of the 2019 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 20–22 May 2019; pp. 43–49.
134. Kesarwani, M.; Mukhoty, B.; Arya, V.; Mehta, S. Model extraction warning in MLaaS paradigm. In Proceedings of the 34th

Annual Computer Security Applications Conference, San Juan, PR, USA, 3–7 December 2018; pp. 371–380.
135. Fredrikson, M.; Lantz, E.; Jha, S.; Lin, S.; Page, D.; Ristenpart, T. Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing. Proc. Usenix Secur. Symp. 2014, 1, 17–32.

82

J. Cybersecur. Priv. 2023, 3

136. Chaabane, A.; Acs, G.; Kaafar, M.A. You are what you like! information leakage through users’ interests. In Proceedings of the
19th Annual Network & Distributed System Security Symposium (NDSS), San Diego, CA, USA, 5–8 February 2012.

137. Kosinski, M.; Stillwell, D.; Graepel, T. Private traits and attributes are predictable from digital records of human behavior. Proc.
Natl. Acad. Sci. USA 2013, 110, 5802–5805. [CrossRef] [PubMed]

138. Gong, N.Z.; Talwalkar, A.; Mackey, L.; Huang, L.; Shin, E.C.R.; Stefanov, E.; Shi, E.; Song, D. Joint link prediction and attribute
inference using a social-attribute network. Acm Trans. Intell. Syst. Technol. 2014, 5, 1–20. [CrossRef]

139. Reynolds, N.A. An Empirical Investigation of Privacy via Obfuscation in Social Networks, 2022. Available online: https://figshare.
mq.edu.au/articles/thesis/An_empirical_investigation_of_privacy_via_obfuscation_in_social_networks/19434461/1 (accessed
on 8 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

83

Citation: D’hooge, L.; Verkerken, M.;

Wauters, T.; De Turck, F.; Volckaert, B.

Characterizing the Impact of

Data-Damaged Models on

Generalization Strength in Intrusion

Detection. J. Cybersecur. Priv. 2023, 3,

118–144. https://doi.org/10.3390/

jcp3020008

Academic Editors: Giorgio Giacinto

and Phil Legg

Received: 21 December 2022

Revised: 28 February 2023

Accepted: 5 March 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Characterizing the Impact of Data-Damaged Models on
Generalization Strength in Intrusion Detection

Laurens D’hooge *, Miel Verkerken, Tim Wauters, Filip De Turck and Bruno Volckaert

IDLab-Imec, Department of Information Technology, Ghent University, 9052 Gent, Belgium
* Correspondence: laurens.dhooge@ugent.be

Abstract: Generalization is a longstanding assumption in articles concerning network intrusion
detection through machine learning. Novel techniques are frequently proposed and validated based
on the improvement they attain when classifying one or more of the existing datasets. The necessary
follow-up question of whether this increased performance in classification is meaningful outside of
the dataset(s) is almost never investigated. This lacuna is in part due to the sparse dataset landscape
in network intrusion detection and the complexity of creating new data. The introduction of two
recent datasets, namely CIC-IDS2017 and CSE-CIC-IDS2018, opened up the possibility of testing
generalization capability within similar academic datasets. This work investigates how well models
from different algorithmic families, pretrained on CICIDS2017, are able to classify the samples in
CSE-CIC-IDS2018 without retraining. Earlier work has shown how robust these models are to data
reduction when classifying state-of-the-art datasets. This work experimentally demonstrates that the
implicit assumption that strong generalized performance naturally follows from strong performance
on a specific dataset is largely erroneous. The supervised machine learning algorithms suffered flat
losses in classification performance ranging from 0 to 50% (depending on the attack class under test).
For non-network-centric attack classes, this performance regression is most pronounced, but even
the less affected models that classify the network-centric attack classes still show defects. Current
implementations of intrusion detection systems (IDSs) with supervised machine learning (ML) as a
core building block are thus very likely flawed if they have been validated on the academic datasets,
without the consideration for their general performance on other academic or real-world datasets.

Keywords: intrusion detection; network security; supervised machine learning; generalization
strength; CIC-IDS2017; CSE-CIC-IDS2018

1. Introduction

The digital attack surface is expanding. Every day, more devices are connected to
the Internet. Malicious actors also have access to this global network and leverage it for
nefarious purposes. Identifying and tracking packets or flows on the network that are (part
of) a cyberattack is of obvious utility. Researchers have been working on this problem
since at least 1985 [1,2]. During that period, network connectivity was not ubiquitous so
researchers started their analysis on the hosts under attack, not looking at network traffic.
This type of intrusion detection is called host-based intrusion detection (HIDS). As more
and more clients became part of networks, it became necessary to add a second branch to
intrusion detection. Network-based intrusion detection (NIDS) tries to model the attacks
from network traffic.

These models can exist at different levels of abstraction. Deep packet inspection works
based on the data encapsulated in the network packets. Packet-level IDS broadens its view
by including features extracted from protocol headers and other metadata [3]. Flow-level
IDS does not look at individual packets, but treats them as aggregated in flows.

At every level, a further distinction can be made between rule-based systems and
anomaly detection systems. Rule-based systems have the advantage of being able to iden-
tify specific intrusion patterns. These methods are built on signature databases. Malicious

J. Cybersecur. Priv. 2023, 3, 118–144. https://doi.org/10.3390/jcp3020008 https://www.mdpi.com/journal/jcp84

J. Cybersecur. Priv. 2023, 3

activity that has been reported on is transformed into a unique signature. Further occur-
rences of that pattern will be picked up by the system. The biggest downside to this tailored
approach is that it is thwarted by alterations to the attack patterns. This has created an
arms race between the malicious actors who employ obfuscation and evolutionary strate-
gies to create mismatches with the existing rules and the defense researchers who combat
them with novel techniques to generalize the rules [4]. Anomaly detection systems take a
different approach. These try to model behavior and report on deviations from normality.
This branch is currently the most popular, because it promises models that have a solid
general representation and are thus less likely to be fooled by attackers.

1.1. Problem Statement

Almost all ML-IDS research is aimed at improving the state-of-the art classification
scores on especially crafted, academic datasets. These contributions are easily recognized
as improvements if they outperform previous methods [5–9]. However, model evaluation
is only performed within the dataset. Models are never exposed to compatible samples
from other intrusion detection datasets. This evaluation strategy cannot answer how well
these systems would perform when deployed on real networks. This work is a larger-
scale continuation of [10] which found generalization issues when exposing CIC-IDS2017
models to CSE-CIC-IDS2018 data (small experiment, few ML methods, did not include all
attack classes).

1.2. Research Contribution

This work is the first comprehensive test of how well existing machine learning
methods are able to learn meaningful representations of network attacks, tested on related
academic datasets. Pure classification results obtained in a previous work [11] show
that these methods are very capable of classifying the network attacks contained in the
individual subsets of CIC-IDS2017. Even more impressive is that these results were stable
even when aggressively reducing the amount of data that the learning algorithms had at
their disposal. In this article, a fresh set of models is trained on CIC-IDS2017 with the same
data reduction methods to verify the earlier results after which the main contribution of this
article is presented. The models, pretrained on CIC-IDS2017, are tasked with classifying
the new samples of CSE-CIC-IDS2018. In theory, this should go well, because the results
within CICIDS2017 are excellent. In reality, it is shown that the models most often do not
learn good higher-order representations of attack traffic (classes). In the cases where they
do, there are complications that restrict the practical utility of the tested methods.

1.3. Article Outline

The experimental design and results for global binary models and attack-class-specific
binary models are the main parts of this article. They are described in Sections 2, 4 and 5.
The result sections have intermediate conclusions to make the material more accessible.
Section 6 largely centers on a simplified view of the results in which only the generalized
performance of the best three models per attack class is considered. To conclude, the key
observations and contributions are summarized in Section 7.

1.4. Related Work

The related work examines the lack of research into model generalization for ML-
NIDS from practical, experimental and theoretical perspectives, as shown in Section 1.4.1,
Section 1.4.2 and Section 1.4.3, respectively. It also informs the reader of more fundamen-
tal critiques of applying machine learning to the intrusion detection problem. Finally,
a few noteworthy attempts at solving the generalization issue from the dataset side are
highlighted in Section 1.4.4.

85

J. Cybersecur. Priv. 2023, 3

1.4.1. Practical: Lack of Interoperable Datasets

A practical reason for the lack of generalization testing in ML-NIDS is the difficulty
of obtaining permission to set up capturing experiments on live, corporate, or academic
networks. The next-best option is to test between different academic datasets. That too was
almost impossible until recently. Few datasets have been created to test intrusion detection
systems and typically neither the experiment design nor the feature extraction process
are public. This is starting to change, which in large part is thanks to the efforts made by
the Canadian Institute for Cybersecurity, operating at the University of New Brunswick.
Their data generation experiments have matured and produced two high-quality datasets
in 2017 [12] and 2018 [13]. A 2019 [14,15] iteration that specifically focuses on distributed
denial of service attacks (DDoS) has just been published.

1.4.2. Experimental: Defining the Scope of Generalization

Publications such as those by Govindarajan et al. [16] and Lu et al. [17] specifically
mention improved generalization by employing ensembles of methods and or prepro-
cessing steps (Kuang et al. [18]). Unfortunately, their definition of generalization is too
narrow, because they treat it as synonymous with the test set error. Generalization outside
of the (often single) dataset on which the proposed methods have been validated is only
ever implied.

A recent survey of the proposed deep learning IDSs which specifically selected ap-
proaches that mention improved generalization similarly equates generalization with
obtaining improved results on a single dataset [19]. The authors of the survey observed
three candidate generalization measurements from the literature: model complexity, sta-
bility and robustness. Grouped under the umbrella term regularization, several methods
are discussed. Some, such as weight decay, dropout, pooling, or weight sharing apply to
neural network-based methods, while others such as data augmentation or adversarial
training can be applied more broadly. The main concern of the authors is the trial-and-error
that is common in deep learning, brought on by the lack of fundamental understanding
of why these models outperform. A mention is given to data augmentation as one of the
promising routes to increase generalization.

1.4.3. Theoretical and Fundamental Critiques of ML-NIDS

Applying machine learning altogether as a potential solution to intrusion detection
has been questioned in the past, most succinctly by the proponents of rule-based systems.
The best phrasing of the issue can be read in a landmark article by Sommer et al. [20] stating
that: “It is crucial to acknowledge that the nature of the domain is such that one can always
find schemes that yield marginally better ROC curves than anything else has for a specific
given setting. Such results however do not contribute to the progress of the field without
any semantic understanding of the gain.” Foregoing the operational perspective in favor of
slight increases in classification scores on purely academic datasets without insight into
what drives the increase is of little utility. Throughout the text, the authors point at the
disjoint between the academic community that envisions models that exhibit generality
and the functional but highly specialized tooling that is used in real-world settings.

A well-founded but opinionated piece by Gates et al. [21] challenged the paradigm
in network anomaly detection by critically examining the underlying assumptions that
have been (and still are) relied on. The authors questioned the copying of the requirements
and methods put forth by Denning et al. [1], intended for host-based intrusion detection,
to network intrusion detection. Three categories covering nine assumptions are discussed.
These include issues with the problem domain (network attacks are anomalous, rare and
anomalous activity is malicious), the training data (attack-free data are available, simulated
data are representative and network traffic is static) and with operational usability (choice of
false alarm rate, the definitions of malicious are universal and administrators can interpret
anomalies). Based on their challenges to the assumptions, the authors recommend moving
away from equating anomalous traffic with malicious traffic, employing hybrid methods

86

J. Cybersecur. Priv. 2023, 3

(classification and anomaly detection), community-based sourcing and the labeling of real
samples and periodic redefinition of malicious behavior. Some of these points have since
been addressed, but the data aspect remains an active issue, which is why recent critiques
of the lack of modern, high-quality data are readily available (2015 [22], 2016 [23] 2019 [24]).

1.4.4. Reaching Generalization by Augmenting Datasets

A largely theoretical attempt at actually generalizing data for use in signature-based
intrusion detection has been described by Li et al. [25]. They propose three tiers to artificially
create a more complete input space. The first level (L1) is to generalize the feature ranges
for which they propose strategies for both discrete and continuous extension in a realistic
manner. This idea is still actively being pursued but with more advanced methods to
model the input–output relation (mostly generative adversarial networks (GANs) [26,27]).
Generalization testing by augmenting datasets to create new, compatible test sets has
also been performed in other areas where machine learning is dominant with surprising
results [28].

2. Materials and Methods

The methodology section focuses on two aspects: the data on which the models have
been trained (Section 2.1) and the training/evaluation procedures themselves (Section 2.2).
The evaluation procedure that was developed for this work is new, but it does reuse the
data preprocessing and performance measuring components of the training framework [11].
This is intentional, because changing these components or introducing new parts would
influence the results. The evaluation code for unseen data sets includes no retraining
components. Pretrained models are kept unmodified to evaluate the new samples.

2.1. Included Data Sets

The dataset landscape in intrusion detection is sparsely populated. Many papers
published today still work with the KDD collection, recorded in 1998 and published in
1999 or its refresh NSL-KDD (2009-revision). Most of the recent innovation is performed by
the Canadian Institute for Cybersecurity. After publishing NSL-KDD, researchers at the
institute noted that the lack of up-to-date datasets that can be dynamically (re)generated
is a serious problem for the research field. The first iteration of a dynamically generated
dataset was presented in 2012. ISCXIDS2012 includes baseline traffic that spans multiple
protocols (HTTP, SMTP, SSH, etc.). Profiles for the baseline traffic were derived per protocol
from real user activity (called B-profiles). Inside a testbed, these profiles can be used to
create more benign traffic. In parallel to this, various attacks were performed (M-profiles).
Some of these are complex and multi-stage (such as system infiltration), while others are
generated by running existing tools (e.g., HTTP-DoS). This controlled separation enables
the requirement to machine-label the data. The researchers make the raw PCAP data
available as well as CSV files with the processed, labeled samples. This work relies on the
two datasets which were built on the ISCXIDS2012 foundation, CIC-IDS2017 (Section 2.1.1)
and CSE-CIC-IDS2018 (Section 2.1.2).

2.1.1. CIC-IDS2017

The initial experiment was expanded with more protocols (including HTTPS), a greater
variety of attacks, more types of clients and larger networks. A new tool to process
the PCAP files (CICFlowMeterV3) was also introduced and made open source (https:
//github.com/ahlashkari/CICFlowMeter, accessed on 7 December 2022). CIC-IDS2017
contains 5 days of traffic, split into seven subsets. The individual subsets contain attacks
from different classes spanning DoS, DDoS, port scanning, botnet, infiltration, web attack
and brute force traffic [29,30]. Processed CSV file sizes range from 64 to 270 MB. A merged
version of all files was created that contains all 2.8 million samples (1.1 GB).

87

J. Cybersecur. Priv. 2023, 3

2.1.2. CSE-CIC-IDS2018

The next iteration was published only a year later. CSE-CIC-IDS2018 expands the
infrastructure and moves it to Amazon Web Services instead of an on-site experimental
setup. It also contains 10 days with samples from the same classes as those present in
CIC-IDS2017. A mapping of this restructuring is shown before the attack-specific results in
Table 1. Most of the attack scenarios keep using the same tools as those used to generate
CIC-IDS2017. The total volume increased drastically with file sizes between 108 and
384 MB. The merged version contains no less than 9.3 million samples (3.5 GB).

Compatible follow-up versions to network intrusion detection datasets are very rare,
but they are required to execute the proposed model evaluation strategy. CIC-IDS datasets
were chosen for this analysis because they fit the following criteria: they are large-scale,
labeled network intrusion detection dataset with compatible feature sets and extracted
with the same tooling and with high consistency between the 2017 and 2018 versions (in
both attack classes and tools).

Table 1. Mapping of the subsets of CIC-IDS2017 to their counterpart in CSE-CIC-IDS2018.

Attack Class 2017 Tools 2018 Tools

FTP/SSH brute
force 0 Patator.py (FTP / SSH) 0 Patator.py (FTP / SSH)

DoS layer-7 1 Slowloris Slowhttptest Hulk
Goldeneye 1 Slowloris Slowhttptest

Hulk Goldeneye
Heartbleed 1 Heartleech 2 Heartleech

Web attacks 2 Custom Selenium XSS+bruteforce,
SQLi vs. DVWA 5 same types, tools undocumented

Web attacks 2 Custom Selenium XSS+bruteforce,
SQLi vs. DVWA 6 same types, tools undocumented

Infiltration 3 Metasploit, Dropbox download, cool
disk MAC 7 Nmap, Dropbox download

Infiltration 3 Metasploit, Dropbox download, cool
disk MAC 8 Nmap, Dropbox download

Botnet 4 ARES 9 Zeus, ARES
DDoS 5 Low Orbit Ion Cannon (LOIC) HTTP 3 LOIC HTTP

DDoS 5 LOIC HTTP 4 LOIC-UDP, High Orbit Ion Cannon
(HOIC)

Port scan 6 Various Nmap commands - -

2.2. Training and Evaluation Procedure

A small core framework has previously been developed to evaluate IDS datasets.
On top of a common core, there are several modifications, all located in the preprocessing
steps to accommodate the specifics of the individual data sets. This experiment is supported
by a new code that keeps the specific dataset preprocessing code for CIC-IDS2017 and CSE-
CIC-IDS2018, followed by new code that channels the unseen samples to the appropriate
pretrained models for classification. An overview of the flow of the experiment is given in
Figure 1. Classification is performed by the models without any retraining. The collection
of classification metrics by which the models’ performance is evaluated are standards in
data science (i.e., precision, recall, F1-score, balanced accuracy and ROC-AUC). For clarity,
most mentions in this article are in terms of precision recall pairs or balanced accuracy.
The remainder of this subsection briefly introduces the twelve supervised learners in
Section 2.2.1 and the ways in which the difficulty of the classification was increased in
Section 2.2.2.

88

J. Cybersecur. Priv. 2023, 3

Figure 1. A visual overview of the experiment’s architecture [11].

2.2.1. Included Algorithms

Pretrained models for a total of twelve supervised classifiers were included. The al-
gorithms are separable into three families. All tree-based methods used gini-impurity to
make splitting decisions. The abbreviations next to the methods are used throughout the
rest of the text and in the figures. The sequence of decision tree-based classifiers includes
important innovations made to them over time. The methods from other families were
added for comparative purposes. Detailed information on the inner workings of every
algorithm can be read in these references [31–33].

1 Tree-based methods:

• Decision tree (dtree);
• Decision trees with bagging (bag);
• Adaboost (ada);
• Gradient-boosted trees (gradboost);
• Regularized gradient boosting (xgboost);
• Random forest (rforest);
• Randomized decision trees (extratree).

2 Neighbor methods:

• K-nearest-neighbors (knn);
• Nearest-centroid (ncentroid).

3 Other methods:

• Linear kernel SVM (linsvc);
• RBF-kernel SVM (rbfsvc);
• Logistic regression (binlr).

2.2.2. Increasing the Learning Difficulty

The results obtained with the earlier implementation of this framework on NSL-KDD,
ISCXIDS2012, CIC-IDS2017 and CSE-CIC-IDS2018, as documented in [11], showed great

89

J. Cybersecur. Priv. 2023, 3

classification results. The consistency with which these results occurred in tandem with
manual inspection of the intermediate cross-validation results allowed us to conclude that
these results are stable and valid. That work already included measures to increase the
learning difficulty in an effort to try to invalidate or reinforce the conclusions from a first
examination of CICIDS2017 [34].

Data-reduced models are a central component in this work. That reduction was carried
out along two axes. The most straightforward of the two is vertical data reduction. This
entails reducing the number of samples to learn from through stratified sampling inside
a train–test–validation splitter. The models were trained at different points of training
volume ranging from (0.1% sample usage to 50% sample usage). The data were first split
into a training and test set, with a further split happening on the training set into actual
training and validation. Instead of using a fixed portion to test, the complement of the
initial split was always taken (e.g., 5% training, 95% test, training further split into training
and validation). The second axis is that of horizontal data reduction (i.e., feature reduction).
Instead of applying this to strip out the inconsequential features, the opposite was carried
out. A list was compiled of the features on which splits were chosen most often in the
trees which classified the entire dataset. These top features of CIC-IDS2017 are shown in
Table 2. Some features that would obviously contaminate the classification results were
removed from the data prior to any training. For CIC-IDS2017/8, these include Flow ID,
Source IP, Source Port and Destination IP. On a total of 79 remaining features, the 20 most
discriminative features were removed before training. This procedure happened in blocks
of 5, starting with the best 5 features first, then expanding to remove the 5 next best and so
on. Previous findings showed the remarkable resilience of most methods to both horizontal
and vertical data reduction [11].

Table 2. Most discriminative features of CIC-IDS2017.

Dataset Most Discriminative

CIC-IDS2017

1–5 Timestamp, Init Win bytes forward, Destination Port, Flow IAT Min, Fwd Packets/s
5–10 Fwd Packet Length Std, Avg Fwd Segment Size, Flow Duration, Fwd IAT Min, ECE Flag Count
10–15 Fwd IAT Mean, Init Win bytes backward, Bwd Packets/s, Idle Max, Fwd IAT Std
15–20 FIN Flag Count, Fwd Header Length, SYN Flag Count, Fwd Packet Length Max, Flow Packets

3. Note on Obtained Results and Graphics

Before presenting the results of this analysis, it needs to be stressed that this article is
extensively supported by visualizations to summarize more than 150,000 data points in
the result collection. The most interesting results are described in this article, but the total
collection is much larger. All visualizations are interactive with the option of changing the
parameters and re-render. The result files (grouped in folders D2017-M2017 and D2018-
M2017) and associated plotting code are available publicly with documentation on how to
run them at https://gitlab.ilabt.imec.be/lpdhooge/reduced-unseen-testing, last accessed
on 10 March 2023. In the interest of replication ability, the repository also contains the
experiment code required to obtain new results. It is highly recommended to read this
article side-by-side with the visualizations.

The results are presented in two separate sections: first the global, binary models’
standard intra-dataset performance (Section 4.1) and the same models’ performance on
unseen, related samples (Section 4.2). Second, because the global, binary models did not
remain sufficiently effective, the results of attack-class-specific models are presented in
the same way with standard intra-dataset performance first (Section 5.1) and inter-dataset
generalized performance second (Section 5.2). Both sections end with brief intermediate
conclusions Sections 4.2.4 and 5.2.9.

90

J. Cybersecur. Priv. 2023, 3

4. Results of Global Two-Class Models

The most hopeful hypothesis is one in which models trained on a large corpus of
attack- and baseline traffic would learn an overarching representation between the two
classes. This first subsection puts that hypothesis to the test by exposing the models trained
on the merged CIC-IDS2017 dataset to itself and then to the merged data of CSE-CIC-
IDS2018. The next two subsections delved into the detailed results, while Section 6 offers a
summary and short discussion of the best results which is less verbose.

4.1. Internal Retest

Retesting the models that have been trained on the merged version of CIC-IDS2017
with their own data shows that these models are consistent with the results described
in [11]. This is as expected and it is a necessary requirement to start evaluating the
models with samples from CSE-CIC-IDS2018. During the evaluation, five classification
metrics were taken into consideration: balanced accuracy, precision, recall, F1-score and
standard accuracy.

Every tree-based classifier has classification metrics that converge above 99% with as
little as 10% of the data used for training. The neighbor-based methods also stay consistent
with previous findings, with knn converging on classification metrics above 98% with
10% of data used fir training. The nearest-centroid classifier fares much worse with a
metric profile that is invariant to the amount of data used for training, reaching F1-scores
of only 45% (hampered by low precision, and recall is relatively high at 70%). Similarly
flat profiles have been observed for the linear support vector machine and the logistic
regression. With these models, the F1-score does reach 82%. The RBF-kernel SVM does
improve when given access to more training data, reaching an F1-score above 90%.

All models were found to be resistant to feature removal. All tree-based and neighbor
methods never lost more than a flat 5% on any metric, even on the most aggressive feature
reduction setting, with the removal of the 20 most discriminative features (on a total of
79 available features). The logistic regression and linear SVM did lose up to 10% in flat
metrics (i.e., X-10% as opposed to X-(X*10%). The RBF-kernel SVM never lost more than
5%. Different methods of feature scaling typically had a limited effect on these results.
Overall, a case could be made for the normalization of the data over min–max or no
scaling, because normalization worked best and most stably for all methods, regardless of
algorithmic class.

4.2. Exposure to Unseen Data

As stated in Section 2.1.2, CSE-CIC-IDS2018 is very similar to CIC-IDS2017. The 2018
version has the same attacks, executed with the same tools in a different network architec-
ture. One difference is that the 2018 version has a finer division of the attacks, resulting
in more dataset fragments (7 in 2017 and 10 in 2018, details in Table 1). This section looks
only at the performance of the models trained on the merged version of CIC-IDS2017,
tasked with classifying the merged version of CSE-CIC-IDS2018. Based on previous work
(summarized in Section 4.1), the expectation is that these pretrained models will work well
on the new samples.

4.2.1. Tree-Based Classifiers

Starting with single decision trees immediately shows that the assumption is chal-
lenged, because the results are very erratic. The best result is obtained at the 30% training
data point, with an F1-score at 63%. Removing the best features incrementally introduces
even more variability in the metrics while pushing them downward overall. Using feature
removal with min–max-scaling or no scaling at all consistently drops recall below 20%.

A single decision tree was an unlikely candidate to be a good model. Therefore,
the analysis included various tree-based ensemble learners. Results for the bagging classi-
fier were not obtained because of insufficient memory on the experiment server (16 GB).

91

J. Cybersecur. Priv. 2023, 3

Adaboost had an F1-score at the 30% training data point of 61.0% (recall: 63.0%, preci-
sion: 78.3%), close to the performance of the single decision tree. Interestingly, removing
the five most discriminative features, improves this point to an F1-score of 65.3% (recall:
71.7%, precision: 82.4%). This lonely peak is gone after removing the top-10 features or
more. These observations only exist if the data had been normalized. Min–max or no
scaling pushes recall below 20% almost without exception. Precision can be high (80+%)
but paired with low recall and thus not useful.

Random forest performs worse, with F1 metric profiles very low (<20%) at almost every
point of training volume, especially when applying min–max or no scaling. A singular
peak that is similar to the ones for a single decision tree and adaboost happens once more
at 30% training volume, but only when removing the top-15 features.

Randomized trees have a worse performance profile than all previous methods with F1-
scores stably around 0%, regardless of the training volume or removed features. The “best”
result is a meager 10% recall when no scaling is applied, which is invariant to feature
removal or training volume. The discrepancy between the performance of this classifier
within CIC-IDS2017 and on the related CSE-CIC-IDS2018 is staggering (Figure 2a,b). This
method is especially bothersome because of the low time required to build a set of random-
ized trees. This clearly demonstrates that no learning happens. It is peculiar that a method
trained on a thousandth of CIC-IDS2017 (2830 samples) is able to generalize from that to
classify the other 99.9% (2,827,913 samples) with an F1-score of more than 98.5%, while
completely tanking on the data of CSE-CIC-IDS2018.

Gradient-boosted trees show peaks in recall above 90% when applying normalization
or min–max-scaling. One observable pattern from the results is a tendency for these peaks
to happen with almost no training data (0.1%). The only downside is the low precision that
goes along with the high recall, once again voiding the usefulness of this classifier. Feature
removal had inconsistent results for this classifier.

(a)

Figure 2. Cont.

92

J. Cybersecur. Priv. 2023, 3

(b)

Figure 2. Contrast between intra-dataset generalization (a); and inter-dataset generalization (b) of
randomized decision trees on the merged versions of CIC-IDS2017 and CSE-CIC-IDS2018.

Regularized, gradient-boosted trees (XGBoost framework) is the last and most theoret-
ically potent version of a tree-based ensemble classifier in this analysis. Overall, it shows
more grouped peaks (decent recall and precision) than the other tree-based classifiers.
These results only occur when employing normalization or min–max scaling. The impact
of feature reduction is interesting, because the best results are not found when zero feature
reduction was applied, but rather when they are found at varying points of top feature
removal. The overall conclusion for xgboost remains that it is excessively inconsistent to
be usable.

4.2.2. Neighbor-Based Classifiers

The simple nearest neighbor algorithm is much more consistent than the tree-based
methods. It is only usable when employing normalization, but under that constraint, it
reaches F1-scores of approximately 65%. For this algorithm, a clear upward trend in the
metrics is observed when increasing the training volume, with diminishing returns starting
after 0.5%. Knn is computationally expensive to run, but it can be included in an ensemble,
based on these results. Removing the best features in a step-wise manner has the expected
result of lowering the classification metrics, but the effect is not drastic and the upward
trend stays intact.

The nearest-centroid classifier had the interesting property of having high recall
(only for normalized or min–max-scaled features) on CIC-IDS2017. This property stays
intact when evaluating the samples of CSE-CIC-IDS2018 with the pretrained models.
With normalization and no feature removal, recall stably sits at 70%, as does balanced
accuracy (precision 49%). Min–max scaling has even higher recall 87%, but worse balanced
accuracy (57.6%, precision 33.7%). Feature removal does not alter the performance when
used with normalization, but the models trained on min–max-scaled features significantly
improve after removing the first five features. This is most probably due to the removal
of the problematic timestamp feature, which was the most discriminative feature in CIC-

93

J. Cybersecur. Priv. 2023, 3

IDS2017. Recall now maxes out at 92.8% with balanced accuracy at 57.8% and precision
at 33.5%. Removing even more of the most discriminative features does not alter this
result. CSE-CIC-IDS2018 has 3.3x the amount of samples that are in CIC-IDS2017 and
more importantly, this classifier converges almost immediately (at 0.5% of the samples of
CIC-IDS2017 used to train).

4.2.3. Other Classifiers

The metrics for a logistic regression show that the features must be normalized to
be a decent classifier. It has an upward trend with respect to the training volume, but it
is not steep. Generally speaking, this upward trend stays intact when removing features.
As expected, the absolute values for the metrics are lowered when reducing features, albeit
not by much. At 30% training volume and top-5 features being removed (among others
contaminating timestamp being removed) on CIC-IDS2017, it manages to classify the
samples of CSE-CIC-IDS2018 with a recall score of 90.3%, precision of 53.8% and balanced
accuracy of 77%. The class separation is well above chance, but still not sufficiently high to
be able to recommend the method as a reliable classifier.

A support vector machine with a linear kernel has results similar to those of the
logistic regression, but there is almost no upward trend and its classification performance
is damaged more by feature removal. Its best result is obtained with normalized features,
the top-5 of which have been removed and at training volumes of between 0.1 and 1%
(recall: 90.5%, precision: 51.5%, balanced accuracy: 77%).

Switching the kernel to the radial basis function has the interesting property of topping
out higher, but only for min–max-scaled features. Recall and precision move in opposite
directions to one another with regard to the amount of data used for training, regardless of
feature removal. With 25% training volume on CIC-IDS2017, recall climbs from 92.2 (top-0
features removed) to 99.45% (top-10 features removed), while precision at the same points
drops from 60.5% to 50.3%. A minority of result points have not been collected for this
algorithm due to the excessive run time of the algorithm (>1 day per run, caused by the
implementation that locks execution to a single core). This classifier could benefit from
feature selection in the standard manner (with the removal of poor features instead of the
removal of top features). It scores the highest overall, but the time required to train and
subsequently evaluate samples holds this algorithm back.

4.2.4. Intermediate Conclusion

From these results, it should be clear that generalization is poor at best and dismal at
worst. The set of tested algorithm families certainly do not provide a silver bullet algorithm
that can be trained to distinguish between benign and malign traffic. Some do have very
high recall, but the accompanying precision is lackluster. Tree-based methods have an issue
of overfitting despite having great intra-dataset generalization, even under strict limiting
conditions. Further research is needed to constrain the tree-based methods to make them
more robust. The neighbor-based methods fall into two classes, knn most consistently had
the highest F1-scores (between 65 and 70%). Furthermore, it did not require many data
points to reach these scores, which is essential for knn, because this is computationally
expensive. The method opposite in run time to it, that of nearest centroids, is better in
terms of recall and worse in terms of precision. This makes it less usable overall. For
the remaining methods, the logistic regression and RBF-kernel SVM have the best results
because of their high recall (90–99%), paired with moderate precision (50–60%), but these
results are not sufficient to be used in real defense systems. The next section presents the
results of testing models specifically trained for each attack class.

5. Results of Attack-Specific Two-Class Models

The inability of overarching models to generalize well or at all leads to a new hypoth-
esis in which models trained on specific attack classes may exhibit a better performance.
This hypothesis was been tested by tasking the models trained on the individual days

94

J. Cybersecur. Priv. 2023, 3

(each containing samples from a distinct attack class) with the data on which they have
been trained, as well as the corresponding data from CSE-CIC-IDS2018. This section’s
subdivisions are rather verbose and therefore quite dense. The summary and discussion of
only the best-overall results are in Section 6.

5.1. Internal Retest

This section describes the results of making the pretrained models reclassify the sam-
ples of the attack class on which they were trained. This is included to test whether the
newly trained models do not suffer from a regression in their performance. The classifica-
tion performance should mirror the results described in this earlier work [11]. The fresh
models tested less points of vertical data reduction over a larger range (13 points between
0.1 and 50% of data used for training, versus 35 points between 0.1 and 33%). No other
variables were altered in the training methodology.

After comparing the original classification results to the new set of results, no perfor-
mance regressions were found in the class-specific models. A short reiteration of the results
is in order to have a baseline for comparison. CIC-IDS2017 has three classes of attack traffic
that were universally well recognized by the tested algorithms.

Models trained on the DDoS, HTTP-DoS and port-scanning traffic subsets are insensi-
tive to reduction in training volume and removal of discriminative features. Put another
way: increasing the learning difficulty by scaling back the amount of data for training on
while also removing the best features from the data, did not hurt the models’ classification
scores much or at all. It logically follows that these models are expected to perform well on
the samples of these classes from CSE-CIC-IDS2018.

Models trained to recognize FTP/SSH brute force attacks, web attack and botnet traffic
are extremely well recognized by tree-based methods, but algorithms from other families
have mixed results. Recall tends to stay high, but precision is lost. For all learners, these
classes were more sensitive to data reduction, with horizontal data reduction having the
biggest negative impact.

The final class, infiltration, is problematic because the subset in CIC-IDS2017 contains
a mere 36 positive samples out of a total of 288,602. Results on the CSE-CIC-IDS2018 of
these models will be reported, but are unlikely to be good.

5.2. Exposure to Unseen Data

The conclusions in Section 5.1 should be promising signs of the good generalization
performance of pretrained models when tasked with classifying unseen samples from a
closely related dataset. This assumption is only slightly undercut to date by the results
from Section 4. Nevertheless, models with increased resolution (i.e., trained to classify only
samples from specific attack classes) could perform better. As mentioned in Section 2.1,
CIC-IDS2017 and CSE-CIC-IDS2018 are very similar, but the latter has more subsets and
volume overall than the former. The mapping between the subsets of these datasets is
shown in Table 1.

5.2.1. FTP/SSH Brute Force

Days 0 of both CSE-CIC-IDS2018 and CIC-IDS2017 contain brute force attacks targeted
at an FTP or an SSH server. These samples serve as a proxy for brute force traffic in general,
because many more service endpoints, both public and non-public exist on the internet
that are susceptible to brute force attempts (e.g., API servers, VPN access points, databases,
RDP servers, etc.).

The very weak performance for most tree-based models is observed with class separa-
bility (balanced accuracy) often at 50%, indicating that the models are no better than chance.
The results are worse when employing normalization, because the values are squeezed into
a range that is too narrow. Even the models trained on very low training volumes (high
vertical data reduction) still overfit on the data. There are some exceptions (subfigures of
Figure 3), most notably (and expectedly) when using very low training volumes (0.1%).

95

J. Cybersecur. Priv. 2023, 3

Recall is typically very low, but the malicious samples in that recalled percentage are classi-
fied with high precision. Models that were trained with the most discriminative features
removed fail immediately.

Figure 3. Performance metrics of two tree-algorithms trained on FTP-SSH brute force (CIC-IDS2017),
evaluating FTP-SSH brute force from CSE-CIC-IDS2018.

96

J. Cybersecur. Priv. 2023, 3

A very similar conclusion is reached for the RBF-SVC. It manages to reach moderate
recall (71%) with a high precision of 93.8%, but only with normalized features, and 0.1%
training volume. Increases in training volume lead to very low recall with high precision.
It is more resistant to feature removal than the tree-based methods. The logistic regression
and linear SVM do not have noteworthy results.

Nearest neighbors is useless, because it has low precision and recall, regardless of
the scaling and invariant to training volume. Nearest centroids has stable sections with
precision–recall pairs at approximately 60% and 75%, respectively. These are maintained
fairly well when reducing features, but only if the features were normalized or min–
max-scaled. Without feature scaling, lots of performance is lost quickly after removing
top-features. The classifier seems brittle overall. Curiously, the best recall results, up to
perfect recall, happen when using only 0.1% of data for training.

5.2.2. Layer-7 Denial of Service

CSE-CIC-IDS2018 contains two days of denial of service attacks. The first of which has
malicious packets generated by tools such as slowloris or HULK that abuse web servers by
exhausting their resources. The second day contains traffic exclusively from exploiting the
Heartbleed vulnerability on the affected implementation of OpenSSL (1.0.1-1.0.1f). CIC-
IDS2017 bundles both types of attacks in a single day, using the same tooling. Because the
attacks exist in one day in the 2017-version, the attack types got squashed into binary
classification. It is a good use-case to test whether these attacks should be treated as the
same category or not.

All tree-based methods overfit heavily, as they did on the brute force traffic. Good
performance is only ever recorded for models that had very little data available to train on.
Making matters worse is the inconsistency with which these results occur. In numerical
terms, recall–precision pairs above 60% are very rare for any of the pretrained models.
Once more, the worst results are obtained on models that had normalized features.

Nearest-neighbors has balanced accuracy scores consistently falling in the 70–80%
range. Changes in scaling, training volume or feature reduction do not significantly alter
this result. It is not good enough to be considered. Nearest-centroids separates the classes
worse, indicated by the balanced accuracy of 50–60%. The only results that are better than
chance were observed when using normalized features. Higher training volume or less
feature reduction, do not affect the results.

The logistic regression models trained on min–max-scaled features follow the pattern
that the section introduction put forward. Great generalization performance, with a stable,
straightforward relationship between training volume and classification metrics (Figure 4).
Those metrics are a stable 97.5% recall, paired with 70–75% precision yielding a total of
97.9% balanced accuracy (5 features removed). This amount of class separation is enough
to recommend the classifier as a genuine method to classify unseen layer-7 DoS traffic.
A linear support vector classifier or rbf-kernel SVM (with the same parameters) have
nearly identical results. All models in the other category perform poorly if the features
were standardized.

5.2.3. DoS Heartbleed

Although technically a form of information disclosure and not denial of service,
Heartbleed traffic was included in the DoS category by the authors of both datasets.

Decision trees typically have very erratic metric graphs for this day of traffic. Mod-
els at peak performance in these graphs manage to achieve 80–95% balanced accuracy.
Adaboost has the highest scores, both in absolute terms as well as averaged across the
tested parameters. The changes in classification metrics can be as large as 50% flat and
the relationship to training volume and feature removal is unclear. This unpredictability
considerably lowers the real applicability of these models. The lowest variability models
are randomized decision trees. These reach a flat profile after 1% training volume, with re-
call at 72.4% and precision at 99.5% (Figure 5). This result is also stable with regard to

97

J. Cybersecur. Priv. 2023, 3

feature removal. It should be noted that with 0 features removed (which includes the
problematic timestamp feature from CIC-IDS2017), this model performs no better than
chance. Performance numbers are only good if this feature was removed (‘timestamp’ is
first in the list of top-5 features).

Figure 4. A rare occurrence of the expected relation between training volume and generalized
model performance.

Figure 5. A subset of the randomized trees trained to recognize Heartbleed traffic perform stably well.

98

J. Cybersecur. Priv. 2023, 3

Nearest neighbors is an unusable classifier. It has very low recall/precision for all
methods of feature scaling, across all points of feature reduction. It also shows a sudden
decline in performance when using more than 1% of data as training samples. Nearest-
centroids had recall–precision pairs of 60 and 95% within the relevant day of CIC-IDS2017,
on the day containing Heartbleed samples, the model performance drops to precision recall
pairs of 15 and 0% moving balanced accuracy close to blind guessing. This shows just how
brittle the classifier is.

The logistic regression was very performant within CIC-IDS2017 with stable metric
clusters above 95%, step-wise gain with increased training volume up to limit and step-wise
loss in these metrics with increasingly aggressive removal of top features. It has this profile
on the new samples of CSE-CIC-IDS2018. The model only starts to become performant
with at least 5% data as training volume. The method is stable with perfect precision and
95% recall (Figure 6). This would be usable in a real-world system. Removing features has
the expected effect of lowering the overall metrics, but stability is kept. A linear support
vector machine has similar results, but requires normalized features. The RBF-kernel SVM
required min–max-scaling and feature removal impacted precision much more negatively
than it did for binlr.

Figure 6. A subset of the logistic regression models trained to recognize Heartbleed traffic also have
stable, high-performance scores.

Whether it is justified to clump layer-7 DoS and Heartbleed together in CIC-IDS2017
is unclear. The models might be more performant on the individual attacks if they were
trained exclusively on them. The argument in favor of keeping the grouping is that there are
iterations of the models that manage to classify both types. Testing the exact entanglement
could not be deduced from these data, but it is possible by testing models pretrained
on CSE-CIC-IDS2018.

99

J. Cybersecur. Priv. 2023, 3

5.2.4. DDoS Part 1

As with DoS traffic, CSE-CIC-IDS2018 also splits DDoS traffic over two days, whereas
CIC-IDS2017 bundled them. The tooling used in both datasets is the same. The first day of
DDoS samples in the 2018 version contains traffic generated by the Low-Orbit Ion Cannon
(LOIC) tool, with both UDP and HTTP floods. These attacks do not rely on deviant protocol
use, but simply overwhelm the web server(s) on the receiving end. The second day uses
the High-Orbit Ion Cannon tool which also employs HTTP (GET and POST), as well as
LOIC UDP.

All single decision tree models trained on non-scaled features have mirror-image
metrics on the DDoS traffic from CIC-IDS2017 and the first day of CSE-CIC-2018 (Figure 7).
Adaboost has some models with normalized features that are very performant with tight
metric clusters at approximately 97%. Reducing features lowers this performance pulling
precision and recall apart to 100% and 80%, respectively. While this could be interpreted
as a good result, the unpredictable pattern of these metrics in relationship to the training
volume significantly lowers the practical utility of this method. The bagging classifier built
on decision trees shows signs of overfitting. It has good stability (normalized features) as
long as no more than 10% of the DDoS data in CIC-IDS2017 has been used to train the
model. In that low training volume region, the classifier has perfect recall, matched by 80+%
precision. Randomized decision trees, random forests and gradient boosted trees, both
standard and regularized, do not perform well enough to be considered real contenders.

Lots of tree-based methods show signs of overfitting beyond using more than 5% of
data to train on. Methods to improve generalization for tree-based classifiers in intrusion
detection are worth investigating.

(a)

Figure 7. Cont.

100

J. Cybersecur. Priv. 2023, 3

(b)

Figure 7. A rare occurrence of perfect consistency by pretrained IDS2017 DDoS models the respective
IDS2018 DDoS samples. (a) Singular decision trees within CIC-IDS2017 DDoS; and (b) the same set
of models summarized in figure (a) when evaluating CSE-CIC-IDS2018 DDoS part 1.

Nearest neighbors with normalized features has perfect recall and reaches 89.5%
precision with 10% data used for training. At least a flat 10% loss in precision is observed
compared to the classification performance on CIC-IDS2017. Min–max-scaled models also
perform well, but not beyond 1% training volume. The nearest centroids loses a flat 10–15%
on all metrics compared to the same model’s performance on DDoS 2017, but the stability
is retained. Recall is poor at only 50%.

The logistic regression models work with little training data reaching perfect recall
and 80+% associated precision (only with min–max scaling). Intermittently, there are signs
of overfitting at higher training volumes. The linear support vector classifiers obtain equal
results, but with less stability. The rbf-kernel SVMs have similar results with both types of
scaling. In terms of generalization strength, these methods definitely achieve more stable
and thus better results than the other algorithms.

DDoS was one of the easiest classes within CIC-IDS2017. This does not translate into
one-to-one to classification strength on CSE-CIC-IDS2018 DDoS. The remarkable resistance
to data reduction in all methods of the DDoS class does not hold up. These methods need
more robustness to be practical. Evaluated on the whole, classification strength on this easy
class is better than it is on the harder classes.

5.2.5. DDoS Part 2

The second day of DDoS traffic in CSE-CIC-IDS2018 has very similar traffic. Only
one new tool is introduced, and behind the scenes, it generates requests with the same
protocol. It is odd to split the DDoS traffic over two days, because as the results will show,
performance is alike.

Single decision trees have zones with adequate performance that are interwoven with
zones with very poor performance metrics. It is not exclusively due to overfitting either,
because regions with good performance do exist at higher training volumes. Adaboost
models only work with normalized features, maximally reaching perfect precision and 80%

101

J. Cybersecur. Priv. 2023, 3

recall. As a standalone result, this would make adaboost a viable option, but once again, the
unpredictability with regard to training volume hampers viability. The pretrained bagging
classifiers perform like adaboost at low to very low training volumes and exclusively
with normalized features, however, with even less stability. Conclusions for randomized
trees, random forests and normal gradient-boosted trees can be summarized as lackluster
across all parameters (again with an exception for very low training volumes). Regularized
gradient-boosted trees perform stably with 80% recall and 100% precision insensitive to
feature reduction.

Nearest neighbors has the same result as in the previous section, but with a worse pre-
cision (70+%). HOIC combined with LOIC UDP seems to be harder to classify, because the
centroid suffers from very low (<25%) recall compared to the previous section (regardless
of parameter selection).

Both methods of feature scaling obtain good results for the logistic regression models,
with those trained on min–max-scaled features reaching clusters of perfect metrics. The best
scores are obtained at the lowest training volumes, but the differential is tiny in most cases
(0.5%). The linear kernel SVM has the same performance profile as binlr, with good results
for the models trained on normalized features, but better results on models trained with
min–max-scaled features. Once more, the highest performance is obtained with the lowest
amounts of training data. The ideal classifier for this attack class is the RBF-kernel SVM
with stable, perfect scores. This does require at least 1% data to train on, but shows no signs
of overfitting (min–max-scaling).

It could be concluded that ML-based models are able to distinguish well between
regular and multiple types of DDoS traffic. Unfortunately, due to the loud nature of DDoS
attacks, they are easily detectable by other mechanisms. It might be useful at an aggregate
level (service providers), but an individual business suffering from a DDoS attack will not
need a machine learning model to confirm that.

5.2.6. Web Attacks

The web attacks are a harder attack type to classify within CIC-IDS2017. Most methods
were not able to reach perfect classification scores. Although day 5 and 6 contain web
attacks, the dataset documentation does not mention what the differences between the
two days are. They both contain web brute force attempts, cross-site scripting (XSS) and
structured query language injections (SQLis).

The poor generalization obtained by single decision trees is the root cause for the
feeble results of the methods that build on top of it. Recall is so consistently below 40%,
with spiking precision scores making it impossible to recommend any of these methods.
These results did not improve with more training, different scaling or less feature reduction.
The worst performers are randomized decision trees. There is no learning, because they
do not try to set optimal splitting points. It is clear that for a harder-to-classify attack
class, this method does not work. The web attack models built on decision trees typically
had 90–100% recall after some training within CIC-IDS2017. The relative 50% drop-off
is disconcerting.

Nearest neighbors starts off with some signs of learning, but levels off quickly at low to
very low precision–recall pairs. The method had good scores within CIC-IDS2017 (85–95%
recall and 75–85% precision), but that performance does not carry over into CSE-CIC-
IDS2018. Nearest centroids had robust 85+% recall on the web attack traffic of CIC-IDS2017,
at all combinations of training volume, scaling and feature reduction. The associated
precision was never good, so it is expected that this will continue. Unfortunately, the
nearest centroids loses much in terms of recall. Only the models with min–max-scaled
features stay stable at 57%. Other methods of scaling have recall stable at 15%. All precision
is lost.

The near-perfect recall and moderate precision of logistic regression models within
CIC-IDS2017 is not retained on CSE-CIC-IDS2018. Recall drops below 40%, often crashing
to 0%, and precision is at 0% more often than not. This conclusion also applies to a linear

102

J. Cybersecur. Priv. 2023, 3

SVM and rbf SVM. All of these methods struggled in terms of precision within CIC-IDS2017,
but did reach near-perfect recall. None of this translates into generalization performance
when classifying the web attacks in CSE-CIC-IDS2018, despite the fact that both datasets
contain the same types of web attacks.

It is clear that, for this type of attack, which typically has a lower network footprint
(unless it is a brute force login), is much harder to classify from network-related features.
Within the dataset, however, the performance can be very good and a subsequent recom-
mendation for use in real-world systems would be logical, but ultimately misguided.

5.2.7. Infiltration

Like web attacks, CSE-CIC-IDS2018 contains two days with infiltration traffic. The doc-
umentation does not mention what the differences are between the two days. The labeling
in the data does not provide any additional information apart from ‘infiltration’. A major
caveat when analyzing these results is the lack of samples on which the models were
trained. Day 3 of CIC-IDS2017 has infiltration traffic, but the distribution between be-
nign and malicious is extremely skewed (288602-36). Generalization performance is thus
not expected.

None of the tested algorithms perform at acceptable rates, and metrics are consistently
below 20%. Sometimes, precision spikes high, but the associated recall is so close to zero
that the high precision is meaningless. These results do not vary with changes in the
training volume, feature scaling choice or feature reduction. The results for both days are
close to identical. Some models, especially those built on decision trees, show climbing
trends within CIC-IDS2017, but this is just the classifiers fitting any pattern and certainly
not one that is significant or general.

It will be interesting to investigate whether models trained on the infiltration days
of CSE-CIC-IDS2018 perform well when retested on each other’s data as well as the
2017 infiltration samples.

5.2.8. Botnet Traffic

The botnet class in CIC-IDS2017 is one of the medium-difficulty classes, mainly because
non-tree-based models had low precision and all models suffered from the removal of good
features from the training set. The documentation for the 2017 data lists Ares [35] as the
tested botnet. The 2018 version adds the Zeus [36] botnet.

Single decision trees have very irregular performance. At some points, the metrics
almost reach perfect classification, but it is impossible to reliably tell which parameters
are required. Feature reduction tanks performance across all trained models, most notably
when using min–max-scaling or no scaling. There is one decent set of models (adaboost)
and it requires normalized features and no feature reduction. The resulting models have an
early peak at 0.5–1% training volume of perfect recall and 75% precision. Giving access to
more training data still yields stable models, but the recall is only 50% with 95+% precision.
As soon as features are removed, the classification scores plummet almost to 0. Changing
how the features are preprocessed also had a major impact (summarized in Figure 8).
The bagging classifier built on decision trees, gradient-boosted trees, random forests and
extreme gradient-boosted trees also behave unexpectedly and are not sufficiently potent to
be used as a classifier. Randomized decision trees generate no false positives, but no true
positives either. All normal traffic is properly classified, but the models miss all malicious
instances, leading to a false negative rate of 100% and a total balanced accuracy of 50%.
This happens regardless of the training volume, scaling or feature removal (with very
few exceptions).

103

J. Cybersecur. Priv. 2023, 3

(a) Adaboost botnet normalized features, no feature reduction

(b) Adaboost, pretrained for botnet, no scaling

Figure 8. Cont.

104

J. Cybersecur. Priv. 2023, 3

(c) Adaboost, pretrained for botnet, still normalized, top 5 features removed

Figure 8. The wild fluctuations between pretrained models when employing different scaling
methods during preprocessing or when removing top-features when classifying a medium-difficulty
class (botnet).

Nearest neighbors has an inverse relationship with training volume because precision–
recall most often stays below 50% and it is not worth considering. The nearest centroids
classifier has many good models that manage a balanced accuracy score of 75–80% and
with very high stability. These models were trained with normalized features and have
recall stable near 100%. Min–max-scaled features yield models with recall at a stable 50%.
Not scaling features before training yields models with a stable recall of 0%. What is most
interesting is that this happened at all considered points of training volume. Even within
CIC-IDS2017, it was not advisable to use it as a classifier for malicious samples, due to its
low precision. This remains unchanged on the botnet data of CSE-CIC-IDS2018.

The results of the logistic regression models and linear SVM are not good enough,
but that was expected because these models performed poorly on the botnet data in CIC-
IDS2017. The only interesting conclusion is the complete loss of recall on the botnet data in
CSE-CIC-IDS2018, whereas these models trained to very high recall values on the 2017 data.
Rbf-svc models have great performance (85% balanced accuracy, perfect recall with 55%
precision) at very low training volumes (mostly with minmax-scaled features). This drops
to approximately 70% balanced accuracy with increased training volume. These results are
stable with regard to feature reduction. The loss in performance is mostly due to a sharp
decline in recall.

5.2.9. Intermediate Conclusion

After the disappointing generalization strength of the global models, as discussed
in Sections 4.2.4, a new hypothesis was formulated which states that models trained on
specific attack classes might generalize better than their global two-class counterparts. This
hypothesis is proven wrong by the results in the previous subsections (Sections 5.2.1–5.2.8).
Model generalization rarely happens and when the pretrained models achieve stable, high
classification metrics, it is most often on the easy classes of CIC-IDS2017.

105

J. Cybersecur. Priv. 2023, 3

There are three major issues that make the use of pretrained models so weak when
it comes to generalization. First, how the features are scaled before training has a large
impact on the model’s performance, but there is no best choice that can be reasonably
recommended. This was no issue for the models when they had to classify the test sets from
CIC-IDS2017. Second, the relationship between training volume and classification scores
is inverted more often than not, leading to a situation wherein models trained on 0.1–1%
of the samples in CIC-IDS2017 perform best. The third and final nail in the coffin is the
rapid loss in classification metrics when the most discriminative features are incrementally
removed. Most models were very robust to this within CIC-IDS2017, especially to classify
the easy classes, but this desirable property does not hold.

6. Discussion

The scope of this investigation has led to a substantial set of results. In the results
(Sections 4 and 5), the classification results for all attack classes as well as the trends
observed from the visualizations are described in detail. Even though both sections end
with intermediate conclusions, they remain dense. This section was included to give a
straightforward view of the results and their implications. Table 3 shows the best three
models per attack class from both a baseline perspective (B rows) and a generalized
performance perspective (G rows). What is best is determined by the ranking of the models
based on an equally weighted combination of balanced accuracy, F1-score and use of
training data (less is better). The numeric columns (except for reduction) are percentages
with a maximum of 100.

Several points stand out in this table. First the baseline scores for all classes except
infiltration (due to poor representation in CIC-IDS2017) are extremely high. Second and
most importantly, pretrained models generalized well to the classes with clear network
footprints such as bruteforce, L7-DoS, DDoS and botnet to some extent. These results are
without any additional training and most often achieved by models that had little access to
training data (% training at or below 1%, further broken down into one third training–two
thirds validation). Third, although tree-based models typically have the highest baseline
scores, the best generalizing models are not always tree-based. There are, however, more
than enough tree-based models that do have great general performance (hence, they did
not overfit) so it is possible. This is mainly interesting from a model interpretability
perspective. Fourth and finally, the discrepancy between the baseline performance and the
general performance for the web attacks would go unnoticed in most analyses, erroneously
concluding that the models perform well on the class. This conclusion also applies to the
global 2-class models.

One crucial remark about Table 3 is that it obfuscates whether the models had a stable,
generalized performance. This is most often not the case (as shown in the detailed results
in Section 5). Improvements that guarantee stable, general class-level models after training
should be sought after. These improvements could come from changes in data preparation
and model selection based on generalization potential (either during or after training) or
algorithmic modifications that improve robustness.

Table 3. Classification metrics for the best 3 models per attack class, both for baseline (B) and
generalized (G) classification, with the mention of the preprocessing parameters.

B/G Class Algorithm
Balanced

Acc.
F1 Precision Recall Scaling Reduction % Train

B 0.Bruteforce
gradboost 99.84 99.06 98.40 99.73 No 0 0.5
extratree 99.63 99.24 99.21 99.28 Z 0 0.5
extratree 99.64 99.63 99.97 99.28 Z 0 1.0

G 0.Bruteforce
xgboost 100 100 100 100 No 0 0.5
xgboost 99.97 99.95 99.90 100 No 0 1.0

gradboost 99.06 98.38 96.81 100 MinMax 0 0.1

106

J. Cybersecur. Priv. 2023, 3

Table 3. Cont.

B/G Class Algorithm
Balanced

Acc.
F1 Precision Recall Scaling Reduction % Train

B 1.L7-DoS
xgboost 99.85 99.79 99.71 99.88 No 0 0.5
xgboost 99.85 99.77 99.66 99.89 Z 0 0.5
xgboost 99.84 99.76 99.61 99.91 MinMax 0 0.5

G 1.L7-DoS
linsvc 97.80 82.59 71.57 97.63 MinMax 5 1.0
linsvc 97.98 84.93 75.14 97.65 MinMax 5 6.0
linsvc 97.75 81.63 70.10 97.70 MinMax 5 11.0

G 2.L7-DoS (HeartBleed)
rforest 99.75 99.81 99.65 99.78 Z 20 1.0
linsvc 99.49 99.50 99.95 99.04 MinMax 0 0.5

gradboost 99.65 99.72 99.60 99.85 MinMax 10 1

B 2.Web Attacks
xgboost 97.58 96.92 98.72 95.18 MinMax 0 1.0
xgboost 98.83 98.75 99.86 97.66 MinMax 0 6.0
extratree 98.89 98.27 98.75 97.80 MinMax 0 6.0

G 5.Web Attacks
gradboost 64.23 43.37 91.15 28.45 No 10 0.5

dtree 77.74 38.69 29.69 55.52 No 0 11.0
ada 64.36 41.35 73.76 28.73 No 0 1.0

G 6.Web Attacks
extratree 61.75 38.05 100 23.50 MinMax 5 0.5
gradboost 61.66 36.92 88.59 23.32 No 10 0.5
xgboost 61.66 36.82 87.42 23.32 MinMax 10 0.5

B 3.Infiltration
dtree 88.89 71.79 66.67 77.78 MinMax 10 11.0

xgboost 93.06 91.18 96.88 86.11 Z 0 35.0
extratree 88.89 86.15 96.55 77.78 MinMax 15 26.0

G 7.Infiltration
ncentroid 50.19 17.50 11.33 38.42 Z 20 6.0

binlr 50.46 14.86 11.71 20.34 Z 0 6.0
binlr 49.93 15.22 11.18 23.82 Z 20 6.0

G 8.Infiltration
ncentroid 57.75 42.42 35.74 52.16 Z 20 6.0

binlr 55.23 43.21 31.58 68.38 MinMax 15 11.0
linsvc 51.09 43.11 28.62 87.29 MinMax 10 11.0

B 4.Botnet
xgboost 98.42 98.19 99.58 96.85 MinMax 0 6.0
xgboost 98.14 97.65 99.06 96.29 Z 0 6.0
xgboost 97.53 97.32 99.68 95.07 No 0 6.0

G 9.Botnet
ada 98.90 98.40 98.39 98.41 No 0 0.5

gradboost 92.11 82.67 70.51 99.91 Z 0 0.5
ada 92.11 82.67 70.51 99.91 Z 0 0.5

B 5.DDoS
extratree 99.89 99.89 99.96 99.82 Z 5 0.1
extratree 99.87 99.88 99.96 99.79 Z 10 0.1
extratree 99.84 99.86 99.88 99.83 No 10 0.1

G 3.DDoS
dtree 96.30 96.75 96.09 97.42 Z 0 0.5
ada 96.30 96.75 96.09 97.42 Z 0 1.0
bag 95.96 96.49 95.58 97.42 Z 0 0.5

G 4.DDoS
binlr 99.86 99.87 99.99 99.75 MinMax 0 0.1
binlr 99.86 99.87 99.99 99.75 MinMax 5 0.1
binlr 99.86 99.87 99.99 99.75 MinMax 10 0.1

B 7.Global
xgboost 99.82 99.73 99.75 99.70 No 0 0.5
xgboost 99.68 99.62 99.84 99.40 Z 0 0.5
xgboost 99.86 99.80 99.85 99.75 Z 0 1.0

G 10.Global
knn 81.36 71.98 64.46 81.47 Z 0 0.1
knn 79.23 69.06 60.65 80.18 Z 10 1.0
knn 79.03 68.45 58.49 82.50 Z 10 0.5

107

J. Cybersecur. Priv. 2023, 3

7. Conclusions and Future Work

ML-based intrusion detection systems have to be able to accurately classify new
samples to protect live networks. Getting access to these new samples can be tricky, but an
intermediate evaluation is possible. This article tested whether a suite of supervised ML
algorithms trained on CIC-IDS2017 (both global and class-specific models) effectively
generalizes to the very similar, compatible CSE-CIC-IDS2018.

Unfortunately, our experiments demonstrated that the global, two-class models which
had excellent performance on CIC-IDS2017 [11] do not generalize to the follow-up dataset CSE-
CIC-IDS2018.

Even the most data-constrained trained models show clear signs of overfitting (best
results at very low training volume) and an overall very weak performance. The best
two-class models are the logistic regression and linear- and rbf-kernel SVMs. These reach
between 90 and 100% recall with 50–60% precision. This leads to overall class separability
in the 70% range. This is not sufficiently reliable to be used in real network defense systems.

Because the global models are too unreliable, specialized models for all shared attack
classes between CIC-IDS2017 and CSE-CIC-IDS2018 have also been tested. Those results
have pockets of good performance, mostly on the network-centric classes. Some models
are able to classify the novel DoS, DDoS, botnet and brute force samples of CSE-CIC-
IDS2018 with the retention of their strong performance metrics from classification within
CIC-IDS2017 (F1-score > 95%). Section 6 provides a condensed version of the top results
and their implications.

Three key issues still undermine a recommendation to use the tested algorithms in real
network defense systems. First, how features are scaled has a major impact on the models’
performance and the best choice varies too much to give a solid recommendation. This was
no issue for the same models when only classifying the test sets of the data on which they
were trained. Second, almost every model significantly struggles to maintain performance
if a selection of top-features was removed prior to training. This too was much less of
an issue for the models during standard intra-dataset testing. Third, the best-performing
models were most often those trained on very little data (0.1–1% training volume). This
clear sign of overfitting was most prominent for tree-based learners, but affected all other
methods to some extent. Performance regressions by the numbers were erratic and could
dip down to balanced accuracies of 50%.

Losing this invariance to scaling, training volume and feature reduction that made
the models so attractive when classifying only within CIC-IDS2017 has a big implication.
A large collection of models have to be trained and tested before the best models are cherry-
picked. Such a large expenditure of time and computational resources for a relatively low
yield is not defensible.

To summarize: this article experimentally demonstrates that ML-NIDS methods fail
to generalize even just across tightly coupled datasets. Consequently, it is highly unlikely
that they will perform well when deployed on real-world networks. We urge researchers in
the ML-NIDS domain to execute this article’s more rigorous model evaluation strategy to
avoid publishing potentially misleading and overly optimistic results.

Future Work and Hypotheses

Our future research will investigate potential solutions to improve ML-based NIDS
systems until they can consistently classify related and compatible datasets.

An obvious first attempt would be to investigate more powerful classification methods.
Recent ML-NIDS literature borrows neural network architectures that dominate pattern
recognition tasks in other fields [37–39]. Although the results are great, no literature exists
that tests whether they are better at generalization.

Alternatively, more stringent model regularization techniques and/or feature selec-
tion can be tested as potential solutions. Because the feature selection method of [11]
was counter-intuitive, there is room to test optimized models that only kept the most
potent features.

108

J. Cybersecur. Priv. 2023, 3

Finally, instead of trying to build global two-class models or attack-class specific
models, the models could be trained to recognize attacks within specific domains (e.g.,
simultaneously training with differentiation at the protocol and attack level or training
models to recognize traffic from a specific botnet). The major downside to this approach
is that it reduces the range of attacks that it covers, thereby moving closer to signature-
based methods.

Author Contributions: Conceptualization, L.D.; methodology, L.D.; software, L.D.; validation, L.D.;
formal analysis, L.D.; investigation, L.D.; resources, L.D. and IDLab-Imec; data curation, L.D.;
writing—original draft preparation, L.D.; writing—review and editing, L.D., M.V., T.W. and B.V.;
visualization, L.D.; supervision, T.W., B.V. and F.D.T.; project administration, L.D.; funding acquisition,
T.W., B.V. and F.D.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets, both raw and cleaned up, are publicly available at
https://gitlab.ilabt.imec.be/lpdhooge/ids-dataset-collection. The full source code of the analysis
and the complete set of visualizations is available at https://gitlab.ilabt.imec.be/lpdhooge/reduced-
unseen-testing. (both URLs checked on 10 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Denning, D.; Neumann, P.G. Requirements and Model for IDES-a Real-Time Intrusion-Detection Expert System; SRI InternationalL:
Menlo Park, USA 1985; Volume 8.

2. Denning, D.E. An intrusion-detection model. IEEE Trans. Softw. Eng. 1987, 13, 222–232. [CrossRef]
3. Duessel, P.; Gehl, C.; Flegel, U.; Dietrich, S.; Meier, M. Detecting zero-day attacks using context-aware anomaly detection at the

application-layer. Int. J. Inf. Secur. 2017, 16, 475–490. [CrossRef]
4. Kolias, C.; Kolias, V.; Kambourakis, G. TermID: A distributed swarm intelligence-based approach for wireless intrusion detection.

Int. J. Inf. Secur. 2017, 16, 401–416. [CrossRef]
5. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 41–50. [CrossRef]
6. Sethi, K.; Sai Rupesh, E.; Kumar, R.; Bera, P.; Venu Madhav, Y. A context-aware robust intrusion detection system: A reinforcement

learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]
7. Quadir, M.A.; Christy Jackson, J.; Prassanna, J.; Sathyarajasekaran, K.; Kumar, K.; Sabireen, H.; Ubarhande, S.; Vijaya Kumar, V.

An efficient algorithm to detect DDoS amplification attacks. J. Intell. Fuzzy Syst. 2020, 39, 8565–8572. [CrossRef]
8. Kannari, P.R.; Shariff, N.C.; Biradar, R.L. Network intrusion detection using sparse autoencoder with swish-PReLU activation

model. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1–13. [CrossRef]
9. Badji, J.C.J.; Diallo, C. A CNN-based Attack Classification versus an AE-based Unsupervised Anomaly Detection for Intrusion

Detection Systems. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies
(ICECET), Prague, Czech Republic, 20–22 July 2022; pp. 1–7. [CrossRef]

10. D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Inter-dataset generalization strength of supervised machine learning methods
for intrusion detection. J. Inf. Secur. Appl. 2020, 54, 102564. [CrossRef]

11. D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. Classification hardness for supervised learners on 20 years of intrusion
detection data. IEEE Access 2019, 7, 167455–167469. [CrossRef]

12. Sharafaldin, I.; CIC. CIC-IDS2017. 2017. Available online: https://www.unb.ca/cic/datasets/ids-2017.html (accessed on
15 November 2022).

13. Sharafaldin, I.; CIC. CIC-IDS2018. 2018. Available online: https://www.unb.ca/cic/datasets/ids-2018.html (accessed on
15 November 2022).

14. Sharafaldin, I.; CIC. CIC-DDoS2019. 2019. Available online: https://www.unb.ca/cic/datasets/ddos-2019.html (accessed on
15 November 2022).

15. Sharafaldin, I.; Lashkari, A.H.; Hakak, S.; Ghorbani, A.A. Developing realistic distributed denial of service (DDoS) attack dataset
and taxonomy. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8.

16. Govindarajan, M.; Chandrasekaran, R. Intrusion detection using an ensemble of classification methods. In Proceedings of the
World Congress on Engineering and Computer Science (WCECS), San Francisco, USA, 24–26 October 2012 Volume 1, pp. 459–464.

109

J. Cybersecur. Priv. 2023, 3

17. Lu, L.; Teng, S.; Zhang, W.; Zhang, Z.; Fei, L.; Fang, X. Two-Layer Intrusion Detection Model Based on Ensemble Classifier. In
Proceedings of the CCF Conference on Computer Supported Cooperative Work and Social Computing, Kunming, China, 16–18
August 2019; Springer: Singapore, 2019, pp. 104–115.

18. Kuang, F.; Xu, W.; Zhang, S.; Wang, Y.; Liu, K. A novel approach of KPCA and SVM for intrusion detection. J. Comput. Inf. Syst.
2012, 8, 3237–3244.

19. Wickramasinghe, C.S.; Marino, D.L.; Amarasinghe, K.; Manic, M. Generalization of deep learning for cyber-physical system
security: A survey. In Proceedings of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society,
Washington, DC, USA, 21–23 October 2018, pp. 745–751.

20. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010, pp. 305–316.

21. Gates, C.; Taylor, C. Challenging the anomaly detection paradigm: A provocative discussion. In Proceedings of the 2006
Workshop on NEW Security Paradigms, Schloss Dagstuhl, Germany, 19–22 September 2006; pp. 21–29.

22. Małowidzki, M.; Berezinski, P.; Mazur, M. Network intrusion detection: Half a kingdom for a good dataset. In Proceedings of the
NATO STO SAS-139 Workshop, Lisbon, Portugal, 1 December 2015.

23. Vasilomanolakis, E.; Cordero, C.G.; Milanov, N.; Mühlhäuser, M. Towards the creation of synthetic, yet realistic, intrusion
detection datasets. In Proceedings of the NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium,
Istanbul, Turkey, 25–29 April 2016; pp. 1209–1214.

24. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147–167. [CrossRef]

25. Li, Z.; Das, A.; Zhou, J. Model generalization and its implications on intrusion detection. In Proceedings of the International
Conference on Applied Cryptography and Network Security, New York, NY, USA, 7–10 June 2005; pp. 222–237.

26. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion detection. In Proceedings
of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Chengdu, China, 16–19 May 2022, pp. 79–91.

27. Newlin, M.; Reith, M.; DeYoung, M. Synthetic Data Generation with Machine Learning for Network Intrusion Detection Systems.
In Proceedings of the European Conference on Cyber Warfare and Security, Coimbra, Portugal on 4– 5 July 2019; pp. 785–XVII.

28. Recht, B.; Roelofs, R.; Schmidt, L.; Shankar, V. Do imagenet classifiers generalize to imagenet? In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5389–5400.

29. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

30. Sharafaldin, I.; Gharib, A.; Lashkari, A.H.; Ghorbani, A.A. Towards a reliable intrusion detection benchmark dataset. Softw. Netw.
2018, 2018, 177–200. [CrossRef]

31. Hastie, T.; Tibshirani, R.; Friedman, J.H.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.

32. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

33. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
34. D’hooge, L.; Wauters, T.; Volckaert, B.; De Turck, F. In-depth comparative evaluation of supervised machine learning approaches

for detection of cybersecurity threats. In Proceedings of the 4th International Conference on Internet of Things, Big Data and
Security (IoTBDS), Crete, Greece, 2–4 May 2019; pp. 125–136.

35. Sweetsoftware. Ares. 2017. Available online: https://github.com/sweetsoftware/Ares (accessed on 18 November 2022).
36. Touyachrist. Evo-Zeus. 2017. Available online: https://github.com/touyachrist/evo-zeus (accessed on 18 November 2022).
37. Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent trends in deep learning based natural language processing. IEEE Comput.

IntelligenCe Mag. 2018, 13, 55–75. [CrossRef]
38. Zhao, Z.Q.; Zheng, P.; Xu, S.t.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Networks Learn. Syst.

2019, 30, 3212–3232. [CrossRef] [PubMed]
39. Mighan, S.N.; Kahani, M. A novel scalable intrusion detection system based on deep learning. Int. J. Inf. Secur. 2021, 20, 387–403.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

110

Citation: Sadeghpour, S.; Vlajic, N.

ReMouse Dataset: On the Efficacy of

Measuring the Similarity of

Human-Generated Trajectories for

the Detection of Session-Replay Bots.

J. Cybersecur. Priv. 2023, 3, 95–117.

https://doi.org/10.3390/jcp3010007

Academic Editors: Giorgio Giacinto

and Phil Legg

Received: 12 January 2023

Revised: 22 February 2023

Accepted: 27 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

ReMouse Dataset: On the Efficacy of Measuring the Similarity
of Human-Generated Trajectories for the Detection of
Session-Replay Bots

Shadi Sadeghpour * and Natalija Vlajic

Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3, Canada
* Correspondence: shadisa@cse.yorku.ca

Abstract: Session-replay bots are believed to be the latest and most sophisticated generation of web
bots, and they are also very difficult to defend against. Combating session-replay bots is particularly
challenging in online domains that are repeatedly visited by the same genuine human user(s) in
the same or similar ways—such as news, banking or gaming sites. In such domains, it is difficult
to determine whether two look-alike sessions are produced by the same human user or if these
sessions are just bot-generated session replays. Unfortunately, to date, only a handful of research
studies have looked at the problem of session-replay bots, with many related questions still waiting
to be addressed. The main contributions of this paper are two-fold: (1) We introduce and provide
to the public a novel real-world mouse dynamics dataset named ReMouse. The ReMouse dataset is
collected in a guided environment, and, unlike other publicly available mouse dynamics datasets, it
contains repeat sessions generated by the same human user(s). As such, the ReMouse dataset is the
first of its kind and is of particular relevance for studies on the development of effective defenses
against session-replay bots. (2) Our own analysis of ReMouse dataset using statistical and advanced
ML-based methods (including deep and unsupervised neural learning) shows that two different
human users cannot generate the same or similar-looking sessions when performing the same or a
similar online task; furthermore, even the (repeat) sessions generated by the same human user are
sufficiently distinguishable from one another.

Keywords: behavioral biometrics; mouse dynamics; feature learning; convolutional neural network;
clustering algorithms

1. Introduction

Behavioral biometrics measure and analyze user interactions in the online domain so
as to recognize or verify a person’s unique identity, with the ultimate goal of providing
an imperceptible layer of security to systems and applications [1]. The best-known forms
of behavioral biometrics involve the monitoring and analysis of the following modalities:
mouse cursor movement, keystroke or voice dynamics, the appearance and speed of
signing, etc. The main advantages of mouse movement analysis relative to the other forms
of behavioral biometrics include: (a) mouse movement can be monitored in a manner that is
entirely unobtrusive for the end user; (b) monitoring of mouse movement does not require
the use of additional hardware or software and thus does not incur additional cost; (c) from
the perspective of user privacy, sharing mouse dynamics data is far less problematic than
sharing keystrokes, signatures or voice data [2]; (d) mouse movement has already proven
to be effective, not only in the identification or authentication of end users but also in
the process of determining users’ age and gender [3], as well as their emotions and work
productivity [4].

A number of previous studies on mouse dynamics have looked at the importance of dif-
ferent mouse movement characteristics for the purpose of user identification/authentication,
such as hesitation patterns, random and straight movements, etc. [5]. Some of these

J. Cybersecur. Priv. 2023, 3, 95–117. https://doi.org/10.3390/jcp3010007 https://www.mdpi.com/journal/jcp111

J. Cybersecur. Priv. 2023, 3

studies have also looked at the use of different machine learning methods in user iden-
tification/authentication systems; however, they often rely only on a limited number of
handpicked features extracted from their respective mouse movement datasets. To avoid
the pitfalls of manual feature extraction processes, in this study we propose to tackle the
problem of mouse trajectory classification by using a deep neural network (convolutional
neural network) that utilizes all of the raw mouse movement data. That is, instead of
handpicking the most important features for a set of mouse movement trajectories, we
let the convolution neural network identify these features in an unsupervised manner.
Furthermore, we investigate the use of mouse movement analysis in another important
application area—malicious web-bot detection. Malicious web bots are known to pose a
significant threat to the entire Internet community. One particularly challenging form of
malicious bot are the bots capable of impersonating human behavior in terms of mouse
movement. The latest generation of such human-mimicking malicious bots are synthesized
by means of ‘session replays’ [6–8]. That is, these bots programmatically replay a browsing
session, including the mouse movement trajectory, that was previously executed (and
recorded) by a genuine human visitor to a target/victim web site. The specific goal of
this study is to offer a better insight into: (a) the statistical similarities and differences
between browsing sessions (mouse movement trajectories) generated by different genuine
users on the same target web page; (b) the statistical similarities and differences between
browsing sessions (mouse movement trajectories) repeated by the same genuine user on
the same target web page. We believe that a better understanding of these similarities
and differences is of critical importance for the creation of more effective techniques of
malicious bot detection—in particular the detection of session-replay bots—which in turn
can ensure a safer Internet for everyone.

The specific contributions of the research work presented in this paper can be sum-
marized as follows: (i) We developed an interactive web platform capable of collect-
ing a number of different mouse movement actions and features, including trajectory,
point-click, drag-and-drop, velocity, etc. The platform has been deployed on MTurk
(https://www.mturk.com/, accessed on 25 February 2023) and has allowed us to collect
mouse movement data from several hundred genuine human users (i.e., participants) while
repeating the same/similar online task. We named this dataset ReMouse and are making
it available to the research community on IEEE DataPort [9]. (ii) We conducted statistical
and ML-based analyses of the ReMouse dataset. The results of this analysis have shown
that all mouse dynamics sessions coming from the same genuine human user are relatively
different from each other and that it is highly unlikely that different genuine human users
produce ‘same-looking’ sessions when completing the same/similar online task.

To the best of our knowledge, the ReMouse dataset is the first publicly available mouse
dynamics dataset with repeat sessions generated by the same human user(s). As such, this
dataset can be a very valuable resource for any future research dealing with the problem of
session-replay bots, which are currently known to be the most advanced form of web bots
on the Internet. In this work, we make the first step towards the ReMouse dataset analysis
using statistical and advanced ML-based methods, including deep and unsupervised
neural learning. Given the fact that no prior research on the topic of repeat sessions and/or
session-replay bots has been conducted (i.e., that is available in the literature), we needed
to develop an entirely new research methodology. With this manuscript, we not only try
to close the current research and literature gap, we also highlight the need for further
development and hope to inspire other researchers to work alongside us on this important
area of study.

The remainder of this paper is organized as follows: In Section 2, we provide an
overview of previous relevant works on the use of mouse dynamics for the purpose of user
authentication and bot detection, as well as an overview the existing publicly available
mouse dynamics datasets, including our novel ReMouse dataset. In Section 3, we introduce
the web platform that has been used to collect the ReMouse dataset. In Section 4, we present
the results of our analysis of the ReMouse dataset using statistical analysis techniques,

112

J. Cybersecur. Priv. 2023, 3

while in Sections 5 and 6, we summarize our approach and main findings obtained on the
ReMouse dataset using advanced ML techniques. Finally, conclusions and directions for
future work are presented in Section 7.

2. Related Work

Understanding users’ behavior on one or a set of related web pages, including the
usage of mouse cursors, has been essential in many application domains, including ed-
ucational technology, web analytics, e-commerce, digital advertising, and especially bot
detection and user authentication [10,11]. To date, a substantial number of published works
has looked at the importance of mouse dynamics from a number of different research per-
spectives. In this section, we provide a survey of a subset of works which are more closely
related to the topic of our own research. In particular, we provide an overview of published
works that have studied mouse dynamics in the context of user authentication and bot
detection. We also give an overview of several publicly available mouse dynamics datasets.

2.1. Mouse Dynamics for User Authentication

A number of research works have proven the general usefulness of mouse dynamics
in the domain of user authentication. Some of these works have also turned to the use of
machine learning as a promising approach to increasing the accuracy of mouse-movement-
based authentication.

In [12], the authors have provided a comprehensive study on the use of several differ-
ent deep learning architectures, i.e., 1D-CNN (convolutional neural network), 2D-CNN,
LSTM (long short-term memory) and a hybrid CNN-LSTM in biometric-based authentica-
tion systems deploying mouse dynamics data. In particular, the authors have combined
convolutional layers with LSTM layers to build a hybrid neural network capable of model-
ing temporal sequences on a larger but fixed time scale. Another deep learning approach
has been proposed in [13] to address the problem of biometric-based user authentication in
systems with an insider threat. Specifically, to preserve the mouse movement features of
each individual user, a unique mapping method was developed to map all the basic actions,
such as move, click, drag, scroll and stay, into images. The obtained (images) dataset was
then used to train seven-layer CNN classification models.

An authentication system based on a weighted multi-classifier voting technique and
deploying different mouse movement operations (such as movement direction and elapsed
time) has been described in [14]. In [15], the authors have applied a semi-supervised
learning method using a novel feature extraction technique for authentication via mouse
dynamics. The authors of [16] have introduced a user authentication system comprising
two components named ‘enrollment’, responsible for feature learning, and ‘verification’,
which performs the actual authentication. The authors have employed an FCN (fully
convolutional neural network) for feature learning and an OCSVM (one-class support
vector machine) for authentication.

The use of the Random Forest algorithm for the purpose of user authentication has
been studied in [17]. To predict/determine one’s identity, this study suggests using approx-
imately 1000 mouse actions (60 min of the user’s active mouse movements on average) to
train the model. The findings of this study imply that mouse dynamics should be consid-
ered as an additional security service in the systems, not a single verification indicator.

In [18], the researchers have improved the results of user authentication based on
mouse dynamics by replacing the raw coordinates with directional velocities. Finally, the
effectiveness of using ensemble learning and frequency-domain representations of mouse
dynamics for continuous authentication tasks have been studied in [19].

2.2. Mouse Dynamics for Bot Detection

To date, the use of mouse movement analysis in another important application
area—malicious web-bot detection—has been investigated by several researchers. Acien et al. [20]
have presented a bot detector called BeCAPTCHA-Mouse, which is trained on data gen-

113

J. Cybersecur. Priv. 2023, 3

erated by the neuromotor modeling of mouse dynamics and is claimed to be capable of
detecting highly realistic bot trajectories. To detect web bots, Iliou et al. [21] have proposed
a framework that combines two web-bot detection modules: a web-logs detection module
and a mouse movement detection module. Each module has its own classifier. The fun-
damental idea of the proposed approach is to capture the different temporal properties of
web logs and mouse movements, plus the spatial properties of mouse movements, with the
ultimate goal of creating a more robust detection framework that would be hard to evade.

Other researchers have proved the usefulness of mouse dynamics in detecting ma-
licious bots by employing a deep neural network approach [22]; C4.5 algorithm [8]; a
combined model of unsupervised and supervised ML techniques, including the K-Nearest-
Neighbors algorithm and naïve Bayes classifier [23], a classification algorithm based on
distance measures adapted from the Kolmogorov–Smirnov non-parametric test [24] and
sequence learning [25]. Importantly, in [26], the authors have proposed a new web forensic
framework for bot crime investigations. The framework is based on four different types of
human behavioral patterns (timing, movement, pressure and error) to provide evidence of
bad bot activity on web applications.

Although there exists a broad list of machine learning algorithms and data mining
techniques that have been applied to the problem of bot detection, the question/problem
of advanced session-replay web bots remains largely unanswered. According to our
knowledge, the only two research studies that have tackled the problem of session replays
and have attempted to build adequate ML-based countermeasures are [8,27]. However, the
focus of [27] is on session replays in the context of user authentication (and not malicious
web bots), while the results of [8] are based on a proprietary dataset involving blog bots
(one very narrow subcategory of web bots). Moreover, a common drawback of both studies
is that they omit to consider the possibility of web-sites (i.e., online services) in which
genuine human users end up generating similar/repeat sessions, as in the case of news,
banking or gaming web-sites.

2.3. Mouse Dynamics Datasets

In terms of the actual mouse movement datasets analyzed in their studies, different
researchers have employed different approaches to acquiring human-generated mouse
trajectories. They have either used existing publicly available datasets (e.g., [17,28–32]) or
they have collected their own. In general, there are two different approaches to collecting
a mouse movement dataset: (1) by creating a ’guided environment’, where the users are
asked to perform a specific (same) task with the mouse, or (2) by creating a ‘non-guided
environment’, where users are not guided (i.e., instructed) on how to perform a particular
task [33].

Some of the most commonly studied publicly available mouse movement datasets
include: Balabit [28], Bogazici [29], the Attentive Cursor dataset [30], SapiMouse [31], Chao
Shen [32] and DFL [17]. The following provides a brief description of each dataset.

2.3.1. Balabit Dataset

Published in 2016, the Balabit dataset falls in the category of ‘non-guided environment’
datasets and includes mouse pointer positioning and timing information for 10 users
working over remote desktop clients connected to a remote server. During data collection,
users were asked to perform their regular daily activities. Mouse events were stored in
tuples containing the following data: timestamp, pressed button, mouse state and mouse
pointer coordinates. The primary purpose of collecting the Balabit dataset was to learn how
the involved users utilize their mouse so as to be able to protect them from unauthorized
usage of their accounts. Both training and test data are presented as sessions in the dataset;
however, the test sessions are much shorter than the training sessions.

114

J. Cybersecur. Priv. 2023, 3

2.3.2. Bogazici Mouse Dynamics Dataset

The Bogazici dataset [29], published in 2021, also falls into the category of ‘non-
guided environment’ datasets and comprises mouse usage behavior patterns of 24 users
gathered over a one-month period. The data collection participants were selected from
different positions in a software company in order to acquire different patterns of user
behavior while interacting with different programs and tools in the office environment.
Each user’s machine was loaded with a specially designed program that would launch at
startup and would collect the user’s mouse movements without being tied to a specific
task and without preventing the user from performing their regular daily activities. The
specific information contained in the dataset includes mouse action type, timestamp, spatial
coordinates, button, state and application window name. The dataset was collected for the
purpose of training several neural network and deep learning models, which were then
deployed to identify/verify the involved users.

2.3.3. The Attentive Cursor Dataset

This is a large-scale ‘guided environment’ dataset of mouse cursor movements dur-
ing a web search task, and the set was collected in 2020 for the purposes of inferring a
user’s attention and demographic information. Nearly 3000 participants were recruited
from the FIGURE EIGHT (https://www.figure-eight.com, accessed on 25 February 2023)
crowdsourcing platform. Using an injected custom JavaScript code, the authors captured
the real-world behavior of individuals completing a transactional web search task. The
captured information includes the following: mouse cursor position, timestamp, event
name, XPath of the DOM element related to the event and the DOM element attributes
(if any).

2.3.4. SapiMouse Dataset

The dataset was collected at Sapientia University in 2020 and also falls into the cate-
gory of ‘guided environment’ datasets. It contains mouse dynamics data from 120 subjects
(92 males and 28 females between 18 and 53 years of age). Using a JavaScript web applica-
tion running on the user’s computer, mouse movements were sampled by an event-driven
sampling technique. The participants were asked to perform four different actions, and
each was associated with geometrical shapes in a web page, including right and left clicks
and drag and drop actions. In the dataset, two files were associated with each participant,
with each file corresponding to one- and three-minute-long sessions, respectively. Indi-
vidual lines in the two files capture information pertaining to one mouse event, such as
mouse cursor position, button type, event type (move, drag, press or release) and respective
timestamp. The authors have presented user authentication results obtained on this dataset
in [31].

2.3.5. Chao Shen Dataset

This ‘non-guided environment’ dataset was collected in 2017 and consists of mouse
dynamics information pertaining to 28 users, with each user completing at least 30 separate
data sessions over a two-month period. Each session consisted of about thirty minutes of the
respective user’s mouse activity. In the dataset, each mouse operation was represented as a
tuple of multi-attributes (action type, application type, screen area and window position)
and their respective timestamps. The dataset was collected for the purpose of continuous
user authentication.

2.3.6. DFL Dataset

This dataset was collected in 2018 from 21 participants in a non-guided environment.
The participants were asked to install a background service on their computers (which
collected their mouse activity data) and perform their daily activities. The dataset contains
the following information about the users’ mouse activities: timestamp, button (left, right,

115

J. Cybersecur. Priv. 2023, 3

no-button), state (move, pressed, released, drag) and coordinates. The dataset was used to
evaluate a user verification system, as described in [17].

Our novel mouse dynamics dataset (ReMouse), which we are introducing in this
paper and making available to the public, has been collected by means of a web platform
developed using the Django REST framework. To collect mouse data from genuine human
participants, the platform was deployed on MTurk (for more details, see Section 3.2).

The main differences between our ReMouse dataset and the mouse dynamics datasets
previously released by other researchers are as follows: (i) The ReMouse dataset contains
the mouse dynamics information of 100 users of mixed nationality, residing in diverse
geographical regions, and using different devices (hardware and software components).
(ii) The dataset contains dozens of ‘repeat sessions’ per each user, where ‘repeat sessions’
are sessions during which the user is asked to complete the same logical task in a guided
online environment (e.g., play an online game involving the same sequence of steps and
intermediate objectives). Through analysis of such ‘repeat sessions’, it is possible to obtain a
better insight into the actual impact of ‘repetition’ on the user’s mouse behavior (e.g., mouse
trajectory and speed). According to our knowledge, this is the first dataset of this kind
offered to the public. (iii) Each session in the ReMouse dataset is depicted with more
granular information relative to the sessions in other datasets. Namely, in addition to the
timing and positioning information of the mouse cursor, our dataset also contains mouse
movement speed/velocity, the applications’ window size (the height and width), as well as
the anonymized IP addresses of the participants as user IDs.

Table 1 compares the characteristics of the most commonly studied publicly available
dataset with those of our novel ReMouse dataset.

Table 1. The characteristics of the most prevalent publicly available dataset, including our novel
ReMouse dataset.

Name Ref. # User
Data

Collection

Period of
Observing Each
User’s Activity

Action Session Fields Task
Repeat

Sessions

Balabit [28] 10 N/A N/A

Mouse
movement,
point click,

drag and drop

Timestamp,
coordinates, pressed
button, state of the

mouse

Non-guided No

Bogazici [29] 24 1 month 2550 h

Mouse
movement,
point click,

drag and drop

Timestamp,
coordinates, button,
state of the mouse,

application window
name

Non-guided No

The
Attentive

Cursor
[30] 3K N/A 2 h

Mouse
movement,
point click

Timestamp,
coordinates, event
name, XPath of the
DOM element that

relates to the event, the
DOM element

attributes (if any)

Guided No

SapiMouse [31] 120 N/A 4 min of each
user’s activity

Mouse
movement,
point click,

drag and drop

Timestamp,
coordinates, button,
state of the mouse

Guided No

Chao Shen [32] 28 2 months 30 sessions of
30 min

Mouse
movement,
point click,

drag and drop

Timestamp, action type,
application type, screen
area, window position

Non-guided No

DFL [17] 21 7 months
Daily users’

mouse activities
for 7 months

Mouse
movement,
point click,

drag and drop

Timestamp,
coordinates, button,
state of the mouse

Non-guided No

ReMouse [9] 100 2 Days 5 min of each
user’s activity

Mouse
movement,
point click,

drag and drop

User ID, session ID,
timestamp, coordinates,

button, event type,
state of the mouse,
speed, screen size

Guided Yes

116

J. Cybersecur. Priv. 2023, 3

3. ReMouse Dataset

3.1. Web Platform for Data Collection

Our interactive web platform, which was developed for the purpose of mouse dy-
namics data collection, is hosted on AWS (Windows Server IIS) and is accessible through
the following URL: http://human-likebots.com (accessed on 25 February 2023). On the
front/user-facing end, the platform simulates a simple ‘Catch Me If You Can!’ online game
(refer to Figure 1). The game web-page contains a JavaScript code which captures the
actual mouse dynamics data (i.e., mouse move, load, click, scroll, . . . events) as well as
the associated metadata. Specifically, in the time interval during which the user stays on
the web-site and plays the ‘Catch Me If You Can!’ game, the script preforms a discrete
‘event polling’ of various event listeners every 30 ms. In addition to recording the mouse-
dynamics-related events, the script also captures the timestamps and x–y coordinates of
the recorded events, mouse speed, session ID and screen size. The data collected by the
script are first buffered and then sent to the back-end server every few seconds (we decided
against shorter sampling and transmission intervals to avoid unnecessary data overhead).
Using the Django Rest Framework [34], the server-side web application is able to receive
and store the recorded event data in a log file (CSV format). The client- and server-side
applications do not record any personal information about the users interacting with the
human-likebots.com site.

Figure 1. The web-site ‘Catch Me if You Can!’.

3.2. ReMouse Dataset Acquisition

In order to collect real human-user data, our interactive human-likebots.com page was
deployed on the Amazon MTurk platform (MTurk is a crowdsourcing marketplace that
allows researchers to hire anonymous virtual workers to complete human intelligence tasks
for pay. Currently, MTurk offers access to over 500,000 virtual workers from 190 countries).
We specifically requested 100 MTurk users to visit and interact with our ‘Catch Me If You
Can!’ site by playing multiple rounds of the game—for a total duration of 5 min. In each
round of the game, the users were asked to follow six steps and perform three different
actions, including left-click, right-click and drag-and-drop actions. We considered each
round played by a particular user as a separate mouse movement session. Figure 2 shows
the total number of sessions generated by each participating user, while Figure 3 shows the
minimum, maximum and average session counts over all 100 users.

117

J. Cybersecur. Priv. 2023, 3

Figure 2. The number of sessions generated by each user.

Figure 3. Session status.

4. ReMouse Dataset Analysis

4.1. Sessions Generated by The Same User

In the first stage of our ReMouse dataset study, we focused on analyzing the sessions
generated by each individual user in isolation from other users. For the purpose of this
analysis, a mouse cursor trajectory of a particular session was modeled by means of two
time-dependent variables: (1) 2D coordinates/position of the mouse cursor; (2) speed of
mouse cursor. As an illustration, Figure 4 displays the trajectories comprising only the
mouse coordinates (i.e., positional information) of session number 3 for ReMouse users
90 to 98.

118

J. Cybersecur. Priv. 2023, 3

Figure 4. Visual representation of mouse cursor trajectory in the session with order number 3 for
users 90 to 98.

Our analysis of single-user sessions led to some interesting observations:
Observation 1.1: It is evident from the collected data that by repeating the same online

task over time (i.e., repeating multiple rounds of our ‘Catch Me If You Can!’ game), each
user generally becomes faster and able to complete every subsequent round of the game in
a progressively shorter amount of time. These findings are illustrated in Figure 5, which
displays the ‘time taken’ and the ‘average mouse movement speed’ for user 82 (which is
randomly chosen among the 100 participants) across each of the 16 rounds/sessions of
the game that this particular user has performed. The same observation is also evident
from Figure 6, which shows the dynamic time warping (DTW) distances [35] between the
trajectories of subsequent pairs of sessions generated by user 82 (e.g., trajectories of first
and second session, second and third session, etc.). As can be seen in Figure 6, the DTW
distances between the trajectories of subsequent sessions become closer and shorter as the
user keeps repeating the same task.

Note that we opted for the use of the DTW distance metric in our analysis as it has
allowed us to measure the distance between two sessions (two time series) of different
lengths and different time-wise alignments (DTW re-aligns two feature vector sequences
by warping the time axis iteratively until an optimal match between the two sequences is
found [35]). Figure 7 provides a closer look into the trajectories of two particular sessions
(number 13 and 14) of user 82 and their respective DTW cumulative distance.

119

J. Cybersecur. Priv. 2023, 3

Figure 5. (a) Time taken to complete each of 16 conducted sessions for user number 82; (b) Average
mouse movement speed for each of 16 conducted sessions.

Figure 6. Cumulative difference/distance between subsequent pairs of sessions generated by user 82.

(a) (b)

Figure 7. (a) Trajectories of sessions 13 and 14 of user 82; (b) Cumulative DTW distance between
two sessions.

120

J. Cybersecur. Priv. 2023, 3

To confirm Observation 1.1, we also deployed simple ‘trend line analysis’ [36] on
the ReMouse dataset. A trend line is a bounding line that captures a trend and rallying
patterns in a given dataset. If the slope of the line is a positive value, it indicates the trend
is increasing, and a negative value implies that the trend is decreasing. We employed this
analysis to discover the trend in ‘time taken to complete a session’ and ‘average mouse
speed’ in relation to the session order number for each participating user. The average value
of the slope in ‘time taken to complete a session’ trend lines, when calculated across all the
users, was 417.0, which is a good indication that with every subsequent session/repetition
the users generally spent less time completing the task. On the other hand, the average
value of the slope in the ‘speed of mouse movement’ trend lines, when calculated across all
users, was 10.0, which is further proof that users generally became faster in completing a
similar online task with every subsequent session/repetition.

Observation 1.2: Even though the repeat sessions generated by each particular user
became progressively ‘closer’ (as illustrated in Figure 6), no user is able to produce two
entirely identical consecutive mouse trajectories when repeating the same online task. This
observation is illustrated in Table 2, which shows the ids of the two closest consecutive ses-
sions generated by each respective user in the ReMouse dataset when measured using the
minimum normalized cumulative DTW distance. Moreover, since the overall cumulative
DTW distances will be greater when the sessions are longer—cumulating over time—we
normalized the DTW distance values by the time taken to complete each pair of sessions
(i.e., the trajectory time-wise length). That way, the time component does not affect the
results, and the minimum DTW distances show the actual trajectories’ closeness. A closer
inspection of the values in Table 2 reveals that user 74 produced the most similar consecu-
tive trajectories in the ReMouse dataset (corresponding to sessions number 39 and 40), with
a normalized cumulative DTW distance of 64.23521268 (note that two identical sessions
would produce a DTW distance of 0). The graph shown in Figure 8 plots the minimum
normalized cumulative DTW distance values from Table 2, confirming Observation 1.2.
Figure 9 provides a closer look at the trajectories of sessions 39 and 40 of user 74, as well as
their respective normalized cumulative DTW.

Observation 1.3: Through the analysis of ReMouse dataset, we further observed that
in the initial sessions the users acted generally more confused, i.e., their cursors exhibited
more ‘erratic’ behavior until the users finally figured out what exactly they were expected
to do. However, even in these initial sessions, the mouse speed was not considerably slower
than in the later session, which is indicated through a relatively small positive slope value
obtained from the ‘trend line analysis’.

Table 2. The most similar trajectories generated by each participating user in the ReMouse dataset
with their respective DTW values—the minimum DTW normalized cumulative distance between the
closest sessions.

Users Sessions
Min DTW Normalized
Cumulative Distance

Users Sessions
Min DTW Normalized
Cumulative Distance

0 7,8 591.6516 50 2,3 303.9826
1 5,6 295.2985 51 4,5 291.6989
2 35,36 147.0755 52 7,8 272.5094
3 13,14 192.1207 53 13,14 196.9675
4 9,10 180.0245 54 2,3 1490.494
5 4,5 398.1191 55 13,14 421.657
6 8,9 272.4871 56 11,12 276.5871
7 19,20 293.7516 57 8,9 1387.489
8 17,18 192.9701 58 8,9 634.1661
9 11,12 345.1108 59 6,7 777.4243

10 5,6 308.2797 60 6,7 174.8066

121

J. Cybersecur. Priv. 2023, 3

Table 2. Cont.

Users Sessions
Min DTW Normalized
Cumulative Distance

Users Sessions
Min DTW Normalized
Cumulative Distance

11 3,4 572.3161 61 17,18 232.3106
12 2,3 107.556 62 27,28 126.1892
13 21,22 262.7717 63 3,4 1112.61
14 4,5 297.0564 64 33,34 142.0399
15 2,3 287.2074 65 9,10 301.4555
16 9,10 116.766 66 33,34 199.8493
17 10,11 247.4575 67 14,15 137.9862
18 12,13 275.4263 68 3,4 1728.454
19 9,10 371.7259 69 4,5 427.3393
20 7,8 175.7365 70 9,10 1201.285
21 11,12 280.7912 71 17,18 126.8211
22 23,24 127.987 72 16,17 211.9789
23 7,8 343.7548 73 5,6 487.4164
24 28,29 198.9364 74 39,40 64.23521
25 12,13 358.7146 75 24,25 85.11796
26 29,30 204.9529 76 8,9 402.6993
27 11,12 241.8954 77 3,4 623.3006
28 7,8 462.876 78 10,11 412.5679
29 26,27 110.2986 79 11,12 355.0567
30 5,6 210.5634 80 18,19 488.2605
31 11,12 203.5428 81 7,8 315.7737
32 5,6 213.7062 82 13,14 383.0098
33 14,15 258.7817 83 9,10 262.1923
34 8,9 503.8331 84 6,7 275.4376
35 2,3 241.2987 85 8,9 2391.673
36 23,24 210.416 86 48,49 174.3101
37 10,11 305.7957 87 11,12 422.6979
38 23,24 112.3997 88 24,25 113.6169
39 4,5 191.0098 89 7,8 354.2762
40 7,8 429.8543 90 17,18 134.8357
41 17,18 143.9127 91 6,7 299.5449
42 21,22 318.2114 92 5,6 792.4915
43 18,19 226.5839 93 7,8 292.0623
44 4,5 446.748 94 8,9 282.6595
45 6,7 181.1306 95 9,10 432.2253
46 6,7 240.4841 96 23,24 210.416
47 5,6 630.878 97 13,14 261.8753
48 12,13 294.704 98 2,3 753.1881
49 2,3 315.2712 99 8,9 386.572

Figure 8. Minimum DTW normalized cumulative distances across sessions of each individual user.

122

J. Cybersecur. Priv. 2023, 3

(a) (b)

Figure 9. (a) Sum of cumulative DTW distance value in sessions generated by the same user, user 74;
(b) Sessions 39 (blue) and 40 (orange) of user 74.

4.2. Sessions Generated by Different User

In the second stage of our ReMouse dataset study, the focus was on the pairwise analysis
of sessions generated by different users. The findings of this analysis are summarized below:

Observation 2.1: Different users produced different-looking sessions when complet-
ing the same/similar online task.

The validity of this observation was confirmed by comparing all users’ sessions in our
dataset (i.e., by calculating the cross-user pairwise minimum DTW distance). Table 3 shows
the minimum normalized cumulative DTW distance value between two sessions of two
distinct users out of all users’ sessions. As shown, the most similar trajectories generated
by two distinct users are sessions 6 and 29 of users 1 and 2, respectively. The actual DTW
distance between these sessions is 21.94, which suggests that, although similar, these two
sessions are not identical. This observation can be further generalized, implying that even
though sessions generated by two distinct human users while completing the same/similar
online task may exhibit a high degree of similarity, they are also likely to be sufficiently
distinct from each other.

Table 3. Cross-user pairwise DTW normalized cumulative distance calculation result.

Min DTW Users Sessions

21.941833 1 and 2 6 and 29

Observation 2.2: There are no two sessions created by two distinct users that are
closer to each other than (any) two sessions created by the same user when completing the
same/similar online task.

To confirm this observation, in addition to calculating the distance between sessions
generated by different users, we also computed the minimum normalized cumulative DTW
distance between ANY two (not just consecutive) sessions generated by the same user in
the ReMouse dataset. Table 4 summarizes these results, and it shows that out of the entire
ReMouse dataset, user 1 has generated two most similar trajectories (corresponding to
sessions number 16 and 28) with a respective distance of 20.376812.

123

J. Cybersecur. Priv. 2023, 3

Table 4. Pairwise DTW normalized cumulative distance calculation result—the same user.

Min DTW Users Sessions

20.376812 1 and 1 16 and 28

The observations of this section can be further generalized and put in the context
of session-replay bots. Namely, the numerical results obtained through the analysis of
ReMouse dataset imply that no two sessions (i.e., mouse trajectories) generated on a
static web-site—regardless of whether they are generated by the same or two distinct
users—can be identical. Based on this, we further hypothesize that only pre-programmed
session-replay bots are theoretically able to produce identical browsing sessions (i.e., mouse
trajectories). Or, put another way, any occurrence/observation of ‘identical’ or ‘almost
identical’ browsing sessions (i.e., mouse trajectories) in a web-site should be taken with
caution, potentially warranting further investigation for the presence of session-replay bots.

5. Feature Engineering—Preparing ReMouse Dataset for Machine-Learning-Based Analysis

In previous studies on mouse dynamics, researchers have commonly relied on heuristics-
based (i.e., manually selected) mouse movement features, such as 2D cursor position,
mouse speed, click frequency, etc. The results of our own ReMouse dataset analysis
using manually selected features are presented in Section 4. However, some known
challenges of manual features selection are: (1) manual feature selection requires in-depth
expert knowledge of the specific dataset at hand and the ultimate application environment;
(2) there is often a need to fine-tune the number and type of manually selected features
for each dataset, which tends to be a time-consuming process; (3) the generalization value
of the results obtained using manual feature selection is often questionable. One of the
objectives of our work was to analyze the ReMouse dataset by means of advanced machine
learning (ML) techniques. However, for the reasons outlined above, we were determined
to avoid basing our ML analysis on manually selected features. Additionally, due to the
different durations of individual user sessions in the ReMouse dataset, we were facing
very heterogeneous ‘mouse location’ and ‘mouse speed’ feature vector representations
(i.e., the feature vectors representing different sessions were of variable/non-fixed length).
Training an ML algorithm using such non-uniform set of feature vectors would have
required additional expert-knowledge decision making and the manual re-engineering of
input data.

As an alternative to manual feature selection and feature vector re-engineering, and
inspired by works [2,22], we pursued a novel approach to representing individual user
sessions in the ReMouse dataset. Namely, in this part of our analysis, rather than manually
extracting features to describe a user’s unique mouse behavior characteristics, we mapped
the mouse trajectories into pictures. In order to conduct automated feature extraction
on image representations of user sessions from the ReMouse dataset, we deployed a pre-
trained deep learning model—VGG16 [37]. In particular, we used the VGG16 library
implemented in Keras [38]. VGG16 is a convolutional neural network model well known
for its ability to perform very-high-accuracy feature extraction on image datasets [39].
The reason why we resorted to deploying a pre-trained VGG16 model is the fact that
working with a ‘from-scratch’ convolutional neural network may require days of training
and millions of images to achieve a high accuracy in real-world applications [40] (from the
perspective of image processing, our ReMouse dataset is of relatively small size, containing
the sessions of ‘only’ 100 users). For the purposes of our research, we acquired the generic
pre-trained VGG16 model from [38] and retrained it on our own image representations
of web sessions from the ReMouse dataset (the process of re-using the weights from a
pre-trained model is called ‘Transfer Learning’ [41]). The original VGG16 model used
in our work was trained on standard computer vision benchmark datasets, including
ImageNet [42].

124

J. Cybersecur. Priv. 2023, 3

Using VGG16, we ended up with each image (i.e., user session) being represented
as a vector with 1000 features [43]. To further reduce the number of features identified
with VGG16, next, we used principal component analysis (PCA) [44]. PCA produced 100
eigenvectors over the VGG16 feature space. Nevertheless, as shown in Figure 10, not all of
the 100 identified PCA eigenvectors are of the same significance, as 95% of data variance
occurs over the first 57 eigenvectors. Thus, for the purpose of our ML-based analysis (as
discussed in the next section) we opted to map our original ReMouse dataset into a set of
feature vectors over the first 57 most significant PCA eigenvectors.

Figure 10. The number of components needed to explain the variance.

6. ML-Based Analysis of ReMouse Dataset: Focusing on Sessions Generated by
Different Users

The objective of our ML-based analysis of the curated image-based ReMouse dataset
(as explained in Section 5) was to investigate the (dis)similarities between comparable (same-
order number) web sessions generated by different users. We specifically decided to look
at the third session generated by each of the 100 participating ReMouse users (forming one
data subset, which we will refer to as ‘ReMouse Subset-3′ in the reminder of this article), as
well as the fifth session generated by each of the 100 participating ReMouse users (forming
the second data subset, which we will refer to as ‘ReMouse Subset-5’). We opted to look
at the third and fifth sessions due to our observation that for most ReMouse users some
of the originally exhibited ‘erratic’ mouse behavior largely disappears after the first two
rounds/repetitions of the ‘Catch Me If You Can!’ game (see Section 3). In other words, the
user behavior and mouse trajectory in these sessions are generally ‘stable’ and thus likely
to produce more accurate results. To conduct the cross-user session (dis)similarity analysis,
we specifically decided to deploy unsupervised ML learning, including the Self-Organizing
Map (SOM) and several unsupervised clustering ML algorithms.

The SOM algorithm is typically used to build a topology-preserving mapping of high-
dimensional input data to 2D or 3D space, where the similarity of individual input points
can be assessed in more intuitive (visual and non-visual) ways. Unsupervised clustering is
known for its ability to decompose a dataset into subgroups based on their similarity so
that data points in the same cluster are more closely related to each other than data points
in different clusters [45].

According to our knowledge, this is the first research study that has looked into
the use of unsupervised clustering on the image representation of user sessions for the
purpose of cross-user session (dis)similarity analysis. Additionally, the only other work
that has pursued image-based web-session representation and analysis [22] was specifically
concerned with the problem of malicious web-bot detection through session classification,

125

J. Cybersecur. Priv. 2023, 3

and thus ultimately opted for the use of supervised deep learning—as opposed to the
question of session similarity, which is the focus of our work and requires the use of
unsupervised techniques.

6.1. Data Analysis Using SOM Map

The Self-Organizing Map (SOM) algorithm [46] is generally used to create a 2D
topology-preserving and density-mapping representation of a multi-dimensional input
(i.e., training) dataset. The topology preservation property implies that if two input points
end up firing nearby nodes in the trained SOM map during the deployment phase then the
two points are relatively close to each other (i.e., are similar) in the original input space. On
the other hand, the density-mapping property means that the regions of high-input-dataset
density are mapped to SOM regions with more neurons.

For the purposes of our research, we trained two 15-by-15-sized SOM maps (exper-
imentally), one using the ReMouse Subset-3 and the other using ReMouse Subset-5. We
used the SOM implementation from the Python SOMPY package [47], which has a structure
similar to somtoolbox in MATLAB. In terms of functionalities, the package uses only batch
training (which is faster than online training) and sklearn or random initialization.

The heatmaps generated on each of the two trained SOM maps are shown in
Figures 11a and 11b, respectively. An SOM heatmap is produced by displaying how many
of the training inputs are associated with each node in the trained SOM map [48]. It is very
evident from the two heatmaps that there are no actual (i.e., distinguishable) clusters in
either ReMouse Subset-3 or ReMouse Subset-5—as most neurons are ‘fired’ by no/one
single-input point, and only a handful of neurons are fired by two or more (distinct) input
points. It should also be noted that the neurons with an input-data membership of two
or more are largely distributed at the edges of the respective SOM maps, which suggests
that the actual ‘closeness’ of the input points that fire these neurons may not be significant.
Border neurons in an SOM map do not ‘stretch out’ during the training process as much as
they should, and as a result they tend to ‘attract’ many potentially very different/distant
points located on the ‘outside’ of the SOM border. This phenomenon in known in the
literature as the ‘SOM border effect’ [49].

(a) (b)

Figure 11. Users’ data points map: (a) session number 3; (b) session number 5.

From a practical point of view, that such a disperse distribution of data points form
ReMouse Subset-3 and ReMouse Subset-5 (as shown in Figure 11a,b) is a clear indication
that individual users—when performing the same general online task—are likely to end up
producing very different/distinct mouse trajectories. When put in the context of session-
replay bots, this further suggests that any session/trajectory that shows a significant

126

J. Cybersecur. Priv. 2023, 3

similarity with an already-observed session/trajectory should be flagged as potentially
‘malicious’, since (according to our results) the likelihood that both of such sessions are
genuinely human is rather small.

As part of our future work, we plan to deploy different variants of the SOM algorithm
(e.g., growing SOM map [50] and evolving SOM algorithm [51]) in order to further address
the issue of the ‘border effect’ observed in our dataset.

6.2. Data Analysis Using Unsupervised Clustering Techniques

In order to validate our initial findings obtained by means of SOM heatmaps, we further
performed an unsupervised clustering of ReMouse Subset-3 and ReMouse Subset-5 using
the SOM clustering [47] (the python package provides an additional feature which enables
automated identification of the main clusters within the formed map using K-means cluster-
ing algorithm), K-means clustering [52], and agglomerative clustering [53] algorithms.

An important result coming out of this stage of our research is obtaining the Silhouette
and Davies–Bouldin scores, which were obtained by performing clustering on the two data
subsets with a gradually increasing number of assumed clusters [54,55]. The Silhouette
score measures how similar an object is to its own cluster (cohesion) compared with other
clusters (separation). A higher Silhouette value implies that points are well matched to
their own cluster and poorly matched to neighboring clusters. The Davies–Bouldin score is
the average similarity measure of each cluster with its most similar cluster. Clusters that
are farther apart and less dispersed will result in a higher Davies–Bouldin score.

Figures 12 and 13 depict the Silhouette and Davies–Bouldin score obtained using
K-means clustering algorithms. Similar results have been obtained with the other two clus-
tering algorithms. In the cases of all three algorithms, the highest values of the two scores
are recorded for k = 2, suggesting that the optimal number of clusters is two. Figures 14–16
provide 2D and 3D visualizations of the actual clustering results obtained on ReMouse
Subset-3 and ReMouse Subset-5 using the three selected clustering algorithms and assum-
ing k = 2. All three figures provide clear evidence that, even under the optimal number of
clusters (k = 2), the input data is pretty spread out throughout the input space, and many
points that formally belonging to the same cluster are at a significant distance from each
other. This further supports our earlier hypothesis that session trajectories generated by
different users while completing the same online task are sufficiently distinguishable from
each other.

Figure 12. Silhouette average score.

127

J. Cybersecur. Priv. 2023, 3

Figure 13. Davies–Bouldin index.

Figure 14. Unsupervised clustering visualization using SOM: (a) session number 3 and (b) session
number 5 of all users.

128

J. Cybersecur. Priv. 2023, 3

Figure 15. Unsupervised clustering visualization using K-means clustering algorithm, (a) session
number 3 and (b) session number 5 of all users.

Figure 16. Unsupervised clustering visualization using agglomerative clustering algorithm, (a) session
number 3 and (b) session number 5 of all users.

129

J. Cybersecur. Priv. 2023, 3

7. Conclusions and Future Work

In this work, we presented an in-depth analysis of our novel real-world mouse dynam-
ics dataset, the ReMouse dataset. We began by reviewing the literature that investigated
mouse dynamics in the context of user authentication and bot detection. We also provided
a summary of several publicly available mouse dynamics datasets. We then analyzed the
ReMouse dataset using statistical and advanced ML-based methods, including deep and
unsupervised neural learning.

In the first stage of the preliminary analysis using statistical methods, we focused
on analyzing the sessions generated by each individual user in isolation from other users.
Second, the focus was on the pairwise analysis of sessions generated by different users.
Based on the preliminary analysis of our novel ReMouse dataset, we concluded that
although sessions generated by genuine human users are relatively similar to each other,
there always exist some minimum distinguishable differences between them. We showed
that sessions whose ‘difference’ from each other is below the determined threshold should
potentially be flagged as ‘replay’ sessions generated by session-replay bots.

Considering the fact that the generalization value of the results obtained using manual
feature selection is often questionable, we then investigated the (dis)similarities between
comparable (same-order number) web sessions generated by different users by means of
advanced machine learning techniques. The results further supported our earlier hypothe-
sis that session trajectories generated by different users while completing the same online
task are sufficiently distinguishable from each other.

According to our knowledge, the ReMouse dataset is the first publicly available mouse
dynamics dataset containing repeat sessions generated by the same human user(s). As
such, this dataset can be a very valuable resource for research studies that aim to improve
our understanding of (human) user behavior during repetitive interactions with the same
web-site, with the ultimate goal of developing effective techniques for the detection of, and
defense against, sessions-replay bots.

We believe that the ReMouse dataset contains enough statistical data to facilitate
unbiased and high-quality research in the above-mentioned research areas. However, we
also would like to point out a few possible, though minor, limitations of our dataset and
work. One potential limitation of our dataset/work can be related to the platform we used
to collect the data, MTurk. Although MTurk workers are generally pretty diverse when
it comes to their place of residence or profession, they tend to be less diverse in terms of
their age, education, computer-use proficiency, etc. [56]. This can complicate how data
can be interpreted, affecting the reliable and validity of our conclusions, as well as the
generalizability of such results.

Nevertheless, more importantly, this study is the first of its kind, so it effectively
demonstrates the importance of filling the literature gaps, highlighting the need for further
development in the area of our study. This work aims to bring more attention to the
problems/threats posed by session-replay web bots, which carry out the most advanced
types of malicious web bot attacks. Therefore, we invite other researchers to work alongside
us. We made some progress in providing the data and tools and hope to facilitate further
studies by other researchers.

For future work, we plan to extend our image-based ML analysis of the ReMouse
dataset by considering other aspects of mouse dynamics rather than just trajectory (e.g., by
additionally embedding the information on time, mouse velocity and click events into the
image representation of a user session). We are also currently working on incorporating
the malicious sessions generated by actual session-replay bots into the ReMouse dataset.
Finally, we plan to experiment with different variants of the SOM algorithm (e.g., growing
an SOM map and evolving the SOM algorithm) in order to further address the issue of the
‘border effect’, which has been observed in our preliminary analysis.

130

J. Cybersecur. Priv. 2023, 3

Author Contributions: Conceptualization, S.S. and N.V.; methodology, S.S.; validation, S.S. and N.V.;
writing—original draft preparation, S.S.; writing—review and editing, S.S. and N.V.; supervision,
N.V.; project administration, N.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (OFFICE OF RESEARCH ETHICS (ORE))
of York University (certificate #: e2022-374 issued on 4 August 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Our novel ReMouse dataset presented in this study is openly available
in the IEEE Dataport at https://dx.doi.org/10.21227/jkmt-za31, accessed on 25 February 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Maureen. What Is Behavioral Biometric Authentication? 1Kosmos. 2022. Available online: https://www.1kosmos.com/
biometric-authentication/what-is-behavioral-biometrics-authentication/ (accessed on 25 February 2023).

2. Thomas, P.A.; Mathew, K.P. A Broad Review on Non-Intrusive Active User Authentication in Biometrics. J. Ambient. Intell. Human
Comput. 2023, 14, 339–360. [CrossRef] [PubMed]

3. Leiva, L.A.; Arapakis, I.; Iordanou, C. My Mouse, My Rules: Privacy Issues of Behavioral User Profiling via Mouse Tracking. In
Proceedings of the 2021 Conference on Human Information Interaction and Retrieval, 51–61. CHIIR ‘21, Canberra, ACT, Australia,
14–19 March 2021; Association for Computing Machiner: New York, NY, USA, 2021. [CrossRef]

4. Kaklauskas, A. Web-based Biometric Computer Mouse Advisory System to Analyze a User’s Emotions and Work Productivity. In
Biometric and Intelligent Decision Making Support; Kaklauskas, A., Ed.; Intelligent Systems Reference Library; Springer International
Publishing: Cham, Switzerland, 2014; Volume 81, pp. 137–173. [CrossRef]

5. Katerina, T.; Nicolaos, P. Mouse behavioral patterns and keystroke dynamics in End-User Development: What can they tell us
about users’ behavioral attributes? Comput. Hum. Behav. 2018, 83, 288–305. [CrossRef]

6. Rahman, R.U.; Tomar, D.S. Threats of price scraping on e-commerce websites: Attack model and its detection using neural
network. J. Comput. Virol. Hacking Tech. 2020, 17, 75–89. [CrossRef]

7. Nick, R. How Attackers Use Request Bots to Bypass Your Bot Mitigation Solution. Security Boulevard (Blog). 2021. Available online:
https://securityboulevard.com/2021/07/how-attackers-use-request-bots-to-bypass-your-bot-mitigation-solution/ (accessed on
14 June 2022).

8. Chu, Z.; Gianvecchio, S.; Wang, H. Bot or Human? A Behavior-Based Online Bot Detection System. In From Database to Cyber
Security: Essays Dedicated to Sushil Jajodia on the Occasion of His 70th Birthday; Pierangela, S., Indrajit, R., Indrakshi, R., Eds.; Lecture
Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 432–449. [CrossRef]

9. Sadeghpour, S.; Vlajic, N. ReMouse-Mouse Dynamic Dataset; IEEE: New York, NY, USA, 2022; Available online: https://ieee-
dataport.org/documents/remouse-mouse-dynamic-dataset (accessed on 24 August 2022).

10. Jaiswal, A.K.; Tiwari, P.; Hossain, M.S. Predicting users’ behavior using mouse movement information: An information foraging
theory perspective. Neural Comput. Appl. 2020, 1–14. [CrossRef]

11. Kirsh, I.; Joy, M. Exploring Pointer Assisted Reading (PAR): Using Mouse Movements to Analyze Web Users’ Reading Behaviors
and Patterns. In HCI International 2020-Late Breaking Papers: Multimodality and Intelligence; Constantine, S., Masaaki, K., Helmut, D.,
Lauren, R.-J., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 156–173.
[CrossRef]

12. Chong, P.; Elovici, Y.; Binder, A. User Authentication Based on Mouse Dynamics Using Deep Neural Networks: A Comprehensive
Study. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1086–1101. [CrossRef]

13. Hu, T.; Niu, W.; Zhang, X.; Liu, X.; Lu, J.; Liu, Y. An Insider Threat Detection Approach Based on Mouse Dynamics and Deep
Learning. Secur. Commun. Netw. 2019, 2019, 1–12. [CrossRef]

14. Kaixin, W.; Liu, H.; Wang, B.; Hu, S.; Song, J. A User Authentication and Identification Model Based on Mouse Dynamics. In
Proceedings of the 6th International Conference on Information Engineering, online, 19–20 November 2022; 2017; pp. 1–6.

15. Yildirim, M.; Anarim, E. Novel Feature Extraction Methods for Authentication via Mouse Dynamics with Semi-Supervised
Learning. In Proceedings of the 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), Izmir, Turkey,
31 October–2 November 2019; 2020; pp. 1–6. [CrossRef]

16. Antal, M.; Fejer, N.; Buza, K. SapiMouse: Mouse Dynamics-based User Authentication Using Deep Feature Learning. In
Proceedings of the 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI),
Timisoara, Romania, 19–21 May 2021; pp. 61–66. [CrossRef]

131

J. Cybersecur. Priv. 2023, 3

17. Antal, M.; Denes-Fazakas, L. User Verification Based on Mouse Dynamics: A Comparison of Public Data Sets. In Proceedings of
the 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania,
23–31 May 2019; pp. 143–148. [CrossRef]

18. Antal, M.; Fejér, N. Mouse dynamics based user recognition using deep learning. Acta Univ. Sapientiae Inform. 2020, 12, 39–50.
[CrossRef]

19. Yildirim, M.; Anarim, E. Mitigating insider threat by profiling users based on mouse usage pattern: Ensemble learning and
frequency domain analysis. Int. J. Inf. Secur. 2021, 21, 239–251. [CrossRef]

20. Acien, A.; Morales, A.; Fierrez, J.; Vera-Rodriguez, R. BeCAPTCHA-Mouse: Synthetic mouse trajectories and improved bot
detection. Pattern Recognit. 2022, 127, 108643. [CrossRef]

21. Iliou, C.; Kostoulas, T.; Tsikrika, T.; Katos, V.; Vrochidis, S.; Kompatsiaris, I. Detection of Advanced Web Bots by Combining Web
Logs with Mouse Behavioural Biometrics. Digit. Threat. Res. Pract. 2021, 2, 1–26. [CrossRef]

22. Wei, A.; Zhao, Y.; Cai, Z. A Deep Learning Approach to Web Bot Detection Using Mouse Behavioral Biometrics. In Biometric
Recognition; Zhenan, S., Ran, H., Jianjiang, F., Shiguang, S., Zhenhua, G., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2019; pp. 388–395. [CrossRef]

23. Rahman, R.U.; Tomar, D.S. New biostatistics features for detecting web bot activity on web applications. Comput. Secur. 2020,
97, 102001. [CrossRef]

24. Chuda, D.; Peter, K.; Jozef, T. Mouse Clicks Can Recognize Web Page Visitors! In Proceedings of the 24th International Conference
on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 21–22.

25. Niu, H.; Chen, J.; Zhang, Z.; Cai, Z. Mouse Dynamics Based Bot Detection Using Sequence Learning. In Biometric Recognition;
Jianjiang, F., Junping, Z., Manhua, L., Yuchun, F., Eds.; Lecture Notes in Computer Science; Springer International Publishing:
Cham, Switzerland, 2021; pp. 49–56. [CrossRef]

26. Rahman, R.U.; Tomar, D.S. A new web forensic framework for bot crime investigation. Forensic Sci. Int. Digit. Investig. 2020,
33, 300943. [CrossRef]

27. Solano, J.; Lopez, C.; Esteban, R.; Alejandra, C.; Lizzy, T.; Martin, O. SCRAP: Synthetically Composed Replay Attacks vs.
Adversarial Machine Learning Attacks against Mouse-Based Biometric Authentication. In Proceedings of the 13th ACM
Workshop on Artificial Intelligence and Security, Virtual Event, USA, 13 November 2020; pp. 37–47.

28. Fülöp, Á.; Kovács, L.; Kurics, T.; Windhager-Pokol, E. Balabit Mouse Dynamics Challenge Data Set. 2016. Available online:
https://github.com/balabit/Mouse-Dynamics-Challenge (accessed on 14 June 2022).

29. Kılıç, A.A.; Yıldırım, M.; Anarım, E. Bogazici mouse dynamics dataset. Data Brief 2021, 36, 107094. [CrossRef] [PubMed]
30. Leiva, L.A.; Arapakis, I. The Attentive Cursor Dataset. Front. Hum. Neurosci. 2020, 14, 565664. [CrossRef]
31. Antal, M. Sapimouse. Python. 2021. Available online: https://github.com/margitantal68/sapimouse (accessed on 14 June 2022).
32. Shen, C.; Cai, Z.; Guan, X. Continuous authentication for mouse dynamics: A pattern-growth approach. In Proceedings of the

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012), Boston, MA, USA, 25–28 June 2012;
pp. 1–12. [CrossRef]

33. Karim, M. Hasanuzzaman A Study on Mouse Movement Features to Identify User. Sci. Res. J. 2020, 8, 77–82. [CrossRef]
34. Django REST Framework. 2011. Available online: https://www.django-rest-framework.org/ (accessed on 14 June 2022).
35. INFORMS. A Measure of Distance between Time Series: Dynamic Time Warping. INFORMS. 2022. Available online: https://www.

informs.org/Publications/OR-MS-Tomorrow/A-measure-of-distance-between-time-series-Dynamic-Time-Warping (accessed
on 21 June 2022).

36. Morse, G. Programmatic Identification of Support/Resistance Trend Lines with Python. Medium. 2019. Available online: https:
//towardsdatascience.com/programmatic-identification-of-support-resistance-trend-lines-with-python-d797a4a90530 (accessed
on 21 June 2022).

37. Simonyan, K.; Andrew, Z. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

38. Keras-Applications/Vgg16.Py at Master Keras-Team/Keras-Applications. 2020. GitHub. Available online: https://github.com/
keras-team/keras-applications (accessed on 21 June 2022).

39. Liu, F.; Wang, Y.; Wang, F.-C.; Zhang, Y.-Z.; Lin, J. Intelligent and Secure Content-Based Image Retrieval for Mobile Users. IEEE
Access 2019, 7, 119209–119222. [CrossRef]

40. Hands-on Transfer Learning with Keras and the VGG16 Model. Available online: https://www.learndatasci.com/tutorials/
hands-on-transfer-learning-keras/ (accessed on 21 June 2022).

41. Brownlee, J. Transfer Learning in Keras with Computer Vision Models. Machine Learning Mastery (Blog). 2019. Available
online: https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-
models/ (accessed on 21 June 2022).

42. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings
of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

43. Keras, T. Keras Documentation: Keras Applications. 21 June 2022. Available online: https://keras.io/api/applications/#vgg16
(accessed on 25 February 2023).

132

J. Cybersecur. Priv. 2023, 3

44. Cunningham, P. Dimension Reduction. In Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval,
Matthieu Cord and Pádraig Cunningham; Cognitive Technologies; Springer: Berlin/Heidelberg, Germany, 2008; pp. 91–112.
[CrossRef]

45. Salgado, C.M.; Vieira, S.M. Machine Learning for Patient Stratification and Classification Part 2: Unsupervised Learning with
Clustering. In Leveraging Data Science for Global Health; Leo Anthony, C., Maimuna, S.M., Patricia, O., Juan Sebastian, O.,
Kenneth, E.P., Melek., S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 151–168. [CrossRef]

46. Penn, B.S. Using self-organizing maps to visualize high-dimensional data. Comput. Geosci. 2005, 31, 531–544. [CrossRef]
47. Moosavi, V. Sevamoo/SOMPY. Jupyter Notebook. 2014. Available online: https://github.com/sevamoo/SOMPY (accessed on

21 June 2022).
48. Gupta, R. Deeper Dive into Self-Organizing Maps (SOMs). Water Programming: A Collaborative Research Blog (Blog). 2020. Avail-

able online: https://waterprogramming.wordpress.com/2020/07/20/deeper-dive-into-self-organizing-maps-soms/ (accessed
on 21 June 2022).

49. Marzouki, K.; Takeshi, Y. Novel Algorithm for Eliminating Folding Effect in Standard SOM. In ESANN; Citeseer: Princeton, NJ,
USA, 2005; pp. 563–570.

50. Dittenbach, M.; Dieter, M.; Andreas, R. The Growing Hierarchical Self-Organizing Map. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the
New Millennium, Como, Italy, 27 July 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 15–19.

51. Deng, D.; Kasabov, N. On-line pattern analysis by evolving self-organizing maps. Neurocomputing 2003, 51, 87–103. [CrossRef]
52. Sklearn.Cluster.KMeans. Scikit-Learn. Available online: https://scikit-learn/stable/modules/generated/sklearn.cluster.KMeans.

html (accessed on 22 June 2022).
53. Sklearn.Cluster.AgglomerativeClustering. Scikit-Learn. Available online: https://scikit-learn/stable/modules/generated/

sklearn.cluster.AgglomerativeClustering.html (accessed on 21 June 2022).
54. Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2, 224–227. [CrossRef]
55. Georgios, D. Geodra/Articles. Jupyter Notebook. 2019. Available online: https://github.com/geodra/Articles/blob/85a4d13e0

60d45129af7b62174ea28619f4d9cf8/Davies-Bouldin%20Index%20vs%20Silhouette%20Analysis%20vs%20Elbow%20Method%
20Selecting%20the%20optimal%20number%20of%20clusters%20for%20KMeans%20clustering.ipynb (accessed on 22 June 2022).

56. Aguinis, H.; Villamor, I.; Ramani, R.S. MTurk Research: Review and Recommendations. J. Manag. 2020, 47, 823–837. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

133

Citation: Alghawazi, M.;

Alghazzawi, D.; Alarifi, S. Detection

of SQL Injection Attack Using

Machine Learning Techniques: A

Systematic Literature Review. J.

Cybersecur. Priv. 2022, 2, 764–777.

https://doi.org/10.3390/jcp2040039

Academic Editor: Marina

L. Gavrilova

Received: 31 July 2022

Accepted: 14 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Detection of SQL Injection Attack Using Machine Learning
Techniques: A Systematic Literature Review

Maha Alghawazi, Daniyal Alghazzawi and Suaad Alarifi *

Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah 80200, Saudi Arabia
* Correspondence: salarifi@kau.edu.sa

Abstract: An SQL injection attack, usually occur when the attacker(s) modify, delete, read, and
copy data from database servers and are among the most damaging of web application attacks.
A successful SQL injection attack can affect all aspects of security, including confidentiality, integrity,
and data availability. SQL (structured query language) is used to represent queries to database
management systems. Detection and deterrence of SQL injection attacks, for which techniques from
different areas can be applied to improve the detect ability of the attack, is not a new area of research
but it is still relevant. Artificial intelligence and machine learning techniques have been tested and
used to control SQL injection attacks, showing promising results. The main contribution of this paper
is to cover relevant work related to different machine learning and deep learning models used to
detect SQL injection attacks. With this systematic review, we aims to keep researchers up-to-date and
contribute to the understanding of the intersection between SQL injection attacks and the artificial
intelligence field.

Keywords: SQL injection; machine learning; deep learning; adversarial attacks

1. Introduction

Most cyber-physical system (CPS) applications are safety-critical; misbehavior caused
by random failures or cyber-attacks can considerably restrict their growth. Thus, it is
important to protect CPS from being damaged in this way [1]. Current security solutions
have been well-integrated into many networked systems including the use of middle boxes,
such as antivirus protection, firewall, and intrusion detection systems (IDS). A firewall
controls network traffic based on the source or destination address. It alters network traffic
according to the firewall rules. Firewalls are also limited to their knowledge of the hosts
receiving the content and the amount of state available. An IDS is a type of security tool that
scans the system for suspicious activity, monitors the network traffic, and alerts the system
or network administrator [2]. In this context, a number of frameworks and mechanisms
have been suggested in recent papers.

In this paper, we have considered SQL injection attacks that target the HTTP/HTTPS
protocol, which aim to pass through the web application firewall (WAF) and obtain an
unauthorized access to proprietary data. SQL injection belongs to the injection family
of web attacks, wherein an attacker inserts inputs into a system to execute malicious
statements. The victim system is usually not ready to process this input, typically resulting
in data leakage and/or granting of unauthorized access to the attacker; in this case, the
attacker can access and/or modify the data, affecting all aspects of security, including
confidentiality, integrity, and data availability [3].

In an SQL injection, the attacker inserts an SQL statement into an exchange between a
client and database server [3]. SQL (structured query language) is used to represent queries
to database management systems (DBMSs). The maliciously injected SQL statement is
designed to extract or modify data from the database server. A successful injection can result

J. Cybersecur. Priv. 2022, 2, 764–777. https://doi.org/10.3390/jcp2040039 https://www.mdpi.com/journal/jcp134

J. Cybersecur. Priv. 2022, 2

in authentication and bypass and changes to the database by inserting, modifying, and/or
deleting data, causing data loss and/or destruction of the entire database. Furthermore,
such an attack could overrun and execute commands on the hosted operating system,
typically leading to more serious consequences [4].

Thus, SQL injection attacks present aserious threats to organizations. A variety of
research has been undertaken to address this threat, presenting various artificial intelligence
(AI)techniques for detection of SQL injection attacks using machine learning and deep learn-
ing models [5]. AI techniques to facilitate the detection of threats are usually implemented
via learning from historical data representing an attack and/or normal data. Historical data
are useful for learning, in order to recognize patterns of attacks, understanding detected
traffic, and even predicting future attacks before they occur [6].

SQL injection attackers and defenders must understand how SQL language works to
know how it can be misused [3]. To extract data from a database or modify the data, queries
must be written using SQL language and they must follow a standard syntax, such as:

“SELECT * FROM books WHERE author = ‘MAHA’”

The above query will return all books authored by MAHA. Queries are submitted to
the DBMS and are usually written through a web browser. For the query to be transmitted
to the database server through the web browser, it has to be encoded through a long
URL string, such as: http://www.xyz_website.com?QUERY=SELECT%20*%20FROM%20
books%20WHERE%20author=7453.

What if the attacker adds to the previous SQL query? For example:

“SELECT * FROM books WHERE author = ′MAHA′ OR ′1′ = ′1′”

As the statement 1 = 1 is always true, the query will return all books in the database,
not just the books authored by MAHA.

The previous example might not represent a threat, especially if the stored list of books
is not confidential. However, it could be applied to valuable using different syntax, and if
successful, it might return sensitive data, such as passwords, bank accounts, trade secrets,
and personal data, which might be considered a privacy breach, among other consequences.

In some research, injecting a code using ‘OR’ followed by a TRUE statement, such as
1 = 1 is called “tautology” [7]. Methods other than tautology can be used, such as when
an attacker intentionally injects an incorrect query to force the database server to return a
default error page, which might contain valuable information that could help an attacker to
understand the database to form a more advance attack [7]. The SQL syntax “UNION” can
also be used to extract information, in addition to many other methods based on the same
idea, of misusing SQL syntax to extract or even update the data in the targeted database.

This is how SQL injection works; the question then becomes: how does one detect this
type of attack using deep learning methods?

Deep learning is a machine learning and artificial intelligence method. It can be used
to support the detection of SQL injection attacks by training a classifier to achieve the ability
to recognize and therefore detect an attack. The classifier is trained using deep learning
models and can be used to classify new data, such as traffic or data in log files. If the
classifier is passive, it will alert the administrator; if it is active, it will prevent data from
passing to the database server. The classifier can be trained to recognize and detect SQL
injection attacks using three different learning methods [8].

First is, unsupervised learning, where features are extracted from unclassified data, i.e.,
data that are labelled as neither normal nor abnormal. Using information and the Bayesian
probability theory, the classifier detects hidden structures in the unclassified dataset. An
unclassified dataset means that it is not known whether these data are normal or abnormal
(malicious). Different techniques can be used in unsupervised learning, such as clustering
and density estimation [8].

135

J. Cybersecur. Priv. 2022, 2

The second is, supervised learning, whereby a labelled training dataset is used to train
the classifier. As the input data are labelled, i.e., normal or abnormal, the output is known
beforehand. Therefore, the process involves simple mapping between the input training data
and the known output, followed by continuous modification of the algorithm and changing
of the weights until an acceptable classification accuracy is achieved. Then, a test dataset
is used to test the classifier; if the result is with an acceptable accuracy range, the classifier
is ready to detect novel data, i.e., data not previously used in training or testing. The main
drawback of supervised learning is generating and labelling the training and testing data,
which might consume processing time, especially for complex attacks. Supervised learning
is categorized into classification and regression algorithms. The most common supervised
learning algorithms include Bayesian networks, decision trees, support vector machines
(SVMs), K-nearest neighbors, and neural networks. Third is, semi-supervised learning, which
use combination of supervised and unsupervised learning methods [8].

The main contribution of this paper is to provide a systematic review of the machine
learning and deep learning solutions that, are used to improve the detectability of SQL
injection attacks. With this systematic review, we aim to keep researchers up-to-date and
contribute to the understanding of the intersection between an SQL injection attack and
artificial intelligence.

The paper is organized as follows. Section 1 is an introduction to SQL injection
attacks and deep learning algorithms. In Section 2, we discuss related studies and consider
previous systematic reviews. In Section 3, we present the research method and planning of
the systematic review. In Section 4, highlights the results and review all related studies. In
Section 5, presents the discussion and answers to research questions. Finally, in Section 6,
we present our conclusions.

2. Related Studies

In this section, four published systematic reviews were considered. Newer systematic
reviews typically include both recent and older studies in the area under investigation. There-
fore, all of the papers we considered were relatively recent. The first was published in 2017 [9]
and it covered previous primary studies on SQL injection attacks, techniques, and tools. In [9],
forty-six primary studies were analyzed related to SQL injection attacks, tools, and techniques,
in addition to the impact of the attack. We adapted the same methodology as that used
in [9] due to its comprehensiveness and because it achieves satisfying results, in addition, this
research was similar to that in [9] in terms of objectives, ideas, and the area of research.

Qiu et al. [10] provided a comprehensive review of using artificial intelligence in
attacking and defending against security attacks, concentrating on the training and testing
stages. In their study, they sorted technologies and applications of adversarial attacks
in terms of natural language processing, cyberspace security, computer vision, and the
physical world. Furthermore, the authors considered defense strategies in their research
and proposed methods to deal with specific types of adversarial attack. Martins et al. [11]
explored more than 15 papers that applied adversarial machine learning techniques used in
intrusion and malware detection models. In their study, the authors summarized the most
common adversarial attacks and defense mechanisms for intrusion and malware detection.

Muslihi et al. [12] conducted a review of more than 14 studies published using deep
learning methods to detect SQL injection attacks, including CNN, LSTM, DBN, MLP, and
Bi-LSTM. They also provided a comparison of methods in terms of objectives, techniques,
features, and datasets. Muhammad et al. [13] reviewed and analytically evaluated the
methods and tools that are commonly used to detect and prevent SQL injection attacks,
considering a total of 82 studies. Their review results showed that most researchers focused
on proposing approaches to detect and mitigate SQL injection attacks (SQLIAs) rather than
evaluating the effectiveness of existing SQLIA detection methods.

136

J. Cybersecur. Priv. 2022, 2

3. Research Method

This systematic literature review was conducted in four main phases: (A) planning the
systematic review; (B) conducting the review; (C) reporting the results; and (D) discussing
the results. In the planning phase, research questions and the research strategy were set.
Section 4 outlines the systematic review. We discuss our results in Section 5. Figure 1 is a
representation of the phases of this research.

Figure 1. Research phases.

3.1. Planning the Systematic Review
Research Questions

Q1: What are the machine learning and deep learning methods used to detect SQL
injection attacks?

Q2: How are SQL injection attack datasets generated using machine learning techniques?
Q3: How can machine learning be used to generate adversarial SQL injection attacks?
The first question was the main question decided upon before starting the review,

whereas the second and third questions were added later after reviewing other systematic
reviews covered in Section 4.

3.2. Research Strategy

The libraries used to retrieve the research papers were ACM, IEEE, Springer and
Science Direct. The main search topics were SQL injection attacks and machine learning
models. The search was configured to retrieve papers published between 2012 and 2021,
and we retrieved conference papers, journal articles, and review articles. Some inclusion
criteria were defined to select relevant papers among the publications retrieved at the time
of the search. These criteria were used to decide which papers to review and which to
discard and not include for further study.

3.2.1. Inclusion Criteria

• Papers related to SQL injection attacks;
• Papers that included our search keywords;
• Papers from the scientific databases ACM, IEEE, SpringerLink, and ScienceDirect.
• Papers on the topic of machine learning and the security domain.

3.2.2. Exclusion Criteria

• Papers not covering machine learning techniques and SQL injection attacks;
• Papers published before 2012; and
• Papers that are not available in full-text format.

137

J. Cybersecur. Priv. 2022, 2

4. Results

Conducting the Review

After filtering retrieved studies according to the inclusion criteria, 36 studied were
retained. Selected studies were reviewed, as they could possibly provided answers to the
research questions.

Q1: What are the machine learning and deep learning methods used to detect SQL
injection attacks?

Many researchers have demonstrated the use of machine learning and deep learning
algorithms to detect SQL injection attacks [14]. Hasan and Tarique [14] tested and compared
23 machine learning classifiers using MATLAB. They generated their own datasets, into
which they injected abnormal SQL syntax. They checked and manually verified the SQL
statements. A total of 616 SQL statements were used to train the test classifiers. The used
the following machine learning algorithms: “coarse k-NN, bagged trees, linear SVM, fine
k-NN, medium k-NN, RUS boosted trees, subspace discriminant, boosted trees, weighted k-
NN, cubic k-NN, linear discriminant, medium tree, subspace k-NN, simple tree, quadratic
discriminant, cubic SVM, fine Gaussian SVM, cosine k-NN, complex tree, logistic regression,
coarse Gaussian SVM, medium Gaussian, and SVM”. The five best models in terms of
accuracy were determined to be ensemble boosted, bagged trees, linear discriminant, cubic
SVM, and fine Gaussian SVM.

Gao et al. [15] proposed a model called ATTAR to detect SQL injection attacks by
analyzing web access logs to extract SQL injection attack features. The features were chosen
based on access behavior mining and a grammar pattern recognizer. The main target of this
model was detection of unknown SQL injection statements that had not been previously
used in the training data. Five machine learning algorithms were used for training: naive
Bayesian, random forest, SVM, ID3, and k-means. The experimental results showed that
the accuracy of the models based on random forest and ID3 achieved the best results in
detecting SQL injection attacks. We could not find what ATTAR stands for in [15].

Gandhi et al. [16] proposed a hybrid CNN-BiLSTM-based model for SQL injection
attack detection. The authors presented a detailed comparative analysis of different types
of machine learning algorithms used for detection of SQL injection attacks. The CNN-
BiLSTM approach provided accuracy of approximately 98%, compared withother described
machine learning algorithms.

Zhang [17] presented a machine learning classifier to detect SQL injection vulnera-
bilities in PHP code. Multiple machine learning algorithms were trained and evaluated,
including random forest, logistic regression, SVM, multilayer perceptron (MLP), long short-
term memory (LSTM), and a convolutional neural network (CNN). Zhang found that CNN
provided the best precision of 95.4%.

Gi Li et al. [18] proposed an adaptive deep forest model (ADF) with the integration of the
AdaBoost algorithm. AdaBoost stands for adaptive boosting, which is a statistical classification
algorithm, and the deep forest model is a layered model based on a deep neural network.
The adaptive deep forest model proposed in [16] achieved high efficiency, comparable to
that of traditional machine learning models, such as decision trees, and a better performance
compared with regular deep neural network models, such as RNN and CNN.

Uwagbole et al. [19] created a dataset using symbolic finite automata to train a clas-
sifier to detect SQL injection attacks. The generated data were labelled, and training was
conducted with a supervised learning model with an ML algorithm of two-class support
vector machine (TC SVM) and two-class logistic regression (TC LR). The generated models
were evaluated using a receiver operating characteristic (ROC) curve.

Ahmed et al. [20] proposed an SQL injection detection method using an ensemble
learning algorithm and natural language processing (NLP) to generate a bag-of-words
model used to train a random forest classifier. Prediction was also considered in this
research to improve the detection ability of the classifier. In this study, decision tree, naïve
Bayes, SVM, and k-NN classification models were also trained to classify the same testing
dataset, and their performances were compared with that of the proposed method. The

138

J. Cybersecur. Priv. 2022, 2

experimental results showed that the proposed method achieved better accuracy, higher
TPR, and lower FNR than the other four classifiers. Evaluation metrics were used to
measure the performance of the classifier. The measurements were based on a confusion
matrix, accuracy, precision, true-positive rate, false-positive rate, true-negative rate, false-
negative rate, receiver operating characteristic curve, and area under the curve.

Tripathy et al. [21] created a dataset by gathering and combining a large number
of smaller datasets. The generated dataset was labelled, and the learning model was
supervised learning. They trained seven machine learning models: decision tree, AdaBoost,
random forest, optimized linear, TensorFlow linear, deep ANN, and a boosted trees classifier.
Then, they compared the seven algorithms in terms of performance and accuracy. The
results showed that the random forest classifier outperformed all other classifiers and
achieved an accuracy of 99.8%.

Chinmay and Kulkarni [22] proposed a novel approach to detection of SQL injection
attacks using a human agent knowledge transfer (HAT) and TD machine learning algorithm.
In this model, a machine learning agent acted as a maze game to differentiated between
normal SQL queries and malicious SQL queries. If the incoming SQL query was an SQL
injection attack query, then it gained more rewards and was deemed an SQL injection
attack query before achieving the final state. This machine learning approach achieved an
accuracy of 95%.

Makiou et al. [23] proposed a detection system based on two approaches. The first
detection method was based on pattern matching, which is the same as a signature-based
detection system whereby the classifier has a database of SQL attack signatures and only
inspects the HTTP URL in an attempt to find a match. The second detection method used
was based on machine learning techniques. To build this model, the authors collected
malicious data and trained the classifier with these data by extracting the features represent-
ing attacks. The following algorithms were employed: SVM, naïve Bayes, and K-nearest
neighbor. The performance of the classifier was measured using the total cost ratio (TCR).

Kar et al. [24] trained a support vector machine (SVM) to detect malicious SQL queries
by modelling the WHERE clause of a query as an interaction network of tokens and
computing the centrality of the nodes. Node centralities were used to quantify the degree
of importance or centrality of a node in the network. The experimental results obtained on a
dataset collected from five web applications using some automated attack tools, confirmed
that three of the centrality measures used in this study can effectively detect SQL injection
attacks with minimal impact on performance.

Wang et al. [25] analyzed the existing SQL injection detection algorithms in an intelli-
gent transportation system. The authors proposed a long short-term memory (LSTM)-based
SQL injection attack detection method and a method of generating SQL injection samples
to augment the dataset. This method can simulate SQL injection attacks and generate valid
positive samples to solve the problem of overfitting caused by a lack of positive samples.
The experimental results showed that the accuracy, precision, and F1 score of the proposed
method were all above 92%.

Kamtuo and Soomlek. [26] proposed a framework for SQL injection prevention via
server-side scripting using machine learning and compiler platforms. A dataset of 1100
samples of SQL commands were trained in four machine learning models: boosted decision
tree, decision tree, support vector machine (SVM), and an artificial neural network. The
results indicate that the decision tree algorithm achieved the highest prediction efficiency
among the tested models.

Sivasangari et al. [27] used the AdaBoost algorithm to detect SQL injection attacks. In
this study, the data were converted into stumps, which were classified as weak stumps
providing less weight to the output or strong stumps providing the highest weight in the
overall output. The experimental result showed that the proposed algorithm accurately
and effectively detected injection attacks.

Daset al. [28] proposed a method for classifying dynamic SQL queries as either attacks
or normal based on a web profile prepared during the training phase. Naïve Bayes, SVM,

139

J. Cybersecur. Priv. 2022, 2

and parse tree approaches were used for the classification process. The overall detection
rate using the two datasets was 91% and 90%, respectively.

Kasim [29] designed a method to detect malicious SQL queries. Decision tree algo-
rithms were used for the classification processes to detect different levels of SQL injection.
The proposed model maintained an accuracy more than 98% in detecting SQL injection
attacks and an accuracy of 92% in classifying the level of attack as simple, unified, or lateral.

Tanget et al. [30] presented a simple method for SQL injection attack detection based
on an artificial neural network. First, a large amount of SQL injection data were analyzed
to extract the relevant features. Then, a variety of neural network models, such as MLP and
LSTM, were trained. The experimental results showed that the detection rate of MLP was
better than that of LSTM.

Erdődiet al. [31] automatized the process of exploiting SQL injection attacks through
reinforcement learning agents. In this study, the problem was modelled as a Markov
decision process. The experimental results show that reinforcement learning agents can be
used in the future to perform security assessment and penetration testing.

Kar et al. [32] presented a detection method by modeling SQL queries as a graph
of tokens and utilized the centrality measure of tokens to train single and multiple SVM
classifiers. The system was tested using directed and undirected graphs with different SVM
classifiers. The experimental results demonstrated that the proposed technique is able to
effectively identify malicious SQL queries.

Solomon et al. [33] presented a model of a two-class support vector machine (TCSVM)
to predict binary labelled outcomes concerning whether an SQL injection attack was
positive or negative in a web request. This model intercepted web requests at the proxy
level and applied ML predictive analytics to predict SQL injection attacks.

Mcwhirter et al. [34] presented a novel approach for classifying SQL queries. A gap-
weighted string subsequence kernel algorithm was used to compute the similarity metric
between the query strings. Then, the support vector machine was trained on the similarity
metrics to determine whether the query strings was normal or malicious. The proposed
approach was evaluated using a number of datasets and achieved 92.48% accuracy.

Mejia-Cabrera et al. [35] presented a new approach to the construction of a dataset
with a NoSQL query database. Six classification algorithms were trained and evaluated to
identify SQL injection attacks, which included: decision tree, SVM, random forest, k-NN,
neural network, and multilayer perceptron. The experimental results showed that the last
two algorithms obtained an accuracy of 97.6%.

Pathak et al. [36] trained a progressive neural network model with a naïve Bayesian
classifier to successfully detect SQL injection attacks. Progressive neural networks were
trained using parameters such as error-based, time-based, SQL query and, union-based
SQL injection attacks. The proposed method achieved an accuracy of 97.897%.

Wang et al. [37] proposed a hybrid approach using tree-vector kernels in SVM to learn
SQL statements. The authors used both the parse tree structure of SQL queries and the
query value similarity characteristic to distinguish between malicious and benign queries.
The results confirmed the benefit of incorporation to efficiently and accurately identify
abnormal queries.

Fang et al. [38] proposed a tool based on LSTM neural networks and the word vectors
of SQL tokens. According to the syntactic functions of the SQL queries, each query was
converted into sequences of tokens to build an SQL word vector model. Then, the LSTM
neural network was trained. The results of the experiment showed that the proposed tool
achieved an accuracy of 98.60%.

Zhang et al. [39] proposed a deep learning-based approach to detect SQL injection
attacks in network traffic. The proposed approach selected only the target features needed
by the model to be trained using a deep belief network (DBN) model. The authors also
employed test data to test the performance of different models, including LSTM, CNN, and
MLP. According to the experimental results, DBN achieved an accuracy of 96%.

140

J. Cybersecur. Priv. 2022, 2

Priyaa et al. [40] proposed a framework that combined the EDADT (efficient data
adaptive decision tree) algorithm and the SVM classification algorithm to detect SQL
injection attacks. The employed dataset was created using the MovieLens dataset system for
movie recommendations, which included user login and movie details. The experimental
results showed that the proposed approach achieved an accuracy of 99.87%.

Joshi et al. [41] proposed a method for detecting SQL injection using the naïve Bayes
machine learning algorithm. The authors applied a tokenization process to break the query
into meaningful elements called tokens. Then, the list of tokens became an input for the
further classification processes. The result of the naïve Bayes approach was analyzed using
precision, recall, and accuracy.

Q2: How are SQL injection attack datasets generated using machine learning techniques?
Many researchers have been developed and generated their SQL injection datasets

instead of using existing datasets [42]. Islam et al. [43] developed a training dataset for
NoSQL injection to manually design important features using various supervised learning
algorithms. In this study, the authors generated a dataset including approximately 75%
benign and 25% injection queries, which was tested on a local server.

Appelt et al. [44] proposed automated testing techniques that generated SQL injection
attacks, bypassing web application firewalls (WAFs). The authors developed SQL injection
grammar based on existing SQL injection attacks, as well as an automated input generation
technique to automatically generate attack payloads. Then, machine learning was used to
efficiently generate additional payloads and new successful attacks with a high probability
of bypassing the firewall.

Ross et al. [42] proposed a system consisting of three phases to generate data: traffic
generation, capture, and preprocessing. In the traffic generation phase, the simulated
normal and malicious traffic was generated from the scripts located on the traffic generation
server. Then, the traffic was captured by the webapp server and at the Datiphy appliance.
Finally, data preprocessing was achieved with bash shell scripts on the webapp server. The
resulting data from preprocessing was imported into Weka, which is a machine learning
framework that includes many ML tools. The data were processed into word vectors using
the weak filter StringToVec. Then correlated feature selection was employed to reduce the
number of features for efficient machine learning.

Liu et al. [45] proposed a tool called DeepSQLi to generate test cases for detection
of SQL injection attacks using a deep learning model and sequence-of-words prediction.
DeepSQLi used the neural language model, which can be trained to learn semantic features
of SQL attacks to translate the test case (or user input) into a new test case. Therefore,
DeepSQLi is able to generate SQL injection attacks that have not been captured by patterns
in the training datasets. Siddiq et al. [46] proposed a learning-based SQL injection fix
tool called SQLIFIX. This tool creates an abstraction of SQL injection code from a training
dataset that consists of 14 projects and then clusters them using hierarchical clustering. The
proposed approach generated correct solutions for 67.52% of cases for Java and 41.33% of
correct solutions for PHP on an independent test set.

Naghmeh [47] proposed a model for the detection of SQLI attacks using artificial
intelligence (AI) techniques. This model consisted of three main components: uniform
resource locator (URL) generator to generate thousands of normal and malicious URLs; a
URL classifier to classify all generated URLs as either normal or malicious; and a neural
network (NN) model to detect whether a given URL was a malicious, or benign URL.
The model was first trained and then evaluated by employing both benign and malicious
URLs. URL classifiers were also used to convert all generated URLs into strings of logic
(1 = malicious; 0 = benign).

Q3:How can machine learning be used to generate adversarial SQL injection attacks?
Adversarial machine learning (AML) is based on the threats posed by an attacker with

the aim of being incorrectly classified by the victim machine learning algorithm. Generating
an adversarial SQL injection dataset starts with a target malicious query that was correctly

141

J. Cybersecur. Priv. 2022, 2

detected. And then, a set of mutation operators was iteratively applied in order to generate
new queries [48].

Demetrio and Valenza [48] developed a tool named WAF-A-MoLE to generate adver-
sarial examples against web application firewalls (WAFs) by applying a set of syntactic
mutations. The authors produced a dataset of SQL injection queries through an automatic
procedure. To evaluate the effectiveness of the proposed tool, it was applied to different
ML-based WAFs and evaluated in terms of their robustness against WAF-A-MoLE.

Appelt et al. [49] proposed a black-box automated technique, named 4SQLi, for generating
test inputs that could bypass security filters, resulting in executable SQL queries. This technique
was based on a set of multiple mutation operators that manipulated inputs to produce new test
inputs to trigger SQLi attacks, making it possible to create inputs that contained new attack
patterns, thus increasing the possibility of generating a successful SQLi attacks.

5. Discussion

5.1. Machine Learning and Deep Learning Techniques for Detection of SQL Injection Attacks
(Related to Q1)

In this section, the results reported in Section 4 are discussed. In related studies, various
algorithms and techniques can be used for detecting SQL injection attacks. Table 1 summarizes
the algorithms under review, in addition to the employed datasets and evaluation methods.

Table 1. Summary of the Machine learning algorithms, Datasets, and Evaluation Methods.

Ref. Algorithm Dataset Dataset Size

Evaluation Methods

Accuracy FPR FNR TP FN FP TN Precision Recall
F1

Score
AUC

[13]

Naïve Bayesian

Collected
from access logs 58,000 log records

- 10.9% 16.7% 34.5% 18.2% - - - - - - - -

SVM - 4.1% 8.3% 41.4% 18.2% - - - - - - - -

ID3 - 0.0% 0.0% 41.4% 18.2% - - - - - - - -

RF - 0.68% 0.0% 37.9% 9.1% - - - - - - - -

K-means - 0.68% 0.0% 37.9% 9.1% - - - - - - - -

[14] CNN-BiLSTM Collected from
various websites

4200 queries (3072 SQL
injections,1128 normal

data
98% - - - - - - - - - -

[15]

Decision Tree

Collected from
two sources

950 vulnerable PHP
cases, 8800

non-vulnerable files

93.4% - - - - - - 76.6% 56.5% 0.650% -

Random Forest 93.6% - - - - - - 77.4% 57.7% 0.660% -

SVM 95.4% - - - - - - 98.6% 58.3% 0.732% -

Logistic
Regression 95.1% - - - - - - 98.5% 56.0% 0.713% -

Multilayer
Perceptron 95.3% - - - - - - 91.0% 63.7% 0.746% -

RNN 95.3% - - - - - - 92.2% 62.4% 0.742% -

LSTM 95.2% - - - - - - 91.9% 61.4% 0.734% -

CNN 95.3% - - - - - - 95.4% 59.9% 0.734% -

[16]
ADF

Collected from
vulnerability
submission
platforms

10,000 negative samples
and

10,000 positive samples

Not
clear

- - - - - - - - - -

AdaBoost

[17]

Two-Class
Logistic

Regression Dataset of 725,206
attribute
values

96.4% - - - - - - 0.971 0.957 0.964 0.984

Two-Class
Support Vector

Machine
98.6% - - - - - - 0.974 0.998 0.986 0.986

[18] Random Forest +
NLP

Open-source
tools, such as

Libinjection and
Sqlmap

17,266 thousand SQL
injection payloads and

19,303 thousand
normal payloads

98.1515 0.96137 0.03862 4182 168 1 4792 0.9997% - - 0.99

[19]

RF

Collected from
datasets available

in public
repositories

7576 malicious SQL
queries and

100,496 legal inputs

99.8% - - - - - - 0.999 0.999 0.999 -

TensorFlow
Boosted Trees

Classifier
99.6% - - - - - - 0.989 0.961 0.998 -

AdaBoost
Classifier 99.5% - - - - - - 0.997 0.996 0.997 -

Decision Tree 99.5% - - - - - - 0.998 0.997 0.997 -

SGD Classifier 98.6% - - - - - - 0.988 0.997 0.992 -

Deep ANN 98.4% - - - - - - 0.934 0.820 0.873 -

TensorFlow
Linear Classifier 97.8% - - - - - - 0.908 0.759 0.988 -

142

J. Cybersecur. Priv. 2022, 2

Table 1. Cont.

Ref. Algorithm Dataset Dataset Size
Evaluation Methods

Accuracy FPR FNR TP FN FP TN Precision Recall
F1

Score
AUC

[12]

Ensemble Boosted
Trees

Open-source
datasets

616 SQL statements

93.8% - - - - - - - - - -

Bagged Trees 93.8% - - - - - - - - - -

Linear
Discriminant 93.7% - - - - - - - - - -

Cubic SVM 93.7% - - - - - - - - - -

Gaussian SVM 93.5% - - - - - - - - - -

[20]
TD Machine

Learning
Technique

Not mentioned Not mentioned 95%. - - - - - - - - - -

[21]
SVM, Naïve

Bayes, K-Nearest
Neighbor

Open-source
datasets Not mentioned Not

clear - - - - - - - - - -

[22] SVM classifier

Dataset generated
using a

honeypot-based
technique.

4610 injected and 4884
genuine

token sequences

92.84% 1.33% 86.66% 914 8 8 969 98.40% 86.66% - -

99.16% 0.82% 99.13% 799 123 13 964 99.13% 99.31% - -

99.37% 0.72% 99.46% 917 5 7 970 99.24% 99.46% - -

99.05% 1.02% 99.13% 914 8 10 967 98.92% 99.13% - -

[23] LSTM Open-source
datasets Not mentioned 93.47% - - - - - - 93.56% 92.43% 92.99%

[24]

SVM, Boosted
Decision Tree,

Artificial Neural
Network,

Decision Tree

Open-source
datasets

1100 vulnerable SQL
commands 99.68% - - - - - 1.000 - - - -

[25] AdaBoost
algorithm Not mentioned Not mentioned Not

Clear - - - - - - - - - -

[26]

Naïve Bayesian

Not mentioned Not mentioned

90%
- - - - - - - - - -

SVM 91%

Parse Tree 91%

[27] Decision tree OWASP dataset 332 malicious codes and
52 the clean codes 98% - - - - - 97% 98% 97% 98.2%

[28]
MLP Open-source

datasets
820 SQL injection

samples and
8925 normal samples

99.67% 0.00% - - - - 100% 99.41% - - -

LSTM 97.68% 0.13% - - - - 99.86% 95.49% - - -

[29] Markov Decision
Processes (MDPs) Not mentioned 1000 SQL environments - - - - - - - - - - -

[30] SVM
Open-source

datasets

4610 injected queries
and 4884 genuine

queries

99.37% 0.31% - - - - - 99.35% 99.35% 99.46% -

99.73% 0.31% - - - - - 99.67% 99.78% 99.73% -

99.63% 0.31% - - - - - 99.67% 99.57% 99.62% -

[31] TCSVM

Dataset from
MicrosoftSQL

reserved
keywords website

362,603 attack items and
362,603 non-attack items 98.60% - - - - - - 97.4% 99.7% 98.5% 98.6%

[32] SVM Amnesia testbed
dataset

46 legitimate queries
and 40

malicious SQL injection
attacks

- - - - - - - 65.9% 98.3% 78.9% -

68% 100% 81%

[33]

Support Vector
Machine

Novel datasets 450 malicious and 59
benign queries

84.9% - - - - - - 84.8% 91.1% 87.6% 83.3%

K-Nearest
Neighbor 87.6% - - - - - - 84.8% 96.7% 90.4% 96.6%

Neural Network 97.6% - - - - - - 98.7% 97.4% 98.0% 98.9%

Multilayer
Perceptron 97.6% - - - - - - 98.7% 97.4% 98.0% 98.9%

Decision Tree 89.4% - - - - - - 96.3% 85.6% 90.6% 94.6%

Random Forest 89.6% - - - - - - 87.5% 96.4% 91.7% 97.4%

[34]
Progressive

Neural Network,
Naïve Bayes

Open-source
dataset

A 62.2 KB SQL query
and a 4.86 KB SQL

injection exploitation
97.897% - - 193 0 0 5 - - - -

[35] SVM Open-source
dataset

1000 benign and 1000
malicious

HTTP requests
0.982 0.000 - - - - - - - -

[36] LSTM Open-source
dataset

43,167 injected query
strings and 32,486

genuine query strings
98.60% - - - - - - 99.17% 99.20%, 99.17% 99%

[37]
LSTM, MLP,

CNN, Deep Belief
Network (DBN)

Datasets collected
from HTTP

requests

118,529 normal data
points and 21,810
SQL injection data

points

- - - - - - - - - -

[38] EDADT and SVM

Dataset created
based on the
MovieLens

dataset

Not mentioned 99.87% - - - - - - - - - -

[39] Naïve Bayes Not mentioned 101 normal codes and 77
malicious codes 93.3% - - - - - - 1.0 0.89 - -

143

J. Cybersecur. Priv. 2022, 2

Table 1 shows that most of the studies focused on using supervised machine learning
to detect and classify SQL injection attacks; 89% of the studies used supervised learning,
and 4% used unsupervised learning and mixed learning, whereas 3% used other types of
learning, as shown in Figure 2.

Figure 2. Percentage of the mchine learning and deep learning techniques used idetecting SQL
injection attacks.

5.2. Generating SQL Injection Attack Datasets Using Machine Learning Techniques (Related to Q2)

A high-quality dataset for training is essential for machine learning and deep learning
methods to achieve effective detection performance. It is difficult to identify suitable
datasets with patterns to train classifiers in SQL injection attack research [30]. The results of
the studies reviewed in Section 4 showed that, after automatically generating SQL injection
attack payloads from different web applications, machine learning techniques can learn
incrementally learn the payloads that are passed or blocked by the firewalls and can be used
to efficiently generate additional payloads with high probability of bypassing the firewall.
A total of 83% of the reviewed studies used datasets collected from public repositories and
HTTP requests. The remaining 17% of the reviewed studies used datasets created by the
authors using deep learning models that can be trained to learn the semantic features of
SQL attacks to generate new test cases from user inputs.

5.3. Generating Adversarial SQL Injection Attacks Using ML Techniques (Related to Q3)

The result reported in Section 4 showed that adversarial SQL injection attacks can be
generated using mutation operators, which are a set of operators that alter the syntax of
the original payload without affecting its semantics. Such operators can be classified into
three classes based on their purpose: behavior-changing, syntax-repairing, and obfuscating
operators [49,50]. Table 2 provides a summary of the mutation operators.

144

J. Cybersecur. Priv. 2022, 2

Table 2. Summary of mutation operators (adopted from [50]).

MO Class
MO

Name
Description Example

Behavior-Changing Operators

MO or Adds an OR clause to the input Original input: “SELECT * FROM table WHERE id= “
the input will change the logic of the statement and turns

it as follows:
“SELECT * FROM table WHERE id = 1 OR 1 = 1

MO and Adds an AND clause to the input

MO semi Adds a semicolon followed by an additional clause

Syntax-Repairing Operators

MO par Appends a parenthesis to a valid input Original inpt: “SELECT * FROM ta-
ble WHERE character = CHR(“ + input + “)”

The changed SQL statement:
SELECT * FROM table WHERE character = CHR(67) OR

1 = 1 {).

MO cmt Adds a comment command (– or #) to an input

MO qot Adds a single or double quote to an input

Obfuscating Operators

MO wsp Changes the encoding of white spaces

Original input: 1 OR 1 = 1, mutated input:
1+− OR + 1 = 1.

This changes the predefined statement: “SE- LECT *
FROM table WHERE id = “ + input to SELECT * FROM

table WHERE id = 1 + OR + 1 = 1

MO chr Changes the encoding of a character literally
enclosed in quotes

MO html Changes the encoding of an input to HTML entity
encoding

MO per Changes the encoding of an input to percentage
encoding

MO bool Rewrites a Boolean expression while preserving
its truth value

MO keyw Obfuscates SQL keywords by randomizing the
capitalization and inserting comments

6. Conclusions

SQL injection attacks represent a major threat to web applications, and this may have
major implications for privacy and security. Machine learning and deep learning applications
have achieved considerable success in detecting this type of web attack. In this study, we
conducted a systematic literature review of 36 articles related to research on SQL injection
attacks and machine learning techniques. We identified the most commonly used machine
learning techniques to detect all types of SQL injection attacks. The review results showed
that few studies used machine learning tools and methods to generate new SQL injection
attack datasets. Similarly, the results showed that only a few studies focused only on using
mutation operators to generate adversarial SQL injection attack queries. In future work, we
aim to cover the use of other machine learning and deep learning models to generate and
detect SQL injection attacks., In addition to investigating the use of other AI techniques to
generate adversarial SQL injection attacks, such as generative adversarial networks (GANs).

Author Contributions: Conceptualization, M.A. and D.A.; methodology, M.A.; software, M.A.; vali-
dation, M.A., D.A. and S.A.; formal analysis, O.R.; investigation, M.A.; resources, M.A.; data curation,
M.A.; writing—original draft preparation, M.A.; writing—review and editing, S.A.; visualization,
M.A.; supervision, D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under Grant No. IFPDP-284-22. The authors, therefore, acknowledge with thanks
to DSR technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Han, S.; Xie, M.; Chen, H.-H.; Ling, Y. Intrusion Detection in Cyber-Physical Systems: Techniques and Challenges. IEEE Syst. J.
2014, 8, 1049–1059. [CrossRef]

2. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of using Machine Learning Techniques
for Intrusion Detection. IEEE Commun. Surv. Tutor. 2018, 21, 686–728. [CrossRef]

3. Charles, M.J.; Pfleeger, P.; Pfleeger, S.L. Security in Computing, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2004.

145

J. Cybersecur. Priv. 2022, 2

4. Son, S.; McKinley, K.S.; Shmatikov, V. Diglossia: Detecting code injection attacks with precision and efficiency. Proc. ACM Conf.
Comput. Commun. Secur. 2013, 2, 1181–1191. [CrossRef]

5. Yan, R.; Xiao, X.; Hu, G.; Peng, S.; Jiang, Y. New deep learning method to detect code injection attacks on hybrid applications. J.
Syst. Softw. 2018, 137, 67–77. [CrossRef]

6. Vähäkainu, P.; Lehto, M. Artificial intelligence in the cyber security environment. In Proceedings of the 14th International
Conference on Cyber Warfare and Security, ICCWS 2019, Stellenbosch, South Africa, 28 February–1 March 2019; pp. 431–440.

7. Satapathy, S.C.; Govardhan, A.; Raju, K.S.; Mandal, J.K. SQL Injection Detection and Correction Using Machine Learning
Techniques. Adv. Intell. Syst. Comput. 2015, 337, 435–442. [CrossRef]

8. Marashdeh, Z.; Suwais, K.; Alia, M. A Survey on SQL Injection Attacks: Detection and Challenges. In Proceedings of the 2021
International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 957–962. [CrossRef]

9. Faker, S.A.; Muslim, M.A.; Dachlan, H.S. A systematic literature review on sql injection attacks techniques and common exploited
vulnerabilities. Int. J. Comput. Eng. Inf. Technol. 2017, 9, 284–291.

10. Qiu, S.; Liu, Q.; Zhou, S.; Wu, C. Review of artificial intelligence adversarial attack and defense technologies. Appl. Sci. 2019, 9,
909. [CrossRef]

11. Martins, N.; Cruz, J.M.; Cruz, T.; Abreu, P.H. Adversarial Machine Learning Applied to Intrusion and Malware Scenarios: A
Systematic Review. IEEE Access 2020, 8, 35403–35419. [CrossRef]

12. Muslihi, M.T.; Alghazzawi, D. Detecting SQL Injection on Web Application Using Deep Learning Techniques: A Systematic
Literature Review. In Proceedings of the 2020 Third International Conference on Vocational Education and Electrical Engineering
(ICVEE), Surabaya, Indonesia, 3–4 October 2020. [CrossRef]

13. Aliero, M.S.; Qureshi, K.N.; Pasha, M.F.; Ghani, I.; Yauri, R.A. Systematic Review Analysis with SQLIA Detection and Prevention
Approaches. Wirel. Pers. Commun. 2020, 112, 2297–2333. [CrossRef]

14. Hasan, M.; Tarique, M. Detection of SQL Injection Attacks: A Machine Learning Approach. In Proceedings of the 2019
International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab
Emirates, 19–21 November 2019.

15. Gao, H.; Zhu, J.; Liu, L.; Xu, J.; Wu, Y.; Liu, A. Detecting SQL Injection Attacks Using Grammar Pattern Recognition and Access Behavior
Mining. In Proceedings of the 2019 IEEE International Conference on Energy Internet (ICEI), Nanjing, China, 27–31 May 2019. [CrossRef]

16. Gandhi, N. A CNN-BiLSTM based Approach for Detection of SQL Injection Attacks. In Proceedings of the 2021 International
Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 17–18 March 2021;
pp. 378–383.

17. Zhang, K.; Dataset, A.T. A Machine Learning based Approach to Identify SQL Injection Vulnerabilities. In Proceedings of the 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE), San Diego, CA, USA, 11–15 November
2019; pp. 2019–2021. [CrossRef]

18. Li, Q.I.; Li, W.; Wang, J. A SQL Injection Detection Method Based on Adaptive Deep Forest. IEEE Access 2019, 7, 145385–145394.
[CrossRef]

19. Uwagbole, S.O.; Buchanan, W.J.; Fan, L. An Applied Pattern-Driven Corpus to Predictive Analytics in Mitigating SQL Injection
Attack. In Proceedings of the 2017 Seventh International Conference on Emerging Security Technologies (EST), Canterbury, UK,
6–8 September 2017; pp. 12–17.

20. Ahmed, M. Cyber Attack Detection Method Based on NLP and Ensemble Learning Approach. In Proceedings of the 2020 23rd
International Conference on Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 19–21 December 2020; pp. 19–21.

21. Tripathy, D.; Gohil, R.; Halabi, T. Detecting SQL Injection Attacks in Cloud SaaS using Machine Learning. In Proceedings of the
2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May
2020; pp. 145–150. [CrossRef]

22. Kulkarni, C.C.; Kulkarni, S.A. Human agent knowledge transfer applied to web security. In Proceedings of the 2013 Fourth
International Conference on Computing, Communications and Networking Technologies (ICCCNT), Tiruchengode, India, 4–6
July 2013; pp. 14–17. [CrossRef]

23. Makiou, A.; Begriche, Y.; Serhrouchni, A. Hybrid approach to detect SQLi attacks and evasion techniques. In Proceedings of the
10th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, Miami, FL, USA,
22–25 October 2014; pp. 452–456. [CrossRef]

24. Kar, D.; Sahoo, A.K.; Agarwal, K.; Panigrahi, S.; Das, M. Learning to Detect SQLIA Using Node Centrality with Feature Selection.
In Proceedings of the 2016 International Conference on Computing, Analytics and Security Trends (CAST), Pune, India, 19–21
December 2016; pp. 18–23.

25. Li, Q.; Wang, F.; Wang, J.; Li, W. LSTM-Based SQL Injection Detection Method for Intelligent Transportation System. IEEE Trans.
Veh. Technol. 2019, 68, 4182–4191. [CrossRef]

26. Kamtuo, K.; Soomlek, C. Machine Learning for SQL Injection Prevention in Server-Side Scripting. In Proceedings of the 2016
International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016; pp. 1–6.

27. Sivasangari, A. SQL Injection Attack Detection using Machine Learning Algorithm. In Proceedings of the 2021 5th International
Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 3–5 June 2021; pp. 1166–1169.

146

J. Cybersecur. Priv. 2022, 2

28. Das, D.; Sharma, U.; Bhattacharyya, D.K. Defeating SQL injection attack in authentication security: An experimental study. Int. J.
Inf. Secur. 2019, 18, 1–22. [CrossRef]

29. Kasim, Ö. An ensemble classification-based approach to detect the attack level of SQL injections. J. Inf. Secur. Appl. 2021, 59, 102852.
[CrossRef]

30. Tang, P.; Qiu, W.; Huang, Z.; Lian, H.; Liu, G. Detection of SQL injection based on artificial neural network. Knowl.-Based Syst.
2020, 190, 105528. [CrossRef]

31. Erdődi, L.; Sommervoll, Å.Å.; Zennaro, F.M. SQL injection vulnerability exploitation using Q-learning reinforcement learning
agents. J. Inf. Secur. Appl. Simulating 2021, 61, 102903. [CrossRef]

32. Kar, D.; Panigrahi, S.; Sundararajan, S. SQLiGoT: Detecting SQL injection attacks using the graph of tokens and SVM. Comput.
Secur. 2016, 60, 206–225. [CrossRef]

33. Uwagbole, S.O.; Buchanan, W.J.; Fan, L. Applied Machine Learning Predictive Analytics to SQL Injection Attack Detection and
Prevention. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon,
Portugal, 8–12 May 2017; pp. 1087–1090. [CrossRef]

34. Mcwhirter, P.R.; Kifayat, K.; Shi, Q.; Askwith, B. SQL Injection Attack classification through the feature extraction of SQL query
strings using a Gap-Weighted String Subsequence Kernel. J. Inf. Secur. Appl. 2018, 40, 199–216. [CrossRef]

35. Mejia-Cabrera, H.I.; Paico-Chileno, D.; Valdera-Contreras, J.H.; Tuesta-Monteza, V.A.; Forero, M.G. Automatic Detection of Injection
Attacks by Machine Learning in NoSQL Databases; Springer: Berlin/Heidelberg, Germany, 2021; pp. 23–32.

36. Pathak, R.K.; Yadav, V. Handling SQL Injection Attack Using Progressive Neural Network; Springer: Singapore, 2020; Volume 1170.
37. Wang, Y.; Li, Z. SQL injection detection via program tracing and machine learning. In Lecture Notes in Computer Science; 7646

LNCS; Springer: Berlin/Heidelberg, Germany, 2012; pp. 264–274. [CrossRef]
38. Fang, Y.; Peng, J.; Liu, L.; Huang, C. WOVSQLI: Detection of SQL injection behaviors using word vector and LSTM. In Proceedings

of the ICCSP 2018: Proceedings of the 2nd International Conference on Cryptography, Security and Privacy, Guiyang, China,
16–19 March 2018; pp. 170–174. [CrossRef]

39. Zhang, H.; Zhao, J.; Zhao, B.; Yan, X.; Yuan, H.; Li, F. SQL injection detection based on deep belief network. In Proceedings of the
CSAE 2019: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, Sanya, China,
22–24 October 2019. [CrossRef]

40. Priyaa, B.D.; Student, P.G.; Devi, M.I. Hybrid SQL Injection Detection System. In Proceedings of the 2016 3rd International
Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 22–23 January 2016.

41. Joshi, A. SQL Injection Detection using Machine Learning. In Proceedings of the 2014 International Conference on Control,
Instrumentation, Communication and Computational Technologies (ICCICCT), Kanyakumari, India, 10–11 July 2014; Volume 2,
pp. 1111–1115.

42. Ross, K.; Moh, M.; Yao, J.; Moh, T.S. Multi-source data analysis and evaluation of machine learning techniques for SQL injection
detection. In Proceedings of the ACMSE 2018 Conference, Richmond, KY, USA, 29–31 March 2018; pp. 1–8. [CrossRef]

43. Islam, M.R.U.; Islam, M.S.; Ahmed, Z.; Iqbal, A.; Shahriyar, R. Automatic detection of NoSQL injection using supervised learning.
In Proceedings of the 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Milwaukee, WI,
USA, 15–19 July 2019; Volume 1, pp. 760–769. [CrossRef]

44. Appelt, D.; Nguyen, C.D.; Briand, L. Behind an application firewall, are we safe from SQL injection attacks? In Proceedings of
2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), Graz, Austria, 13–17 April 2015.
[CrossRef]

45. Liu, M.; Li, K.; Chen, T. DeepSQLi: Deep semantic learning for testing SQL injection. In Proceedings of the ISSTA 2020:
Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, 18–22 July
2020; pp. 286–297. [CrossRef]

46. Siddiq, M.L.; Jahin, R.R.; Rafid, M.; Islam, U. SQLIFIX: Learning-Based Approach to Fix SQL Injection Vulnerabilities in Source
Code. In Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
Honolulu, HI, USA, 9–12 March 2021; pp. 354–364. [CrossRef]

47. Sheykhkanloo, N.M. Employing Neural Networks for the detection of SQL injection attack. In Proceedings of the SIN ’14:
Proceedings of the 7th International Conference on Security of Information and Networks, Glasgow, UK, 9–11 September 2014;
pp. 318–323. [CrossRef]

48. Demetrio, L.; Valenza, A.; Costa, G.; Lagorio, G. WAF-A-MoLE: Evading web application firewalls through adversarial machine
learning. In Proceedings of the SAC ’20: Proceedings of the 35th Annual ACM Symposium on Applied Computing, Brno, Czech
Republic, 30 March–3 April 2020; pp. 1745–1752. [CrossRef]

49. Appelt, D.; Nguyen, C.D.; Briand, L.C.; Alshahwan, N. Automated testing for SQL injection vulnerabilities: An input mutation
approach. In Proceedings of the 2014 International Symposium on Software Testing and Analysis, San Jose, CA, USA, 21–25 July
2014; pp. 259–269.

50. Appelt, D. Automated Security Testing of Web-Based Systems against SQL Injection Attacks. Ph.D. Thesis, University of
Luxembourg, Luxembourg, 2016.

147

Citation: Chowdhury, A.M.M.;

Imtiaz, M.H. Contactless Fingerprint

Recognition Using Deep

Learning—A Systematic Review. J.

Cybersecur. Priv. 2022, 2, 714–730.

https://doi.org/10.3390/jcp2030036

Academic Editor: Danda B. Rawat

Received: 17 July 2022

Accepted: 23 August 2022

Published: 8 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Contactless Fingerprint Recognition Using Deep Learning—A
Systematic Review

A M Mahmud Chowdhury and Masudul Haider Imtiaz *

Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
* Correspondence: mimtiaz@clarkson.edu

Abstract: Contactless fingerprint identification systems have been introduced to address the de-
ficiencies of contact-based fingerprint systems. A number of studies have been reported regard-
ing contactless fingerprint processing, including classical image processing, the machine-learning
pipeline, and a number of deep-learning-based algorithms. The deep-learning-based methods were
reported to have higher accuracies than their counterparts. This study was thus motivated to present
a systematic review of these successes and the reported limitations. Three methods were researched
for this review: (i) the finger photo capture method and corresponding image sensors, (ii) the classical
preprocessing method to prepare a finger image for a recognition task, and (iii) the deep-learning
approach for contactless fingerprint recognition. Eight scientific articles were identified that matched
all inclusion and exclusion criteria. Based on inferences from this review, we have discussed how
deep learning methods could benefit the field of biometrics and the potential gaps that deep-learning
approaches need to address for real-world biometric applications.

Keywords: biometrics; contactless fingerprint; deep learning; fingerprint analysis; fingerprint
recognition

1. Introduction

Contactless fingerprint identification technology has the potential to be one of the
most reliable techniques for biometric identification [1,2]. The first contactless fingerprint
recognition system was introduced in 2004 [3] as an alternative to traditional contact-based
fingerprinting [4]. Since then, interest has grown, as shown by a continually growing
number of publications by different research groups. This publication corroborates that
the demand for contactless fingerprint recognition systems is increasing rapidly [5]. The
National Institute of Standards and Technology (NIST) has also reported that contactless
fingerprint recognition system is an important component of next-generation fingerprint
technologies [6]. Generally, a contactless fingerprint system involves a high-resolution
camera [7,8]. The captured images provide the details of fingerprints (ridge, valleys)
and wrinkles, etc. [9]. One of the challenges of the traditional contact-based fingerprint
recognition system is fingerprint capturing [10]. During the acquisition of a contact-based
fingerprint, issues such as a latent fingerprint left by a previous user on the sensor surface
lead to low fingerprint quality [10–12]. Also, deformation and distortion of fingerprints
occur because of the pressure on the sensor surface [12]. Distortions can be caused by
non-uniformity of the finger pressure on the device, finger ridge changes due to heavy
labor or injuries, different illumination on finger skin, or motion artifacts during image
capturing [13]. When fingerprints contact the scanner, the ridge flow may become discon-
tinuous. A lot of background noise might also be introduced during capture [14]. Often,
only a partial fingerprint is obtained because the rest might be either lost or smudged
during capture [8], as shown in Figure 1. This process is subject to partial information,
poor quality, distortions, and variations, including background and illumination [15]. The
variations in sensors and the acquisition environment may introduce a wide range of intra-

J. Cybersecur. Priv. 2022, 2, 714–730. https://doi.org/10.3390/jcp2030036 https://www.mdpi.com/journal/jcp148

J. Cybersecur. Priv. 2022, 2

and inter-class variability in the captured fingerprint in terms of resolution, orientation,
sensor noise, and skin conditions. A finger photo acquired by a contactless sensor does not
suffer from deformation or latent, hidden fingerprints [7,10]. However, new challenges are
also present here. For example, captured images can be of poor quality, with different size,
low resolution, background segmentation, or uncontrolled illumination, and face difficulty
in extracting features like minutiae, finger enhancement, etc. [16]. According to the NIST,
a standard fingerprint image, generally the frontal region of the finger, requires 500 dpi
imaging sensors for a good-quality application [17]. These can be captured by smartphones
or a handheld electronic device [7,18–20].

(a) (b) (c)

Figure 1. Different challenges for contact-based fingerprint images: (a) blurry images, (b) distorted
image capture, (c) deformed images [21–23].

The contactless finger image obtains ridge–valley contrast that is different from a
print made from the contact of a finger on a live-scan capture device [24]. To address
this, different technologies for acquiring finger photos, such as 2D and 3D fingerprints,
have been introduced [13,16,25,26]. Image processing can solve some issues, while the
rest of them remain in contactless 2D and 3D fingerprint areas [27]. In recent years, deep-
learning technology has demonstrated success in image recognition, classification, and
feature representation [28–37]. These deep-learning models have also been employed
in contactless fingerprint-based biometric technologies [38]. It is necessary to conduct a
comprehensive survey on the latest research findings on 2D and 3D contactless fingerprint
recognition systems based on deep-learning technology to understand those models and
point out the future development direction. It is useful to note that there is a particular
system of capturing contactless finger photo images that might impact the performance of
the deep-learning models. Also, it will be useful to know how the limitations of classical
machine-learning open the door for deep learning in the contactless fingerprint area.
This study explored deep neural network (DNN) methods for contactless fingerprint
recognition. For this, we needed to analyze the machine learning (ML)-based algorithms to
compare with DNN methods. Photo capture and image processing are the first steps for
contactless fingerprint recognition. We have explored the steps of feature extraction and
recognition based on ML and DNN methods. Various test outputs with their performance
were analyzed to validate the feasibility of the suggested DNN methods. This paper
has investigated fingerprint capturing methods, fingerprint preprocessing, and feature
extraction in both classical image processing and machine learning, as well as replacement
of classical methods by deep learning. A total of 32 papers (without duplication) were
found related to these topics. Following the application of inclusion and exclusion criteria,
eight papers were selected for a full-text review.

149

J. Cybersecur. Priv. 2022, 2

The paper is organized as follows: first, the systematic review procedure is represented
in Section 2 along with the description of three research questions (RQ). Section 3 presents
a detailed investigation of the image-capturing method using image sensors. Section 4
explores relevant classical methods. Section 5 analyzes the deep neural network methods
in contactless fingerprint recognition systems. Section 6 provides a discussion and Section 7
ends with conclusions for future work.

2. Review Methodology

The key focus of this review is an up-to-date summary of recent novel approaches.
The systematic search procedure was set primarily following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) [23]. This methodology used the
following processes: (a) identifying research question (RQ), (b) source of study (c) search
strategy: setting inclusion/exclusion criteria, (d) results.

2.1. Research Questions

(1) RQ1. How do different sensor systems capture finger images to ensure the acceptable
quality of fingerprints? Research findings will help to investigate whether the capturing
systems have any impact on the model architecture or the recognition performance.

(2) RQ2. How does the classical machine-learning method preprocess the contactless
finger images and prepare for recognition algorithms? Research findings explore the
classical methods used for feature extraction, image segmentation, minutiae point
extraction, image deblur, background noise removal, particular portion segmentation,
and suitable feature extraction from finger images.

(3) RQ3. How do deep neural networks replace the classical recognition models? The
answer will explore the architecture of related deep neural networks and their perfor-
mance improvement over traditional methods.

2.2. Source of Studies

The search for relevant literature was performed across six repositories: Google Scholar,
Science Direct, Wiley Online Library, ACM Digital library, MDPI, and IEEE. Search dates
ranged from inception to 30 April 2022.

2.3. Search Strategy

The following ‘free- text search terms’ were used: ‘finger photo recognition’, ‘finger-
print identification’, ‘touchless fingerprint recognition’. The search results were strictly
restricted to the English language. References from selected primary full-text articles were
further analyzed for relevant publications. The selection was further narrowed by applying
the eligibility criteria described in Table 1. Articles fulfilling the inclusion criteria were
considered in this review, and those fulfilling the exclusion criteria were filtered out.

Table 1. Inclusion and Exclusion Criteria for this systematic review.

Inclusion Criteria Exclusion Criteria

Article published in peer-reviewed venues Papers not written in English

Article published since 2010 Traditional contact-based fingerprint method

Articles must address a certain combination of
words i.e., deep learning + contactless

fingerprint recognition

Automate + fingerprint identification, 3D +
contactless identification, smartphone/mobile

+ capture, contactless + finger photo

A total of 49 publications were identified through the database search and three from
the bibliography of those publications; however, 33 failed to satisfy the eligibility criteria

150

J. Cybersecur. Priv. 2022, 2

and were excluded. Thus, 16 publications ultimately fulfilled the eligibility criteria for this
review. Figure 2 illustrates the methodology and results of the review process.

Figure 2. Flow diagram depicting the systematic review strategy.

2.4. Review Outcome

There are two types of contactless fingerprint capturing techniques: 2D and 3D. Smart-
phones and digital cameras can take 2D and 3D photos [17,39]; 3D contactless fingerprints
can also be acquired with photometric stereo-based cameras [39], 3D fingerprint recon-
struction, structured light-scanning-based 3D fingerprint reconstruction, etc. [40–47]. The
general biometric workflow of a contactless fingerprint recognition system is described in
Figure 3.

Figure 3. Overview of the sub-systems of a generic contactless fingerprint recognition system [10].

151

J. Cybersecur. Priv. 2022, 2

3. Contactless Fingerprint Capturing Methods

3.1. 2D Contactless Fingerprint Capturing Methods

During a contactless fingerprint capture, one or multiple fingers are presented to an
optical device like a camera or lens. These devices can be (a) prototype hardware designs
developed by researchers or (b) general-purpose devices customized to meet the unique
needs for contactless fingerprint recognition [48].

Smartphone-based image acquisition is one of the widely available techniques to
capture 2D contactless finger photos [4]. The NIST [17] published a document to assess
contactless fingerprint capturing methods; the document provides proper instructions
for contactless fingerprint capturing devices. It describes the smartphone’s uniform light
lighting, backdrop segmentation, and motion reduction during capture. Multi-finger
capturing techniques can also be used with smartphones [49]. The advantage of multi-
finger capture is the efficiency since feature extraction of all five fingers can occur from
one single image [50]. To evaluate the performance of Nokia N95 and HTC Desire mobile
phone for this, 1320 fingerprints were captured. A flashlight-enabled phone was used for
appropriate illumination and to cover the entire finger area. However, the image quality
was reported to be poor, as a flashlight performs well only in a dark setting [22]. To improve
image quality and to reduce camera noise, dark environments might play a very important
role. Auto-focus and maintenance of a standard distance from hand to phone may also
be useful strategies. Figure 4 shows the identical distance and illumination from hand
to phone.

Figure 4. Homogeneous distance illumination with auto focus capturing by smartphone.

Figure 5 illustrates the impressions of a fingerprint taken with a contact-based finger-
print device (Figure 5a) and the corresponding finger image acquired using a non-contact
device (Galaxy S8). (Figure 5b). The contact-based fingerprint can directly be used for
finding feature such as: ridge, valley, delta cores, minutiae etc., whereas the corresponding
contactless fingerprint image would need additional processing.

(a) (b)

Figure 5. (a) Contact-based fingerprint, (b) contactless fingerprint (Samsung Galaxy S8) [15].

152

J. Cybersecur. Priv. 2022, 2

A digital camera is another tool to capture contactless 2D finger photos. The main
feature of this system is white-color- and LED-color-based image sensors [10]. A three-
camera-based system with blue LED is much more comfortable than a white LED for the
user to acquire fingerprints. The charge-coupled camera device emits a green LED, and
there is a stepper motor with a mirror that can capture five fingers at a time, making it
convenient [11].

3.2. 3D Contactless Fingerprint Capturing Methods

Researchers have used lab-developed prototypes of the 3D fingerprint capture ap-
proach, which requires (i) photometric stereo techniques, (ii) structured light scanning,
and (iii) stereo vision [51]. The photometric stereo-based 3D fingerprint method captures
multiple 2D images under heterogeneous illumination using a high-speed camera. Time-of-
flight (ToF) is the main principle of this technique, where surface reflectance is measured
from fingerprint to light source [52]. This system is low-cost because it uses only one
high-speed camera and multiple LEDs. Figure 6 shows the capturing method with camera
and finger position.

Figure 6. Acquisition of 3D fingerprint using photometric stereo techniques [39].

The structured light-scanning method consists of several high-speed cameras and
a digital light-processing projector [53,54]. During the capture process, multiple 2D fin-
gerprint images are captured under pattern illuminations, and 3D depth information
is calculated through triangulation according to the point correspondences between im-
ages [55]. This method can recover ridge-valley details and achieve relatively accurate 3D
depth information. However, the hardware system is expensive and bulky [39].

The stereo-vision-based 3D contactless fingerprint method is usually comprised of
two or more cameras [51,56,57]. During the capture process, 2D fingerprint images are
captured from different views. The 3D fingerprints are reconstructed by calculating 3D
depth information between corresponding points according to the triangulation principle.
The advantage is that the systems are simple, low-cost, and relatively compact. However,
current methods are usually time-consuming because of the extensive computation of the
correspondences between pixel points [58]. Table 2 shows the 2D and 3D capturing devices
and their approximate cost, with light environment, etc.

153

J. Cybersecur. Priv. 2022, 2

Table 2. Overview of contactless 2D and 3D capturing devices and their properties.

Capturing Device Authors Cost Light Environment Finger Type

Mobile Phone (2D) Lee et al. [19] Low cost No extra illumination Single Finger

Digital Camera (2D) Hiew et al. [59] Low cost Table lamp illumination Single Finger

Digital Camera (2D) Genovese et al. [60] Medium cost Green Light illumination Finger slap

Webcam (2D) Piuri et al. [61] Low cost Different illumination (white light,
no light) Single Finger

Webcam Kumar and Zhou [9] Low cost No illumination Finger slap

Smartphone (2D) Derawi et al. [18] Low cost No illumination Finger slap

Smartphone (2D) Canrey et al. [49] Low cost Screen guidance. If flash required
(Y/N) Finger slap

Smartphone (2D) Deb et al. [61] Medium cost 3 smartphones in different
illumination Thumb and index finger

Smartphone (3D) Xie et al. [51] Medium cost 2 cameras with depth information Finger slap

4. Classical Method to Extract Features from Contactless Fingerprints

The basic steps for contactless fingerprint recognition pipeline are shown in Figure 7
as a flowchart:

Figure 7. The fundamental steps for contactless fingerprint recognition from input to (a) preprocess
the images; (b) Feature extraction (c) Dimension reduction; and (d) classified the person.

Most of the contact-based fingerprint images captured from the devices are grayscale
and ready for feature extraction [62]. In contrast, most contactless finger-imaging solutions
provide color RGB images that require preprocessing before feature extraction [63]. The
primary challenges of preprocessing contactless finger images and recommended methods
to overcome these challenges are shown in Table 3.

Table 3. Overview of challenges during the preprocessing of contactless finger images and pro-
posed approaches.

Challenge Authors Year Approach

Finger Segmentation Wang et al. [62] 2017 Hand color estimation in YCbCr

Rotated pitched principal orientation
estimation Zaghetto et al. [9] 2015 Artificial neural network

Low contrast Wang et al. [62] 2016 CLAHE and extensions

Distance to the sensor, ridge line frequency Zaghetto et al [9] 2017 Frequency map, sensor-finger distance
approximation

Core/principal singular point detection Labati et al. [64] 2010 Poincare-based ridge orientation analysis

Deformation correction Lin et al. [11] 2018 Robust thin-plate splines, deformation correction
model

154

J. Cybersecur. Priv. 2022, 2

When processed with the classical methods, both contactless 2D and 3D images have
issues with low focus of ridge/valley and blurred ROI (background) [57]. Misplaced or
rotated fingers and the lack of skin deformation also cause processing issues [65]. An
image processing pipeline must be developed based on the selected equipment and the
environmental conditions needed during the image acquisition process. Image processing
begins with the following common preprocessing steps:

Finger Segmentation and Detection: The initial step is to detect the finger based
on color and shape. Sharpness, shape, color contrast, and image depth information are
four different categories for improving contactless 2D and 3D finger detection and image
segmentation [13]. Sharpness-based strategies utilize the difference between the focused,
blurred background and the sharp finger area. This effect works best with images obtained
with a very small finger-to-sensor distance and a wide-open aperture. One experiment
showed that the variance-modified Laplacian of Gaussian (VMLOG) algorithm is best
suited for contactless 2D fingerprint-capturing devices [10,66,67]. All finger shapes, from
thumb to little finger, are highly similar for all finger position codes. A machine-learning-
based algorithm has been applied to a binarized image in the LUV color model [10]. To
make the skin color contrast and segment the skin and background color, the analysis
of the YCbCr color space represents a very vital approach [64,68]. A different method of
image segmentation and image depth information approach combined an RGB image via
a smartphone [69]. These were able to extract the finger slap (the four fingers except the
thumb) from busy backgrounds for further processing.

Minutiae-Based Feature Extraction: One of the main conditions for pre-processed
contactless fingerprints is that images must be converted from RGB to greyscale [70]. Thus,
ROI such as minutiae, ridge valley extraction, and finger orientation estimation must
also be handled with a machine-learning approach. After detecting the finger, the ROI
must be extracted, which involves the normalization of width, height, and resolution.
This 3D contactless fingerprint preprocessing stage implies an extracted finger image as
input. It should be noted that finger detection and ROI extraction are done in output. The
color-based segmentation of ROI extraction constrained setups depends on contactless
3D finger geometry [10]. Several operations used the ridge–line orientation and shape to
detect the core point [71]. Using a support vector machine (SVM) [72], it is easy to classify
minutiae-based fingerprints and to detect the minutiae points as the detection points to
refer to as a category [73]. SVM can determine the image quality with five feature vector
lengths such as gray mean, gray variance, contrast, coherence, and the main energy ratio.
These features take much training time to implement.

Fingerprint Image Enhancement: To improve image contrast and sharpness, image
enhancement techniques such as spatial domain techniques and frequency domain tech-
niques can be used to improve the quality [74,75]. Finger image enhancement should result
in a fingerprint image with uniform illumination. Three different methods to achieve this
appeared in the literature: a normalization using mean and variance filters [30], histogram
enhancements like contrast-limited adaptive histogram equalization (CLAHE) [76], and
local binary patterns (LBP) for enhancing the ridge–valley contrast of the 2D contactless
fingerprint system [77]. Reducing the blurred image from the original image is another chal-
lenge in contactless 3D fingerprint enhancement [14]. A combination of image-processing
algorithms and machine learning for extracting sweat pores of fingerprint patterns level-3
has been proposed by Genovese et al. [78].

5. Analyzing the Deep Neural Networks Methods Proposed for the Contactless
Fingerprint Recognition Systems

Simple convolutional and pooling layers were utilized to create deep-learning models
in many articles, but a multi-task fully convolutional network was used in three of them.
The architecture for the multi-task deep convolutional network is shown in Figure 8.

155

J. Cybersecur. Priv. 2022, 2

Figure 8. An architecture of multi-task deep convolutional networks [79].

Matching the contactless fingerprint with a traditional contact-based fingerprint using
deep learning is a new domain in biometrics research. In order to recognize contactless
fingerprints, this paper [67] described a convolutional neural network (CNN) framework.
The convolutional and pooling layers are the two main layers of the algorithm. The
convolutional layers were used to execute low-level features such as edges, corners, etc.
Pooling layers enabled correct operations such as reducing the dimension of feature maps.
Ten images were provided to the CNN model as an input batch for training. A training
accuracy of 100 percent was attained after four iterations. At 95 percent of testing accuracy,
140 out of 275 images were used for testing purpose.

A fully convolutional network was applied for minutiae detection and extraction
in [79]. The minute point and its corresponding direction were processed and analyzed
using contactless grayscale fingerprint images from two different public datasets [12,80].
Images were assessed online after being trained offline. A full-sized contactless fingerprint
from two different datasets (9000, 6000) was applied as an input and its corresponding
minute ground truth was indicated as an output in the offline portion. In conjunction
with a novel loss function, this method concurrently learns the minutiae detection and
orientation. One of the main claims of this study is that a multi-task technique outperforms
any single minutiae detection task. An hourglass-shaped encoder–decoder network [81]
structure was applied for a multi-task deep neural network called ContactlessMinuNet
architecture [79]. To process the input fingerprint images, a shared encoder subnetwork
was used. For up-sampling, the subnetwork was decoded to expand the image. Lastly, the
network split into two branches for minutiae detection and direction computation.

Minutiae point detection branch: In this network [79], the input feature represents
the detection of minutiae points, and the output represents the probability of each pixel’s
minutiae points. The network is very simple, with a 1 × 1 convolutional layer, a batch
normalization layer that standardizes the input layer, and a sigmoid layer. A non-linear
activation function sigmoid layer is used to generate minutiae location.

Minutiae direction regression branch: This network [79] is designed to predict the
minutiae direction. Pixel-by-pixel images were extracted with a phase angle �i € (0,2π). The
subnetwork works as input features, and the output layer predicts minutiae direction. A
convolutional layer (1 × 1), batch normalization, and non-linear activation function tanh
layer were used to predict the minutiae path.

Using 3 × 3 CNN layers, the final convolution has been used with (stride = 1) and
padding to keep the height and width constant. For testing, the proposed method was
compared with the benchmark dataset of the PolyU dataset [12]. The accuracy of minutiae
detection and its location increased to 94.10% compared to 89.61%. The proposed method
of this study is shown in Figure 9.

156

J. Cybersecur. Priv. 2022, 2

Figure 9. Overview of the minutiae extraction algorithm for contactless fingerprints based on multi-
task fully deep convolutional neural network [2].

A study reported in [82] suggested how to extract a minutiae point from an input image
without preprocessing. To train the model and obtain the output without any preprocessing,
a number of deep neural networks have been deployed. Initially, JudgeNet was trained to
locate the minutiae regions and picked a general overview of detecting minutiae points.
The original image resolution was 640 × 640 and 500 ppi with 200 labeled images. A max
pooling was used to reduce the image dimensions, and it showed image dimensions of
45 × 65. Using multiscale input and four CNN layers, the network performed very well
to get the accurate output. Later, another deep CNN layer named LocalNet specifically
indicated the directions of minutiae with a more concise image dimension of 45 × 45 and
decided the specific location. Lastly, a comprehensive estimation and decision were made
to add or eliminate the minutiae location. The overview of the network architecture is
shown in Figure 10.

Figure 10. JudgeNet and LocalNet share a similar convolutional architecture [82].

A method was proposed [83] to get the proper position of the contactless fingerprint
of multi-view 3D fingerprint features using CNN. A fully convolutional network (FCN)
was applied with this model for automatic fingerprint segmentation and three Siamese
networks for fingerprint multi-view. Various convolutional neural network models such
as VGG net [31], AlexNet [84], and GoogleNet [85] are introduced in this work. These
architectures are very well-trained pixel-to-pixel deep networks. For foreground and
background segmentation, semantic segmentation architecture was applied. This model
clusters the same image together with a different class. To predict each pixel from the
top-view of the fingerprint, they used the softmax loss function. The Siamese convolutional

157

J. Cybersecur. Priv. 2022, 2

network worked very well to match image pairs (matched and unmatched) in the same
network. Three Siamese networks indicated the positions: top view, side 1 view, side 2
view. The network is structured with six convolutional layers with one fully connected
layer. One to five layers are followed by max-pooling, where the input patch size was
256 × 192.

The kernel size was 3 × 3 with stride value 2. The output numbers from the feature
map were 64, 96, 128, 256, and 512, generated from the 48-feature map in the first convolu-
tional layer. The final result was presented in the receiving operating characteristic (ROC)
curve and the equal error rate (EER) curve to evaluate performance. Using computing
matching scores from CNN-based features and minutiae-based features, another Siamese
convolutional neural network was applied to extract the global feature from a finger photo.
They mentioned that fingerprint images have many global features that ease extraction of
the features using CNN. Using an input image size of 310 × 240, the first convolutional
layer was introduced with a kernel size of 3 × 3 with batch normalization. By evaluating
the ROC curve and EER curve, they showed the estimation of EER; minutiae matching rate
was 11.39% and 4.09%, respectively. Figure 11 shows how a fully convolutional network
segments the fingerprint background and directs the capturing methods of multi-view with
deep representation:

Figure 11. Automatic learning of 3D fingerprint features via deep representation [86].

A CNN-based framework has been applied [78] to make an accurate comparison
between contactless fingerprints and contact-based fingerprints. Minutiae points, ridge
maps, and specific regions are the targeted metrics to establish the comparison [83]. A
multi-Siamese network was used to train and learn the minutiae features. As the image
dataset was collected from different sensors, a CNN-based cross-comparison framework
was used to compare contactless and contact-based fingerprints. Figure 12 shows the
deep-feature representation generation process:

A data augmentation process was used in 5780 contactless and contact-based images
from 320 fingers [78]; 3840 images were used in the training set while the rest were used for
testing purposes. The image size remained 192 × 192 in every image. A public dataset was
used to determine the performance and to compare and validate the dataset. The dataset
contains 1500 fingers data with 3000 contactless fingerprint samples. For the performance
metrics and evaluation, the ROC method (receiver operating characteristics) and EER
(equal error rate) were used. To obtain the fingerprint recognition, CMC (cumulative
match characteristics) and rank-one accuracy methods were applied. The comparative
experimental evaluations are shown in Table 4. Also, in Table 5 shows the total summary
of the described articles of deep learning in Section 5.

158

J. Cybersecur. Priv. 2022, 2

Figure 12. Deep-feature representation generation process using three multi-Siamese networks [83].

Table 4. Experimental evaluation of two datasets.

Experiments Equal Error Rate (ERR) Rank-One Accuracy

Deformation correction model [87] on
dataset A 16.17% 41.82%

Minutiae matcher in NIST [88] on dataset A 43.83% 10.99%

Proposed method on dataset A 7.93% 64.59%

Deformation correction model [87] on
dataset B 21.60% 38.90%

Minutiae matcher in NIST [88] on dataset B 38.01% 24.92%

Proposed method on dataset B 7.11% 58.87%

Table 5. The following table describes the summary of the analysis.

Study Database Training Data
Purpose of Deep

Learning
Input to Deep

Neural Network
Output from Deep
Neural Network

Performance
Metrics

[67] Private
275 images with

55 different
people

Fingerprint
Recognition

RGB to Gray
scale images Feature matching

Classification
(Metric

Accuracy)

[78] Public 5760 images
from 320 fingers

Minutiae
Extraction Gray scale images Extracted minutiae

images AUC, EER

[79] Private + Public 9000/6000/
1320 images

Multiview
fingerprint
recognition

Gray scale images
Feature (Ridge,

valley)
representation

EER

[80] Public 100 images Minutiae
Extraction Gray scale images Extracted Minutiae

images

Classification
(Metric

Accuracy)

[82] Private + Public 500 images

CNN based
framework for

Contactless
fingerprint

HSV images
Similarity distance

between two
images

ROC curve

[83] Public 9920 images
To correct
fingerprint
viewpoint

Gray scale images Correct images ROC and CMC
curve

159

J. Cybersecur. Priv. 2022, 2

6. Discussion

This review is intended to provide a systematic survey of the deep-learning approaches
employed for contactless fingerprint processing. The review surveyed eight full-text sci-
entific research articles showing how deep learning can replace machine learning in con-
tactless fingerprint contexts. This review was focused on three major research questions:
the contactless finger photo capturing method, the classical approach of fingerprint recog-
nition, and the use of deep learning. The first research question shows the direction of
the different capturing methods and various camera sensors. This analysis might help
researchers to understand divergent capturing methods and their limitations. Also, they
might be motivated to employ smartphone-based finger photo capturing. In the second
research question, we explained how classical machine-learning techniques have been
introduced into contactless fingerprint recognition methods. This review covered feature
extraction, image segmentation, and blur reduction; however, systems like data acquisition,
data cleaning, data labeling, etc. were beyond the scope of this review.

The main contribution of this paper is the review of the use of deep learning, specifi-
cally, its impact and usability in the field of contactless fingerprints. We have discussed how
a contactless recognition system can benefit from using deep learning. In addition, we have
also pointed out potential vulnerabilities in classical methods and shown the applicability
of deep learning to real-world applications. Research Question 3 shows that the following
factors can impact the research of contactless fingerprint recognition systems:

Feature learning: Deep-learning methods have an advantage over previous state-
of-the-art methods because they can learn features from data. Contactless fingerprint
recognition systems require both local and global features [89] and are compatible with
hierarchical and structural feature learning enabled by deep learning [90]. In addition to
processing and labeling with the handcrafting data, some tools like labelme and image-
label will be difficult in most cases. Therefore, deep learning can assist in preprocessing or
extraction of the features of fingerprint images. The learned features can be generalized
to previously unseen datasets and other related tasks (for example, features learned for
contactless fingerprint recognition can also be used for fingerprint attribute estimation,
e.g., ridge, minutiae pattern). In addition, pre-training improves feature-learning by large
amounts of unlabeled data when using smaller training datasets.

Concentration on Identification: Authentication and recognition have been the pri-
mary focus of deep-learning research in the contactless fingerprint context. Authentication
is a comparably easy problem and estimates well for a large number of subjects. However,
the more challenging part is the identification problem. The biometric system needs to
distinguish between potentially millions of identities for large-scale identification. This
system requires complex deep-learning architectures to capture definite interclass differ-
ences and handle large intra-class variability. Consequently, much training data would be
required to capture these variations.

Large-scale datasets: Though deep-learning approaches have already exceeded human
performance on some in-the-wild, large-scale datasets, these datasets do not meet the
requirements of real-world, high-security applications. In addition, there is a lack of large-
scale datasets for contactless fingerprint modalities in biometrics to benefit from deep
learning. Even if large datasets are available, each individual needs to have sufficient
representative samples to consider for various influencing factors.

Dataset quality: Existing fingerprint recognition datasets are mostly gathered from the
public dataset. It is important to use large-scale datasets that capture real-world variations
for biometrics to benefit from deep learning, especially in the contactless fingerprint area.

Computing resources: Along with the increased use of mobile devices, secure authen-
tication commercial devices have become necessary modern technologies. However, if
complex deep-learning architectures are required for authentication, such devices might
not have the necessary computing resources for storing the dataset. A cloud-based system
could be a solution for restoring the data collected from those devices.

160

J. Cybersecur. Priv. 2022, 2

Training deep-learning models with proper computing resources: The success of deep
learning has been largely demonstrated by industries with access to large amounts of data
and computational resources. For most other researchers, computing resources are limited,
and it is imperative to speed up the training of deep-learning approaches. We need to strive
for data-efficient learning algorithms.

7. Conclusions

This review focused on three major research questions: the contactless finger photo
capturing method, the classical approach to fingerprint recognition, and the use of deep
learning. Specifically, we have detailed deep-learning methods, as these methods have
shown development in contactless fingerprint recognition, though little has been explored.
The accuracy of contactless fingerprints is increasing day by day and they have facilitated a
new range of fingerprinting applications. They have increased the security system threats
with respect to terrorism and cyber-crime development. Commercial facilities, border
crossing areas, airports, and government access points are also employing contactless
fingerprint biometrics. Further, credit card account fraud, hijacking of websites, and most
importantly, the critical corruption of governmental agencies such as the Department of
Defense and the Department of Homeland Security require the development of systems
for which contactless fingerprint biometrics can be a solution. These deep-learning meth-
ods have demonstrated good generalization capability for different datasets. We have
summarized their architecture and implementation at various sub-stages, including pre-
processing, features extraction, classification, or matching. This study also covered the
possible drawbacks of deep-learning models.

In summary, deep-learning-based contactless 3D fingerprint identification systems
have shown enhanced usability, and soon they will be a widely used biometric performance
modality. Therefore, our future research will be focused on creating new or existing
deep-learning techniques to address certain upcoming contactless fingerprint challenges,
such as speeding up feature extraction, reducing the amount of time required to process
images, and improving identification accuracy. Additionally, other biometric characteristics
such as patterns in palmprints will be taken into consideration as applications of deep-
learning techniques.

Author Contributions: A.M.M.C. prepared the article and M.H.I. Supervised him. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that no conflict of interest.

References

1. Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Synthetic fingerprint generation. In Handbook of Fingerprint Recognition; Springer:
London, UK, 2009; pp. 271–302.

2. Choi, H.; Choi, K.; Kim, J. Mosaicing touchless and mirror-reflected fingerprint images. IEEE Trans. Inf. Forensics Secur. 2010, 5,
52–61. [CrossRef]

3. Song, Y.; Lee, C.; Kim, J. A new scheme for touchless fingerprint recognition system. In Proceedings of 2004 International
Symposium on Intelligent Signal Processing and Communication Systems, ISPACS, Seoul, Korea, 18–19 November 2004.

4. Kumar, A. Introduction to trends in fingerprint identification. In Contactless 3D Fingerprint Identification; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 1–15.

5. Oduah, U.I.; Kevin, I.F.; Oluwole, D.O.; Izunobi, J.U. Towards a high-precision contactless fingerprint scanner for biometric
authentication. Array 2021, 11, 100083. [CrossRef] [PubMed]

6. Stanton, B.C.; Stanton, B.C.; Theofanos, M.F.; Furman, S.M.; Grother, P.J. Usability Testing of a Contactless Fingerprint Device: Part 2;
US Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016.

161

J. Cybersecur. Priv. 2022, 2

7. Raghavendra, R.; Busch, C.; Yang, B. Scaling-robust fingerprint verification with smartphone camera in real-life scenarios. In
Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington,
VA, USA, 29 September–2 October 2013.

8. Mil’shtein, S.; Paradise, M.; Bustos, P.; Baier, M.; Foret, S.; Kunnil, V.O.; Northrup, J. Contactless challenges. Biom. Technol. Today
2011, 2011, 10–11. [CrossRef]

9. Kumar, A.; Zhou, Y. Contactless fingerprint identification using level zero features. In Proceedings of the IEEE CVPR 2011
Workshops, Colorado Springs, CO, USA, 20–25 June 2011.

10. Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C.; Margraf, M. An overview of touchless 2D fingerprint recognition. EURASIP J.
Image Video Process. 2021, 2021, 1–28. [CrossRef]

11. Noh, D.; Choi, H.; Kim, J. Touchless sensor capturing five fingerprint images by one rotating camera. Opt. Eng. 2011, 50, 113202.
[CrossRef]

12. Lin, C.; Kumar, A. Matching contactless and contact-based conventional fingerprint images for biometrics identification. IEEE
Trans. Image Process. 2018, 27, 2008–2021. [CrossRef]

13. Wang, Y.; Hassebrook, L.G.; Lau, D.L. Data acquisition and processing of 3-D fingerprints. IEEE Trans. Inf. Forensics Secur. 2010, 5,
750–760. [CrossRef]

14. Tang, Y.; Jiang, L.; Hou, Y.; Wang, R. Contactless fingerprint image enhancement algorithm based on Hessian matrix and
STFT. In Proceedings of the 2017 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China,
17–19 March 2017.

15. Dharavath, K.; Talukdar, F.A.; Laskar, R.H. Study on biometric authentication systems, challenges and future trends: A review. In
Proceedings of the 2013 IEEE International Conference on Computational Intelligence and Computing Research, Enathi, India,
26–28 December 2013.

16. Parziale, G.; Chen, Y. Advanced technologies for touchless fingerprint recognition. In Handbook of Remote Biometrics; Springer:
London, UK, 2009; pp. 83–109.

17. Libert, J.; Grantham, J.; Bandini, B.; Wood, S.; Garris, M.; Ko, K.; Byers, F.; Watson, C. Guidance for evaluating contactless
fingerprint acquisition devices. NIST Spec. Publ. 2018, 500, 305.

18. Derawi, M.O.; Yang, B.; Busch, C. Fingerprint recognition with embedded cameras on mobile phones. In Proceedings of the
International Conference on Security and Privacy in Mobile Information and Communication Systems; Springer: Berlin/Heidelberg,
Germany, 2011.

19. Lee, C.; Lee, S.; Kim, J.; Kim, S.J. Preprocessing of a fingerprint image captured with a mobile camera. In International Conference
on Biometrics; Springer: Berlin/Heidelberg, Germany, 2006.

20. Su, Q.; Tian, J.; Chen, X.; Yang, X. A fingerprint authentication system based on mobile phone. In International Conference on
Audio-and Video-Based Biometric Person Authentication; Springer: Berlin/Heidelberg, Germany, 2005.

21. Agarwal, A.; Singh, R.; Vatsa, M. Fingerprint sensor classification via mélange of handcrafted features. In Proceedings of the 2016
23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016.

22. Zhao, Q.; Jain, A.; Abramovich, G. 3D to 2D fingerprints: Unrolling and distortion correction. In Proceedings of the 2011
International Joint Conference on Biometrics (IJCB), Washington, DC, USA, 11–13 October 2011.

23. Drahansky, M.; Dolezel, M.; Urbanek, J.; Brezinova, E.; Kim, T.H. Influence of skin diseases on fingerprint recognition. J. Biomed.
Biotechnol. 2012, 2012, 626148. [CrossRef]

24. Pillai, A.; Mil’shtein, S. Can contactless fingerprints be compared to existing database? In Proceedings of the 2012 IEEE Conference
on Technologies for Homeland Security (HST), Waltham, MA, USA, 13–15 November 2012.

25. ISO/IEC 2382-37; Biometrics, I.I.J.S. 2017 Information Technology-Vocabulary-Part 37: Biometrics. International Organization for
Standardization: Geneva, Switzerland, 2017.

26. Yin, X.; Zhu, Y.; Hu, J. A Survey on 2D and 3D Contactless Fingerprint Biometrics: A Taxonomy, Review, and Future Directions.
IEEE Open J. Comput. Soc. 2021, 2, 370–381. [CrossRef]

27. Shafaei, S.; Inanc, T.; Hassebrook, L.G. A new approach to unwrap a 3-D fingerprint to a 2-D rolled equivalent fingerprint. In
Proceedings of the 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC,
USA, 28–30 September 2009.

28. Affonso, C.; Rossi, A.L.D.; Vieira, F.H.A.; de Leon Ferreira, A.C.P. Deep learning for biological image classification. Expert Syst.
Appl. 2017, 85, 114–122. [CrossRef]

29. Cai, L.; Gao, J.; Zhao, D. A review of the application of deep learning in medical image classification and segmentation. Ann.
Transl. Med. 2020, 8, 713. [CrossRef] [PubMed]

30. Wu, M.; Chen, L. Image recognition based on deep learning. In Proceedings of the 2015 IEEE Chinese Automation Congress
(CAC), Wuhan, China, 27–29 November 2015.

31. Pak, M.; Kim, S. A review of deep learning in image recognition. In Proceedings of the 2017 4th International Conference on
Computer Applications and Information Processing Technology (CAIPT), Kuta Bali, Indonesia, 8–10 August 2017.

32. Wu, R.; Yan, S.; Shan, Y.; Dang, Q.; Sun, G. Deep image: Scaling up image recognition. arXiv 2015, arXiv:1501.02876.
33. Li, Y. Research and application of deep learning in image recognition. In Proceedings of the 2022 IEEE 2nd International

Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 21–23 January 2022.

162

J. Cybersecur. Priv. 2022, 2

34. Jia, X. Image recognition method based on deep learning. In Proceedings of the 2017 29th Chinese Control and Decision
Conference (CCDC), Chongqing, China, 28–30 May 2017.

35. Cheng, F.; Zhang, H.; Fan, W.; Harris, B. Image recognition technology based on deep learning. Wirel. Per. Commun. 2018, 102,
1917–1933. [CrossRef]

36. Coates, A.; Ng, A.Y. Learning feature representations with k-means. In Neural Networks: Tricks of the Trade; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 561–580.

37. Zhong, G.; Wang, L.N.; Ling, X.; Dong, J. An overview on data representation learning: From traditional feature learning to recent
deep learning. J. Financ. Data Sci. 2016, 2, 265–278. [CrossRef]

38. Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometrics recognition using deep learning: A survey. arXiv
2019, arXiv:1912.00271.

39. Kumar, A. Contactless 3D Fingerprint Identification; Springer: Cham, Switzerland, 2018.
40. Jia, W.; Yi, W.J.; Saniie, J.; Oruklu, E. 3D image reconstruction and human body tracking using stereo vision and Kinect

technology. In Proceedings of the 2012 IEEE International Conference on Electro/Information Technology, Indianapolis, IN, USA,
6–8 May 2012.

41. Yin, X.; Zhu, Y.; Hu, J. 3D fingerprint recognition based on ridge-valley-guided 3D reconstruction and 3D topology polymer
feature extraction. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1085–1091. [CrossRef]

42. Song, P.; Yu, H.; Winkler, S. Vision-based 3D finger interactions for mixed reality games with physics simulation. In Proceedings
of the 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, Singapore,
8–9 December 2008.

43. Liu, F.; Zhang, D. 3D fingerprint reconstruction system using feature correspondences and prior estimated finger model. Pattern
Recognit. 2014, 47, 178–193. [CrossRef]

44. Liu, F.; Zhang, D.; Shen, L. Study on novel curvature features for 3D fingerprint recognition. Neurocomputing 2015, 168, 599–608.
[CrossRef]

45. Nayar, S.K.; Gupta, M. Diffuse structured light. In Proceedings of the 2012 IEEE International Conference on Computational
Photography (ICCP), Seattle, WA, USA, 28–29 April 2012.

46. Zhang, L.; Curless, B.; Seitz, S.M. Rapid shape acquisition using color structured light and multi-pass dynamic programming. In
Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission, Padova, Italy, 19–21
June 2002.

47. Kumar, A.; Kwong, C. Towards contactless, low-cost and accurate 3D fingerprint identification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013.

48. Parziale, G. Touchless fingerprinting technology. In Advances in Biometrics; Springer: London, UK, 2008; pp. 25–48.
49. Carney, L.A.; Kane, J.; Mather, J.F.; Othman, A.; Simpson, A.G.; Tavanai, A.; Tyson, R.A.; Xue, Y. A multi-finger touchless

fingerprinting system: Mobile fingerphoto and legacy database interoperability. In Proceedings of the 2017 4th International
Conference on Biomedical and Bioinformatics Engineering, Seoul, Korea, 12–14 November 2017.

50. Rilvan, M.A.; Chao, J.; Hossain, M.S. Capacitive swipe gesture based smartphone user authentication and identification. In
Proceedings of the 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), Victoria,
BC, Canada, 24–29 August 2020.

51. Xie, W.; Song, Z.; Chung, R.C. Real-time three-dimensional fingerprint acquisition via a new photometric stereo means. Opt. Eng.
2013, 52, 103103. [CrossRef]

52. Zhang, D.; Lu, G. 3D biometrics technologies and systems. In 3D Biometrics; Springer: New York, NY, USA, 2013; pp. 19–33.
53. Jecić, S.; Drvar, N. The assessment of structured light and laser scanning methods in 3D shape measurements. In Proceedings of

the 4th International Congress of Croatian Society of Mechanics, Bizovac, Croatia, 18–20 September 2003.
54. Bell, T.; Li, B.; Zhang, S. Structured light techniques and applications. In Wiley Encyclopedia of Electrical and Electronics Engineering;

John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 1–24.
55. Salih, Y.; Malik, A.S. Depth and geometry from a single 2D image using triangulation. In Proceedings of the 2012 IEEE

International Conference on Multimedia and Expo Workshops, Melbourne, Australia, 9–13 July 2012.
56. Labati, R.D.; Genovese, A.; Piuri, V.; Scotti, F. Toward unconstrained fingerprint recognition: A fully touchless 3-D system based

on two views on the move. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 202–219. [CrossRef]
57. Liu, F.; Zhang, D.; Song, C.; Lu, G. Touchless multiview fingerprint acquisition and mosaicking. IEEE Trans. Instrum. Meas. 2013,

62, 2492–2502. [CrossRef]
58. Sero, D.; Garachon, I.; Hermens, E.; Liere, R.V.; Batenburg, K.J. The study of three-dimensional fingerprint recognition in cultural

heritage: Trends and challenges. J. Comput. Cult. Herit. 2021, 14, 1–20. [CrossRef]
59. Genovese, A.; Munoz, E.; Piuri, V.; Scotti, F.; Sforza, G. Towards touchless pore fingerprint biometrics: A neural approach. In

Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016.
60. Piuri, V.; Scotti, F. Fingerprint biometrics via low-cost sensors and webcams. In Proceedings of the 2008 IEEE Second International

Conference on Biometrics: Theory, Applications and Systems, Washington, DC, USA, 29 September–1 October 2008.
61. Deb, D.; Chugh, T.; Engelsma, J.; Cao, K.; Nain, N.; Kendall, J.; Jain, A.K. Matching fingerphotos to slap fingerprint images. arXiv

2018, arXiv:1804.08122.

163

J. Cybersecur. Priv. 2022, 2

62. Priesnitz, J.; Huesmann, R.; Rathgeb, C.; Buchmann, N.; Busch, C. Mobile contactless fingerprint recognition: Implementation,
performance and usability aspects. Sensors 2022, 22, 792. [CrossRef] [PubMed]

63. Wang, K.; Jiang, J.; Cao, Y.; Xing, X.; Zhang, R. Preprocessing algorithm research of touchless fingerprint feature extraction and
matching. In Chinese Conference on Pattern Recognition; Springer: Singapore, 2016.

64. Liu, K.; Gong, D.; Meng, F.; Chen, H.; Wang, G.G. Gesture segmentation based on a two-phase estimation of distribution algorithm.
Inf. Sci. 2017, 394, 88–105. [CrossRef]

65. Bhattacharyya, D.; Ranjan, R.; Alisherov, F.; Choi, M. Biometric authentication: A review. Int. J. u- e-Serv. Sci. Technol. 2009, 2,
13–28.

66. Khalil, M.S.; Wan, F.K. A review of fingerprint pre-processing using a mobile phone. In Proceedings of the 2012 International
Conference on Wavelet Analysis and Pattern Recognition, Xi’an, China, 15–17 July 2012.

67. Khalil, M.S.; Kurniawan, F.; Saleem, K. Authentication of fingerprint biometrics acquired using a cellphone camera: A review. Int.
J. Wavelets Multiresolut. Inf. Process. 2013, 11, 1350033. [CrossRef]

68. Kaur, A.; Kranthi, B. Comparison between YCbCr color space and CIELab color space for skin color segmentation. Int. J. Appl. Inf.
Syst. 2012, 3, 30–33.

69. Tassis, L.M.; de Souza, J.E.T.; Krohling, R.A. A deep learning approach combining instance and semantic segmentation to identify
diseases and pests of coffee leaves from in-field images. Comput. Electron. Agric. 2021, 186, 106191. [CrossRef]

70. Priesnitz, J.; Rathgeb, C.; Buchmann, N.; Busch, C. Touchless fingerprint sample quality: Prerequisites for the applicability of
NFIQ2. 0. In Proceedings of the 2020 International Conference of the Biometrics Special Interest Group (BIOSIG), Darmstadt,
Germany, 16–18 September 2020.

71. Chinnappan, C.; Porkodi, R. Fingerprint Recognition Technology Using Deep Learning: A Review. SSRN Electron. J. 2021, 9,
4647–4663.

72. Wu, Q.; Zhou, D.-X. Analysis of support vector machine classification. J. Comput. Anal. Appl. 2006, 8.
73. Zhang, Y. Support vector machine classification algorithm and its application. In International Conference on Information Computing

and Applications; Springer: Berlin/Heidelberg, Germany, 2012.
74. Gowri, D.S.; Amudha, T. A review on mammogram image enhancement techniques for breast cancer detection. In Proceedings of

the 2014 International Conference on Intelligent Computing Applications, Coimbatore, India, 6–7 March 2014.
75. Fenshia Singh, J.; Magudeeswaran, V. A machine learning approach for brain image enhancement and segmentation. Int. J.

Imaging Syst. Technol. 2017, 27, 311–316. [CrossRef]
76. Gragnaniello, D.; Poggi, G.; Sansone, C.; Verdoliva, L. Local contrast phase descriptor for fingerprint liveness detection. Pattern

Recognit. 2015, 48, 1050–1058. [CrossRef]
77. Hu, Z.; Li, D.; Isshiki, T.; Kunieda, H. Hybrid Minutiae Descriptor for Narrow Fingerprint Verification. IEICE Trans. Inf. Syst.

2017, 100, 546–555. [CrossRef]
78. Svoboda, J. Deep Learning for 3D Hand Biometric Systems; Università della Svizzera Italiana: Lugano, Switzerland, 2020.
79. Zhang, Z.; Liu, S.; Liu, M. A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction.

Pattern Recognit. 2021, 120, 108189. [CrossRef]
80. Zhou, W.; Hu, J.; Petersen, I.; Wang, S.; Bennamoun, M. A benchmark 3D fingerprint database. In Proceedings of the 2014 11th

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014.
81. Melekhov, I.; Ylioinas, J.; Kannala, J.; Rahtu, E. Image-based localization using hourglass networks. In Proceedings of the IEEE

International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017.
82. Jiang, L.; Zhao, T.; Bai, C.; Yong, A.; Wu, M. A direct fingerprint minutiae extraction approach based on convolutional neural

networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29
July 2016.

83. Lin, C.; Kumar, A. A CNN-based framework for comparison of contactless to contact-based fingerprints. IEEE Trans. Inf. Forensics
Secur. 2018, 14, 662–676. [CrossRef]

84. Yu, W.; Yang, K.; Bai, Y.; Xiao, T.; Yao, H.; Rui, Y. Visualizing and comparing AlexNet and VGG using deconvolutional layers. In
Proceedings of the 33rd International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016.

85. Ballester, P.; Araujo, R.M. On the performance of GoogLeNet and AlexNet applied to sketches. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Pelotas, Brazil, 21 February 2016.

86. Lin, C.; Kumar, A. Contactless and partial 3D fingerprint recognition using multi-view deep representation. Pattern Recognit.
2018, 83, 314–327. [CrossRef]

87. Lin, C.; Kumar, A. Improving cross sensor interoperability for fingerprint identification. In Proceedings of the 2016 23rd
International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016.

88. Watson, C.I.; Garris, M.D.; Tabassi, E.; Wilson, C.L.; McCabe, R.M.; Janet, S.; Ko, K. User’s Guide to NIST Biometric Image Software
(NBIS); NIST: Gaithersburg, MD, USA, 2007.

89. Tan, H.; Kumar, A. Minutiae attention network with reciprocal distance loss for contactless to contact-based fingerprint identifica-
tion. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3299–3311. [CrossRef]

90. Sundararajan, K.; Woodard, D.L. Deep learning for biometrics: A survey. ACM Comput. Surv. CSUR 2018, 51, 1–34. [CrossRef]

164

Citation: McRee, G.R. Improved

Detection and Response via

Optimized Alerts: Usability Study. J.

Cybersecur. Priv. 2022, 2, 379–401.

https://doi.org/10.3390/jcp2020020

Academic Editor: Sokratis Katsikas

Received: 5 April 2022

Accepted: 25 May 2022

Published: 31 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Improved Detection and Response via Optimized Alerts:
Usability Study

Griffith Russell McRee

Center for Cybersecurity Research and Analysis, Capitol Technology University, 11301 Springfield Road, Laurel,
MD 20708, USA; russ@holisticinfosec.io

Abstract: Security analysts working in the modern threat landscape face excessive events and alerts,
a high volume of false-positive alerts, significant time constraints, innovative adversaries, and a
staggering volume of unstructured data. Organizations thus risk data breach, loss of valuable human
resources, reputational damage, and impact to revenue when excessive security alert volume and
a lack of fidelity degrade detection services. This study examined tactics to reduce security data
fatigue, increase detection accuracy, and enhance security analysts’ experience using security alert
output generated via data science and machine learning models. The research determined if security
analysts utilizing this security alert data perceive a statistically significant difference in usability
between security alert output that is visualized versus that which is text-based. Security analysts
benefit two-fold: the efficiency of results derived at scale via ML models, with the additional benefit
of quality alert results derived from these same models. This quantitative, quasi-experimental,
explanatory study conveys survey research performed to understand security analysts’ perceptions
via the Technology Acceptance Model. The population studied was security analysts working in
a defender capacity, analyzing security monitoring data and alerts. The more specific sample was
security analysts and managers in Security Operation Center (SOC), Digital Forensic and Incident
Response (DFIR), Detection and Response Team (DART), and Threat Intelligence (TI) roles. Data
analysis indicated a significant difference in security analysts’ perception of usability in favor of
visualized alert output over text alert output. The study’s results showed how organizations can
more effectively combat external threats by emphasizing visual rather than textual alerts.

Keywords: user acceptance; user experience; security alert; detection; data science; visualization;
visual alert output; text alert output

1. Introduction

The compounding challenges for security analysts working in the modern threat
landscape include excessive events and alerts, a high volume of false-positive alerts, the
treatment of time as a critical resource, threat actor innovation, and a high volume of
unstructured data [1]. One solution is the use of data science and machine learning to relieve
pressure for security analysts, where models and automation can be deployed to ingest
and prioritize security event and threat data. Further, machine learning can enable pattern
and trend analysis to better identify adversarial behavior [1]. Most importantly, the way
the results of these data science (DS) and machine learning (ML) methods are presented to
security analysts can have a direct impact on performance and efficacy. Interactive security
data visualization via the likes of graph and timeline visualization are methods known to
be of benefit to security analysts [2]. This study specifically considered security analysts’
perceptions of usability and ease of use of security alert output from DS and ML methods.
This study’s findings provide useful data points for organizations seeking to improve the
working experience for security analysts with the hope of increasing organizational safety
and security.

J. Cybersecur. Priv. 2022, 2, 379–401. https://doi.org/10.3390/jcp2020020 https://www.mdpi.com/journal/jcp165

J. Cybersecur. Priv. 2022, 2

1.1. Background

Many organizations must deal with a high volume of security alert and event data
derived from security devices and detective capabilities [3]. A Dimensional Research study
found that these organizations face a large burden due to alert overload, where 99% of
security professionals surveyed acknowledge that high volumes of security alerts are prob-
lematic. The Dimensional Research study also determined that primary challenges include
many minor problems or noise (68%), wasted time chasing false positives (66%), team
members who feel overwhelmed (50%), excessive time spent triaging alerts (47%), and an
increased overall security risk (42%) [4]. Bartos found that one of the core issues an analyst
faces is the large number of alerts generated by numerous cybersecurity tools. When con-
sidering additional data received via various sharing and collaborative platforms, the issue
is further amplified. As such, for security analysts, data prioritization and summarization
are essential to reduce the excessive amount of information presented. Prioritization is
consistently identified as a core tenet of security incident handling in numerous studies [5].
A lack of prioritization can result in security data fatigue, analyst burnout, and ineffective
or insufficient incident response [6]. Organizations face increased risk and liability if their
capacity to respond to high-fidelity detections is reduced by excessive alert noise [7]. As in-
dicated by FireEye data, in organizations that receive 17,000 alerts weekly, more than 51% of
the alerts are false positives, and only 4% of the alerts are thoroughly investigated [8]. More
narrowly, Seals found that 80% of organizations who receive 500 or more severe/critical
alerts per day investigate fewer than 1% of them [9]. The issue is exacerbated by data
volumes. Oltsik reported that, as part of security operations, 38% of organizations collect,
process, and analyze more than 10 terabytes monthly. As of 2017, 28% of organizations
collect, process, and analyze substantially more data than in the two years prior, while
another 49% of organizations collect, process, and analyze somewhat more data today
than the two years prior [10]. A recent survey of 50 SOC professionals, Managed Security
Services Providers (MSSP), and Managed Detection and Response (MDR) providers evalu-
ated the state of incident response within SOCs and found numerous causes for concern.
Nearly half of respondents reported a false-positive rate of 50% or higher, which was so
high because security information and event management (SIEM) and incident response
tools are improperly tuned and alert on known-good activity, resulting in investigations
with a high rate of false positives [11]. Respondents reported that when their SOC had too
many alerts for analysts to process, 38% either turn off high-volume alerting features or
hire more analysts. Additionally, respondents felt that their main job responsibility was less
to analyze and remediate security threats and more to reduce alert investigation time or
the volume of alerts [11]. All of this results in significant security analyst turnover. A large
majority (80%) of respondents indicated that their SOC had experienced at least 10% analyst
turnover. The largest pool of respondents (45%) indicated a 10–25% turnover, and more
than a third (35%) lost a quarter or more of their SOC analysts in less than 12 months [11].
Slatman’s research focused on data-driven security operations and security analytics to
investigate and address the investigation challenges security analysts face [3]. The chal-
lenges are categorized into four main categories: an increasingly complex IT environment,
limited business alignment, ever-evolving adversaries and corresponding attacks, and
inadequate resources with respect to people and technology. The concept of data-driven
security operations is the seminal starting point for this research. A focus on data-driven
security operations addresses and enables discussions related to challenges that security
analysts face, as well as opportunities for improvements such as applied machine learning
and visualization.

The specific business problem is: organizations risk data breach, loss of valuable
human resources, reputation, and revenue due to excessive security alert volume and a lack
of fidelity in security event data. A Cloud Security Alliance survey illuminated the problem
further. With an average of two billion transactions a month at the average enterprise,
IT security professionals say that 40.4% of alerts received lack actionable intelligence to
investigate, and another 31.9% report ignored alerts due to false positives [12]. Chickowski

166

J. Cybersecur. Priv. 2022, 2

stated that as much as 25% of a security analyst’s time is spent processing false-positive
alerts, commonly erroneous security alerts or false indicators of confidence, before focusing
on true-positive findings. Every hour an analyst spends on the job, 15 min are wasted on
false positives, leading the typical organization to waste between 286 and 424 h per week on
false positives [13]. In addressing this problem, improving the efficiency of security analysts
can be helpful. In a survey that examines specific areas where high- and low-performing
SOCs diverge, with a focus on the challenges both groups struggle with, Ponemon found
key data points in the differences and similarities between the two classes of SOCs. Even
highly effective SOCs suffer from job-related stress affecting security analysts, where 55%
of respondents from high-performing SOCs rated their stress level as a 9 or 10 on a 10-point
scale. Twenty-two percent of survey respondents rated their SOC as ineffective, citing a lack
of visibility into the attack surface and a lack of timely remediation as the core factors [14].
To examine opportunities for increased efficiencies, this study used a survey questionnaire
based on the Technology Acceptance Model (TAM) to test for statistical differences between
security analysts’ responses regarding perception and usability of text-based alert output
(TAO) versus visualized alert output (VAO).

1.2. Research Purpose

The purpose of this quantitative, quasi-experimental, explanatory study was to deter-
mine if security analysts utilizing this security alert data perceive a statistically significant
difference in usability between security alert output that is visualized versus that which is
text-based. Prior studies have found that study participants using a visual analytics (VA)
interface performed better than those on the text-oriented interface and that the visual
analytic interface yielded performance that was quicker and more accurate than the text
interface [15]. This study built on these findings to assess security analysts’ preferences
specific to both usability and ease of use of security alert output from various models and
security data analytics.

1.3. Research Question

The research question that guided the proposed study was:

• Is there a difference in the level of acceptance of security alert output between those
with a preference for visual alert outputs (VAO) and those with a preference for text
alert outputs (TAO), with VAO and TAO generated via data science/machine learning
methods, as predicted by the TAM?

Sub-questions were:

• Does the adoption of VAO have a significant impact on the four individual TAM
components: perceived usefulness (PU), perceived ease of use (PEU), attitude toward
using (AU), and intention to use (IU)?

• Does the adoption of TAO have a significant impact on the four individual TAM
components: perceived usefulness (PU), perceived ease of use (PEU), attitude toward
using (AU), and intention to use (IU)?

1.4. Theoretical Framework

Figure 1 illustrates the theoretical framework by which the research question will be
explored.

The TAM asserts that the behavioral intention to use a system is determined by PU and
PEU [16]. PU is the extent to which a person believes that using the system will enhance his
or her job performance, while perceived ease of use (PEU) is the extent to which a person
believes that using the system will be effortless [17]. TAM additionally asserts that the
effects of external variables (system characteristics) on intention to use are mediated by PU
and PEU. Finally, PU is also influenced by PEU because the easier a system is to use, the
more useful it can be [18].

167

J. Cybersecur. Priv. 2022, 2

Figure 1. Theoretical Framework: Technology Acceptance Model. Adapted from “Perceived Useful-
ness, Perceived Ease of Use, and User Acceptance of Information Technology” [17].

Section 1 provided an overview of the study with the context and background for the
research problem and statement, as well as purpose and significance. Section 2 includes
details of the methodological approach used by the researcher for this study. Section 3
offers background on the research results and provides a description of the sample as well
as hypothesis testing, inclusive of a summary and data analysis. Section 4 concludes the
study with a discussion of the research results, coupled with its conclusions, limitations,
implications for practice, and recommendations for future research.

2. Material and Methods

2.1. Design and Methodology

The researcher utilized a quantitative, quasi-experimental, explanatory methodology
for the envisioned study, using survey research to better understand related phenomena.
Quantitative methods are used to measure behavior, knowledge, opinions, or attitudes in
business research, as is pertinent when the Technology Acceptance Model is the utilized
instrument. An online survey was used to test for statistically significant differences in
the level of acceptance of alert output between those choosing VAO in all scenarios and
those having some or complete preference for TAO, with VAO and TAO being generated
via data science/machine learning methods as predicted by the TAM. In pursuit of further
insights relevant to potential differences in security analysts’ perceptions of visual and text
analytics, the research question that guides this study was:

• RQ1: Is there a difference in the level of acceptance of security alert output between
those with a preference for VAO and those with a preference for TAO, with VAO and
TAO generated via data science/machine learning methods, as predicted by the TAM?

� Sub-questions were:

� SQ1: Does the adoption of VAO have a significant impact on the four
individual TAM components: PU, PEU, AU, and IU?

� SQ2: Does the adoption of TAO have a significant impact on the four
individual TAM components: PU, PEU, AU, and IU?

The online survey utilized for this study incorporated visual images as part of the
questioning process, to create clarity and compel answering in full. To further minimize
non-response, and to prepare data for testing, the following were included:

• As part of this quantitative, quasi-experimental, explanatory study, the online survey
for data collection utilized a 7-point Likert scale.

• The online survey questionnaire and survey experiment, given that this research was
specifically focused on visualization versus text, incorporated visual elements, which
lead to a higher response quality and generate interesting interaction effects [19].

The target population for this study was global information security analysts working
in a blue team (defender) capacity, analyzing security monitoring data and alerts. This is an
appropriate population given the significant challenges the industry faces due to the sheer
scale of security data, and the resulting difficulties security analysts face seeking precise and
efficient answers to alert-related questions. Participants were solicited from this population
via social media, including LinkedIn and Twitter, mailing lists, industry partners, and

168

J. Cybersecur. Priv. 2022, 2

contact lists. The researcher ensured prequalification with a job and role-specific question.
Survey participants who did not meet population requirements were disqualified.

Data analysis for this study utilized a mixed ANOVA because it enables efficiency
while keeping variability low [20]. In other words, given the within-subjects component
of this study where all participants undertook the same three scenarios, a mixed ANOVA
allowed for partitioning out variability as a function of individual differences. Additionally,
a mixed ANOVA provided the benefit of efficiency while keeping variability low, thereby
keeping the validity of the results higher yet allowing for smaller subject groups [20].

2.2. Data Collection

SurveyMonkey was utilized to create survey hyperlinks for social media and e-mail
dissemination to prospective participants and solicit their responses. The criteria for
inclusion in the sample were as follows: (a) information security analysts, (b) working
in a security monitoring role as part of a security operations center or fusion center, and
(c) responding to security alert data. Participants were prequalified to meet these criteria
and those who did not were excluded. Any survey results received from participants
determined not to meet the criteria for inclusion were eliminated. Participants were
required to provide their informed consent before responding to the survey. An opt-out
option was available for participants while taking the survey.

The defined variables, related constructs, applied scale, and data types for each
variable are listed in Table 1.

Table 1. Variable and data types.

RQ Construct Variable Scale Data

RQ1 Level of acceptance DV Likert Interval

RQ1 Scenario (within-subjects) IV Likert Interval

RQ1 Alert output (between-subjects) IV Likert Interval

SQ1 Impact of adoption DV Likert Interval

SQ1 Scenario (within-subjects) IV Likert Interval

SQ1 Alert output (between-subjects) IV Likert Interval

SQ2 Impact of adoption DV Likert Interval

SQ2 Scenario (within-subjects) IV Likert Interval

SQ2 Alert output (between-subjects) IV Likert Interval

2.3. Instrumentation

The TAM implies that positive perception of usefulness and ease of use (perceived
usability) influence intention to use, which in turn influences the actual likelihood of
use [21]. Original construction of the TAM for measurement of PU and PEU resulted in
a 12-item instrument that was shown to be reliable [22]. It consisted of the two factors
PU and PEU and was correlated with intentions to use and self-report usage [17]. This
quantitative, quasi-experimental, explanatory study utilized a 7-point Likert scale to assess
the level of acceptance and the perceived ease of use and perceived usefulness of alerts
in three scenarios (the within-subjects independent variable). The preferred alert output
(VAO or TAO) forms the basis of the between-subjects independent variable. Likert-type
scale response anchors set the range between agreement and disagreement; as an example,
1 indicated strong disagreement and 7 indicated strong agreement with a statement.

2.4. Hypotheses

The following research questions served to determine if a relationship exists between
the dependent variable, which is the level of acceptance of alert output, and the two
independent variables, which are Session (1, 2, or 3) and Maximum Visual. Maximum

169

J. Cybersecur. Priv. 2022, 2

Visual had two levels: one where VAO was chosen for all scenarios and one where TAO
was chosen for some or all scenarios.

• Is there a difference in the level of acceptance of alert outputs between those preferring
VAO in all scenarios and those preferring TAO in some or all scenarios, as predicted
by the TAM?

� Sub-questions:

� Does the adoption of VAO have a significant impact on the four indi-
vidual TAM components: PU, PEU, AU, and IU?

� Does the adoption of TAO have a significant impact on the four indi-
vidual TAM components: PU, PEU, AU, and IU?

The following research hypotheses explored the research questions for a relationship
between the independent variable of Maximum Visual (a preference for VAO in all scenarios
versus a preference for TAO in some or all scenarios), and the dependent variable, which
is the level of acceptance of alert outputs. The dependent variable is specific to security
analysts’ perception of machine learning (ML)- and data science (DS)-generated alert
output.

The null and alternative hypotheses are stated as:

H1: There is no significant difference in the level of acceptance of alert outputs between those
preferring VAO in all scenarios and those preferring TAO in some or all scenarios, as predicted by
the TAM.

H2: There is a significant difference in the level of acceptance of alert outputs between those
preferring VAO in all scenarios and those preferring TAO in some or all scenarios, as predicted by
the TAM.

Omnibus tests are applicable to these hypotheses, where H1: R-squared is equal to
0 and H2: R-squared is greater than 0. Table 2 highlights the relationship between the
research questions and the hypotheses.

Table 2. Research question and hypotheses testing.

RQ Type of Analysis Variable Scale Data

RQ1 Variance IV-DV Likert H1, H2
SQ1 Variance IV-DV Likert H1, H2
SQ2 Variance IV-DV Likert H1, H2

Note. RQ = research question; SQ = sub-question; DV = dependent variable; IV = independent variable; H1 = null
hypothesis; H2 = alternative hypothesis.

2.5. Data Analysis

The data collected for analysis from the results of a SurveyMonkey online question-
naire were processed with IBM SPSS software and R, a programming language for statistical
computing, machine learning, and graphics. The analysis focused on data exploration
of dependent and independent variables. The main dependent variable was the level of
acceptance of the security alert output and was based on the four individual TAM com-
ponents: PU, PEU, AU, and IU. Each component was derived from responses to groups
of Likert-style statements (scored 1 through to 7, with 7 representing the most favorable
response). PU and PEU had a total of six statements, and AU and IU had three statements.
The level of acceptance of the alert output was calculated by adding all 18 scores together,
with a maximum score of 126 and a minimum score of 18. The sub-scores for PU, PEU,
AU, and IU represent secondary dependent variables. The within-subjects independent
variable was scenario. It had three levels, Scenario 1, Scenario 2, and Scenario 3, with all
participants being subject to all scenarios. The between-subjects independent variable was
Maximum Visual. This had two levels: a preference for VAO in all three scenarios, and a
preference for TAO in at least one of the scenarios.

170

J. Cybersecur. Priv. 2022, 2

Both parametric and non-parametric tests were performed. Mixed ANOVA tested
whether the level of acceptance of alert outputs is influenced by the within-subjects variable
Scenario and the between-subjects variable Maximum Visual. Mixed ANOVA was also
repeated for the four sub-scales of PU, PEU, AS, and IU, with Bonferroni corrections for
multiple comparisons. Additionally, a Mann–Whitney U test was performed, comparing
the level of acceptance of alert outputs of the two levels of Maximum Visual, and a Friedman
test compared the level of acceptance across the three scenarios.

2.6. Validity and Reliability

The study’s dependent variables are derived from the TAM. As such, the validity and
reliability of TAM are paramount. Davis developed and validated scales for two variables,
perceived usefulness (PU) and perceived ease of use (PEU), as basic determinants of user
acceptance. Davis used definitions for PU and PEU to develop scale markers pretested for
content validity, as well as tested for reliability and construct validity [17].

Davis found that the PU scale attained a Cronbach’s alpha reliability of 0.97 for both
systems tested, while PEU achieved a reliability of 0.86 for one system tested and 0.93 for
the other. Upon pooling observations for the two systems, Cronbach’s alpha was found to
be 0.97 for usefulness and 0.91 for ease of use [17].

Davis tested for convergent and discriminant validity using multi-trait–multimethod
(MTMM) analysis, where the MTMM matrix contained the intercorrelations of items (meth-
ods) applied to the two different test systems (traits). Davis indicated that convergent
validity determines if items making up a scale behave as if measuring a common under-
lying construct. Convergent validity is demonstrated when items that measure the same
trait correlate highly with one another [17]. Davis’ study found that 90 mono-trait–hetero-
method correlations for PU were all significant at the 0.05 level, while for PEU, 86 out of
90, or 95.56%, of the mono-trait–hetero-method correlations were significant. These data
support the convergent validity of TAM’s two scales: PU and PEU [17].

3. Results

3.1. Background

The specific business problem that oriented this study is: organizations risk data
breach, loss of valuable human resources, reputation, and revenue due to excessive security
alert volume and a lack of fidelity in security event data. To determine means of support
for security analysts experiencing these security event-specific challenges, the study asked
if there is a difference in the level of acceptance of security alert outputs between those
preferring VAO in all scenarios, and those preferring TAO in some or all scenarios, as
predicted by the TAM. The dependent variable was participants’ level of acceptance of
security alert output: the within-subjects independent variable is Scenario, and the between-
subjects independent variable is Maximum Visual (preference for VAO in all scenarios
versus preference for TAO in some or all scenarios). SurveyMonkey was utilized to deliver
an online survey to participants, from which the collected data were analyzed. The survey
queried a population of cybersecurity analysts and managers in SOC, DFIR, DART, and
TI roles, targeted for participation via social media. Twitter and LinkedIn were utilized.
The LinkedIn campaign included the use of Linked Helper to create a list of potential
participants whose profiles matched the desired role descriptions from connections in the
researcher’s network of 1411 connections as of this writing. The final filtered list resulted in
234 potential participants to whom an invitation to participate was sent. A 7-point Likert
scale survey queried participants regarding their perspectives on perceived ease of use and
perceived usefulness of ML and DS-generated alert output across three scenarios with TAO
and VAO results [23]. Of 119 respondents, 24 disqualified themselves and 95 identified
themselves as qualified, 81 of whom completed all 3 scenarios.

171

J. Cybersecur. Priv. 2022, 2

3.2. Description of the Sample

Data collected from cybersecurity analysts and managers in SOC, DFIR, DART, and
TI roles resulted in 95 qualified respondents. A total of 95 qualified respondents is in
keeping with estimates of an appropriate sample size. Where 2018 Bureau of Labor Statis-
tics data indicate that there were 112,300 information security analysts, and this specific
target population is a subpopulation of the larger 112,300 security analysts, if 5% of the
larger 112,300 population is applied, a target population of 5615 is appropriate [24]. With a
95% confidence level, and 10% confidence interval (margin of error), then the ideal sample
size is 94 [25]. Of the 95 respondents to this survey, 81 completed all 3 scenarios pre-
sented in the survey. The 14 incomplete survey results were discarded, resulting in an
85.20% completion rate. The 14 incomplete surveys were discarded due to missing data
and to enable analysis of two complete and distinct groups, namely respondents who chose
VAO across all three scenarios, and those who selected a mix of VAO and TAO or all TAO
results across all three scenarios. The 81 respondents, as broken down into their 2 distinct
groups, are defined under the Maximum Visual variable (Vis_max), where the participants
who said yes to VAO in all three scenarios were labeled Yes (N = 59), and the participants
who selected a mix of VAO and TAO or all TAO results across all three scenarios were
labeled No (N = 22).

3.3. Hypothesis Testing

Given that the data collected for this study did not meet the standard for normality,
both parametric and non-parametric tests were performed. Parametric statistical procedures
depend on assumptions about the shape of the distribution (assume a normal distribution)
in the population and the form or parameters (means and standard deviations) of the
assumed distribution [26]. On the other hand, nonparametric statistical procedures depend
on few or no assumptions about the shape (normality) or parameters of the population
distribution from which the sample was taken [26]. Nonparametric tests include the Mann–
Whitney U test and the Friedman test. Parametric tests can be conducted via a mixed
analysis of variance (ANOVA) with a Bonferroni correction. The mixed ANOVA tests
included an approach for treatment of the dependent variable: security analysts’ level of
acceptance of the alert output. First, mixed ANOVA was performed across the TAM-based
questionnaire categories, namely perceived usefulness (PU), perceived ease of use (PEU),
attitude towards using (AU), and intent to use (IU), where the scores for all sub-scales were
summed. Second, mixed ANOVA was performed on each sub-scale. For the individual
sub-scales, statistical significance was set at α/4, or 0.0125.

3.4. Validating Assumptions

When assessing normality, the distributions were not normally distributed. Standard-
ized residuals for each of the three scenarios do not appear normally distributed, as seen in
the histograms in Figure 2.

Figure 2. Standardized residual normality for Scenarios 1–3.

172

J. Cybersecur. Priv. 2022, 2

Given that the residuals are skewed, Friedman’s test was also conducted, as a non-
parametric equivalent of a within-subjects one-way ANOVA. It only considers the impact
of the within-subjects variable Scenario.

Finally, reliability was assumed where Cronbach’s alpha measures the internal consis-
tency of questions related to the same issues across each of the three scenarios. If Cronbach’s
alpha ranged from 0 to 1 and scores were expected to be between 0.7 and 0.9, the result for
this study represents good consistency [27]. Using a scale comprised of 18 TAM questions
for each scenario, and 81 valid cases, with 14 excluded (n = 95), the reliability statistic
for each scenario as indicated by Cronbach’s alpha was 0.958 for Scenario 1, 0.971 for
Scenario 2, and 0.986 for Scenario 3.

3.5. Descriptive Statistics

Survey respondents were categorized as follows:

• For each of the three scenarios, a scenario variable:

� 0 = no response
� 1 = text response
� 2 = visual response

• A scenario product variable (product of all scenario variables):

� All visual responses: 2 ∗ 2 ∗ 2 = 8
� 2 visual responses, 1 text response: 2 ∗ 2 ∗ 1 = 4
� 1 visual response, 2 text responses: 2 ∗ 1 ∗ 1 = 2
� All text responses: 1 ∗ 1 ∗ 1 = 1

The results using these variables are seen in Table 3.

Table 3. Response products.

Valid Frequency Percent Valid % Cumulative %

0 14 14.7 14.7 14.7
1 2 2.1 2.1 16.8
2 4 4.2 4.2 21.1
4 16 16.8 16.8 37.9
8 59 62.1 62.1 100

Total 95 100 100

The dependent variable is represented by survey scenario question response totals
as summed from Likert-scale responses ranging from 1 (strongly disagree) to 7 (strongly
agree). These are represented for each scenario presented to participants as S1_tot for
Scenario 1, S2_tot for Scenario 2, and S3_tot for Scenario 3. For the mixed ANOVA, these
represent the within-subjects factors seen in Table 4.

Table 4. Factors and descriptive statistics.

Within-Subjects Factors

Scenarios Dependent Variable

1 S1_tot
2 S2_tot
3 S2_tot

Between-Subjects Factors

Value Label N

Maximum Visual
0.00 No 22
1.00 Yes 59

173

J. Cybersecur. Priv. 2022, 2

Table 4. Cont.

Descriptive Statistics

Maximum Visual Mean Std. Deviation N

S1_tot
No 107.7273 11.65856 22
Yes 110.2034 15.15754 59
Total 109.5309 14.26454 81

S2_tot
No 104.7727 14.91223 22
Yes 109.9661 15.87556 59
Total 108.5556 15.70032 81

S3_tot
No 88.6364 29.03618 22
Yes 104.6102 21.62136 59
Total 100.2716 24.7255 81

The Maximum Visual variable (Vis_max) defined the participants who said yes to VAO
in all three scenarios, labeled Yes (N = 59), and the participants who selected a mix of VAO
and TAO or all TAO results across all three scenarios, labeled No (N = 22). Maximum Visual
is the study’s between-subjects independent variable. It was one of the main factors in the
mixed ANOVA, as can be seen in Table 5.

Table 5. Maximum Visual IVs (between-subjects factors).

Frequency Percent Valid Percent Cumulative Percent

Valid
No 22 23.2 27.2 27.2
Yes 59 62.1 72.8 100.0

Total 81 85.3 100.0

Missing 999.00 14 14.7

Total 95 100.0

3.6. Mann–Whitney U Test

A Mann–Whitney U test of independent samples had participants’ level of acceptance
of alert output as its dependent variable, which is the ranked, summed scores across
all scenarios (S_tot). The independent variable is Maximum Visual (Vis_max). The test
determines whether the group who prefer VAO across all scenarios have a significantly
different acceptance score than those who prefer TAO in some or all scenarios. Score totals
are noted in Figure 3, while Table 6 provides a statistical summary.

The Mann–Whitney U test indicates that there is a significant difference (U = 863.5,
p = 0.023) in the level of acceptance of alert output between the respondents who selected
visual output across all scenarios (n = 59) as compared to the respondents who provided
mixed responses (n = 22). As such, the null hypothesis, that there is no statistically signifi-
cant difference in the level of acceptance of alert output between those who preferred VAO
in all scenarios and those preferring TAO in some or all scenarios, is rejected.

The effect size is calculated by dividing the Standardized Test Statistic, Z, by the square
root of the number of pairs: Z√

n = 2.279√
81

= 0.253. The effect size, according to Cohen’s
classification of effect, is moderate, given 0.1 (small effect), 0.3 (moderate effect), and 0.5
and above (large effect).

174

J. Cybersecur. Priv. 2022, 2

Figure 3. Independent samples Mann–Whitney U test results.

Table 6. Independent samples Mann–Whitney U test summary.

Total N 81
Mann–Whitney U 863.500
Test Statistic 863.500
Standard Error 94.140
Standardized Test Statistic 2.279
Asymptotic Sig. (2-sided test) 0.023

3.7. Friedman Test

A related samples Friedman test was conducted to assess the measurements of the
same dependent variable under different conditions for each participant, namely the three
scenarios for this study defined by the variables S1_tot, S2_tot, and S3_tot. Rank frequencies
are shown in Figure 4 and the statistical summary is represented in Table 7.

Figure 4. Related samples Friedman’s two-way ANOVA by ranks.

175

J. Cybersecur. Priv. 2022, 2

Table 7. Related samples Friedman’s two-way ANOVA by ranks, summary.

Total N 81
Test Statistic 5.496
Degree of Freedom 2
Asymptotic Sig. (2-sided test) 0.064

The Friedman test carried out to compare the score ranks for the three scenarios found
there to be no significant difference between scenarios: x2(2) = 5.496, p < 0.064. The result
indicates that scenario mean ranks did not differ significantly from scenario to scenario
when not also factoring for responses based on output preference (Maximum Visual).

Effect size was not applicable as no measurable significance was found.

3.8. Mixed ANOVA—All Measures (PU, PEU, AU, IU Combined)

A two-way mixed ANOVA was conducted, with a Bonferroni correction for the within-
subjects variable. The dependent variable was the level of acceptance of alert output, with
all items of all TAM sub-scales summed.

While considered more conservative, most authorities suggest the Greenhouse–Geisser
correction when the epsilon (ε) estimate is below 0.75. As noted in Table 8, ε = 0.727, and
thus the Greenhouse–Geisser correction was utilized.

Table 8. Mauchly’s test of sphericity.

Within-Subjects Effect Mauchly’s W
Approx.
Chi-Square

df Sig.
Greenhouse–
Geisser

Scenarios 0.625 36.652 2 0.000 0.727

As indicated in Table 8, sphericity cannot be assumed as p < 0.001. As such, the
Greenhouse–Geisser correction was applied.

The within-subjects variable, equating to score totals for each of the three study
scenarios, is represented by Scenarios (S1_tot, S2_tot, and S3_tot). The between-subjects
variable was Maximum Visual (Vis_max), labeled as Yes (n = 59) and No (n = 22). Again,
the Maximum Visual variable (Vis_max) differentiates between the participants who said
yes to VAO in all three scenarios, labeled Yes (N = 59), and the participants who selected
a mix of VAO and TAO, or all TAO results, across all three scenarios, labeled No (n = 22).
Maximum Visual is the statistical analogy for the study’s between-subjects independent
variable, specifically (a) ML/DS-generated TAO, and (b) ML/DS-generated VAO.

Participants were presented with three scenarios exhibiting security alert output for
the results of applied models, where the output was both VAO and TAO. A mixed ANOVA
using α = 0.05 with a Greenhouse–Geisser correction showed that scores varied significantly
across Scenarios in tests of within-subject effects, and there was also a significant interaction
with Maximum Visual:

Scenarios: (F (1.455, 114.915) = 19.925, p < 0.001, ηp2 = 0.201)
Scenarios∗Vis_max: (F (1.455, 114.915) = 5.634, p = 0.010, ηp2 = 0.067)

The impact of Maximum Visual (vis_max) on the level of acceptance of output was
mediated by Scenarios. The difference of the level of acceptance was more significant
for Scenario 3, as an example. Post hoc tests using the Bonferroni correction revealed
that favorable scores declined insignificantly from Scenario 1 to Scenario 2 by an average
of 1.596 points (p = 0.702) but declined significantly from Scenario 1 to Scenario 3 by
12.342 points (p < 0.001). Scenario 2 to Scenario 3 saw an additional significant decrease of
10.746 points (p < 0.001). The differences in scores were not particularly meaningful between
or within Scenarios 1 and 2 (S1_tot and S2_tot) and Maximum Visual (Vis_max) = Yes or No.
However, a significant difference was noted in Scenario 3 (S3_tot) compared to Scenarios 1
and 2, as well as Maximum Visual = Yes versus Maximum Visual = No. Most noteworthy
is a 15% decrease in mean score for Maximum Visual = No in Scenario 3 as compared

176

J. Cybersecur. Priv. 2022, 2

to Scenario 2, indicating a noteworthy decrease in PU, PEU, AU, and IU for participants
selecting TAO.

Via estimated marginal means between-subjects, where Maximum Visual = Yes or
Maximum Visual = No, inclusive of all TAM components with α = 0.05 and Bonferroni
correction, pairwise comparisons yielded a 7.881 point mean difference in favor of VAO,
significant at p = 0.046. As such, there was a significant main effect of Maximum Visual
scores (F (1, 79) = 4.111, p = 0.046, ηp2 = 0.049) on the level of acceptance of alert output, as
indicated by the sum of participants’ scores for all TAM components (PU, PEU, AU, and
IU). These results are represented visually in Figure 5.

Figure 5. Estimated marginal means of all measures.

3.9. Mixed ANOVA—Perceived Usefulness (PU)

Two-way mixed ANOVA with Bonferroni correction, computed using α = 0.0125, was
performed for PU in isolation. α = 0.0125 was appropriate to avoid family-wise errors by
adjusting to be more conservative, where four tests at α = 0.05 implies the use of α = 0.0125.
The measures related to PU represented one of four TAM-specific comparisons, and thus a
conservative but accurate method to compensate for multiple tests was required.

Mixed ANOVA was again applied, where the within-subjects variables equating to
score totals for each of the three study scenarios were represented by Perceived_Usefulness
(PUS1_tot, PUS2_tot, and PUS3_tot), and between-subjects factors were again represented
by Maximum Visual (Vis_max), labeled as Yes (n = 59) and No (n = 22).

Participants were presented with three scenarios exhibiting security alert output for
the results of applied models, where the output was both VAO and TAO. A mixed ANOVA
computed using α = 0.0125 with a Greenhouse–Geisser correction showed that scores
varied significantly across scenarios specific to Perceived_Usefulness (PUS1_tot, PUS2_tot,
and PUS3_tot) in tests of within-subject effects, and less significantly when differentiated
for Maximum Visual:

Scenarios: (F (1.637, 129.311) = 16.999, p < 0.001, ηp2 = 0.177)
Scenarios∗Vis_max: (F (1.637, 129.311) = 4.017, p = 0.028, ηp2 = 0.048)

Post hoc tests using the Bonferroni correction revealed that favorable scores for PU de-
clined insignificantly from Scenario 1 to Scenario 2 by an average of 0.076 points (p = 1.000),
but then declined significantly from Scenario 1 to Scenario 3 by 3.999 points (p = < 0.001)
and from Scenario 2 to Scenario 3 by an additional 3.924 points (p < 0.001). The differences
in scores were not particularly meaningful between or within Scenarios 1 and 2 (PUS1_tot
and PUS2_tot) and Maximum Visual (Vis_max) = Yes or No. A significant difference was,
however, noted in Scenario 3 (PUS3_tot) compared to Scenarios 1 and 2, as well as Max-
imum Visual = Yes versus Maximum Visual = No. Again, a 15% decrease in mean score
for Maximum Visual = No was noted in Scenario 3 as compared to Scenario 2, indicating

177

J. Cybersecur. Priv. 2022, 2

a significant decrease in PU for participants selecting TAO. Interestingly, there was a 1%
increase in PU for participants selecting TAO for Scenario 2 as compared to Scenario 1.

Via estimated marginal means between-subjects, where Maximum Visual = Yes or
Maximum Visual = No, inclusive only of PU data with α = 0.0125 and Bonferroni correction,
pairwise comparisons yielded a 3.642 point mean difference in favor of VAO, significant
at p = 0.007. As such, there was a significant main effect of Maximum Visual scores
(F (1, 79) = 7.643, p = 0.007, ηp2 = 0.088) on the level of acceptance of alert output, as
indicated by sum of participants’ scores for PU. These results are best represented visually,
as noted in Figure 6.

Figure 6. Estimated marginal means—PU.

3.10. Mixed ANOVA—Perceived Ease of Use (PEU)

Two-way mixed ANOVA with Bonferroni correction, computed using α = 0.0125, was
performed for PEU in isolation. α = 0.0125 was applicable as one quarter of α = 0.05 given
that the TAM components related to PEU represent one of four tests of related measures.

Mixed ANOVA was again applied, where the within-subjects variables equating to
score totals for each of the three study scenarios are represented by Perceived_EaseOfUse
(PEUS1_tot, PEUS2_tot, and PEUS3_tot), and between-subjects factors were again repre-
sented by Maximum Visual (Vis_max), labeled as Yes (n = 59) and No (n = 22).

Participants were presented with three scenarios exhibiting security alert output for
the results of applied models, where the output was both VAO and TAO. A mixed ANOVA
computed using α = 0.0125 with a Greenhouse–Geisser correction showed that scores varied
significantly across scenarios specific to perceived ease of use (PEUS1_tot, PEUS2_tot, and
PEUS3_tot) in tests of within-subject effects, and insignificantly when differentiated for
Maximum Visual:

Scenarios: (F (1.658, 130.988) = 8.752, p = 0.001, ηp2 = 0.100)
Scenarios∗Vis_max: (F (1.658, 130.988) = 3.548, p = 0.040, ηp2 = 0.043)

Post hoc tests using the Bonferroni correction revealed that favorable scores for PEU de-
creased insignificantly from Scenario 1 to Scenario 2 by an average of 1.020 points (p = 0.294)
but declined significantly from Scenario 1 to Scenario 3 by an average of 3.357 points
(p = 0.002). An insignificant decrease was noted from Scenario 2 to Scenario 3 by an addi-
tional 2.337 points (p = 0.033). The differences in scores were meaningful between Scenarios
1 and 2 (PEUS1_tot and PEUS2_tot) and Maximum Visual (Vis_max) = No and again be-
tween Scenarios 2 and 3 (PEUS2_tot and PEUS3_tot) and Maximum Visual (Vis_max) = No.
A significant difference was, however, noted in Scenario 3 (PEUS3_tot) compared to Sce-
narios 1 and 2, as well as Maximum Visual = Yes versus Maximum Visual = No. Again,
a 10% decrease in mean score for Maximum Visual = No was noted in Scenario 3 as com-
pared to Scenario 2, indicating a significant decrease in PEU for participants selecting TAO.
Interestingly, there was a 1% increase in PEU for participants selecting VAO for Scenario 2

178

J. Cybersecur. Priv. 2022, 2

as compared to Scenario 1. Additionally, for the first time in this analysis, within Scenario 1,
TAO outscored VAO within a specific TAM component (PEU).

Via estimated marginal means between-subjects, where Maximum Visual = Yes or
Maximum Visual = No, inclusive only of PEU data with α = 0.0125 and Bonferroni correc-
tion, pairwise comparisons yielded only a 1.229 point mean difference in favor of VAO,
insignificant at p = 0.362. As such, there was not a significant main effect of Maximum
Visual scores (F (1, 79) = 0.842, p = 0.362, ηp2 = 0.011) on the level of acceptance of alert
output, as indicated by the sum of participants’ scores for PEU. These results are best
represented visually, as noted in Figure 7.

Figure 7. Estimated marginal means—perceived ease use (PEU).

3.11. Mixed ANOVA—Attitude toward Using (AU)

Two-way mixed ANOVA with Bonferroni correction, computed using α = 0.0125, was
performed for AU in isolation. α = 0.0125 was applicable as one quarter of α = 0.05 given
that the TAM measures related to AU represented one of four tests of related measures.

Mixed ANOVA was again applied, where the within-subjects variables equating
to score totals for each of the three study scenarios were represented by Attitude2Use
(AUS1_tot, AUS2_tot, and AUS3_tot), and between-subjects factors were again represented
by Maximum Visual (Vis_max), labeled as Yes (n = 59) and No (n = 22).

Participants were presented with three scenarios exhibiting security alert output for
the results of applied models, where the output was both VAO and TAO. A mixed ANOVA
computed using α = 0.0125 with a Greenhouse–Geisser correction showed that scores
varied significantly across scenarios specific to attitude toward using (AUS1_tot, AUS2_tot,
and AUS3_tot) in tests of within-subject effects, and significantly again when differentiated
for Maximum Visual:

Scenarios: (F (1.669, 131.861) = 20.605, p < 0.001, ηp2 = 0.207)
Scenarios∗Vis_max: (F (1.669, 130.988) = 8.159, p = 0.001, ηp2 = 0.094)

Post hoc tests using the Bonferroni correction revealed that favorable scores for AU de-
creased insignificantly from Scenario 1 to Scenario 2 by an average of 0.196 points (p = 1.000)
but declined significantly from Scenario 1 to Scenario 3 by an average of 2.293 points
(p < 0.001). A significant decrease was noted from Scenario 2 to Scenario 3 by an addi-
tional 2.097 points (p < 0.001). The differences in scores were not meaningful between
Scenarios 1 and 2 (AUS1_tot and AUS2_tot) and Maximum Visual (Vis_max) = No, but
were quite impactful between Scenarios 2 and 3 (AUS2_tot and AUS3_tot) and Maximum
Visual (Vis_max) = No. As is consistent throughout this analysis, there was a significant
difference noted in Scenario 3 (AUS3_tot) compared to Scenarios 1 and 2, as well as Maxi-
mum Visual = Yes versus Maximum Visual = No. A stark 19% decrease in mean score for
Maximum Visual = No was noted in Scenario 3 as compared to Scenario 2, indicating a
significant decrease in AU for participants selecting TAO. No change in AU was noted for
participants selecting VAO for Scenario 2 as compared to Scenario 1. Also noteworthy was

179

J. Cybersecur. Priv. 2022, 2

the lowest mean scores of all results recorded, specifically for TAO in Scenario 3, indicating
a particularly poor attitude towards using TAO.

Via estimated marginal means between-subjects, where Maximum Visual = Yes or
Maximum Visual = No, inclusive only of AU data with α = 0.0125 and Bonferroni correction,
pairwise comparisons yielded a small 1.587 point mean difference in favor of VAO, insignif-
icant at p = 0.036. As such, there was not a significant main effect of Maximum Visual
scores (F (1, 79) = 4.566, p = 0.036, ηp2 = 0.055) on the level of acceptance of alert output,
as indicated by the sum of participants’ scores for AU. These results are best represented
visually, as noted in Figure 8.

Figure 8. Estimated marginal means—attitude toward using (AU).

3.12. Mixed ANOVA—Intention to Use (IU)

Two-way mixed ANOVA (mixed ANOVA) with Bonferroni correction, computed
using α = 0.0125, was performed for IU in isolation. α = 0.0125 was applicable as one
quarter of α = 0.05 given that the TAM measures related to IU represent one of four tests of
related measures.

Mixed ANOVA was again applied, where the within-subjects variables equating to
score totals for each of the three study scenarios were represented by Intention2Use (IUS1_tot,
IUS2_tot, and IUS3_tot), and between-subjects factors were again represented by Maximum
Visual (Vis_max), labeled as Yes (n = 59) and No (n = 22).

Participants were presented with three scenarios exhibiting security alert output for
the results of applied models, where the output was both VAO and TAO. A mixed ANOVA
computed using α = 0.0125 with a Greenhouse–Geisser correction showed that scores
varied significantly across scenarios specific to Intention to Use (IUS1_tot, IUS2_tot, and
IUS3_tot) in tests of within-subject effects, and significantly again when differentiated for
Maximum Visual:

Scenarios: (F (1.447, 114.327) = 24.493, p < 0.001, ηp2 = 0.237)
Scenarios∗Vis_max: (F (1.447, 114.327) = 5.728, p = 0.009, ηp2 = 0.068)

Post hoc tests using the Bonferroni correction revealed that favorable scores for IU de-
creased insignificantly from Scenario 1 to Scenario 2 by an average of 0.304 points (p = 0.758)
but declined significantly from Scenario 1 to Scenario 3 by an average of 2.692 points
(p < 0.001). A significant decrease was noted from Scenario 2 to Scenario 3 by an addi-
tional 2.388 points (p < 0.001). The differences in scores were not meaningful between
Scenarios 1 and 2 (IUS1_tot and IUS2_tot) and Maximum Visual (Vis_max) = No, but
were quite impactful between Scenarios 2 and 3 (IUS2_tot and IUS3_tot) and Maximum
Visual (Vis_max) = No. As is consistent throughout this analysis, there was a significant
difference noted in Scenario 3 (IUS3_tot) compared to Scenarios 1 and 2, as well as Max-
imum Visual = Yes versus Maximum Visual = No. Again, a substantial 19% decrease in
mean score for Maximum Visual = No was noted in Scenario 3 as compared to Scenario 2,
indicating a significant decrease in IU for participants selecting TAO. As is the case for AU,
no change in IU was noted for participants selecting VAO for Scenario 2 as compared to
Scenario 1. Also noteworthy was the largest percentage of decrease in mean scores of all

180

J. Cybersecur. Priv. 2022, 2

results recorded, specifically for Scenario 3, indicating that intention to use was low for any
aspect of Scenario 3, TAO, or VAO.

Via estimated marginal means between-subjects, where Maximum Visual = Yes or
Maximum Visual = No, inclusive only of IU data with α = 0.0125 and Bonferroni correc-
tion, pairwise comparisons yielded a small 1.423 point mean difference in favor of VAO,
insignificant at p = 0.040. As such, there was not a significant main effect of Maximum
Visual scores (F (1, 79) = 4.378, p = 0.040, ηp2 = 0.053) on the level of acceptance of alert
output, as indicated by the sum of participants’ scores for IU. These results are represented
visually in Figure 9.

Figure 9. Estimated marginal means—intention to use (IU).

3.13. Summary of Hypothesis Testing

The null hypothesis states that there is no statistically significant difference in the level
of acceptance of alert output between those choosing VAO and those having some or com-
plete preference for TAO, with VAO and TAO being generated via data science/machine
learning methods as predicted by the TAM. The null hypothesis was rejected via non-
parametric and parametric methods. Table 9 represents non-parametric outcomes per an
independent samples Mann–Whitney U test.

Table 9. Means’ analysis—intention to use (IU).

Maximum Visual Mean Std. Deviation N

IUS1_tot
No 18.6364 2.05971 22
Yes 18.9661 2.66501 59
Total 18.8765 2.50690 81

IUS2_tot
No 18.0455 2.60909 22
Yes 18.9492 2.80039 59
Total 18.7037 2.76335 81

IUS3_tot
No 14.5909 5.11449 22
Yes 17.6271 4.16843 59
Total 16.8025 4.61633 81

The Mann–Whitney U test indicates that there was a significant difference (U = 863.5,
p = 0.023) between the respondents who selected visual output across all scenarios (n = 59)
as compared to the respondents who provided mixed responses (n = 22).

Table 10 represents the outcomes for parametric tests of within-subjects effects.

181

J. Cybersecur. Priv. 2022, 2

Table 10. Tests of within-subjects effects.

Source df F Sig. Partial Eta Squared Observed Power

Scenarios ∗
Vis_max

Greenhouse–
Geisser 1.455 5.634 0.010 0.067 0.763

α = 0.05. ∗ = The impact of vis_max on the level of acceptance of output as mediated by Scenarios.

The mixed ANOVA using α = 0.05 with a Greenhouse–Geisser correction was signifi-
cant when differentiated for Maximum Visual: F (1.455, 114.915) = 5.634, p = 0.010.

Table 11 represents the outcomes for parametric tests of between-subjects effects.

Table 11. Tests of between-subjects effects.

Source df F Sig. Partial Eta Squared Observed Power

Vis_max Bonferroni 1 4.111 0.046 0.049 0.517
α = 0.05.

The mixed ANOVA using α = 0.05 with Bonferroni adjustment was significant:
(F (1, 79) = 4.111, p = 0.046.

In summary, the null hypothesis was rejected, as follows:

• Non-parametric: U = 863.5, p = 0.023
• Parametric:

� Within-subjects: (F (1.455, 114.915) = 5.634, p = 0.010, ηp2 = 0.067)
� Between-subjects: (F (1, 79) = 4.111, p = 0.046, ηp2 = 0.049)

As such, for RQ1: is there a difference in the level of acceptance of security alert output
between those with a preference for VAO and those with a preference for TAO, with VAO
and TAO generated via data science/machine learning methods, as predicted by the TAM?
the answer is yes.

Additional sub-questions were examined in this analysis. Specifically, the sub-questions
are stated as:

• SQ1: Does the adoption of VAO have a significant impact on the four individual TAM
components: PU, PEU, AU, and IU?

• SQ2: Does the adoption of TAO have a significant impact on the four individual TAM
components: PU, PEU, AU, and IU?

Outcomes indicate mixed results in answering the sub-questions. Table 12 states the
results of within-subjects effects per individual TAM components.

Table 12. Tests of within-subjects effects per individual TAM components.

TAM Factor Adjustment df F Sig.
Partial Eta
Squared

Observed
Power

PU Greenhouse–Geisser 1.637 4.017 0.028 0.048 0.434

PEU Greenhouse–Geisser 1.658 3.548 0.040 0.043 0.380

AU Greenhouse–Geisser 1.669 8.159 0.001 0.094 0.819

IU Greenhouse–Geisser 1.447 5.728 0.009 0.068 0.705
α = 0.0125.

The within-subjects findings indicated that PU and PEU were not significantly influ-
enced by the adoption of VAO or TAO, while AU and IU were significantly influenced by
the adoption of VAO. Table 13 states the results of between-subjects effects per individual
TAM components.

182

J. Cybersecur. Priv. 2022, 2

Table 13. Tests of between-subjects effects per individual TAM components.

TAM Factor Adjustment df F Sig. Partial Eta Squared
Observed

Power

PU Bonferroni 1 7.643 0.007 0.088 0.584

PEU Bonferroni 1 0.842 0.362 0.011 0.055

AU Bonferroni 1 4.566 0.036 0.055 0.343

IU Bonferroni 1 4.378 0.040 0.053 0.328
α = 0.0125.

The between-subjects findings indicate that PU was the only TAM component to be
significantly influenced by the adoption of VAO.

As a result, the answer to SQ1 is yes, in part:

• The TAM components PU and PEU were not significantly influenced by the adoption
of VAO within-subjects, while AU and IU were significantly influenced by the adoption
of VAO within-subjects.

• The TAM component PU was significantly influenced by the adoption of VAO
between-subjects.

The answer to SQ2 is universally no. No individual TAM component was significantly
influenced by TAO adoption, and TAO adoption trailed VAO in near totality.

3.14. Summary

The results indicate that there was a difference in acceptance as predicted by TAM. The
dependent variable, security analysts’ level of acceptance of security alert output, and the
two independent variables, Scenario and ML/DS-generated alert output (TAO and VAO),
were assessed with non-parametric and parametric methods. Both the Mann–Whitney U
test and the mixed ANOVA determined that there was a difference between the acceptance
of VAO and TAO in favor of VAO. The mixed ANOVA also demonstrated that two of the
TAM factors, AU and IU, were influenced by the adoption of VAO and TAO.

4. Discussion

4.1. Discussion of the Results

This study sought to determine if there is a difference between the adoption of VAO
and TAO generated via data science/machine learning methods as predicted by the TAM.
The related hypothesis tested for significant differences in the level of acceptance of alert
outputs between those preferring VAO in all scenarios and those preferring TAO in some or
all scenarios, as predicted by the TAM. The null hypothesis was rejected. A non-parametric
test, the Mann–Whitney test, indicated a significant difference in the level of acceptance
of output between those preferring visual alerts in all scenarios, and other preferences
(U = 863.5, p = 0.023). This result was repeated in the between-subjects element of a
mixed ANOVA, F (1, 79) = 4.111, p = 0.046, ηp2 = 0.049. The within-subjects element
of the mixed ANOVA, relating to different responses to each scenario, was also statisti-
cally significant, F (1.455, 114.915) = 5.634, p = 0.010, ηp2 = 0.067. These results indicate a
statistically significant difference in perception that favors VAO.

4.2. Original Contribution to the Body of Knowledge

This study begins to close a gap in the body of knowledge and represents opportunities
for additional research. Prior studies have focused exclusively on specific tenets discussed
herein, but not in aggregate or totality. Studies focused on visual analytics versus text-
oriented interfaces, while robust, did not factor for scale or usability, nor efficiencies
gained from ML/DS. Other research focused on security operations at scale to address data
overload and complexity but did not address solutions for an improved analyst experience
and usability with visualization. More studies addressed detailed ML/DS opportunities
leading to increased efficiency and detection, but again with no focus on alert output

183

J. Cybersecur. Priv. 2022, 2

and usability. This research intentionally joined these tenets to improve security analysts’
experience with optimized alert output derived from ML/DS to address challenges of
scale, detection fidelity, and usability. This contribution to the body of knowledge enables
industry and academia to further refine security detection methods and products to reduce
risk and better protect organizations. Specific contributions follow, and are discussed
further in Section 4.4:

• Enables industry, service, and application providers to develop, deploy, and utilize
tools and capabilities that include visualizations for alert output.

• Indicates that the interface for security analysts working daily with such tools and
capabilities offers a favorable user experience that is rich in visual features.

• Clarifies that issues specific to this study’s problem statement can be rectified with
visual alert output derived from machine learning and data science intended to reduce
the burden on security analysts.

4.3. Limitations

This study’s results did not conform to expectations for normality, exhibiting a note-
worthy skew towards strongly agree, or a 7 on the Likert scale. Bias may have been
introduced in two distinct ways. First, TAM-based user experience (UX) studies are best
delivered using a left-to-right layout, where 1 = Extremely disagree and 7 = Extremely
agree [18]. Additionally, Lewis suggested that all questionnaire items have a positive tone
such that greater levels of agreement indicate a better user experience [18]. This could
explain why the normality histograms as seen in Figures 2–4 show such a strong skew to
the right (strongly agree). Second, the researcher may have introduced additional bias by
describing the VAO with a caveat stating that users who selected visual output would have
the ability to mouse over the graphical interface and interact with specific data points. No
such additional benefit or opportunity was discussed for users who preferred TAO.

Scenario 3 included a dynamic, animated visualization, where alert counts moved
through days of the month over a five-month period. The researcher asserts that this visual
was not met with positive perception and likely viewed as of low quality and difficult
to interpret as compared to the static visuals seen in Scenarios 1 and 2. Additionally,
the researcher did not randomize the scenarios as delivered to participants. As such, all
participants received the scenarios in the same order. Thus, order effects could explain
the decline in positive perception of Scenario 3 for participants. Order effects refer to
the phenomenon where different orders for the presentation of questions, or response
alternatives, may systematically influence respondents’ answers [28]. Scores may decrease
over time from fatigue, or increase due to learning, and order effects can interfere with
estimates of the effect of the treatment itself during analysis, a disadvantage of repeated
measures designs [29].

4.4. Implications for Practice

The most significant implications for practice as determined from this study’s results
are simple. Develop, deploy, and utilize tooling and capabilities that include visualizations
for alert output. Better still, ensure that the interface imposed on the security analysts
working daily with such tooling and capabilities offers a favorable user experience that
is rich in visual features, including additional right-click context (additional exploratory
analytics available via a mouse right-click menu). Ben-Asher and Gonzalez determined
that a high volume of intrusion alerts to be processed, coupled with excessive false-positive
alerts, challenges human cognitive capabilities in accurately detecting an attack [30]. This
study’s findings indicate an opportunity to rectify these issues with the benefits of visual
alert output derived from machine learning and data science intended to reduce the burden
on security analysts.

184

J. Cybersecur. Priv. 2022, 2

4.5. Recommendations for Future Study

A future study that builds on this study’s findings might incorporate a third option for
participants: text alert output, visual alert output, or both. Security analysts would likely
seek an initial visual alert inclusive of the options to dive deeper into the raw data. A future
study could expose the degree to which analysts may seek such multifaceted options.

Results specific to Scenario 3 revealed a noteworthy decline in perception and sat-
isfaction for the visual alert output included with the scenario. Given that this visual
alert output was a dynamic animation unlike its static counterparts in Scenarios 1 and 2,
a future study could further explore the perceptions of, and interactions with, dynamic
visualizations versus static visualizations. Even more stark was the dip in perception and
satisfaction for the text alert output included with Scenario 3. Future research could further
explore the layout of data tables, including satisfaction with a variety of included fields
and column headings.

Performance-based experimentation represents a potential focus area for future re-
search, with attention to key performance indicators and metrics and analysis of the speed
to conclusions as a comparison of TAO versus VAO. While this study’s delimitations
prevented true experimentation, the premise of presenting participants with actionable
scenarios while measuring their response time, accuracy, and efficacy would provide more
accurate assessment of VAO versus TAO’s impact on performance.

5. Conclusions

Organizations dealing with a high volume of security alert and event data, that are
also facing a high burden due to alert overload, should consider implementing features
and capabilities that incorporate visual alert output. These organizations risk data breach,
loss of valuable human resources, reputation, and revenue due to excessive security alert
volumes and a lack of fidelity in security event data. Visualization can benefit security
analysts faced with these burdens on behalf of their organizations. This quantitative, quasi-
experimental, explanatory study determined that security analysts perceive improved
usability of security alert output that is visualized rather than text-based. The related
hypothesis tested for significant differences in the level of acceptance of output between
those affirming a maximum visual preference (three out of three scenarios) and those
showing a preference for text in at least one scenario. The results determined that those
showing maximum visual preference had a significantly higher acceptance of alert output
(U = 863.5, p = 0.023). This finding was also supported by the main between-subjects effect
of a mixed ANOVA, F (1, 79) = 4.111, p = 0.046, ηp2 = 0.049. The ANOVA’s within-subjects
main effect (scenario) was also statistically significant, F (1.455, 114.915) = 5.634, p = 0.010,
ηp2 = 0.067. All supporting data are available with Supplementary Martials, including a
literature review. These findings represent an opportunity to enhance and enable higher-
order analysis, including detection development, tuning, and validation, as well as threat
hunting and improved investigations: cut the noise, hone the signal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//github.com/holisticinfosec/Optimized-Alerts-Usability-Study (accessed on 24 May 2022).

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Capitol Technology University
(approved 28 September 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The author declares no conflict of interest.

185

J. Cybersecur. Priv. 2022, 2

References

1. Khan, M. Security Analysts Are Overworked, Understaffed and Overwhelmed—Here’s How AI Can Help. Available online: https:
//securityintelligence.com/security-analysts-are-overworked-understaffed-and-overwhelmed-heres-how-ai-can-help (accessed
on 21 September 2020).

2. Cambridge Intelligence. Visualizing Cyber Security Threats. Available online: https://cambridge-intelligence.com (accessed on 1
May 2021).

3. Slatman, H. Unboxing Security Analytics: Towards Effective Data Driven Security Operations; Computer Science, University of Twente:
Enschede, The Netherlands, 2016.

4. Dimensional Research. 2020 State of SecOps and Automation. Available online: https://www.sumologic.com/brief/state-of-
secops (accessed on 5 May 2021).

5. Bartos, V.; Zadnik, M.; Habib, S.M.; Vasilomanolakis, E. Network entity characterization and attack prediction. Future Gener.
Comput. Syst. 2019, 97, 674–686. [CrossRef]

6. Sundaramurthy, S.C.; Bardas, A.G.; Case, J.; Ou, X.; Wesch, M.; McHugh, J.; Rajagopalan, S.R. A Human Capital Model for
Mitigating Security Analyst Burnout. In Proceedings of the Symposium on Usable Privacy and Security, Ottawa, CA, USA,
22–24 July 2015.

7. Paul, C.L.; Dykstra, J. Understanding operator fatigue, frustration, and cognitive workload in tactical cybersecurity operations. J.
Inf. Warf. 2017, 16, 1–11.

8. FireEye. The Numbers Game: How Many Alerts Is Too Many to Handle? Available online: https://www.fireeye.com/offers/rpt-
idc-numbers-game-special-report.html (accessed on 11 June 2020).

9. Seals, T. Less Than 1% of Severe/Critical Security Alerts Are Ever Investigated. Available online: https://www.infosecurity-
magazine.com/news/less-than-1-of-severe-critical (accessed on 12 July 2021).

10. Oltsik, J. The Problem with Collecting, Processing, and Analyzing More Security Data. Available online: https://www.esg-global.
com/blog/the-problem-with-collecting-processing-and-analyzing-more-security-data (accessed on 10 April 2021).

11. CriticalStart. The Impact of Security Alert Overload. Available online: https://www.criticalstart.com (accessed on 10 April 2021).
12. Kohgadai, A. Alert Fatigue: 31.9% of IT Security Professionals Ignore Alerts. Available online: https://www.skyhighnetworks.

com/cloud-security-blog/alert-fatigue-31-9-of-it-security-professionals-ignore-alerts (accessed on 10 April 2021).
13. Chickowski, E. Every Hour SOCs Run, 15 Minutes Are Wasted on False Positives. Available online: https://securityboulevard.

com/2019/09/every-hour-socs-run-15-minutes-are-wasted-on-false-positives (accessed on 2 September 2019).
14. Ponemon. 2020 Devo SOC Performance Report: A Tale of Two SOCs. Available online: https://www.devo.com (accessed on 8

February 2021).
15. Giacobe, N.A. Measuring the Effectiveness of Visual Analytics and Data Fusion Techniques on Situation Awareness in Cyber-Security;

Penn State University: State College, PA, USA, 2013.
16. Venkatesh, V.; Davis, D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Inf. Syst. Res.

2000, 46, 186–204. [CrossRef]
17. Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13,

319–340. [CrossRef]
18. Lewis, J.R. Comparison of Four TAM Item Formats: Effect of Response Option Labels and Order. J. Usability Stud. 2019, 14,

224–236.
19. Deutskens, E.; De Ruyter, K.; Wetzels, M.; Oosterveld, P. Response rate and response quality of Internet-based surveys: An

experimental study. Mark. Lett. 2004, 15, 21–36. [CrossRef]
20. Lumen. Repeated-Measures ANOVA. Boundless Statistics. Available online: https://courses.lumenlearning.com/boundless-

statistics/chapter/repeated-measures-anova (accessed on 19 August 2021).
21. Lewis, J.R.; Utesch, B.S.; Maher, D.E. Measuring Perceived Usability: The SUS, UMUX-LITE, and AltUsability. Int. J. Hum. Comput.

Interact. 2015, 31, 496–505. [CrossRef]
22. Szajna, B. Software evaluation and choice: Predictive validation of the technology acceptance instrument. MIS Q. 1994, 18, 319.

[CrossRef]
23. Shahrabi, M.A.; Ahaninjan, A.; Nourbakhsh, H.; Ashlubolagh, M.A.; Abdolmaleki, J.; Mohamadi, M. Assessing psychometric

reliability and validity of Technology Acceptance Model (TAM) among faculty members at Shahid Beheshti University. Manag.
Sci. Lett. 2013, 3, 2295–2300. [CrossRef]

24. U.S. Bureau of Labor Statistics. Information Security Analysts: Occupational Outlook Handbook: U.S. Bureau of Labor
Statistics. Available online: https://www.bls.gov/ooh/computer-and-information-technology/information-security-analysts.
htm (accessed on 14 June 2019).

25. Barlett, J.E.; Kotrlik, J.W.; Higgins, C.C. Organizational research: Determining appropriate sample size in survey research. Inf.
Technol. Learn. Perform. J. 2001, 19, 43–50.

26. Hoskin, T. Parametric and Nonparametric: Demystifying the Terms. Available online: https://www.mayo.edu/research/
documents/parametric-and-nonparametric-demystifying-the-terms/doc-20408960 (accessed on 19 August 2021).

27. Lane, D.M. Online Statistics Education: A Multimedia Course of Study. Available online: https://onlinestatbook.com (accessed
on 19 August 2021).

186

J. Cybersecur. Priv. 2022, 2

28. Strack, F. Order Effects in Survey Research: Activation and Information Functions of Preceding Questions. In Context Effects in
Social and Psychological Research; Schwarz, N., Sudman, S., Eds.; Springer: New York, NY, USA, 1992; pp. 23–34.

29. Minitab Blog Editor. Repeated Measures Designs: Benefits, Challenges, and an ANOVA Example. Available online: https://blog.
minitab.com/en/adventures-in-statistics-2/repeated-measures-designs-benefits-challenges-and-an-anova-example (accessed
on 19 August 2021).

30. Ben-Asher, N.; Gonzalez, C. Effects of cyber security knowledge on attack detection. Comput. Hum. Behav. 2015, 48, 51–61.
[CrossRef]

187

Citation: Aboah Boateng, E.; Bruce, J.

W. Unsupervised Machine Learning

Techniques for Detecting PLC Process

Control Anomalies. J. Cybersecur. Priv.

2022, 2, 220–244. https://doi.org/

10.3390/jcp2020012

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 14 February 2022

Accepted: 17 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Unsupervised Machine Learning Techniques for Detecting PLC
Process Control Anomalies

Emmanuel Aboah Boateng and J. W. Bruce *

Department of Electrical and Computer Engineering, Tennessee Technological University,
Cookeville, TN 38505, USA; eaboahboa42@tntech.edu
* Correspondence: jwbruce@tntech.edu

Abstract: The security of programmable logic controllers (PLCs) that control industrial systems
is becoming increasingly critical due to the ubiquity of the Internet of Things technologies and
increasingly nefarious cyber-attack activity. Conventional techniques for safeguarding PLCs are
difficult due to their unique architectures. This work proposes a one-class support vector machine,
one-class neural network interconnected in a feed-forward manner, and isolation forest approaches for
verifying PLC process integrity by monitoring PLC memory addresses. A comprehensive experiment
is conducted using an open-source PLC subjected to multiple attack scenarios. A new histogram-
based approach is introduced to visualize anomaly detection algorithm performance and prediction
confidence. Comparative performance analyses of the proposed algorithms using decision scores and
prediction confidence are presented. Results show that isolation forest outperforms one-class neural
network, one-class support vector machine, and previous work, in terms of accuracy, precision, recall,
and F1-score on seven attack scenarios considered. Statistical hypotheses tests involving analysis of
variance and Tukey’s range test were used to validate the presented results.

Keywords: cyber-physical systems; anomaly detection; programmable logic controllers (PLCs); one-
class support vector machine (OCSVM); one-class neural network (OCNN); isolation forest (IF);
unsupervised machine learning; cybersecurity

1. Introduction

The pervasiveness of Internet of Things technology and networked sensors in many
industrial control systems (ICSs) have exposed critical infrastructure to malicious activities
and cyber threats, leading to an increase in successful cyberattacks on critical infrastruc-
ture [1–4]. Programmable logic controllers (PLCs) are embedded devices that serve as major
components in ICSs and are crucial to ICSs’ network operation. PLCs control industrial
systems by collecting input data from field devices such as sensors and sending commands
to actuating devices for process execution [5,6]. ICSs monitor and control critical infras-
tructure such as nuclear facilities, electricity supply, and water management. PLCs are
vulnerable to attacks, similar to other embedded devices. Because PLCs are widely used
to control the physical processes of critical infrastructure, attacks against PLCs can cause
irreparable damage to enterprises and even loss of human life [7].

In the past, PLCs operated as isolated and proprietary systems with no external con-
nectivity [8,9]. As a result, PLC attacks were limited to insider intrusion, physical damage,
and tampering [10]. PLCs are increasingly connected to the internet and corporate networks
via transmission control protocol/internet protocol (TCP/IP) and wireless IP [11]. It is
difficult to apply traditional techniques for detecting anomalous PLC behavior due to their
unique architecture and proprietary operating systems. Therefore, it is crucial to protect
PLCs against any forms of cyber-attack and anomalies such as hardware malfunction,
accidental actions by insiders, and malicious intruders [12]. Figure 1 shows a typical ICS
with interconnected network configuration. The human–machine interface (HMI) provides

J. Cybersecur. Priv. 2022, 2, 220–244. https://doi.org/10.3390/jcp2020012 https://www.mdpi.com/journal/jcp188

J. Cybersecur. Priv. 2022, 2

a visual view and process control commands. The PLCs contain the control logic that
supervises the control process. The control process data logs are stored in the historian.

Figure 1. A typical ICS with interconnected network configuration.

Although both supervised and unsupervised ML techniques have been applied in PLC
anomaly detection [13,14], it is usually difficult to rely on a supervised learning approach
as real-world ICSs contain numerous sensor data that are tedious to label. Moreover,
unsupervised ML techniques for anomaly detection in PLCs and ICSs have not been widely
examined. This work explores one-class support vector machines (OCSVM), one-class
neural network (OCNN) interconnected in a feed-forward manner, and isolation forest
(IF) algorithms to verify PLC process integrity. In order to evaluate this concept, a traffic
light control experiment similar to [13,15] was developed. Recent work has suggested
that one-class support vector machines (OCSVM) are accurate for identifying anomalous
PLC behavior and for identifying anomalies in other areas [16–18]. Research work in [19]
shows that the future of deep neural networks for intelligent decision making in ICS looks
promising. This is because anomaly-detection algorithms based on deep neural networks
serve as a data-driven universal function approximation tool.

This work further extends unsupervised PLC anomaly detection techniques by using
IF and OCNN. After training, the proposed models are intended to run on a dedicated or
separate computer to monitor operations at the PLC memory addresses through real-time
HMI historian logs. Results indicate that isolation forest techniques may reduce anomaly
detection models’ dependence on the specific data set locality. This work shows that IF
outperforms OCNN and OCSVM in detecting PLCs anomalies.

1.1. Contributions

The novel contributions of this work can be summarized as follows:

1. Employ OCNN-based technique for detecting abnormal PLC behavior—the first
known application of OCNN in the ICS domain;

2. Conduct comparative performance analysis between OCSVM, OCNN, and IF based
on their decision scores instead of using traditional binary predictions and employing
analysis of variance (ANOVA) and Tukey’s range test for confirming validity of results;

3. Introduce a new histogram-based approach for visualizing anomaly-detection algo-
rithm performance and prediction confidence.

189

J. Cybersecur. Priv. 2022, 2

1.2. Outline of the Paper

This paper is organized as follows. Section 2 presents a detailed overview of the
related works, followed by Section 3, which discusses the details of the experimental
setup and the approach to collecting data for training and evaluating the ML algorithms.
Section 4 discusses the proposed unsupervised anomaly detection frameworks, and after
that, Section 5 presents the results and analysis. Finally, Section 6 concludes the paper and
provides recommendations for future work.

2. Related Work

Inoue et al. employed unsupervised ML algorithms for anomaly detection in water
treatment systems [20]. They compared two unsupervised methods: a deep neural network
consisting of feed-forward layers with multiple inputs and outputs and a one-class sup-
port vector machine (OCSVM). The authors claimed that the deep neural network model
generated fewer false positives than the OCSVM, although the OCSVM could detect more
anomalies. The authors report recall values less than 0.7 for both deep neural network
and OCSVM.

Tomlin et al. [21] proposed a clustering approach for network intrusion-detection
system implementation in ICS. Their experimental results highlighted the issues associ-
ated with using cluster analysis as a unique tool for anomaly-based intrusion detection.
Although the work of Tomlin et al. seems promising, it focused on mainly simulated
experimental data, which sometimes fail to represent an actual ICS setup.

Xiao et al. [22] proposed a noninvasive power-based anomaly-detection scheme for
detecting attacks on PLCs using long short-term memory. Their work detected malicious
software execution in a PLC by analyzing the PLC power consumption. Xiao et al. achieved
accuracy as high as 99%. However, PLC power consumption is affected by power supply
instability and electronics malfunction, and can produce false-positive values.

In [23], the authors used a fully connected neural network and an autoencoder to
detect anomalies in network traffic. Their results demonstrated a higher detection rate and
lowered false positive rate when compared with eight other modern anomaly detection
techniques. Potluri et al. [24] also employed Artificial Neural Networks (ANN) for identi-
fying false data injection attacks in ICS. The classification report obtained in [24] shows a
promising detection accuracy with ANN.

In [25], Elnor et al. proposed a semisupervised dual isolation forest-based anomaly
detection approach using the normal process operation data of the secure water treatment
(SWaT) testbed and water distribution testbed. They compared their approach to other
anomaly detection techniques for ICS in terms of precision, recall, and F1-score. They
achieved a 7% improvement in the F1-score and detected 19 out of 36 SWaT attacks.

Ahmed et al. [26] proposed an unsupervised learning approach using isolation forest to
detect covert data integrity assault on a smart grid communication network. Although they
achieved an average accuracy of 93%, their approach focused on simulated experimental
data and may not represent ICS accurately. From the aforementioned, it can be realized that
isolation forest is a tremendous unsupervised learning approach with high performance
in anomaly detection. However, there are not enough applications of isolation forest
techniques for anomaly detection in PLCs and ICSs.

Liu et al. [27] proposed an anomaly detector based on subspace technique and quanti-
zation method for amplitude-frequency characteristic deviation of ICSs. Their approach is
practical and may be readily deployed in real ICS. However, the work does not address ICS
confidentiality attack. Reported results show an inability to detect anomalies in ICSs with
aggressive disturbances and instabilities. The work in [27] highlights the general challenges
associated with deploying anomaly detection models in resource-constrained embedded
devices for ICS protection.

PLC protection has some challenges associated with applying anomaly detection
techniques [27–30]. Most legacy PLCs in ICSs have insufficient low-level documentation
making it challenging to perform forensic investigations in cases of cyber-attacks or anoma-

190

J. Cybersecur. Priv. 2022, 2

lous events [31]. Security mechanisms and forensic tools dedicated for PLCs to perform
comprehensive security investigations are lacking [32]. Lastly, PLC availability in an ICS
environment is often paramount. Therefore, shutting down a PLC-based ICS for forensic
investigations is often not feasible [28]. Therefore, robust detection techniques are required
for real-time anomaly detection in PLCs and ICSs.

An unsupervised ML technique called OCSVM was employed to detect anomalies in
PLCs successfully in [13]. Their experiment simulated a traffic light control system using
a PLC. They captured relevant PLC memory addresses into a log file for real-time data
recording from the traffic light operation. The captured data was normalized and used for
training the OCSVM model. Training and test accuracies were 98% and 82%, respectively.
However, OCSVM recall values on some test cases were as low as 75%, and the average
accuracy over their three-test cases was 78%. The low-performance metrics of detection
technique in [13] call for the need to investigate robust detection techniques for anomaly
detection in PLCs.

While OCSVM has been used as an effective unsupervised technique for anomaly detec-
tion, OCSVM performance is unsatisfactory on complex, high-dimensional datasets [33,34]. A
one-class neural network (OCNN) with a one-class objective function was used for anomaly
detection in complex datasets [33]. Despite its great potential on complex datasets, OCNN
has not been applied to ICS or PLC for anomaly detection purposes. This work examines
OCSVM, OCNN, and IF ML techniques for detecting PLC anomalous behavior by tracking
the operations at the PLC input and output memory addresses.

3. Experiment Setup

This section provides the details of the experimental setup used in this work to
implement the traffic light system. The ICS used in this work is patterned after the one
described in [13,15].

3.1. Description of Control Setup

Siemens’s open-source traffic light control program [15] was used to implement a
traffic light system to control vehicles and pedestrian traffic at a pedestrian crossing with
red, yellow, and green signals. In addition to the traffic light signals, each pedestrian
light was equipped with a pushbutton for pedestrians to request green light signals. The
following safety requirements were taken into account in the control logic program in order
to prevent any hazard to pedestrians or drivers:

1. The control system default operation should turn ON the green and red light signals
for the vehicle traffic and pedestrian traffic, respectively, to define a safe starting point;

2. Whenever the program receives a green request from the pedestrian through the
pushbutton, the vehicle traffic light signals must change from green to red via yellow.

Apart from the safety requirements, Figure 2 summarizes the control setup operation.
In [13,15], a system was constructed using Siemens S&-1212C PLC loaded with the TLIGHT
control program. This work implements the TLIGHT control logic using OpenPLC [35] and
ScadaBR [36]. Figure 3 provides a block diagram of the experimental setup for recording
training and test data. The experimental setup’s main components are described below.

191

J. Cybersecur. Priv. 2022, 2

Figure 2. Flow chart of TLIGHT system operations.

Figure 3. Diagram of the cyber-physical system network interconnection and information flow.

3.2. OpenPLC

OpenPLC is an open-source simulation environment for home and industrial automa-
tion systems development [35]. OpenPLC runtime is versatile, and it creates a virtual PLC
architecture on supported hardware to mimic PLC behavior. OpenPLC supports several
firm PLC devices [37–39] and personal computers (PC) running Linux and Windows oper-
ating systems to create flexible soft PLCs installations [35]. The TLIGHT system [15] was
implemented in two parts in OpenPLC. The first part was the control program development

192

J. Cybersecur. Priv. 2022, 2

similar to the description of Figure 2 in ladder logic form in OpenPLC editor. OpenPLC
editor was used to simulate and test the TLIGHT system logic to ensure that the program
was error-free and accurately represented the TLIGHT system description in [13,15]. The
simulated program followed the IEC 61131-3 standard for PLC programs [40]. The ladder
logic implementation is publicly available on [41]. Finally, the ladder logic was converted
to a structured text format that can be run and interpreted by the OpenPLC runtime.

The soft PLC in Figure 3 was implemented with a PC running Linux version of
OpenPLC. The experimental setup in this paper will work on all OpenPLC supported
hardware devices [35,37–39]. The second part of the implementation was the program’s
deployment in structured text format onto the OpenPLC runtime for real-time program
execution. PLC consists of a central processing unit (CPU), memory areas (also referred to
as address space in OpenPLC), and input/output devices. Internally, the program works
by continuously scanning the program for every 100 ms. Each scan cycle consists of three
crucial steps: check inputs, execute program logic, and update outputs. The cyclical PLC
runtime process continues so long as the runtime is set to running mode as described in
Algorithm 1.

Algorithm 1: PLC runtime execution.
Input: Pushbuttons for green request from the pedestrians
Output: Light signals states for vehicles and pedestrians
Initialize Default TLIGHT system state
for each 50 ms do

sample inputs from PLC addresses
execute ladder logic
update PLC registers
process network transactions

end

3.3. Human Machine Interface (HMI)

ScadaBR [36], an open-source supervisory control and data acquisition (SCADA) sys-
tem, was utilized as the HMI to monitor and control the PLC runtime. ScadaBR depicts
the control system’s state in real-time. It allows direct observation and execution of control
commands to PLC. The PLC input and output memory addresses were mapped to corre-
sponding Modbus input and output addresses in the HMI. At the end of every HMI cycle
time (100 ms), ScadaBR records available data at the input and output Modbus addresses
to a log file. Finally, TLIGHT system operations are exported from the HMI as CSV file for
preprocessing and training of the detection models. The HMI application also operates
independently of the PLC, as described in Algorithm 2.

Algorithm 2: HMI application execution.
Input: PLC inputs’ states
Output: PLC outputs’ states
for each 100 ms do

read PLC inputs’ states
read PLC registers’ states
if an update from user then

write change to settable PLC registers
end
process network transactions

end

193

J. Cybersecur. Priv. 2022, 2

4. Proposed Method

The proposed anomaly detection systems described here use the normal process
data from TLIGHT system’s input and output signals. Details about the data collection,
anomalies, and theoretical background of the algorithms used in the proposed methods are
described in this section. Figure 4 is a framework of the anomaly detection approach that
shows how the proposed methods could be implemented in other real-world ICS scenarios.
The process starts with offline training of OCSVM, OCNN, and IF using the dataset from
HMI historian directly recorded from the PLC memory addresses. Training data consists
of relevant features which are normalized to retain the minimum and maximum features
values. The processed data are used to develop the detection models. The trained models
are serialized onto a separate computer for real-time PLC anomaly detection. During
testing or online detection, real-time measurement data is obtained from the HMI historian,
and information about the training data normalization procedure is used to process the
online data - indicated by the red dotted arrows in Figure 4. The final decision is made by
each trained detection model for specified time frames.

Figure 4. General framework of the anomaly detection approach.

4.1. Data Collection and Preprocessing

ML relies heavily on data by using statistical models and algorithms to build models
capable of predicting outcomes for a given input [42]. As a result, data quality is critical to
ML model robustness. Data is collected from the HMI historian. The HMI monitors and
records the memory addresses with timestamps via the Modbus communication protocol.
The data is recorded for about 4 days to ensure enough training and test data to evaluate
the proposed techniques in this work. In order to ensure a fair comparison between this
work and [13], the approach described here follows a similar approach in [13] as closely as
possible. Figure 5 summarizes the approach to the data collection and preprocessing.

194

J. Cybersecur. Priv. 2022, 2

Figure 5. Description of the various steps involved in data collection, preprocessing, training and
evaluation of the anomaly detection algorithms.

4.1.1. Anomalous Scenarios

In order to evaluate and compare the performance of the different anomaly-detection
techniques proposed in this work, five different test sets are generated. Each set contains
normal and anomalous TLIGHT system events. Anomalous system events for the five
test sets are derived from seven scenarios. All seven attack scenarios could generally
represent real-world scenarios resulting from malfunctioning sensors and actuators, such
as broken connectors, damaged cable insulation, physical obstruction, or natural disasters.
It is crucial to quickly identify the anomalies in all scenarios because they could indicate
hardware failure mode or the need for system maintenance. Furthermore, each scenario
can also represent a specific malicious attack on an ICS. The seven attack scenarios are
outlined below.

• Anomalous scenario 1: All the vehicles and pedestrians’ green lights are turned ON at
the same time. The purpose of this anomalous event is to violate the TLIGHT system
safety rules. This attack generally represents a real-world scenario in which an attacker
has compromised the PLC operations through elevation of privileges attack with the
aim of causing traffic collision between vehicles and pedestrians.

• Anomalous scenario 2: All the traffic lights are shut down. This attack aims to
simulate an unnecessary traffic scenario for the vehicles and deny pedestrians’ green
light requests. This attack represents a real-world scenario in which an attacker has
introduced logic bomb attack inside the PLC ladder logic with the aim of terminating
TLIGHT system operations.

195

J. Cybersecur. Priv. 2022, 2

• Anomalous scenario 3: All pedestrians and vehicles’ traffic light signals are turned
ON. This attack scenario aims to violate the TLIGHT system safety requirements. This
attack generally represents a real-world scenario in which an attacker has compro-
mised the wired connection between the PLC and physical components with the aim
of causing a denial-of-service attack. This attack could lead to traffic jams and delays.

• Anomalous scenario 4: Refuse all green light requests from the pedestrians. This
attack scenario violates the TLIGHT system logic and operation cycle. This attack
generally represents a real-world scenario in which an attacker tampered with the
HMI communication protocol due to unencrypted communication with the aim of
causing a denial-of-service attack.

• Anomalous scenario 5: All vehicles and pedestrians’ red light signals are turned ON at
the same time. The motive of this attack is to cause unnecessary traffic for both vehicles
and pedestrians and violate the TLIGHT system’s default setting. This attack generally
represents a real-world scenario in which an attacker has introduced a hardware trojan
inside the physical components causing the red light signals to respond differently
from the PLC logic.

• Anomalous scenario 6: The vehicle’s yellow signals timing bits are manipulated. This
kind of anomaly is stealthy and subtle because all the traffic lights seem to be operating
normally with manipulated timing bits. This attack generally represents a real-world
scenario where an attacker has executed a man-in-the-middle attack by spoofing the
vehicle and pedestrian timing bits signals.

• Anomalous scenario 7: Delay timing bits for subsequent pedestrian green requests,
and pedestrians’ green light phase duration are manipulated. This attack scenario
is similar to attack scenario six in its subtlety and difficulty of detection from a hu-
man perspective. This attack generally represents a real-world scenario in which an
attacker has executed a man-in-the-middle attack by spoofing the delay timing bits for
pedestrian green request signals.

4.1.2. Test Cases

The details of the five test cases considered in this study are:

• Test set 1 contains 5000 normal and anomalous events samples, of which 10% are
anomalous instances. The 10% of anomalous instances consists of 10% anomalous
scenarios 1, 2, 3, 4, and 5;

• Test set 2 contains 7000 test samples, of which 10% are anomalous events. These
anomalous events consist solely of anomalous scenario 3;

• Test set 3 contains 13,130 normal and anomalous samples. About 20% of the data
contains anomalous instances sampled from anomalous scenarios 1 and 3. Anomalous
scenarios 1 and 3 consist of 50% each of the total anomalous events in test set 3;

• Test set 4 contains 15,000 test samples of which anomalous instances in the test sample
are 30%. These anomalous instances are sampled from anomalous scenarios 6 and 7.
Moreover, anomalous scenarios 6 and 7 consist of 20% and 10% anomalies, respectively.
This particular test set comprises only timing bits anomalies;

• Test set 5 is the most diverse and complicated test set. Test set 5 contains 18,270 normal
and anomalous test samples. A total of 50% of the test data is anomalous instances
sampled from anomalous scenarios 1, 2, 3, 5, 6, and 7. This test set is the only set with
a mixture of timing bits anomalies and traffic light signals anomalies. It is also the test
set with the highest number of anomalies. Anomalous scenario 1 comprises 5% of the
test data, scenario 2 is 10%, scenario 3 is 10%, scenario 5 is 5%, scenario 6 is 5%, and
anomalous scenario 7 is 15% of the test data.

The total training dataset samples and test sets 1-3 are consistent with the number
of samples used in [13]. Test set 4 and 5 consist mainly of timing bits anomalies. Table 1
summarizes the number of records and proportion of anomalies in the training and test sets.

196

J. Cybersecur. Priv. 2022, 2

Table 1. Number of records and proportion of anomalies in training and test data sets.

Dataset No. of Records % Anomalies

Training set 41,580 n/a
Test Set 1 5000 10
Test Set 2 7000 10
Test Set 3 13,130 20
Test Set 4 15,000 30
Test Set 5 18,270 50

4.2. OCSVM-Based Detection Approach

Scholkopf et al. [43] proposed OCSVM, a maximum-based classifier established on
support vector machines. The OCSVM is an unsupervised anomaly-detection algorithm
that learns a decision function for separating the normal class from the anomalies [44].
Given a training dataset {Xi|i = 1, 2, 3 · · · , n} where Xi ∈ Rd, the OCSVM separates the
data points from the origin in the feature space by a hyperplane and maximizes the distance
from the hyperplane to the origin. OCSVM finds a decision function fF that separates the
data points into positive and negative scores. The positive scores represent the region in
the feature space where Xi ∈ F, and F is the set that carries a high concentration of the data
points, also known as the minimum-volume set. The negative scores represent all other
data points or anomalies. High dimensional Hilbert space H, can be used to transform
each data point Xi via a feature map Φ : Rd ← H generated by a positive-definite kernel,
k(X, X′). The optimization problem for separating the data from the origin in the OCSVM
is therefore given by

min
w,b

1
2
‖w‖2 − C

N

N

∑
n=1

ξ − b

s.t : 〈w, Φ(Xi)〉 ≥ b− ξi, ∀i,

ξi ≥ 0, ∀i

(1)

where b is the variable that controls the algorithm’s bias. The optimization problem is
formulated such that w · φ(X)− b is positive for as many N training examples as possible.
The C value is a hyperparameter that serves as the differential weight of the normal data
points compared to the anomalous data points. The value, ν = 1/C is regarded as the
prior probability that a data point in the training set is an anomaly, thereby regulating the
trade-off between false positives and false negatives in the model. The slack variable ξ
allows some data points in a nonseparable dataset to be within the margin. As a result, for
the given data X, the decision function fF(Xn:) is

fF(Xn:) = wTΦ(Xn:)− b (2)

The function definition in (2) is responsible for separating the data points from the
origin by determining whether a point is in the positive or negative set. The width of the
margin is controlled by b ∈ [0, 1] and w is the normal vector of the hyperplane. The input
data is projected into a nonlinear high-dimensional space by Φ(Xn:), and the slack variable
ξ models the separation errors in the same way as the feature space of (1). Therefore, the
overall OCSVM objective function is

min
w,b

1
2
‖w‖2 +

1
νN

N

∑
n=1

max(0, b− 〈w, Φ(Xn:)〉)− b (3)

While the literature reports different variations of OCSVM, this work presents an
OCSVM model that is developed by using the same model parameters in [13] to serve
as a baseline upon which our proposed methods could be compared. OCSVM model
learning process is controlled by using hyperparameters. Table 2 shows the hyperpa-
rameters for the OCSVM. According to [13], the modeling parameters in Table 2 were

197

J. Cybersecur. Priv. 2022, 2

selected as optimal hyper-parameters for the OCSVM algorithm after investigating various
hyperparameter ranges.

Table 2. Model hyperparameters for OCSVM.

Parameter Description Choice

kernel Type of kernel used in the algorithm polynomial
degree Degree of polynomial kernel function 3

coef0 Controls how much the model is influenced by
high-degree polynomials versus low-degree polynomials 4

nu(ν) An upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors 0.1

gamma Defines the level of a single training example’s influence 0.1

4.3. OCNN-Based Detection Approach

Neural networks for one-class classification have been proposed in [45–47]. However,
this work presents OCNN algorithm formulated on the foundation of OCSVM optimiza-
tion problem [43], and a proposed alternating minimization algorithm in [33] to form a
feed-forward neural network architecture capable of detecting PLC anomalies. OCNN
combines the ability of feed-forward neural network to extract features from the data along
with a one-class objective to become a universal anomaly detector. Given a feed-forward
neural network with a hidden layer, activation function g, and an output node, the al-
ternate minimization algorithm proposed by [33] is used to obtain the objective function.
Derivation of the OCNN follows the overall OCSVM objective function in (3). The resulting
objective function is used to solve the scalar output obtained from the hidden layer to the
output layer w, and the weight matrix from the input to the hidden node V as

arg min
w,V

1
2
‖w‖2 +

‖V‖2

2
+

1
νN

N

∑
n=1

�(yn, ŷ(w, V))

where
�(y, ŷ) = max(0, y− ŷ), yn = b, and ŷ(w, V) = 〈w, g(VXn)〉

Using the same alternate minimization approach as [33], the optimization problem for
the bias, b is

arg min
b

(
1

νN

N

∑
n=1

max(0, b− ŷ)

)
− b

Finally, the OCNN objective function generalization is

min
w,b,V

1
2
‖w‖2 +

1
2
‖V‖2 1

νN

N

∑
n=1

max(0, b− 〈w, g(VXn:)〉)− b (4)

where ν parameter controls the trade-off between maximizing the distance of the hyper-
plane from the origin and the number of data points allowed to cross the hyperplane. This
approach allows the model to utilize rich features obtained from unsupervised transfer
learning, particularly for anomaly detection in a complex dataset where the decision bound-
ary between the normal data points is highly nonlinear. The solution to optimizing (4) is
summarized in Algorithm 3.

198

J. Cybersecur. Priv. 2022, 2

Algorithm 3: OCNN Algorithm.
Input: Training dataset {Xi|i = 1, 2, 3..., n}
Output: Set of decision scores
Initialize b at t ← 0
while (there is no convergence) do

Find (wt+1, Vt+1)
Solve for b
t ← t + 1

end

Compute decision scores (Sn) for each (Xi)
if (Sn ≥ 0) then

Xi is normal instance;
else

Xi is anomalous instance
end

return {Sn}

Given a training dataset {Xi|i = 1, 2, 3..., n}, the width b of the hyperplane margin
is first initialized. The model uses backpropagation to learn the neural network param-
eters (w, V). The model then iteratively updates b to achieve convergence. Then, the
scoring function Sn labels the data points as normal and anomalous instances based on the
convergence criterion ε with:

y =

{
1 if Sn(x) > ε

−1 if Sn(x) ≤ ε
(5)

where y represents binary classes of the decision function scores, Sn(x).
The OCNN architecture consisted of 32 hidden layers with rectified linear activation

(ReLU) function. Various hyperparameters are used to configure the OCNN model. Table 3
shows the optimal hyperparameters chosen for the OCNN after hyperparameter tuning.

Table 3. Model hyperparameters for OCNN.

Activation Function ν Learning Rate No. of Hidden Layers

ReLU 0.04 0.0001 32

4.4. Isolation Forest-Based Detection Approach

Isolation forest (IF) is an unsupervised learning technique that builds binary trees
ensemble for a given dataset for anomaly detection [48–50] IF assumes that anomalies make
up the minority of a given dataset. As a result, anomalies have attribute values that are
different from the normal instances. IF uses several isolation trees and trains each tree
on a subset of the training dataset. IF uses the following parameters for constructing the
binary trees:

1. Total number of isolation trees (nt);
2. Sample size of training data subset used to train each isolation tree (nmax);
3. Maximum number of features representing a subset of the data features used to train

each tree (fmax).

Algorithm 4 summarizes the IF algorithm training process. During training, IF recur-
sively partitions the training data with an axis-parallel cut at randomly chosen partition
points in randomly selected attributes. Next, IF isolates the partitioned instances into
nodes with fewer and fewer instances until the points are isolated into singleton nodes
containing one instance [48]. IF randomly selects attributes splits q and a split subset p
within a specified range, resulting in a left (Xl) and right (Xr) subsets of the data each time

199

J. Cybersecur. Priv. 2022, 2

until all training samples are isolated into singleton nodes. Algorithm 5 summarizes the
recursive binary splitting concept for separating anomalies by IF.

Algorithm 4: Train IF(X, nt, nmax, fmax).
Input: X—input data, nt—number of trees, nmax—sub-sampling size,

fmax—attributes of data subset
Output: a set of nt iTrees
Initialize Forest
for (i = 1 to nt) do

X
′ ← sample(X, fmax, nmax)

Forest ← Forest ∪ iTree(X
′
)

end
return Forest

Algorithm 5 shows that after each split, isolation tree (iTree) produces a node which is
either an internal node (inNode) or external node (exNode) depending on whether there
is a further possibility of splitting the former into subsequent split regions. Consequently,
the two internal node subsets (Xl and Xr) are split further until they reach an external
node. External nodes are considered as leaves of branches when the maximum tree depth
is reached or the last nodes in branches when the data subset size of the region is one.

Algorithm 5: Train iTree(X
′
).

Input: X—input data, nt—number of trees, nmax—sub-sampling size,
fmax—attributes of data subset

Output: an iTrees
if X

′
is a singleton node then

return exNode{Size ← |X|};
else

let Q be a list of attributes in X
randomly select an attribute q ∈ Q randomly select a split point p from max
and min values of attributes q in X

′

Xl ← f ilter(X
′
, q < p)

Xr ← f ilter(X, q ≥ p)
return inNode{Le f t ← iTree(Xl),
Right ← iTree(Xr), SplitAttribute ← q, SplitValue ← p}

end

Anomalous events are considerably different from the normal data points, and so the
smaller paths in the isolation tree construction correspond to the lower dimensionality
of the subspaces in which the anomalies have been isolated. IF works under the implicit
assumption that it is more likely to isolate subspaces of lower dimensionality created by
random splits [48]. The decision score Sn(x) for a given data sample x based on a detection
threshold ε is given by

Sn(x) = 2−
h(x)

H

where H is the average expected path length of trees with anomalies considered as −1
while normal instances are labeled as 1 as follows

H = 2 ln fmax − 1 + 1.2− 2
fmax − 1

f

The average path length on all trees h(x) can be derived as

h(x) =
1
nt

nt

∑
n=1

hi(x)

200

J. Cybersecur. Priv. 2022, 2

where hi(x) is the nth tree path length established by the number of edges in the tree. The
IF algorithm is developed into a model using optimized hyperparameters. Table 4 shows
the IF model’s optimal hyperparameters after tuning a range of hyper-parameters.

Table 4. Model hyperparameters for IF.

Parameter Description Value

nestimators Number of base estimators in the forest ensemble 156
nmax Number of training samples to draw to train each estimator 180
fmax Number of features to draw to train each estimator 10

contamination Proportion of outliers in the data set 0.05

5. Results and Discussions

The evaluation is based on performance metrics, results from predictions on the test
data, and comparison with previous work trained on a similar dataset. The dataset is an
HMI historian log of operations at PLC memory addresses publicly available at [41]. Data
of PLC memory addresses operations are obtained through the Modbus communication
protocol between the PLC and HMI. Google’s Tensorflow [51], an open-source deep neural
network library, is used for training the OCNN model and subsequently serialized onto a
separate computer for online TLIGHT system anomaly detection. Evaluation results and
performance metrics calculations are performed by using the Scikit-learn library [52].

5.1. Performance Metrics

The performance metrics of the detection models in identifying anomalies in the
TLIGHT dataset are derived from the confusion matrix. Totally, four evaluation outcomes
are generated by the confusion matrix: true positive (TN), true negative (TN), false posi-
tive (FP), and false negative (FN). These outcomes are used for calculating the accuracy,
precision, recall, and F1-score of anomaly detection models.

Accuracy measures the proportion of correct predictions on the test data given by

Accuracy =
TP + TN

Real positives + Real negatives

Precision is a measure of the proportion of predicted positives that are true positives.
Precision is defined as

Precision =
TP

TP + FP

Recall measures the proportion of actual positives that are correctly classified. It
represents the ability of the model to detect all positive samples. Recall is

Recall =
TP

TP + FN

The F1-score is the harmonic mean of precision and recall. F1-score has its best value
of 1, indicating perfect precision and recall, and its worst value of 0. It is defined as

F1-score =
2× precision× recall

precision + recall

5.2. Performance Evaluation

This work presents a new way of visualizing anomaly detection algorithm results
using a histogram. Although histograms have been used in previous work to present
detection algorithms results [53–56], the approach presented in this work is new and
provides a better understanding of detection algorithms performance by revealing the
exact proportions of true positives, true negatives, false positives, and false negatives of
detection algorithms.

201

J. Cybersecur. Priv. 2022, 2

Visualization of results is done by first separating the decision scores (real numbers)
into positive and negative scores represented by P1 and N1 respectively. Next, decision
scores are separated into true positives, true negatives, false positives, and false negatives
with associated notations xtp, xtn, x f p, and x f n, respectively, based on the ground truth of
the test sets. Different algorithms provide different decision scores based on their objective
functions, so the resulting xtp and x f p scores are normalized to a range between 0 and
1 using the maximum and minimum values in P1. In contrast, xtn and x f n scores are
normalized to range between 0 and 1 using the maximum and minimum values in N1.
Furthermore, to ensure an objective comparison of the different algorithms, the xtp and x f n
quantities are normalized as a function of the total ground truth positives. Similarly, xtn and
x f p are normalized as a function of the ground truth negatives. Let the normalized scores of
xtp, xtn, x f p, and x f n be Xtp, Xtn, X f p, and X f n respectively. Finally, the normalized scores
are used to plot a histogram of the distribution and proportion of decision scores.

Visualization of anomaly detection results requires methods different from previous
work [33], where only positive P1 and negative N1 scores are presented. The approach in
Figure 6 reveals the fractions of P1, which corresponds to Xtp and X f p, and the fractions
of N1 which are Xtn and X f n. Moreover, the work in [33] only shows the proportions of
P1 and N1 as a function of test data size on the histogram’s y-axis, which makes it chal-
lenging to visualize the N1 scores, primarily because test sets in anomaly detection mainly
have smaller negative class proportions [45]. On the contrary, the proposed approach
normalizes the histogram frequency (y-axis) to a range of 0 to 100% to present a better
relative decision scores visualization. The visualization described here normalizes the x
and y axes for easier comparison of different detection algorithms’ performance. Finally,
the proposed visualization approach may be applied to supervised ML algorithms for
binary classification.

Figure 6. OCSVM results of the normalized TP, TN, FP, and FN values on test sets 1–5.

5.2.1. Performance of OCSVM

OCSVM’s recall values on test sets 1, 2, 3, 4, and 5 are 90%, 87%, 86%, 81%, and
70%, respectively. Figure 6 illustrates the benefits of the proposed visualization as it
reveals OCSVM’s overall behavior on all test sets. A similar distribution of TP scores is

202

J. Cybersecur. Priv. 2022, 2

observed on all test sets, showing how OCSVM learned the TLIGHT system’s normal
behavior during training process. OCSVM found detecting normal traffic transitions
involving vehicles’ green light signals challenging, leading to high TP scores that lie
along the decision boundaries in all test cases. Again, FN scores of test sets 1 and 3
involve the same data records being misclassified as anomalies. Moreover, FN scores of
test sets 4 and 5 represent identical normal data records misclassified as anomalies. The
aforementioned show the importance of the proposed visualization in this work as Figure 6
reveals OCSVM’s true performance on each data record, which would not be possible with
the traditional histogram approach [33].

Although OCSVM’s recall values decrease steadily from test sets 1 to 5, the normalized
true positive scores are low in all test cases. In all test cases, OCSVM misclassifies over 30%
anomalous instances as normal instances leading to high levels of FP in all test cases. In
addition, Figure 6 shows that in all test cases in which OCSVM makes an accurate positive
class (normal) prediction, the score (levels of confidence) of predictions are low and lie
along the decision boundary. Although OCSVM detects several positive classes, it has
a greater chance of misclassifying normal data points as anomalies because of the low
confidence of the positive class prediction. Moreover, about 75% of correct positive class
predictions occur close to the decisions boundary with low prediction confidence. The
low prediction confidence makes OCSVM unstable for TLIGHT system anomaly detection.
Figure 6 shows a histogram of normalized FP, FN, TP, and TN decision scores made by
OCSVM on test sets 1–5.

OCSVM learns the TLIGHT system’s normal behavior during training with a 100%
precision and 98% F1-score. The results substantiate the procedure this work adopts in
conducting the experiment and recording data as it is similar to the training results in [13].
Overall, OCSVM performs best on test set 1. OCSVM performance on test sets 2 and 3 are
similar with an F1-score of 84%. OCSVM has its least performance on test sets 4 and 5,
with F1-scores of 71% and 68% respectively. OCSVM model is unable to detect over 20% of
anomalies in test sets 4 and 5 because of the large proportion of anomalies consisting of
timing bits anomalies. Therefore, OCSVM appears to be ineffective at detecting TLIGHT
system errors consisting of system timing bits manipulation. Table 5 summarizes the
performance of the OCSVM described here and the OCSVM in [13]. Table 5 shows that the
OCSVM reported here and in [13] have similar training performance due to the datasets
and underlying TLIGHT experiment being designed identically. Test sets 1–3 in this work
are created to be the same size as the test sets in [13]; however, the exact nature and
distributions of errors in [13] are unknown and may be the reason for the slight differences
seen in the Table 5.

Table 5. Performance of OCSVM described here and the reported results * of the OCSVM in [13].

Accuracy Precision Recall F1-Score
Dataset OCSVM [13] OCSVM [13] OCSVM [13] OCSVM [13]

Training set 0.96 0.96 * 1.00 1.00 * 0.96 0.96 * 0.98 0.98 *
Test set 1 0.90 0.78 * 0.89 1.00 * 0.90 0.78 * 0.89 0.88 *
Test set 2 0.87 0.75 * 0.81 1.00 * 0.87 0.75 * 0.84 0.86 *
Test set 3 0.86 0.82 * 0.85 1.00 * 0.86 0.82 * 0.84 0.90 *
Test set 4 0.81 - 0.81 - 0.81 - 0.71 -
Test set 5 0.70 - 0.78 - 0.70 - 0.68 -

5.2.2. Performance of OCNN

OCNN’s performance on all metrics is similar to OCSVM. OCNN’s recall value on test
set 1 is high at 91%, whereas the recall values on test sets 2 and 3 are similar at 88%. A closer
observation of Figure 7 reveals that in all test sets, TP prediction scores by OCNN are close
to the decision boundary signifying low confidence of the positive class prediction. Over
all test cases, about 75% of the correctly predicted positive class have scores closer to the
decision boundary, which shows that OCNN has potential instabilities similar to OCSVM.

203

J. Cybersecur. Priv. 2022, 2

In addition, OCNN misclassifies more than 25% of anomalies as normal instances, which is
undesirable, especially in ICS anomaly detection. However, the TN and FP scores in all
test sets are high, showing OCNN’s robustness in detecting outliers. OCNN misclassifies
several anomalies as normal instances, especially in test sets 2–5, leading to high false
positive rates. Figure 7 shows a histogram of normalized FP, FN, TP, and TN decision scores
made by OCNN on test sets 1–5.

Figure 7. OCNN results of the normalized TP, TN, FP, and FN values on test sets 1–5.

OCNN has good performance on all metrics on test sets 1, 2, and 3, similar to OCSVM.
OCNN learns the TLIGHT system’s normal behavior well by having a training recall of
97%. However, OCNN’s performance on test sets 4 and 5 is low with F1-scores of 79%
and 68% respectively. Table 6 shows OCNN’s ability to detect changes in the light signals
behavior of the TLIGHT system and an inability to detect timing bits errors. OCSVM and
OCNN have similar performance because the OCNN objective function is developed as an
improvement upon the OCSVM optimization problem in Equation (3). Table 6 summarizes
OCNN’s performance on the five test sets.

Table 6. Summary of evaluation results for OCNN.

Dataset Accuracy Precision Recall F1-Score

Training set 0.97 1.00 0.97 0.99
Test set 1 0.91 0.90 0.91 0.90
Test set 2 0.88 0.81 0.88 0.84
Test set 3 0.88 0.87 0.88 0.86
Test set 4 0.81 0.82 0.81 0.79
Test set 5 0.70 0.79 0.70 0.68

204

J. Cybersecur. Priv. 2022, 2

5.2.3. Performance of Isolation Forest

Unlike OCSVM and OCNN, IF uses tree ensembles to isolate anomalies from the
dataset instead of learning the system’s normal behavior. IF achieves high recall rates on
test sets 1 and 2 at 91% and 97%, respectively. IF misclassifies about 40% of anomalies
as normal instances in test set 3, which resulted in a reduced recall rate of 88%. In test
set 2, IF classifies normal and anomalous data points almost perfectly with high confidence,
thereby achieving a precision of 98%. Unlike OCSVM and OCNN, IF’s decision scores on
TN and TP are consistently high, which means that whenever IF correctly predicts a normal
instance, it is certain about the detection decision. In addition, Figure 8 shows that for more
than 25% of the time, whenever IF correctly detects anomalous instances, the associated
decision scores are high, signifying high detection confidence. Figure 8 shows that IF’s
decision scores are far away from the decision boundary, which makes IF a stable model
for detecting anomalies in the TLIGHT system. IF decision scores are confident, therefore,
it is an attractive approach for ICS anomaly detection. Figure 8 shows a histogram of
normalized FP, FN, TP, and TN decision scores made by IF on test sets 1–5.

Figure 8. IF results of the normalized TP, TN, FP, and FN values on test sets 1–5.

Similar to OCSVM and OCNN, IF has an outstanding training performance. IF has
an excellent performance on test sets 1 and 2 on all evaluation metrics. IF performance
on test sets 3 and 4 are similar at an average recall value of 87%, whereas it has its lowest
performance on test set 5. Test sets 4 and 5 consist of timing bits anomalies, and IF achieves
recall rates of 86% and 82%, respectively. Results indicate that IF can detect timing bits
errors better than OCSVM and OCNN. Table 7 shows a summary of evaluation results
for IF.

205

J. Cybersecur. Priv. 2022, 2

Table 7. Summary of evaluation results for IF.

Dataset Accuracy Precision Recall F1-Score

Training set 0.95 1.00 0.95 0.98
Test set 1 0.91 0.90 0.91 0.91
Test set 2 0.97 0.98 0.97 0.97
Test set 3 0.88 0.87 0.88 0.87
Test set 4 0.86 0.86 0.86 0.85
Test set 5 0.78 0.82 0.78 0.77

5.3. Statistical Hypothesis Test

Statistical evidence about the best-performing detection model proposed in this work
is conducted using Analysis of Variance Test and Tukey’s range test. F1-score is selected
as the evaluation metric in the hypothesis test because F1-score is a great measure of the
trade-off between precision and recall, especially for imbalanced datasets.

5.3.1. Analysis of Variance Test (ANOVA)

ANOVA is a statistical model used to determine if a significant difference between
the means of two or more data sets exists [57,58]. One-way ANOVA is chosen because of
the interest in examining one independent variable’s influence, which is F1-score. First,
OSCVM, OCNN, and IF performances are evaluated on 20 different test samples of the
exact sizes as test sets 1, 2, 3, 4, and 5. Next, each detection algorithm’s F1-score is computed
on 20 different samples of each test set. The assumptions about the data set are

• data points in each test sample are independent and identically distributed; and
• data points are normally distributed.

In addition, the hypotheses for the statistical test are

• null hypothesis (H0): The mean F1-score of all detection algorithms are equal; and
• alternate hypothesis (Ha): One or more of the mean F1-score are unequal.

Based on the one-way ANOVA test, the F value is 14.972, and a p-value < 0.001
is achieved. One-way ANOVA shows significant evidence to reject the null hypothesis.
Rejecting the null hypothesis indicates a considerable difference between at least two
detection algorithms at a confidence level above 95%. Although one-way ANOVA reveals
a difference in the three algorithms’ performance, statistically, it is not clear which specific
algorithm performs best or worst. Therefore, a post hoc analysis is required to identify the
best-performing algorithm.

5.3.2. Tukey’s Range Test

Tukey’s range test is a statistical test used as post hoc analysis after one-way ANOVA [59].
Tukey’s range test compares all possible mean F1-score pairs for all detection algorithms
and precisely identifies differences between the pairs greater than the expected standard
error. Tukey’s range test is based on the same assumptions as ANOVA. Table 8 depicts
Tukey’s range test results at α = 0.05.

Table 8. Multiple comparison of mean F1-score for OCSVM, OCNN, and IF using Tukey’s range test
at α = 0.05.

Group 1 Group 2 Mean Diff. p-Adjusted Reject

OCNN IF 5.320 0.001 True
OCNN OCSVM −0.587 0.862 False

IF OCSVM −5.907 0.001 True

The mean F1-score for IF significantly differs from OCNN; hence IF outperforms
OCNN. However, the mean F1-score difference between OCNN and OCSVM is insignif-
icant; therefore, OCNN and OCSVM perform at par. Lastly, Tukey’s range test indicates

206

J. Cybersecur. Priv. 2022, 2

sufficient statistical evidence to reject the null hypothesis between the group IF-OCSVM
and conclude that IF outperforms OCSVM. Results in Table 8 indicate that IF is the superior
detection model for the TLIGHT dataset, whereas OCNN and OCSVM have similar overall
performance.

5.4. Summary of Results

The overall performance of the detection algorithms is summarized in this section.
Figure 9 shows box plots of OCSVM, OCNN, and IF results distributions with the outlier
test case labeled where applicable. IF has the highest median accuracy of 88%. Furthermore,
accuracy and recall box plots in Figure 9 show that all methods have outlier performance
more than 1.5 times the interquartile value on test set 5. However, the precision box
plot of Figure 9 indicates that IF’s precision value of 98% on test set 2 is an outlier. The
precision box plot shows no outliers for OCSVM and OCNN. Lastly, the F1-score box plot
in Figure 9 shows that the only F1-score outlier is OCNN’s result on test set 5 and the
F1-scores distribution of IF is right-skewed. Therefore, the overall results indicate that all
the detection models find it challenging to detect anomalies in test set 5. Nevertheless, all
the detection models have similar performance distributions on test sets 1–4.

Figure 9. Box plot of OCSVM, OCNN, and IF performance distribution.

It is insightful to compare the detection models’ average performance with the reported
results in [13] on all evaluation across test sets 1–3: IF performs about 5% better than
OCSVM, OCNN, and [13] in accuracy, precision, and recall. However, in terms of F1-score,
IF averages about 7% over OCSVM, OCNN, and [13]. In all evaluation metrics, OCNN and
OCSVM perform similarly. Figure 10 shows the comparison between the detection models
in this work and the reported results in [13]. Test sets 1–3 in this work are created to be the
same sizes as the test sets in [13]; however, the exact nature of anomalies and their relative
distributions in the three test sets is not provided in [13]. It is surmised that the difference
in validation performance between the OCSVM in this work and the reported results of the
OCSVM in [13] is due to these anomalies variations. Moreover, the reported result in [13]
has a precision of 100% in all test cases, but a low recall performance—below 83% in all

207

J. Cybersecur. Priv. 2022, 2

three test sets—which could potentially indicate overfitting of their model. Overall, IF
achieved the best performance on all three test sets.

Figure 10. Average test sets 1–3 performance of the OCSVM reported results * in [13], and the
OCSVM, OCNN, and IF approaches described in this paper.

Test sets 4 and 5 consist of timing bits anomalies unique to this work, and such errors
were not considered in [13]. Figure 11 shows the average performance comparison between
OCSVM, OCNN, and IF on test sets 4 and 5. IF’s average performance is higher than
that of OCNN and OCSVM on all the evaluation metrics, whereas OCNN and OCSVM
perform similarly.

Figure 11. Average test sets 4–5 performance of OCSVM, OCNN, and IF.

5.5. Practical Considerations

This work focused on TLIGHT system experiments consisting of digital signals from
sensors and actuators with the purpose of monitoring operations at the PLC memory
addresses. The digital nature of the experiment ensures fair comparison with previous
work developed with a similar experiment. However, the work presented here need not be
constrained to digital signals. The algorithms presented in this work can be extended to
PLC process control involving both analog and digital signals. The proposed algorithm’s
objective functions are adaptable to nonlinear scenarios; hence robust performance is
expected in industrial practices involving analog control systems. The multilayer network
of OCNN allows the computation of any nonlinear function [45]. OCSVM and IF have been
employed to successfully detect PLC anomalies involving analog signals in [20,25,60].

The presented techniques are general methods that can be implemented in real-world
ICS infrastructure with minimum effort. The outstanding performance of the proposed
techniques can be realized on legacy and embedded PLCs. An approach may be to compile
the trained models to C code using open-source compilers such as [61–63], which, as an
example, support x86 and ARM64 processor architectures. The generated C code should
be readily portable to dedicated ARM and general-purpose processors [64] for real-time
inference. A similar approach to the experiment conducted in this work may also be
employed. The trained models may be serialized onto a separate PC with a data pipeline

208

J. Cybersecur. Priv. 2022, 2

to the HMI historian and PLC memory addresses to receive data and perform real-time
anomaly detection.

5.6. Limitations

While this work makes significant contributions to the scientific body of ICS anomaly
detection, there are some limitations to the proposed approaches. The proposed histogram-
based visualization approach is limited to anomaly-detection algorithms with signed output
results. A detection algorithm’s output must be positive and negative real numbers repre-
senting normal and anomalous points or vice-versa in order for the proposed visualization
approach to be effective. The histogram-based visualization plots reveal that OCSVM
and OCNN make less-confident predictions. OCSVM and OCNN have similar decision
scores distributions across all five test sets because they are both formulated from a similar
optimization problem. Observing OCSVM and OCNN performance limitations may not
have been possible without the proposed visualization approach. Furthermore, comparing
anomaly-detection algorithms performances based on decision scores instead of traditional
binary predictions requires decision scores normalization. Since different anomaly detec-
tors might produce decision scores on different scales, decision scores normalization is
required for fair comparison.

In addition, there are some limitations associated with the proposed techniques.
OCSVM is sensitive to the choice of kernels, and ν parameters [45], hence OCSVM is not
robust in ICS applications without a deeper understanding of the ICS. OCSVM limitation
can partially be solved by using variable subsampling [65] during model training in
the context of ICS with unpredictable behavior. The feed-forward nature of the neural
network in OCNN makes the algorithm sensitive to noise [45]. Therefore, clean ICS data
should be used for OCNN training to avoid model overfitting. Finally, IF algorithm’s
recursive data partitioning could lead to lower performance in high-dimensional ICS data
due to the masking effect of locally noisy and irrelevant features. As a result, feature-
selection techniques [66,67] should be employed in high-dimensional ICS data before IF
model training.

Although IF has a stellar performance on key evaluation metrics on test sets 1–3,
it achieved lower recall values on test sets 4–5, which contain timing bits error. Some
anomalous data points are detected by either OCSVM or OCNN, but IF fails to detect
them. This shows that the proposed algorithms have strengths and weaknesses on different
subsets of the data, and hence, a single detection algorithm may not be able to generalize
to an arbitrary ICS setup. However, aggregating the predictions from individual anomaly
detection models could potentially result in a robust model capable of detecting anomalies
in an arbitrary ICS setup.

6. Conclusions

This work presents unsupervised ML algorithms for anomaly detection, including
cyber-attacks on PLCs and ICS. A previously studied TLIGHT ICS system was used. The
control system’s normal behavior is recorded through the PLC memory addresses. One-
class support vector machine, one-class neural network, and isolation forest algorithms
were developed using system process data. This work proposes a new histogram-based
visualization technique for demonstrating true positives, true negatives, false positives,
and false negatives proportions in anomaly detection models’ performance. The proposed
visualization technique can also be extended to supervised ML algorithms involving binary
classification. Results indicate that OCSVM and OCNN have similar performance on all
evaluation metrics, which are inferior to IF performance. A hypothesis test is conducted
using one-way ANOVA and Tukey’s range test to provide statistical evidence about the
algorithm with the best performance. The hypothesis test indicates that IF has the best
anomaly-detection rate on the TLIGHT system; however, there is insufficient statistical
evidence to support any difference in performance between OCSVM and OCNN. Finally,
IF achieved superior performance over results reported in prior work. The proposed

209

J. Cybersecur. Priv. 2022, 2

techniques are generalized methods, which can be implemented in real-world ICS with
minimal effort.

Recommendation

Based on the limitations outlined in this work, it is evident that some anomaly-
detection algorithms will perform well on a particular subset of the dataset, whereas
other algorithms will do better on other subsets of the dataset. Therefore, future work
should focus on the following to address the challenge mentioned above and extend
scientific knowledge:

• improving the anomaly-detection rate on the TLIGHT system through ensemble
techniques;

• developing dual anomaly-detection algorithms that will focus on specific subsets of
the dataset; and

• extending the proposed techniques in this work to other publicly available anomaly
detection datasets.

Author Contributions: Conceptualization, E.A.B. and J.W.B.; software, E.A.B.; validation, E.A.B. and
J.W.B.; investigation, E.A.B.; resources, J.W.B.; writing—original draft preparation, E.A.B.; writing—
review and editing, E.A.B. and J.W.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded, in part, by the State of Tennessee and the Tennessee Technological
University Center for Manufacturing Research.

Institutional Review Board Statement: Not applicable.

Acknowledgments: The views expressed in this paper are those of the authors, and do not reflect
the official policy or position of the state of Tennessee and Tennessee Technological University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kello, L. The Virtual Weapon and International Order; Yale University Press: New Haven, CT, USA, 2019.
2. Yaacoub, J.P.A.; Salman, O.; Noura, H.N.; Kaaniche, N.; Chehab, A.; Malli, M. Cyber-physical systems security: Limitations,

issues and future trends. Microprocess. Microsyst. 2020, 77, 103201. [CrossRef] [PubMed]
3. Thakur, K.; Ali, M.L.; Jiang, N.; Qiu, M. Impact of cyber-attacks on critical infrastructure. In Proceedings of the 2016 IEEE 2nd

International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance
and Smart Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS), New York, NY, USA,
9–10 April 2016; pp. 183–186.

4. Plėta, T.; Tvaronavičienė, M.; Casa, S.D.; Agafonov, K. Cyber-attacks to critical energy infrastructure and management issues:
Overview of selected cases. Insights Into Reg. Dev. 2020, 2, 703–715. [CrossRef]

5. Wardak, H.; Zhioua, S.; Almulhem, A. PLC access control: A security analysis. In Proceedings of the 2016 World Congress on
Industrial Control Systems Security (WCICSS), London, UK, 12–14 December 2016; pp. 1–6.

6. Abbasi, A.; Holz, T.; Zambon, E.; Etalle, S. ECFI: Asynchronous control flow integrity for programmable logic controllers. In
Proceedings of the 33rd Annual Computer Security Applications Conference, Orlando, FL, USA, 4–8 December 2017; pp. 437–448.

7. Abbasi, A. Ghost in the PLC: stealth on-the-fly manipulation of programmable logic controllers’ I/O. In Proceedings of the Black
Hat EU, London, UK, 1–4 November 2016; pp. 1–4.

8. Yau, K.; Chow, K.P. PLC forensics based on control program logic change detection. J. Digit. Forensics, Secur. Law 2015, 10, 5.
[CrossRef]

9. Langmann, R.; Stiller, M. The PLC as a smart service in industry 4.0 production systems. Appl. Sci. 2019, 9, 3815. [CrossRef]
10. Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures.

IoT 2021, 2, 163–188. [CrossRef]
11. Spyridopoulos, T.; Tryfonas, T.; May, J. Incident Analysis & Digital Forensics in SCADA and Industrial Control Systems. In

Proceedings of the 8th IET International System Safety Conference Incorporating the Cyber Security Conference, Cardiff, UK,
16–17 October 2013.

12. Boeckl, K.; Boeckl, K.; Fagan, M.; Fisher, W.; Lefkovitz, N.; Megas, K.N.; Nadeau, E.; O’Rourke, D.G.; Piccarreta, B.; Scarfone, K.
Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks; US Department of Commerce, National Institute
of Standards and Technology: Gaithersburg, MD, USA, 2019.

210

J. Cybersecur. Priv. 2022, 2

13. Yau, K.; Chow, K.P.; Yiu, S.M.; Chan, C.F. Detecting anomalous behavior of PLC using semi-supervised machine learning. In
Proceedings of the 2017 IEEE Conference on Communications and Network Security (CNS), Las Vegas, NV, USA, 9–11 October
2017; pp. 580–585.

14. Aboah, B.E.; Bruce, J.W. Anomaly Detection for Industrial Control Systems Based on Neural Networks with One-Class Objective
Function. Proc. Stud. Res. Creat. Inq. Day 2021, 5, 86.

15. Siemens, S. S7-300 Programmable Controller Quick Start, Primer, Preface; Technical Report; C79000-G7076-C500-01; Siemens:
Nuremberg, Germany, 1996.

16. Chen, Y.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical
exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [CrossRef]

17. Welborn, T. One-Class Support Vector Machines Approach for Trust-Aware Recommendation Systems; Shareok: Norman, OK, USA,
2021.

18. Hiranai, K.; Kuramoto, A.; Seo, A. Detection of Anomalies in Working Posture during Obstacle Avoidance Tasks using One-Class
Support Vector Machine. J. Jpn. Ind. Manag. Assoc. 2021, 72, 125–133.

19. Ahmad, I.; Shahabuddin, S.; Malik, H.; Harjula, E.; Leppänen, T.; Loven, L.; Anttonen, A.; Sodhro, A.H.; Alam, M.M.; Juntti,
M.; et al. Machine learning meets communication networks: Current trends and future challenges. IEEE Access 2020, 8,
223418–223460. [CrossRef]

20. Inoue, J.; Yamagata, Y.; Chen, Y.; Poskitt, C.M.; Sun, J. Anomaly detection for a water treatment system using unsupervised
machine learning. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,
LA, USA, 18–21 November 2017; pp. 1058–1065.

21. Tomlin, L.; Farnam, M.R.; Pan, S. A clustering approach to industrial network intrusion detection. In Proceedings of the 2016
Information Security Research and Education (INSuRE) Conference (INSuRECon-16), Charleston, SC, USA, 30 September 2016.

22. Xiao, Y.j.; Xu, W.y.; Jia, Z.h.; Ma, Z.r.; Qi, D.l. NIPAD: A non-invasive power-based anomaly detection scheme for programmable
logic controllers. Front. Inf. Technol. Electron. Eng. 2017, 18, 519–534. [CrossRef]

23. Muna, A.H.; Moustafa, N.; Sitnikova, E. Identification of malicious activities in industrial internet of things based on deep
learning models. J. Inf. Secur. Appl. 2018, 41, 1–11.

24. Potluri, S.; Diedrich, C.; Sangala, G.K.R. Identifying false data injection attacks in industrial control systems using artificial neural
networks. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8.

25. Elnour, M.; Meskin, N.; Khan, K.; Jain, R. A dual-isolation-forests-based attack detection framework for industrial control systems.
IEEE Access 2020, 8, 36639–36651. [CrossRef]

26. Ahmed, S.; Lee, Y.; Hyun, S.H.; Koo, I. Unsupervised machine learning-based detection of covert data integrity assault in smart
grid networks utilizing isolation forest. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2765–2777. [CrossRef]

27. Liu, B.; Chen, J.; Hu, Y. Mode division-based anomaly detection against integrity and availability attacks in industrial cyber-
physical systems. Comput. Ind. 2022, 137, 103609. [CrossRef]

28. Ahmed, C.M.; MR, G.R.; Mathur, A.P. Challenges in machine learning based approaches for real-time anomaly detection in
industrial control systems. In Proceedings of the 6th ACM on Cyber-Physical System Security Workshop, Taipei, Taiwan, 6
October 2020; pp. 23–29.

29. Priyanga, S.; Gauthama Raman, M.; Jagtap, S.S.; Aswin, N.; Kirthivasan, K.; Shankar Sriram, V. An improved rough set theory
based feature selection approach for intrusion detection in SCADA systems. J. Intell. Fuzzy Syst. 2019, 36, 3993–4003. [CrossRef]

30. Raman, M.G.; Somu, N.; Mathur, A.P. Anomaly detection in critical infrastructure using probabilistic neural network. In
International Conference on Applications and Techniques in Information Security; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 129–141.

31. Benkraouda, H.; Chakkantakath, M.A.; Keliris, A.; Maniatakos, M. Snifu: Secure network interception for firmware updates in
legacy plcs. In Proceedings of the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–6.

32. Wu, T.; Nurse, J.R. Exploring the use of PLC debugging tools for digital forensic investigations on SCADA systems. J. Digit.
Forensics, Secur. Law 2015, 10, 7. [CrossRef]

33. Chalapathy, R.; Menon, A.K.; Chawla, S. Anomaly detection using one-class neural networks. arXiv 2018, arXiv:1802.06360.
34. Bengio, Y.; LeCun, Y.; Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41.
35. Alves, T.R.; Buratto, M.; De Souza, F.M.; Rodrigues, T.V. OpenPLC: An open source alternative to automation. In Proceedings of

the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 585–589.
36. Mazurkiewicz, P. An open source SCADA application in a small automation system. Meas. Autom. Monit. 2016, 62, 199–201.
37. Unipi Neuron Kernel Description. Available online: https://www.unipi.technology/products/unipi-neuron-3 (accessed on

3 March 2022).
38. ZumIQ Edge Computer Kernel Description. Available online: https://www.freewave.com/products/zumiq-edge-computer/

(accessed on 3 March 2022).
39. Automation without Limits Kernel Description. Available online: https://www.unipi.technology/ (accessed on 3 March 2022).
40. Tiegelkamp, M.; John, K.H. IEC 61131-3: Programming Industrial Automation Systems; Springer: Berlin/Heidelberg, Germany, 2010.
41. TLIGHT SYSTEM Source Code to TLIGHT Experiment. Available online: https://github.com/emmanuelaboah/TLIGHT-

SYSTEM (accessed on 17 January 2022).

211

J. Cybersecur. Priv. 2022, 2

42. Gollapudi, S. Practical Machine Learning; Packt Publishing Ltd.: Mumbai, India, 2016.
43. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution.

Neural Comput. 2001, 13, 1443–1471. [CrossRef] [PubMed]
44. Zhu, F.; Yang, J.; Gao, C.; Xu, S.; Ye, N.; Yin, T. A weighted one-class support vector machine. Neurocomputing 2016, 189, 1–10.

[CrossRef]
45. Aggarwal, C.C. An introduction to outlier analysis. In Outlier Analysis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–34.
46. Oza, P.; Patel, V.M. One-class convolutional neural network. IEEE Signal Process. Lett. 2018, 26, 277–281. [CrossRef]
47. Boehm, O.; Hardoon, D.R.; Manevitz, L.M. Classifying cognitive states of brain activity via one-class neural networks with

feature selection by genetic algorithms. Int. J. Mach. Learn. Cybern. 2011, 2, 125–134. [CrossRef]
48. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Washington, DC, USA, 15–19 December 2008; pp. 413–422.
49. Hariri, S.; Kind, M.C.; Brunner, R.J. Extended isolation forest. IEEE Trans. Knowl. Data Eng. 2019, 33, 1479–1489. [CrossRef]
50. Staerman, G.; Mozharovskyi, P.; Clémençon, S.; d’Alché Buc, F. Functional isolation forest. In Proceedings of the Asian Conference

on Machine Learning, PMLR, Nagoya, Japan, 17–19 November 2019; pp. 332–347.
51. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems, 2015. Available online: tensorflow.org (accessed on 17 February 2021).
52. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.

Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
53. Goldstein, M.; Dengel, A. Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. In KI-2012:

Poster and Demo Track; Citeseer: Princeton, NJ, USA, 2012; pp. 59–63.
54. Kind, A.; Stoecklin, M.P.; Dimitropoulos, X. Histogram-based traffic anomaly detection. IEEE Trans. Netw. Serv. Manag. 2009,

6, 110–121. [CrossRef]
55. Bansod, S.D.; Nandedkar, A.V. Crowd anomaly detection and localization using histogram of magnitude and momentum. Vis.

Comput. 2020, 36, 609–620. [CrossRef]
56. Xie, M.; Hu, J.; Tian, B. Histogram-based online anomaly detection in hierarchical wireless sensor networks. In Proceedings of

the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK,
25–27 June 2012; pp. 751–759.

57. Goldberg, D.E.; Scheiner, S.M. ANOVA and ANCOVA: Field competition experiments. Des. Anal. Ecol. Exp. 2001, 2, 69–93.
58. Rutherford, A. ANOVA and ANCOVA: A GLM Approach; John Wiley & Sons: Hoboken, NJ, USA, 2011.
59. Abdi, H.; Williams, L.J. Newman-Keuls test and Tukey test. In Encyclopedia of Research Design; Sage: Thousand Oaks, CA, USA,

2010; pp. 1–11.
60. Alqurashi, S.; Shirazi, H.; Ray, I. On the Performance of Isolation Forest and Multi Layer Perceptron for Anomaly Detection in

Industrial Control Systems Networks. In Proceedings of the 2021 8th International Conference on Internet of Things: Systems,
Management and Security (IOTSMS), Gandia, Spain, 6–9 December 2021; pp. 1–6.

61. Unlu, H. Efficient neural network deployment for microcontroller. arXiv 2020, arXiv:2007.01348.
62. XLA: Optimizing Compiler for Machine Learning. Available online: https://www.tensorflow.org/xla (accessed on 3 March 2022).
63. NNCG: Neural Network Code Generator. Available online: https://github.com/iml130/nncg (accessed on 3 March 2022).
64. Urbann, O.; Camphausen, S.; Moos, A.; Schwarz, I.; Kerner, S.; Otten, M. AC Code Generator for Fast Inference and Simple

Deployment of Convolutional Neural Networks on Resource Constrained Systems. In Proceedings of the 2020 IEEE International
IOT, Electronics and Mechatronics Conference (IEMTRONICS), Vancouver, BC, Canada, 9–12 September 2020; pp. 1–7.

65. Aggarwal, C.C.; Data Mining: The Textbook; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1.
66. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
67. Kumar, V.; Minz, S. Feature selection: A literature review. SmartCR 2014, 4, 211–229. [CrossRef]

212

Citation: Genga, L.; Allodi, L.;

Zannone, N. Association Rule

Mining Meets Regression Analysis:

An Automated Approach to Unveil

Systematic Biases in Decision-Making

Processes. J. Cybersecur. Priv. 2022, 2,

191–219. https://doi.org/10.3390/

jcp2010011

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 28 December 2021

Accepted: 17 March 2022

Published: 21 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Association Rule Mining Meets Regression Analysis: An
Automated Approach to Unveil Systematic Biases in
Decision-Making Processes

Laura Genga 1,*, Luca Allodi 2 and Nicola Zannone 2

1 Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands

2 Department of Mathematics and Computer Science, Eindhoven University of Technology,
5612 AZ Eindhoven, The Netherlands; l.allodi@tue.nl (L.A.); n.zannone@tue.nl (N.Z.)

* Correspondence: l.genga@tue.nl

Abstract: Decisional processes are at the basis of most businesses in several application domains.
However, they are often not fully transparent and can be affected by human or algorithmic biases
that may lead to systematically incorrect or unfair outcomes. In this work, we propose an approach
for unveiling biases in decisional processes, which leverages association rule mining for systematic
hypothesis generation and regression analysis for model selection and recommendation extraction.
In particular, we use rule mining to elicit candidate hypotheses of bias from the observational data of
the process. From these hypotheses, we build regression models to determine the impact of variables
on the process outcome. We show how the coefficient of the (selected) model can be used to extract
recommendation, upon which the decision maker can operate. We evaluated our approach using
both synthetic and real-life datasets in the context of discrimination discovery. The results show that
our approach provides more reliable evidence compared to the one obtained using rule mining alone,
and how the obtained recommendations can be used to guide analysts in the investigation of biases
affecting the decisional process at hand.

Keywords: decisional processes; bias discovery; association rule mining; regression analysis

1. Introduction

Decisional processes undertaken by humans are at the core of most organizations, from
policy setting to IT and IT-security operations. These processes rely on cognitive resources
(information, conceptual models, etc.) to help decision-makers in making appropriate
decisions leading to meaningful courses of action. A prime example in the security domain
is the operation of a security operation center, where technology (e.g., an SIEM—Security
Information and Event Management system) supplies information to human operators who
have to decide whether a specific event must be investigated [1]. The high complexity and
repetitiveness of the information in input to these processes is known to lead to systematic
biases in the analyst’s decision-making process [2]. How to manage these shortcomings
is still an open organizational issue [3], however, the identification of the sources of these
biases is a first crucial step in that direction [1]. These issues are not unique to security
decisions, and extend to other application domains, such as decisions for hiring or on
loans requests, which have been shown to suffer from systematic, oftentimes implicit or
unknown biases [4,5].

The common underlying thread is that any process relying on human judgment
must be monitored to uncover unknown and implicit biases and that can only happen by
systematically reviewing decisions through objective analyses that ‘let the data speak’.

Uncovering biases from observational data is a broad and still open problem that
requires a thorough exploratory analysis and understanding of the data, as well as rigorous
estimations of effect sizes. The literature generally considers association rule mining for the

J. Cybersecur. Priv. 2022, 2, 191–219. https://doi.org/10.3390/jcp2010011 https://www.mdpi.com/journal/jcp213

J. Cybersecur. Priv. 2022, 2

former [6], while regression models are often used to evaluate effect sizes and rigorously
evaluate evidence in the data [7]. However, when taken individually, these techniques are
affected by intrinsic drawbacks. The outcome of association rule mining typically consists
of several thousands of rules that cannot be easily operationalized. While a number of
approaches have been proposed to prune the rule set, for instance by removing redundant
rules [8] or assessing rule statistical significance [9], there is little or no support for analysts
in delving deeper into the obtained outcome. Furthermore, different approaches typically
lead to different outcomes, and there are no clear guidelines on how to determine the
method and related parameters that best suit the data at hand, which require a deep under-
standing of the underlying statistical principles by the user. On the other hand, regression
models are of little use without clearly defined hypotheses and a clear understanding of
the data generation process.

In this work, we propose a novel methodology for uncovering systematic biases
in data generating processes that combines the benefits of both worlds by leveraging
principles from both association rule mining and regression analysis. We use association
rule mining to extract the candidate hypotheses of biases from an exploration of data.
These hypotheses are used to build regression models which provide us with statistical
evidence for the presence/absence of biases in the decisional process, and effectively act as
a cream-skimming mechanism to filter out hypotheses that are equivalent or that do not
add significant information to uncover the data generation mechanism. This evidence can
then be used by an analyst to take action and tackle the decision bias at the source.

We demonstrate our methodology in the context of discrimination detection to uncover
the systematic use of sensitive data. In particular, we study the ability of the methodology to
determine whether decisional processes are affected by biases that lead to unfair treatment
because of personal characteristics or membership to certain (protected) societal groups.
Nonetheless, our methodology is general and can be applied to the analysis of other
decisional processes, e.g., for the security analysis of network traffic to uncover patterns
of compromise. To evaluate the proposed methodology, we perform a set of experiments
with both synthetic and real-world datasets to, respectively, validate our approach and
showcase the methodology against real decision process outcomes.

This work extends our previous work [10], which only provides a high-level overview
of the approach along with a proof-of-concept on a synthetic dataset. In particular, we
refined the approach and extended the experimental evaluation to real-world datasets. The
main contributions of this work can be summarized as follows:

• We identify general desiderata for a bias detection technique targeted at addressing
sub-groups analysis;

• We propose a data-agnostic, evidence-based approach to identify well-grounded hy-
potheses of bias in any decisional process which aids policy makers identify potentially
biased and systematic decisions affecting a group or sub-group(s) of entities of interest
(e.g., sensitive subjects);

• We perform a set of experiments on synthetic data and showcase the application of
our method in the domain of discrimination detection by employing two real-world
datasets used in previous research on discrimination detection;

• We show that the descriptive statistics (mean, 95% confidence intervals) of the effects
of interest returned by our approach can be used to further guide the policy maker
in pertaining follow-up regulatory actions.

This paper is organized as follows. The next section provides background on asso-
ciation rule mining and regression analysis. Section 3 introduces our methodology and
Section 4 presents its experimental evaluation. Section 5 provides a discussion of our
method and results. Finally, Section 6 discusses related work and Section 7 provides
conclusive remarks.

214

J. Cybersecur. Priv. 2022, 2

2. Background

We model a decision-making process as a set of records comprising a number of
attributes (hereafter called variables or features) describing a given subject (e.g., a person
applying for a loan) and the outcome of the process, i.e., the decision made for the subject.
Intuitively, each record represents one observation of the process along with the data upon
which it operated (i.e., the variables) and its outcome.

Table 1 provides a fictional example of a decision-making process of a financial institute
aiming to determine whether a given applicant should be classified as a high-risk individual,
i.e., they are likely unable to refund a loan. Each record corresponds to a single loan request
where SubjID provides the ID of the applicant and Employed, Income, Gender, Ethnic
Group are variables characterizing the applicant. HighRisk is the binary variable describing
the outcome of the process (1 encoding a ‘high-risk’ evaluation for that subject).

Table 1. Example decisional process of a financial institute.

Outcome Variables

SubjIDSubjIDSubjID High RiskHigh RiskHigh Risk EmployedEmployedEmployed IncomeIncomeIncome GenderGenderGender Ethnic GroupEthnic GroupEthnic Group

1 1 N 2000 M Black
2 0 Y 10,000 F White
...

...
...

...
...

...
100 1 N 5000 M Asian

Decisional processes are often affected by human or algorithmic bias. In the example
above, the data could reveal to an observer whether being currently employed is a relevant
criterion for the bank’s decision-making process. Similarly, it could reveal how the odds
of being assigned to a risk category change for every additional dollar of income. Whereas
these are relations that one could reasonably expect to find in any decision process of this
type, other complex dynamics can have a ‘hidden’ impact on the decision. For example,
Ethnic Group may have an impact, albeit perhaps more so below certain Income levels. A
recent example of such potentially systematic biases can be found in the Netherlands;
in January 2021, the national Dutch government resigned following a scandal involving
unfair accusations against Dutch residents related to child benefit support. These accu-
sations turned out to disproportionately target residents with dual nationalities and of
specific ethnic origins requesting financial support for childcare from the Dutch govern-
ment (https://www.theguardian.com/world/2021/jan/15/dutch-government-resigns-
over-child-benefits-scandal, Last accessed 16 March 2022). Similarly, Gender or belief-
related biases can interact with other variables, such as Ethnic Group or social status, to
affect a decision.

To detect biases in decisional processes, one has to quantify to what extent the use
of variables (e.g., Gender, Ethnic Group) has influenced the process outcome. A main
challenge lies in the fact that the decisional process is often unknown. We only observe the
output of a black-box process. Therefore, detecting biases in decisional processes requires
reconstructing the decisional process from observational data and determining which
variables were most likely used for decision making. Operationally, the problem can be
formulated as deriving possible correlations between variables and the process outcome (i.e.,
to indicate the fact that individuals with certain attributes have higher chances of obtaining
a certain outcome than individuals without those attributes).

We argue that any approach designed to tackle this challenge should meet a number
of desiderata, as reported in Table 2.

The last three desiderata concern the capability of the approach to enable the under-
standing of how features and their values impact the outcome of the decisional process.

Two classes of techniques are widely used for the exploration of observational data:
(i) approaches that use statistical tools, in particular regression analysis, to determine which
variables are more likely able to explain the process outcome and (ii) approaches based

215

J. Cybersecur. Priv. 2022, 2

on knowledge discovery, such as association rule mining, to measure possible differences
in the proportions of positive/negative decisions on different groups of observations. We
then introduce the basic concepts underlying these two lines of research and discuss their
shortcomings with respect to the desiderata in Table 2.

Table 2. Desiderata for bias detection and investigation.

Desideratum Description and Motivations

Data agnostic The hypothesis generation should be agnostic of the data-generation process, i.e., the (often un-
known) composition of decisional processes leading to a potentially biased outcome. Ideally, an
approach to uncover these latent biases should be able to determine a set of hypotheses without
requiring a priori knowledge of the composition of the underlying data-generation processes; in-
deed, in most contexts, little or no knowledge on how the decisions are taken is available, or the
decisional environment is so complex that it is impossible to know, a priori, whether the decisions
in outcome will be affected by biases (latent or explicitly manifest) in the process.

No parameter tuning The solution should not require the tuning of parameters to avoid guess-work during the setup
phase, and improve the stability and interpretability of the evaluation it generates, and operate.

Feature level and
Feature value level

Biases can be analyzed at different levels of granularity. Capturing biases at a feature level would
allow determining which (set of) variable(s) has an impact on the outcome, i.e., whether there
is a significant correlation between the type of characteristics of an individual and the outcome
variable. In certain domains such as in discrimination discovery, an analyst might require a more
fine-grained analysis able to identify whether individuals with certain characteristics have been
treated differently. To this end, it is desirable that the outcome of the analysis highlights possible
correlations between feature values and the outcome variable.

Change impact The solution should enable the analysis of the impact of changing the value of one (or more)
feature(s) on the value of the outcome, allowing the user to assess both the direction (i.e., positive
or negative) and the magnitude of this impact.

2.1. Association Rule Mining

The goal of association rule mining is to find correlations between variables [6]. When
applied to decisional processes, association rule mining aims to derive rules describing the
process from observational data.

A decisional process D can be represented as a set of observations, each describing a
process instance for a given subject. Given a set of variables V = {Var1, . . . , Varn}, each repre-
senting a characteristic of the subject, an observation t is a tuple (Var1 = v1, . . . , Varn = vn),
where vi ∈ dom(Vari) is the value of variable Vari in t. Every pair Vari = vi is called item,
and a set of items itemset.

An association rule r is an implication of the form r : X → Y, where X and Y are two
itemsets, respectively, called antecedent and consequent of the rule. Intuitively, an association
rule indicates that if X occurs in a record, then Y will also likely occur in that record. In
this work, we consider class association rules [11], i.e., association rules whose consequent
consists of a single class item. For the sake of simplicity, hereafter we use the term ‘rule’ to
refer to a class association rule.

To assess the relevance of the mined rules, in this work, we consider two well-known
and largely adopted metrics [12]: support, which represents the percentage of records in
the dataset covered by a rule, and confidence, which represents the percentage of records
covered by the rule among those covered by its antecedent. Formally, the support and
confidence of an association rule r : X → Y with respect to a dataset D are defined as

supp(r) =
|{t ∈ D | X ∪Y ⊆ t}|

|D| (1)

216

J. Cybersecur. Priv. 2022, 2

conf (r) =
supp(r)
supp(X)

(2)

It is worth noting that our approach is not constrained to the use of these metrics and
other metrics could be employed to assess the relevance of the mined rules.

2.2. Regression Analysis

Regression analysis is a tool to evaluate the statistical association between at least
one ‘explanatory variable’ and an ‘outcome variable’. A regression model linking the
explanatory variables to the outcome variable is generally formulated on the basis of
hypotheses that the analyst makes about the underlying relation. A typical regression
model assumes the following general form:

g(E(Y)) = c + β1Var1 + β2Var2 + · · ·+ βnVarn + ε (3)

where g(·) is the link function, Y is the outcome variable with mean E(Y), c is the intercept,
and β1, . . . , βn are the regression coefficients of the n explanatory variables Var1, . . . , Varn,
and ε is the error term. If the analyst believes that there are interactions between explana-
tory variables (i.e., they have a joint effect on the dependent variable), she can capture
these interactions by considering the product of the explanatory variables, denoted by
Vari ·Varj, as an additional explanatory variable. Equation (3) is called a regression equation;
the estimation of the coefficients is the key aspect, and which link function one adopts
depends on the nature of the data (e.g., a logit or a probit function for a binary outcome).

A model formulation (also called parametrization) is generally directly derived from
the formulated hypotheses; however, in exploratory settings (where those hypotheses do
not yet exist [7]) the model definition can generally be automated by employing techniques
based on the analysis of variance (ANOVA). Again, the choice of the test to compare models
depends on the type of model considered; logit models, for example, may be compared
using likelihood ratio tests. to select the explanatory variables that have the highest power
in ‘explaining’ the data. Given two models of the same power, the model with the fewer
explanatory variables is preferred (principle of ‘minimality’). Regardless of the adopted
approach to parameterize a model, it is important to verify that the chosen explanatory
variables are not highly correlated, to avoid model multicollinearity that may bias the
coefficient estimation. This check can be performed by calculating a correlation matrix
across the variables, or a variance inflation factor (VIF) for a given model.

2.3. Limitations of Association Rule Mining and Regression Analysis

Uncovering biases from observational data requires a thorough exploratory analysis
of the data, as well as rigorous estimations of effect sizes. Whereas the literature generally
considers association rule mining for the former, regression models are often used to evalu-
ate effect sizes and rigorously evaluate evidence in the data. However, both methods have
intrinsic shortcomings in our application. We then discuss these shortcomings, which are
summarized in Table 3.

Table 3. Comparison of association rule mining and regression analysis with respect to the identified
desiderata for bias detection in Table 2, where �means “support” and � “no support”.

Data-
Agnostic

No Param.
Tuning

Feature
Level

Feature
Value Level

Change
Impact

Assoc. Rule Mining � � � � �
Regression Analysis � � � � �

Association Rule Mining. First, rule mining requires an analyst to carefully tune the
threshold parameters for the used relevance metrics without providing a rigorous way to
‘prioritize’ rules for a certain outcome. While selecting low threshold values can lead to

217

J. Cybersecur. Priv. 2022, 2

a large number of rules, most of which are not interesting and/or not reliable, excessively
high values can easily lead to missing relevant correlations. Rule mining also lacks support
for the statistical validation of the associations detected among the variables. The use of
metrics such as support and confidence does not guarantee preventing the generation of
false discoveries, such as rules showing dependencies likely due by chance, or rules where the
antecedent contains items that are actually independent of the consequent [13]. Moreover,
association rule mining only allows analysts to explore relations among single feature values
and class values (feature value level analysis), while feature level analysis is not supported.

Regression analysis. Compared to association rule mining, regression analysis pro-
vides a more robust approach to statistical validation. The output provided by regression
techniques supports both feature level and feature value level analysis. Moreover, they do
not require the tuning of parameters. However, regression (parametric) approaches require
some type of hypothesis formulation to build a model to regress on. This is desirable
in general as it attaches semantic meaning to the statistical evidence found in the data.
However, for data exploration tasks such as the one at hand, regression approaches are
very limited in nature. Forward or backward model selection procedures [7] can be applied
to identify the ‘best’ model explaining the data, but the number of models to be compared
explodes exponentially as the number of allowed variable interactions increases. More
importantly, there is no ‘guarantee’ that the resulting selected ‘best’ model has any useful
interpretation that can be used to take action and tackle the decision bias at the source.

3. A New Approach for Bias Detection Combining Rule Mining and
Regression Analysis

To detect and investigate systematic biases in decisional processes, we propose to
combine principles of rule mining with regression analysis. We note that a data sanitization
process should start before the application of our methodology; for example, to identify
highly correlated variables in a dataset that may create multicollinearity problems biasing
estimated model coefficients. When two or more highly correlated variables are present,
only one should be selected for inclusion in the analysis.

Our methodology is summarized in Figure 1. First, association rule mining is em-
ployed to generate the set of relevant rules (1). For our purpose, we treat each mined
rule as a candidate hypothesis for bias. In step (2), we generate regression models by
considering the variables included in each selected rule and regress over them to generate
the model estimates of the considered outcome variable. In step (3), a model comparison is
performed to eliminate ‘redundant’ models that do not add relatively more information to
the prediction than a simpler model does. This leaves us with only ‘winning’ models that,
among all evaluated candidates, provide the more convincing evidence for some effect,
if any. Finally, in step (4), we extract the coefficients of these selected models to identify
(sub)populations of interest for which there is statistical evidence of bias in the decision
making. Then, we provide a detailed breakdown of each step of the methodology.

Systematic
Hypothesis
Generation

Compute the set of
relevant rules

Model
Derivation

Derive econometrics
models from rules

Model
Comparison &

Selection

Select the most
explanatory models

Recommendation
extraction

Extract significative
regressors and their
coefficients from models

Dataset

Figure 1. Depiction of the phases of the proposed methodology.

3.1. Systematic Hypothesis Generation

Given a decisional process D, we apply class association rule mining to derive the set
of relevant rules Rrel . To measure the relevance of rules, we use support and confidence, as
defined in Equations (1) and (2). Specifically, we say that a rule is relevant if its support and
confidence levels are above some given thresholds ρsupp and ρcon f , respectively. Formally,
Rrel = {ri | supp(ri) ≥ ρsupp ∧ conf (ri) ≥ ρcon f }. Each rule in Rrel is considered a candidate
hypothesis of biases in the decisional process.

218

J. Cybersecur. Priv. 2022, 2

Example 1. Below, we show some example (relevant) rules that can be extracted by the application
of association rule mining to the decisional process of Table 1:

r1 : Income = 5000, EthnicGroup = White → HighRisk = 0
r2 : Gender = M → HighRisk = 1
r3 : Gender = M, Employed = N → HighRisk = 1
r4 : Income = 2000, EthnicGroup = White → HighRisk = 0

An analyst should investigate all the rules in Rrel to check whether they correspond
to actual biases. However, as discussed earlier, association rule mining provides very little
support for this. For instance, Rrel might contain rules that are not ‘independent’ from each
other. In particular, many rules can be “subrules” of others, i.e., they extend other rules
with additional itemsets as in the case of r2 and r3 above. Formally, a rule ri : Xi → Y is
a subrule of a rule rj : Xj → Y if Xi ⊂ Xj. Thus, the analyst might not know whether the
(possible) bias concerns the population characterized by a given rule (e.g., employed males)
or whether it affects a larger population as characterized by a subrule (e.g., all males).

To find more reliable evidence of biases, in this work, we employ regression analysis
to determine the statistical validity of the evidence found.

3.2. Model Derivation

To determine whether the candidate hypotheses extracted using rule mining corre-
sponds to biases in the decisional process, we derive regression models from the set of
relevant rules Rrel . Specifically, for each rule r : Var1 = v1, . . . , VarN = vN → Class = Y in
Rrel , we consider the set of explanatory variables occurring in the antecedent of the rule
Vi = {Var1, . . . , VarN} ⊆ V and build a corresponding regression model Mi of the form of:

Mi : Class = c +
N

∑
i=1

βi Vari + ∑
1≤i<j≤N

βij Vari ·Varj

+ ∑
1≤i<j<k≤N

βijk Vari ·Varj ·Vark + . . . + β1...N Var1 · . . . ·VarN (4)

Example 2. From the set of rules in Example 1, we can extract three models:

M1 : HighRisk = c1 + β1,1 Income+ β1,2 EthnicGroup+ β1,3 Income · EthnicGroup
M2 : HighRisk = c2 + β2,1 Gender

M3 : HighRisk = c3 + β3,1 Gender+ β3,2 Employed+ β3,3 Gender · Employed
Note that some rules collapse in a single model as they contain exactly the same set of variables.

In our example, this is the case for rules r1 and r4, which are both represented by model M1.

To efficiently compare the ‘credibility’ of the obtained models (next step), we organize
the derived models in a hierarchical structure. To this end, we introduce a partial order
relation over regression models which resembles the subrule relation. Given two regression
models Mi and Mj defined over the sets of explanatory variables Vi and Vj, respectively,
we say that Mj is nested in Mi, denoted as Mj ⊂ Mi, if and only if Vi ⊂ Vj. Whereas in the
econometrics literature the term nested usually refers to the more general model (i.e., Mj is
nested in Mi if Vj ⊂ Vi,), here we adopt the opposite definition to remain consistent with
the definition of subrule provided in Section 3.1. Moreover, we say that Mj is directly nested
in Mi, denoted as Mj � Mi, if and only if Mj ⊂ Mi and there does not exist a model Mk
such that Mk ⊂ Mi and Mj ⊂ Mk. Based on the direct nesting relation, we construct a
forest of models whereby the model at the root of each tree is the simplest model (i.e., with
the smallest number of variables on the right hand side), and each child is a direct nested
model of its parent(s).

219

J. Cybersecur. Priv. 2022, 2

Example 3. The three models in Example 2 along with other hypothetical regression models can
be represented in a hierarchy, as shown Figure 2. The hierarchy has two root nodes, i.e., M5 and M2,
each with two children (M1 and M4 for M5, M3 and M4 for M2) among which one is in common
(i.e., M4). M4 is further extended by M6, which is also a child of M3.

M5: Income

M4: Gender, IncomeM1: Income, Ethnic Group

M6: Gender, Income, Employed

M2: Gender

M3: Gender, Employed

Figure 2. Example of a hierarchy of models.

3.3. Model Comparison and Selection

Once the hierarchical structure is in place, we apply a model selection procedure
by comparing each parent with all its child models. Our pruning strategy consists of
checking whether the addition of variables to a child model adds information that leads
to a better description of the data, or whether the simpler model is preferable (in that it
describes the data indistinguishably well with respect to the more complex model). This is
operationalized through the ANOVA test. Alternatives to ANOVA for model comparison
exist, such as AIC, BIC, or maximum likelihood; in this work, we adopt ANOVA for model
comparison, but any other method could be used. The ANOVA test is a widely used
statistical test that allows one to compare the fits of two regression models, one nested
in the other, by comparing the (sum of squares of the) residuals (i.e., the errors) of the
respective model predictions [14].

If the output of the ANOVA test indicates that the more complex model provides a
significantly better explanation of the variance in the prediction, the child model is marked
as preferable compared to the more general, simpler parent model. Otherwise, the parent
model is marked as preferable. Formally, given a set M of regression models to test, we
aim to derive the setMsel = {Mi ∈ M | �Mj ∈ M s.t. Mj � Mi ∧ANOVA(Mi, Mj) ≤ ρ},
where ρ represents a threshold to determine whether ANOVA(Mi, Mj) shows a statistically
significant difference in the sum of the squared residuals between the two models.

Operationally speaking, the setMsel was derived using the procedure shown in Algorithm 1.

Algorithm 1: Model Selection.
Input: Model hierarchy (M,�) and significance threshold ρ
Output: Msel

1 Msel ←− ∅ ;
2 Mp ←− {Mi ∈ M | � Mj s.t. Mj ⊂ Mi } ;
3 whileMp �= ∅ do

4 Mi ←−Mp.pop();
5 Mwc ←− {Mj | Mj � Mi ∧ ANOVA(Mi, Mj) ≤ ρ} ;
6 ifMwc = ∅ then

7 Msel ←−Msel ∪ {Mi};
8 else

9 Mp ←−Mp ∪Mwc;
10 returnMsel

This procedure takes as input (i) a model hierarchy (M,�), where M is the set of
regression models and � is the directly nested relation onM, and (ii) a threshold ρ deter-
mining whether the result of the ANOVA test is significant, and iteratively checks whether
nested models provide more significant explanation of biases. At the beginning, the output
setMsel is initialized to the empty set, while the set of regression models to be analyzed

220

J. Cybersecur. Priv. 2022, 2

is stored in a stack, Mp, which is initialized to the root models (i.e., the models that are
not nested in any other model) (lines 1–2).

The models in Mp are iteratively extracted from Mp and compared against their
direct nested models using the ANOVA test (lines 4–5). Every child that is preferable com-
pared to its parent(s) based on the ANOVA test is added to the set of winner childrenMwc
(line 5). If the setMwc for a given parent Mi is empty, i.e., there are no better performing
children models than Mi according to the ANOVA test, then Mi is added to the output set
Msel (lines 6–7). Otherwise, the models inMwc are added toMp in order to be analyzed
in the next iterations of the algorithm, i.e., they are compared against their children (line 9).
The procedure terminates whenMp is empty.

Example 4. Consider the model hierarchy in Figure 2. By applying our model selection algorithm,
at the beginning, we retrieve the two parent nodes, i.e., M5 and M2. Supposing that the ANOVA
test indicates that M1, M3 are the only children scoring better than M5, M2, respectively, M1 and
M3 are added to the stackMp. Since M1 does not have any other child, it is added toMsel . Instead,
M3 has to be compared against M6. If the ANOVA test determines that M6 is better than M3, M6
is added toMp and, since it has no children, in the next iteration, it is added toMsel . At this point
the procedure terminates, since there are no more models to compare, returningMsel = {M1, M6}.

It is worth noting that the proposed pruning procedure can theoretically lead to miss
some interesting models. As the comparison only accounts for directly nested models, it is
possible that models that score better than their ancestors but not than their direct parents
are discarded. For example, since M4 does not score better than M5, it is not selected for
the next iterations and, therefore, M6 would have not been considered for the ANOVA
test. However, it is reasonable to expect such loss to be limited. If a child model includes a
variable providing a strong explanation of the observed effects, one can reasonably expect
such variable(s) to have been picked up by other rules (step 1) and therefore to occur in
other regression models. This leads to the otherwise discarded model being tested against
different parents. This is the case, in our example, for M6. While the procedure would have
discarded M6 if it had only M4 as a parent, this model is still considered in the comparison
against M3 and, hence, it gets a chance to be selected.

3.4. Recommendation Extraction

The selected regression models Msel obtained from step 3 provide the best ‘ex-
planation’ of the decisional process. Each model comprises a set of coefficients
Ci = {βi,1, βi,2, . . . , βi,k} together with an output of a statistical test determining whether
each element of Ci is significantly different from zero (i.e., whether the associated variable
in Vi is likely to have a significant effect on the outcome variable). The minimum level of
statistical significance generally considered is 5% (p ≤ 0.05).

By inspecting each model Mi ∈ Msel , in this phase, we extract regressors and asso-
ciated coefficients 〈βi,j, Vari,j = vi,j〉 with pi,j ≤ 0.05 for which there is enough evidence
to consider possible effects on the outcome variable. Each extracted pair 〈βi,j, Vari,j = vi,j〉
conveys information on the direction and size of the identified bias towards the group
Vari,j = vi,j, represented, respectively, by the sign and magnitude of the coefficient βi,j. The
interpretation of this coefficient, in the case of discrete (as opposed to continuous) variables,
is to be interpreted as the change in the outcome variable for observations that belong to
the relevant category relative to observations in the baseline category (cf. Appendix A for
a more detailed discussion).

We stress that ‘hand-picking’ variables with significant p-values is not a meaningful
approach for model selection and interpretation. Differently, the goal of the proposed
approach is to identify variables (possibly appearing across several selected models) for
which there exists some evidence of correlation with the process outcome, and that may
require additional, more rigorous investigation by an analyst or policy maker. To evaluate
the strength of the emerging evidence, an analyst can, for example, compare how the

221

J. Cybersecur. Priv. 2022, 2

associated coefficients for a variable vary across models (see analysis reported in Section 4.2
for an example), or evaluate cross-correlation effects with other variables in subsequent
analyses. The output of the proposed approach serves, therefore, as an indication to guide
further investigations of the data and the respective generative processes, and should not
be considered as a means to automatically generate robust explanations for the data.

4. Experiments

This section discusses an application of our methodology to the problem of dis-
crimination detection in decisional processes the Python implementation used for these
experiments can be found at https://gitlab.tue.nl/lgenga/association-rule-mining-meets-
regression-analysis (Last access 16 March 2022). We performed experiments with both
synthetic datasets, to demonstrate the ability of our approach to detect situations in which
discrimination occurred, and with real-life datasets, to evaluate the applicability of our
approach to real-life scenarios. In the experiments, we assume that the policy maker knows
the groups of protected subjects for which possible biases should be tested. Therefore, we
only consider rules regarding these groups as initial input. This assumption is reasonable
in the context of discrimination detection, where the protected groups are known a priori.
Nonetheless, our approach is general and does not require a priori domain knowledge.

4.1. Approach Validation
4.1.1. Dataset and Settings

For the validation of our approach, we generated synthetic datasets to contain a
known ‘amount’ of evidence of discrimination. To this end, we defined a simple decisional
process regarding the hiring of candidates on the basis of their personal characteristics.
Table 4 shows the variables characterizing the hiring process along with their domain. We
consider the variable Age as a ‘discriminatory variable’, whereas the others are considered
‘context variables’. We generate the synthetic data in two steps. First, we created the
discriminated groups as groups of subjects sharing the same value of Age as well as a
(randomly chosen) subset of context values; the values of the other context variables were
randomly assigned from the respective domains. Discriminated subjects have a probability
of 80% of being assigned to class “N”. Second, we generated all ‘non-discriminated’ subjects
simply by randomly selecting a value for each context variable and for the Age variable.
Non-discriminated subjects have a 50% probability of being assigned to either the “N” or
“Y” class.

Table 4. Variables used for the generation of the synthetic dataset along with their domain.

Variables Variable Domain

Education Doctorate, Master, Bachelor, HighSchool
Speak Language Y, N
Previous Role Employee, Manager, Self-Employed, Unemployed
Country USA, Europe, SA, China, India
Age 25–50, 50+
Class Y, N

In total, we generated 12 datasets by varying the number of discriminated groups (i.e.,
1, 2 and 3) and the complexity of the dataset to test our methodology in different situations.
The complexity of a dataset is defined over two dimensions: (1) presence/absence of noise,
intended as subjects that do not belong to any of the generated context groups but in which
one or more context variables assume a value used in one of the discriminated groups; and
(2) the presence/absence of overlapping, meaning that subjects in two or more discriminated
groups share at least a context variable and its value. Combining these two dimensions,
we obtain four types of datasets: (i) without noise and overlapping, which represents the
simplest situation; (ii) without noise but with overlapping; (iii) with noise but without over-
lapping; (iv) with noise and overlapping, which represents the most difficult situation to

222

J. Cybersecur. Priv. 2022, 2

deal with, since spurious correlations can easily arise (note that the presence of overlapping
only has an impact when more than one discriminated group exists). For every dataset,
we generated a total of 10,000 subjects; among them, every discriminated group covered
25% of the dataset. We chose 25% to strike a balance between absolute minority (<50%)
and small groups. For every dataset, we tested several configurations of support, which
varied between 1% and 10% with a step of 1%, and confidence, which varied between 50%
and 95% with a step of 5%. Note that when generating the regression models, we did not
consider potential interactions among the variables in the experiments; namely, we used
only factors of the first order when computing the regression models. While this choice
can lead to lose some interesting correlation, it provides us with a good approximation of
the relations characterizing the decisional process, and prevents the generation of noisy
recommendations. Directionality is given by the sign of the corresponding coefficients.

4.1.2. Evaluation Metrics

To validate the approach, we compare the recommendations returned by our method-
ology and those returned by rule mining alone against the ‘ground truth’ used to generate
the synthetic datasets. More precisely, we compute the fraction of correct models returned
by our methodology as the ratio of the number of models involving significant regressors
that indicate (at least some) true discriminatory factors among the variables over the total
number of models returned by the approach. To compare this outcome with the one ob-
tained using rule mining, we compute the ratio of the number of rules indicating (at least
some) true discriminatory factors over the total number of mined rules.

To this end, we first derive for each model the set of significant regressors along with
their coefficients. Then, we compare each regressor with the set of variables describing the
discriminated groups. This comparison can return five different outcomes: (a) Exact, in-
dicating that the set of significant regressors of the model involve all and only the variables
characterizing one of the discriminated groups; (b) Too general, indicating that the set of
explanatory variables in the regressors is a strict subset of the set of variables characteriz-
ing one of the discriminated groups; (c) Too specific, indicating that the set of explanatory
variables in a regressor is a strict superset of the set of variables characterizing one of the
discriminated groups; (d) Partial, indicating that the set of explanatory variables in the
regressor overlaps with the set of variables characterizing one of the discriminated groups
(but it is not a superset); (e) Off target, indicating that there are no significant regressors
involving any variable characterizing a discriminated group. The output of rule mining
is classified in the same way, by comparing the set of variables reported in a rule against
the set of variables describing the discriminated groups. For a fair comparison, we only
considered the variables involved in the antecedent of the rules; indeed, we are interested
in determining whether a group shows signs of discrimination, rather than specifying
whether it is a positive or negative discrimination.

We only consider exact and too general recommendations to be useful recommendations,
since they include the true discriminated group, and therefore provide the analyst with
a first, non-misleading indication of possible discriminatory relations. In contrast, the other
categories of output are undesirable since, even if some do return part of the actual dis-
criminatory group, the whole discriminated group cannot be identified as it is not included
in the recommendation. Therefore, we compute the fraction of useful recommendations
as the number of Exact and Too general models (rules) over all returned models (rules).

In addition to comparing the returned models against the ground truth, we also
compare rule mining and regression analysis in terms of the number of output rules and
regressors, respectively. The goal is to assess the capability of our approach to reduce the
outcome complexity, thus making the analysis more accessible for a human analyst.

4.1.3. Results

Models vs. rules. Table 5 reports descriptive statistics of the results over all experi-
ment runs.

223

J. Cybersecur. Priv. 2022, 2

Table 5. Min, max, mean, median, first and third quantile of the number of rules (first group of rows)
and models (second group of rows) obtained in each experiment.

Metric Min 1st Q Mean Median 3rd Q Max sd

R
ul

e
m

in
in

g

N_rules 0 0 12.87 4 13.25 139 23.74

Exact 0 0 1.01 1 2 3 1.15
Too general 0 0 1.77 0 3 7 2.38
Too specific 0 0 3.52 0 2 64 9.99
Partial 0 0 6.58 0 5 121 14.24
Off target 0 0 0.00 0 0 0 0.00

O
ur

ap
pr

oa
ch

N_models_tot 0 0 4.98 4 8 16 4.72
N_models_sel 0 0 1.05 1 2 6 1.11

Exact 0 0 0.35 0 1 5 0.65
Too general 0 0 0.53 0 1 6 1.03
Too specific 0 0 0.18 0 0 2 0.39
Partial 0 0 0.00 0 0 0 0.00
Off target 0 0 0.00 0 0 0 0.00

The first set of rows reports the statistics for association rule mining, whereas the
second set reports the statistics for our approach. We first observe that the number of
rules is significantly larger than both the number of total models (i.e., the models derived
from the set of rules) and that of selected models (i.e., the models returned in output
by our approach). Furthermore, the number of the selected models is, on average, four
times smaller than the overall number of models. The average experimental run produces
approximately 12.87 rules, with a maximum of 139. The relatively high standard deviation
(with respect to the mean) indicates that the number of rules in output can vary by large
amounts across experimental setups. In contrast, the number of total (selected) models per
experimental setup is, on average, more than two (twelve) times smaller, similarly to what
can be observed for the maximum. The low standard deviation indicates a relatively stable
output across experiments, especially for the selected models. Overall, this indicates that
the model selection procedure appears to be removing a large number of rules but says
little about the correctness of this process.

A first indication of the correctness of this process can be derived by evaluating of the
number of exact, too general, too specific, partial, and off target rules/models in output of our
method. Considering the obtained rules, we observed that association rule mining never
returns off target recommendations. Moreover, it is able to identify, on average, at least one
correct recommendation, either in terms of exact or too general recommendations. However,
comparing these numbers with the overall average number of rules returned, these recom-
mendations are likely to be hidden in a multitude of misleading recommendations. In fact,
the results show that rule mining tends to return a much higher number of undesirable
recommendations; on average, we obtain 3.52 too specific and 6.58 partial recommendations.

On the other hand, we observe that our approach returns a higher number of max exact
recommendations. This is because a regressor (matching the ground truth) can be significant
in multiple models. In general, we observe a similar distribution in the first and second quar-
tile, even though the mean and median values show in general a lower overall capability of
our approach to identify relevant groups under most circumstances (the median of Exact is
0). However, this minimal loss in detection is compensated by a large reduction in false posi-
tives to investigate. Moving to higher quartiles, we observe that our approach never returns
partial or off target results, and generates much less too specific and too general recommenda-
tions. Overall, the results suggest that our approach is able to generate a more accurate out-
put. However, this clearly depends on the number of discriminated groups, and results may
vary significantly depending on the noise and overlap introduced in the synthetic datasets.

Figure 3 shows the density of ‘useful’ recommendations provided by rules mining
and our approach, respectively, across our experimental conditions.

224

J. Cybersecur. Priv. 2022, 2

(a) (b)

Figure 3. Density results for the synthetic dataset. (a) density results for models in the synthetic
dataset; and (b) density results for rules in the synthetic datasets.

Results are arranged in a matrix, where each box represents a set of experiments
with varying confidence and support levels (on the y and x axis, respectively, values are
reported as percentages); the four columns correspond to the four combinations of noise
and overlap, whereas the three rows correspond to the number of discriminated groups
in the dataset. Recall that overlap does not impact the results when a single discriminated
group is considered. The difference in the recommendations obtained for this dataset are
mostly due to randomness in the data generation process. We reported them anyway for
the sake of completeness. Within each box, each square corresponds to a combination
of support and confidence thresholds. Squares are colored on the basis of the density of
useful recommendations for the given combination of support and confidence. A darker
color indicates a higher density (and vice versa). Blue cells represent support–confidence
combinations from which no significant rules/regressors were obtained (resulting in a
denominator of zero), and white cells represent support–confidence combinations for which
no exact or too general recommendations were obtained.

We observe that, across almost all experimental setups, our approach produces a much
higher density of relevant recommendations compared to rule mining alone. This confirms
the observations made from Table 5; namely, rule mining tends to return a high number
of recommendations, in which useful recommendations are hidden among the others. Our
approach, instead, provides almost only useful recommendations in almost all performed
experiments, with the exception of the experiments involving two and three discriminated
groups with no noise and no overlap (first column of the second and third sets of experi-
ments). While this might seem counter intuitive, delving into the corresponding dataset, we
find that the over-imposed constraints for data generation turned out to produce unrealistic
relations that significantly reduce the discriminating effects of the chosen variables. For
more than one discriminated group, and in the absence of noise and overlap, the variable
values used for the discriminated groups only occur for subjects fitting the related context.
For example, in the experiments with two discriminated groups, we have discriminat-
ing context groups, “SpeakLanguage =Y” and “PreviousRole =Employee”. Because of the
generation constraints, there are no subjects assuming both these values. This creates the
rather unrealistic situation whereby the value of one variable precludes another variable to
assume some values. Our approach (correctly) detects a strong correlation among context
variables SpeakLanguage and PreviousRole. This leads to the generation of too specific
recommendations for most of the support–confidence thresholds, with some exceptions
mostly due to the randomness of data. We observe a similar though not as strong effect on
the experiments with overlap and no noise. The constraint on the noise led to obtain some
correlations between some context group values which in turn led to generate some mis-
leading recommendations. Nevertheless, the overall density values remain high. We point
out that the presence of such correlations is a by-product of the data generation constraints
and is unlikely to represent a realistic situation under real-life conditions. Therefore, we

225

J. Cybersecur. Priv. 2022, 2

do not expect this behavior to affect the reliability of the recommendations provided by
the approach in real-life contexts.

It is worth noting that, while we observe performance to significantly vary for rule
mining depending on the support/confidence thresholds, our approach proved to be more
stable, keeping a constant level of density in almost all cases. This is in line with previous
observations that rule mining is sensitive to parameterization, and that choosing the correct
parameter configuration largely depends on unknown structures in the data. By contrast,
our approach performs well across the board. This effectively removes the need for fine-
tuning the support and confidence thresholds for rule selection, with regression model
selection doing the larger part of the heavy lifting required to cherry-pick relevant rules
and discarding imprecise ones.

Regressors vs. rules. The previous paragraph discussed the results obtained at the re-
gression models level. Here we focus on the obtained regressors. Table 6 shows descriptive
statistics about rules and regressors obtained for the tested datasets.

Table 6. Descriptive statistics for rules and regressors in the experiment runs with synthetic data.

Metric Min 1st Q Mean Median 3rd Q Max sd

N_rules 0 0 12.87 4 13.25 139 23.74
N_regr 0 0 2.11 2 4 6 1.93

The table shows some interesting trends. First, we observe much more variation in
the number of rules than in the number of regressors (sd = 23.74 and 1.93, respectively),
and that extreme values far away from the median are more likely to appear in the former
than in the latter distribution. This confirms that the outcome of our approach is much
more stable than the rule mining outcome. Furthermore, it is straightforward to see that,
on average, the number of regressors is significantly lower than the number of rules. This
is particularly evident from the mean value, equal to 12.87 for the rules, while the mean
number of regressors is 2.11, with a six-fold reduction. An even stronger reduction can be
observed considering the maximum values (139 for the rules, 6 for the regressors).

Figure 4 reports the relation between regressors and rules across the experiments for
each dataset. Each grid corresponds to a single experimental setting (i.e., to one combination
of support and confidence threshold); the x axis shows the number of extracted rules, while
the y axis shows the number of extracted regressors. Different symbols and colors are used
to represent the complexity of the dataset. A common trend for all datasets is that the
number of rules exceeds the number of regressors for at least one order of magnitude at low
support/confidence thresholds. Even when increasing the support/confidence thresholds,
for most of the tested configurations, the number of rules was at least twice the number
of regressors.

To visualize the order of magnitude in the difference between regressors and rules,
Figure 5 reports (on a log scale) the ratio between regressors and rules for each experimental
setting (without considering configurations where no rules were found). We observe that
the datasets involving noise are also the ones in which we observe a stronger difference
between the number of rules/regressors. In both datasets, we obtained at most the same
numbers of regressors and rules, while in most of the configurations, the number of
regressors is significantly lower (up to a three-fold reduction compared to the number of
rules). For the datasets without noise, instead, while we still obtain overall less regressors
than rules, this reduction is quite strong only for low support/confidence thresholds,
and becomes less and less evident while increasing the thresholds. For the first dataset,
the number of regressors exceeds, even though just slightly, the number of rules in few
configurations. This is consistent with the characteristics of the used datasets; indeed, the
datasets with no noise are also the ones more favorable to rule mining which, with high
support/confidence thresholds, is able to return a limited number of rules. Nevertheless,

226

J. Cybersecur. Priv. 2022, 2

overall these results show that the use of regression analysis reduces up to three times the
number of generated bias candidates.

Figure 4. Rules and regressors for each experimental setting on all datasets. Results for confidence
levels above 0.85 are removed as no rule is detected irrespective of the level of support.

(a) (b)

(c) (d)

Figure 5. Fraction of obtained models per rules for all datasets: (a) no noise, no overlap; (b) no noise,
overlap; (c) noise, no overlap; (d) noise, overlap.

Summarizing, the results show that our approach is able to significantly reduce the
number of recommendations provided by rule mining without losing knowledge on the
potential bias in the data. The approach also returned consistent results across varying sup-
port and confidence thresholds, thus showing to be robust with respect to parametrization.
Interestingly, the cases where the approach showed more difficulties are the ones where the
data generation procedure created very strong and undesired correlations among variables
between which no correlation was intended. We discuss the limitations of the proposed
method, such as spurious correlations, in Section 5.

227

J. Cybersecur. Priv. 2022, 2

4.2. Approach Application to Two Real-Life Use Cases

In this section, we discuss the results obtained by applying our approach to two real-
life datasets which were used in previous work on discrimination detection: the German
credit dataset [15], used, e.g., in [4,16,17], and the Crime and Communities dataset [18],
used, e.g., in [16,19]. In the following, we present results related to configurations in which
support varies between 3% and 10% with a step of 1% and confidence varies between
50% and 95% with a step of 5%. Exploring very low support values turned out to be not
feasible with the current implementation of our approach, in terms of hardware and time
constraints. Therefore, we did not test our approach for values of support equal to 1% and
2%. We argue that this choice does not significantly impact the validity of the performed
results, since it is not unreasonable to discard very infrequent associations when addressing
real-life cases. In addition, the validation of our approach on synthetic datasets has shown
that it is robust with respect to the parameterization of support.

4.2.1. Use Case on Credit Risk

Dataset and Settings. The German dataset consists of 1000 records representing the as-
sessment of credit risk (good or bad) of bank account holders [15]. The dataset encompasses
21 variables, grouped according to the following categories: personal properties (checking
account status, duration, savings status, property magnitude, type of housing), properties
related to past/current credits and requested credit (credit history, credit request purpose,
credit request amount, installment commitment, existing credits, other parties, other pay-
ment plan), properties related to the employment status (job type, employment since,
number of dependents, own telephone), and personal attributes (personal status and gen-
der, age, resident since, foreign worker). We discretized the numeric attributes as suggested
in [4]. Following [17], we considered the decisional process to be affected by discrimination
if the final decision was influenced by the fact that the holder belongs to one or more of
the following subgroups: non-single female, older than 52 years and foreign worker.

Results. Table 7 reports the descriptive statistics for the 80 experiment runs for vary-
ing levels of support ([0.03, 0.10] with steps of 0.01) and confidence ([0.5, 0.95] with steps
of 0.5). We observe that the number of rules in the output is higher but resembles the
same distribution as the number of derived regression models. Absolute values are, as
one would expect, much higher for real datasets than for the experiment with synthetic
data. The median experimental setting produces 5971.5 rules and 231.5 models. The stable
ratio of models to rules between the two settings (synthetic and real) suggests that the
pre-conditions for the two experiments are comparable. If we focus on the significant,
unique regressors, we observe a stronger reduction; indeed, thanks to model selection,
we obtain a median and a maximum of 26.5 and 32 regressors to consider (as opposed to,
respectively, 5971.5 and 77,219 rules).

Table 7. Descriptive statistics of the experiment runs for the credit dataset.

Metric Min 1st Q Mean Med. 3rd Q Max sd

#rul 54.0 2894.0 14,668.1 5971.5 19,166.5 77,219.0 20,004.6
#mod 12.0 117.25 373.1 231.5 491.25 1560.0 386.3
#regr 12.0 23.8 25.3 26.5 28.2 32 4.7

Figure 6 reports the relation between regressors and rules across experiments. We can
observe that while the results obtained using rule mining vary significantly for different
support and confidence settings, regressors turn out to be quite stable, with variations
of the order of a few dozens across all experiments. Furthermore, the number of rules
exceeds the numbers of regressors of a factor ranges from 10 to 1000, depending on the
support level.

228

J. Cybersecur. Priv. 2022, 2

Figure 6. Rules and regressors for each experimental setting.

Figure 7 reports the (log) ratio between models and rules for each experimental setting.
At every level of support and confidence, the number of regressors is, on average, notably
smaller than the number of rules. The stability of the results given by our approach is
consistent with what we observed in Section 4.1. Nevertheless, the reduction is especially
strong at a low level of confidence and support. These results point out that the number of
regressors remains manageable for being analyzed by a human policy maker, whereas the
number of rules explodes. This suggests that our approach can be very effective in practice
to obtain usable and statistically significant indications of biases in the data without the
need to fine-tune the support/confidence levels in input to rule mining. The overhead
in terms of output from low support and confidence levels is limited, whereas one is not
incurred in the risk of removing potentially relevant rules.

Figure 7. Fraction of obtained models per rule.

The results discussed to date show the capability of the approach to significantly
reduce the space of candidate hypotheses, with respect to classic association rule mining.
Exploring these hypotheses to detect the presence of actual biased relations is, at this point,
up to the human policy makers. A detailed analysis of the detected regressors would not
be possible here, for the sake of space. Nevertheless, in the following, we briefly discuss
how regressor coefficients, together with their confidence intervals, can be used to further
aid the policy maker in her analysis.

To this end, let us consider the configuration with support equal to 0.09 and confidence
equal to 0.9. Figure 8 shows the confidence intervals of the corresponding regressors related
to the three variables under investigation in our experiments, i.e., Age, Personal status
and Foreign worker. The y axis shows the coefficient values; the blue cross represents the
estimated value of the coefficient of one regressor and the blue line corresponds to its 95%
confidence interval. The light-blue without crosses lines group regressors belonging to the
same models. The number of lines per model depends on the domain of the corresponding
variable. Both Age and Personal status have four different values; therefore, here we

229

J. Cybersecur. Priv. 2022, 2

have three lines for every model corresponding to the values not used for the baseline in
the regression. Foreign worker, instead, is a binary value; hence, each single line belongs
to a different model.

(a) Age

(b) Personal status

(c) Foreign worker

Figure 8. Coefficients confidence intervals for the three features under investigation in the experiment
(support 0.09 and confidence 0.9). Variable Age can take four values: [0, 30], (30, 41], (41, 52] and
(52, 100]. The baseline value used in the regression model is (30, 41]. Variable Personal status can
take four values: male_single, f emale_div_or_dep_or_mar, male_div_or_sep and male_mar_or_wid.
The baseline value used in the regression model is f emale_div_or_dep_or_mar. Variable Foreign
worker can take two values: Y, N. The baseline value used in the regression model is N.

First, we observe that the three variables occur in the result set with different frequen-
cies: we found 10 models containing Age, 79 containing Personal status and 528 con-
taining Foreign worker. By observing the trend of confidence intervals for each variable,
one can already spot which candidate hypotheses look more interesting and which ones,
instead, could likely be discarded. For instance, all confidence intervals for Age span across
both negative and positive values, indicating no clear effect of Age on the outcome variable.
This indicates that Age is not a discriminatory factor on its own. It is worth noting that the
variable Age occurs in several rules. Therefore, by applying rule mining alone, one might
deem this variable to be influential for the decision, although it has actually no statistically
significant impact on the output.

The situation is different for the other two variables. For the sake of clarity, Figure 9
zooms in on some models for both the variables.

For Personal status, we focus on the first three models since we observe a stable
trend from the overall figure, which suggests that similar insights can be derived from any
group of models. For Foreign worker, instead, while we still observe a similar trend across
the models, there seems to be more variability for the first few models; therefore, we decided
to focus on the first ten. Figure 9a shows the third line of every model, corresponding to

230

J. Cybersecur. Priv. 2022, 2

the value male_single which is always above 0. This suggests that this value of Personal
status has a significant and positive impact on the decision, even though not a very strong
one. This suggests that male, single candidates are significantly more likely to receive a
positive risk class than the baseline group, i.e., non-single females. Similarly, for Foreign
worker, we can see that the confidence interval is always below 0; namely, this regressor
shows a significant and negative impact of being a foreign worker on the decision, with
respect to the baseline group of non-foreign workers. Such an impact is relatively strong: in
many cases, the likelihood of a positive decision was reduced up to 80%. These observations
suggest that both these variables should be further investigated.

(a) Personal status

(b) Foreign worker

Figure 9. Zoom on the first models containing Personal status (a) and Foreign worker (b) in the
experiment with support 0.09 and confidence 0.9.

Figure 8 also shows that the regressors exhibit the same trend for every model in the
result set. This suggests that the behavior of these variables may somehow be considered as
a global behavior or, at least, as a behavior valid for all identified groups of features. Further
investigation may still be conducted to explain visible differences in terms of the coefficient
values, for example, in the first set of models involving Foreign worker. We argue that
such a representation would also provide the analyst with a valid means to detect groups
in which regressors behave differently. In contrast, none of these considerations could have
been drawn using rule mining alone. Using rule mining, the analyst can only derive the
itemsets that are frequently related to a given value of the outcome variable, but no support
was provided to analyze their statistical impact.

4.2.2. Use Case on Crime in Communities

Dataset and Settings. The Crime and Communities dataset contains 1994 records of
communities described by socio-economic and demographic factors, including their crime
rates [18]. In particular, the dataset involves 128 numerical variables, related to, e.g., aver-
age income, average household size, percentages of different ethnic groups, percentages of
people at different degree of education and percentage of people using public transport. We
preprocessed the dataset by performing common data cleaning tasks; namely, we removed
variables involving missing values, as well as variables involving a single value, since they
would have only led to noise in the analysis. The cleaned dataset involved 91 attributes.
We applied supervised discretization to convert numerical variables into categorical; more
precisely, we used the default settings of the supervised discretization technique imple-
mented in Weka (https://www.cs.waikato.ac.nz/ml/weka/, Last access 16 March 2022),
which strives to determine the most discriminative intervals with respect to the class.

231

J. Cybersecur. Priv. 2022, 2

As in [19], we selected variable ViolentCrimePerPop as the class attribute, where
values lower than 20 represent the positive decision and values equal to or greater than
20 represent the negative decision. Among the four values of the variable racePctBlack,
the sensitive item is: racePctBlack = [0.375, 1]. Accordingly, the decisional process is
considered to be affected by discrimination if the fact that black people are the majority
in the community has influenced the final decision.

Results. Table 8 reports the descriptive statistics for the 80 experiment runs for varying
levels of support ([0.03, 0.10] with steps of 0.01) and confidence ([0.5, 0.95] with steps of 0.5).
The number of models, while being consistently lower than the number of rules, is signifi-
cantly higher those we obtained in the German dataset, approximately in the same order of
magnitude as the number of rules. The number of regressors, on the other hand, shows a
reduction in more than ten times with respect to the number of rules (models), along with a
smaller standard deviation (and, therefore, a more stable output). The median obtained for
rules and models in this experiment setting produces 1693 and 1565, respectively, while the
median value for the regressors is 167. Moreover, we observe a maximum of 210 regressors
to consider (as opposed to, respectively, 6355 rules and 3593 models).

Table 8. Descriptive statistics of the experiment runs for the Crime and Communities dataset.

Metric Min 1st Q Mean Median 3rd Q Max sd

#rul 1.0 722.0 2245.0 1693.0 3153.0 6355.0 1879.7
#regr 9.0 108.0 157.4 167.0 205.0 210 52.1
#mod 1.0 658.0 1721.3 1565.0 2696.0 3570.0 1170.3

Figure 10 reports the relation between regressors and rules across experiments. We
observe a trend similar to the one we observed for the German dataset, i.e., a strong
variability in the rule mining results for different support and confidence settings, despite
relatively stable regressor outputs. Furthermore, in this case, the number of rules exceeds
the number of regressors of a factor ranging from 10 to 1000, depending on the support
level. A notable exception, however, can be seen in the experiments with support higher
than 0.8 and maximum confidence. This is due to the fact that, in these cases, only a few
rules were mined, with the result that the output of rule mining is in this case comparable
with that obtained using our approach. In one case, for the configuration with the highest
threshold, only one rule was mined, from which nine significant regressors were extracted.

Figure 10. Rules and regressors for each experimental setting in the Crime and Communities dataset.

Figure 11 reports the (log) ratio between regressors and rules for each experiment
setting. These results are consistent with what we observed for both the synthetic and
German datasets: especially for low levels of these settings, there is a strong reduction in
the candidates in the result set. Across all support levels, high confidence levels generate a
higher number of regressors (with respect to generated rules) than at low confidence levels.

232

J. Cybersecur. Priv. 2022, 2

At a high confidence level, the number of regressors exceeds that of rules by a factor of 2–3
for support levels higher or equal to 0.8, and reduces well below zero at lower confidence
levels. This is in line with the observation made for Figure 10 where we pointed out that in
some settings, a few rules were obtained, which generated a comparable or higher number
of regressors.

Figure 11. Fraction of obtained regressors per rule.

Figure 12 shows the confidence intervals for the regressors obtained for a support
equal to 0.09 and confidence equal to 0.9. Among the 535 models containing the variable
racePctBlack, the figure only reports the first 50 models for the sake of readability. These
models show common trends among all models, but they also show some notable outliers.
First, regressors in the first 42 models show a significant positive impact on the decision
variable. Delving into greater detail, we observe that the third line of each model which
corresponds to the highest percentage of black people in the community is the one with
the largest impact on the class. Therefore, overall these models seem to suggest that if the
percentage of black people increases, the possibility of being classified as a dangerous area
also increases. However, the magnitude of the impact does seem to change in some models,
moving from a strong impact (more than three-fold) to a marginal and even negative impact.
For example, a model in Figure 12 shows that the first two values are close to zero; and the
third line actually goes below 0, thus pointing out that this value is not significant at all for
this model. It is worth noting that in the remaining set of models we analyzed (not reported
here for the sake of space), the racePctBlack regressor always has a strong impact with
the same dynamics we described above. Starting from these observations, the policy maker
can actually recover the corresponding model to investigate the reasons underlying the
observed differences.

Figure 12. Coefficient confidence intervals for the racePctBlack regressors (first 50 models) in the
experiment with support 0.09 and confidence 0.9. Variable racePctBlack can assume four values,
namely [0, 0.035], [0.035, 0.165), [0.165, 0.375]), [0.375, 1]. The baseline value used in the regression
model is [0, 0.035].

5. Discussion

In this section, we elaborate upon some key observations obtained from our experi-
ments and discuss the limitations of our approach.

Effective candidates generation. The results show how the combination of rules
mining and regression analysis allow one to overcome the disadvantages of each method
applied individually. First, we stress that, without the rule mining contribution to the

233

J. Cybersecur. Priv. 2022, 2

methodology, the model testing using regression analysis would have failed to identify
interesting relations. To double-check this, during the first stages of this work, we at-
tempted to generate ‘optimal’ models through backward and forward model generation
(ref. Section 2.2), leading to uninterpretable results, and oftentimes failing to target ‘sensible’
variables of interest. The systematic hypothesis generation process effectively implemented
using rule mining allows focusing on models describing the phenomenon of interest (e.g.,
potential discrimination in a group or population). At the same time, the rigorous statistical
evaluation employed for model selection allows our method to discard a large amount of
‘false positives’ returned by rule mining whose output, indeed, turned out to be very noisy
(cf. Figure 3). Overall, we observe some improvements when increasing the support and
confidence thresholds. However, being constrained to the use of high values of support and
confidence is in general not desirable, since it can lead to some interesting dependencies be-
ing missed, especially when investigating possible discrimination cases. These limitations
appear to be overcome or significantly reduced with the use of regression models for model
derivation and selection. This approach scored relatively well in all experiment settings.
Even though there are few configurations in which the approach could not detect any
interesting bias, this was due to perfect correlations among unrelated variables, obtained
by the data generation procedure and not so likely to occur in real scenarios.

Robustness with respect to parameter tuning. Another notable positive aspect of
the approach is that performances are much less dependent on parameterization. In this
respect, the forest structure used for model comparison requires pairwise comparisons
between models, which rapidly increases as more models are generated by the rules.
Nevertheless, our approach proved to be able to detect biased relations even with low
values of confidence and support; this suggests that it is suitable also to explore bias-
affecting minorities. Different data structures and heuristics for model comparison (e.g.,
eliminating models with irrelevant variables from different branches) could be employed to
decrease the computational overhead. Nonetheless, the advantage of limiting the impact of
blind fine-tuning from the procedural setup provides the desirable advantage of assuring
that precise (as defined above) results can be expected as long as support is small. This
gives the analyst some leeway on the concern about setting the thresholds for support
and confidence.

Understandability of the extracted recommendation. Our experiments show that
the number of regressors remains manageable for being analyzed by a human policy maker,
whereas the number of rules explodes. This suggests that our approach can be very effective
in practice to obtain usable and statistically significant indications of bias. We also show
how plotting the obtained regression models represents a useful aid to the policy maker
to grasp additional information on which variables/models can be shown to the class to
have interesting correlations. In particular, we discussed how confidence intervals can be
exploited to obtain an informative overview on relations existing within models of a single
configuration, providing the base for further exploration.

Assumptions and limitations. The proposed approach can only detect the statistical
evidence of bias in cases where the data generation process is sufficiently biased to generate
that evidence. This is unavoidable in any empirical approach. In cases where little data
exist for the investigation, the statistical detection of small bias effects may fail, as evidence
may be attributed to chance alone. In those cases, other approaches such as qualitative
methods may be more appropriate. Similarly, while our approach proved to be less sensible
to parameter tuning than rule mining, the impact of tuning can still be relevant when
addressing datasets with severely underrepresented groups. In the absence of a ground-
truth on discrimination levels and groups, our approach to generate a synthetic dataset
aims to striking a balance between extreme cases, and considering general guidelines for
discriminative actions (e.g., the four-fifths rule [20]) as guiding principles. Whereas a more
thorough sensitive analysis for tuning parameters may provide additional estimates of
method performance in more extreme cases, those estimates are likely to be misleading
because of unknown confounding factors affecting the data. To showcase the applicability

234

J. Cybersecur. Priv. 2022, 2

of our method, we therefore decided to not make any strong assumptions about the nature
of our synthetic dataset.

Another important observation concerns the presence of so-called “proxy” rules and
“redundant” rules. The first ones are rules which, while not directly classifiable as biased
decisions, actually lead to biased and unfair decisions [4,21]. Redundant rules, instead,
are rules that cover the same (or a similar) set of samples of one or more other rules in the
dataset. The presence of these rules is typically due to the presence of some correlations
within the features and can lead to misleading and/or unreliable outcomes. In our exper-
iments, we assume that all the features relevant for the decisions are present in the dataset,
and there is no strong spurious correlation among the features set. We plan to investigate
these aspects in future work. Nevertheless, we would like to point out that some mitigation
strategies can be applied. For example, proxy rules could be detected by interviewing,
when possible, domain experts to understand the relevance and possible hidden use of the
features of the dataset. On the other hand, to prevent the generation of redundant rules,
one can apply, for example, feature selection approaches, or pruning the redundant rules
using approaches such as [22].

6. Related Work

This section provides an overview of the research related to model transparency, in
particular features selection, association rule mining, and discusses approaches based on com-
bining association rule mining and regression analysis. A summary of these approaches
with respect to the desiderata in Section 2 is given in Table 9.

Table 9. Comparison of the related work with respect to the desiderata for bias detection presented
in Section 2, where � means “support”, �� “partially support”, � “no support”. The asterisk (‘*’)
indicates that the requirement is only supported by some approaches.

Data Agnostic No Param. Tuning Feature Level Feature Value Level Change Impact

Association Rule Mining � � � � �*
Features selection

Filter Methods � � � � * �
Wrapping Methods �� � � � �
Embedded Methods �� � �� � �

Combined approaches �� � � �� �
Our work � �� � � �

The increasing adoption of classifiers to support human decision-making processes
has led to an increasing importance of the transparency of the models generated by ma-
chine learning techniques. A recent survey on this topic [23] identifies two categories
of problems related to model interpretability, i.e., a black-box explanation problem, where
decisions returned by a black-box classifier are analyzed to construct an explanation, and
a transparent box design problem, where the goal is to develop interpretable, white-box clas-
sifiers. Our work is related to approaches in the first category, which can be further refined
in three subgroups: model explanation aims to provide human-interpretable models capable
of mimicking the behavior of the original classifiers [24–26]; outcome explanation aims to
build local models explaining predictions made on single instances [27,28]; model inspection
aims to provide a human understandable representation of some specific properties of the
model and/or its predictions [29,30].

Our work is mainly related to model explanation, particularly so-called agnostic ap-
proaches (i.e., approaches that are not tailored to a specific classifier), which usually provide
explanations in terms of features ranking. This problem overlaps with the feature selection
problem, whose goal is to identify and remove those features that either do not have
an impact on the classification or are “redundant”, i.e., they are correlated to other fea-
tures [31–34]. These methods can be grouped into three main categories. Filter methods

235

J. Cybersecur. Priv. 2022, 2

evaluate the discriminative power of features exploiting exclusively intrinsic proprieties
(e.g., the statistical properties) of the data [35,36]. The outcome of a filter method can
consist of either the set of features showing a correlation with the class above a user-defined
threshold (so-called “univariate” methods), or groups of features showing the best trade-off
in terms of correlations with the class and minimum correlations among each other (named
“multi-variate” methods) [31,37,38]. Another class of feature selection methods consists
of wrapping methods. Given a classifier, they look for the subset of features that provide
the best results in terms of a classification quality metric, e.g., accuracy [39,40]. The search
is performed either by adding or removing one feature at each iteration, then evaluating
the obtained improvements. Wrapper methods usually perform significantly better than
filter approaches; however, they are computationally intensive and thus, unsuitable for
real-world applications characterized by a large feature space. Finally, embedded methods
are feature selection approaches embedded in the classification process itself; namely, these
approaches exploit an intrinsic model building metric to assess the importance of features
during the construction of decision trees [41].

All three classes of feature selection techniques do not completely meet the desiderata
identified in Section 2. Change impact analysis is only addressed by some embedding and
filtering approaches, e.g., [42], while wrapping approaches mainly rely on classification
accuracy. Only multi-variate filter approaches are data-agnostic. Wrapping and embedding
methods only partially meet this desideratum: to obtain the best results, one should know
the classifier used for the decisions being analyzed. All feature selection methods require
parameter tuning. Analysis at the feature level is fully supported only by wrapping meth-
ods. Indeed, many filter and embedded methods only return the correlation values for a
single feature; only few methods in these groups allow one to assess correlations between
the class and groups of features. It is worth noting that none of the methods support the
analysis at the feature value level.

A recent model transparency approach alternative to feature selection is presented
in [43]. This approach aims to provide explanations related to some subspace of interest,
i.e., groups of samples of the population presenting some characteristics of interest, usually
represented in terms of itemsets. A set of classification rules is then derived for samples
in those groups by means of a multi-objective optimization function taking into account
factors such as rules overlapping, fidelity to the original classifiers behaviors, precision,
etc. This work, however, has the same advantages and disadvantages of association rule
mining (see Section 2.3).

Association rule mining has been largely applied to analyze decisional processes, es-
pecially for discrimination discovery [4,22]. Several metrics tailored to measure the impact
of sensitive itemsets on the class have been proposed. In a seminal work on discrimination
discovery [4], Ruggeri and colleagues introduced the notion of extended lift. This metric
measures how the rule confidence varies with/without the discriminatory itemset, thus
providing an evaluation of the relevance of this itemset. This approach, however, does
not support any statistical validation of the discovered associations. To address this issue,
several approaches have been proposed. Some focus on mining non-redundant rules by
comparing each rule with its generalizations and discarding those rules, not showing any
improvement in terms of support [44] or confidence [8]. Other approaches, instead, fall
within the field of statistical association rule mining, i.e., they focus on mining statistically
significant positive associations, ensuring that these associations are unlikely to be due
to chance. Some approaches apply statistical tests to rule assessment metrics, e.g., the
confidence intervals [45]. Statistical tests have also been used to validate feature-class
correlations, filtering rules involving features with an insufficient/not significant level of
correlations [9], or assessing possible correlations between itemsets and the class by means
of hypothesis testing (e.g., [46–48]).

While these approaches do improve the statistical robustness of the discovered set of
rules, they come with some drawbacks. Approaches exploiting relevance metrics only indi-
rectly assess the statistical significance of the impact of the feature values on the class values.

236

J. Cybersecur. Priv. 2022, 2

Moreover, the use of different metrics can lead to different results, and some commonly-
used metrics also come with some drawbacks. For example, it is well known that rules
whose consequent has a high support tend to have a high value of confidence, without this
implying a real dependency among the antecedent and the consequent [46]. Furthermore,
confidence allows measuring only one direction of the impact of feature values, i.e., positive
correlations. In addition, all these approaches are mainly intended as filtering mechanisms.
Overall, the support provided to the statistical validation of discovered association rules
is still limited and not as mature as in other techniques, such as regression analysis. Indeed,
the scope of the performed evaluation is only limited to the values of the explanatory
variables that occur in the rule under analysis. Little or no support is provided to explore
how the impact changes with respect to the different values of the variables.

The combination of associations rules and regression analysis is mostly unexplored;
to date, only a few approaches have investigated potential advantages and applications.
For instance, Changpetch and Lin [49] investigated the use of association rule mining
to detect the set of the most interesting interactions to take into account when building
a regression model. However, rule mining is only used to identify interactions among
features. Moreover, only a single model is returned, which does not allow differentiating
among different possible contexts in which discrimination could have occurred. It is
also worth noting that a very aggressive rule filtering mechanism is adopted, so that
only correlations with a strong support are considered, which is not always desirable
when dealing with biases that involve small portions of the overall population. Other
approaches exploit rule mining in the iterative building of the (best) regression model.
For example, Jaroszewicz [50] defines so-called polynomial association rules to determine
non-linear correlations among a set of (continuous) features and the class, and use an
iterative regression model-building procedure that picks the best polynomial rule at each
step to determine the factor to include in the regression model. Furthermore, in this case,
the output consists of a single, ‘optimal’ model; moreover, polynomial rules are targeted
to numerical domains. Other approaches combine their predictive capabilities in a single
hybrid system to enhance classification performance. For example, Kamei et al. [51] showed
an application to determine faulty modules, where samples described by a (set of) rules
are classified accordingly, while samples for which no rules are available are classified
according to a regression model. In this respect, the two classification models are built
independently from each other. Combined approaches behave similarly to regression
analysis, supporting statistical validation and analysis at both feature and feature values
level. However, they require parameter tuning for the application of rule mining. They
also bring some improvements in terms of data-agnostic requirement, since the use of rule
mining enhances classic model selection techniques. However, as their goal is to detect the
“best” model, it does not support the generation of multiple hypotheses, so that they cannot
identify multiple contexts involving biases.

7. Conclusions

In this work, we proposed a methodology that leverages both association rule mining
and regression analysis to uncover systematic biases in decisional processes. Specifically,
our methodology uses association rule mining to systematically generate hypotheses of
bias sources from an exploration of data. These hypotheses are then used to build regres-
sion models that provide statistically significant evidence about the impact of variables
on the process outcome. The experiments show that our methodology overcomes the
limitations of standard association rule mining and regression analysis. However, while
being able to detect the population that is discriminated against, it tends to provide only
an indication of the targeted set of observations, as opposed to giving a precise picture of
targeted sub-groups. This is to be expected from any statistical analysis, as noisy data and
sample sizes affect clearly have an impact on the prediction. Nonetheless, the ability of
filtering out a large number of overly specific rules and focusing only on a few that are
highly likely to cover the population of interest (or otherwise point towards it), enables

237

J. Cybersecur. Priv. 2022, 2

policy makers and analysts to focus on groups of observations where future investigations
and data collection are likely to uncover the specific effect. Furthermore, we showed how
confidence intervals can be effectively exploited to grasp an overview of the most important
detected relations, thus providing valuable guidance for the human analyst. In future work,
we plan to address some of the limitations discussed in Section 5. In particular, we plan
to investigate the combination of different rules’ redundancy reduction techniques with
our approach in order to improve its robustness with respect to undesired correlations
among features. In addition, we plan to apply our method in other contexts, for example
to uncover indicative patterns of compromise in network traffic based on a security event
generated by network security sensors as recorded by a security operation center.

Author Contributions: Conceptualization, L.G. and L.A. and N.Z.; methodology, L.G. and L.A. and
N.Z.; software, L.G. and L.A. and N.Z.; validation, L.G. and L.A. and N.Z.; formal analysis, L.G. and
L.A. and N.Z.; investigation, L.G. and L.A. and N.Z.; resources, L.G. and L.A. and N.Z.; data curation,
L.G. and L.A. and N.Z.; writing—original draft preparation, L.G. and L.A. and N.Z.; writing—review
and editing, L.G. and L.A. and N.Z.; visualization, L.G. and L.A. and N.Z.; supervision, L.G. and L.A.
and N.Z.; project administration, L.G. and L.A. and N.Z.; funding acquisition, none. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data can
be found here: [15,18].

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Regression Output Interpretation

The output of a regression is the estimation of which values of c, β1, . . . , βn provide
the best prediction of Y. For example, consider the following regression on HighRisk:

HighRisk = c + β1 Employed+ β2 Gender+ β3 Employed · Gender

This model will generate an output of the type reported in Table A1 (also fictitious for
the purpose of this explanation).

Table A1. Example of regression output

Regressor Coeff. p-Value

c 3 <0.05
Employed = N 1.4 <0.01
Gender = F −1.2 0.10
Employed = N ∧ Gender = F 1.1 <0.01

This output indicates that unemployed (and male) subjects have a 22% (exp(0.2) = 1.22)
(as the outcome variable of this example is binary, a logistic regression should be used. For
a logit regression, the outcome is the log odd ratio of the observation (log(p(HighRisk)/
(1− p(HighRisk)); therefore, regression coefficients should be exponentiated to reveal the
change in the odds ratio caused by a unit variation, or change in category in that variable.)
higher probability of being assigned to the category HighRisk than to the category LowRisk.
Being female (and employed) decreases chances by 70% (exp(−1.2) = 0.3). The coefficient
for Employed = N ∧ Gender = F tells us that, however, being female and unemployed
increases the baseline risk three times (exp(1.1) = 3.0). The statistical significance of each
coefficient serves as an indication to the analyst that an estimation of at least that magnitude
is unlikely to be generated if no real effect exists: the smaller the probability of observing an

238

J. Cybersecur. Priv. 2022, 2

estimation at least that large (i.e., the infamous p-value [52]), the highest the confidence one
can have that, given the data, the effect exists in reality and is unlikely to be explainable by
chance alone. Generally, the threshold for significance is set at p ≤ 0.05, but this may vary
considerably depending on the domain of application. In the example above, the p-values
suggest that all coefficients are statistically significant, with the exception of the variable
Gender for which no strong evidence of significance emerges (p = 0.1). If one would set the
significance level at 0.05, one would not reject the null hypothesis that the variable Gender

has no effect on the outcome variable.

References

1. Sundaramurthy, S.C.; McHugh, J.; Ou, X.; Wesch, M.; Bardas, A.G.; Rajagopalan, S.R. Turning contradictions into innovations
or: How we learned to stop whining and improve security operations. In Symposium on Usable Privacy and Security; USENIX
Association: Berkeley, CA, USA, 2016; pp. 237–251.

2. Sundaramurthy, S.C.; Bardas, A.G.; Case, J.; Ou, X.; Wesch, M.; McHugh, J.; Rajagopalan, S.R. A human capital model for
mitigating security analyst burnout. In Symposium On Usable Privacy and Security; USENIX Association: Berkeley, CA, USA, 2015;
pp. 347–359.

3. Chen, T.R.; Shore, D.B.; Zaccaro, S.J.; Dalal, R.S.; Tetrick, L.E.; Gorab, A.K. An organizational psychology perspective to examining
computer security incident response teams. IEEE Secur. Priv. 2014, 12, 61–67. [CrossRef]

4. Ruggieri, S.; Pedreschi, D.; Turini, F. Data mining for discrimination discovery. ACM Trans. Knowl. Discov. Data 2010, 4, 9:1–9:40.
[CrossRef]

5. Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 1974, 185, 1124–1131. [CrossRef]
6. Agrawal, R.; Imieliński, T.; Swami, A. Mining Association Rules Between Sets of Items in Large Databases. SIGMOD Rec.

1993, 22, 207–216. [CrossRef]
7. Field, A. Discovering Statistics Using IBM SPSS Statistics; Sage: Thousand Oaksm, MA, USA, 2013.
8. Bayardo, R.J.; Agrawal, R.; Gunopulos, D. Constraint-based rule mining in large, dense databases. Data Min. Knowl. Discov.

2000, 4, 217–240. [CrossRef]
9. Shaharanee, I.N.M.; Hadzic, F.; Dillon, T.S. Interestingness measures for association rules based on statistical validity.

Knowl.-Based Syst. 2011, 24, 386–392. [CrossRef]
10. Genga, L.; Allodi, L.; Zannone, N. Unveiling systematic biases in decisional processes: An application to discrimination discovery.

In Proceedings of the Asia Conference on Computer and Communications Security, Auckland, New Zeland, 7–12 July 2019; ACM:
New York, NY, USA, 2019; pp. 67–72.

11. Liu, B.; Hsu, W.; Ma, Y. Integrating classification and association rule mining. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining; AAAI Press: Palo Alto, CA, USA, 1998; pp. 80–86.

12. Tan, P.N.; Kumar, V.; Srivastava, J. Selecting the right objective measure for association analysis. Inf. Syst. 2004, 29, 293–313.
[CrossRef]

13. Webb, G.I. Discovering significant rules. In Proceedings of the SIGKDD International Conference on Knowledge Discovery and
Data Mining; ACM: New York, NY, USA, 2006; pp. 434–443.

14. Agresti, A. Categorical Data Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2003; Volume 482,
15. UCI. Statlog (German Credit Data) Data Set. Available online: http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+

data) (accessed on 20 December 2021).
16. Nasiriani, N.; Squicciarini, A.C.; Saldanha, Z.; Goel, S.; Zannone, N. Hierarchical Clustering for Discrimination Discovery: A

Top-Down Approach. In Proceedings of the International Conference on Artificial Intelligence and Knowledge Engineering,
Sardinia, Italy, 3–5 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 187–194.

17. Pedreschi, D.; Ruggieri, S.; Turini, F. Integrating induction and deduction for finding evidence of discrimination. In Proceedings
of the International Conference on Artificial Intelligence and Law, Barcelona, Spain, 8–12 June 2009; ACM: New York, NY, USA,
2009; pp. 157–166.

18. UCI. Communities and Crime Data Set. Available online: https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
(accessed on 20 December 2021).

19. Qureshi, B.; Kamiran, F.; Karim, A.; Ruggieri, S. Causal discrimination discovery through propensity score analysis. arXiv 2016,
arXiv:1608.03735.

20. Bobko, P.; Roth, P.L. The four-fifths rule for assessing adverse impact: An arithmetic, intuitive, and logical analysis of the rule
and implications for future research and practice. In Research in Personnel and Human Resources Management; Emerald Group
Publishing Limited: Bingley, UK, 2004.

21. Hajian, S.; Domingo-Ferrer, J. A Methodology for Direct and Indirect Discrimination Prevention in Data Mining.
IEEE Trans. Knowl. Data Eng. 2013, 25, 1445–1459. [CrossRef]

22. Genga, L.; Zannone, N.; Squicciarini, A. Discovering reliable evidence of data misuse by exploiting rule redundancy.
Comput. Secur. 2019, 87, 101577. [CrossRef]

239

J. Cybersecur. Priv. 2022, 2

23. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box
models. ACM Comput. Surv. 2018, 51, 93. [CrossRef]

24. Augasta, M.G.; Kathirvalavakumar, T. Reverse engineering the neural networks for rule extraction in classification problems.
Neural Process. Lett. 2012, 35, 131–150. [CrossRef]

25. Craven, M.; Shavlik, J.W. Extracting tree-structured representations of trained networks. In Advances in Neural Information
Processing Systems; MIT Press: Cambridge, MA, USA, 1996, pp. 24–30.

26. Schetinin, V.; Fieldsend, J.E.; Partridge, D.; Coats, T.J.; Krzanowski, W.J.; Everson, R.M.; Bailey, T.C.; Hernandez, A. Confident
interpretation of Bayesian decision tree ensembles for clinical applications. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 312–319.
[CrossRef] [PubMed]

27. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should i trust you: Explaining the predictions of any classifier. In Proceedings of the
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco,CA, USA, 13–17 August 2016; ACM:
New York, NY, USA, 2016; pp. 1135–1144.

28. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July
2015; pp. 2048–2057.

29. Datta, A.; Sen, S.; Zick, Y. Algorithmic transparency via quantitative input influence: Theory and experiments with learning
systems. In Proceedings of the Symposium on Security and Privacy, San Jose, CA, USA, 22–26 May 2016; IEEE: Piscataway, NJ,
USA, 2016; pp. 598–617.

30. Seifert, C.; Aamir, A.; Balagopalan, A.; Jain, D.; Sharma, A.; Grottel, S.; Gumhold, S. Visualizations of deep neural networks
in computer vision: A survey. In Transparent Data Mining for Big and Small Data; Springer: Berlin/Heidelberg, Germany, 2017;
pp. 123–144.

31. Hall, M.A. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis, The University of Waikato, Hamilton,
NewZealand, 1999 .

32. Molina, L.C.; Belanche, L.; Nebot, À. Feature selection algorithms: A survey and experimental evaluation. In Proceedings of
the International Conference on Data Mining, Maebashi City, Japan, 9–12 December 2002; IEEE: Piscataway, NJ, USA, 2002;
pp. 306–313.

33. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [CrossRef]
34. Hastie, T.; Tibshirani, R.; Friedman, J.; Franklin, J. The elements of statistical learning: data mining, inference and prediction.

Math. Intell. 2005, 27, 83–85.
35. Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A. A

survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform.
2012, 9, 1106–1119. [CrossRef]

36. Duch, W.; Wieczorek, T.; Biesiada, J.; Blachnik, M. Comparison of feature ranking methods based on information entropy. In
Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; IEEE: Piscataway,
NJ, USA, 2004; Volume 2, pp. 1415–1419.

37. Karegowda, A.G.; Manjunath, A.; Jayaram, M. Comparative study of attribute selection using gain ratio and correlation based
feature selection. Int. J. Inf. Technol. Knowl. Manag. 2010, 2, 271–277.

38. Zien, A.; Krämer, N.; Sonnenburg, S.; Rätsch, G. The feature importance ranking measure. In Proceedings of the Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Bled, Slovenia, 7–11 September 2009; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 694–709.

39. Kohavi, R.; John, G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97, 273–324. [CrossRef]
40. Henelius, A.; Puolamäki, K.; Boström, H.; Asker, L.; Papapetrou, P. A peek into the black box: Exploring classifiers by

randomization. Data Min. Knowl. Discov. 2014, 28, 1503–1529. [CrossRef]
41. Ratanamahatana, C.; Gunopulos, D. Feature selection for the naive Bayesian classifier using decision trees. Appl. Artif. Intell.

2003, 17, 475–487. [CrossRef]
42. Cai, Y.; Chow, M.Y.; Lu, W.; Li, L. Statistical feature selection from massive data in distribution fault diagnosis.

IEEE Trans. Power Syst. 2010, 25, 642–648. [CrossRef]
43. Lakkaraju, H.; Kamar, E.; Caruana, R.; Leskovec, J. Faithful and customizable explanations of black box models. In Proceedings

of the AAAI/ACM Conference on AI, Ethics, and Society, Honolulu, HI, USA, 27–28 January 2019; pp. 131–138.
44. Bastide, Y.; Pasquier, N.; Taouil, R.; Stumme, G.; Lakhal, L. Mining minimal non-redundant association rules using frequent

closed itemsets. In Proceedings of the International Conference on Computational Logic, London, UK, 24–28 July 2000; Springer:
Berlin/Heidelberg, Germany, 2000, pp. 972–986.

45. Pedreschi, D.; Ruggieri, S.; Turini, F. Measuring discrimination in socially-sensitive decision records. In Proceedings of the
International Conference on Data Mining, Miami, FL, USA, 6–9 December 2009; SIAM: Philadelphia, PA, USA, 2009; pp. 581–592.

46. Brin, S.; Motwani, R.; Silverstein, C. Beyond market baskets: Generalizing association rules to correlations. In Proceedings of the
SIGMOD International Conference on Management of Data, Tucson, AZ, USA, 13–15 May 1997; ACM: New York, NY, USA, 1997;
pp. 265–276.

47. Hämäläinen, W.; Nykänen, M. Efficient discovery of statistically significant association rules. In Proceedings of the International
Conference on Data Mining; IEEE: Piscataway, NJ, USA, 2008; pp. 203–212.

240

J. Cybersecur. Priv. 2022, 2

48. Liu, B.; Hsu, W.; Ma, Y. Pruning and summarizing the discovered associations. In Proceedings of the SIGKDD International
Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 1999; pp. 125–134.

49. Changpetch, P.; Lin, D.K. Model selection for logistic regression via association rules analysis. J. Stat. Comput. Simul.
2013, 83, 1415–1428. [CrossRef]

50. Jaroszewicz, S. Polynomial association rules with applications to logistic regression. In Proceedings of the SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, 20–23 August 2006; ACM: New York, NY, USA,
2006; pp. 586–591.

51. Kamei, Y.; Monden, A.; Morisaki, S.; Matsumoto, K.i. A hybrid faulty module prediction using association rule mining and
logistic regression analysis. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement; ACM: New York, NY, USA, 2008; pp. 279–281.

52. Goodman, S. A dirty dozen: twelve p-value misconceptions. In Seminars in Hematology; Elsevier: Amsterdam, The Netherlands,
2008; Volume 45; pp. 135–140.

241

Citation: McCarthy, A.; Ghadafi, A.;

Andriotis, P.; Legg, P.

Functionality-Preserving Adversarial

Machine Learning for Robust

Classification in Cybersecurity and

Intrusion Detection Domains: A

Survey. J. Cybersecur. Priv. 2022, 2,

154–190. https://doi.org/10.3390/

jcp2010010

Academic Editor: Danda B. Rawat

Received: 31 January 2022

Accepted: 15 March 2022

Published: 17 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Functionality-Preserving Adversarial Machine Learning for
Robust Classification in Cybersecurity and Intrusion Detection
Domains: A Survey

Andrew McCarthy *, Essam Ghadafi, Panagiotis Andriotis and Phil Legg *

Computer Science Research Centre, University of the West of England, Bristol BS16 1QY, UK;
essam.ghadafi@uwe.ac.uk (E.G.); panagiotis.andriotis@uwe.ac.uk (P.A.)
* Correspondence: andrew6.mccarthy@uwe.ac.uk (A.M.); phil.legg@uwe.ac.uk (P.L.)

Abstract: Machine learning has become widely adopted as a strategy for dealing with a variety
of cybersecurity issues, ranging from insider threat detection to intrusion and malware detection.
However, by their very nature, machine learning systems can introduce vulnerabilities to a security
defence whereby a learnt model is unaware of so-called adversarial examples that may intentionally
result in mis-classification and therefore bypass a system. Adversarial machine learning has been
a research topic for over a decade and is now an accepted but open problem. Much of the early
research on adversarial examples has addressed issues related to computer vision, yet as machine
learning continues to be adopted in other domains, then likewise it is important to assess the potential
vulnerabilities that may occur. A key part of transferring to new domains relates to functionality-
preservation, such that any crafted attack can still execute the original intended functionality when
inspected by a human and/or a machine. In this literature survey, our main objective is to address
the domain of adversarial machine learning attacks and examine the robustness of machine learning
models in the cybersecurity and intrusion detection domains. We identify the key trends in current
work observed in the literature, and explore how these relate to the research challenges that remain
open for future works. Inclusion criteria were: articles related to functionality-preservation in adver-
sarial machine learning for cybersecurity or intrusion detection with insight into robust classification.
Generally, we excluded works that are not yet peer-reviewed; however, we included some significant
papers that make a clear contribution to the domain. There is a risk of subjective bias in the selection
of non-peer reviewed articles; however, this was mitigated by co-author review. We selected the
following databases with a sizeable computer science element to search and retrieve literature: IEEE
Xplore, ACM Digital Library, ScienceDirect, Scopus, SpringerLink, and Google Scholar. The literature
search was conducted up to January 2022. We have striven to ensure a comprehensive coverage of
the domain to the best of our knowledge. We have performed systematic searches of the literature,
noting our search terms and results, and following up on all materials that appear relevant and fit
within the topic domains of this review. This research was funded by the Partnership PhD scheme at
the University of the West of England in collaboration with Techmodal Ltd.

Keywords: cybersecurity; adversarial machine learning; machine learning; intrusion detection;
functionality-preservation

1. Introduction

Machine learning (ML) has become widely adopted as a strategy for dealing with a
variety of cybersecurity issues. Cybersecurity domains particularly suited to ML include:
intrusion detection and prevention [1], network traffic analysis [2], malware analysis [3,4],
user behaviour analytics [5], insider threat detection [6], social engineering detection [7],
spam detection [8], detection of malicious social media usage [9], health misinformation [10],
climate misinformation [11], and more generally “Fake News” [12]. These are essentially
classification problems. Papernot et al. [13] stated that most ML models can be described

J. Cybersecur. Priv. 2022, 2, 154–190. https://doi.org/10.3390/jcp2010010 https://www.mdpi.com/journal/jcp242

J. Cybersecur. Priv. 2022, 2

mathematically as functions h0(x) with an input x and parameterized by a vector θ ∈ Θ,
although some models such as K nearest neighbor are non-paremetric. The output of the
the function h0(x) is the model’s prediction of some property of interest for the given input
x. The input x is usually represented as a vector of values called features. The space of
functions h = x �→ h0(x)|θ ∈ Θ defines the set of candidate hypotheses. In supervised
learning, the parameters are adjusted to align model predictions h0(x) with the expected
output y. This is achieved by minimizing a loss function that captures the dissimilarity of
h0(x) and the corresponding y. Model performance must be validated against a separate
training dataset to confirm if the model also generalizes well for unseen data. Classification
ML systems find a function (f) that matches a vector (�x) to its corresponding class (y).

Dhar et al. [14] noted that few studies analyzed the complexity of models and as-
sociated trade-offs between accuracy and complexity. The complexity of an algorithm is
often expressed in Big-O notation. They reviewed models, stating the number of features
and activations have an effect on memory usage and computational complexity. Moreover,
they argued that accuracy alone cannot justify the choice of model type, particularly in
regard to DNN; however, we consider the risks involved for inaccurate predictions will
vary across domains. In security domains, greater accuracy may be considered critical,
possibly assuaging concerns regarding computational complexity of models.

Critically, ML systems are increasingly trusted within cyber physical systems [15],
such as power stations, factories, and oil and gas industries. In such complex physical envi-
ronments, the potential damage that could be caused by a vulnerable system might even
be life threatening [16]. Despite our reliance and trust in ML systems, the inherent nature
of machine learning—learning to identify patterns—is in itself a potential attack vector
for adversaries wishing to circumvent ML-based system detection processes. Adversarial
examples are problematic for many ML algorithms and models including random forests
(RF) and naive Bayes (NB) classifiers; however, we focus on artificial neural networks and
particularly deep neural networks. Artificial neural networks (ANN) are inspired by the
network of neurons in the human brain. ANNs are useful because they can generalize from
a finite set of examples, essentially mapping a large input space (infinite for continuous
inputs) to a range of discrete outputs. Unfortunately, in common with other ML algorithms,
neural networks are vulnerable to attacks using carefully crafted perturbations to inputs, in-
cluding evasion and poisoning attacks. In recent work, carefully crafted inputs described as
“adversarial examples” are considered possible in ANN because of these inherent properties
that exist within neural networks [17], such as:

1. The semantic information of the model is held across the model and not localised to
specific neurons;

2. Neural networks learn input–output mappings that are discontinuous (and discon-
tiguous).

These properties mean that even extremely small perturbations of an input could cause
a neural network to provide a misclassified output. Given that neural networks have these
properties, we reasonably expect our biological neural networks to suffer misclassifications,
and/or to have evolved mitigations. Human brains are more complex than current artificial
neural networks, yet they suffer a type of misclassification (illusory perception), in the form
of face pareidolia [18,19]. This strengthens the case that the properties of neural networks
are a source of adversarial examples (AE). In cybersecurity-related domains it has been
seen how adversaries exploit adversarial examples, using carefully-crafted noise to evade
detection through misclassification [20,21].

In this way, an adversarial arms race exists between adversaries and defenders. The
recent SolarWinds supply chain attack [22,23] identified in December 2020 indicates the
reliance that organisations have on intrusion detection software, and the presence of ad-
vanced persistent threats (APTs) with the expertise and resources to attack organisations’
network defenses. Adversarial machine learning is a critical area of research. If not ad-
dressed, there is increasing potential for novel attack strategies that seek to exploit the
inherent weaknesses that exist within machine learning models. For this reason, this survey

243

J. Cybersecur. Priv. 2022, 2

addresses the issues related to the robustness of machine learning models against adversar-
ial attacks across the cybersecurity domain, where problems of functionality-preservation
are recognized. While we use a case study of a network-based intrusion detection system
(NIDS), these issues might be applicable in other areas where ML systems are used. We
focus on papers detailing adversarial attacks and defenses. Attacks are further classified
by attack type, attack objective, domain, model, knowledge required, and constraints.
Defenses are further categorised by defense type, domain, and model. In the domain of
network traffic analysis, adversaries need to evade detection methods. A suitable network
firewall will reject adversarial traffic and malformed packets while accepting legitimate
traffic. Therefore, successful adversarial examples must be crafted to comply with domain
constraints such as those related to the transmission control protocol/internet protocol
(TCP-IP) stack. Moreover, adversaries wish to preserve the functionality of their attacks.
A successful attack must not lose functionality at the expense of evading a classifier. The
essence of a simple adversarial attack is that a malicious payload evades detection by mas-
querading as benign. We refer to this characteristic as functionality-preserving. Compared to
domains such as computer vision whereby the image modification is only to fool human
vision sensors, adversarial attacks in other domains are significantly more challenging to
fool both a human and/or system-based sensor.
The major contributions of this paper are:

• We conduct a survey of the literature to identify the trends and characteristics of
published works on adversarial learning in relation to cybersecurity, addressing both
attack vectors and defensive strategies;

• We address the issue of functionality-preservation in adversarial learning in contrast
to domains such as computer vision, whereby a malformed input must suitably
fool a system process as well as a human user such that the original functionality is
maintained despite some modification;

• We summarise this relatively-new research domain to address the future research
challenges associated with adversarial machine learning across the cybersecurity
domain.

The remainder of this paper is structured as follows: Section 2 provides an overview
of other important surveys; Section 3 discusses background material; Section 4 details the
literature survey; Section 5 details our results; Section 6 provides our discussion, and the
conclusion summarises our findings and identifies research challenges.

2. Related Works

Corona et al. [24] provided a useful overview of intrusion detection systems. They
predicted greater use of machine learning for intrusion detection and called for further
investigation into adversarial machine learning. We now consider a number of related
academic surveys that have been presented in the last five years with a focus on adversarial
examples, security, and intrusion detection.

2.1. Secure and Trustworthy Systems

Machine learning systems are used in increasingly diverse areas including those of
cyber-security. Trust in these systems is essential. Hankin and Barrèere [25] note that there
are many aspects to trustworthiness: reliability, trust, dependability, privacy, resilience, and
safety. Adversaries ranging from solo hackers to state-sponsored APTs have an interest in
attacking these systems. Successful attacks against machine learning models mean that
systems are vulnerable and therefore potentially dangerously deployed in cyber-security
domains. Cho et al. [26] proposed a framework considering the security, trust, reliability
and agility metrics of computer systems; however, they did not specifically consider
adversarial machine learning, or robustness to adversarial examples.

244

J. Cybersecur. Priv. 2022, 2

2.2. Adversarial ML in General

Papernot et al. [13] noted that the security and privacy of ML is an active but nascent
area of research. In this early work, they systematized their findings on security and privacy
in machine learning. They noted that a science for understanding many of the vulnerabili-
ties of ML and countermeasures is slowly emerging. They analysed ML systems using the
classical confidentiality, integrity and availability (CIA) model. They analysed: training in
adversarial settings; inferring adversarial settings; and robust, fair, accountable, and private
ML models. Through their analysis, they identified a total of eight key takeaways that
point towards two related notions of sensitivity. The sensitivity of learning models to their
training data is essential to privacy-preserving ML, and similarly the sensitivity to inference
data is essential to secure ML. Central to both notions of sensitivity is the generalization
error (i.e., the gap between performance on training and test data). They focused on attacks
and defenses for machine learning systems and hoped that understanding the sensitivity
of modern ML algorithms to the data they analysed will foster a science of security and
privacy in machine learning. They argued that the generalization error of models is key to
secure and privacy-preserving ML.

Zhang and Li [27] discussed opportunities and challenges arising from adversarial
examples. They introduced adversarial examples and surveyed state-of-the-art adversarial
example generation methods and defenses, before raising future research opportunities
and challenges. They noted three challenges for the construction of adversarial examples:

1. The difficulty of building a generalizable method;
2. The difficulty in controlling the size of perturbation (too small will not result in

adversarial examples, and too large can easily be perceived);
3. Difficulty in maintaining adversarial stability in real-world applications (some adver-

sarial examples do not hold for transformations such as blurring).

They identified two challenges for defense against adversarial examples. First, black-
box attacks do not require knowledge of the model architecture and therefore cannot be
easily resisted by modifying the model architecture or parameters. Second, defenses are
often specific to an attack method and are less suitable as a general defense. Defenses
against one attack method do not easily defend against adversarial examples based on
other methods for generating adversarial examples. They subsequently identified three
opportunities:

1. Construction of adversarial examples with high transferability (high confidence);
2. Construction of adversarial examples without perturbing the target image; they

suggested that perturbation size will affect the success rate and transferability of
adversarial examples;

3. Considering and modeling physical transformations (translation, rotation, brightness,
and contrast).

Their focus was on the visual domain and they did not specifically discuss IDS or
functionality-preserving adversarial attacks.

Apruzzese et al. [28] examined adversarial examples and considered realistic attacks,
highlighting that most literature considers adversaries with complete knowledge about
the classifier and are free to interact with the target systems. They further emphasized
that few works consider “relizable” perturbations that take account of domain and/or real-
world constraints. There is perhaps a perception that the threat from adversarial attacks is
low based on the assumption that much prior knowledge of the system is required. This
approach has some merit; however, this could be an over-confident position to take. Their
idea was that realistically the adversary has less knowledge of the system. This conflicts
with Shannon’s maxim [29] and Kerckhoff’s second cryptographic principle [30], which
states that the fewer secrets the system contains, the higher its safety. The pessimistic
“complete knowledge” position is often used in cryptographic studies; in cryptographic
applications it is considered safe because it is a bleak expectation. This expectation is also
realistic since we must expect well-resourced adversaries to eventually discover or acquire

245

J. Cybersecur. Priv. 2022, 2

all details of the system. Many adversarial example papers assume complete knowledge;
this is however unlikely to always be the case, perhaps leading some to believe models
are more secure against adversarial examples. However, the transferability property of
adversarial examples means that complete knowledge is not required for successful attacks,
and black-box attacks are possible with no prior knowledge of machine learning models. An
adversary may only learn through interacting with the model. We must therefore account
for the level of knowledge required by an adversary, including white-box, black-box, and
gray-box knowledge paradigms.

2.3. Intrusion Detection

Wu et al. [31] considered several types of deep learning systems for network attack
detection, including supervised and unsupervised models, and they compared the effi-
ciency and effectiveness of different attack detection methods using two intrusion detection
datasets: the “KDD Cup 99” dataset and an improved version known as NSL-KDD [32,33].
These two datasets have been used widely in the past by academic researchers; however,
they do not fairly represent modern network traffic analysis problems due to concept-drift.
Networks have increasing numbers of connected devices, increasing communications per
second, and new applications using the network. The use of computer networks and the
Internet has changed substantially in twenty years. The continued introduction of IPv6,
network address translation, Wi-Fi, mobile 5G networks, and cloud providers has changed
network infrastructure [34]. Furthermore, the Internet is now increasingly used for financial
services. Akamai [35] reported that financial services now see millions or tens of millions
of attacks each day. These attacks were less common twenty years ago. Furthermore, social
media now constitutes much internet traffic and most social media platforms were founded
after the KDD Cup 99 and NSL-KDD datasets were introduced. For example, Facebook,
YouTube, and Twitter were founded in 2004, 2005, and 2006, respectively. This limits the
validity of some research using outdated datasets. Therefore, we suggest research should
use modern datasets that represent modern network traffic.

Kok et al. [36] analysed intrusion detection systems (IDS) that use a machine learning
approach. They specifically considered the datasets used, the ML algorithms, and the eval-
uation metrics. They warned that some researchers are still using datasets first introduced
decades ago (e.g., KDD Cup 99, NSL-KDD). They warned that this trend could result in
no or insufficient progress on IDS. This would ultimately lead to the untenable position of
obsolete IDS while intrusion attacks continue to evolve along with user behaviour and the
introduction of new technologies. Their paper did not consider adversarial examples or
robustness of ML models. Alatwi and Morisset [37] tabulated a list of network intrusion
datasets in the literature that we extend in Table 1.

Table 1. Datasets used in the literature.

Work Dataset Network Year Attack Categories

[32] KDD Cup 99 Traditional 1999 DoS, Probe, User 2 Root and Remote to User
[38] NSL-KDD Traditional 2009 DoS, Probe, User 2 Root and Remote to User
[39] DARPA Traditional 2009 DDoS, Malware, Spambots, Scans, Phishing
[40] CTU-13 Traditional 2011 Botnet
[41] Kyoto Traditional 2015 Botnet
[42] UNSW-NB15 Traditional 2016 Backdoors, Fuzzers, DoS, Generic, Shell code, Reconnaissance, Worms, Exploits, Analysis
[43] WSN-D5 Wireless 2016 Greyhole, Blackhole, Scheduling, Flooding.
[44] SDN Traffic SDN 2016 DDoS
[45] CICIDS2017 Traditional 2017 DoS, DDoS, SSH-Patator, Web, PortScan, FTP-Patator, Bot.
[46] Mirai IoT 2017 Botnet
[45] CICIDS2018 Traditional 2018 Bruteforce Web, DoS, DDoS, Botnet, Infiltration.
[45] CICDDoS2019 Traditional 2019 DDoS
[47] Bot-IOT IoT 2018 DDoS, DoS, OS Service Scan, Keylogging, Data exfiltration
[48] Kitsune IoT 2018 Recon, Man in the Middle, DoS, Botnet Malware
[49] IEEE BigData Cup Traditional 2019 N/A
[50] HIKARI-2021 IoT 2021 Brute force attack, Brute force attack (XMLRPC), Vulnerability, probing, Synthetic Traffic

246

J. Cybersecur. Priv. 2022, 2

Martins et al. [51] considered adversarial machine learning for intrusion detection
and malware scenarios, noting that IDS are typically signature-based, and that machine
learning approaches are being widely employed for intrusion detection. They described
five “tribes” of ML algorithms before detailing some fundamentals of adversarial machine
learning, including commonly used distance metrics: L∞, L0, and L2. They subsequently
described common white-box methods to generate adversarial examples, including: Broy-
den–Fletcher–Goldfarb–Shanno algorithm (L-BFGS), the fast gradient sign method (FGSM),
Jacobian-based saliency map attack (JSMA), Deepfool, and Carlini and Wagner attacks
(C&W). They also considered black-box methods using generative adversarial networks
(GANS). Traditional GANS sometimes suffer problems of mode collapse. Wasserstein
generative adversarial networks (WGANS) solve some of these problems. They introduced
Zeroth-order optimization attack (ZOO) as a black-box method. ZOO estimates the gradi-
ent and optimises an attack by iteratively adding perturbations to features. They noted
that most attacks have been initially tested in the image domain, but can be applied to
other types of data, which poses a security threat. Furthermore, they considered there is
a trade-off when choosing an adversarial attack. For example, JSMA is more computa-
tionally intensive than FGSM but modifies fewer features. They considered JSMA to be
the most realistic attack because it perturbs fewer features. When considering defenses,
they tabulated advantages and disadvantages of common defenses. For example, feature
squeezing is effective in image scenarios, but unsuitable for other applications because
compression methods would result in data loss for tabular data. They noted that GANS are
a very powerful technique that can result in effective adversarial attacks where the samples
follow a similar distribution to the original data but cause misclassification.

2.4. Cyber-Physical Systems

Cyber-physical systems (CPSs) rely on computational systems to create actuation of
physical devices. The range of devices is increasing from factory operations to power
stations, autonomous vehicles, and healthcare operations. Shafique et al. [52] considered
such smart cyber-physical systems. They discussed reliability and security vulnerabilities
of machine learning systems, including hardware trojans, side channel attacks, and ad-
versarial machine learning. This is important, because system aging and harsh operating
environments mean CPSs are vulnerable to numerous security and reliability concerns.
Advanced persistent threats could compromise the training or deployment of CPSs through
stealthy supply-chain attacks. A single vulnerability is sufficient for an adversary to cause
a misclassification that could lead to drastic effects in a CPS (e.g., an incorrect steering
decision of an autonomous vehicle could cause a collision). We consider that vulnerabilities
in ML could lead to a range of unwanted effects in CPSs, including those that could lead to
life-threatening consequences [16]. The Stuxnet worm is an example of malware with dire
consequences.

2.5. Contributions of This Survey

Our main objectives are:

• Collect and collate current knowledge regarding robustness and functionality-preserving
attacks in cybersecurity domains;

• Formulate key takeaways based on our presentation of the information, aiming to
assist understanding of the field.

This survey aims to complement existing work while addressing clear differences, by
also studying the robustness of adversarial examples, specifically functionality-preserving
use cases. Most previous work aimed to improve the accuracy of models or examine the
effect of adversarial examples. Instead, we consider the robustness of models to adversarial
examples.

Machine learning systems are already widely adopted in cybersecurity. Indeed, with
increasing network traffic, automated network monitoring using ML is becoming essential.
Modern computer networks carry private personal and corporate data including financial

247

J. Cybersecur. Priv. 2022, 2

transactions. These data are an attractive lure to cyber-criminals. Adversaries may wish to
steal or disturb data. Malware, spyware, and ransomware threats are endemic on many
computer networks. IDS help keep networks safe; however, an adversarial arms race exists,
and it is likely that adversaries, including advanced persistent threats, are developing new
ways to evade network defenses. Some research has evaded intrusion detection classifiers
using adversarial examples.

We identify that while adversarial examples in the visual domain are well understood,
less work has focused on how adversarial examples can be applied to network traffic
analysis and other non-visual domains, similarly to machine learning models used for
image and object recognition. For example, convolutional neural networks (CNNs) are
well researched, whereas other model types used for intrusion detection, e.g., recurrent
neural networks (RNNs), receive less attention. The generation of adversarial examples
to fool IDS is more complicated than visual domains because the features include discrete
and non-continuous values [53]. Compounding the defense against adversarial examples
is the overconfident assumption that successful adversarial examples require “complete
knowledge” of the model and parameters. On the contrary, black-box attacks are possible
with no or limited knowledge of the model. Most defenses so far proposed consider the
visual domain and most are ineffective against strong and black-box attacks. This survey
addresses the problem of adversarial machine learning across cyber-security domains.
Further research is required to head off future mature attack methods that could facilitate
more complex and destructive attacks.

3. Background

Here we provide further background on some key concepts that are related to adver-
sarial learning, to support the reader of this survey. We cover the topics of model training,
robustness, common adversarial example algorithms, adversary capabilities, goals, and
attack methods.

3.1. Model Training

It is important to consider the dataset on which models are trained, because the
trustworthiness and quality of a model is impacted by the distribution, quality, quantity,
and complexity of dataset training samples [54]. Biased models are more susceptible
to adversarial examples. Therefore, models must be trained on unbiased training data;
however, Johnson et al. considered that the absolute number of training samples may be
more important than the ratio of class imbalance [55]. For example, a small percentage
of a large number of samples is sufficient to train a model regardless of high class im-
balance (e.g., 1% malicious samples in 1 million network flows yields 10,000 samples).
Unfortunately, cybersecurity datasets are often prone to bias, in part because of limited
samples of some malicious traffic (e.g., zero-day attacks) and large amounts of benign traffic.
Sheatsley et al. [56] state biased distributions enable successful adversarial examples with
the modification of very few features.

3.1.1. Resampling

Three common data-level techniques tackle biased datasets by resampling:

• Oversampling: Random samples of minority classes are duplicated until the bias of
majority classes is compensated;

• Undersampling: Random samples from the majority class are discarded until the bias
of majority classes is compensated;

• Hybrid Sampling: Combines modest oversampling of minority classes and modest
undersampling of majority classes aiming to give better model performance than
applying either technique alone.

Algorithm-level techniques tackling dataset bias commonly employ cost-sensitive
learning where a class penalty or weight is considered or decision thresholds are shifted to
reduce bias [55].

248

J. Cybersecur. Priv. 2022, 2

3.1.2. Loss Functions

When training a model the goal is to minimize the loss function through use of an
optimizer that adjusts the weights at each training step. Common optimizers include
stochastic gradient descent (SGD), adaptive moments (Adam), and root mean squared
propagation (RMSProp). Commonly, a regularizer is employed during training to ensure
the model generalizes well to new data. A dropout layer is often employed as a regularizer.

The loss function must be chosen carefully: for binary classification binary_crossentropy
(Equation (1)) is usual; for multiclass classification problems categorical_crossentropy
(Equation (2)) or mean_squared_error (Equation (3)) are suitable.

fbinary_crossentropy(y) = −ylabel
i log yiiprediction −

(
1− ylabel

i

)
log

(
1− yprediction

i

)
(1)

fcategorical_crossentropy(y) = −
categories

∑
i=1

ylabel
i log yprediction

i (2)

fmean_squared_error(y) =
1

categories

categories

∑
i=1

(
ylabel

i − yprediction
i

)2
(3)

3.1.3. Cross Validation

Cross validation [57] is a widely used data resampling method to assess the general-
izability of a model and to prevent over-fitting. Cross validation often involves stratified
random sampling, meaning the sampling method retains the class proportions in the learn-
ing set. In leave-one-out cross validation, each sample is used in turn as the validation
set. The test error approximates the true prediction error; however, it has high variance.
Moreover, its computational cost can be high for large datasets. k-fold cross validation
aims to optimise the bias/variance trade-off. In k-fold cross validation, the dataset is
randomly split into k equal size partitions. A single partition is retained for test data,
and the remaining k − 1 partitions are used for training. The cross validation steps are
reiterated until each partition is used once for validation, as shown in Figure 1. The results
are averaged across all iterations to produce an estimation of the performance of the model
(Equation (4)). Refaelzadeh et al. highlighted risks of elevated Type I errors (false positives).
With larger values of k, variance is reduced. Moreover, bias also reduces because the model
is trained on more of the dataset. We posit that resampling techniques could be used to
improve robustness against adversarial examples.

CV(k) =
1
k

k

∑
i=1

MSEi (4)

Figure 1. k-fold cross validation.

3.1.4. Bootstrapping

Bootstrapping is resampling with replacement, and is often used to statistically quan-
tify the performance of a model, to determine if a model is statistically significantly better
than other models.

249

J. Cybersecur. Priv. 2022, 2

3.2. Robustness

Robustness can be defined as the performance of well-trained models facing adversar-
ial examples [58]. Essentially, robustness considers how sensitive a model’s output is to
a change in the input. The robustness of a model is related to the generalization error of
the model. There is a recognised trade-off between accuracy and robustness in machine
learning. That is, highly accurate models are less robust to adversarial examples. Machine
learning models in adversarial domains must be both highly accurate and robust. Therefore,
improving the robustness of machine learning models enables safer deployment of ML
systems across a wider range of domains.

To critically evaluate and make fair comparisons, robustness metrics are necessary.
Common metrics include precision (Equation (5)), recall (Equation (6)), and F1-score
(Equation (7)).

Precision =
TruePositives

TruePositives + FalsePositives
(5)

Recall =
TruePositives

TruePositives + FalseNegatives
(6)

F1Score = 2× Precision× Recall
Precision + Recall

(7)

Other possible useful metrics to evaluate robustness include: the Lipschitzian property,
which monitors the changes in the output with respect to small changes to inputs; and
CLEVER (cross-Lipschitz extreme value for network robustness), which is an extreme
value theory (EVT)-based robustness score for large-scale deep neural networks (DNNs).
The proposed CLEVER score is attack-agnostic and computationally feasible for large
neural networks improving on the Lipschitzian property metric [59]. Table 2 details some
advantages and disadvantages of some robustness metrics.

Table 2. Robustness metrics.

Work Metric Advantages Disadvantages

N/A F1-Score Commonly used by researchers. Biased by the majority class
[59] CLEVER Attack-agnostic and computa-

tionally feasible.
CLEVER is less suited to black-box
attacks and where gradient masking
occurs [60]; However, extensions to
CLEVER help mitigate these scenar-
ios [61].

[62] Empirical robustness Suitable for very deep neural net-
works and large datasets.

N/A

3.3. Common Adversarial Example Algorithms

There are numerous algorithms to produce adversarial examples. Szegedy et al. [17]
used a box-constrained limited memory L-BFGS. Other methods include FGSM [63] and
iterative derivatives, including the basic iterative method (BIM) and projected gradient
descent (PGD). JSMA optimises for the minimal number of altered features (L0). The Deep-
fool algorithm [62] optimises for the root-mean-square (Euclidean distance, L2). Carlini and
Wagner [64] proposed powerful C&W attacks optimizing for the L0, L2, and L∞ distance
metrics. There are many algorithms to choose from. Furthermore, Papernot et al. [65]
developed a software library for the easy generation of adversarial examples. There are
now a number of similar libraries that can be used to generate adversarial examples, as
shown in Table 3.

250

J. Cybersecur. Priv. 2022, 2

Table 3. Libraries for Generating Adversarial Examples.

Work Library Name Year Advantages Disadvantages

[65] CleverHans 2016 Recently updated to v4.0.0,
well used by the community.
MIT License

Can be complicated to
configure.

[66] Foolbox 2017 Fast generation of adversarial
examples. MIT License

Large number of open is-
sues.

[67] Adversarial robustness tool-
box

2018 Well maintained and sup-
ported. Supports most known
machine learning frame-
works. Extensive attacks and
model robustness tools are
supported.

Does not support all
models.

[68] Advertorch 2019 GNU lesser public license. Few active contributors.

Moreover, algorithms such as FGSM that modify all features are unlikely to preserve
functionality. Algorithms such as JSMA that modify a small subset of features are not
guaranteed to preserve functionality; however, with fewer modified features, the likelihood
improves. Checking for and keeping only examples that preserve functionality is possible,
although it is a time-consuming and inelegant solution. A potentially better solution could
ensure only functionality-preserving adversarial examples are generated.

When considering the robustness of machine learning models, we first must consider
the threat model. We must consider how much the adversary knows about the classifier,
ranging from no knowledge to perfect knowledge. Adversaries may have a number of different
goals:

1. Accuracy degradation (where the adversary wants to sabotage the effectiveness of the
overall classifier accuracy);

2. Target misclassification (where the adversary wants to misclassify a particular instance
as another given class);

3. Untargeted classification (where the adversary wants to misclassify a particular in-
stance to any random class).

We now consider the attack surface. In IDS, the attack surface can be considered as
an end-to-end pipeline, with varying vulnerabilities and potential for compromise at each
stage of the pipeline.

In one basic pipeline, as shown in Figure 2, the raw network traffic on network
interfaces is collected as packet capture files (PCAPs), which are then processed into
network flows. There are different applications that could be used to process PCAPs into
network flows. CICFlowMeter [69] is a network traffic flow generator and analyser that
has been used in cyber-security datasets [70,71] and produces bidirectional flows with
over 80 statistical network traffic features. The generated flows are unlabelled and so
must be labelled manually with the traffic type, typically benign/malicious, although
multiclasses could be labelled given sufficient information including attack type, IP source
and destination dyad, duration, and start time. Finally, the labelled flows are used to train
the model. Repetitive training cycles could enable detection of new attacks; however, the
cyclic nature of the training means that an adversary could attack any iteration of training.
Furthermore, an adversary could choose to attack any point in the pipeline. The training
data used to train the model generally consist of feature-vectors and expected outputs,
although some researchers are considering unsupervised learning models. The collection
and validation of these data offer an attack surface. Separately, the inference phase also
offers an attack surface. It is interesting to note that the size of the feature set a machine
learning model uses can be exploited as an attack surface. A fundamental issue is that each
feature processed by a model may be modified by an adversary. Moreover, Sarker et al. [72]
noted that the computational complexity of a model can be reduced by reducing the feature
dimensions. Large feature sets include more features and hence provide more opportunities
to an adversary for manipulation. Almomani et al. [73] indicated that accuracy can be
maintained with fewer features, and McCarthy et al. [74] indicated that more features

251

J. Cybersecur. Priv. 2022, 2

tend to reduce the necessary size of perturbations. Therefore, larger feature sets are more
readily perturbed than smaller feature sets, which have fewer modifiable features and
hence require larger perturbations.

Figure 2. End-to-end pipeline for network intrusion detection system.

3.4. Threat Model—Adversary Capabilities

Adversaries are constrained by their skills, knowledge, tools, and access to the system
under attack. An insider threat might have access to the classification model and other
associated knowledge, whereas an external threat might only be able to examine data
packets. While the attack surface may be the same for both adversaries, the insider threat is
potentially a much stronger adversary because they have greater knowledge and access.
Adversary capabilities mean that attacks can be split into three scenarios: white-box,
black-box, and gray-box.

In white-box attacks, an adversary has access to all machine learning model param-
eters. In black-box attacks, the adversary has no access to the machine learning model’s
parameters. Adversaries in black-box scenarios may therefore use a different model, or
no model at all, to generate adversarial examples. The strategy depends on successfully
transferring adversarial examples to the target model. Gray-box attacks consider scenarios
where an adversary has some, but incomplete, knowledge of the system. White-box and
black-box are most commonly considered.

3.5. Threat Model—Adversary Goals

Adversaries aim to subvert a model through attacking its confidentiality, integrity, or
availability. Confidentiality attacks attempt to expose the model or the data encapsulated
within. Integrity attacks occur when an adversary attempts to control the output of the
model, for example, to misclassify some adversarial traffic and therefore allow it to pass
a detection process. Availability attacks could misclassify all traffic types, or deteriorate
a model’s confidence, consistency, performance, and access. In this way, an integrity
attack resembles a subset of availability attack, since an incorrect response is similar in
nature to a correct response being unavailable; however, the complete unavailability of a
response would likely be more easily noticed than decreases in confidence, consistency,
or performance. The goals of an adversary may be different but are often achieved with
similar methods.

3.6. Threat Model—Common Attack Methods

Figure 3 shows some common categories of adversarial machine learning attack
methods, that we explore in this section.

252

J. Cybersecur. Priv. 2022, 2

Figure 3. Common adversarial machine learning attacks.

3.6.1. Poisoning

An adversary with access to the training data or procedure manipulates it, implanting
an attack during the training phase, when the model is trained on adversarial training
data. This is achieved with carefully crafted noise or sometimes random noise. Unused
or dormant neurons in a trained deep neural network (DNN) signify that a model can
learn more; essentially, an increased number of neurons allows for a greater set of distinct
decision boundaries forming distinct classifications of data. The under-utilised degrees of
freedom in the learned model could potentially be used for unexpected classification of
inputs. That is, the model could learn to provide selected outputs based on adversarial
inputs. These neurons have very small weights and biases. However, the existence of
such neurons allows successful poisoning attacks through training the model to behave
differently for poisoned data. This suggests that distillation [75] could be effective at
preventing poisoning attacks, because smaller models have lower knowledge capacity and
likely fewer unused neurons. Distillation reduces the number of neurons that contribute to
a model by transferring knowledge from a large model to a smaller model. Despite initial
analysis indicating reduction in the success of adversarial attacks, Carlini [64] experimented
with three powerful adversarial attacks and a high confidence adversarial example in a
transferability attack, and found that distillation does not eliminate adversarial examples
and provides little security benefit over undistilled networks in relation to powerful attacks.
Unfortunately, they did not specifically consider poisoning attacks. Additional experiments
could determine whether distillation is an effective defense against poisoning attacks.

253

J. Cybersecur. Priv. 2022, 2

3.6.2. Evasion

In evasion attacks, the adversary is often assumed to have no access to the training
data. Instead, adversaries exploit their knowledge of the model and its parameters, aiming
to minimise the cost function of adversarial noise, which, when combined with the input,
causes changes to the model output. Untargeted attacks lead to a random incorrect output,
targeted attacks lead to a specific incorrect output, and an attack may disrupt the model
by changing the confidence of the output class. In the visual domain, the added noise is
often imperceptible to humans. In non-visual domains such as intrusion detection, this
problem may be much more challenging, since even small modifications may corrupt
network packets and may cause firewalls to drop these malformed packets. This highlights
the need for functionality preservation in adversarial learning as a clear distinction from
vision-based attacks that exploit the human visual system.

3.6.3. Transferability

The transferability property of adversarial examples means that adversarial examples
generated against one model will likely also work against other models trained for the same
purpose. The second model need not have the same architecture or underlying model as the
first and need not be trained on the same data. The transferability property of adversarial
examples can form the basis for some black-box attacks where a surrogate model is used to
generate adversarial examples that are subsequently presented to the target model.

4. Methodology

In this section, we describe our approach to surveying the literature so as to conduct
an effective and meaningful survey of the literature.

Eligibility Criteria We determined our search terms leading to the most relevant
articles. We chose the search terms detailed in Table 4.

Table 4. Topics and associated search terms used in this survey.

Topic Search Query

Cyber security/intrusion detection (“cyber security” OR “intrusion detection” OR “IDS”)
Adversarial machine learning attacks and de-
fences

(“adversarial machine learning” OR “machine learning”
OR “adversarial example”) and (“attack” OR “defence”)

Robustness/Functionality Preservation ((“robustness” OR “generalization error” OR “accuracy”
OR “f1score” OR “f-score” OR “TPR” OR “FPR”) OR
((“functionality” OR “payload”) AND “preservation”)))

We expect these to result in good coverage of the relevant literature. We searched
each database using the identified search terms. The literature search was conducted up to
September 2021. Generally, we have chosen to exclude works that have not yet been peer-
reviewed, such as those appearing on arXiv, unless deemed by the authors as a significant
paper that makes a clear contribution to the subject domain. We collated the searches and
any subsequent duplicates were removed. Each paper was screened by reading the title
and abstract to determine the relevance. Inclusion criteria were: the article is related to
functionality preservation in adversarial machine learning for cybersecurity or intrusion
detection with insight into robust classification.

From this large list, we specifically focused on adversarial machine learning attacks
and defenses, narrowing the literature down to relevant papers. Our selection process was
roughly based on the preferred reporting items for systematic meta-analysis (PRISMA)
framework [76]. Figure 4 details our selection process.

254

J. Cybersecur. Priv. 2022, 2

Figure 4. Preferred reporting items for systematic meta-analysis.

Information Sources We selected the following databases with a sizeable computer
science element to search and retrieve literature: IEEE Xplore, ACM Digital Library,
ScienceDirect, Scopus, SpringerLink, and Google Scholar.

5. Results

In this section, we describe the results of our search and selection process. We further
describe our classification scheme, and tabulate and discuss our findings, including ad-
versarial attacks in traditional and cybersecurity domains of malware, IDS, and CPS. We
included 146 relevant papers in this survey.

5.1. Classification Scheme

We classify attacks by attack type, attack objective (targeted/untargeted), domain,
model, knowledge required, and whether any constraints are placed on the adversarial
examples. Defenses are classified by type, domain, and model. We summarise the attacks
in Table 5.

255

J. Cybersecur. Priv. 2022, 2

Table 5. Chronologically ordered summary of adversarial example attacks.

Work Year Attack Type Obj Domain Model Knowledge Constraint

A
E

Se
qu

en
ce

of
A

Es

Tr
an

sf
er

ab
ili

ty

Ta
rg

et
ed

U
nt

ar
ge

te
d

V
is

ua
l

C
yb

er
se

cu
ri

ty

Te
xt

M
LP

C
N

N

R
N

N

W
hi

te
-B

ox

Bl
ac

k-
bo

x

G
ra

y-
Bo

x

Bo
x

Sp
ar

se

Fu
nc

-P
re

se
rv

in
g

[17] 2014 L-BFGS � � � � � �
[77] 2013 GradientDescent � � � � � �
[78] 2016 Adversarial Sequences � � � � � �
[79] 2016 JSMA � � � � � � �
[62] 2016 Deepfool � � � � �
[80] 2017 AddSent,AddOneSent � � � � � �
[81] 2018 GAN � � � � �
[82] 2017 EnchantingAttack � � � � �
[82] 2017 StrategicAttack � � � � �
[64] 2017 C&W, L0, L2, L∞ � � � � �
[83] 2017 FGSM,JSMA � � � � �
[84] 2018 Generative RNN � � � � � �
[85] 2018 NPBO � � � � � �
[86] 2018 GADGET � � � � � �
[87] 2018 JSMA,FGSM,DeepFool,CW � � � � �
[88] 2018 FGSM � � � � �
[89] 2018 IDS-GAN � � � � �
[90] 2018 ZOO,GAN � � � � �
[91] 2019 One Pixel Attack � � � � � �
[92] 2019 ManifoldApproximation � � � � � �
[93] 2019 FGSM,BIM,PGD � � � � � �
[94] 2019 GAN Attack � � � � � �
[95] 2020 PWPSA � � � � � � � �
[95] 2020 GA � � � � � � � �
[96] 2020 One Pixel Attack � � � � � �
[97] 2020 Opt Attack,GAN Attack � � � � � �
[98] 2021 GAMMA � � � � �
[99] 2021 UAP � � � � � � �

[100] 2020 Variational Auto Encoder � � � � � �
[101] 2021 Best-Effort Search � � � � � � � � � �

5.2. Adversarial Example Attacks

The attacks we focus on exploit adversarial examples that cause differences in the
output of neural networks. Adversarial examples were discovered by Szegedy et al. [17].
Adversarial examples are possible in ANN as a consequence of the properties of neural
networks; however, they are possible for other ML models. This complicates mitigation
efforts, and adversarial examples can be found for networks explicitly trained on adversarial
examples [102]. Furthermore, adversarial examples can be algorithmically generated, e.g.,
using gradient descent. Moreover, adversarial examples are often transferable, that is, an
adversarial example presented to a second machine learning model trained on a subset
of the original dataset may also cause the second network to misclassify the adversarial
example.

5.2.1. Adversarial Examples—Similarity Metrics

In the visual domain, distance metrics are well used to judge how similar two inputs
are, and therefore how easy the differences might be perceived. The following metrics are
commonly used to describe the difference between normal and adversarial inputs:

• Number of altered pixels, (L0);
• Euclidean distance (L2, root-mean-square);
• Maximum change to any of the co-ordinates, (L∞).

Human perception may not be the best criterion to judge a successful adversarial input.
A successful attack in a vision ML task may be to fool a human. Success in an ML-based

256

J. Cybersecur. Priv. 2022, 2

system is to fool some other detection routine, while conforming to the expected inputs of
the system. For example, a malicious packet must remain malicious after any perturbation
has been applied. If a perturbed packet is very close to the original packet, this would only
be considered successful if it also retained its malicious properties, and hence its intended
function.

5.2.2. Adversarial Examples-Types of Attack

White-Box Attacks: Most white-box attacks are commonly achieved through gradient
descent to increase the loss function of the target model. The algorithmic generation
of adversarial examples is possible. Moreover, Papernot et al. [65] developed a software
library for the easy generation of adversarial examples and other libraries are now available.
An early gradient descent approach was proposed by Szegedy et al. [17] using a box-
constrained limited memory L-BFGS. Given an original image, this method finds a different
image that is classified differently, whilst remaining similar to the original image. Gradient
descent is used by many different algorithms; however, algorithms have been designed
to be optimized for different distance metrics. There are numerous gradient descent
algorithms that produce adversarial examples; they can differ in their optimization and
computational complexity. We note the relative computational complexity of common
adversarial example algorithms in Table 6 (adapted from [27]). High success rates correlate
with high computational complexity. We expect this correlation to be more pronounced
for functionality-preserving attacks. FGSM [63] was improved by Kurakin et al. [103],
who refined the fast gradient sign by taking multiple smaller steps. This iterative granular
approach improves on FGSM by limiting the difference between the original and adversarial
inputs. This often results in adversarial inputs with a predictably smaller L∞ metric.
However, FGSM modifies all parameters. This is problematic for features that must remain
unchanged or for discrete features such as application programming interface (API) calls.
JSMA differs from FGSM in that it optimises to minimize the total number of modified
features (L0 metric). In this greedy algorithm, individual features are chosen with the
aim of step-wise increasing the target classification in each iteration. The gradient is
used to generate a saliency map, modelling each feature’s impact towards the resulting
classification. Large values significantly increase the likelihood of classification as the target
class. Thus, the most important feature is modified at each stage. This process continues
until the input is successfully classified as the target class, or a threshold number of pixels
is reached. This algorithm results in adversarial inputs with fewer modified features. The
Deepfool algorithm [62] similarly uses gradient descent but optimises for the root-mean-
square, also known as Euclidean distance (L2). This technique simplifies the task of shifting
an input over a decision boundary by assuming a linear hyper-plane separates each class.
The optimal solution is derived through analysis and subsequently an adversarial example
is constructed; however, neural network decision boundaries are not truly linear. Therefore,
subsequent repetitions may be required until a true adversarial image is found.

Table 6. Computational complexity of common adversarial example algorithms.

Method Computational Complexity Success Rate

L-BFGS High High
FGSM Low Low
JSMA High High

DeepFool Low Low
One-pixel Low Low

CW Attack High High

257

J. Cybersecur. Priv. 2022, 2

The optimizations for different distance metrics are types of constraint: maximum
change to any feature (L∞); minimal root-mean-square (L2); minimal number of altered
features (L0). Constrained adversarial examples are important for functionality-preserving
attacks. Additional constraints for specific domains are likely required, and this remains an
open avenue for further research.

Most gradient descent algorithms were originally presented in the visual domain
and used on images and pixel values. The pixel values of images are often presented as
continuous values (0–255). The use of adversarial examples with discrete data values is
less well explored and remains an interesting avenue for further research.

Black-Box Attacks: Researchers have also considered black-box attacks that do rely
on gradient descent. Some black-box techniques commonly rely on the transferability of
adversarial examples. Table 5 shows that few researchers employed the transferability of
adversarial examples. Other common black-box techniques include GANS and genetic
algorithms (GAs). Sharif et al. [104] proposed a method of attacking DNNs with a general
framework to train an attack generator or generative adversarial network (GAN). GANs
can be trained to produce new, robust, and inconspicuous adversarial examples. Attacks
like Biggio et al. [77] are more suitable for the security domain, where assessing the security
of algorithms and systems under worst-case attacks is needed [105,106].

An important consideration in attacks against intrusion detection systems is that
attackers cannot perform simple oracle queries against an intrusion detection system and
must minimize the number of queries to decrease the likelihood of detection. Apruzzese
et al. [28] further note that the output of the target model is not directly observable by
the attacker; however, exceptions occur where detected malicious traffic is automatically
stopped or dropped, or where the attacker gains access to/or knowledge of the system.

Gray-box attacks consider scenarios where an adversary has only partial knowledge
of the system. Biggio et al. [77] highlighted the threat from skilled adversaries with
limited knowledge; more recently, gray-box attacks have received some attention: Kuppa
et al. [92] considered malicious users of the system with knowledge of the features and
architecture of the system, recognizing that attackers may differ in their level of knowledge
of the system. Labaca-Castro et al. [99] used universal adversarial perturbations, showing
that unprotected systems remain vulnerable even under limited knowledge scenarios.
Li et al. [101] considered limited knowledge attacks against cyber physical systems and
successfully deployed universal adversarial perturbations where attackers have incomplete
knowledge of measurements across all sensors.

Building on Simple Adversarial Examples: Table 5 shows that much research consid-
ers simple adversarial examples, although less research considers sequences of adversarial
examples or transferability. We chose to classify attacks as either a simple adversarial ex-
ample, a sequence of adversarial examples, or a transferable adversarial example. A simple
adversarial example is sufficient to alter the output of a simple classifier. Lin et al. [82]
suggested that using adversarial examples strategically could affect the specific critical
outputs of a machine learning system. Sequences of adversarial examples consist of two or
more adversarial examples. Sequences of adversarial examples are more challenging than
simple adversarial examples. Lin et al. [82] further suggested an enchanting attack to lure a
machine learning system to a target state through crafting a series of adversarial examples.
Table 5 shows that most research considers simple adversarial examples. Researchers are
starting to consider sequences of adversarial examples and consider the transferability of
adversarial examples. We chose to classify attacks in this way to clarify the complexity level
of attack types. Furthermore, the table shows that sequences of adversarial examples and
the transferability of adversarial examples is under-represented, providing opportunities
for further research.

5.2.3. Adversarial Examples—Attack Objectives

There is a distinction between the objectives of attacks: targeted or untargeted. An
attack objective might be to cause a classifier to misclassify an input as any other class

258

J. Cybersecur. Priv. 2022, 2

(untargeted) or to misclassify an input as a specific class (targeted). In the cyber-security
domain, IDS often focus on binary classification: malicious or benign. For binary classifica-
tion the effect of targeted and untargeted attacks is the same. More complex multi-class
IDS can help network analysts triage or prioritise different types of intrusions. Network
analysts would certainly treat a distributed denial of service (DDoS) attack differently than
a BotNet or infiltration attempt. Adversaries could gain significant advantage through
targeted attacks, for example, by camouflaging an infiltration attack as a comparatively less
serious network intrusion.

Recent research goes beyond adversarial examples causing misclassification of a single
input. Moosavi-Dezfooli et al. [107] further showed the existence of untargeted universal
adversarial perturbation (UAP) vectors for images, and ventured that this is problematic for
classifiers deployed in real-world and hostile environments. In the cyber-security domain,
Labaca et al. [99] demonstrated UAPs in the feature space of malware detection. They
showed that UAPs have similar effectiveness to adversarial examples generated for specific
inputs. Sheatsley et al. [56] looked at UAP in the constrained domain of intrusion detection.
Adversaries need only calculate one UAP that could be applied to multiple inputs. Pre-
calculation of a UAP could enable faster network attacks (DDoS) that would otherwise
require too much calculation time. Table 5 shows that most research considers untargeted
attacks. Targeted attacks are less represented in the literature. Furthermore, UAPs are a
more recent avenue for research.

5.2.4. Adversarial Examples in Traditional Domains

Table 5 shows that attacks in the visual domain were the subject of much early research,
and the visual domain continues to attract researchers; however, researchers are beginning
to consider attacks against other DNN systems such as machine learning models for natural
language processing, with some considering semantic preserving attacks.

In visual domains, features are generally continuous. For example, pixel values range
from 0 to 255. A consensus exists in the visual domain that adversarial examples are
undetectable to humans. Moreover, the application domain is clearly interrelated with the
choice of machine learning model. Models such as CNNs are appropriate for visual-based
tasks, whereas RNNs are appropriate for sequence-based tasks. We discuss model types in
Section 5.2.6.

Some models, such as recurrent neural networks, cannot be attacked using traditional
attack algorithms; however, some research aims to discover new methods to attack these
systems. Papernot et al. [78] noted that because RNNs handle time sequences by intro-
ducing cycles to their computational graphs, the presence of these computation cycles
means that applying traditional adversarial example algorithms is challenging because
cycles prevent direct computation of the gradients. They adapted adversarial example
algorithms for RNNs and evaluated the performance of their adversarial samples. If the
model is differential, FGSM can be applied even to RNN models. They used a case study of
a binary classifier (positive or negative) for movie reviews. They defined an algorithm that
iteratively modifies words in the input sentence to produce an adversarial sequence that is
misclassified by a well-trained model. They noted that their attacks are white-box attacks,
requiring access to, or knowledge of, the model parameters. Szegedy [17] discovered
the transferability of adversarial examples, noting that the same perturbation can cause a
different network that was trained on a different subset of the dataset to misclassify the
same input. This property of adversarial examples has serious implications because it
means gaining access to a model is unnecessary to attack it. An adversary can employ the
transferability of adversarial examples, where adversarial examples generated against a
model under the adversary’s control can be successfully used to attack the target model.
The transferability of adversarial examples implies that an adversary does not need full
access to a model to attack it (black-box).

259

J. Cybersecur. Priv. 2022, 2

5.2.5. Adversarial Examples in Cyber-Security Domains

Adversarial examples (AE) have been shown to exist in many domains. Indeed,
no domain identified (so far) is immune to adversarial examples [56]. Researchers are
beginning to consider cyber-security domains (Figure 5) where features are often a mixture
of categorical, continuous, and discrete. Some research focuses on adversarial example
attacks against IDS, although few studies specifically consider functionality-preserving
attacks.

Figure 5. Common machine learning tasks in cyber security.

In the visual domain, we briefly discussed the consensus that adversarial examples
are undetectable to humans. However, it is unclear how this idea should be translated
to other domains. Carlini [64] held that, strictly speaking, adversarial examples must be
similar to the original input. However, Sheatsley et al. [56] noted that research in non-
visual domains provides domain-specific definitions: perturbed malware must preserve
its malware functionality [56], perturbations in audio must be nearly inaudible [56], and
perturbed text must preserve its meaning. Sheatsley et al. further offered a definition
for adversarial examples in intrusion detection: perturbed network flows must maintain
their attack behaviour. We consider that human perception may not be the best criterion
for defining adversarial examples in cyber-security domains. Indeed, human perception
in some domains might be immaterial. For example, only very skilled engineers could
perceive network packets in any meaningful way even with the use of network analysis
tools. Furthermore, users likely cannot perceive a difference between the execution of
benign or malicious software. After malware is executed, the effects are clear; however,
during malware execution users often suspect nothing wrong. We therefore consider that
while fooling human perception remains a valid ambition, it is critical that adversarial
perturbations in cyber-security domains preserve functionality and behaviour.

In the cyber-security domain, traditional gradient descent algorithms may be insuffi-
cient. Algorithms that preserve functionality are required. Moreover, some models used
in the cyber-security domain are distinct from those used for purely visual problems. For
example, RNNs are useful for time sequences of network traffic analysis. We now consider
recent functionality-preserving attacks in the cybersecurity domains of malware, intrusion
detection, and CPS. We further examine Functionality-preserving attacks in Table 7.

260

J. Cybersecur. Priv. 2022, 2

Table 7. Functionality-preservation in cybersecurity and intrusion detection.

Work Year Domain Generation Method Realistic Constraints Findings

[53] 2019 Malware Gradient-based Minimal content addi-
tions/modification

Experiments showed that we are able to use that informa-
tion to find optimal sequences of transformations without
rendering the malware sample corrupt.

[94] 2019 IDS GAN Preserve functionality The proposed adversarial attack successfully evades the
IDS while ensuring preservation of functional behavior
and network traffic features.

[108] 2019 IDS Gradient-based Respects mathematical de-
pendencies and domain con-
straints.

Evasion attacks achieved by inserting a dozen network
connections.

[109] 2019 IDS Random modification
≤4 features: flow
duration, sent bytes, re-
ceived bytes, exchanged
packets.

Retains internal logic Feature removal is insufficient defense against
functionality-preserving attacks, which may are
possible by modifying very few features.

[110] 2019 IDS Legitimate transforma-
tions: split, delay, inject

Packets must maintain mali-
cious intent, transformations
hold to underlying proto-
cols.

Detection rate of packet-level features dropped by up to
70% and flow-level features dropped by up to 68%.

[56] 2020 IDS—
Flows

Jacobian method (JSMA) Obeys TCP/IP constraints Biased distributions with low dimensionality enable con-
strained adversarial examples. Constrained to five ran-
dom features, −50% adversarial examples succeed.

[95] 2020 IDS—
packet

Valid packet Minimal modifica-
tion/insertion of packets

Experimental results show powerful and effective
functionality-preserving attacks. More accurate models
are more susceptible to adversarial examples.

[98] 2021 Malware Injected unexecuted be-
nign content

Minimal injected content Section-injection attack can decrease the detection rate.
Their analysis highlights that commercial products can be
evaded via transfer attacks.

[101] 2021 CPS Best-effort search Real-world linear inequality Best-effort search algorithms effectively generate adver-
sarial examples meeting linear constraints. Their evalua-
tion shows constrained adversarial examples significantly
decrease detection accuracy.

[111] 2021 IDS Minimal perturbation of
each feature

FGSM Functionality is not reported, but is less likely to preserve
functionality because all features are perturbed.

[112] 2021 CPS/ICS JSMA Minimal number of per-
turbed features

Functionality is not reported, but is more likely to pre-
serve functionality because relatively few features are
perturbed.

[113] 2021 IDS PSO-based mutation Original traffic retained and
packet order is unchanged

Measured attack effect, malicious behavior and attack
efficiency

[114] 2021 IDS GAN preserving functional fea-
tures of attack traffic

F1 score drop to zero from around 99% DIGFuPAS adver-
sarial examples.

[115] 2021 IDS PSO/GA/GAN Only modifies features
where network functionality
is retained

In the network traffic data, it is unrealistic to assume
an adversary can alter all traffic features—constraints on
features that do not break functionality

[116] 2020 IDS GAN/PSO Original traffic and packet
order is retained.

Detection performance and robustness should both be
considered in feature extraction systems.

Malware: Hu and Tan [84] proposed a novel algorithm to generate adversarial se-
quences to attack an RNN-based malware detection system. They claimed that algorithms
adapted for RNNs are limited because they are not truly sequential. They considered a sys-
tem to detect malicious API sequences. Generating adversarial examples effective against
such systems is non-trivial because API sequences are discrete values. There is a discrete
set of API calls; changing any single letter in an API call will create an invalid API call and
cause that API call to fail. This will result in a program crash. Therefore, any perturbation of
an API call must result in a set of valid API calls. They proposed an algorithm based around
a generative RNN and a substitute RNN. The generative RNN takes an API sequence as
input and generates an adversarial API sequence. The substitute RNN is trained on benign

261

J. Cybersecur. Priv. 2022, 2

sequences and the outputs of the generative RNN. The generative model aims to minimize
the predicted malicious probability. Subsequently, adversarial sequences are presented
to six different models. Following adversarial perturbation, the majority of the malware
was not detected by any victim RNNs. The authors noted that even when the adversarial
generation algorithm and the victim RNN were implemented with different models and
trained on different training sets, the majority of the adversarial examples successfully
attacked the victim RNN through the transferability property of adversarial examples. In
MLP, they reported a TPR of 94.89% that fell to 0.00% under adversarial perturbations.

Demetrio et al. [98] preserved the functionality of malware while evading static win-
dows malware detectors. Their attacks exploit the structure of the portable executable
(PE) file format. Their framework has three categories of functionality-preserving manip-
ulations: structural, behavioural, and padding. Some of their attacks work by injecting
unexecuted (benign) content in new sections in the PE file, or at the end of the malware
file. The attacks are a constrained minimization problem optimizing the trade-off between
the probability of evading detection and the size of injected content. Their experiments
successfully evaded two Windows malware detectors with few queries and a small payload
size. Furthermore, they discovered that their attacks transfered to other Windows malware
products. We note that the creation of new sections provides a larger attack surface that
may be populated with adversarial content. They reported that their section-injection attack
was able to drastically decrease the detection rate (e.g., from an original detection rate of
93.5% to 30.5%, also significantly outperforming their random attack at 85.5%).

Labaca-Castro et al. [53] presented a gradient-based method to generate valid exe-
cutable files that preserve their intended malicious functionality. They noted that malware
evasion is a current area of adversarial learning research. Evading the classifier is often the
foremost objective; however, the perturbations must also be carefully crafted to preserve
the functionality of malware. They noted that removing objects from a PE file often leads
to corrupt files. Therefore, they only implement additive or modifying perturbations. Their
gradient-based attack relies on complete knowledge of the system with the advantage that the
likelihood of evasion can be calculated and maximised. Furthermore, they stated that their
system only generates valid executable malware files.

Intrusion Detection: Usama et al. [94] used a generative adversarial network (GAN)
to generate functionality-preserving adversarial examples. They noted that adversarial
examples aiming to evade IDS should not invalidate network traffic features. A typical
GAN composed of two neural networks, a generator G and discriminator D, was used
to construct adversarial examples that masquerade as benign but functionally probe the
network. Their attack was able to evade an IDS while preserving the intended behaviour.
They suggested that adversarial training using GAN-generated adversarial examples
improved the robustness of their model. They reported F1-scores of 89.03 (original), 40.86
(After attack), 78.49 (after adversarial training), and an improved 83.56 after GAN-based
adversarial training.

Wang et al. [117] noted that relatively few researchers are addressing adversarial
examples against IDS. They proposed an ensemble defense for network intrusion detection
that integrates GANS and adversarial retraining. Their training framework improved
robustness while maintaining accuracy of unperturbed samples. Unfortunately, they
evaluated their defences against traditional attack algorithms: FGSM, basic iterative method
(BIM), Deepfool, and JSMA. However, they did not specifically consider functionality-
preserving adversarial examples. They further recognised the importance of using recent
datasets for intrusion detection. They reported F1-scores for three classifiers and a range of
adversarial example algorithms. For example, the F1-score for an ensemble classifier tested
on clean data was 0.998 compared to 0.746 for JSMA. Among all classifiers, the ensemble
classifier achieved superior F1-scores under all conditions.

Huang et al. [95] noted that it is more challenging to generate DDoS adversarial
examples because of their discrete properties. They noted that work in the visual domain
cannot be directly applied to adversarial examples for intrusion detection of DDoS. The

262

J. Cybersecur. Priv. 2022, 2

input to their algorithm is a series of packets. This makes it difficult to optimize the distance
between the original and adversarial sample while guaranteeing the validity of each packet.
They proposed two black-box methods to generate DDoS adversarial examples against
LSTM-based intrusion detection systems: genetic algorithm (GA) and probability weighted
packet saliency attack (PWPSA). Each method modifies the original input, either inserting
or modifying packets. The GA method evolves a population of DDoS samples and selects
adversarial examples from the population. The PWPSA method finds the most important
packet in the sequence and replaces it with a different “best packet” for this position. Both
methods produce adversarial examples that can successfully evade their DDoS intrusion
detection model. They reported success rates for their different attacks against different
detectors. For example, success results for detector D: GA-Replace 91.37%, GA-Insert 74.5%,
PWPSA-Replace 88.9%, and PWPSA-Insert 67.17%.

Cyber-Physical Systems: Cai et al. [100] warned that adversarial examples have
consequences for system safety because they can cause systems to provide incorrect outputs.
They presented a detection method for adversarial examples in CPS. They used a case
study of an advanced emergency braking system, where a DNN estimates the distance to
an obstacle. Their adversarial example detection method uses a variational auto-encoder to
predict a target variable (distance) and compare it with a new input. Any anomalies are
considered adversarial. Furthermore, adversarial example detectors for CPS must function
efficiently in a real-time monitoring environment and maintain low false alarm rates. They
reported that since the p-values for the adversarial examples are almost 0, the number of
false alarms is very small and the detection delay is smaller than 10 frames or 0.5 s.

CPS include critical national infrastructure, such as power grids, water treatment
plants, and transportation. Li et al. [101] asserted that adversarial examples could exploit
vulnerabilities in CPS with terrible consequences; however, such adversarial examples
must satisfy real-world constraints (commonly linear inequality constraints). For example,
meter readings downstream may never be larger than meter readings upstream. Adver-
sarial examples breaking constraints are noticeably anomalous. Risks to CPS arising from
adversarial examples are not yet fully understood. Furthermore, algorithms and models
from other domains may not readily apply because of distributed sensors and inherent
real-world constraints. However, generated adversarial examples that meet such linear con-
straints were successfully applied to power grids and water treatment system case studies.
The evaluation results show that even with constraints imposed by the physical systems,
their approach still effectively generates adversarial examples, significantly decreasing the
detection accuracy. For example, they reported the accuracy under adversarial conditions
to be as low as 0%.

5.2.6. Adversarial Examples and Model Type

We classify models based on their architecture in four broad types: multi-layer per-
ceptron (MLP), CNN, RNN, and RF. Ali et al. [118] observed that different deep learning
architectures are more robust than others. They noted that CNN and RNN detectors are
more robust than MLP and hybrid detectors, based on low attack success rates and high
query counts. Architecture plays a role in the accuracy of these models because CNNs can
learn contextual features due to their structure, and RNNs are temporally deeper, and thus
demonstrate greater robustness.

Unsurprisingly, research on CNNs coincides with research in the visual domain, as
shown in Table 5. The majority of adversarial example research on RNNs has until recently
focused on the text or natural language domain; however, RNNs are also useful in the
cybersecurity domain and researchers have recently considered adversarial example attacks
against RNN-based IDS.

Other promising research shows that radial basis function neural networks (RBFNN)
are more robust to adversarial examples [119]. RBFNNs fit a non-linear curve during
training, as opposed to fitting linear decision boundaries. Commonly, RBFNNs transform
the input such that when it is fed into the network it gives a linear separation. The non-

263

J. Cybersecur. Priv. 2022, 2

linear nature of RBFNNs could be one potential direction for adversarial example research.
Powerful attacks that are able to subvert RBFNNs would improve our understanding of de-
cision boundaries. Goodfellow et al. [63] argued that the primary cause of neural networks’
vulnerability to adversarial perturbation is their linear nature. However, RBFNNs are less
commonly deployed and are therefore not further discussed.

5.2.7. Adversarial Examples and Knowledge Requirement

The majority of the research focus is on white-box attacks, as shown in Table 5,
perhaps because such attacks are known to be efficient and effective. Less research focuses
on black-box attacks and few studies recognise gray-box attacks that need only partial
model knowledge. Gray-box attacks will likely have advantages over black-box attacks.
Adversaries will undoubtedly use any and all information available to them.

We classify the attacks on the knowledge required by the adversary. White-box attacks
are likely the most effective and efficient method of attack, because the adversary has
complete knowledge of the model architecture, and information on how the model was
trained. However, access to this knowledge is harder to attain, although it might also be
gained through insider threats [120] or model extraction attacks [121]. Extracted models
might be a feasible proxy on which to develop and test adversarial examples.

Notwithstanding the efficiency of white-box attacks, effective black-box attacks are
possible. Black-box (or oracle) attacks require no knowledge of the model. Adversaries
only need the ability to query the model and receive its output. Adversaries generate
inputs and receive the output of the model. Typical black-box attacks include GA [95], and
GANs [89,97].

Gray-box attacks require only limited model knowledge, perhaps including knowledge
of the features used by the model. This is a realistic prospect, as adversaries will likely have
or gain at least partial knowledge of the model.

5.2.8. Adversarial Example Constraints

Table 5 shows little research considering constraints of any sort. Much research on
IDS ignores constraints; however, network traffic is highly constrained by protocols, and
some network firewalls may drop malformed packets. Furthermore, it is insufficient that
well-formed adversarial examples progress past firewalls. They must also retain their
intended functionality.

Stringent constraints exist in the cyber-security domain. Extreme care must be taken
to create valid adversarial examples. For example, in IDS, adversaries must conform the
protocol specification of the TCP/IP stack.

We classify adversarial example constraints into three groups: (1) box constraints,
simple constraints where values must remain within certain values; (2) sparse constraints,
where a maximum number of features can be modified, the most extreme version being
where only one feature can be modified; and (3) functionality-preserving constraints, where
adversarial examples must retain their original functionality. For example, malware must
function as malware when perturbed to evade a malware detector, and DDoS attacks must
function as DDoS attacks when perturbed to evade detection. Functionality-preserving
adversarial examples are an interesting avenue for further research.

5.3. Defenses Against Adversarial Examples

Figure 6 shows some common defence types that we explore in this section. We further
detail proposed defenses against adversarial examples in Table 8.

264

J. Cybersecur. Priv. 2022, 2

Figure 6. Common defence types against adversarial machine learning.

Table 8. Chronologically ordered summary of defenses against adversarial examples.

Work Year Defense Type Domain Model

Pr
e-

Pr
oc

es
s

D
et

ec
ti

on

A
dv

-T
ra

in
in

g

Te
st

in
g

A
rc

hi
te

ct
ur

al

D
is

ti
lla

ti
on

En
se

m
bl

e

G
am

e
Th

eo
ry

V
is

ua
l

C
yb

er
se

cu
ri

ty

Te
xt

M
LP

C
N

N

R
N

N

R
F

[63] 2014 Adversarial Training � � �
[75] 2016 Distillation as defense � � �
[122] 2016 Feedback Alignment � � �
[123] 2016 Assessing Threat � � �
[124] 2017 Statistical Test � � � � �
[125] 2017 Detector SubNetwork � � �
[126] 2017 Artifacts � � �
[127] 2017 MagNet � � �
[128] 2017 Feature Squeezing � � �
[129] 2017 GAT � � �
[102] 2018 EAT � � �
[130] 2018 Defense-GAN � � �
[103] 2018 Assessing Threat � � �
[131] 2018 Stochastic Activation Pruning � � � �
[132] 2018 DeepTest � � �
[133] 2018 DeepRoad � � �
[134] 2018 Defensive Dropout � � �
[134] 2018 Def-IDS � � �
[105] 2018 Multi-Classifier System � � �
[135] 2019 Weight Map Layers � � �
[136] 2019 Sequence Squeezing � � �
[109] 2019 Feature Removal � � �
[137] 2020 Adversarial Training � � �
[138] 2020 Adversarial Training � � �
[139] 2019 Game Theory � � �
[140] 2020 Hardening � � � �
[141] 2021 Variational Auto-encoder � � �
[142] 2021 MANDA � � �

It is hard to defend against adversarial examples. People expect ML models to give
good outputs for all possible inputs. Because the range of possible inputs is so large, it is
difficult to guarantee correct model behaviour for every input. Some researchers explored
the possibility of exercising all neurons during training [132]. Furthermore, consideration
must be given to how adversaries might react when faced with a defense. Researchers in
secure machine learning must evaluate whether defenses remain secure against adversaries
with knowledge of model defenses.

We classify the suggested defenses against adversarial examples into the following
groups: pre-processing, adversarial training, architectural, detection, distillation, testing,
ensembles, and game theory.

265

J. Cybersecur. Priv. 2022, 2

5.3.1. Pre-Processing as a Defense against Adversarial Examples

Some promising research considers transformations, such as translation, additive
noise, blurring, cropping, and resizing. These often occur with cameras and scanners in
the visual domain. Translations have shown initial success in the visual domain. Initial
successes have prompted some researchers to discount security concerns. For example,
Graese [123] overreached by declaring adversarial examples an “academic curiosity”, not a
security threat. This position misunderstands the threat from adversarial examples, which
remain a concern for cyber-security researchers.

Eykolt et al. [143] noted the creation of perturbations in physical space that survive
more challenging physical conditions (distance, pose, and lighting). Transformations
are appropriate for images; however, such translations may make little sense in cyber-
security domains. For example, what would it mean to rotate or blur a network packet?
Nevertheless, inspiration could be taken from pre-processing methods in the visual domain.
Adapting pre-processing methods to cyber-security and other non-visual domains is an
interesting avenue for research.

5.3.2. Adversarial Training as a Defense against Adversarial Examples

Szegedy et al. [17] found that robustness to adversarial examples can be improved
by training a model on a mixture of adversarial examples and unperturbed samples.
Specific vulnerabilities in the training data can be identified through exploring UAPs.
Identified vulnerabilities could potentially be addressed with adversarial training. We
recognise that adversarial training is a simple method aiming to improve robustness;
however, it is potentially a cosmetic solution: the problem of adversarial examples cannot
be solved only through ever greater amounts of adversarial examples in the training
data. Tramér et al. [102] found that adversarial training is imperfect and can be bypassed.
Moreover, black-box attacks have been shown to evade models subject to adversarial
training. Adversarial training has some merit because it is a simple method to improve
robustness. It is unfortunately not a panacea and should be bolstered by other defenses.
Research avenues could combine adversarial training with other techniques. We warn that
models used in cyber-security or other critical domains should not rely solely on adversarial
training.

5.3.3. Architectural Defenses against Adversarial Examples

Some research, rather than modifying a model’s training data, investigated defenses
through hardening the architecture of the model. This could involve changing model
parameters or adding new layers. In Table 8, we classify such defenses as architectural.

Many white-box attacks rely on the quality of the gradient. Some research consid-
ers how the model’s weights can be used to disrupt adversarial examples. Amer and
Maul [135] modified convolutional neural networks (CNN), adding a weight map layer.
Their proposed layer easily integrates into existing CNNs. A weight mapping layer may be
inserted between other CNN layers, thus increasing the network’s robustness to both noise
and gradient-based adversarial attacks.

Other research aims to block algorithms from using weight transport and back-
propagation to generate adversarial examples. Lillicrap et al. [122] proposed a mechanism
called “feedback alignment”, which introduces a separate feedback path via random fixed
synaptic weights. Feedback alignment blocks the generation of adversarial examples that
rely on the gradient because it uses the separate feedback path rather than weight transport.

Techniques to improve accuracy could similarly help harden models. For example,
dropout can improve accuracy when used during training. It is particularly useful where
there is limited training data and over-fitting is more likely to occur. Wang et al. [134]
proposed hardening DNN using defensive dropout at test time. Unfortunately, there is
inherently a trade-off between defensive dropout and test accuracy; however, a relatively
small decrease in test accuracy can significantly reduce the success rate of attacks. Such

266

J. Cybersecur. Priv. 2022, 2

hardening techniques force successful attacks to use larger perturbations, which in turn
may be more readily recognized as adversarial.

Defenses that block gradient-based attacks complicate the generation of adversar-
ial examples; however, like adversarial training, these defenses could be bypassed. In
particular, black-box attacks and transferability-based attacks are not blocked by such
defenses. A more promising defense, “defensive dropout”, can block both black-box and
transferability-based attacks.

5.3.4. Detecting Adversarial Examples

Much research has considered the best way to detect adversarial examples. If adver-
sarial examples can be detected they could be more easily deflected, and perhaps even the
original input could be salvaged and correctly classified. Grosse et al. [124] proposed a
statistical test to detect adversarial examples before they are input into machine learning
models. They observed that adversarial examples are unrepresentative of the distribution,
and lie in unexpected regions of a model’s output surface. Their proposed outlier detection
system relies on the statistical separation of adversarial examples. They subsequently
evaluated their model against adaptive strategies and strong black-box strategies.

Metzen et al. [125] proposed a binary classifier “detector subnetwork” aiming to
distinguish between genuine data and adversarial examples. The detection of adversarial
examples does not unequivocally lead to correct classification; however, the effect of
adversarial examples could perhaps be mitigated through fallback solutions, for example,
by requesting human intervention. After successfully detecting adversarial examples in
their experiments, they later bypassed their defenses by generating adversarial examples
that fool both detector and classifier. They further proposed a training procedure called
“dynamic adversary training” as a countermeasure to their attack against the detector.

Feiman et al. [126] also detected adversarial examples by considering which artifacts of
adversarial examples could help detection. They considered two complementary features
used to detect adversarial examples: density estimates and Bayesian uncertainty estimates.
They evaluated these features on CNNs trained on MNIST and CIFAR-10 datasets. They
effectively detected adversarial examples with an ROC-AUC of 92.6%. They further sug-
gested that their method could be used in RNNs. This suggestion is bolstered by Gal and
Ghahramani’s [144] assertion that Bayesian approximation using dropout can be applied
to RNN networks.

Meng et al. [127] proposed a framework, “MagNET”, to detect adversarial examples.
This framework precedes the classifier it defends. The framework has two components:
(1) A detector finds and discards any out-of-distribution examples (those significantly far
from the manifold boundary); (2) A reformer that aims to find close approximations to
inputs before forwarding the approximations to the classifier. Their system generalizes
well because it learns to detect adversarial examples without knowledge of how they
were generated. They proposed a defense against gray-box attacks where the adversary
has knowledge of the deployed defenses. The proposed defense trains a number of auto-
encoders (or reformers). At test-time a single auto-encoder is selected at random.

Xu et al. [128] proposed “feature squeezing” as a strategy to detect adversarial exam-
ples by squeezing out unnecessary features in the input. Through comparing predictions of
the original and feature squeezed inputs, adversarial examples are identified if the differ-
ence between the two predictions meets a threshold. Two feature-squeezing methods are
used: (1) Reducing the colour bit-depth of the image; (2) Spatial smoothing. An adversary
may adapt and circumvent this defense; however, the defense may frustrate the adversary
because it changes the problem the adversary must overcome.

Rosenberg et al. [136] considered the feature squeezing defense designed for CNNs
and proposed “sequence squeezing”, which is adapted for RNNs. Adversarial examples
are similarly detected by running the classifier twice: once on the original sequence, and
once for the sequence-squeezed input. An input is identified as adversarial if the difference
in the confidence scores meets a threshold value.

267

J. Cybersecur. Priv. 2022, 2

Zhang et al. [141] proposed an image classifier based on a variational auto-encoder.
They trained two models each on half the dataset: a target model and a surrogate model.
On the surrogate model they generated three types of strong transfer-based adversarial
examples: L0, L2, and L∞. Analysis of their model using the CIFAR-10, MNIST, and
Fashion-MNIST datasets found that their model achieves state-of-the-art accuracy with
significantly better robustness. Their work is in the visual domain; however, perhaps their
ideas can be applied to other domains such as intrusion detection.

We have discussed some architectural defenses against adversarial examples. In
particular, we have considered methods for detecting adversarial examples. Carlini and
Wagner [145] showed that adversarial examples are harder to detect and that adversarial
examples do not exhibit intrinsic properties. Moreover, many detection methods can be
broken by choosing good attacker-loss functions. Grosse et al. [124] noted that adversarial
defenses exist within an arms race and that guarantees against future attacks are difficult be-
cause adversaries may adapt to the defenses by adopting new strategies. Meng et al. [127]
advocated that defenses against adversarial examples should be independent of any par-
ticular attack. We have seen that human-in-the-loop solutions could be useful where few
cases need human intervention; however, repeated requests might quickly overwhelm
human operators given large numbers of adversarial examples, for example, as might be
seen in network traffic analysis.

5.3.5. Defensive Testing

Adversarial examples cause unexpected behaviour. Recent research considers testing
deep learning systems. Pei et al. [146] aimed to discover unusual or unexpected behaviour
of a neural network through systematic testing. They produced test data by solving a joint
optimization problem. Their tests aim to trigger different behaviours and activate a high
proportion of neurons in a neural network. Their method finds corner-cases where incorrect
behaviour is exhibited, for example, malware masquerading as benign. They claimed to
expose more inputs and types of unexpected behaviour than adversarial examples. They
further used the generated inputs to perform adversarial training. As a defense we question
the practicability of triggering all neurons in larger neural networks; however, as an attack,
their method could produce different types of adversarial inputs.

Other researchers are considering similar techniques to generate test data.
Tian et al. [132] evaluated a tool for automatically detecting erroneous behaviour, gen-
erating test inputs designed to maximise the number of activated neurons using realistic
driving conditions, including blurring, rain, and fog. Zhang et al. [133] proposed a system
to automatically synthesize large amounts of diverse driving scenes, including weather
conditions, using GANs. We consider GANs useful for generating adversarial inputs.
GANs should implicitly learn domain constraints.

5.3.6. Multi-Classifier Systems

Biggio et al. [105] highlighted that robustness against adversarial examples can be im-
proved through the careful use of ensemble classifiers, for example, by using rejection-based
mechanisms. Indeed, Biggio et al. had implemented a multi-classifier system (MCS) [147],
which was hardened using randomisation. Randomising the decision boundary makes a
classifier harder to evade. Since the attacker has less information on the exact position of a
decision boundary, they must make too conservative or too risky choices when generating
adversarial examples.

5.3.7. Game Theory

Zhou et al. [139] consider game theoretic modeling of adversarial machine learning
problems. Many different models have been proposed. Some aim to optimise the feature set
using a set of high-quality features, thus making adversarial attacks more difficult. Game
theoretic models are proposed to address more complex situations with many adversaries
of different types. Equilibrium strategies are acceptable to both players and neither has

268

J. Cybersecur. Priv. 2022, 2

an incentive to change. Therefore, assuming rational adversaries, game theory-based
approaches allowing a Nash equilibrium could potentially end the evolutionary arms race.

5.3.8. Adversarial Example Defenses in Cybersecurity Domains

We discussed domains in Sections 5.2.4 and 5.2.5. Most research on defenses against
adversarial examples has focused on the visual domain. Comparatively little research
has so far considered defenses in cybersecurity domains such as intrusion detection and
malware analysis. Applying current defenses in the visual domain to other domains might
efficiently kickstart research into defenses for other domains. Effective defenses against
adversarial examples could help enable the use of ML models in cybersecurity and other
adversarial environments.

Different model types are more suited to domains. We consider that different model
types may require different defenses. Again, we classify models into four types: MLP, CNN,
RNN, and RF.

6. Discussion and Conclusions

ML systems are deployed in complex environments, including cybersecurity and
critical national infrastructure. Such systems attract the interest of powerful advanced
persistent threats that may target them. Crucially, we must address robustness against
functionality-preserving adversarial examples before novel attack strategies exploit inher-
ent weaknesses in critical ML models.

Machine learning and adversarial learning are becoming increasingly recognised
by the research community, given the rapid uptake of ML models in a whole host of
application domains. To put this in context, 2975 papers were published on arXiv in the
last 12 months (October 2020–September 2021) related to machine learning and adversarial
learning. Over recent years, the number of papers being published on this topic has grown
substantially. According to Carlini, who maintains a blog post “A Complete List of All
(arXiv) Adversarial Example Papers” [148], the cumulative number of adversarial example
papers neared 4000 in the year 2021. It is therefore evident that there is a lot of interest and
many researchers active in this area. Not all papers in this list are useful or relevant; we
pass no judgement of their quality but merely aim to clarify the research landscape and
draw important research to the fore. The majority of prior research has been applied to the
visual domain. Seminal contributions have been made by Szegedy et al. [17], Goodfellow
et al. [63], Carlini et al. [64], and Papernot [79]. It is clear that the visual domain continues
to be well researched.

We conducted an extensive survey of the academic literature in relation to functionality-
preservation in adversarial machine learning. We derived a classification based on both
attack and defense. We consider edpossible robustness metrics. Moreover, we considered
model training and data-level techniques that could help improve robustness through
tackling biased datasets.

Analysis of functionality-preservation methods finds gradient-based methods may
be less suitable for functionality-preservation and other constraints. Methods modifying
large numbers of features are less likely to preserve functionality. We found that GANS
and genetic algorithms are suitable for functionality-preserving attacks. We subsequently
discussed defense strategies against functionality-preserving adversarial examples. We
found that functionality-preserving adversarial machine learning is an open research topic.
Finally, we will identify some key future directions and research challenges in functionality-
preserving machine learning.

Future Directions and Research Challenges

We now discuss future research challenges. Few researchers address the problem of
transferability, which remains a key area of concern because hard-to-attack models are
nevertheless susceptible to transferable adversarial examples generated against easy-to-
attack models. Breaking the transferability of adversarial examples is a key challenge for

269

J. Cybersecur. Priv. 2022, 2

the research community. Currently, defensive dropout [134] at test time is a promising
defense. Adversarial example detection is a useful area of research.

We consider the area of functionality-preserving adversarial examples under-explored.
Research into improving robustness against such adversarial examples is an area requiring
urgent research. We suggest that adapting defenses used in the visual domain and CNN
models to other model types such as RNNs could offer potential solutions. Caution should
be exercised when adapting defenses in the visual domain to other domains. For example,
denoising defenses may not apply directly to discrete or noncontinuous data.

Constraints on adversarial examples are not limited to preserving the functionality
of malware or IDS attacks. CPSs model the real world, where linear and other physical
constraints must be respected. Adversarial examples that do not respect domain constraints
risk marking themselves as obvious anomalies.

Concept-drift is a real concern for cybersecurity [1], as new attacks and techniques
are discovered daily. As the model and the current state of the art diverge, the model
suffers from hidden technical debt. Therefore, the model must be retrained to reflect the
current state-of-the-art attacks and new network traffic patterns [149]. Researchers might
develop and use more up-to-date datasets. Further avenues for research include semi-
supervised/unsupervised ML and active learning methods that continuously update the
underlying model and do not rely on labelled datasets.

We identify that data-level techniques such as resampling, balancing datasets, and
cross validation could have effects on robustness against adversarial examples. Further
research is required to explore how the bias-variance trade-off can effect robustness.

We prioritise the areas of future research, setting the agenda for research in this area.
Critical areas of research include breaking the transferability of adversarial examples that
would hopefully be applicable across domains. Non-visual domains including cyberse-
curity and cyber physical systems have been under-explored and this oversight should
be rectified urgently. Further research on transformations in non-visual domains could
provide useful knowledge. Detection of adversarial examples and pushing the fields of
cybersecurity, intrusion detection, and cyber-physical systems will yield benefits beyond
cybersecurity and may be applicable in other non-visual domains. Moreover, research is
required in areas beyond instance classifiers. Areas of RNNs and reinforcement learning
have been under-explored. More research is required to understand the use of domain
constraints and functionality-preserving adversarial examples. Further research is needed
towards effective countermeasures.

Additionally, we consider that more research attention could be given to dataset
resampling strategies as a defence against adversarial examples. There is a need for better
robustness metrics. Some researchers simply state accuracy, and others might state the
better F1-score; however, the F1-score is biased by unbalanced datasets that are widespread
in intrusion detection, partly due to large numbers of benign samples. Using F1-score
could lead to a false sense of security. Researchers should adopt stronger metrics such as
CLEVER [59] or empirical robustness [62].

Adversarial machine learning is a critical area of research. If not addressed, there is
increasing potential for novel attack strategies that seek to exploit the inherent weaknesses
that exist within machine learning models; however, few works consider “realisable” pertur-
bations that take account of domain and/or real-world constraints. Successful adversarial
examples must be crafted to comply with domain and real-world constraints. This may be
challenging since even small modifications may corrupt network packets that are likely
to be dropped by firewalls. This necessitates functionality preservation in adversarial
learning.

We propose that human perception may not be the best criterion for analyzing ad-
versarial examples. In cybersecurity domains we propose that adversarial examples must
preserve functionality. Traditionally, adversarial examples are thought of as having imper-
ceptible noise. That is, that humans cannot perceive the difference between the original
and perturbed inputs. Indeed, human perception in some domains might be immaterial.

270

J. Cybersecur. Priv. 2022, 2

For example, strategic attacks triggered at crucial moments might cause damage to CPS
before any human could reasonably act.

In cyber-security domains traditional gradient descent algorithms may be insufficient,
although JSMA may be reasonable because it perturbs few features. Stringent constraints
exist in the cyber-security domain and extreme care must be taken to create valid adversarial
examples. We offer some guidelines for generating functionality-preserving adversarial
examples. Functionality-preserving adversarial examples should: only perform legitimate
transformations; respect mathematical dependencies, real-world, and domain constraints;
minimize the number of perturbed features and restrict modification to non-critical features;
and where possible retain the original payload and/or packet order.

Defences against adversarial examples must consider that adversaries are likely to
adapt by adopting new strategies. Many researchers propose adversarial training to
improve robustness. Adversarial training is a simple method aiming to improve robustness;
however, it is potentially a cosmetic solution: the problem of adversarial examples cannot
be solved only through ever greater numbers of adversarial examples in the training
data. Adversarial training, if used, must be bolstered by other defenses. Interesting
defence strategies include randomisation: randomising decision boundaries makes evasion
more difficult because attackers have less information on the exact position of a decision
boundary. They must therefore make too conservative or too risky choices when generating
adversarial examples.

Game theoretic models could be used to address more complex situations with many
adversaries of different types as found in intrusion detection. Equilibrium strategies accept-
able to both defender and adversary mean neither has an incentive to change. Therefore,
assuming rational opponents, game theory-based approaches allowing a Nash equilibrium
could potentially end the evolutionary arms race, although it is difficult to conceive a world
where no advantage is possible.

Current promising defenses such as dropout exchange a relatively small decrease
in accuracy for a significant reduction of successful attacks, even successfully blocking
black-box and transferability-based attacks. Hardening techniques force successful attacks
to use larger perturbations, which in turn may be more readily recognized as adversarial.

In a broader cybersecurity context, risks arising from adversarial examples are not yet
fully understood. Furthermore, algorithms and models from other domains may not readily
apply because of distributed sensors and inherent real-world constraints. It is uncertain
whether current defences are sufficient. Furthermore, adversarial example detectors must
function efficiently in a real-time monitoring environment while maintaining low false
alarm rates.

Many academic researchers use old datasets that do not fairly represent modern
network traffic analysis problems due to concept-drift. Problems of labelling data and
retraining systems provide an impetus to explore unsupervised and active learning. Unfor-
tunately, adversarial attacks are possible on active learning systems [150]. Lin et al. [82]
described an enchanting attack to lure a machine learning system to a target state through
crafting a series of adversarial examples. It is conceivable that similar attacks could lure
anomaly detection systems towards normalizing and accepting malicious traffic.

Key Future Research Challenges

Adversarial ML is a critical area of research. Researchers must address the robustness
of ML models against adversarial examples allowing safer deployment of ML models
across cybersecurity domains. Better robustness metrics should be used and developed. We
find the traditional benchmark of human perception may be less relevant in functionality
preservation. Moreover, traditional gradient descent algorithms may be insufficient to
generate functionality-preserving attacks, and adversaries may use other methods such as
GANS. Therefore, defences against gradient descent algorithms may likewise be insufficient.
Defences must consider reactive adversaries who adapt to defences. Randomisation of
decision boundaries can make evasion more difficult. Moreover, research into multi-

271

J. Cybersecur. Priv. 2022, 2

classifier systems could help thwart evasion attacks, making it harder to evade classification.
Dropout is currently a promising defense against adversarial examples, although multiple
defenses may be required and a combination of defenses will likely offer better defense
capability. Game-theory approaches could potentially end the adversarial arms race by
achieving a Nash equilibrium. Concept-drift requires further research. Many researchers
are using outdated datasets. Simply using newer datasets could postpone problems of
concept-drift and is a good first step. Unsupervised/semi-supervised and active learning
could potentially offer longer-term solutions to concept-drift, aiming for models to learn and
detect novel attack methods. Transferability of adversarial examples remains an open issue,
and more research here has the potential to disrupt many attack strategies. More research
is required in the area of functionality-preserving adversarial attacks, recognising the limits
and trade-offs between functionality-preserving adversarial examples and their ability
to evade classification; moreover, research into adversarial attacks in other constrained
domains could improve robustness against complex attacks.

We offer these insights and hope that this survey offers other researchers a base for
exploring the areas of robustness and functionality-preserving adversarial examples.

Author Contributions: Conceptualization, A.M., P.A., E.G. and P.L.; methodology, A.M.; formal
analysis, A.M.; investigation, A.M.; writing—original draft preparation, A.M.; writing—review and
editing, A.M., P.A., E.G. and P.L.; visualization, A.M.; supervision, P.A., E.G. and P.L.; funding
acquisition, P.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Partnership PhD scheme at the University of the West of
England in collaboration with Techmodal Ltd.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Andresini, G.; Pendlebury, F.; Pierazzi, F.; Loglisci, C.; Appice, A.; Cavallaro, L. INSOMNIA: Towards Concept-Drift Robustness
in Network Intrusion Detection. In Proceedings of the 14th ACM Workshop on Artificial Intelligence and Security (AISec), ACM,
Virtual Event, Korea, 15 November 2021.

2. Raghuraman, C.; Suresh, S.; Shivshankar, S.; Chapaneri, R. Static and dynamic malware analysis using machine learning. In
First International Conference on Sustainable Technologies for Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 793–806.

3. Berger, H.; Hajaj, C.; Dvir, A. Evasion Is Not Enough: A Case Study of Android Malware. In International Symposium on Cyber
Security Cryptography and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2020; pp. 167–174.

4. Hou, R.; Xiang, X.; Zhang, Q.; Liu, J.; Huang, T. Universal Adversarial Perturbations of Malware. In International Symposium on
Cyberspace Safety and Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 9–19.

5. Parshutin, S.; Kirshners, A.; Kornijenko, Y.; Zabiniako, V.; Gasparovica-Asite, M.; Rozkalns, A. Classification with LSTM Networks
in User Behaviour Analytics with Unbalanced Environment. Autom. Control. Comput. Sci. 2021, 55, 85–91. [CrossRef]

6. Le, D.C.; Zincir-Heywood, N. Exploring anomalous behaviour detection and classification for insider threat identification. Int. J.
Netw. Manag. 2021, 31, e2109. [CrossRef]

7. Biswal, S. Real-Time Intelligent Vishing Prediction and Awareness Model (RIVPAM). In Proceedings of the 2021 International
Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; pp. 1–2.

8. Kumar, N.; Sonowal, S.; Nishant. Email Spam Detection Using Machine Learning Algorithms. In Proceedings of the 2020
Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July
2020; pp. 108–113.

9. Kiela, D.; Firooz, H.; Mohan, A.; Goswami, V.; Singh, A.; Ringshia, P.; Testuggine, D. The hateful memes challenge: Detecting hate
speech in multimodal memes. arXiv 2020, arXiv:2005.04790.

10. Bin Naeem, S.; Kamel Boulos, M.N. COVID-19 misinformation online and health literacy: A brief overview. Int. J. Environ. Res.
Public Health 2021, 18, 8091. [CrossRef]

11. Coan, T.; Boussalis, C.; Cook, J.; Nanko, M. Computer-assisted detection and classification of misinformation about climate
change. SocArXiv 2021, 1–12 .

272

J. Cybersecur. Priv. 2022, 2

12. Khanam, Z.; Alwasel, B.; Sirafi, H.; Rashid, M. Fake News Detection Using Machine Learning Approaches. In Proceedings of the
IOP Conference Series: Materials Science and Engineering, Jeju Island, Korea, 12–14 March 2021; IOP Publishing: Jaipur, India,
2021; Volume 1099, p. 012040.

13. Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M.P. Sok: Security and privacy in machine learning. In Proceedings of the2018
IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 24–26 April 2018; pp. 399–414.

14. Dhar, S.; Guo, J.; Liu, J.; Tripathi, S.; Kurup, U.; Shah, M. On-device machine learning: An algorithms and learning theory
perspective. arXiv 2019, arXiv:1911.00623.

15. Gu, X.; Easwaran, A. Towards Safe Machine Learning for CPS: Infer Uncertainty from Training Data. In Proceedings of the 10th
ACM/IEEE International Conference on Cyber-Physical Systems, Association for Computing Machinery, New York, NY, USA,
16–18 April 2019; pp. 249–258. [CrossRef]

16. Ghafouri, A.; Vorobeychik, Y.; Koutsoukos, X. Adversarial regression for detecting attacks in cyber-physical systems. In
Proceedings of the International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018.

17. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
In Proceedings of the International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.

18. Wardle, S.G.; Taubert, J.; Teichmann, L.; Baker, C.I. Rapid and dynamic processing of face pareidolia in the human brain. Nat.
Commun. 2020, 11, 1–14. [CrossRef]

19. Summerfield, C.; Egner, T.; Mangels, J.; Hirsch, J. Mistaking a house for a face: neural correlates of misperception in healthy
humans. Cereb. Cortex 2006, 16, 500–508. [CrossRef]

20. Huang, Y.; Verma, U.; Fralick, C.; Infantec-Lopez, G.; Kumar, B.; Woodward, C. Malware Evasion Attack and Defense. In
Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), Portland, OR, USA, 24–27 June 2019; pp. 34–38. [CrossRef]

21. Ayub, M.A.; Johnson, W.A.; Talbert, D.A.; Siraj, A. Model Evasion Attack on Intrusion Detection Systems using Adversarial
Machine Learning. In Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton,
NJ, USA, 18–20 March 2020, pp. 1–6. [CrossRef]

22. Satter, R. Experts Who Wrestled with SolarWinds Hackers say Cleanup Could Take Months-or Longer; Reuters: New York, NY, USA, 2020.
23. Sirota, S. Air Force response to SolarWinds hack: Preserve commercial partnerships, improve transparency into security efforts.

Inside Cybersecur. 2021.
24. Corona, I.; Giacinto, G.; Roli, F. Adversarial attacks against intrusion detection systems: Taxonomy, solutions and open issues.

Inf. Sci. 2013, 239, 201–225. [CrossRef]
25. Hankin, C.; Barrère, M. Trustworthy Inter-connected Cyber-Physical Systems. In International Conference on Critical Information

Infrastructures Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–13.
26. Cho, J.H.; Xu, S.; Hurley, P.M.; Mackay, M.; Benjamin, T.; Beaumont, M. Stram: Measuring the trustworthiness of computer-based

systems. ACM Comput. Surv. (CSUR) 2019, 51, 1–47. [CrossRef]
27. Zhang, J.; Li, C. Adversarial examples: Opportunities and challenges. IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 2578–2593.

[CrossRef] [PubMed]
28. Apruzzese, G.; Andreolini, M.; Ferretti, L.; Marchetti, M.; Colajanni, M. Modeling Realistic Adversarial Attacks against Network

Intrusion Detection Systems. Digit. Threat. Res. Pract. 2021. [CrossRef]
29. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
30. Taran, O.; Rezaeifar, S.; Voloshynovskiy, S. Bridging machine learning and cryptography in defence against adversarial attacks.

In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018.
31. Wu, Y.; Wei, D.; Feng, J. Network attacks detection methods based on deep learning techniques: A survey. Secur. Commun. Netw.

2020, 2020, 8872923. [CrossRef]
32. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

33. McHugh, J. Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as
performed by lincoln laboratory. ACM Trans. Inf. Syst. Secur. (TISSEC) 2000, 3, 262–294. [CrossRef]

34. Cerf, V.G. 2021 Internet Perspectives. IEEE Netw. 2021, 35, 3. [CrossRef]
35. McKeay, M. Akamai State of the Internet/Security: A Year in Review. Available online: http://akamai.com/soti (accessed on 15

September 2021).
36. Kok, S.; Abdullah, A.; Jhanjhi, N.; Supramaniam, M. A review of intrusion detection system using machine learning approach.

Int. J. Eng. Res. Technol. 2019, 12, 8–15.
37. Alatwi, H.A.; Morisset, C. Adversarial Machine Learning In Network Intrusion Detection Domain: A Systematic Review. arXiv

2021, arXiv:2112.03315.
38. Revathi, S.; Malathi, A. A detailed analysis on NSL-KDD dataset using various machine learning techniques for intrusion

detection. Int. J. Eng. Res. Technol. (IJERT) 2013, 2, 1848–1853.
39. Gharaibeh, M.; Papadopoulos, C. DARPA 2009 intrusion detection dataset. Colo. State Univ. Tech. Rep. 2014.
40. Garcia, S.; Grill, M.; Stiborek, J.; Zunino, A. An empirical comparison of botnet detection methods. Comput. Secur. 2014,

45, 100–123. [CrossRef]

273

J. Cybersecur. Priv. 2022, 2

41. Song, J.; Takakura, H.; Okabe, Y.; Eto, M.; Inoue, D.; Nakao, K. Statistical analysis of honeypot data and building of Kyoto 2006+
dataset for NIDS evaluation. In Proceedings of the first Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security, Salzburg, Austria, 10–13 April 2011; pp. 29–36.

42. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In Proceedings of the 2015 military communications and information systems conference (MilCIS), Canberra, Australia,
10 November 2015; pp. 1–6.

43. Almomani, I.; Al-Kasasbeh, B.; Al-Akhras, M. WSN-DS: A dataset for intrusion detection systems in wireless sensor networks. J.
Sens. 2016, 2016, 4731953. [CrossRef]

44. Niyaz, Q.; Sun, W.; Javaid, A.Y. A deep learning based DDoS detection system in software-defined networking (SDN). arXiv
2016, arXiv:1611.07400.

45. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

46. Antonakakis, M.; April, T.; Bailey, M.; Bernhard, M.; Bursztein, E.; Cochran, J.; Durumeric, Z.; Halderman, J.A.; Invernizzi, L.;
Kallitsis, M.; et al. Understanding the mirai botnet. In Proceedings of the 26th USENIX Security Symposium (USENIX Security
17), Vancouver, BC, Canada, 16–18 August 2017; pp. 1093–1110.

47. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the Internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

48. Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. Kitsune: An ensemble of autoencoders for online network intrusion detection.
arXiv 2018, arXiv:1802.09089.

49. Janusz, A.; Kałuza, D.; Chądzyńska-Krasowska, A.; Konarski, B.; Holland, J.; Ślęzak, D. IEEE BigData 2019 cup: Suspicious
network event recognition. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
9–12 December 2019; pp. 5881–5887.

50. Ferriyan, A.; Thamrin, A.H.; Takeda, K.; Murai, J. Generating Network Intrusion Detection Dataset Based on Real and Encrypted
Synthetic Attack Traffic. Appl. Sci. 2021, 11, 7868. [CrossRef]

51. Martins, N.; Cruz, J.M.; Cruz, T.; Abreu, P.H. Adversarial machine learning applied to intrusion and malware scenarios: A
systematic review. IEEE Access 2020, 8, 35403–35419. [CrossRef]

52. Shafique, M.; Naseer, M.; Theocharides, T.; Kyrkou, C.; Mutlu, O.; Orosa, L.; Choi, J. Robust machine learning systems: Challenges,
current trends, perspectives, and the road ahead. IEEE Des. Test 2020, 37, 30–57. [CrossRef]

53. Labaca-Castro, R.; Biggio, B.; Dreo Rodosek, G. Poster: Attacking malware classifiers by crafting gradient-attacks that preserve
functionality. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019; pp. 2565–2567.

54. Gonzalez-Cuautle, D.; Hernandez-Suarez, A.; Sanchez-Perez, G.; Toscano-Medina, L.K.; Portillo-Portillo, J.; Olivares-Mercado, J.;
Perez-Meana, H.M.; Sandoval-Orozco, A.L. Synthetic minority oversampling technique for optimizing classification tasks in
botnet and intrusion-detection-system datasets. Appl. Sci. 2020, 10, 794. [CrossRef]

55. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 1–54. [CrossRef]
56. Sheatsley, R.; Papernot, N.; Weisman, M.; Verma, G.; McDaniel, P. Adversarial Examples in Constrained Domains. arXiv 2020,

arXiv:2011.01183.
57. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538.
58. Bai, T.; Luo, J.; Zhao, J.; Wen, B. Recent Advances in Adversarial Training for Adversarial Robustness. arXiv 2021,

arXiv:2102.01356.
59. Weng, T.W.; Zhang, H.; Chen, P.Y.; Yi, J.; Su, D.; Gao, Y.; Hsieh, C.J.; Daniel, L. Evaluating the robustness of neural networks: An

extreme value theory approach. arXiv 2018, arXiv:1801.10578.
60. Goodfellow, I. Gradient masking causes clever to overestimate adversarial perturbation size. arXiv 2018, arXiv:1804.07870.
61. Weng, T.W.; Zhang, H.; Chen, P.Y.; Lozano, A.; Hsieh, C.J.; Daniel, L. On extensions of clever: A neural network robustness

evaluation algorithm. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
Anaheim, CA, USA, 26–28 November 2018; pp. 1159–1163.

62. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

63. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572.
64. Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on

Security and Privacy (sp), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.
65. Papernot, N.; Faghri, F.; Carlini, N.; Goodfellow, I.; Feinman, R.; Kurakin, A.; Xie, C.; Sharma, Y.; Brown, T.; Roy, A.; et al.

Technical report on the cleverhans v2. 1.0 adversarial examples library. arXiv 2016, arXiv:1610.00768.
66. Rauber, J.; Brendel, W.; Bethge, M. Foolbox: A python toolbox to benchmark the robustness of machine learning models. arXiv

2017, arXiv:1707.04131.
67. Nicolae, M.I.; Sinn, M.; Tran, M.N.; Buesser, B.; Rawat, A.; Wistuba, M.; Zantedeschi, V.; Baracaldo, N.; Chen, B.; Ludwig, H.; et al.

Adversarial Robustness Toolbox v1. 0.0. arXiv 2018, arXiv:1807.01069.
68. Ding, G.W.; Wang, L.; Jin, X. AdverTorch v0. 1: An adversarial robustness toolbox based on pytorch. arXiv 2019, arXiv:1902.07623.

274

J. Cybersecur. Priv. 2022, 2

69. Lashkari, A.H.; Zang, Y.; Owhuo, G.; Mamun, M.; Gil, G. CICFlowMeter. Available online: https://www.unb.ca/cic/research/
applications.html (accessed on 19 February 2021).

70. Habibi Lashkari, A.; Draper Gil, G.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Tor Traffic using Time based Features. In
Proceedings of the 3rd International Conference on Information Systems Security and Privacy-ICISSP, Porto, Portugal, 19–21
February 2017; pp. 253–262. [CrossRef]

71. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A. Characterization of Encrypted and VPN Traffic using Time-related
Features. In Proceedings of the 2nd International Conference on Information Systems Security and Privacy-ICISSP, Rome, Italy,
19–21 February 2016; pp. 407–414. [CrossRef]

72. Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.I. Intrudtree: A machine learning based cyber security intrusion detection
model. Symmetry 2020, 12, 754. [CrossRef]

73. Almomani, O. A feature selection model for network intrusion detection system based on PSO, GWO, FFA and GA algorithms.
Symmetry 2020, 12, 1046. [CrossRef]

74. McCarthy, A.; Andriotis, P.; Ghadafi, E.; Legg, P. Feature Vulnerability and Robustness Assessment against Adversarial Machine
Learning Attacks. In Proceedings of the 2021 International Conference on Cyber Situational Awareness, Data Analytics and
Assessment (CyberSA), Dublin, Ireland, 14–18 June 2021; pp. 1–8. [CrossRef]

75. Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations against deep neural
networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016;
pp. 582–597.

76. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 1–9.
[CrossRef]

77. Biggio, B.; Corona, I.; Maiorca, D.; Nelson, B.; Šrndić, N.; Laskov, P.; Giacinto, G.; Roli, F. Evasion attacks against machine learning
at test time. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 387–402.

78. Papernot, N.; McDaniel, P.; Swami, A.; Harang, R. Crafting adversarial input sequences for recurrent neural networks. In
Proceedings of the MILCOM 2016-2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016;
pp. 49–54.

79. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The Limitations of Deep Learning in Adversarial
Settings. In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS P), Saarbrucken, Germany, 21–24
March 2016; pp. 372–387.

80. Jia, R.; Liang, P. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 9–11 September 2017; pp. 2021–2031.

81. Zhao, Z.; Dua, D.; Singh, S. Generating Natural Adversarial Examples. In Proceedings of the International Conference on
Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

82. Lin, Y.C.; Hong, Z.W.; Liao, Y.H.; Shih, M.L.; Liu, M.Y.; Sun, M. Tactics of adversarial attack on deep reinforcement learning
agents. arXiv 2017, arXiv:1703.06748.

83. Rigaki, M. Adversarial Deep Learning against Intrusion Detection Classifiers; Luleå University of Technology: Luleå, Sweden, 2017.
84. Hu, W.; Tan, Y. Black-box attacks against RNN based malware detection algorithms. In Proceedings of the Workshops at the

Thirty-Second AAAI Conference on Artificial Intelligence, Orleans, LA, USA, 2–7 February 2018.
85. Homoliak, I.; Teknös, M.; Ochoa, M.; Breitenbacher, D.; Hosseini, S.; Hanacek, P. Improving Network Intrusion Detection

Classifiers by Non-payload-Based Exploit-Independent Obfuscations: An Adversarial Approach. EAI Endorsed Trans. Secur. Saf.
2018, 5, e4. [CrossRef]

86. Rosenberg, I.; Shabtai, A.; Rokach, L.; Elovici, Y. Generic black-box end-to-end attack against state of the art API call based
malware classifiers. In International Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 490–510.

87. Wang, Z. Deep learning-based intrusion detection with adversaries. IEEE Access 2018, 6, 38367–38384. [CrossRef]
88. Warzyński, A.; Kołaczek, G. Intrusion detection systems vulnerability on adversarial examples. In Proceedings of the 2018

Innovations in Intelligent Systems and Applications (INISTA), Thessaloniki, Greece, 3–5 July 2018, pp. 1–4.
89. Lin, Z.; Shi, Y.; Xue, Z. Idsgan: Generative adversarial networks for attack generation against intrusion detection. arXiv 2018,

arXiv:1809.02077.
90. Yang, K.; Liu, J.; Zhang, C.; Fang, Y. Adversarial examples against the deep learning based network intrusion detection systems.

In Proceedings of the MILCOM 2018-2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31
October 2018; pp. 559–564.

91. Su, J.; Vargas, D.V.; Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

92. Kuppa, A.; Grzonkowski, S.; Asghar, M.R.; Le-Khac, N.A. Black box attacks on deep anomaly detectors. In Proceedings of the
14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019; pp. 1–10.

275

J. Cybersecur. Priv. 2022, 2

93. Ibitoye, O.; Shafiq, O.; Matrawy, A. Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks.
In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019;
pp. 1–6.

94. Usama, M.; Asim, M.; Latif, S.; Qadir, J. Generative adversarial networks for launching and thwarting adversarial attacks
on network intrusion detection systems. In Proceedings of the 2019 15th International Wireless Communications & Mobile
Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 78–83.

95. Huang, W.; Peng, X.; Shi, Z.; Ma, Y. Adversarial Attack against LSTM-based DDoS Intrusion Detection System. In Proceedings of
the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), Baltimore, MD, USA, 9–11 November
2020; pp. 686–693.

96. Ogawa, Y.; Kimura, T.; Cheng, J. Vulnerability Assessment for Machine Learning Based Network Anomaly Detection System. In
Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30
September 2020; pp. 1–2.

97. Chen, J.; Gao, X.; Deng, R.; He, Y.; Fang, C.; Cheng, P. Generating Adversarial Examples against Machine Learning based
Intrusion Detector in Industrial Control Systems. IEEE Trans. Dependable Secur. Comput. 2020, PrePrints. [CrossRef]

98. Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; Armando, A. Functionality-preserving black-box optimization of adversarial
windows malware. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3469–3478. [CrossRef]

99. Labaca-Castro, R.; Muñoz-González, L.; Pendlebury, F.; Rodosek, G.D.; Pierazzi, F.; Cavallaro, L. Universal Adversarial
Perturbations for Malware. arXiv 2021, arXiv:2102.06747.

100. Cai, F.; Li, J.; Koutsoukos, X. Detecting adversarial examples in learning-enabled cyber-physical systems using variational
autoencoder for regression. In Proceedings of the 2020 IEEE Security and Privacy Workshops (SPW), San Francisco, CA, USA, 21
May 2020; pp. 208–214.

101. Li, J.; Yang, Y.; Sun, J.S.; Tomsovic, K.; Qi, H. Conaml: Constrained adversarial machine learning for cyber-physical systems. In
Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, Hong Kong, China, 7–11 June 2021;
pp. 52–66.

102. Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.; Boneh, D.; McDaniel, P. Ensemble adversarial training: Attacks and defenses.
In Proceedings of the 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3
May 2018.

103. Kurakin, A.; Goodfellow, I.; Bengio, S.; Dong, Y.; Liao, F.; Liang, M.; Pang, T.; Zhu, J.; Hu, X.; Xie, C.; et al. Adversarial attacks
and defences competition. In The NIPS’17 Competition: Building Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 195–231.

104. Sharif, M.; Bhagavatula, S.; Bauer, L.; Reiter, M.K. A General Framework for Adversarial Examples with Objectives. ACM Trans.
Priv. Secur. 2019, 22. [CrossRef]

105. Biggio, B.; Roli, F. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern Recognit. 2018, 84, 317–331.
[CrossRef]

106. Gilmer, J.; Adams, R.P.; Goodfellow, I.; Andersen, D.; Dahl, G.E. Motivating the rules of the game for adversarial example
research. arXiv 2018, arXiv:1807.06732.

107. Moosavi-Dezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1765–1773.

108. Chernikova, A.; Oprea, A. Fence: Feasible evasion attacks on neural networks in constrained environments. arXiv 2019,
arXiv:1909.10480.

109. Apruzzese, G.; Colajanni, M.; Marchetti, M. Evaluating the effectiveness of adversarial attacks against botnet detectors. In
Proceedings of the 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), Cambridge, MA,
USA, 26–28 September 2019; pp. 1–8.

110. Hashemi, M.J.; Cusack, G.; Keller, E. Towards evaluation of nidss in adversarial setting. In Proceedings of the 3rd ACM CoNEXT
Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks, Orlando, FL, USA, 9
December 2019, pp. 14–21.

111. Papadopoulos, P.; Essen, O.T.v.; Pitropakis, N.; Chrysoulas, C.; Mylonas, A.; Buchanan, W.J. Launching Adversarial Attacks
against Network Intrusion Detection Systems for IoT. J. Cybersecur. Priv. 2021, 1, 14. [CrossRef]

112. Anthi, E.; Williams, L.; Rhode, M.; Burnap, P.; Wedgbury, A. Adversarial attacks on machine learning cybersecurity defences in
industrial control systems. J. Inf. Secur. Appl. 2021, 58, 102717. [CrossRef]

113. Han, D.; Wang, Z.; Zhong, Y.; Chen, W.; Yang, J.; Lu, S.; Shi, X.; Yin, X. Evaluating and Improving Adversarial Robustness of
Machine Learning-Based Network Intrusion Detectors. IEEE J. Sel. Areas Commun. 2021, 39, 2632–2647. [CrossRef]

114. Duy, P.T.; Khoa, N.H.; Nguyen, A.G.T.; Pham, V.H. DIGFuPAS: Deceive IDS with GAN and Function-Preserving on Adversarial
Samples in SDN-enabled networks. Comput. Secur. 2021, 109, 102367. [CrossRef]

115. Alhajjar, E.; Maxwell, P.; Bastian, N. Adversarial machine learning in network intrusion detection systems. Expert Syst. Appl.
2021, 186, 115782. [CrossRef]

116. Han, D.; Wang, Z.; Zhong, Y.; Chen, W.; Yang, J.; Lu, S.; Shi, X.; Yin, X. Practical Traffic-Space Adversarial Attacks on Learning-
Based Nidss. arXiv 2005, arXiv:2005.07519.

276

J. Cybersecur. Priv. 2022, 2

117. Wang, J.; Pan, J.; AlQerm, I.; Liu, Y. Def-IDS: An Ensemble Defense Mechanism Against Adversarial Attacks for Deep Learning-
based Network Intrusion Detection. In Proceedings of the 2021 International Conference on Computer Communications and
Networks (ICCCN), Athens, Greece, 19–22 July 2021; pp. 1–9.

118. Ali, H.; Khan, M.S.; AlGhadhban, A.; Alazmi, M.; Alzamil, A.; Al-utaibi, K.; Qadir, J. Analyzing the Robustness of Fake-news
Detectors under Black-box Adversarial Attacks. IEEE Access 2021, 9, 81678–81692. [CrossRef]

119. Chenou, J.; Hsieh, G.; Fields, T. Radial Basis Function Network: Its Robustness and Ability to Mitigate Adversarial Examples. In
Proceedings of the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas,
NV, USA, 5–7 December 2019; pp. 102–106.

120. Wei, W.; Liu, L.; Loper, M.; Truex, S.; Yu, L.; Gursoy, M.E.; Wu, Y. Adversarial examples in deep learning: Characterization and
divergence. arXiv 2018, arXiv:1807.00051.

121. Tramèr, F.; Zhang, F.; Juels, A.; Reiter, M.K.; Ristenpart, T. Stealing machine learning models via prediction apis. In Proceedings
of the 5th USENIX Security Symposium (USENIX Security 16), Austin, TX, USA, 10–12 August 2016; pp. 601–618.

122. Lillicrap, T.P.; Cownden, D.; Tweed, D.B.; Akerman, C.J. Random synaptic feedback weights support error backpropagation for
deep learning. Nat. Commun. 2016, 7, 1–10. [CrossRef]

123. Graese, A.; Rozsa, A.; Boult, T.E. Assessing Threat of Adversarial Examples on Deep Neural Networks. In Proceedings of the
2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December
2016; pp. 69–74. [CrossRef]

124. Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; McDaniel, P. On the (statistical) detection of adversarial examples. arXiv
2017, arXiv:1702.06280.

125. Metzen, J.H.; Genewein, T.; Fischer, V.; Bischoff, B. On detecting adversarial perturbations. arXiv 2017, arXiv:1702.04267.
126. Feinman, R.; Curtin, R.R.; Shintre, S.; Gardner, A.B. Detecting adversarial samples from artifacts. arXiv 2017, arXiv:1703.00410.
127. Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3 November 2017; pp. 135–147.
128. Xu, W.; Evans, D.; Qi, Y. Feature squeezing: Detecting adversarial examples in deep neural networks. arXiv 2017, arXiv:1704.01155.
129. Lee, H.; Han, S.; Lee, J. Generative adversarial trainer: Defense to adversarial perturbations with gan. arXiv 2017,

arXiv:1705.03387.
130. Samangouei, P.; Kabkab, M.; Chellappa, R. Defense-gan: Protecting classifiers against adversarial attacks using generative models.

arXiv 2018, arXiv:1805.06605.
131. Dhillon, G.S.; Azizzadenesheli, K.; Lipton, Z.C.; Bernstein, J.; Kossaifi, J.; Khanna, A.; Anandkumar, A. Stochastic activation

pruning for robust adversarial defense. arXiv 2018, arXiv:1803.01442.
132. Tian, Y.; Pei, K.; Jana, S.; Ray, B. Deeptest: Automated testing of deep-neural-network-driven autonomous cars. In Proceedings of

the 40th International Conference on Software Engineering, Gothenburg, Sweden, 27 May–3 June 2018; pp. 303–314.
133. Zhang, M.; Zhang, Y.; Zhang, L.; Liu, C.; Khurshid, S. DeepRoad: GAN-based metamorphic testing and input validation

framework for autonomous driving systems. In Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE), Montpellier, France, 3–7 September 2018; pp. 132–142.

134. Wang, S.; Wang, X.; Zhao, P.; Wen, W.; Kaeli, D.; Chin, P.; Lin, X. Defensive dropout for hardening deep neural networks under
adversarial attacks. In Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA, 5–8
November 2018; pp. 1–8.

135. Amer, M.; Maul, T. Weight Map Layer for Noise and Adversarial Attack Robustness. arXiv 2019, arXiv:1905.00568.
136. Rosenberg, I.; Shabtai, A.; Elovici, Y.; Rokach, L. Defense methods against adversarial examples for recurrent neural networks.

arXiv 2019, arXiv:1901.09963.
137. Apruzzese, G.; Andreolini, M.; Marchetti, M.; Venturi, A.; Colajanni, M. Deep reinforcement adversarial learning against botnet

evasion attacks. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1975–1987. [CrossRef]
138. Apruzzese, G.; Colajanni, M.; Ferretti, L.; Marchetti, M. Addressing adversarial attacks against security systems based on machine

learning. In Proceedings of the 2019 11th International Conference on Cyber Conflict (CyCon), Tallinn, Estonia. 28–31 May 2019;
Volume 900, pp. 1–18.

139. Zhou, Y.; Kantarcioglu, M.; Xi, B. A survey of game theoretic approach for adversarial machine learning. Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 2019, 9, e1259. [CrossRef]

140. Apruzzese, G.; Andreolini, M.; Colajanni, M.; Marchetti, M. Hardening random forest cyber detectors against adversarial attacks.
IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 427–439. [CrossRef]

141. Zhang, C.; Tang, Z.; Zuo, Y.; Li, K.; Li, K. A robust generative classifier against transfer attacks based on variational auto-encoders.
Inf. Sci. 2021, 550, 57–70. [CrossRef]

142. Wang, N.; Chen, Y.; Hu, Y.; Lou, W.; Hou, Y.T. MANDA: On Adversarial Example Detection for Network Intrusion Detection
System. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada,
10–13 May 2021; pp. 1–10.

143. Song, D.; Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Tramer, F.; Prakash, A.; Kohno, T. Physical adversarial
examples for object detectors. In Proceedings of the 12th USENIX Workshop on Offensive Technologies (WOOT 18), Baltimore,
MA, USA, 13–14 August 2018.

277

J. Cybersecur. Priv. 2022, 2

144. Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International
Conference on Machine Learning; PMLR: New York, NY, USA, 2016; pp. 1050–1059.

145. Carlini, N.; Wagner, D. Adversarial examples are not easily detected: Bypassing ten detection methods. In Proceedings of the
10th ACM Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 3–14.

146. Pei, K.; Cao, Y.; Yang, J.; Jana, S. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, 28–31 October 2017; pp. 1–18.

147. Biggio, B.; Fumera, G.; Roli, F. Adversarial pattern classification using multiple classifiers and randomisation. In Joint IAPR
International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR);
Springer: Berlin/Heidelberg, Germany, 2008; pp. 500–509.

148. Carlini, N. A Complete List of All (Arxiv) Adversarial Example Papers. Available online: https://nicholas.carlini.com/writing/
2019/all-adversarial-example-papers.html (accessed on 30 January 2022).

149. Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; Chaudhary, V.; Young, M.; Crespo, J.F.; Dennison, D. Hidden
technical debt in machine learning systems. In Proceedings of the Advances in Neural Information Processing Systems, Montreal,
QC, Canada, 7–12 December 2015; pp. 2503–2511.

150. Shu, D.; Leslie, N.O.; Kamhoua, C.A.; Tucker, C.S. Generative adversarial attacks against intrusion detection systems using active
learning. In Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning, Linz, Austria, 13 July 2020;
pp. 1–6.

278

Citation: Taeb, M.; Chi, H.

Comparison of Deepfake Detection

Techniques through Deep Learning. J.

Cybersecur. Priv. 2022, 2, 89–106.

https://doi.org/10.3390/jcp2010007

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 10 January 2022

Accepted: 21 February 2022

Published: 4 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Cybersecurity
and Privacy

Article

Comparison of Deepfake Detection Techniques through
Deep Learning

Maryam Taeb 1 and Hongmei Chi 2,*

1 Electrical and Computer Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
mr21cg@my.fsu.edu

2 Department of Computer Sciences, Florida A&M University, BBTA RM 309, 1333 Wahnish Way,
Tallahassee, FL 32307, USA

* Correspondence: hongmei.chi@famu.edu; Tel.: +1-850-599-3050

Abstract: Deepfakes are realistic-looking fake media generated by deep-learning algorithms that
iterate through large datasets until they have learned how to solve the given problem (i.e., swap faces
or objects in video and digital content). The massive generation of such content and modification
technologies is rapidly affecting the quality of public discourse and the safeguarding of human
rights. Deepfakes are being widely used as a malicious source of misinformation in court that seek
to sway a court’s decision. Because digital evidence is critical to the outcome of many legal cases,
detecting deepfake media is extremely important and in high demand in digital forensics. As such, it
is important to identify and build a classifier that can accurately distinguish between authentic and
disguised media, especially in facial-recognition systems as it can be used in identity protection too.
In this work, we compare the most common, state-of-the-art face-detection classifiers such as Custom
CNN, VGG19, and DenseNet-121 using an augmented real and fake face-detection dataset. Data
augmentation is used to boost performance and reduce computational resources. Our preliminary
results indicate that VGG19 has the best performance and highest accuracy of 95% when compared
with other analyzed models.

Keywords: deepfake detection; digital forensics; media forensics; deep learning; VGG19; face-image
manipulation

1. Introduction

In the last few years, cybercrime, which accounts for a 67% increase in the incidents
of security breaches, has been one of the most challenging problems that national security
systems have had to deal with worldwide [1]. Deepfakes (i.e., realistic-looking fake media
that has been generated by deep-learning algorithms) are being widely used to swap faces
or objects in video and digital content. This artificial intelligence-synthesized content can
have a significant impact on the determination of legitimacy due to its wide variety of
applications and formats that deepfakes present online (i.e., audio, image and video).

Considering the quickness, ease of use, and impacts of social media, persuasive
deepfakes can rapidly influence millions of people, destroy the lives of its victims and
have a negative impact on society in general [1]. The generation of deepfake media can
have a wide range of intentions and motivations, from revenge porn to political fake news.
Rana Ayyub, an investigative journalist in India, became a target of this practice when
a deepfake sex video showing her face on another woman’s body was circulated on the
Internet in April 2018 [2]. Deepfakes have also been published to falsify satellite images
with non-existent landscape features for malicious purposes [3].

There are numerous captivating applications of deepfakery in video compositing
and transfiguration in portraits, especially in identity protection as it can replace faces in
photographs with ones from a collection of stock images. Cyber-attackers, using various

J. Cybersecur. Priv. 2022, 2, 89–106. https://doi.org/10.3390/jcp2010007 https://www.mdpi.com/journal/jcp279

J. Cybersecur. Priv. 2022, 2

strategies other than deepfakery, are always aiming to penetrate identification or authen-
tication systems to gain illegitimate access. Therefore, identifying deepfake media using
forensic methods remains an immense challenge since cyber-attackers always leverage
newly published detection methods to immediately incorporate them in the next generation
of deepfake generation methods. With the massive usage of the Internet and social media,
and billions of images available on the Internet, there has been an immense loss of trust
from social media users. Deepfakes are a significant threat to our society and to digital
evidence in courts. Therefore, it is highly important to obtain state-of-the-art techniques to
identify deepfake media under criminal investigation.

As demonstrated in Table 1 (inspired by the figure presented in [1]), tampering of evi-
dence, scams and frauds (i.e., fake news), digital kidnapping associated with ransomware
blackmailing, revenge porn and political sabotage are among the vast majority of types of
deepfake activities with the highest level of intention to mislead [1].

Table 1. Deepfake Information trust Table.

Type of Media Examples Intention to Mislead Level of Truth

Hoax
Tampering evidence
Scam and Fraud
Harming Credibility

High Low

Entertainment
Altering movies
Editing Special effects
Art Demonstration

Low Low

Propaganda
Misdirection
Political Warfare
Corruption

High High

Trusted Authentic Content Low High

The first deepfake content published on the Internet was a celebrity pornographic
video that was created by a Reddit user (named deepfake) in 2017. The Generative Ad-
versarial Network (GAN) was first introduced in 2014 and used for image-enhancement
purposes only [4]. However, since the first published deepfake media, it has been un-
avoidable for deepfake and GAN technology to be used for malicious uses. Therefore,
in 2017, GANs were used to generate new facial images for malicious uses for the first
time [5]. Following that, there has been a constant development of other deepfake-based
applications such as FakeApp and FaceSwap. In 2019, Deepnude was developed and
provided undressed videos of the input data [6]. The widespread strategies used to ma-
nipulate multimedia files can be broadly categorized into the following major categories:
copy–move, splicing, deepfake, and resampling [7]. Copy–move, splicing and resampling
involve repositioning the contents of a photo, overlapping different regions of multiple
photos into a new one, and manipulating the scale and position of components of a photo.
The final goal is to manipulate the user by conveying the deception of having a larger
number of components in the photograph than those that were initially present. Deepfake
media, however, leveraging powerful machine-learning (ML) techniques, have signifi-
cantly improved the manipulation of the contents. Deepfake can be considered to be a
type of splicing, where a person’s face, sound, or actions in media is swiped by a fake
target [8]. A wide set of cybercrime activities are usually associated with this type of
manipulation technique, and while spreading them is easy, correcting the records and
avoiding deepfakes are harder [9]. Consequently, it is becoming harder for machine-
learning techniques to identify convolutional traces of deepfake generation algorithms,
as there needs to be frequency-specific anomaly analysis. The most basic algorithms that
were being used to train models for the task of deepfake detection such as Support Vector
Machine (SVM), Convolution Neural Network (CNN), and Recurrent Neural Network
(RNN) are now being coupled with multi-attentional [10] or ensemble [11] methods to

280

J. Cybersecur. Priv. 2022, 2

increase the performance and address weakness of other methods. As proposed by [12],
by implementing an ensemble of standard and attention-based data-augmented detection
networks, the generalization issue of the previous approaches can be avoided. As such,
it is of high importance to identify the most suitable algorithms for the backbone layers
in multi-attentional and ensembled architectures. As generation of deepfake media only
started in 2017, academic writing on the problem is meager [13]. Most of the developed
and published methods/techniques are focused on deepfake videos. The main difference
between deepfake video- and image-detection methods is that video-detection methods can
leverage spatial features [14], spatio-temporal anomalies [15] and supervised domain [16]
to draw a conclusion on the whole video by aggregating the inferred output both in time
and across multiple faces. However, deepfake image-detection techniques have access to
one face image only and mostly leverage pixel- [17] and noise-level analysis [18] to identify
the traces of the manipulation method.

Therefore, identifying the most reliable methods for face-image forgery detection that
relies on convolutional neural networks (CNN) as the backbone for a binary classification
task could provide valuable insight for the future direction in the development of deepfake-
detection techniques. The overall approach taken in this work is illustrated in Figure 1.

Figure 1. General overview of our proposed approach to detect deepfake media in a digital foren-
sics scenario.

DenseNet has shown significant promise in the field of facial recognition. DenseNet
as an extension of Residual CNN (ResNet) architecture has addressed the low-supervision
problem of all its counterparts by initiating a between-layer connection using dense blocks.
The dense blocks in the DenseNet architecture improve the learning process by leverag-
ing a transition layer (essentially convolution, average pooling, and batch normalization
between each dense block) that concatenates feature maps. As such, gradients from the
initial input and loss function are shared by all the layers. The described implementation
reduces the number of required parameters and feature maps, and consequently provides
a less computationally expensive model. Therefore, we have decided to test DenseNet’s
capabilities and compare it with other neural network architectures.

VGG-19, as an algorithm that has been widely used to extract the features of the
detected face frames [19], was chosen to be compared with the DenseNet architecture.
VGG-19’s architecture eases the face-annotation process by forming a large training dataset
with the use of online knowledge sources that are then used to implement deep CNNs to
perform the task of face recognition. The formed model is then evaluated on face recognition
benchmarks to analyze model efficiency regarding the generation of facial features. During
this process, VGG-19 is trained on classifiers with sigmoid activation function in the output
layer which produces a vector representation of facial features (face embedding) to fine-
tune the model. The fine-tuning process differentiates class similarities using Euclidean
distance that is achieved using a triplet loss function that aims at comparing Euclidean
spaces of similar and different faces using learning score vectors. The CNN architecture

281

J. Cybersecur. Priv. 2022, 2

implemented in VGG-19 implements fully connected classifiers that include kernels and
ReLU activation followed by maxpooling layers.

Finally, we have implemented a Custom CNN architecture to evaluate the performance
of previously described algorithms and analyze the effectiveness of dropout, padding,
augmentation and grayscale analysis on model performance.

This study aims to provide an in-depth analysis on the described algorithms, structures
and mechanisms that could be leveraged in the implementation of an ensembled multi-
attentional network to identify deepfake media. The result of this work contributes to the
nascent literature on deepfakery by providing a comparative study on effective algorithms
for deepfake detection on facial images within the possible use of digital forensics in
criminal investigations.

The rest of this paper is organized as follows. Section 2 provides a literature review of
the algorithms and datasets that are widely used for deepfake detection. Section 3 provides
details on the analysis methods and configurations of the compared algorithms as well as
with the details on the tested dataset. Section 4 provides the results of the comparative
analysis. Finally, Section 5 concludes with implications, limitations, and suggestions for
future research.

2. Literature Review

Anti-deepfake technology can be divided into three categories: (1) detection of the
deepfake; (2) authentication of the published content; and (3) prevention of the spread
of contents that can be used for deepfake production. Technology towards detection and
authentication of deepfakery is growing fast; however, the capacity to generate deepfakes
is proceeding much faster than the ability to detect them. Twitter has reported attempts
to publish misinformation and fake media by 8 million accounts per week [20]. There has
been a wide variety of deepfake media, and the detection techniques that have been used
to identify them is shown in Figure 2. This has created a massive challenge for researchers
to provide a solution that can promptly analyze all the posted material on the Internet
and social media platforms to identify deepfakes. Previous research has mostly aimed at
improving previously developed technologies to train a new detection system.

Figure 2. Current deepfake media types and detection techniques.

2.1. Deepfake Detection Datasets

Deepfake detection systems typically leverage binary classifiers to cluster informa-
tion into real and fake classes. This method requires a great quantity of good-quality
authentic and tampered data to train classification models. The first known datasets that
had a great impact on the growth and improvement of deepfake detection technologies

282

J. Cybersecur. Priv. 2022, 2

were UADFV [21] and DFTIMIT [22]. FaceForensics++ dataset includes 977 downloaded
videos from YouTube, provides 1000 sequences of original unobstructed faces, as well as
their manipulated versions. The manipulated versions were generated by four methods:
Deepfakes, Face2Face, FaceSwap and NeuralTextures [23]. The DeepFakeDetection dataset
(DFD) released by Google in collaboration with Jigsaw contains over 363 original sequences
from 28 paid actors in 16 different scenes as well as over 3000 manipulated videos using
deepfakes [23]. The Deepfake Detection Challenge (DFDC) dataset [24] published by Face-
book is another publicly available large dataset that includes over 100,000 total clips from
3426 actors, produced with deepfake, GAN-based and unsupervised models. Celeb-DF
(v2) [25] dataset published by [25] is an extension to Celeb-DF (v1) that contains real and
fake videos that are generated via deepfake algorithm by providing images with the same
quality as the synthesized videos circulating online. This dataset provides 5639 videos with
subjects of different ages, ethnic groups and genders, and their corresponding deepfake
videos. The DeeperForensics-1.0 dataset is a large-scale benchmark for face forgery de-
tection that represents the largest face forgery detection dataset by far. This benchmark
includes 60,000 videos forming a total of 17.6 million frames generated by an end-to-end
face-swapping framework. Furthermore, extensive real-world perturbations are applied to
obtain a more challenging benchmark of larger scale and higher diversity [26].

For our research and analysis, we took the “Real and Fake Face-Detection” dataset
from Yonsei University [27] that contains expert-generated high-quality PhotoShopped face
images. The dataset includes 960 fake and 1081 real images that are composites of different
faces, separated by eyes, nose, mouth, or whole face. The second dataset that has been used
in this work is the “140K Real and Fake Faces” that consists of 70K real faces from the Flickr
dataset collected by Nvidia, as well as 70K fake faces sampled from the 1 million fake faces
(generated by StyleGAN) that were published by Bojan [28]. These two datasets were used
to include both GAN-generated images along with expert/human-generated images to
provide many good-quality data. All the above-mentioned datasets can be used for image
and video classification, segmentation, generation and augmentation of new data. Table 2
represents a cumulative comparison of the mentioned datasets; please note that the rows
with a “*” sign include images only (not videos). Deepfake datasets have been categorized
into two generations based on several factors and elements. Considering release time and
synthesis algorithms involved in the generation of the data, UADFV and DF-TIMIT are
categorized as the first generation. Considering the quality and quantity of the generated
data, DFD, DeeperForensics, DFDC, and the Celeb-DF datasets are categorized as the
second generation [25].

Table 2. Comparison of publicly available deepfake datasets.

Real Fake

Dataset Video Frame Video Frame Generation Method Release Date Generation Group

UADFV 49 17.3K 49 17.3K FakeAPP 11/2018 1st

DF-TIMIT 320 34K 320 34K Faceswap-GAN 12/2018 1st

*Real & Fake Face Detection 1081 405.2K 960 399.8K Expert-generated high-quality photoshopped 01/2019 2st

FaceForensics++ 1000 509.9k 1000 509.9K DeepFakes, Face2Face, FaceSwap, NeuralTextures 01/2019 2nd

DeepFakeDetection 363 315.4K 3068 2242.7K Similar to FaceForensics++ 09/2019 2nd

DFDC 1131 488.4K 4113 1783.3K Deepfake, GAN-based, and non-learned methods 10/2019 2nd

Celeb-DF 590 225.4K 5639 2116.8K Improved DeepFake synthesis algorithm 11/2019 2nd

*140K Real & Fake Faces 70K 15.8M 70K 15.8M StyleGAN 12/2019 2nd

DeeperForensics 50,000 12.6M 10,000 2.3M Newly proposed end-to-end face swapping framework 06/2020 2nd

2.2. Deepfake Detection Algorithms

Deepfake detection techniques aim to conceal revealing traces of deepfakes by extract-
ing semantic and contextual understanding of the content. Research in the field of media
forensics provides a wide range of imperfections as indicators of fake media: face wobble,
shimmer and distortion; waviness in a person’s movements; inconsistencies with speech

283

J. Cybersecur. Priv. 2022, 2

and mouth movements; abnormal movements of fixed objects such as a microphone stand;
inconsistencies in lighting, reflections and shadows; blurred edges; angles and blurring of
facial features; lack of breathing; unnatural eye direction; missing facial features such as
a known mole on a cheek; softness and weight of clothing and hair; overly smooth skin;
missing hair and teeth details; misalignment in face symmetry; inconsistencies in pixel
levels; and strange behavior of an individual doing something implausible are all the indi-
cators and features used by deepfake detection algorithms [13]. The use of deep-learning
techniques and algorithms such as CNN and GAN has made deepfake detection more
challenging for forensics models because deepfakes can preserve pose, facial expression
and lighting of the photographs [29]. Frequency domain, JPEG Ghost and Error Level
Analysis (ELA) are among the first methods that were used to identify manipulation traces
on images. However, they are not successful in identifying manipulated images that are
generated with deep-learning and GAN algorithms. Neural networks are one of the most
widely used methods for deepfake detection. There are some proposals on the usage of
X-rays [18], and spectrograms [30] to identify traces of blending and noise in deepfake
media. However, such methods cannot detect random noise and suffer from a performance
drop when encountering low-resolution images. Deepfakes are implemented mainly using
a CNN that generates deepfake images and an encoder–decoder network structure (ED),
or GAN [4] that synthesizes fake videos. Deepfake detection techniques focused on anoma-
lies in the face region only can be categorized into holistic and feature-based matching
techniques [31]. The holistic techniques, which are mostly used to identify deepfake face
images and include Principal Component Analysis (PCA), Support Vector Machines (SVM),
and CNN, mainly analyze the face as a whole. These techniques aim at reducing data
dimensionality by forming a smaller set of linear combinations of the image pixels that
are then fed to a binary classifier to identify authentic and fake images. Feature-based
or attention-based matching techniques, however, are used for both deepfake video and
image identification, and split the whole face into different regions of focus such as eye,
nose, lips, skin, head position, color mismatches, etc. [32]. Holistic techniques are suc-
cessful in detecting localized deepfake characteristics (i.e., anomalies in the face and jaw
region) and can be leveraged to identify specific feature characteristics (eyes, nose, mouth)
that could be significant in detection [12]. Convolutional Neural Network (CNN)-based
image classification and recognition models have been proven to be trainable to classify
manipulated images from authentic ones [33]. Luca et al. [34] aimed to extract and detect
fingerprints that represent convolution traces left in the process of generating GAN images
using the Expectation-Maximization algorithm. Wang et al. [35] demonstrated that with
careful pre- and post-processing and data augmentation, a standard classifier trained on
ProGAN, an unconditional CNN generator can be generalized surprisingly well to unseen
architectures, datasets, and training methods. CNN have also been trained to detect ma-
nipulation techniques such as lack of eye-blinking [36], missing details in eyes from an
image [37], and facial wrapping artifacts. Furthermore, CNNs have been shown to be able
to capture distinctive traces of generation methods that have worked on further wrapping
the faces with high-resolution sources [17].

VGG19 and VGG16 has significantly improved large-scale fake image recognition
by increasing the layer depth (23/26 layers) of CNN-based models [38]. Chang et al. [39]
presented an improved VGG network, namely NA-VGG, based on image augmentation
and noise-level analysis to detect a deepfake face image. The experimental results using the
Celeb-DF dataset shows that NA-VGG improved accuracy over other state-of-the-art fake
image detectors. Kim et al. [40] demonstrated that VGG-16 has a better performance than
the ShallowNet architecture to classify genuine facial images from disguised face images.

Furthermore, DenseNet architecture has also been demonstrated to be computationally
more efficient with its feed-forward design network, which connects each layer to every
other layer [41]. In DenseNet architecture, feature maps of all former layers are used as the
input for each layer. DenseNet requires significantly fewer parameters and computation to
achieve state-of-the-art performance [33]. Hsu, Chih-Chung, Yi-Xiu Zhuang, and Chia-Yen

284

J. Cybersecur. Priv. 2022, 2

Lee [42] in their work proposed a fake face-image detector based on the novel CFFN,
consisting of an improved DenseNet backbone network and Siamese network architecture.
Their comprehensive analysis demonstrated that deep features-based deepfake-detection
systems such as DenseNet obtain significant accuracy when trained and tested on the same
kind of manipulation technique.

Feature-based techniques have started identifying the deficiencies of deepfake genera-
tion methods such as unnatural eye-blinking patterns and temporal flickering, which gave
rise to a more improved generation of deepfake models that were trained on datasets that
have addressed the identified deficiencies. Yang et al. [43] demonstrated that facial land-
marks could be used to provide an estimate of head posture direction. The work of [44,45]
illustrated that eye pupils’ inconsistencies are one of the indicators of fake media. Some
studies [46] including audio into the training process have illustrated that the difference
between lip movements and voice matching distinguishes real and fake media. There have
been some efforts on domain-specific deepfake detection such as [47] that leveraged foren-
sic techniques to model political leaders’ facial expressions and speaking patterns; however,
it would be a more difficult task to train and generalize such approach for the whole world.
Even though feature-based techniques are more robust to deformations, they have been
mainly designed to have the best performance on domain-specific datasets. Holistic tech-
niques are competent in learning human faces and extracting higher-dimensional semantic
features for classification.

Other techniques that leverage spatial features and spatio-temporal anomalies in
the supervised domain such as Xception [48] and EfficientNet [49] have been shown to
be more efficient than CNNs. Xception architecture claims to gain a more efficient use
of model parameters due to depthwise separable convolutions that can understand as
an inception module. Kumar and Bhavsar [16] demonstrated that Xception combined
with metric learning can enhance the classification in high-compression scenarios. They
were able to achieve an AUC score of 99.2% and accuracy of 90.71% for deepfake video
identification on the Celeb-DF dataset. Ismail et al. [14] in their experimental analysis
demonstrated that XceptionNet combined with an additional Bi-LSTM and LSTM layer
can achieve a 79% ROC-AUC score. Li et al. [50] demonstrated that Xception does not
have a good performance on face-image datasets (AUC of 73.2) and, furthermore, it has a
high true-negative rate while having the lowest true-positive rate. To summarize, Xception
may provide better performance for fake video detection; however, it does not address
the generalizability issue across different datasets and does not perform well when fed
with images only. EfficientNET proposes a new scaling method that uniformly scales all
dimensions of depth/width/resolution using compound coefficient. Coccomini et al. [15]
were able to achieve an AUC of 0.95% and F1-score of 88% on the DFDC dataset. Pokroy
and Egorov [51] demonstrated that an increased scale in all dimensions may not always
lead to higher accuracy due to the fact that CNNs will have to deal with more complex
patterns that are difficult to transfer to a different task. Mitra et al. [52] were able to achieve
a 96% accuracy on the FaseForensics++ dataset by making the complexity of detecting
forged videos low using the depthwise separable convulsion of EfficientNet. In conclusion,
Xception and EfficientNet, by uniformly scaling all dimensions, can gain a more efficient use
of model parameters. Furthermore, they can extract spatial features and spatio-temporal
anomalies by aggregating the inferred output both in time and across multiple faces due to
their depthwise separable convolutions. These methods have illustrated that they can draw
an improved conclusion on the whole video; however, they have not demonstrated any
improvements to deepfake classification on a single image (i.e., deepfake image-detection).

Recent scholarly work has been focused on implementing an ensemble of holistic
and feature-based detection networks by addressing the drawbacks of both methods.
Dolescki et al. [53], in their work implementing a classification method, which involves a
collection of classifiers with a certain utility function regarded as an aggregation operator,
were able to achieve accuracy of 87%. Silva et al. [12] were able to achieve a 92% accuracy
on the DFDC dataset by implementing a hierarchical explainable forensics algorithm that

285

J. Cybersecur. Priv. 2022, 2

incorporates humans in the detection loop. Hanqing et al. [10] proposed a multi-attentional
deepfake detection network that can achieve a 97% accuracy by implementing multiple
spatial attention heads, textural feature enhancement blocks and aggregating low-level
textural features and high-level semantic features. Bonettini et al. [11] were able to achieve
AUC of 87% on DFDC by assembling different trained Convolutional Neural Network
(CNN) models that combined EfficientNetB4 with attention layers and Siamese training.
Du et al. [54] demonstrated that a good balance between accuracy and efficiency can be
achieved with two separated EfficientNet architectures that simultaneously analyze raw
content and its frequency-domain representation.

Given that the most successful approaches to identifying and preventing deepfakes
are deep-learning methods that rely on CNNs as the backbone for a binary classification
task [12], and a large 2D CNN model can prove to be better than EfficientNet model if
deepfake classification is the only desired result [55], we have evaluated the most common
backbone architecture of existing developed frameworks (CNN, VGG-19 and DenseNet) that
are demonstrated to have the best performance on the task of deepfake image classification.

3. Approach

Our proposed method for deepfake detection on images is shown in Figure 1. We have
taken two different classification procedures in this work. As shown in both Figures 1 and 3,
input data goes through the same procedure with the same architecture; however, Figure 3
demonstrates a second round of analysis with an additional post-processing classification
step that has been added to the last output layer of the analyzed models. The second
round of analysis with additional post-processing was performed to analyze the effects of
principal component analysis on the task of deepfake classification. Further details about
the post-processing step are described in the final paragraphs of the evaluation subsection
of this section.

Figure 3. Detailed steps of post-processing in our proposed approach for deepfake detection.

3.1. Implementation

Input data are a dataset that is labeled and clustered into two categories of real and
fake. They are augmented for training purposes using the following specifications:

• Rotation range of 20 for DenseNET and no rotation on Custom CNN
• Scaling factor of 1/255 was used for coefficient reduction
• Shear range of 0.2 to randomly apply shearing transformations
• Zoom range of 0.2 to randomly zoom inside pictures
• Randomized images using horizontal and vertical flipping

After augmentation, the face images are classified as either fake or real using three
different models: Custom CNN, VGG, and DenseNET. We defined two classes for our
binary classification task: 0 to denote the real (e.g., normal, validation, and disguised face
images) and 1 to denote fake (e.g., impersonator face images) groups, respectively.

The “Real and Fake Face-Detection” dataset was used to train the three models at a
learning rate of 0.001 and for 10 epochs. The test accuracy was then calculated using the
test set. We applied data augmentation to flip all original images horizontally and vertically,

286

J. Cybersecur. Priv. 2022, 2

hence a three-fold increase of the dataset size (original image + horizontally flipped image
+ vertically flipped image).

The Custom CNN architecture included six convolution layers (Conv2D) each paired
with batch normalization, max pooling and dropout layers. Rectified Linear Unit (ReLU)
and sigmoid activation functions were applied for the input and output layers respectively.
Dropout was applied to each layer to minimize over-fitting and padding was also applied
to the kernel to allow for a more accurate analysis of images. The Custom CNN archi-
tectures have been trained and validated on the original and augmented datasets with a
1/255 scaling factor. Data augmentation was performed to observe effects of data aggrega-
tion on model performance and promote the generalizability of the findings. Details on
augmentation process includes horizontal flip along with a 0.2 zoom range, shear range of
0.2 along with rescaling factor to avoid image quality to factor in model behavior during
classification since not all the images had the same pixel-level quality.

Following a similar approach to [56], the VGG-19 model that was used is a 16-layer
CNN architecture paired with three fully connected layers, five maxpooling layers and one
SoftMax layer that is modeled from architectures in [56]. VGG-19 has been pretrained on a
wide variety of object categories, which leads to its ability to learn rich feature representa-
tions. VGG-19 has demonstrated that it can provide a high accuracy level when classifying
partial faces. This architecture demonstrated that its highest accuracy is accessible when its
size is increased [57]; therefore, we have applied a high-end configuration to it by adding a
dense layer after the last layer block that provides the facial features and added a dense
layer as the output layer with sigmoid activation function to fine-tune the model for the
task of deepfake detection.

The DenseNET architecture used in this work is Keras’s DenseNet-264 architecture
with an additional dense layer as the last output layer. This architecture starts with a 7 × 7
stride 2 convolutional layer followed by a 3 × 3 stride-2 MaxPooling layer. It also includes
four dense blocks paired with batch normalization and ReLU activation function for the
input layers and sigmoid activation function for the output layer. Furthermore, there are
transition layers between each denseblock that include a 2 by 2 average pooling layer along
with a 1 by 1 convolutional layer. The last dense block is followed by a classification layer
that leverages the feature maps of all layers of the network for the task of classification
which we have coupled with a denseblock with the sigmoid activation function as the
output layer. This model was trained on 100,000 images and validated on 20,000 images.
This model has been trained and validated on the original, grayscale and augmented
datasets with a 1/255 scaling factor too. We aimed to add to the diversity of the training
data by performing augmentation to the DenseNet architecture by applying a horizontal
flip, a 20 range rotation along with the same rescaling procedure that was applied in the
Custom CNN architecture. Because pixel-level resolution of grayscale and color images
are different, we have also measured the importance of color on model behavior towards
classifying data into the fake and real categories by training the DenseNet architecture on
grayscale only data too. The VGG architecture, however, was only trained and tested on
the original dataset. All the analyzed models in this work are used as they were designed
with an additional custom dense layer with sigmoid activation function. The rationale
behind adding this layer to all models was to add a useful rectifier activation function layer
for the task of binary classification to produce a probability output in the range of 0 to 1
that can easily and automatically be converted to crisp class values.

3.2. Evaluation

The performance of the described models is assessed with accuracy, precision, recall,
F1-score, average precision (AP) and area under the ROC curve.

Accuracy, simply put, indicates how close the model prediction is to the target or
actual value (fake vs. real), meaning how many times the model was able to make a
correct predication among all the predictions it has made. Equation (1) indicates the overall

287

J. Cybersecur. Priv. 2022, 2

formula used to calculate prediction, where TPR stands for true prediction and TOPR
stands for total predictions made by the model.

Accuracy =
TPR

TOPR
(1)

Precision, on the other hand, refers to how consistent results are regardless of how
close to the true value they are using the target label. Equation (2) demonstrates the ratio
that indicates the proportion of positive identifications by model that were actually correct.
TP in Equation (2) stands for the number of true positives and FP stands for the number of
false positives.

Percision =
TP

TP + FP
(2)

The recall is the proportion of actual positives that were identified by the model that
were correct. Equation (3) demonstrates this ratio where TP is the number of true positives
and FN the number of false negatives. The recall is intuitively the ability of the classifier to
find all the positive samples.

Recall =
TP

TP + FN
(3)

The F1-score, by taking into account both precision and recall, balances the precision
and recall and indicates model ability to accurately predict both true-positive and true-
negative classes. The F1 score can be interpreted as a harmonic mean of the precision and
recall. For the task of deepfake classification, F1-score is a better measure to assess model
performance, since both classes are of importance and the relative contribution of precision
and recall to the F1 score are better than equal. Equation (4) demonstrates how F1-score is
calculated.

F1 =
2 ∗ (Percision ∗ Recall)

Percision + Recall
(4)

Average Precision (AP) was used as an aggregation function for the task of object
detection to summarize the precision–recall curve as the weighted mean of precision
achieved at each threshold, with the increase in recall from the previous threshold used as
the weight based on Equation (5), where Rn and Pn are the precision and recall at the nth
threshold [58].

AP = ∑
n
(Rn − Rn−1)Pn (5)

Finally, as shown in Figure 3, the output vectors of the final hidden layer of the
analyzed architectures were extracted and treated as a representation of the images. Dimen-
sions of the vectors for the Custom CNN architecture, VGG-19 and DenseNet architectures
were 512, 2048 and 1024, respectively. Principal Component Analysis (PCA) was performed
to keep the most dominant variable vector points and preserved 50 principal components.
The resulting vectors from the PCA were fed into a support vector machine (SVM) to
classify them into the two classes of real and fake.

4. Preliminary Results

This section provides the results obtained from the three different neural network
architectures that have been tested in this work. The dataset section provides an overview
of the advantages, drawbacks, and improvements of the datasets described in the litera-
ture review.

4.1. Dataset

Deepfake datasets should have careful consideration of quality, scale, and diversity.
UADF and DFTMIT provide a baseline dataset for preliminary analysis in deepfake de-

288

J. Cybersecur. Priv. 2022, 2

tection; however, they lack the quantity and diversity elements. The DeepFakeDetection
dataset extends the preliminary FaceForensics dataset; however, it contains relatively few
videos with few subjects and limited size and number of methods that are represented.
The DFDC dataset addresses the drawbacks of the previously published datasets by provid-
ing a large number of clips, of varying quality, and with a good representation of the current
state-of-the-art face-swap methods. However, it still has various visual artifacts that make
them easily distinguishable from the real videos. The DFDC dataset resolves the limited
availability of source footage, few videos and fewer subjects; however, the Celeb-DF dataset
provides more relevant data to evaluate and support the future development of deepfake
detection methods by fixing color mismatch, inaccurate face masks, and temporal flickering
of previously discussed datasets. Finally, deeper forensics, by addressing the drawbacks
of all mentioned datasets, provides a benchmark of larger scale and higher diversity that
can be leveraged to achieve the best performance of deepfake detection algorithms. Table 3
summarizes the drawbacks and improvements of the described datasets.

Table 3. Dataset analysis summary.

Dataset Drawbacks Improvements

UADF
DFTMIT Lack of quantity and Diversity Suitable baseline

DFD Limited size and methods Extension to FaceForensics dataset

DFDC Distinguishable visual artifacts Large number of clips of varying
quality

Celeb-DF
Low realness score
Biased: impractical for face
Forgery detection

Fixed color mismatch
Accurate face masks

Deeper Forensics-1.0 Challenging as a test database High realness score

The mentioned datasets include videos that could be used for face detection in images;
however, the “Real and Fake Face-Detection” dataset combined with the “140K Real and
Fake Faces” includes both GAN-generated images as well as expert/human-generated
images, and is considered by far one of the largest available face-image datasets. The two
described datasets together include 70,960 fake and 71,081 real images. As shown in Table 4,
70K of the fake images are GAN-generated and 960 of them are human expert-generated.
Similarly for the real images, 70K of them are GAN-generated and 1081 of them are human
expert-generated. The distribution of the human-generated fake images is not balanced
with the GAN-generated photos, but this is the largest human-generated image dataset
available currently.

Table 4. Distribution of the used datasets.

Generation Method Fake Real

GAN 70K 70K

Human Expert 960 1081

4.2. Algorithms

The accuracy, precision and recall rates of analyzed models demonstrated in Table 5,
the ROC curve demonstrated in Figure 4, the area under the ROC curve (AUC), F1-scores
and AP results demonstrated in Table 6 were used to evaluate model performance in
terms of separability and their ability to differentiate between classes. The algorithm
comparison results revealed that the VGG-19 model had the best performance among all
3 other algorithms, with an accuracy level of 95%.

289

J. Cybersecur. Priv. 2022, 2

The results of this study demonstrate that VGG-19 can be a suitable choice not only for
partial face images, but also for full-face images confirming the findings of [57]. The better
performance of VGG-19 is because it is pretrained on a wide variety of objects. AP was used
as an aggregation function to summarize the precision–recall curve into a single value that
represents the average of all precisions. VGG-19, even though it had the highest accuracy,
had the lowest AP of 95% in comparison to all other analyzed models. The DenseNet
architecture on the original dataset and grayscale dataset had a closer performance to
VGG-19, with 94% accuracy. Results from DenseNET architecture demonstrates that
gray channel-based analysis does not have a huge impact on model accuracy level in
classifying images into the two categories of real and fake. The DenseNet architecture,
even though was second best in terms of performance, achieved an AP of 99% on both
augmented and grayscale datasets, which is slightly in contrast to the results found in [59]
in terms of precision rate; however, it aligns with claims regarding detection time. Custom
CNN architecture had the lowest accuracy level (89%). The second-highest AP score after
DenseNet was the Custom CNN model. Augmented input reduced model performance and
accuracy level on both DenseNET and Custom CNN by 5–22%. However, the Custom CNN
had a better performance on augmented data in comparison to the DenseNet architecture.
Precision and recall rates from DenseNet architecture trained on augmented data suggest
that the final dense block that we have coupled with the DenseNet classification layer did
not have a positive impact on model behavior. The issue with reduced performance on
augmented data might be resolved by training the model for a larger number of epochs,
since augmentation results in harder training samples. VGG-19, even though it was great in
terms of performance, aligns with results from [60]; it was computationally very expensive,
especially if fed with augmented data. DenseNET was computationally more efficient
in comparison to VGG-19 and Custom CNN, which aligns with the results from [40].
The F1-score of the DenseNet architecture on grayscale was the highest, reaching 97%
suggesting it could be a suitable backbone when dealing with unbalanced class distribution
in their dataset. The second-highest F1-score was achieved by VGG-19, as it achieved
a 95% F1-score. The lowest F1-score was achieved by the Custom CNN on augmented
data, as the F1-score was only 85%. Taking F1-score as a measurement to balance precision
and recall, DenseNet on grayscale data might seem to be a better solution, however, since
the dataset used for training in this analysis had a balanced class distribution accuracy
level and is a better judge in this analysis. The results from the PCA-SVM classification
demonstrated that VGG-19 was able to form a distinctive cluster of fake and real images
using the PCA vectors as a representation of the image (demonstrated in Figure 5). Custom
CNN architectures and DenseNet trained on the original and augmented datasets showed
decent classification. However, DenseNet trained on grayscale images presented very poor
performance (Table 5).

Table 5. Algorithm comparison results. OD stands for Original Dataset, AD stands for Augmented
Dataset and GS stands for Grayscale Dataset.

Model Performance PCA-SVM Performance

Architecture Accuracy Precision Recall Accuracy Precision Recall

VGG-19 95 93 97 99 99 99

DenseNet OD 94 92 96 98 98 98

DenseNet AD 73 66 95 86 86 86

DenseNet GS 94 91 99 50 50 47

Custom CNN OD 89 91 87 97 97 97

Custom CNN AD 84 87 79 91 90 91

Overall analysis of the results reveal that all the architectures had a higher efficiency
in detection and classification of GAN-generated images due to the traces that GAN

290

J. Cybersecur. Priv. 2022, 2

generators left on the generated media. Considering VGG-19’s performance and behavior,
even though it may not be the most computationally efficient model, it had a competitively
better performance than the other analyzed model and it showed a promising improvement
when coupled with PCA-SVM classification layers. This suggests that VGG-19 could be
a more suitable backbone architecture for the task of deepfake detection related to the
essential technical and legal requirements that determine evidence admissibility. Deepfakes
are a threat to the admissibility of digital evidence in courts. Quick and effective detection
of authentic media is critical in any criminal investigations. VGG-19 could be a fast solution
for detecting deepfakes in courts. We must test more datasets from digital evidence and
conduct further experiments.

Table 6. F-1, ROC-AUC, and AP scores.

Architecture F-1 ROC-AUC AP

VGG-19 95 96 93

DenseNet OD 92 99 99

DenseNet AD 92 97 97

DenseNet GS 97 99 99

Custom CNN OD 91 98 98

Custom CNN AD 85 95 95

Figure 4. ROC curve representation.

291

J. Cybersecur. Priv. 2022, 2

Figure 5. PCA-SVM clustering comparison.

5. Conclusions and Future Work

The results of our work demonstrated that deep-learning architectures are reliable
and accurate at distinguishing fake vs. real images; however, detection of the minimal
inaccuracies and misclassifications remain a critical area of research. Recent efforts have
focused on improving the algorithms that create deepfakes by adding especially designed
noise to digital photographs or videos that are not visible to human eyes and can fool the
face-detection algorithms [61]. The results of our work indicate that VGG-19 performed
best, taking accuracy, F1-score, precision, AUC-ROC and PCA-SVM measures into the
account. DenseNet had a slightly better performance in terms of AP, and the results from the
Custom CNN trained on original data were satisfactory too. This suggests that aggregation
of the results from multiple models, i.e., ensemble or multi-attention approaches, can be
more robust in distinguishing deepfake media.

Future work could also leverage unsupervised clustering methods such as auto-
encoders to analyze its effectiveness on the task of deepfake classification and provide a
better interpretation of the CNN algorithms designed in this work. There could be classifi-
cation methods developed that would examine and flag social media users who uploaded
images/videos before being posted on the Internet to avoid the spread of misinforma-
tion [62]. We plan to further improve performance with deep-learning algorithms as well as
exploring the application of stenography, steganalysis and cryptography in the identifica-
tion and classification of the genuine and disguised face images [63]. Future work not only
has to include collecting and experimenting with different disguised classifiers, but also
must work on the development of training data that can improve the performance of im-
plemented architectures as suggested by [33]. The authors of the paper plan to discover the
use of information pellets on the development of an ensemble framework. As suggested
in [64] using a patch-based fuzzy rough set feature-selection strategy can preserve the
discrimination ability of original patches. Such implementation can assist in anomaly detec-
tion for the task of deepfake detection. By integrating the local-to-global feature-learning
method with multi-attention and ensemble-modeling (holistic, feature-based, noise-level,
steganographic) approach, we believe we can achieve a superior performance than the cur-

292

J. Cybersecur. Priv. 2022, 2

rent state-of-the-art methods. Considering the limitations of Eff-YNet network developed
by [55], which has an advantage in examining visual differences within individual frames,
analyzing EfficientNet performance on deepfake image datasets used in this work can be
another direction for future work, as it may identify another suitable baseline model for
ensembled approaches.

Author Contributions: Conceptualization, M.T. and H.C.; methodology, M.T.; software, M.T.; valida-
tion, M.T. and H.C.; formal analysis, M.T.; developed the theory and performed the computations,
M.T.; resources, M.T.; data curation, M.T.; writing—original draft preparation, M.T.; writing—review
and editing, H.C.; funding acquisition, H.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partly funded by the National Centers of Academic Excellence in
Cybersecurity Grant (H98230-21-1-0326), which is part of the National Security Agency. Research
was partly sponsored by the Army Research Office and was accomplished under Grant Number
W911NF-21-1-0264. The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either expressed or implied, of the
Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation herein.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets that have been leveraged in this work are publicly avail-
able on Kaggle for both challenges of “140K Real and Fake Faces” and “Real and Fake Face Detection”.
The “140K Real and Fake Faces” dataset available at https://www.kaggle.com/xhlulu/140k-real-
and-fake-faces published on February 2020, accessed on October 2021, includes 70K real faces col-
lected from Flickr and 70K fake faces that are generated by GANs. The “Real and Fake Face-Detection”
dataset available at https://www.kaggle.com/ciplab/real-and-fake-face-detection published on
January 2019, accessed on October 2021 includes 960 fake and 1081 real face images that are generated
by human expert in high-quality via Photoshop.

Acknowledgments: The authors would like to show their gratitude to Shonda Bernadin and the
MDPI journal reviewers. This paper and the research behind it would not have been possible without
the exceptional support of them. Their insight and expertise and exacting attention to detail has
greatly assisted this research

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ferreira, S.; Antunes, M.; Correia, M.E. Exposing Manipulated Photos and Videos in Digital Forensics Analysis. J. Imaging 2021,
7, 102. [CrossRef]

2. Harwell, D. Fake-Porn Videos are Being Weaponized to Harass and Humiliate Women: ‘Everybody is a Potential Target’. 2018.
Available online: https://www.defenseone.com/technology/2019/03/next-phase-ai-deep-faking-whole-world-and-china-
ahead/155944/ (accessed on 28 November 2021).

3. Tucker, P. The Newest AI-Enabled Weapon: ’Deep-Faking’ Photos of the Earth. 2021. Available online: https://
www.washingtonpost.com/technology/2018/12/30/fake-porn-videos-are-being-weaponized-harass-humiliate-women-
everybody-is-potential-target/ (accessed on 28 November 2021).

4. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 2. Available online: https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8
f06494c97b1afccf3-Abstract.html (accessed on 28 November 2021).

5. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated texture synthesis. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4491–4500.

6. Yu, P.; Xia, Z.; Fei, J.; Lu, Y. A Survey on Deepfake Video Detection. IET Biom. 2021, 10, 607–624. [CrossRef]
7. Ferreira, S.; Antunes, M.; Correia, M.E. A Dataset of Photos and Videos for Digital Forensics Analysis Using Machine Learning

Processing. Data 2021 , 6, 87. [CrossRef]
8. Durall, R.; Keuper, M.; Pfreundt, F.J.; Keuper, J. Unmasking deepfakes with simple features. arXiv 2019, arXiv:1911.00686 .
9. De keersmaecker, J.; Roets, A. ‘Fake news’: Incorrect, but hard to correct. The role of cognitive ability on the impact of false

information on social impressions. Intelligence 2017, 65, 107–110. [CrossRef]

293

J. Cybersecur. Priv. 2022, 2

10. Zhao, H.; Zhou, W.; Chen, D.; Wei, T.; Zhang, W.; Yu, N. Multi-attentional deepfake detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2185–2194.

11. Bonettini, N.; Cannas, E.D.; Mandelli, S.; Bondi, L.; Bestagini, P.; Tubaro, S. Video face manipulation detection through ensemble
of cnns. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 5012–5019.

12. Silva, S.H.; Bethany, M.; Votto, A.M.; Scarff, I.H.; Beebe, N.; Najafirad, P. Deepfake forensics analysis: An explainable hierarchical
ensemble of weakly supervised models. Forensic. Sci. Int. Synerg. 2022, 4, 100217. [CrossRef]

13. Westerlund, M. The emergence of deepfake technology: A review. Technol. Innov. Manag. Rev. 2019, 9, 40–45. [CrossRef]
14. Ismail, A.; Elpeltagy, M.; Zaki, M.; ElDahshan, K.A. Deepfake video detection: YOLO-Face convolution recurrent approach. Peerj

Comput. Sci. 2021, 7, e730. [CrossRef]
15. Coccomini, D.; Messina, N.; Gennaro, C.; Falchi, F. Combining efficientnet and vision transformers for video deepfake detection.

arXiv 2021, arXiv:2107.02612.
16. Kumar, A.; Bhavsar, A.; Verma, R. Detecting deepfakes with metric learning. In Proceedings of the 2020 8th International Workshop

on Biometrics and Forensics (IWBF), Porto, Portugal, 29–30 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.
17. Li, Y.; Lyu, S. Exposing deepfake videos by detecting face warping artifacts. arXiv 2018, arXiv:1811.00656.
18. Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face X-ray for more general face forgery detection. In Proceedings

of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.
[CrossRef]

19. Nguyen, H.H.; Yamagishi, J.; Echizen, I. Capsule-forensics: Using capsule networks to detect forged images and videos. In
Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, 12–17 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2307–2311.

20. Albanesius, C. Deepfake Videos Are Here, and We’re Not Ready. 2019. Available online: https://www.pcmag.com/news/
deepfake-videos-are-here-and-were-not-ready (accessed on 5 December 2021).

21. Yang, X.; Li, Y.; Lyu, S. Exposing deep fakes using inconsistent head poses. In Proceedings of the ICASSP 2019–2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 8261–8265.

22. Korshunov, P.; Marcel, S. Deepfakes: A new threat to face recognition? assessment and detection. arXiv 2018, arXiv:1812.08685.
23. Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. FaceForensics++: Learning to Detect Manipulated Facial

Images. In Proceedings of the International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019.
24. Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Ferrer, C.C. The DeepFake Detection Challenge Dataset. arXiv

2020, arXiv:2006.07397.
25. Li, Y.; Sun, P.; Qi, H.; Lyu, S. Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics. In Proceedings of the IEEE

Conference on Computer Vision and Patten Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 3207–3216.
26. Jiang, L.; Li, R.; Wu, W.; Qian, C.; Loy, C.C. Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June
2020; pp. 2889–2898.

27. Yonsei University. Real and Fake Face Detection. 2019. Available online: https://archive.org/details/real-and-fake-face-
detection (accessed on 30 August 2021).

28. NVlabs. NVlabs/ffhq-Dataset: Flickr-Faces-HQ Dataset (FFHQ). 2019. Available online: https://archive.org/details/ffhq-dataset
(accessed on 29 August 2021).

29. Nguyen, T.T.; Nguyen, C.M.; Nguyen, D.T.; Nguyen, D.T.; Nahavandi, S. Deep learning for deepfakes creation and detection: A
survey. arXiv 2019, arXiv:1909.11573.

30. Huang, Y.; Juefei-Xu, F.; Guo, Q.; Xie, X.; Ma, L.; Miao, W.; Liu, Y.; Pu, G. FakeRetouch: Evading deepfakes detection via the
guidance of deliberate noise. arXiv 2020, arXiv:2009.09213.

31. Zhao, W.; Chellappa, R.; Phillips, P.J.; Rosenfeld, A. Face recognition: A literature survey. Acm Comput. Surv. (CSUR) 2003,
35, 399–458. [CrossRef]

32. Maksutov, A.A.; Morozov, V.O.; Lavrenov, A.A.; Smirnov, A.S. Methods of deepfake detection based on machine learning. In
Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St.
Petersburg, Russia, 27–30 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 408–411.

33. Tariq, S.; Lee, S.; Kim, H.; Shin, Y.; Woo, S.S. Gan is a friend or foe? a framework to detect various fake face images. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; pp. 1296–1303.

34. Cozzolino, D.; Thies, J.; Rössler, A.; Riess, C.; Nießner, M.; Verdoliva, L. Forensictransfer: Weakly-supervised domain adaptation
for forgery detection. arXiv 2018 arXiv:1812.02510.

35. Wang, S.Y.; Wang, O.; Zhang, R.; Owens, A.; Efros, A.A. CNN-generated images are surprisingly easy to spot . . . for now. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp.
8695–8704.

36. Li, Y.; Chang, M.; Lyu, S. Exposing AI Created Fake Videos by Detecting Eye Blinking. In Proceedings of the 2018 IEEE InterG
National Workshop on Information Forensics and Security (WIFS), Hong Kong, China, 11–13 December 2018.

294

J. Cybersecur. Priv. 2022, 2

37. Afchar, D.; Nozick, V.; Yamagishi, J.; Echizen, I. Mesonet: A compact facial video forgery detection network. In Proceedings of
the 2018 IEEE International Workshop on Information Forensics and Security (WIFS 2018), Hong Kong, China, 11–13 December
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

38. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
39. Chang, X.; Wu, J.; Yang, T.; Feng, G. Deepfake face image detection based on improved VGG convolutional neural network. In

Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–30 July 2020; IEEE: Piscataway, NJ, USA,
2020; pp. 7252–7256.

40. Kim, J.; Han, S.; Woo, S.S. Classifying Genuine Face images from Disguised Face Images. In Proceedings of the 2019 IEEE
International Conference on Big Data (Big Data), Los Angelas, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019;
pp. 6248–6250.

41. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 4700–4708.

42. Hsu, C.C.; Zhuang, Y.X.; Lee, C.Y. Deep fake image detection based on pairwise learning. Appl. Sci. 2020, 10, 370. [CrossRef]
43. Matern, F.; Riess, C.; Stamminger, M. Exploiting visual artifacts to expose deepfakes and face manipulations. In Proceedings of

the 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), Waikoloa Village, HI, USA, 1–7 January 2019.
[CrossRef]

44. Jung, T.; Kim, S.; Kim, K. DeepVision: Deepfakes detection using human eye blinking pattern. IEEE Access 2020, 8, 83144–83154.
[CrossRef]

45. Li, Y.; Chang, M.C.; Lyu, S. In ictu oculi: Exposing ai created fake videos by detecting eye blinking. In Proceedings of the 2018
IEEE International Workshop on Information Forensics and Security (WIFS 2018), Hong Kong, China, 11–13 December 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 1–7.

46. Korshunov, P.; Marcel, S. Speaker inconsistency detection in tampered video. In Proceedings of the 2018 26th European Signal
Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2375–2379.

47. Agarwal, S.; Farid, H.; Gu, Y.; He, M.; Nagano, K.; Li, H. Protecting World Leaders Against Deep Fakes. In Proceedings of the
CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019; Volume 1.

48. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

49. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

50. Li, X.; Yu, K.; Ji, S.; Wang, Y.; Wu, C.; Xue, H. Fighting against deepfake: Patch&pair convolutional neural networks (PPCNN). In
Proceedings of the Companion Proceedings of the Web Conference, Taipei, Taiwan, 20–24 April 2020; pp. 88–89.

51. Pokroy, A.A.; Egorov, A.D. EfficientNets for deepfake detection: Comparison of pretrained models. In Proceedings of the 2021
IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 26–29
January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 598–600.

52. Mitra, A.; Mohanty, S.P.; Corcoran, P.; Kougianos, E. A novel machine learning based method for deepfake video detection in
social media. In Proceedings of the 2020 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS),
Chennai, India, 14–16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 91–96.

53. Dolecki, M.; Karczmarek, P.; Kiersztyn, A.; Pedrycz, W. Utility functions as aggregation functions in face recognition. In
Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016.
[CrossRef]

54. Du, C.X.T.; Duong, L.H.; Trung, H.T.; Tam, P.M.; Hung, N.Q.V.; Jo, J.; Efficient-frequency: A hybrid visual forensic framework for
facial forgery detection. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (IEEE SSCI), Canberra,
Australia, 1–4 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 707–712.

55. Tjon, E.; Moh, M.; Moh, T.S. Eff-YNet: A Dual Task Network for DeepFake Detection and Segmentation. In Proceedings of the
2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Korea, 4–6
January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8.

56. Do, N.T.; Na, I.S.; Kim, S.H. Forensics face detection from GANs using convolutional neural network. In Proceedings of the 2018
International Symposium on Information Technology Convergence (ISITC 2018), Jeonju, Korea, 24–27 October 2018.

57. Goel, R.; Mehmood, I.; Ugail, H. A Study of Deep Learning-Based Face Recognition Models for Sibling Identification. Sensors
2021, 21, 5068. [CrossRef]

58. Varoquaux, G.; Buitinck, L.; Louppe, G.; Grisel, O.; Pedregosa, F.; Mueller, A. Scikit-learn: Machine learning without learning the
machinery. Getmobile: Mob. Comput. Commun. 2015, 19, 29–33. [CrossRef]

59. Son, S.B.; Park, S.H.; Lee, Y.K. A Measurement Study on Gray Channel-based Deepfake Detection. In Proceedings of the 2021
International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 20–22 October
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 428–430.

60. Amerini, I.; Galteri, L.; Caldelli, R.; Del Bimbo, A. Deepfake video detection through optical flow based cnn. In Proceedings of
the IEEE/CVF International Conference on Computer Vision Workshops, Montreal, BC, Canada, 11–17 October 2021; p. 2.

295

J. Cybersecur. Priv. 2022, 2

61. Li, Y.; Yang, X.; Wu, B.; Lyu, S. Hiding faces in plain sight: Disrupting ai face synthesis with adversarial perturbations. arXiv 2019,
arXiv:1906.09288.

62. Tolosana, R.; Romero-Tapiador, S.; Fierrez, J.; Vera-Rodriguez, R. Deepfakes evolution: Analysis of facial regions and fake
detection performance. In Proceedings of the International Conference on Pattern Recognition (ICPR), Virtual Event, 10–15
January 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 442–456.

63. Corcoran, K.; Ressler, J.; Zhu, Y. Countermeasure against Deepfake Using Steganography and Facial Detection. J. Comput.
Commun. 2021, 9, 120–131. [CrossRef]

64. Guo, Y.; Jiao, L.; Wang, S.; Wang, S.; Liu, F. Fuzzy sparse autoencoder framework for single image per person face recognition.
IEEE Trans. Cybern. 2017, 48, 2402–2415. [CrossRef]

296

Journal of

Cybersecurity
and Privacy

Article

CyBERT: Cybersecurity Claim Classification by Fine-Tuning the
BERT Language Model

Kimia Ameri 1, Michael Hempel 1, Hamid Sharif 1,*, Juan Lopez Jr. 2 and Kalyan Perumalla 2

Citation: Ameri, K.; Hempel, M.;

Sharif, H.; Lopez Jr., J.; Perumalla, K.

CyBERT: Cybersecurity Claim

Classification by Fine-Tuning the

BERT Language Model. J. Cybersecur.

Priv. 2021, 1, 615–637. https://

doi.org/10.3390/jcp1040031

Academic Editors: Giorgio Giacinto

and Phil Legg

Received: 30 August 2021

Accepted: 28 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68182 , USA;
kameri2@unl.edu (K.A.); mhempel@unl.edu (M.H.)

2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; lopezj@ornl.gov (J.L.J.);
perumallaks@ornl.gov (K.P.)

* Correspondence: hsharif@unl.edu

Abstract: We introduce CyBERT, a cybersecurity feature claims classifier based on bidirectional en-
coder representations from transformers and a key component in our semi-automated cybersecurity
vetting for industrial control systems (ICS). To train CyBERT, we created a corpus of labeled sequences
from ICS device documentation collected across a wide range of vendors and devices. This corpus
provides the foundation for fine-tuning BERT’s language model, including a prediction-guided rela-
beling process. We propose an approach to obtain optimal hyperparameters, including the learning
rate, the number of dense layers, and their configuration, to increase the accuracy of our classifier.
Fine-tuning all hyperparameters of the resulting model led to an increase in classification accuracy
from 76% obtained with BertForSequenceClassification’s original architecture to 94.4% obtained with
CyBERT. Furthermore, we evaluated CyBERT for the impact of randomness in the initialization,
training, and data-sampling phases. CyBERT demonstrated a standard deviation of ±0.6% during
validation across 100 random seed values. Finally, we also compared the performance of CyBERT
to other well-established language models including GPT2, ULMFiT, and ELMo, as well as neural
network models such as CNN, LSTM, and BiLSTM. The results showed that CyBERT outperforms
these models on the validation accuracy and the F1 score, validating CyBERT’s robustness and
accuracy as a cybersecurity feature claims classifier.

Keywords: natural language processing; BERT; transfer learning; classification; cybersecurity; CYVET

1. Introduction

1.1. Motivating Context

The role of cybersecurity audits in operational technology (OT) is a purposeful and
vital mechanism to identify the presence of cybersecurity controls. Cybersecurity assess-
ments, on the other hand, test the effectiveness of controls. Many critical infrastructure
segments, including the energy sector, heavily rely on OT and industrial control systems
(ICS) for automation, centralized monitoring, and operational efficiency. ICS vendors
continually offer new features in their devices in order to attract their customers to buy
new or upgraded products, but consumers often do not readily realize how these features
affect their cybersecurity posture and regulatory compliance [1].

As identified in our earlier work [2], different vendor-supplied features (VSF) can
satisfy and match the corresponding cybersecurity requirements (CR), or enhance the
features and go beyond the related requirements, or unintentionally violate or contradict
some of these requirements defined by international standards and industry organizations.
To address this issue of mismatches between vendor-supplied features and cybersecurity
requirements, an effective vetting system is required to match, reconcile, and tally these
feature claims against the relevant requirements. However, both features and requirements
are typically provided in the form of documents in human-readable format. This severely
complicates any automated vetting processes.

J. Cybersecur. Priv. 2021, 1, 615–637. https://doi.org/10.3390/jcp1040031 https://www.mdpi.com/journal/jcp297

J. Cybersecur. Priv. 2021, 1

To resolve this problem, we are developing a semi-automated vetting engine for cyber-
physical security assurance (CYVET) [2]. The overarching goal for CYVET is to enhance the
current industry capabilities to verify and validate OT infrastructure cybersecurity claims,
at both pre-deployment and post-deployment periods.

Our vetting approach to cybersecurity assurance focuses on two major components:
Tally-Vet and Test-Vet. Tally-Vet represents that portion of the vetting approach that is de-
signed to match, reconcile, and tally the claimed features against the relevant requirements.
The Tally-Vet stage requires extensive application of natural language processing (NLP)
throughout the entire verification operation. For Test-Vet, specific features need to be sys-
tematically tested and validated against actual software and hardware through hardware
agents. By automating the vetting of vendor claims extracted from device documentation,
the vetting approach is designed to provide an unbiased, objective, and semi-supervised ap-
proach to vetting the cybersecurity implications of an ICS device. ICS compliance analysis
and reporting is simplified by using this framework, implemented in our CYVET system,
which provides insights into ICS systems and matches capabilities to requirements [2].

An overall flow for the Tally-Vet aspect of CYVET is shown in Figure 1. In our previous
study [1], we discussed our semi-supervised framework to build the ICS device information
repository that underpins CYVET and its NLP processes. This data repository contains ICS
device documents including manuals, brochures, and catalogs. One of the main challenges
in the vetting approach is to analyze this data repository and identify sequences from
vendor-supplied documents that represent the vendor’s stated claims on product features.
These sequences will then be used in the tally process by comparing them to the industry
cybersecurity requirements. In the rest of the article, we use the term “Claim” to refer to
any sequence in the text of vendor-supplied documents thus extracted that represent some
cybersecurity-related claims about features of the product being evaluated.

Figure 1. Overall workflow of the CYVET cybersecurity vetting approach.

Recent studies have demonstrated the achievable performance for unsupervised
language models that are pre-trained on a large corpus and fine-tuned on downstream tasks
such as sequence classification and sentiment analysis. Examples include the universal
language model with fine-tuning (ULMFiT) [3], embeddings from language models (ElMo)
[4], bidirectional encoder representations from transformers (BERT) [5], and the generative
pre-training (GPT) model [6], which are some of the most well-established pre-trained
language models.

1.2. Goals and Contributions

This article presents our research into establishing a novel classifier of cybersecurity
feature claims by fine-tuning a pre-trained BERT language model. Specifically, any natural
language sequence that specifically makes a claim towards the availability of a cyberse-
curity feature related to a product is defined as a claim in this article. All other claims,
or sequences that do not make any claims, are subsequently labeled as not containing a
cybersecurity claim.

CyBERT is intended to be used as a cybersecurity-specific classification model for
detecting cybersecurity claims. This NLP model enables us to identify claims from a
large pool of sequences in ICS device documents. Claim sequences are important for

298

J. Cybersecur. Priv. 2021, 1

identifying the claimed set of cybersecurity device features. Being able to identify this set of
claimed features subsequently enables us to compare feature claims against cybersecurity
requirements, which is key to our Tally-Vet operation for OT infrastructure vetting.

The contributions of this work are summarized in the following items:

1. We introduce CyBERT, a BERT-based model that is trained on sequences gathered
from ICS device documents. This new model is designed to identify cybersecurity
claim-related sequences.

2. We present our extensive experiments conducted to optimize hyperparameters and
model architecture selection.

3. We show and discuss our results of a comparative evaluation of CyBERT against other
language models. The results suggest that a fine-tuned BERT configuration with two
hidden dense layers and a classification layer achieves the highest accuracy.

An important part of NLP tasks is word embedding. Embedding represents each
word as a multidimensional vector. Traditional neural network models use the traditional
word-level embedding methods, including GloVe and Word2vec. These models are only
trained based on a specific task to capture features and remove the contextual meaning of
each word.

Newer language models, on the other hand, use contextualized embedding methods.
These methods are designed to capture the semantics of words by including information
about its surrounding context. The BERT-Base model is one such model that uses a
contextualized embedding method and utilizes 768-dimensional tokens to represent its
vocabulary entries. More details on these embedding methods are provided in Section 3.1
further below.

In this article, we compare the results and performance of our model with other
well-known transformer-based models, such as GPT, as well as more traditional models,
such as ULMFiT and neural network (NN) models. The results are discussed in detail in
Section 5. Because of the above-mentioned limitations of word-level embedding methods
such as GloVe, and the benefits of contextualized embedding methods, we used the BERT
tokenizer for our language models.

The remainder of this article is organized as follows. In Section 2, we briefly review
related works. We present background information related to NLP in Section 3. In Section 4,
we describe the overall system framework and our proposed architecture including prepara-
tion of the domain-specific dataset, hyperparameter selection, and the fine-tuning strategy.
We present and discuss our findings by comparing CyBERT’s results with those of other
NLP and neural network models in Section 5, and in Section 6 our conclusions are presented.

2. Related Works

Adapting a pre-trained language model for specifically targeted tasks can dramat-
ically improve performance. In recent years, language models have demonstrated sig-
nificant advances in downstream tasks including classification and sentiment analysis.
In the following paragraphs, we discuss recent studies in language model improvements.
These improvements are divided into pre-training language models and fine-tuning lan-
guage models.

BERT [5] has gained popularity among researchers in a wide variety of fields. Lee et al.
used a large biomedical corpus to build BioBERT, a pre-trained biomedical language
representation model for biomedical text mining [7]. BioBERT is trained on the original
corpora of BERT and expanded with additional biomedical corpora. The resulting BioBERT
improves biomedical name entity recognition (NER), biomedical relation extraction (RE),
and biomedical question answering (QA) tasks. Naseem et al. [8] used the same corpus
as BioBERT to pre-train a new domain-specific language model based on the ALBERT [9]
architecture, including its initial weights. The new pre-trained language model is then
fine-tuned on four different biomedical NER datasets.

A pre-trained language model for scientific text (SciBERT) was introduced by Beltagy,
I., Lo, K., and Cohan, A. [10]. This model was pre-trained on a large corpus of biomedical

299

J. Cybersecur. Priv. 2021, 1

and computer science studies and a specific in-domain vocabulary (SCIVOCAB). SciBERT
outperforms BERT and BioBERT on all downstream tasks in the scientific domain.

All of these studies demonstrate the benefits of pre-training a language model using a
domain-specific corpus. However, although pre-training shows great improvements on the
downstream tasks, the process is very computationally expensive and typically requires
large additional corpora [7,11]. For those reasons, we focused on the fine-tuning process
for our CyBERT language model.

Many NLP studies investigate the use of language models on specific downstream
tasks, such as [12–16]. Several studies have shown that fine-tuning language models such
as BERT for a downstream task on a domain-specific dataset may improve the performance
of the model. Some examples of these models are patent classification with fine-tuning a
pre-trained BERT Model (PatentBERT) [17], financial sentiment analysis with pre-trained
language models (FinBERT) [18], or a pre-trained financial language representation model
for financial text mining [19]. These research works have shown that fine-tuning can
substantially improve the performance of BERT for a specific task. Sun et al. [15] showed
that fine-tuning a pre-trained language model for a specific downstream task can be
trained on a small dataset with only a few training shots and thus does not require a large
additional corpus.

Language Models in Cybersecurity

The use of language models such as BERT specifically for applications in the cyber-
security domain is rather limited so far. One of the few studies from this domain is [20],
which describes the use of BERT for classifying vulnerabilities. Some other examples are
fine-tuning BERT for NER for the cybersecurity domain in English [21–23], Russian [24],
and Chinese [25]. Another example is ExBERT [26], a fine-tuned BERT with sentence-level
sentiment analysis for vulnerability exploitability prediction.

From our review, we could not find any language model tuned for cybersecurity text
classification tasks. In this study, we thus developed a claim sequence database specifically
for the cybersecurity domain. This database was then used to generate CyBERT, a fine-
tuned BERT classifier on cybersecurity sequences to identify feature claims. These claim
sequences will then be used in our cybersecurity vetting engine to verify those features
against the published industry requirements for cybersecurity.

3. Background Knowledge

3.1. Word Embedding

Word embedding is a critical part of any sequence-related NLP task. With embedding,
each word is represented in a multidimensional vector space. These vectorized words,
or tokens, are subsequently used as an input for neural networks. Embedding techniques
are mainly divided into word-level and contextualised techniques:

3.1.1. Word-Level Embedding

Traditional vector representations of words, such as word2vec [27], fastText [28],
or GloVe [29] are generally used to provide subword features in conjunction with an
embedded conventional word. A recurrent neural network (RNN) or convolutional neural
network (CNN) encoder produces the word-level embedding of a word from the input
word set [30,31]. A disadvantage of word-level representations is that they strictly compile
all the different possible meanings of a word into a single representation, thus not taking
the surrounding context into consideration. Therefore, these methods cannot disambiguate
word meanings based on the context in which a word is used.

3.1.2. Contextualized Embedding

A contextualized embedding is designed to capture word semantics in a context
based on their surrounding text [32]. ELMo [4], GPT [6], and BERT [5] are well-developed
contextualized embedding tools for language models and downstream tasks.

300

J. Cybersecur. Priv. 2021, 1

ELMo can produce context-sensitive embeddings for each word within a sentence,
which can then be supplied to downstream tasks. BERT, and GPT, on the other hand,
utilizes a fine-tuning approach that can adapt the entire language model to a downstream
task, resulting in a task-specific architecture.

BERT uses a masked language model (MLM) technique to train a deep bidirectional
representation of a sentence by randomly masking an input token and then predicting it. It
also utilizes next-sentence prediction (NSP) to characterize and learn sentence relationships.
With the help of these two unsupervised tasks, BERT is combining the strengths of GPT
and ELMo [21].

BERT uses the WordPiece embedding technique [33] with a 30,000-token vocabu-
lary [5]. The WordPiece method divides each word into a limited set of common sub-words
and eliminates the need to deal with unknown words. This technique is very flexible for
single characters and highly efficient for full-word decoding [33].

3.2. Pre-Trained Models

A pre-trained language model mainly refers to an NLP model that was trained on a
large text corpus using an unsupervised training approach and that represents a general
language domain. These models can be used for next-word prediction, for example.
Some pre-trained language models such as BERT and GPT architecture contain multiple
transformers stacked on top of each other to extract features from inputs with an attention
mechanism. Each transformer element itself utilizes an encoder–decoder architecture,
with both the encoder and decoder comprised of six layers, each with a multi-head self
attention and a fully connected feed-forward network [34].

Leveraging a pretrained architecture and its associated pretraining weights enables us
to more easily transfer the learning to our specific problems. Broadly, pretrained models
can be divided into two main categories, in terms of their application:

1. Multi-purpose language models such as ULMFiT [3], Google BERT [5], and OpenAI
GPT [6].

2. Word-embedding language models such as ELMo [4].

Out of all reviewed models, including GPT, UlMFiT, and ElMo, we determined that
BERT embodies our target domain the closest. It requires the least amount of training
and adaptation. BERT is an open-source model with a very strong tokenizer and word-
embedding matrix. Based on these advantages, it was therefore chosen as the basis for
our work.

BERT has two versions: BERT-Base, with 12 encoder layers, an embedding size
of 768 dimensions, 12 multi-head attentions, and 110M parameters in total as well as
BERT-Large, with 24 encoder layers, an embedding size of 1024 dimensions, 16 multi-
head attentions, and 340M parameters. Both of these models have been trained on the
BookCorpus and the collection of pages from the English Wikipedia, which have more
than 3.5 billion words in total [5].

Although adapting a pre-trained language model such as BERT for a specific task
improves performance dramatically, there is an inherent risk of catastrophic forgetting
during training when unlocking all layer weights. Furthermore, it also can suffer from
randomness effects as a result of training with smaller datasets. Our efforts to avoid
these two potential risks to CyBERT’s successful model training included the approaches
described in Sections 4.2.1.1 and 4.3.1 related to catastrophic forgetting and randomness
effects, respectively.

4. Proposed Architecture

In this section, we introduce CyBERT and detail its fine-tuning strategy for BERT
hyperparameters. Recall that CyBERT is a cybersecurity claim classifier to detect sequences
related to device features. These claims then will be used to vet against relevant cybersecu-
rity requirements.

301

J. Cybersecur. Priv. 2021, 1

There are two main steps in our framework: claim sequence database curation and
fine-tuning BERT. Figure 2 shows an overview of CyBERT workflow. To the best of our
knowledge, there currently is no readily available dataset representing a corpus specific
to cybersecurity that we could use for training CyBERT. Hence, we created a new labeled
dataset that contains claim-related sequences. For fine-tuning, CyBERT is first initialized
with BERT’s initial weights, adding dense layers and dropouts and subsequently tuning all
layers and parameters using our labeled database and architecture.

Figure 2. Overview of CyBERT workflow.

4.1. Dataset

As previously stated, there was no available dataset specific to the cybersecurity
literature for NLP tasks, in particular with an emphasis on industrial control systems (ICS).
Therefore, in our previous work [1] we proposed a framework to curate a large repository
of ICS device information. This framework was designed to perform web scraping, data
analytics, and natural language processing (NLP) techniques to identify ICS vendor web-
sites, automate the collection of website-accessible documents, and automatically derive
metadata from them for identification of documents relevant to this dataset.

All of the ICS device information documents that our framework curates were down-
loaded from vendor websites in PDF format.

Out of 19,793 documents, we scraped across the identified vendor websites; 3% were
unreadable, and 5% were scanned documents. ICS product-related documents accounted
for 63% of the downloaded documents. From those 12,581 product-related documents, 25%
were classified as “manual,” 69% were classified as “brochure,” and 6% were “catalogs”.
On average, each of the product-related documents contained 31.2 pages. Some statistics
from this repository are presented in Table 1.

The PyMuPDF python package was used to extract text from readable documents, and
the Pytesseract python package was employed for optical character recognition (OCR)
from any scanned PDF. These documents contain regular paragraphs, tables, lists, and
images. Our system aimed to extract sequences from all of those document entities. Across
the collection of ICS-related documents in our dataset, we extracted 216,0517 sequences
with 41,073,376 words.

302

J. Cybersecur. Priv. 2021, 1

Table 1. ICS vendor and documents statistics in repository.

Manual Brochure Catalog

Number of entities 2844 7832 666

Number of documents per vendor
Mean 19.77 47.75 4.06
Max 164 839 111
Min 0 0 0

Number of pages per vendor
Mean 19.77 3.37 83.84
Max 164 12 2155
Min 0 0 0

Number of pages per document
Mean 29.51 3.12 164.67
Max 292 14 2155
Min 3 1 10

Bias in machine learning often is the result of bias present in the training data set
and is a known problem for any language model [35], including when training CyBERT.
Language models such as BERT and GPT are well known to exhibit an exploitable biases,
including for unethical AI behavior [36], the irresponsible use of AI [37], perpetuating
stereotypes [38], and negative sentiments towards specific groups [39].

According to these articles, these issues are due to the characteristics of the training
data. We therefore tried, as much as possible, during the curation of our dataset to remove
any sequences that contained obvious bias towards or against vendors, devices, capabilities,
etc., but we nevertheless do not presume that there is no bias present in our dataset. Hence,
we are committed in our ongoing efforts to further evaluate and mitigate the bias within
CyBERT’s training data set, as well as from CyBERT’s operation.

4.2. Fine-Tuning BERT

An appropriate fine-tuning strategy is needed to adapt BERT to a given downstream
task in a target domain. Howard and Ruder have discussed the benefits of fine-tuning a
language model on a specific dataset to improve the classification performance [3]. An
illustration of the architecture for CyBERT is in Figure 3, where the model starts with initial
weights from a general corpus and is subsequently fine-tuned based on target task-specific
supervised data for text classification.

Figure 3. Overview of fine-tuning BERT for CyBERT.

A critical issue that must be considered when fine-tuning BERT for a target task is
the problem of overfitting. It is necessary to develop a better optimization method with a

303

J. Cybersecur. Priv. 2021, 1

suitable learning rate. In the following subsections, we describe in detail our strategies for
learning rate (LR) and epoch limit selection to avoid catastrophic forgetting and overfitting,
respectively. A third consideration for fine-tuning a BERT classifier is determining the
most informative layer of BERT to connect to the classifier layer. The final fine-tuning step
is finding best number of dense layers and dropout rate for the classifier based on the
hyperparameters and the dataset.

4.2.1. Hyperparameters
4.2.1.1. Catastrophic Forgetting

During the process of learning new knowledge by unlocking weights already es-
tablished from prior training, there is a risk that the pre-trained knowledge is erased.
McCloskey et al. referred to this as the catastrophic forgetting effect in transfer learn-
ing [40]. Sun et al. showed that BERT is prone to the catastrophic forgetting problem [15].
We fine-tuned BERT with different learning rates (ranging from 1× 10−4 to 1× 10−7) in
order to investigate the catastrophic forgetting effects. Figure 4 shows the learning curves
of error rates in our training and validation sets. The validation set is a portion of the
overall data set and was used to determine whether the learned patterns are extendable to
unseen data.

As demonstrated by Sun et al.’s [15] method, unfreezing all transformer layers and
concatenating the layer weights would reduce the error rate. Therefore, we unfroze all
layers in the BERT model during CyBERT’s fine-tuning process. This allows all weights
to be updated in all the layers during the training process. We conducted the training
repeatedly, in order to allow us to fine-tune the selection of our starting learning rate,
and then we carefully monitored the training progress, specifically to avoid the risk of
catastrophic interference for the model.

Figure 4. Learning rate effect on model convergence.

Figure 4 shows that a lower learning rate, such as 1× 10−6, is necessary for our fine-
tuned BERT model in order to overcome the catastrophic forgetting effect. Furthermore,
the figure also shows that fine-tuning BERT using a higher learning rate, such as 1× 10−5

or 1× 10−4, results in convergence failure.
We utilized the cyclic method explained by Smith to determine the optimal learning

rate range for our model [41]. In this method, the learning rate is initially low, and then it
is increased exponentially for each batch. To find the best learning rate, we plotted training
loss results for each batch. The best initial value of the learning rate was somewhere around
the middle of the sharpest descending loss curve (left plot) or the lowest value in the loss
derivatives with respect to the learning rate (red arrow in the right plot in Figure 5).

304

J. Cybersecur. Priv. 2021, 1

Figure 5. Impact of learning rates when fine-tuning our model.

We analyzed different values within the optimal range shown in Figure 5 to determine
the best initial learning rate for our model. In our model, the loss function started to
decrease very rapidly when the learning rate was between 1× 10−7 and 1× 10−6 (see
Figure 5). By choosing a value in this range, we still were able to further decrease the LR
using ReduceLROnPlateau. ReduceLROnPlateau reduces learning rate by a factor of 0.5 if
the validation loss does not improve after two iterations (epochs).

4.2.1.2. Overfitting

Choosing the exact number of training epochs to use is a common problem in training
neural networks. Overfitting of the training dataset can be caused by too many epochs,
whereas underfitting may result from too few iterations. By selecting an appropriate
early-stopping method we can start with a large number of epochs and stop the training
process if the monitored metric does not show any improvement. This alleviates the needs
to manually select the number of epochs and instead utilize a data-driven automation
approach. In our model, we monitor the validation loss value and will stop training after
four epochs if it does not show any improvement.

4.2.2. Selecting Optimal Classification Layer

The BERT-base model consists of an embedding layer, a stack of 12 encoders for the
base model, and a pooling layer. The input embedding layer operates on the sum of the
token embeddings, the segmentation embeddings, and the position embeddings. The final
hidden state from encoders is corresponding to the special classification token (CLS).
For the text classification task, this token is used as the aggregate sequence representation.

The first layer after the encoders is the next sentence prediction (NSP) layer. The NSP
layer is utilized to understand sentence relationships [5]. This layer transforms the last
encoder layer output (CLS token) into two vectors, each representing IsNext and Not-
Next, respectively. The NSP layer then is connected to a fully connected neural network
for classification.

We did not freeze any of the layers during the fine-tuning process. In this way,
the model will adjust BERT’s pre-trained weights based on our dataset, hyperparameters,
and our given downstream task.

4.2.3. Selecting the Optimal Number of Dense Layers

Different layers of a neural network can capture different levels of syntactic infor-
mation for text classification [3]. We studied the impact of different numbers of fully
connected dense layers on top of the stacked encoders in BERT, in order to determine
the best model based on our given dataset. The hyperparameters we adapted here are
the different dropouts and the number of neurons for each dense layer. We achieved the
best results for two dense layers with 64 and 16 neurons and dropout rates of 0.5 and 0.3,
respectively. Table 2 shows the highest accuracy and learning rate based on the different
number of dense layers.

305

J. Cybersecur. Priv. 2021, 1

Table 2. Comparing different number of dense layers in fine-tuning CyBERT.

Model Architecture LR Accuracy F1 Score

BERT base + 1 dense 2× 10−5 0.92 0.91
BERT base + 2 dense 2× 10−6 0.92 0.92
BERT base + 3 dense 4× 10−6 0.948 0.932
BERT base + 4 dense 1× 10−5 0.93 0.93

4.2.4. Labeling Process

We designed and implemented a mobile application to aid in the manual labeling of
extracted sequences. A snapshot of the application is provided in Figure 6. This mobile
app was written as a Xamarin.Forms app [42], an open-source mobile app development
framework for building Android and iOS apps with .NET and C#. This application
supports initial labeling and relabeling and also supports labeling using multiple people,
by associating designated labels with the person providing that label. This can subsequently
be used for outlier removal, computation of majority decisions on final labels, and more.

Figure 6. A snapshot of the manual labeling mobile app.

4.2.4.1. Initial Labelling

We manually labeled sequences extracted from a sample of ICS device documents.
Claim sequences were initially categorized into three types, including generic claims,
device claims, and cybersecurity claims. Having these individual claim types will help
future investigation regarding claim type detection. For the purpose of this study, we
grouped all these types of claims as claim labels and also removed the sequences with the
“Not Sure” label from the classification dataset.

4.2.4.2. Prediction-Guided Relabeling Process

After obtaining our initial labeled dataset, we used it to train CyBERT. We followed
the fine-tuning process we detailed earlier in this article. The trained model was then used
to predict the class labels for each sequence, and we compared the results with the manual
labels. From that comparison, we could find that there were a number of sequences whose
class prediction probability was in the vicinity of 0.5, indicating a large uncertainty in
some instances. We carefully reviewed each of those cases and adjusted the labels where
necessary. The final class count and their distribution are reported in Table 3.

306

J. Cybersecur. Priv. 2021, 1

Table 3. Number of sequence labels and label distribution in each class.

Class Label Final Label Counts Final Label Distribution

NotClaim 4544 67.189%
ClaimDevice 848 12.53%
ClaimGeneric 807 11.93%
ClaimCybersec 335 4.95%
NotSure 226 3.34%

After this label review process, we repeated the fine-tuning process to obtain new
model parameter values. A comparison of the obtained results pre- and post-label re-
view demonstrate the improvement to CyBERT from this iterative refinement process.
The obtained probabilities were sorted and plotted in the Figure 7, showing that we could
successfully reduce the model uncertainty.

Figure 7. Sorted probabilities with (a) initial labeling and (b) revised labeling.

4.3. Classifier Training

One of the benefits of the pre-trained model is being able to train a model for down-
stream tasks by utilizing relatively small training data sets [15]. We manually labeled
6763 sequences from a set of documents then fine-tuned BERT on the resulting dataset.
For training the classifier, we evaluated the impact of selecting different number of dense
layers and learning rate values.

We subsequently tested the model on our dataset and adjusted labels for sentences
causing uncertainty within the model. This iterative process helped us to reduce the
uncertainty of our tuned model (Figure 7). We fine-tuned BERT on the revised database
and tuned the associated hyperparameters to improve the claim classifier. The final model
accuracy we achieved with CyBERT was 94.4%. We set the sequence length and batch size
to 128 and 32, respectively.

307

J. Cybersecur. Priv. 2021, 1

4.3.1. Impact of Randomness

Fine-tuning BERT on a small dataset can be unstable [5]. Randomness in machine
learning models can happen because of randomly initialized weights and biases, dropout
regularization, and optimization techniques [43]. To investigate their effects and impact on
our model, we performed the training stage 100 times, using the same model hyperparam-
eters and only varying the random seeds, in order to achieve a statistically reliable result
for our model accuracy.

The distributions of the training accuracy, validation accuracy, and testing accuracy are
plotted in Figure 8. Table 4 reports the standard deviation, mean, and confidence interval
(CI), as well as the margin of error for 100 training runs each for validation, training, and
testing. These plots and the associated table show that CyBERT’s true accuracy was within
the 0.943 and 0.945 interval with a 95% CI.

These results suggest that the accuracy of our model can be impacted by the ran-
dom seed value selection. Therefore, based on the recommendation published in the
literature [5], we chose the random seed that leads to the highest validation accuracy
for CyBERT.

Table 4. Standard deviation and mean for training, validation, and testing accuracy.

Dataset SD Mean CI (95%) Margin of Error

Training 0.012 0.959 0.957 to 0.961 0.00235
Validation 0.006 0.944 0.943 to 0.945 0.00118
Testing 0.007 0.935 0.934 to 0.936 0.00137

The results from Table 4 and Figure 7 confirms that even though our labeling set was
small, the resulting CyBERT classifier can successfully identify cybersecurity feature claims
within sequences with a high level of confidence.

Figure 8. Kernel density estimation (a); box plot (b) for training, validation, and testing accuracy; validation accuracy
histogram (c).

5. Results and Discussion

All the models in this study were executed on our university’s supercomputing
infrastructure, HCC Crane [44] with NVIDIA Tesla V100 GPUs with 16 GB of RAM per
GPU. To obtain an unbiased estimate of out-of-sample accuracy, we divided the sequence
dataset into training, validation, and test samples, utilizing 70%, 10%, and 20% or our total
dataset, respectively.

For the comparison of the models, we used accuracy and macro-weighted F1 for all
models. All accuracies reported in this article were based on predictions for the test set.
Macro-weighted F1 is a measure of a model’s accuracy on a dataset, which returns the
average F1 score considering the proportion for each label in the dataset.

308

J. Cybersecur. Priv. 2021, 1

5.1. Comparing CyBERT with Pre-Trained BERT for Sequence Classification

In order to evaluate our strategy for fine-tuning BERT, we compared the results
with BertForSequenceClassification. BertForSequenceClassification is a pre-trained BERT
transformer model released by the Google research group in [5] with a dropout layer
followed by a softmax classification/regression layer on top of the stacked decoder output.
The predicted probability of each label is calculated as:

P(c|h) = softmax(Wh) (1)

where h is the final hidden state of the first token in the BERT token embedding matrix
(CLS), and W is the matrix for task-specific parameters.

To evaluate the impact of the architecture and the training approach, we conducted
two separate experiments. In both, we started with the BertForSequenceClassification
model. This model is comprised of 12 stacked encoders, a dropout layer, and a classifier
layer. This model was initialized from pre-trained BERT.

In the first experiment, all transformer layers remained frozen. During training of
the classifier it can therefore only tune the last layer, which is the classification layer.
The resulting accuracy of this model on our dataset was 76%.

In the second experiment, for the purpose of comparison and to show the effect of fine-
tuning, we employed the same model architecture as in the first experiment but enabled
full fine-tuning by unfreezing all its layers. The fine-tuning process also involved finding
the optimum LR based on this model architecture and dataset.

Table 5 shows the best accuracy among all the learning rates we studied for both
approaches using BertForSequenceClassification, from among the tested range of 1× 10−2

to 5× 10−7. The results show that unfreezing all encoders during fine-tuning of the model,
training the classifier, and optimizing hyperparameters improved the model accuracy by
16 percentage points, from 76% to 92%.

As we have shown in the previous section, by further optimizing the architecture itself
and introducing additional layers, we could further improve CyBERT’s accuracy to 94.4%.

Table 5. Fine-tuning effect on BERT with one classification layer.

LR Accuracy F1 Score

BertForSequenceClassification 1× 10−7 0.76 0.72
Fine-tune BERT-base uncased 2× 10−5 0.92 0.91

5.2. Comparing CyBERT with Other Language Models
5.2.1. Generative Pre-Trained Transformer (GPT)

GPT models are unsupervised transformer language models that are trained on a
very large corpus of text. GPT-2 [6] was trained on a diverse corpus of unlabeled text
(40 GB of Internet text). The GPT-2’s main training objective is to be able to predict the next
word while all of the previous words are given. Although BERT and GPT are both very
strong language models, trained on a large corpus of data, and based on the transformer
architecture using masked self attention, they are fundamentally different. GPT-2 uses
decoder blocks from the transformers, while BERT utilizes encoder-only transformers.
The other main difference between these two models is the word embedding. GPT-2
takes word vectors as input and produces the probability estimation of the next word
as outputs (one token word at a time), while BERT uses the entire surrounding context
together. GPT-2-small contains a 12-layer decoder-only transformer with 12 attention heads.
Fine-tuning pre-trained GPT-2 is a two-stage semi-supervised approach. This process starts
with using the pre-trained GPT model weights to set the initial parameters (unsupervised).
Fine-tuning is then the supervised discrimination technique to adjust parameters to the
target task. In this study, we fine-tuned GPT-2 (small and medium) with our dataset after
unfreezing all layers in the transformer blocks. We also tried different learning rates and

309

J. Cybersecur. Priv. 2021, 1

reported the values in Table 6. Due to model limitations, we were not able to perform
GPT-2 large and GPT-2 extra large. We also requested OpenAI GPT-3 API services, but as
of the time of writing this article, we were still awaiting approval for resource access.

Table 6. Fine-tuning GPT-2 small and medium.

LR Accuracy F1 Score

GPT-2 Small

1× 10−2 0.86 0.84
2× 10−4 0.89 0.87
2× 10−3 0.88 0.85
2× 10−5 0.91 0.89
2× 10−6 0.85 0.81
2× 10−7 0.70 0.52

GPT-2 Medium

2× 10−2 0.87 0.85
2× 10−3 0.90 0.87
2× 10−4 0.90 0.86
2× 10−5 0.91 0.89
2× 10−6 0.92 0.91
2× 10−7 0.75 0.63

Table 6 indicates that the highest accuracy was 91%, which was achieved by the
GPT-2 medium model with an LR of 2× 10−6. We observe from Figure 9 that the GPT-2
classifier model will not converge if the learning rate is higher than 2× 10−6(blue lines) for
GPT-2 small, or 2× 10−7 (orange lines) for GPT-2 medium, respectively. This phenomenon
indicates the catastrophic forgetting effect present in the GPT-2 models. These plots indicate
that the acceptable hyperparameters for these models for training small and medium GPT-2
models are in the vicinity of 2× 10−6and 2× 10−7, respectively.

Figure 9. Loss changes for GPT-2 models with different learning rates: GPT-2 medium (left) and GPT-2 small (right) for
15 epochs.

5.2.2. ULMFiT

Universal language model fine-tuning (ULMFiT) [3] is a transfer learning method
for NLP tasks including text classification. The ULMFiT architecture includes a three-
layer weight-dropped LSTM (AWD-LSTM). The averaged stochastic gradient method
(ASGD) AWD-LSTM [45] uses the DropConnect method to regulate weights in the recurrent
networks. The ULMFiT training starts with a general language model pre-trained on a
large Wikipedia text corpus (103 million words). For any domain-specific task, ULMFiT
provides a discriminative fine-tuning process for the desired domain. The discriminative

310

J. Cybersecur. Priv. 2021, 1

fine-tuning refers to using different learning rates to tune each layer. The final step is
fine-tuning the updated language model on the target downstream task (such as text
classification). In order to compare our CyBERT model with ULMFiT, we used the gradual
unfreezing method to fine-tune ULMFiT. This process starts by only unfreezing the final
layer while keeping all others frozen. The process then fine-tunes the model for several
epochs and determines a new optimal learning rate for the tuned model up to this point
before repeating this process while gradually unfreezing all other layers. The accuracy for
each step is presented in Table 7.

Table 7. Fine-tuning ULMFiT.

Fine-tuning ULMFiT Accuracy F1 Score

Unfreeze last layer 0.83 0.83
Unfreeze last two layers 0.87 0.85
Unfreeze all layers 0.91 0.91

The best accuracy we achieved by fine-tuning ULMFiT on our dataset was 91% with
unfreezing all three-layer AWD-LSTM weights. Unfreezing all layers will update all
weights during the training process.

5.2.3. ELMo

Embeddings from language models (ELMo) [4] is a context-based word embedding
method. This model learns contextualized word representations using two layers of
BiLSTMs and a character-based encoding layer. Using a character-based layer, characters
are encoded into a word’s representation for the following two BiLSTM layers that enable
hidden states to enhance a word’s final embedding.

Classification using ELMo starts with tokenizing each sequence with ELMo, with the
resulting embedding vectors subsequently used as input to different NN models. In our
experiments using ELMo, we utilized a fully connected neural network, CNN, BiLSTM,
and LSTM in order to compare the results with our model. For each model, based on
the defined architecture, we first determined the best learning rate based on the method
explained in [41]. Table 8 summarizes the best results for each type of neural network.

Table 8. Classification using ELMo.

Architecture LR Accuracy F1-Score

ELMo + NN 2 Dense 9× 10−5 0.91 0.9

ELMo + CNN
3 Convolution 4× 10−7 0.91 0.89
2 Convolution 1× 10−4 0.91 0.89
1 Convolution 6× 10−5 0.92 0.9

ELMo + BiLSTM
3 BiLSTM 2× 10−4 0.87 0.85
2 BiLSTM 4× 10−6 0.88 0.86
1 BiLSTM 1× 10−4 0.91 0.89

ELMo + LSTM
3 LSTM 9× 10−4 0.89 0.86
2 LSTM 2× 10−4 0.89 0.87
1 LSTM 2× 10−5 0.90 0.88

Table 8 shows that the highest accuracy was achieved by using the ELMo tokenizer
and one convolutional layer with a filter size of 128, connected to two dense layers with
256 and 128 neurons, respectively, each followed by dropout layers with rates 0.3 and 0.2,
respectively.

311

J. Cybersecur. Priv. 2021, 1

5.3. Comparing CyBERT with Neural Networks

Traditionally, text classification with NN models utilized word-level embedding
methods such as GloVe. The problem with these embedding methods is that it removes the
contextual meaning of these words.

Throughout all of the different evaluations shown in the following sections for the
different NN models, in each case we first obtained the 768-dimensional BERT-Base uncased
tokenizer embeddings for each WordPiece token in the input sequences. By utilizing the
same tokenizer for all these models, we can exclude the effect of the tokenizer embedding
on a model’s performance.

5.3.1. Convolutional Neural Network

A convolutional neural network (CNN) is a class of artificial neural network models
that is capable of extracting abstract features from complex data. Through many iterations,
the model learns to map inputs to their class labels. CNNs are composed of two main
components: (1) the first component consists of several filters and pooling layers that are
applied to multi-dimensional arrays in order to create a feature space. These features are
abstractions of the most significant characteristics contained within the input data; (2) the
second component of CNNs contains a fully connected network that maps the extracted
features to their target. In classification problems, this target is a group of data that shares a
common property. In CNNs, the multi-dimensional output of the convolution component
is flattened and passed to the fully connected network.

We studied the impact of different values for the CNN hyperparameters, including the
number of convolutions, different dropout rates for each layer, and the number of dense
layers after the convolutions. For each architecture, the best learning rate was determined
using the LrFinder function [41]. The best accuracies for all architectures are reported in
Table 9.

Table 9. Comparing CNN-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 Convolution
1 Dense 4× 10−4 0.88 0.87

2 Dense 5× 10−4 0.87 0.87
3 Dense 1× 10−4 0.87 0.86

2 Convolution
1 Dense 5× 10−5 0.87 0.86
2 Dense 5× 10−5 0.87 0.86
3 Dense 2× 10−3 0.87 0.86

3 Convolution
1 Dense 4× 10−4 0.86 0.85
2 Dense 4× 10−4 0.86 0.85
3 Dense 1× 10−4 0.86 0.86

Table 9 shows that the best results were achieved using a network with one convolution
(128 filters) connected to a dense layer with 256 neurons followed by a dropout layer with
a 0.3 dropout rate.

5.3.2. LSTM

It has been shown in [46] that neural network models can be applied to learn dis-
tributed sentence representations and achieve good results in tasks related to sentiment
classification and text categorization with little external domain knowledge. In long short-
term memory (LSTM) neural networks, features are learned at the phrase-level by using a
convolutional layer. This convolutional layer then feeds sequences of such higher-layer
representations into LSTMs to learn their relationships to long-term features.

The LSTM model for NLP tasks requires an embedding matrix. We once again utilized
the BERT-based uncased tokenizer for embedding each token into its vector for initializing

312

J. Cybersecur. Priv. 2021, 1

the model. We evaluated different options for the number of LSTM and dense layers,
in order to determine the best hyperparameters and the resulting architecture. The best
learning rate for each architecture was determined again using the LrFinder function.
We achieved the best accuracy with an architecture comprised of a single LSTM with
150 hidden units and a 0.1 dropout rate, combined with two dense layers with 150 and
124 neurons, respectively, coupled with the BERT tokenizer. The achieved accuracies for
different configurations are reported in Table 10.

Table 10. Comparing LSTM-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 LSTM
1 Dense 1× 10−4 0.873 0.864
2 Dense 4× 10−5 0.867 0.830
3 Dense 5× 10−5 0.871 0.859

2 LSTM
1 Dense 2× 10−4 0.871 0.860
2 Dense 5× 10−5 0.872 0.862
3 Dense 4× 10−5 0.866 0.855

3 LSTM
1 Dense 2× 10−4 0.871 0.862
2 Dense 2× 10−3 0.865 0.853
3 Dense 5× 10−3 0.861 0.851

5.3.3. BiLSTM

Bidirectional LSTM models are especially suited for sequential modelling and can be
used to extract additional contextual information from the feature sequences provided by
the convolutional layer [47]. The bidirectional LSTM actually concatenates two one-way
actions to obtain the embeddings from the networks [48].

The BiLSTM recurrent network is once again utilizing the BERT-Base uncased tok-
enizer. In this model, we studied the impact of the number of BiLSTM layers, the number
of hidden LSTM dimensions, the dropout rates for each layer, and the number of dense
layers on top of the concatenated BiLSTMs. For each architecture, we determined the best
learning rate using the LrFinder function. Table 11 shows the achieved accuracies and F1
scores for each architecture configuration we tested.

Table 11. Comparing BiLSTM-based classifier results using the BERT tokenizer.

Architecture LR Accuracy F1 Score

1 BiLSTM
1 Dense 1× 10−5 0.88 0.87
2 Dense 5× 10−5 0.87 0.86
3 Dense 1× 10−4 0.88 0.87

2 BiLSTM
1 Dense 5× 10−4 0.87 0.86
2 Dense 4× 10−5 0.87 0.86
3 Dense 2× 10−5 0.87 0.85

3 BiLSTM
1 Dense 2× 10−5 0.87 0.86
2 Dense 4× 10−6 0.86 0.85
3 Dense 4× 10−5 0.87 0.86

Table 11 shows that the best result was achieved using a network with one BiLSTM
with 150 hidden units and a 0.1 dropout rate, which was connected to one dense layer with
150 neurons followed by a 0.1 dropout rate.

5.4. Performance Comparison for All Models

As shown in Figure 10, we presented the training and validation accuracy and the
loss values for all models during the training phase. The best validation accuracy was

313

J. Cybersecur. Priv. 2021, 1

achieved by CyBERT, proposed by our NLP model, with a 95.4% accuracy. The loss plots
indicate the effectiveness of the learning rate function we used for initializing all models.
Additionally, the loss plots show the effectiveness of the early-stopping method to avoid
overfitting in cases where the validation loss increases during the training phase.

Figure 10. Comparing training accuracy (left top), validation accuracy (right top), training Loss (bottom left), and validation
loss (bottom right) for all models.

Table 12 compares the accuracy for each model from our test set. The learning rates we
report in this table indicate the best LR we found for each model based on the architecture
and dataset we provided earlier. The learning rate was found via the LrFinder method
and fine-tuned during the training phase.

Binary classification algorithms are often evaluated using receiver operating charac-
teristic (ROC) curves. Instead of a single value, it provides a two-dimensional illustration
of classifier performance. ROC plots the false-positive rates against the true-positive rates
in classification. For the ideal classifier scenario, we want to observe a high true-positive
rate and a low false-positive rate [49]. Figure 11 compares the ROC curve for all the models
we tested in this study. The classifier was desired to be closer the upper-left corner of the
ROC curve plot. Figure 11 illustrates that our CyBERT classifier performed better in all
areas compared to all other models.

314

J. Cybersecur. Priv. 2021, 1

Table 12. Comparison across all tested models.

Model Architecture Accuracy
Macro

AUC
Training *̂ Testing *̂ Trainable

Weighted F1 Time Time Parameters

CyBERT 12 Encoder
0.954 0.93 0.948 32,970 97 108,647,026

(Our Model) 3 Dense
BERT 12 Encoder 0.76 0.72 0.773 7832 77 109,482,240Classifier 1 Dense
CNN with 1 Convolution 0.88 0.87 0.862 1470 75 11,330,286BERT Tokenizer 1 Dense
LSTM with 1 LSTM 0.86 0.83 0.852 1190 58 10,884,324BERT Tokenizer 2 Dense
BiLSTM with 1 BiLSTM 0.88 0.87 0.871 2412 61 12,604,804BERT Tokenizer 3 Dense

GPT2-Small 12 Decoder 0.9 0.87 0.908 37,640 134 125,444,1341 Dense

GPT2-Medium 24 Decoder 0.92 0.91 0.857 61,340 175 354,825,2161 Dense

ELMo + NN 2 Dense 0.91 0.9 0.910 3950 88 295,554

ELMo + CNN 1 Convolution 0.92 0.9 0.912 4128 105 16,778,2422 Dense

ELMo + LSTM 1 LSTM 0.90 0.88 0.916 15,603 74 19,785,4102 Dense

ELMo + BiLSTM 1 BiLSTM 0.91 0.89 0.897 18,216 58 15,854,2742 Dense

ULMFiT 3 AWD-LSTM 0.91 0.91 0.902 1873 42 62,652

*̂ Times are in seconds.

The other important parameter for a classifier is the “area under the ROC curve”
(AUC). Generally, the higher the AUC score, the better a classifier performs for the given
task [49]. The AUC is reported for all models in Table 12 and Figure 11, which indicate that
CyBERT had the highest AUC value among all tested models.

Figure 10 shows that the best value for AUC belongs to CyBERT, whichwasis 0.948.
This indicates that CyBERT is better at distinguishing classes than any other models we
compared it against in this study. The next-highest AUC values belonged to the ELMo
models, which were all at least three percentage points lower than CyBERT’s AUC.

The training time reported in Table 12 was only for the training phase after determin-
ing the optimum learning rate for each model. Language models such as BERT, GPT-2,
and ELMo typically require more time for the training phase because of the higher number
of trainable parameters. Among all these models, GPT-2 required the most time to complete
training, for both medium and small models, followed by our proposed model, CyBERT.
This result was expected based on the number of trainable parameters in these models.
Once trained, we do not need to repeat training for these models. They are ready to be
used for classification, unless the dataset needs to be updated.

315

J. Cybersecur. Priv. 2021, 1

Figure 11. ROC comparison for all models.

5.5. Summary of Results

Our CyBERT as well as the original BertForSequenceClassification employ 12 en-
coders. CyBERT employs two additional dense layers. The resulting F1 and accuracy
for CyBERT were 19 and 21 percentage points higher, respectively, than the performance
for BertForSequenceClassification, which indicates the fine-tuning effect on the model
performance. ULMFiT had the lowest number of trainable parameters and was the fastest
model in training and testing. However, it had a 4, 2, and 5 percentage point lower accuracy,
respectively, for accuracy, F1, and AUC, compared to CyBERT.

A comparison of the training and testing loss and accuracy results for all models is
also provided in Figure 10, with the red curve indicating CyBERT’s performance. The
macro-weighted F1 for CyBERT was 0.93, whereas, for GPT2-small, it was 0.87, which
represents a 6 percentage point improvement. Moreover, although CyBERT’s training time
was higher than the training times for the ELMo and ULMFiT language models, its accuracy
was 3 and 4 percentage points higher, respectively, which is a significant improvement.

6. Conclusions

We introduced CyBERT, a classification model obtained through fine-tuning the BERT-
base language model, utilizing our curated cybersecurity domain NLP dataset. This
classification model is motivated by our ongoing research in developing an unbiased,
objective, and semi-supervised approach, named CYVET, for vetting ICS device cybersecu-
rity implications through a process of automatically vetting vendor claims extracted from
device documentation via natural language processing against industry requirements. This
article details one of the core building blocks of the overall CYVET approach for vetting
cybersecurity claims.

We first generated a dataset comprised of a large number of ICS device documenta-
tions. We subsequently extracted and labeled sequences from these documents for the
purpose of this study. The resulting dataset was used to train a CyBERT that can be used to
detect claims about device features from within these documents. Our new CyBERT model
increased the accuracy of this classification task by 19 percentage points compared to the
original BERT text classifier.

316

J. Cybersecur. Priv. 2021, 1

We also provided an in-depth comparative analysis of BERT and CyBERT to show
the necessity of our fine-tuning strategies. In addition to CyBERT, we implemented other
pre-trained language models such as GPT-2, ELMo, ULMFiT, and various neural-network-
based models, including a convolution neural network (CNN), LSTM, and BiLSTM, for com-
parison against our presented model. The extensive experimental results showed the
effectiveness and robustness of CyBERT. The results demonstrate that the performance of
our CyBERT is better than that of all other models we tested as part of this study.

Author Contributions: Investigation, K.A., M.H. and H.S.; writing—original draft preparation, K.A.
and M.H.; writing—review and editing, K.A., M.H., H.S., K.P. and J.L.J.; supervision, H.S., M.H., K.P.
and J.L.J.; project administration, K.P. and J.L.J.; funding acquisition, H.S., M.H., K.P. and J.L.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the US. Department of Energy through a subcontract from
Oak Ridge National Laboratory, project No. 4000175929 (project CYVET).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been supported in part by the Department of Energy Cyberse-
curity for Energy Delivery Systems program and the Oak Ridge National Laboratory.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CYVET Cyber-physical security assurance
BERT Bidirectional encoder representations from transformers
CyBERT Cybersecurity BERT
ICS Industrial control systems
CR Cybersecurity requirements
VSF Vendor-supplied features
OT Operational technology
OCR Optical character recognition
NLP Natural language processing
ULMFiT Universal language model with fine-tuning
ELMo Embeddings from language models
GPT Generative pre-training
NER Name entity recognition
RE Relation extraction
QA Question answering
MLM Masked language model
NSP Next sentence prediction
LR Learning rate
CI Confidence interval
ASGD Averaged stochastic gradient
RNN Recurrent neural network
CNN Convolutional neural network
NN Neural network
LSTM Long short-term memory
BiLSTM Bidirectional LSTM
ROC Receiver operating characteristic
AUC Area under the ROC curve

317

J. Cybersecur. Priv. 2021, 1

References

1. Ameri, K.; Hempel, M.; Sharif, H.; Lopez, J., Jr.; Perumalla, K. Smart Semi-Supervised Accumulation of Large Repositories for
Industrial Control Systems Device Information. In Proceedings of the ICCWS 2021 16th International Conference on Cyber
Warfare and Security, Nashville, TN, USA, 25–26 Februray 2021; pp. 1–11.

2. Perumalla, K.; Lopez, J.; Alam, M.; Kotevska, O.; Hempel, M.; Sharif, H. A Novel Vetting Approach to Cybersecurity Verification
in Energy Grid Systems. In Proceedings of the 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA,
13–14 July 2020; pp. 1–6.

3. Howard, J.; Ruder, S. Universal language model fine-tuning for text classification. arXiv 2018, arXiv:1801.06146.
4. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.

arXiv 2018, arXiv:1802.05365.
5. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
6. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners.

OpenAI Blog 2019, 1, 9.
7. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model

for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef] [PubMed]
8. Naseem, U.; Khushi, M.; Reddy, V.; Rajendran, S.; Razzak, I.; Kim, J. BioALBERT: A Simple and Effective Pre-trained Language

Model for Biomedical Named Entity Recognition. arXiv 2020, arXiv:2009.09223.
9. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language

representations. arXiv 2019, arXiv:1909.11942.
10. Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A pretrained language model for scientific text. arXiv 2019, arXiv:1903.10676.
11. Edwards, A.; Camacho-Collados, J.; De Ribaupierre, H.; Preece, A. Go simple and pre-train on domain-specific corpora: On the

role of training data for text classification. In Proceedings of the 28th International Conference on Computational Linguistics,
Barcelona, Spain, 8–13 December 2020; pp. 5522–5529.

12. Jwa, H.; Oh, D.; Park, K.; Kang, J.M.; Lim, H. exbake: Automatic fake news detection model based on bidirectional encoder
representations from transformers (bert). Appl. Sci. 2019, 9, 4062. [CrossRef]

13. Vogel, I.; Meghana, M. Detecting Fake News Spreaders on Twitter from a Multilingual Perspective. In Proceedings of the 2020
IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), Sydney, Australia, 6–9 October 2020; pp.
599–606.

14. Liu, C.; Wu, X.; Yu, M.; Li, G.; Jiang, J.; Huang, W.; Lu, X. A two-stage model based on BERT for short fake news detection. In
Lecture Notes in Computer Science, Proceedings of the International Conference on Knowledge Science, Engineering and Management,
Athens, Greece, 28–30 August 2019; Springer: Cham, Switzerland, 2019; pp. 172–183.

15. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to fine-tune bert for text classification? In Lecture Notes in Computer Science, Proceedings of
theChina National Conference on Chinese Computational Linguistics, Kunming, China, 18–20 October 2019; Springer: Cham, Switzerland,
2019; pp. 194–206.

16. Khetan, V.; Ramnani, R.; Anand, M.; Sengupta, S.; Fano, A.E. Causal BERT: Language models for causality detection between
events expressed in text. arXiv 2020, arXiv:2012.05453.

17. Lee, J.S.; Hsiang, J. Patentbert: Patent classification with fine-tuning a pre-trained bert model. arXiv 2019, arXiv:1906.02124.
18. Araci, D. Finbert: Financial sentiment analysis with pre-trained language models. arXiv 2019, arXiv:1908.10063.
19. Liu, Z.; Huang, D.; Huang, K.; Li, Z.; Zhao, J. Finbert: A pre-trained financial language representation model for financial text

mining. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, Yokohama, Japan,
16–18 January 2021; pp. 5–10.

20. Das, S.S.; Serra, E.; Halappanavar, M.; Pothen, A.; Al-Shaer, E. V2W-BERT: A Framework for Effective Hierarchical Multiclass
Classification of Software Vulnerabilities. arXiv 2021, arXiv:2102.11498.

21. Zhou, S.; Liu, J.; Zhong, X.; Zhao, W. Named Entity Recognition Using BERT with Whole World Masking in Cybersecurity
Domain. In Proceedings of the 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), Xiamen, China, 5–8
March 2021; pp. 316–320.

22. Chen, Y.; Ding, J.; Li, D.; Chen, Z. Joint BERT Model based Cybersecurity Named Entity Recognition. In Proceedings of the 2021
The 4th International Conference on Software Engineering and Information Management, Yokohama, Japan, 16–18 January 2021;
pp. 236–242.

23. Gao, C.; Zhang, X.; Liu, H. Data and knowledge-driven named entity recognition for cyber security. Cybersecurity 2021, 4, 1–13.
[CrossRef]

24. Tikhomirov, M.; Loukachevitch, N.; Sirotina, A.; Dobrov, B. Using bert and augmentation in named entity recognition for
cybersecurity domain. In Lecture Notes in Computer Science, Proceedings of the International Conference on Applications of Natural
Language to Information Systems, Saarbrücken, Germany, 24–26 June 2020; Springer: Cham, Switzerland, 2020; pp. 16–24.

25. Xie, B.; Shen, G.; Guo, C.; Cui, Y. The Named Entity Recognition of Chinese Cybersecurity Using an Active Learning Strategy.
Wirel. Commun. Mob. Comput. 2021, 2021, 6629591. [CrossRef]

26. Yin, J.; Tang, M.; Cao, J.; Wang, H. Apply transfer learning to cybersecurity: Predicting exploitability of vulnerabilities by
description. Knowl.-Based Syst. 2020, 210, 106529. [CrossRef]

318

J. Cybersecur. Priv. 2021, 1

27. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems, Carson City, NV, USA, 5–10
December 2013; pp. 3111–3119.

28. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

29. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.

30. Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural architectures for named entity recognition. arXiv
2016, arXiv:1603.01360.

31. Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. Adv. Neural Inf. Process. Syst. 2015,
28, 649–657.

32. Akbik, A.; Blythe, D.; Vollgraf, R. Contextual string embeddings for sequence labeling. In Proceedings of the 27th international
conference on computational linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 1638–1649.

33. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

34. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December, 2017; pp.
5998–6008.

35. Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too
Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event Canada, New
York, NY, USA, 3–10 March 2021; pp. 610–623.

36. Leib, M.; Köbis, N.C.; Rilke, R.M.; Hagens, M.; Irlenbusch, B. The corruptive force of AI-generated advice. arXiv 2021,
arXiv:2102.07536.

37. McGuffie, K.; Newhouse, A. The radicalization risks of GPT-3 and advanced neural language models. arXiv 2020,
arXiv:2009.06807.

38. Basta, C.; Costa-Jussà, M.R.; Casas, N. Evaluating the underlying gender bias in contextualized word embeddings. arXiv 2019,
arXiv:1904.08783.

39. Hutchinson, B.; Prabhakaran, V.; Denton, E.; Webster, K.; Zhong, Y.; Denuyl, S. Social biases in NLP models as barriers for persons
with disabilities. arXiv 2020, arXiv:2005.00813.

40. McCloskey, M.; Cohen, N.J. Catastrophic interference in connectionist networks: The sequential learning problem. In Psychology
of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 1989; Volume 24, pp. 109–165.

41. Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE winter conference on applications
of computer vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472.

42. Hermes, D. Xamarin Mobile Application Development: Cross-Platform c# and Xamarin. Forms Fundamentals; Apress: Berkeley, CA,
USA, 2015.

43. Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi, H.; Smith, N. Fine-tuning pretrained language models: Weight
initializations, data orders, and early stopping. arXiv 2020, arXiv:2002.06305.

44. Holland Computing Center (HCC) at University of Nebraska-Lincoln. Available online: https://hcc.unl.edu/ (accessed on 1
January 2021).

45. Merity, S.; Keskar, N.S.; Socher, R. Regularizing and optimizing LSTM language models. arXiv 2017, arXiv:1708.02182.
46. Zhou, C.; Sun, C.; Liu, Z.; Lau, F. A C-LSTM neural network for text classification. arXiv 2015, arXiv:1511.08630.
47. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing

2019, 337, 325–338. [CrossRef]
48. Liu, P.; Qiu, X.; Huang, X. Recurrent neural network for text classification with multi-task learning. arXiv 2016, arXiv:1605.05101.
49. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

319

Article

RSSI-Based MAC-Layer Spoofing Detection: Deep
Learning Approach †

Pooria Madani * and Natalija Vlajic

Citation: Madani, P.; Vlajic, N.

RSSI-Based MAC-Layer Spoofing

Detection: Deep Learning Approach.

J. Cybersecur. Priv. 2021, 1, 453–469.

https://doi.org/10.3390/jcp1030023

Academic Editors: Phil Legg and

Giorgio Giacinto

Received: 20 May 2021

Accepted: 29 July 2021

Published: 12 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3, Canada;
vlajic@eecs.yorku.ca
* Correspondence: madani@eecs.yorku.ca
† This paper is an extension version of the conference paper: Madani, P.; Vlajic, N.; Sadeghpour, S. MAC-Layer

Spoofing Detection and Prevention in IoT Systems: Randomized Moving Target Approach. In Proceedings of
the 2020 Joint Workshop on CPS & IoT Security and Privacy, Virtual Event, USA, 9 November 2020.

Abstract: In some wireless networks Received Signal Strength Indicator (RSSI) based device profiling
may be the only viable approach to combating MAC-layer spoofing attacks, while in others it can
be used as a valuable complement to the existing defenses. Unfortunately, the previous research
works on the use of RSSI-based profiling as a means of detecting MAC-layer spoofing attacks are
largely theoretical and thus fall short of providing insights and result that could be applied in the
real world. Our work aims to fill this gap and examine the use of RSSI-based device profiling in
dynamic real-world environments/networks with moving objects. The main contributions of our
work and this paper are two-fold. First, we demonstrate that in dynamic real-world networks with
moving objects, RSSI readings corresponding to one fixed transmitting node are neither stationary
nor i.i.d., as generally has been assumed in the previous literature. This implies that in such networks,
building an RSSI-based profile of a wireless device using a single statistical/ML model is likely to
yield inaccurate results and, consequently, suboptimal detection performance against adversaries.
Second, we propose a novel approach to MAC-layer spoofing detection based on RSSI profiling
using multi-model Long Short-Term Memory (LSTM) autoencoder—a form of deep recurrent neural
network. Through real-world experimentation we prove the performance superiority of this approach
over some other solutions previously proposed in the literature. Furthermore, we demonstrate that a
real-world defense system using our approach has a built-in ability to self-adjust (i.e., to deal with
unpredictable changes in the environment) in an automated and adaptive manner.

Keywords: IoT security; spoofing; MAC authentication; intrusion detection system; LSTM autoen-
coders

1. Introduction

The proliferation of the Internet of Things (IoT) and Wireless Sensor Network (WSN)
networks has revived an old yet serious form of attack—MAC-layer Spoofing or also referred
to as Identity Spoofing. In MAC address spoofing attack, as the name suggests, a rouge
wireless node masquerades as another legitimate device by cloning the legitimate device’s
MAC address. Identity spoofing, in general, is a precursor for packet injection (another
well-known type of attack) and thus requires careful consideration as part of any sound
defense plan.

The most common way of defending against this form of attack is through the use of
cryptographic techniques for MAC-address authentication [1]. Unfortunately, due to the
resource limitations that are inherently present in many IoT and WSN devices (e.g., low
processing power, low memory capacity, and limited battery life), many of these devices
operate with very scaled-down (if any) versions of encryption and authentication protocols.
For example, it is discovered that due to ease-of-installation by non-technical consumers,
Philips IoT Smart Bulbs do not employ any form of encryption and authentication as

J. Cybersecur. Priv. 2021, 1, 453–469. https://doi.org/10.3390/jcp1030023 https://www.mdpi.com/journal/jcp320

J. Cybersecur. Priv. 2021, 1

specified by 802.15.5 protocol standard [2]. Or, in the case of a multihop WSN, the inter-
mediate relaying nodes generally do not engage in the verification of the authenticity of
the relayed data frames—authenticity verification of these frames takes place only at the
final (i.e., destination) node. Authentication by intermediate nodes is typically omitted in
order to reduce the nodes’ energy consumption as well as minimize the possibility of a
battery exhaustion attack [3] (readers should review seminal work by Nguyen et al. [4] for a
complete survey of energy depletion attacks against low power wireless networks).

It should be noted that in a number of standardized wireless protocols that are still
in use today, cryptographic authentication is simply not intended for all stages/frames
of a communication process. For example, in all variants of IEEE 802.11 preceding 802.11
w, only data frames are protected, while control and management frames are used with-
out any protection [5]. Thus, one should make provisions for extra security measures
when cryptographic authentication is not supported by protocols deployed within certain
application domains.

Clearly, in wireless systems with limited cryptographic and authentication protec-
tion, other alternative measures against MAC address spoofing are required. One such
measure—which can also be used as an added layer of security even in wireless systems
with extensive cryptographic and authentication protection—is the utilization of physical
layer (i.e., signal-level) parameters. Received Signal Strength Indicator (RSSI) is a wireless
communication variable that is directly influenced by the transmission power and the
location of the transmitter as well as different environmental variables such as obstacles.
As suggested in a number of earlier research works (e.g., [6–8]), RSSI values can be used
to create the fingerprint profile of each device in a wireless network and then deploy these
profiles to do a preliminary authenticity check against MAC spoofing attacks. Another
point that makes RSSI profiling an attractive ally against MAC spoofing attacks is that
the use of this single real-valued physical-layer variable is easy to implement, requires
no modifications to existing higher layer protocols and applications, and has a very small
processing and memory footprint.

There have been many research works in the past investigating the use of RSSI profiling
for the purpose of MAC spoofing detection (some of which are surveyed in Section 2).
Most of these works implicitly assume that: (1) RSSI samples received from a non-moving
transmitting device form a stationary time-series with normally distributed variance,
and (2) RSSI values are independent and identically distributed (i.i.d.) samples from an
unknown normal distribution. Moreover, in the given works, the act of profiling a wireless
device based on its RSSI values strongly relies on these two very assumptions. However,
in our recently conducted study, the two assumptions (RSSI samples are stationary and i.i.d.)
have come under scrutiny. Namely, through our extensive real-world experimentation,
we have observed that RSSI values measured by a receiving node are highly affected by
changes (e.g., moving objects) in their operating environments. In particular, we have
observed that moving human bodies (and their absence) have a noticeable effect on RSSI
values of IoT devices deployed in a residential environment, and as a result the variance of
the RSSI time-series changes significantly when occupants are present and move around
the property—we call this effect time-series clustering [9] (refer to Figure 1 where there
are two different clusters, one with lower volatility than the other). Furthermore, it is
clear from the depicted figure that there is a correlation between neighboring RSSI values;
therefore, it would be hard to justify the claim that neighboring RSSI values are independent
(as presumed by previous works [6–8]).

Except in a few usage cases where there are no moving objects in the environment
(e.g., farmland monitoring), most real-world IoT networks deploy computing/sensing
nodes in environments with some number of movable objects. Thus, in order to account
for changes in RSSI values due to the above described clustering effect, it is necessary to
have an adaptive and/or multi-model RSSI-based profiling scheme that will be able to
improve/reduce the rates of false positives (in our previous work [10], we demonstrated
how i.i.d. assumption pertaining to RSSI values can lead to probable evasion of detection

321

J. Cybersecur. Priv. 2021, 1

systems that rely on RSSI-based profiling). In this work, we have proposed and studied a
multi-classifier system to profile IoT devices based on their RSSI values under two moving
object conditions (presence vs. absence of objects in the surrounding environment). Also,
our profiling approach takes into consideration the relationship between neighboring
RSSI values in the time-series to further improve the accuracy and robustness of IoT
node profiles.

Figure 1. RSSI values of an IoT device deployed in a residential property with routine movements of
occupants in a 24 h period.

The content of this paper is organized as follows: In Section 2, we discuss some of
the notable previous works in RSSI-based MAC address spoofing detection. In Section 3,
we present the threat model and the main assumptions about the adversary’s capabilities
as pertaining to our work. In Section 4, we propose our LSTM-based (Long Short-Term
Memory) profiling scheme that has been devised to detect and classify MAC-spoofing
traffics. In Section 5, we discuss adversarial traffic generation used to test the robustness of
our approach and compare the effectiveness of our approach with the state-of-the-art RSSI
based approaches previously proposed to deal with adversarial attacks.

2. Related Works

Wireless MAC Address Spoofing Detection is a well-studied topic in the literature
on Wi-Fi and Wireless Sensor Networks. In the seminal paper [11], Faria and Cheriton
were among the first ones to propose the use of RSSI values as a fingerprinting variable to
detect MAC spoofing attacks in a WLAN environment. As part of their detection model,
it is assumed that there are multiple access points (APs) capable of receiving the wireless
signals from all clients in the network, so the RSSI values measured at each AP’s antenna
and for each transmitter are ultimately aggregated into a single profile. Consequently,
a masquerading attack is detected by comparing the aggregated RSSI values of two con-
secutive data frames with the same MAC identifier. Also, they have demonstrated that
using multi-sensing APs, and assuming constant transmitting power, a physical node can
be triangulated with an accuracy of 5 to 10 m. Unfortunately, the practical merit of these
findings is rather limited since the use of multiple overlapping APs in many WSN and IoT
networks is not always possible.

Chen et al. [12] and Wu et al. [6] have both independently proposed the use of k-means
clustering algorithm to detect signal/frame spoofing by a rogue access point (AP). Their
work is grounded on the assumption that the sequence of last n RSSI values received from
an AP would have minimum fluctuations around the mean in the absence of another rogue
AP (i.e., an ‘Evil Twin’). Thus, when clustering the elements of a received RSSI sequence
into two clusters using k-means algorithm in the absence of an Evil Twin, the distance
between two formed centroids would be small (i.e., smaller than a threshold value). At the

322

J. Cybersecur. Priv. 2021, 1

same time, a large distance between the centroids of the two formed clusters would be
indicative of the existence of an Evil Twin AP with its unique RSSI distribution. However,
since this approach does not involve any offline learning (i.e., a previously trained model
of what should be considered a legitimate distribution), the MAC address spoofer and
the legitimate node must transmit in relatively close time intervals for the detection to
actually work.

Sheng et al. [13] studied the effect of antenna diversity in 802.11 access points and their
effect on RSSI device fingerprinting as well as spoofing detection. They demonstrated that
RSSI values from a stationary receiver collected at a stationary transmitter form a mixture
of two Gaussian distributions due to antenna diversity permitted under 802.11 protocol.
As a result, they have trained a Gaussian mixture model for each wireless node and access
point pair in the network and used a log-likelihood ratio test on the sequence of latest
received RSSI at each access point from a given MAC address. A transmitting node is ruled
spoofed if the ratio test fails by more than n Gaussian mixture models—where n is smaller
than the number of available access points in the network and needs to be set empirically.
However, using available off-the-shelf hacking tools an adversary can easily manipulate its
transmission power to evade detection by this model, as discussed in later sections.

Gonzales et al. [14] have developed a novel technique known as context-leashing for
the detection of public Evil Twin access points. They have argued that publicly available
access points such as the ones available at franchise coffee shops (e.g., Starbucks) share ser-
vice set identifiers (SSID) across different locations and oftentimes lack any authentication.
This provides an opportunity for adversaries to spoof such SSIDs and trick clients into asso-
ciating with a rogue access point (e.g., after performing a dissociation attack). The defense
against the Evil Twin APs proposed in [8] assumes the use of a so-called context-leashing
engine. Upon association with a publicly available access point, the context-leashing engine
would collect a list of context Ci = {(c1, r1), . . . , (cn, rn)}, which contains the list of all
visible SSIDs (denoted by cj, j = 1, . . . , n) and their corresponding average RSSI values
(denoted by rj, j = 1, . . . , n) that is reachable at the time of association with a particular
SSID in the environment. For any future reassociation with a given SSID, a new context list
is constructed and compared to the previously stored one. If the context-list of available
neighboring SSIDs and their average RSSI values does not have a significant (empirically
defined) overlap with the historical context-list, then the associated SSID is deemed an Evil
Twin and the connection should be terminated. The main drawback of their method is the
assumption that the list of SSIDs in a given geolocation remains relatively unchanged over
time. However, with today’s tethering capabilities of cellphones, this assumption is far
from the truth.

3. Threat Model and Assumptions

In this section, we introduce the main annotation and assumptions of our work, which
are also illustrated in Figure 2. First, consider a simple setup where there are a legitimate
transmitting node (e.g., a temperature sensor) denoted by s and a legitimate receiving node
(e.g., an IoT hub) denoted by r communicating over a wireless channel. Also, we assume
that r utilizes an arbitrary approach (including what we propose in this work) to profile
s based on RSSI samples, it has received in a period absent of any adversary, and then
uses this profile at runtime to differentiate between received data frames that carry s’
MAC address (legitimate vs. spoofed ones). Finally, let α denote the adversary with the
following characteristics:

• The adversary is situated at a location from which it can observe/receive signals trans-
mitted by all legitimate senders (when sending data frames) and receivers (when send-
ing acknowledgment frames back) in the given network.

• The adversary is aware of the transmission power setting (PTx) of the legitimate
sender(s), which is not a substantial assumption as system information about most
IoT/WSN devices is publicly accessible on the Internet.

323

J. Cybersecur. Priv. 2021, 1

• The adversary has no prior knowledge of the actual physical/geographic locations of
other (legitimate) nodes in the network.

• Network participants, including the adversary, are equipped with regular/common
omnidirectional antennas, and are not capable of detecting the positional angle of
the transmitting nodes. However, the adversary can move about in order to triangu-
late other nodes’ locations based on the strength of the signal received from those
nodes [10].

• The adversary itself is an active node capable of adjusting its transmission power.
• The adversary is also capable of altering (i.e., spoofing) its MAC address value—

i.e., it can generate data frames that carry MAC addresses of other legitimate nodes
from this particular network.

Figure 2. Overview of the threat model: the goal of the receiving node is to use historical (clean) RSSI
values from the legitimate sender to learn a robust profile to use in future against identity attacks;
while the goal of the adversary is to get past the established profile by taking over s identity.

The ultimate goal of adversary α is to impersonate a particular s by transmitting
frames with s’ spoofed MAC address. The spoofed frames are specifically intended for a
particular r. Since, according to the assumptions of our work, the transmitter’s RSSI values
are registered and used by r for the purposes of MAC-spoofing detection, the adversary
first needs to discover/adjust its transmission power (PTx) such that its spoofed frames
(when received by r) get accepted as genuine with a high probability—i.e., some desired
probability of evasion is achieved by the adversary. This particular problem—of how to
discover/adjust the transmission power so as to achieve a certain evasion probability—
is closely related to the optimal adversarial evasion problem introduced by Nelson et al. [15]
and further extended by Madani and Vlajic [10] to the IoT realm.

4. Detection Approach: Deep Authentication

As demonstrated in Figure 1 (and argued in Section 1), given that RSSI time-series
values of a wireless IoT device are not i.i.d., one could incorporate dependencies among
neighboring RSSI values to build more robust and accurate predictive models for the pur-
pose of device authentication. Deep autoencoders are deep generative neural networks that
have demonstrated a strong capability of modeling latent variables in anomaly detection
and authentication datasets [16]. LSTM autoencoders [17], in particular, are known for their

324

J. Cybersecur. Priv. 2021, 1

generative modeling capabilities on time-series data. In this section we present our novel
technique for authentication of legitimate IoT nodes using RSSI-based anomaly detectors
deploying LSTM autoencoders. In addition, expanding on our argument from Section 1
with respect to the time-series clustering-effect of RSSI values in dynamic environments,
we also discuss how our novel multi LSTM autoencoder architecture is able to switch
between multiple trained LSTM models at runtime. Such a multi-LSTM autoencoder
architecture would help with addressing the clustering effect of RSSI time-series.

4.1. LSTM Autoencoder Anomaly Detector

In the context of our work, let X =< x1, x2, . . . , xn > denote an ordered sequence of
n RSSI values received by node s. Then, the LSTM autoencoder is trained to learn two
functions, namely, encoder E(.) and decoder D(.) such that X ≈ D(E(X)). In other words,
as depicted in Figure 3, the LSTM autoencoder learns an encoding state that best describes
the structure of the training/input data and a decoding function that reconstruct the input
sequence given the encoding state with minimal error. In general, large reconstruction
errors occur when the input does not conform to the structure previously learned by the
LSTM autoencoder. As such, a large reconstruction error can be used as a measure of input
anomaly [16,18–20].

Figure 3. Anatomy of the LSTM autoencoder.

In order to build an RSSI profile of s (through the use of LSTM autoencoder), the re-
ceiving node r begins the process of collecting and assembling a time-series of RSSI values
extracted from the data frames transmitted by s. Then, using a rolling window of size
n, the time-series is segmented into m different overlapping sequences (where the extent
of the overlap is controlled by the shift constant of the rolling window), which are fur-
ther used to train the LSTM autoencoder. Since the LSTM autoencoder is supposed to
learn the reconstruction of the input sequences, the m training inputs are also supplied as
the expected outputs to the training algorithm with the mean squared error (MSE) as the
loss function.

At runtime (i.e., during the actual use of the trained LSTM autoencoder for the purpose
of attack/anomaly detection), n most recently observed RSSI samples are supplied into the
trained LSTM autoencoder and then the MSE of the reconstructed sequence (relative to the
provided input) is computed. Our experimental investigations (as described in Section 5)
have demonstrated that the MSEs of the training data, in the absence of attack/spoofed
instances, form a normal distribution. Therefore, our system uses Z-score to measure
deviation from the expected MSE as the decision function to differentiate between the
spoofed and the normal traffic. Specifically, for a Z-score ≥ l the system declares the
inspected RSSI window as malicious, where l can be computed experimentally and set for
the desired false positive rate.

4.2. Multiclassifer and Model Switching

As discussed in Section 1, in IoT environments with moving objects (e.g., residential
or commercial premises), the RSSI time-series of a transmitting node can be divided into
two significantly different time-series with substantially different volatility (i.e., time-series
with clustering effect). Using the entirety of such a time-series (refer to Figure 1) for

325

J. Cybersecur. Priv. 2021, 1

the training of our system’s LSTM autoencoder would result in a less sensitive anomaly
detection model. Thus, we propose to deploy/train two independent LSTM autoencoders—
one for the volatile period of the observed time-series when moving objects are present,
and one for the relatively calm period when the relative volatility is at its minimum.

Now, one obvious issue that would have to be adequately addressed in an anomaly
detection system with two LSTM autoencoders is the issue of their scheduling. As one
possible approach, the system operator could manually set the exact time when each of
the trained LSTM autoencoders is to be deployed according to his/her knowledge of
the environment. However, in such a system with manually determined ‘switch times’,
a number of potential problems could arise. For example, an employee of a factory
showing up earlier than usual could significantly affect the RSSI time-series of the nearby
sensors/transmitters, which as a result could trigger a false positive alert (provided the
detection model corresponding to the non-volatile conditions is still active).

One way to resolve the above challenges is by simultaneously monitoring MSE
Z-scores output by the two models at runtime, and looking for the point in time when the
Z-score of one of the models crosses another. For example, as shown in our experimentation
and depicted in Figure 4, at night where there are fewer moving objects in the environment,
the night’s LSTM autoencoder model is reconstructing the RSSI time-series perfectly as
reflected by its low Z-score, while at the same time the day’s LSTM autoencoder does a
poor job in reconstructing the same RSSI time-series. However, during the transition period
when moving objects start to appear in the environment, the night’s LSTM autoencoder per-
formance starts to decline, while the performance of the day’s LSTM autoencoder (which
is trained to cope with daytime volatility) starts to exhibit noticeable improvement with
respect to the reconstruction MSE. Thus, the moment when the two Z-score time-series
cross over each other would be the optimal point in time when the system should switch
from using the nighttime to using the day-time LSTM autoencoder model. This suggests
that by simply monitoring the output of both trained LSTM autoencoder models, it is
possible to determine the optimal ‘switch time’ in an adaptable and automated manner.

Figure 4. Starting at midnight, the Z-scores of reconstructed RSSI values corresponding to the transmitting node s using the
two trained models (for day and night) are tracked. At about dawn, when occupants started to wake up and move about,
the error rate of the night model significantly increases while the day model’s error rate drops significantly.

326

J. Cybersecur. Priv. 2021, 1

5. Experiments and Results

5.1. Environment Setup

We have designed two experiments involving different forms of obstacles and moving
objects to best collect the noise and other disturbances that IoT devices may face when
attempting to profile their neighboring nodes using RSSI observations. In our experi-
ments we have used three Digi XBee 3 Series programmable modules implementing IEEE
802.15.4. [21] (as depicted in Figures 5 and 6), where one device acts as the legitimate tem-
perature reading sensor (denoted by s) transmitting its reading to the legitimate receiver
(denoted by r) and the adversary (denoted by a) who spoofs the s’ MAC address in the
hope of providing false temperature readings to r.

In the first experiment (refer to Figures 6 and 7), s is situated in a waterproof container
on the lawn outside the house, while r is situated in the second-floor bedroom. Aside
from 5 occupants living on the property that move about the house during the day, outside
pedestrians and moving vehicles affect s’ RSSI values observed by r. The adversary is
free to move about, both inside the property and outside, to carry out its spoofing attack
(this is a very generous assumption to highlight a worst case scenario and superiority of
our approach. In most settings, there is some degree of physical security that constrains
adversaries in their physical positioning). This is an ideal experiment for resembling
scenarios where IoT devices are separated by exterior walls and experience some degree of
moving objects during the course of their daily operations.

Figure 5. The legitimate transmitter is situated in the first floor family room while the legitimate
receiver is situated in the second floor’s bedroom separated by interior walls and an interior floor.
The 5 occupants in the property are considered to be the influencing moving objects.

Figure 6. The legitimate transmitter is situated outdoors on the lawn transmitting temperature
readings and the receiver is situated in the bedroom of the second floor separated by exterior building
walls. The pedestrians and motor vehicles in the nearby residential area as well as the 5 occupants in
the property are considered to be the influencing moving objects.

327

J. Cybersecur. Priv. 2021, 1

In the second experiment both r and s are situated in the property separated by a
floor/ceiling and interior walls (depicted in Figure 6) while the adversary is allowed to
move about inside and outside of the property. Similar to the first experiment the house
occupants have their routine daily schedule of moving around the property during the day
and resting (i.e., minimal movement) at night.

In the second experiment both r and s are situated in the property separated by a
floor/ceiling and interior walls (depicted in Figure 5) while the adversary is allowed to
move about inside and outside of the property. Similar to the first experiment, the house
occupants have their routine daily schedule of moving around the property during the day
and resting (i.e., minimal movement) at night.

Figure 7. Digi XBee 3 Series programmable module implementing IEEE 802.15.4. in a weatherproof
secure enclosure protecting the devices from the elements when deployed.

In both experimental setups, r starts its training phase by collecting RSSI samples
from s (refer to Figures 8 and 9) both during hours of minimal and significant movements
(24 h of capture of RSSI at the sample rate of 1 frame/s)—where these hours are assumed
to be empty of any adversarial presence to perturb the training dataset. Once the training
stage is completed, r starts using its two trained LSTM autoencoder models to authenticate
received signals and detect MAC-spoofed frames (each LSTM autoencoder has 2 LSTM
layers with 20 nodes each and a final dense lake of size 1 and using Adam [22] optimizer
for training).

Figure 8. s’ RSSI stream received by r during s’ deployment outside of the property.

328

J. Cybersecur. Priv. 2021, 1

Figure 9. s’ RSSI stream as received by r during s’ deployment inside of the property.

5.2. Note on Special Spoofed Traffic Mix

All the surveyed works in Section 2 that use a rolling window on collected RSSI
stream(s) for the purposes of signal classification (i.e., authentication) have implicitly
assumed that each window of length n may fully consist of RSSI values from either an
attacker or a legitimate device. However, this is not a realistic assumption given the
unknown motivation and capabilities of adversaries. Moreover, many modern-day IoT
devices (e.g., especially those used in home automation) are not battery operated and/or
are not much concerned with energy preservation and as a result may be in frequent
communication with other nearby devices. Consequently, in any given window of length n
(used by the classification engine) there may exist some mix of the legitimate node’s and
the adversary’s RSSI values as depicted in Figure 10.

(a) (b)
Figure 10. (a) Case where the adversary starts transmitting right after the legitimate node terminated
its transmission; (b) The adversary gains access to the channel while the legitimate node has not
finished transmitting all of its frames.

5.3. Model Classification Performance

We have evaluated our novel spoofing detection approach against the Support Vector
Machine (SVM) one-class anomaly detection technique described in [23] (as a baseline
detection model) and the state-of-the-art Log-likelihood ratio test approach proposed in [13].
We have evaluated all three approaches against two real-world datasets (refer to Section 5.1)
using 10-fold cross validation. The average classification/detection performance is reported
in Table 2.

We have trained two classifiers for our autoencoder as well as each of the other
two approaches (SVM [23] and Log-likelihood [13]): one for the period of high volatility
(e.g., environmental moving objects—daytime) and another for the period of low volatil-
ity (e.g., minimal environmental moving objects—nighttime) as reported in Table 1. All
three classifiers perform relatively better during the low volatility period (i.e., night-
time) than the high volatility period—with our approach performing the best in both
categories significantly.

329

J. Cybersecur. Priv. 2021, 1

Table 1. Summary of Related Works.

Methodology Shortcomings

Faria and Cheriton [11]

Using multiple access point recording
RSSI values of individual nodes in the
network and compare them with
historical records and vote on authenticity
of the given transmission.

The assumption of the existence
of multiple APs is not realistic in
many IoT and WSN applications.
Using their approach a single
AP can be easily evaded as
discussed in Madani and Valjic [10].
Also, they did not entertain the
existence of variable noises as a result
of moving objects in the environment
during different time periods.

Chen et al. [12]
Using k-means clustering and comparing
cluster centroids distance to find
existence of anomalies in RSSI values.

Treating a sequence of RSSI as
identically distributed and
independent observations.
In Sections 1 and 5.2 we have
discussed in detail why such
assumptions are wrong and can
be advantageous to the adversary.

Wu et al. [6]
Using k-means clustering and comparing
cluster centroids distance to find
existence of anomalies in RSSI values.

Treating a sequence of RSSI as
identically distributed and
independent observations.
In Sections 1 and 5.2 we have
discussed in detail why such
assumptions are wrong and can
be advantageous to the adversary.

Sheng et al. [13]
Uses Gaussian mixture models to model
observed RSSI from a given node and
create a normal/expected RSSI profile.

Capturing diversity caused by
antenna diversity implemented
by wireless nodes. Although did not
entertain the existence of variable
noises as a result of moving objects
in the environment during different
time periods.

Gonzales et al. [14]

Uses available/neighboring SSIDs and
their average RSSI values as observed
by a given wireless node to establish
expected/normal environment for
initiating connection with a given
access point.

A valid approach for verifying the
validity of an SSID before connecting
a mobile wireless node to it.
However, this approach cannot
guarantee the absence of spoofing once
the connection is established and is not
useful in settings where no other
SSID is available in the environment.

We have also evaluated the classification performance of the three models against an
adversarial traffic mix (as explained in Section 5.2). We can observe in Table 2 (also refer to
Figures 11 and 12, that our approach slightly loses classification accuracy (by 1%) when 20%
of RSSI values in a given window is generated by an adversary while the performance of
the other two classifiers deteriorates significantly. This can partly be explained by the fact
that our LSTM (Long Short-Term Memory) autoencoder approach takes into consideration
the order in which RSSI samples appear (i.e., are collected), while the other two approaches
treat RSSI values in a window as independent data points. It is clear from the obtained
results that our approach is well equipped to deal with an active adversary that transmits
during the transmission period of the legitimate node while such overlap of traffic is not
well protected using existing approaches.

330

J. Cybersecur. Priv. 2021, 1

T
a

b
le

2
.

Pa
ss

iv
e

A
dv

er
sa

ry
,w

ho
as

su
m

es
a

si
ng

le
sp

ot
in

th
e

en
vi

ro
nm

en
ta

nd
do

es
no

ta
dj

us
ti

ts
tr

an
sm

is
si

on
po

w
er

.

0
%

M
ix

e
d

W
in

d
o

w
C

o
n

te
n

t
2
0
%

M
ix

e
d

W
in

d
o

w
C

o
n

te
n

t
5
0
%

M
ix

e
d

W
in

d
o

w
C

o
n

te
n

t
D

a
y

C
la

ss
ifi

e
r

N
ig

h
t

C
la

ss
ifi

e
r

D
a
y

C
la

ss
ifi

e
r

N
ig

h
t

C
la

ss
ifi

e
r

D
a
y

C
la

ss
ifi

e
r

N
ig

h
t

C
la

ss
ifi

e
r

Precision

Recall

F1-Score

Precision

Recall

F1-Score

Precision

Recall

F1-Score

Precision

Recall

F1-Score

Precision

Recall

F1-Score

Precision

Recall

F1-Score

N
or

m
al

1.
0

0.
95

0.
97

1.
0

0.
99

0.
99

1.
0

0.
93

0.
97

1.
0

0.
99

0.
99

1.
0

0.
93

0.
97

1.
0

0.
99

0.
99

M
ul

ti
M

od
el

LS
TM

A
ut

oe
nc

od
er

*
Sp

oo
fe

d
0.

97
1.

0
0.

98
0.

99
1.

0
0.

99
0.

93
1.

0
0.

96
0.

98
1.

0
0.

99
0.

93
1.

0
0.

96
0.

98
1.

0
0.

99
N

or
m

al
0.

66
0.

52
0.

58
0.

73
0.

42
0.

53
0.

56
0.

52
0.

54
0.

60
0.

48
0.

53
0.

58
0.

52
0.

55
0.

59
0.

48
0.

53
O

ne
-C

la
ss

SV
M

[2
3]

(b
as

el
in

e)
Sp

oo
fe

d
0.

69
0.

80
0.

74
0.

50
0.

79
0.

61
0.

48
0.

52
0.

50
0.

37
0.

49
0.

42
0.

50
0.

56
0.

53
0.

36
0.

47
0.

41
N

or
m

al
0.

85
0.

92
0.

88
0.

83
0.

89
0.

86
0.

75
0.

89
0.

81
0.

73
0.

78
0.

75
0.

77
0.

91
0.

83
0.

81
0.

89
0.

85
Lo

g-
lik

el
ih

oo
d

ra
ti

o
[1

3]
Sp

oo
fe

d
0.

87
0.

90
0.

88
0.

92
0.

95
0.

93
0.

76
0.

81
0.

78
0.

84
0.

83
0.

83
0.

80
0.

83
0.

81
0.

85
0.

92
0.

88

331

J. Cybersecur. Priv. 2021, 1

Figure 11. Comparison of ‘Normal Classification’ of our novel detection method with two
other [13,23] state-of-the-art approaches proposed in the literature.

Figure 12. Comparison of ‘Spoofed Classification’ of our novel detection method with two
other [13,23] state-of-the-art approaches proposed in the literature.

5.4. Model Switching at Runtime

In Section 4.2 we have explained the need for a bi-modal LSTM autoencoder classifier,
and we have proposed a fully automated and adaptive approach to switching between
the two train models/classifiers at runtime. Using the collected real-world datasets we
have put this idea to test by continuously monitoring the reconstruction error of the two
train models at runtime. As depicted in Figure 13, at night when the RSSI stream had
relatively lower volatility, the night model (the blue line) resulted in low reconstruction
error while the day model (the orange line) resulted in high reconstruction error—as to
be expected. However, at the point in time when the volatility was about to pick up,
we can observe a sudden jump in the night model’s reconstruction error accompanied by
significant improvement in the day model’s reconstruction error, ultimately resulting in a
crossover between the two error lines (orange and blue). This is a clear indication that the
night model could be retired, and the day model could be activated for detection. Clearly,
this demonstrates the viability of the crossover indicator to facilitate an automated and
adaptive switching schedule between the two trained LSTM autoencoder models.

332

J. Cybersecur. Priv. 2021, 1

F
ig

u
re

1
3

.
Tr

ac
ki

ng
re

co
ns

tr
uc

tio
n

er
ro

r
of

tw
o

tr
ai

ne
d

m
od

el
s

du
ri

ng
an

en
tir

e
da

y.
Th

e
cr

os
so

ve
r

po
in

tb
et

w
ee

n
th

e
tw

o
re

co
ns

tr
uc

tio
n

er
ro

r
lin

es
(o

ra
ng

e
an

d
bl

ue
)

co
in

ci
de

w
it

h
in

cr
ea

se
in

vo
la

ti
lit

y
of

R
SS

Is
tr

ea
m

(t
he

re
d

lin
e)

—
a

cl
ea

r
in

di
ca

to
r

to
be

us
ed

to
sw

it
ch

be
tw

ee
n

tr
ai

ne
d

m
od

el
s.

333

J. Cybersecur. Priv. 2021, 1

6. Discussions and Conclusions

In this work we have proposed a novel RSSI-based MAC spoofing detection approach
using a multi model LSTM autoencoder classifier. The advantages of our approach over
earlier works in this field are twofold. First, our approach is capable of coping with periodic
environmental (i.e., signal) disturbances caused by moving objects. Second, our approach
can tolerate and detect presence of an adversary that transmits in close time intervals to
legitimate network devices.

As part of this research, we have also studied the variability of RSSI streams in a
real-world residential area, and (from the collected measurements) we have confirmed the
existence of two very distinct periods in the observed RSSI streams (i.e., day vs night). These
observations provide real-world justification for the use of a bi-modal LSTM autoencoder,
with one autoencoder being trained for each variability period. In addition, we have
proposed an automated and adaptive technique for determining the optimal point in time
to switch between the two train models.

It may be worth clarifying that one of the key assumptions of our work is that the IoT
network utilizing our solution is composed of a large number of sensing nodes (which are in
charge of collecting and transmitting sensory readings from their immediate environment)
and one or a few sink nodes (which are in charge of receiving and/or aggregating the
sensory readings received from multiple sensor nodes). Furthermore, we assume that the
sink nodes are generally more powerful (e.g., have better energy and processing capacity)
compared to the sensing nodes.

Now, given the inherently ‘one-way’ nature of the assumed application and the
respective communication patterns (i.e., sensors transmit while sinks receive), the most
likely targets of an adversary existing in this environment (i.e., most likely recipients of
spoofed packets) would be the sink nodes, and very rarely the ‘ordinary’ sensing nodes.
Consequently, it is reasonable to assume that the proposed solution would have to be
primarily, if not exclusively, implemented on the sink nodes in order help verify the
authenticity of received sensor readings. As previously clarified, sink nodes are generally
assumed to have reasonable energy and processing capabilities.

It is also worth pointing out that our proposed LSTM autoencoder approach is utilizing
one-dimensional data (i.e., RSSI readings) as inputs, which makes the training of our
model(s) extremely energy-inexpensive and fast, even for Zigbee IoT nodes as used in our
experiments. Furthermore, using the trained LSTM autoencoders at runtime relies on very
simple matrix multiplications, which are of similar complexity to SVM, linear regressions,
or Gaussian models previously proposed in the literature, and which are well within the
capabilities, even of IoT nodes, with limited energy and computational characteristics.

Given that most IoT networks have multiple participants, it is natural to wonder
how our proposed method could be further expanded should participating nodes be
capable and/or willing to cooperate with each other in order to detect an ongoing MAC
spoofing attack. Although such an idea could likely enhance the overall detection and
network performance, it also requires careful consideration and engineering in order to
ensure robustness against (e.g.) potential byzantine nodes. We are planning an in-depth
investigation of such a cooperative multi-node approach as one of the future research
directions of our work.

In our previous work [10], we proposed an RSSI-based randomization technique
for protection against an active adversary capable of modifying its transmission power
and its location in the target/victim environment. Of course, such randomization could
positively affect our novel proposed method but the classification performance might
change drastically under a randomized schema. Finally, in this work we have assumed
that the system operator is in charge of detecting low vs high volatility periods in the
training RSSI time-series and divided the training set into two subsets for training the
proposed bi-modal LSTM autoencoders. However, one could argue that due to variability
in RSSI during the presence vs absence of moving objects, it is possible to detect two
periods (for separating the training datasets for building the multi-model classifiers) using

334

J. Cybersecur. Priv. 2021, 1

unsupervised clustering approaches such as k-means instead of relying on the judgment of
a system operator for creating such separation. This is certainly an interesting future work
that can further enhance our proposed crossover model switching indicator.

Author Contributions: Conceptualization, P.M. and N.V.; methodology, P.M.; software, P.M.; valida-
tion, P.M. and N.V.; data curation, P.M.; writing—original draft preparation, P.M.; writing—review
and editing, P.M. and N.V.; supervision, N.V.; project administration, N.V. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lashkari, A.H.; Danesh, M.M.S.; Samadi, B. A survey on wireless security protocols (WEP, WPA and WPA2/802.11 i). In Pro-
ceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China,
8–11 August 2009; pp. 48–52.

2. The Independent IT Security Institute AX Test. 2017. Available online: https://www.iot-tests.org/2017/06/hue-let-there-be-
light/ (accessed on 1 September 2020).

3. Wood, A.D.; Stankovic, J.A. Denial of service in sensor networks. Computer 2002, 35, 54–62. [CrossRef]
4. Nguyen, V.L.; Lin, P.C.; Hwang, R.H. Energy depletion attacks in low power wireless networks. IEEE Access 2019, 7, 51915–51932.

[CrossRef]
5. Ahmad, M.S.; Tadakamadla, S. Short paper: Security evaluation of IEEE 802.11 w specification. In Proceedings of the Fourth

ACM Conference on Wireless Network Security, Hamburg, Germany, 14–17 June 2011; pp. 53–58.
6. Wu, W.; Gu, X.; Dong, K.; Shi, X.; Yang, M. PRAPD: A novel received signal strength-based approach for practical rogue access

point detection. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718795838. [CrossRef]
7. Moosavirad, S.M.; Kabiri, P.; Mahini, H. RSSAT: A Wireless Intrusion Detection System Based on Received Signal Strength

Acceptance Test. J. Adv. Comput. Res. 2013, 4, 65–80.
8. Demirbas, M.; Song, Y. An RSSI-based scheme for sybil attack detection in wireless sensor networks. In Proceedings of the 2006

International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM’06), Buffalo-Niagara Falls, NY,
USA , 26–29 June 2006; p. 5.

9. Aghabozorgi, S.; Shirkhorshidi, A.S.; Wah, T.Y. Time-series clustering—A decade review. Inf. Syst. 2015, 53, 16–38. [CrossRef]
10. Madani, P.; Vlajic, N.; Sadeghpour, S. MAC-Layer Spoofing Detection and Prevention in IoT Systems: Randomized Moving

Target Approach. In Proceedings of the 2020 Joint Workshop on CPS & IoT Security and Privacy, Lisbon, Portugal, 15 September
2020; pp. 71–80.

11. Faria, D.B.; Cheriton, D.R. Detecting identity-based attacks in wireless networks using signalprints. In Proceedings of the 5th ACM
Workshop on Wireless Security; ACM: New York, NY, USA, 2006; pp. 43–52.

12. Chen, Y.; Trappe, W.; Martin, R.P. Detecting and localizing wireless spoofing attacks. In Proceedings of the 2007 4th Annual
IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Diego, CA, USA,
18–21 June 2007; pp. 193–202.

13. Sheng, Y.; Tan, K.; Chen, G.; Kotz, D.; Campbell, A. Detecting 802.11 MAC layer spoofing using received signal strength.
In Proceedings of the IEEE INFOCOM 2008—The 27th Conference on Computer Communications, Phoenix, AZ, USA, 13–18
April 2008; pp. 1768–1776.

14. Gonzales, H.; Bauer, K.; Lindqvist, J.; McCoy, D.; Sicker, D. Practical defenses for evil twin attacks in 802.11. In Proceedings of the
2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), Miami, FL, USA, 6–10 December 2010; pp. 1–6.

15. Nelson, B.; Rubinstein, B.I.; Huang, L.; Joseph, A.D.; Lee, S.J.; Rao, S.; Tygar, J. Query Strategies for Evading Convex-Inducing
Classifiers. J. Mach. Learn. Res. 2012, 13, 13–23.

16. Madani, P.; Vlajic, N. Robustness of deep autoencoder in intrusion detection under adversarial contamination. In Proceedings of
the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security, Raleigh, NC, USA, 10–11 April 2018; pp. 1–8.

17. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT press: Cambridge, UK, 2016; Volume 1.
18. Kim, J.; Kim, J.; Thu, H.L.T.; Kim, H. Long short term memory recurrent neural network classifier for intrusion detection.

In Proceedings of the 2016 International Conference on Platform Technology and Service (PlatCon), Jeju, Korea, 15–17 February
2016; pp. 1–5.

19. Luo, W.; Liu, W.; Gao, S. Remembering history with convolutional lstm for anomaly detection. In Proceedings of the 2017 IEEE
International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 439–444.

335

J. Cybersecur. Priv. 2021, 1

20. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P.; Shroff, G. LSTM-based encoder-decoder for multi-sensor
anomaly detection. arXiv 2016, arXiv:1607.00148.

21. Safaric, S.; Malaric, K. ZigBee wireless standard. In Proceedings of the ELMAR 2006, Zadar, Croatia, 7–9 June 2006; pp. 259–262.
22. Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International

Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018; pp. 1–2.
23. Laxhammar, R. Conformal Anomaly Detection: Detecting Abnormal Trajectories in Surveillance Applications. Ph.D. Thesis,

University of Skövde, Skövde, Sweden, 2014.

336

Journal of

Cybersecurity
and Privacy

Article

Model for Quantifying the Quality of Secure Service

Paul M. Simon *, Scott Graham *, Christopher Talbot and Micah Hayden

Citation: Simon, P.M.; Graham, S.;

Talbot, C.; Hayden, M. Model for

Quantifying the Quality of Secure

Service. J. Cybersecur. Priv. 2021, 1,

289–301. https://doi.org/

10.3390/jcp1020016

Academic Editor: Thaier Hayajneh

Received: 27 February 2021

Accepted: 29 April 2021

Published: 7 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH 45433, USA;
christopher.talbot@afit.edu (C.T.); michah.hayden@afit.edu (M.H.)
* Correspondence: paul.simon.ctr@afit.edu (P.M.S.); scott.graham@afit.edu (S.G.)

Abstract: Although not common today, communications networks could adjust security postures
based on changing mission security requirements, environmental conditions, or adversarial capability,
through the coordinated use of multiple channels. This will require the ability to measure the security
of communications networks in a meaningful way. To address this need, in this paper, we introduce
the Quality of Secure Service (QoSS) model, a methodology to evaluate how well a system meets its
security requirements. This construct enables a repeatable and quantifiable measure of security in a
single- or multi-channel network under static configurations. In this approach, the quantification of
security is based upon the probabilities that adversarial listeners and disruptors may gain access to
or manipulate transmitted data. The initial model development, albeit a snap-shot of the network
security, provides insights into what may affect end-to-end security and to what degree. The model
was compared against the performance and expected security of several point-to-point networks, and
three simplified architectures are presented as examples. Message fragmentation and duplication
across the available channels provides a security performance trade-space, with an accompanying
comprehensive measurement of the QoSS. The results indicate that security may be improved with
message fragmentation across multiple channels when compared to the number of adversarial
listeners or disruptors. This, in turn, points to the need, in future work, to build a full simulation
environment with specific protocols and networks to validate the initial modeled results.

Keywords: communication model; security; metrics; probability; confidentiality; integrity

1. Introduction

Communication networks rely on a series of wired or wireless channels between inter-
mediate nodes. In addition to noise, these channels may be affected by any combination of
three malicious attack vectors: Denial of Service (DoS), data injection, or eavesdropping. A
DoS attack may involve cutting a wire or overpowering a particular frequency (jamming).
A data injection, or spoofing attack, involves the adversary sending fabricated data that
takes the place of actual data. Finally, and the most difficult to discover, is an eavesdropping
attack, which involves an adversary intercepting and extracting useful information from
the channel. Managing those threats requires an ability to accurately gauge the likelihood
or severity of the threat, and adapt the security features available in the system to meet it.

This paper describes a mathematical model for quantifying the Quality of Secure
Service (QoSS) deployed in static communications networks. Just as Quality of Service
(QoS) metrics describe measurable aspects of the available network, QoSS describes, in
measurable and repeatable terms, the security available to an end-user, facilitating mean-
ingful comparisons.

Even when security is momentarily adequate in a communication system, security
mechanisms tend to be static, implemented at installation or while running [1], and cannot
be adjusted dynamically based on changing environmental conditions or adversarial
capability. This document illustrates the mathematical framework and analysis to define
the design requirements for networks and provides a foundation for subsequent work
analyzing dynamic network security performance in the presence of varied environmental

J. Cybersecur. Priv. 2021, 1, 289–301. https://doi.org/10.3390/jcp1020016 https://www.mdpi.com/journal/jcp337

J. Cybersecur. Priv. 2021, 1

characteristics1. The final model demonstrates the probability of data surviving intact
against multiple forms of adversarial actions.

2. Goals and Approach

The current literature suggests three primary characteristics that define the security
of traditional Information Technology (IT) systems. These are confidentiality, integrity,
and availability, i.e., the CIA triad [2,3]. To quantify an overall level of security, we must
have objective metrics to represent each of these individual characteristics. While objective
metrics for availability are well established as QoS metrics, confidentiality and integrity [4]
remain rather subjective and without commonly accepted quantifiable definitions. In
addition, the user requirements for security may change based on changing operational
conditions. Then, what are the appropriate measures for communication security?

To address the need, we propose a model to quantify the security characteristics of
point-to-point communication between two devices2. The model is patterned after existing
quantification models [5,6], and helps to define security requirements that, in the presence
of adversarial actions, would enable communications to be successful. By comparison, this
model does not rely on the application of security controls [7], but rather the analysis of
the system architecture and probabilistic aspects of the network.

3. Components of a Security Model

According to Lundin [1], an equation to describe the tunable security for a communi-
cation system could be

TS : T × Env → R (1)

where TS is the tunable security, which may be dynamically adjusted based on the user
security requirements. The transmitter capabilities3 are represented by T, the environmen-
tal descriptions are represented by Env, and the overall system security requirements are
represented by R. The goal is to map the tunable security services to the system security
requirements. To achieve this, the tunable security services must first be decomposed
into the constituent parts, such as the available number of channels, the use or disuse
of encryption, and the amount of fragmentation across the network. In many cases, the
environmental descriptions are directly reflected in the traditional QoS measurements
available from the service provider.

This initial version of the QoSS model is a static snap-shot, reflecting the system
security at one point in time. The multiplication operator in Equation (1) does not ad-
equately address the numerous non-linear relationships between system capability and
environmental aspects. Instead, QoSS captures those factors as an array of features or
values and then relates the transmitter capabilities and the environmental description to
the CIA triad, where confidentiality, C, and integrity, I, replace the transmitter capabilities,
and availability, A, replaces the environmental descriptors.

Security measures are typically subjective. To achieve objectivity, we substitute mea-
surements of confidentiality and integrity with the probability of each, designated as P(C)
and P(I), respectively, as discussed in subsequent sections. Although it is unconventional
to consider a DoS attack as impacting data integrity (described in subsequent sections),
doing so has the added benefit of collecting all adversarial influences into the metrics
for confidentiality and integrity, leaving only the system and network capabilities to be
considered as availability. Availability is a specific set of objective performance metrics,
or QoS, provided by the transmitter, e.g., data or bit rate, jitter, bandwidth, transmission
frequency, or power. The resulting QoSS equation is

QoSS : [P(C), P(I), A]→ Security Requirements (2)

representing a snapshot of QoSS metrics mapped to the security requirements. If the
array of metrics does not directly map to the security requirements, then the QoSS for

338

J. Cybersecur. Priv. 2021, 1

that network is inadequate, and the system must be redesigned. The array of metrics also
provides a foundation to perform one-to-one comparisons between two networks.

3.1. Probability of Confidentiality

Numerous researchers have attempted to quantify confidentiality with varying suc-
cess [8,9]. Confidentiality is the aspect of a network that protects against unauthorized
message receipt, i.e., preventing an eavesdropper from either receiving or decoding mes-
sages. One approach to quantifying confidentiality is to redefine it as a probability so that

P(C) = 1− P(l) (3)

where P(C) is the probability of confidentiality and P(l) is the probability of leakage. Leak-
age refers to an untrusted listener having access to an “information flow from secret inputs
to public outputs” [10]. Inspired by Perfectly Secure Message Tranmission (PSMT) [11], the
set of all adversarial listeners, AL, maps to a set of wires (channels), σ, that the listeners have
access to; if one of the members of AL has access to the information, then the probability of
leakage exists.

For leakage to occur, a listener must intercept the message, decrypt it (if applicable),
and then decode the data contained in the message. The probability of interception, P(int),
quantifies the probability that a listener with channel access will receive the message. The
probability of decryption, P(dcr), quantifies the probability that the adversary will decrypt
it4. Finally, the probability of decoding, P(dco), quantifies the probability that an adversary
will decode the message5.

Consider the relationship between the probabilities of interception, decryption, and
decoding. For data leakage to occur, an adversary must be able to achieve all three actions,
i.e., decryption is irrelevant if the adversary is unable to receive any messages. Conversely,
receiving every transmission ever sent is irrelevant if an adversary is unable to decrypt or
decode the messages. The logical binary relationship of how P(l) relates to P(int), P(dcr),
and P(dco) is captured in Table 1. The proposed equation to describe P(l) in terms of
P(int), P(dcr), and P(dco) is

P(l) = P(int)× P(dcr)× P(dco). (4)

Table 1. Logical binary relationship for the probability of leakage.

P(int) P(dcr) P(dco) P(l)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

3.2. Probability of Integrity

Quantifying integrity is equally challenging. Integrity is a measure of the consistency,
accuracy, and trustworthiness of data. Integrity implies that data has not been changed
by unauthorized users in transit. One method of quantifying integrity is the “prevention
of unauthorized modification of information” [10]. Under this assumption, unauthorized
modification is corruption, resulting in

P(I) = 1− P(c) (5)

where P(I) is the probability of integrity and P(c) is the probability of corruption. Corrup-
tion here captures any damage to integrity yielding “two notions of corruption ” where the

339

J. Cybersecur. Priv. 2021, 1

“first leads us to a measure that we call contamination” and the “second leads us to ... suppres-
sion” [10]. Contamination may arise from adversarial action, injection, or non-adversarial
input, noise. Further, an adversary may carefully inject portions of false data (a spoofing
attack), inject massive amounts of false data to disable communications (the traditional
DoS attack), or overtly jam a message with a false signal (traditional RF jamming).

Therefore, we choose to classify DoS attacks as being an attack on the integrity of the
data or message, not as an attack on the availability of the network. Again, inspired by
PSMT [11], the set of all adversarial disruptors, AD, maps to a number of wires, ρ, that the
disruptors have access to; if one of the members of AD has access to the information, then
the probability of corruption exists.

We, therefore, posit that corruption has three components: noise, data suppression,
and data injection. The probability of noise occurring in a message, P(n), is the probability
that a message will be adversely affected by noise. Noise is a natural phenomenon that
happens regardless of the transmitter’s capability. The probability of suppression, P(s),
quantifies the probability that an adversary will suppress or jam the message, thus, prevent-
ing the receiver from obtaining the message6. Finally, the probability of injection, P(inj),
quantifies the probability that an adversary will inject false data into the message. P(inj)
requires the ability to insert malicious data into a data stream, a much more sophisticated
activity than that of jamming7. Since noise is a natural phenomenon, it is consistently
present and may influence P(s) and P(inj). Noise works cooperatively with P(s) since both
cause the receiver to incorrectly receive the intended message. Based on these probabilities,
the logical binary relationship for P(c) is shown in Table 2 and reflected as

1− P(c) =
(
1− P(n)

)× (
1− P(s)

)× (
1− P(inj)

)
. (6)

Equation (6) does not adequately capture the behavior of the system. Noise may
be detrimental to data injection, making the injected data unusable. Due to the inter-
action between P(n) and P(inj), namely that noise affects both intended and malicious
transmissions, a more comprehensive equation is

P(c) =
((

1− P(n)
)× P(inj)

)
+

(
P(n) + P(s)

)− (
P(n)× P(s)

)
−
((

1− P(n)
)× P(inj)× (

P(n) + P(s)
))

.
(7)

While less elegant than Equation (6), Equation (7) provides realistic results that account
for all probabilities between 0 and 1 for each of the factors.

Table 2. Logical binary relationship for the probability of corruption.

P(n) P(s) P(inj) P(c)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

3.3. Availability

Methods exist for assessing and improving the performance of a system based on QoS
measures [12]. For the QoSS model, the metrics used to describe availability are already
conveyed in the QoS metrics. This is reflected as A = QoS, where QoS is the set of metrics
that include cost, jitter, latency, bandwidth, and bit rate, which already provide a repeatable
method of measuring availability.

340

J. Cybersecur. Priv. 2021, 1

3.4. Multiple Channels

Using multiple channels can improve the performance of data-in-transit in diverse
ways. A straightforward example is directly increasing the data rate, such that additional
channels provide more bandwidth, e.g., channel bonding within IEEE 802.11 [13–16].
Another example is frequency hopping through multiple channels, which is one of several
techniques known as the spread spectrum and which provides protection from noise or
jamming as the signal is “spread across a channel greater than that necessary to transmit
the information” [17]. This technique is currently used in Bluetooth, and such transmission
diversity is also a key element of 5G wireless [18,19].

An example of data-at-rest performance improvement through multiple channels is
found in the Redundant Array of Inexpensive Disks (RAID) architecture. Developed in
1987, RAID demonstrated that by utilizing redundancy, an array could be more reliable
than any one disk drive while allowing greater data throughput (In a RAID array, data is
split across various disks so that if one disk should fail, the data may be fully recovered
despite not having all the original blocks of data. Various combinations of nested RAID
levels may be used to reduce the vulnerabilities of simultaneous disk failures [20]. The
data may also be encrypted before or after splitting, or both, as a manner of increasing
confidentiality.). Despite significant overhead, the ability to survive disk failures has made
it very attractive in critical server environments.

Many applications in control systems maintain separate channels for data and control.
For example, in SS78, the signaling path is separate and distinct from the voice channels
that carry the telephone conversation. Having different channels, at different frequencies
and differing bandwidths, allows for greater flexibility and higher-speed communications
between network assets without the need to rely upon the availability or limitations of
analog voice channels (In reality, these two channels are not entirely separated. The dual-
tone, multi-frequency (DTMF) digits dialed by a caller begin within the voice channel,
but are recognized by the control channel and are an example of the signaling messages,
including dialing a phone number, entering control functions like call-forwarding, or
advanced billing information [21,22]).

An abstract form of multi-channel communication is two-factor authentication (2FA),
a subset of multi-factor authentication. This is an authentication methodology that requires
a user to present two or more pieces of evidence to confirm the user’s identity via separate
delivery paths9 [23]. By using multiple authentication factors sent via divergent paths, the
likelihood that both messages are intercepted decreases. Even if a malicious actor intercepts
one factor, full authentication by the malicious actor cannot occur without intercepting the
other. Numerous other forms of 2FA also exist [24].

Central to the theme of this paper, multiple channel architecture may also be used to
improve security through data fragmentation across heterogeneous channels [25–28]. This
security focused capability, in concert with the performance advantages of multi-channel
communications, is the motivation for creating a tunable multi-channel communication
protocol and associated analysis techniques to determine the appropriate trade-offs under
varying security and performance requirements.

4. The Quality of Secure Service Model

Although a communication network typically uses only one network channel between
two given nodes, the possibility exists to utilize multiple paths between nodes, as shown
in Figure 1. This figure shows an arbitrary network with eight individual channels, any of
which may be used to transport data. A message sent through the network in Figure 1 may
travel across one of the channels influenced by the set of adversarial listeners, AL, or the
set of adversarial disruptors, AD.

341

J. Cybersecur. Priv. 2021, 1

Figure 1. A network configuration with multiple possible channels.

The relationship between listeners, disruptors, and the total number of needed chan-
nels is described by PSMT, which “abstract[s] away the network entirely and concentrate[s]
on solving the Secure Message Transmission Problem” for a single transmitter and receiver
pair [11]. Additional articles explore multi-channel architectures [29,30], while others strive
to prove the general case and optimize the statistical reliability and secrecy [31,32].

In our model, σ represents the number of wires (channels) between the transmitter
and receiver available to the adversarial listener set, AL, and ρ is the number of channels
between the transmitter and receiver available to the adversarial disruptor set, AD

10.
Communication is two-way between the transmitter and receiver and, following PSMT,
the number of channels that must exist between transmitter and receiver is given by

n ≥ max{σ + ρ + 1; 2ρ + 1}. (8)

With this equation, we know how many channels must be used to maintain secure
and reliable communication. If a channel is unavailable, then it must not be counted as
part of n. If we assume the number of channels accessible to a listener or disruptor, then
we can arrive at a specific quantification of n. For example, when n = 8 and σ = 3, the
probability that any one channel of the eight could be listened to is 0.375. The probability
of leakage for each channel within a multi-channel architecture becomes

P(l) = P(int) · P(dcr) · P(dco) · σ
n

. (9)

Similarly, the probability of corruption for each channel within multi-channel architec-
ture becomes

P(c)=

((
1−P(n)

)
P(inj)+

(
P(n)+P(s)

)−(
P(n)P(s)

)
−(

1−P(n)
)(

P(n)+P(s)
)

P(inj)

)
ρ

n
. (10)

Therefore, the more channels there are in a network, the lower the probability of
adversarial interference of the data11. This, then, follows the premise of PSMT: to have
more channels than the combined set of listeners and disruptors AL∪AD.

In the same manner that multiple channels may thwart adversarial interference, mes-
sage fragmentation may also thwart eavesdropping. Message fragmentation is the splitting
of data across the available channels, effectively parallelizing the data. Fragmentation
describes how many portions the original message is divided into. Various methods of
fragmentation are possible, including uniform or non-uniform fragmentation from 1-bit to
the total m-bits in message M. Research has been published on particular approaches to
fragmentation [28,33]; however, in this paper,we focuse on the security effects and apply
the assumption that fragments are of equal size across the network. If Cn is the set of n
channels, and FM is the set of k fragments of 1 ≤ | fi| ≤ m-bits of the message M, then

FM = { f(M,1), f(M,2), f(M,3), . . . , f(M,k)} (11)

342

J. Cybersecur. Priv. 2021, 1

f(M,i) ⊆ M f or 1 ≤ i ≤ k (12)

where each fragment is unique. The channel load, L, is the percentage of M on a particular
channel j, such that

L(j,M) =
∑n

i=1| fi | f or fi ∈ C(j,M)

|M| (13)

and the Average Loading (AL) for the set of channels is

ALM =
∑n

i=1 L(j,M)

n
. (14)

For example, FM ={ f1, f2, f3, f4, f5, f6, f7, f8} is the set of eight fragments of message M
on a network that has n = 8 channels, and each channel transmits two fragments. Therefore,
AL = 0.25. Message fragmentation also allows for duplicating data across channels.
The Duplication Factor (DF) measures the average number of times a given fragment is
transmitted, indicating the network redundancy. The DF may increase as compensatory
tuning for known adversarial interactions. For the previous example, DF = 2, since each
fragment is sent across two channels and, thus, duplicated twice. For these calculations of
DF and AL, the fragment sizes are uniform.

The AL and DF directly affect P(C) and P(I). Of the constituent parts of P(C),
P(int) is only affected by DF in aggregation across all channels because the probability of
interception of a single channel is not necessarily improved by duplication or fragmentation.
However, P(int) may be increased by the message M being duplicated across multiple
channels, offering an adversary more opportunities to intercept portions of the message.

Therefore, DF is only multiplied by P(int) when averaging all the channels into a
composite probability of leakage. For the constituent parts of P(I), duplication directly
affects P(s) because sending fragments multiple times decreases the probability of lost data
through suppression. P(n) and P(inj) are not directly influenced by duplication. Thus,
P(s) is divided by DF for each channel, giving

P(c)=

((
1−P(n)

)
P(inj)+

(
P(n)+ P(s)

DF
)−(

P(n) P(s)
DF

)
−(

1−P(n)
)(

P(n)+ P(s)
DF

)
P(inj)

)
ρ

n
. (15)

Fragmentation does not necessarily increase or decrease P(s) except that it allows
for duplication. However, fragmentation does directly affect P(inj) since each fragment
sent needs to be modified by the adversary in order to have malicious data accepted at the
receiver. Thus, P(inj) is multiplied by AL for each channel, giving

P(c)=

((
1−P(n)

)
P(inj)AL+

(
P(n)+ P(s)

DF
)−(

P(n) P(s)
DF

)
−(

1−P(n)
)(

P(n)+ P(s)
DF

)
P(inj)AL

)
ρ

n
. (16)

Applying the PSMT and decomposing the network into constituent channels yields

QoSS :

⎡⎢⎢⎢⎢⎣
P1(C), P1(I), QoS1
P2(C), P2(I), QoS2

...
...

...
Pn(C), Pn(I), QoSn

⎤⎥⎥⎥⎥⎦ → Sec Reqs, (17)

which highlights that each channel has its own characteristics. From the end-user per-
spective, only the aggregated QoSS for the entire network is apparent. With insight into
each channel’s QoSS, an analyst may suggest a different quantity of channels, different
fragmentation or duplication, or a different encoding or encryption algorithm if adversarial
actors attempt to influence communications.

343

J. Cybersecur. Priv. 2021, 1

5. Case Studies of Multi-Channel QoSS

The three example networks presented here are used to highlight the initial estimates
and are intended to be refined as the network understanding is increased. For simplicity,
the probabilities used in the following examples are discrete values; however, any value
between 0 and 1 is possible. In developing the QoSS model, estimating the intermediate
values is a challenge. As a starting point, 0 may be used for a network that has absolutely
no encryption, 0.5 may be used for a system that has minimal or sub-standard encryption,
and 1 may be used for a system that employs strong encryption.

Incremental changes may be employed as desired or as needed after a baseline un-
derstanding is developed, much like understanding the incremental difference between
AES-128 and AES-256, or the difference between DES, triple-DES, and AES. The primary
goal of the initial model development is to apply estimates for each of the constituent
elements as implied by [34]. Further refinement of those estimates may be applied after
more thorough system analyses.

During the early stages of analysis, the difference between a probability of 0.76 and
0.77 remains undefined and the numbers tend to be more arbitrary. This serves to assign a
starting point for analysis, thus, establishing a baseline. Given the three example networks
that follow and some initial probabilistic estimates for the various characteristics, the
QoSS model is applied. Each case has a realistic configuration that allows for one-to-
one comparison.

5.1. Single-Channel Network

The first example is a network that utilizes a single wireless channel to provide a
realistic baseline. With n = 1, there is σ = 1 listener, and ρ = 1 disruptor. AL = 1 because
the message cannot be split, and DF = 1 since, for this architecture, the message is only sent
once. Table 3 shows notional probabilities for a network that has no encryption, standard
data encoding, and a moderate probability of interception because it uses a standard
broadcast frequency and a moderately strong broadcast signal, which also results in a low
probability of noise.

We assign a high probability of suppression under the assumption of an omnidirec-
tional receiver, susceptible to jamming. The probability for injection is moderately high,
though not as high as the probability of suppression, because injection is more challenging
than suppression. These values serve as a baseline to demonstrate the effects of multiple
channels in the subsequent examples.

Table 3. Input and output values for a single-channel network.

Channel P(int) P(dcr) P(dco) P(l) P(C) P(n) P(s) P(inj) P(c) P(I)

1 0.5 1 1 0.5 0.5 0.25 1 0.33 0.9381 0.0619

Based on these constraints, the single-channel network has a high probability of
leakage, with a corresponding probability of confidentiality. The probability of corruption is
also very high, with a correspondingly low probability of integrity. These probabilities may
be improved by using encryption and by using directional receivers or a wired connection.

5.2. Three-Channel Network

The second example applies PSMT to the communication architecture, and demon-
strates the initial application of multiple channels. In this example, the communication
network uses three discrete, heterogeneous channels to communicate between the trans-
mitter and the receiver. For this example, n = 3, σ = 1 listener, and ρ = 1 disruptor.
One difference between the single channel case and the three-channel case is the AL. The
original message is fragmented into three equal portions, f1, f2, and f3, which are each
transmitted twice as follows: { f1, f2} on Channel 1, { f2, f3} on Channel 2, and { f3, f1} on
Channel 3. For this case AL = 0.66, and DF = 2 (because each fragment is sent twice).

344

J. Cybersecur. Priv. 2021, 1

Table 4 shows the theorized characteristics for a network with various probability of
interception and fixed values for probability of decryption and decoding. Additionally,
Table 4 shows that the network has various probabilities of injection with fixed values for
probability of noise and suppression.

Channel 1 has identical input factors to the single-channel network as demonstrated
in Table 3; however, the message is fragmented across multiple channels, which causes the
probability of confidentiality and probability of integrity to increase, not only for Channel
1, but for each channel in the network12. The average probability of confidentiality is
0.83 even without encryption, indicating that fracturing data across the multiple channels
improves the probability of confidentiality and over-all QoSS, partially mitigating the lack
of encryption.

Table 4. Input and output values for a three-channel network.

Channel (n) Pn(int) Pn(dcr) Pn(dco) Pn(l) Pn(C) Pn(n) Pn(s) Pn(inj) Pn(c) Pn(I)

1 0.5 1 1 0.1667 0.8333 0.25 1 0.33 0.2219 0.7781
2 0.75 1 1 0.2500 0.7500 0.25 1 0.4 0.2248 0.7752
3 0.25 1 1 0.0833 0.9167 0.25 1 0.26 0.2191 0.7809

Avg 0.5 1 1 0.1667 0.8333 0.25 1 0.33 0.2219 0.7781

5.3. Eight-Channel Network

The third example presents a communication network with eight discrete, heteroge-
neous channels. In this example, n = 8, σ = 3 listeners, and ρ = 3 disruptors. The original
message is fragmented into eight equal portions, { f1, f2, ..., f8}, of which { f1, f2} are transmit-
ted on Channel 1, { f2, f3} on Channel 2, { f3, f4} on Channel 3, and so on. Here, AL = 0.25,
and DF = 2 because each fragment is sent twice. Table 5 shows the theorized input for the
eight-channel network.

Of particular note, Table 5 has the same input as Table 4 for Channels 1–3, and other
values for Channels 4–8, although with different results13. The only difference from the three-
channel case is that, with eight channels, the message is fragmented across more channels,
causing the confidentiality and integrity to increase. The average values for P(int), P(dcr),
and P(dco) are the same for the single-channel, three-channel, and eight-channel networks,
although the average P(l) and P(C) are notably different.

Table 5. Input and output values for an eight-channel network.

Channel (n) Pn(int) Pn(dcr) Pn(dco) Pn(l) Pn(C) Pn(n) Pn(s) Pn(inj) Pn(c) Pn(I)

1 0.5 1 1 0.1875 0.8125 0.25 1 0.33 0.2402 0.7598
2 0.75 1 1 0.2813 0.7188 0.25 1 0.4 0.2414 0.7586
3 0.25 1 1 0.0938 0.9063 0.25 1 0.26 0.2389 0.7611
4 0.2 1 1 0.0750 0.9250 0.25 1 0.05 0.2353 0.7647
5 0.35 1 1 0.1313 0.8688 0.25 1 0.1 0.2361 0.7639
6 0.4 1 1 0.1500 0.8500 0.25 1 0.2 0.2379 0.7621
7 0.7 1 1 0.2625 0.7375 0.25 1 0.6 0.2449 0.7551
8 0.85 1 1 0.3188 0.6813 0.25 1 0.7 0.2467 0.7533

Avg 0.5 1 1 0.1875 0.8125 0.25 1 0.33 0.2402 0.7598

As expected, the single-channel network has the lowest theorized QoSS values. With a
slightly higher percentage of listeners, the eight-channel network has a slightly higher P(l)
and correspondingly lower P(C) than the three-channel network14. Similarly, the average
values for P(n), P(s), and P(inj) are the same for the single-channel, three-channel, and
eight-channel networks, yet the P(c) and P(I) are significantly different.

345

J. Cybersecur. Priv. 2021, 1

5.4. Implications of Results

The most difficult aspect of developing the QoSS metrics is making assumptions
about the network characteristics. For these examples, we began with an assumption that
P(dcr) = 1 was a baseline value that an adversary would be able to access all critical
data. What does this mean for P(dcr) = 1? Perhaps the assumption implies that no
encryption is used, despite the fact that the use of encryption is strongly encouraged for all
communications systems.

Similarly, is this possible for P(dcr) = 0? This assumption implies that the encryption
is unbreakable at this time and under these communication and environmental conditions.
The fact that we do not know the adversary’s fullest capabilities, nor do we know the
adversary’s intentions, are considerations that must be included, within a range, in the
estimate for the probabilistic aspect of our metrics. More accurately, we estimate what is
possible within the current state-of-the-art and under a set of operational characteristics.

Adversarial intention is much more difficult to estimate; intentions may change
rapidly or may vary on a case-by-case basis. In light of that, we have attempted to reflect
all the adversarial intentions, whether it is jamming, spoofing, or eavesdropping, within
the generalized probability of confidentiality and probability of integrity. With these
estimations, both adversarial capability and intention are difficult to concretely quantify in
the initial pass, and they are, thus, cast in probabilistic terms.

This version of the QoSS model is a single snap-shot in time; a time-varying QoSS
model is in development in which the model estimations may be updated based on new
research, information, or changing environmental and systemic conditions. As the QoSS
model becomes more mature and broadly adopted, future iterations will benefit from
increased understanding of these probabilistic approaches and an initial coarse estimate
for design requirements may converge to refined security requirements if applied in an
iterative manner.

These iterations point directly to the eventual need for a simulation environment and
all the supporting protocols that allow for the verification and validation of the security
metrics. To achieve that end, the network performance will need to be influenced by a
simulated adversarial actor, and the amount of data leakage or corruption will be directly
quantified based on the amount of transmitted data. Only with that final step of validation
will we be certain that the model portrays a realistic version of a communication network.

6. Conclusions and Future Work

This manuscript represents an initial model intended to be used in developing an
understanding of how real-world networks function in the presence of adversarial influence.
The current analysis does not address the nuances of specific communication scenarios,
and there is no existing network to validate our model. Quantifying security in real-
world communication networks is difficult and mostly subjective. Without a metric for
confidentiality and integrity, it is nearly impossible to state how secure one network is
compared to another.

Using a probabilistic model that considers data leakage and data corruption in place
of confidentiality and integrity, a set of metrics may be used to quantify the QoSS. This
model allows the direct and repeatable quantification of the security available in a single-
or multi-channel network under static configurations. The quantification of security is
based directly upon the probabilities that adversarial listeners and disruptors are able to
gain access to or change the original message.

Traditional measurements of QoS provide a foundation, and message fragmentation
and duplication across the available channels provide demonstrably improved theoretical
performance. A fully developed simulation would be useful in validating the modeled
results. However, at this time, there is no existing network or simulation of a real network
to validate the theoretical QoSS model. A simulation environment is in the process of
development in order to include the ability to estimate an adversary’s influence, as are the
experiments and the network prototype that will be used to test the theoretical QoSS model.

346

J. Cybersecur. Priv. 2021, 1

Two additional manuscripts are nearing completion that will address two of the many
thorny issues contained within real networks—in particular, multi-hop networks and the
changes to the QoSS metrics that occur over time. This future work may require building
specific data-handling protocols, and would monitor how the network end-points respond.
With the simulation environment developed, the modeled results may be verified and the
QoSS model may be validated or improved with additional data and insight.

Author Contributions: Conceptualization, P.M.S., S.G. and C.T.; refinement, P.M.S., S.G. and M.H.;
methodology, P.M.S. and S.G.; software, P.M.S.; validation, P.M.S.; investigation, P.M.S.; resources,
P.M.S.; writing—original draft preparation, P.M.S.; writing—review and editing, P.M.S., S.G. and
M.H.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the Air Force Institute of Technology, Center for
Cyberspace Research (CCR).

Institutional Review Board Statement: This article does not contain any studies with human partic-
ipants or animals performed by any of the authors.

Informed Consent Statement: Not applicable.

Acknowledgments: The views expressed in this paper are those of the authors, and do not reflect
the official policy or position of the United States Air Force, Department of Defense, or the U.S.
Government. This document has been approved for public release.

Conflicts of Interest: All authors declare that they have no conflict of interest.

Notes
1 Analysis of the dynamic aspects of mobile networks or tunable security mechanisms is left for a subsequent paper,

as are changing environmental conditions and temporal adversarial intrusions.
2 Multi-hop architectures are outside the scope of this paper but are a straightforward extension of the model that will

be addressed in a subsequent paper.
3 Wired and wireless networks have different characteristic values based on the specific technologies and protocols

used.
4 This value reflects the quality of the encryption used, be it no encryption, a simple ROT13 algorithm, or a sophisticated

encryption algorithm.
5 This value highlights the differences in binary strings, and if the adversary has the ability to recognize those

differences. For example, an adversary with a .mp3 file who mistakenly believes it is a .txt file, will not be able to
derive useful information from that particular file.

6 To clarify, P(s) is the active jamming by an adversary as quantified at the receiver, whereas availability is quantified
by the transmitter’s capabilities.

7 As the adversarial intent of suppression is counter to that of injection, it is unlikely, although not impossible, to have
high P(s) and high P(inj). This would be akin to an adversary steering a receiving channel to a compromised channel
by jamming the intended channel. Neither of these speaks directly to the intent of an adversary but rather to the
requirements and built-in capabilities of the transmitter and receiver.

8 Signaling System Number 7 (SS7) was developed in 1975 as a set of protocols used to set up and tear down public
switched telephone network (PSTN) communication connections.

9 The user’s identity is verified by using a combination of two or more factors: something they know, something they
have, or something they are.

10 In the general case, AL or AD may be subsets of or intersect with each other; i.e., AL⊆AD, or AD⊆AL or AL∩AD.
11 One potential implication is that each channel may carry both a portion of the data and be used as a method to check

for errors on the others channels
12 In a real communication architecture, all three channels would likely have more similar characteristics.
13 As in the Three-Channel example, a real communication system would likely have channels with similar characteris-

tics.
14 Note the number of channels with respect to Equation (8) for this multi-channel space. For the eight-channel network,

n = 8 even though seven channels would be sufficient based on σ = 3 listeners, ρ = 3 disruptors, and Equation (8).

347

J. Cybersecur. Priv. 2021, 1

References

1. Reine, L.; Lindskog, S.; Brunstrom, A. A Model-based Analysis of Tunability in Privacy Services. In IFIP International Summer
School on the Future of Identity in the Information Society; Springer: Boston, MA, USA, 2007.

2. Hughes, J.; Cybenko, G. Quantitative metrics and risk assessment: The three tenets model of cybersecurity. Technol. Innov. Manag.
Rev. 2013, 3, 15–24. [CrossRef]

3. Jabbour, K.; Poisson, J. Cyber risk assessment in distributed information systems. Cyber Def. Rev. 2016, 1, 91–112.
4. Wang, J.A.; Xia, M.; Zhang, F. Metrics for information security vulnerabilities. J. Appl. Glob. Res. 2008, 1, 48–58.
5. Duan, Q. Modeling and analysis of end-to-end quality of service provisioning in virtualization-based future Internet. In

Proceedings of the 2010 Proceedings of 19th International Conference on Computer Communications and Networks, Zurich,
Switzerland, 2–5 August 2010.

6. Firoiu, V.; Le Boudec, J.Y.; Towsley, D.; Zhang, Z.L. Theories and models for internet quality of service. Proc. IEEE 2002, 90,
1565–1591. [CrossRef]

7. Leon, P.G.; Saxena, A. An approach to quantitatively measure information security. In Proceedings of the 3rd India Software
Engineering Conference, Mysore, India, 25–27 February 2010.

8. Clarkson, M. Quantification and Formalization of Security. Ph.D. Dissertation, Cornell University, Ithaca, NY, USA, 2010.
Available online: https://ecommons.cornell.edu/handle/1813/14744 (accessed on 15 March 2021).

9. Nikhat, P.; Beg, M.R.; Khan, M.H. Model to quantify confidentiality at requirement phase. In Proceedings of the 2015 International
Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015), Unnao, India, 6–7 March
2015.

10. Clarkson, M.R.; Schneider, F.B. Quantification of integrity. Math. Struct. Comput. Sci. 2015, 25, 207–258. [CrossRef]
11. Dolev, D.; Dwork, C.; Waarts, O.; Yung, M. Perfectly secure message transmission. J. ACM (JACM) 1993, 40, 17–47. [CrossRef]
12. Almerhag, I.A.; Almarimi, A.A.; Goweder, A.M.; Elbekai, A.A. Network security for QoS routing metrics. In Proceedings of the

International Conference on Computer and Communication Engineering (ICCCE’10), Kuala Lumpur, Malaysia, 11–12 May 2010.
13. Faridi, A.; Bellalta, B.; Checco, A. Analysis of dynamic channel bonding in dense networks of WLANs. IEEE Trans. Mob. Comput.

2016, 16, 2118–2131. [CrossRef]
14. Han, M.; Khairy, S.; Cai, L.X.; Cheng, Y. Performance analysis of opportunistic channel bonding in multi-channel WLANs. In

Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016.
15. Lee, S.; Kim, T.; Lee, S.; Kim, K.; Kim, Y.H.; Golmie, N. Dynamic Channel Bonding Algorithm for Densely Deployed 802.11 ac

Networks. IEEE Trans. Commun. 2019, 67, 8517–8531. [CrossRef]
16. Bukhari, S.H.R.; Rehmani, M.H.; Siraj, S. A survey of channel bonding for wireless networks and guidelines of channel bonding

for futuristic cognitive radio sensor networks. IEEE Commun. Surv. Tutor. 2015, 18, 924–948.
17. Cook, C.; Marsh, H. An introduction to spread spectrum. IEEE Commun. Mag. 1983, 21, 8–16. [CrossRef]
18. Gao, J.; Zhang, Y.; Liu, Y. A novel diversity receiver design for cooperative transmission system. IEEE Access 2018, 6, 27176–27182.

[CrossRef]
19. Moulika, V.; Bhagyalakshmi, L. Performance Investigation of Cooperative Diversity Techniques for 5G Wireless Networks. In

Proceedings of the 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP), Chennai,
India, 4–6 July 2019.

20. Hennessy, L.J.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Elsevier: Amsterdam, The Netherlands, 2011.
21. Russell, T. Signaling System # 7; McGraw-Hill: New York, NY, USA, 2002; Volume 2.
22. Modarressi, A.R.; Ronald, A.S. Signaling system no. 7: A tutorial. IEEE Commun. Mag. 1990, 28, 19–20. [CrossRef]
23. Shankar, K.S. Special feature the total computer security problem: An oveview. Computer 1977, 10, 50–73. [CrossRef]
24. Archana, B.S.; Chandrashekar, A.; Bangi, A.G.; Sanjana, B.M.; Akram, S. Survey on usable and secure two-factor authentication.

In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, India, 19–20 May 2017.

25. Ciriani, V.; Vimercati, S.D.C.D.; Foresti, S.; Jajodia, S.; Paraboschi, S.; Samarati, P. Combining fragmentation and encryption to
protect privacy in data storage. ACM Trans. Inf. Syst. Secur. (TISSEC) 2010, 13, 1–33. [CrossRef]

26. Feng, L.; Zhang, Y.; Li, H. Large file transmission using self-adaptive data fragmentation in opportunistic networks. In Proceedings
of the 2015 Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015.

27. Mikko, P.; Keranen, A.; Ott, J. Message fragmentation in opportunistic DTNs. In Proceedings of the 2008 International Symposium
on a World of Wireless, Mobile and Multimedia Networks, Newport Beach, CA, USA, 23–26 June 2008.

28. Wampler, J.A.; Chien, H.; Andrew, T. Efficient distribution of fragmented sensor data for obfuscation. In Proceedings of the
MILCOM 2017—2017 IEEE Military Communications Conference (MILCOM), Baltimore, MD, USA, 23–25 October 2017.

29. Abdel-Rahman, M.J.; Shankar, H.K.; Krunz, M. QoS-aware parallel sensing/probing architecture and adaptive cross-layer
protocol design for opportunistic networks. IEEE Trans. Veh. Technol. 2015, 65, 2231–2242. [CrossRef]

30. Pohly, D.J.; Patrick, M. Modeling Privacy and Tradeoffs in Multichannel Secret Sharing Protocols. In Proceedings of the 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, 28 June–1 July
2016.

31. Desmedt, Y.; Wang, Y. Perfectly secure message transmission revisited. In International Conference on the Theory and Applications of
Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2002.

348

J. Cybersecur. Priv. 2021, 1

32. Srinathan, K.; Arvind, N.; Pandu, C.R. Optimal perfectly secure message transmission. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 2004.

33. Hudic, A.; Islam, S.; Kieseberg, P.; Rennert, S.; Weippl, E.R. Data confidentiality using fragmentation in cloud computing. Int. J.
Commun. Netw. Distrib. Syst. 2012, 1, 1. [CrossRef]

34. Sweet, I.; Trilla, J.M.C.; Scherrer, C.; Hicks, M.; Magill, S. What’s the Over/Under? Probabilistic Bounds on Information Leakage.
In International Conference on Principles of Security and Trust; Springer: Cham, Switzerland, 2018.

349

MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Journal of Cybersecurity and Privacy Editorial Office
E-mail: jcp@mdpi.com

www.mdpi.com/journal/jcp

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Collection Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.

Academic Open

Access Publishing

mdpi.com ISBN 978-3-7258-3360-3

