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Decomposing and Tracing Mutual Information by Quantifying
Reachable Decision Regions

Tobias Mages * and Christian Rohner

Department of Information Technology, Uppsala University, 752 36 Uppsala, Sweden; christian.rohner@it.uu.se
* Correspondence: tobias.mages@it.uu.se

Abstract: The idea of a partial information decomposition (PID) gained significant attention for
attributing the components of mutual information from multiple variables about a target to being
unique, redundant/shared or synergetic. Since the original measure for this analysis was criticized,
several alternatives have been proposed but have failed to satisfy the desired axioms, an inclusion–
exclusion principle or have resulted in negative partial information components. For constructing
a measure, we interpret the achievable type I/II error pairs for predicting each state of a target
variable (reachable decision regions) as notions of pointwise uncertainty. For this representation
of uncertainty, we construct a distributive lattice with mutual information as consistent valuation
and obtain an algebra for the constructed measure. The resulting definition satisfies the original
axioms, an inclusion–exclusion principle and provides a non-negative decomposition for an arbitrary
number of variables. We demonstrate practical applications of this approach by tracing the flow of
information through Markov chains. This can be used to model and analyze the flow of information
in communication networks or data processing systems.

Keywords: partial information decomposition; redundancy; synergy; information flow analysis

1. Introduction

A Partial Information Decomposition (PID) aims to attribute the provided infor-
mation about a discrete target variable T from a set of predictor or viewable variables
V = {V1, . . . , Vn} to each individual variable Vi. The partial contributions to the in-
formation about T may be provided by all variables (redundant or shared), by a spe-
cific variable (unique) or only be available through a combination of variables (syner-
getic/complementing) [1]. This decomposition is particularly applicable when studying
complex systems. For example, it can be used to study logical circuits, neural networks [2]
or the propagation of information over multiple paths through a network. The concept of
synergy has been applied to develop data privacy techniques [3,4], and we think that the
concept of redundancy may be suitable to study a notion of robustness in data process-
ing systems.

Unfortunately and to the best of our knowledge, there does not exist a non-negative
decomposition of mutual information for an arbitrary number of variables that satisfies
the commutativity, monotonicity and self-redundancy axioms except the original measure
of Williams and Beer [5]. However, this measure has been criticized for not distinguishing
“the same information and the same amount of information” [6–9].

Here, we propose an alternative non-negative partial information decomposition that
satisfies Williams and Beer’s axioms [5] for an arbitrary number of variables. It provides
an intuitive operational interpretation and results in an algebra like probability theory.
To demonstrate that the approach distinguishes the same information from the same
amount of information, we highlight its application in tracing the flow of information
through a Markov chain, as visualized in Figure 1.

Entropy 2023, 25, 1014. https://doi.org/10.3390/e25071014 https://www.mdpi.com/journal/entropy1



Entropy 2023, 25, 1014

T V = (V1, V2) Q = (Q1, Q2) R = (R1, R2) T̂

H(T) I(T; V) I(T; Q) I(T; R) I(T; T̂)≥ ≥ ≥≥

Shared Unique 1 Unique 2 Synergetic

Figure 1. Visualization of a partial information decomposition with information flow analysis
of a Markov chain as Sankey diagram. A partial information decomposition enables attribut-
ing the provided information about T to being shared (orange), unique (blue/green) or syner-
getic/complementing (pink). While this already offers practical insights for studying complex
systems, the ability to trace the flow of partial information may create a valuable tool to model and
analyze many applications.

This work is structured in three parts: Section 2 provides an overview of the related
work and background information. Section 3 presents a representation of pointwise un-
certainty, constructs a distributive lattice and demonstrates that mutual information is the
expected value of its consistent valuation. Section 4 discusses applications of the resulting
measure to PIDs and the tracing of information through Markov chains. We provide an
overview of the used notation at the end of the paper.

2. Related Work

We briefly summarize partial orders and the four main publications which led to
our proposed decomposition approach. This includes the PID by Williams and Beer [5],
the quantification of unique information by Bertschinger et al. [10] and Griffith and
Koch [11], the Blackwell order based on Bertschinger and Rauh [12], the evaluation of
binary decision problems using Receiver Operating Characteristics and consistent lattice
valuations by Knuth [13].

2.1. Partial Orders and Lattices

This section provides a brief overview of the relevant definitions on partial orders and
lattices for the context of this work based on [9,13]. A binary ordering relation � on a set
L is called a preorder if it is reflexive and transitive. If the ordering relation additionally
satisfies an antisymmetry, then (L,�) is called a partially ordered set (poset). For α, β, γ ∈ L:

α � α (reflexivity)
if α � β and β � γ then α � γ (transitivity)
if α � β and β � α then α = β (antisymmetry)

Two elements satisfy α � β, β � α or may be incomparable, meaning α �� β and β �� α.
A partially ordered set has a bottom element ⊥ ∈ L if ⊥ � α for all α ∈ L and a top element
� ∈ L if α � � for all α ∈ L. For each element α, it can be defined a down-set (↓α) and
up-set (↑α) as well as a strict down-set (↓̇α) and strict up-set (↑̇α) as shown below:

↓α = {β ∈ L | β � α} (down-set)

↓̇α = {β ∈ L | β � α and α �� β} (strict down-set)

↑α = {β ∈ L | α � β} (up-set)

↑̇α = {β ∈ L | α � β and β �� α} (strict up-set)

A lattice is a partially ordered set (L,�) for which every pair of elements {α, b} ⊆ L

has a unique least upper bound α� β = sup{α, β}, referred to as joint, and a unique greatest
lower bound α � β = inf{α, β}, referred to as meet. This creates an algebra (L,�,�) with

2
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the binary operators � and � that satisfies indempotency, commutativity, associativity
and absorption. The consistency relates the ordering relation and algebra with each other.
A distributive lattice additionally satisfies distributivity.

α � α = α α � α = α (indempotency)
α � β = β � α α � β = β � α (commutativity)

α � (β � γ) = (α � β)� γ α � (β � γ) = (α � β)� γ (associativity)
α � (α � β) = α α � (α � β) = α (absorption)

α � β ⇒ α � β = β α � β ⇒ α � β = α (consistency)

α � (β � γ) = (α � β)� (α � γ) α � (β � γ) = (α � β)� (α � γ) (distributivity)

2.2. Partial Information Decomposition

This section summarizes Williams and Beer’s general approach to partial information
decompositions [5]. A more detailed discussion of the literature and required background
can be found in [9] (p. 6–20).

Williams and Beer [5] define sources Si ∈ P1(V) as all combinations of viewable vari-
ables (P1(V) referring to the power set of V without the empty set) and use Equation (1a)
to construct all distinct interactions between them α ∈ A(V), which are referred to as partial
information atoms. Equation (1b) provides a partial order of atoms to construct a redundancy
lattice (A(V),�). As a convention, we indicate the visible variables contained in a source
by its index, such as S12 = {V1, V2}. The example of the redundancy lattice for two and
three visible variables is shown in Figure 2.

A(V) = {α ∈ P1(P1(V)) | ∀Si, Sj ∈ α, Si �⊂ Sj}, (1a)

∀α, β ∈ A(V), (α � β ⇔ ∀Sj ∈ β, ∃Si ∈ α | Si ⊆ Sj). (1b)

{S12}

{S1} {S2}

{S1, S2}

(a)

{S123}

{S12} {S13} {S23}

{S12, S13} {S12, S23} {S13, S23}

{S1} {S2} {S3} {S12, S13, S23}

{S1, S23} {S2, S13} {S3, S12}

{S1, S2} {S1, S3} {S2, S3}

{S1, S2, S3}

(b)
Figure 2. The redundancy lattices for two (a) and three (b) visible variables. The redundancy lattice
specifies the expected inclusion relation between atoms. The following function I∩ shall measure
the shared information for a sets of variables such that the element {S1, S2} represents the shared
information between S1 and S2 about the target variable T.

A measure of redundant information I∩ shall be defined for this lattice as “[. . .] cumula-
tive information function which in effect integrates the contribution from each node as one
moves up through the nodes of the lattice” [9] (p. 15). Williams and Beer [5] then use the
Möbius inverse (Equation (2)) to identify the partial information Iδ(α; T) as the contribution
of atom α ∈ A(V) and therefore the desired unique/redundant/synergetic component.

3
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A PID is said to be non-negative if the resulting partial contributions are guaranteed to be
non-negative.

Iδ(α; T) = I∩(α; T)− ∑
β∈↓̇α

Iδ(β; T). (2)

Williams and Beer [5] highlight three axioms that a measure of redundancy should satisfy.

Axiom 1 (Commutativity). Invariant to the order of sources (σ permuting the order of indices):

I∩(S1, . . . , Si; T) = I∩(Sσ(1), . . . , Sσ(i); T)

Axiom 2 (Monotonicity). Additional sources can only decrease redundant information:

I∩(S1, . . . , Si−1; T) ≥ I∩(S1, . . . , Si; T)

Axiom 3 (Self-redundancy). For a single source, redundancy equals mutual information:

I∩(Si; T) = I(Si; T)

Finally, Williams and Beer [5] proposed Imin (Equation (3)) as a measure of redundancy
and demonstrated that it satisfies the required axioms.

I(Si; T = t) = ∑
s∈Si

p(s | t)
[

log
1

p(t)
− log

1
p(t | s)

]
(3a)

Imin(S1, . . . , Sk; T) = ∑
t∈T

p(t) min
i∈1..k

I(Si; T = t). (3b)

However, the measure has been criticized for not distinguishing “the same information
and the same amount of information” [6–9] due to its use of a pointwise minimum (for each
t ∈ T ) over the sources.

2.3. Quantifying Unique Information

A non-negative decomposition for the case of two viewable variables V = {V1, V2}
was proposed by Bertschinger et al. [10] (defining unique information) as well as an equiv-
alent decomposition by Griffith and Koch [11] (defining union information) as shown in
Equation (4) (modified notation). The function ϑ(V1, V2; T) acts as an information measure
of the union for V1 and V2 (the minimal information that any two variables with the same
marginal distributions can achieve), which is then used to compute the partial contributions
using an inclusion–exclusion principle. Bertschinger et al. [10] motivated the decomposition
from the operational interpretation that if a variable provides unique information, there
must be a way to utilize this information in a decision problem for some reward function.
Additionally, they argue that unique information should only depend on the marginal
distributions P(T,V1)

and P(T,V2)
.

ϑ(V1, V2; T) =min I(F; G1, G2) s.t. P(F,G1)
= P(T,V1)

and P(F;G2)
= P(T,V2)

S(V1, V2; T) = I(V1; T) + I(V2; T)− ϑ(V1, V2; T) (Shared)

U(V1; T) = ϑ(V1, V2; T)− I(V1; T) (Unique)

C(V1, V2; T) = I(T; V1, V2)− ϑ(V1, V2; T) (Complementing)

(4)

We highlight this decomposition since our approach can be interpreted as its pointwise
extension (see Section 4.1).

2.4. Blackwell Order

A channel κ can be represented as a (row) stochastic matrix wherein each element
is non-negative and all rows sum to one (see Figure 3). In this work, we consider the

4
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sources to be the indirect observation of the target variable through a channel T
κi−→ Si

while taking the joint distribution of the visible variables within Si. As a result, κi is
obtained from the conditional probability distribution κi = T → Si = P(Si |T). As for
sources, we list the contained visible variables as an index such that i = 12 corresponds to
κ12 = P(S12|T) = P(V1,V2|T).

The Blackwell order κ1 � κ2 is a preorder of channels, as shown in Equation (5) [14].
It highlights that a channel equivalent to κ1 can be obtained by garbling the output of κ2 (a
chaining of channels as seen in Equation (5)). Therefore, there exists a decision strategy based
on κ2 for any reward function that performs at least as well as all strategies based on κ1 [12].

κ1 � κ2 ⇐⇒ κ1 = κ2 · λ for some channel λ (5)

Bertschinger and Rauh [12] showed that the Blackwell order does not define a lattice
in general since it does not provide a unique meet and joint element beyond binary inputs.
However, binary input channels provide a special case for which the Blackwell order is
equivalent to the zonotope order and defines a lattice. We use the notation κt to indicate that
a channel has a binary input (|T | = 2) or corresponds to the one-vs-rest encoding for one
state t if |T | > 2. In this case, the row stochastic matrix representing a channel contains
a set of vectors �vs as shown in Equation (6). A zonotope Zκt (Equation (6b)) corresponds
to “the image of the unit cube [. . .] under the linear map corresponding to [κt]” [12] (p. 2),
and the resulting zonotope order κt

1 � κt
2 ⇔ Zκt

1
⊆ Zκt

2
is a preorder that is identical to the

Blackwell order in the special case of binary input channels [12] as visualized in Figure 3.
In the resulting lattice, the joint of two channels can be obtained as the convex hull Zκt

1�κt
2

of
the zonotopes Zκt

1
and Zκt

2
, and the meet element Zκt

1�κt
2

corresponds to their intersection.

κt
i =

[
p(Si = s1 | T = t) p(Si = s2 | T = t) . . . p(Si = sn | T = t)
p(Si = s1 | T �= t) p(Si = s2 | T �= t) . . . p(Si = sn | T �= t)

]
(6a)

Zκt
i
=

{
∑

s∈Si

xs ·�vs | 0 ≤ xs ≤ 1

}
where �vs =

(
p(Si = s | T = t)
p(Si = s | T �= t)

)
(6b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

κt
2

κt
1

x

y

κt
1

κt
2 =

[
0.10 0.20 0.30 0.40
0.50 0.30 0.15 0.05

]

κt
1 =

[
0.20 0.40 0.40
0.50 0.35 0.15

]

Figure 3. Visualization of the zonotope order for binary input channels. The channel κt
1 is Blackwell

inferior to κt
2 (κt

1 � κt
2) since the corresponding zonotope Zκt

1
(green) is a subset of Zκt

2
(purple). As a

result, the meet and joint elements of this example are: κt
1 � κt

2 = κt
1 and κt

1 � κt
2 = κt

2.

2.5. Receiver Operating Characteristic Curves

While any classification system can be represented as channel, this section focuses
on binary decision problems or the one-vs-rest encoding of others (Tt = t ⇔ T = t).
The binary label t ∈ T t is used to obtain a sample s ∈ Si, which is processed by a
classification system C to its output o ∈ O with o = C(s), and applying a decision strategy
d shall result in an approximation of the label t̂ ∈ T t with t̂ = d(o). This forms the Markov
chain: Tt → Si → O → T̂t. A common method of analyzing binary decision/classification
systems is the Receiver Operating Characteristic (ROC). A ROC plot typically represents a

5
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classifier C with a continuous, discrete or categorical output range (by assigning distinct
arbitrary values to each category) for a binary decision problem by a curve in a True-Positive
Rate (TPR)/False-Positive Rate (FPR) diagram for varying decision thresholds τx with the
decision rule for a sample s being C(s) ≤ τx ⇔ False [15]. The resulting points are typically
connected using a step function, as shown in red in Figure 4a. As a result of using a single
decision threshold, the points of the ROC curve monotonically increase from (0, 0) to (1, 1);
however, they are in general neither concave nor convex [16].

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α / False-Positive Rate (FPR)

β
/

Tr
ue

-P
os

it
iv

e
R

at
e

(T
PR

)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C1

C2

α / False-Positive Rate (FPR)

β
/

Tr
ue

-P
os

it
iv

e
R

at
e

(T
PR

)

1

2

(b)
Figure 4. Relating zonotopes and their convex hull to achievable decision regions. (a) A ROC curve
(red) can be used to estimate the parameters of a channel, and the randomized combination of
thresholds (Equation (7)) corresponds to an interpolation in the visualization (gray). The reachable
decision region when utilizing all thresholds can be constructed using a likelihood ratio test, which
corresponds to reordering the vectors by decreasing slope (in this case, swapping the first two steps)
and taking the convex hull of reachable points. This reachable decision region is the zonotope of the
channel. (b) The convex hull of any set of zonotopes is reachable by their randomized combination.
Given two classifiers C1 (blue) and C2 (green), there always exists a randomized combination that
can reach any position in their convex hull (purple).

We want to highlight the distinction between a ROC curve and the achievable perfor-
mance pairs (TPR, FPR) based on the classifier. Any performance pair within the convex
hull of the obtained points for constructing the ROC curve can be achieved since the de-
cision strategy of Equation (7) results in an interpolation of the points corresponding to
τ1 ≤ τ2 with the parameter 0 ≤ h ≤ 1 in the TPR/FPR diagram. Therefore, while a ROC
curve is not convex in general, the achievable performance region is convex in general.

C(s) ≤ τ1 ⇒ False,

τ1 < C(s) ≤ τ2 ⇒ Bernoulli(h),

τ2 < C(s)⇒ True.

(7)

When utilizing the set of all available thresholds on the classification output, we can identify
the reachable decision regions within the TPR/FPR diagram using the likelihood ratio
test, which is well known to be optimal for binary decision problems: Neyman–Pearson
theory [17] states that the likelihood ratio test (Equation (8)) provides the minimal type II
error (minimal β, maximal TPR= β = 1− β) for a bounded type I error (FPR, α).

P(Si = s|T = t)
P(Si = s|T �= t)

< τ ⇒ False,

P(Si = s|T = t)
P(Si = s|T �= t)

= τ ⇒ Bernoulli(h),

P(Si = s|T = t)
P(Si = s|T �= t)

> τ ⇒ True.

(8)

Notice that the decision criterion is determined by the slope of each vector in the row
stochastic matrix that represents the binary input channel (Equation (6a)). This effective

6
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reordering of vectors based on their slope when varying the parameters τ and h results
in the upper half of the zonotope discussed in Section 2.4 and as visualized in Figure 4a.
The lower half of the zonotope is obtained from negating the outcome of the likelihood
ratio test. Therefore, the zonotope representation of a channel corresponds to the achievable
performance region in a TPR/FPR diagram of a classifier at binary decision problems. When
reconsidering Figure 3, the channels κt

1 = Tt → O1 and κt
2 = Tt → O2 may correspond

to two classifiers C1 and C2 whose channel parameters have been estimated from a ROC
curve, and the achievable performance regions correspond to the zonotopes in a TPR/FPR
diagram. Since the likelihood ratio test is optimal for binary decision problems, there
cannot exist a decision strategy that would achieve a performance outside the zonotope. At
the same time, the likelihood ratio test can be randomized to reach any desired position
within the zonotope.

Finally, notice that the convex hull of any two classification systems is reachable by
their randomized combination. We can view each classifier as an observation from a
channel κt

1/κt
2 about Tt and know that there always exists a garbling λ of the joint channel

κt
12 to obtain their convex hull κt

1 � κt
2 = κt

12λ. Using a likelihood ratio test on κt
1 � κt

2, any
position within the convex hull is reachable as a randomized combination of both classifiers.
This has been visualized in Figure 4b. Due to this reason, we will say in Section 3.1 that the
convex hull should be fully attributed to the marginal channels κt

1 and κt
2.

2.6. Lattice Valuations

This section summarizes the properties of consistent lattice valuations based on Knuth [13].
The quantification of a lattice (L,�) or (L,�,�) with α � β = α ⇔ α � β for elements of the
set α, β ∈ L is a function q : L → R, which assigns reals to each element. A quantification
is called a valuation if any two elements maintain an ordering relation: α � β implies
that q(α) ≤ q(β). A quantification q is consistent if it satisfies a sum rule (inclusion–
exclusion principle): q(α � β) = q(α) + q(β)− q(a � β). If the bottom element of the lattice
(⊥) is evaluated to zero q(⊥) = 0, then the valuation of the Cartesian product of two
lattices q((α; β)) = q(α) · q(β) remains consistent with the individual lattices. Finally, a
bi-quantification can be defined as b(α, β) = q(α � β)/q(β). Similar to Knuth [13], we will
use the notation q([α; β]) ≡ b(α, β) which can be thought of as quantifying a degree of
inclusion for α within β. The distributive lattice then creates an algebra like probability
theory for the consistent valuation, as summarized in Equation (9) [13].

q(α � β) = q(α) + q(β)− q(α � β) (Sum rule)

q([α � β; γ]) = q([α; γ]) + q([β; γ])− q([α � β; γ]) (Sum rule)

q((α; β)) = q(α) · q(β) (Direct product rule)

q(([α; β]; [τ; υ])) = q([α; τ]) · q([β; υ]) (Direct product rule)

q([β � γ; α]) = q([γ; α � β]) · q([β; α]) (Product rule)

q([γ; α � β]) =
q([β; α � γ]) · q([γ; α])

q([β; α])
(Bayes’ Theorem)

(9)

3. Quantifying Reachable Decision Regions

We start by studying the decomposition of binary decision problems from an interpre-
tational perspective (Section 3.1). This provides the basis for constructing a distributive
lattice in Section 3.2 and demonstrating the structure of a consistent valuation function.
Section 3.3 highlights that mutual information is such a consistent valuation and extends
the concept from binary decision problems to target variables with an arbitrary finite num-
ber of states. The resulting definition of shared information for the PID will be discussed as
an application in Section 4.1 together with the tracing of information flows in Section 4.2.

We define an equivalence relation (∼) for binary input channels κt, which allows for
the removal of zero vectors, the permutation of columns (P representing a permutation
matrix) and the splitting/merging of columns with identical likelihood ratios (vectors of

7
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identical slope, � ∈ R), as shown in Equation (10). These operations are invertible using
garblings and do not affect the underlying zonotope.

κt ∼
[
κt [ 0

0 ]
]
; (10a)

κt ∼ κtP; (10b)[
(1 + �)�v1 �v2 . . .

]
∼
[
�v1 ��v1 �v2 . . .

]
. (10c)

Based on this definition, block matrices cancel at an inverted sign (� = −1) if we allow
negative columns, as shown in Equation (11), where M1 and M2 are some 2× n matrix.

M1 ∼
[
M1 M2 −M2

]
(11)

3.1. Motivation and Operational Interpretation

The aim of this section is to provide a first intuition based on a visual example for
the methodology that will be used in Section 3.2 to construct a distributive lattice of the
reachable decision regions and its consistent valuation. We only consider binary variables
T t = {t, t} or the one-vs-rest encoding of others (Tt = t ⇔ T = t).

In the used example, the desired variable can be observed indirectly using the two
variables V1 and V2. The visible variables are considered to be the output of the channels

Tt κt
1−→ V1, Tt κt

2−→ V2 and Tt κt
12−→ (V1, V2) and correspond to the zonotopes shown in Figure 5.

We consider each reachable decision point (a pair of TPR and FPR) to represent a different
notion of uncertainty about the state of the target variable. We want to attribute the
reachable decision regions to each channel for constructing a lattice, as shown in Figure 6,
with the following operational interpretation:

• Synergy: Corresponds to the partial contribution of κt
12 = Tt → (V1, V2) and rep-

resents the decision region which is only accessible due to the (in-)dependence of
both variables.

• Joint: The joint element κt
1 ∨ κt

2 = (Tt → V1) ∨ (Tt → V2) corresponds to the joint un-
der the Blackwell order and represents the decision region which is always accessible
if the marginal distributions (V1, Tt) and (V2, Tt) can be obtained. Therefore, we say
that its information shall be fully attributed to V1 and V2 such that is has no partial
contribution. For binary target variables, this definition is equivalent to the notion of
union information by Bertschinger et al. [10] and Griffith and Koch [11]. However,
we extend the analysis beyond binary target variables with a different approach in
Section 3.3.

• Unique: Corresponds to the partial contribution of κt
1 = Tt → V1 or κt

2 = Tt → V2 and
represents the decision region that is lost when losing the variable. It only depends on
their marginal distributions (V1, Tt) and (V2, Tt).

• Shared: Corresponds to the cumulative contribution of κt
1 ∧ κt

2 = (Tt → V1)
∧ (Tt → V2) and represents the decision region which is lost when losing either
V1 or V2. Since it only depends on the marginal distributions, we interpret it as being
part of both variables. The shared decision region can be split in two components: the
decision region that is part of both individual variables and the component that is part
of the convex hull but neither individual one. The latter component only exists if both
variables provide unique information.

• Redundant: The largest decision region κt
1 � κt

2 = (Tt → V1) � (Tt → V2) which can be
accessed from both V1 and V2. It corresponds to the meet under the Blackwell order
and the part of shared information that can be represented by some random variable
(pointwise extractable component of shared information). The redundant and shared
regions are equal unless both variables provide some unique information.

8
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Figure 5. Relating the zonotope representations to TPR/FPR plots. The zonotopes correspond to
the regions of a TPR/FPR plot that are reachable by some decision strategy. Regions outside of
the zonotopes are known to be unreachable since the likelihood ratio test is optimal for binary
decision problems. The convex hull of both zonotopes κt

1 ∨ κt
2 is the (unique) lower bound of any

joint distribution under the Blackwell order.

Due to the invariance of re-ordering columns under the defined equivalence relation,
κt represents a set of likelihood vectors. All cumulative and partial decision regions of
Figure 6 can be constructed using a convex hull operator (joint) and matrix concatenations
under the defined equivalence relation (∼). For example, the shared decision region
(meet) can be expressed through an inclusion–exclusion principle with the joint operator
κt

1 ∧ κt
2 ∼ [ κt

1 κt
2 −κt

1∨κt
2 ]. This operator is not closed on channels since it introduces

negative likelihood vectors. Therefore, we distinguish the notation between channels (κt)
and atoms (αt). These matrices αt sum to one similar to channels but may contain negative
columns. Their partial contributions αδt sum to zero.

• The unique contribution of V2: αδt ∼ [ (κt
1∨κt

2) −κt
1 ]

• The shared cumulative region of V1 and V2: βt ∼ [ κt
1 κt

2 −(κt
1∨κt

2) ] ∼ κt
1 ∧ κt

2
• The shared partial contribution: βδt ∼ [ βt −(κt

1�κt
2) ]

• Each cumulative region corresponds to the combination of partial contributions in its
down-set. Notice that the partial contribution of the shared region is canceled by a
section of each unique contribution due to an opposing sign:

κt
1 ∼ [ αδt βδt (κt

1�κt
2) ]

In Section 3.3, we demonstrate a valuation function f that can quantify all cumulative and
partial atoms of this lattice while ensuring their non-negativity and consistency with the
defined equivalence relation (∼). We will refer to a more detailed example on the valuation
of partial decision regions in Appendix C in the context of the following section.

Why does the decomposition of reachable decision regions as shown in Figure 6 pro-
vide a meaningful operational interpretation? Because combining the partial contributions
of the up-set for a variable results in the decision region that becomes inaccessible when
the variable is lost, while combining the partial contributions of the down-set results in
the decision region that is accessible through the variable. For example, losing access to
variable V2 results in losing access to the decision regions provided uniquely by V2 and
its synergy with V1 (the up-set on the lattice). Additionally, the cumulative component
corresponds to the combination of all partial contributions in its down-set since opposing
vectors cancel under the defined equivalence relation (∼) such as the shared and unique
contributions. Therefore, we define a consistent valuation of this lattice in Section 3.2
by quantifying decision regions based on their spanning vectors and highlight that the
expected value for each t ∈ T corresponds to the definition of mutual information.

Sections 3.2 and 3.3 focus only on defining the meet and joint operators (∧/∨) with
their consistent valuation. To obtain the pointwise redundant and synergetic components
for a PID, we can later add the corresponding channels when constructing the pointwise
lattices V = {V1, V2, (V1, V2), V1 � V2} with the ordering of Figure 6 from the meet and
joint operators.

9
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Figure 6. Decomposing the achievable decision regions for binary decision problems from an
operational perspective. Each node is visualized by its cumulative and partial decision region.
The partial decision region is shown within round brackets. The cumulative region corresponds to
the matrix concatenation of the partial regions in its down-set under the defined equivalence relation.
Three key elements are highlighted using a grey background.
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3.2. Decomposition Lattice and Its Valuation

This section first defines the meet and joint operators (∧, ∨) and then constructs a
consistent valuation for the resulting distributive lattice. For constructing a pointwise
channel lattice based on the redundancy lattice, we notate the map of functions as shown
in Equation (12) and consider the function kt(Si) = Tt → Si = κt

i to obtain the pointwise
channel κt

i of a source Si. f 〈P〉 = { f (x) | x ∈ P},

f 〈〈P〉〉 = { f 〈x〉 | x ∈ P},

f 〈〈〈P〉〉〉 = { f 〈〈x〉〉 | x ∈ P}.

(12)

The intersections shall correspond to some meet operation and the union to some joint
operation on the pointwise channels, as shown in Equation (13), while maintaining the
ordering relation of Williams and Beer [5]. This section aims to define suitable meet
and joint operations together with a function for their consistent valuation. Each atom
αt, βt ∈ Bt(V) now represents an expression of channels κt with the operators ∨/∧, as
shown in Appendix A. For example, the element {S12, S3} is converted to the expression
(κt

1 ∨ κt
2) ∧ κt

3.
Bt(V) =

∧
〈
∨
〈〈 kt〈〈〈A(V)〉〉〉 〉〉 〉. (13)

As seen in Section 3.1, we want to define the joint for a set of channels to be equivalent to
their convex hull, matching the Blackwell order. This also ensures that the joint operation
is closed on channels.

κt
1 ∨ κt

2 ≡ κt
1 � κt

2 (joint is closed on channels) (14)

Since opposing vectors cancel under the defined equivalence relation, we can use a notion
of the Möbius inverse to define the set of vectors spanning a partial decision region αδt for
an atom αt ∈ Bt(V), as shown in Equation (15), written as a recursive block matrix and
using the strict down-set of the ordering based on the underlying redundancy lattice.

αδt ≡
[
αt −

[
βδt | βt ∈ ↓̇αt]] (15)

The definition of the meet operator (∧) and the extension of the joint operator (∨) from
channels to atoms is now obtained from the constraint that the partial contribution for the
joint of two incomparable atoms (αt, βt ∈ Bt(V), αt ∨ βt �∼ αt and αt ∨ βt �∼ βt) shall be
zero, as shown in Equation (16).

αt ∨ βt �∼ αt and αt ∨ βt �∼ βt ⇒ (αt ∨ βt)δt ≡
[

0
0

]
(16)

This creates the desired inclusion–exclusion principle and results in the equivalences of the
meet for two and three atoms, as shown in Equation (17). Their resulting partial channels
(αδt) correspond to the set of vectors spanning the desired unique and shared decision
regions of Figure 6.

αt ∧ βt ∼
[
αt βt −αt ∨ βt] (17a)

αt ∧ (βt ∧ γt) ∼
[
αt βt γt −αt ∨ βt −αt ∨ γt −βt ∨ γt αt ∨ βt ∨ γt] (17b)

From their construction, the meet and joint operators provide a distributive lattice for a set
of channels under the defined equivalence relation as shown in Appendix B by satisfying
idempotency, commutativity, associativity, absorption and distributivity. This can be used
to define a corresponding ordering relation (Equation (18)).

αt � βt ≡ αt ∧ βt ∼ αt ⇔ αt ∨ βt ∼ βt (18)

11
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To obtain a consistent valuation of this lattice, we consider a function f (αt), as shown in
Equation (19). First, this function has to be invariant under the defined equivalence relation,
and second, it has to match the ordering of the constructed lattice.

f (αt) = ∑
�v∈αt

r(�v) where r is convex and satisfies r(��v) = �r(�v) and r
([

�
�

])
= 0 (19)

The function f shall apply a (convex) function r(�v) to each vector of the matrix of an atom
�v ∈ αt. The function is invariant under the equivalence relation (∼, Equation (10)):

• Zero vectors do not affect the quantification: r([ 0
0 ]) = 0

• The structure of f ensures invariance under reordering columns: f (κt) = f (κtP)

• The property r(��v) = �r(�v) with � ∈ R ensures invariance under splitting/merging
columns of identical likelihood ratios:
f ([(1 + �)�v1]) = (1 + �)r(�v1) = r(�v1) + �r(�v1) = f ([�v1 ��v1])

The function f is a consistent valuation of the ordering relation (�, Equation (18)) from the
constructed lattice:

• The convexity of r ensures that the quantification f (αt) is a valuation as shown in
Appendix C: βt � αt ⇒ f (βt) ≤ f (αt)

• The function f provides a sum-rule: f (αt ∧ βt) = f ([ αt βt −αt∨βt ]) = f (αt) + f (βt)−
f (αt ∨ βt)

• The function f quantifies the bottom element correctly: f (⊥) = r
([

�
�

])
= 0

A parameterized function that forms a consistent lattice valuation with 0 ≤ p ≤ 1 and
that will be used in Section 3.3 is shown in Equation (20) (the convexity of rp is shown in
Appendix D).

fp(α
t) = ∑

�v∈αt
rp(�v) (20a)

rp(�v) = rp
([ x

y
])

= x log
(

x
px + (1− p)y

)
(20b)

This section demonstrated the construction of a distributive lattice and its consistent
valuation, resulting in an algebra as shown in Equation (9).

3.3. Decomposing Mutual Information

This section demonstrates that mutual information is the expected value of a consistent
valuation for the constructed pointwise lattices and discusses the resulting algebra. To
show this, we define the parameter p and pointwise channel κt

i for the consistent valuation
(Equation (20)) using a one-vs-rest encoding (Equation (21)).

p = P(T=t) (parameter)

κt
i =

[
P(Si |T=t)
P(Si |T �=t)

]
=

[
x1 x2 ... xm
y1 y2 ... ym

]
(binary input channel)

(21)

The expected value of the resulting valuation in Equation (20) is equivalent to the definition
of mutual information, as shown in Equation (22). Therefore, we can interpret mutual
information as being the expected value of quantifying the reachable decision regions for
each state of the target variable that represent a concept of pointwise uncertainty.

12
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I(T; Si) = ∑
s∈Si

∑
t∈T

P(Si ,T)(s, t) log(
P(Si ,T)(s, t)
PSi (s)PT(t)

) (22a)

= ET

⎡⎢⎢⎢⎢⎣∑
s∈Si

P(Si |T=t)(s)︸ ︷︷ ︸
xj

log

⎛⎜⎜⎜⎜⎝
xj︷ ︸︸ ︷

P(Si |T=t)(s)
P(T=t)︸ ︷︷ ︸

p

P(Si |T=t)(s)︸ ︷︷ ︸
xj

+ (1− P(T=t))︸ ︷︷ ︸
1−p

P(Si |T �=t)(s)︸ ︷︷ ︸
yj

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ (22b)

The expected value for a set of consistent lattice valuations corresponds to a weighted
sum such that the resulting lattice remains consistent. Therefore, we can combine the
pointwise lattices to extend the definition of mutual information for meet and joint elements,
which we will think of as intersections and unions. Let α represent an expression of sources
with the operators ∨ and ∧. Then, we can obtain its valuation from the pointwise lattices
using the function ÎT , as shown in Equation (23). Notice that we do not define the operators
for random variables but only use the notation for selecting the corresponding element on
the underlying pointwise lattices. For example, we write α = (S12 ∧ S3) ∨ S4 to refer to the
pointwise atom αt = (κt

12 ∧ κt
3) ∨ κt

4 on each pointwise lattice.
The special case of atoms that consist of a single source corresponds by construction

to the definition of mutual information. However, we propose normalizing the measure,
as shown in Equation (23), to capture a degree of inclusion between zero and one. This is
possible for discrete variables and will lead to an easier intuition for the later definition of
bi-valuations and product spaces by ensuring the same output range for these measures.
As a possible interpretation for the special role of the target variable, we like to think of T
as the considered origin of information within the system, which then propagates through
channels to other variables.

ÎT(α) ≡
ET

[
fPT(t)

(
αt)]

ET

[
fPT(t)(�)

] =
ET

[
fPT(t)

(
αt)]

H(T)

ÎT(T) = 1 =
H(T)
H(T)

ÎT(Si) = ÎT(T ∧ Si) =
I(T; Si)

H(T)

(23)

We obtain the following algebra with the bi-valuation ÎT([α; β]) that quantifies a degree of
inclusion from α within the context of β. We can think of ÎT([α; β]) as asking how much of
the information from β about T is shared with α.

ÎT(α ∨ β) = ÎT(α) + ÎT(β)− ÎT(α ∧ β) (Sum rule) (24a)

ÎT([α; β]) ≡ ÎT(α ∧ β)

ÎT(β)
(Bi-Valuation) (24b)

ÎT([α ∨ β; γ]) = ÎT([α; γ]) + ÎT([β; γ])− ÎT([α ∧ β; γ]) (Conditioned sum rule) (24c)

ÎT([β ∧ γ; α]) = ÎT([γ; α ∧ β]) · ÎT([β; α]) (Product rule) (24d)

ÎT([β; α ∧ γ]) =
ÎT([γ; α ∧ β]) · ÎT([β; α])

ÎT([γ; α])
(Bayes’ Theorem) (24e)
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Since the definitions satisfy an inclusion–exclusion principle, we obtain the interpretation
of classical measures as proposed by Williams and Beer [5]: conditional mutual informa-
tion I(T; V1 | V2) measures the unique contribution of V1 plus its synergy with V2, and
interaction information I(T; V1; V2) measures the difference between synergy and shared
information, which explains its possible negativity.

As highlighted by Knuth [13], the lattice product (the Cartesian product with ordering
(α; β) � (τ; υ) ⇔ α � τ and β � υ) can be valuated using a product rule to maintain
consistency with the ordering of the individual lattices. This creates an opportunity to
define information product spaces for multiple reference variables. Since we normalized
the measures, the valuation of the product space will also be normalized to the range
from zero to one. The subscript notation T1 × T2 shall indicate the product of the lattice
constructed for T1 with the product of the lattice constructed for T2.

Î(T1×T2)
((α; β)) = ÎT1(α) · ÎT2(β) (Valuation Product rule) (25a)

Î(T1×T2)
(([α; τ]; [β; υ])) = ÎT1([α; β]) · ÎT2([τ; υ]) (Bi-Valuation Product rule) (25b)

The lattice product is distributive over the joint for disjoint elements [13], which leads to
the equivalence in Equation (26). Unfortunately, it appears that only the bottom element is
disjoint with other atoms in the constructed lattice.

∀t : αt ∧ βt ∼ ⊥ ⇒ Î(T1×T2)
((α ∨ β; τ)) = Î(T1×T2)

((α; τ) ∨ (β; τ)) (26)

Finally, we would like to provide an intuition for this approach based on possible
operational scenarios:

1. Consider having characterized four radio links and obtained the conditional distri-
butions PV1|T , P(V2,V3)|T and PV4|T . We are interested in their joint channel capacity;
however, lack the required joint distribution. In this case, we can use their joint
supPT(t)

ÎT(S1 ∨ S23 ∨ S4) to obtain a (pointwise) lower bound on their joint chan-
nel capacity.

2. Consider having two datasets {T1, V1, V2, V3} and {T2, V2, V3, V4} that provide differ-
ent types of labels (Tx) and associated features (Vy), where some events were recorded
in both datasets. In such cases, one may choose to study the cases T1 → (V1, V2, V3),
T2 → (V2, V3, V4) and (T1, T2)→ (V1, V2, V3, V4) for events appearing in both datasets,
which could then be combined into a product lattice Î(T1×T2×(T1,T2))

.

4. Applications

This section focuses on applications of the obtained measure from Section 3.3. We first
apply the meet operator to the redundancy lattice for constructing a PID. Since an atom
of the redundancy lattice α ∈ A(V) corresponds to a set of sources for which the shared
information shall be measured, we use the notation

∧
α to obtain an expression for the

function ÎT . Section 4.2 additionally utilizes the properties of a Markov chain to demonstrate
how the flow of partial information can be traced through system models.

4.1. Partial Information Decomposition

Based on Section 3.3, we can define a measure of shared information Î(α; T) for the
elements of the redundancy lattice α ∈ A(V) in the framework of Williams and Beer [5], as
shown in Equation (27). The measure satisfies the three axioms of Williams and Beer [5]
(commutativity from the equivalence relation and structure of fp, monotonicity from
being a lattice valuation and self-redundancy from removing the normalization), and the
decomposition is non-negative since the joint channel κt

12 is superior to the joint of two
channels κt

1 ∨ κt
2 for all t ∈ T . The partial contribution Îδ(α; T) corresponds to the expected

value of the quantified partial decision regions αδt.
This provides the interpretation of Section 3.1, where combining the partial contribu-

tions of the up-set corresponds to the expected value of quantifying the decision regions that
are lost when losing the variable, while combining the partial contributions of the down-set
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corresponds to the expected value of quantifying the accessible decision region from this
variable. Additionally, we obtain a pointwise version of the property by Bertschinger
et al. [10]: if a variable provides unique information, then there is a way to utilize this
information for a reward function to some target variable state. Finally, it can be seen that
taking the minimal quantification of the different decision regions as done by Williams and
Beer [5] leads to a lack in distinguishing distinct reachable decision regions or, as phrased
in the literature: a lack of distinguishing “the same information and the same amount of
information” [6–9].

∀α ∈ A(V), Î(α; T) = ÎT

(∧
α
)
· H(T), (27a)

Îδ(α; T) = Î(α; T)− ∑
β∈↓̇α

Îδ(β; T) = ET

[
fPT(t)

(
αδt
)]

(27b)

An identical definition of Î(α; T) can be obtained only based on the Blackwell order, as
shown in Equation (28). Let α ∈ A(V) be a set of sources and let Tt represent a binary
target variable (T t = {t, t}) such that Tt = t ⇔ T = t. We can expand the meet operator
used in Equation (27a) using the sum-rule and utilize the distributivity for arriving at
the joint of two channels, which matches the Blackwell order (Equation (28b)). We write
Si �Tt Sj to refer to the joint of Si and Sj under the Blackwell order with respect to variable
Tt. This results in the recursive definition of i

(
α; Tt) that corresponds to the definition of

mutual information for a single source (Equation (28a)). This expansion of Equation (27a) is
particularly helpful since it eliminates the operators ∧/∨ for a simplified implementation.

i
(
{Si}; Tt) = ∑

s∈Si

P(Si |Tt=t)(s) log

(
P(Si |Tt=t)(s)

P(Tt=t)P(Si |Tt=t)(s) + (1− P(Tt=t))P(Si |Tt �=t)(s)

)
(28a)

i
(
{Si} ∪ β; Tt) = i

(
{Si}; Tt)+ i

(
β; Tt)− i

(
{Si �Tt Sj | Sj ∈ β}; Tt) (28b)

Î(α; T) = ET
[
i
(
α, Tt)] (28c)

Our decomposition is equivalent to the measures of Bertschinger et al. [10], Griffith and
Koch [11] and Williams and Beer [5] in two special cases:

• For a binary target variable T = {t, t} with two observable variables V1 and V2,
our approach is identical to Bertschinger et al. [10] and Griffith and Koch [11] since
κ1 � κ2 ∼ κt

1 ∨ κt
2 ∼ κt

1 ∨ κt
2. Beyond binary target variables, the resulting definitions

differ due to the pointwise construction (see Appendix E).

• If from a pointwise perspective (Tt), some variable is Blackwell superior to the other
(not necessarily the same each time), then our method is identical to Williams and
Beer [5] since the defined meet operation will equal their minimum κt

1 � κt
2 ∼ κt

2 ⇒
fp(κt

1) ≤ fp(κt
2) ⇒ min( fp(κt

1), fp(κt
2)) = fp(κt

1 ∧ κt
2) = fp(κt

1) and equivalently for
the function i(α, Tt).

A decomposition of typical examples can be found in Appendix E. We also provide an
implementation of the PID based on our approach [18].

4.2. Information Flow Analysis

Due to the achieved inclusion–exclusion principle, the data processing inequality of
mutual information and the achieved non-negativity of partial information for an arbitrary
number of variables, it is possible to trace the flow of information through Markov chains.
The measure ÎT appears suitable for this analysis due to the chaining properties of the
underlying pointwise channels that are quantified. The analysis can be applied among
others for analyzing communication networks or designing data processing systems.

The flow of information in Markov chains has been studied by Niu and Quinn [19],
who considered chaining individual variables X1 → X2 → . . . → Xn and performed a
decomposition on V = {X1, X2, . . . , Xn}. In contrast to this, we consider Markov chains
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that map sets of random variables from one step to the next. In this case, it is possible to
perform an information decomposition at each step of the Markov chain and identify how
the partial information components propagate from one set of variables to the next.

Let T → V → Q be a Markov chain with the atoms α ∈ A(V) and β ∈ A(Q), through
which we trace the flow of partial information from α to β about T. We can measure the
shared information between both atoms α and β, as shown in Equation (29a), to obtain
how much information their cumulative components share Ĵ∩→∩(α → β; T). Similar to
the PID, we remove the normalization for the self-redundancy axiom. To identify how
much of the cumulative information of β is obtained from the partial information of α, we
subtract the strict down-set of α on the lattice (A(V),�) as shown in Equation (29b) to
obtain Ĵδ→∩(α → β; T). To compute how much of the partial information of α is shared
with the partial contribution of β, we similarly remove the flow from the partial information
of α into the strict down-set of β on the lattice (A(Q),�), as shown in Equation (29c), to
obtain Ĵδ→δ(α → β; T). This can be used to trace the origin of information for each atom
β ∈ A(Q) to the previous elements α ∈ A(V).

The approach is not limited to one step and can be extended for tracing the flow
through Markov chains of arbitrary length Ĵδ→δ→δ ...(α → β → γ . . . ; T). However, we
only trace one step in this demonstration for simplicity.

Ĵ∩→∩(α → β; T) = ÎT(
∧

α ∧
∧

β) · H(T) (29a)

Ĵδ→∩(α → β; T) = Ĵ∩→∩(α → β; T)− ∑
γ∈↓̇α

Ĵδ→∩(γ → β; T) (29b)

Ĵδ→δ(α → β; T) = Ĵδ→∩(α → β; T)− ∑
γ∈↓̇β

Ĵδ→δ
T (α → γ; T) (29c)

We demonstrate the Information Flow Analysis using a full-adder as a small logic circuit
with the input variables V = {A, B, Cin} and the output T = {S, Cout} as shown in
Equation (30). Any ideal implementation of this computation results in the same channel
from V to T. Therefore, they create an identical flow of the partial information from V to
the partial information of T. However, the specific implementation will determine how
(over which intermediate representations and paths) the partial information is transported.

S = A⊕ B⊕ Cin

Cout = A · B + A · Cin + B · Cin

= (A · B) + Cin · (A⊕ B)) (typical implementation)

T = (S, Cout)

(30)

To make the example more interesting, we consider the implementation of a noisy full-adder,
as shown in Figure 7, which allows for bit-flips on wires. We indicate the probability of a
bit-flip below each line and imagine this value correlates to the wire length and proximity
to others. Now, changing the implementation or even the layout of the same circuit would
have an impact on the overall channel.

To perform the analysis, we first have to define the target variable: What it is that we
want to measure information about? In this case, we select the joint distribution of the
desired computation output T as the target variable and define the noisy computation result
to be T̂ = {Ŝ, Ĉout}, as shown in Figure 7. We obtain both variables from their definition by
assuming that the input variables V are independently and uniformly distributed and that
bit-flips occurred independently. However, it is worth noting that noise dependencies can
be modeled in the joint distribution. This fully characterizes the Markov chain shown in
Equation (31).

T = (S, Cout)→ T = {S, Cout} → V = {A, B, Cin} → Q = {Q1, Q2, Q3} → R = {R1, R2, R3} → T̂ = {Ŝ, Ĉout} (31)
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Ŝ
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Figure 7. Noisy full-adder example for the Information Flow Analysis demonstration. The probability
of a bit-flip is indicated below the wires. If a wire has two labels, the first label corresponds to the
wire input and the second label to its output.

We group two variables at each stage to reduce the number of interactions in the
visualization. The resulting information flow of the full-adder is shown as a Sankey diagram
in Figure 8. Each bar corresponds to the mutual information of a stage in the Markov chain
with the input T. The bars’ colors indicate the partial information decomposition of
Equation (27). The information flow over one step using Equation (29) is indicated by
the width of a line between the partial contributions of two stages. To follow the flow
of a particular component over more than one step—for example, to see how the shared
information of T propagates to the shared information of T̂—the analysis can be performed
by tracing multiple steps after extending Equation (29).

T = (S, Cout) T = { S︸︷︷︸
1

, Cout︸︷︷︸
2

} V = {(A, B)︸ ︷︷ ︸
1

, Cin︸︷︷︸
2

} Q = {(Q1, Q2)︸ ︷︷ ︸
1

, Q3︸︷︷︸
2

} R = { R1︸︷︷︸
1

, (R2, R3)︸ ︷︷ ︸
2

} T̂ = { Ŝ︸︷︷︸
1

, Ĉout︸︷︷︸
2

}

H(T) I(T, T) I(T; V) I(T; Q) I(T; R) I(T; T̂)≥ ≥ ≥ ≥=

Shared Unique 1 Unique 2 Synergetic

Figure 8. Sankey diagram of the Information Flow Analysis for the noisy full-adder in Figure 7.
Each bar corresponds to one stage in the Markov chain, and its height corresponds to this stage’s
mutual information with the target T. Each bar is decomposed into the information that the considered
variables provide shared (orange), unique (blue/green) or synergetic (pink) about the target. If a
stage is represented by a single variable or joint distribution, no further decomposition is performed
(gray). We trace the information between variables over one step using the sub-chains T → T → T,
T → T → V, T → V → Q, T → Q → R and T → R → T̂ using Equation (29). The resulting flows
between each bar visualize how the partial information propagates for one step in the Markov chain.
For following the flow of a particular partial component over more than one step in the Sankey
diagram, Equation (29) can be extended.

The results (Figure 8) show that the decomposition does not attribute unique infor-
mation to S or Cout about their own joint distribution. The reason for this is shown in
Equation (32): both variables provide an equivalent channel for each state of their joint
distribution and, thus, an equivalent uncertainty about each state of T. Phrased differ-
ently, both variables provide access to the identical decision regions for each state of their
joint distribution and can therefore not provide unique information (no advantage for
any reward function to any t ∈ T ). If this result feels counter-intuitive, we would also
recommend the discussion of the two-bit-copy problem and identity axiom by Finn [9]
(p. 16ff.) and Finn and Lizier [20]. The same effect can also be seen when viewing each
variable in V individually (not shown in Figure 8), which causes neither of them to provide
unique information on their own about the joint target distribution T.
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(T(0,0) → Cout) ∼ (T(0,0) → S) ∼
[

1 0
3/7 4/7

]
∼ (T(1,1) → Cout) ∼ (T(1,1) → S)

(T(0,1) → Cout) ∼ (T(0,1) → S) ∼
[

1 0
1/5 4/5

]
∼ (T(1,0) → Cout) ∼ (T(1,0) → S)

(32)

The Information Flow Analysis is particularly useful in practice since it can be per-
formed on an arbitrary resolution of the system model to handle its complexity. For
example, a small full-adder can be analyzed on the level of gates and wires represented by
channels. However, the full-adder is itself a channel that can be used to analyze an n-bit
adder on the level of full-adders.

Further applications of the Information Flow Analysis could include the identification
of which inputs are most critical for the computational result and where information is
being lost. It can also be explored if a notion of robustness in data processing systems could
be meaningfully defined based on how much pointwise redundant or shared information
of the input V can be traced to its output T̂. This might indicate a notion of robustness
based on whether or not it is possible to compensate for the unavailability of input sources
through a system modification.

Finally, the target variable does not have to be the desired computational outcome as
has been done in the demonstration. When thinking about secure multi-party computations,
it might be of interest to identify the flow of information from the perspective of some
sensitive or private variable (T) to understand the impact of disclosing the final computation
result. The possible applications of such an analysis are as diverse as those of information
theory.

5. Discussion

We propose the interpretation that the reachable decision regions correspond to differ-
ent notions of uncertainty about each state of the target variable and that mutual informa-
tion corresponds to the expected value of quantifying these decision regions. This allows
partial information to represent the expected value of quantifying partial decision regions
(Equations (27) and (28)), which can be used to attribute mutual information to the vis-
ible variables and their interactions (pointwise redundant/shared/unique/synergetic).
Since the proposed quantification results in the consistent valuation of a distributive lat-
tice, it creates a novel algebra for mutual information with possible practical applications
(Equations (24) and (25)). Finally, the approach allows for tracing information components
through Markov chains (Equation (29)), which can be used to model and study a wide
range of scenarios. The presented method is directly applicable to discrete and categorical
source variables due to their equivalent construction for the reachable decision regions
(zonotopes). However, we recommend that the target variable should be categorical since
the measure does not consider a notion of distance between target states (achievable estima-
tion proximity). This would be an interesting direction for future work due to its practical
application for introducing semantic meaning to sets of variables. An intuitive example is
a target variable with 256 states that is used to represent an 8-bit unsigned integer as the
computation result. For this reason, we wonder if it is possible to introduce a notion of
distance to the analysis such that the classical definition of mutual information becomes
the special case for encoding categorical targets.

A recent work by Kolchinsky [21] removes the assumption that an inclusion–exclusion
principle relates the intersection and union of information and demands their extractability.
This has the disadvantage that a similar algebra or tracing of information would no longer
be possible. We tried to address this point by distinguishing the pointwise redundant
from the pointwise shared element and also obtain no inclusion–exclusion principle for the
pointwise redundancy. We focus in this work on the pointwise shared element due to
the resulting properties and operational interpretation from the accessibility and losses
of reachable decision regions. Moreover, the relation between the used meet and joint
operators provides consistent results from performing the decomposition using the meet
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operator on a redundancy lattice, as done in this work, or a decomposition using the joint
operator on a synergy or loss lattice [22].

Further notions of redundancy and synergy can be studied within this framework if
they are extractable, meaning they can be represented by some random variable. Depending
on the desired interpretation, the representing variable can be constructed for T and added
to the set of visible variables or can be constructed for each pointwise variable Tt and added
to the pointwise lattices. We showed an example of the latter in Section 3.1 by adding the
pointwise redundant element to the lattice, which we interpret as pointwise extractable
components of shared information to quantify the decision regions that can be obtained
from each source.

Since our approach satisfies the original axioms of Williams and Beer [5] and results in
non-negative partial contributions for an arbitrary number of variables, it cannot satisfy the
proposed identity axiom of Harder et al. [8]. This can also be seen by the decomposition
examples in Appendix E (Table A2 and Figure A3). We do not consider this a limitation
since all four axioms cannot be satisfied without obtaining negative partial information [23],
which creates difficulties for interpreting results.

Finally, our approach does not appear to satisfy a target/left chain rule as proposed
by Bertschinger et al. [7]. While our approach provides an algebra that can be used to
handle multiple target variables, we think that further work on understanding the relations
when decomposing with multiple target variables is needed. In particular, it would be
helpful for the analysis of complex systems if the flow of already analyzed sub-chains could
be reused and their interactions could be predicted.

6. Conclusions

We use the approach of Bertschinger et al. [10] and Griffith and Koch [11] to con-
struct a pointwise partial information decomposition that provides non-negative results
for an arbitrary number of variables and target states. The measure obtains an algebra
from the resulting lattice structure and enables the analysis of complex multivariate sys-
tems in practice. To our knowledge, this is the first alternative to the original measure
of Williams and Beer [5] that satisfies their three proposed axioms and results in a non-
negative decomposition for an arbitrary number of variables.
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Abbreviations

The following abbreviations are used:

PID Partial Information Decomposition
ROC Receiver Operating Characteristic
TPR True-Positive Rate (β)
FPR False-Positive Rate (α)
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We use the following notation conventions:
T, T , t, Tt T (upper case) represents the target variable with an event t (lower case) of its event

space (calligraphic), t ∈ T . Tt represents a pointwise (binary) target variable which
takes state one if T = t and state two if T �= t (Tt represents the one-vs-rest encoding
of state t);

V, Vi, Vi, v V represents a set of visible/observable/predictor variables Vi with v ∈ Vi;
Si,Si sources represent a set of visible variables, where the index i lists the contained

visible variables, such as S12 = {V1, V2}. The event s ∈ Si corresponds to an event
of the corresponding joint variable, e.g., (V1, V2).

We represent channels (κ, λ) as row stochastic matrices with the following indexing:
P represents a permutation matrix;
κi represents a channel from the target to a source T

κi−→ Si using the joint distribution
of the variables within the source, such as T κ12−→ (V1, V2);

κt
i represents a pointwise channel from the target to a source Tt κt

i−→ Si, such as Tt κt
12−→

(V1, V2);
Zκt

i
binary input channels κt

i can be represented as (row) stochastic matrix, which

contain a likelihood vector �vs =
(

p(Si=s|T=t)
p(Si=s|T �=t)

)
for each state s ∈ Si. Zκt

i
represents

the zonotope for this set of vectors;
κt

1 ∨ κt
2 represents the binary input channel corresponding to the convex hull

of Zκt
1

and Zκt
2

(Blackwell order joint of binary input channels κt
1 ∨ κt

2
≡ κt

1 � κt
2);

κt
1 ∧ κt

2 represents the meet element for constructing a distributive lattice with the joint
operator κt

1 ∨ κt
2;

κt
1 � κt

2 represents the binary input channel corresponding to the intersection of Zκt
1

and Zκt
2

(Blackwell order meet of binary input channels);
α, β atoms represent an expression of random variables with the operators (∨/∧). In Sec-

tions 2.2 and 4, they represent sets of sources;
αt, βt represent an expression of pointwise channels with the operators (∨/∧);
αδt, βδt represent a partial pointwise channel corresponding to αt.
We use the following convention for operations, functions and brackets:
P1(·) represents the power set without the empty set;
{V1, V2} curly brackets with comma separation represent a set;
[ M1 M2 ] square brackets without comma separation represent a matrix, and the listing of

matrices in this manner represents their concatenation;
q([α; β]) square brackets with semicolon separation are used to refer to the bi-valuation

b(α, β) of a consistent lattice valuation q(α). In a similar manner to Knuth [13], we
use the notation q([α; β]) ≡ b(α, β);

(α; β) round brackets with semicolon separation represent an element of a Cartesian
product L1 × L2, where α ∈ L1 and β ∈ L2;

f 〈L〉 angled brackets indicate that a function f shall be mapped to each element of the set
L. We may nest this notation, such as f 〈〈L〉〉, to indicate a map to each element of
the sets within L;

α False-Positive Rate, type I error;
β True-Positive Rate, 1− type II error.
We distinguish between a joint channel T κ12−→ (V1, V2) and the joint of two channels κ1 ∨ κ2. To avoid
confusion, we write the first case as “joint channel (κ)” and the latter case as “joint of channels
(κi ∨ κj)” throughout this work.

Appendix A

The considered lattice relates the meet and joint elements (∧/∨) through an inclusion–
exclusion principle. Here, the partial contribution for the joint of any two incomparable
elements (αt, βt ∈ Bt(V), αt ∨ βt �∼ αt and αt ∨ βt �∼ βt) shall be zero, which is indicated
using a gray font in Figure A1.

20



Entropy 2023, 25, 1014

κt
1 ∨ κt

2 ∨ κt
3

κt
1 ∨ κt

2 κt
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2 ∨ κt

3

(κt
1 ∨ κt

2) ∧ (κt
1 ∨ κt

3) (κt
1 ∨ κt

2) ∧ (κt
2 ∨ κt

3) (κt
1 ∨ κt

3) ∧ (κt
2 ∨ κt

3)

κt
1 κt

2 κt
3 (κt

1 ∨ κt
2) ∧ (κt

1 ∨ κt
3) ∧ (κt

2 ∨ κt
3)

κt
1 ∧ (κt

2 ∨ κt
3) κt

2 ∧ (κt
1 ∨ κt

3) κt
3 ∧ (κt

1 ∨ κt
2)

κt
1 ∧ κt

2 κt
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Figure A1. The considered lattice relating the meet and joint operators. The joint of any two incom-
parable elements (αt, βt ∈ Bt(V), αt ∨ βt �∼ αt and αt ∨ βt �∼ βt) shall have no partial contribution to
create an inclusion–exclusion principle between the operators and is highlighted using a gray font.

Appendix B

This section demonstrates that the defined meet and joint operators of Section 3.2
provide a distributive lattice under the defined equivalence relation (∼, Equation (10)).

Lemma A1. The meet and joint operators (∧, ∨) define a distributive lattice for a set of channels
under the defined equivalence relation (∼).

Proof. The definitions of the meet and joint satisfy associativity, commutativity, idempo-
tency, absorption and distributivity on channels under the defined equivalence relation:

1. Idempotency: κt
1 ∨ κt

1 ∼ κt
1 and κt

1 ∧ κt
1 ∼ κt

1.

κt
1 ∨ κt

1 ∼ κt
1 � κt

1 ∼ κt
1;

κt
1 ∧ κt

1 ∼
[
κt

1 κt
1 −κt

1 ∨ κt
1
]
∼
[
κt

1 κt
1 −κt

1
]
∼ κt

1.

2. Commutativity: κt
1 ∨ κt

2 ∼ κt
2 ∨ κt

1 and κt
1 ∧ κt

2 ∼ κt
2 ∧ κt

1.

κt
1 ∨ κt

2 ∼ κt
1 � κt

2 ∼ κt
2 � κt

1 ∼ κt
2 ∨ κt

1;

κt
1 ∧ κt

2 ∼
[
κt

1 κt
2 −κt

1 ∨ κt
2
]
∼
[
κt

2 κt
1 −κt

2 ∨ κt
1
]
∼ κt

2 ∧ κt
1.

3. Associativity: κt
1 ∨ (κt

2 ∨ κt
3) ∼ (κt

1 ∨ κt
2) ∨ κt

3 and κt
1 ∧ (κt

2 ∧ κt
3) ∼ (κt

1 ∧ κt
2) ∧ κt

3.

κt
1 ∨ (κt

2 ∨ κt
3) ∼ κt

1 � (κt
2 � κt

3) ∼ (κt
1 � κt

2) � κt
3 ∼ (κt

1 ∨ κt
2) ∨ κt

3;

κt
1 ∧ (κt

2 ∧ κt
3) ∼

[
κt

1 κt
2 κt

3 −κt
1 ∨ κt

2 −κt
1 ∨ κt

3 −κt
2 ∨ κt

3 κt
1 ∨ κt

2 ∨ κt
3
]

∼
[
κt

3 κt
2 κt

1 −κt
3 ∨ κt

2 −κt
3 ∨ κt

1 −κt
2 ∨ κt

1 κt
3 ∨ κt

2 ∨ κt
1
]

∼ κt
3 ∧ (κt

2 ∧ κt
1) ∼ (κt

1 ∧ κt
2) ∧ κt

3.

4. Absorption: κt
1 ∧ (κt

1 ∨ κt
2) ∼ κt

1 and κt
1 ∨ (κt

1 ∧ κt
2) ∼ κt

1.

κt
1 ∧ (κt

1 ∨ κt
2) ∼

[
κt

1 κt
1 ∨ κt

2 −κt
1 ∨ κt

1 ∨ κt
2
]

∼
[
κt

1 κt
1 ∨ κt

2 −κt
1 ∨ κt

2
]
∼ κt

1;

κt
1 ∨ (κt

1 ∧ κt
2) ∼

[
κt

1 κt
1 ∧ κt

2 −κt
1 ∧ κt

1 ∧ κt
2
]

∼
[
κt

1 κt
1 ∧ κt

2 −κt
1 ∧ κt

2
]
∼ κt

1.
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5. Distributivity: κt
1 ∨ (κt

2 ∧ κt
3) ∼ (κt

1 ∨ κt
2) ∧ (κt

1 ∨ κt
3) and κt

1 ∧ (κt
2 ∨ κt

3) ∼ (κt
1 ∧ κt

2) ∨
(κt

1 ∧ κt
3).

κt
1 ∨ (κt

2 ∧ κt
3) ∼

[
κt

2 ∧ κt
3 κt

1 −κt
1 ∧ (κt

2 ∧ κt
3)
]

∼
[
κt

2 ∧ κt
3 −κt

2 −κt
3 κt

1 ∨ κt
2 κt

1 ∨ κt
3 κt

2 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
−κt

2 ∨ κt
3 κt

1 ∨ κt
2 κt

1 ∨ κt
3 κt

2 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
κt

1 ∨ κt
2 κt

1 ∨ κt
3 −κt

1 ∨ κt
2 ∨ κt

3
]

∼
[
κt

1 ∨ κt
2 κt

1 ∨ κt
3 −(κt

1 ∨ κt
2) ∨ (κt

1 ∨ κt
3)
]

∼ (κt
1 ∨ κt

2) ∧ (κt
1 ∨ κt

3);

κt
1 ∧ (κt

2 ∨ κt
3) ∼

[
κt

2 ∨ κt
3 κt

1 −κt
1 ∨ (κt

2 ∨ κt
3)
]

∼
[
κt

2 ∨ κt
3 −κt

2 −κt
3 κt

1 ∧ κt
2 κt

1 ∧ κt
3 κt

2 ∧ κt
3 −κt

1 ∧ κt
2 ∧ κt

3
]

∼
[
−κt

2 ∧ κt
3 κt

1 ∧ κt
2 κt

1 ∧ κt
3 κt

2 ∧ κt
3 −κt

1 ∧ κt
2 ∧ κt

3
]

∼
[
κt

1 ∧ κt
2 κt

1 ∧ κt
3 −(κt

1 ∧ κt
2) ∧ (κt

1 ∧ κt
3)
]

∼ (κt
1 ∧ κt

2) ∨ (κt
1 ∧ κt

3).

Appendix C

This section demonstrates the quantification of a small example and proves that the
function f of Equation (19) creates a consistent valuation αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt) for
the pointwise lattice (Bt(V),∧,∨).

The convexity of the function r(�v) results, in combination with the property that
r(��v) = �r(�v) with � ∈ R, in a triangle inequality, as shown in Equation (A1). This ensures
that Blackwell superior channels obtain a larger quantification result and thus the non-
negativity of channels: f (κt � λt) ≥ f (κt) ≥ f (

[
1
1

]
) = 0.

r(t�v1 + (1− t)�v2) ≤ tr(�v1) + (1− t)r(�v2) (convexity, 0 ≤ t ≤ 1)

r(�v1 +�v2) ≤ r(�v1) + r(�v2) (using t = 0.5 and r(��v) = �r(�v))
(A1)

To provide an intuition for the meet operator with a minimal example and highlight its
relation to the intersection of zonotopes (redundant region), consider the two channels κt

1
and κt

2 of Equation (A2) and as visualized in Figure A2. To simplify the notation, we use the
property [ ((1+�)�v1) ] ∼ [ (�v1) (��v1) ] to differentiate the vectors�a2 and�a3 as well as�b1 and�b2.

κt
1 ∼

[
(�a1) (�a2) (�a3)

]
κt

2 ∼
[
(�b1) (�b2) (�b3)

]
κt

1 ∨ κt
2 ∼

[
(�a1) (�a2 +�b2) (�b3)

] (A2)

The resulting shared and redundant element is shown in Equation (A3). Due to the
construction of the meet element through an inclusion–exclusion principle with the joint,
the meet element always contains the vectors which span the redundant decision region as
the first component.

κt
1 ∧ κt

2 ∼
[
(�b1) (�a3) (�b2) (�a2) −(�a2 +�b2)

]
κt

1 � κt
2 ∼

[
(�b1) (�a3)

] (A3)

The second component of the meet element corresponds to the decision region of the joint,
which is not part of either individual channel. This component is non-negative due to the
triangle inequality.

0 ≤ f (κt
1 ∧ κt

2) − f (κt
1 � κt

2) = r(�a2) + r(�b2)− r(�a2 +�b2) (A4)
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The same argument applies to the meet for an arbitrary number of channels since the
inclusion–exclusion principle with the joint elements ensures that the vectors spanning the
redundant region are contained in the meet element, and the triangle inequality ensures
non-negativity for the additional components.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

�a1 �b1

�b2

�b3

�a2

�a3
�a 2
+
�b 2

α / FPR

β
/

T
PR

Figure A2. A minimal example to discuss the relation between the shared (κt
1 ∧ κt

2) and redundant
(κt

1 � κt
2) decision regions. The channel κt

1 consists of the vectors�ax, and the channel κt
2 consists of the

vectors�bx.

Lemma A2. The function f (αt) is a (consistent) valuation αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt) on the
pointwise lattice corresponding to (Bt(V),∧,∨), as visualized in Appendix A.

Proof. Let St = {κt
1, . . . , κt

a} represent a set of pointwise channels. The meet element
(
∧

λt∈St λt) is constructed through an inclusion–exclusion principle with the joint (convex
hull). This ensures that the set of vectors spanning the zonotope intersection (�λt∈St λt) is
contained within the meet element. Additionally, the meet contains a second component
that is ensured to be positive from the triangle inequality of r: f (

∧
λt∈St λt)

≥ f (�λt∈St λt). Since the joint operator is closed on channels and is distributive, we
can introduce a channel to enforce a minimal redundant decision region between the chan-
nels: f (κt

0) ≤ f (�λt∈St κt
0 � λt) ≤ f (

∧
λt∈St κt

0 ∨ λt) = f (κt
0 ∨

∧
λt∈St λt). Applying the

sum-rule shows that f (κt
0 ∧

∧
λt∈St λt) ≤ f (

∧
λt∈St λt).

We again make use of the distributive property, which allows writing any expression
αt into a conjunctive normal form. Since the joint operator is closed for channels, any
expression αt can be represented as meet for a set of channels αt ∼ ∧

λt∈{κt
p1 ,...,κt

pi }
λt.

This demonstrates that the obtained inequality of the meet operator on channels also
applies to atoms f (αt ∧ βt) ≤ f (αt), such that αt ∧ βt ∼ βt ⇒ f (βt) ≤ f (αt).

Appendix D

The considered function fp(κt) of Section 3.2 takes the sum of a convex function.

The Hessian matrix Hr of the function rp(x, y) = x logb

(
x

px+(1−p)y

)
is positive-semide-

finite in the required domain (symmetric and its eigenvalues e1 and e2 are greater than or
equal to zero for x > 0 and b > 1).

Hr =
1

log(b)

⎡⎣ (p−1)2y2

x(px+(1−p)y)2 − (p−1)2y
(px+(1−p)y)2

− (p−1)2y
(px+(1−p)y)2

(p−1)2x
(px+(1−p)y)2

⎤⎦
e1 = 0

e2 =
(p− 1)2(x2 + y2)

x log(b)(px + (1− p)y)2

(A5)
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Appendix E

We use the examples of Finn and Lizier [20] since they provided an extensive
discussion of their motivation. We compare our decomposition results to Imin of
Williams and Beer [5] and I± of Finn and Lizier [20]. Examples with two sources are
additionally compared to IBROJA of Bertschinger et al. [10] and Griffith and Koch [11].
We notate the results for shared information S(V1, V2; T), unique information U(Vx; T) and
synergetic/complementing information C(V1, V2; T). We use the implementation of Imin,
IBROJA and I± provided by the dit Python package for discrete information theory [24].

Notice that our approach is identical to Williams and Beer [5] if one of the variables
is pointwise (for each Tt, not necessarily the same one each time) Blackwell superior to
another, and that our approach is equal to Bertschinger et al. [10] and Griffith and Koch [11]
for two visible variables at a binary target variable.

We would like to highlight Table A1 for the difference in our approach to Williams
and Beer [5]. This is an arbitrary example, where the variables V1 and V2 are not Blackwell
superior to each other from the perspective of Tt, as visualized in Figure 6. For highlighting
the difference in our approach to Bertschinger et al. [10] and Griffith and Koch [11], we
require an example where the target variable is not binary, such as the two-bit copy example
in Table A2.

It can be seen that our approach does not satisfy the identity axiom of Harder et al. [8].
This axiom demands the decomposition of the two-bit-copy example (Table A2) to both
variables providing one bit unique information and demands negative partial contributions
in the three-bit even-parity example (Figure A3) [8,20].

Table A1. Two incomparable channels (visualized in Section 3.1). The table highlights the difference
in our approach to Williams and Beer [5] while being identical to Bertschinger et al. [10] since the
target variable is binary.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 0.0625 ÎT · H(T) 0.1196 0.0272 0.0716 0.1205
0 0 1 0.3 Imin [5] 0.1468 0 0.0444 0.1477
1 0 0 0.0375 I± [20] 0.3214 −0.1746 −0.1302 0.3223
1 0 1 0.05 IBROJA [10,11] 0.1196 0.0272 0.0716 0.1205
0 1 0 0.1875
0 1 1 0.15
1 1 0 0.2125

Table A2. Two-bit-copy (TBC) example. The results of our approach differ from
Bertschinger et al. [10] and Griffith and Koch [11] since the target variable is not binary.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 1 0 0 1
0 1 1 1/4 Imin [5] 1 0 0 1
1 0 2 1/4 I± [20] 1 0 0 1
1 1 3 1/4 IBROJA [10,11] 0 1 1 0
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V1 V2 V3 T Pr
0 0 0 0 1/4
0 1 1 1 1/4
1 0 1 2 1/4
1 1 0 3 1/4

(a)

S123

S12 S13 S23

S12 ∧ S13 S12 ∧ S23 S13 ∧ S23

S1 S2 S3 S12 ∧ S13 ∧ S23

S1 ∧ S23 S2 ∧ S13 S3 ∧ S12

S1 ∧ S2 S1 ∧ S3 S2 ∧ S3

S1 ∧ S2 ∧ S3

(b)

2 (0)

2 (0) 2 (0) 2 (0)

2 (0) 2 (0) 2 (0)

1 (0) 1 (0) 1 (0) 2 (1)

1 (0) 1 (0) 1 (0)

1 (0) 1 (0) 1 (0)

1 (1)

(c)

Figure A3. Three-bit even-parity (Tbep) example. The results for ÎT · H(T), Imin and I± are identical.
(a) Distribution. (b) Decomposition lattice. (c) Cumulative results (partial).

Table A3. XOR-gate (Xor) example. All compared measures provide the same results.

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0 0 0 1
0 1 1 1/4 Imin [5] 0 0 0 1
1 0 1 1/4 I± [20] 0 0 0 1
1 1 0 1/4 IBROJA [10,11] 0 0 0 1

Table A4. Pointwise unique (PwUnq) example. Our approach provides the same results as Williams
and Beer [5] and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 1 0 1/4 ÎT · H(T) 0.5 0 0 0.5
1 0 0 1/4 Imin [5] 0.5 0 0 0.5
0 2 1 1/4 I± [20] 0 0.5 0.5 0
2 0 1 1/4 IBROJA [10,11] 0.5 0 0 0.5

Table A5. Redundant Error (RdnErr) example. Our approach provides the same results as Williams
and Beer [5] and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 3/8 ÎT · H(T) 0.189 0.811 0 0
1 1 1 3/8 Imin [5] 0.189 0.811 0 0
0 1 0 1/8 I± [20] 1 0 −0.811 0.811
1 0 1 1/8 IBROJA [10,11] 0.189 0.811 0 0
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Table A6. Unique (Unq) example. Our approach provides the same results as Williams and Beer [5]
and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0 1 0 0
0 1 0 1/4 Imin [5] 0 1 0 0
1 0 1 1/4 I± [20] 1 0 −1 1
1 1 1 1/4 IBROJA [10,11] 0 1 0 0

Table A7. And-gate (And) example. Our approach provides the same results as Williams and Beer [5]
and Bertschinger et al. [10].

(a) Distribution (b) Results

V1 V2 T Pr Method S(V1, V2; T) U(V1; T) U(V2; T) C(V1, V2; T)

0 0 0 1/4 ÎT · H(T) 0.311 0 0 0.5
0 1 0 1/4 Imin [5] 0.311 0 0 0.5
1 0 0 1/4 I± [20] 0.561 −0.25 −0.25 0.75
1 1 1 1/4 IBROJA [10,11] 0.311 0 0 0.5
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Abstract: Arrow contraction applied to a tropical diagram of probability spaces is a modification of
the diagram, replacing one of the morphisms with an isomorphism while preserving other parts of
the diagram. It is related to the rate regions introduced by Ahlswede and Körner. In a companion
article, we use arrow contraction to derive information about the shape of the entropic cone. Arrow
expansion is the inverse operation to the arrow contraction.

Keywords: tropical probability; entropic cone

1. Introduction

In [1], we have initiated the theory of tropical probability spaces for the systematic study
of information optimization problems in information theory and artificial intelligence,
such as those arising in robotics [2], neuroscience [3], artificial intelligence [4], variational
autoencoders [5], information decomposition [6], and causal inference [7]. In [8], we applied
the techniques to derive a dimension-reduction result for the entropic cone of four random
variables.

Two of the main tools used for the latter are what we call arrow contraction and arrow
expansion. They are formulated for tropical commutative diagrams of probability spaces.
Tropical diagrams are points in the asymptotic cone of the metric space of commutative
diagrams of probability spaces endowed with the asymptotic entropy distance. Arrows in
diagrams of probability spaces are (equivalence classes of) measure-preserving maps.

Arrow contraction and expansion take a commutative diagram of probability spaces
as input, modify it, but preserve important properties of the diagram. The precise results
are formulated as Theorems 3 and 4 in the main text. Their formulation requires language,
notation, and definitions that we review in Section 2.

However, to give an idea of the results in this paper, we now present two examples.
For basic terminology and notations used in these examples below, the reader unfamiliar
with them is referred either to Section 2 of the present article or in the introductory material
in the article [9].

1.1. Two Examples
1.1.1. Arrow Contraction and Expansion in a Two-Fan

Suppose we are given a fan Z = (X ← Z → Y), and we would like to complete it to a
diamond

Z◇ = ⎛⎜⎜⎝
Z

X Y
V

⎞⎟⎟⎠ (1)

such that the entropy of V, denoted by [V], equals the mutual information [X ∶ Y] between
X and Y, i.e., we would like to realize the mutual information between X and Y by a pair

Entropy 2023, 25, 1637. https://doi.org/10.3390/e25121637 https://www.mdpi.com/journal/entropy28
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of reductions X → V and Y → V. This is not always possible, not even approximately. The
Gacs-Körner Theorem [10] describes when such exact realization of mutual information is
possible.

Arrow contraction instead produces another fan Z ′ = (X ← Z′ → V), such that the
reduction Z′ → X is an isomorphism and the relative entropy [X∣V] of X given V equals[X∣Y]. By collapsing this reduction, we obtain as a diagram just the reduction X → V. If
necessary, we can keep the original spaces Z and Y in the modified diagram obtaining the
“broken diamond” diagram

Z
X Y

V

such that [V] = [X ∶ Y]. Of course, no special technique is necessary to achieve this result
since it is easy to find a reduction from a tropical space [X] to another tropical probability
space with the prespecified entropy, as long as the Shannon inequalities are not violated.

However, a similar operation becomes non-trivial and in fact impossible without
passing to the tropical limit, if instead of a single space X, there is a more complex sub-
diagram as in the example in the next subsection.

To explain how arrow expansion works, we start with the chain of reductions Z → X → V.
Can we extend it to a diamond, as in (1), so that [X ∶ Y∣V] = 0? This is again not possible, in
general. However, if we pass to tropical diagrams, then such an extension always exists.

1.1.2. One More Example of Arrow Expansion and Contraction

Consider a diagram presented in Figure 1. Such a diagram is called a Λ3-diagram. We
would like to find a reduction X → V so that [X ∣U] = [X ∣V]. It is not possible to achieve
this within the realm of diagrams of classical probability spaces. But once we pass to the
tropical limit, the reduction [X] → [V] can be found by contracting and then collapsing the
arrow [Z] → [X], as shown in Figure 1.

Figure 1. Arrow contraction and expansion in a Λ3-diagram. The fan ([X] ← [Z] → [U]) (shown
in red in the Figure) is admissible. Spaces [Z1], [Z2] and [Z] belong to the co-ideal ⌊U⌋. After the
operation the part of the diagram shown in blue in the Figure is left unmodified.

Arrow contraction is closely related to the Shannon channel coding theorem. This is
perhaps most obvious from the proof. Furthermore, arrow contraction has connections
with rate regions, as introduced by Ahlswede and Körner, see [11,12]. These results by
Ahlswede and Körner were applied by [13], resulting in a new non-Shannon information
inequality. Moreover, in [13], a new proof was given of the results; this new proof is similar
to the proof of the arrow contraction result in the present paper.

The main contribution of our work lies in the fact that we prove a much stronger
preservation of properties of the diagram under arrow contraction.

2. Preliminaries

2.1. Probability Spaces and Their Diagrams

Our main objects of study will be commutative diagrams of probability spaces. A finite
probability space X is a set with a probability measure on it, supported on a finite set. We
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denote by ∣X∣ the cardinality of the support of the measure. The statement x ∈ X means that
point x is an atom with positive weight in X. For details see [1,9,14].

Examples of commutative diagrams of probability spaces are shown in Figure 2. The
objects in such diagrams are finite probability spaces and morphisms are equivalence
classes of measure-preserving maps. Two such maps are considered to be equivalent if
they coincide on a set of full measurements. To record the combinatorial structure of a
commutative diagram, i.e., the arrangement of spaces and morphisms, we use indexing
categories, which are finite poset categories satisfying an additional property, which we
describe below.

Z

X Y

Z

X Y

U

T

U V W

X Y Z

1. A fan 2. A diamond diagram 3. Full diagram on 3 spaces

Figure 2. Examples of diagrams of probability spaces.

2.1.1. Indexing Categories

A poset category is a finite category such that there is at most one morphism between
any two objects either way.

For a pair of objects k, l in a poset category G = {i; γij}, such that there is a morphism
γkl in G, we call k an ancestor of l and l a descendant of k. The set of all ancestors of an
object k together with all the morphisms between them is itself a poset category and will
be called a co-ideal generated by k and denoted by ⌊k⌋. Co-ideals are also sometimes called
filters. Similarly, a poset category consisting of all descendants of k ∈ G and morphisms
between them will be called an ideal generated by k and denoted ⌈k⌉.

An indexing category G = {i; γij} used for indexing diagrams is a poset category
satisfying the following additional property: for any pair of objects i1, i2 ∈ G the the
intersection of co-ideals is also a co-ideal generated by some object i3 ∈ G,

⌊i1⌋ ∩ ⌊i2⌋ = ⌊i3⌋
In other words, for any pair of objects i1, i2 ∈ G there exists a least common ancestor i3, i.e.,
i3 is an ancestor to both i1 and i2 and any other common ancestor is also an ancestor of i3.
Any indexing category is initial, i.e., there is a (necessarily unique) initial object ı̂ in it, which
is the ancestor of any other object in G, in other words G = ⌈ı̂⌉.

A fan in a category is a pair of morphisms with the same domain. Such a diagram is
also called a span in some literature on Category Theory. A fan (i ← k → j) is called minimal,
if for any other fan (i ← l → j) included in a commutative diagram

k
i j

l

the vertical morphism (k → l) must be an isomorphism. Any indexing category also
satisfies the property that, for any pair of objects in it, there exists a unique minimal fan
with target objects of the given ones.

This terminology will also be applied to diagrams of probability spaces indexed by
G. Thus, given a space X in a G-diagram, we can talk about its ancestors, descendants,
co-ideal ⌊X⌋, and ideal ⌈X⌉. We use square brackets to denote tropical diagrams and spaces
in them. For the (co-)ideals in tropical diagrams, in order to unclutter notations, we will
write ⌊X⌋ ∶= ⌊[X]⌋ and ⌈X⌉ ∶= ⌈[X]⌉
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2.1.2. Diagrams

For an indexing category G = {i; γij} and a category Cat, a commutative G-diagramX = {Xi; χij} is a functor X ∶ G → Cat. A diagram X is called minimal if it maps minimal
fans in G to minimal fans in Cat.

A constant G-diagram denoted XG is a diagram where all the objects equal to X, and
all morphisms are identities.

Important examples of indexing categories are a two-fan, a diamond category, a full
category Λn on n spaces, chains Cn. For detailed descriptions and more examples, the
reader is referred to the articles cited at the beginning of this section.

2.2. Tropical Diagrams
2.2.1. Intrinsic Entropy Distance

For a fixed indexing category G, the space of commutative G-diagrams will be denoted
by Prob⟨G⟩. Evaluating entropy on every space in a G diagram gives a map

Ent∗ ∶ Prob⟨G⟩ → R
G

where the target space R
G is the space of real-valued functions on objects of G. We endow

this space with the �1-norm. For a fan F = (X ← Z → Y) of G-diagrams we define the
entropy distance between its terminal objects by

kd(F) ∶= ∥Ent∗Z −Ent∗X∥1 + ∥Ent∗Z −Ent∗Y∥1

and the intrinsic entropy distance between two arbitrary G-diagrams by

k(X ,Y) ∶= inf{kd(F) ∶ F = (X ← Z → Y)}
This intrinsic version of the entropy distance was introduced in [15,16]. The triangle
inequality for k and various other properties are discussed in [1].

In the same article, a useful estimate for the intrinsic entropy distance called the Slicing
Lemma is also proven. The following corollary ([1], Corollary 3.10(1)) of the Slicing Lemma
will be used in the next section.

Proposition 1. Let G be an indexing category, X ,Y ∈ Prob⟨G⟩ and U ∈ Prob included in a pair
of two fans X̃X UG

Ỹ
UG Y

Then
k(X ,Y) ≤ ∫

U
k(X ∣u,Y∣u) dpU(u) + 2 ⋅ [[G]] ⋅Ent(U)

2.2.2. Tropical Diagrams

Points in the asymptotic cone of (Prob⟨G⟩, k) are called tropical G-diagrams and the
space of all tropical G-diagrams, denoted Prob[G], is endowed with the asymptotic entropy
distance. We explain this now in more detail, and a more extensive description can be found
in [14].

To describe points in Prob[G] we consider quasi-linear sequences X̄ ∶= (X(n) ∶ n ∈ N)
of G-diagrams. That is, we fix a “slowly growing” increasing function ϕ ∶ R≥0 → R

satisfying

t ⋅ ∫ ∞

t

ϕ(t)
t2 dt ≤ Dϕ ⋅ ϕ(t)

for some constant Dϕ > 0 and any t > 1. We call a sequence X̄ ∶= (X(n) ∶ n ∈ N) ϕ-quasi-
linear if it satisfies the bound for all m, n ∈ N

κ(X(n +m),X(n)⊗X(m)) ≤ C ⋅ ϕ(n +m)

31



Entropy 2023, 25, 1637

We have shown in [14] that the space Prob[G] does not depend on the choice of function ϕ
as long as it is not zero. The space of all such sequences is endowed with the asymptotic
entropy distance defined by

κ(X̄ , Ȳ) ∶= lim
n→∞

1
n

k (X(n),Y(n))
A tropical diagram [X ] is defined to be an equivalence class of such sequences, where

two sequences X̄ and Ȳ are equivalent if κ(X̄ , Ȳ) = 0. The space Prob[G] carries the
asymptotic entropy distance and has the structure of a R≥0-semi-module—one can take
linear combinations with non-negative coefficients of tropical diagrams. The linear entropy
functional Ent∗ ∶ Prob[G] → R

G is defined by

Ent∗[X ] ∶= lim
n→∞

1
n
Ent∗X(n)

A detailed discussion about tropical diagrams can be found in [14]. In the cited article,
we show that the space Prob[G] is metrically complete and isometrically isomorphic to a
closed convex cone in some Banach space.

For G = Ck a chain category, containing k objects {1, . . . , k} and unique morphism i → j
for every pair i ≥ j, we have shown in [14] that the space Prob[Ck] is isomorphic to the
following cone in (Rk, ∥ ⋅ ∥1)

Prob[Ck] ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

x1⋮
xk

⎞⎟⎠ ∶ 0 ≤ x1 ≤ ⋅ ⋅ ⋅ ≤ xk

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The isomorphism is given by the entropy function. Thus, we can identify tropical prob-
ability spaces (elements in Prob[C1]) with non-negative numbers via entropy. We will
simply write [X] to mean the entropy of the space [X]. Along these lines, we also adopt the
notations [X∣Y], [X ∶ Y] and [X ∶ Y∣Z] for the conditional entropy and mutual information
for the tropical spaces included in some diagrams.

2.3. Asymptotic Equipartition Property for Diagrams
2.3.1. Homogeneous Diagrams

A G-diagram X is called homogeneous if the automorphism group Aut(X) acts tran-
sitively on every space in X . Homogeneous probability spaces are uniform. For more
complex indexing categories, this simple description is not sufficient.

2.3.2. Tropical Homogeneous Diagrams

The subcategory of all homogeneous G-diagrams will be denoted Prob⟨G⟩h and we
write Prob⟨G⟩h,m for the category of minimal homogeneous G-diagrams. These spaces are
invariant under the tensor product. Thus, they are metric Abelian monoids.

Passing to the tropical limit, we obtain spaces of tropical (minimal) homogeneous
diagrams that we denote Prob[G]h and Prob[G]h,m.

2.3.3. Asymptotic Equipartition Property

In [1] the following theorem is proven

Theorem 1. Suppose X ∈ Prob⟨G⟩ is a G-diagram of probability spaces for some fixed indexing
category G. Then, there exists a sequence H̄ = (Hn)∞n=0 of homogeneous G-diagrams such that

1
n

k(X n,Hn) ≤ C(∣X0∣, [[G]]) ⋅
'**, ln3 n

n
(2)

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]].
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The approximating sequence of homogeneous diagrams is evidently quasi-linear with
the defect bounded by the admissible function

ϕ(t) ∶= 2C(∣X0∣, [[G]]) ⋅ t3/4 ≥ 2C(∣X0∣, [[G]]) ⋅ t1/2 ⋅ ln3/2 t

Thus, Theorem 1 above states that L(Prob⟨G⟩) ⊂ Prob[G]h. On the other hand, we have
shown in [14] that the space of linear sequences L(Prob⟨G⟩) is dense in Prob[G]. Combin-
ing the two statements, we obtain the following theorem.

Theorem 2. For any indexing category G, the space Prob[G]h is dense in Prob[G]. Similarly,
the space Prob[G]h,m is dense in Prob[G]m.

It is possible that the spaces Prob[G]h and Prob[G] coincide. At this time, we have
neither a proof nor a counterexample to this conjecture.

2.4. Conditioning in Tropical Diagrams

For a tropical G-diagram [X ] containing a space [U]we defined a conditioned diagram[X ∣U]. It can be understood as the tropical limit of the sequence (X(n)∣un), where (X(n))
is the homogeneous approximation of [X ], U(n) is the space in X(n) that corresponds to[U] under combinatorial isomorphism and un is any atom in U(n).

We have shown in [9] that operation of conditioning is Lipschitz-continuous with
respect to the asymptotic entropy distance.

3. Arrow Contraction

3.1. Arrow Collapse, Arrow Contraction, and Arrow Expansion
3.1.1. Prime Morphisms

A morphism γij ∶ i → j in an indexing category G = {i; γij} will be called prime if it
cannot be factored into a composition of two non-identity morphisms in G. A morphism in
a G-diagram indexed by a prime morphism in G will also be called prime.

3.1.2. Arrow Collapse

Suppose Z is a G-diagram such that for some pair i, j ∈ G, the prime morphism
ζij ∶ Zi → Zj is an isomorphism. Arrow collapse applied to Z results in a new diagram Z ′
obtained from Z by identifying Zi and Zj via the isomorphism ζij. The combinatorial type
of Z ′ is different from that of Z . The spaces Zi and Zj are replaced by a single space, and
the new space will inherit all the morphisms in Z with targets and domains Zi and Zj.

3.1.3. Arrow Contraction and Expansion

Arrow contraction and expansion are two operations on tropical G-diagrams. Roughly
speaking, arrow contraction applied to a tropical G-diagram [Z] results in another tropical
G-diagram [Z ′] such that one of the arrows becomes an isomorphism, while some parts
of the diagram are not modified. Arrow expansion is an inverse operation to arrow
contraction.

3.1.4. Admissible and Reduced Sub-Fans

An admissible fan in a G-diagram Z is a minimal fan X ← Z → U, such that Z is the
initial space of Z and any space in Z belongs either to the co-ideal ⌈X⌉ or ideal ⌊U⌋. For
example, in the left-most diagram of Figure 1, the fan X ← Z → U is admissible, while
X1 ← Z1 → U or X ← Z → Z2 are not.

An admissible fan X ← Z → U in a diagram will be called reduced if the morphism
Z → X is an isomorphism.

3.2. The Contraction Theorem

Our aim is to prove the following theorem.
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Theorem 3. Let ([X] ← [Z] → [U]) be an admissible fan in some tropical G-diagram [Z]. Then
for every ε > 0 there exists a G-diagram [Z ′] containing an admissible fan ([X′] ← [Z′] → [U′]),
corresponding to the original admissible fan through the combinatorial isomorphism, such that, with
the notations X = ⌈X⌉ and X ′ = ⌈X′⌉, the diagram [Z ′] satisfies

(i) κ([X ′∣U′], [X ∣U]) ≤ ε
(ii) κ(X ′,X) ≤ ε
(iii) [Z′∣X′] ≤ ε

It is not clear that constructing diagrams Z ′ as in the theorem above for a sequence
of values of parameter ε decreasing to 0, we can obtain a convergent sequence in Prob[G]
with the limiting diagram satisfying conclusions of the theorem with ε = 0. If Prob[G] were
a locally compact space, which is an open question at the moment. The convergence would
be guaranteed, and then ε in the theorem above could be replaced by 0.

The proof of Theorem 3 is based on the following proposition, which will be proven in
Section 5.

Proposition 2. Let (X0 ← Z0 → U) be an admissible fan in some homogeneous G-diagram of
probability spaces Z . Then there exists a G-diagram Z ′ containing the admissible fan (X′0 ← Z′0 →
U′) such that, with the notations X ∶= ⌈X0⌉ and X ′ ∶= ⌈X′0⌉, it holds that

(1) X ∣u = X ′∣u′ for any u ∈ U and u′ ∈ U′.
(2) κ(X ,X ′) ≤ k(X ,X ′) ≤ 20 ⋅ [[G]]
(3) [Z′0∣X′0] ≤ 4 ln ln ∣X0∣
Proof of Theorem 3. First, we assume that [Z] is a homogeneous tropical diagram. It
means that it can be represented by a quasi-linear sequence (Z(n))n∈N0 of homogeneous
diagrams, with defect of the sequence bounded by the function ϕ(t) ∶= C ⋅ t3/4 for some
C ≥ 0. This means that for any m, n ∈ N

κ(Z(m)⊗Z(n),Z(m + n)) ≤ ϕ(m + n)
κ(Zm(n),Z(m ⋅ n)) ≤ Dϕ ⋅m ⋅ ϕ(n)

where Dϕ is some constant depending on ϕ, see [14].
Fix a number n ∈ N and apply Proposition 2 to the homogeneous diagram Z(n), con-

taining the admissible fan X0(n) ← Z0(n) → U(n) and sub-diagram X(n) = ⌈X0(n)⌉. As a
result, we obtain a diagram Z ′′ containing the fan X′′0 ← Z′′0 → U′′ and the sub-diagramX ′′ = ⌈X′′0 ⌉, such that

X ′′∣u′′ = X(n)∣u for any u′′ ∈ U′′ and u ∈ U(n)
κ(X ′′,X(n)) ≤ 20[[G]]
[Z′′0 ∣X′′0 ] ≤ 4 ln ln ∣X0(n)∣ (3)

Recall that for a diagram A of probability spaces, we denote by
0→A the tropical diagram

represented by the linear sequence (Ak
∶ k ∈ N0). As an element of a closed convex cone

Prob[G], it can be scaled by an arbitrary non-negative real number; see, for instance,

Section 2.3.5 in [14]. For example, 1
n
0→A is represented by the sequence (A⌊ k

n ⌋
∶ k ∈ N0).

Define the two tropical diagrams

[Z ′] ∶= 1
n
0→Z ′′

[Z̃] ∶= 1
n
000→Z(n)
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Since X ′′∣u′′ does not depend on u′′ and X(n)∣u does not depend on u we have

[X ′∣U′] = (1/n) ⋅00000→(X ′′∣u′′) and [X̃ ∣Ũ] = (1/n) ⋅00000→(X(n)∣u). From (3), we obtain

[X ′∣U′] = [X̃ ∣Ũ]
κ([X ′], [X̃ ]) ≤ 20[[G]]

n

[Z′0∣X′0] ≤ 4 ln ln ∣X0(n)∣
n

(4)

The distance between [Z̃] and [Z] can be bounded as follows

κ([Z̃], [Z]) = 1
n

κ(000→Z(n), n ⋅ [Z]) = 1
n

lim
m→∞

1
m

κ(Zm(n),Z(m ⋅ n))
≤ 1

n
Dϕ ⋅ ϕ(n) (5)

This also implies

κ([X̃ ], [X ]) ≤ 1
n

Dϕ ⋅ ϕ(n) (6)

Since conditioning is a Lipschitz-continuous operation with Lipschitz constant 2, we also
have

κ([X̃ ∣Ũ], [X ∣U]) ≤ 2
n

Dϕ ⋅ ϕ(n) (7)

Combining the estimates in (4)–(7) we obtain

κ([X ′∣U′], [X ∣U]) ≤ 2Dϕ ⋅ ϕ(n)
n

κ([X ′], [X ]) ≤ 20[[G]]
n

+Dϕ
ϕ(n)

n

[Z′0∣X′0] ≤ 4 ln ln ∣X0(n)∣
n

+ 2Dϕ
ϕ(n)

n

Please note that ∣X0(n)∣ grows at most exponentially (it is bounded by en([X0]+C) for
some C) and ϕ is a strictly sub-linear function. Thus, by choosing sufficiently large n
depending on the given ε > 0, we obtain [Z ′], satisfying conclusions of the theorem for
homogeneous [Z].

To prove the theorem in full generality, observe that all the quantities on the right-hand
side of the inequalities are Lipschitz-continuous. Since Prob[G]h is dense in Prob[G] the
theorem extends to any [Z] by first approximating it with any precision by a homogeneous
configuration and applying the argument above.

3.3. The Expansion Theorem

The following theorem is complementary to Theorem 3. The expansion applied to a
diagram containing a reduced admissible fan produces a diagram with an admissible fan,
such that the contraction of it is the original diagram. Thus, arrow expansion is a right
inverse of the arrow contraction operation.

In general, contraction erases some information stored in the diagram, so there are
many right inverses. We prove the theorem below by providing a simple construction of
one such right inverse.

Theorem 4. Let ([X] ← [Z′] → [U′]) be a reduced admissible fan in some tropical G-diagram[Z ′] and λ > 0. Let [X ] ∶= ⌈X⌉. Then there exists a G-diagram [Z] containing the copy of [X ], such
that the corresponding admissible fan ([X] ← [Z] → [U]) has [Z∣X] = λ and [X ∣U] = [X ∣U′].
Proof. Let [W] be a tropical probability space with entropy equal to λ. For any reduction
of tropical spaces [A] → [B], there are natural reductions
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([A] + [W]) → ([B] + [W])
([A] + [W]) → [W]

We construct the diagram [Z] by replacing every space [V] in the ideal ⌊U′⌋ with[U] + [W]. Every morphism [V1] → [V2] within ⌊U′⌋ is replaced by

([V1] + [W]) → ([V2] + [W])
And any morphism from [V] in ⌊U′⌋ to a space [Y] in ⌈X⌉ is replaced by a composition

([V] + [W]) → [V] → [Y]
Clearly, the resulting diagram satisfies the conclusion of the theorem.

The rest of the article is devoted to the development of the necessary tools and the
proof of Proposition 2.

4. Local Estimate

In this section, we derive a bound, very similar to Fano’s inequality, on the intrinsic
entropic distance between two diagrams of probability spaces with the same underlying
diagram of sets. The bound will be in terms of the total variation distance between two
distributions corresponding to the diagrams of probability spaces. It will be used in the
next section to prove Proposition 2.

4.1. Distributions
4.1.1. Distributions on Sets

For a finite set S we denote by ΔS the collection of all probability distributions on S
and by ∥π1 −π2∥1 we denote the total variation distance between π1, π2 ∈ ΔS.

4.1.2. Distributions on Diagrams of Sets

Let Set denote the category of finite sets and surjective maps. For an indexing category
G, we denote by Set⟨G⟩ the category of G-diagrams in Set. That is, objects in Set⟨G⟩ are
commutative diagrams of sets indexed by the category G, the spaces in such a diagram are
finite sets, and arrows represent surjective maps, subject to commutativity relations.

For a diagram of sets S = {Si; σij} we define the space of distributions on the diagram S by

ΔS ∶= {(πi) ∈ ∏
i

ΔSi ∶ (σij)∗πi = πj}
where f∗ ∶ ΔS → ΔS′ is the affine map induced by a surjective map f ∶ S → S′. If S0 is the
initial space of S , then there is an isomorphism

ΔS0
≅↔ ΔS

ΔS0 ∋ π0 ↦ {(σ0i)∗π0} ∈ ΔS
ΔS0 ∋ π0 ↤ {πi} ∈ Δ (8)

Using the isomorphism (8) we define total variation distance between two distributions
π, π′ ∈ ΔS as ∥π −π′∥1 ∶= ∥π0 −π′0∥1

Given a G-diagram of sets S = {Si; σij} and an element π ∈ ΔS we can construct a
G-diagram of probability spaces (S , π) ∶= {(Si, πi); σij}.

Below, we give the estimate of the entropy distance between two G-diagrams of prob-
ability spaces (S, π) and (S, π′) in terms of the total variation distance ∥π −π′∥ between
distributions.
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4.2. The Estimate

The upper bound on the entropy distance, which we derive below, has two summands.
One is linear in the total variation distance with the slope proportional to the log-cardinality
of S0. The second one is super-linear in the total variation distance, but it does not depend
on S. So, we have the following interesting observation: of course, the super-linear
summand always dominates the linear one locally. However, as the cardinality of S
becomes large, it is the linear summand that starts playing the main role. This will be the
case when we apply the bound in the next section.

For α ∈ [0, 1] consider a binary probability space with the weight of one of the atoms
equal to α

Bα ∶= ({◻,∎}; p(◻) = 1− α, p(∎) = α)
Proposition 3. For an indexing category G, consider a G-diagram of sets S = {Si, σij} ∈ Set⟨G⟩.
Let π, π′ ∈ ΔS be two probability distributions on S. Denote X ∶= (S, π), Y ∶= (S, π′) and
α ∶= 1

2∥π −π′∥1. Then
k(X ,Y) ≤ 2[[G]](α ⋅ ln ∣S0∣ +Ent(Bα))

Proof. To prove the local estimate, we decompose both π and π′ into a convex combination
of a common part π̂ and rests π+ and π′+. The coupling between the common parts gives
no contribution to the distance and the worst possible estimate on the other parts is still
enough to obtain the bound in the lemma, using Proposition 1.

Let S0 be the initial set in the diagram S. We will need the following obvious rough
estimate of the entropy distance that holds for any π, π′ ∈ ΔS :

k(X ,Y) ≤ 2[[G]] ⋅ ln ∣S0∣ (9)

It can be obtained by taking a tensor product for the coupling between X and Y .
Our goal now is to write π and π′ as the convex combination of three other distribu-

tions π̂, π+ and π′+ as in

π = (1− α) ⋅ π̂ + α ⋅π+
π′ = (1− α) ⋅ π̂ + α ⋅π′+

with the smallest possible α ∈ [0, 1].
We could do it the following way. Let π0 and π′0 be the distributions on S0 that

correspond to π and π′ under isomorphisms (8). Let α ∶= 1
2∥π −π′∥1. If α = 1 then the

proposition follows from the rough estimate (9), so from now on, we assume that α < 1.
Define three probability distributions π̂0, π+0 and π′+0 on S0 by setting for every x ∈ S0

π̂0(x) ∶= 1
1− α

min{π0(x), π′0(x)}
π+0 ∶= 1

α
(π0 − (1− α)π̂0)

π′+0 ∶= 1
α
(π′0 − (1− α)π̂0)

Denote by π̂, π+, π′+ ∈ ΔS the distributions corresponding to π̂0, π+0 , π′+0 ∈ ΔS0 under
isomorphism (8). Thus, we have

π = (1− α)π̂ + α ⋅π+
π′ = (1− α)π̂ + α ⋅π′+
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Now, we construct two fans of G-diagrams

X̃X Bα

Ỹ
Bα Y (10)

by setting

X̃i ∶= (Si ×Bα; π̃i(s,◻) = (1− α)π̂i(s), π̃i(s,∎) = α ⋅π+i (s))
Ỹi ∶= (Si ×Bα; π̃′i(s,◻) = (1− α)π̂i(s), π̃′i(s,∎) = α ⋅π′+i (s))

and

X̃ ∶= {X̃i; σij × id}
Ỹ ∶= {Ỹi; σij × id}

The reduction in the fans in (10) is given by coordinate projections. Note that the following
isomorphisms hold

X ∣◻ ≅ (S , π̂)
X ∣∎ ≅ (S , π+)
Y∣◻ ≅ (S , π̂) ≅ X ∣◻
Y∣∎ ≅ (S , π′+)

Now we apply Proposition 1 along with the rough estimate in (9) to obtain the desired
inequality

k(X ,Y) ≤ (1− α)k(X ∣◻,Y∣◻) + α ⋅k(X ∣∎,Y∣∎)
+∑

i
[Ent(Bα∣Xi) +Ent(Bα∣Yi)]

≤ 2[[G]](α ⋅ ln ∣S0∣ +Ent(Bα))

5. Proof of Proposition 2

In this section, we prove Proposition 2, which is shown below verbatim. The proof
consists of the construction in Section 5.1 and estimates in Propositions 5 and 6.

5.1. The Construction

In this section, we fix an indexing category G, a minimal G-diagram of probability
spaces Z with an admissible sub-fan X0 ← Z0 → U. We denote X ∶= ⌈X0⌉ and by H we
denote the combinatorial type of X = {Xi; χij}.

Instead of diagram Z , we consider an extended diagram, which is a two-fan of H-
diagrams YX UHπ1

(11)

where Y = {Yi; υij} consists of those spaces in Z , which are initial spaces of two fans with
feet in U and in some space in X . That is for every i ∈ H the space Yi is defined to be
the initial space in the minimal fan Xi ← Yi → U in Z . It may happen that for some
pair of indices i1, i2 ∈ H the initial spaces of the fans with one feet U and the other Xi1
and Xi2 coincide in Z . In Y , however, they will be treated as separate spaces so that the
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combinatorial type of Y is H. Starting with the diagram in (11) one can recover Z by
collapsing all the isomorphism arrows. The initial space of Y will be denoted Y0.

We would like to construct a new fan X ′ π′1← Y ′ → VH, such that

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
X ∣u = X ′∣v for any u ∈ U and v ∈ V
k(X ′,X) ≤ 20[[G]][Y′0∣X′0] ≤ 4 ln ln ∣X0∣

(12)

Once this goal is achieved, we collapse all the isomorphisms to obtain G-diagram
satisfying conditions in the conclusion of Proposition 2.

We start with a general description of the idea behind the construction, followed
by a detailed argument. To introduce the new space V we take its points to be N atoms
in u1, . . . , uN ∈ U. Ideally, we would like to choose the atoms in such a way that X0∣un
are disjoint and cover the whole of X0. It is not always possible to achieve this exactly.
However, when ∣X0∣ is large, N is taken slightly larger than e[X0∶U], and u1, . . . , uN are
chosen at random, then with high probability the spaces X0∣un will overlap only little and
will cover most of X0. The details of the construction follow.

We fix N ∈ N and construct several new diagrams. For each of the new diagrams, we
provide a verbal and formal description.

• The space UN . Points in it are independent samples of length N of points in U.
• The space VN = ({1, . . . , N},unif). A point n ∈ VN should be interpreted as a choice of

index in a sample ū ∈ UN .
• The H-diagram A, where

A = {Ai; αij}
Ai = ({(x, n, ū) ∶ x ∈ Xi∣un},unif )
αij = (χij, Id, Id)

A point (x, n, ū) in Ai corresponds to the choice of a sample ū ∈ UN , an independent
choice of a member of the sample un and a point x ∈ Xi∣un. Recall that the original
diagram Z was assumed to be homogeneous and, in particular, the distribution on
Xi∣un is uniform. Due to the assumption on homogeneity of Z , the space Xi∣u does not
depend on u ∈ U. Since VN is also equipped with the uniform distribution, it follows
that the distribution on Ai will also be uniform.

• The H-diagram B, where

B = {Bi; βij}
Bi = ({(x, ū) ∶ x ∈ N⋃

n=1
Xi∣un}, pBi)

βij = (χij, Id)
A point (x, ū) ∈ Bi is the choice of a sample ū ∈ UN and a point x in one of the fibers
Xi∣un, n = 1, . . . , N. The distribution pBi on Bi is chosen so that the natural projection
Ai → Bi is the reduction of probability spaces. Given a sample ū, if the fibers Xi∣un
are not disjoint, then the distribution on Bi∣ū need not to be uniform. Below, we will
give an explicit description of pB and study the dependence of pB( ⋅ ∣ū) on the sample
ū ∈ UN .

These diagrams can be organized into a minimal diamond diagram of H-diagrams,
where reductions are obvious projections.
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A
B VN ⊗UN

UN

(13)

To describe the probability distribution on B, first we define several relevant quantities:

ρ ∶= ∣X0∣u∣∣X0∣ = e−[X0∶U]

N(x, ū) ∶= ∣{n ∈ VN ∶ x ∈ X0∣un}∣
ν(x, ū) ∶= N(x, ū)

N
= pVN{n ∈ VN ∶ x ∈ X0∣un} (14)

Recall that the distribution pB is completely determined by the distribution pB0 on the
initial space of B via isomorphism (8). From homogeneity of Z it follows that distributions
on both A0 and A∣ū are uniform. Therefore

pB0(x∣ū) ∶= ν(x, ū)
ρ ⋅ ∣X0∣ (15)

The desired fan (X ′ ← Y ′ → VH) mentioned in the beginning of the section is obtained
from the top fan in the diagram in (13) by conditioning on ū ∈ UN . We will show later that
for an appropriate choice of N and for most choices of ū, the fan we obtain in this way has
the required properties.

First, we would like to make the following observations. Fix an arbitrary ū ∈ UN .
Then:

(1) The underlying set of the probability space B0∣ū = X0∣ū is X0.
(2) The diagrams

Y ′ū ∶= A∣ūX ′ū ∶= B∣ū
are included in a two-fan of H-diagrams

Y ′̄uX ′̄u VN

which is obtained by conditioning the top fan in the diagram in (13).
The very important observation is that diagrams X ′̄u∣n and X ∣u are isomorphic for any
choice of n ∈ VN and u ∈ U. The isomorphism is the composition of the following
sequence of isomorphisms

X ′ū∣n → B∣(ū, n) → A∣(ū, n) → X ∣un → X∣u
where the first isomorphism follows from the definition of X ′̄u, the second—from
minimality of the fan B ← A → VN , the third—from the definition of A and the
fourth—from the homogeneity of Z .

5.2. The Estimates

We now claim and prove that one could choose a number N and ū in UN such that

(1) k(X ′̄u,X) ≤ 20[[H]].
(2) [Y′ū,0∣X′ū,0] ≤ 4 ln ln ∣X0∣, where Y′ū,0 and X′ū,0 are initial spaces in X ′̄u and Y ′̄u, respec-

tively.
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5.2.1. Total Variation and Entropic Distance Estimates

If we fix some x0 ∈ X0, then ν = ν(x0, ⋅ ) is a scaled binomially distributed random
variable with parameters N and ρ, which means that N ⋅ ν ∼ Bin(N, ρ).

First, we state the following bounds on the tails of a binomial distribution.

Lemma 1. Let ν be a scaled binomial random variable with parameters N and ρ, then

(i) for any t ∈ [0, 1] holds

P{∣ν − ρ∣ > ρ ⋅ t} ≤ 2 ⋅ e− 1
3 ⋅N⋅ρ⋅t2

(ii) for any t ∈ [0, 2] holds

P{ν

ρ
ln

ν

ρ
> t} ≤ e−

1
12 ⋅N⋅ρ⋅t2

The proof of Lemma 1 can be found at the end of this section.
Below we use the notation P ∶= pUN for the probability distribution on UN . For a

pair of complete diagrams C, C′ with the same underlying diagram of sets and with initial
spaces C0, C′0, we will write α(C,C′) for the halved total variation distance between their
distributions

α(C,C′) ∶= 1
2
∥pC0 − pC′0

∥
1

Proposition 4. In the settings above, for t ∈ [0, 1], the following inequality holds

P{ū ∈ UN
∶ 2α(X ′ū,X) > t} ≤ 2∣X0∣ ⋅ e− 1

3 N⋅ρ⋅t2

Proof. Recall that by definition X ′̄u = B∣ū. We use Equation (15) to expand the left-hand
side of the inequality as follows

P{ū ∈ UN
∶ 2α(B∣ū,X) > t} = P⎧⎪⎪⎨⎪⎪⎩ū ∈ UN

∶ ∑
x∈X0

∣ν(x, ū)
ρ ⋅ ∣X0∣ −

1∣X0∣ ∣ > t
⎫⎪⎪⎬⎪⎪⎭

= P⎧⎪⎪⎨⎪⎪⎩ū ∈ UN
∶ ∑

x∈X0

∣ν(x, ū) − ρ∣ > ρ ⋅ ∣X0∣ ⋅ t⎫⎪⎪⎬⎪⎪⎭≤ P{ū ∈ UN
∶ there exists x0 such that ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}

≤ ∑
x∈X0

P{ū ∈ UN
∶ ∣ν(x, ū) − ρ∣ > ρ ⋅ t}

Since by homogeneity of the original diagram, all the summands are the same, we can fix
some x0 ∈ X0 and estimate further:

P{ū ∈ UN
∶ 2α(B∣ū,X) > t} ≤ ∣X0∣ ⋅P{ū ∈ UN

∶ ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}
Applying Lemma 1(i), we obtain the required inequality.

In the propositions below we assume that ∣X0∣ is sufficiently large (larger than e20).

Proposition 5. In the settings above and for any 10
ln ∣X0∣ ≤ t ≤ 1 holds:

P{ū ∈ UN ∶ k(X ′ū,X) > t(2 ⋅ [[G]] ⋅ ln ∣X0∣)} ≤ 2∣X0∣ ⋅ e− 1
3 N⋅ρ⋅t2
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Proof. We will use local estimate, Proposition 3, to bound the entropy distance and then
apply Proposition 4. To simplify notations, we will write simply α for α(X ′̄u,X) = α(B∣ū,X).

P{ū ∈ UN ∶ k(B∣ū,X) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2 ⋅ [[G]](α ⋅ ln ∣X0∣ +Ent(Λα)) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ α +Ent(Λα)/ ln ∣X0∣ > t}

Please note that in the chosen regime, t ≥ 10/ ln ∣X0∣, the first summand in the right-hand
side of the inequality is larger than the second, i.e., α ≥ Ent(Λα)/ ln ∣X0∣ and therefore we
can write

P{ū ∈ UN ∶ k(B∣ū,X) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2α > t}
≤ 2∣X0∣ ⋅ e− 1

3 N⋅ρ⋅t2

5.2.2. The “Height” Estimate

Recall that for given N ∈ N and ū ∈ UN we have constructed a two-fan of H-diagrams

X ′ū ← Y ′ū → VH
N

We will now estimate the length of the arrow Y′ū,0 → X′ū,0.

Proposition 6. In the settings above and for t ∈ [0, 2]
P{ū ∈ UN

∶ [Y′ū,0∣X′ū,0] > ln(N ⋅ ρ) + t} ≤ ∣X0∣ ⋅ e− 1
12 N⋅ρ⋅t2

Proof. First, we observe that the fiber of the reduction Y′ū,0 → X′ū,0 over a point x ∈ X′ū,0 is
a homogeneous probability space of cardinality equal to N(x, ū), therefore its entropy is
ln N(x, ū).

P{ū ∈ UN
∶ [Y′ū,0∣X′ū,0] > ln(N ⋅ ρ) + t}

P{ū ∈ UN
∶ ∫

X′ū,0

[Y′ū,0∣x] dpX′ū,0
(x) > ln(N ⋅ ρ) + t}

= P⎧⎪⎪⎨⎪⎪⎩ū ∈ UN
∶ ∑

x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣ ln (N ⋅ ν(x, ū)) > ln(N ⋅ ρ) + t

⎫⎪⎪⎬⎪⎪⎭
≤ P⎧⎪⎪⎨⎪⎪⎩ū ∈ UN

∶ ∑
x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣ ln (ν(x, ū)

ρ
) > t

⎫⎪⎪⎬⎪⎪⎭
≤ ∣X0∣ ⋅P{ū ∈ UN

∶

ν(x0, ū)
ρ

ln (ν(x0, ū)
ρ

) > t}
≤ ∣X0∣ ⋅ e− 1

12 N⋅ρ⋅t2

The last inequality above follows from Lemma 1 (ii).

5.3. Proof of Proposition 2

Let X ′̄u ← Y ′̄u → VN be the fan constructed in Section 5.1. The construction is parame-
terized by number N and atom ū ∈ UN . Below, we will choose a particular value for N and
apply estimates in Propositions 5 and 6 with particular choice of parameter t to show that
there is ū ∈ UN , so that the fan satisfies the conclusions of Proposition 2.
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Let

N ∶= ln3 ∣X0∣ ⋅ ρ−1 = ln3 ∣X0∣ ⋅ e[X0∶U]

t ∶= 10
ln ∣X0∣

With these choices of N and t, Proposition 5 implies

P{ū ∈ UN
∶ k(X ′ū,X) > 20[[G]]} ≤ 1

4

while Proposition 6 gives

P{ū ∈ UN
∶ [Y′ū,0∣X′ū,0] > 4 ln ln ∣X0∣} ≤ 1

4

Therefore, there is a choice of ū such that the fan

(X ′ ← Y ′ → V) ∶= (X ′ū,0 ← Y ′ū,0 → VN)
satisfies conditions in (12). As we have explained at the beginning of Section 5.1, by collaps-
ing isomorphism arrows, we obtain G-diagram Z ′ satisfying conclusions of Proposition 2.

5.4. Proof of Lemma 1

The Chernoff bound for the tail of a binomially distributed random variable X ∼
Bin(N, ρ) asserts that for any 0 ≤ δ ≤ 1 holds

P{X < (1− δ)N ⋅ ρ} ≤ e−
1
2 δ2 N⋅ρ

P{X > (1+ δ)N ⋅ ρ} ≤ e−
1
3 δ2 N⋅ρ

Applying the bound for the upper and lower tail for the binomially distributed random
variable N ⋅ ν, we obtain the inequality in (i).

The second assertion follows from the following estimate

P{ν

ρ
ln

ν

ρ
> t} ≤ P{ν

ρ
(ν

ρ
− 1) > t}

= P{ν > ρ ⋅ (
√

1+ 4t − 1
2

+ 1)}
For 0 ≤ t ≤ 2 we have

√
1+ 4t − 1 ≥ t, therefore

P{ν

ρ
ln

ν

ρ
> t} ≤ P{ν > ρ ⋅ ( t

2
+ 1)}

By the Chernoff bound, we have

P{ν

ρ
ln

ν

ρ
> t} ≤ e−

1
12 N⋅ρ⋅t2
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Abstract: We define a natural operation of conditioning of tropical diagrams of probability spaces
and show that it is Lipschitz continuous with respect to the asymptotic entropy distance.

Keywords: tropical probability

1. Introduction

In [1,2], we have initiated the study of tropical probability spaces and their diagrams.
In [1], we endowed (commutative) diagrams of probability spaces with the intrinsic entropy
distance and, in [2], we defined tropical diagrams as points in the asymptotic cone of the
metric space. They are represented by certain sequences of diagrams of probability spaces.

We expect that tropical diagrams will be helpful in the study of information optimiza-
tion problems, such as the ones considered in [3–8], and we have indeed applied them to
derive a dimension-reduction result for the shape of the entropic cone in [9].

In this present article, we introduce the notion of conditioning on a space in a tropical
diagram and show that the operation is Lipschitz continuous with respect to the asymptotic
entropy distance.

It is a rather technical result, and we have, therefore, decided to treat it in this separate
article, but it is an important ingredient in the theory and, in particular, we need it for the
dimension-reduction result mentioned before.

Given a tuple of finite-valued random variables (Xi)n
i=1 and a random variable Y,

one may "condition" the collection (Xi) on Y. The result of this operation is a family of
n-tuples of random variables denoted (Xi∣Y)n

i=1 parameterized by those values of Y that
have positive probability. Each tuple of random variables in this family is defined on a
separate probability space.

When passing to the tropical setting, the situation is different in the sense that when
we condition a tropical diagram [X ] on a space [Y], the result is again a tropical diagram[X ∣Y] rather than a family. After recalling some preliminaries in Section 2, we describe
the operation of conditioning and prove that the result depends in a Lipschitz way on the
original diagram in Section 3.

2. Preliminaries

Our main objects of study are commutative diagrams of probability spaces and their
tropical counterparts. In this section, we recall briefly the main definitions and results.

2.1. Probability Spaces and Their Diagrams
2.1.1. Probability Spaces

By a finite probability space, we mean a set with a probability measure that has finite
support. A reduction from one probability space to another is an equivalence class of
measure-preserving maps. Two maps are equivalent if they coincide on a set of full
measures. We call a point x in a probability space X = (X, p) an atom if it has positive
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weight, and we write x ∈ X to mean x is an atom in X (as opposed to x ∈ X for points in the
underlying set). For a probability space X, we denote by ∣X∣ the cardinality of the support
of the probability measure.

2.1.2. Indexing Categories

To record the combinatorial structure of commutative diagrams of probability spaces
and reductions, we use an object that we call an indexing category. By an indexing category,
we mean a finite category G such that for any pair of objects i, j ∈ G, there is at most one
morphism between them either way. In addition, we will assume it satisfies one additional
property that we will describe after introducing some terminology. For a pair of objects
i, j ∈ G such that there is a morphism γij ∶ i → j, object i will be called an ancestor of j and
object j will be called a descendant of i. The subcategory of all descendants of an object i ∈ G

is called an ideal generated by i and will be denoted ⌈i⌉, while we will call the subcategory
consisting of all ancestors of i together with all the morphisms in it a co-ideal generated by i
and denote it by ⌊i⌋. (The term filter is also used for a co-ideal in the literature about lattices).

The additional property that an indexing category has to satisfy is that for any pair
of objects i, j ∈ G, there exists a minimal common ancestor ı̂, and ı̂ is an ancestor for both i
and j and any other ancestor of them both is also an ancestor of ı̂; in other words, G is an
upper semi-lattice.

An equivalent formulation of the property above is the following: the intersection of
the co-ideals generated by two objects i, j ∈ G is also a co-ideal generated by some object
ı̂ ∈ G.

Any indexing category G is necessarily initial, which means that there exists an initial
object, that is an object i0 such that G = ⌈i0⌉.

A fan in a category is a pair of morphisms with the same domain. A fan (i ← k → j) is
called minimal if for any other fan (i ← l → j) included in a commutative diagram

k
i j

l

,

the vertical arrow must be an isomorphism; in other words, k is a minimal common ancestor
of i and j.

For any pair of objects i, j in an indexing category G, there exists a unique minimal fan(i ← ı̂ → j) in G.

2.1.3. Diagrams

We denote by Prob the category of finite probability spaces and reductions, i.e., the
equivalence classes of measure-preserving maps. For an indexing category G = {i; γij}, a
G-diagram is a functor X ∶ G → Prob. A reduction f from one G-diagram X = {Xi; χij}
to another Y = {Yi; υij} is a natural transformation between the functors. It amounts to
a collection of reductions fi ∶ Xi → Yi, such that the big diagram consisting of all spaces
Xi, Yi and all morphisms χij, υij and fi is commutative. The category of G-diagrams and
reductions will be denoted as Prob⟨G⟩. The construction of diagrams could be iterated;
thus, we can consider H-diagrams of G-diagrams and denote the corresponding category
Prob⟨G⟩⟨H⟩ = Prob⟨G, H⟩. Every H-diagram of a G-diagram can also be considered as
G-diagrams of H-diagrams; thus, there is a natural equivalence of categories Prob⟨G, H⟩ ≅
Prob⟨H, G⟩.

A G-diagram X will be called minimal if it maps minimal fans in G to minimal fans in
the target category. The subspace of all minimal G-diagrams will be denoted Prob⟨G⟩m.
In [1], we have shown that for any fan in Prob or in Prob⟨G⟩, its minimization exists and is
unique up to isomorphism.
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2.1.4. Tensor Product

The tensor product of two probability spaces X = (X, p) and Y = (Y, q) is their indepen-
dent product X⊗Y ∶= (X ×Y, p⊗ q) . For two G-diagrams X = {Xi; χij} and Y = {Yi; υij},
we define their tensor product to be X ⊗Y = {Xi ⊗Y ; χij × υij}.

2.1.5. Constant Diagrams

Given an indexing category G and a probability space, we can form a constant diagram
XG that has all spaces equal to X and all reductions equal to the identity isomorphism.
Sometimes, when such a constant diagram is included in a diagram with other G-diagrams
(such as, for example, a reduction X → XG), we will write simply X in place of XG.

2.1.6. Entropy

Evaluating entropy on every space in a G-diagram, we obtain a tuple of non-negative
numbers indexed by objects in G; thus, entropy gives a map

Ent∗ ∶ Prob⟨G⟩ → R
G,

where the target space R
G is a space of real-valued functions on the set of objects in G

endowed with the �1-norm. Entropy is a homomorphism in that it satisfies

Ent∗(X ⊗Y) = Ent∗(X) +Ent∗(Y).
2.1.7. Entropy Distance

Let G be an indexing category and K = (X ← Z → Y) be a fan of G-diagrams. We
define the entropy distance as

kd(K) ∶= ∥Ent∗Z −Ent∗X∥1 + ∥Ent∗Z −Ent∗Y∥1.

The intrinsic entropy distance between two G-diagrams is defined to be the infimal
entropy distance of all fans with terminal diagrams X and Y :

k(X ,Y) ∶= inf{kd(K) ∶ K = (X ← Z → Y)}.

The intrinsic entropy distance was introduced in [10,11] for probability spaces.
In [1], it is shown that the infimum is attained, that the optimal fan is minimal, that k

is a pseudo-distance, which vanishes if, and only if, X and Y are isomorphic, and that Ent∗
is a 1-Lipschitz linear functional with respect to k.

2.2. Diagrams of Sets, Distributions, and Empirical Reductions
2.2.1. Distributions on Sets

For a set S, we denote by ΔS the collection of all finitely-supported probability dis-
tributions on S. For a pair of distributions π1, π2 ∈ ΔS, we denote by ∥π1 −π2∥1 the total
variation distance between them.

For a map f ∶ S → S′ between two sets, we denote by f∗ ∶ ΔS → ΔS′ the induced affine
map (the map-preserving convex combinations).

For n ∈ N, we define the empirical map q ∶ Sn → ΔS by the assignment below. For
s̄ = (s1, . . . , sn) ∈ Sn and A ⊂ S, we define

q(s̄)(A) ∶= 1
n
⋅ ∣{k ∶ sk ∈ A}∣.

For a finite probability space X = (S, p), the empirical distribution on ΔX is the push-
forward τn ∶= q∗ p⊗n. Thus,

q ∶ Xn → (ΔX, τn)
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is a reduction of finite probability spaces. The construction of empirical reduction is
functorial, which is for a reduction between two probability spaces f ∶ X → Y, the diagram
of the reductions

Xn Yn

(ΔX, τn) (ΔY, τn)
f n

q q
f∗

commutes.

2.2.2. Distributions on Diagrams of Sets

Let Set denote the category of sets and surjective maps. For an indexing category
G, we denote by Set⟨G⟩ the category of G-diagrams in Set. The objects in Set⟨G⟩ are
commutative diagrams of sets indexed by G, and the spaces in such a diagram are sets,
where the arrows represent surjective maps, subject to commutativity relations.

For a diagram of sets S = {Si; σij}, we define the space of distributions on the diagramS by

ΔS ∶= {(πi) ∈ ∏
i

ΔSi ∶ (σij)∗πi = πj}.

If S0 is the initial set of S , then there is an isomorphism of

ΔS0
≅↔ ΔS (1)

ΔS0 ∋ π0 ↦ {(σ0i)∗π0} ∈ ΔS
ΔS0 ∋ π0 ↤ {πi} ∈ ΔS .

Given a G-diagram of sets S = {Si; σij} and an element π ∈ ΔS, we can construct
a G-diagram of probability spaces (S, π) ∶= {(Si, πi); σij}. Note that any diagram X of
probability spaces has this form.

2.3. Conditioning

Consider a G-diagram of probability spaces X = (S , π), where S is a diagram of sets
and π ∈ ΔS. Let X0 = (S0, π0) be the initial space in X and U ∶= Xi be another space in X .
Since S0 is initial, there is a map σ0,i ∶ S0 → Si. Fix an atom u ∈ U and define the conditioned
distribution π0(⋅∣u) on S0 as the distribution supported in σ−1

0,i (u) and for every s ∈ σ−1
0,i (u)

defined by

π0(s∣u) ∶= π0(s)
π0(σ−1

0,i (u)) .

Let π(⋅∣u) ∈ ΔS be the distribution corresponding to π0(⋅∣u) under the isomorphism
in (1). We define the conditioned G-diagram as X ∣u ∶= (S , π(⋅∣u)).
2.4. The Slicing Lemma

In [1], we prove the so-called Slicing Lemma that allows us to estimate the intrinsic en-
tropy distance between two diagrams in terms of distances between conditioned diagrams.
Among the corollaries of the Slicing Lemma is the following inequality.

Proposition 1. Let (X ← X̂ → UG) ∈ Prob⟨G, Λ2⟩ be a fan of G-diagrams of probability spaces
and Y ∈ Prob⟨G⟩ be another diagram. Then,

k(X ,Y) ≤ ∫
U

k(X ∣u,Y) dp(u) + 2[[G]] ⋅EntU.

The fan in the assumption of the proposition above can often be constructed in the
following manner. Suppose X is a G-diagram and U ∶= Xι is a space in it for some ι ∈ G.

We can construct a fan (X f← X̂ g→ UG) ∈ Prob⟨G, Λ2⟩ by assigning X̂i to be the initial space
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of the (unique) minimal fan in X with terminal spaces Xi and U and fi and gi to be left and
right reductions in that fan for any i ∈ G.

2.5. Tropical Diagrams

A detailed discussion of the topics in this section can be found in [2].
The asymptotic entropy distance between two diagrams of the same combinatorial

type is defined by

κ(X ,Y) ∶= lim
1
n

k(X n,Yn).
A tropical G-diagram is an equivalence class of certain sequences of G-diagrams of

probability spaces. Below, we describe the type of sequences and the equivalence relation.
A function ϕ ∶ R ≥ 1 → R ≥ 0 is called an admissible function if ϕ is non-decreasing and

there is a constant Dϕ, such that for any t ≥ 1:

t ⋅ ∫ ∞

t

ϕ(s)
s2 ds ≤ Dϕ ⋅ ϕ(t).

An example of an admissible function will be ϕ(t) = tα for α ∈ [0, 1).
A sequence X̄ = (X(n) ∶ n ∈ N0) of diagrams of probability spaces will be called

quasi-linear with the defect bounded by an admissible function ϕ if for some C > 0 and all
m, n ∈ N, it satisfies

κ(X(n +m),X(n)⊗X(m)) ≤ C ⋅ ϕ(n +m).
For example for a diagram X , the sequence

0→X ∶= (X n ∶ n ∈ N0) is ϕ-quasi-linear for
ϕ ≡ 0 (and for any admissible ϕ). Sequences with zero defect are called linear, and the space
of all linear sequences in Prob⟨G⟩ is denoted by L(Prob⟨G⟩).

The asymptotic entropic distance between two ϕ-quasi-linear sequences X̄ = (X(n) ∶
n ∈ N0) and Ȳ = (Y(n) ∶ n ∈ N0) is defined to be

κ(X̄ , Ȳ) ∶= lim
n→∞

1
n

k(X(n),Y(n)),
and the sequences are called asymptotically equivalent if κ(X̄ , Ȳ) = 0. An equivalence class
of a sequence X̄ will be denoted as [X ], and the totality of all the classes as Prob[G]. We
have shown in [2] that the space of equivalence classes of ϕ-quasi-linear sequences does
not depend on the choice of a non-zero admissible function ϕ.

The sum of two such equivalence classes is defined to be the equivalence class of
the sequence obtained by tensor-multiplying representative sequences of the summands
term-wise. In addition, there is a doubly transitive action of R≥0 on Prob[G]. In [2], the
following theorem is proven.

Theorem 1. Let G be an indexing category. Then:

1. The space Prob[G] does not depend on the choice of a positive admissible function ϕ up to
isometry.

2. The space Prob[G] is metrically complete.

3. The map X ↦ 0→X is a κ-κ-isometric embedding. The space of linear sequences, i.e., the image
of the map above, is dense in Prob[G].

4. There is a distance-preserving homomorphism from Prob[G] into a Banach space B, whose
image is a closed convex cone in B.

5. The entropy functional

Ent∗ ∶ Prob[G] → R
G

[(X(n))n∈N0
] ↦ lim

n→∞
1
n
Ent∗X(n)
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is a well-defined 1-Lipschitz linear map.

2.6. Asymptotic Equipartition Property for Diagrams

Among all G-diagrams, there is a special class of maximally symmetric ones. We call
such diagrams homogeneous; see below for the definition. Homogeneous diagrams come in
very handy in many considerations, because their structure is easier to describe than that
of general diagrams. We show below that among the tropical diagrams, those that have
homogeneous representatives are dense. It means, in particular, that when considering
continuous functionals in the space of diagrams, it suffices to only study them in the space
of all homogeneous diagrams.

2.6.1. Homogeneous Diagrams

A G-diagram X is called homogeneous if the automorphism group Aut(X) acts transi-
tively on every space in X , by which we mean that the action is transitive on the support
of the probability measure. Homogeneous probability spaces are isomorphic to uniform
spaces. For more complex indexing categories, this simple description is not sufficient.

2.6.2. Tropical Homogeneous Diagrams

The subcategory of all homogeneous G-diagrams will be denoted Prob⟨G⟩h, and we
write Prob⟨G⟩h,m for the category of minimal homogeneous G-diagrams. These spaces are
invariant under the tensor product; thus, they are metric Abelian monoids, and the general
"tropicalization" described in [2] can be performed. Passing to the tropical limit, we obtain
spaces of tropical (minimal) homogeneous diagrams, which we denote by Prob[G]h and
Prob[G]h,m, respectively.

2.6.3. Asymptotic Equipartition Property

For an indexing category G, denote by [[G]] the number of objects in G. In [1], the
following theorem is proven.

Theorem 2. Suppose X ∈ Prob⟨G⟩ is a G-diagram of probability spaces for some fixed indexing
category G. Then, there exists a sequence H̄ = (Hn)∞n=0 of homogeneous G-diagrams, such that

1
n

k(X n,Hn) ≤ C(∣X0∣, [[G]]) ⋅
'**, ln3 n

n
, (2)

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]].
The approximating sequence of homogeneous diagrams is evidently quasi-linear with

the defect bounded by the admissible function

ϕ(t) ∶= 2C(∣X0∣, [[G]]) ⋅ t3/4 ≥ 2C(∣X0∣, [[G]]) ⋅ t1/2 ⋅ ln3/2 t.

Thus, Theorem 2 above states that L(Prob⟨G⟩) ⊂ Prob[G]h. On the other hand, we
have shown in [2] that the space of linear sequences L(Prob⟨G⟩) is dense in Prob[G].
Combining the two statements, we obtain the following theorem.

Theorem 3. For any indexing category G, the space Prob[G]h is dense in Prob[G]. Similarly,
the space Prob[G]h,m is dense in Prob[G]m.

3. Conditioning of Tropical Diagrams

3.1. Motivation

Let X ∈ Prob⟨G⟩ be a G-diagram of probability spaces containing probability space
U = Xi0 indexed by an object i0 ∈ G.
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Given an atom u ∈ U, we can define a conditioned diagram X ∣u. If the diagram X is
homogeneous, then the isomorphism class of X ∣u is independent of u, so that (X ∣u ∶ u ∈ U)
is a constant family. On the other hand, we have shown that the power of any diagram can
be approximated by homogeneous diagrams, thus suggesting that in the tropical settingX ∣U should be a well-defined tropical diagram, rather than a family. Below, we give a
definition of the tropical conditioning operation and prove its consistency.

3.2. Classical-Tropical Conditioning

Here, we define the operation of conditioning of the classical diagram, such that the
result is a tropical diagram. Let X be a G-diagram of probability spaces and U be a space
in X . We define the conditioning map

[⋅ ∣⋅] ∶ Prob⟨G⟩ → Prob[G]
by conditioning X by u ∈ U and averaging the corresponding tropical diagrams:

[X ∣U] ∶= ∫
u∈U

000→(X ∣u) dpU(u),
where

000→(X ∣u) is the tropical diagram represented by a linear sequence generated by X ∣u; see
Section 2.5. Note that the integral on the right-hand side is just a finite convex combination
of tropical diagrams. Expanding all the definitions, we will obtain for [Y] ∶= [X ∣U], the
representative sequence Y(n) = ⊗

u∈U
(X ∣u)⌊n⋅p(u)⌋.

3.3. Properties
3.3.1. Conditioning of Homogeneous Diagrams

If the diagram X is homogeneous, then for any atom u ∈ U, with a positive weight,

[X ∣U] ˇ= 000→(X ∣u).
3.3.2. Entropy

By definition, the conditioned entropy is

Ent∗(X ∣U) ∶= ∫
U
Ent∗(X ∣u) dpU(u).

Now that [X ∣U] is a tropical diagram, the expression Ent∗(X ∣U) can be interpreted
in two, a priori different, ways: by the formula above and as the entropy of the object
introduced in the previous subsection. Fortunately, the numeric value of it does not depend
on the interpretation since the entropy is a linear functional on Prob[G].
3.3.3. Additivity

If X and Y are two G-diagrams with U ∶= Xι, V ∶= Yι for some ι ∈ G, then

[(X ⊗Y)∣(U ⊗V)] = [X ∣U] + [Y∣V].
Proof.

[(X⊗Y)∣(U ⊗V)] = ∫
U⊗V

000000000→(X ⊗Y)∣(u, v) dp(u) dp(v)
= ∫

U⊗V
(00→X ∣u +0→Y∣v) dp(u) dp(v) = ∫

U

00→X∣u dp(u) +∫
V

0→Y∣v dp(v)
= [X ∣U] + [Y∣V]
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3.3.4. Homogeneity

It follows that for any diagram X , a space U in X and n ∈ N0 holds

[X n∣Un] = n ⋅ [X ∣U].
3.4. Continuity and Lipschitz Property

Proposition 2. Let G be an indexing category, X ,Y ∈ Prob⟨G⟩ be two G diagrams, and U ∶= Xι

and V ∶= Yι be two spaces in X and Y , respectively, indexed by some ι ∈ G. Then,

κ([X ∣U], [Y∣V]) ≤ (2 ⋅ [[G]] + 1) ⋅k(X ,Y).
Using the homogeneity property of conditioning, Section 3.3.4, we can obtain the

following stronger inequality.

Corollary 1. In the setting of Proposition 2, the following holds:

κ([X ∣U], [Y∣V]) ≤ (2 ⋅ [[G]] + 1) ⋅ κ(X ,Y).
Before we prove Proposition 2, we will need some preparatory lemmas.

Lemma 1. Let A be a G-diagram of probability spaces and E be a space in it. Let q ∶ En → (ΔE, τn)
be the empirical reduction. Then, for any n ∈ N and any ē, ē′ ∈, En

k(An∣ē,An∣ē′) ≤ n ⋅ ∥Ent∗(A)∥1 ⋅ ∥q(ē) −q(ē′)∥1.

Proof. To prove the lemma, we construct a coupling between An∣ē and An∣ē′ in the follow-
ing manner. Note that there exists a permutation σ ∈ Sn, such that

∣{i ∶ ei ≠ e′σi}∣ = n
2
⋅ ∥q(ē) −q(ē′)∥1.

Let

I = {i ∶ ei = e′σi}
Ĩ = {i ∶ ei ≠ e′σi}.

Using that ∣ Ĩ∣ = n
2 ⋅ ∥q(ē) −q(ē′)∥1, we can estimate

k(An∣ē , An∣ē′) = k( n⊗
i=1
(A∣ei) ,

n⊗
i=1
(A∣e′σi))

≤ ∑
i∈I

kd(A∣ei
=←→A∣e′σi) + ∑

i∈ Ĩ
kd(A∣ei

⊗←→A∣e′σi)
≤ n ⋅ ∥Ent∗(A)∥1 ⋅ ∥q(ē) −q(ē′)∥1,

where A =↔ B denotes the isomorphism coupling of two naturally isomorphic diagrams,

while A ⊗↔B denotes the “independence” coupling.

Lemma 2. Let A be a G-diagram of probability spaces and E be a space in A. Then,

∫
En

k(An,An∣ē) dp(ē) ≤ 2n ⋅ [[G]] ⋅Ent(E) + O(n).
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Proof. First, we apply Proposition 1 slicing the first argument:

∫
En

k(An,An∣ē) dp(ē)
≤ ∫

En ∫En
k(An∣ē′,An∣ē) dp(ē′) dp(ē) + 2n ⋅ [[G]] ⋅Ent(E).

We will argue now that the double integral on the right-hand side grows sub-linearly with
n. We estimate the double integral by applying Lemma 1 to the integrand

∫
En ∫En

k(An∣ē′,An∣ē) dp(ē′) dp(ē)
≤ ∫

En ∫En
n ⋅ [[G]] ⋅ ∣Ent∗(A)∣1 ⋅ ∣q(ē) −q(ē′)∣1 dp(ē′) dp(ē)

= n ⋅ [[G]] ⋅ ∣Ent∗(A)∣1 ⋅ ∫
ΔE
∫

ΔE
∣π −π′∣1 dτn(π) dτn(π′) = O(n),

where the convergence to zero of the last double integral follows from Sanov’s theorem.

Corollary 2. Let A be a G-diagram and E a probability space included in A. Then,

κ(0→A , [A∣E]) ≤ 2[[G]] ⋅Ent(E).
Proof. Let n ∈ N. Then,

κ(0→A , [A∣E]) = 1
n

κ(0→An, [An∣En])
= 1

n
κ(0→An,∫

En

00→An∣ē dp(ē))
≤ 1

n ∫
En

κ(0→An,
00→An∣ē) dp(ē)

= 1
n ∫

En
κ(An,An∣ē) dp(ē)

≤ 2 ⋅ [[G]] ⋅Ent(E) + O(n0),
where we used Lemma 2 and the fact that κ ≤ k in the last line. We finish the proof by
taking the limit n →∞.

Proof of Proposition 2. We start with a note on general terminology: a reduction f ∶ A → B

of probability spaces can also be considered as a fan F ∶= (A
=← A

f→ B). Then, the entropy
distance of f is

kd( f ) ∶= kd(F) = Ent A −EntB.

If the reduction f is a part of a bigger diagram containing also space U, then the following
inequality holds:

∫
U

kd( f ∣u) dp(u) ≤ kd( f ).
Let K ∈ Prob⟨G, Λ2⟩

K = ( X Z Yf g ) ∈ Prob⟨G, Λ2⟩ = Prob⟨Λ2, G⟩
be an optimal coupling between X and Y . It can also be viewed as a G-diagram of two
fans, K = {Ki}i∈G, each of which is a minimal coupling between Xi and Yi. Among them is

the minimal fan W ∶= Kι = (U fι←0 W
gι0→ V).

53



Entropy 2023, 25, 1641

We use the triangle inequality to bound the distance κ([X ∣U], [Y∣V]) by four sum-
mands as follows:

κ([X ∣U], [Y∣V]) ≤κ([X ∣U], [Z∣U]) + κ([Z∣U], [Z∣W])+
κ([Z∣W], [Z∣V]) + κ([Z∣V], [Y∣V]).

We will estimate each of the four summands separately. The bound for the first one is
as follows:

κ([X ∣U], [Z∣U]) = κ(∫
U

00→X∣u dp(u),∫
U

0→Z∣u dp(u))
≤ ∫

U
κ(00→X ∣u,

0→Z∣u) dp(u) = ∫
U

κ(X ∣u, Z∣u) dp(u)
≤ ∫

U
k(X ∣u, Z∣u) dp(u) ≤ ∫

U
kd( f ∣u) dp(u)

≤ ∑
i∈G

∫
U

kd( fi∣u) dp(u) = ∑
i∈G

kd( fi) = kd( f ).
An analogous calculation shows that

κ([Z∣V], [Y∣V]) ≤ kd(g).
To bound the second summand, we will use Corollary 2:

κ([Z∣U], [Z∣W]) = κ(∫
U

0→Z∣u dp(u),∫
W

00→Z∣w dp(w))
= κ(∫

U

0→Z∣u dp(u),∫
U
∫

W∣u
00→Z∣w dp(w∣u) dp(u))

≤ ∫
U

κ(0→Z∣u,∫
W∣u

00→Z∣w dp(w∣u)) dp(u).
We will now use Corollary 2 with A = Z∣u and E = W∣u to estimate the integrand.

Then,

κ([Z∣U], [Z∣W]) = ∫
U

κ(0→Z∣u,∫
W∣u

00→Z∣w dp(w∣u)) dp(u)
≤ 2[[G]] ⋅ ∫

U
Ent(W∣u) dp(u)

≤ 2[[G]] ⋅Ent(W∣U) ≤ 2[[G]] ⋅ kd( f ).
Similarly,

κ([Z∣W], [Z∣V]) ≤ 2[[G]] ⋅ kd(g).
Combining the estimates, we obtain

κ([X ∣U], [Y∣V]) ≤ (2[[G]] + 1) ⋅ (kd ( f ) + kd(g)) = (2[[G]] + 1) ⋅k(X ,Y).

3.5. Tropical Conditioning

Let [X ] be a tropical G-diagram and [U] = [Xι] for some ι ∈ G. Choose a representative(X(n))n∈N0
and denote u(n) ∶= Xι(n). We define now a conditioned diagram [X ∣U] by the

following limit:

[X ∣U] ∶= lim
n→∞

1
n
[X(n)∣U(n)].
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Proposition 1 guarantees that the limit exists and is independent of the choice of represen-
tative. For a fixed ι ∈ G, the conditioning is a linear Lipschitz map of

[ ⋅ ∣ ⋅ι ] ∶ Prob[G] → Prob[G].
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Abstract: The partial information decomposition (PID) framework is concerned with decomposing the
information that a set of (two or more) random variables (the sources) has about another variable
(the target) into three types of information: unique, redundant, and synergistic. Classical information
theory alone does not provide a unique way to decompose information in this manner and additional
assumptions have to be made. One often overlooked way to achieve this decomposition is using
a so-called measure of union information—which quantifies the information that is present in at
least one of the sources—from which a synergy measure stems. In this paper, we introduce a new
measure of union information based on adopting a communication channel perspective, compare it
with existing measures, and study some of its properties. We also include a comprehensive critical
review of characterizations of union information and synergy measures that have been proposed in
the literature.

Keywords: information theory; partial information decomposition; union information; synergy;
communication channels

1. Introduction

Williams and Beer [1] introduced the partial information decomposition (PID) framework
as a way to characterize, or analyze, the information that a set of random variables (often
called sources) has about another variable (referred to as the target). PID is a useful tool for
gathering insights and analyzing the way information is stored, modified, and transmitted
within complex systems [2,3]. It has been applied in several areas such as cryptography [4]
and neuroscience [5,6], with many other potential use cases, such as in studying information
flows in gene regulatory networks [7], neural coding [8], financial markets [9], and network
design [10,11].

Consider the simplest case, a three-variable joint distribution p(y1, y2, t) describing
three random variables: two so-called sources, Y1 and Y2, and a target T. Notice that,
despite what the names sources and target might suggest, there is no directionality (causal
or otherwise) assumption. The goal of PID is to decompose the information that the sources
Y = (Y1, Y2) have about T into the sum of four non-negative quantities: the information
that is present in both Y1 and Y2, known as redundant information, R; the information that
only Y1 (respectively Y2) has about T, known as unique information, U1 (respectively U2);
and the synergistic information, S, that is present in the pair (Y1, Y2) but not in Y1 or Y2
alone. In this case with two variables, the goal is, thus, to write

I(T; Y) = R + U1 + U2 + S, (1)

where I(T; Y) is the mutual information between T and Y [12]. The redundant information
R, because it is present in both Y1 and Y2, is also referred to as intersection information
and denoted as I∩. Finally, I∪ refers to union information, i.e., the amount of information
provided by at least one of the sources; in the case of two sources, I∪ = U1 + U2 + R, thus
S = I(T; Y)− I∪.
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Because unique information and redundancy satisfy the relationship Ui = I(T; Yi)− R
(for i ∈ {1, 2}), it turns out that defining how to compute one of these quantities (R, Ui,
or S) is enough to fully determine the others [1]. Williams and Beer [1] suggested a set of
axioms that a measure of redundancy should satisfy, and proposed a measure of their own.
Those axioms became well known as the Williams–Beer axioms, although the measure they
proposed has subsequently been criticized for not capturing informational content, but
only information size [13]. It is worth noting that as the number of variables grows the
number of terms appearing in the PID of I(T; Y) grows super-exponentially [14].

Stimulated by that initial work, other measures of information and other sets of
axioms for information decomposition have been introduced; see, for example, the work by
Bertschinger et al. [15], Griffith and Koch [16], and James et al. [17], for different measures
of redundant, unique, and synergistic information. There is no consensus about what
axioms any measure should satisfy or whether a given measure captures the information
that it should capture, except for the Williams–Beer axioms. Today, there is still debate
about what axioms different measures of information should satisfy, and there is no general
agreement on what is an appropriate PID [17–21].

Most PID measures that have been suggested thus far are either measures of redundant
information, e.g., [1,13,21–26], or measures of unique information, e.g., [15,17]. Alterna-
tively, it is possible to define the union information of a set of sources as the amount of
information provided by at least one of those sources. Synergy is then defined as the
difference between the total information and union information [22].

In this paper, we introduce a new measure of union information based on the informa-
tion channel perspective that we already pursued in earlier work [26] and study some of
its properties. The resulting measure leads to a novel information decomposition that is
particularly suited for analyzing how information is distributed in channels.

The rest of the paper is organized as follows. A final subsection of this section
introduces the notation used throughout the paper. In Section 2, we recall some properties of
PID and take a look at how the degradation measure for redundant information introduced
by Kolchinsky [22] decomposes information in bivariate systems, while also pointing out
some drawbacks of that measure. Section 3 presents the motivation for our proposed
measure, its operational interpretation, its multivariate definition, as well as some of its
drawbacks. In Section 4, we propose an extension of the Williams–Beer axioms for measures
of union information and show that our proposed measure satisfies those axioms. We
review all properties that have been proposed both for measures of union information and
synergy, and either accept or reject them. We also compare different measures of synergy
and relate them, whenever possible. Finally, Section 5 presents concluding remarks and
suggestions for future work.

Notation

For two discrete random variables X ∈ X and Z ∈ Z , their Shannon mutual in-
formation I(X; Z) is given by I(X; Z) = I(Z; X) = H(X)− H(X|Z) = H(Z)− H(Z|X),
where H(X) = −∑x∈X p(x) log p(x) and H(X|Z) = −∑x∈X ∑z∈X p(x, z) log p(x|z) are
the entropy and conditional entropy, respectively [12]. The conditional distribution p(z|x)
corresponds, in an information-theoretical perspective, to a discrete memoryless channel
with a channel matrix K, i.e., such that K[x, z] = p(z|x) [12]. This matrix is row-stochastic:
K[x, z] ≥ 0, for any x ∈ X and z ∈ Z , and ∑z∈Z K[x, z] = 1, for any x.

Given a set of n discrete random variables (sources), Y1 ∈ Y1, . . ., Yn ∈ Yn, and a
discrete random variable T ∈ T (target) with joint distribution (probability mass function)
p(y1, . . ., yn, t), we consider the channels K(i) between T and each Yi, that is, each K(i) is a
|T | × |Yi| row-stochastic matrix with the conditional distribution p(yi|t). For a vector y,
y−i refers to the same vector without the ith component.

We say that three random variables, say X, Y, Z, form a Markov chain (which we
denote by X−Y− Z or by X ⊥ Z | Y) if X and Z are conditionally independent, given Y.
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2. Background

2.1. PID Based of Channel Orders

In its current versions, PID is agnostic to causality in the sense that, like mutual
information, it is an undirected measure, i.e., I(T; Y) = I(Y; T). Some measures indirectly
presuppose some kind of directionality to perform PID. Take, for instance, the redundancy
measure introduced by Kolchinsky [22], based on the so-called degradation order �d
between communication channels (see recent work by Kolchinsky [22] and Gomes and
Figueiredo [26] for definitions):

Id
∩(Y1, Y2, . . ., Ym → T) := sup

KQ : KQ�dK(i) , i∈{1,...,m}
I(Q; T). (2)

In the above equation, Q is the output of the channel T → Q, which we also denote as KQ.
When computing the information shared by the m sources, Id

∩(Y1, Y2, . . ., Ym → T), the
perspective is that there is a channel with a single input T and m outputs Y1, . . ., Ym. This
definition of Id

∩ corresponds to the mutual information of the most informative channel,
under the constraint that this channel is dominated (in the degradation order �d sense)
by all channels K(1), . . ., K(m). Since mutual information was originally introduced to
formalize the capacity of communication channels, it is not surprising that measures that
presuppose channel directionality are found useful in this context. For instance, the work
of James et al. [27] concluded that only if one assumes the directionality T → Yi does one
obtain a valid PID from a secret key agreement rate, which supports the approach of
assuming this directionality perspective.

Although it is not guaranteed that the structure of the joint distribution p(y1, . . ., yn, t)
is compatible with the causal model of a single input and multiple output channels (which
implies that the sources are conditionally independent, given T), one may always compute
such measures, which have interesting and relevant operational interpretations. In the
context of PID, where the goal is to study how information is decomposed, such measures
provide an excellent starting point. Although it is not guaranteed that there is actually
a channel (or a direction) from T to Yi, we can characterize how information about T is
spread through the sources. In the case of the degradation order, Id

∩ provides insight about
the maximum information obtained about T if any Yi is observed.

Arguably, the most common scenario in PID is finding out something about the struc-
ture of the information the variables Y1, . . ., Yn have about T. In a particular system of
variables characterized by its joint distribution, we do not make causal assumptions, so
we can adopt the perspective that the variables Yi are functions of T, hence obtaining the
channel structure. Although this channel structure may not be faithful [28] to the conditional
independence properties implied by p(y1, . . ., yn, t), this channel perspective allows for
decomposition of I(Y; T) and for drawing conclusions about the inner structure of the
information that Y has about T. Some distributions, however, cannot have this causal struc-
ture. Take, for instance, the distribution generated by T = Y1 xor Y2, where Y1 and Y2 are
two equiprobable and independent binary random variables. We will call this distribution
XOR. For this well-known distribution, we have Y1 ⊥ Y2 and Y1 �⊥ Y2 | T, whereas the
implied channel distribution that Id

∩ assumes yields the exact opposite dependencies, that
is, Y1 �⊥ Y2 and Y1 ⊥ Y2|T; see Figure 1 for more insight.

Consider the computation of Id
∩(Y1, Y2 → T) for the XOR distribution. This measure

argues that, since

K(1) = K(2) =

[
0.5 0.5
0.5 0.5

]
,

then a solution to Id
∩(Y1, Y2 → T) is given by the channel KQ = K(1) and redundancy

is computed as I(Q; T), yielding 0 bits of redundancy, and consequently 1 bit of syn-
ergy (as computed from (1)). Under this channel perspective (as in Figure 1b), Id

∩ is not
concerned with, for example, p(Y1|T, Y2) or p(Y1, Y2). If all that is needed to compute re-
dundancy is p(T), K(1), and K(2), this would lead to the wrong conclusion that the outcome
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(Y1, Y2, T) = (0, 0, 1) has non-null probability, which it does not. With this, we do not
mean that Id

∩ is an incomplete or incorrect measure to perform PID, we are using its insights
to point us in a different direction.

(a) (b) (c)

Figure 1. (a) Assuming faithfulness [28], this is the only three-variable directed acyclic graph (DAG)
that satisfies Y1 ⊥ Y2 and Y1 �⊥ Y2|T, in general [28]. (b) The DAG that is “implied” by the perspective
of Id∩. (c) A DAG that can generate the XOR distribution, but does not satisfy the dependencies implied
by T = Y1 xor Y2. In fact, any DAG that is in the same Markov equivalence class as (c) can generate
the XOR distribution (or any other joint distribution), but none satisfy the earlier dependencies,
assuming faithfulness.

2.2. Motivation for a New PID

At this point, the most often used approaches to PID are based on redundancy mea-
sures. Usually, these are in one of the two following classes:

• Measures that are not concerned with information content, only information size, which
makes them easy to compute even for distributions with many variables, but at the
cost that the resulting decompositions may not give realistic insights into the system,
precisely because they are not sensitive to informational content. Examples are IWB

∩ [1]
or IMMI

∩ [23], and applications of these can be found in [29–32].
• Measures that satisfy the Blackwell property—which arguably do measure information

content—but are insensitive to changes in the sources’ distributions
p(y1, . . ., yn) = ∑t p(y1, . . ., yn, t) (as long as p(T), K(1), . . ., K(n) remain the same).
Examples are Id

∩ [22] (see Equation (2)) or IBROJA
∩ [15]. It should be noted that IBROJA

∩ is
only defined for the bivariate case, that is, for distributions with at most two sources,
described by p(y1, y2, t). Applications of these can be found in [33–35].

Particularly, Id
∩ and IBROJA

∩ satisfy the so-called (*) assumption [15], which argues that
redundant and unique information should only depend on the marginal distribution of the
target p(T) and on the conditional distributions of the sources given the target, that is, on
the stochastic matrices K(i). James et al. [17] (Section 4) and Ince [21] (Section 5) provide
great arguments as to why the (*) assumption should not hold in general, and we agree
with them.

Towards motivating a new PID, let us look at how Id
∩ decomposes information in

the bivariate case. Any measure that is based on a preorder between channels and which
satisfies Kolchinsky’s axioms yields similar decompositions [26], thus there is no loss of
generality in focusing on Id

∩. We next analyze three different cases.

• Case 1: There is an ordering between the channels, that is, w.l.o.g., K(2) �d K(1).
This means that I(Y2; T) ≤ I(Y1; T) and the decomposition (as in (1)) is given by
R = I(Y2; T), U2 = 0, U1 = I(Y1; T)− I(Y2; T), and S = I(Y; T)− I(Y1; T). Moreover,
if K(1) ��d K(2), then S = 0.
As an example, consider the leftmost distribution in Table 1, which satisfies T = Y1. In
this case,

K(1) =

[
1 0
0 1

]
 d K(2) =

[
0.5 0.5
0.5 0.5

]
,

yielding R = 0, U1 = 1, U2 = 0, and S = 0, as expected, because T = Y1.
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Table 1. Three joint distributions p(yt, y2, y2) used to exemplify the three cases. Left: joint distribution
satisfying T = Y1. Middle: distribution satisfying T = (Y1, Y2), known as the COPY distribution.
Right: the so-called BOOM distribution (see text).

t y1 y2 p(t, y1, y2) t y1 y2 p(t, y1, y2) t y1 y2 p(t, y1, y2)
0 0 0 1/4 (0,0) 0 0 1/4 0 0 2 1/6
0 0 1 1/4 (0,1) 0 1 1/4 1 0 0 1/6
1 1 0 1/4 (1,0) 1 0 1/4 1 1 2 1/6
1 1 1 1/4 (1,1) 1 1 1/4 2 0 0 1/6

2 2 0 1/6
2 2 1 1/6

• Case 2: There is no ordering between the channels and the solution of Id
∩(Y1, Y2 → T)

is a trivial channel, in the sense that it has no information about T. The decomposition
is given by R = 0, U2 = I(Y2; T), U1 = I(Y1; T), and S = I(Y; T)− I(Y1; T)− I(Y2; T),
which may lead to a negative value of synergy. An example of this is provided later.
As an example, consider the COPY distribution with Y1 and Y2 i.i.d. Bernoulli variables
with parameter 0.5, shown in the center of Table 1. In this case, channels K(1) and K(2)

have the forms

K(1) =

⎡⎢⎢⎣
1 0
1 0
0 1
0 1

⎤⎥⎥⎦, K(2) =

⎡⎢⎢⎣
1 0
0 1
1 0
0 1

⎤⎥⎥⎦,

with no degradation order between them. This yields R = 0, U1 = U2 = 1, and S = 0.
• Case 3: There is no ordering between the channels and Id

∩(Y1, Y2 → T) is achieved by a
nontrivial channel KQ. The decomposition is given by R = I(Q; T),
U2 = I(Y2; T) − I(Q; T), U1 = I(Y1; T) − I(Q; T), and S = I(Y; T) + I(Q; T) −
I(Y1; T)− I(Y2; T).
As an example, consider the BOOM distribution [17], shown on the right-hand side of
Table 1. In this case, channels K(1) and K(2) are

K(1) =

⎡⎣ 1 0 0
1/2 1/2 0
1/3 0 2/3

⎤⎦, K(2) =

⎡⎣ 0 0 1
1/2 0 1/2
2/3 1/3 0

⎤⎦,

and there is no degradation order between them. However, there is a nontrivial
channel KQ that is dominated by both K(1) and K(2) that maximizes I(Q; T). One of
its versions is

KQ =

⎡⎣ 0 1 0
0 3/4 1/4

1/3 1/3 1/3

⎤⎦,

yielding R ≈ 0.322, U1 = U2 ≈ 0.345, and S ≈ 0.114.

This class of approaches has some limitations, as is the case for all PID measures. In
the bivariate case, the definition of synergy S from a measure of redundant information
is the completing term such that I(Y; T) = S + R + U1 + U2 holds. The definition of Id

∩
supports the argument that if K(2) �d K(1) and K(1) ��d K(2), then there is no synergy. This
makes intuitive sense because, in this case, T −Y1 − Y2 is a Markov chain (see Section 1 for
the definition), consequently, I(Y; T) = I(Y1; T), that is, Y1 has the same information about
T as the pair Y = (Y1, Y2).

If there is no �d ordering between the channels, as in the COPY distribution (Table 1,
middle), the situation is more complicated. We saw that the decomposition for this dis-
tribution yields R = 0, U1 = U2 = 1, and S = 0. However, suppose we change the
distribution such that T = (1, 1) has probability 0 and the other outcomes have proba-
bility 1/3. For example, consider the distribution in Table 2. For this distribution, we
have I(Y; T) ≈ 1.585. Intuitively, we would expect that I(Y; T) would be decomposed as
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R = 0, U1 = U2 = I(Y; T)/2, and S = 0, just as before, so that the proportions Ui/I(Y; T),
for i ∈ {1, 2}, in both distributions remain the same, whereas redundancy and synergy
would remain zero. That is, we do not expect that removing one of the outcomes while
maintaining the remaining outcomes equiprobable would change the types of information
in the system. However, if we perform this and compute the decomposition yielded by Id

∩,
we obtain R = 0, U1 = U2 = 0.918 �= I(Y; T)/2, and S = −0.251, i.e., a negative synergy,
arguably meaningless.

Table 2. Tweaked COPY distribution, now without the outcome (T, Y1, Y2) = ((1, 1), 1, 1).

T Y1 Y2 p(t, y1, y2)

(0,0) 0 0 1/3

(0,1) 0 1 1/3

(1,0) 1 0 1/3

There are still many open questions in PID. One of those questions is: Should measures
of redundant information be used to measure synergy, given that they compute it as the
completing term in Equation (1). We agree that using a measure of redundant information to
compute the synergy in this way may not be appropriate, especially because the inclusion–
exclusion principle (IEP) should not necessarily hold in the context of PID; see [22] for
comments on the IEP.

With these motivations, we propose a measure of union information for PID that
shares with Id

∩ the implicit view of channels. However, unlike Id
∩ and IBROJA

∩ —which satisfy
the (*) assumption, and thus, are not concerned with the conditional dependencies in
p(yi|t, y−i)—our measure defines synergy as the information that cannot be computed
from p(yi|t), but can be computed from p(yi|t, y−i). That is, we propose that synergy be
computed as the information that is not captured by assuming conditional independence
of the sources, given the target.

3. A New Measure of Union Information

3.1. Motivation and Bivariate Definition

Consider a distribution p(y1, y2, t) and suppose there are two agents, agent 1 and
agent 2, whose goal is to reduce their uncertainty about T by observing Y1 and Y2, respec-
tively. Suppose also that the agents know p(t), and that agent i has access to its channel
distribution p(yi|t). Many PID measures make this same assumption, including Id

∩. When
agent i works alone to reduce the uncertainty about T, since it has access to p(t) and
p(yi|t), it also knows p(yi) and p(yi, t), which allows it to compute I(Yi; T): the amount of
uncertainty reduction about T achieved by observing Yi.

Now, if the agents can work together, that is, if they have access to Y = (Y1, Y2),
then they can compute I(Y; T), because they have access to p(y1, y2|t) and p(t). On the
other hand, if the agents are not able to work together (in the sense that they are not able
to observe Y together, but only Y1 and Y2, separately) yet can communicate, then they
can construct a different distribution q given by q(y1, y2, t) := p(t)p(y1|t)p(y2|t), i.e., a
distribution under which Y1 and Y2 are conditionally independent given T, but have the
same marginal p(t) and the same individual conditionals p(y1|t) and p(y2|t).

The form of q in the previous paragraph should be contrasted with the following factor-
ization of p, which entails no conditional independence assumption:
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p(y1, y2, t) = p(t)p(y1|t)p(y2|t, y1). In this sense, we would propose to define union
information, for the bivariate case, as follows:

I∪(Y1 → T) = Iq(Y1; T) = Ip(Y1; T),

I∪(Y2 → T) = Iq(Y2; T) = Ip(Y2; T),

I∪(Y1, Y2 → T) = Iq(Y; T), (3)

I∪((Y1, Y2)→ T) = Ip(Y; T),

where the subscript refers to the distribution under which the mutual information is
computed. From this point forward, the absence of a subscript means that the computation
is performed under the true distribution p. As we will see, this is not yet the final definition,
for reasons to be addressed below.

Using the definition of synergy derived from a measure of union information [22], for
the bivariate case we have

S(Y1, Y2 → T) := I(Y; T)− I∪(Y1, Y2 → T). (4)

Synergy is often posited as the difference between the whole and the union of the parts. For our
measure of union information, the ‘union of the parts’ corresponds to the reduction in
uncertainty about T—under q—that agents 1 and 2 can obtain by sharing their conditional
distributions. Interestingly, there are cases where the union of the parts is better than the
whole, in the sense that I∪(Y1, Y2 → T) > I(Y; T). An example of this is given by the
Adapted ReducedOR distribution, originally introduced by Ince [21] and adapted by James
et al. [17], which is shown in the left-hand side of Table 3, where r ∈ [0, 1]. This distribution
is such that Iq(Y; T) does not depend on r (Iq(Y; T) ≈ 0.549), since neither p(t) nor p(y1|t)
and p(y2|t) depend on r; consequently, q(t, y1, y2) also does not depend on r, as shown in
the right-hand side of Table 3.

Table 3. Left: The Adapted Reduced OR distribution, where r ∈ [0, 1]. Right: The corresponding
distribution q(t, y1, y2) = p(t)p(y1|t)p(y2|t).

t y1 y2 p(t, y1, y2) t y1 y2 q(t, y1, y2)
0 0 0 1/2 0 0 0 1/2
1 0 0 r/4 1 0 0 1/8
1 1 0 (1 − r)/4 1 1 0 1/8
1 0 1 (1 − r)/4 1 0 1 1/8
1 1 1 r/4 1 1 1 1/8

It can be easily shown that if r > 0.5, then Iq(Y; T) > I(Y; T), which implies that
synergy, if defined as in (4), could be negative. How do we interpret the fact that there exist
distributions such that Iq(Y; T) > I(Y; T)? This means that under distribution q, which
assumes Y1 and Y2 are conditionally independent given T, Y1 and Y2 reduce the uncertainty
about T more than in the original distribution. Arguably, the parts working independently
and achieving better results than the whole should mean there is no synergy, as opposed to
negative synergy.

The observations in the previous paragraphs motivate our definition of a new measure
of union information as

ICI
∪ (Y1, Y2 → T) := min{I(Y; T), Iq(Y; T)}, (5)

with the superscript CI standing for conditional independence, yielding a non-negative synergy:

SCI(Y1, Y2 → T) = I(Y; T)− ICI
∪ (Y1, Y2 → T) = max{0, I(Y; T)− Iq(Y; T)}. (6)

Note that for the bivariate case we have zero synergy if p(t, y2, y2) is such that Y1 ⊥p Y2|T,
that is, if the outputs are indeed conditionally independent given T. Moreover, ICI

∪ satisfies

62



Entropy 2024, 26, 271

the monotonicity axiom from the extension of the Williams–Beer axioms to measures of
union information (to be mentioned in Section 4.1), which further supports this definition.
For the bivariate source case, the decomposition of I(Y; T) derived from a measure of union
information is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I∪(Y1) = I(Y1; T) = U1 + R
I∪(Y2) = I(Y2; T) = U2 + R
I∪(Y1, Y2) = U1 + U2 + R
I∪(Y12) = I(Y12; T) = U1 + U2 + R + S

⇐⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S = I(Y; T)− I∪(Y1, Y2)

U1 = I∪(Y1, Y2)− I(Y2; T)
U2 = I∪(Y1, Y2)− I(Y1; T)
R = I(Y1; T)−U1 = I(Y2; T)−U2

.

3.2. Operational Interpretation

For the bivariate case, if Y1 and Y2 are conditionally independent given T (Figure 1b),
then p(y1|t) and p(y2|t) (and p(t)) suffice to reconstruct the original joint distribution
p(y1, y2, t), which means the union of the parts is enough to reconstruct the whole, i.e.,
there is no synergy between Y1 and Y2. Conversely, a distribution generated by the DAG in
Figure 1c does not satisfy conditional independence (given T), hence we expect positive
synergy, as is the case for the XOR distribution, and indeed our measure yields 1 bit of
synergy for this distribution. These two cases motivate the operational interpretation of
our measure of synergy: it is the amount of information that is not captured by assuming
conditional independence of the sources (given the target).

Recall, however, that some distributions are such that Iq(Y; T) > Ip(Y; T), i.e., such
that the union of the parts ‘outperforms’ the whole. What does this mean? It means
that under q, Y1 and Y2 have more information about T than under p: the constructed
distribution q, which drops the conditional dependence of Y1 and Y2 given T, reduces
the uncertainty that Y has about T more than the original distribution p. In some cases,
this may happen because the support of q is larger than that of p, which may lead to a
reduction in uncertainty under q that cannot be achieved under p. In these cases, since
we are decomposing Ip(Y; T), we revert to saying that the union information that a set of
variables has about T is equal to Ip(Y; T), so that our measure satisfies the monotonicity
axiom (later introduced in Definition 2). We will comment on this compromise between
satisfying the monotonicity axiom and ignoring dependencies later.

3.3. General (Multivariate) Definition

To extend the proposed measure to an arbitrary number n ≥ 2 of sources, we briefly
recall the synergy lattice [18,36] and the union information semi-lattice [36]. For n = 3,
these two lattices are shown in Figure 2. For the sake of brevity, we will not address the
construction of the lattices or the different orders between sources. We refer the reader
to the work of Gutknecht et al. [36] for an excellent overview of the different lattices, the
orders between sources, and the construction of different PID measures.

In the following, we use the term source to mean a subset of the variables {Y1, . . ., Yn},
or a set of such subsets, we drop the curly brackets for clarity and refer to the different
variables by their indices, as is common in most works on PID. The decomposition resulting
from a measure of union information is not as direct to obtain as one obtained from a
measure of redundant information, as the solution for the information atoms is not a
Möbius inversion [14]. One must first construct the measure of synergy for source α
by writing

SCI(α → T) = I(Y; T)− ICI
∪ (α → T), (7)

which is the generalization of (6) for an arbitrary source α. In the remainder of this paper,
we will often omit “→ T” from the notation (unless it is explicitly needed), with the
understanding that the target variable is always referred to as T. Also for simplicity, in the
following, we identify the different agents that have access to different distributions as the
distributions they have access to.
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(a) (b)

Figure 2. Trivariate distribution lattices and their respective ordering of sources. Left (a): synergy
lattice [18]. Right (b): union information semi-lattice [36].

It is fairly simple to extend the proposed measure to an arbitrary number of sources,
as illustrated in the following two examples.

Example 1. To compute ICI
∪
(
(Y1, Y2), Y3

)
, agent (Y1, Y2) knows p(y1, y2|t), thus it can also

compute, by marginalization, p(y1|t) and p(y2|t). On the other hand, agent Y3 only knows
p(y3|t). Recall that both agents also have access to p(t). By sharing their conditionals, the
agents can compute q1(y1, y2, y3, t) := p(t)p(y1, y2|t)p(y3|t), and also q2(y1, y2, y3, t) :=
p(t)p(y1|t)p(y2|t)p(y3|t). After this, they may choose whichever distribution has the highest
information about T, while still holding the view that any information gain larger than I(Y; T)
must be disregarded. Consequently, we write

ICI
∪
(
(Y1, Y2), Y3

)
= min

{
I(Y; T), max

{
Iq1(Y; T), Iq2(Y; T)

}}
.

Example 2. Slightly more complicated is the computation of ICI
∪
(
(Y1, Y2), (Y1, Y3), (Y2, Y3)

)
.

In this case, the three agents may compute four different distributions, two of which are the
same q1 and q2 defined in the previous paragraph, and the other two are q3(y1, y2, y3, t) :=
p(t)p(y1, y3|t)p(y2|t), and q4(y1, y2, y3, t) := p(t)p(y1|t)p(y2, y3|t).

Given these insights, we propose the following measure of union information.

Definition 1. Let A1, . . ., Am be an arbitrary collection of m ≥ 1 sources (recall sources may
be subsets of variables). Assume that no source is a subset of another source and no source is a
deterministic function of other sources (if there is, remove it). We define

ICI
∪ (A1, . . ., Am → T) = min

{
I(A; T), max

q∈Q
Iq(A; T)

}
,

where A =
m⋃

i=1
Ai and Q is the set of all different distributions that the m agents can construct by

combining their conditional distributions and marginalizations thereof.
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For instance, in Example 1 above, A = {Y1, Y2} ∪ {Y3} = {Y1, Y2, Y3}; in Example 2,
A = {Y1, Y2} ∪ {Y1, Y3} ∪ {Y2, Y3} = {Y1, Y2, Y3}. In Example 1, Q = {q1, q2}, whereas in
Example 2, Q = {q1, q2, q3, q4}. We now justify the conditions in Definition 1 and the fact
that they do not entail any loss of generality.

• The condition that no source is a subset of another source (which also excludes the
case where two sources are the same) implies no loss of generality: if one source is a
subset of another, say Ai ⊆ Aj, then Ai may be removed without affecting either A or
Q, thus yielding the same value for ICI

∪ . The removal of source Ai is also performed
for measures of intersection information, but under the opposite condition: whenever
Aj ⊆ Ai.

• The condition that no source is a deterministic function of other sources is slightly
more nuanced. In our perspective, an intuitive and desired property of measures of
both union and synergistic information is that their value should not change when-
ever one adds a source that is a deterministic function of sources that are already
considered. We provide arguments in favor of this property in Section 4.2.1. This
property may not be satisfied by computing ICI

∪ without previously excluding such
sources. For instance, consider p(t, y1, y2, y3), where Y1 and Y2 are two i.i.d. random
variables following a Bernoulli distribution with parameter 0.5, Y3 = Y2 (that is,
Y3 is deterministic function of Y2), and T = Y1 AND Y2. Computing ICI

∪ (Y1, Y2, Y3)
without excluding Y3 (or Y2) yields ICI

∪ (Y1, Y2, Y3) = Iq(Y1, Y2, Y3; T) ≈ 0.6810 and
ICI
∪ (Y1, Y2) = Iq(Y1, Y2; T) ≈ 0.5409. This issue is resolved by removing deterministic

sources before computing ICI
∪ .

We conclude this section by commenting on the monotonicity of our measure. Sup-
pose we wish to compute the union information of sources {(Y1, Y2), Y3} and {Y1, Y2, Y3}.
PID theory demands that ICI

∪ ((Y1, Y2), Y3) ≥ ICI
∪ (Y1, Y2, Y3) (monotonicity of union in-

formation). Recall our motivation for ICI
∪ ((Y1, Y2), Y3): there are two agents, the first

has access to p(y1, y2|t) and the second to p(y3|t). The two agents assume conditional
independence of their variables and construct q′(y1, y2, y3, t) = p(t)p(y1, y2|t)p(y3|t).
The story is similar for the computation of ICI

∪ (Y1, Y2, Y3), in which case we have three
agents that construct q′′(y1, y2, y3, t) = p(t)p(y1|t)p(y2|t)p(y3|t). Now, it may be the
case that Iq′(Y; T) < Iq′′(Y; T); considering only these two distributions would yield
ICI
∪ ((Y1, Y2), Y3) < ICI

∪ (Y1, Y2, Y3), contradicting monotonicity for measures of union in-
formation. To overcome this issue, for the computation of ICI

∪ ((Y1, Y2), Y3)—and other
sources in general—the agent that has access to p(y1, y2|t) must be allowed to disregard
the conditional dependence of Y1 and Y2 on T, even if it holds in the original distribution p.

4. Properties of Measures of Union Information and Synergy

4.1. Extension of the Williams–Beer Axioms for Measures of Union Information

As Gutknecht et al. [36] rightfully notice, the so-called Williams–Beer axioms [1] can
actually be derived from parthood distribution functions and the consistency equation [36].
Consequently, they are not really axioms but consequences of the PID framework. As
far as we know, there has been no proposal in the literature for the equivalent of the
Williams–Beer axioms (which refer to measures of redundant information) for measures
of union information. In the following, we extend the Williams–Beer axioms to measures
of union information and show that the proposed ICI

∪ satisfies these axioms. Although
we just argued against calling them axioms, we keep the designation Williams–Beer axioms
because of its popularity. Although the following definition is not in the formulation of
Gutknecht et al. [14], we suggest formally defining union information from the formulation
of parthood functions as

I∪(Y1, . . ., Ym; T) = ∑
∃i: f (Yi)=1

Π( f ), (8)
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where f refers to a parthood function and Π( f ) is the information atom associated with
the parthood function f . Given this formulation, the following properties must hold.

Definition 2. Let A1, . . ., Am be an arbitrary number m ≥ 2 of sources. A measure of union
information I∪ is said to satisfy the Williams–Beer axioms for union information measures if
it satisfies:

1. Symmetry: I∪ is symmetric in the Ai’s.
2. Self-redundancy: I∪(Ai) = I(Ai; T).
3. Monotonicity: I∪(A1, . . ., Am−1, Am) ≥ I∪(A1, . . ., Am−1).
4. Equality for monotonicity: Am ⊆ Am−1 ⇒ I∪(A1, . . ., Am−1, Am) = I∪(A1, . . ., Am−1).

Theorem 1. ICI
∪ satisfies the Williams–Beer axioms for measures of union information given in

Definition 2.

Proof. We address each of the axioms in turn.

1. Symmetry follows from the symmetry of mutual information, which in turn is a
consequence of the well-known symmetry of joint entropy.

2. Self-redundancy follows from the fact that agent i has access to p(Ai|T) and p(T),
which means that p(Ai, T) is one of the distributions in the set Q, which implies that
I∪(Ai) = I(Ai; T).

3. To show that monotonicity holds, begin by noting that

I

(
m⋃

i=1

Ai; T

)
≥ I

(
m−1⋃
i=1

Ai; T

)
,

due to the monotonicity of mutual information. LetQm be the set of distributions that
the sources A1, . . ., Am can construct and Qm−1 that which the sources A1, . . ., Am−1
can construct. Since Qm−1 ⊆ Qm, it is clear that

max
q∈Qm

Iq

(
m⋃

i=1

Ai; T

)
≥ max

q∈Qm−1
Iq

(
m−1⋃
i=1

Ai; T

)
.

Consequently,

min
{

I

(
m⋃

i=1
Ai; T

)
, max

q∈Qm
Iq

(
m⋃

i=1
Ai; T

)}
≥ min

{
I

(
m−1⋃
i=1

Ai; T

)
, max
q∈Qm−1

Iq

(
m−1⋃
i=1

Ai; T

)}
,

which means monotonicity holds.
4. Finally, the proof of equality for monotonicity is the same that was used above to show that

the assumption that no source is a subset of another source entails no loss of generality. If

Am ⊆ Am−1, then the presence of Am is irrelevant: A =
m⋃

i=1
Ai =

m−1⋃
i=1

Ai and Qm = Qm−1,

which implies that I∪(A1, . . ., Am−1, Am) = I∪(A1, . . ., Am−1).

4.2. Review of Suggested Properties: Griffith and Koch [16]

We now review properties of measures of union information and synergy that have
been suggested in the literature in chronological order. The first set of properties was
suggested by Griffith and Koch [16], with the first two being the following.

• Duplicating a predictor does not change synergistic information; formally,

S(A1, . . ., Am → T) = S(A1, . . ., Am, Am+1 → T),

where Am+1 = Ai, for some i = 1, . . ., m. Griffith and Koch [16] show that this property
holds if the equality for monotonicity property holds for the “corresponding” measure
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of union information (“corresponding” in the sense of Equation (7)). As shown in
the previous subsection, ICI

∪ satisfies this property, and so does the corresponding
synergy SCI.

• Adding a new predictor can decrease synergy, which is a weak statement. We suggest
a stronger property: Following the monotonicity property, adding a new predictor cannot
increase synergy, which is formally written as

S(A1, . . ., Am → T) ≥ S(A1, . . ., Am, Am+1 → T).

This property simply follows from monotonicity for the corresponding measure of
union information, which we proved above holds for ICI

∪ .

The next properties for any measure of union information were also suggested by
Griffith and Koch [16]:

1. Global positivity: I∪(A1, . . ., Am) ≥ 0.
2. Self-redundancy: I∪(Ai) = I(Ai; T).
3. Symmetry: I∪(A1, . . ., Am) is invariant under permutations of A1, . . ., Am.
4. Stronger monotonicity: I∪(A1, . . ., Am) ≤ I∪(A1, . . ., Am, Am+1), with equality if there

is some Ai such that H(Am+1|Ai) = 0.
5. Target monotonicity: for any (discrete) random variables T and Z, I∪(A1, . . ., Am →

T) ≤ I∪(A1, . . ., Am → (T, Z)).
6. Weak local positivity: for n = 2 the derived partial informations are non-negative.

This is equivalent to

max
{

I(Y1; T), I(Y2; T)
}
≤ I∪(Y1, Y2) ≤ I(Y; T).

7. Strong identity: I∪(T → T) = H(T).

We argued before that self-redundancy and symmetry are properties that follow
trivially from a well-defined measure of union information [36]. In the following, we
discuss in more detail properties 4 and 5, and return to the global positivity property later.

4.2.1. Stronger Monotonicity

Property 4 in the above list was originally called monotonicity by Griffith and Koch [16];
we changed its name because we had already defined monotonicity in Definition 2, a
weaker condition than stronger monotonicity. The proposed inequality clearly follows from
the monotonicity of union information (the third Williams–Beer axiom). Now, if there is
some Ai such that H(Am+1|Ai) = 0 (equivalently, if Am+1 is a deterministic function of
Ai), Griffith and Koch [16] suggest that we must have equality. Recall Axiom 4 (equality for
monotonicity) in the extension of the WB axioms (Definition 2). It states that equality must
hold if Am ⊆ Am−1. In this context, Am and Am−1 are sets of random variables, for example,
Am = {Y1, Y2} and Am−1 = {Y1, Y2, Y3}. There is a different point of view we may take.
The only way that Am is a subset of Am−1 is if Am, when viewed as a random vector (in this
case, write Am = (Y1, Y2) and Am−1 = (Y1, Y2, Y3)), is a subvector of Am−1. A subvector
of a random vector is a deterministic function, and no information gain can come from
applying a deterministic function to a random vector. As such, there is no information gain
when one considers Am, a function of Am−1, if one already has access to Am−1. Griffith and
Koch [16] argue similarly, there is no information gain by considering Am+1—a function of
Ai—in addition to Ai. In conclusion, considering the ‘equality for monotonicity’ strictly
through a set-inclusion perspective, stronger monotonicity does not follow. On the other
hand, extending the idea of set inclusion to the more general context of functions of random
variables, then stronger monotonicity follows, because {Am+1} = { f (Ai)} is a subset of
{Ai}, hence there is no information gain by considering Am+1 = f (Ai) in addition to Ai.
As such, we obtain I∪(A1, . . ., Am) = I∪(A1, . . ., Am, Am+1). Consequently, it is clear that
stronger monotonicity must hold for any measure of union information. We, thus, argue in
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favor of extending the concept of subset inclusion of property 4 in Definition 2 to include
the concept of deterministic functions.

4.2.2. Target Monotonicity

Let us move on to target monotonicity, which we argue should not hold in general.
This precise same property was suggested, but for a measure of redundant information, by
Bertschinger et al. [19]; they argue that a measure of redundant information should satisfy

I∩(A1, . . ., Am → T) ≤ I∩(A1, . . ., Am → (T, Z)),

for any discrete random variable Z, as they argue that this property ‘captures the intuition
that if A1, . . ., Am share some information about T, then at least the same amount of information is
available to reduce the uncertainty about the joint outcome of (T, Z)’. Since most PID approaches
have been built upon measures of redundant information, it is simpler to refute this
property. Consider Id

∩, which we argue is one of the most well-motivated and accepted
measures of redundant information (as defined in (2)): it satisfies the WB axioms, it is based
on the famous Blackwell channel preorder—thus inheriting a well-defined and rigorous
operation interpretation—it is based on channels, just as I(X; T) was originally motivated
based on channels, and is defined for any number of input variables, which is more than
most PID measures can accomplish. Consider also the distribution presented in Table 4,
which satisfies T = Y1 AND Y2 and Z = (Y1, Y2).

Table 4. Counter-example distribution for target monotonicity.

T Z Y1 Y2 p(t, z, y1, y2)

0 (0,0) 0 0 1/4

0 (0,1) 0 1 1/4

0 (1,0) 1 0 1/4

1 (1,1) 1 1 1/4

From a game theory perspective, since neither agent (Y1 or Y2) has an advantage when
predicting T (because the channels that each agent has access to have the same condi-
tional distributions), neither agent has any unique information. Moreover, redundancy—as
computed by Id

∩(Y1, Y2 → T)—evaluates to approximately 0.311. However, when con-
sidering the pair (T, Z), the structure that was present in T is now destroyed, in the
sense that now there is no degradation order between the channels that each agent has
access to. Note that p((t, z), y1, y2) is a relabeling of the COPY distribution. As such,
Id
∩
(
Y1, Y2 → (T, Z)

)
= 0 < Id

∩(Y1, Y2 → T), contradicting the property proposed by
Bertschinger et al. [19].

For a similar reason, we believe that this property should not hold for a general mea-
sure of union information, even if the measure satisfies the extension of the Williams–Beer
axioms, as our proposed measure does. For instance, consider the distribution presented
in Table 5.

Table 5. Counter-example distribution for target monotonicity.

T Z Y1 Y2 p(t, z, y1, y2)

0 0 1 0 0.419

1 1 2 1 0.203

2 1 3 0 0.007

0 0 3 1 0.346

2 2 4 4 0.025
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This distribution yields ICI
∪ (Y1, Y2 → T) ≈ 0.91 > 0.90 ≈ ICI

∪ (Y1, Y2 → (T, Z)), meaning
target monotonicity does not hold. This happens because although Ip(Y; T) ≤ Ip(Y; T, Z),
it is not necessarily true that Iq(Y; T) ≤ Iq(Y; T, Z). The union information measure derived
from the degradation order between channels, defined as the ‘dual’ of (2), also agrees with
our conclusion [22]. For the distribution in Table 4 we have Id

∪(Y1, Y2 → T) ≈ 0.331 > 0 =
Id
∪
(
Y1, Y2 → (T, Z)

)
, for the same reason as above: considering (T, Z) as the target variable

destroys the structure present in T. We agree with the remaining properties suggested by
Griffith and Koch [16] and we will address those later.

4.3. Review of Suggested Properties: Quax et al. [37]

Moving on to additional properties, Quax et al. [37] suggest the following properties
for a measure of synergy:

1. Non-negativity: S(A1, . . ., Am → T) ≥ 0.
2. Upper-bounded by mutual information: S(Y → T) ≤ I(Y; T).
3. Weak symmetry: S(A1, . . ., Am → T) is invariant under any reordering of A1, . . ., Am.
4. Zero synergy about a single variable: S(Yi → T) = 0 for any i ∈ {1, . . ., n}.
5. Zero synergy in a single variable: S(Y → Yi) = 0 for any i ∈ {1, . . ., n}.

Let us comment on the proposed ‘zero synergy’ properties (4 and 5) under the context
of PID. Property 4 seems to have been proposed with the rationale that synergy can only
exist for at least two sources, which intuitively makes sense, as synergy is often defined as
‘the information that is present in the pair, but that is not retrievable from any individual
variable’. However, because of the way a synergy-based PID is constructed—or weak-
synergy, as Gutknecht et al. [36] call it—synergy must be defined as in (7), so that, for
example, in the bivariate case, S(Y1 → T) := I(Y; T)− I∪(Y1 → T) = I(Y2; T|Y1), because
of self-redundancy of union information and the chain rule of mutual information [12], and
since I(Y2; T|Y1) is in general larger than 0, we reject the property ‘zero synergy about a
single variable’. We note that our rejection of this property is based on the PID perspective.
There may be other areas of research where it makes sense to demand that any (single)
random variable alone has no synergy about any target, but under the PID framework, this
must not happen, particularly so that we obtain a valid information decomposition.

Property 5, ‘zero synergy in a single variable’, on the other hand, must hold because
of self-redundancy. That is because, for any i ∈ {1, . . ., n}, S(Y → Yi) := I(Y; Yi)− I∪(Y →
Yi) = I(Yi; Yi)− I(Y; Yi) = H(Yi)− H(Yi) = 0.

4.4. Review of Suggested Properties: Rosas et al. [38]

Based on the proposals of Griffith et al. [24], Rosas et al. [38] suggested the following
properties for a measure of synergy:

• Target data processing inequality: if Y− T1 − T2 is a Markov chain, then S(Y → T1) ≥
S(Y → T2).

• Channel convexity: S(Y → T) is a convex function of P(T|Y) for a given P(Y).

We argue that a principled measure of synergy does not need to satisfy these properties
(in general). Consider the distribution presented in Table 6, in which T1 is a relabeling of
the COPY distribution and T2 = Y1 xor Y2.

Table 6. T1 = COPY, T2 = XOR.

T2 T1 Y1 Y2 p(t2, t1, y1, y2)

0 0 0 0 1/4

1 1 0 1 1/4

1 2 1 0 1/4

0 3 1 1 1/4

69



Entropy 2024, 26, 271

Start by noting that since T2 is a deterministic function of T1, then Y − T1 − T2 is a
Markov chain. Since Y1 ⊥ Y2|T1, our measure SCI(Y1, Y2 → T1) = I(Y; T1)− ICI

∪ (Y1, Y2 →
T1) = 0 leads to zero synergy. On the other hand, SCI(Y1, Y2 → T2) = 1, contradicting the
first property suggested by Rosas et al. [38]. This happens because Y1 �⊥p Y2|T2, so synergy
is positive. The loss of conditional independence of the inputs (given the target) when one
goes from considering the target T1 to T2 is the reason why synergy increases. It can be
easily seen that Sd, the measure of synergy derived from Kolchinsky’s proposed union
information measure Id

∪ [22], agrees with this. A simpler way to see this is by noticing that
the XOR distribution must yield 1 bit of synergistic information, and many PID measures
do not yield 1 bit of synergistic information for the COPY distribution.

The second suggested property argues that synergy should be a convex function of
P(T|Y), for fixed P(Y). Our measure of synergy does not satisfy this property, even though
it is derived from a measure of union information that satisfies the extension of the WB
axioms. For instance, consider the XOR distribution with one extra outcome. We introduce
it in Table 7 and parameterize it using r = p(T = 0|Y = (0, 0)) ∈ [0, 1]. Notice that this
modification does not affect P(Y).

Table 7. Adapted XOR distribution.

T Y1 Y2 p(t, y1, y2)

0 0 0 r/4

1 0 0 (1− r)/4

1 1 0 1/4

1 0 1 1/4

0 1 1 1/4

Synergy, as measured by SCI(Y1, Y2 → T), is maximized when r equals 1 (the distri-
bution becomes the standard XOR) and minimized when r equals 0. We do not see an
immediate reason as to why a general synergy function should be convex in p(t|y), or why
it should have a unique minimizer as a function of r. Recall that a function S is convex if
∀t ∈ [0, 1], ∀x1, x2 ∈ D, we have

S(tx1 + (1− t)x2) ≤ tS(x1) + (1− t)S(x2).

In the following, we slightly abuse the notation of the input variables of a synergy function.
Our synergy measure SCI, when considered as a function of r, does not satisfy this inequality.
For the adapted XOR distribution, take t = 0.5, x1 = 0, and x2 = 0.5. We have

SCI(0.5× 0 + 0.5× 0.5) = SCI(0.25) ≈ 0.552

and
0.5× SCI(0) + 0.5× SCI(0.5) ≈ 0.5× 0.270 + 0.5× 0.610 ≈ 0.440,

contradicting the property of channel convexity. Sd agrees with this. We slightly change
p(y) in the above distribution to obtain a new distribution, which we present in Table 8.

This distribution does not satisfy the convexity inequality, since

Sd(0.5× 0 + 0.5× 0.5) ≈ 0.338 > 0.3095 ≈ 0.5Sd(0) + 0.5Sd(0.5).

This can be easily seen since K(1) = K(2) for any r ∈ [0, 1], hence we may choose KQ = K(1)

to compute Sd = I(Y; T)− I(Q; T), which is not convex for this particular distribution. To
conclude this section, we present a plot of SCI(Y1, Y2) and Sd(Y1, Y2) as a function of r in
Figure 3, for the distribution presented in Table 7.
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Table 8. Adapted XOR distribution v2.

T Y1 Y2 p(t, y1, y2)

0 0 0 r/10

1 0 0 (1− r)/10

1 1 0 4/10

1 0 1 4/10

0 1 1 1/10

Figure 3. Computation of SCI and Sd as functions of r = p(T = 0|Y = (0, 0)) for the distribution
presented in Table 8. As we showed for this distribution, SCI is not a convex function of r.

With this we do not mean that these properties should not hold for an arbitrary PID.
We are simply showing that some properties must be satisfied in the context of PID (such as
the WB axioms), whereas other properties are not necessary for PID (such as the previous
two properties).

4.5. Relationship with the Extended Williams–Beer Axioms

We now prove which of the introduced properties are implied by the extension of the
Williams–Beer axioms for measures of union information. In what follows, assume that the
goal is to decompose the information present in the distribution p(y, t) = p(y1, . . ., yn, t).

Theorem 2. Let I∪ be a measure of union information that satisfies the extension of the Williams–
Beer axioms (symmetry, self-redundancy, monotonicity, and equality for monotonicity) for measures
of union information as in Definition (2). Then, I∪ also satisfies the following properties of Griffith
and Koch [16]: global positivity, weak local positivity, strong identity, “duplicating a predictor does
not change synergistic information”, and “adding a new predictor cannot increase synergy”.

Proof. We argued before that the last two properties follow from the definition of a measure
of union information. Global positivity is a direct consequence of monotonicity and the
non-negativity of mutual information: I∪(A1, . . ., Am) ≥ I∪(A1) = I(A1; T) ≥ 0.

Weak local positivity holds because monotonicity and self-redundancy imply that
I∪(Y1, Y2) ≥ I∪(Y1) = I(Y1; T), as well as I∪(Y1, Y2) ≥ I(Y2; T), hence max{I(Y1; T), I(Y2; T)}
≤ I∪(Y1, Y2). Moreover, I∪(Y1, Y2) ≤ I∪(Y1, Y2, Y12) = I∪(Y12) = I(Y; T).

Strong identity follows trivially from self-redundancy, since I∪(T → T) =
I(T; T) = H(T).
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Theorem 3. Consider a measure of union information that satisfies the conditions of Theorem 2. If
synergy is defined as in Equation (7), it satisfies the following properties of [37]: non-negativity,
upper-bounded by mutual information, weak symmetry, and zero synergy in a single variable.

Proof. Non-negativity of synergy and upper-bounded by mutual information follow from
the definition of synergy and from the fact that for whichever source (A1, . . ., Am), with
m ≥ 1, we have that I∪(A1, . . ., Am → T) ≤ I(Y; T).

Weak symmetry follows trivially from the fact that both I(Y; T) and I∪(A1, . . ., Am → T)
are symmetric in the relevant arguments.

Finally, zero synergy in a single variable follows from self-redundancy together with
the definition of synergy, as shown above.

5. Previous Measures of Union Information and Synergy

We now review other measures of union information and synergy proposed in the
literature. For the sake of brevity, we will not recall all their definitions, only some
important conclusions. We suggest the interested reader consult the bibliography for
more information.

5.1. Qualitative Comparison

Griffith and Koch [16] review three previous measures of synergy:

• SWB, derived from IWB
∩ , the original redundancy measure proposed by Williams and

Beer [1], using the IEP;
• the whole-minus-sum (WMS) synergy, SWMS;
• the correlational importance synergy, SΔI .

These synergies can be interpreted as resulting directly from measures of union
information; that is, they are explicitly written as S(α → T) = I(Y; T)− I∪(α → T), where
I∪ may not necessarily satisfy our intuitions of a measure of union information, as in
Definition 2, except for SΔI , which has the form of a Kullback–Leibler divergence.

Griffith and Koch [16] argue that SWB overestimates synergy, which is not a surprise, as
many authors criticized IWB

∩ for not measuring informational content, only informational
values [13]. The WMS synergy, on the other hand, which can be written as a difference
of total correlations, can be shown to be equal to the difference between synergy and
redundancy for n = 2, which is not what is desired in a measure of synergy. For n > 2,
the authors show that the problem becomes even more exacerbated: SWMS equals synergy
minus the redundancy counted multiple times, which is why the authors argue that SWMS

underestimates synergy. Correlational importance, SΔI , is known to be larger than I(Y; T)
for some distributions, excluding it from being an appropriately interpretable measure
of synergy.

Faced with these limitations, Griffith and Koch [16] introduce their measure of union
information, which they define as

IVK
∪ (A1, . . ., Am → T) :=min

p∗
Ip∗

(
m⋃

i=1

Ai; T

)
s.t. p∗(Ai, T) = p(Ai, T), i = 1, . . ., m,

(9)

where the minimization is over joint distributions of A1, . . ., Am, T, alongside the derived
measure of synergy SVK(α → T) = I(Y; T)− IVK

∪ (α → T). This measure quantifies union
information as the least amount of information that source α has about T when the source–
target marginals (as determined by α) are fixed by p. Griffith and Koch [16] also established
the following inequalities for the synergistic measures they reviewed:

max
{

0, SWMS(α → T)
}
≤ SVK(α → T) ≤ SWB(α → T) ≤ I

(
m⋃

i=1

Ai; T

)
, (10)
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where α = (A1, . . ., Am). At the time, Griffith and Koch [16] did not provide a way to
analytically compute their measure. Later, Kolchinsky [22] showed that the measure
of union information derived from the degradation order, Id

∪, is equivalent to IVK
∪ , and

provided a way to compute it. For this reason, we will only consider Id
∪.

After the work of Griffith and Koch [16] in 2014, we are aware of only three other
suggested measures of synergy:

• SMSRV, proposed by Quax et al. [37], where MSRV stands for maximally synergistic
random variable;

• synergistic disclosure, SSD, proposed by Rosas et al. [38];
• Sd, proposed by Kolchinsky [22].

The first two proposals do not define synergy via a measure of union information. They
define synergy through an auxiliary random variable, Z, which has positive information
about the whole—that is, I(Z; Y) > 0—but no information about any of the parts—that is,
I(Z; Yi) = 0, i = 1, . . ., n. While this property has an appealing operational interpretation,
we believe that it is too restrictive; that is, we believe that information can be synergistic,
even if it provides some positive information about some part of Y.

The authors of SMSRV show that their proposed measure is incompatible with PID
and that it cannot be computed for all distributions, as it requires the ability to compute
orthogonal random variables, which is not always possible [37]. A counter-intuitive
example for the value of this measure can be seen for the AND distribution, defined by
T = Y1 AND Y2, with Y1 and Y2 i.i.d. taking values in {0, 1} with equal probability. In this
case, SMSRV = 0.5, a value that we argue is too large, because whenever Y1 (respectively Y2)
is 0, then T does not depend on Y2 (respectively Y1) (which happens with probability 0.75).
Consequently, SMSRV/I(Y; T) ≈ 0.5/0.811 ≈ 0.617 may be too large of a synergy ratio for
this distribution. As the authors note, the only other measure that agrees with SMSRV for the
AND distribution is SWB, which Griffith and Koch [16] argued also overestimates synergy.

Concerning SSD, we do not have any criticism, except for the one already pointed
out by Gutknecht et al. [36]: they note that the resulting decomposition from SSD is not
a standard PID, in the sense that it does not satisfy a consistency equation (see [36] for
more details), which implies that ‘. . . the atoms cannot be interpreted in terms of parthood
relations with respect to mutual information terms . . . . For example, we do not obtain any
atoms interpretable as unique or redundant information in the case of two sources’ [36].
Gutknecht et al. [36] suggest a very simple modification to the measure so that it satisfies
the consistency equation.

For the AND distribution, SSD evaluates to approximately 0.311, as does Sd, whereas
our measure yields SCI ≈ 0.270, as the information that the parts cannot obtain when they
combine their marginals, under distribution q. This shows that these four measures are
not equivalent.

5.2. Quantitative Comparison

Griffith and Koch [16] applied the synergy measures they reviewed to other distribu-
tions. We show their results below in Table 9 and compare them with the synergy resulting
from our measure of union information, SCI, with the measure of Rosas et al. [38], SSD,
and that of Kolchinsky [22], Sd. Since the code for the computation of SMSRV is no longer
available online, we do not present it.

We already saw the definition of the AND, COPY, and XOR distributions. The XORDU-
PLICATE and ANDDUPLICATE are built from the XOR and the AND distributions by
inserting a duplicate source variable Y3 = Y2. The goal is to test if the presence of a dupli-
cate predictor impacts the different synergy measures. The definitions of the remaining
distributions are presented in Appendix A. Some of these are trivariate, and for those we
compute synergy as

S(Y1, Y2, Y3 → T) = I(Y1, Y2, Y3; T)− I∪(Y1, Y2, Y3 → T), (11)
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unless the synergy measure is directly defined (as opposed to being defined via a union infor-
mation measure). We now comment on the results. It should be noted that Kolchinsky [22]
suggested that unique information U1 and U2 should be computed from measures of
redundant information, and excluded information E1 and E2 should be computed from
measures of union information, as in our case. However, since we will only present the
decompositions for the bivariate case and in this case E1 = U2 and E2 = U1, we present the
results considering unique information, as is mostly performed in the literature.

Table 9. Application of the measures reviewed in Griffith and Koch [16] (SWB, SWMS, and SΔI), SSD

introduced by Rosas et al. [38], Sd introduced by Kolchinsky [22], and our measure of synergy SCI to
different distributions. The bottom four distributions are trivariate. We write DNF to mean that a
specific computation did not finish within 10 min.

Example SWB SWMS SΔI Sd SSD SCI

XOR 1 1 1 1 1 1
AND 0.5 0.189 0.104 0.5 0.311 0.270
COPY 1 0 0 0 1 0
RDNXOR 1 0 1 1 1 1
RDNUNQXOR 2 0 1 1 DNF 1
XORDUPLICATE 1 1 1 1 1 1
ANDDUPLICATE 0.5 -0.123 0.038 0.5 0.311 0.270
XORLOSES 0 0 0 0 0 0
XORMULTICOAL 1 1 1 1 DNF 1

• XOR yields I(Y; T) = 1. The XOR distribution is the hallmark of synergy. Indeed, the
only solution of (1) is (S, R, U1, U2) = (1, 0, 0, 0), and all of the above measures yield
1 bit of synergy.

• AND yields I(Y; T) ≈ 0.811. Unlike XOR, there are multiple solutions for (1), and none
is universally agreed upon, since different information measures capture different
concepts of information.

• COPY yields I(Y; T) = 2. Most PID measures argue one of two different possibilities for
this distribution. They suggest that the solution is either (S, R, U1, U2) = (1, 1, 0, 0) or
(0, 0, 1, 1). Our measure suggests that all information flows uniquely from each source.

• RDNXOR yields I(Y; T) = 2. In words, this distribution is the concatenation of two
XOR ‘blocks’, each of which has its own symbols, and not allowing the two blocks to
mix. That is, both Y1 and Y2 can determine in which XOR block the resulting value T
will be—which intuitively means that they both have this information, meaning it is
redundant—but neither Y1 nor Y2 have information about the outcome of the XOR
operation—as is expected in the XOR distribution—which intuitively means that such
information must be synergistic. All measures except SWMS agree with this.

• RDNUNQXOR yields I(Y; T) = 4. According to Griffith and Koch [16], it was con-
structed to carry 1 bit of each information type. Although the solution is not unique,
it must satisfy U1 = U2. Indeed, our measure yields the solution (S, R, U1, U2) =
(1, 1, 1, 1), like most measures except SWB and SWMS. This confirms the intuition by
Griffith and Koch [16] that SWB and SWMS overestimate and underestimate synergy,
respectively. In fact, in the decomposition resulting from SWB, there are 2 bits of synergy
and 2 bits of redundancy, which we argue cannot be the case, as this would imply that
U1 = U2 = 0, and given the construction of this distribution, it is clear that there is
some unique information since, unlike in RDNXOR, the XOR blocks are allowed to
mix, thus (T, Y1, Y2) = (1, 0, 1) is a possible outcome, but so is (T, Y1, Y2) = (2, 0, 2).
That is not the case with RDNXOR. On the other hand, SWMS yields zero synergy and
redundancy, with U1 and U2 each evaluating to 2 bits. Since this distribution is a mix of
blocks satisfying a relation of the form T = Y1 xor Y2, we argue that there must be some
non-null amount of synergy, which is why we claim that SWMS is not valid.
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• XORDUPLICATE yields I(Y; T) = 1. All measures correctly identify that the duplica-
tion of a source should not change synergy, at least for this particular distribution.

• ANDDUPLICATE yields I(Y; T) ≈ 0.811. Unlike in the previous example, both SWMS

and SΔI yield a change in their synergy value. This is a shortcoming, since duplicating
a source should not increase either synergy or union information. The other measures
are not affected by the duplication of a source.

• XORLOSES yields I(Y; T) = 1. Its distribution is the same as XOR but with a new
source Y3 satisfying T = Y3. As such, since Y3 uniquely determines T, we expect no
synergy. All measures agree with this.

• XORMULTICOAL yields I(Y; T) = 1. Its distribution is such that any pair (Yi, Yj),
i, j = 1, 2, 3, i �= j is able to determine T with no uncertainty. All measures agree that
the information present in this distribution is purely synergistic.

From these results, we agree with Griffith and Koch [16] that SWB, SWMS, and SΔI are
not good measures of synergy: they do not satisfy many of our intuitions and overestimate
synergy, not being invariant to duplicate sources or taking negative values. For these
reasons, and those presented in Section 5, we reject those measures of synergy. In the next
section, we comment on the remaining measures Sd, SSD, and SCI.

5.3. Relation to Other PID Measures

Kolchinsky [22] introduced Id
∪ and showed that this measure is equivalent to IVK

∪ [16]
and to IBROJA

∪ [15], in the sense that the three of them achieve the same optimum value [22].
The multivariate extension of IBROJA

∪ was proposed by Griffith and Koch [16], defined as

IBROJA
∪ (A1, . . ., Am → T) := min

Ã1,...,Ãm

I(Ã1, . . ., Ãm; T) such that ∀i P(Ãi, T) = P(Ai, T),

which we present because it makes it clear what conditions are enforced upon the marginals.
There is a relation between IBROJA

∪ (A1, . . ., Am) = Id
∪(A1, . . ., Am) and ICI

∪ (A1, . . ., Am) when-
ever the sources A1, . . .Am are singletons. In this case, and only in this case, the set Q
involved in the computation of ICI

∪ (A1, . . ., Am) has only one element: q(t, a1, . . ., am) =
p(t)p(a1|t). . .p(am|t). Since this distribution, as well as the original distribution p, are both
admissible points in Id

∪, we have that Id
∪ ≤ ICI

∪ , which implies that Sd ≥ SCI. On the other
hand, if there is at least one source A1, . . ., Am that is not a singleton, the measures are not
trivially comparable. For example, suppose we wish to compute I∪((Y1, Y2), (Y2, Y3)). We
know that the solution of Id

∪((Y1, Y2), (Y2, Y3)) is a distribution p∗ whose marginals p∗(y1, y2, t)
and p∗(y2, y3, t) must coincide with the marginals under the original p. However, in the compu-
tation of ICI

∪ ((Y1, Y2), (Y2, Y3)), it may be the case that the solution p∗ of Id
∪((Y1, Y2), (Y2, Y3)) is

not in the setQ, involved in the computation of ICI
∪ , and it achieves a lower mutual information

with T. That is, it might be the case that Ip∗(Y; T) < Iq(Y; T), for all q ∈ Q. In such a case, we
would have Id

∪ > ICI
∪ .

It is convenient to be able to upper-bound certain measures with other measures. For
example, Gomes and Figueiredo [26] (see that paper for the definitions of these measures)
showed that for any source (A1, . . ., Am), m ≥ 1,

Id
∩(A1, . . ., Am) ≤ Iln

∩ (A1, . . ., Am) ≤ Imc
∩ (A1, . . ., Am).

However, we argue that the inability to draw such strong conclusions (or bounds) is a posi-
tive aspect of PID. This is because there are many different ways to define the information
(be it redundant, unique, union, etc.) that one wishes to capture. If one could trivially relate
all measures, it would mean that it would be possible to know a priori how those measures
would behave. Consequently, this would imply the absence of variability/freedom in
how to measure different information concepts, as those measures would capture, non-
equivalent but similar types of information, as they would all be ordered. It is precisely
because one cannot order different measures of information trivially that PID provides a
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rich and complex framework to distinguish different types of information, although we
believe that PID is still in its infancy.

James et al. [17] introduced a measure of unique information, which we recall now. In
the bivariate case—i.e., consider p(y1, y2, t)—let q be the maximum entropy distribution that
preserves the marginals p(y1, t) and p(y2, t), and let r be the maximum entropy distribution
that preserves the marginals p(y1, t), p(y2, t), and p(y1, y2). Although there is no closed
form for r, which has to be computed using an iterative algorithm [39], it may be shown
that the solution for q is q(y1, y2, t) = p(t)p(y1|t)p(y2|t) (see, e.g., [17]). This is the same
distribution q that we consider for the bivariate decomposition (3). James et al. [17] suggest
defining unique information Ui as the least change (in sources–target mutual information)
that involves the addition of the (Yi, T) marginal constraint, that is,

U1 = min{Iq(Y1; T|Y2), Ir(Y1; T|Y2)}, (12)

and analogously for U2. They show that their measure yields a non-negative decomposition
for the bivariate case. Since I(Y1; T|Y2) = S + U1, some algebra leads to

Sdep = I(Y; T)−min{Iq(Y; T), Ir(Y; T)}, (13)

where Sdep is the synergy resulting from the decomposition of James et al. [17] in the
bivariate case. Recall that our measure of synergy for the bivariate case is given by

SCI = I(Y; T)−min{Iq(Y; T), Ip(Y; T)}. (14)

The similarity is striking. Computing Sdep for the bivariate distributions in Table 9 shows that
it coincides with the decomposition given by our measure, although this is not the case in
general. We could not obtain Sdep for the RDNUNQXOR distribution because the algorithm
that computes r did not finish in the allotted time of 10 min. James et al. [17] showed
that for whichever bivariate distribution Ir(Y; T) ≤ Ip(Y; T); therefore, for the bivariate
case we have SCI ≤ Sdep. Unfortunately, the measure of unique information proposed by
James et al. [17], unlike the usual proposals of intersection or union information, does not
allow for the computation of the partial information atoms in the complete redundancy lattice
if n > 2. The authors also comment that it is not clear if their measure satisfies monotonicity
when n > 2. Naturally, our measure is not the same as Sdep, so it does not retain the
operational interpretation of unique information Ui being the least amount that influences
I(Y; T) when the marginal constraint (Yi, T) is added to the resulting maximum entropy
distributions. Given the form of Sdep, one could define Idep

∪ := min{Iq(Y; T), Ir(Y; T)} and
study its properties. Clearly, it does not satisfy the self-redundancy axiom, but we wonder if
it could be adjusted so that it satisfies all of the proposed axioms. The n = 2 decomposition
retains the operational interpretation of the original measure, but it is not clear whether this is
true for n > 2. For the latter case, the maximum entropy distributions that we wrote as q and
r have different definitions [17]. We leave this for future work.

6. Conclusions and Future Work

In this paper, we introduced a new measure of union information for the partial infor-
mation decomposition (PID) framework, based on the channel perspective, which quantifies
synergy as the information that is beyond conditional independence of the sources, given
the target. This measure has a clear interpretation and is very easy to compute, unlike most
measures of union information or synergy, which require solving an optimization problem.
The main contributions and conclusions of the paper can be summarized as follows.

• We introduced new measures of union information and synergy for the PID frame-
work, which thus far was mainly developed based on measures of redundant or
unique information. We provided its operational interpretation and defined it for an
arbitrary number of sources.
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• We proposed an extension of the Williams–Beer axioms for measures of union infor-
mation and showed our proposed measure satisfies them.

• We reviewed, commented on, and rejected some of the previously proposed properties
for measures of union information and synergy in the literature.

• We showed that measures of union information that satisfy the extension of the
Williams–Beer axioms necessarily satisfy a few other appealing properties, as well as
the derived measures of synergy.

• We reviewed previous measures of union information and synergy, critiqued them,
and compared them with our proposed measure.

• The proposed conditional independence measure is very simple to compute.
• We provide code for the computation of our measure for the bivariate case and for

source {{Y1}, {Y2}, {Y3}} in the trivariate case.

Finally, we believe this paper opens several avenues for future research, thus we point
out several directions to be pursued in upcoming work:

• We saw that the synergy yielded by the measure of James et al. [17] is given by Sdep =
I(Y; T)−min{Iq(Y; T), Ir(Y; T)}. Given its analytical expression, one could start by
defining a measure of union information as I∪(Y1, Y2 → T) = min{Iq(Y; T), Ir(Y; T)},
possibly tweak it so it satisfies the WB axioms, study its properties, and possibly
extend it to the multivariate case.

• Our proposed measure may ignore conditional dependencies that are present in p in
favor of maximizing mutual information, as we commented in Section 3.3. This is a
compromise so that the measure satisfies monotonicity. We believe this is a potential
drawback of our measure, and we suggest the investigation of a measure similar to
ours, but that does not ignore conditional dependencies that it has access to.

• Extending this measure for absolutely continuous random variables.
• Implementing our measure in the dit package [40].
• This paper reviewed measures of union information and synergy, as well as properties

that were suggested throughout the literature. Sometimes this was by providing
examples where the suggested properties fail, and other times simply by commenting.
We suggest performing something similar for measures of redundant information.

7. Code Availability

The code is publicly available at https://github.com/andrefcorreiagomes/CIsynergy/
and requires the dit package [40] (accessed on 12 January 2024).
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Appendix A

In this appendix, we present the remaining distributions for which we computed dif-
ferent measures of synergy. For these distributions each outcome has the same probability,
so we do not present their probabilities.
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Table A1. RDNXOR (left), XORLOSES (center), and XORMULTICOAL (right).

T Y1 Y2 T Y1 Y2 Y3 T Y1 Y2 Y3

0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 0 2 2 2
0 1 1 0 1 1 0 0 3 3 3
2 2 2 1 2 1 0
3 2 3 1 3 0 1
3 3 2 1 0 3 2
2 3 3 1 1 2 3

Table A2. RDNUNQXOR.

T Y1 Y2 T Y1 Y2

0 0 0 8 4 4

1 0 1 9 4 5

1 1 0 9 5 4

0 1 1 8 5 5

2 0 2 10 4 6

3 0 3 11 4 7

3 1 2 11 5 6

2 1 3 10 5 7

4 2 0 12 6 4

5 2 1 13 6 5

5 3 0 13 7 4

4 3 1 12 7 5

6 2 2 14 6 6

7 2 3 15 6 7

7 3 2 15 7 6

6 3 3 14 7 7

References

1. Williams, P.; Beer, R. Nonnegative decomposition of multivariate information. arXiv 2010, arXiv:1004.2515.
2. Lizier, J.; Flecker, B.; Williams, P. Towards a synergy-based approach to measuring information modification. In Proceedings of

the 2013 IEEE Symposium on Artificial Life (ALIFE), Singapore, 15–19 April 2013; pp. 43–51.
3. Wibral, M.; Finn, C.; Wollstadt, P.; Lizier, J.T.; Priesemann, V. Quantifying information modification in developing neural networks

via partial information decomposition. Entropy 2017, 19, 494. [CrossRef]
4. Rauh, J. Secret sharing and shared information. Entropy 2017, 19, 601. [CrossRef]
5. Luppi, A.I.; Craig, M.M.; Pappas, I.; Finoia, P.; Williams, G.B.; Allanson, J.; Pickard, J.D.; Owen, A.M.; Naci, L.; Menon, D.K.;

et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat. Commun. 2019, 10, 4616.
[CrossRef]

6. Varley, T.F.; Pope, M.; Faskowitz, J.; Sporns, O. Multivariate information theory uncovers synergistic subsystems of the human
cerebral cortex. Commun. Biol. 2023, 6, 451. [CrossRef]

7. Chan, T.E.; Stumpf, M.P.; Babtie, A.C. Gene regulatory network inference from single-cell data using multivariate information
measures. Cell Syst. 2017, 5, 251–267. [CrossRef]

8. Faber, S.; Timme, N.; Beggs, J.; Newman, E. Computation is concentrated in rich clubs of local cortical networks. Netw. Neurosci.
2019, 3, 384–404. [CrossRef] [PubMed]

9. James, R.; Ayala, B.; Zakirov, B.; Crutchfield, J. Modes of information flow. arXiv 2018, arXiv:1808.06723.
10. Ehrlich, D.A.; Schneider, A.C.; Priesemann, V.; Wibral, M.; Makkeh, A. A Measure of the Complexity of Neural Representations

based on Partial Information Decomposition. arXiv 2022, arXiv:2209.10438.
11. Tokui, S.; Sato, I. Disentanglement analysis with partial information decomposition. arXiv 2021, arXiv:2108.13753.
12. Cover, T.; Thomas, J. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 1999.

78



Entropy 2024, 26, 271

13. Harder, M.; Salge, C.; Polani, D. Bivariate measure of redundant information. Phys. Rev. E 2013, 87, 012130. [CrossRef] [PubMed]
14. Gutknecht, A.; Wibral, M.; Makkeh, A. Bits and pieces: Understanding information decomposition from part-whole relationships

and formal logic. Proc. R. Soc. A 2021, 477, 20210110. [CrossRef] [PubMed]
15. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J.; Ay, N. Quantifying unique information. Entropy 2014, 16, 2161–2183. [CrossRef]
16. Griffith, V.; Koch, C. Quantifying synergistic mutual information. In Guided Self-Organization: Inception; Springer: Berlin/Heidelberg,

Germany, 2014; pp. 159–190.
17. James, R.; Emenheiser, J.; Crutchfield, J. Unique information via dependency constraints. J. Phys. Math. Theor. 2018, 52, 014002.

[CrossRef]
18. Chicharro, D.; Panzeri, S. Synergy and redundancy in dual decompositions of mutual information gain and information loss.

Entropy 2017, 19, 71. [CrossRef]
19. Bertschinger, N.; Rauh, J.; Olbrich, E.; Jost, J. Shared information—New insights and problems in decomposing information in

complex systems. In Proceedings of the European Conference on Complex Systems 2012; Springer: Berlin/Heidelberg, Germany, 2013,
pp. 251–269.

20. Rauh, J.; Banerjee, P.; Olbrich, E.; Jost, J.; Bertschinger, N.; Wolpert, D. Coarse-graining and the Blackwell order. Entropy 2017,
19, 527. [CrossRef]

21. Ince, R. Measuring multivariate redundant information with pointwise common change in surprisal. Entropy 2017, 19, 318.
[CrossRef]

22. Kolchinsky, A. A Novel Approach to the Partial Information Decomposition. Entropy 2022, 24, 403. [CrossRef]
23. Barrett, A. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E

2015, 91, 052802. [CrossRef]
24. Griffith, V.; Chong, E.; James, R.; Ellison, C.; Crutchfield, J. Intersection information based on common randomness. Entropy 2014,

16, 1985–2000. [CrossRef]
25. Griffith, V.; Ho, T. Quantifying redundant information in predicting a target random variable. Entropy 2015, 17, 4644–4653.

[CrossRef]
26. Gomes, A.F.; Figueiredo, M.A. Orders between Channels and Implications for Partial Information Decomposition. Entropy 2023,

25, 975. [CrossRef] [PubMed]
27. James, R.G.; Emenheiser, J.; Crutchfield, J.P. Unique information and secret key agreement. Entropy 2018, 21, 12. [CrossRef]

[PubMed]
28. Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009.
29. Colenbier, N.; Van de Steen, F.; Uddin, L.Q.; Poldrack, R.A.; Calhoun, V.D.; Marinazzo, D. Disambiguating the role of blood flow

and global signal with partial information decomposition. NeuroImage 2020, 213, 116699. [CrossRef] [PubMed]
30. Sherrill, S.P.; Timme, N.M.; Beggs, J.M.; Newman, E.L. Partial information decomposition reveals that synergistic neural

integration is greater downstream of recurrent information flow in organotypic cortical cultures. PLoS Comput. Biol. 2021,
17, e1009196. [CrossRef] [PubMed]

31. Sherrill, S.P.; Timme, N.M.; Beggs, J.M.; Newman, E.L. Correlated activity favors synergistic processing in local cortical networks
in vitro at synaptically relevant timescales. Netw. Neurosci. 2020, 4, 678–697. [CrossRef] [PubMed]

32. Proca, A.M.; Rosas, F.E.; Luppi, A.I.; Bor, D.; Crosby, M.; Mediano, P.A. Synergistic information supports modality integration
and flexible learning in neural networks solving multiple tasks. arXiv 2022, arXiv:2210.02996.

33. Kay, J.W.; Schulz, J.M.; Phillips, W.A. A comparison of partial information decompositions using data from real and simulated
layer 5b pyramidal cells. Entropy 2022, 24, 1021. [CrossRef]

34. Liang, P.P.; Cheng, Y.; Fan, X.; Ling, C.K.; Nie, S.; Chen, R.; Deng, Z.; Mahmood, F.; Salakhutdinov, R.; Morency, L.P. Quantifying
& modeling feature interactions: An information decomposition framework. arXiv 2023, arXiv:2302.12247.

35. Hamman, F.; Dutta, S. Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information
Decomposition. arXiv 2023, arXiv:2307.11333.

36. Gutknecht, A.J.; Makkeh, A.; Wibral, M. From Babel to Boole: The Logical Organization of Information Decompositions. arXiv
2023, arXiv:2306.00734.

37. Quax, R.; Har-Shemesh, O.; Sloot, P.M. Quantifying synergistic information using intermediate stochastic variables. Entropy 2017,
19, 85. [CrossRef]

38. Rosas, F.E.; Mediano, P.A.; Rassouli, B.; Barrett, A.B. An operational information decomposition via synergistic disclosure. J. Phys.
A Math. Theor. 2020, 53, 485001. [CrossRef]

39. Krippendorff, K. Ross Ashby’s information theory: A bit of history, some solutions to problems, and what we face today. Int. J.
Gen. Syst. 2009, 38, 189–212. [CrossRef]

40. James, R.; Ellison, C.; Crutchfield, J. “dit”: A Python package for discrete information theory. J. Open Source Softw. 2018, 3, 738.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

79



Citation: Mages, T.; Anastasiadi, E.;

Rohner, C. Non-Negative

Decomposition of Multivariate

Information: From Minimum to

Blackwell-Specific Information.

Entropy 2024, 26, 424. https://

doi.org/10.3390/e26050424

Academic Editor: Daniel Chicharro

Received: 5 March 2024

Revised: 6 May 2024

Accepted: 11 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Non-Negative Decomposition of Multivariate Information:
From Minimum to Blackwell-Specific Information

Tobias Mages *, Elli Anastasiadi and Christian Rohner

Department of Information Technology, Uppsala University, 752 36 Uppsala, Sweden
* Correspondence: tobias.mages@it.uu.se

Abstract: Partial information decompositions (PIDs) aim to categorize how a set of source variables
provides information about a target variable redundantly, uniquely, or synergetically. The original
proposal for such an analysis used a lattice-based approach and gained significant attention. However,
finding a suitable underlying decomposition measure is still an open research question at an arbitrary
number of discrete random variables. This work proposes a solution with a non-negative PID
that satisfies an inclusion–exclusion relation for any f-information measure. The decomposition is
constructed from a pointwise perspective of the target variable to take advantage of the equivalence
between the Blackwell and zonogon order in this setting. Zonogons are the Neyman–Pearson region
for an indicator variable of each target state, and f-information is the expected value of quantifying
its boundary. We prove that the proposed decomposition satisfies the desired axioms and guarantees
non-negative partial information results. Moreover, we demonstrate how the obtained decomposition
can be transformed between different decomposition lattices and that it directly provides a non-
negative decomposition of Rényi-information at a transformed inclusion–exclusion relation. Finally,
we highlight that the decomposition behaves differently depending on the information measure used
and how it can be used for tracing partial information flows through Markov chains.

Keywords: partial information decomposition; redundancy; synergy; information flow analysis;
f-information; Rényi-information

1. Introduction

From computer science to neuroscience, we can find the following problem: We would
like to know information about a random variable T, called the target, which we cannot
observe directly. However, we can obtain information about the target indirectly from
another set of variables V = {V1, . . . , Vn}. We can use information measures to quantify
how much information any set of variables provides about the target. When doing so, we
can identify the concept of redundancy: For example, if we have two identical variables
V1 = V2, then we can use one variable to predict the other and, thus, anything that this
other variable can predict. Similarly, we can identify the concept of synergy: For example, if
we have two independent variables and a target that corresponds to their XOR operation
T = (V1 XOR V2), then both variables provide no advantage on their own for predicting
the state of T, yet their combination fully determines it. Williams and Beer [1] suggested
that it is possible to characterize information as visualized by the Venn diagram for two
variables V = {V1, V2} in Figure 1a. This decomposition attributes the total information
about the target to being redundant, synergetic, or unique to a particular variable. As
indicated in Figure 1a by I(·, T), we can quantify three of the areas using information
measures. However, this is insufficient to determine the four partial areas that represent
the individual contributions. This causes the necessity to extend an information measure to
either quantify the amount of redundancy or synergy between a set of variables.

Williams and Beer [1] first proposed a framework for Partial Information Decompo-
sitions (PIDs) and found favor by the community [2]. However, the proposed measure
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of redundancy was criticized for not distinguishing, “the same information and the same
amount of information” [3–6]. The proposal of Williams and Beer [1] focused specifi-
cally on mutual information. This work additionally studies the decomposition of any
f -information or Rényi-information at discrete random variables. They have significance,
among others, in parameter estimations, high-dimensional statistics, hypothesis testing,
channel coding, data compression, and privacy analyses [7,8].

H(T)

I((V1, V2); T)

I(V1; T)

I(V2; T)

1

2

3

4

1 - synergetic 2 - unique V1

3 - redundant 4 - unique V2

(a)

I∩({{V1, V2}}; T)

I∩({{V1}}; T) I∩({{V2}}; T)

I∩({{V1}, {V2}}; T)

I∩(∅; T)

∅

(b)

I∪(∅; T)

I∪({{V1}}; T) I∪({{V2}}; T)

I∪({{V1}, {V2}}; T)

I∪({({V1, V2})}; T)

∅

(c)

I(·, T)

{A1, A2} {B1, B2}

synergetic
unique A2/B2

unique A1/B1

redundant

(d)

Figure 1. Partial information decomposition representations at two variables V = {V1, V2}. (a) De-
sired set-theoretic analogy: Visualization of the desired intuition for multivariate information as a
Venn diagram. (b) Representation as redundancy lattice, where the redundancy measure I∩ quantifies
the information that is contained in all of its provided variables (inside their intersection). The order-
ing represents the expected subset relation of redundancy. (c) Representation as synergy lattice, where
the loss measure I∪ quantifies the information that is contained in neither of its provided variables
(outside their union). (d) Information flow visualization: When having two partial information
decompositions with respect to the same target variable, we can study how the partial information
of one decomposition propagates into the next. We refer to this as information flow analysis of a
Markov chain such as T → (A1, A2)→ (B1, B2).

1.1. Related Work

Most of the literature focuses on the decomposition of mutual information. Here, many
alternative measures have been proposed, but cannot fully replace the original measure
of Williams and Beer [1] since they do not provide non-negative results for any |V|: The
special case of bivariate partial information decompositions (|V| = 2) has been well studied,
and several non-negative decompositions for the framework of Williams and Beer [1] are
known [5,9–12]. However, each of these decompositions provides negative partial informa-
tion for |V| > 2. Further research [13–15] specifically aimed to define decompositions of
mutual information for an arbitrary number of observable variables, but similarly obtained
negative partial contributions and the resulting difficulty of interpreting their results. Grif-
fith et al. [3] studied the decomposition of zero-error information and obtained negative
partial contributions. Kolchinsky [16] proposed a decomposition framework for an arbitrary
number of observable variables that is applicable beyond Shannon information theory,
however, where the partial contributions do not sum to the total amount.

In this work, we propose a decomposition measure for replacing the one presented
by Williams and Beer [1] while maintaining its desired properties. To achieve this, we
combine several concepts from the literature: We use the Blackwell order, a preorder of
information channels, for the decomposition and for deriving its operational interpretation,
similar to Bertschinger et al. [9] and Kolchinsky [16]. We use its special case for binary
input channels, the zonogon order studied by Bertschinger and Rauh [17], to achieve
non-negativity at an arbitrary number of variables and provide it with a practical mean-
ing by highlighting its equivalence to the Neyman–Pearson (decision) region. To utilize
this special case for a general decomposition, we use the concept of a target pointwise
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decomposition as demonstrated by Williams and Beer [1] and related to Lizier et al. [18],
Finn and Lizier [13], and Ince [14]. Specifically, we use Neyman–Pearson regions of an
indicator variable for each target state to define distinct information and quantify point-
wise information from its boundary. This allows for the non-negative decomposition
of an arbitrary number of variables, where the source and target variables can have an
arbitrary finite number of states. Finally, we apply the concepts from measuring on
lattices, discussed by Knuth [19], to transform a non-negative decomposition with an
inclusion–exclusion relation from one information measure to another while maintaining
the decomposition properties.

Remark 1. We use the term “target pointwise” or simply “pointwise” within this work to refer to
the analysis of each target state individually. This differs from [13,14,18], who use the latter term
for the analysis of all joint source–target realizations.

1.2. Contributions

In a recent work [20], we presented a decomposition of mutual information on the
redundancy lattice (Figure 1b). This work aims to simplify, generalize, and extend these
ideas to make the following contributions to the area of partial information decompositions:

• We propose a representation of distinct uncertainty and distinct information, which is
used to demonstrate the unexpected behavior of the measure by Williams and Beer [1]
(Sections 2.2 and 3.1).

• We propose a non-negative decomposition for any f -information measure at an arbi-
trary number of discrete random variables that satisfies an inclusion–exclusion relation
and provides a meaningful operational interpretation (Sections 3.2, 3.3 and 3.5). The
decomposition satisfies the original axioms of Williams and Beer [1] (Theorems 3 and 4)
and obtains different properties from different information measures (Section 4).

• We demonstrate several transformations of the proposed decomposition: (i) We trans-
form the cumulative measure between different decomposition lattices (Section 3.4).
(ii) We demonstrate that the non-negative decomposition of f -information directly
provides a non-negative decomposition of Rényi- and Bhattacharyya-information at a
transformed inclusion–exclusion relation (Section 3.6).

2. Background

This section aims to provide the required background information and introduce the
notation used. Section 2.1 discusses the Blackwell order and its special case at binary targets,
the zonogon order, which will be used for operational interpretations and the representation
of f -information for its decomposition. Section 2.2 discusses the PID framework of Williams
and Beer [1] and the relation between a decomposition based on the redundancy lattice
and one based on the synergy lattice. We also demonstrate the unintuitive behavior of
the original decomposition measure, which will be resolved by our proposal in Section 3.
Section 2.3 provides the considered definitions of f -information, Rényi-information, and
Bhattacharyya-information for the later demonstration of transforming decomposition
results between measures.

Notation 1 (Random variables and their distribution). We use the notation T (upper case) to
represent a random variable, ranging over the event space T (calligraphic) containing events t ∈ T
(lower case) and use the notation PT (P with subscript) to indicate its probability distribution. The
same convention applies to other variables, such as a random variable S with events s ∈ S and
distribution PS. We indicate the outer product of two probability distributions as PS ⊗ PT, which
assigns the product of their marginals PS(s) · PT(t) to each event (s, t) of the Cartesian product
S × T . Unless stated otherwise, we use the notation T, S, and V to represent random variables
throughout this work.
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2.1. Blackwell and Zonogon Order

Definition 1 (Channel). A channel μ = T → S from T to S represents a garbling of the input
variable T, which results in variable S. Within this work, we represent an information channel μ as
a (row) stochastic matrix, where each element is non-negative, and all rows sum to one.

For the context of this work, we consider a variable S to be the observation of the
output from an information channel T → S from the target variable T, such that the
corresponding channel can be obtained from their conditional probability distribution, as
shown in Equation (1) where T = {t1, . . . , tn} and S = {s1, . . . , sm}.

μ = (T → S) = P(S|T) =

⎡⎢⎣p(s1 | t1) . . . p(sm | t1)
...

. . .
...

p(s1 | tn) . . . p(sm | tn)

⎤⎥⎦ (1)

Notation 2 (Binary input channels). Throughout this work, we reserve the symbol κ for binary
input channels, meaning κ signals a stochastic matrix of dimension 2×m. We use the notation
�v ∈ κ to indicate a column of this matrix.

Definition 2 (More informative [17,21]). An information channel μ1 = T → S1 is more
informative than another channel μ2 = T → S2 if—for any decision problem involving a set of
actions a ∈ Ω and a reward function u : (Ω, T )→ R that depends on the chosen action and state
of the variable T—an agent with access to S1 can always achieve an expected reward at least as high
as another agent with access to S2.

Definition 3 (Blackwell order [17,21]). The Blackwell order is a preorder of channels. A channel
μ1 is Blackwell superior to channel μ2, if we can pass its output through a second channel λ to
obtain an equivalent channel to μ2, as shown in Equation (2).

μ2 � μ1 ⇐⇒ μ2 = μ1 · λ for some stochastic matrix λ (2)

Blackwell [21] showed that a channel is more informative if and only if it is Blackwell
superior. Bertschinger and Rauh [17] showed that the Blackwell order does not form a
lattice for channels μ = T → S if |T | > 2 since the ordering does not provide unique
meet and join elements. However, binary target variables |T | = 2 are a special case where
the Blackwell order is equivalent to the zonogon order (discussed next) and does form a
lattice [17].

Definition 4 (Zonogon [17]). The zonogon Z(κ) of a binary input channel κ = T → S is defined
using the Minkowski sum from the collection of vector segments as shown in Equation (3). The
zonogon Z(κ) can similarly be defined as the image of the unit cube [0, 1]|S| under the linear map
of κ.

Z(κ) :=

{
∑

i
xi�vi : 0 ≤ xi ≤ 1,�vi ∈ κ

}
=
{

κa : a ∈ [0, 1]|S|
}

(3)

The zonogon Z(κ) is a centrally symmetric convex polygon, and the set of vectors
�vi ∈ κ spans its perimeter. Figure 2 shows an example of a binary input channel and its
corresponding zonogon.

Definition 5 (Zonogon sum). The addition of two zonogons corresponds to their Minkowski sum
as shown in Equation (4).

Z(κ1) + Z(κ2) := {a + b : a ∈ Z(κ1), b ∈ Z(κ2)} = Z
([

κ1 κ2
])

(4)
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Definition 6 (Zonogon order [17]). A zonogon Z(κ1) is zonogon superior to another Z(κ2) if
and only if Z(κ2) ⊆ Z(κ1).

Bertschinger and Rauh [17] showed that, for binary input channels, the zonogon
order is equivalent to the Blackwell order and forms a lattice (Equation (5)). In the re-
maining work, we will only discuss binary input channels, such that the orderings of
Definitions 2, 3, and 6 are equivalent and can be thought of as zonogons with a sub-
set relation.

κ1 � κ2 ⇐⇒ Z(κ1) ⊆ Z(κ2) (5)

To obtain an interpretation of what a channel zonogon Z(κ) represents, we can consider a
binary decision problem by aiming to predict the state t ∈ T of a binary target variable T
using the output of channel κ = T → S. Any decision strategy λ ∈ [0, 1]|S|×2 for obtaining
a binary prediction T̂ can be fully characterized by its resulting pair of True-Positive
Rate (TPR) and False-Positive Rate (FPR), as shown in Equation (6):

κ · λ = (T → S → T̂) = P(T̂|T) =

[
p(T̂ = t | T = t) p(T̂ �= t | T = t)
p(T̂ = t | T �= t) p(T̂ �= t | T �= t)

]
=

[
TPR 1− TPR
FPR 1− FPR

]
(6)

Therefore, a channel zonogon Z(κ) provides the set of all achievable (TPR,FPR)-pairs
for a given channel κ [20,22]. This can also be seen from Equation (3), where the unit
cube a ∈ [0, 1]|S| represents all possible first columns of the decision strategy λ. The
first column of λ fully determines the second since each row has to sum to one. As a
result, κa provides the (TPR,FPR)-pair for the decision strategy λ = [ a (1−a) ] and the
definition of Equation (3) for all achievable (TPR,FPR)-pairs for predicting the state of a
binary target variable. Since this will be helpful for operational interpretations, we label
the axis of zonogon plots accordingly, as shown in Figure 2. The zonogon ([17], p. 2480) is
the Neyman–Pearson region ([7], p. 231).
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Figure 2. An example zonogon (blue) for a binary input channel κ from T = {t1, t2} to
S = {s1, s2, s3, s4}. The zonogon is the Neyman–Pearson region, and its perimeter corresponds
to the vectors �vsi ∈ κ sorted by an increasing/decreasing slope for the lower/upper half, which
results from the likelihood ratio test. The zonogon, thus, represents the achievable (TPR,FPR)-pairs
for predicting T while knowing S.

Definition 7 (Neyman–Pearson region [7] and decision regions). The Neyman–Pearson
region for a binary decision problem is the set of achievable (TPR,FPR)-pairs and can be visualized
as shown in Figure 2. The Neyman–Pearson regions underlie the zonogon order, and their boundary
can be obtained from the likelihood-ratio test. We refer to subsets of the Neyman–Pearson region as
reachable decision regions, or simply decision regions, and the boundary as the zonogon perimeter.
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Remark 2. Due to the zonogon symmetry, the diagram labels can be swapped (FPR x-axis/TPR
y-axis), which changes the interpretation to aiming at a prediction for T �= t.

Notation 3 (Channel lattice). We use the notation κ1 � κ2 for the meet element of binary in-
put channels under the Blackwell order and κ1 � κ2 for their join element. We use the nota-
tion �BW =

[
1 0
0 1

]
for the top element of binary input channels under the Blackwell order and

⊥BW =
[

1
1

]
for the bottom element.

For binary input channels, the meet element of the Blackwell order corresponds to
the zonogon intersection Z(κ1 � κ2) = Z(κ1) ∩ Z(κ2) and the join element of the Blackwell
order corresponds to the convex hull of their union Z(κ1 � κ2) = Conv(Z(κ1) ∪ Z(κ2)).
Equation (7) describes this for an arbitrary number of channels.

Z

(
�

κ∈A

κ

)
=
⋂

κ∈A

Z(κ) and Z

( ⊔
κ∈A

κ

)
= Conv

( ⋃
κ∈A

Z(κ)

)
(7)

Example 1. The remaining work only analyzes indicator variables, so we only need to consider the
case |T | = 2 where all presented ordering relations of this section are equivalent and form a lattice.

Figure 3a visualizes a channel T κ−→ S with |S| = 3. We can use the observations of S for
making a prediction T̂ about T. For example, we predict that T is in its first state with probability
w1 if S is in its first state, with probability w2 if S is in its second state, and with probability w3 if S
is in its third state. These randomized decision strategies can be noted as stochastic matrix λ shown
in Figure 3a. The resulting TPR and FPR of this decision strategy is obtained from the weighted
sum of these parameters (w1, w2, and w3) with the vectors in κ. Each decision strategy corresponds
to a point within the zonogon, since the probabilities are constrained by w1, w2, w3 ∈ [0, 1] and the
resulting zonogon is the Neyman–Pearson region.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w3 ·�v3

w2 ·�v2

w1 ·�v1

True-Positive Rate (TPR)

Fa
ls

e-
Po

si
ti

ve
R

at
e

(F
PR

)

PT̂|T = PS|T PT̂|S = κλ

=
[
�v1 �v2 �v3

]⎡⎣w1 1− w1
w2 1− w2
w3 1− w3

⎤⎦
(a) Reachable decision regions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

True-Positive Rate (TPR)

Fa
ls

e-
Po

si
ti

ve
R

at
e

(F
PR

)

Z(κ3) = Z(T → S3)

Z(κ2) = Z(T → S2)

Z(κ1) = Z(T → S1)

(b) Channel orderings

Figure 3. Visualizations for Example 1 where |T | = 2. (a) A randomized decision strategy for
predictions based on T κ−→ S can be represented by a |S| × 2 stochastic matrix λ. The first column
of this decision matrix provides the weights for summing the columns of channel κ to determine
the resulting prediction performance (TPR, FPR). Any decision strategy corresponds to a point in
the zonogon. (b) All presented ordering relations in Section 2.1 are equivalent at binary targets and
correspond to the subset relation of the visualized zonogons. The variable S3 is less informative than
both S1 and S2 with respect to T, and the variables S1 and S2 are incomparable. The shown channel
in (a) is the Blackwell join of κ1 and κ2 in (b).
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Figure 3b visualizes an example for the discussed ordering relations, where all observable
variables have two states: |Si| = 2 where i ∈ {1, 2, 3}. The zonogon/Neyman–Pearson region corre-
sponding to variable S3 is fully contained within the others (Z(κ3) ⊆ Z(κ1) and Z(κ3) ⊆ Z(κ2)).
Therefore, we can say that S3 is Blackwell inferior (Definition 3) and less informative (Definition 2)
than S1 and S2 about T. Practically, this means that we can construct an equivalent variable to S3
by garbling S1 or S2 and that, for any sequence of actions based on S3 and any reward function
with dependence on T, we can achieve an expected reward at least as a high by acting based on S1 or
S2 instead. The variables S1 and S2 are incomparable to the zonogon order, Blackwell order, and
informativity order, since the Neyman–Pearson region of one is not fully contained in the other.

The zonogon shown in Figure 3a corresponds to the join under the zonogon order, Blackwell
order, and informativity order of S1 and S2 in Figure 3b about T. For binary targets, this distribution
can directly be obtained from the convex hull of their Neyman–Pearson regions and corresponds to a
valid joint distribution for (T, S1, S2). All other joint distributions are either equivalent or superior
to it. When doing this on indicator variables for |T | > 2, then the obtained joint distributions for
each t ∈ T may not combine into a specific valid overall joint distribution.

2.2. Partial Information Decomposition

The commonly used framework for PIDs was introduced by Williams and Beer [1].
A PID is computed with respect to a particular random variable that we would like to
know information about, called the target, and tries to identify from which variables that we
have access to, called visible variables, we obtain this information. Therefore, this section
considers sets of variables that represent their joint distribution.

Notation 4. Throughout this work, we use the notation T for the target variable and V = {V1, . . . , Vn}
for the set of visible variables. We use the notationP(V) for the power set of V andP1(V) = P(V) \∅
for its power set without the empty set.

Definition 8 (Sources, atoms [1]).

• A source Si ∈ P1(V) is a non-empty set of visible variables.
• An atom α ∈ A(V) is a set of sources constructed by Equation (8).

A(V) = {α ∈ P(P1(V)) : ∀Sa, Sb ∈ α, Sa �⊂ Sb}, (8)

The filter used for obtaining the set of atoms (Equation (8)) removes sets that would
be equivalent to other elements. This is required for obtaining a lattice from the following
two ordering relations:

Definition 9 (Redundancy/gain lattice [1] ). The redundancy lattice (A(V),�) is obtained by
applying the ordering relation of Equation (9) to all atoms α, β ∈ A(V).

α � β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sa ⊆ Sb (9)

The redundancy lattice for three visible variables is visualized in Figure 4a. On this
lattice, we can think of an atom as representing the information that can be obtained
from all of its sources about the target T (their redundancy or informational intersection).
For example, the atom α = {{V1, V2}, {V1, V3}} represents on the redundancy lattice the
information that is contained in both (V1, V2) and (V1, V3) about T. Since both sources
in α provide the information of V1, their redundancy contains at least this information,
and the atom β = {{V1}} is considered its predecessor. Therefore, the ordering indicates
an informational subset relation for the redundancy of atoms, and the information that
is represented by an atom increases as we move up. The up-set of an atom α on the
redundancy lattice indicates the information that is lost when losing all of its sources.
Considering the example from above, if we lose access to {V1 (or) V2} and {V1 (or) V3},
then we lose access to all atoms in the up-set of α = {{V1, V2}, {V1, V3}}.
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Figure 4. For the visualization, we abbreviated the notation by indicating the contained visible
variable as the index of the source, for example S12 = {V1, V2} to represent their joint distribution:
(a) A redundancy/gain lattice (A({V1, V2, V3}), �) based on the ordering of Equation (9) quantifies
information present in all sources. The redundancy of all sources within an atom increases while
moving up on the redundancy lattice. (b) A synergy/loss lattice (A({V1, V2, V3}), �) based on the
ordering of Equation (10) quantifies information present in neither source. On the synergy lattice, the
information that is obtained from neither source of an atom increases while moving up.

Definition 10 (Synergy/loss lattice [23]). The synergy lattice (A(V),�) is obtained by applying
the ordering relation of Equation (10) to all atoms α, β ∈ A(V).

α � β ⇐⇒ ∀Sb ∈ β, ∃Sa ∈ α, Sb ⊆ Sa (10)

The synergy lattice for three visible variables is visualized in Figure 4b. On this lattice,
we can think of an atom as representing the information that is contained in neither of its
sources (information outside their union). For example, the atom α = {{V1, V2}, {V1, V3}}
represents on the synergy lattice the information that is obtained from neither (V1, V2)
nor (V1, V3) about T. The ordering again indicates their expected subset relation: the
information that is obtained from neither {V1 (and) V2} nor {V1 (and) V3} is fully contained
in the information that cannot be obtained from β = {{V1}}, and thus, α is a predecessor
of β.

With an intuition for both ordering relations in mind, we can see how the filter in
the construction of atoms (Equation (8)) removes sets that would be equivalent to another
atom: the set {{V1, V2}, {V1}} is removed from the power set of sources since it would be
equivalent to the atom {{V1}} under the ordering of the redundancy lattice and equivalent
to the atom {{V1, V2}} under the ordering of the synergy lattice. Using Definition 11, one
can similarly define the atoms of the decomposition lattices from the power set of sources
without the equivalence relation.

Definition 11. We define equivalence relations for sets of sources under the redundancy and
synergy order:

Redundancy order: (α $ β)⇐⇒ (α � β and β � α) (11a)

Synergy order: (α ∼= β)⇐⇒ (α � β and β � α) (11b)
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We use the notation A {∼=} B to indicate that two sets of atoms are equal when comparing their
contained atoms with respect to equivalence under the synergy order.

Notation 5 (Redundancy/synergy lattices). We use the notation (A(V),�,�) for the join and
meet operators on the redundancy lattice, and (A(V),∨,∧) for the join and meet operators on the
synergy lattice. We use the notation �RL = {V} for the top and ⊥RL = ∅ for the bottom atom on
the redundancy lattice, and �SL = ∅ and ⊥SL = {V} for the top and bottom atom on the synergy
lattice. For an atom α on the redundancy lattice, we use the notation ↓Rα for its down-set, ↓̇Rα for
its strict down-set, ↑Rα for its up-set, ↑̇Rα for its strict up-set, and α−R for its cover set. For an
atom α on the synergy lattice, we use the notation ↓Sα for its down-set, ↓̇Sα for its strict down-set,
↑Sα for its up-set, ↑̇Sα for its strict up-set, and α−S for its cover set.

For convenience, Table 1 provides a summary of the notation used.

Table 1. Summary of the notation used for the redundancy and synergy lattice.

Redundancy Order Synergy Order

Ordering/equivalence � / $ � / ∼=
Join/meet � / � ∨ / ∧

Up-set/strict up-set ↑R / ↑̇R ↑S / ↑̇S
Down-set/strict down-set ↓R / ↓̇R ↓S / ↓̇S

Cover-set α−R α−S

Top/bottom �RL = {V} / ⊥RL = ∅ �SL = ∅ / ⊥SL = {V}

The redundant, unique, or synergetic information (partial contributions) can be calcu-
lated based on either lattice. They are obtained by quantifying each atom of the redundancy
or synergy lattice with a cumulative measure that increases as we move up in the lattice.
The partial contributions are then obtained in a second step from a Möbius inverse.

Definition 12 ([Cumulative] redundancy measure [1]). A redundancy measure I∩(α; T) is
a function that assigns a real value to each atom of the redundancy lattice. It is interpreted as a
cumulative information measure that quantifies the redundancy between all sources S ∈ α of an
atom α ∈ A(V) about the target T.

Definition 13 ([Cumulative] loss measure [23]). A loss measure I∪(α; T) is a function that
assigns a real value to each atom of the synergy lattice. It is interpreted as a cumulative measure
that quantifies the information about T that is provided by neither of the sources S ∈ α of an atom
α ∈ A(V).

To ensure that a redundancy measure actually captures the desired concept of redun-
dancy, Williams and Beer [1] defined three axioms that a measure I∩ should satisfy. For the
synergy lattice, we consider the equivalent axioms discussed by Chicharro and Panzeri [23]:

Axiom 1 (Commutativity [1,23]). Invariance in the order of sources (σ permuting the order
of indices):

I∩({S1, . . . , Si}; T) = I∩({Sσ(1), . . . , Sσ(i)}; T)

I∪({S1, . . . , Si}; T) = I∪({Sσ(1), . . . , Sσ(i)}; T)

Axiom 2 (Monotonicity [1,23]). Additional sources can only decrease redundant information.
Additional sources can only decrease the information that is in neither source.

I∩({S1, . . . , Si−1}; T) ≥ I∩({S1, . . . , Si}; T)

I∪({S1, . . . , Si−1}; T) ≥ I∪({S1, . . . , Si}; T)
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Axiom 3 (Self-redundancy [1,23]). For a single source, redundancy equals mutual information.
For a single source, the information loss equals the difference between the total available mutual
information and the mutual information of the considered source with the target.

I∩({Si}; T) = I(Si; T) and I∪({Si}; T) = I(V; T)− I(Si; T)

The first axiom states that an atom’s redundancy and information loss should not
depend on the order of its sources. The second axiom states that adding sources to an
atom can only decrease the redundancy of all sources (redundancy lattice) and decrease the
information from neither source (synergy lattice). The third axiom binds the measures to
be consistent with mutual information and ensures that the bottom element of both lattices
is quantified to zero.

Once a lattice with the corresponding cumulative measure (I∩/I∪) is defined, we can
use the Möbius inverse to compute the partial contribution of each atom. This partial
information can be visualized as the partial area in a Venn diagram (see Figure 1a) and
corresponds to the desired redundant, unique, and synergetic contributions. However, the
same atom represents different partial contributions on each lattice: As visualized for the
case of two visible variables in Figure 1, the unique information of variable V1 is represented
by α = {{V1}} on the redundancy lattice and by β = {{V2}} on the synergy lattice.

Definition 14 (Partial information [1,23]). Partial information ΔI∩(α; T) and ΔI∪(α; T) cor-
responds to the Möbius inverse of its corresponding cumulative measure on the respective lattice.

Redundancy lattice: ΔI∩(α; T) = I∩(α; T)− ∑
β∈↓̇Rα

ΔI∩(β; T), (12a)

Synergy lattice: ΔI∪(α; T) = I∪(α; T)− ∑
β∈↓̇Sα

ΔI∪(β; T). (12b)

Remark 3. Using the Möbius inverse for defining partial information enforces an inclusion–
exclusion relation in that all partial information contributions have to sum to the corresponding
cumulative measure. Kolchinsky [16] argues that an inclusion–exclusion relation should not be
expected to hold for PIDs and proposes an alternative decomposition framework. In this case, the
sum of partial contributions (unique/redundant/synergetic information) is no longer expected to
sum to the total amount I(V; T).

Property 1 (Local positivity, non-negativity [1]). A partial information decomposition satisfies
non-negativity or local positivity if its partial information contributions are always non-negative, as
shown in Equation (13).

∀α ∈ A(V). ΔI∩(α; T) ≥ 0 or ΔI∪(α; T) ≥ 0 (13)

The non-negativity property is important if we assume an inclusion–exclusion relation
since it states that the unique, redundant, or synergetic information cannot be negative.
If an atom α provides a negative partial contribution in the framework of Williams and
Beer [1], then this may indicate that we over-counted some information in its down-set.

Remark 4. Several additional axioms and properties have been suggested since the original proposal
of Williams and Beer [1], such as target monotonicity and the target chain rule [4]. However, this
work will only consider the axioms and properties of Williams and Beer [1]. To the best of our
knowledge, no other measure since the original proposal (discussed below) has been able to satisfy
these properties for an arbitrary number of visible variables while ensuring an inclusion–exclusion
relation for their partial contributions.

It is possible to convert between both representations due to a lattice duality:
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Definition 15 (Lattice duality and dual-decompositions [23] ). Let C = (A(V)\{⊥RL},�)
be a redundancy lattice with associated measure I∩, and let D = (A(V)\{⊥SL},�) be a synergy
lattice with measure I∪; then, the two decompositions are said to be dual if and only if the down-set
on one lattice corresponds to the up-set in the other, as shown in Equation (14).

∀α ∈ C, ∃β ∈ D : ΔI∩(α; T) = ΔI∪(β; T) (14a)

∀α ∈ D, ∃β ∈ C : ΔI∪(α; T) = ΔI∩(β; T) (14b)

∀α ∈ C, ∃β ∈ D : I∩(α; T) = ∑
γ∈↓Rα

ΔI∩(γ; T) = ∑
γ∈↑S β

ΔI∪(γ; T) (14c)

∀α ∈ D, ∃β ∈ C : I∪(α; T) = ∑
γ∈↓Sα

ΔI∪(γ; T) = ∑
γ∈↑R β

ΔI∩(γ; T) (14d)

I∩(⊥RL; T) = I∪(⊥SL; T) = 0 = ΔI∩(⊥RL; T) = ΔI∪(⊥SL; T) (14e)

Williams and Beer [1] proposed Imin
∩ , as shown in Equation (15), to be used as a

measure of redundancy and demonstrated that it satisfies the three required axioms and
local positivity. They define redundancy (Equation (15b)) as the expected value of the
minimum specific information (Equation (15a)).

Remark 5. Throughout this work, we use the term “target pointwise information” or simply
“pointwise information” to refer to “specific information”. This shall avoid confusion when naming
their corresponding binary input channels in Section 3.

I(Si; T = t) = ∑
s∈Si

p(s | t)
[

log
(

1
p(t)

)
− log

(
1

p(t | s)

)]
(15a)

Imin
∩ (S1, . . . , Sk; T) = ∑

t∈T
p(t) min

i∈1..k
I(Si; T = t). (15b)

To the best of our knowledge, this measure is the only existing non-negative decomposition
that satisfies all three axioms listed above for an arbitrary number of visible variables while
providing an inclusion–exclusion relation of partial information.

However, the measure Imin
∩ could be criticized for not providing a notion of distinct

information due to its use of a pointwise minimum (for each t ∈ T ) over the sources.
This leads to the question of distinguishing “the same information and the same amount of
information” [3–6]. We can use the definition through a pointwise minimum (Equation (15))
to construct examples of unexpected behavior: consider, for example, a uniform binary
target variable T and two visible variables as the output of the channels visualized in
Figure 5. The channels are constructed to be equivalent for both target states and provide
access to distinct decision regions while ensuring constant pointwise information ∀t ∈ T :
I(Vx, T = t) = 0.2.

Even though our ability to predict the target variable significantly depends on which
of the two indicated channel outputs we observe (blue or green in Figure 5, incomparable
informativity based on Definition 2), the measure Imin

∩ concludes full redundancy between
them I(V1; T) = Imin

∩ ({V1, V2}; T) = I(V2, T) = 0.2. We think this behavior is undesired
and, as discussed in the literature, caused by an underlying lack of distinguishing the same
information. To resolve this issue, we will present a representation of f -information in
Section 3.1, which allows the use of all (TPR,FPR)-pairs for each state of the target variable
to represent a distinct notion of uncertainty.
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κ(x, y) =
[

x 1− x− y y
y 1− x− y x

]
, where x ≤ y.

I(V1; T) = Imin
∩ ({V1, V2}; T) = I(V2, T) = 0.2

Figure 5. Example of the unexpected behavior of Imin
∩ : the dashed isoline indicates the pairs (x, y)

for which channel κ(x, y) = T → Vi results in pointwise information ∀t ∈ T : I(Vi, T = t) = 0.2
for a uniform binary target variable. Even though observing the output of both indicated example
channels (blue/green) provides significantly different abilities for predicting the target variable state,
the measure Imin

∩ indicates full redundancy.

2.3. Information Measures

This section discusses two generalizations of mutual information at discrete random
variables based on f -divergences and Rényi-divergences [24,25]. While mutual infor-
mation has interpretational significance in channel coding and data compression, other
f -divergences have their significance in parameter estimations, high-dimensional statistics,
and hypothesis testing ([7], p. 88), while Rényi-divergences can be found among others in
privacy analysis [8]. Finally, we introduce Bhattacharyya information for demonstrating
that it is possible to chain decomposition transformations in Section 3.6. All definitions in
this section only consider the case of discrete random variables (which is what we need for
the context of this work).

Definition 16 ( f -divergence [24]). Let f : (0, ∞)→ R be a function that satisfies the following
three properties:

• f is convex;
• f (1) = 0;
• f (z) is finite for all z > 0.

By convention, we understand that f (0) = limz→0+ f (z) and 0 f
( 0

0
)
= 0. For any such function

f and two discrete probability distributions P and Q over the event space X , the f -divergence for
discrete random variables is defined as shown in Equation (16).

Df (P ‖ Q) := ∑
x∈X

Q(x) f
(

P(x)
Q(x)

)
= EQ

[
f
(

P(X)

Q(X)

)]
(16)

Notation 6. Throughout this work, we reserve the name f for functions that satisfy the required
properties for an f -divergence of Definition 16.

An f -divergence quantifies a notion of dissimilarity between two probability distribu-
tions P and Q. Key properties of f -divergences are their non-negativity, their invariance
under bijective transformations, and them satisfying a data-processing inequality ([7], p. 89).
A list of commonly used f -divergences is shown in Table 2. Notably, the continuation for
a = 1 of both the Hellinger- and α-divergence results in the KL-divergence [26].

The generator function of an f -divergence is not unique since Df (z) = Df (z)+c(z−1) for
a real constant c ∈ R ([7], p. 90f). As a result, the considered α-divergence is a linear scaling
of the Hellinger divergence (DHa = a · Dα=a), as shown in Equation (17).

za − 1
a− 1

+ c(z− 1) = a · za − 1− a(z− 1)
a(a− 1)

for c = − a
a− 1

(17)
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Table 2. Commonly used functions for f -divergences.

Notation Name Generator Function

DKL Kullback-Leiber (KL)-divergence f (z) = z log z

DTV Total Variation (TV) f (z) = 1
2 |z− 1|

Dχ2 χ2-divergence f (z) = (z− 1)2

DH2 Squared Hellinger distance f (z) = (1−√z)2

DLC Le Cam distance f (z) = 1−z
2z+2

DJS Jensen–Shannon divergence f (z) = z log 2z
z+1 + log 2

z+1

DHa Hellinger-divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1
a−1

Dα=a α-divergence with a ∈ (0, 1) ∪ (1, ∞) f (z) = za−1−a(z−1)
a(a−1)

Definition 17 ( f -information [7]). An f -information is defined based on an f -divergence from
the joint distribution of two discrete random variables and the product of their marginals, as shown
in Equation (18).

I f (S; T) := Df

(
P(S,T) ‖ PS ⊗ PT

)
= ∑

(s,t)∈S×T
PS(s) · PT(t) · f

(
P(S,T)(s, t)

PS(s) · PT(t)

)

= ∑
t∈T

PT(t)

[
∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)] (18)

Definition 18 ( f -entropy). A notion of f -entropy for a discrete random variable is obtained from
the self-information of a variable Hf (T) := I f (T; T).

Notation 7. Using the KL-divergence results in the definition of mutual information and Shannon
entropy. Therefore, we use the notation IKL for mutual information (KL-information) and HKL (KL
entropy) for the Shannon entropy.

The remaining part of this section will define Rényi- and Bhattacharyya-information
to highlight that they can be represented as an invertible transformation of Hellinger-
information. This will be used in Section 3.6 to transform the decomposition of Hellinger-
information to a decomposition of Rényi- and Bhattacharyya-information.

Remark 6. We could similarly choose to represent Rényi-divergence as a transformation of the
α-divergence. A liner scaling of the considered f -divergence will, however, not affect our later results
(see Section 3.6).

Definition 19 (Rényi divergence [25]). Let P and Q be two discrete probability distributions
over the event space X , then Rényi-divergence Ra is defined as shown in Equation (19) for
a ∈ (0, 1) ∪ (1, ∞), and extended to a ∈ {0, 1, ∞} by continuation.

Ra(P ‖ Q) :=
1

a− 1
log
(
EQ

[(
P(X)

Q(X)

)a])

=
1

a− 1
log

⎛⎜⎝1 + (a− 1)EQ

⎡⎢⎣
(

P(X)
Q(X)

)a
− 1

a− 1

⎤⎥⎦
⎞⎟⎠

=
1

a− 1
log(1 + (a− 1)DHa(P ‖ Q))

(19)
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Notably, the continuation of Rényi-divergence for a = 1 also equals the
KL-divergence ([7], p. 116). Rényi-divergence can be expressed as an invertible transfor-
mation of the Hellinger-divergence (DHa ; see Equation (19)) [26].

Definition 20 (Rényi-information [7] ). Rényi-information is defined equivalent to f -information
as shown in Equation (20) and corresponds to an invertible transformation of Hellinger-
information (IHa).

IRa(S; T) := Ra

(
P(S;T) ‖ PS ⊗ PT

)
=

1
a− 1

log(1 + (a− 1)IHa(S; T))
(20)

Finally, we consider the Bhattacharyya distance (Definition 21), which is equiva-
lent to a linear scaling from a special case of Rényi-divergence (Equation (21)) [26]. It is
applied, among others, in signal processing [27] and coding theory [28]. The correspond-
ing information measure (Equation (22)) is like its distance, the scaling of a special case
of Rényi-information.

Definition 21 (Bhattacharyya distance [29] ). Let P and Q be two discrete probability distribu-
tions over the event space X , then the Bhattacharyya distance is defined as shown in Equation (21).

B(P ‖ Q) := − log

(
∑

x∈X

√
P(x)Q(x)

)

= − log

(
∑

x∈X
Q(x)

√
P(x)
Q(x)

)

= − log

⎛⎜⎝1− 0.5 ·EQ

⎡⎢⎣
(

P(X)
Q(X)

)0.5
− 1

0.5− 1

⎤⎥⎦
⎞⎟⎠

= − log
(
1− 0.5 · DH0.5(P ‖ Q)

)
= 0.5 · R0.5(P ‖ Q)

(21)

Definition 22 (Bhattacharyya-information). Bhattacharyya-information is defined equivalent to
f -information as shown in Equation (22).

IB(S; T) := B
(

P(S,T) ‖ PS ⊗ PT

)
= 0.5 · IR0.5(S; T) (22)

Example 2. Consider the channel T κ−→ S with T = {t1, t2} and S = {s1, s2}. While it will be
discussed in more detail in Section 3.1, Equation (23) already indicates that f -information can be
interpreted as the expected value of quantifying the boundary of the Neyman–Pearson region for an
indicator variable of each target state t ∈ T . Each state of a source variable s ∈ S corresponds to
one side/edge of this boundary as discussed in Section 2.1 and visualized in Figure 2. Therefore, the
sum over s ∈ S corresponds to the sum of quantifying each edge of the zonogon by some function,
which is only parameterized by the distribution of the indicator variable for t. This function satisfies
a triangle inequality (Corollary A1), and the total boundary is non-negative (Theorem 2 discussed
later). Therefore, we can vaguely think of pointwise f -information as quantifying the length of the
boundary of the Neyman–Pearson region or zonogon perimeter to give an oversimplified intuition.

I f (S; T) = ∑
t∈T

PT(t)

⎡⎢⎢⎢⎢⎣∑
s∈S

quantifies each zonogon edge︷ ︸︸ ︷
PS(s) · f

(
PS|T(s | t)

PS(s)

)⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

pointwise information of an indicator variable T = t

(23)
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Below is a stepwise computation of χ2-information ( f (z) = (z− 1)2) on a small example from this
interpretation for the setting of Equation (24).

κ = PS|T =

[
p(S = s1 | T = t1) p(S = s2 | T = t1)
p(S = s1 | T = t2) p(S = s2 | T = t2)

]
=

[
0.8 0.2

0.35 0.65

]
(24a)

PT =
[
p(T = t1) p(T = t2)

]
=
[
0.4 0.6

]
(24b)

Since |T | = 2, we compute the pointwise information for two indicator variables as shown in
Figure 6. Since each state s ∈ S corresponds to one edge of the zonogon, we compute them
individually. Notice that the quantification of each vector vsi can be expressed as a function that
is only parameterized by the distribution of the indicator variable. The total zonogon perimeter is
quantified as the sum of each of its edges, which equals pointwise information. In this particular
case, we obtain 0.292653 for the total boundary on the indicator of t1 and 0.130068 for the total
boundary on the indicator of t2. The expected information corresponds to the expected value of these
pointwise quantifications and provides the final result (Equation (25)).

Iχ2(S; T) = p(T = t1) · 0.292653 + p(T = t2) · 0.130068 = 0.195102 (25)
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κ := (T = t1)→ S =
[
�vs1 �vs2

]
=

[
0.80 0.20
0.35 0.65

]
indicator distribution t1:

[
0.4 0.6

]
PS(s1) =

[
0.4 0.6

]
·�vs1 = 0.53

quantification �vs1 : 0.53 ·
(

0.8
0.53 − 1

)2
= 0.137547

PS(s2) =
[
0.4 0.6

]
·�vs2 = 0.47

quantification �vs2 : 0.47 ·
(

0.2
0.47 − 1

)2
= 0.155106

total pointwise χ2-information of t1:

0.137547 + 0.155106 = 0.292653

(a) Pointwise information of indicator T = t1
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κ := (T = t2)→ S =
[
�vs1 �vs2

]
=

[
0.35 0.65
0.80 0.20

]
indicator distribution t2:

[
0.6 0.4

]
PS(s1) =

[
0.6 0.4

]
·�vs1 = 0.53

quantification �vs1 : 0.53 ·
(

0.35
0.53 − 1

)2
= 0.061132

PS(s2) =
[
0.6 0.4

]
·�vs2 = 0.47

quantification �vs2 : 0.47 ·
(

0.65
0.47 − 1

)2
= 0.068936

total pointwise χ2-information of t2:

0.061132 + 0.068936 = 0.130068

(b) Pointwise information of indicator T = t2

Figure 6. This example visualizes the computation of χ2-information by indicating its results on
the representation of zonogons of an indicator variable. (a) For the pointwise information of t1,
both vectors of the zonogon perimeter are quantified to the sum 0.292653. (b) For the pointwise
information of t2, both vectors of the zonogon perimeter are quantified to the sum of 0.130068. The
final χ2-information is their expected value Iχ2 (S; T) = 0.4 · 0.292653 + 0.6 · 0.130068 = 0.195102.

3. Decomposition Methodology

To construct a partial information decomposition in the framework of Williams and
Beer [1], we only have to define a cumulative redundancy measure (I∩) or cumulative loss
measure (I∪). However, doing this requires a meaningful definition of when information
is the same. Therefore, Section 3.1 presents an interpretation of f -information that enables
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a representation of distinct information. Specifically, we demonstrate that pointwise f -
information for a target state t ∈ T corresponds to the Neyman–Pearson region of its
indicator variable, which is quantified by its boundary (zonogon perimeter). This allows
for the interpretation that each distinct (TPR,FPR)-pair for predicting a state of the target
variable provides a distinct notion of uncertainty. This interpretation of f -information
is used in Section 3.2 to construct a partial information decomposition on the synergy
lattice under the Blackwell order for each state t ∈ T individually. These individual
decompositions are then combined into the final result. Therefore, we decompose specific
information based on the Blackwell order rather than using its minimum, like Williams
and Beer [1]. The resulting operational interpretation is discussed in Section 3.3. Section 3.4
studies the relation between decomposition lattices to derive the dual-decomposition of
any f -information on the redundancy lattice in the following Section 3.5 and prove its
correctness. We use the obtained decomposition for any f -information in Section 3.6 to
transform a Hellinger-information decomposition into a Rényi-information decomposition
while maintaining its non-negativity and an inclusion–exclusion relation. To achieve the
desired axioms and properties, we combine different aspects of the existing literature:

• Like Bertschinger et al. [9] and Kolchinsky [16], we base the decomposition on the Black-
well order and use this to obtain the operational interpretation of the decomposition.

• Like Williams and Beer [1] and related to Lizier et al. [18], Finn and Lizier [13],
and Ince [14], we perform a decomposition from a pointwise perspective, but only for
the target variable.

• In a similar manner to how Finn and Lizier [13] used probability mass exclusion to
differentiate distinct information, we use Neyman–Pearson regions for each state of a
target variable to differentiate distinct information.

• We propose applying the concepts about lattice re-graduations discussed by Knuth [19]
to PIDs to transform the decomposition of one information measure to another while
maintaining its consistency.

We extend Axiom 3 of Williams and Beer [1] as shown below, to allow binding any
information measure to the decomposition.

Axiom 3* (Self-redundancy). For a single source, redundancy I∩,∗ and information loss I∪,∗
correspond to information measure I∗ as shown below:

I∩,∗({Si}; T) = I∗(Si; T) and I∪,∗({Si}; T) = I∗(V; T)− I∗(Si; T) (26)

3.1. Representing f-Information

We begin with an interpretation of f -information, for which we define a pointwise
(indicator) variable π(T, t) that represents one state of the target variable (Equation (27a))
and construct its pointwise information channel (Definition 23). Then, we define a function
r f based on the generator function of an f -divergence for quantifying (half) the zono-
gon perimeter of each pointwise information channel (see Figure 2). These perimeter
quantifications are pointwise f -information.

Definition 23 ([Target] pointwise binary input channel). We define a target pointwise binary
input channel κ(S, T, t) from one state of the target variable t ∈ T to an information source S with
event space S = {s1, . . . , sm} as shown in Equation (27b).

π(T, t) :=

{
1 if T = t
0 otherwise

(27a)

κ(S, T, t) := π(T, t)→ S =

[
p(S = s1 | T = t) . . . p(S = sm | T = t)
p(S = s1 | T �= t) . . . p(S = sm | T �= t)

]
(27b)
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Definition 24 ([Target] pointwise f -information).

• We define a function r f as shown in Equation (28a) to quantify a vector, where 0 ≤ p, x, y ≤ 1.
• We define a target pointwise f -information function i f , as shown in Equation (28b), to quantify

half the zonogon perimeter for the corresponding pointwise channel Z(κ(S, T, t)).

r f
(

p,
[ x

y
])

:= (px + (1− p)y) · f
(

x
px + (1− p)y

)
(28a)

i f (p, κ) := ∑
�v∈κ

r f (p,�v) (28b)

Theorem 1 (Properties of r f ). For a constant 0 ≤ p ≤ 1, (1) the function r f (p,�v) is convex in �v,
(2) scales linearly in �v, (3) satisfies a triangle inequality in �v, (4) quantifies any vector of slope one
to zero, and (5) quantifies the zero vector to zero.

Proof.

1. The convexity of r f (p,�v) in �v is shown separately in Lemma A1 of Appendix A.
2. That r f (p, ��v) = �r f (p,�v) scales linearly in �v can directly be seen from Equation (28a).
3. The triangle inequality of r f (p,�v) in �v is shown separately in Corollary A1 of Ap-

pendix A.
4. A vector of slope one is quantified to zero r f (p,

[
�
�

]
) = � · f (1) = 0, since f (1) = 0 is

a requirement on the generator function of an f -divergence (Definition 16).
5. The zero vector is quantified to zero r f (p,

[
0
0
]
) = 0 · f

( 0
0
)
= 0 by the convention of

generator functions for an f -divergence (Definition 16).

The function r f provides the following properties to the pointwise information mea-
sure i f .

Theorem 2 (Properties of i f ). The pointwise information measure i f (1) maintains the ordering
relation of the Blackwell order for binary input channels and (2) is non-negative.

Proof.

1. That the function r f maintains the ordering relation of the Blackwell order on binary
input channels is shown separately in Lemma A2 of Appendix A (Equation (29a)).

2. The bottom element⊥BW =
[

1
1

]
consists of a single vector of slope one, which is quan-

tified to zero by Theorem 1 (Equation (29b)). The combination with Equation (29a)
ensures the non-negativity.

κ1 � κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2), (29a)

i f (p,⊥BW) = 0. (29b)

An f -information corresponds to the expected value of the target pointwise f -information
function defined above (Equation (30)). As a result, we can interpret f -information as the
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expected value of quantifying (half) the zonogon perimeters for the target pointwise
channels κ(S, T, t).

I f (S; T) = ∑
t∈T

PT(t) · i f (PT(t), κ(S, T, t))

= ∑
t∈T

PT(t) ·

⎡⎣ ∑
�v∈κ(S,T,t)

r f (PT(t),�v)

⎤⎦
= ∑

t∈T
PT(t) ·

[
∑
s∈S

PS(s) · f

(
PS|T(s | t)

PS(s)

)] (30)

3.2. Decomposing f-Information on the Synergy Lattice

With the representation of Section 3.1 in mind, we can define a non-negative partial
information decomposition for a set of visible variables V = {V1, . . . , Vn} about a target
variable T for any f -information. The decomposition is performed from a pointwise
perspective, which means that we decompose the pointwise measure i f on the synergy
lattice (A(V),�) for each t ∈ T . The pointwise synergy lattices are then combined using a
weighted sum to obtain the decomposition of I f .

We map each atom of the synergy lattice to the join of pointwise channels for its
contained sources.

Definition 25 (From atoms to channels). We define the channel corresponding to an atom
α ∈ A(V) as shown in Equation (31).

κ�(α, T, t) :=

{
⊥BW if α = ∅⊔

S∈α κ(S, T, t)) otherwise
(31)

Lemma 1. For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the
function κ� maintains the ordering of the synergy lattice under the Blackwell order as shown in
Equation (32).

α � β =⇒ κ�(β, T, t) � κ�(α, T, t) (32)

Lemma 1 is shown separately in Appendix C. The mapping from Definition 25 pro-
vides a lattice that can be quantified using pointwise f -information to construct a cumula-
tive loss measure for its decomposition using the Möbius inverse.

Definition 26 ([Target] pointwise cumulative and partial loss measures). We define the target
pointwise cumulative and partial loss functions as shown in Equations (33a) and (33b).

i∪, f (α, T, t) := i f (PT(t), κ(V, T, t))− i f (PT(t), κ�(α, T, t)) (33a)

Δi∪, f (α, T, t) := i∪, f (α, T, t)− ∑
β∈↓̇Sα

Δi∪, f (β, T, t) (33b)

The combined cumulative and partial measures are the expected value of their corre-
sponding pointwise measures. This corresponds to combining the pointwise decomposition
lattices by a weighted sum.

Definition 27 (Combined cumulative and partial loss measures). The cumulative loss measure
I∪, f is defined by Equation (34) and the decomposition result ΔI∪, f by Equation (35).

I∪, f (α; T) := ∑
t∈T

PT(t) · i∪, f (α, T, t) (34)
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ΔI∪, f (α; T) := ∑
t∈T

PT(t) · Δi∪, f (α, T, t)

= I∪, f (α; T)− ∑
β∈↓̇Sα

ΔI∪, f (β; T)
(35)

Theorem 3. The presented definitions for the pointwise and expected loss measures (i∪, f and I∪, f )
provide a non-negative PID on the synergy lattice with an inclusion–exclusion relation that satisfies
Axioms 1, 2, and 3* for any f -information measure.

Proof.

• Axiom 1: The measure i∪, f (Equation (33a)) is invariant to permuting the order of
sources in α, since the join operator of the zonogon order (

⊔
S∈α) is. Therefore, also

I∪, f satisfies Axiom 1.
• Axiom 2: The monotonicity of both i∪, f and I∪, f on the synergy lattice is shown

separately as Corollary A2 in Appendix C.
• Axiom 3*: For a single source, i∪, f equals the pointwise information loss by definition

(see Equations (26), (28b), and (33a)). Therefore, I∪, f satisfies Axiom 3*.
• Non-negativity: The non-negativity of Δi∪, f and ΔI∪, f is shown separately as Lemma A8

in Appendix C.

3.3. Operational Interpretation

From a pointwise perspective (|T | = 2), there always exists a dependency between the
sources for which the synergy of this state becomes zero. This dependence corresponds, by
definition, to the join of their channels. This is helpful for the operational interpretation in
the following paragraph since, individually, each pointwise synergy becomes fully volatile
to the dependence between the sources. There may not exist a dependency between the
sources for which the expected synergy becomes zero for |T | > 2. However, each decision
region that is quantified as synergetic becomes inaccessible at some dependence between
the sources.

The decomposition obtains the operational interpretation that, if a variable provides
pointwise unique information, then there exists a unique decision region for some t ∈ T
that this variable provides access to. Moreover, if a set of variables provides synergetic infor-
mation, then a decision region for some t ∈ T may become inaccessible if the dependence
between the variables changes. Due to the equivalence of the zonogon and Blackwell order
for binary input variables, these interpretations can also be transferred to a set of actions
a ∈ Ω and a pointwise reward function u(a, π(T, t)), which only depends on one state of
the target variable π(T, t) (see Section 2.1): If a variable provides unique information, then
it provides an advantage for some set of actions and pointwise reward function, while
synergy indicates that the advantage for some pointwise reward function is based on the
dependence between variables.

The implication of the interpretation does not hold in the other direction, which we
will also highlight in the example of I∪,TV in Section 4.1. Finally, the definition of the
Blackwell order through the chaining of channels (Equation (2)) highlights its suitability
for tracing the flows of information in Markov chains (see Section 4.2).

Remark 7. The operational interpretation can be strengthened further such that the implication
between accessible regions and partial information holds in both directions by revising Lemmas A1
and A2 with a strictly convex generator function to obtain κ1 � κ2 =⇒ i f (p, κ1) < i f (p, κ2).

3.4. Decomposition Duality

A non-negative decomposition on the synergy lattice raises the question about its dual-
decomposition on the redundancy lattice. Unfortunately, the definition of decomposition
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duality (Definition 15 [23]) does not specify the mapping between atoms to easily construct
dual-decompositions. Therefore, this section discusses how the redundancy and synergy
lattice are related by identifying operators that transform one lattice into the other. This
transformation can then be used to refine the definition of decomposition duality and,
correspondingly, transforms the cumulative measure between lattices.

Definition 28. We define two functions: The function Ξ : P(P1(V)) → P(P1(V)) provides
the atom with complement sources, and the function Ψ : P(P1(V)) → P(P1(V)) is the n-ary
Cartesian product. We indicate the i-th source of an atom as α[i] and indicate some variable within
the i-th source as xi.

Ξ(α) :=

⎧⎪⎨⎪⎩
∅ if α = {V}
{V} if α = ∅
{V \ {S} : S ∈ α} otherwise

Ψ(α) :=

{
{∅} if α = ∅
{{x1, . . . , xm} : x1 ∈ α[1], · · · , xm ∈ α[m]} otherwise, where m = |α|

(36)

Example 3. For an example of these functions, let V = {V1, V2, V3, V4} and α = {{V1}, {V2, V3}}:

Ξ(α) = {{{V2, V3, V4}, {V1, V4}}}
Ξ(Ξ(α)) = {{V1}, {V2, V3}} = α

Ψ(α) = {{V1, V2}, {V1, V3}}
Ψ(Ψ(α)) = {{V1}, {V1, V3}, {V2, V1}, {V2, V3}}

$ {{V1}, {V2, V1}, {V2, V3}} (since {V1} ⊆ {V1, V3})

$ {{V1}, {V2, V3}} $ α (since {V1} ⊆ {V2, V1})

Ξ(Ψ(Ψ(α))) = {{V2, V3, V4}, {V2, V4}, {V3, V4}, {V1, V4}}
∼= {{V2, V3, V4}, {V3, V4}, {V1, V4}} (since {V2, V4} ⊆ {V2, V3, V4})
∼= {{V2, V3, V4}, {V1, V4}} ∼= Ξ(α) (since {V3, V4} ⊆ {V2, V3, V4})

Lemma 2. The function Ψ(·) is a bijection on the redundancy lattice without the bottom element
(∅) that reverses its order. Let α, β ∈ A(V) \ {⊥RL}:

1. Ψ(Ψ(α)) $ α
2. α � β ⇐⇒ Ψ(β) � Ψ(α)

Lemma 3. The function Ξ(·) is a bijection that maintains the ordering of atoms between the
redundancy and synergy order. Let α, β ∈ A(V):

1. α = Ξ(Ξ(α))
2. α � β ⇐⇒ Ξ(α) � Ξ(β)

The proofs of Lemmas 2 and 3 are given separately in Appendix D.

Corollary 1. Without bottom elements, the redundancy (A(V) \ {⊥RL},�) and synergy lattice
(A(V) \ {⊥SL},�) are related, as shown below with α, β ∈ A(V) \ {⊥RL}:

α � β ⇐⇒ Ξ(Ψ(β)) � Ξ(Ψ(α)) (37a)

Ξ(Ψ(α � β)) ∼= Ξ(Ψ(α)) ∨ Ξ(Ψ(β)) (37b)

Ξ(Ψ(α � β)) ∼= Ξ(Ψ(α)) ∧ Ξ(Ψ(β)) (37c)

{Ξ(Ψ(β)) : β ∈↓R α} {∼=} ↑S Ξ(Ψ(α)) (37d)

{Ξ(Ψ(β)) : β ∈↑R α} {∼=} ↓S Ξ(Ψ(α)) (37e)
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Proof. Follows directly from Lemma 2 and 3.

Figure 7 visualizes the relations from the introduced operators to provide an intuition.
Applying the function Ψ to all atoms is equal to reversing the redundancy order, while
applying the function Ξ to all atoms is equal to swapping the ordering relation used
(synergy/redundancy order).

α

β Ξ(β)

Ξ(α)

�  

Ψ

Ξ

Ξ ◦Ψ ◦ Ξ

Ξ

Figure 7. Visualization of the functions Ψ and Ξ: The application of function Ψ is equal to reversing
the redundancy order, and the application of function Ξ is equal to swapping the ordering relation
used between the redundancy and synergy lattice.

With these definitions in place, we can refine the definition of decomposition duality:

Lemma 4 (Decomposition duality). A redundancy- and synergy-based information decomposi-
tion is pointwise dual if, for all α ∈ A(V) \ {⊥RL}:

Δi∩, f (α, T, t) = Δi∪, f (Ξ(Ψ(α)), T, t)

Δi∩, f (⊥RL, T, t) = 0 = Δi∪, f (⊥SL, T, t)
(38)

A redundancy- and synergy-based information decomposition is dual if, for all α ∈ A(V) \ {⊥RL}:

ΔI∩, f (α; T) = ΔI∪, f (Ξ(Ψ(α)); T)

ΔI∩, f (⊥RL; T) = 0 = ΔI∪, f (⊥SL; T)
(39)

The proof of Lemma 4 is shown separately in Appendix D. To convert a decomposition
from the synergy lattice into its dual-decomposition on to the redundancy lattice, the
following relation is particularly useful. It states that, on the synergy lattice, all atoms
are either in the up-set of Ξ(Ψ(α)) or in the down-set of an atom that corresponds to an
individual source within α.

Lemma 5. For α ∈ A(V) \ {⊥RL}:

A(V)\ ↑S Ξ(Ψ(α)) =
⋃

Sa∈α

↓S {Sa} (40)

Proof. When expanding the definition of up- and down-sets, it can directly be seen from
Lemma A9 that both sets provide an exclusive partitioning of all atoms.

↑S Ξ(Ψ(α)) ={β ∈ A(V) : (Ξ(Ψ(α)) � β)}⋃
Sa∈α

↓S {Sa} ={β ∈ A(V) : (∃Sa ∈ α. β � {Sa})}

(Ξ(Ψ(α)) � β)⇐⇒ ¬(∃Sa ∈ α. β � {Sa}) (by Lemma A9)

(41)
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Figure 8 summarizes and visualizes the required relations for the following transforma-
tion of the cumulative measure: (i) The bottom elements of all lattices are mapped to each
other and quantified to zero. (ii) The function Ψ reverses the redundancy lattice (β $ Ψ(α)
such that α $ Ψ(β)) to relate the down-set of α to the up-set of β while ignoring the bottom
element. The function Ξ captures the relation between both orderings (α′ ∼= Ξ(β) such that
β $ Ξ(α′)), to relate the up-set of β on the redundancy lattice to the up-set of α′ on the syn-
ergy lattice. This provides the desired mapping from the down-set of α on the redundancy
lattice to the up-set of α′ on the synergy lattice for duality. Alternatively, we could first
transform the down-set of α on the redundancy to the down-set of β′ = Ξ(α) on the synergy
lattice, then reverse the synergy order and obtain the same result. (iii) Lemma 5 states that
all atoms on the synergy lattice are either in the up-set of Ξ(Ψ(α)) or in the down-set of
{Sa} with Sa ∈ α. The example α = {S3, S12} is visualized in Figure 8, and we encourage

the reader to view another example such as α = {S13} Ψ−→ {S1, S3} Ξ−→ {S12, S23}.

{S123}

{S12} {S13} {S23}

{S12, S13} {S12, S23} {S13, S23}

{S1} {S2} {S3}{S12, S13, S23}

{S1, S23} {S2, S13} {S3, S12}

{S1, S2} {S1, S3} {S2, S3}

{S1, S2, S3}

∅

Redundancy
lattice

∅

{S1} {S2} {S3}

{S1, S2} {S1, S3} {S2, S3}

{S12} {S13} {S23} {S1, S2, S3}

{S3, S12} {S2, S13} {S1, S23}

{S12, S13} {S12, S23} {S13, S23}

{S12, S13, S23}

{S123}

Synergy
lattice

Ψ

Ξ

du
al

0

Figure 8. Visualization of lattice duality and Lemma 5. We abbreviate the notation of sources
within this figure by listing the contained visible variables as source index (S12 = {V1, V2}).
(i) All bottom elements are mapped to each other and quantified to zero. (ii) To identify the dual
for α = {S3, S12} from the redundancy lattice, we first apply the transformation Ψ(α) $ {S13, S23}
and, then, Ξ(Ψ(α)) ∼= {S1, S2}. (iii) Ignoring the bottom elements, the down-set of α on the redun-
dancy lattice corresponds to the up-set of Ξ(Ψ(α)) on the synergy lattice for duality (gray areas).
(iv) Lemma 5 states that, on the synergy lattice, exactly those atoms that are not in the up-set of
Ξ(Ψ({S3, S12})) must be in the down-set of either {S3} or {S12}.

With these relations in place, we can construct dual-decompositions and prove
their correctness.

Lemma 6. The pointwise dual-decomposition for the redundancy lattice of a loss measure on the
synergy lattice is defined by:

i∩, f (α, T, t) :=

{
0 if α = ∅
i∪, f (�SL, T, t)−∑β∈P1(α)

(−1)|β|−1i∪, f (β, T, t) otherwise
(42)
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The proof of Lemma 6 is shown separately in Appendix D. This section discussed the
relation between four decomposition lattices, which are the redundancy and synergy lattice,
as well as their reversed counterparts. Additionally, we demonstrated how this relation can
be used to transform a cumulative decomposition measure between them. Decomposition
duality enforces each lattice to be consistent with its set-theoretic interpretation. The
function Ψ corresponds to taking the set-theoretic complement on the redundancy lattice
and, thus, reflects on the cumulative measure by subtracting it from the top atom. The
function Ξ corresponds to the relation between the union and intersection and, thus,
introduces an inclusion–exclusion principle between their cumulative measures.

3.5. Decomposing f-Information on the Redundancy Lattice

Using the results from Section 3.4, we can now convert the decomposition of Section 3.2
to the redundancy lattice. The conversion can be applied to both the expected or pointwise
measure. The partial contributions (Δi∩, f and ΔI∩, f ) are obtained from the Möbius inverse.

Lemma 7 (Dual-decomposition on the redundancy lattice). The definitions of Equation (43)
correspond to the dual-decomposition of Definition 26.

i∩, f (α, T, t) =

{
0 if α = ∅

∑β∈P1(α)
(−1)|β|−1i f (PT(t), κ�(β, T, t)) otherwise

(43a)

I∩, f (α; T) = ∑
t∈T

PT(t) · i∩, f (α, T, t) = I f (V; T)− ∑
β∈P1(α)

(−1)|β|−1 I∪, f (β; T) (43b)

Proof. The duality of the pointwise measure is obtained from Lemma 6 and Definition 26.
The duality of the pointwise measure implies the duality of the combined measure.

The function i f (PT(t), κ�(α, T, t)) quantifies the convex hull/blackwell join of the
Neyman–Pearson regions of its sources and represents a notion of pointwise union in-
formation about the target state t ∈ T . It is used in Equation (33a) to define a pointwise
loss measure for the synergy lattice by subtracting it from the total information. As ex-
pected, we can see that the corresponding dual-decomposition on the redundancy lattice
enforces an inclusion–exclusion relation between our notions of pointwise union informa-
tion (i f (PT(t), κ�(α, T, t))) and pointwise intersection information (i∩, f (α, T, t)).

Theorem 4. The dual-decomposition as defined by Equation (43) provides a non-negative PID,
which satisfies an inclusion–exclusion relation and the axioms of Williams and Beer [1] on the
redundancy lattice for any f -information.

Proof.

• Axiom 1: The measure i∩, f is invariant to permuting the order of sources in α, since
the join operator of the zonogon order (

⊔
S∈α) is. Therefore, also, I∩, f satisfies Axiom 1.

• Non-negativity: The non-negativity of Δi∩, f is obtained from Lemma 7 and Theorem 3
as shown in Equation (44). The non-negativity of the pointwise measure implies the
non-negativity of the combined measure ΔI∩, f .

∀α ∈ A(V). Δi∩, f (α, T, t) =

{
0 ≥ 0 if α = ⊥RL

Δi∪, f (Ξ(Φ(α)), T, t) ≥ 0 otherwise
(44)

• Axiom 2: Since the cumulative measures i∩, f and I∩, f correspond to the sum of partial
contributions in their down-set, the non-negativity of partial information implies the
monotonicity of the cumulative measures.

• Axiom 3*: For a single source, I∩, f equals f -information by definition (see Equation (30)).
Therefore, I∩, f satisfies Axiom 3*.
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The operational interpretation of Section 3.3 is maintained since the partial contribu-
tions are identical between both lattices.

Remark 8. The definitions of Equations (34) and (43) satisfy the desired property of Bertschinger
et al. [9], who argued that any sensible measure for unique and redundant information should only
depend on the marginal distribution of sources.

Remark 9. As discussed before [20], it is possible to further split redundancy into two components
for extracting the pointwise meet under the Blackwell order (zonogon intersection, first component).
The second component of redundancy as defined above contains decision regions that are part of
the convex hull, but not the individual channel zonogons (discussed as shared information in [20]).
By combining Equation (43) and Lemma A7, we obtain that both components of this split for
redundancy are non-negative.

3.6. Decomposing Rényi-Information

Since Rényi-information is an invertible transformation of Hellinger-information and
α-information, we argue that their decompositions should be consistent. We propose to
view the decomposition of Rényi-information as a transformation from an f -information
and demonstrate the approach by transferring the Hellinger-information decomposition
to a Rényi-information decomposition. Then, we demonstrate that the result is invariant
to a linear scaling of the considered f -information, such that the transformation from
α-information provides identical results. The obtained Rényi-information decomposition is
non-negative and satisfies the three axioms proposed by Williams and Beer [1] (see below).
However, its inclusion–exclusion relation is based on a transformed addition operator. For
transforming the decomposition, we consider Rényi-information to be a re-graduation of
Hellinger-information, as shown in Equation (45).

va(z) :=
1

a− 1
log(1 + (a− 1)z) (45a)

IRa(S; T) = va(IHa(S; T)) (45b)

To maintain consistency when transforming the measure, we also have to transform its
operators ([19], p. 6 ff.):

Definition 29 (Addition of Rényi-information). We define the addition of Rényi-information
⊕a with its corresponding inverse function (a by Equation (46).

x⊕a y := va(v−1
a (x) + v−1

a (y)) =
log
(

e(a−1)x + e(a−1)y − 1
)

a− 1
(46a)

x(a y := va(v−1
a (x)− v−1

a (y)) =
log
(

e(a−1)x − e(a−1)y + 1
)

a− 1
(46b)

To transform a decomposition of the synergy lattice, we define the cumulative loss
measures as shown in Equation (47) and use the transformed operators when computing
the Möbius inverse (Equation (48a)) to maintain consistency in the results (Equation (48b)).

Definition 30. The cumulative and partial Rényi-information loss measures are defined as
transformations of the cumulative and partial Hellinger-information loss measures, as shown in
Equations (47) and (48).

I∪,Ra(α; T) := va(I∪,Ha(α; T)) (47)
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ΔI∪,Ra(α; T) := I∪,Ra(α; T) (a ∑
β∈↓̇Sα

ΔI∪,Ra(β; T) where: + := ⊕a (48a)

= va(ΔI∪,Ha(α; T)) (48b)

Remark 10. We show in Lemma A11 of Appendix E that re-scaling the original f -information
does not affect the resulting decomposition or transformed operators. Therefore, transforming a
Hellinger-information decomposition or a α-information decomposition to a Rényi-information
decomposition provides identical results.

The operational interpretation presented in Section 3.2 is similarly applicable to partial
Rényi-information (ΔI∪,Ra , Equation (48b)), since the function va satisfies va(0) = 0 and
x ≤ 0 =⇒ 0 ≤ va(x).

Theorem 5. The presented definitions for the cumulative loss measure I∪,Ra provide a non-negative
PID on the synergy lattice with an inclusion–exclusion relation under the transformed addition
(Definition 29) that satisfies Axioms 1, 2, and 3* for any Rényi-information measure.

Proof.

• Axiom 1: I∪,Ra(α; T) is invariant to permuting the order of sources, since I∪,Ha(S; T)
satisfies Axiom 1 (see Section 3.2).

• Axiom 2: I∪,Ra(α; T) satisfies monotonicity, since I∪,Ha(S; T) satisfies Axiom 2 (see
Section 3.2) and the transformation function va is monotonically increasing for
a ∈ (0, 1) ∪ (1, ∞).

• Axiom 3*: Since I∪,Ha satisfies Axiom 3* (see Section 3.2, Equations (45) and (47)), I∪,Ra

satisfies the self-redundancy axiom by definition, however, at a transformed operator:
I∪,Ra({Si}; T) = IRa({V}; T)(a IRa({Si}; T).

• Non-negativity: The decomposition of I∪,Ra is non-negative, since ΔI∪,Ha is non-
negative (see Section 3.2), the Möbius inverse is computed with transformed operators
(Equation (48b)) and the function va satisfies x ≤ 0 =⇒ 0 ≤ va(x).

Remark 11. To obtain an equivalent decomposition of Rényi-information on the redundancy lattice,
we can correspondingly transform the dual-decomposition from the redundancy lattice of Hellinger-
information as shown in Equation (49). The resulting decomposition will satisfy the non-negativity,
the axioms of Williams and Beer [1], and an inclusion–exclusion relation under the transformed
operators (Definition 29) for the same reasons described above from Theorem 4.

I∩,Ra(α; T) := va(I∩,Ha(α; T)) (49a)

ΔI∩,Ra(α; T) := va(ΔI∩,Ha(α; T)) (49b)

Remark 12. The relation between the redundancy and synergy lattice can be used for the definition
of a bi-valuation [19] in calculations as discussed in [20]. This is also possible for Rényi-information
at transformed operators.

When taking the limit of Rényi-information for a → 1, we obtain mutual information
(IKL). Since mutual information is also an f -information, we expect its operators in the
Möbius inverse to be addition. This is indeed the case (Equation (50)), and the measures
will be consistent.

lim
a→1

x⊕a y = x + y

lim
a→1

x(a y = x− y
(50)
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Finally, the decomposition of Bhattacharyya-information can be obtained by re-scaling the
decomposition of Rényi-information at a = 0.5, which causes another transform of the
addition operator for the inclusion–exclusion relation.

4. Evaluation

A comparison of the proposed decomposition with other methods of the literature can
be found in [20] for mutual information. Therefore, this section first compares different
f -information measures for typical decomposition examples and discusses the special case
of total variation (TV)-information to explain its distinct behavior. Since we can see larger
differences between measures in more complex scenarios, we compare the measures by
analyzing the information flows in a Markov chain. We provide the implementation used
for both dual-decompositions of f-information and the examples used in this work in [30].

4.1. Partial Information Decomposition
4.1.1. Comparison of Different f-Information Measures

We use the examples discussed by Finn and Lizier [13] to compare different f -
information decompositions and add a generic example from [20]. All probability dis-
tributions used and their abbreviations can be found in Appendix F. We normalize the
decomposition results to the f -entropy of the target variable for the visualization in Figure 9.
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Figure 9. Comparison of different f -information measures normalized to the f -entropy of the target
variable. All distributions are shown in Appendix F and correspond to the examples of [13,20]. The
example name abbreviations are listed below in Table A1. The measures behave mostly similarly since
the decompositions follow an identical structure. However, it can be seen that total variation attributes
more information to being redundant than other measures and appears to behave differently in the
generic example since it does not attribute any partial information to the first variable or their synergy.

Since all results are based on the same framework, they behave similarly for examples
that analyze a specific aspect of the decomposition function (XOR, Unq, PwUnq, RdnErr,
Tbc, AND). However, it can be observed that the decomposition of total variation (TV)
appears to differ from others: (1) In all examples, total variation attributes more information
to being redundant than other measures. (2) In the generic example, total variation is
the only measure that does not attribute any information to being unique to variable
one or synergetic. We discuss the case of total variation in Section 4.1.2 to explain its
distinct behavior.
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We visualize the zonogons for the generic example in Figure A2, which shall highlight
that the implication of the operational interpretation does not hold in the other direction: the
existence of partial information implies an advantage for the expected reward towards some
state of the target variable, but an advantage for the expected reward towards some state of
the target variable does not imply partial information in the example of total variation.

4.1.2. The Special Case of Total Variation

The behavior of total variation appears different compared to other f -information
measures (Figure 9). This is due to total variation measuring the perimeter of a zonogon
such that the result corresponds to a linear scaling of the maximal (Euclidean) height h∗

that the zonogon reaches above the diagonal, as visualized in Figure 10.
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Figure 10. Visualization of the maximal (Euclidean) height h∗ at point P∗ that a zonogon (blue)
reaches above the diagonal.

Remark 13. From a cost perspective, the height h∗ can be interpreted as the performance evaluation
of the optimal decision strategy (symmetric point to P∗ in the lower zonogon half) for a prediction T̂

with minimal expected cost at the cost ratio Cost(T=t,T̂ �=t)−Cost(T=t,T̂=t)
Cost(T �=t,T̂=t)−Cost(T �=t,T̂ �=t)

= 1−PT(t)
PT(t)

(see Equation
(8) of [31]) for each target state individually.

Lemma 8.

(a) The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height
h∗ that the corresponding zonogon reaches above the diagonal, as visualized in Figure 10
(Equation (51a)).

(b) For a non-empty set of pointwise channels A, pointwise total variation iTV quantifies the join
element to the maximum of its individual channels (Equation (51b)).

(c) The loss measure i∪,TV quantifies the meet for a set of sources on the synergy lattice to their
minimum (Equation (51c)).

iTV(p, κ) =
1− p

2 ∑
v∈κ

|vx − vy| = (1− p)
h∗√

2
(51a)

iTV(p,
⊔

κ∈A

κ) = max
κ∈A

iTV(p, κ) (51b)

i∪,TV(
∧

α∈A

α, T, t) = min
α∈A

i∪,TV(α, T, t) (51c)

Proof. The proof of the first two statements (Equations (51a) and (51b)) is provided sepa-
rately in Appendix G, which imply the third (Equation (51c)) by Definition 26.

Quantifying the meet element on the synergy lattice to the minimum has the following
consequences for total variation: (1) It attributes a minimum amount of synergy, and
therefore more information to redundancy than other measures. (2) For each state of the
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target, at most one variable can provide unique information. In the case of |T | = 2, the
pointwise channels are symmetric (see Equation (6)), such that the same variable provides
the maximal zonogon height both times. This is the case in the generic example of Figure 9,
and the reason why at most one variable can provide unique information in this setting.
However, beyond binary targets (|T | > 2), both variables may provide unique information
at the same time since different sources can provide the maximal zonogon height for
different target states (see the later example in Figure 11).
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Figure 11. Analysis of the Markov chain information flow (Equation (A47)). Visualized results for
the information measures: KL, TV, and χ2. The remaining results (H2-, LC-, and JS-information) can
be found in Figure A3.

Remark 14. Using the pointwise minimum on the synergy lattice results in a similar struc-
ture to the proposed measure of Williams and Beer [1]. However, TV-information is based on
a different pointwise measure iTV, which displays the same behavior (Equation (51b)), unlike
pointwise KL-information.
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4.2. Information Flow Analysis

The differences between f -information measures in Section 4.1 appear more visible in
complex scenarios. Therefore, this section compares different measures in the information
flow analysis of a Markov chain.

Consider a Markov chain M1 → M2 → · · · → M5, where Mi = (Xi, Yi) is the joint
distribution of two variables. Assume that we are interested in state three, and thus, define
T = M3 as the target variable. Using the approach described in Section 3, we can compute
an information decomposition for each state Mi of the Markov chain with respect to the
target. Now, we are additionally interested in how the partial information decomposition
from stage Mi propagates into the next Mi+1, as visualized in Figure 11.

Definition 31 (Partial information flow). The partial information flow of an atom α ∈ A(Mi)
into the atom β ∈ A(Mi+1) quantifies the redundancy between the partial contributions of their
respective decomposition lattices.

Notation 8. We use the notation I◦, f with ◦ ∈ {∪,∩} to refer to either the loss measure I∪, f or
redundancy measure I∩, f . The same applies to the functions J◦→◦, f and JΔ→◦, f of Equation (52).

Let α ∈ A(Mi) and β ∈ A(Mi+1), then we compute information flows equivalently
on the redundancy or synergy lattice as shown in Equation (52). When using a redun-
dancy measure ◦ = ∩, then the strict down-set of ↓̇◦α refers to the strict down-set on
its redundancy lattice (A(Mi),�), and when using a loss measure ◦ = ∪, then the strict
down-set ↓̇◦α refers to the strict down-set on its synergy lattice (A(Mi),�). We obtain the
intersection of cumulative measures by quantifying their meet, which is on both lattice
equivalent to their union of sources (J◦→◦, f , Equation (52a)). To obtain how much of the
partial contribution of α can be found in the cumulative measure of β (JΔ→◦, f ), we remove
the contributions of its down-set (↓̇◦α on the lattice for A(Mi), see Equation (52b)). To
finally obtain the flow from the partial contribution of α to the partial contribution of β
(JΔ→Δ, f ), we similarly remove the contributions of the down-set of β (↓̇◦β on the lattice for
A(Mi+1), see Equation (52c)). The approach can be extended for tracing information flows
over multiple steps; however, we will only trace one step in this example.

J◦→◦, f (α, β, T) := I◦, f (α ∪ β; T) (52a)

JΔ→◦, f (α, β, T) := J◦→◦, f (α, β, T)− ∑
γ∈↓̇◦α

JΔ→◦, f (γ, β, T) (52b)

JΔ→Δ, f (α, β, T) := JΔ→◦, f (α, β, T)− ∑
γ∈↓̇◦β

JΔ→Δ, f (α, γ, T) (52c)

Remark 15. The resulting partial information flows are equivalent (dual) between the redundancy
and loss measure, except for the bottom element since their functionality differs: The flow from or to
the bottom element on the redundancy lattice is always zero. In contrast, the flow from or to the
bottom element on the synergy lattice quantifies the information gained or lost in the step.

Remark 16. The information flow analysis of Rényi- and Bhattacharyya-information can be ob-
tained as a transformation of the information flow from Hellinger-information. Alternatively, the
information flow can be computed directly using Equation (52) under the corresponding definition
of addition and subtraction for the information measure used.

We randomly generate an initial distribution and each row of a transition matrix under
the constraint that at least one value shall be above 0.8 to avoid an information decay
that is too rapid through the chain. The specific parameters of the example are shown in
Appendix H. The event spaces used are X = {0, 1, 2} and Y = {0, 1} such that |Mi| = 6.
We construct a Markov chain of five steps with the target T = M3 and trace each partial
information for one step using Equation (52). We visualized the results for KL-, TV-, and
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χ2-information in Figure 11, and the results for H2-, LC-, and JS-information in Figure A3
of Appendix H.

All results display the expected behavior that the information that Mi provides about
M3 increases for 1 ≤ i ≤ 3 and decreases for 3 ≤ i ≤ 5. The information flow results of KL-,
H2-, LC-, and JS-information are conceptually similar. Their main differences appear in the
rate at which the information decays and, therefore, how much of the total information
we can trace. In contrast, the results of TV- and χ2-information display different behavior,
as shown in Figure 11: TV-information indicates significantly more redundancy, and χ2-
information displays significantly more synergy than the other measures. Additionally,
the decomposition of TV-information contains fever information flows. For example, it
is the only analysis that does not show any information flow from M2 into the unique
contribution of Y3 or from M2 into the synergy of (X3, Y3). This demonstrates that the same
decomposition method can obtain different behaviors from different f -divergences.

5. Discussion

Using the Blackwell order to construct pointwise lattices and to decompose pointwise
information is motivated from the following three aspects:

• All information measures in Section 2.3 are the expected value of the pointwise informa-
tion (quantification of the Neyman–Pearson region boundary) for an indicator variable
of each target state. Therefore, we argue for acknowledging the “pointwise nature” [13]
of these information measures and to decompose them accordingly. A similar argument
was made previously by Finn and Lizier [13] for the case of mutual information and
motivated their proposed pointwise partial information decomposition.

• The Blackwell order does not form a lattice beyond indicator variables since it does not
provide a unique meet or join element for |T | > 2 [17]. However, from a pointwise
perspective, the informativity (Definition 2) provides a unique representation of
union information. This enables separating the definition of redundant, unique,
and synergetic information from a specific information measure, which then only
serves for its quantification. We interpret these observations as an indication that
the Blackwell order should be used to decompose pointwise information based on
indicator variables rather than decomposing the expected information based on the full
target distribution.

• We can consider where the alternative approach would lead, if we decomposed
the expected information from the full target distribution using the Blackwell
order: the decomposition would become identical to the method of Bertschinger
et al. [9] and Griffith and Koch [10]. For bivariate examples (|V| = 2), this de-
composition [9,10] is non-negative and satisfies an additional property (identity,
proposed by Harder et al. [5]). However, the identity property is inconsistent [32]
with the axioms of Williams and Beer [1] and non-negativity for |V| > 2. This causes
negative partial information when extending the approach to |V| > 2. The identity
property also contradicts the conclusion of Finn and Lizier [13] from studying Kelly
Gambling that, “information should be regarded as redundant information, regardless
of the independence of the information sources” ([13], p. 26). It also contradicts our in-
terpretation of distinct information through distinct decision regions when predicting
an indicator variable for some target state. We do not argue that this interpretation
should be applicable to the concept of information in general, but acknowledge that
this behavior seems present in the information measures studied in this work and
construct their decomposition accordingly.

Our critique for the decomposition measure of Williams and Beer [1] focuses on
the implication that a less informative variable (Definition 2) about t ∈ T provides less
pointwise information (I(S; T = t), Equation (15a)): κ(S1, T, t) � κ(S2, T, t) =⇒ I(S1; T =
t) ≤ I(S2; T = t). This implication does not hold in the other direction. Therefore,
equal pointwise information does not imply equal informativity and, thus, does not mean
being redundant.
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We chose to define a notion of pointwise union information based on the join of the
Blackwell order since it leads to a meaningful operational interpretation: the convex hull
of the pointwise Neyman–Pearson regions is always a subset of their joint distribution.
Moreover, it is possible to construct joint distributions for which each individual decision
region outside the convex hull becomes inaccessible, even if there may not exist one unique
joint distribution at which all synergetic regions are lost simultaneously. This volatility due
to the dependence between variables appears suitable for a notion of synergy. Similarly, the
resulting unique information appears suitable since it ensures that a variable with unique
information must provide access to some additional decision region. Finally, the obtained
unique and redundant information is sensible [9] since it only depends on the marginal
distributions with the target. The operational interpretation can be strengthened further
such that the implication between accessible regions and partial information holds in both
directions by revising Lemmas A1 and A2 with a strictly convex generator function.

We perform the decomposition on a pointwise lattice using the Blackwell join since it
is possible to represent f -information as the expected value of quantifying the Neyman–
Pearson region boundary (zonogon perimeter) for indicator variables (pointwise channels).
Since the pointwise measures satisfy a triangle inequality, we mentioned the oversimplified
intuition of pointwise f -information as the length of the zonogon perimeter. Correspond-
ingly, if we identified an information measure that behaved more like the area of the
zonogon (which could also maintain their ordering), then we would need to decompose it
on a pointwise lattice using the Blackwell meet to achieve non-negativity. We assume that
most information measures behave more similar to quantifying the boundary length rather
than its area, since the boundary segments can directly be obtained from the conditional
probability distribution and do not require an actual construction from the likelihood-
ratio test.

In the literature, PIDs have been defined based on different ordering relations [16],
the Blackwell order being only one of them. We think that this diversity is desirable since
each approach provides a different operational interpretation of redundancy and synergy.
For this reason, we wonder if obtaining a non-negative decomposition with the inclusion–
exclusion relation for other ordering relations was possible when transferring them to a
pointwise perspective or from mutual information to other information measures.

Studying the relations between different information measures for the same decompo-
sition method may provide further insights into their properties, as demonstrated by the
example of total variation in Section 4.2. The ability to decompose different information
measures is also a necessity to apply the method in a variety of areas, since each informa-
tion measure can then provide the operational meaning within its respective domains. To
ensure consistency between related information measures, we allowed the re-definition of
information addition, as demonstrated in the example of Rényi-information in Section 3.6,
which also opens new possibilities for satisfying the inclusion–exclusion relation.

There is currently no universally accepted definition of conditional Rényi information.
Assuming that IRa(T; Si | Sj) should capture the information that Si provides about T
when already knowing the information from Sj, then one could propose that this quantity
should correspond to the according partial information contributions (unique/synergetic)
and, thus, the definition of Equation (53).

With this in mind, it is also possible to define, model, decompose, and trace Transfer
Entropy [33], used in the analysis of complex systems, for each presented information
measure with the methodology of Section 4.2.

IRa(T; Si | Sj) := IRa(T; Si, Sj)( IRa(T; Sj) (53)

Finally, studying the corresponding definitions for continuous random variables and
identifying suitable information measures for specific applications would be interesting
directions for future work.
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6. Conclusions

In this work, we demonstrated a non-negative PID in the framework of Williams and
Beer [1] for any f -information with practical operational interpretation and the conversion
of measures between decomposition lattices. We demonstrated that the decomposition of
f -information can be used to obtain a non-negative decomposition of Rényi-information,
for which we re-defined the addition to demonstrate that its results satisfy an inclusion–
exclusion relation. Finally, we demonstrated how the proposed decomposition method
can be used for tracing the flow of information through Markov chains and how the
decomposition obtains different properties depending on the chosen information measure.
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Appendix A. Quantifying Zonogon Perimeters

Lemma A1. If the function f is convex, then the function r f (p,�v) as defined in Equation (28a) is
convex in its second argument �v ∈ [0, 1]2 for a constant p ∈ [0, 1].

Proof. We use the following definitions for abbreviating the notation. Let 0 ≤ t ≤ 1 and
�vi =

[ xi
yi

]
:

a1 := x1 p + y1(1− p)

a2 := x2 p + y2(1− p)

b1 :=
ta1

ta1 + (1− t)a2

b2 :=
(1− t)a2

ta1 + (1− t)a2

The case of ai = 0 is handled by the convention that 0 · f
( 0

0
)
= 0. Therefore, we can assume

that ai �= 0 and use 0 ≤ b1 ≤ 1 with b2 = 1− b1 to apply the definition of convexity on the
function f :

r f

(
p,
[

tx1+(1−t)x2
ty1+(1−t)y2

])
= (ta1 + (1− t)a2) · f

(
tx1 + (1− t)x2

ta1 + (1− t)a2

)
= (ta1 + (1− t)a2) · f

(
b1

x1

a1
+ b2

x2

a2

)
≤ (ta1 + (1− t)a2) ·

(
b1 f
(

x1

a1

)
+ b2 f

(
x2

a2

))
(by convexity of f )

= ta1 · f
(

x1

a1

)
+ (1− t)a2 · f

(
x2

a2

)
= t · r f

(
p,
[ x1

y1

])
+ (1− t) · r f

(
p,
[ x2

y2

])

Corollary A1. For �v1,�v2, (�v1 +�v2) ∈ [0, 1]2 and a constant p ∈ [0, 1], the function r f (p,�v) as
defined in Equation (28a) satisfies a triangle inequality on its second argument: r f (p,�v1 +�v2) ≤
r f (p,�v1) + r f (p,�v2).
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Proof.

r f (p, ��v1 + (1− �)�v2) ≤ �r f (p,�v1) + (1− �)r f (p,�v2) (be Lemma A1)

r f (p, 0.5(�v1 +�v2)) ≤ 0.5
(

r f (p,�v1) + r f (p,�v2)
)

(let � = 0.5)

r f (p,�v1 +�v2) ≤ r f (p,�v1) + r f (p,�v2) (by r f (p, ��v) = �r f (p,�v))

Lemma A2. For a constant p ∈ [0, 1], the function i f maintains the ordering relation from the
Blackwell order on binary input channels: κ1 � κ2 =⇒ i f (p, κ1) ≤ i f (p, κ2).

Proof. Let κ1 be represented by a 2× n matrix and κ2 by a 2×m matrix. By the definition
of the Blackwell order (κ1 � κ2, Equation (2)), there exists a stochastic matrix λ such that
κ1 = κ2 · λ. We use the notation κ2[:, i] to refer to the ith column of matrix κ2 and indicate
the element at row i ∈ {1..m} and column j ∈ {1..n} of λ by λ[i, j]. Since λ is a valid (row)
stochastic matrix of dimension m× n, its rows sum to one ∀i ∈ {1..m}. ∑n

j=1 λ[i, j] = 1.

i f (p, κ1) =
n

∑
j=1

r f (p, κ1[:, j]) (by Equation (28b))

=
n

∑
j=1

r f (p,
m

∑
i=1

κ2[:, i]λ[i, j]) (by Equation (2))

≤
n

∑
j=1

m

∑
i=1

r f (p, κ2[:, i]λ[i, j]) (by Corollary A1)

=
n

∑
j=1

m

∑
i=1

λ[i, j]r f (p, κ2[:, i]) (by r f (p, ��v) = �r f (p,�v))

=
m

∑
i=1

r f (p, κ2[:, i]) (by
n

∑
j=1

λ[i, j] = 1)

= i f (p, κ2) (by Equation (28b))

Lemma A3. Consider two non-empty sets of binary input channels with equal cardinality (|A| = |B|)
and a constant p ∈ [0, 1]. If the Minkowski sum for the zonogons of channels in A is a subset of
the Minkowski sum for the zonogons of channels in B, then the sum of pointwise information for
the channels in A is less than the sum of pointwise information for the channels in B as shown in
Equation (A1).

∑
κ∈A

Z(κ) ⊆ ∑
κ∈B

Z(κ) =⇒ ∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ) (A1)

Proof. Let n = |A| = |B|. We use the notation A[i] with 1 ≤ i ≤ n to indicate the channel
κi within the set A.
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n

∑
i=1

Z(A[i]) ⊆
n

∑
i=1

Z(B[i])

Z
([

A[1] . . . A[n]
])
⊆ Z

([
B[1] . . . B[n]

])
(by Equation (4))

Z
(

1
n
·
[
A[1] . . . A[n]

])
⊆ Z

(
1
n
·
[
B[1] . . . B[n]

])
(scale to sum (1, 1))

i f

(
p,

1
n
·
[
A[1] . . . A[n]

])
≤ i f

(
p,

1
n
·
[
B[1] . . . B[n]

])
(by Equation (5), Lemma A2)

n

∑
i=1

i f

(
p,

1
n

A[i]
)
≤

n

∑
i=1

i f

(
p,

1
n

B[i]
)

(by Equation (28b))

1
n

n

∑
i=1

i f (p, A[i]) ≤ 1
n

n

∑
i=1

i f (p, B[i]) (by r f (p, ��v) = �r f (p,�v))

∑
κ∈A

i f (p, κ) ≤ ∑
κ∈B

i f (p, κ)

Appendix B. Inclusion-Exclusion Inequality of Zonogons

Let P(A) represent the power set of a non-empty set A �= ∅ and separate the subsets
of even (Le) and odd (Lo) cardinality as shown below. Additionally, let L≤1 represent all
subsets with cardinality less than or equal to one and L1 all subsets of cardinality equal
to one:

L≤1 := {B ∈ P(A) : |B| ≤ 1}
L1 := {B ∈ P(A) : |B| = 1}
Le := {B ∈ P(A) : |B| even}
Lo := {B ∈ P(A) : |B| odd}

P(A) = Le ∪ Lo and ∅ = Le ∩ Lo

(A2)

The number of subsets with even cardinality is equal to the number of subsets with odd
cardinality as shown in Equation (A3).

|Le| =

⌊ |A|
2

⌋
∑
i=0

(|A|
2i

)
= 2|A|−1 =

⌊ |A|
2

⌋
∑
i=0

( |A|
2i + 1

)
= |Lo| (A3)

Consider a function ge : Le → L≤1, which takes an even subset E ∈ Le and returns a subset
of cardinality |ge(E)| = min(|E|, 1) according to Equation (A4).

∀E ∈ Se :

{
ge(E) = ∅ if E = ∅
ge(E) = {e} s.t. e ∈ E otherwise

(A4)

Lemma A4. For any function ge ∈ Ge, there exists a function G : (Le,Ge) → Lo that satisfies
the following two properties:

(a) For any subset with even cardinality, the function ge(·) returns a subset of function G(·):

∀ge ∈ Ge, E ∈ Le : ge(E) ⊆ G(E, ge). (A5)

(b) The function G(·) that satisfies Equation (A5) has an inverse on its first argument G−1 :
(Lo,Ge)→ Le.

∀ge ∈ Ge, E ∈ Le, ∃G−1 : G−1(G(E, ge), ge) = E. (A6)
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Proof. We construct a function G for an arbitrary ge and demonstrate that it satisfies both
properties (Equations (A5) and A6) by induction on the cardinality of A. We indicate the
cardinality of A with n = |A| as subscripts An, Le,n, Lo,n, and Gn:

1. In the base case A1 = {a}, the sets of subsets are Le,1 = {∅} and Lo,1 = {{a}}. We
define the function G1(∅, ge) := {a} for any ge to satisfy both required properties:

(a) The constraints of Equation (A4) ensure that ge(∅) = ∅. Since the empty set is
the only element in Se,1, the subset relation (requirement of Equation (A5)) is
satisfied ge(∅) = ∅ ⊆ {a} = G1(∅, ge).

(b) The function G1 : (Le,1,Ge)→ Lo,1 is a bijection from Le,1 to Lo,1 and, therefore,
has an inverse on its first argument G−1

1 : (Lo,1,Ge) → Le,1 (requirement of
Equation (A6)).

2. Assume there exists a function Gn that satisfies both required properties
(Equations (A5) and (A6)) of sets of cardinality 1 ≤ n = |An|.

3. For the induction step, we show the definition of a function Gn+1 that satisfies both
required properties. For sets An+1 = An ∪{q}, the subsets of even and odd cardinality
can be expanded as shown in Equation (A7).

Le,n+1 = Le,n ∪ {O ∪ {q} : O ∈ Lo,n},

Lo,n+1 = Lo,n ∪ {E ∪ {q} : E ∈ Le,n}.
(A7)

We define Gn+1 for E ∈ Le,n and O ∈ Lo,n at any ge as shown in Equation (A8) using
the function Gn and its inverse G−1

n from the induction hypothesis. The function Gn+1
is defined for any subset in Le,n+1 as can be seen from Equation (A7).

Gn+1(E, ge) :=

{
E ∪ {q} if ge(Gn(E, ge) ∪ {q}) �= {q}
Gn(E, ge) if ge(Gn(E, ge) ∪ {q}) = {q}

Gn+1(O ∪ {q}, ge) :=

{
O if ge(O ∪ {q}) �= {q}
G−1

n (O, ge) ∪ {q} if ge(O ∪ {q}) = {q}

(A8)

Figure A1 provides an intuition for the definition of Gn+1: the outcome of ge(O∪ {q})
determines if the function Gn+1 maintains or breaks the mapping of Gn.

P(An) {B ∪ {q} : B ∈ P(An)}

P(An+1)

Gn Gn+1Gn+1
Gn+1

Gn+1

E = G−1
n (O, ge)

O = Gn(E, ge)

E ∪ {q} = G−1
n (O, ge) ∪ {q}

O ∪ {q} = Gn(E, ge) ∪ {q}

if ge(O ∪ {q}) = {q}:

if ge(O ∪ {q}) �= {q}:

Figure A1. Intuition for the definition of Equation (A8). We can divide the set P(An+1) into P(An)

and {B ∪ {q} : B ∈ P(An)}. The definition of function Gn+1 mirrors Gn if ge(O ∪ {q}) = {q} (blue)
and otherwise breaks its mapping (orange).

The function F as defined in Equation (A8) satisfies both requirements
(Equations (A5) and (A6)) for any ge:

(a) To demonstrate that the function satisfies the subset relation of Equation (A5), we
analyze the four cases for the return value of Gn+1 as defined in Equation (A8)
individually:
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– ge(E) ⊆ E ∪ {q} holds, since the function ge always returns a subset of its
input (Equation (A4)).

– ge(E) ⊆ Gn(E, ge) holds by the induction hypothesis.
– If ge(O ∪ {q}) �= {q}, then ge(O ∪ {q}) ⊆ O: Since the input to function ge

is not the empty set, the function ge(O ∪ {q}) returns a singleton subset of
its input (Equation (A4)). If the element in the singleton subset is unequal to
q, then it is a subset of O.

– If ge(O ∪ {q}) = {q}, then ge(O ∪ {q}) ⊆ {q} ∪ G−1
n (O, ge) holds trivially.

(b) To demonstrate that the function Gn+1 has an inverse (Equation (A6)), we show
that the function Gn+1 is a bijection from Le,n+1 to Lo,n+1. Since the function
Gn+1 is defined for all elements in Le,n+1 and both sets have the same cardinality
(|Le,n+1| = |Lo,n+1|, Equation (A3)), it is sufficient to show that the function Gn+1
is distinct for all inputs.
The return value of Gn+1 has four cases, two of which return a set containing
q (cases 1 and 4 in Equation (A8)), while the two others do not (cases 2 and 3
in Equation (A8)). Therefore, we have to show that both of these cases cannot
coincide for any input:

– Cases 2 and 3 in Equation (A8): If the return value of both cases was
equal, then O = Gn(E, ge), and therefore, ge(O ∪ {q}) = ge(Gn(E, ge) ∪
{q}). This leads to a contradiction, since the condition of case 3 ensures
ge(O ∪ {q}) �= {q}, while the condition of case 2 ensures ge(Gn(E, ge) ∪
{q}) = {q}. Hence, the return values of cases 2 and 3 are distinct.

– Cases 1 and 4 in Equation (A8): If the return value of both cases was equal,
then E = G−1

n (O, ge), and therefore, ge(O ∪ {q}) = ge(Gn(E, ge) ∪ {q}).
This leads to a contradiction, since the condition of case 4 ensures ge(O ∪
{q}) = {q}, while the condition of case 1 ensures ge(Gn(E, ge)∪ {q}) �= {q}.
Hence, the return values of cases 1 and 4 are distinct.

Since the function Gn+1 is a bijection, there exists an inverse G−1
n+1.

Lemma A5. For a non-empty set of 2× x row stochastic matrices A �= ∅:

Z

(
�

κ∈A

κ

)
+ ∑

∅ �=B⊆A

|B| even

Z

( ⊔
λ∈B

λ

)
⊆ ∑

B⊆A

|B| odd

Z

(⊔
ν∈B

ν

)
(A9)

Proof. Consider a function go : Lo → L1, where go(O) ⊆ O such that the function returns
a singleton subset for a set of odd cardinality. Equation (A10) can be obtained from the
constraints on ge (Equation (A4)) and Lemma A4.

∀ge ∈ Ge, E ∈ Le, ∃go ∈ Go, G :

{
ge(∅) ⊆ go(G(∅)) if E = ∅
ge(E) = go(G(E)) otherwise

(A10)

Equation (A11a) holds since we can replace ge(∅) with go(G(∅)), meaning there exists
a κ ∈ A for creating a (Minkowski) sum over the same set of channel zonogons on both
sides of the quality. Equation (A11b) holds since Lemma A4 ensured that the existing
function G is a bijection. Equation (A11c) holds since the intersection is a subset of each
individual zonogon.
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∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A, G : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
E∈Le

Z(go(G(E))) (A11a)

∀ge ∈ Ge, ∃go ∈ Go, κ ∈ A : Z(κ) + ∑
E∈Le\∅

Z(ge(E)) = ∑
O∈Lo

Z(go(O)) (A11b)

∀ge ∈ Ge, ∃go ∈ Go :
⋂

κ∈A

Z(κ) + ∑
E∈Le\∅

Z(ge(E)) ⊆ ∑
O∈Lo

Z(go(O)) (A11c)

Equation (A11c) is parameterized by ge, and the subsets are closed under set union. There-
fore, we can combine all choices for ge and go using the set-theoretic union as shown below.
For the notation, let m = 2|A|−1, and we indicate subsets of A with even cardinality as
Ei ∈ Le, where 1 ≤ i ≤ m. We use the last index for the empty set Em = ∅. The subsets of
A with odd cardinality are correspondingly noted as Oi ∈ Lo. For clarity, we note binary
input channels from an even subset as λ ∈ E and binary input channels from an odd subset
as ν ∈ O.

⋃
λ1∈E1
λ2∈E2...

λm−1∈Em−1

( ⋂
κ∈A

Z(κ) +
m−1

∑
i=1

Z(λi)

)
⊆

⋃
ν1∈O1
ν2∈O2...
νm∈Om

(
m

∑
j=1

Z(νj)

)

⋂
κ∈A

Z(κ) +
m−1

∑
i=1

⋃
λ∈Ei

Z(λ) ⊆
m

∑
j=1

⋃
ν∈Oj

Z(ν)
(

Minkowski sum dis
tributes over set union

)

Conv

⎛⎝ ⋂
κ∈A

Z(κ) +
m−1

∑
i=1

⋃
λ∈Ei

Z(λ)

⎞⎠ ⊆ Conv

⎛⎝ m

∑
j=1

⋃
ν∈Oj

Z(ν)

⎞⎠ (
if X ⊆ Y then

Conv(X) ⊆ Conv(Y)

)
⋂

κ∈A

Z(κ) +
m−1

∑
i=1

Conv

⎛⎝ ⋃
λ∈Ei

Z(λ)

⎞⎠ ⊆ m

∑
j=1

Conv

⎛⎝ ⋃
ν∈Oj

Z(ν)

⎞⎠ (
Convex hull distributes
over Minkowski sum

)

Z

(
�

κ∈A

κ

)
+

m−1

∑
i=1

Z

⎛⎝ ⊔
λ∈Ei

λ

⎞⎠ ⊆ m

∑
j=1

Z

⎛⎝ ⊔
ν∈Oj

ν

⎞⎠ (by Equation (7))

Z

(
�

κ∈A

κ

)
+ ∑

∅ �=Ei⊆A

|Ei | even

Z

⎛⎝ ⊔
λ∈Ei

λ

⎞⎠ ⊆ ∑
Oj⊆A

|Oj | odd

Z

⎛⎝ ⊔
ν∈Oj

ν

⎞⎠ (replace notation)

Z

(
�

κ∈A

κ

)
+ ∑

∅ �=B⊆A

|B| even

Z

( ⊔
λ∈B

λ

)
⊆ ∑

B⊆A

|B| odd

Z

(⊔
ν∈B

ν

)

Appendix C. Non-Negativity of Partial f-Information on the Synergy Lattice

The proof of non-negativity can be divided into three parts. First, we show that the loss
measure maintains the ordering relation of the synergy lattice and how the quantification
of a meet element i∪, f (α ∧ β, T, t) can be computed. Second, we demonstrate how the
inclusion–exclusion inequality of zonogons under the Minkowski sum from Appendix B
leads to relating pointwise information measures with respect to the Blackwell order. Finally,
we combine these two results to demonstrate that an inclusion–exclusion relation using the
convex hull of zonogons is greater than their intersection and obtain the non-negativity of
the decomposition by transitivity.
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Appendix C.1. Properties of the Loss Measure on the Synergy Lattice

Lemma A6. Any set of sources α ∈ P(P1(V)) is equivalent (∼=) to some atom of the synergy
lattice γ ∈ A(V).

∀α ∈ P(P1(V)). ∃γ ∈ A(V). γ ∼= α

The union for two sets of sources is equivalent to the meet of their corresponding atoms on the
synergy lattice. Let α, β ∈ P(P1(V)) and γ, δ ∈ A(V):

γ ∼= α and δ ∼= β =⇒ (γ ∧ δ) ∼= (α ∪ β)

Proof. The used filter in the definition of an atom (A(V) ⊆ P(P1(V)), Equation (8)) only
removes sets of cardinality 2 ≤ |α|, and for any removed set of sources, we can construct
an equivalent set that contains one less source by removing the subset Sa ⊂ Sb as shown in
Equation (A12a). Therefore, all sets of sources α ∈ P(P1(V)) are equivalent to some atom
γ ∈ A(V) within the lattice (Equation (A12b)).

Sa ⊂ Sb =⇒ α ∼= (α \ Sa) where: Sa, Sb ∈ α (A12a)

∀α ∈ P(P1(V)), ∃γ ∈ A(V). α ∼= γ (A12b)

The union of two sets of sources α ∈ P(P1(V)) is inferior to each individual set α and β:

(α ∪ β) � α (by Equation (10))

(α ∪ β) � β (by Equation (10))

All sets of sources ε ∈ P(P1(V)) that are inferior to both α and β (ε � α and ε � β) are also
inferior to their union.

ε � α and ε � β =⇒ ε � (α ∪ β) (by Equation (10))

Therefore, the union of α and β is equivalent to the meet of their corresponding atoms on
the synergy lattice.

Proof of Lemma 1 from Section 3.2.

For any set of sources α, β ∈ P(P1(V)) and target variable T with state t ∈ T , the function
κ� (Equation (31)) maintains the ordering from the synergy lattice under the Blackwell order.

α � β =⇒ κ�(β, T, t) � κ�(α, T, t) (A13)

Proof. We consider two cases for β:

1. If β = ∅, then the implication holds for any α since the bottom element κ�(∅, T, t) = ⊥BW
is inferior (�) to any other channel.

2. If β �= ∅, then α is also a non-empty set since α � β ≺ �SL = ∅.

α � β

∀Sb ∈ β, ∃Sa ∈ α. Sb ⊆ Sa (by Equation (10))

∀Sb ∈ β, ∃Sa ∈ α. κ(Sb, T, t) � κ(Sa, T, t) (by Equation (2))⊔
Sb∈β

κ(Sb, T, t) �
⊔

Sa∈α

κ(Sa, T, t)

κ�(β, T, t) � κ�(α, T, t)

Since the implication holds for both cases, the ordering is maintained.
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Corollary A2. The defined cumulative loss measures (i∪, f of Equation (33a) and I∪, f of Equation (34))
maintain the ordering relation of the synergy lattice for any set of sources α, β ∈ P(P1(V)) and
target variable T with state t ∈ T :

α � β =⇒ i∪, f (α, T, t) ≤ i∪, f (β, T, t)

α � β =⇒ I∪, f (α; T) ≤ I∪, f (β; T)

Proof. The pointwise monotonicity of the cumulative loss measure (α � β =⇒ i∪, f (α, T, t) ≤
i∪, f (β, T, t)) is obtained from Lemmas 1 and A2 with Equation (33a). Sine all cumulative
pointwise losses i∪, f are smaller for α than β, so will be their weighted sum (α � β =⇒
I∪, f (α; T) ≤ I∪, f (β; T), see Equation (34)).

Corollary A3. The cumulative pointwise loss of the meet from two atoms is equivalent to the
cumulative pointwise loss of their union for any target variable T with state t ∈ T :
i∪, f (α ∧ β, T, t) = i∪, f (α ∪ β, T, t).

Proof. The result follows from Lemma A6 and Corollary A2.

Appendix C.2. The Non-Negativity of the Decomposition

Lemma A7. Consider a non-empty set of of binary input channel A �= ∅ and 0 ≤ p ≤ 1.
Quantifying an inclusion–exclusion principle on the pointwise information of their Blackwell join is
larger than the pointwise information of their Blackwell meet as shown in Equation (A14).

i f

(
p,

�

κ∈A

κ

)
≤ ∑

∅ �=B⊆A

(−1)|B|−1i f

(
p,
⊔

κ∈B

κ

)
(A14)

Proof.

Z

(
�

κ∈A

κ

)
+ ∑

∅ �=B⊆A

|B| even

Z

( ⊔
λ∈B

λ

)
⊆ ∑

B⊆A

|B| odd

Z

(⊔
ν∈B

ν

)
(by Lemma A5)

i f

(
p,

�

κ∈A

κ

)
+ ∑

∅ �=B⊆A

|B| even

i f

(
p,
⊔

κ∈B

κ

)
≤ ∑

∅ �=B⊆A

|B| odd

i f

(
p,
⊔

κ∈B

κ

)
(by Lemma A3)

i f

(
p,

�

κ∈A

κ

)
≤ ∑

∅ �=B⊆A

(−1)|B|−1i f

(
p,
⊔

κ∈B

κ

)

Lemma A8 (Non-negativity on the synergy lattice). The decomposition of f -information is
non-negative on the pointwise and combined synergy lattice for any target variable T with state
t ∈ T :

∀α ∈ A(V). 0 ≤ Δi∪, f (α, T, t),

∀α ∈ A(V). 0 ≤ ΔI∪, f (α; T).

Proof. We show the non-negativity of pointwise partial information (Δi∪, f (α, T, t)) in two
cases. We write α−S to represent the cover set of α on the synergy lattice and use p = PT(t)
as the abbreviation:

1. Let α = ⊥SL = {V}. The bottom element of the synergy lattice is quantified to zero
(by Equation (33a), i∪, f (⊥SL, T, t) = 0), and therefore, also its partial contribution will
be zero (Δi∪, f (⊥SL, T, t) = 0), which implies Equation (A15).

α = ⊥SL =⇒ 0 ≤ Δi∪, f (α, T, t) (A15)
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2. Let α ∈ A(V) \ {⊥SL}, then its cover set is non-empty (α−S �= ∅). Additionally, we
know that no atom in the cover set is the empty set (∀β ∈ α−S . β �= ∅), since the
empty atom is the top element (�SL = ∅).
Since it will be required later, note that the inclusion–exclusion principle of a constant is
the constant itself as shown in Equation (A16) since, without the empty set, there exists
one more subset of odd cardinality than with even cardinality (see Equation (A3)).

i f (p, κ(V, T, t)) = ∑
∅ �=B⊆α−S

(−1)|B|−1i f (p, κ(V, T, t)) (A16)

We can re-write the Möbius inverse as shown in Equation (A17), where Equation (A17b)
is obtained from ([23], p. 15)).

Δi∪, f (α, T, t) = i∪, f (α, T, t)− ∑
β∈↓̇Sα

Δi∪, f (β, T, t) (by Equation (33b)) (A17a)

= i∪, f (α, T, t)− ∑
∅ �=B⊆α−S

(−1)|B|−1 · i∪, f

⎛⎝∧
β∈B

β, T, t

⎞⎠ (A17b)

= i∪, f (α, T, t)− ∑
∅ �=B⊆α−S

(−1)|B|−1 · i∪, f

⎛⎝⋃
β∈B

β, T, t

⎞⎠ (by Corollary A3) (A17c)

=− i f (p, κ�(α, T, t)) + ∑
∅ �=B⊆α−S

(−1)|B|−1 · i f (p, κ�(
⋃

β∈B

β, T, t)) (by Equations (33a), (A16)) (A17d)

=− i f (p, κ�(α, T, t)) + ∑
∅ �=B⊆α−S

(−1)|B|−1 · i f (p,
⊔

S∈(⋃β∈B β)

κ(S, T, t)) (by ∀β ∈ α−S .β �= ∅) (A17e)

=− i f (p, κ�(α, T, t)) + ∑
∅ �=B⊆α−S

(−1)|B|−1 · i f (p,
⊔

β∈B

⊔
S∈β

κ(S, T, t)) (A17f)

=− i f (p, κ�(α, T, t)) + ∑
∅ �=B⊆{κ�(β,T,t) : β∈α−S }

(−1)|B|−1 · i f (p,
⊔

κ∈B

κ) (A17g)

Consider the non-empty set of channels D = {κ�(β, T, t) : β ∈ α−S}, then we obtain
Equation (A18b) from Lemma A7.

i f

⎛⎝p,
�

κ∈{κ�(β,T,t) : β∈α−S}
κ

⎞⎠ ≤ ∑
∅ �=B⊆{κ�(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B

κ

)
(A18a)

i f

⎛⎝p,
�

β∈α−S

κ�(β, T, t)

⎞⎠ ≤ ∑
∅ �=B⊆{κ�(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B

κ

)
(A18b)

We can construct an upper bound on i f (p, κ�(α, T, t)) based on the cover set α−S as
shown in Equation (A19).

∀β ∈ α−S . β � α (A19a)

∀β ∈ α−S . κ�(α, T, t) � κ�(β, T, t) (by Lemma 1) (A19b)

κ�(α, T, t) �
�

β∈α−S

κ�(β, T, t) (A19c)

i f (p, κ�(α, T, t)) ≤ i f

⎛⎝p,
�

β∈α−S

κ�(β, T, t)

⎞⎠ (by Lemma A2) (A19d)
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By the transitivity of Equations (A18b) and (A19d), we obtain Equation (A20).

i f (p, κ�(α, T, t)) ≤ ∑
∅ �=B⊆{κ�(β,T,t) : β∈α−S}

(−1)|B|−1i f

(
p,
⊔

κ∈B

κ

)
(A20)

By Equations (A17) and (A20), we obtain the non-negativity of pointwise partial
information as shown in Equation (A21).

α ∈ A(V) \ {⊥SL}. 0 ≤ Δi∪, f (α, T, t) (A21)

From Equations (A15) and (A21), we obtain that pointwise partial information is non-
negative for all atoms of the lattice:

∀α ∈ A(V). 0 ≤ Δi∪, f (α, T) (A22)

If all pointwise partial components are non-negative, then their expected value will also be
non-negative (see Equation (35)):

∀α ∈ A(V). 0 ≤ ΔI∪, f (α; T) (A23)

Appendix D. Mappings between Decomposition Lattices and Their Duality

Proof of Lemma 2 from Section 3.4

The function Ψ(·) is a bijection on the redundancy lattice without the bottom element (∅)
that reverses its order. Let α, β ∈ A(V) \ {⊥RL}:

1. Ψ(Ψ(α)) $ α;
2. α � β ⇐⇒ Ψ(β) � Ψ(α).

Proof.

• Property 1: the n-ary Cartesian product (Ψ) provides all combinations of one variable
from each source (Definition 28). Let γ = Ψ(α), then by Definition 11 ($) of equiva-
lence Ψ(γ) $ α, we have to show that both elements are inferior to each other under
the redundancy order:

– Ψ(γ) � α: We begin by expanding the definition of the redundancy order as
shown in Equation (A24) to highlight that it is sufficient to show that α ⊆ Ψ(γ).

α ⊆ Ψ(γ) =⇒ ∀Sa ∈ α, ∃Sb ∈ Ψ(γ), Sb ⊆ Sa =⇒ Ψ(γ) � α (A24)

To show α ⊆ Ψ(γ), we have to demonstrate that is is possible to select one
variable from each source in γ to reconstruct each source in α:

* By definition γ = Ψ(α), each source in γ contains one variable from each
source in α, and all variables from each source in α can be found in some
source of γ.

* By selecting the variable in each source of γ that originated from the same
source in α, we can exactly reconstruct each source in α.

* Therefore, α ⊆ Ψ(Ψ(α)), which implies Ψ(Ψ(α)) � α.

– α � Ψ(γ): We begin by expanding the definition of the redundancy order
(Equation (9)) as shown in Equation (A25) to highlight that we have to show
that all sources in Ψ(γ) are a super-set of some source in α.

α � Ψ(γ)⇐⇒ ∀Sb ∈ Ψ(γ). ∃Sa ∈ α. Sa ⊆ Sb (A25)

For a proof by induction, the recursive definition Ψ′(α) as shown in Equation (A26)
highlights the relation of interest more clearly. We use the notation S[i] to indicate
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the i-th variable in source S. That both functions are equivalent Ψ′(α) = Ψ(α) can
directly be seen, since Ψ′(α) recursively combines all possible choices of selecting
one variable from each source in α, which is the definition of Ψ(α).

Ψ′(α) :=

{
{∅} if α = ∅⋃

i∈1..|S|{x ∪ {S[i]} : x ∈ Ψ′(α \ {S})} otherwise, where S ∈ α

(A26)
Induction on the cardinality of α:

* Hypothesis: It is impossible to choose one variable from each source in Ψ′(α)
without selecting all variables of some source Sa ∈ α:

∀Sb ∈ Ψ(Ψ′(α)). ∃Sa ∈ α. Sa ⊆ Sb (A27)

* Base case |α| = 1: The condition is satisfied as shown in Equation (A28), since
Ψ′({S}) turns each variable in S into its own source. The second application
Ψ(Ψ′({S})) recombines them.

Ψ′({S}) = {{V} : V ∈ S}
Ψ(Ψ′({S})) = {S} (A28)

* Assume the induction hypothesis holds for |α| = m.
* For the induction step, let α′ = α∪ {S′}: From the recursive definition shown

in Equation (A29), we can directly see all relevant options of choosing one
element from each resulting source.

Ψ′(α′) =
⋃

i∈1..|S′ |
{x ∪ {S′[i]} : x ∈ Ψ′(α)} (A29)

· Case 1: From every source in Ψ′(α′), we choose the variable S′[i] that
was contributed by the new source S′. The resulting set contains all
variables of S′.

· Case 2: To avoid choosing all variables from S′, we have to select the
variables contributed by x ∈ Ψ′(α) instead for some S′[i]. By the induc-
tion hypothesis, choosing one variable from each set in Ψ′(α) leads to
choosing all variables of some source Sa ∈ α.

· Choosing one variable from each set in α′ = α ∪ {S′} leads to choosing
all variables of S′ or all variables of some source Sa ∈ α.

· Thus, the induction hypothesis holds for |α′| = |α|+ 1.

– As shown above, Ψ(Ψ(α)) � α and α � Ψ(Ψ(α)), which implies α $ Ψ(Ψ(α)).

• Property 2: We first expand the definitions:

α � β ⇐⇒ Ψ(β) � Ψ(α)

∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb ⇐⇒ ∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc (by Definition 9)

Then, we view both implications separately:

1. Assume ∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb. Then, there exists a function w : P(P1(V))→
P(P1(V)) that associates each source in β with a source in α.

∀Sb ∈ β. w(Sb) ⊆ Sb and w(Sb) ∈ α. (A30)

All sets Sc ∈ Ψ(α) contain one variable of each source in α. Let the function
vc : P1(V)→ V indicate this selection:

Sc = {vc(Sx) : Sx ∈ α} where: vc(Sx) ∈ Sx (A31)
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Define the set Sd ∈ Ψ(β) using the defined functions above as shown in
Equation (A32). The function w is defined for all sources in β, and the selected
element is in the original source (vc(w(Sx)) ∈ Sx) by Equation (A30).

Sd = {vc(w(Sx)) : Sx ∈ β} (A32)

The constructed set Sd ∈ Ψ(β) is a subset of Sc ∈ Ψ(α), and it can be constructed
for each Sc ∈ Ψ(α). This proves Equation (A33):

∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb =⇒ ∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc (A33)

2. For the other direction, we show Equation (A34) and start with its simplification:

¬(∀Sb ∈ β. ∃Sa ∈ α. Sa ⊆ Sb) =⇒ ¬(∀Sc ∈ Ψ(α). ∃Sd ∈ Ψ(β). Sd ⊆ Sc)

∃Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb) =⇒ ∃Sc ∈ Ψ(α). ∀Sd ∈ Ψ(β). ¬(Sd ⊆ Sc)

∃Sb ∈ β. ∀Sa ∈ α. ∃x ∈ Sa. x /∈ Sb =⇒ ∃Sc ∈ Ψ(α). ∀Sd ∈ Ψ(β). ∃x ∈ Sd. x /∈ Sc

(A34)

The left-hand side states that, for some Sb ∈ β, all sources Sa ∈ α contain an
element that is not in Sb. Let us fix a particular Sb and define a function returning
this element v : P1(V)→ V:

∀Sa ∈ α. v(Sa) ∈ Sa and v(Sa) /∈ Sb (A35)

Then, we can define the set Sc = {v(Sa) : Sa ∈ α}. The source Sc selects one
variable from each source; thus, Sc ∈ Ψ(α), and by definition, Sc ∩ Sb = ∅. All
sets Sd ∈ Ψ(β) must select one element from Sb and, thus, contain one element
that is not in Sc. This provides the required implication of Equation (A34).

Proof of Lemma 3 from Section 3.4

The function Ξ(·) is a bijection that maintains the ordering of atoms between the redundancy
and synergy order. Let α, β ∈ A(V):

1. α = Ξ(Ξ(α));
2. α � β ⇐⇒ Ξ(α) � Ξ(β).

Proof.

• Property 1 is obtained from Definition 28: the first two cases revert each other, and the
third case (α �= ∅ and α �= {V}) holds since ∀S ∈ α : S = V \ (V \ S).

• Property 2:

– Case 1: If α = ∅ = ⊥RL, then Ξ(α) = {V} = ⊥SL. Therefore, ∀β ∈ A(V). ⊥RL �
β ⇐⇒ ⊥SL � β.

– Case 2: If α = {V} = �RL, then Ξ(α) = ∅ = �SL. Therefore, ∀α ∈ A(V). α �
�RL ⇐⇒ α � �SL.

– Case 3: If α �= ∅, then β �= ∅:

α � β = ∀Sb ∈ β, ∃Sa ∈ α, Sa ⊆ Sb (by Definition 9)

= ∀Sb ∈ β, ∃Sa ∈ α, (V \ Sb) ⊆ (V \ Sa)

= {V \ Sa : Sa ∈ α} � {V \ Sb : Sb ∈ β} (by Definition 10)

= Ξ(α) � Ξ(β) (by Definition 28)
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Proof of Lemma 4 from Section 3.4

A redundancy- and synergy-based information decomposition is pointwise dual if, for all
α ∈ A(V) \ {⊥RL}:

Δi∩, f (α, T, t) = Δi∪, f (Ξ(Ψ(α)), T, t)

Δi∩, f (⊥RL, T, t) = 0 = Δi∪, f (⊥SL, T, t)
(A36)

A redundancy- and synergy-based information decomposition is dual if, for all α ∈ A(V) \
{⊥RL}:

ΔI∩, f (α, T) = ΔI∪, f (Ξ(Ψ(α)), T)

ΔI∩, f (⊥RL, T) = 0 = ΔI∪, f (⊥SL, T)
(A37)

Proof.

∑
β∈↓Rα

Δi∩, f (β, T, t) = ∑
β∈(↓Rα)\{⊥RL}

Δi∩, f (β, T, t) (Δi∩, f (⊥RL, T, t) = i∪, f (⊥SL, T, t) = 0)

= ∑
β∈↑SΞ(Ψ(α))

Δi∩, f (Ψ(Ξ(β)), T, t) (by Corollary 1)

= ∑
β∈↑SΞ(Ψ(α))

Δi∪, f (Ξ(Ψ(Ψ(Ξ(β)))), T, t) (by Equation (38))

= ∑
β∈↑SΞ(Ψ(α))

Δi∪, f (β, T, t)

The duality of the pointwise measure (i∩, f , i∪, f ) implies the duality of the combined
measure (I∩, f , I∪, f ).

Lemma A9. For α ∈ A(V) \ {⊥RL} and β ∈ A(V):

¬(∃Sa ∈ α. β � {Sa})⇐⇒ (Ξ(Ψ(α)) � β) (A38)

Proof.

• Case β = �SL = ∅: The condition holds since it implies α to be the minimal element
in A(V) \ {⊥RL}.

• Case β �= �SL: We start by simplifying the expression.

¬(∃Sa ∈ α. β � {Sa})⇐⇒ (Ξ(Ψ(α)) � β)

(∀Sa ∈ α. ¬(β � {Sa}))⇐⇒ (Ξ(Ψ(α)) � β)

(∀Sa ∈ α. ¬(∃Sb ∈ β. Sa ⊆ Sb))⇐⇒ (Ξ(Ψ(α)) � β) (by Definition 10)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb))⇐⇒ (Ξ(Ψ(α)) � β)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb))⇐⇒ (Ψ(α) � Ξ(β)) (by Lemma 3)

(∀Sa ∈ α. ∀Sb ∈ β. ¬(Sa ⊆ Sb))⇐⇒ (∀Sb ∈ Ξ(β). ∃Sc ∈ Ψ(α). Sc ⊆ Sb) (by Definition 9)

(∀Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb))⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). Sc ⊆ V \ Sb) (by Definition 28)

(∀Sb ∈ β. ∀Sa ∈ α. ¬(Sa ⊆ Sb))⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). Sc ∩ Sb = ∅)

(∀Sb ∈ β. ∀Sa ∈ α. ∃x ∈ Sa. x /∈ Sb)⇐⇒ (∀Sb ∈ β. ∃Sc ∈ Ψ(α). ∀x ∈ Sc. x /∈ Sb)

(A39)

– The left-hand side states that, for all Sb ∈ β, all Sa ∈ α must have at least one
element that is not in Sb.

– The right-hand side states that, for all Sb ∈ β, there exists a combination of one
variable per source in α such that no element of the resulting collection is in Sb.
This is possible if and only if all sources Sa ∈ α have at least one element that is
not in Sb.

Therefore, both statements imply each other.
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Lemma A10. For α ∈ A(V) \ {⊥RL}:

P1(α) {∼=}

⎧⎨⎩∧
β∈B

β : ∅ �= B ⊆ {{S} : S ∈ α}

⎫⎬⎭ (A40)

Proof.
= P1(α)

= {B : ∅ �= B ⊆ α}

=

⎧⎨⎩⋃
β∈B

β : ∅ �= B ⊆ {{S} : S ∈ α}

⎫⎬⎭
{∼=}

⎧⎨⎩∧
β∈B

β : ∅ �= B ⊆ {{S} : S ∈ α}

⎫⎬⎭ (by Lemma A6)

(A41)

Proof of Lemma 6 from Section 3.4

The pointwise dual-decomposition for the redundancy lattice of a loss measure on the
synergy lattice is defined by:

i∩, f (α, T, t) :=

{
0 if α = ∅
i∪, f (�SL, T, t)−∑β∈P1(α)

(−1)|β|−1i∪, f (β, T, t) otherwise
(A42)

Proof. The case α = ∅ is satisfied by definition. Therefore, we proceed assuming α �= ∅:

i∩, f (α, T, t) = ∑
γ∈↓Rα

Δi∩, f (γ, T, t)

= ∑
γ∈↑SΞ(Ψ(α))

Δi∪, f (γ, T, t) (by Lemma 4)

= i∪, f (�SL, T, t)− i∪, f (�SL, T, t) + ∑
γ∈↑SΞ(Ψ(α))

Δi∪, f (γ, T, t)

= i∪, f (�SL, T, t)−

⎛⎝ ∑
γ∈A(V)

Δi∪, f (γ, T, t)− ∑
γ∈↑SΞ(Ψ(α))

Δi∪, f (γ, T, t)

⎞⎠
= i∪, f (�SL, T, t)− ∑

γ∈A(V)\↑SΞ(Ψ(α))

Δi∪, f (γ, T, t)

= i∪, f (�SL, T, t)− ∑
γ∈⋃Sa∈α↓S{Sa}

Δi∪, f (γ, T, t) (by Lemma 5)

= i∪, f (�SL, T, t)− ∑
γ∈⋃β∈{{Sa} : Sa∈α}↓S β

Δi∪, f (γ, T, t)

= i∪, f (�SL, T, t)− ∑
∅ �=B⊆{{Sa} : Sa∈α}

(−1)|β|−1i∪, f (
∧

β∈B

β, T, t) (by inclusion–exclusion)

= i∪, f (�SL, T, t)− ∑
γ∈{∧β∈B β: ∅ �=B⊆{{Sa} : Sa∈α}}

(−1)|β|−1i∪, f (γ, T, t)

= i∪, f (�SL, T, t)− ∑
γ∈P1(α)

(−1)|β|−1i∪, f (γ, T, t) (by Lemma A10)

(A43)
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Appendix E. Scaling f-Information Does Not Affect Its Transformation

Lemma A11. The linear scaling of an f -information does not affect the transformation result and
operator: Consider scaling an f-information measure Ia2(S; T) = k · Ia1(S; T) with k ∈ (0, ∞),
then their decomposition transformation to another measure Ib(S; T) will be equivalent.

Proof. Based on the definitions of Section 3.2, the loss measures scale linearly with the
scaling of their f -divergence. Therefore, we obtain two cumulative loss measures, where
I∪,a1 and I∪,a2 are a linear scaling of each other (Equation (A44a)). They can be transformed
into another measure I∪,b, as shown in Equation (A44b).

I∪,a2(α; T) = k · I∪,a1(α; T) (A44a)

I∪,b(α; T) = v1(I∪,a1(α; T)) = v2(I∪,a2(α; T)) (A44b)

Equation (A44b) already demonstrates that their transformation results will be equivalent
and that v1(z) = v2(k · z) and k · v−1

1 (z) = v−1
2 (z). Therefore, their operators will also be

equivalent as shown below:

x ©± 2 y := v2

(
v−1

2 (x)± v−1
2 (y)

)
x ©± 1 y := v1

(
v−1

1 (x)± v−1
1 (y)

)
= v2

(
kv−1

1 (x)± kv−1
1 (y)

)
= v2

(
v−1

2 (x)± v−1
2 (y)

)
= x ©± 2 y

Appendix F. Decomposition Example Distributions

The probability distributions used in Figure 9 can be found in Table A1. For providing
an intuition of the decomposition result for I∪,TV in the generic example, we visualize its
corresponding zonogons in Figure A2. It can be seen that the maximal zonogon height is
obtained from V1 (blue), which equals the maximal zonogon height of their joint distribution
(V1, V2) (red). Therefore, I∪,TV does not attribute partial information uniquely to V2 or their
synergy by Lemma 8.

Table A1. The distributions used from [13] and the generic example from [20]. The example names
are abbreviations for: XOR-gate (XOR), Unique (Unq), Pointwise Unique (PwUnq), Redundant-Error
(RdnErr), Two-Bit-copy (Tbc), and the AND-gate (AND) [13].

State Probability

V1 V2 T XOR Unq PwUnq RdnErr Tbc AND Generic

0 0 0 1/4 1/4 0 3/8 1/4 1/4 0.0625
0 0 1 - - - - - - 0.3000
0 1 0 - 1/4 1/4 1/8 - 1/4 0.1875
0 1 1 1/4 - - - 1/4 - 0.1500
0 2 1 - - 1/4 - - - -
1 0 0 - - 1/4 - - 1/4 0.0375
1 0 1 1/4 1/4 - 1/8 - - 0.0500
1 0 2 - - - - 1/4 - -
1 1 0 1/4 - - - - - 0.2125
1 1 1 - 1/4 - 3/8 - 1/4 -
1 1 3 - - - - 1/4 - -
2 0 1 - - 1/4 - - - -
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Figure A2. Visualization of the zonogons from the generic example of [20] in state t = 0. The target
variable T has two states. Therefore, the zonogons of its second state are symmetric (second column
of Equation (6)) and have identical heights.

Appendix G. The Relation of Total Variation to the Zonogon Height

Proof of Lemma 8(a) from Section 4.1.2

The pointwise total variation (iTV) is a linear scaling of the maximal (Euclidean) height h∗

that the corresponding zonogon Z(κ) reaches above the diagonal, as visualized in Figure 10
for any 0 ≤ p ≤ 1.

iTV(p, κ) =
1− p

2 ∑
v∈κ

|vx − vy| = (1− p)
h∗√

2

Proof. The point of maximal height P∗ that a zonogon Z(κ) reaches above the diagonal
is visualized in Figure 10 and can be obtained as shown in Equation (A45), where Δ�v
represents the slope of vector �v.

P∗ = ∑
�v∈{�v∈κ : Δ�v>1}

�v (A45)

The maximal height (Euclidean distance) above the diagonal is calculated as shown in
Equation (A46), where P∗ = (P∗x , P∗y ).

h∗ =
1
2

∥∥∥( P∗x−P∗y
P∗y−P∗x

)∥∥∥
2
=
√
(P∗x − P∗y )2 + (P∗y − P∗x )2 =

√
2(P∗y − P∗x ) (A46)

The pointwise total variation iTV can be expressed as the invertible transformation of the
maximal euclidean zonogon height above the diagonal as shown below, where �v = (�vx,�vy).

iTV(p, κ) = ∑
�v∈κ

1
2

∣∣∣∣ �vx

p�vx + (1− p)�vy
− 1
∣∣∣∣(p�vx + (1− p)�vy)

=
1− p

2 ∑
�v∈κ

∣∣�vx −�vy
∣∣

=
1− p

2

⎛⎝ ∑
�v∈{�v∈κ : Δ�v>1}

(�vy −�vx) + ∑
�v∈{�v∈κ : Δ�v≤1}

(�vx −�vy)

⎞⎠
=

1− p
2

(
(P∗y − P∗x ) +

(
(1− P∗x )− (1− P∗y )

))
(by Equation (A45))

= (1− p)(P∗y − P∗x )

= (1− p)
h∗√

2
(by Equation (A46))
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Proof of Lemma 8(b) from Section 4.1.2

For a non-empty set of pointwise channel A and 0 ≤ p ≤ 1, pointwise total variation iTV
quantifies the join element to the maximum of its individual channels:

iTV(p,
⊔

κ∈A

κ) = max
κ∈A

iTV(p, κ)

Proof. The join element Z(
⊔

κ∈A κ) corresponds to the convex hull of all individual zono-
gons (see Equation (7)). The maximal height that the convex hull reaches above the diagonal
is equal to the maximum of the maximal height that each individual zonogon reaches. Since
pointwise total variation is a linear scaling of the (Euclidean) zonogon height above the
diagonal (Lemma 8(a) shown above), the join element is valuated to the maximum of its
individual channels.

Appendix H. Information Flow Example Parameters and Visualization

The parameters for the Markov chain used in Section 4.2 are shown in Equation (A47),
where Mn = (Xn, Yn), Xi = {0, 1, 2}, Yi = {0, 1}, PM1 is the initial distribution, and
PMn+1|Mn is the transition matrix. The visualized results for the information flow of KL-,
TV-, and χ2-information can be found in Figure 11, and the visualized results of H2-, LC-,
and JS-information in Figure A3.
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Figure A3. Analysis of the Markov chain information flow (Equation (A47)). Visualized results for
the information measures: H2, LC, and JS. The remaining results (KL, TV, and χ2) can be found in
Figure 11.
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States (X1, Y1) : (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

PM1 =
[
0.01 0.81 0.00 0.02 0.09 0.07

] (A47a)

PMn+1|Mn =

⎡⎢⎢⎢⎢⎢⎢⎣

0.05 0.01 0.04 0.82 0.02 0.06
0.05 0.82 0.00 0.01 0.06 0.06
0.04 0.01 0.82 0.05 0.04 0.04
0.03 0.84 0.02 0.06 0.04 0.01
0.04 0.03 0.03 0.02 0.06 0.82
0.07 0.04 0.01 0.03 0.81 0.04

⎤⎥⎥⎥⎥⎥⎥⎦ (A47b)
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Abstract: The causal structure of a system imposes constraints on the joint probability distribution
of variables that can be generated by the system. Archetypal constraints consist of conditional
independencies between variables. However, particularly in the presence of hidden variables, many
causal structures are compatible with the same set of independencies inferred from the marginal dis-
tributions of observed variables. Additional constraints allow further testing for the compatibility of
data with specific causal structures. An existing family of causally informative inequalities compares
the information about a set of target variables contained in a collection of variables, with a sum of the
information contained in different groups defined as subsets of that collection. While procedures to
identify the form of these groups-decomposition inequalities have been previously derived, we sub-
stantially enlarge the applicability of the framework. We derive groups-decomposition inequalities
subject to weaker independence conditions, with weaker requirements in the configuration of the
groups, and additionally allowing for conditioning sets. Furthermore, we show how constraints with
higher inferential power may be derived with collections that include hidden variables, and then
converted into testable constraints using data processing inequalities. For this purpose, we apply
the standard data processing inequality of conditional mutual information and derive an analogous
property for a measure of conditional unique information recently introduced to separate redundant,
synergistic, and unique contributions to the information that a set of variables has about a target.

Keywords: causality; directed acyclic graphs; causal discovery; structure learning; causal structures;
marginal scenarios; hidden variables; mutual information; unique information; entropic inequalities;
data processing inequality
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1. Introduction

The inference of the underlying causal structure of a system using observational data
is a fundamental question in many scientific domains. The causal structure of a system
imposes constraints on the joint probability distribution of variables generated from it [1–4],
and these constraints can be exploited to learn the causal structure. Causal learning
algorithms based on conditional independencies [1,2,5] allow the construction of a partially
oriented graph [6] that represents the equivalence class of all causal structures compatible
with the set of conditional independencies present in the distribution of the observable
variables (the so-called Markov equivalence class). However, without restrictions on the
potential existence and structure of an unknown number of hidden variables that could
account for the observed dependencies, Markov equivalence classes may encompass many
causal structures compatible with the data.

Conditional independencies impose equality constraints on a joint probability distri-
bution; namely, an independence results in the equality between conditional and uncon-
ditional probability distributions, or equivalently, in a null mutual information between
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independent variables. In addition to the information from independencies between the
observed variables, causal information can also be obtained from other functional equality
constraints [7], such as dormant independencies that would occur under active interven-
tions [8]. Further causal inference power can be obtained incorporating assumptions on
the potential form of the causal mechanisms in order to exploit additional independencies
associated with hidden substructures within the generative model [9,10], or independencies
related to exogenous noise terms [11–13]. Other approaches have studied the identifiability
of specific parametric families of causal models [3,14]. However, these methods only pro-
vide additional inference power if the actual causal mechanisms conform to the required
parametric form.

Beyond equality constraints, the causal structure may also impose inequality con-
straints on the distribution of the data [15,16], which reflect non-verifiable independen-
cies involving hidden variables. Figure 1 illustrates this distinction between pairs of
causal structures distinguishable based on independence constraints (Figure 1A,B) and
causal structures that may be discriminated based on inequality constraints (Figure 1C,D).
The structures of Figure 1A,B belong to different Markov equivalence classes because in
Figure 1A variables V1 and V2 are independent conditioned on S, while in Figure 1B, to
obtain an independence it is required to further the condition on V3. On the other hand,
the structures of Figure 1C,D belong to the same equivalence class because no indepen-
dencies exist between the observable variables Vi, i “ 1, 2, 3. Nonetheless, if the hidden
variables were also observable, these structures would be distinguishable. In Figure 1D, all
the dependencies between the observable variables are caused by a single hidden variable
U, while in Figure 1C dependencies are created pairwise by different hidden variables.
In this case, a testable inequality constraint involving the observable variables reflects the
non-verifiable independencies that involve also hidden variables. Intuitively, in Figure 1C,
the inequality constraint imposes an upper bound on the overall degree of dependence
between the three variables, given that these dependencies arise only in a pairwise manner,
while in Figure 1D no such bound exists.

Importantly, unlike equality constraints, inequality constraints provide necessary but
not sufficient conditions for the compatibility of data with a certain causal structure. While
a certain hypothesized causal structure—like in Figure 1C—may impose the fulfillment of a
given inequality intrinsically from its structure, other causal structures—like in Figure 1D—
can generate data that, given a particular instantiation of the causal mechanisms, also
fulfill the inequality. Accordingly, the causal inference power of inequality constraints lies
in the ability to reject hypothesized causal structures that would intrinsically require the
fulfillment of an inequality when that inequality is not fulfilled by the data. This means
that tighter inequalities have more inferential power, giving the capacity to discard more
causal structures.

V2U

V3

V1

U12

V2

V3

V1

U13 U23

V2S

V3

V1V2S

V3

V1

CA B D

Figure 1. Examples of causal structures distinguishable from independencies (A,B) and structures
that may only be discriminated based on inequality constraints (C,D). In this case, the structure in (C),
and not the one in (D), intrinsically imposes a constraint due to dependencies between the observable
variables Vi, i “ 1, 2, 3 arising only from pairwise dependencies with hidden common causes.

Two main classes of inequality constraints have been derived. The first class corre-
sponds to inequality constraints in the probability space, which comprise tests of com-
patibility such as Bell-type inequalities [17,18], instrumental inequalities [19,20], and in-
equalities that appear on identifiable interventional distributions [21]. The second class
corresponds to inequalities involving information-theoretic quantities. The relation between
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these probabilistic and entropic inequalities has been examined in [22]. One approach to
construct entropic inequalities combines the inequalities defining the Shannon entropic
cone, i.e., associated with the non-negativity, monotonicity, and submodularity properties
of entropy, and additional independence constraints related to the causal structure [23,24].
Additional causally informative inequalities can be derived if considering the so-called
Non-Shannon inequalities [25,26]. When the causal structure to be tested involves hidden
variables, all non-trivial entropic inequalities in the marginal scenario associated with
the set of observable variables can be derived with an algorithmic procedure [23,24] that
projects the set of inequalities of all variables into inequalities that only involve the subset
of observable variables.

As an alternative approach, information-theoretic inequality constraints can be derived
by an explicit analytical formulation [24,27]. In particular, [27] introduced inequalities com-
paring the information about a target variable contained in a whole collection of variables
with a weighted sum of the information contained in groups of variables corresponding
to subsets of the collection. Two procedures were introduced to select the composition of
these groups. In a first type of inequalities, the composition of the groups is arbitrarily
determined, but an inequality only exists under some conditions of independence between
the chosen variables, whose fulfillment reflects the underlying causal structure. In a second
type, no conditions are required for the existence of an inequality, but the groups must
be ancestral sets; that is, must contain all other variables that have a causal effect on any
given element of the group. In both cases, [27] showed that the coefficients in the weighted
sum of the information contained in groups of variables are determined by the number of
intersections between the groups.

In this work, we build upon the results of [27] and generalize their framework of
groups-decomposition inequalities in several ways. First, we generalize both types of
inequalities to the conditional case, when the inequalities involve conditional mutual infor-
mation measures instead of unconditional ones. While this extension is trivial for the first
type of inequalities, we show that for the second type it requires a definition of augmented
ancestral sets. Second, we formulate more flexible conditions of independence for which
the first type of inequalities exists. Third, we add flexibility to the construction of the
ancestral sets that appear in the second type of inequalities. We show that, given a causal
graph and a conditioning set of variables used for the conditional mutual information
measures, alternative inequalities exist when determining ancestors in subgraphs that elim-
inate causal connections from different subsets of the conditioning variables. Furthermore,
we determine conditions in which an inequality also holds when removing subsets of
ancestors from the whole set of variables, hence relaxing for the second type of inequalities
the requirement that the groups correspond to ancestral sets.

Apart from these generalizations, we expand the power of the approach of [27] by
considering inequalities whose existence is determined by the partition into groups of
a collection of variables that also contains hidden variables. That is, hidden variables
can appear not only as hidden common ancestors of the collection but also as part (or
even all) of the variables in the collection for which the inequality is defined. To render
operational the use of inequalities derived from collections containing hidden variables,
we develop procedures that allow mapping those inequalities into testable inequalities
that only involve observable variables. While this mapping can be carried out by simply
applying the monotonicity of mutual information to remove hidden variables from the
groups, this does not work when all variables in the collection are hidden. We show that
data processing inequalities [28] can be applied to obtain testable inequalities also in this
case, or applied to obtain tighter inequalities than those obtained by simply removing the
hidden variables. We illustrate how testable inequalities whose coefficients in the weighted
sum depend on intersections among subsets of hidden variables instead of among subsets
of observable variables can result into tighter inequalities with higher inferential power.

In order to derive testable groups-decomposition inequalities, we do not only apply
the standard data processing inequality of conditional mutual information [28], but we
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derive an additional data processing inequality for the so-called unique information measure
introduced in [29]. This measure was introduced in the framework of a decomposition of
mutual information into redundant, unique, and synergistic information components [30].
Recently, alternative decompositions have been proposed to decompose the joint mutual
information that a set of predictor variables has about a target variable into redundant,
synergistic, and unique components [31–35] (among others). These alternative decompo-
sitions generally differ in the quantification of each component and differ in whether the
measures fulfill certain properties or axioms. However, in our work, we do not apply
the unique information measure of [29] as part of a decomposition of the joint mutual
information. Instead, we show that it provides an alternative data processing inequality
that holds for different causal configurations than the standard data processing inequality
of conditional mutual information. In this way, the unique information data processing
inequality increases the capability to eliminate hidden variables in order to obtain testable
groups-decomposition inequalities. Accordingly, the groups-decomposition inequalities
we derive can contain unique information terms apart from the standard mutual informa-
tion and entropy measures that appear when considering the constraints of the Shannon
entropic cone [23,24].

We envisage the application of the causally informative tests here proposed in the
following way. Given a data set, a hypothesized causal structure is selected to test its
compatibility with the data. First, the set of inequality constraints enforced by that causal
structure is determined. Second, their fulfillment is evaluated from the data and the causal
structure is discarded if some inequality does not hold. In the first step, the determination
of the set of groups-decomposition inequalities enforced by a causal structure requires at
different levels the verification of conditional independencies. This is the case, for example,
with the conditional independencies that are necessary conditions for the existence of the
first type of inequalities introduced by [27]. If all variables involved were observable, this
verification could be conducted directly from the data. However, as mentioned above, we
here consider groups-decomposition inequalities that may contain hidden variables as part
of the collection of variables, which precludes this direct verification. For this reason, we
will work under the assumption that statistical independencies can be assessed from the
structure of the causal graph, namely with the graphical criterion of separability between
nodes in the graph known as d-separation [36]. That is, we will rely on the assumption
that graphical separability is a sufficient condition for statistical independence and hence
characterize the set of groups-decomposition inequalities enforced by a causal structure
without using the data. Data would only be used in the second step, in which the actual
fulfillment of the inequalities is evaluated.

This paper is organized as follows. In Section 2, we review previous work relevant
for our contributions. In Section 3.1, we formulate the data processing inequality for the
unique information measure. In Section 3.2, we generalize the first type of inequalities
of [27], formulating for the conditional case more general conditions of independence for
which a groups-decomposition inequality exists. We also apply data processing inequalities
to derive testable groups-decomposition inequalities when collections include hidden
variables. In Section 3.3, we generalize the second type of inequalities of [27] as outlined
above. In Section 4, we discuss the connection of this work with other approaches to
causal structure learning and point to future continuations and potential applications.
The Appendix contains proofs of the results (Appendices A and B) and a discussion of
the relations between conditional independencies and d-separations required so that the
inequalities here derived are applicable to test causal structures (Appendix C).

2. Previous Work on Information-Theoretic Measures and Causal Graphs Relevant for
Our Derivations

In this section we review properties of information-theoretic measures and concepts
of causal graphs relevant for our work. In Section 2.1, we review basic inequalities of
the mutual information and in Section 2.2 the definition and relevant properties of the
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unique information measure of [29]. We then review in Section 2.3 Directed Acyclic
Graphs (DAGs) and their relation to conditional independence through the graphical
criterion of d-separation [36,37]. Finally, we review the inequalities introduced by [27] to test
causal structures from information decompositions involving sums of groups of variables
(Section 2.4). We do not aim to more broadly review other types of information-theoretic
inequalities [23,24] also used for causal inference. The relation with these other types will
be considered in the Discussion.

2.1. Mutual Information Inequalities Associated with Independencies

We present in Lemma 1 two well-known inequalities that will be used in our deriva-
tions. This lemma corresponds to Lemma 1 in [27]. For completion, we provide the proof
of the lemma.

Lemma 1. The mutual information fulfills the following inequalities in the presence of the corre-
sponding independencies:

piq (Conditional mutual information data processing inequality): Let A, B, B1, and D be
four sets of variables. If IpA; B1|B, Dq “ 0, then it follows that IpA; B|Dq ě IpA; B1|Dq.

piiq (Increase through conditioning on independent sets): Let A, B, C, and Y be four sets of
variables. If IpA; C|Bq “ 0, then IpY; A|Bq ď IpY; A|B, Cq.

Proof. piq is proven applying, in two different orders, the chain rule of the mutual informa-
tion to IpA; B, B1|Dq:

IpA; B, B1|Dq “ IpA; B|Dq ` IpA; B1|B, Dq “ IpA; B1|Dq ` IpA; B|B1, Dq.

Since IpA; B1|B, Dq “ 0 and the mutual information is non-negative, this implies the
inequality. To prove piiq, the chain rule is applied in different orders to IpY, C; A|Bq:

IpY, C; A|Bq “ IpC; A|Bq ` IpY; A|B, Cq “ IpY; A|Bq ` IpC; A|B, Yq.

Since IpC; A|Bq “ 0 and the mutual information is non-negative, this implies the inequality.

2.2. Definition and Properties of the Unique Information

The concept of unique information as part of a decomposition of the joint mutual infor-
mation IpY; Xq that a set of predictor variables X “ tX1, . . . , XNu has about a target (possibly
multivariate) variable Y was introduced in [30]. In the simplest case of two predictors tX1, X2u,
this framework decomposes the joint mutual information about Y into four terms, namely the
redundancy of X1 and X2, the unique information of X1 with respect to X2, the unique infor-
mation of X2 with respect to X1, and the synergy between X1 and X2. The predictors share
the redundant component, the synergistic one is only obtained by combining the predictors,
and unique components are exclusive to each predictor. Several information measures have
been proposed to define this decomposition, aiming to comply with a set of desirable properties
which were not all fulfilled by the original proposal [29,31–33]. However, in this work we will
not study the whole decomposition but specifically apply the bivariate measure of unique
information introduced in [29]. In Section 3.1, we derive a data processing inequality
for this measure and in Section 3.2 we show how it can help to obtain testable groups-
decomposition inequalities for causal structures for which the standard data processing
inequality of the mutual information would not allow elimination of the hidden variables.
In this Section, we review the definition of the unique information measure of [29], we
provide a straightforward generalization to a conditional unique information measure,
and state a monotonicity property that will be used to derive the data processing inequality
of the unique information. The unique information of X1 with respect to X2 about Y was
defined as

IpY; X1zzX2q ” min
QPΔP

IQpY; X1|X2q, (1)
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where ΔP is defined as the set of distributions on tY, X1, X2u that preserve the marginals
PpY, X1q and PpY, X2q of the original distribution PpY, X1, X2q. The notation IQ is used to
indicate that the mutual information is calculated on the probability distribution Q. We
use IpY; X1zzX2q to refer to the unique information of X1 with respect to X2, compared
to IpY; X1|X2q, which is the standard conditional information of X1 given X2. We use the
notation X1zzX2 instead of the notation X1zX2 introduced by [29] to differentiate it from
the set notation X1zX2, which indicates the subset of variables in X1 that is not contained
in X2, since we will also be using this set notation. This unique information measure is
a maximum entropy measure, since all distributions within ΔP preserve the conditional
entropy HpY|X2q, and hence the minimization is equivalent to a maximization of the
conditional entropy HpY|X1, X2q. The rationale that supports this definition is that the
unique information of X1 with respect to X2 about Y has to be determined by the marginal
probabilities PpY, X1q and PpY, X2q, and cannot depend on any additional structure in the
joint distribution that contributes to the dependence between tX1, X2u and Y [29]. This
additional contribution is removed by minimizing within ΔP.

In a straightforward generalization, we define the conditional unique information
given another set of variables Z as

IpY; X1zzX2|Zq ” min
QPΔP1

IQpY; X1|X2, Zq, (2)

where ΔP1 is the set of distributions on tY, X1, X2, Zu that preserve the marginals PpY, X1, Zq
and PpY, X2, Zq of the original PpY, X1, X2, Zq. By construction [29], the conditional unique
information is bounded as

mintIpY; X1|Zq, IpY; X1|X2, Zqu ě IpY; X1zzX2|Zq ě 0. (3)

This is consistent with the intuition of the decomposition that the unique information
is a component exclusive of X1. In Lemma 2, we present a type of monotonicity fulfilled
by the conditional unique information. This result is a straightforward extension to the
conditional case of the one stated in Lemma 3 of [38]. We include the full proof because
it will be useful in the Results section to prove a related data processing inequality for
the unique information. To better suit our subsequent use of notation, we consider the
two predictors to be Z1 and tX1, X1

1u, and the conditioning set to be Z2.

Lemma 2. The maximum entropy conditional unique information is monotonic on its second
argument, corresponding to the non-conditioning predictor, as follows:

IpY; X1, X1
1zzZ1|Z2q ě IpY; X1zzZ1|Z2q.

Proof. Consider the distribution P1,11 ” PpY, X1, X1
1, Z1, Z2q and its marginal P1 ” PpY, X1,

Z1, Z2q. Consider any distribution Q1,11 P ΔP1,11 and its marginal Q1 on pY, X1, Z1, Z2q.
Then Q1 P ΔP1 . By monotonicity of the mutual information, IQ1,11 pY; X1|Z1, Z2q is lower
than or equal to IQ1,11 pY; X1, X1

1|Z1, Z2q. Since IQ1,11 pY; X1|Z1, Z2q does not have X1
1 as an

argument, it is equal to the information calculated on its marginal IQ1 pY; X1|Z1, Z2q. Since
this holds for any distribution in ΔP1,11 , it holds in particular for the distribution Q1̊,11
that minimizes IpY; X1, X1

1|Z1, Z2q in ΔP1,11 . Since Q1̊ belongs to ΔP1 , the minimum of
IpY; X1|Z1, Z2q in ΔP1 is equal to or smaller than IQ˚

1
pY; X1|Z1, Z2q and hence equal to or

smaller than IQ˚
1,11 pY; X1, X1

1|Z1, Z2q.

2.3. Causal Graphs and Conditional Independencies

We here review basic notions of Directed Acyclic Graphs (DAGs) and the relation between
causal structures and dependencies. Consider a set of random variables V “ tV1, . . . , Vnu.
A DAG G “ pV; Eq consists of nodes V and edges E between the nodes. The graph contains
Vi Ñ Vj for each pVi; Vjq P E . We refer to V as both a variable and its corresponding node.
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Causal influences can be represented in acyclic graphs given that causal mechanisms are
not instantaneous and causal loops can be spanned using separate time-indexed variables.
A path in G is a sequence of (at least two) distinct nodes V1, . . . , Vm, such that there is an
edge between Vk and Vk`1 for all k “ 1, . . . , m ´ 1. If all edges are directed as Vk Ñ Vk`1 the
path is a causal or directed path. A node Vi is a collider in a path if it has incoming arrows
Vi´1 Ñ Vi Ð Vi`1 and is a noncollider otherwise. A node Vi is called a parent of Vj if there
is an arrow Vi Ñ Vj. The set of parents is denoted PaVj . A node Vi is called an ancestor of
Vj if there is a directed path from Vi to Vj. Conversely, in this case Vj is a descendant of Vi.
For convenience, we define the set of ancestors anGpViq as including Vi itself, and the set of
descendants DGpViq as also containing Vi itself.

The link between generative mechanisms and causal graphs relies on the fact that in
the graph a variable Vi is a parent of another variable Vj if and only if it is an argument of
an underlying functional equation that captures the mechanisms that generate Vj; that is,
an argument of Vj :“ fVj pPaVj , εVj q, where εVj captures additional sources of stochasticity
exogenous to the system. If a DAG constitutes an accurate representation of the causal
mechanisms, an isomorphic relation exists between the conditional independencies that
hold between variables in the system and a graphical criterion of separability between
the nodes, called d-separation [36]. Two nodes X and Y are d-separated given a set of
nodes S if and only if no S-active paths exist between X and Y. A path is active given
the conditioning set S (S-active) if no noncollider in the path belongs to S and every
collider in the path either is in S or has a descendant in S. A causal structure G and a
generated probability distribution ppVq are faithful [1,2] to one another when a conditional
independence between X and Y given S—denoted by X KP Y|S—holds if and only if there
is no S-active path between them; that is, if X and Y are d-separated given S—denoted by
X KG Y|S. Accordingly, faithfulness is assumed in the algorithms of causal inference [1,2]
that examine conditional independencies to characterize the Markov equivalence class of
causal structures that share a common set of independencies. A well-known example of a
system that is unfaithful to its causal structure is the exclusive-OR (X-OR) logic gate, whose
output is independent of the two inputs separately but dependent on them jointly.

In contrast to the algorithms that infer Markov equivalence classes, we will show
that the applicability of the groups-decomposition inequalities here studied relies on the
assumption that d-separability is a sufficient condition for conditional independence. That
is, instead of an if and only if relation between d-separability and conditional indepen-
dence, as required in the faithfulness assumption, it is enough to assume that d-separability
implies conditional independence. As we further discuss in Appendix C, this is a sub-
stantially weaker assumption, since usually faithfulness is violated due to the presence
of independencies that are incompatible with the causal structure. This is the case, for ex-
ample, of the X-OR logic gate, for which faithfulness is violated because the inputs are
separately independent of the output despite each having an arrow towards the output in
the corresponding causal graph. Conversely, the X-OR gate complies with d-separability
being a sufficient condition for independence, since in the graph only the input nodes
are d-separated and the corresponding input variables of the X-OR gate are independent.
Despite only requiring that d-separability implies independence, to simplify the presen-
tation of our results in the main text we will assume faithfulness and indistinctively use
X K Y|S to indicate statistical independence and graphical separability, instead of distin-
guishing between X KP Y|S and X KG Y|S. In Appendix C, we will more closely examine
how in the proofs of our results the sufficient condition of d-separability for conditional
independencies is enough. An important implication of independencies following from
d-separability is that, if variables tX1, X2u are separately independent from Y—namely
Y K X1 and Y K X2—because of the lack of any connection between node Y and both
nodes X1 and X2, then tX1, X2u cannot be jointly dependent on Y, namely Y M tX1, X2u
cannot occur. This is because d-separability between node Y and the set of nodes tX1, X2u
is determined by separately considering the lack of active paths between Y and each node
X1 and X2. Since the set of paths between Y and tX1, X2u is the union of the paths between
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Y and both X1 and X2, considering tX1, X2u jointly does not add new paths that could
create a dependence of Y with tX1, X2u. A dependence can only be created by conditioning
on some other variable, which could activate additional paths by activating a collider.

2.4. Inequalities for Sums of Information Terms from Groups of Variables

We now review two results in [27] that are at the foundation of our results. The first
corresponds to their Proposition 1. We provide a slightly more general formulation that is
useful for subsequent extensions.

Proposition 1. (Decomposition of information from groups with conditionally independent non-
shared components): Consider a collection of groups Arns ” tA1, . . . , Anu, where each group Ai
consists of a subset of observable variables Ai Ă O, being O the set of all observable variables.
For every Ai P Arns, define di as the maximal value such that Ai has a non-empty intersection
where it intersects jointly with di ´ 1 other distinct groups out of Arns. Consider a conditioning set
Z and target variables Y. If each group is conditionally independent given Z from the non-shared
variables in each other group (i.e., Ai K AjzAi|Z, @i, j), then the conditional information that Arns
has about the target variables Y given Z is bounded from below by

IpY; Arns|Zq ě
nÿ

i“1

1
di

IpY; Ai|Zq.

Proof. The proof is presented in Appendix A. It is a generalization to the conditional case
of the proof of Proposition 1 in [27] and a slight generalization that allows for dependencies
to exist between variables shared by two groups as long as dependencies with non-shared
variables do not exist.

An illustration of Proposition 1 for the unconditional case is presented in Figure 3
of [27], together with further discussion. In Section 3.2 we will provide further illustrations
for the extensions of Proposition 1 that we introduce. We will use d ” td1, . . . , dnu to
indicate the maximal values for all groups. We will add a subindex dArns to specify the
collection if different collections are compared. A trivial refinement of Proposition 1 would
consider IpY; ArnszZ|Zq and for each group IpY; AizZ|Zq. This may lead to a tighter lower
bound by decreasing some values in d if some intersections between groups occur in Z. We
do not present this refinement in order to simplify the presentation.

The second result from [27] that we will be relying on is their Theorem 1. We present a
version that is slightly reduced and modified, which is more convenient in order to relate
to our own results.

Theorem 1. (Decomposition of information in ancestral groups.) Let G be a DAG model that
includes nodes corresponding to the variables in a collection of groups Arns ” tA1, . . . , Anu, which
is a subset all observable variables O. Let anGpArnsq ” tanGpA1q, . . . , anGpAnqu be the collection
of ancestors of the groups, as determined by G. For every ancestral set of a group, anGpAiq, let
dipGq be maximal, such that there is a non-empty joint intersection of anGpAiq and other dipGq ´ 1
distinct ancestral sets out of anGpArnsq. Let Y be a set of target variables. Then the information of
anGpArnsq about Y is bounded as

HpYq ě IpY; anGpArnsqq ě
nÿ

i“1

1
dipGq IpY; anGpAiqq.

Proof. The original proof can be found in [27].

In contrast to Proposition 1, a generalization to the conditional mutual information
is not trivial and will be developed in Section 3.3. We will also propose additional gen-
eralizations regarding which graph to use to construct the ancestral sets and conditions

138



Entropy 2024, 26, 440

to exclude some ancestors from the groups. In their work, [27] conceptualized Y as corre-
sponding to leaf nodes in the graph, for example providing some noisy measurement of
Arns, with Y “ Arns being the case of perfect measurement. While this conceptualization
guided their presentation, their results were general, and here we will not assume any
concrete causal relation between Y and Arns. We have slightly modified the presentation of
Theorem 1 from [27] to add the upper bound and to remove some additional subcases with
extra assumptions presented in their work. The upper bound is the standard upper bound
of mutual information by entropy [28]. In the Results, we will also be interested in cases
in which anGpArnsq contains hidden variables, so that IpY; anGpArnsqq cannot be estimated.
Given the monotonicity of mutual information, the terms from each ancestral group can be
lower bounded by the information in the observable variables within each group and HpYq
is used as a testable upper bound.

There are two main differences between Proposition 1 and Theorem 1. First, Theorem 1
does not impose conditions of independence for the inequality to hold. Second, while
the value di of each group Ai is determined in Proposition 1 by the overlap between
groups, with no influence of the causal structure relating the variables, on the other hand in
Theorem 1 the value dipGq depends on the causal structure, since it is determined from the
intersections between ancestral sets. Despite these differences, given the relation between
causal structure and independencies reviewed in Section 2.3, both types of inequalities can
have causal inference power to test the compatibility of certain causal structures with data.

3. Results

In Section 3.1, we introduce a data processing inequality for the conditional unique
information measure of [29]. In Section 3.2, we develop new information inequalities
involving groups of variables and examine how data processing inequalities can help
to derive testable inequalities in the presence of hidden variables. In Section 3.3, we
develop new information inequalities involving ancestral sets. The application of these
inequalities for causal structure learning is discussed. As justified in the proofs of our
results (Appendices A and B) and further discussed in Appendix C, our derivations of
groups-decomposition inequalities only rely on the assumption that d-separability implies
conditional independence. No further assumptions are used in our work, in particular, our
application of the unique information measures of [29] does not require any assumption
regarding the precise distribution of the joint mutual information among redundancy,
unique, and synergistic components.

3.1. Data Processing Inequality for Conditional Unique Information

Proposition 2. (Conditional unique information data processing inequality): Let A, B, B1, D,
and E be five sets of variables. If IpA; B1|B, Eq “ 0, then IpA; B, B1zzD|Eq “ IpA; BzzD|Eq ě
IpA; B1zzD|Eq.

Proof. Let PBB1 ” PpA, B, B1, D, Eq be the original distribution of the variables and de-
fine ΔPBB1 as the set of distributions on tA, B, B1, D, Eu that preserve the two marginals
PpA, B, B1, Eq and PpA, D, Eq. Let PB ” PpA, B, D, Eq be the marginal of PBB1 and ΔPB be the
set of distributions that preserve the marginals PpA, B, Eq and PpA, D, Eq. By the definition
of unique information (Equation (2))

IpA; B, B1zzD|Eq ” min
QBB1 PΔPBB1

IQBB1 pA; B, B1|D, Eq paq“

min
QBB1 PΔPBB1

”
IQBB1 pA; B|D, Eq ` IQBB1 pA; B1|B, D, Eq

ı pbq“

min
QBB1 PΔPBB1

”
IQB pA; B|D, Eq ` IQBB1 pA; B1|B, D, Eq

ı
.

(4)
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Equality paq follows from the chain rule of mutual information. Equality pbq holds be-
cause IQBB1 pA; B|D, Eq does not depend on B1 and can be calculated with the marginal QB,
marginalizing QBB1 on B1. Note that QB P ΔPB . Since IPBB1 pA; B1|B, Eq is null, PpA, B, B1, Eq
factorizes as PpB1|B, EqPpA, B, Eq. For any distribution Q̃B P ΔPB , which preserves PpA, D, Eq
and PpA, B, Eq, a distribution can be constructed as Q̃BB1 ” PpB1|B, EqQ̃B, such that
Q̃BB1 P ΔPBB1 , since Q̃BB1 continues to preserve PpA, D, Eq and PpA, B, B1, Eq is preserved
by construction. Also by construction, IQ̃BB1 pA; B1|B, D, Eq “ 0 for any Q̃BB1 created from

any Q̃B P ΔPB . In particular, this holds for the distribution Q̃B̊B1 constructed from Q̃B̊ that
minimizes IQ̃B

pA; B|D, Eq, which determines IpA; BzzD|Eq. The distribution Q̃B̊B1 mini-
mizes the first term in the r.h.s of Equation (4) and, given the non-negativity of mutual
information, it also minimizes the second term, hence providing the minimum in ΔPBB1 .
Accordingly, IpA; B, B1zzD|Eq “ IpA; BzzD|Eq. The monotonicity of unique information on
the non-conditioning predictor (Lemma 2) leads to IpA; B, B1zzD|Eq ě IpA; B1zzD|Eq.

A related data processing inequality has already been previously derived for the uncon-
ditional unique information in the case of IpA, D; B1|Bq “ 0, with E “ H [39]. Differently,
Proposition 2 formulates a data processing inequality for the case IpA; B1|B, Eq “ 0. When
E “ H, Proposition 2 states a weaker requirement for the existence of an inequality, given
the decomposition axiom of the mutual information [27]. As we will now see in Section 3.2,
Proposition 2 will allow us to apply the unique information data processing inequal-
ity in cases in which IpA; B1|B, Eq “ 0. In particular, IpA; B, B1zzD|Eq ě IpA; B1zzD|Eq
allows us to obtain a lower bound when B contains hidden variables that we want
to eliminate in order to have a testable groups-decomposition inequality. In contrast,
the application of the standard data processing inequality of the mutual information
IpA; B, B1|D, Eq ě IpA; B1|D, Eq requires IpA; B1|B, D, Eq “ 0, and hence the two types of
data processing inequalities may be applicable in different cases to eliminate B. This will
be fully appreciated in Propositions 5 and 6. Note that this application of the unique
information measure of Equation (2) to eliminate hidden variables is not restrained by the
role of the measure in the mutual information decomposition and by considerations about
which alternative decompositions optimally quantify the different components [30,35].

3.2. Inequalities Involving Sums of Information Terms from Groups

In this section, we extend Proposition 1 in several ways. Propositions 3–6 present sub-
sequent generalizations, all subsumed by Proposition 6. We present these generalizations
progressively to better appreciate the new elements. For these Propositions, examples are
displayed in Figures 2 and 3 and explained in text after the enunciation of each Proposition.
Which Proposition is illustrated by each example is indicated in the figure caption and in
the main text. The objective of these generalizations is twofold: First, to derive new testable
inequalities for causal structures not producing a testable inequality from Proposition 1.
Second, to find inequalities with higher inferential power, even when some already exist.
These objectives are achieved introducing inequalities with less constringent requirements
of conditional independence and using data processing inequalities to substitute certain
variables from Arns, so that the conditions of independence are fulfilled or the number of
intersections is reduced and lower values in d are obtained. The first extension relaxes the
conditions Ai K AjzAi|Z @i, j required in Proposition 1:

Proposition 3. (Weaker conditions of independence through group augmentation for a decomposi-
tion of information from groups with conditionally independent non-shared components): Consider
a collection of groups Arns, a conditioning set Z, and target variables Y as in Proposition 1. Consider
that for each group Ai a group Bi exists, such that Ai Ď Bi and Bi can be partitioned in two disjoint
subsets Bi “ tB

p1q
i , B

p2q
i u such that B

p1q
i fulfills the conditions of independence B

p1q
i K B

p1q
j zB

p1q
i |Z

and B
p2q
i the conditions B

p2q
i K BjzB

p2q
i |Bp1q

i Z @i, j, and such that B
p1q
rns ” tB

p1q
1 , . . . , B

p1q
n u and

B
p2q
rns ” tB

p2q
1 , . . . , B

p2q
n u are disjoint. Define the maximal values dBi like in Proposition 1 but for
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the augmented groups Brns ” tB1, . . . , Bnu. Then, the conditional information that Brns has about
the target variables Y given Z is bounded from below by:

IpY; Brns|Zq ě
nÿ

i“1

1
dBi

IpY; Bi|Zq ě
nÿ

i“1

1
dBi

IpY; Ai|Zq.

Proof. The proof is provided in Appendix A.

The contribution of Proposition 3 is to relax the conditional independence requirements
Ai K AjzAi|Z. Analogous conditions remain for B

p1q
i , but B

p2q
i needs to fulfill the conditions

B
p2q
i K BjzB

p2q
i |Bp1q

i Z @i, j. This means that the variables in B
p1q
i are used to separate the

variables in B
p2q
i from other groups. If B

p2q
i is empty for all i, Proposition 3 reduces to

Proposition 1.
Another difference between Propositions 1 and 3 regards the role of hidden variables.

Assume that each Ai is formed by tVi, Uiu, where Ui are hidden variables and Vi observ-
able variables. In Proposition 1, the requirement that the variables are observable is not
fundamental and could be removed. However, to obtain a testable inequality, monotonicity
of mutual information would need to be applied to reduce each term IpY; Ai|Zq to its es-
timable lower bound IpY; Vi|Zq that does not contain the hidden variables Ui. On the other
hand, the fulfillment of Ai K AjzAi|Z implies Vi K VjzVi|Z, and reducing Ai to Vi can
only decrease the number of intersections, and hence dVrns values are equal or smaller than
dArns . Therefore, with Proposition 1, there is no advantage in including hidden variables.
When testing Proposition 1 for a hypothesis of the underlying causal structure (and related
independencies), it is equally or more powerful to use Vrns than Arns.

This changes in Proposition 3, since B
p1q
i appears in the conditioning side of the inde-

pendencies that constrain B
p2q
i . If hidden variables within B

p1q
i are necessary to create the

independencies for B
p2q
i , it is not possible to reduce each group to its subset of observable

variables. Note that, for a hypothesized causal structure, whether the independence condi-
tions required by Proposition 3 are fulfilled can be verified without observing the hidden
variables by using the d-separation criterion on the causal graph, assuming d-separation
implies independence. The actual estimation of mutual information values is only needed
when testing an inequality from the data.

If Brns includes hidden variables, in general IpY; Brns|Zq cannot be estimated and
HpY|Zq is used as an upper bound. For the r.h.s. of the inequality, a lower bound is obtained
by monotonicity of the mutual information, removing the hidden variables. In general,
a testable inequality has the form

HpY|Zq ě
nÿ

i“1

1
dBi

IpY; Vi|Zq, (5)

with Vi Ď Bi being the observable variables within each group. In the case that IpY; Brns|Zq
“ IpY; Vrns|Zq, that is, if the hidden variables do not add information, then a testable tighter
upper bound is available using IpY; Vrns|Zq. Importantly, the values dBrns are determined
using the groups in Brns. Since Ai Ď Bi, group augmentation comes at the price that
dBrns are equal or higher than dArns , but the conditional independence requirements may

not be fulfilled without it. Note also that the partition Bi “ tB
p1q
i , B

p2q
i u is not known a

priori, but determined in the process of finding suitable augmented groups that fulfill
the conditions.

We examine some examples before further generalizations. Throughout all figures,
we will read independencies from the causal structures using d-separation, assuming
faithfulness. In Figure 2A, consider groups A1 “ tV1, V2u and A2 “ tV3, V4u, and Z “ H.
Proposition 1 is not applicable due to V2 M V3. Augmenting the groups to B

p1q
1 “ B

p1q
2 “

tUu, B
p2q
1 “ tV1, V2u, and B

p2q
2 “ tV3, V4u the conditions of Proposition 3 are fulfilled,
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as can be verified by d-separation. Coefficients are determined by d “ t2, 2u due to
the intersection of the groups in U. Note that hidden variables are not restricted to be
hidden common ancestors, and here U is a mediator between V2 and V3. In Figure 2B,
consider groups A1 “ tV1u, A2 “ tV3u, A3 “ tV5u, which do not fulfill the conditions
of Proposition 1. Augmenting the groups to B

p1q
1 “ tU2, U4u, B

p2q
1 “ tV1u, B

p1q
2 “ tU2u,

B
p2q
2 “ tV3u, B

p1q
3 “ tU4u, and B

p2q
3 “ tV5u the conditions are fulfilled. Maximal intersection

values are d “ t2, 2, 2u. In both examples the upper bound is HpYq since IpY; Brnsq cannot
be estimated due to hidden variables.

V3U2

V1

U4

Y

V5

B C

Yi

Ui Uk

Z2

Vi Vk

Z1

A
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V4

U

V1 Y
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Y
V2iV1i

U1i U2i

V1k
U1k U2k

V2k
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Ui
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U1i U2i
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Figure 2. Examples of applications of Proposition 3 (A–C) and Proposition 4 (D–F) to obtain testable
inequalities. The causal graphs allow verifying if the required conditional independence conditions
are fulfilled by using d-separation. Variable Y is the target variable, observable variables are denoted
by V, hidden variables by U, and conditioning variables by Z. For all examples, the composition of
groups is described in the main text. For graphs using subindexes i, k to display two concrete groups,
those are representative of the same causal structure for all groups that compose the system. In those
graphs, variables with no subindex have the same connectivity with all groups. Bidirectional arrows
indicate common hidden parents not included in any group.

We also consider scenarios with more groups. Figure 2C represents 2N groups or-
ganized in pairs, with subindexes i, k indicating two particular pairs. The 2N groups
are defined in pairs, with A1j “ tV1ju and A2j “ tV2ju, j “ 1, . . . , N. The causal struc-
ture is the same across pairs, but the mechanisms generating the variables beyond the
causal structure can possibly differ. Proposition 1 is not fulfilled since V1j M V2j. Groups

can be augmented to B
p1q
j1 j “ tU1j, U2ju, B

p2q
j1 j “ tVj1 ju, for j1 “ 1, 2. Proposition 3 then

holds with d “ 2 for all 2N groups. The pairs of groups contribute to the sum as
1{2rIpY; V1j, U1j, U2jq ` IpY; V2j, U1j, U2jqs, which in the testable inequality of the form of
Equation (5) reduces to 1{2rIpY; V1jq ` IpY; V2jqs. The upper bound to the sum of 2N terms
is HpYq. This inequality provides causal inference power because V1j K V2j|U1j, U2j for
all j is not directly testable. As previously indicated, the inference power of an inequal-
ity emanates from the possibility to discard causal structures that do not fulfill it. Note
that for this system an alternative is to define N groups instead of 2N groups, each as
A1

j “ tV1j, V2ju. In this case Proposition 1 is already applicable with the coefficients being all
1, since V1i, V2i K V1j, V2j for all i ‰ j. For this inequality, each of the N groups contributes
with IpY; V1jq ` IpY; V2j|V1jq, and since there are no hidden variables the l.h.s. is IpY; A1

rnsq.
However, this latter inequality holds for any causal structure that fulfills V1i, V2i K V1j, V2j
for all i ‰ j. Given that these independencies do not involve hidden variables, they are di-
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rectly testable from data, so that the latter inequality does not provide additional inference
power, in contrast to the former one.

We now continue with further generalizations. Group augmentation in Proposition 3
cannot decrease the values of the maximal number of intersections. We now describe how
the data processing inequalities in Lemma 1piq and Proposition 2 can be used to substitute
variables within the groups, potentially reducing the number of intersections. We start with
the data processing inequality for the conditional mutual information.

Proposition 4. (Decomposition of information from groups modified with the conditional mutual
information data processing inequality): Consider a collection of groups Arns, a conditioning set
Z, and target variables Y as in Proposition 1. Consider that for some group Ai a group Bi exists
such that Y K AizBi|BiZ, with AizBi ‰ H. Define Brns as the collection of groups that replaces
Ai by Bi for those following the previous independence condition. If Brns fulfills the conditions
of Proposition 3, the inequality derived for Brns also provides an upper bound for the sum of the
information provided by the groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě
nÿ

i“1

1
dBi

IpY; Bi|Zq ě
nÿ

i“1

1
dBi

IpY; Ai|Zq.

Proof. The proof applies Proposition 3 to Brns followed by the data processing inequality
of Lemma 1piq to each term within the sum in which Ai and Bi are different. Given that
Y K AizBi|BiZ implies IpY; Bi|Zq ě IpY; Ai|Zq, their sum is also smaller or equal.

Proposition 3 envisaged cases in which the conditions of independence of Proposi-
tion 1 were not fulfilled for a collection Arns and augmentation allowed fulfilling weaker
conditions, even if with higher dBrns values compared to dArns . Proposition 4 is useful not
only when the conditions of independence are not fulfilled for Arns, but more generally if
some values in dBrns are lower than in dArns , hence providing a tighter inequality. Including
hidden variables in Brns is beneficiary when replacing observed by hidden variables leads
to fewer intersections. The procedures of Proposition 3 and 4 can be combined, that is, start-
ing with Arns that contains only observable variables, a new collection can be constructed
adding new variables and removing others from Arns, ending with Brns that contains both
observable and hidden variables. The collection Brns fulfilling the conditions of Proposi-
tion 3 may even contain only hidden variables, and a testable inequality is obtained as long
as the data processing inequality allows calculating observable lower bounds for all terms
in the sum.

Figure 2D–F are examples of Proposition 4. Again we consider cases with N groups
with equal causal structure and use indexes i, k to represent two concrete groups. In
Figure 2D, with Aj “ tVju, Proposition 3 does not apply for Arns conditioning on tZ1, Z2u
because Vi M Vj|Z1, Z2, for all i, j. However, given that Y K Vj|Uj, Z1, Z2, each Vj can be
replaced to build Bj “ tUju, and since Ui K Uj|Z1, Z2, for all i, j Proposition 3 applies
after using Proposition 4 to create Brns. A testable inequality is derived with upper bound
HpY|Z1, Z2q and a sum of terms IpY; Vj|Z1, Z2q, each being a lower bound of IpY; Uj|Z1, Z2q
given the data processing inequality that follows from Y K Vj|Uj, Z1, Z2. The coefficients
are dBrns “ 1. Therefore, in this case Proposition 4 results in an inequality when no
inequality held for Arns. In Figure 2E, the same procedure relies on Y K Vj|Uj, Z1, Z2 and
Ui K Uj|Z1, Z2 to use Bj “ tUju to create a testable inequality with l.h.s. HpY|Z1, Z2q and
the sum of terms IpY; Vj|Z1, Z2q in the r.h.s. with dBrns “ 1. Note that by U, which has no
subindex, we represent in Figure 2E a hidden common driver of all N groups, not only the
displayed i, k. In this example Proposition 3 could have been directly applied without using

Proposition 4 if augmenting Aj “ tVju to B1
j “ tVj, Uu, with B

1p1q
j “ tUu and B

1p2q
j “ tVju,

since Vi K Vj|U, Z1, Z2. However, dB1rns “ N, since all groups B1
j intersect in U. Therefore,

in this case an inequality already exists without applying Proposition 4, but its use allows
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replacing dB1rns “ N by dBrns “ 1, hence creating a tighter inequality with higher causal
inference power.

In Figure 2F, again we consider 2N groups, consisting of N pairs with the same causal
structure across pairs and indices i, k representing two of these pairs. For groups Aj1 j “
tVj1 ju, with j1 “ 1, 2 and j “ 1, ..., N, Proposition 3 is directly applicable for B

p1q
j1 j “ tUju and

B
p2q
j1 j “ tVj1 ju, with dBrns “ 2. The data processing inequalities associated with Y K Vj1 j|Uj1 j

allow applying Proposition 4 to obtain an inequality for the groups B1
j1 j “ B

1p1q
j1 j “ tUj1 ju,

which dB1rns “ 1.
Proposition 4 relies on the data processing inequality of the conditional mutual in-

formation. The data processing inequality of unique information can also be used for the
same purpose, and both data processing inequalities can be combined applying them to
different groups.

Proposition 5. (Decomposition of information from groups modified using across different groups
the conditional or unique information data processing inequality): Consider a collection of groups
Arns, a conditioning set Z, and target variables Y as in Proposition 1. Consider a subset of

groups such that for Ai a group Bi exists such that, for some Z
p1q
i Ď Z, Y K AizBi|BiZ

p1q
i ,

with AizBi ‰ H. Define Brns as the collection of groups that replaces Ai by Bi for those following

the previous independence conditions. Define Z
p1q
i ” Z for the unaltered groups and Z

p2q
i ” ZzZ

p1q
i

for all groups. If Brns fulfills the conditions of Proposition 3, the inequality derived for Brns also
provides an upper bound for a sum combining conditional and unique information terms for different
groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě
nÿ

i“1

1
dBi

IpY; Bi|Zq ě
ÿ

ti:|Zp2q
i |“0u

1
dBi

IpY; Ai|Zq `
ÿ

ti:|Zp2q
i |ą0u

1
dBi

IpY; AizzZ
p2q
i |Zp1q

i q.

Proof. The proof applies Proposition 3 to Brns and then both types of data processing
inequalities depending on which one holds for different groups:

nÿ
i“1

1
dBi

IpY; Bi|Zq paqě
ÿ

ti:|Zp2q
i |“0u

1
dBi

IpY; Bi|Zq `
ÿ

ti:|Zp2q
i |ą0u

1
dBi

IpY; BizzZ
p2q
i |Zp1q

i q pbqě

ÿ
ti:|Zp2q

i |“0u

1
dBi

IpY; Ai|Zq `
ÿ

ti:|Zp2q
i |ą0u

1
dBi

IpY; AizzZ
p2q
i |Zp1q

i q.
(6)

Inequality paq follows from the unique information always being equal to or smaller than
the conditional mutual information (Equation (3)). Inequality pbq applies the conditional
mutual information data processing inequality to those groups with Ai different than Bi

but |Zp2q
i | “ 0, and the unique information data processing inequality to those groups with

|Zp2q
i | ą 0.

Proposition 5 is useful when the conditions of independence required to apply
Proposition 3 do not hold for Arns. It can also be useful to obtain inequalities with higher
causal inferential power if dBrns are smaller than dArns , even if Proposition 3 is directly ap-

plicable. By definition, the terms IpY; AizzZ
p2q
i |Zp1q

i q are equal to or smaller than IpY; Ai|Zq,
which can only decrease the lower bound, but the data processing inequality may hold only
for the unique information and not the conditional information term. Note that the partition
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tZ
p1q
i , Z

p2q
i u can be group-specific and selected such that data processing inequalities can

be applied.
Figure 3A shows an example of the application of the data processing inequality of

unique information. For Aj “ tVju, Proposition 3 does not apply to IpY; Arns|Zq because
Vi M Vk|Z. The data processing inequality of conditional mutual information does not hold
with Y M Vi|UiZ. This data processing inequality could be used adding to Ui the latent
common parent in Y Ø Z, but this variable would be shared by all augmented groups Bi,
leading to an intersection of all N groups. Alternatively, the data processing inequality
holds for the unique information with IpY; UjzzZq ě IpY; VjzzZq, and Ui K Uj|Z for all

i ‰ j. Proposition 5 is applied with Z
p1q
j “ H, Z

p2q
j “ tZu, and Bj “ B

p1q
j “ tUju, @j. This

leads to an inequality with HpY|Zq as upper bound and the sum of terms IpY; VjzzZq at the
r.h.s. with coefficients determined by dBrns “ 1. In Figure 3B, taking Aj “ tVj1, Vj2u @j and
defining the conditioning set Z “ tZ, Z1, ..., ZNu, we have Vi2 M Vk2|Z and Vj1, Vj2 M Y|UjZ .
On the other hand, Vj1, Vj2 K Y|UjZzZj, so that the data processing can be applied with the

unique information and Proposition 5 is applied with Z
p1q
j “ ZzZj, Z

p2q
j “ tZju and Bj “

B
p1q
j “ tUju. An inequality exists given that Ui K Uk|Z, and the testable inequality has an

upper bound HpY|Zq and at the r.h.s. the sum of terms IpY; Vj1Vj2zzZj|ZzZjq, with dBrns “ 1.

Ui Uk

YiVi Vk

Z

Yi

ZZi Zk

U

Uk

Vk1

Vk2

Ui

Vi1

Vi2

Ui1 Uk1

YiVi1 Vk1

Z1

Z2
Vk2Uk2Ui2Vi2

VlVj

U

UlUjUi Uk

YiVi2

Vk1Z

Vk2

Vi1

ZkZi

B CA D

Figure 3. Examples of the application of Proposition 5 (A–C) and Proposition 6 (D) to obtain testable
inequalities. Notation is analogous to Figure 2. The composition of groups is described in the main text.

In Figure 3C, we examine an example in which groups differ in the causal structure of
the conditioning variable Zj: For the groups of the type of group i, Zi is a common parent of
Y and Vi1. For the groups of the type of k, Zk is a collider in a path between Y and Vk1. Con-
sider M groups of the former type and N ´ M of the latter. We examine the existence of an
inequality for groups defined as Aj “ tVj1, Vj2u @j, with Z “ tZ, Z1, . . . , ZNu. Proposition 3
cannot be applied to IpY; Arns|Zq because Vi1 M Vj1|Z for all i ‰ j. The mutual information
data processing inequality is not applicable to substitute Vj1 because Y M Vj1|UjVj2Z. How-
ever, for the M groups like i, the independence Y K Vj1|UjVj2ZzZ leads to the data process-

ing inequality IpY; UjVj2zzZ|ZzZq ě IpY; Vj1Vj2zzZ|ZzZq. For these groups, Z
p1q
j “ ZzZ and

Z
p2q
j “ tZu. For the N ´ M groups like k, the independence Y K Vj1|UjVj2ZztZ, Zju leads

to IpY; UjVj2zzZ, Zj|ZztZ, Zjuq ě IpY; Vj1Vj2zzZ, Zj|ZztZ, Zjuq. For these groups Z
p1q
j “

ZztZ, Zju and Z
p2q
j “ tZ, Zju. In all cases the modified groups are Bj “ B

p1q
j “ tUj, Vj2u,

which fulfill the requirement Uj, Vj2 K Ui, Vi2|Z for all i ‰ j needed to apply Proposition 3.
The testable inequality that follows from Proposition 5 has upper bound HpY|Zq and in the
sum at the r.h.s. has M terms of the form IpY; Vj1Vj2zzZ|ZzZq and N ´ M terms of the form
IpY; Vj1Vj2zzZ, Zj|ZztZ, Zjuq. The coefficients are determined by dBrns “ 1.

Proposition 5 combines both types of data processing inequalities, but only across
different groups. Our last extension of Proposition 1 combines both types across and
within groups. For each group, we introduce a disjoint partition into mi subgroups Ai “
tA

p1q
i , . . . , A

pmiq
i u and define A

p0q
i ” H. Subgroups are analogously defined for Zi, also with

Z
p0q
i ” H. In general, for any ordered set of vectors we use V

rks
i ” tV

p0q
i , V

p1q
i , . . . , V

pkq
i u to

refer to all elements up to k, where in general V
p0q
i can be nonempty.
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Proposition 6. (Decomposition of information from groups modified with the conditional or unique
information data processing inequality across and within groups): Consider a collection of groups
Arns, a conditioning set Z, and a target variable Y as in Proposition 1. Consider that for each group

Ai there are disjoint partitions Ai “ tA
p1q
i , . . . , A

pmiq
i u and Z “ tZ

p1q
i , . . . , Z

pmiq
i u, and a collection

of sets of additional variables Ci “ tC
p0q
i , C

p1q
i , ..., C

pmi´1q
i u, such that Y K A

pkq
i |Crks

i Z
rks
i AizA

rks
i

for k “ 1, . . . , mi ´ 1. Define the collection Brns with the modified groups Bi “ tCi, A
pmiq
i u. If Brns

fulfills the conditions of Proposition 3, the inequality derived for Brns also provides an upper bound
for sums combining conditional and unique information terms for different groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě
nÿ

i“1

1
dBi

IpY; Bi|Zq ě
nÿ

i“1

1
dBi

IpY; C
rkis
i AizA

rkis
i zzZzZ

rkis
i |Zrkis

i q ě
nÿ

i“1

1
dBi

IpY; AizzZzZ
p1q
i |Zp1q

i q,

for ki P t1, . . . , mi ´ 1u.

Proof. The proof is provided in Appendix A.

If mi “ 1 for all i, then A
p1q
i “ Ai, Z

p1q
i “ Z, Bi “ tC

p0q
i , Aiu, and Proposition 6

reduces to Proposition 3. If mi “ 2 and Z
p1q
i “ Z for all i, we recover Proposition 4,

with Bi “ tCi, A
p2q
i u. If mi “ 2 for all i and Z

p1q
i Ă Z for some i, we recover Proposition 5,

with Bi “ tCi, A
p2q
i u and Z

p2q
i “ ZzZ

p1q
i . Like for previous propositions, some groups may

be unmodified such that Bi “ Ai.
The tightest inequality results from maximizing across ki P t1, . . . , mi ´ 1u each term

in the sum. In the proof of Proposition 6 in Appendix A we show that, when increasing
ki P t1, . . . , mi ´ 1u, the terms IpY; C

rks
i AizA

rks
i zzZzZ

rks
i |Zrks

i q are monotonically increasing.
However, in general Ci can contain hidden variables, which means that, to obtain a testable
inequality, for each ki P t1, . . . , mi ´ 1u each term needs to be substituted by its lower
bound that quantifies the information in the subset of observable variables. For each group,
the optimal ki leading to the tightest inequality will depend on the subset of observable
variables V

pkiq
i Ď tC

rkis
i , AizA

rkis
i u and the corresponding values of IpY; V

pkiq
i zzZzZ

rkis
i |Zrkis

i q.
Figure 3D shows an example of application of Proposition 6. Like in Figure 3C, there

are two types of groups with different causal structure. M groups have the structure
of the variables with indexes i, k, and Aj1 “ tVj11, Vj12u. The other N ´ M groups have
the structure of the variables with indexes l, j, and Aj1 “ tVj1 u. The conditioning set
selected is Z “ tZ1, Z2u. Proposition 3 cannot be applied directly because Vi1 M Vk1|Z
for all i ‰ k within the M groups, and Vj M Vl|Z for all j ‰ l within the N ´ M groups.

Proposition 6 applies as follows. For the N ´ M groups, mj1 “ 2 with A
p1q
j1 “ tVj1 u,

A
p2q
j1 “ H, Z

p1q
j1 “ Z, and Bj1 “ C

p1q
j1 “ tUj1 u. The independencies Y K A

pkq
i |Crks

i Z
rks
i AizA

rks
i

for k “ 1, . . . , mi ´ 1 correspond in this case to Y K Vj1 |ZUj1 , for k “ 1. For the other M

groups, mj1 “ 3 with A
p1q
j1 “ tVj11u, A

p2q
j1 “ tVj12u, A

p3q
j1 “ H, Z

p1q
j1 “ tZ2u, Z

p2q
j1 “ tZ1u,

C
p1q
j1 “ tUj11u, C

p2q
j1 “ tUj12u, and Bj1 “ tUj11, Uj12u. The independencies involved are

Y K Vj11|Z2, Uj11, Vj12, for k “ 1, and Y K Vj12|Z, Uj11, Uj12, for k “ 2.
Proposition 6 applies because with Brns defined as Bj1 “ tUj1 u for the N ´ M groups

and Bj1 “ tUj11, Uj12u for the M groups, the requirements of independence of Proposi-
tion 3 are fulfilled, in particular Bi K Bj|Z for all i ‰ j. The terms IpY; Bj1 |Zq for the
N ´ M groups are IpY; Uj1 |Z1, Z2q and are substituted by lower bounds IpY; Vj1 |Z1, Z2q in
the testable inequality. For the M groups, we have the subsequent sequence of inequalities:
IpY; Uj11, Uj12|Z1, Z2q ě IpY; Uj11, Vj12|Z1, Z2q ě IpY; Uj11, Vj12zzZ1|Z2q ě IpY; Vj11, Vj12zzZ1|Z2q.
The first inequality follows from the independence for k “ 2, the second from the unique
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information being equal or smaller than the conditional information, and the third from
the independence for k “ 1. Considering that a testable inequality can only contain ob-
servable variables, for the M groups the terms in the sum can be IpY; Vj11, Vj12zzZ1|Z2q or
IpY; Vj12|Z1, Z2q, depending on which one is higher. The coefficients are determined by
dBrns “ 1 and the resulting testable inequality has upper bound HpY|Z1, Z2q.

Overall, Propositions 4–6 further extend the cases in which groups-decomposition
inequalities of the type of Proposition 1 can be derived. Our Proposition 1 extends Propo-
sition 1 of [27] to allow conditioning sets, Proposition 3 further weakens the conditions
of independence required in Proposition 1, and Propositions 4–6 use data processing in-
equalities to obtain testable inequalities from groups-decompositions derived comprising
hidden variables, which can be more powerful than inequalities directly derived without
comprising hidden variables. In Figures 2 and 3, we have provided examples of causal
structures for which these new groups-decompositions inequalities exist. In all these cases,
the use of our groups-decomposition inequalities increases the set of available inequality
tests that can be used to reject hypothesized causal structures underlying data.

3.3. Inequalities Involving Sums of Information Terms from Ancestral Sets

We now examine inequalities involving ancestral sets as in Theorem 1 of Steudel and
Ay [27], which we reviewed in our Theorem 1 (Section 2.4). We extend this theorem allowing
for a conditioning set Z and adding flexibility on how ancestral sets are constructed, as well
as allowing the selection of reduced ancestral sets that exclude some variables. Like for
Theorem 1, we will use anGpArnsq ” tanGpA1q, . . . , anGpAnqu to indicate the collection of
all ancestral sets in graph G from the collection of groups Arns ” tA1, . . . , Anu.

The extension of Theorem 1 to allow for a conditioning set Z requires an extension of
the notion of ancestral set that will be used to determine the coefficients in the inequalities.
The intuition for this extension is that conditioning on Z can introduce new dependencies
between groups, in particular when a variable Zj P Z is a common descendant of several
ancestral groups, and hence conditioning on it activates paths in which it is a collider.
The coefficients need to take into account that common information contributions across
ancestral groups can originate from these new dependencies. At the same time, condition-
ing can also block paths that created dependencies between the ancestral groups. To also
account for this, we will not only consider ancestral sets in the original graph G, but in any
graph G1 “ GZ1 , with Z1 Ď Z. The graph GZ1 is constructed by removing from G all the
outgoing arrows from nodes in Z1. This has an effect equivalent to conditioning on Z1 with
regard to eliminating dependencies enabled by paths through Z1 in which the variables
in Z1 are noncolliders, since removing those arrows deactivates the paths. To account for
these effects of conditioning on Z, for each Zj P Z we define an augmented ancestral set of
the groups Ai P Arns as follows:

anG1 pAi; Zjq ”
#

anG1 pAiq if anG1 pAiq K anG1pZjq X anG1 pArnsq|Z
anG1 pAiq Y panG1 pZjq X anG1 pArnsqq otherwise.

(7)

We then define the set SpG1; Zjq ” tAi P Arns : anG1 pAiq M anG1 pZjq X anG1 pArnsq|Zu,
that is, the set of groups that have some ancestor not independent from some ancestor of Zj
that is also ancestor of Arns, given Z.

For each Ai, let dipG1; Zjq be the maximal number such that a non-empty intersection
exists between anG1 pAi; Zjq and dipG1; Zjq ´ 1 other distinct augmented ancestral sets of
Ai1 , . . . , AidipG1 ;Zjq´1

. Furthermore, we define dipG1; Zq as the maximum for all Zj P Z:

dipG1; Zq ” max
ZjPZ

dipG1; Zjq. (8)
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We will use dpG1; Zq to refer to the whole set of maximal values for all groups. If re-
quired, we will use dArnspG1; Zq to specify that the collection is Arns.

In Figure 4A–D, we consider examples to understand the rationale of how dArnspG1; Zq
is determined in inequalities with a conditioning Z. In Figure 4A, for groups A1 “ tV1u
and A2 “ tV2u, the augmented ancestral sets on graph G are anGpA1; Zq “ tV1, Zu and
anGpA2; Zq “ tV2, Zu, which intersect on Z and dipG; Zq “ 2 for i “ 1, 2. However, Z is a
noncollider in the path creating a dependence between V1 and V2, and conditioning on Z
renders them independent, so that dipG; Zq “ 2 overestimates the amount of information
the groups may share after conditioning. Alternatively, selecting GZ the ancestral sets are
anGZ pA1; Zq “ tV1u and anGZ pA2; Zq “ tV2u, which do not intersect and dipGZ; Zq “ 1 for
i “ 1, 2 when calculated following Equation (7). A priori, we do not know which graph G1 “
GZ1 , Z1 Ď Z, results in a tighter inequality. Here we see that GZ leads to an inequality with
more causal inference power than G for Figure 4A. In Figure 4B, Z is a collider between V1
and V2, so that conditioning on Z creates a dependence between the groups. If the values di
were determined from the standard ancestral sets, in this case anGpAiq “ anGZ pAiq “ tViu,
for i “ 1, 2, which do not intersect, leading to unit coefficients. However, the augmented
ancestral sets following Equation (7) are anGpAi; Zq “ anGZ pAi; Zq “ tV1, V2u for i “ 1, 2,
so that dipG; Zq “ dipGZ; Zq “ 2. This illustrates that the augmented ancestral sets are
necessary to properly determine the coefficients in inequalities with conditioning sets Z,
in this case reflecting that IpY; V1|Zq and IpY; V2|Zq can have redundant information.
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V2YV1
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V3 Z2

B C

FD E

V2Z
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V1 V2Z

Y

V1 V2YV1

Z1 Z2
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U

Figure 4. Inequalities involving sums of information terms from ancestral sets. (A–D) Examples to
illustrate the definition of augmented ancestral sets (Equations (7) and (8)). (E,F) Examples of the
application of Theorem 2 to obtain testable inequalities.

Figure 4C shows a scenario in which conditioning creates dependencies of Y with V1
and V2, which were previously independent. The standard ancestral sets anG1 pA1q “ tV1u
and anG1 pA2q “ tV2u would not intersect in any G1 “ GZ1 , with Z1 Ď tZ1, Z2u and would
lead to unit values for di. On the other hand, the augmented ancestral sets are anG1 pAi; Zjq “
tViu for i “ j and anG1 pAi; Zjq “ tV1, V2u for i ‰ j, for all G1 “ GZ1 , with Z1 Ď tZ1, Z2u.
This results in dipG1; Zq “ 2 in all cases, which appropriately captures that the two groups
can have common information about Y when conditioning on tZ1, Z2u. The example of
Figure 4D illustrates why each value dipG1; Zjq is determined separately (Equation (7))
first, and only after is the maximum calculated (Equation (8)). Four groups are defined
as Ai “ Vi for i “ 1, . . . , 4. If dipG1; Zq were to be determined directly from Equation (7)
but using Z “ tZ1, Z2u, instead of using separately Z1 and Z2, then for all the ancestral
sets the augmented ancestral set would include all variables, since anG1 pZq X anG1 pArnsq
is equal to anG1 pArnsq. This would lead to di “ 4, @i. However, that determination would
overestimate how many groups become dependent when conditioning on Z, since Z1
creates a dependence between V1 and V2 and Z2 between V3 and V4, but no dependencies
across these pairs are created. The determination of dpG1; Zq “ 2 from Equations (7) and (8)
properly leads to a tighter inequality than the one obtained if considering jointly both
conditioning variables.
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Equipped with this extended definition of dArnspG1; Zq, we now present our general-
ization of Theorem 1:

Theorem 2. Let G be a DAG model containing nodes corresponding to a set of (possibly hidden)
variables X . Let Y P X be a set of observable target variables, and Z “ tZ1, . . . , Zmu a conditioning
set of observable variables, with Z Ă X . Let Arns “ tA1, . . . , Anu be a collection of (possibly
overlapping) groups of (possibly hidden) variables Ai Ă X . Consider a DAG G1 selected as
G1 “ GZ1 with Z1 Ď Z, constructed by removing from graph G all the outgoing arrows from nodes
in Z1. Following Equation (7), define an augmented ancestral set in G1 for each group Ai P Arns
for each variable in the conditioning set, Zj P Z. Following Equation (8), determine dipG1; Zq
for each group, given the intersections of the augmented ancestral sets anG1 pAi; Zjq. Select a
variable W0 P anG1 pArnsq and a group of variables W Ď DG1 pW0q X anG1 pArnsq, possibly W “ H.
Define the reduced ancestral sets ãnG1 pAiq ” anG1 pAiqzW for each Ai P Arns, and the reduced
collection ãnG1 pArnsq ” anG1 pArnsqzW. The information about Y in this reduced collection when
conditioning on Z is bounded from below by

IpY; ãnG1 pArnsq|Zq ě
nÿ

i“1

1
dipG1; Zq IpY; ãnG1 pAiq|Zq. (9)

Proof. The proof is provided in Appendix B.

Theorem 2 provides several extensions of Theorem 1. First, it allows for a conditioning
set Z. Second, given a hypothesis of the generative causal graph G underlying the data,
Theorem 2 can be applied to any G1 “ GZ1 with Z1 Ď Z, and hence offers a set of inequalities
potentially adding causal inference power. As we have discussed in relation to Figure 4A–D,
the selection of G1 that leads to the tightest inequality in some cases will be determined by
the causal structure, but in general it also depends on the exact probability distribution of
the variables. Third, Theorem 2 allows excluding some variables W from the ancestral sets,
although imposing constraints in the causal structure of W. The role of these constraints is
clear in the proof at Appendix B. The case of Theorem 1 corresponds to Z “ H, W “ H,
and G1 “ G.

Excluding some variables W can be advantageous. For example, if Y is univariate and
it overlaps with some ancestral sets, as it is the case when some groups include descendants
of Y, then the upper bound IpY; anG1 pArnsq|Zq is equal to HpY|Zq and also IpY; anG1 pAiq|Zq
is equal to HpY|Zq for all ancestral sets that include Y. Excluding W “ Y provides a
tighter upper bound IpY; anG1 pArnsqzY|Zq and may provide more causal inferential power.
Another scenario in which a reduced collection can be useful is when excluding W re-
moves all hidden variables from anG1 pArnsq, such that ãnG1 pArnsq is observable, giving
IpY; ãnG1 pArnsq|Zq as a testable upper bound instead of HpY|Zq. When comparing inequali-
ties with different sets W, in some cases the form of the causal structure and the specification
of which variables are hidden or observable will a priori determine an order of causal
inference power among the inequalities. However, like for the comparison across G1 “ GZ1
with Z1 Ď Z, in general the power of the different inequalities depends on the details of the
generated probability distributions. Formulating general criteria to rank inequalities with
different Z, G1, and W in terms of their inferential power is beyond the scope of this work.

Note that we have formulated Theorem 2 explicitly allowing for hidden variables.
Also, in Theorem 1 (as a subcase of Theorem 2) the restriction of Arns being observable
variables can be removed. In any case, the inclusion of hidden variables can only increase
the causal inference power if combined with data processing inequalities to obtain a testable
inequality. Propositions 4–6 indicate how to possibly tighten an inequality derived from
Proposition 1 by substituting Arns by a new collection Brns that, including hidden variables,
leads to dBrns smaller than dArns . The same application of data processing inequalities of
the unique and conditional mutual information can be used for Theorem 2 to determine
a Brns with dBrnspG1; Zq smaller than dArnspG1; Zq. The use of data processing inequalities
is necessary because they allow substituting some of the observable variables by hidden
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variables, instead of only adding hidden variables. When only adding variables, the number
of intersections between ancestral groups can only increase, hence not decreasing dpG1; Zq.
On top of this, a testable inequality replaces information terms of ancestral groups by their
lower bounds given by observable subsets of variables. This means that, adding hidden
variables, the testable inequality will contain the same information terms of the observable
variables, but possibly smaller coefficients, hence resulting in a looser inequality. This is
not the case any more when hidden variables are not added but instead substitute some of
observable variables, thanks to data processing inequalities. This substitution may decrease
the number of intersections between ancestral groups, and the coefficients in the sum may
be higher. We will not describe this procedure in detail, since the use of data processing
inequalities is analogous to their use in Propositions 4–6.

We now illustrate the application of Theorem 2. In Figure 4E, with Z “ tZ1, Z2u,
the conditions of independence required by Proposition 6 do not hold for any set of
groups, either Ai “ tViu, i “ 1, 2, 3, or, with i ‰ j ‰ k, A1 “ tVi, Vju, A2 “ tVi, Vku
or A1 “ tVi, Vju, A2 “ tVku. No data processing inequalities can be applied to replace
some variables to fulfill the conditions. On the other hand, Theorem 2 can always be
applied, since it does not require the fulfillment of some conditions of independence.
For example, for Ai “ tViu, i “ 1, 2, 3 and for G1 “ GZ1Z2 , we have anG1 pV1q “ tV1u,
anG1 pV2q “ tV2u, anG1 pV3q “ tV1, V2, V3, U, Yu, and following Equation (7) anG1 pV1; Zjq “
tV1u, anG1 pV2; Zjq “ tV2u, and anG1 pV3; Zjq “ tV1, V2, V3, U, Yu, for j “ 1, 2. This leads to
dpG1; Zq “ t2, 2, 3u. For illustration purpose, we focus on W equal to tY, Uu or any of its
subsets. In all cases ãnG1 pViq “ anG1 pViq, for i “ 1, 2, contributing terms 1{2IpY; V1|Z1, Z2q
and 1{2IpY; V2|Z1, Z2q. For W “ tY, Uu or W “ tYu, the contribution of the observable
lower bound of the third group is 1{3IpY; V1, V2, V3|Z1, Z2q. For W “ tUu or W “ H,
the third group contributes 1{3HpY|Z1, Z2q. For W “ tY, Uu, ãnG1 pArnsq “ tV1, V2, V3u,
which is observable and the upper bound is IpY; V1, V2, V3|Z1, Z2q. For any other subset of
tY, Uu the upper bound in the testable inequality is HpY|Z1, Z2q. Because the terms in the
sum for groups 1 and 2 are equal for all the W compared, in this case it can be checked that
selecting W “ tY, Uu leads to the tightest inequality. This example illustrates the utility of
being able to construct inequalities for reduced ancestral sets.

While in the previous example only Theorem 2 and not Proposition 6 was applicable,
more generally, a causal structure will involve the fulfillment of a set of inequalities, some
obtained using Proposition 6 and some using Theorem 2. Which inequalities have higher
inferential power will depend on the causal structure and the exact probability distribution
of the data, and neither Theorem 2 nor Proposition 6 are more powerful a priori. In Fig-
ure 4F, Proposition 6 cannot be applied using Ai “ tViu, i “ 1, 2, 3 and conditioning on Z,
because Vi M Vj|Z, @i, j and no data processing inequalities help to substitute these variables.
On the other hand, Theorem 2 can be applied with Ai “ tViu, leading to anG1 pV1q “ tV1u,
anG1 pV3q “ tV3u, and anG1 pV2q “ tV2, U1, U2u, for all G1 “ GZ1 . The augmented ancestral
sets are anG1 pV1; Zq “ tV1, V3, U1u “ anG1 pV3; Zq, and anG1 pV2; Zq “ tV1, V2, V3, U1, U2u,
also for all G1, resulting in dpG1; Zq “ 3. Focusing on the case of W “ tY, U2u, or any subset
of it, in all cases the associated testable inequality has HpY|Zq as upper bound and in the
r.h.s. the sum of terms 1{3IpY; Vi|Zq, i “ 1, 2, 3. Alternatively, defining A1 “ tV1, V3, U1u
and A2 “ tV2, U1u, Proposition 3 is applicable with the two groups intersecting in U1 and
V1, V3 K V2|Z, U1. The associated testable inequality has the same upper bound HpY|Zq
and in the r.h.s. the sum of terms 1{2IpY; V1, V3|Zq and 1{2IpY; V2|Zq. In this case, which
inequality has more causal inferential power will depend on the exact distribution of
the data.

Overall, Theorem 2 extends Theorem 1 of [27], allowing conditioning sets and pro-
viding more flexible conditions to form the groups. In the examples of Figure 4, we have
illustrated how Theorem 2 substantially increases the number of groups-decomposition
inequalities that can be tested to reject hypothesized causal structures to be compatible
with a certain data set.
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4. Discussion

We have presented several generalizations of the type of groups-decomposition in-
equalities introduced by [27], which compare the information about target variables con-
tained in a collection of variables with a weighted sum of the information contained in
subsets of the collection. These generalizations include an extension to allow for condition-
ing sets and methods to identify existing inequalities that involve collections and subsets
selected with less restrictive criteria. This comprises less restrictive conditions of indepen-
dence, the use of ancestral sets from subgraphs of the causal structure of interest, and the
removal of some variables from the ancestral sets. We have also shown how to exploit
inequalities identified for collections containing hidden variables—which are not directly
testable—by converting them into testable inequalities using data processing inequalities.

Our use of data processing inequalities to derive testable groups-decomposition in-
equalities when collections contain hidden variables is not entirely new. We found inspira-
tion for this approach in the proof of Theorem 1 in [24]. This theorem derives a causally
informative inequality from a particular type of causal structure, namely common ancestor
graphs in which all dependencies between observable variables are caused by hidden
common ancestors. The inequality presented in the theorem corresponds to the setting of a
univariate target variable and groups composed by different single observable variables.
In their simplest case, each hidden ancestor only has two children, which are observable
variables. Their proof uses the mutual information data processing inequality to convert a
sum of information terms involving the observable variables into a sum of terms involving
the hidden ancestors. The final inequality can equally be proven applying our Proposition 4
by deriving an inequality for the collection of hidden variables and then converting it
into a testable inequality using data processing inequalities. The same final inequality
can also be derived as an application of our Theorem 2 followed by the use of the data
processing inequality.

We have expanded the applicability of data processing inequalities by showing that
this type of inequality also holds for conditional unique information measures [29]. For a
given causal structure, a testable causally informative inequality may be obtained substi-
tuting hidden variables by observable variables thanks to the data processing inequality
of the unique information, in cases in which the data processing inequality of mutual
information is not applicable. As shown in Proposition 6, the unique information data
processing inequalities are particularly powerful for deriving groups-decomposition in-
equalities with a conditioning set, since they can iteratively be applied to replace different
subsets of hidden variables by observable variables choosing which variables are kept
as conditioning variables and which ones are taken as reference variables for different
unique information measures. This use of unique information indicates how other types of
information-theoretic measures could be similarly incorporated to derive causally informa-
tive inequalities. Recent developments in the decomposition of mutual information into
redundant, synergistic, and unique contributions [30] provide candidate measures whose
utility for this purpose needs to be further explored [31–35,40,41] (among others). Further-
more, while this type of decomposition has been extensively debated recently [35,42,43],
aspects of its characterization are still unsolved and an understanding of how the terms are
related to the causal structure can provide new insights.

One particular domain in which our generalizations can be useful is to study causal
interactions among dynamical processes [23,44], for which causal interactions are char-
acterized from time series both in the temporal [45] and spectral domain [46–48]. When
studying high-dimensional multivariate dynamical processes, such as brain dynamics
(e.g., [49–51]) or econometric data [52,53], an important question is to determine whether
correlations between time series are related to causal influences or to hidden common
influences. For highly interconnected systems with many hidden variables, the number
of independencies may be small, hence providing limited information about the causal
structure. In this case, inequality constraints can help to substantially narrow down the set
of causal structures compatible with the data. Accordingly, our generalization to formulate
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conditional inequalities may play an important role in combination with measures to quan-
tify partial dependencies between time series [54,55]. We expect this approach to be easily
adaptable to non-stationary time-series, as it is often the case in the presence of unit roots
and co-integrated time series [56–58]. This can be carried out by selecting collections and
groups consistent with the temporal partitioning in non-stationary information-theoretic
measures of causality in time-series [59,60]. Another area to extend the applicability of our
proposal is to study non-classical quantum systems [16,61–63]. In this case, an extended
d-separation criterion [64] and adapted faithfulness considerations [65] have been proposed
to take into account the particularities of quantum systems. Further exploration will be
required to determine if and how our derivations that rely on d-separation leading to
statistical independence (Appendix C) are also applicable when considering generalized
causal structures for quantum systems.

Besides the extension to particular domains, an important question yet to be addressed
regards the relation between the causal inferential power of different inequalities. Our
proposal considerably enlarges the number of groups-decomposition inequalities of the
type of [27] available to test the compatibility of a causal structure with a given data set.
We have seen in our analysis some examples of how, under certain conditions, the causal
structure imposes an ordering to the power of alternative inequalities. Future work should
aim to derive broader criteria to rank the inferential power of inequalities, for example in
terms of the relation between the conditioning sets or the constituency of the groups that
appear in each inequality. Formulating criteria to rank the inferential power of different
inequalities would help to simplify the set of inequalities that needs to be tested when the
compatibility of a certain causal structure with the data is to be examined.

Apart from a characterization of how groups-decomposition inequalities are related
among themselves, future work should also examine the relation and embedding of this
type of inequalities with those derived with other approaches. In our understanding, the al-
gorithmic projection procedure of [23,24] could equally retrieve some of the inequalities
here described, but without the advantage of having a constructive procedure to derive the
form of an inequality directly reading a causal graph, and instead requiring costly compu-
tations that may limit the derivation of inequalities for large systems. The incorporation of
constraints for other types of information-theoretic measures, such as constraints involving
unique information measures, would require an extension of the algorithmic approach.
Among other approaches, the so-called Inflation technique [66] stands out as capable of
providing asymptotically sufficient tests of causal compatibility [67]. The inflation method
creates a new causal structure with multiple copies of the original structure and symmetry
constraints on the ancestral properties of the different copies, in such a way that testable
constraints on the inflated graph can be mapped back to the compatibility of the original
causal structure. However, despite the ongoing advances in its theoretical developments
and implementation [68], to our knowledge it is not straightforward to identify the order
of inflation and the specific inflation structure adequate to discriminate between certain
causal structures. The availability of inequalities easily derived by reading the original
causal structure can also be helpful in combination with the inflation method, in order to
discard as many candidate causal structures as possible before the design of additional
inflated graphs. The connection with other approaches [69–74] also deserves further inves-
tigation, ultimately to determine minimal sets of inequality constraints with equivalent
inferential power.

Beyond the derivation of existing testable causally informative inequalities, a cru-
cial issue for their application is the implementation of the corresponding tests. This
implementation depends on the estimation of information-theoretic measures from data.
A ubiquitous challenge for the application of mutual information measures is that they are
positively biased and their estimation is data-demanding [75,76]. These biases scale with
the dimensionality of the variables, and hence can hinder the applicability of information-
theoretic inequalities for large collections of variables, or for variables with high cardinality.
However, recent advances in the estimation of mutual information for high-dimensional
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data can help to attenuate these biases [77]. Furthermore, the implementation of the tests
can take advantage of the existence of both upper-bound and lower-bound estimators
of mutual information [78], using opposite bounds at the two sides of the inequalities.
These technical aspects of the implementation of the tests are important to apply all types
of information-theoretic inequalities [23–27,71]. Despite these common challenges, our
extension of groups-decomposition inequalities does not come at the price of having to
test inequalities that intrinsically are more difficult to estimate. Our contribution can sub-
stantially increase the number of inequalities available to be tested, and we have provided
examples in Figures 2–4 of new inequalities in which—in particular thanks to the use of
data processing inequalities—the dimensionality of the collections is not increased. Future
work is required to determine how to efficiently combine all available tests. In the goal to
determine minimal sets of inequality tests that are maximally informative, the statistical
power of the tests will need to be considered together with their discrimination power
among causal structures.
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Appendix A. Proofs of Propositions 1, 3, and 6

Proof of Proposition 1. Given a collection Arns “ tA1, . . . , Anu, define Xrrs as the set of r
variables that are part of at least a group in Arns. We have that

IpY; Arns|Zq paq“ IpY; Xrrs|Zq pbq“
rÿ

k“1

IpY; Xk|Xrk´1s, Zq pcqě

rÿ
k“1

IpY; Xk|Xrk´1s, Zq
¨
˝ ÿ

Ai :XkPAi

1
di

˛
‚pdq“

nÿ
i“1

1
di

ÿ
XkPAi

IpY; Xk|Xrk´1s, Zq peqě

nÿ
i“1

1
di

ÿ
XkPAi

IpY; Xk|pXrk´1s X Aiq, Zq p f q“
nÿ

i“1

1
di

IpY; Ai|Zq

(A1)

Equality paq follows from Xrrs containing the same variables as Arns. Equality pbq follows
from the iterative application of the chain rule for mutual information, where Xr0s ” H
and Xrk´1s “ tX0, . . . , Xk´1u. Inequality pcq follows from the definition of di as maximal,
such that the number of groups that contain Xk is equal or smaller than di for all Ai
containing Xk, and hence

ř
Ai :XkPAi

1{di ď 1. Equality pdq groups together into the inner
sum variables within the same group. Inequality peq follows from Lemma 1piiq. In more
detail, Ai K AjzAi|Z @i, j, combined with the weak union property of independencies [27],
ensures that for each Xk P Ai, Xk K pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i. Assuming
faithfulness, this implies Xk K Xrk´1szAi|pXrk´1s X Aiq, Z. Lemma 1 piiq applies with
A “ Xk, B “ tpXrk´1s X Aiq, Zu, and C “ Xrk´1szAi. Equality p f q follows applying the
chain rule within each group Ai.

Proposition 1 of [27] is included in the case Z “ H. The faithfulness assumption
allows relaxing their assumption Xk K XrrszXk@k to Ai K AjzAi|Z @i, j. A tighter bound
can be obtained in some cases if some variables are trimmed. In particular, for a variable
X1, Aj can be trimmed to AjzX1 for all groups such that IpY; Aj|Zq “ IpY; AjzX1|Zq and
possibly lower dj values can be obtained after trimming. We do not explicitly include this
trimming process in the definition of dj to simplify the formulation.
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Proof of Proposition 3. Consider a collection of groups Brns “ tB1, . . . , Bnu, each with a

partition in disjoint subsets Bi “ tB
p1q
i , B

p2q
i u that fulfill the conditions B

p1q
i K B

p1q
j zB

p1q
i |Z and

B
p2q
i K BjzB

p2q
i |Bp1q

i Z @i, j, and such that B
p1q
rns “ tB

p1q
1 , . . . , B

p1q
n u and B

p2q
rns “ tB

p2q
1 , . . . , B

p2q
n u

are disjoint. Define X
pkq
rrks as the set of rk variables part of at least a group in B

pkq
rns, for k “ 1, 2.

We have that

IpY; Brns|Zq paq“ IpY; X
p1q
rr1s, X

p2q
rr2s|Zq pbq“

ÿ
XkPX

p1q
rr1s

IpY; Xk|Xp1q
rk´1s, Zq `

ÿ
XkPX

p2q
rr2s

IpY; Xk|Xp2q
rk´1s, X

p1q
rr1s, Zq pcqě

nÿ
i“1

1
di

IpY; B
p1q
i |Zq `

nÿ
i“1

1
di

ÿ
XkPB

p2q
i

IpY; Xk|Xp2q
rk´1s, X

p1q
rr1s, Zq pdqě

nÿ
i“1

1
di

IpY; B
p1q
i |Zq `

nÿ
i“1

1
di

ÿ
XkPB

p2q
i

IpY; Xk|pX
p2q
rk´1s X B

p2q
i q, B

p1q
i , Zq peq“

nÿ
i“1

1
di

IpY; B
p1q
i |Zq `

nÿ
i“1

1
di

IpY; B
p2q
i |Bp1q

i Zq p f q“
nÿ

i“1

1
di

IpY; Bi|Zq.

(A2)

Equality paq holds because tX
p1q
rr1s, X

p2q
rr2su contains the same variables as Brns. Equality pbq

is an iterative application of the chain rule. Inequality pcq is as follows: For the sum in
X

p1q
rr1s, steps pcq to p f q of Equation (A1) are all combined, substituting sets Ai by B

p1q
i and

given that these variables fulfill conditions of independence equivalent to Proposition 1.
For the sum in X

p2q
rr2s, only steps pcq and pdq of Equation (A1) are applied, substituting sets Ai

by B
p2q
i . Inequality pdq holds applying Lemma 1 piiq. In more detail, B

p2q
i K BjzB

p2q
i |Bp1q

i Z

@i, j combined with the weak union property of independencies [27] mean that for each
Xk P B

p2q
i , Xk K tB

p1q
j , pXp2q

rk´1s X B
p2q
j qzB

p2q
i u|pXp2q

rk´1s X B
p2q
i q, B

p1q
i , Z @j ‰ i. Assuming

faithfulness, this implies Xk K tpX
p1q
rr1szB

p1q
i q, pXp2q

rk´1szB
p2q
i qu|pXp2q

rk´1s X B
p2q
i q, B

p1q
i , Z. Ac-

cordingly, Lemma 1 piiq applies with A “ Xk, B “ tpXp2q
rk´1s X B

p2q
i q, B

p1q
i , Zu, and C “

tpX
p1q
rr1szB

p1q
i q, pXp2q

rk´1szB
p2q
i qu. Equalities peq and p f q follow from the chain rule of mutual

information.

Before continuing with the proof of Proposition 6, we formulate in Lemma A1 a
property of the unique information that will be used in the proof.

Lemma A1. (Conditioning on reference variables increases conditional unique information): The
conditional unique information IpY; XzzZ1Z2|Z3q is smaller than or equal to IpY; XzzZ1|Z2Z3q,
where Z2 moves from the set of reference predictors of the unique information to the conditioning set.

Proof of Lemma A1. The unique information IpY; XzzZ1Z2|Z3q is by definition (Equation (2))
the minimum information IpY; X|Z1Z2Z3q among the distributions that preserve PpY, X, Z3q
and PpY, Z1, Z2, Z3q, and IpY; XzzZ1|Z2Z3q is the minimum information
IpY; X|Z1Z2Z3q among the distributions that preserve PpY, X, Z2, Z3q and PpY, Z1, Z2, Z3q.
Since the latter constraints subsume the former ones, the minimum can only be equal or
higher.
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Proof of Proposition 6. For iterations k “ 1, ..., mi ´ 1, consider the following:

IpY; C
rk´1s
i AizA

rk´1s
i zzZzZ

rk´1s
i |Zrk´1s

i q paqď IpY; C
rks
i AizA

rk´1s
i zzZzZ

rk´1s
i |Zrk´1s

i q pbqď
IpY; C

rks
i AizA

rk´1s
i zzZzZ

rks
i |Zrks

i q pcq“ IpY; C
rks
i AizA

rks
i zzZzZ

rks
i |Zrks

i q.
(A3)

Inequality paq holds from monotonicity, information cannot decrease if adding C
pkq
i to

C
rk´1s
i . Inequality pbq holds from Lemma A1, moving Z

pkq
i from the set of reference

predictors of the unique information to the conditioning set. Equality pcq follows from
AizA

rk´1s
i “ tA

pkq
i , AizA

rks
i u and the assumption in Proposition 6 that

Y K A
pkq
i |Crks

i Z
rks
i AizA

rks
i holds. Accordingly, the unique information is preserved removing

A
pkq
i (Proposition 2). This leads to the inequality IpY; C

rk´1s
i AizA

rk´1s
i zzZzZ

rk´1s
i | Z

rk´1s
i q ď

IpY; C
rks
i AizA

rks
i zzZzZ

rks
i | Z

rks
i q. Equation (A3) iterated for k “ 1, . . . , mi ´ 1 leads to

IpY; BizzZ
pmiq
i |Zrmi´1s

i q, with Bi “ tC
rmi´1s
i , A

pmiq
i u. Finally, this unique information by

construction is smaller than IpY; Bi|Zq. The terms IpY; AizzZzZ
p1q
i |Zp1q

i q are obtained re-

moving C
r1s
i from IpY; C

rks
i AizA

rk´1s
i zzZzZ

rks
i |Zrks

i q by monotonicity, from step k “ 1.

Appendix B. Proof of Theorem 2

Proof of Theorem 2. The proof proceeds by induction like the proof of Theorem 1 in [27].
To render the notation less heavy, we simplify anG1 pAiq to anpAiq and dipG1; Zq to di,

with both G1 and Z fixed. Define VZ “ tV
p1q
Z , . . . , V

pmq
Z u, with V

pjq
Z ” panpZjq X anpArnsqqzW.

Without loss of generality, for j “ 1, . . . , m we sequentially apply the chain rule to separate

the information that each subset V
pjq
Z provides about Y after the chain rule has already been

applied to V
rj´1s
Z ” tV

p1q
Z , ..., V

pj´1q
Z u. At the j-th iteration, we obtain

IpY; ãnpArnsq|Z, V
rj´1s
Z q “ IpY; V

pjq
Z |Z, V

rj´1s
Z q ` IpY; ãnpArnsq|Z, V

rjs
Z q. (A4)

The iterative induction step proceeds as follows. Assume that the inequality of Theorem 2
holds for

IpY; ãnpArnsq|Z, V
rjs
Z q ě

nÿ
i“1

1
di

IpY; ãnpAiq|Z, V
rjs
Z q. (A5)

We show that then the inequality also holds for IpY; ãnpArnsq|Z, V
rj´1s
Z q. First, if V

pjq
Z Ď

tZ, V
rj´1s
Z u then tZ, V

rj´1s
Z u “ tZ, V

rjs
Z u and Equation (A5) already provides the desired

inequality. We continue with V
pjq
Z Ę tZ, V

rj´1s
Z u. Split the sum in Equation (A5) into two

sums, one containing groups in the set SpG1; Zjq (see its definition below Equation (7)),
and the other groups not in SpG1; Zjq. For the sake of simplifying notation, we use SZj for
SpG1; Zjq, given that G1 is fixed. We first consider the sum of groups in SZj :ÿ

AiPSZj

1
di

IpY; ãnpAiq|Z, V
rjs
Z q paq“

ÿ
AiPSZj

1
di

”
IpY; ãnpAiq, V

pjq
Z |Z, V

rj´1s
Z q ´ IpY; V

pjq
Z |Z, V

rj´1s
Z q

ı pbqě
»
—– ÿ

AiPSZj

1
di

IpY; ãnpAiq, V
pjq
Z |Z, V

rj´1s
Z q

fi
ffifl ´ IpY; V

pjq
Z q|Z, V

rj´1s
Z q pcqě

»
—– ÿ

AiPSZj

1
di

IpY; ãnpAiq|Z, V
rj´1s
Z q

fi
ffifl ´ IpY; V

pjq
Z q|Z, V

rj´1s
Z q.

(A6)
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Equality paq follows from the chain rule. Inequality pbq follows from the definition of
dipG1; Zq (in short di) in Equation (8). By construction dipG1; Zq is equal to or higher than
all dipG1; Zjq and dipG1; Zjq is the maximal number of groups intersecting together with
anpAi; Zjq (Equation (7)). For any group i within SpG1; Zjq, anpAi; Zjq includes anpZjq X
anpArnsq and hence dipG1; Zjq ě |SpG1; Zjq|, so that

ř
AiPSZj

1{di ď 1. Inequality pcq follows

from the monotonicity property of the mutual information. For the other sum

ÿ
AiRSZj

1
di

IpY; ãnpAiq|Z, V
rjs
Z q paqě

ÿ
AiRSZj

1
di

IpY; ãnpAiqzV
pjq
Z |Z, V

rj´1s
Z q pbq“

ÿ
AiRSZj

1
di

IpY; ãnpAiq|Z, V
rj´1s
Z q.

(A7)

Inequality paq follows from applying Lemma 1 (ii), with A “ ãnpAiqztZ, V
rjs
Z u, B “

tZ, V
rj´1s
Z u, and C “ V

pjq
Z ztZ, V

rj´1s
Z u. Independence A K C|B holds because Ai R SpG1; Zjq

means anpAiq K anpZjq X anpArnsq|Z (Equation (7)), which implies ãnpAiq K V
pjq
Z |Z, given

that V
pjq
Z ” panpZjq X anpArnsqqzW. Assuming faithfulness, since all the variables in V

rj´1s
Z

are ancestors of Z, conditioning on tZ, V
rj´1s
Z u does not create any new dependence (ac-

tivating colliders) that did not exist conditioning on Z. Equality pbq holds because given

Equation (7) an overlap between ãnpAiqzZ and V
pjq
Z zZ is in contradiction with Ai R SpG1; Zjq.

Combining Equations (A6) and (A7) in the r.h.s of Equation (A5), we obtain that

IpY; ãnpArnsq|Z, V
rjs
Z q ě

«
nÿ

i“1

1
di

IpY; ãnpAiq|Z, V
rj´1s
Z q

ff
´ IpY; V

pjq
Z |Z, V

rj´1s
Z q. (A8)

We then insert this inequality in Equation (A4) to obtain the final desired inequality:

IpY; ãnpArnsq|Z, V
rj´1s
Z q ě

nÿ
i“1

1
di

IpY; ãnpAiq|Z, V
rj´1s
Z q. (A9)

After subtracting VZ “ tV
p1q
Z , . . . , V

pmq
Z u, the validity of the inequality of Theorem 2 de-

pends on the validity of

IpY; ãnpArnsq|Z, anpZq X ãnpArnsqq ě
nÿ

i“1

1
di

IpY; ãnpAiq|Z, anpZq X ãnpArnsqq. (A10)

At each iterations, if ãnpArnsqztZ, V
rjs
Z u is empty, the corresponding assumption in Equa-

tion (A5) is trivially fulfilled and the proof ends. Otherwise, the proof by induction contin-
ues further subtracting variables from ãnpArnsqzanpZq. We define the set of groups whose
ancestral set in G1 overlaps with W:

SW ” tAi P Arns : anG1 pAiq X W ‰ Hu. (A11)

We select subsets of variables to be subtracted using the same criterion used in the proof
of Theorem 1 of [27], but restricting the groups used as reference in each iteration to
be in the complementary set SW, i.e., with anpAiq “ ãnpAiq. In more detail, consider
without loss of generality that in the first iteration the j-th group Aj is taken as reference.

Define Vp0q ” VZ, where VZ “ tV
p1q
Z , ..., V

pmq
Z u has already been subtracted from ãnpArnsq.

With Aj as reference, find the joint intersection of ãnpAjqzVp0q with a maximal number

of other groups ãnpAj1 qzVp0q, j1 ‰ j. Define S
p1q
j as the set of groups in this intersection.

The superindex indicates that this set is associated with the first iteration of this part of
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the induction procedure, while the subindex indicates that the j-th group is the reference.
The subindex will be omitted when the group used as reference is not relevant. Define
V

p1q
j ” Ş

AiPS
p1q
j

ãnpAiqzVp0q as the set of variables contained in this intersection. This

subset is subtracted in the first iteration. Analogously, consider that in the k-th iteration
Vrk´1s ” tVp0q, ..., Vpk´1qu has already been subtracted and the j-th group is taken as
reference. Then S

pkq
j is determined by the joint intersection of ãnpAjqzVrk´1s with a maximal

number of other groups ãnpAj1 qzVrk´1s, j1 ‰ j. The subset of variables subtracted in the

k-th iteration is V
pkq
j ” Ş

AiPS
pkq
j

ãnpAiqzVrk´1s. By construction V
pkq
j Ď ãnG1 pArnsqzVrk´1s.

Furthermore, |Spkq
j | ď djpG1; Zq, since djpG1; Zq is maximal among djpG1; Ziq for i “ 1, . . . , m

(Equation (8)) for all intersections of the augmented ancestral sets defined in Equation (7),
while S

pkq
j is determined by only intersections with no support in Vrk´1s and only among

the reduced ancestral sets. So far, we have described the selection of subsets to be subtracted.
We now look at the iterative induction step when removing a subset V

pkq
j after the previous

k ´ 1 iterations have already been performed. Consider

IpY; ãnpArnsq|Z, Vrk´1sq paq“ IpY; ãnpArnsqV
pkq
j |Z, Vrk´1sq

pbq“ IpY; V
pkq
j |Z, Vrk´1sq ` IpY; ãnpArnsq|Z, Vrksq.

(A12)

Equality paq follows from V
pkq
j Ď ãnpArnsqzVrk´1s. Equality pbq is an application of the

chain rule. We now show that under the assumption that

IpY; ãnpArnsq|Z, Vrksq ě
nÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrksq, (A13)

the analogous inequality holds for IpY; ãnpArnsq|Z, Vrk´1sq. We again break down the sum

of the groups into two sums, one containing groups in S
pkq
j and the other the rest. We first

consider the sum of groups in S
pkq
j :

ÿ
AiPS

pkq
j

1
di

IpY; ãnpAiq|Z, Vrksq paq“

ÿ
AiPS

pkq
j

1
di

”
IpY; ãnpAiqV

pkq
j |Z, Vrk´1sq ´ IpY; V

pkq
j |Z, Vrk´1sq

ı pbqě

»
—– ÿ

AiPS
pkq
j

1
di

IpY; ãnpAiqV
pkq
j |Z, Vrk´1sq

fi
ffifl ´ IpY; V

pkq
j |Z, Vrk´1sq pcqě

»
—– ÿ

AiPS
pkq
j

1
di

IpY; ãnpAiq|Z, Vrk´1sq
fi
ffifl ´ IpY; V

pkq
j |Z, Vrk´1sq.

(A14)

Equality paq follows from the chain rule. Inequality pbq holds because |Spkq
j | ď dipG1; Zq for

all Ai P S
pkq
j . This is because the intersection that determines S

pkq
j contains variables from

Aj and from all other groups Ai P S
pkq
j , and hence for all these groups it also determines

dipG1; Zq unless an intersection with more groups exists for Ai. Given |Spkq
j | ď dipG1; Zq

for all Ai P S
pkq
j , it follows that

ř
AiPS

pkq
j

1{dipG1; Zq ď ř
AiPS

pkq
j

1{|Spkq
j | “ 1. Inequality pcq
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follows from monotonicity of mutual information. We now consider the sum involving
groups that do not belong to S

pkq
j :

ÿ
AiRS

pkq
j

1
di

IpY; ãnpAiq|Z, Vrksq ě
ÿ

AiRS
pkq
j

1
di

IpY; ãnpAiq|Z, Vrk´1sq. (A15)

The inequality holds applying Lemma 1(ii) with A “ ãnpAiqztZ, Vrksu, B “ tZ, Vrk´1su,
and C “ V

pkq
j ztZ, Vrk´1su. By construction, V

pkq
j X tZ, Vrk´1su “ H and hence C “ V

pkq
j .

Furthermore, ãnpAiqztZ, Vrk´1su is equal to ãnpAiqztZ, Vrksu given that Ai R S
pkq
j . An in-

tersection of ãnpAiqztZ, Vrk´1su and V
pkq
j is contradictory with the definition of V

pkq
j , since

|Spkq
j | is determined to be maximal, but would increase to |Spkq

j | ` 1 if defined by that

intersection, and that would lead to Ai P S
pkq
j instead. Lemma 1(ii) applies given the

independence A K C|B. We now prove that this independence holds. We proceed dis-
carding the presence of all types of paths in G that would create a dependence A M C|B.
Under the faithfulness assumption, we examine the four different types of paths in G that
could create a dependence. First, there is a variable Xr P C and a variable Xl P A with
an active directed path in G from Xr to Xl , not blocked by B. If this path is active in G
conditioning on B “ tZ, Vrk´1su, it also exists in any G1 “ GZ1 , with Z1 Ď Z, since the
removal of outgoing arrows has the same effect as conditioning for the paths in which
the conditioning variables are noncolliders (i.e., do not have two incoming arrows). This
active directed path means that Xr would be an ancestor of Xl in G1. Therefore, given
Xl P A and Xr P C, Xr itself would be part of ãnG1 pAiqzVrk´1s. However, as argued above,
an intersection of ãnG1 pAiqzVrk´1s and V

pkq
j is contradictory with Ai R S

pkq
j . Second, there

is a variable Xr P C and a variable Xl P A with an active directed path in G from Xl to Xr,
not blocked by B. Again, this path being active in G when conditioning on B “ tZ, Vrk´1su,
means that it also exists in any G1 “ GZ1 , with Z1 Ď Z. Therefore, Xl would be an ancestor

of Xr in G1. This is again a contradiction with the definition of V
pkq
j because it could be

redefined to include |Spkq
j | ` 1 groups, since Xl would be an ancestor of all groups inter-

secting in V
pkq
j . Third, there is a variable Xr P C, a variable Xl P A, and another variable

Xh that is not part of A nor C with an active directed path in G from Xh to Xr and an
active directed path from Xh to Xl , both not blocked by B. This would also imply that
these directed paths exist in G1 “ GZ1 , with Z1 Ď Z, and hence Xh is an ancestor of A and
C in G1. Since Xh is an ancestor of A “ ãnpAiqztZ, Vrk´1su but by construction Xh R A,
this means that Xh has to be part of tZ, Vrk´1su or of W, since any ancestor of anpAiq is
part of anpAiq. If Xh P tZ, Vrk´1su, conditioning on B “ tZ, Vrk´1su would prevent from
having active directed paths from Xh to Xr and from Xh to Xl , leading to a contradiction.
We now consider the case Xh P W. Since Xh is an ancestor of C “ Vpkq

j , by construction

of Vpkq
j , Xh is an ancestor of ãnpAjqztZ, Vrk´1su. This means that anpAjq includes Xh P W

which, given Equation (A11), is in contradiction with the criterion for selection of reference
groups such that Aj P SW. In these three types of cases, an active path would exist despite
conditioning on B. In the last type, a path would be activated by conditioning on B. At least
one variable Xh P B “ tZ, Vrk´1su has to be a collider or a descendant of a collider along the
path that conditioning activates. Consider first that a single collider Xh is involved. For the
collider to activate the path, it must exist an active directed subpath to Xh from a variable
Xr that is part of C or part of its ancestor set in G1. Since this directed subpath is active in G
when conditioning on B, it is also active in G1. This means that Xr would be an ancestor of
Xh in G1. If Xh is part of Z or part of Vp0q ” panG1 pZq X anG1 pArnsqqzW, then Xr being an
ancestor of Xh means that it is part of anG1 pZq X anG1 pArnsq. Accordingly, by definition of
Vp0q, Xr would be part of Vp0q or of W. The former option leads to a contradiction because
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Vp0q has already been removed from ãnpArnsq and is part of the conditioning variables, so
that the subpath from Xr to Xh could not be part of the path activated by conditioning
on the collider. The latter option, Xr being part of W, is in contradiction with it being an
ancestor of C “ V

pkq
j , since this means being an ancestor of the group Aj taken as reference

to build V
pkq
j , which by construction is chosen from S̄W. We continue considering that Xh

is part of Vpk1q P Vrk´1s, for 0 ă k1 ď k ´ 1. In this case, Xr being an ancestor of Xh would
mean that either Xr is in W or it would have been possible to define Vpk1q to include Xr.
In the former case, this leads to a contradiction because for 0 ă k1 ď k ´ 1 all Vpk1q have
been constructed taking as reference a group belonging to S̄W. In the latter case, this leads
to a contradiction because Vpk1q is constructed to include all variables in the intersection
with the maximum number of groups. The same reasoning holds if the activated path
contains more than one collider from B, by selecting the collider Xh closest to a variable in
C along the path. Since for all four types of paths that could lead to A M C|B we reach a
contradiction, A K C|B holds and Lemma 1(ii) can be applied to obtain the inequality in
Equation (A15). Combining Equations (A14) and (A15) with the r.h.s. of Equation (A13),
we obtain that

IpY; ãnpArnsq|Z, Vrksq ě
«

nÿ
i“1

1
di

IpY; ãnpAiq|Z, Vrk´1sq
ff

´ IpY; V
pkq
j |Z, Vrk´1sq. (A16)

We then insert this inequality in Equation (A12) to obtain the desired inequality:

IpY; ãnpArnsq|Z, Vrk´1sq ě
nÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrk´1sq. (A17)

After the completion of these iterations, all variables in panpZq X anpArnsqqzW and in
groups from SW have been subtracted from ãnpArnsq. The proof ends if after some iteration
ãnpArnsqzVrks is empty. In particular, the proof ends if W is empty and hence all groups
are already subtracted. Otherwise, assume that m1 iterations have been carried out when
finishing this step. The proof by induction continues with a single additional step for
the remaining groups SW. Select a single variable X0 out of ãnpArnsqzVrm1s that is only
contained in groups in SW and apply the chain rule

IpY; ãnpArnsq|Z, Vrm1sq “ IpY; ãnpArnsqzX0|Z, Vrm1sq ` IpY; X0|Z, ãnpArnsqzX0q “
IpY; ãnpArnsqzX0|Z, Vrm1sq ` IpY; ãnpArnsq|Z, ãnpArnsqzX0q.

(A18)

The iterative induction step should prove that if the inequality of the theorem holds for
IpY; ãnpArnsq|Z, ãnpArnsqzX0q it is also true for IpY; ãnpArnsq|Z, Vrm1sq. We will prove this
below. Before we show that the inequality

IpY; ãnpArnsq|Z, ãnpArnsqzX0q ě
nÿ

i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q (A19)

always holds, and hence it provides the base case for the induction proof. The base case is
true because

nÿ
i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q paq“
ÿ

i:X0PãnpAiq

1
di

IpY; X0|Z, ãnpArnsqzX0q

pbq“ IpY; X0|Z, ãnpArnsqzX0q
»
– ÿ

i:X0PãnpAiq

1
di

fi
fl pcqď IpY; X0|Z, ãnpArnsqzX0q.

(A20)
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Equality paq holds because IpY; ãnpAiq|Z, ãnpArnsqzX0q is zero for the terms that do not
contain X0. Equality pbq holds because the information term is the same across the sum
and can be factorized. Inequality pcq is justified as follows. Let N0 be the number of groups
that contain X0, and hence that intersect in X0. For these groups, dipG1; Zq is higher than
or equal to N0. This means that

ř
i:X0PãnpAiq 1{dipG1; Zq ď 1. We now complete the proof of

the last iterative induction step:

nÿ
i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q paq“
ÿ

AiPSW

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q pbq“

ÿ
AiPSW

1
di

”
IpY; ãnpAiq, ãnpArnsqzX0|Z, Vrm1sq ´ IpY; ãnpArnsqzX0|Z, Vrm1sq

ı pcqě
»
– ÿ

AiPSW

1
di

IpY; ãnpAiq, ãnpArnsqzX0|Z, Vrm1sq
fi
fl ´ IpY; ãnpArnsqzX0|Z, Vrm1sq pdqě

»
– ÿ

AiPSW

1
di

IpY; ãnpAiq|Z, Vrm1sq
fi
fl ´ IpY; ãnpArnsqzX0|Z, Vrm1sq peq“

«
nÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrm1sq
ff

´ IpY; ãnpArnsqzX0|Z, Vrm1sq.

(A21)

Equality paq holds because X0 is selected to be contained only in groups in SW. Equality
pbq follows from the chain rule and from Vrm1s Ď ãnpArnsqzX0. Inequality pcq holds because,
for all Ai P SW, dipG1; Zq is higher than or equal to |SW|, since their ancestral sets intersect
at W0, which is an ancestor of all variables in W. This means that

ř
AiPSW

1{dipG1; Zq ď 1.
Inequality pdq follows from the monotonicity of mutual information, and equality peq holds
because ãnpAiq Ď tZ, Vrm1su for all Ai R SW. We use the last expression in Equation (A21)
at the r.h.s of Equation (A19), and combine it with Equation (A18) to obtain

IpY; ãnpArnsq|Z, Vrm1sq ě
nÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrm1sq. (A22)

This completes the iterative induction step of the proof. Since the validity of the base case
has also been proven, this completes the proof.

Appendix C. On Required Assumptions Relating Independencies and d-Separation

In this Section, we discuss more closely the requirements on the relation between
graphical d-separation and statistical independencies needed for the applicability of the
derived inequality constraints. As indicated in Section 2.3, so far we have invoked the
faithfulness assumption [1,2] in order to simplify the presentation, that is, we have not
distinguished between X KP Y|S and X KG Y|S. We will now make this distinction and
reconsider all cases of the proofs of Appendices A and B where faithfulness has been
invoked, showing that in fact it is only required to assume that d-separation is a sufficient
condition for statistical independence.

We start with the role that the assumption of d-separation implying independence
has in the proof of Propositions 1 and 3. As discussed in Section 1, we envisage the
implementation of the tests such that conditional independence requirements of Propo-
sition 1 or 3 are verified in terms of graphical separability for the hypothesized causal
structure. In particular, a test from Proposition 1 is to be applied when verifying that
for the selected collection and groups it holds that Ai KG AjzAi|Z @i, j. It is then as-
sumed that this implies Ai KP AjzAi|Z @i, j. In the proof of Proposition 1, in step
peq of Equation (A1), Lemma 1(ii) has been applied invoking faithfulness to guarantee
that for Xk P Ai, independencies Xk KP pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i imply
the independence Xk KP Xrk´1szAi|pXrk´1s X Aiq, Z. However, while this implication
needs to be assumed at the level of independencies, at the level of graphical separability,
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Xk KG pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i straightforwardly implies the joint sep-
arability Xk KG Xrk´1szAi|pXrk´1s X Aiq, Z. This is because the separability of Xrk´1szAi
follows from the lack of active paths for each of the nodes it contains, and hence is equiva-
lent to the separability of pXrk´1s X AjqzAi for all j, which jointly comprise the same nodes.
The assumption that d-separation implies independence guarantees the independence
Xk KP Xrk´1szAi|pXrk´1s X Aiq, Z from Xk KG Xrk´1szAi|pXrk´1s X Aiq, Z, without the need
to more broadly require faithfulness. The proof of Proposition 3 relies on an analogous
way on the assumption that d-separation implies independence, using it to guarantee
the conditional independencies involving the subsets in B

p1q
rns and B

p2q
rns. In step pdq of

Equation (A2), the fact that separability for a joint set of nodes is straightforwardly
guaranteed by the separability of each of its nodes is again applied and then mapped
to the existence of an independence using this assumption. The fact that conditions
B

p1q
i KG B

p1q
j zB

p1q
i |Z and B

p2q
i KG BjzB

p2q
i |Bp1q

i Z @i, j can be verified using d-separation
instead of estimating independencies from data is crucial in the case that the groups include
hidden variables, which precludes the direct evaluation of these independencies.

The next result whose derivation relies on the assumption that d-separation implies
independence is Theorem 2. In step paq of Equation (A7), faithfulness was invoked to
guarantee that conditioning on some ancestors of Z cannot create new dependencies that
were not already created by conditioning on Z itself. In more detail, it was assumed

that if the independence ãnpAiq KP V
pjq
Z |Z holds then also ãnpAiq KP V

pjq
Z |tZ, V

rj´1s
Z u

holds, where V
rj´1s
Z are by construction ancestors of Z. Again, at the level of graphical

separability this implication is straightforward and does not require any assumption. This
is because by definition of d-separation a path is activated both when conditioning on

a collider or on any descendant of the collider, and V
rj´1s
Z being ancestors of Z means

that Z contains a descendant for each node in V
rj´1s
Z . Accordingly, no assumption is

needed to ensure ãnpAiq KG V
pjq
Z |tZ, V

rj´1s
Z u from ãnpAiq KG V

pjq
Z |Z. The assumption

that d-separation implies independence is then used to ensure ãnpAiq KP V
pjq
Z |tZ, V

rj´1s
Z u

from ãnpAiq KG V
pjq
Z |tZ, V

rj´1s
Z u. Faithfulness is also invoked in the proof of Theorem 2 to

justify the application of Lemma 1(ii) in Equation (A15). In this case, the existence of an
independence A KP C|B is directly justified in terms of the nonexistence of active paths
in the graph, hence guaranteeing A KG C|B and subsequently using the assumption that
d-separation implies independence to derive A KP C|B.

The considerations above show that the assumption that d-separation implies statisti-
cal independence is enough to derive the existence of groups-decomposition inequalities
under the conditions of Propositions 1 and 3, and of Theorem 2. Furthermore, if unfaithful
independencies are present in the data that do not follow from the causal structure, this
may decrease the power to reject causal structures testing the inequalities, but will not
lead to incorrect rejections. This differs from the impact of unfaithful independencies on
the inference of the Markov equivalence class from data [1,2]. In that case, unfaithful
independencies can lead to an incorrect reconstruction of the skeleton of the graph or
result in contradictory rules for edge orientation. The assumption that d-separation implies
statistical independence is substantially weaker than the reverse assumption also included
in the faithfulness assumption, namely that statistical independence implies d-separation.
The X-OR logic gate is an example that the latter assumption can be violated. Conversely,
if the causal graph is meant to reflect the underlying structure of actual physical mecha-
nisms involved in generating the variables, all statistical dependencies need to originate
from some paths of influence between the variables. Accordingly, a d-separation that does
not lead to an independence can be taken as an indicator that some structure is missing
in the causal graph, namely associated with the paths that create the observed depen-
dence. In this regard, it is appropriate to reject a causal structure if it does not fulfill an
inequality constraint because graphical separability is not reflected in the corresponding
independencies found in the data.
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Abstract: The partial information decomposition (PID) aims to quantify the amount of redundant
information that a set of sources provides about a target. Here, we show that this goal can be
formulated as a type of information bottleneck (IB) problem, termed the “redundancy bottleneck”
(RB). The RB formalizes a tradeoff between prediction and compression: it extracts information from
the sources that best predict the target, without revealing which source provided the information. It
can be understood as a generalization of “Blackwell redundancy”, which we previously proposed
as a principled measure of PID redundancy. The “RB curve” quantifies the prediction–compression
tradeoff at multiple scales. This curve can also be quantified for individual sources, allowing subsets
of redundant sources to be identified without combinatorial optimization. We provide an efficient
iterative algorithm for computing the RB curve.

Keywords: partial information decomposition; information bottleneck; rate distortion; redundancy

1. Introduction

Many research fields that study complex systems are faced with multivariate
probabilistic models and high-dimensional datasets. Prototypical examples include brain
imaging data in neuroscience, gene expression data in biology, and neural networks in
machine learning. In response, various information-theoretic frameworks have been
developed in order to study multivariate systems in a universal manner. Here, we focus on
two such frameworks, partial information decomposition and the information bottleneck.

The partial information decomposition (PID) considers how information about a target
random variable Y is distributed among a set of source random variables X1, . . . , Xn [1–4].
For example, in neuroscience, the sources X1, . . . , Xn might represent the activity of n
different brain regions and Y might represent a stimulus, and one may wish to understand
how information about the stimulus is encoded in different brain regions. A central idea
of the PID is that the information provided by the sources can exhibit redundancy, when
the same information about Y is present in each source, and synergy, when information
about Y is found only in the collective outcome of all sources. Moreover, it has been shown
that standard information-theoretic quantities, such as entropy and mutual information,
are not sufficient to quantify redundancy and synergy [1,5]. However, finding the right
measures of redundancy and synergy has proven difficult. In recent work [4], we showed
that such measures can be naturally defined by formalizing the analogy between set theory
and information theory that lies at the heart of the PID [5]. We then proposed a measure
of redundant information (Blackwell redundancy) that is motivated by algebraic, axiomatic,
and operational considerations. We argued that Blackwell redundancy overcomes many
limitations of previous proposals [4].

The information bottleneck (IB) [6,7] is a method for extracting compressed information
from one random variable X that optimally predicts another target random variable Y. For
instance, in the neuroscience example with stimulus Y and brain activity X, the IB method
could be used to quantify how well the stimulus can be predicted using only one bit of
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information about brain activity. The overall tradeoff between the prediction of Y and
compression of X is captured by the so-called IB curve. The IB method has been employed
in various domains, including neuroscience [8], biology [9], and cognitive science [10]. In
recent times, it has become particularly popular in machine learning applications [7,11–14].

In this paper, we demonstrate a formal connection between PID and IB. We focus in
particular on the relationship between the IB and PID redundancy, leaving the connection
to other PID measures (such as synergy) for future work. To begin, we show that Blackwell
redundancy can be formulated as an information-theoretic constrained optimization
problem. This optimization problem extracts information from the sources that best predict
the target, under the constraint that the solution does not reveal which source provided the
information. We then define a generalized measure of Blackwell redundancy by relaxing
the constraint. Specifically, we ask how much predictive information can be extracted from
the sources without revealing more than a certain number of bits about the identity of the
source. Our generalization leads to an IB-type tradeoff between the prediction of the target
(generalized redundancy) and compression (leakage of information about the identity of
the source). We refer to the resulting optimization problem as the redundancy bottleneck (RB)
and to the manifold of optimal solutions at different points on the prediction/compression
tradeoff as the RB curve. We also show that the RB prediction and compression terms can
be decomposed into contributions from individual sources, giving rise to an individual RB
curve for each source.

Besides the intrinsic theoretical interest of unifying PID and the IB, our approach
brings about several practical advantages. In particular, the RB curve offers a fine-grained
analysis on PID redundancy, showing how redundant information emerges at various
scales and across different sources. This fine-grained analysis can be used to uncover
sets of redundant sources without performing intractable combinatorial optimization.
Our approach also has numerical advantages. The original formulation of Blackwell
redundancy was based on a difficult optimization problem that becomes infeasible for
larger systems. By reformulating Blackwell redundancy as an IB-type problem, we are able
to solve it efficiently using an iterative algorithm, even for larger systems (code available
at https://github.com/artemyk/pid-as-ib, accessed on 12 May 2024). Finally, the RB has
some attractive formal properties. For instance, unlike the original Blackwell redundancy,
the RB curve is continuous in the underlying probability distributions.

This paper is organized as follows. In the next section, we provide the background on
the IB, PID, and Blackwell redundancy. In Section 3, we introduce the RB, illustrate it with
several examples, and discuss its formal properties. In Section 4, we introduce an iterative
algorithm to solve the RB optimization problem. We discuss the implications and possible
future directions in Section 5. All proofs are found in the Appendix A.

2. Background

We begin by providing relevant background on the information bottleneck, partial
information decomposition, and Blackwell redundancy.

2.1. Information Bottleneck (IB)

The information bottleneck (IB) method provides a way to extract information that
is present in one random variable X that is relevant for predicting another target random
variable Y [6,15,16]. To do so, the IB posits a “bottleneck variable” Q that obeys the
Markov condition Q− X−Y. This Markov condition guarantees that Q does not contain
any information about Y that is not found in X. The quality of any particular choice of
bottleneck variable Q is quantified via two mutual information terms: I(X; Q), which
decreases when Q provides a more compressed representation of X, and I(Y; Q), which
increases when Q allows a better prediction of Y. The IB method selects Q to maximize
prediction given a constraint on compression [15–17]:

IIB(R) = max
Q:Q−X−Y

I(Y; Q) where I(X; Q) ≤ R. (1)
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The values of IIB(R) for different R specify the IB curve, which encodes the overall tradeoff
between prediction and compression.

In practice, the IB curve is usually explored by considering the Lagrangian relaxation
of the constrained optimization problem (1):

FIB(β) := max
Q

I(Y; Q)− 1
β

I(X; Q) (2)

Here, β ≥ 0 is a parameter that controls the tradeoff between compression cost (favored
for β → 0) and prediction benefit (favored for β → ∞). The advantage of the Lagrangian
formulation is that it avoids the non-linear constraint in Equation (1). If the IB curve is
strictly concave, then the two Equations (1) and (2) are equivalent, meaning that there is
a one-to-one map between the solutions of both problems [18]. When the IB curve is not
strictly concave, a modified objective such as the “squared Lagrangian” or “exponential
Lagrangian” should be used instead; see Refs. [18–20] for more details.

Since the original proposal, many reformulations, generalizations, and variants of the
IB have been developed [7]. Notable examples include the “conditional entropy bottleneck”
(CEB) [13,21], the “multi-view IB” [22], the “distributed IB” [23], as well as a large family
of objectives called the “multivariate IB” [24]. All of these approaches consider some
tradeoff between two information-theoretic terms: one that quantifies the prediction of
target information that should be maximized and one that quantifies the compression
of unwanted information that should be minimized. We refer to an optimization that
involves a tradeoff between information-theoretic prediction and compression terms as an
IB-type problem.

2.2. Partial Information Decomposition

The PID considers how information about a target random variable Y is distributed
across a set of source random variables X1, . . . , Xn. One of the main goals of the PID is
to quantify redundancy, the amount of shared information that is found in each of the
individual sources. The notion of redundancy in PID was inspired by an analogy between
sets and information that has re-appeared in various forms throughout the history of
information theory [25–31]. Specifically, if the amount of information provided by each
source is conceptualized as the size of a set, then the redundancy is conceptualized as the
size of the intersection of those sets [1,4,5]. Until recently, however, this analogy was treated
mostly as an informal source of intuition, rather than a formal methodology.

In a recent paper [4], we demonstrated that the terms of PID can be defined by
formalizing this analogy to set theory. Recall that, in set theory, the intersection of sets
A1, . . . , An is defined as the largest set B that is contained in each set As for s ∈ {1 . . . n}.
Thus, the size of the intersection of finite sets A1, . . . , An is∣∣∣∣∣ n⋂

s=1

As

∣∣∣∣∣ = max
B
|B| where B ⊆ As ∀s ∈ {1 . . . n}.

We showed that PID redundancy can be defined in a similar way: the redundancy between
sources X1, . . . , Xn is the maximum mutual information in any random variable Q that is
less informative about the target Y than each individual source [4]:

I�∩ := max
Q

I(Q; Y) where Q � Xs ∀s ∈ {1 . . . n}. (3)

The notation Q � Xs indicates that Q is “less informative” about the target than Xs, given
some pre-specified ordering relation �. The choice of the ordering relation completely
determines the resulting redundancy measure I�∩ . We discuss possible choices in the
following subsection.

We used a similar approach to define “union information”, which in turn leads to
a principled measure of synergy [4]. Note that union information and redundancy are
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related algebraically but not numerically; in particular, unlike in set theory, the principle of
inclusion–exclusion does not always hold.

As mentioned above, here, we focus entirely on redundancy and leave the exploration
of connections between IB and union information/synergy for future work.

2.3. Blackwell Redundancy

Our definition of PID redundancy (3) depends on the definition of the “less informative”
relation �. Although there are many relations that can be considered [25,32–35], arguably
the most natural choice is the Blackwell order.

The Blackwell order is a preorder relation over “channels”, that is conditional
distributions with full support. A channel κB|Y is said to be less informative than κC|Y in
the sense of the Blackwell order if there exists some other channel κB|C such that

κB|Y = κB|C ◦ κC|Y. (4)

Throughout, we use the notation ◦ to indicate the composition of channels, as defined
via matrix multiplication. For instance, κB|Y = κB|C ◦ κC|Y is equivalent to the statement
κB|Y(b|y) = ∑c κB|C(b|c)κC|Y(c|y) for all b and y. Equation (4) implies that κB|Y is less
informative than κC|Y if κB|Y can be produced by downstream stochastic processing of the
output of channel κC|Y. We use the notation

κB|Y � κC|Y, (5)

to indicate that κB|Y is less Blackwell-informative than κC|Y. The Blackwell order can also
be defined over random variables rather than channels. Given a target random variable Y
with full support, random variable B is said to be less Blackwell-informative than random
variable C, written as

B �Y C, (6)

when their corresponding conditional distributions obey the Blackwell relation, pB|Y �
pC|Y [36]. It is not hard to verify that any random variable B that is independent of Y is
lowest under the Blackwell order, obeying B �Y C for all C.

The Blackwell order plays a fundamental role in statistics, and it has an important
operational characterization in decision theory [36–38]. Specifically, pB|Y � pC|Y if and only
if access to channel pC|Y is better for every decision problem than access to channel pB|Y.
See Refs. [4,39] for details of this operational characterization and Refs. [4,36,39–42] for
more discussion of the relation between the Blackwell order and the PID.

Combining the Blackwell order (6) with Equation (3) gives rise to Blackwell
redundancy [4]. Blackwell redundancy, indicated here as I∩, is the maximal mutual
information in any random variable that is less Blackwell-informative than each of
the sources:

I∩ := max
Q

I(Q; Y) where Q �Y Xs ∀s. (7)

The optimization is always well defined because the feasible set is not empty, given that
any random variable Q that is independent of Y satisfies the constraints. (Note also that,
for continuous-valued or countably infinite sources, max may need to be replaced by a sup;
see also Appendix A.)

I∩ has many attractive features as a measure of PID redundancy, and it overcomes
several problems with previous approaches [4]. For instance, it can be defined for any
number of sources, it uniquely satisfies a natural set of PID axioms, and it has fundamental
statistical and operational interpretations. Statistically, it is the maximum information
transmitted across any channel that can be produced by downstream processing of any one
of the sources. Operationally, it is the maximum information that any random variable can
have about Y without being able to perform better on any decision problem than any one
of the sources.
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As we showed [4], the optimization problem (7) can be formulated as the maximization
of a convex function subject to a set of linear constraints. For a finite-dimensional system,
the feasible set is a finite-dimensional polytope, and the maximum will lie on one of its
extreme points; therefore, the optimization can be solved exactly by enumerating the
vertices of the feasible set and choosing the best one [4]. However, this approach is limited
to small systems, because the number of vertices of the feasible set can grow exponentially.

Finally, it may be argued that Blackwell redundancy is actually a measure of
redundancy in the channels pX1|Y, . . . , pXn |Y, rather than in the random variables X1, . . . , Xn.
This is because the joint distribution over (Y, X1, . . . , Xn) is never explicitly invoked in the
definition of I∩; in fact, any joint distribution is permitted as long as it is compatible with
the correct marginals. (The same property holds for several other redundancy measures ([4],
Table 1), and Ref. [39] even suggested this property as a requirement for any valid measure
of PID redundancy.) In some cases, the joint distribution may not even exist, for instance
when different sources represent mutually exclusive conditions. To use a neuroscience
example, imagine that pX1|Y and pX2|Y represent the activity of some brain region X in
response to stimulus Y, measured either in younger (pX1|Y) or older (pX2|Y) subjects.
Even though there is no joint distribution over (Y, X1, X2) in this case, redundancy is
still meaningful as the information about the stimulus that can be extracted from the
brain activity of either age group. In the rest of this paper, we generally work within the
channel-based interpretation of Blackwell redundancy.

3. Redundancy Bottleneck

In this section, we introduce the redundancy bottleneck (RB) and illustrate it with
examples. Generally, we assume that we are provided with the marginal distribution pY of
the target random variable Y, as well as n source channels pX1|Y, . . . , pXn |Y. Without loss of
generality, we assume that pY has full support. We use calligraphic letters (like Y and Xs)
to indicate the set of outcomes of random variables (like Y and Xs). For simplicity, we use
notation appropriate for discrete-valued variables, such as in Equation (4), though most of
our results also apply to continuous-valued variables.

3.1. Reformulation of Blackwell Redundancy

We first reformulate Blackwell redundancy (7) in terms of a different optimization
problem. Our reformulation will make use of the random variable Y, along with two
additional random variables, S and Z. The outcomes of S are the indexes of the different
sources, S = {1, . . . , n}. The set of outcomes of Z is the union of the outcomes of the
individual sources, Z =

⋃n
s=1 Xs. For example, if there are two sources with outcomes

X1 = {0, 1} and X2 = {0, 1, 2}, then S = {1, 2} and Z = {0, 1} ∪ {0, 1, 2} = {0, 1, 2}. The
joint probability distribution over (Y, S, Z) is defined as

pYSZ(y, s, z) =

{
pY(y)νS(s)pXs |Y(z|y) if z ∈ Xs

0 otherwise
(8)

In other words, y is drawn from the marginal pY, the source s is then drawn independently
from the distribution νS, and finally z is drawn from the channel pXs |Y(z|y) corresponding
to source s. In this way, the channels corresponding to the n sources (pX1|Y, . . . , pXn |Y) are
combined into a single conditional distribution pZ|SY.

We treat the distribution νS as an arbitrary fixed parameter, and except where
otherwise noted, we make no assumptions about this distribution except that it has full
support. As we will see, different choices of νS cause the different sources to be weighed
differently in the computation of the RB. We return to the question of how to determine
this distribution below.

Note that, under the distribution defined in Equation (8), Y and S are independent, so

I(Y; S) = 0. (9)

169



Entropy 2024, 26, 546

Actually, many of our results can be generalized to the case where there are correlations
between S and Y. We leave exploration of this generalization for future work.

In addition to Y, Z, and S, we introduce another random variable Q. This random
variable obeys the Markov condition Q− (Z, S)−Y, which ensures that Q does not contain
any information about Y that is not contained in the joint outcome of Z and S. The full joint
distribution over (Y, S, Z, Q) is

pYSZQ(y, s, z, q) = pYSZ(y, s, z)pQ|SZ(q|s, z). (10)

We sometimes refer to Q as the “bottleneck” random variable.
The set of joint outcomes of (S, Z) with non-zero probability is the disjoint union of

the outcomes of the individual sources. For instance, in the example above with X1 =
{0, 1} and X2 = {0, 1, 2}, the set of joint outcomes of (S, Z) with non-zero probability
is {(1, 0), (1, 1), (2, 0), (2, 1), (2, 2)}. Because Q depends jointly on S and Z, our results
do not depend on the precise labeling of the source outcomes, e.g., they are the same if
X2 = {0, 1, 2} is relabeled as X2 = {2, 3, 4}.

Our first result shows that Blackwell redundancy can be equivalently expressed as
a constrained optimization problem. Here, the optimization is over bottleneck random
variables Q, i.e., over conditional distributions pQ|SZ in Equation (10).

Theorem 1. Blackwell redundancy (7) can be expressed as

I∩ = max
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) = 0. (11)

Importantly, Theorem 1 does not depend on the choice of the distribution νS, as long
as it has full support.

In Theorem 1, the Blackwell order constraint in Equation (7) has been replaced by an
information-theoretic constraint I(Q; S|Y) = 0, which states that Q does not provide
any information about the identity of source S, additional to that already provided
by the target Y. The objective I(Q; Y) has been replaced by the conditional mutual
information I(Q; Y|S). Actually, the objective can be equivalently written in either form,
since I(Q; Y|S) = I(Q; Y) given our assumptions (see the proof of Theorem 1 in the
Appendix A). However, the conditional mutual information form will be useful for further
generalization and decomposition, as discussed in the next sections.

3.2. Redundancy Bottleneck

To relate Blackwell redundancy to the IB, we relax the constraint in Theorem 1 by
allowing the leakage of R bits of conditional information about the source S. This defines
the redundancy bottleneck (RB) at compression rate R:

IRB(R) := max
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) ≤ R. (12)

We note that, for R > 0, the value of IRB(R) does depend on the choice of the source
distribution νS.

Equation (12) is an IB-type problem that involves a tradeoff between prediction
I(Q; Y|S) and compression I(Q; S|Y). The prediction term I(Q; Y|S) quantifies the
generalized Blackwell redundancy encoded in the bottleneck variable Q. The compression
term I(Q; S|Y) quantifies the amount of conditional information that the bottleneck variable
leaks about the identity of the source. The set of optimal values of (I(Q; S|Y), I(Q; Y|S))
defines the redundancy bottleneck curve (RB curve) that encodes the overall tradeoff between
prediction and compression.

We prove a few useful facts about the RB, starting from monotonicity and concavity.

Theorem 2. IRB(R) is non-decreasing and concave as a function of R.
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Since IRB(R) is non-decreasing in R, the lowest RB value is achieved in the R = 0
regime, when it equals the Blackwell redundancy (Theorem 1):

IRB(R) ≥ IRB(0) = I∩. (13)

The largest value is achieved as R → ∞, when the compression constraint vanishes. It can be
shown that I(Q; Y|S) ≤ I(Z; Y|S) = I(Y; Z, S) using the Markov condition Q− (Z, S)−Y
and the data-processing inequality (see the next subsection). This upper bound is achieved
by the bottleneck variable Q = Z. Combining implies

IRB(R) ≤ I(Z; Y|S) = ∑
s

νS(s)I(Xs; Y), (14)

where we used the form of the distribution pYSZ in Equation (8) to arrive at the last
expression. The range of necessary compression rates can be restricted as 0 ≤ R ≤
I(Z; S|Y).

Next, we show that, for finite-dimensional sources, it suffices to consider finite-
dimensional Q. Thus, for finite-dimensional sources, the RB problem (12) involves the
maximization of a continuous objective over a compact domain, so the maximum is always
achieved by some Q. (Conversely, in the more general case of infinite-dimensional sources,
it may be necessary to replace max with sup in Equation (12); see Appendix A.)

Theorem 3. For the optimization problem (12), it suffices to consider Q of cardinality |Q| ≤
∑s|Xs|+ 1.

Interestingly, the cardinality bound for the RB is the same as for the IB if we take
X = (Z, S) in Equation (1) [16,20]. It is larger than the cardinality required for Blackwell
redundancy (7), where |Q| ≤ (∑s|Xs|)− n + 1 suffices [4].

The Lagrangian relaxation of the constrained RB problem (12) is given by

FRB(β) = max
Q:Q−(Z,S)−Y

I(Q; Y|S)− 1
β

I(Q; S|Y). (15)

The parameter β controls the tradeoff between prediction and compression. The β → 0
limit corresponds to the R = 0 regime, in which case, Blackwell redundancy is recovered,
while the β → ∞ limit corresponds to the R = ∞ regime, when the compression constraint
is removed. The RB Lagrangian (15) is often simpler to optimize than the constrained
optimization (12). Moreover, when the RB curve IRB(R) is strictly concave, there is a one-
to-one relationship between the solutions to the two optimization problems (12) and (15).
However, when the RB curve is not strictly concave, there is no one-to-one relationship and
the usual Lagrangian formulation is insufficient. This can be addressed by optimizing a
modified objective that combines prediction and compression in a nonlinear fashion, such
as the “exponential Lagrangian” [19]:

Fexp
RB (β) = max

Q:Q−(Z,S)−Y
I(Q; Y|S)− 1

β
eI(Q;S|Y). (16)

(See an analogous analysis for IB in Refs. [18,19].)

3.3. Contributions from Different Sources

Both the RB prediction and compression terms can be decomposed into contributions
from different sources, leading to an individual RB curve for each source. As we show
in the examples below, this decomposition can be used to identify groups of redundant
sources without having to perform intractable combinatorial optimization.
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Let Q be an optimal bottleneck variable at rate R, so that IRB(R) = I(Q; Y|S) and
I(Q; S|Y) ≤ R. Then, the RB prediction term can be expressed as the weighted average of
the prediction contributions from individual sources:

IRB(R) = I(Q; Y|S) = ∑
s

νS(s)I(Q; Y|S = s). (17)

Here, we introduce the specific conditional mutual information:

I(Q; Y|S = s) := D(pQ|Y,S=s‖pQ|S=s), (18)

where D(·‖·) is the Kullback–Leibler (KL) divergence. To build intuitions about this
decomposition, we may use the Markov condition Q− (Z, S)−Y to express the conditional
distributions in Equation (18) as compositions of channels:

pQ|Y,S=s = pQ|Z,S=s ◦ pZ|Y,S=s

pQ|S=s = pQ|Z,S=s ◦ pZ|S=s

Using the data-processing inequality for the KL divergence and Equation (8), we can
then write

I(Q; Y|S = s) ≤ D(pZ|Y,S=s‖pZ|S=s) = D(pXs |Y‖pXs).

The last term is simply the mutual information I(Y; Xs) between the target and source
s. Thus, the prediction contribution from source s is bounded between 0 and the mutual
information provided by that source:

0 ≤ I(Q; Y|S = s) ≤ I(Y; Xs). (19)

The difference between the mutual information and the actual prediction contribution:

I(Y; Xs)− I(Q; Y|S = s) ≥ 0,

quantifies the unique information in source s. The upper bound in Equation (19) is achieved
in the R → ∞ limit by Q = Z, leading to Equation (14). Conversely, for R = 0, pQ|Y,S=s =
pQ|Y (from I(Q; S|Y) = 0) and pQ|S=s = pQ (from Equation (9)), so

I(Q; Y|S = s) = I(Q; Y) = IRB(0) = I∩.

Thus, when R = 0, the prediction contribution from each source is the same, and it is equal
to the Blackwell redundancy.

The RB compression cost can also be decomposed into contributions from
individual sources:

I(Q; S|Y) = ∑
s

νS(s)I(Q; S = s|Y). (20)

Here, we introduce the specific conditional mutual information:

I(Q; S = s|Y) := D(pQ|Y,S=s‖pQ|Y). (21)

The source compression terms can be related to so-called deficiency, a quantitative
generalization of the Blackwell order. Although various versions of deficiency can be
defined [43–45], here we consider the “weighted deficiency” induced by the KL divergence.
For any two channels pB|Y and pC|Y, it is defined as

δD(pC|Y, pB|Y) := min
κB|C

D(κB|C ◦ pC|Y‖pB|Y). (22)
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This measure quantifies the degree to which two channels violate the Blackwell order,
vanishing when κB|Y � κC|Y. To relate the source compression terms (20) to deficiency,
observe that pQ|Y,S=s = pQ|Z,S=s ◦ pZ|Y,S=s and that pZ|Y,S=s = pXs |Y. Given Equation (21),
we then have

I(Q; S = s|Y) ≥ δD(pXs |Y, pQ|Y). (23)

Thus, each source compression term is lower bounded by the deficiency between the source
channel pXs |Y and the bottleneck channel pQ|Y. Furthermore, the compression constraint in
the RB optimization problem (12) sets an upper bound on the deficiency of pQ|Y averaged
across all sources.

Interestingly, several recent papers have studied the relationship between deficiency
and PID redundancy in the restricted case of two sources [38,41,45–47]. To our knowledge,
we provide the first link between deficiency and redundancy for the general case of multiple
sources. Note also that previous work considered a slightly different definition of deficiency
where the arguments of the KL divergence are reversed. Our definition of deficiency is
arguably more natural, since it is more natural to minimize the KL divergence over a convex
set with respect to the first argument [48].

Finally, observe that, in both decompositions (17) and (20), the source contributions
are weighted by the distribution νS(s). Thus, the distribution νS determines how different
sources play into the tradeoff between prediction and compression. In many cases, νS can
be chosen as the uniform distribution. However, other choices of νS may be more natural in
other situations. For example, in a neuroscience context where different sources correspond
to different brain regions, νS(s) could represent the proportion of metabolic cost or neural
volume assigned to region s. Alternatively, when different sources represent mutually
exclusive conditions, as in the age group example mentioned at the end of Section 2, νS(s)
might represent the frequency of condition s found in the data. Finally, it may be possible
to set νS in an “adversarial” manner so as to maximize the resulting value of IRB(R) in
Equation (12). We leave the exploration of this adversarial approach for future work.

3.4. Examples

We illustrate our approach using a few examples. For simplicity, in all examples,
we use a uniform distribution over the sources, νS(s) = 1/n. The numerical results are
calculated using the iterative algorithm described in the next section.

Example 1. We begin by considering a very simple system, called the “UNIQUE gate” in the PID
literature. Here, the target Y is binary and uniformly-distributed, pY(y) = 1/2 for y ∈ {0, 1}.
There are two binary-valued sources, X1 and X2, where the first source is a copy of the target,
pX1|Y(x1|y) = δx1,y, while the second source is an independent and uniformly-distributed bit,
pX2|Y(x1|y) = 1/2. Thus, source X1 provides 1 bit of information about the target, while X2
provides none. The Blackwell redundancy is I∩ = 0 [4], because it is impossible to extract any
information from the sources without revealing that this information came from X1.

We performed RB analysis by optimizing the RB Lagrangian FRB(β) (15) at different
β. Figure 1a,b show the prediction I(Q; Y|S) and compression I(Q; S|Y) values for the
optimal bottleneck variables Q. At small β, the prediction converges to the Blackwell
redundancy, I(Q; Y|S) = I∩ = 0, and there is complete loss of information about
source identity, I(Q; S|Y) = 0. At larger β, the prediction approaches the maximum
I(Q; Y|S) = 0.5× I(X1; Y) = 0.5 bit, and compression approaches I(Q; S|Y) = I(Z; S|Y)
≈ 0.311 bit. Figure 1c shows the RB curve, illustrating the overall tradeoff between
prediction and compression.

173



Entropy 2024, 26, 546

0.4 0.6 0.8 1.0

β

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed

ic
tio

n
I
(Q

;Y
|S
) I(S, Z;Y )

(a)

X1

Prediction

0.4 0.6 0.8 1.0

β

0.0

0.1

0.2

0.3

C
om

pr
es

si
on

I
(Q

,S
|Y

) I(Z;S|Y )

X1

X2

(b) Compression

0.1 0.2 0.3

Compression I(Q;S|Y )

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ed

ic
tio

n
I
(Q

;Y
|S
) I(S, Z;Y )

(c) RB curve

0.0 0.2 0.4

Compression I(Q;S = s|Y )

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
tio

n
I
(Q

;Y
|S

=
s)

(d) Source RB curves

X1

X2

Figure 1. RB analysis for the UNIQUE gate (Example 1). (a) Prediction values found by optimizing
the RB Lagrangian (15) at different β. Colored regions indicate contributions from different sources,
νS(s)I(Q; Y|S = s) from Equation (17). For this system, only source X1 contributes to the prediction.
(b) Compression costs found by optimizing the RB Lagrangian at different β. Colored regions indicate
contributions from different sources, νS(s)I(Q; S = s|Y) from Equation (20). (c) The RB curve shows
the tradeoff between optimal compression and the prediction values; the marker colors correspond to
the β values as in (a,b). All bottleneck variables Q must fall within the accessible grey region. (d) RB
curves for individual sources.

In the shaded regions of Figure 1a,b, we show the additive contributions to the
prediction and compression terms from the individual sources, νS(s)I(Q; Y|S = s) from
Equation (17) and νS(s)I(Q; S = s|Y) from Equation (20), respectively. We also show the
resulting RB curves for individual sources in Figure 1d. As expected, only source X1
contributes to the prediction at any level of compression.

To summarize, if some information about the identity of the source can be leaked
(non-zero compression cost), then improved prediction of the target is possible. At the
maximum needed compression cost of 0.311, it is possible to extract 1 bit of predictive
information from X1 and 0 bits from X2, leading to an average of 0.5 bits of prediction.

Example 2. We now consider the “AND gate”, another well-known system from the PID literature.
There are two independent and uniformly distributed binary sources, X1 and X2. The target Y is
also binary-valued and determined via Y = X1 AND X2. Then, pY(0) = 3/4 and pY(1) = 1/4,
and both sources have the same channel:

pXs |Y(x|y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2/3 if y = 0, x = 0
1/3 if y = 0, x = 1
0 if y = 1, x = 0
1 if y = 1, x = 1

Because the two source channels are the same, the Blackwell redundancy obeys I∩ = I(Y; X1) =
I(Y; X2) = 0.311 bits [4]. From Equations (13) and (14), we see that IRB(R) = I∩ across all
compression rates. In this system, all information provided by the sources is redundant, so there
is no strict tradeoff between prediction and compression. The RB curve (not shown) consists of a
single point, (I(Q; Y|S), I(Q; S|Y)) = (0.311, 0).

Example 3. We now consider a more sophisticated example with four sources. The target is binary-
valued and uniformly distributed, pY(y) = 1/2 for y ∈ {0, 1}. There are four binary-valued
sources, where the conditional distribution of each source s ∈ {1, 2, 3, 4} is a binary symmetric
channel with error probability εs:

pXs |Y(x|y) =
{

1− εs if y = x
εs if y �= x

(24)

We take ε1 = ε2 = 0.1, ε3 = 0.2, and ε4 = 0.5. Thus, sources X1 and X2 provide most information
about the target; X3 provides less information; X4 is completely independent of the target.
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We performed our RB analysis and plot the RB prediction values in Figure 2a and the
compression values in Figure 2b, as found by optimizing the RB Lagrangian at different
β. At small β, the prediction converges to the Blackwell redundancy, I(Q; Y|S) = I∩ = 0,
and there is complete loss of information about source identity, I(Q; S|Y) = 0. At large β,
the prediction is equal to the maximum I(Z; Y|S) ≈ 0.335 bit, and compression is equal to
I(Q; S|Y) ≈ 0.104 bit. Figure 2c shows the RB curve.
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Figure 2. RB analysis for the system with 4 binary symmetric channels (Example 3). (a,b) Prediction
and compression values found by optimizing the RB Lagrangian (15) at different β. Contributions
from individual sources are shown as shaded regions. (c) The RB curve shows the tradeoff between
optimal compression and prediction values; marker colors correspond to the β values as in (a,b).
(d) RB curves for individual sources.

In Figure 2a,b, we show the additive contributions to the prediction and compression
terms from the individual sources, νS(s)I(Q; Y|S = s) and νS(s)I(Q; S = s|Y), respectively,
as shaded regions. We also show the resulting RB curves for individual sources in Figure 2d.

As expected, source X4 does not contribute to the prediction at any level of
compression, in accord with the fact that I(Q; Y|S = s) ≤ I(X4; Y) = 0. Sources X1
and X2 provide the same amount of prediction and compression at all points, up to
the maximum I(X1; Y) = I(X2; Y) ≈ 0.531. Source X3 provides the same amount of
prediction and compression as sources X1 and X2, until it hits its maximum prediction
I(X3; Y) ≈ 0.278. As shown in Figure 2d, at this point, X3 splits off from sources X1 and
X2 and its compression contribution decreases to 0; this is compensated by increasing the
compression cost of sources X1 and X2. The same behavior can also be seen in Figure 2a,b,
where we see that the solutions undergo phase transitions as different optimal strategies
are uncovered at increasing β. Importantly, by considering the prediction/compression
contributions from the the individual sources, we can identify that sources X1 and X2
provide the most redundant information.

Let us comment on the somewhat surprising fact that, at larger β, the compression cost
of X3 decreases—even while its prediction contribution remains constant and the prediction
contribution from X1 and X2 increases. At first glance, this appears counter-intuitive if
one assumes that, in order to increase prediction from X1 and X2, the bottleneck channel
pQ|Y should approach pX1|Y = pX2|Y, thereby increasing the deficiency δD(pX3|Y, pQ|Y) and
the compression cost of X3 via the bound (23). In fact, this is not the case, because the
prediction is quantified via the conditional mutual information I(Q; Y|S), not the mutual
information I(Q; Y). Thus, it is possible that the prediction contributions from X1 and X2
are large, even when the bottleneck channel pQ|Y does not closely resemble pX1|Y = pX2|Y.

More generally, this example shows that it is possible for the prediction contribution
from a given source to stay the same, or even increase, while its compression cost decreases.
In other words, as can be seen from Figure 2d, it is possible for the RB curves of the
individual sources to be non-concave and non-monotonic. It is only the overall RB curve,
Figure 2c, representing the optimal prediction–compression tradeoff on average, that must
be concave and monotonic.
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Example 4. In our final example, the target consists of three binary spins with a uniform
distribution, so Y = (Y1, Y2, Y3) and pY(y) = 1/8 for all y. There are three sources, each of
which contains two binary spins. Sources X1 and X2 are both equal to the first two spins of
the target Y, X1 = X2 = (Y1, Y2). Source X3 is equal to the first and last spin of the target,
X3 = (Y1, Y3).

Each source provides I(Y; Xs) = 2 bits of mutual information about the target. The
Blackwell redundancy I∩ is 1 bit, reflecting the fact that there is a single binary spin that is
included in all sources (Y1).

We performed our RB analysis and plot the RB prediction values in Figure 3a and the
compression values in Figure 3b, as found by optimizing the RB Lagrangian at different
β. At small β, the prediction converges to the Blackwell redundancy, I(Q; Y|S) = I∩ = 1,
and I(Q; S|Y) = 0. At large β, the prediction is equal to the maximum I(Z; Y|S) = 2 bit,
and compression is equal to I(Z; S|Y) ≈ 0.459. Figure 3c shows the RB curve. As in the
previous example, the RB curve undergoes phase transitions as different optimal strategies
are uncovered at different β.
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Figure 3. RB analysis for the system with a 3-spin target (Example 4). (a,b) Prediction and compression
values found by optimizing the RB Lagrangian (15) at different β. Contributions from individual
sources are shown as shaded regions. (c) The RB curve shows the tradeoff between optimal
compression and prediction values; marker colors correspond to the β values as in (a,b). (d) RB
curves for individual sources.

In Figure 3a,b, we show the additive contributions to the prediction and compression
terms from the individual sources, νS(s)I(Q; Y|S = s) and νS(s)I(Q; S = s|Y), as shaded
regions. We also show the resulting RB curves for individual sources in Figure 3d.

Observe that sources X1 and X2 provide more redundant information at a given
level of compression. For instance, as shown in Figure 3d, at source compression
I(Q; S = s|Y) ≈ .25, X1 and X2 provide 2 bits of prediction, while X3 provides only
a single bit. This again shows how the RB source decomposition can be used for identifying
sources with high levels of redundancy.

3.5. Continuity

It is known that the Blackwell redundancy I∩ can be discontinuous as a function of
the probability distribution of the target and source channels [4]. In Ref. [4], we explain
the origin of this discontinuity in geometric terms and provide sufficient conditions for
Blackwell redundancy to be continuous. Nonetheless, the discontinuity of I∩ is sometimes
seen as an undesired property.

On the other hand, as we show in this section, the value of RB is continuous in the
probability distribution for all R > 0.

Theorem 4. For finite-dimensional systems and R > 0, IRB(R) is a continuous function of the
probability values pXs |Y(x|y), pY(y), and νS(s).

Thus, by relaxing the compression constraint in Theorem 1, we “smooth out” the
behavior of Blackwell redundancy and arrive at a continuous measure. We illustrate this
using a simple example.
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Example 5. We consider the COPY gate, a standard example in the PID literature. Here, there are
two binary-valued sources jointly distributed according to

pX1X2(x1, x2) =

{
1/2− ε/4 if x1 = x2

ε/4 if x1 �= x2

The parameter ε controls the correlation between the two sources, with perfect correlation at ε = 0
and complete independence at ε = 1. The target Y is a copy of the joint outcome of the two sources,
Y = (X1, X2).

It is known that Blackwell redundancy I∩ is discontinuous for this system, jumping
from I∩ = 1 at ε = 0 to I∩ = 0 for ε > 0 [4]. On the other hand, the RB function IRB(R) is
continuous for R > 0. Figure 4 compares the behavior of Blackwell redundancy and RB as
a function of ε, at R = 0.01 bits. In particular, it can be seen that IRB(R) = 1 at ε = 0 and
then decays continuously as ε increases.
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Figure 4. The RB function IRB(R) is continuous in the underlying probability distribution for R > 0,
while Blackwell redundancy can be discontinuous. Here illustrated on the COPY gate, Y = (X1, X2),
as a function of correlation strength ε between X1 and X2 (perfect correlation at ε = 0, independence
at ε = 1). Blackwell redundancy jumps from I∩ = 1 at ε = 0 to I∩ = 0 at ε > 0, while IRB(R) (at
R = 0.01) decays continuously.

4. Iterative Algorithm

We provide an iterative algorithm to solve the RB optimization problem. This
algorithm is conceptually similar to the Blahut–Arimoto algorithm, originally employed for
rate distortion problems and later adapted to solve the original IB problem [6]. A Python
implementation of our algorithm is available at https://github.com/artemyk/pid-as-ib;
there, we also provide updated code to exactly compute Blackwell redundancy (applicable
to small systems).

To begin, we consider the RB Lagrangian optimization problem, Equation (15). We
rewrite this optimization problem using the KL divergence:

FRB(β) = max
rQ|SZ

D(rY|QS‖pY|S)−
1
β

D(rQ|SY‖rQ|Y). (25)

Here, notation like rQ|Y, rY|QS, etc., refers to distributions that include Q and therefore
depend on the optimization variable rQ|SZ, while notation like pY|S refers to distributions
that do not depend on Q and are not varied under the optimization. Every choice
of conditional distribution rQ|SZ induces a joint distribution rYSZQ = pYSZrQ|SZ via
Equation (10).
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We can rewrite the first KL term in Equation (25) as

D(rY|QS‖pY|S) = D(rY|QS‖pY|S)− min
ωYSZQ

D(rY|QS‖ωY|QS)

= max
ωYSZQ

EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
.

where E indicates the expectation, and we introduced the variational distribution ωYSZQ.
The maximum is achieved by ωYSZQ = rYSZQ, which gives ωY|QS = rY|QS. We rewrite the
second KL term in Equation (25) as

D(rQ|SY‖rQ|Y) = D(rQ|SYrZ|SYQ‖rQ|YrZ|SYQ)

= min
ωYSZQ

D(rQ|SYrZ|SYQ‖ωQ|YωZ|SYQ).

Here, we introduce the variational distribution ωYSZQ, where the minimum is achieved by
ωYSZQ = rYSZQ. The term rQ|SYrZ|SYQ can be rewritten as

r(q|s, y)r(z|s, y, q) =
r(z, s, y, q)

p(s, y)
=

r(q|s, z)p(z, s, y)
p(s, y)

= r(q|s, z)p(z|s, y)

where we used the Markov condition Q − (S, Z) − Y. In this way, we separate the
contribution from the conditional distribution rQ|SZ being optimized.

Combining the above allows us to rewrite Equation (25) as

FRB(β) = max
rQ|ZS ,ωYSZQ

EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
− 1

β
D(rQ|SZ pZ|SY‖ωQ|YωZ|SYQ). (26)

We now optimize this objective in an iterative and alternating manner with respect to rQ|SZ
and ωYSZQ. Formally, let L(rQ|SZ, ωYSZQ) refer to the objective in Equation (26). Then,

starting from some initial guess r(0)Q|SZ, we generate a sequence of solutions

ω
(t+1)
YSZQ = arg max

ωYSZQ

L(r(t)Q|SZ, ωYSZQ) (27)

r(t+1)
Q|SZ = arg max

rQ|SZ

L(rQ|SZ, ω
(t+1)
YSZQ) (28)

Each optimization problem can be solved in closed form. As already mentioned, the
optimizer in Equation (27) is

ω
(t+1)
YSZQ = r(t)YSZQ = r(t)Q|SZ pSZY.

The optimization (28) can be solved by taking derivatives, giving

r(t+1)(q|s, z) ∝ e
∑y p(y|s,z)

[
β ln ω(t)(y|q,s)−ln p(z|s,y)

ω(t)(q|y)ω(t)(z|s,y,q)

]
,

where the proportionality constant in ∝ is fixed by normalization ∑q r(t+1)(q|s, z) = 1.
Each iteration increases the value of objective L. Since the objective is upper bounded

by I(Z; Y|S), the algorithm is guaranteed to converge. However, as in the case of the
original IB problem, the objective is not jointly convex in both arguments, so the algorithm
may converge to a local maximum or a saddle point, rather than a global maximum. This
can be partially alleviated by running the algorithm several times starting from different
initial guesses r(0)Q|SZ.

When the RB is not strictly concave, it is more appropriate to optimize the exponential
RB Lagrangian (16) or another objective that combines the prediction and compression
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terms in a nonlinear manner [18,19]. The algorithm described above can be used with such
objectives after a slight modification. For instance, for the exponential RB Lagrangian, we
modify (26) as

Fexp
RB (β) = max

rQ|SZ ,ωYSZQ
EpYSZrQ|SZ

[
ln

ω(y|q, s)
p(y|s)

]
− 1

β
eD(rQ|ZS pZ|SY‖ωQ|YωZ|SYQ). (29)

A similar analysis as above leads to the following iterative optimization scheme:

ω
(t+1)
YSZQ = r(t)Q|SZ pSZY

r(t+1)(q|s, z) ∝ e
∑y p(y|s,z)

[
β(t) ln ω(t)(y|q,s)−ln p(z|s,y)

ω(t)(q|y)ω(t)(z|s,y,q)

]
,

where β(t) = βe−I
r(t)

(Q;S|Y) is an effective inverse temperature. (Observe that, unlike
the squared Lagrangian [18], the exponential Lagrangian leads to an effective inverse
temperature β(t) that is always finite and converges to β as Ir(t) (Q; S|Y)→ 0.)

When computing an entire RB curve, as in Figure 1a–c, we found good results by
annealing, that is by re-using the optimal rQ|SZ found for one β as the initial guess at
higher β. For quantifying the value of the RB function IRB(R) at a fixed R, as in Figure 4,
we approximated IRB(R) via a linear interpolation of the RB prediction and compression
values recovered from the RB Lagrangian at varying β.

5. Discussion

In this paper, we propose a generalization of Blackwell redundancy, termed the
redundancy bottleneck (RB), formulated as an information-bottleneck-type tradeoff
between prediction and compression. We studied some implications of this formulation
and proposed an efficient numerical algorithm to solve the RB optimization problem.

We briefly mention some directions for future work.
The first direction concerns our iterative algorithm. The algorithm is only applicable to

systems where it is possible to enumerate the outcomes of the joint distribution pQYSZ. This
is impractical for discrete-valued variables with very many outcomes, as well as continuous-
valued variables as commonly found in statistical and machine learning settings. In future
work, it would be useful to develop RB algorithms suitable for such datasets, possibly by
exploiting the kinds of variational techniques that have recently gained traction in machine
learning applications of IB [11–13].

The second direction would explore connections between the RB and other
information-theoretic objectives for representation learning. To our knowledge, the RB
problem is novel to the literature. However, it has some similarities to existing objectives,
including among others the conditional entropy bottleneck [13], multi-view IB [22], and the
privacy funnel and its variants [49]. Showing formal connections between these objectives
would be of theoretical and practical interest, and could lead to new interpretations of the
concept of PID redundancy.

Another direction would explore the relationship between RB and information-
theoretic measures of causality [50,51]. In particular, if the different sources represent
some mutually exclusive conditions—such as the age group example provided at the end
of Section 2—then redundancy could serve as a measure of causal information flow that is
invariant to the conditioning variable.

Finally, one of the central ideas of this paper is to treat the identity of the source
as a random variable in its own right, which allows us to consider what information
different bottleneck variables reveal about the source. In this way, we convert the search
for topological or combinatorial structure in multivariate systems into an interpretable
and differential information-theoretic objective. This technique may be useful in other
problems that consider how information is distributed among variables in complex systems,
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including other PID measures such as synergy [4], information-theoretic measures of
modularity [52,53], and measures of higher-order dependency [54,55].

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101068029.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No research data was used in this study.

Acknowledgments: I thank Nihat Ay, Daniel Polani, Fernando Rosas, and especially, André Gomes
for useful feedback. I also thank the organizers of the “Decomposing Multivariate Information in
Complex Systems” (DeMICS 23) workshop at the Max Planck Institute for the Physics of Complex
Systems (Dresden, Germany), which inspired this work.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

We provide proofs of the theorems in the main text. Throughout, we use D for
the Kullback–Leibler (KL) divergence, H for the Shannon entropy, and I for the mutual
information.

Appendix A.1. Proof of Theorem 1

We begin by proving a slightly generalized version of Theorem 1, that is we show the
equivalence between the two optimization problems:

I∩ = sup
Q

I(Q; Y) where Q �Y Xs ∀s (A1)

I∩ = sup
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) = 0. (A2)

The slight generalization comes from replacing max by sup, so that the result also holds
for systems with infinite-dimensional sources, where the supremum is not guaranteed to
be achieved. For finite-dimensional systems, the supremum is always achieved, and we
reduce to the simpler case of Equations (7) and (11).

Proof. Let V1 indicate the supremum in Equation (A1) and V2 the supremum in
Equation (A2), given some νS(s) with full support. We prove that V1 = V2.

We will use that, for any distribution that has the form of Equation (10) and obeys
I(Q; S|Y) = 0, the following holds:

I(Q; Y|S) = H(Q|S)− H(Q|S, Y)

= H(Q)− H(Q|Y) = I(Q; Y)
(A3)

Here, we used the Markov condition Q−Y− S, as well as I(Q; S) = H(Q)− H(Q|S) = 0,
as follows from Equation (9) and the data-processing inequality.

Let Q be a feasible random variable that comes within ε ≥ 0 of the objective in (A1),
I(Q; Y) ≥ V1 − ε. Define the joint distribution:

pQYSZ(q, y, s, z) = κQ|Xs(q|z)pY(y)νS(s)pXs |Y(z|y)

whenever z ∈ Xs, otherwise pQYSZ(q, y, s, z) = 0. Here, we used the channels κQ|Xs
associated with the Blackwell relation Q �Y Xs, so that pQ|Y = κQ|Xs ◦ pXs |Y. Under
the distribution pQYSZ, the Markov conditions Q − (S, Z) − Y and Q − Y − S hold, the
latter since

pQS|Y(q, s|y) = pQ|Y(q|y)νS(s). (A4)
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Therefore, this distribution has the form of Equations (8) and (10) and satisfies the
constraints in Equation (A2). Using Equation (A3), we then have

V1 − ε ≤ I(Q; Y) = I(Q; Y|S) ≤ V2.

Conversely, let pYSZQ be a feasible joint distribution for the optimization of
Equation (A2) that comes within ε ≥ 0 of the supremum, I(Q; Y|S) ≥ V2 − ε. Using
the form of this joint distribution from Equation (10), we can write

pQ|Y(q|y)
(a)
= pQ|YS(q|y, s)

= ∑
z

pQ|YSZ(q|y, s, z)pZ|YS(z|y, s)

(b)
= ∑

z
pQ|SZ(q|z, s)pZ|YS(z|y, s)

(c)
= ∑

z
pQ|SZ(q|z, s)pXs |Y(z|y)

In (a), we used I(Q; S|Y) = 0; in (b), we used Q − (S, Z) − Y; in (c), we used that
pZ|YS=s = pXs |Y. This implies that pQ|Y � pXs |Y for all s. Therefore, pQ|Y satisfies the
constraints in Equation (A1), so I(Q; Y) ≤ V1. Combining with Equation (A3) implies

V2 − ε ≤ I(Q; Y|S) = I(Q; Y) ≤ V1.

Taking the limit ε → 0 gives the desired result.

Appendix A.2. Proof of Theorem 2

We now prove a slightly generalized version of Theorem 2. We show that the solution
to the following optimization problem is non-decreasing and concave in R:

IRB(R) := sup
Q:Q−(Z,S)−Y

I(Q; Y|S) where I(Q; S|Y) ≤ R. (A5)

The slight generalization comes from replacing max in Equation (12) by sup, so that the
result also holds for systems with infinite-dimensional sources where the supremum is not
guaranteed to be achieved.

Proof. IRB(R) is non-decreasing in R because larger R give weaker constraints (larger
feasible set) in the maximization problem (A5).

To show concavity, consider any two points on the RB curve as defined by
Equation (A5): (R, IRB(R)) and (R′, IRB(R′)). For any ε > 0, there exist Q and Q′ such that

I(Q; S|Y) ≤ R I(Q; Y|S) ≥ IRB(R)− ε

I(Q′; S|Y) ≤ R′ I(Q′; Y|S) ≥ IRB(R′)− ε

Without loss of generality, suppose that both variables have the same set of outcomes Q.
Then, we define a new random variable Qλ with outcomes Qλ = {1, 2} ×Q, as well as a
family of conditional distributions parameterized by λ ∈ [0, 1]:

pQλ |ZS(1, q|z, s) = λpQ|ZS(q|z, s)

pQλ |ZS(2, q|z, s) = (1− λ)pQ′ |ZS(q|z, s)

In this way, we define Qλ via a disjoint convex mixture of Q and Q′ onto non-overlapping
subspaces, with λ being the mixing parameter. With a bit of algebra, it can be verified that,
for every λ,

H(Qλ|Y) = λH(Q|Y) + (1− λ)H(Q′|Y),
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and similarly for H(Qλ|Y, S) and H(Qλ|S). Therefore,

I(Qλ; S|Y) = λI(Q; S|Y) + (1− λ)I(Q′; S|Y)
≤ λR + (1− λ)R′

I(Qλ; Y|S) = λI(Q; Y|S) + (1− λ)I(Q′; Y|S)
≥ λIRB(R) + (1− λ)IRB(R′)− ε

Since IRB is defined via a maximization, we have

IRB(λR + (1− λ)R′) ≥ I(Qλ; Y|S) ≥ λIRB(R) + (1− λ)IRB(R′)− ε.

Taking the limit ε → 0 proves the concavity.

Appendix A.3. Proof of Theorem 3

Proof. We show that, for any Q that achieves I(Q; S|Y) ≤ R, there is another Q′ with
cardinality |Q′| ≤ ∑s|Xs|+ 1 that satisfies I(Q′; S|Y) ≤ R and I(Q′; Y|S) ≥ I(Q; Y|S).

Consider any joint distribution pQSZY from Equation (10) that achieves I(Q; S|Y) ≤ R,
and let Q be the corresponding set of outcomes of Q. Fix the corresponding conditional
distribution pSZ|Q, and note that it also determines the conditional distributions:

pYSZ|Q(y, s, z|q) = pY|SZ(y|s, z)pSZ|Q(s, z|q) (A6)

=
νS(s)pXs |Y(z|y)pY(y)

pSZ(s, z)
pSZ|Q(s, z|q) (A7)

pY|SQ(y|s, q) =
∑z pYSZ|Q(y, s, z|q)

∑z,y′ pYSZ|Q(y′, s, z|q) (A8)

pS|YQ(s|y, q) =
∑z pYSZ|Q(y, s, z|q)

∑z,s′ pYSZ|Q(y, s′, z|q) (A9)

Next, consider the following linear program:

V = max
ωQ′ ∈Δ

∑
q

ωQ′(q)D(PY|SQ=q‖PY|S) (A10)

where ∑
q

ωQ′(q)pSZ|Q(s, z|q) = pSZ(s, z) ∀s, z (A11)

∑
q

ωQ′(q)H(S|Y, Q = q) = H(S|Y, Q) (A12)

where Δ is the |Q|-dimensional unit simplex, and we use the notation H(S|Y, Q = q) =
−∑y,s pYS|Q(y, s|q) ln pS|YQ(s|y, q). The first set of constraints (A11) guarantees that
ωQ′ pYSZ|Q belongs to the family (10) and, in particular, that the marginal over (S, Z, Y) is
νS(s)pXs |Y(z|y)pY(y) (see Equation (A7)). There are ∑s|Xs| possible outcomes of (s, z),
but ∑s,z pSZ(s, z) = 1 by the conservation of probability. Therefore, Equation (A11)
effectively imposes ∑s|Xs| − 1 constraints. The last constraint (A12) guarantees that
H(S|Y, Q′) = H(S|Y, Q); hence,

I(Q′; S|Y) = H(S|Y)− H(S|Y, Q′)

= H(S|Y)− H(S|Y, Q) = I(Q; S|Y) ≤ R.

Equation (A10) involves a maximization of a linear function over the simplex, subject
to ∑s|Xs| hyperplane constraints. The feasible set is compact, and the maximum is achieved
at one of the extreme points of the feasible set. By Dubin’s theorem [56], any extreme point
of this feasible set can be expressed as a convex combination of at most ∑s|Xs|+ 1 extreme
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points of Δ. Thus, the maximum is achieved by a marginal distribution ωQ′ with support
on at most ∑s|Xs|+ 1 outcomes. This distribution satisfies:

∑
q

ωQ′(q)D(PY|SQ=q‖PY|S) ≥ ∑
q

pQ(q)D(PY|SQ=q‖PY|S)

since the actual marginal distribution pQ is an element of the feasible set. Finally, note that

∑
q

ωQ′(q)D(PY|SQ=q‖PY|S) = I(Q′; Y|S)

∑
q

pQ(q)D(PY|SQ=q‖PY|S) = I(Q; Y|S);

therefore, I(Q′; Y|S) ≥ I(Q; Y|S).

Appendix A.4. Proof of Theorem 4

Proof. For a finite-dimensional system, we may restrict the optimization problem in
Theorem 1 to Q with cardinality |Q| ≤ ∑s|Xs|+ 1 (Theorem 3). In this case, the feasible set
can be restricted to a compact set, and the objective is continuous; therefore, the maximum
will be achieved.

Now, consider a tuple of random variables (S, Z, Y, Q) that obey the Markov
conditions S − Y − Z and Q − (S, Z) − Y. Suppose that Q achieves the maximum in
Theorem 1 for a given R > 0:

I(Q; Y|S) = IRB(R), I(Q; S|Y) ≤ R. (A13)

Consider also a sequence of random variables (Sk, Zk, Yk, Qk) for k = 1, 2, 3 . . . where each
tuple has the same outcomes as (S, Z, Y, Q) and obeys the Markov conditions Sk −Yk − Zk
and Qk− (Sk, Zk)−Yk. Let Ik

RB(R) indicate the redundancy bottleneck defined in Theorem 1
for random variables Zk, Yk, Sk, and suppose that Qk achieves the optimum for problem k:

I(Qk; Yk|Sk) = Ik
RB(R) I(Qk; Sk|Yk) ≤ R. (A14)

To prove continuity, we assume that the joint distribution of (Sk, Zk, Yk) approaches the
joint distribution of (S, Z, Y),

lim
k

∥∥pSkZkYk − pSXY
∥∥

1 = 0.

We first show that
IRB(R) ≥ lim

k
Ik
RB(R). (A15)

First, observe that given our assumption that pSZ has full support, we can always take k
sufficiently large so that each pSkZk has full support. Next, we define the random variable
Q′k that obeys the Markov condition Q′k − (S, Z)−Y, with conditional distribution:

pQ′k |SZ(q|s, z) := pQk |SkZk
(q|s, z).

This conditional distribution is always well-defined, given that pSkZk has the same support
as pSZ. By assumption, pSkZkYk → pSZY; therefore,

pQ′kSZY − pQkSkZkYk → 0. (A16)
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Conditional mutual information is (uniformly) continuous due to the (uniform) continuity
of entropy (Theorem 17.3.3, [57]). Therefore,

0 = lim
k
[I(Qk; Sk|Yk)− I(Q′k; S|Y)] ≤ R− lim

k
I(Q′k; S|Y), (A17)

where we used Equation (A14). We also define another random variable Qα
k , which also

obeys the Markov condition Qα
k − (S, Z)− Y, whose conditional distribution is defined in

terms of the convex mixture:

pQα
k |SZ(q|s, z) := αk pQ′ |SX(q|s, z) + (1− αk)pU(q),

αk := min
{

1,
R

I(Q′k; S|Y)

}
∈ [0, 1] (A18)

Here, pU(q) = 1/|Q| is a uniform distribution over an auxiliary independent random
variable U with outcomes Q. From the convexity of conditional mutual information [58],

I(Qα
k ; S|Y) ≤ αk I(Q′k; S|Y) + (1− αk)I(U; S|Y) ≤ R.

In the last inequality, we used I(U; S|Y) = 0 and plugged in the definition of αk. Observe
that the random variable Qα

k falls in the feasible set of the maximization problem that
defines IRB, so

IRB(R) ≥ I(Qα
k ; Y|S). (A19)

Combining Equations (A17) and (A18), and R > 0 implies that αk → 1, so

pQα
k SZY − pQ′kSZY → 0.

Combining with Equations (A14), (A16) and (A19), along with continuity of conditional
mutual information, gives

IRB(R) ≥ lim
k

I(Qα
k ; Y|S) = lim

k
I(Q′k; Y|S) = lim

k
I(Qk; Yk|Sk) = lim

k
Ik
RB(R).

We now proceed in a similar way to prove

IRB(R) ≤ lim
k

Ik
RB(R). (A20)

We define the random variable Q′′ that obeys the Markov condition Q′′ − (Sk, Zk)− Yk,
with conditional distribution

pQ′′k |SkZk
(q|s, z) = pQ|SX(q|s, z).

Since pSkZkYk → pSZY by assumption,

pQ′′k SkZkYk
− pQSZY → 0. (A21)

We then have

0 = lim
k
[I(Q; S|Y)− I(Q′′k ; Sk|Yk)] ≤ R− lim

k
I(Q′′k ; Sk|Yk). (A22)

where we used Equation (A13). We also define the random variable Qα′ that obeys the
Markov condition Qα′ − (Sk, Zk)−Yk, with conditional distribution

pQα′
k |SkZk

(q|s, z) = α′k pQ′′ |SkZk
(q|s, z) + (1− α′k)pU(q),

α′k := min
{

1,
R

I(Q′′k ; Sk|Yk)

}
∈ [0, 1] (A23)

184



Entropy 2024, 26, 546

Using the convexity of conditional mutual information, I(U; Sk; Yk) = 0, and the definition
of α′k, we have

I(Qα′
k ; Sk|Yk) ≤ α′k I(Q′′k ; Sk|Yk) + (1− α′k)I(U; Sk|Yk) ≤ R.

Therefore, the random variable Qα′
k falls in the feasible set of the maximization problem

that defines Ik
RB, so

Ik
RB(R) ≥ I(Qα′

k ; Yk|Sk). (A24)

Combining Equations (A22) and (A23), and R > 0 implies α′k → 1; therefore,

pQα′
k SkZkYk

− pQ′′k SkZkYk
→ 0.

Combining this with Equations (A13), (A21) and (A24), along with the continuity of
conditional mutual information, gives

lim
k

Ik
RB(R) ≥ lim

k
I(Qα′

k ; Yk|Sk) = lim
k

I(Q′′k ; Yk|Sk) = I(Q; Y|S) = IRB(R).
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Abstract: A typical claim in anti-representationalist approaches to cognition such as ecological
psychology or radical embodied cognitive science is that ecological information is sufficient for
guiding behavior. According to this view, affordances are immediately perceptually available to the
agent (in the so-called “ambient energy array”), so sensory data does not require much further inner
processing. As a consequence, mental representations are explanatorily idle: perception is immediate
and direct. Here we offer one way to formalize this direct-perception claim and identify some
important limits to it. We argue that the claim should be read as saying that successful behavior just
implies picking out affordance-related information from the ambient energy array. By relying on the
Partial Information Decomposition framework, and more concretely on its development of the notion
of synergy, we show that in multimodal perception, where various energy arrays carry affordance-
related information, the “just pick out affordance-related information” approach is very inefficient,
as it is bound to miss all synergistic components. Efficient multimodal information combination
requires transmitting sensory-specific (and not affordance-specific) information to wherever it is that
the various information streams are combined. The upshot is that some amount of computation is
necessary for efficient affordance reconstruction.

Keywords: synergy; affordances; direct perception; ecological information

1. Introduction

Cognition is often taken to be (among other things, but centrally) involved in the
generation of “adaptive behavior” ([1], ([2] p. 359)]), which is sensitive to “the structure of
the environment and the goals of the [cognitive agent]” ([3], p. 3). One natural way to think
of cognition, then, is as the transformation and combination of information relevant to the
production of behavior (some of it incoming from the environment, some of it encoding
agent goals, etc.) into an actual moment-by-moment behavioral plan.

The most popular approach to the investigation of this process is what [4] calls main-
stream representationalism [5–7]: the view that this transmission and combination of informa-
tion depends on computations over representations. What exactly representations are is a
matter of much debate; for our current purposes, we can simply think of them as signals
that carry information about, among other things, the agent’s current environment, or their
current goals, to downstream areas where these streams of information are combined and
transformed in ways increasingly relevant to the production of behavior.

While representationalism is both popular and scientifically successful [8], it is not
the only game in town. Alternatives to representationalist cognitive science include radical
embodied [9,10] cognitive science. This approach is part of a package of views in cognitive
science that is steadily gaining in influence: so-called 4E approaches to cognition [11]
downplay the importance of internal computation, and highlight the fact that, sometimes
at least, behavior-relevant information can be simply picked up from the environment
with very little “post-processing”. This shift of focus has allowed embodied cognitive
scientists, for example, to redescribe interceptive actions, such as a baseball outfielder
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catching a ball [10,12]: instead of the outfielder’s brain solving the physics problem of
predicting the position and time at which the ball will impact the ground from some
estimated initial conditions, the outfielder can simply “align themselves with the path of
the ball and run so as to make the ball appear to move with constant velocity” ([10], p. 5).
This is less computationally intensive, and potentially more ecologically plausible, than
the kind of physics-based calculations that classical cognitive science would traditionally
gravitate towards.

Embodied cognitive science, therefore, stresses the role that agent–environment dy-
namics play in cognition. We talk of “stressing the role” rather than “substituting repre-
sentations with” advisedly: we don’t think that representationalism and these alternative
approaches are in conflict—perhaps contra their proponents, and the overall tenor of the
debate surrounding them. Rather we believe, with [13], that they should be thought of as
complementary, largely compatible tools in the cognitive-scientific toolbox.

Under this light, one important task for theorists of cognitive science consists in
charting the range of applicability of these different approaches: that they are all useful
certainly need not mean that they all be everywhere and universally useful. It might very
well be, for example, that representation-based analyses happen not to be illuminating in
the description and explanation of some particular cognitive process (e.g., perhaps sudden
“Aha!” moments of mathematical insight, as described in [14]), and it might equally well be
that there are limits to the explanatory usefulness of non-representational strategies.

In this paper, in particular, we discuss, from this vantage point, one of the main
themes in radical embodied cognitive science and ecological psychology [15,16]: the claims
that, first, the contents of perception are determined by a set of regularities present in
the environment, called “affordances” [17]; and, second, that information about affor-
dances can be directly perceived by the agent, without the need for any inner processing
or computation [15,18,19]. Here we will show that there are some limits to this putatively
direct, non-computational, non-representational information pickup.

2. The Direct Perception of Affordances

In keeping with the notion, discussed above, that cognition is intimately linked to
the generation of adaptive behavior, radical embodied cognitive scientists and ecological
psychologists think of perception as being essentially for action: agents explore their
environment so that, through action, they can modify it. Specifically, agents actively engage
with their environment through the perception of affordances: possibilities for action
afforded by the environment, such as climbability (that affords climbing), drinkability (that
affords drinking), etc.

How do we perceive affordances? There is a “set of structures and regularities in the
environment that allow an animal to engage with [them]” ([19], p. 5232). These structures
and regularities are what ecological psychologists call ecological information. Ecological
information inheres on an ambient energy array: highly structured patterns of, e.g., ambient
light, or of sound waves, that carry information about present affordances [17]. What we
may call, in turn, the direct perception hypothesis [20] is the claim that perceivers can directly
pick up this ecological information in the environment without the need to compute over
it, manipulate it or enrich it in any way [18]—without doing what ([9], p. 18) calls “mental
gymnastics”. A few complications are important here:

First, affordances are agent-relative (or, interchangeably for our purposes, co-constituted
by the agent and the environment). When we say that the ambient energy array carries
information about affordances, we should be read as saying that it does so when we keep a
certain agent fixed, or that it does so as parameterized by a concrete agent.

Second, there is some debate in the literature about whether the presence or absence
of affordances should be nomologically necessitated by the ambient energy array [21].
That is to say, whether the probability of the presence of a certain affordance given a
certain configuration of the ambient energy array should always be 0 or 1—what [18] call
specification—or just made highly (im)probable by it [9]. In the model we develop in the
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sequel, we follow Chemero in endorsing this latter probabilistic characterization, which
we take to be ecologically more plausible, as it does not require that the ambient energy
array be always and everywhere unambiguous. In any event, nomological necessitation is
a special case of probabilistic correlation.

Finally, it is common for ecological psychologists to claim that “[t]he idea of ecological
information developed by J. J. Gibson has no aspects in common with the idea of informa-
tion as it is understood by cognitivism” ([17], p. 49), echoing ([15], p. 232). If “information
as understood by cognitivism” means information as described in Shannon’s theory of
information (see below), this is an exaggeration. If the ambient energy array makes the
presence of an affordance more (un)likely, or even necessitates its presence (absence), then,
trivially, the mutual information between a random variable, the values of which are possi-
ble configurations of the ambient energy array, and another random variable, the values of
which are the presence or absence of a certain target affordance, is necessarily nonzero. See
Section 4 for the characterization of mutual information.

3. Multi-Modal Perception and Synergistic Affordances

There are simple scenarios in which ecological information about some affordance is
present in the structured energy of only one ambient energy array, pertaining to only one
sensory modality. (What counts as a sensory modality is itself a vexed question in this
debate. We can assume an ecological-psychology understanding thereof, perhaps along the
lines developed in [22].)

For example, a walkable surface can be perceived as such by relying only on the set of
regularities in ambient light that can be taken in visually. For the purposes of this paper,
we can grant that, in these simple cases, perception of affordances results from the direct
pickup of ecological information. This can be seen as a stipulation: when there is only one
source of affordance-related information, perception counts as direct. We note, in passing,
that this is conceding a lot to the defender of direct perception: deep learning [23] teaches
us that extracting ecologically relevant features (e.g., the presence of food, or of stairs) from
a single source (e.g., an array of pixels) is a computationally complex process, far from
direct under any reasonable definition of “direct”. See [24].

In any case, ecological information about affordances is often the result of complex
interactions between several ambient energy arrays, targeted by several different sensory
modalities, in a multi-dimensional space, that do not meet this definition of “direct”. One
way to develop this idea is Stoffregen and Bardy’s notion of a global array [18]. The main
idea is that, in the general case, the value of an affordance can be recovered only from
ecological information present in all ambient energy arrays considered jointly, but possibly
not in subsets thereof. By only considering each of them separately it is not necessarily (and
perhaps not typically) possible to pinpoint affordance values to the best available accuracy.
We will call these multimodal affordances.

Ref. [18] claims that the perception of multimodal affordances in the global array is
also direct. We do not feel that direct perception has been characterized in a clear enough
manner to reach a verdict on this issue. What we propose to do in what follows is to
develop a formalization of some of the key notions in the debate, in terms of the so-called
partial information decomposition framework, so that the trade-offs of taking some act of
perception as direct are more sharply in view.

4. Information Theory and Lossy Communication

4.1. Basic Concepts

As we have seen, the perception of multimodal affordances relies upon the pickup
of information present in patterns in the global array. We now introduce tools to quantify
to which extent each of the ambient energy arrays that jointly constitute the global array
carries affordance-related information, and to which (possibly different) extent the global
array does too. We will rely on information theory for this.
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Information theory [25] is a mathematical framework that characterizes optimal trans-
mission of information through a typically noisy channel. In this framework, information
is a quantity that measures the degree of uncertainty in a random variable. In this work,
we treat single ambient energy arrays as random variables that are combined into another
random variable—the global array. Thus, multimodal affordance perception is constrained
by how these random variables interact with each other. The way information theory
formalizes the dependency between two random variables X and Z is mutual information,
I(X; Z):

I(X; Z) = Ex,z[log
p(x, z)

p(x)p(z)
] (1)

= H(X)− H(X|Z) (2)

where the entropy of a random variable X, or H(X), is defined as

H(X) = −Ep(x)[log p(x)] (3)

One way to think of the mutual information between X and Z is as the reduction
in uncertainty (i.e., entropy) of X once the value of Z is known. Mutual information is
symmetric, so it can also be formulated in the other direction; that is, as the reduction in
uncertainty about Z when X is known.

As can be seen, Equation (1) only considers two random variables, which makes it
inadequate for our current purposes, where at least three random variables are involved:
two (or more) single ambient energy arrays, and the resulting global array.

4.2. PID and Synergistic Information

In such higher-dimensional systems, where the information flows from at least two
random variables to a third one, we can make use of multivariate mutual information,
which, for three random variables, is defined as

I(X, Z; Y) = I(Y; X)− I(Y; Z|X) (4)

One problem with Equation (4) is that it neglects the possibility of information interac-
tion between the set of random variables. It may be, for example, that both X and Z carry
the same pieces of information about Y (say, that for some particular ecological situation,
what ambient light says about the current landscape of affordances, and what sound waves
say about it, is pretty much the same). It may also be that each of X and Z carries a unique
piece of information about Y; or that each carries no information about Y on their own, but
when put together they do. Any arbitrary combination of these three possibilities might be
the case as well.

Unfortunately, this inquiry goes beyond the scope of classic information theory. The
framework of partial information decomposition (also PID henceforth, [26]) has been recently
formulated as an effort to formalize precisely the ways in which information flows in
such multivariate systems. In particular, PID defines three possible interactions between
the random variables of a system, informally introduced above, corresponding to three
different kinds of information (groups of) variables can carry: redundant, unique, and
synergistic. Unique information measures the amount of information that is only present
in one random variable, but not the others. Redundant information measures the amount
of information available in more than one random variable. Finally, synergistic information
measures the amount of information carried by a group of random variables as a whole,
but not contained in their individual contributions. Our analyses in this paper rely chiefly
on the synergistic components in the PID.

The PID approach is still relatively new, and its formal underpinnings still in flux.
Several definitions of synergistic information (and the attendant unique and redundant
information notions) have been offered in recent years, all of them with advantages and
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shortcomings. Among these, we will rely on the mathematical definition of synergistic
information provided by [27,28]. Given a set of n random variables X = {X1, X2, . . . , Xn},
where n ≥ 2, and a random variable Y, they define the synergistic information in X about
Y as follows:

Isyn({X1, . . . , Xn}; Y) = I(X1...n; Y)− Iunion({X1, . . . , Xn}; Y) (5)

where union information is computed as follows:

Iunion({X1, . . . , Xn}; Y) ≡ min
Pr∗(X1,...,Xn ,Y)

subject to: Pr∗(Xi , Y) = Pr(Xi , Y) ∀i

I∗(X1...n; Y) (6)

We can use the Lagrangian method (as we do in a maximum entropy problem) to
approximate the optimal distribution in the minimization of the right-hand side [27–29].
This definition captures the intuitive idea of synergistic information: the information,
I(X1...n; Y), that the system as a whole (or joint random variable) X1...n carries about a target
variable Y is greater than the information, Iunion, that the aggregation of all individual
variables, {X1, . . . , Xn}, does: the difference, in Equation (5), is the synergistic component.
One important reason to rely on this definition of synergy is that it has well-defined bounds.
In particular, it is an upper bound on the WholeMinusSum (WMS) synergy [30], which
underestimates the synergy in a system, and a lower bound on the Smax measure [26],
which overestimates it. In addition, Equation (5) exhibits some desirable properties, such
as nonnegativity, which early attempts at quantifying interaction information, such as the
interaction information [31], do not have. (Another recently proposed measure of interactions
and dependencies is the so-called O-information [32,33]. We will restrict ourselves here to
measures in the PID tradition. We would like to thank an anonymous reviewer for pointing
us to this alternative body of work).

A common example of a synergistic system is the XOR logic gate, defined by the truth
table in Table 1. We can use this simple example to illustrate how synergistic information
is not stored in either of the random variables, X1 and X2, alone but in their combination.
First, let us evaluate the information that each input random variable Xi carries about the
target variable Y. Assuming all inputs are uniformly distributed, the mutual information
between each input and output is

I(Xi; Y) = H(Xi)− H(Xi|Y) (7)

= H(Xi)− H(Xi) = 0 (8)

Looking closely at Table 1, we see that knowing the value of Xi (where i ∈ {1, 2}) does
not reduce the initial 1 bit uncertainty of Y. For example, knowing that X1 = 0 does not
change the initial probabilities p(Y = 0) and p(Y = 1), which entails H(X1|Y) = H(X1).
Mutatis mutandis for X2. Thus, adding the mutual information of the individual components
of the XOR gate leads to zero information about the output variable: I(X1; Y) + I(X2; Y) = 0.

Table 1. Truth table of an XOR gate.

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 0
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We now evaluate the mutual information between the target variable Y when both
inputs are considered as a whole {X1, X2}:

I({X1, X2}; Y) = 1 (9)

In this case, the uncertainty about the Y is completely resolved once both X1 and
X2 are known. Since the information about Y is not in any random variable in isolation,
but only in their union, information can only flow when the system is considered as a
whole, rather than the sum of its parts. This is precisely the intuition behind synergistic
information.

4.3. Communication

In our model, affordance-related information (e.g., about the presence of food) is
conveyed by two energy arrays (e.g., ambient light and sound waves) that causally af-
fect distinct sensory modalities (visual and auditory, in the example). We model the
multimodal perception of affordances according to Shannon’s mathematical theory of
communication [25]. Roughly speaking, a communication pipeline consists of (a) a source
that generates messages; (b) an encoder that sends an encoded signal of the messages
through a typically noisy channel; and (c) a decoder that generates faithful estimates of the
source messages based on the incoming encoded signals.

(As an aside, we note that Shannon’s communication theory does not require the
source messages and the decoder’s estimates to lie in the same dimensional space. For
example, we could design a communication pipeline where the source messages are sensory
observations at the retinal level and the output of the decoder is an action that depends
on visual input. In this scenario, the dimensionality of the source messages is going to be
significantly higher than the space of possible actions: Rmessages � Ractions).

For our specific case of study, we treat each encoder as a sensory modality that receives
inputs from a single ambient energy array; the signals can be thought of as neural patterns
of activation, perhaps; and the decoder as some cognitive sub-system downstream that
generates the affordance percept.

In this multimodal-affordance perception setup, we slightly extend the main Shan-
nonian model by introducing two distinct sources (one per energy array) along with their
corresponding encoders (one per sensory modality). Each source message is transmitted to
its corresponding encoder, which produces a signal. Finally, a single decoder takes incom-
ing pairs of signals from the encoders to generate an affordance estimate (see Figure 1). We
can examine the information interaction between the encoded signals and the affordance
by using the tools described in Section 4.2.

abc ∈ A

EB

EC

oB
b

oC
c

D
zB

i

zC
j

âbc

‖abc − âbc‖2

Figure 1. Communication model used to formalize the perception of multimodal affordances. An
affordance, abc, is co-instantiated by the energy array states oB

b and oC
c . Then, encoders EB and EC

encode each sensory observation as zB
i and zC

j , respectively. Given those signals, the decoder D
generates an estimate, âbc, of the affordance value abc.
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4.4. Lossy Compression

Shannon’s lossless source coding theorem [25] states that any source can be com-
pressed up to its entropy with negligible error. For example, given a discrete random
variable X that can take four possible states with the following probability distribution
p(X) = {0.5, 0.2, 0.2, 0.1}, applying Equation (3), we observe that the maximum achievable
error-free compression is 1.76 bits. When that is the case, all the information at the source
can be perfectly recovered at the end of the communication pipeline by the decoder.

However, cognition operates under limited cognitive resources (due to the cost of
metabolic processes, and other biological constraints, [34–37]), which makes lossless com-
pression, and therefore, lossless communication, rarely achievable. To model such limita-
tions, we impose a capacity constraint: the two modality-specific encoders cannot simply
relay all of the information present in their target energy array to the downstream decoder.
Formally, this means that the maximum transmission rate R (i.e., number of transmitted
bits per symbol) achievable by the channel is lower than the entropy of the energy array
O: R < H(O).

What this means is that the encoder cannot uniquely encode the source messages (i.e.,
different source messages are mapped onto the same signal). This creates some uncertainty
at the decoder, thus making perfect reconstruction of the affordance matrix unfeasible in
general. When lossless communication is not viable, a sub-field of information theory called
rate-distortion theory [38] defines optimal lossy compression. The core idea underlying this
theory is that fidelity in communication is governed by the trade-off between transmitted
information and the expected distortion level of the source estimates. Formally, this
trade-off is captured by the rate-distortion function, which defines the minimum mutual
information I(X; Z) (i.e., maximum level of compression) between two random variables X
and Z (source input and its compressed representation, respectively) given some tolerable
expected distortion L of the source estimates X̂ generated from Z. To avoid confusion
in our notation, we will use D to refer to the decoder (Section 5), and L to refer to the
expectation over any arbitrary loss function or distortion measure (e.g., MSE or Hamming
distance). The rate-distortion function is ([39], chapter 10):

R(L) = min
q(z|x):Lq(x,z)≤L

I(X; Z) (10)

where q is the optimal encoding distribution over Z that satisfies the expected distortion
constraint and the rate R is an upper bound on the mutual information

R ≥ I(X; Z) (11)

which follows from the data processing inequality. The measure of distortion L is arbitrary
and will depend on the actual task to which the lossily compressed information will be put.

The goal in lossy compression is to minimize the rate R without exceeding a given
expected distortion L. For our case study of multimodal affordances, each encoder can
only send a maximum of L different signals such that RL < H(O). This is, of course,
precisely what happens in brains, where the information present, e.g., at the retina, cannot
be losslessly reconstructed from the activity of any downstream neural population. Under
such constraint, a perfect estimate Â of the multimodal affordance A becomes unachievable;
that is, L(A, Â) > 0. It is now clear why our multimodal perception scenario can be seen as
a rate-distortion problem. Even though we are not explicitly computing the rate-distortion
function in our experiments, we approximate it algorithmically by minimizing the expected
distortion of the affordance estimates given a fixed transmission rate at the encoders (see
Section 5.3).

Importantly, while the rate-distortion function is an optimal way to quantify the
amount of compression given some distortion constraint, it does not provide any insight
into the specific algorithmic implementation to achieve such optimal compression. For this
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reason, we not only quantify the amount of information transmitted but also examine how
these resources are utilized, by calculating the spatial entropy of signals (see Section 4.5).

4.5. Spatial Entropy

In our model, signals are distributed both probabilistically and spatially. Due to
the constraints mentioned above, each encoder has fewer available signals than there are
possible energy array states, which forces them to subsume sets of states under single
sensory estimates. The spatial distribution of the signals provides insight into which states
of the energy array are being represented as which states. To measure this, we use spatial
entropy, as characterized in [40], to account for this spatial information:

HCl(X) = −
n

∑
i=1

di p(xi) log p(xi) (12)

Here di is the average Euclidean distance between signal xi and all other signals. By
doing this, we can weight the entropy definition in Equation (3) using the average distance
between each sensory signal in the encoding space. Intuitively, for a given distribution
over signals, the more spatially spread they are (i.e., the higher d is), the higher the spatial
entropy. Higher spread among signals suggests that the encoder is giving a fuller picture
of the energy array. Conversely, the more densely packed signals in the encoding space are,
the fewer spatially distinct aspects of the energy array are being captured.

5. Methods

5.1. Model Description

This is how we model global arrays: we express an “affordance landscape” as a 2-
dimensional, m× n matrix A, where each dimension corresponds to one ambient energy
array (we will also call these dimensions basic properties in what follows). We can think
of these dimensions as the model equivalents to, respectively, ambient light and ambient
sound, for example. The first dimension (energy array) has m possible states; the second
one, n possible states.

Sensory observations, OB ∈ Rm and OC ∈ Rn, record the possible values each energy
array can take, such that OB = [oB

1 , oB
2 , . . . , oB

m] and OC = [oC
1 , oC

2 , . . . , oC
n ]. We define an

affordance matrix A ∈ Rm×n as follows:

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤⎥⎥⎥⎥⎥⎦ (13)

where each entry abc gives the value of the target affordance when the two ambient energy
arrays are observed to be in state oB

b , and oC
c , respectively.

Modality-specific encoders EB : oB
b 
→ zB

i and EC : oC
c 
→ zC

j receive these observations,

oB
b and oC

c , respectively, and map them to encoded signals, zB
i and zC

j , respectively, that

are sent downstream to a decoder D : (zB
i , zC

j ) 
→ âbc, that generates an estimate âbc of

the current affordance value abc. A, O, Z, and Â are random variables, while E and D are
functions. The communication pipeline for a 1-dimensional affordance specified by OB is
assumed to form the following Markov chain

A
f
−−→ OB EB
−−−→ ZB D
−−−→ Â (14)

where each component is only conditionally dependent on the previous one. The end goal
of the system is to transmit just as much mutual information I(A; Â) as needed to generate
faithful enough estimates â of the target affordance value a.
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Encoders are not directly causally sensible to the affordance, but only through the basic
properties that co-specify the affordance. Whatever we take “direct perception” to imply,
it has to be compatible with this fact. Still, the property of interest for the agent is the
affordance value: it is with this property that it has to engage in order to generate adaptive
behavior. That is to say, the agent’s goal (as ecological psychologists and embodied cognitive
scientists rightly point out) is not to reconstruct sensory stimuli (i.e., basic properties), but to
minimize their uncertainty about the current value of the affordance.

Once each encoder sends the signals downstream, the decoder’s job is to generate
a faithful estimate of the property of interest. We assume that the codebook is shared
by the encoder and decoder, so the decoder knows the inverse mapping from encoded
signals back to sensory observations and therefore can reconstruct the optimal expected
affordance value given that information. To evaluate the “goodness" of those estimates,
we use the Mean Squared Error (MSE) between A and Â as a distortion measure L of the
generated estimates:

LMSE(A, Â) =
1
|O| ∑

bc∈O
(abc − âbc)

2 where O = [(oB
b , oC

c ) | b ∈ OB, c ∈ OC] (15)

which computes the squared distance between each estimate and the actual affordance
value. We define each decoder’s estimate âbc as the expected affordance value correspond-
ing to the observations encoded under the same signal:

D(zB
i , zC

j ) = âbc =
1
|O| ∑

bc∈O
abc where O = [(oB

b , oC
c ) | b ∈ E−1

B (zB
i ), c ∈ E−1

C (zC
j )] (16)

where zB
i and zC

j are the ith and jth signals encoding observations oB
b and oC

c , respectively,

via the mappings EB(oB
b ) and EC(oC

c ). The above expression estimates each affordance
value by taking the expectation over all affordance values that correspond to each pair
of observations encoded in each modality. We use O to refer to the set of pairs of the
Cartesian product between the observations obtained through the inverse mapping of
the encoders. As a crucial part of this work is to understand whether the perception
of multimodal affordances entails any intermediate processing of the energy arrays, we
also measure whether the whole system is keeping track of sensory observations. In
particular, we compute the sensory estimates that the decoder can generate via the encoder’s
inverse mapping:

ôB
b =

1
|O| ∑

o∈O
o where O = [oB

b | b ∈ E−1
B (zB

i )] (17)

where, similarly as before, zB
i ∈ ZB is the ith signal that encodes the sensory observation

oB
b . This expression computes each sensory estimate by averaging over all observations OB

that are mapped onto the same signal zB
i .

5.2. Encoding Strategies

We investigate two different encoding strategies. First, we evaluate the direct encoding
strategy, which tries to maximize information about the property of interest (i.e., the
affordance value). In this strategy, each encoder generates a mapping such that the content
of the signals directly maximizes affordance information. Since each encoder is only
sensitive to one dimension of the affordance matrix, the best they can do is to transmit as
much information about the expected affordance value of the dimension they are causally
sensitive to. Formally, the expected affordance value corresponding to dimension B (and,
mutatis mutandis, C) can be defined as

AB = Ec[abc] ∀b ∈ OB (18)
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Given this, the direct encoding strategy can be formalized as follows:

arg max
ZB

I(AB; ÂB) (19)

In particular, each one-dimensional affordance estimate can be obtained by

ÂB
b = D

(
EB(oB

b )
)
=

1
|O| ∑

o∈O
Ec[aoc] where O = [oB

b | b ∈ E−1
B (zB

i )] (20)

We intend for this strategy to be a formalization of the direct perception claim that
affordance-related information can be simply picked up from the energy array. Our two
direct encoders do just that: simply pick up as much affordance-related information from
their proprietary arrays as they can. For our toy example, we directly compute I(AB; ÂB).
However, we observe that in a more complex scenario, the spatial distribution of the signals
is key to determining the usefulness of the encoding strategy (see Section 4.5), which we
address below. Thus, to provide a simple measure for Equation (19), we approximate this
quantity through LMSE(AB, ÂB) as follows:

I(AB; ÂB) = H(AB)− H(AB|ÂB) (21)

= H(AB) +Ep[p(aB|âB)] (22)

≥ H(AB) +Ep[q(aB|âB)] (23)

≈ −LMSE(AB, ÂB) (24)

where we choose a Gaussian distribution q as an approximation to the true distribution p.
As H(AB) is a constant (i.e., the affordance matrix does not change), maximizing mutual
information amounts to minimizing the mean-squared error.

In contrast to direct encoding, we examine an indirect encoding strategy that merely
aims at supplying the decoder with the signals that will allow the decoder to come up with
the best possible reconstruction of affordance value. In this strategy, encoders do not
make any assumptions as to whether this requires them to squeeze as much affordance-
related information as possible or not. The main question to analyze is how much sensory
information signals carry when encoders follow this strategy. In particular, we want to
understand to what extent information in the signals depends on

arg max
ZB

I(OB; ÔB) (25)

which would imply that indirect encoders end up prioritizing the transmission of infor-
mation about sensory data. If that is the case, then the perception of affordance-related
information would be mediated by the integration of the sensory signals of each modality,
and therefore, indirect. Similarly to ÂB, each sensory estimate in ÔB can be computed
using Equation (17). We approximate Equation (25) using the mean-squared error, as
performed before, and the spatial entropy. The justification for using the mean-squared
error is equivalent to the one provided before. Regarding the spatial entropy, we use it to
examine how the spatial distribution of signals contributes to minimizing LMSE(OB, ÔB).
As mutual information is symmetric, we follow the other direction to obtain the entropy of
the sensory estimates:

I(OB; ÔB) = H(ÔB)− H(ÔB|OB)︸ ︷︷ ︸
= 0

(26)

= H(ÔB) (27)

where the last term in the right-hand side of Equation (26) arises from using a deterministic
encoder. Then, we simply replace H(ÔB) by its spatial entropy counterpart HCl(ÔB)
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defined in Section 4.5. Using spatial entropy can provide a deeper understanding of
how the spatial distribution of signals contributes to achieving (near) optimal encoding
strategies, beyond just considering the probability distribution of signals.

For the sake of simplicity, throughout the whole model description and further experi-
ments, we assume that (i) all random variables are discrete; (ii) both OB and OC are uni-
formly distributed; and, (iii) the distribution of the other random variables (O, Ô, Z, A, Â)
is given by the frequency of its values.

5.3. Encoder Optimization

In our experiments, we run a simple optimization algorithm to approximate optimal
encoder strategies. Suppose we have two encoders, each of which has a repertoire of n
possible signals. The pseudocode for this optimization is given in Algorithm 1. As for
the “relevant MSE” in line 14 of Algorithm 1: in the direct perception scenario we use
MSE_DIRECT: each encoder is individually optimized to minimize their MSE; while in the
indirect case, we use MSE_INDIRECT: we find the pair of encoders that jointly minimize it.

Algorithm 1 Encoder Optimization

1: b ← dimension of OB energy array
2: c ← dimension of OC energy array
3: m ← number of signals available for the EB encoder
4: n ← number of signals available for the EC encoder
5: A ← b× c matrix � affordance landscape
6: Ab ← a vector with the means of A rows � affordance landscape as seen by the EB encoder
7: Ac ← a vector with the means of A columns � affordance landscape as seen by the EC encoder
8: RUNS← how many different random starting points
9: LENGTHOFRUN← how many optimization steps

10: for RUNS times do
11: ENC1 ← random vector of integers from 1 to m, of size b
12: ENC2 ← random vector of integers from 1 to n, of size c � Random initialization of the two encoders
13: for LENGTHOFRUN times do
14: Compute the relevant MSEs (see explanation in main text).
15: For each encoder: randomly modify the signal to which one particular (also random) observation

is mapped. If the resulting MSE is lower than the one calculated above, keep the new encoder; otherwise,
discard it.

16: end for
17: end for
18: Keep the encoders with the lowest MSE

19: function MSE_DIRECT(encoder)
20: decoder← all zeros vector with size <number of signals available at the encoder>
21: Â ← all zeros vector with size <length of encoder (i.e., number of observations)>
22: MSE s← all zeros vector with size <length of encoder (i.e., number of observations)>
23: for i ← 1 to number of signals available at the encoder do
24: decoder[i]← the mean of all observations (from 1 to length of encoder) that the encoder maps onto

signal i
25: end for
26: for i ← 1 to length of encoder do

27: Â[i]← decoder[encoder[i]] � what the decoder produces given the signal
28: MSEs[i]← (A[i]− Â[i])2

29: end for
30: Return the mean of MSEs
31: end function

32: function MSE_INDIRECT(encoder1, encoder2)
33: Â ← all zeros matrix with dimensions equal to affordance map A
34: decoder← all zeros matrix with dimensions < m× n > � the decoded value given a pair of signals
35: MSEs ← an all zeros matrix with dimensions equal to affordance map A
36: for i ← 1 to m do
37: for j ← 1 to n do
38: decoder[i, j]← the mean of all observations that the encoders maps onto signals i and j respectively
39: end for
40: end for
41: for i ← 1 to b do
42: for j ← 1 to c do
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Algorithm 1 Cont.

43: Â[i]← decoder[encoder1[i],encoder2[j]] � what the decoder produces given the signals
44: MSEs[i]← (A[i]− Â[i])2

45: end for
46: end for
47: Return the mean of MSEs
48: end function

While there is no guarantee that this algorithm will find the optimal encoders, first, in
our tests it consistently lands on encoders that are optimal or close to optimal; and, second,
it is the same procedure for all tests so results for different strategies are (barring some
unexpected bias) fully comparable.

It is not always easy to reconstruct an algorithm from this kind of pseudocode. The
fully explicit code is available on the following Github repository: https://github.com/
MigueldeLlanza/SynergisticPerception (accessed on 3 May 2024).

5.4. Information-Theoretic Measures

We rely on the BROJA measure from the dit python package [41] to compute the syn-
ergistic measure defined in Equation (5). Similarly, we adapt the code from the Spatentropy
R package [42] to measure the spatial entropy measure defined by Equation (12).

5.5. Data

We first evaluate the direct-perception claim with a toy example using a synthetic
4× 4 affordance matrix that exhibits synergistic properties. This simple scenario is useful
to examine in detail how information is processed in each encoding strategy. Then, we
further investigate the direct perception claim using realistic images from the CIFAR-100
dataset [43]. We chose the “people” superclass of CIFAR-100 as the data source due to its
simplicity compared to other classes. When solving Equation (5), each unique RGB pixel
value in the range [0, 255] is treated as a different value of the random variable A. For this
reason, calculating the synergy becomes computationally intractable. To overcome these
computational demands we transform each image to grayscale and reduce the number of
unique pixel values to 5 using K-means clustering. Here we assume the following tradeoff:
calculating the synergy becomes tractable at the expense of reducing the image quality. The
goal in this second scenario is to explore information processing in a context with plausible
sensory inputs (visual in this case). To make an artificial multimodal setup, we consider
each dimension of an image as a different energy array that causally affects each encoder
independently. That is to say, we interpret each image as a 2-dimensional affordance
matrix, where each pixel value (i.e., affordance value) is assumed to be co-defined by the
instantiation of each energy array. For example, the top-right pixel value of an m× n image
is co-defined by the first value of the first energy array (i.e., row 0) and the last value of the
second energy array (i.e., column n).

6. Results

6.1. Toy Example

In this section, we first analyze a toy model of a cognitively bounded agent whose
goal is to perceive a multimodal affordance. In this setup, the maximum achievable rate
is less than the entropy of the receptor fields, so the encoders cannot account for all the
variability in the input, which makes it a rate-distortion problem. In addition, each encoder
is only sensitive to one dimension of the affordance matrix, corresponding to the one basic
property it is causally sensitive to. Following the previous description, for a A ∈ Rm×n,
and a set of observations OB, the dimensionality of the encoded signals will be ZB ∈ Rm:

ZB = [EB(oB
1 ), EB(oB

2 ), . . . , EB(oB
m)] (28)
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where the set of signals for a specific energy array (OB in this case) is a vector of encoded
observations. If we think of the energy array OB as color, then an instantiation of that
random variable oB

1 could be read as color red (i.e., B = color and 1 = red). As the
constrained encoder cannot send a different signal per color, some colors will be subsumed
under the same signal following a many-to-one mapping. In this scenario, the decoder has to
deal with some uncertainty about what sensory observations caused the received encoded
signals, so we assume that the decoding process relies on the expected affordance value
corresponding to all the observations mapped onto the same signal.

Finally on to our toy example. Assume the following 4× 4 affordance matrix A

OB
OC

1 2 3 4

1 0 0 1 1
2 0 0 2 1
3 1 2 0 0
4 1 1 0 0

(29)

that depends on two energy arrays OB = [1, 2, 3, 4] and OC = [1, 2, 3, 4] that we can think of
as, e.g., color and loudness. Assuming a channel capacity of 1 bit, each encoder can only
send two signals (0 and 1). As mentioned before, each encoder is sensitive to the expected
affordance value per dimension: AB

b = Ec[abc] and AC
c = Eb[abc], respectively. For example,

the expected affordance values corresponding to dimension B are:

AB
1 = Ec[a1c] =

1
4
[0 + 0 + 1 + 1] = 0.5 (30)

AB
2 =

1
4
[0 + 0 + 2 + 1] = 0.75 (31)

AB
3 =

1
4
[1 + 2 + 0 + 0] = 0.75 (32)

AB
4 =

1
4
[1 + 1 + 0 + 0] = 0.5 (33)

Each encoder alone could potentially discriminate two different expected affordance
values, 0.5 and 0.75. Similarly, each encoder is only able to discriminate between two
different energy array states (i.e., two different colors or two different sound levels), as it
can transmit 1 bit of information.

6.1.1. Direct Encoding

Under this strategy, each encoder sends signals that maximize affordance information.
In this example, EB and EC generate the following mappings:

EB(oB
b ) =

⎧⎨⎩ 0, if oB
b ∈ {1, 4}

1, if oB
b ∈ {2, 3}

⎫⎬⎭ (34)

EC(oC
c ) =

{
0, if oC

c ∈ {1, 4}
1, if oC

c ∈ {2, 3}

}
(35)

For example, if the affordance value a13 is the case, then oB
1 (e.g., red color) and oC

3
(e.g., loud sound), and the encoded signals will be ZB = 0 and ZC = 1. Here, each encoder
is trying to maximize affordance information given the receptive field it is sensitive to. For
instance, subsuming energy array states 2 and 3 under the same signal can be understood
as attributing high affordance value to those states, and low affordance value to the pair of
values 1 and 4. This is an intuitive strategy to follow, as each encoder is trying to provide
as much relevant information as possible on its own.
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As shown before, given a pair of signals, the best the decoder can do is to apply
Equation (16) to compute the expectation of the affordance value corresponding to the
sensory observations mapped onto those signals. In the current example, the decoded
expected affordance â13 is:

D(ZB = 0, ZC = 1) =
1
4
[a12 + a13 + a42 + a43] (36)

=
1
4
[0 + 1 + 1 + 0] =

2
4
= 0.5 (37)

Following the same procedure for all affordance values and corresponding sensory
observations, we end up with the following estimate Â of the affordance matrix:

OB
OC

1 2 3 4

1 0.5 0.5 0.5 0.5
2 0.5 1 1 0.5
3 0.5 1 1 0.5
4 0.5 0.5 0.5 0.5

(38)

whose expected distortion can be evaluated by computing Equation (15):

LMSE(A, Â) = 0.44 (39)

Here, the strategy of the encoders is to maximize affordance information as each signal
maximizes the expected affordance value along its basic property dimension. In particular,
the expected affordance value is higher when the basic property value is either 2 or 3, and
lower when it is 1 or 4. Computing Equation (17) for all possible OB, we have the following
expected decoder’s receptive field estimate:

OB 1 2 3 4
ZB 0 1 1 0
ÔB 2.5 2.5 2.5 2.5

(40)

so when OB ∈ {2, 3}, it entails a high affordance value and the opposite when OB ∈ {1, 4}.
The same holds for OC (as the affordance matrix in this toy example is symmetric, all the
results shown for the energy array B hold for C). Interestingly, maximizing affordance
information is at odds with conveying information about the basic property. All sensory
information is destroyed by this encoding strategy since the decoder collapses all possible
sensory states into the same estimate 2.5; that is, no matter what signals are sent down-
stream, the best the decoder can do is to map them onto the same value, thus destroying all
the information in the receptive fields. This type of encoder is the one we call direct, as it
does not at all keep track of the sensory stimuli it is sensitive to:

I(OB; ÔB) = H(OB)− H(OB|ÔB) (41)

= H(OB)− H(OB) = 0 (42)

but, instead, tries to capture as much information as possible about the property of interest
A:

AB 0.5 0.75 0.75 0.5
ÂB 0.5 0.75 0.75 0.5

(43)

leading to I(AB; ÂB) = 1. (Note that p(OB, ÔB) = p(OB) because the encoder is determin-
istic: p(OB, ÔB) = p(ÔB|OB)p(OB) = p(OB)).
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6.1.2. Indirect Encoding

Can we do better with the same resources? The answer is yes. We now examine
whether Equation (25) is needed to capture the synergistic interactions in the system. In
this example, a synergistic strategy is achieved by the following mappings:

EB(oB
b ) =

⎧⎨⎩ 0, if oB
b ∈ {1, 2}

1, if oB
b ∈ {3, 4}

⎫⎬⎭ (44)

EC(oC
c ) =

{
0, if oC

c ∈ {1, 2}
1, if oC

c ∈ {3, 4}

}
(45)

Following the same steps as in the direct encoding, the expected affordance estimate is
(see Figure 2, which shows the raw affordance matrix along with the corresponding direct
and synergistic estimates)

OB
OC

1 2 3 4

1 0 0 1.25 1.25
2 0 0 1.25 1.25
3 1.25 1.25 0 0
4 1.25 1.25 0 0

(46)

which leads to a better-expected distortion compared to the direct strategy:

LMSE(A, Â) = 0.09 (47)

How much receptive field information is transmitted in this scenario? Again, using
Equation (17) the decoder’s estimate of the receptive field inputs given the received encoded
signals is:

OB 1 2 3 4
ZB 0 0 1 1
ÔB 1.5 1.5 3.5 3.5

(48)

As can be seen, all the information about the sensory states that can be captured with
a 1-bit encoder is preserved

I(OB; ÔB) = H(OB)− H(OB|ÔB) (49)

= 2− 1 = 1 (50)

as there is 1 bit of information transmitted through the whole communication pipeline.
In particular, the decoder’s receptive field estimate is 1.5 when OB ∈ {1, 2}, and 3.5
otherwise. In this scenario, the encoded signals can be interpreted as carrying information
about the receptive fields rather than directly about the affordance value. Importantly, this
strategy leads to an efficient use of the available resources, as the system transmits at its
maximum capacity, which is a 1 bit rate (i.e., sending either a 0 or 1, which is then translated
by the decoder as 1.5 or 3.5). Symmetrically, no affordance information is stored in any of
the encoders alone:

AB 0.5 0.75 0.75 0.5
ÂB 0.625 0.625 0.625 0.625

(51)

as I(AB; ÂB) = 0. This is why indirect encoding works better: as the information of the
affordance value is carried synergistically by the two energy arrays, it pays off to relay an
estimate of those very arrays so that the downstream decoder can then reconstruct these
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synergistic components. If each encoder tries to maximize affordance-related information
directly, “going it alone”, the synergistic components will not be transmitted, and the
decoder will not be able to exploit them. Table 2 summarizes the results shown for each
strategy in the toy example.

Table 2. Results of the two encoding strategies for affordance reconstruction, synergistic information,
sensory state information, and uni-dimensional affordance information.

Strategy LMSE(A, Â) Isyn({ZB , ZC}; A) I(OB ; ÔB) I(OC ; ÔC) I(AB ; ÂB) I(AC ; ÂC)

Direct 0.44 0.25 0 0 1 1
Indirect 0.09 1 1 1 0 0

(a) (b) (c)
Figure 2. Affordance estimates of the toy model. (a) Affordance matrix. (b) Indirect estimate.
(c) Direct estimate.

(Note that one could swap entries a42 and a23 of Equation (29) to create an affor-
dance matrix with synergistic information, where both strategies would result in the same
affordance estimate).

This toy model is, of course, constructed precisely to show clearly what we want it to
show. In the next section we make the same point, but now relying on statistically natural
stimuli.acces

6.2. CIFAR-100

After showing the behavior of each encoding strategy in a toy model, we now show the
results using CIFAR-100 data as affordance landscapes. To evaluate the direct perception
of synergistic affordances, we examine how sensory information is related to affordance
information under each encoding–decoding strategy (i.e., direct and indirect). In Figure 3,
we show the results for the case in which the maximum capacity is constrained to 3 bits
per encoder. (We stick to 3 bits due to the computational costs of solving Equation 5). That
is, each encoder can only encode 8 dimensions (using 23 signals) out of the 32 possible
they are causally sensitive to (CIFAR-100 images have a 32× 32 dimension). In particular,
each energy array is defined as OB = [0, 1, . . . , 31] (sensible to the image rows; i.e., hori-
zontal information) and OC = [0, 1, . . . , 31] (sensible to the image columns, i.e., vertical
information).

We show the following results grouped by strategy for each encoder dimension: (i) Fig-
ure 3a shows the correlation between sensory estimates (“MSE sensory estimates”) and
sensory spatial entropy; (ii) Figure 3b shows the correlation between sensory estimates and
synergistic information; (iii) Figure 3c shows the correlation between sensory estimates and
estimates of each dimension of the affordance; (iv) Figure 3d illustrates how affordance esti-
mates (“MSE Affordance Estimate”) are correlated with sensory estimates; and (v) Figure 3e
shows the correlation between affordance estimates and synergistic information.
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(a)

(b)

(c)

(d)
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(e)
Figure 3. Results for different metrics for both the direct and the indirect encoding strategies when
the capacity constraint is set to 8 signals per encoder; that is, each encoder can, at most, encode 8 out
of 32 dimensions of the input. In (a–d), the left plot corresponds to the results obtained for encoder
B, while the right plots correspond to the results for encoder C. In each plot, we show the results
per data point (i.e., CIFAR-100 images) and the mean corresponds to the point of the means of each
dimension. (a) Sensory accuracy as a function of spatial entropy. (b) Sensory accuracy as a function
of synergistic information. (c) Sensory accuracy as a function of uni-dimensional affordance accuracy.
(d) Affordance accuracy as a function of sensory accuracy. (e) Affordance accuracy as a function of
synergistic information.

The main source of evidence supporting the claim that the direct perception of multi-
modal synergistic affordances is suboptimal can be found in Figure 3e. There it is shown
how minimizing affordance distortion is achieved by maximizing the synergistic informa-
tion (i.e., Isyn({ZB, ZC}; A)) present in the affordance matrix, thus supporting the claim
that synergy makes direct perception inefficient. In the same line, Figure 3d shows how indi-
rect encoders (red dots) manage to significantly minimize the expected distortion of the
affordance value by minimizing the expected distortion of the sensory observations. This
suggests that, at least in some contexts, a near-optimal encoding strategy has to keep track of
sensory observations to improve the estimates of the property of interest.

What kind of information does each encoding strategy aim to maximize? Figure 3c
shows a trade-off between sensory and affordance information: maximizing one quantity
(Equation (21)) is at the expense of minimizing the other (Equation (17)), in line with
Section 5.2. Encoders following the direct strategy seem to individually maximize affor-
dance information to the detriment of discarding sensory information, while the ones
following the indirect strategy behave oppositely.

Figure 3a shows how encoders that minimize the sensory distortion maximize their
spatial entropy to account for as much variability about the sensory observations as possible.
Thus, examining the spatial distribution of signals is necessary to account for the encoding
behavior. All this is consistent with the efficient coding claim that neurons are tuned to the
statistical properties of their sensory input by maximizing their information capacity (i.e.,
entropy) [44,45], which in this case is captured by their spatial entropy. As can be seen, in
Figure 4, indirect encoders create a more spread encoding of the signals compared to the
direct strategy. Note that the strategy found by the algorithm can sometimes have some
degree of redundancy. This happens when information conveyed by more than one signal
is collapsed onto the same dimension of the sensory observation. In the direct strategy
shown in Figure 4, I(O; Ô) < 3, since less than 8 dimensions of the sensory dimensions are
being captured. Therefore, spatial entropy sheds some light on how the encoders have to
map the inputs onto signals to convey the relevant information downstream.

Next, we explore whether the relation between sensory and affordance distortion
is related to the synergistic nature of the affordance matrix. In Figure 3b, we see how
the synergistic information is tightly related to sensory distortion. In particular, indirect
encoders capture sensory information by increasing the synergistic information they carry
about the affordance matrix, compared to the direct ones.
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Note that in Figure 3a–d, the difference between each strategy is greater between
encoders C (figures on the right). This is mainly due to the structure of the data. Encoders
C are sensible to the vertical dimension of CIFAR-100 data, which is more likely to contain
most of its pixel variability in fewer dimensions. For instance, an image of a standing
person has its main vertical variance along the pixel columns where the person is standing.
However, the horizontal dimension of that same image contains variability in a wider range
of pixel rows. A direct strategy will use most of its information capacity to capture high-
density regions of affordance-related information, at the expense of missing sensory-related
information, which leads to an encoding that is highly penalized in synergistic contexts.

In addition, we also computed the p-values to evaluate the statistical significance
of the results shown in each of the subplots in Figure 3. For example, we computed the
p-value to evaluate the statistical significance of the synergistic strategy over the direct one
regarding the “MSE Sensory Estimate” results. For all measures, the results of the indirect
encoding–decoding pair were statistically significant compared to the direct behavior
(p � 0.05).

These results suggest that the perception of synergistic multimodal affordances heavily
relies on keeping track of sensory information, which is needed to capture as much synergis-
tic information as possible. Direct strategies cannot capture synergistic interactions because
most of the sensory information is destroyed by the encoders, leading to inefficiency. Thus,
optimal multimodal perception of synergistic affordances cannot be direct; it requires a
modicum of computation to properly combine different streams of information.

Figure 4. Encoded signals of a CIFAR-100 image used as an affordance landscape (left) and the
resulting estimates (right) per each encoding–decoding strategy: direct (top) and indirect (bottom).
As can be seen, the indirect encoded signals are more spread out across their possible states (32 di-
mensions) and have higher entropy (i.e., closer to a uniform distribution) than the direct encoding.
Thus, indirect encodings exhibit a higher spatial entropy.

7. Discussion

7.1. Direct Perception and Synergistic Information in Nature

In this work, we have shown how direct perception of synergistic multimodal af-
fordances results in an inefficient pickup of affordance-related information. One could
retort that, even if somewhat inefficient, direct perception might still, as a matter of fact,
be the prevalent perceptual mechanism underlying adaptive behavior and that, therefore,
perception is not mediated by any computational process. While we agree that direct
perception might be all there is in certain contexts, there is wide evidence of synergistic
multimodal affordances in nature and cognition. For example, [46] provides some evidence
that woodboring insects synergistically integrate multimodal cues during host selection.
They suggest that these insects synergistically combine both visual and olfactory cues when
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making host-selection decisions. Another example of multimodal perception can be found
in [47]. In their research, they study how rats categorize the orientation of grids (horizontal
or vertical) when they rely on either visual, tactile, or visual-tactile information. They
show that visual-tactile information is synergistically combined, which results in better
performance when categorizing the orientation of the grids. According to our model and
results presented above, to properly perceive these synergistic multimodal cues, some
degree of inner processing or computation is needed: at least to that extent, perception
is indirect.

7.2. Direct Perception and the Global Array

What about the possibility, rehearsed above, of directly perceiving the global array
in its entirety? We have shown how the global array contains synergistic information that
depends on energy arrays that have to be combined through some computations. Could
there be a mechanism that allows the direct perception of the global array, without relying
on energy-array specific information? At least in some important cases, neurophysiology
prevents this—sensory surfaces are quite simply not in physical contact. This is all we are
assuming in our model. For one prominent example, the organ of Corti connects to the
cortex via the auditory nerve; and the retina connects to the cortex via the optical nerve.
Any informational combination of these two sensory inputs has to happen after information
is relayed through those two, plausibly not fully lossless, nerves. Of course, there is ample
evidence that brains integrate information from different sensory modalities in order to
guide behavior [48–51]; and, as an anonymous reviewer has reminded us, this combination
can happen as soon as V1 (e.g., [52]). This suggests that cognitive systems generate a
single percept by combining incoming signals from each modality in some downstream
region [53]. This combination of, first, lossy transmission of sensory information and, then,
downstream combination of this information, is what we aim at capturing with our model.

7.3. Real Multimodal Data to Study Information Interaction

In this study, we have not used real multimodal data, but interpreted CIFAR-100
images “multimodally”, by considering vertical and horizontal informations indepen-
dently. For subsequent work, we expect to run similar models on naturalistic, bona-fide
multimodal data.
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Abstract: The concept of emergence, or synergy in its simplest form, is widely used but lacks a
rigorous definition. Our work connects information and set theory to uncover the mathematical
nature of synergy as the failure of distributivity. For the trivial case of discrete random variables, we
explore whether and how it is possible to get more information out of lesser parts. The approach
is inspired by the role of set theory as the fundamental description of part–whole relations. If
taken unaltered, synergistic behavior is forbidden by the set-theoretic axioms. However, random
variables are not a perfect analogy of sets: we formalize the distinction, highlighting a single broken
axiom—union/intersection distributivity. Nevertheless, it remains possible to describe information
using Venn-type diagrams. The proposed multivariate theory resolves the persistent self-contradiction
of partial information decomposition and reinstates it as a primary route toward a rigorous definition
of emergence. Our results suggest that non-distributive variants of set theory may be used to describe
emergent physical systems.

Keywords: emergence; information diagrams; decomposition

1. Introduction

Reductionism is a standard scientific approach in which a system is studied by break-
ing it into smaller parts. However, some of the most interesting phenomena in physics and
biology appear to resist such disentanglement. In these cases, complexity emerges from
intricate interactions between many predominantly simple components [1]. Such synergic
systems are typically described as “a whole that is greater than the sum of its parts”. To
pour quantitative meaning into this equation-like definition, it is natural to borrow tools
from the mathematical theory that describes part–whole relationships, namely set theory.
Unfortunately, for finite sets, a simple Venn diagram suffices to demonstrate that the size of
the whole (A ∪ B) can never exceed the sum of the sizes of its parts (A and B):

|A ∪ B| = |A|+ |B| − |A ∩ B| ≤ |A|+ |B| (1)

In fact, the trivial interaction, A ∩ B, between the two parts of the system decreases
the size of the whole rather than increasing it.

To allow for more intricate interactions, one can turn to the realm of random variables.
It is well known that measuring the outcome of two random variables can provide more
information than the sum of what is obtained when measuring each separately. Moreover,
the textbook description of the interactions between random variables often involves
set-theoretical-like Venn diagrams [2]. These two facts lead to the intriguing possibility
that random variables may lend themselves to a mathematical description of non-trivial
whole–part relationships.

Take two discrete variables W and Z: the information W contains about Z is deter-
mined by the mutual information function I(W; Z) [3]. Cases for which W can be presented
as a joint random variable W = (X, Y) allow us to compare the whole against its parts:

I((X, Y); Z) � I(X; Z) + I(Y; Z) (2)

Entropy 2024, 26, 916. https://doi.org/10.3390/e26110916 https://www.mdpi.com/journal/entropy210



Entropy 2024, 26, 916

In other words, looking at both system parts together can convey either more or
less information than their added values. Therefore, and in contrast to Equation (1), this
formalism can be used to describe synergy.

In their seminal paper [4], Williams and Beer proposed the framework of partial
information decomposition as a way of assessing the underlying structure of a two discrete
random variable system and quantifying the amount of synergy between its parts. They
suggested that, much like a set of elements, each variable can be decomposed into separate
information “subsets”. These information atoms are assumed to have non-negative size and
represent the information that is shared between two variables (R), uniquely present in
only one of them (UX , UY):

I(X; Z) = R + UX ,
I(Y; Z) = R + UY,
I((X, Y); Z) = R + UX + UY + S,
R, UX , UY, S ≥ 0 (3)

See Figure 1 for clarification. An additional synergy term (S) was artificially introduced
to provide a simple mechanism that allows the whole to be greater than the sum of its parts:

I((X, Y); Z)− I(X; Z)− I(Y; Z) = S− R > 0 iff S > R (4)

Figure 1. This diagram illustrates how information in two variables X, Y about a third variable
Z can be decomposed into different information atoms. The amount of such information in X, Y
and joint variable (X, Y) is measured using the mutual information I(X; Z), I(Y; Z), and I((X, Y); Z)
correspondingly. Redundant information R is information that is shared between X and Y such that
knowing one of them suffices in deducing this information about Z. Unique information UX is found
only in X, UY—only in Y. The synergistic information S that X and Y hold about Z is only contained
in the joint variable, but not individual sources on their own.

A series of papers [5–7] focused on calculating these atoms’ sizes by fixing the single
remaining degree of freedom in Equation (3). No consensus has yet been reached regarding
a single physical solution. Meanwhile, the field of applications is getting wider [8,9]. Recent
works extend the theory to continuous variables [10,11], introduce causality [12,13], and
consider quantum information [14].

Unfortunately, partial information decomposition has a significant drawback that puts
the whole approach into question: no extension beyond two variables is possible without a
fundamental self-contradiction [15]. Some authors attempted to resolve this by abandoning
the basic properties required of information atoms, including their non-negativity [16,17].

In what follows, we reconsider the foundations of partial information decomposition
and pinpoint the source of its long-standing self-contradictions. To do this, we follow
H. K. Ting [18] to establish a rigorous relation between information and set theories and
highlight a fundamental distinction between them: random variables, unlike sets, do
not adhere to the union/intersection distributivity axiom [19]. This leads us to study a
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distributivity-free variant of set theory as a possible self-consistent theory of information
atoms. Within this framework, we demonstrate that the presence of synergistic properties
is a direct consequence of the broken axiom. In the case of N = 3 random variables,
we show that the amount of synergistic information precisely coincides with the extent
to which distributivity is breached. The acquired understanding allows us to resolve
the contradictions and suggest a coherent multivariate theory, which may provide the
foundations for quantifying emergence in large systems.

2. Set-Theoretic Approach to Information

In this section, we formalize the distinction between finite sets and discrete random
variables. Clearly, it is linked to the synergistic behavior of the latter. We will first focus
on a special illustrative example: the XOR gate. This system contains neither redundant
nor unique information, which will emphasize the peculiar properties of synergy. A
more general discussion, including arbitrary random variables, will be presented in the
next section.

2.1. Basic Random Variable Operations

Some set-theoretic operations have straightforward extensions to random
variables [18,20,21]. The first of these relies on the similarity between Equations (1) and (2)
and identifies taking the joint variable with the union operator (∪). One can now go on to
define random variable inclusion as:

X ⊆ Y ⇔ ∃Z : X ∪ Z = Y (5)

which is, actually, equivalent to X being a deterministic function of Y.
The inclusion–exclusion formula ([22], Chapter 3.1) applied to two random variables

reveals mutual information as the size of the intersection between two random variables:

H(X ∪Y) = H(X) + H(Y)− I(X; Y), (6)

where Shannon entropy H is regarded as a measure on the random variable space. Indeed,
it complies with many properties required of a mathematical measure ([23], Chapter 1.4):
non-negativity, monotonicity, and subadditivity. Furthermore, entropy is zero only for
deterministic variables, which play the role of an empty set (Appendix A, Lemma A1):

H(X) ≥ 0,
X ⊆ Y ⇒ H(X) ≤ H(Y),

H

(
N⋃

i=1

Xi

)
≤

N

∑
i=1

H(Xi),

H(X) = 0 ⇔ X = ∅ (7)

A rigorous definition of intersection (∩) needs to comply with the inclusion order (5)
X ∩Y ⊆ X, X ∩Y ⊆ Y, in addition to the size constraint. Unfortunately, a random variable
satisfying both conditions does not always exist [24]. Nonetheless, a physically sensible
intersection may be inferred in several cases:

H(X ∪Y) = H(X) + H(Y)⇔ X ∩Y = ∅,
X ⊆ Y ⇔ H(X) = I(X; Y)⇔ X ∩Y = X (8)

These simple parallels between information theory and set theory are enough to study
information decomposition in a random variable XOR gate.
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2.2. The Simplest Synergic System: XOR Gate

Consider three pairwise independent fair coins O1, O2, O3 with an additionally im-
posed higher order interaction–parity rule O3 = O1 ⊕O2. It fixes the value of the third
variable to be 0 whenever the values of O1 and O2 coincide, and 1 otherwise.

Probability O1 O2 O3

1/4 0 0 0
0 0 0 1
0 0 1 0

1/4 0 1 1
0 1 0 0

1/4 1 0 1
1/4 1 1 0

0 1 1 1

One can easily calculate the amount of information O1, O2 and (O1, O2) convey about
O3. The comparison of these contributions shows that the system is indeed synergic:

I(O1; O3) = 0 bit,
I(O2; O3) = 0 bit,
I((O1, O2); O3) = 1 bit,
I((O1, O2); O3) > I(O1; O3) + I(O2; O3) (9)

Moreover, by substituting the above result into the decomposition Equation (3), we
find that the system contains only a single non-zero information atom S = 1 bit. This
allows us to study synergy separately from any other contributions on this example.

2.3. Subdistributivity

When taking a closer look at the XOR gate, our set-theoretic intuition for random vari-
ables breaks down even further. The pairwise independence dictates O2 ∩O3 = O1 ∩O3 = ∅,
while the parity rule makes O3 a deterministic function of the joint variable (O1, O2):

O3 ⊆ (O1 ∪O2)⇒ (O1 ∪O2) ∩O3 = O3 (10)

A simple conclusion from these facts is that the XOR-gate variables do not comply
with the set-theoretic axiom of distributivity:

(O1 ∪O2) ∩O3 = O3 �= ∅ = (O1 ∩O3) ∪ (O2 ∩O3) (11)

Nevertheless, it can be shown that a weaker relation of subdistributivity holds for any
three random variables (Appendix A, Lemma A2):

(X ∪Y) ∩ Z ⊃ (X ∩ Z) ∪ (Y ∩ Z) (12)

Even though it is evident that random variables are quite different from sets, we
argue that some of the logic behind partial information decomposition may be recovered
by extending set-theoretic notions, such as the inclusion–exclusion principle and Venn
diagrams, to non-distributive systems.

2.4. Inclusion–Exclusion Formulas

The inclusion–exclusion formula for the XOR gate can be obtained by repeatedly
applying the two-variable Equation (6) and using that I(X; Y) = H(X ∩ Y) when the
intersection exists:
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H(O1 ∪O2 ∪O3) =
= H(O1 ∪O2) + H(O3)− H((O1 ∪O2) ∩O3) =
= H(O1) + H(O2) + H(O3)− H((O1 ∪O2) ∩O3) (13)

It disagrees with the analogous set-theoretic formula (for non-intersecting sets) only
in the last term, which is non-zero precisely due to the subdistributivity. Note that while
the rest of the terms are symmetric with respect to the permutation of indices, expres-
sion (O1 ∪O2) ∩O3 is not as it explicitly depends on the order of derivation. This essen-
tially leads to three different inclusion–exclusion formulas. Nonetheless, the size of the
distributivity-breaking term remains invariant:

H((O1 ∪O2) ∩O3) = H((O1 ∪O3) ∩O2) = H((O2 ∪O3) ∩O1) (14)

2.5. Construction of Venn-Type Diagram for XOR Gate

The non-uniqueness of inclusion–exclusion formulas complicates the construction of
Venn diagrams. A way of tackling this as well as some further intuition can be traced via
our XOR gate example.

In set theory, Venn diagrams act as graphical representations of the inclusion–exclusion
principle ([22], Chapter 3.1). The inclusion–exclusion formula computes the size of union as
a sum of all possible intersections between the participating sets. For correct bookkeeping,
this is achieved with alternating signs that account for the covering number—the number
of times each intersection is counted as a part of some set. In classical set theory, the
covering number of an intersection is trivially the number of sets which are being inter-
sected. However, (13) includes the distributivity-breaking term, which is absent from this
classical theory and whose covering number is not evident. It appears with a negative sign
which signifies an even-times covered region. In this three variable system, the only even
alternative is a 2-covered region. From another perspective, in each of the three possible
formulas Ok is covered once by itself and one more time by the union Oi ∪Oj (though not
by Oi or Oj individually). As for the size of this region, independent of k, it measures at
1 bit of information. Denoting this area as Πs, we have:

Πs[2] = H((Oi ∪Oj) ∩Ok) = H(Ok) = 1 bit, (15)

where the covering number is indicated in the brackets []. To find the rest of our diagram’s
regions, we borrow two properties of set-theoretic diagrams.

First of all, in a system of N arbitrary random variables X1, . . . XN , the total entropy of
the system is equal to the sum of all diagram regions Πi[ci]:

H(X1, . . . XN) = ∑
i

Πi[ci] (16)

Second, the sum of individual variables’ entropies is equal to the sum of region sizes
times their corresponding covering numbers ci:

H(X1) + H(X2) + · · ·+ H(XN) = ∑
i

ciΠi[ci] (17)

These properties may be viewed as the information conservation law: adding new sources
should either introduce new information or increase the covering of existing regions.

Let us assume that in addition to Πs the diagram of the XOR gate contains several
more regions Πj �=s. To calculate their sizes and coverings we apply (16) and (17):

∑
j �=s

(cj − 1)Πj[cj] = 0 bit (18)
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We use the fact that information is non-negative and discard meaningless empty
regions. The above equation then allows for a single 1-bit region, which is covered once:

Πg[1] = 1 bit (19)

To respect the physical meaning behind the diagram regions as pieces of information,
we demand the structure of the diagram to be well-defined. In other words, despite
the existence of three different versions of inclusion–exclusion formula (13), they are all
assumed to describe the same system. Indeed, our result remains invariant with respect to
index permutations in terms of region sizes and covering numbers.

In regard to the shape of the Venn diagram, this assumption dictates along with (15)
that region Πs corresponds to all variables at the same time:

Πs = H(O1) = H(O2) = H(O3) (20)

One can think of Πs as a 2-covered triple intersection between O1, O2, and O3. This is a
drastic divergence from classical set theory, where an intersection between n sets is covered
exactly n times. As we shall see, without distributivity, n variables can have multiple
intersection regions with different covering numbers 1 ≤ c ≤ n.

Moving on to the second region in this system: Πg appears as a leftover when taking
the difference between the whole system and Πs and by set-theoretic intuition, it does not
intersect with Ok for any k. As such, it is not a part of any single variable.

Finally, we combine all findings into a system of equations, which generates the
Venn-type diagram of the information distribution inside the XOR gate (Figure 2):

Figure 2. A Venn-type diagram for the XOR gate. Each variable is represented by a primary color
circle (red, yellow, blue) while the outer circle outlines the whole system. Of the total 2 bits of the XOR
gate, one is covered two times and is represented by the inner disk. Since it is covered twice, this area
is colored by pairwise color-blends (orange, purple, and green). Since it is covered by three variables,
it includes patches of all three possible blends. A critical difference between this diagram and a
set-theoretic one is that even though the three variables have no pairwise intersections, the inner disk
representing the mutual content of all three variables is non-empty. The remaining 1 bit is covered
once and resides only inside the joint variable. Since this area is covered once, it is colored by primary
colors. Patches of all three colors are used since this area does not belong to any single variable.

H(O1) = Πs,
H(O2) = Πs,
H(O3) = Πs,
H(O1 ∪O2) = Πs + Πg,
H(O2 ∪O3) = Πs + Πg,
H(O1 ∪O3) = Πs + Πg,
H(O1 ∪O2 ∪O3) = Πs + Πg (21)
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In usual Venn diagrams, intersections represent correlations between different parts.
Similarly, in the XOR gate the higher-order parity interaction added on top of the non-
correlated variables is responsible for the appearance of a 2-covered triple intersection.

2.6. Synergy as an Information Atom

We can compare our set-theory-inspired results against the expectations of the partial
information decomposition. Namely, Equations (3) state that the information O1 and O2
carry about O3 can be described by the atoms R = U1 = U2 = 0 bit, S = 1 bit. The left side
of each line in (3) may be rewritten by definition as an intersection of random variables:

I(X; Z) = H(X ∩ Z),
I(Y; Z) = H(Y ∩ Z),
I((X, Y); Z) = H((X ∪Y) ∩ Z) (22)

For the XOR gate, the former two are empty, while the last line links the original
definition of synergistic information to the non-set-theoretic term of the inclusion–exclusion
Formula (13) and the peculiar region of the corresponding diagram:

S = I((O1, O2); O3) = H((O1 ∪O2) ∩O3) = Πs (23)

Curiously, synergistic behavior of mutual information does not contradict the sub-
additivity of entropy. The synergistic information piece S is not new to the system and is
always contained in the variables’ full entropy.

The nature of ghost atom G = Πg is deeply connected to this outcome, even though it
does not explicitly participate in the decomposition. Consider the individual contributions
by each of the sources O1, O2:

I(Oi=1,2; O3) = H(Oi) + H(O3)− H(Oi ∪O3) (24)

Using (21), we can rewrite this in terms of information atoms:

I(Oi; O3) = Πs + Πs − (Πs + Πg) = S− G = 0 (25)

The equality between the synergistic and ghost atoms ensures that the former is exactly
canceled from the individual contribution by each source. Synergistic information is, of
course, still present in the “whole” (23). This circumstance is responsible for creating the
illusion of synergy appearing out of nowhere when sources are combined.

3. General Trivariate Decomposition

The XOR gate example studied above is a degenerate example with a sole synergistic
information atom. We will now expand our description into a system with non-synergistic
components with the aim to characterize any three variables using information atoms.

3.1. Extended Random Variable Space

The lack of a proper description for information intersections severely limits our ability
to decompose the information content of more general random variable systems. Our
solution for this issue is inspired by an elegant duality between set theory and information
quantities found by H. K. Ting in [18] and further elaborated in [21]. It simply extends the
space of random variables to include all elements produced by operations ∪,∩, \ (2), (8)
and (28). Entropy is extended as a (non-negative) measure Ĥ such that:

Ĥ(X) = 0 ⇔ X = ∅,
X ∩Y = ∅ ⇔ Ĥ(X ∪Y) = Ĥ(X) + Ĥ(Y) (26)

To approach the problem of characterizing information atoms in the trivariate case, we
derive the corresponding inclusion–exclusion formula. As stated previously, the bivariate
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version (6) holds without alterations (Appendix A, Lemma A3). Now, in contrast, we get a
distributivity-breaking difference term, which, to make matters even worse, depends on
the order of derivation (Appendix A, Theorem A1). One possible variant of this formula is
portrayed in Figure 3:

Ĥ(X1 ∪ X2 ∪ X3) =
= Ĥ(X1) + Ĥ(X2) + Ĥ(X3)−
−Ĥ(X1 ∩ X2)− Ĥ(X1 ∩ X3)− Ĥ(X2 ∩ X3)+
+Ĥ(X1 ∩ X2 ∩ X3)− ΔĤ, (27)

where ΔĤ = Ĥ(((Xσ(1) ∪ Xσ(2)) ∩ Xσ(3))\((Xσ(1) ∩ Xσ(3)) ∪ (Xσ(2) ∩ Xσ(3)))) for any per-
mutation of indices σ. The difference is defined as:

D = X\Y ⇔ D ∩Y = ∅, D ∪ (X ∩Y) = X (28)

In general, due to subdistributivity the difference may not be unique (Appendix A, (A20)).
Its size, on the other hand, is fixed as Ĥ(X\Y) = Ĥ(X)− Ĥ(X ∩Y).

Figure 3. A single realization of the inclusion–exclusion principle for three variables. The new
region, corresponding to the distributivity-breaking difference is represented via a checkered pattern.
Covering numbers are written for each sector and highlighted by the colors. This is not a full Venn-
type diagram that defines the information atoms, and hence, its structure is clearly not invariant with
respect to variable permutations.

3.2. Set-Theoretic Solution

Before going to arbitrary variables, consider a system where distributivity axiom holds.
Under such condition the setup becomes effectively equivalent to set theory. A trivariate
system can, therefore, be illustrated by the same Venn diagram as that of three sets:

H(X1) = Π{1} + Π{1}{2} + Π{1}{3} + Π{1}{2}{3},
H(X2) = Π{2} + Π{1}{2} + Π{2}{3} + Π{1}{2}{3},
H(X3) = Π{3} + Π{1}{3} + Π{2}{3} + Π{1}{2}{3},
H(X1, X2) = Π{1} + Π{2} + Π{1}{2} + Π{1}{3} + Π{2}{3} + Π{1}{2}{3},
H(X1, X3) = Π{1} + Π{3} + Π{1}{2} + Π{1}{3} + Π{2}{3} + Π{1}{2}{3},
H(X2, X3) = Π{2} + Π{3} + Π{1}{2} + Π{1}{3} + Π{2}{3} + Π{1}{2}{3},
H(X1, X2, X3) =
= Π{1} + Π{2} + Π{3} + Π{1}{2} + Π{1}{3} + Π{2}{3} + Π{1}{2}{3} (29)

By calculating the sizes of atoms, we derive (Appendix B, (A29)) the criterion for their
non-negativity: the whole must be less or equal to the sum of the parts:

I(X1, X2; X3)− I(X1; X3)− I(X2; X3) ≤ 0 (30)
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3.3. Main Result: Arbitrary Trivariate System

At this point, we have studied two opposite cases: a completely synergic system (XOR
gate) and one without any synergy (set-theoretic solution). To describe three arbitrary
variables, any general decomposition must be able to replicate both of them. It turns
out that a combination of the already known atoms (Figure 4) suffices in providing a
non-negative decomposition (presented in detail in Appendix B (A47); for the proof see
Lemma A6):

H(Xi) = Πs + ∑
set-theor. atoms

Π,

H(Xi, Xj �=i) = Πs + Πg + ∑
s.t. atoms

Π,

H(X1, X2, X3) = Πs + Πg + ∑
s.t. atoms

Π,

Πs = Πg (31)

Figure 4. A graphical illustration for the general solution of the trivariate problem. Compared to the
Venn diagram for three sets, two new regions here are the 2-covered part of triple intersection Πs

(synergistic atom) and a ghost atom Πg, which is not a part of any single initial variable. Similarly
to Figure 3, colors indicate the coverings: three primary colors (red, yellow, blue, or their checkered
combination) correspond to 1-covered atoms, the overlay of any two colors (orange, purple, green or
their checkered combination) is 2-covered, and the overlay of all three colors (brown) is 3-covered.

This is the minimal solution to the problem as it contains the smallest set of necessary
atoms. The whole and parts are now related by the difference of two terms:

I((X1, X2); X3)− I(X1; X3)− I(X2; X3) = Πs −Π{1}{2}{3} � 0 (32)

We can gain major insight by substituting the left side using the inclusion–exclusion
formulas (6) and (27):

ΔĤ − Ĥ(X1 ∩ X2 ∩ X3) = Πs −Π{1}{2}{3} (33)

Remember that the only 3-covered area in the system is X1 ∩ X2 ∩ X3. Therefore, the
size of Πs is determined by the distributivity-breaking difference:

Π{1}{2}{3} = Ĥ(X1 ∩ X2 ∩ X3),
Πs = ΔĤ (34)

To find the physical meaning behind the recovered solution, we once again compare
it to the partial information decomposition of the same system. Only four of the diagram
regions (Figure 4) appear in the corresponding equations:

I(X1; X3) = Π{1}{2}{3} + Π{1}{3},
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I(X2; X3) = Π{1}{2}{3} + Π{2}{3},
I((X1, X2); X3) = Π{1}{2}{3} + Πs + Π{1}{3} + Π{2}{3} (35)

The result fully captures the structure behind Williams and Beer’s definitions [4]:

Π{1}{2}{3} ≡ Redundancy,
Π{1}{3} ≡ Unique information in X1,
Π{2}{3} ≡ Unique information in X2,
Πs ≡ Synergy (36)

We have, thus, shown how information synergy naturally follows from set-theoretic
arguments. The synergistic contribution is contained in the entropy of the parts and is
precisely equal to the distributivity-breaking difference ΔĤ. The interaction responsible
for the synergistic contribution is depicted on the Venn diagram as an intersection with
unconventional covering number Πs. Finally, the illusion of a whole being greater than the
sum of its parts comes from the fact that the mutual information terms on the left-hand
size of Equation (3) do not account for all regions of the Venn-diagram (Figure 4).

4. Towards a Multivariate Information Decomposition

In this section, we lay the foundation for a consistent theory of multivariate decomposi-
tion and resolve the contradictions between partial information decomposition axioms [15].

4.1. Information Atoms Based on Part–Whole Relations

To rigorously define the information atoms, we may think of them as basic pieces of
information, which make up all more complex quantities. Previously, we have used the
inclusion–exclusion principle to break down the entropy of the whole system into smaller
parts step by step. Even without writing the formula for N variables, one can find the
general form of the terms participating in this process:

Ξ[C] =
⋂(⋃

Xi

)
(37)

The covering number C is defined trivially as the number of intersecting union-
brackets in (37) and determines the sign of the associated term by the inclusion–exclusion
principle. Similarly to the Möbius inversion used in set theory [25], the decomposition of
non-distributive space will rely on the inclusion order lattice (LΞ,⊆) of terms Ξ. A general
description of the decomposition through part–whole relations was proposed in [26] in
the form of the parthood table. It is a matrix with entries 0 or 1, which define whether a
given atom Π is a part of a particular larger information piece, i.e., the inclusion–exclusion
term (37):

Ĥ(Ξi[Ci]) = ∑
j

fijΠj[cj],

fij = 0, 1 (38)

The parthood table depends on the initial variables through the monotonicity axiom, or
compliance with the inclusion lattice (LΞ,⊆):

Ξi ⊆ Ξj ⇒ ∀k fik ≤ f jk (39)

It relates the table’s entries within themselves by a simple rule: if one Ξ term is
included in the other, all the atoms from the decomposition of former should be present in
the decomposition of the latter.
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The summands Π are non-negative functions and represent the sizes of atoms. The
covering number cj of each atom is defined by the coverings of inclusion–exclusion terms Ci:

cj = max
i: fij=1

Ci (40)

This rule remains unchanged from the classical set theory.
The information conservation law (17) is the final condition that preserves the physical

meaning of the covering numbers—the number of times the same information appears in
the system.

The existence of a general solution for N variables is not guaranteed. Besides, linear
system (38) is undetermined for N > 2. For a specific set of degenerate cases it is, however,
still possible to calculate the sizes of all atoms. We will next list several such examples
while specifying how information is distributed among their different parts.

Set-Theoretic Solution for N Variables

In a distributive system, the solution is a particular case of Möbius inversion [25]
(Appendix B, (A30)). Mutual information as a function of random variables becomes sub-
additive (Appendix B, Lemma A5) proving that the lack of distributivity is a necessary
condition for emergence.

XOR Gate

The solution found for the XOR gate is unique in the parthood table formalism
(Appendix B, Theorem A2). This reinforces our proposal of synergistic and ghost atoms as
physical entities.

N-Parity

Generalizing the XOR gate to an arbitrary number of variables yields the N-parity
setup. It allows a solution of the similar form (Appendix B, (A42)–(A46)):

Πs[2] = 1 bit,
Πgn=1,N−2

[1] = 1 bit,

∀n, σ H(Xσ(1), Xσ(2), . . . Xσ(n)) = Πs +
n−1

∑
i=2

Πgi (41)

4.2. Resolving the Partial Information Decomposition Self-Contradiction

The existence of any multivariate decomposition was previously believed to be dis-
proved [15] by employing a simple example that could not be solved without discard-
ing one of the partial information decomposition axioms. The information inside three
XOR variables, O1, O2, O3, about their joint variable O4 = (O1, O2, O3) was claimed to
be grouped into three 1-bit synergistic atoms that, using our notation, corresponding to
O1 ∩ (O2 ∪O3) ∩O4, O2 ∩ (O1 ∪O3) ∩O4, and O3 ∩ (O1 ∪O2) ∩O4. These were summed
up to give three bits of information—more than the total of two bits present in the en-
tire system. The authors of [15] concluded that the non-negativity of information was
not respected.

To resolve this discrepancy, first notice that partial information decomposition atoms
are a subset of of the full set of atoms {Π}. In the system with N sources of informa-
tion X1, . . . XN and target XN+1 they lie inside the intersection I(X1, . . . , XN ; XN+1) =
Ĥ((X1 ∪ · · · ∪ XN) ∩ XN+1) and are defined by the submatrix of the full parthood table
fij : Ξi ⊆ (X1 ∪ X2 ∪ . . . XN) ∩ XN+1. In particular, when the output is equal to the joint
variable of all inputs, the entropy of inputs coincides with mutual information, and hence,
all atoms appear in the partial information decomposition (Appendix C, Lemma A7). The
set of atoms {Π} itself is then identical to that of the system X1, . . . XN alone with the
exception of all covering numbers being increased by one to comply with the additional
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cover of XN+1 (Appendix C, Theorem A3). This is exactly the type of system that was used
in [15]. Using the solution of the XOR gate, we find:

Πs[3] = 1 bit,
Πg[2] = 1 bit,
I(O1; O4) = Πs,
I(O2; O4) = Πs,
I(O3; O4) = Πs,
I((O1, O2); O4) = Πs + Πg,
I((O1, O3); O4) = Πs + Πg,
I((O2, O3); O4) = Πs + Πg,
I((O1, O2, O3); O4) = Πs + Πg (42)

In place of three, there is only one symmetric atom Πs[3]. The confusion in [15] oc-
curred since different forms of the inclusion–exclusion principle were considered separately
and it was assumed that each version would create its own synergistic atom.

5. Discussion

Previous attempts for studying synergistic information using set-theoretic intuition
have led to self-contradictions. In this work, we point out that the non-distributivity of
random variables corresponds to a well-defined variant of set-theory. We employ our results
to construct a Venn-like diagram for an arbitrary three-variable system and demonstrate
how synergism to be a direct consequence of distributivity breaking.

Our results do not fully solve the problem at hand. First, precise calculation of atom
sizes was left unanswered and might require a more explicit description of information
intersections. Another caveat is that although we constructed the equations that describe a
self-consistent multivariate information decomposition, the existence of a solution for N
arbitrary random variables is yet to be proven.

Nevertheless, this work lays the basis for a self-consistent multivariate theory. Our
analysis reestablishes the concept of information decompositions as a foundation for further
enquiry in quantifying emergence. In this context, information theory serves as a mere
illustration: the mechanism we describe offers an explanation of the nature of synergy which
uses solely set-theoretic concepts and can be applied to any emergent physical system.

From the physical standpoint, synergistic properties of information are a consequence
of entropy reordering inside the system of inputs and outputs. However, this is only
possible because the mathematical entities under consideration (discrete random variables)
possess the property of subdistributivity, whose origin and interpretation in terms of the
underlying physical system is yet to be found. One could also take a different function to
represent the size of random variables. This might lead to additional positive (synergic)
or negative (redundant) contributions and requires further investigation. Examples of
measures other than entropy that still obey set-theoretic logic are discussed in [21].
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The following abbreviations are used in this manuscript:

PID Partial Information Decomposition
XOR Exclusive OR
RV Random variable

Appendix A. Properties of the Extended Random Variable (RV) Space

Lemma A1. In the set-inspired algebra (Section 2.1), all deterministic variables are equal between
each other and obey the property of the empty set ([27], Chapter 5): for any random variable X:

∅ ⊆ X (A1)

Proof. Let V be a deterministic variable. It is therefore also a deterministic function of any
random variable X, which by (5) implies V ⊆ X.

Now, for any two deterministic variables V1, V2, we have V1 ⊆ V2 and V2 ⊆ V1; hence,
in set-theoretic view:

V1 = V2 (A2)

Corollary A1. Other properties of the empty set are equivalent to (A1): for any random variable X
and deterministic variable ∅:

X ∪∅ = X,
X ∩∅ = ∅ (A3)

While the postulate of distributivity is independent of the other axioms in set theory, a
weaker condition of subdistributivity of union over intersection ought to hold in random
variable space even without it:

Lemma A2. For any three random variables X, Y, Z:

(X ∩ Z) ∪ (Y ∩ Z) ⊆ (X ∪Y) ∩ Z (A4)

Proof. We start by showing that if variables X1, X2 are both included in X3, then also
(X1 ∪ X2) ⊆ X3. Indeed, by the definition of inclusion (5), whenever X1 and X2 are
deterministic functions of X3, the joint variable (X1, X2) is also such.

Now notice that for arbitrary variables X, Y, Z we have:

(X ∩ Z) ∩ ((X ∪Y) ∩ Z) = (X ∪Y) ∩ (Z ∩ (X ∩ Z)) =
= (X ∪Y) ∩ (X ∩ Z) = (X ∩ Z), (A5)

therefore, by (8), (X ∩ Z) ⊆ (X ∪Y) ∩ Z. Likewise, (Y ∩ Z) ⊆ (X ∪Y) ∩ Z.
Combining the above results, we get the statement of the lemma:

(X ∩ Z) ∪ (Y ∩ Z) ⊆ (X ∪Y) ∩ Z (A6)
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Corollary A2. The subdistributivity (or, more correctly, superdistributivity) of intersection over
union also holds:

(X ∩Y) ∪ Z ⊆ (X ∪ Z) ∩ (Y ∪ Z) (A7)

In the extended RV space, the inclusion–exclusion principle for two variables, as
expected, remains unaffected by the lack of distributivity

Lemma A3. The size of the union of two extended RV space members is related to their own sizes
and the size of their intersection as:

Ĥ(X ∪Y) = Ĥ(X) + Ĥ(Y)− Ĥ(X ∩Y) (A8)

Proof. We will rewrite the left side H(X ∪Y) as a union of two disjoint pieces:

X ∪ (Y\X) = X ∪ (X ∩Y) ∪ (Y\X) = X ∪Y (A9)

At the same time, by definition X ∩ (Y\X) = ∅. We may use the additivity of the
measure (26) to write the size of union as a sum of sizes of its disjoint parts:

Ĥ(X ∪Y) = Ĥ(X) + Ĥ(Y\X) (A10)

Repeating the same steps in order to decompose the second summand into two more
terms concludes the proof:

(Y\X) ∩ (X ∩Y) = ((Y\X) ∩ X) ∩Y = ∅,
(Y\X) ∪ (X ∩Y) = Y,
Ĥ(Y) = Ĥ(Y\X) + Ĥ(X ∩Y) (A11)

The inclusion–exclusion principle for three variables, along with all the terms from the
set-theoretic version, contains a peculiar extra term related to the failure of distributivity

Theorem A1. The size of triple union is related to the sizes of individual terms, their intersections,
and the distributivity-breaking difference ΔĤ:

Ĥ(X1 ∪ X2 ∪ X3) =
= Ĥ(X1) + Ĥ(X2) + Ĥ(X3)−
−Ĥ(X1 ∩ X2)− Ĥ(X1 ∩ X3)− Ĥ(X2 ∩ X3)+
+Ĥ(X1 ∩ X2 ∩ X3)− ΔĤ, (A12)

where the last term is found as:

ΔĤ = Ĥ(((Xσ(1) ∪ Xσ(2)) ∩ Xσ(3))\((Xσ(1) ∩ Xσ(3)) ∪ (Xσ(2) ∩ Xσ(3)))) (A13)

and stays invariant with respect to permutations of indices σ.

Proof. We begin by choosing two of three variables (or extended RV space members) on
the left side and grouping them in order to use the result of the previous lemma (A8):

Ĥ((X1 ∪ X2) ∪ X3) = Ĥ(X1 ∪ X2) + Ĥ(X3)− Ĥ((X1 ∪ X2) ∩ X3) (A14)
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The first term is easily decomposed further using Lemma A3. In order to proceed with
the third term, we define the distributivity-breaking difference as ΔX123 =

(
(X1 ∪ X2) ∩

X3
)\((X1 ∩ X3) ∪ (X2 ∩ X3)

)
and apply the second axiom of the measure:

Ĥ((X1 ∪ X2) ∩ X3) =
= Ĥ(((X1 ∩ X3) ∪ (X2 ∩ X3)) ∪ ΔX123) =
= Ĥ((X1 ∩ X3) ∪ (X2 ∩ X3)) + Ĥ(ΔX123) (A15)

Applying (A8) once again:

Ĥ((X1 ∩ X3) ∪ (X2 ∩ X3)) =
= Ĥ(X1 ∩ X3) + Ĥ(X2 ∩ X3)− Ĥ(X1 ∩ X2 ∩ X3) (A16)

and combining everything into the final form:

Ĥ(X1 ∪ X2 ∪ X3) =
= Ĥ(X1) + Ĥ(X2) + Ĥ(X3)−
−Ĥ(X1 ∩ X2)− Ĥ(X1 ∩ X3)− Ĥ(X2 ∩ X3)+
+Ĥ(X1 ∩ X2 ∩ X3)− Ĥ(ΔX123) (A17)

The only term that depends on the order of putting brackets in (A14) is Ĥ(ΔX123).
Due to the associativity and commutativity of both union and intersection, we conclude
that it is the only part of the equation that is not symmetric with respect to the permutations
of indices:

ΔX123 �= ΔX132 �= ΔX231, (A18)

Its size is, therefore, bound to be the same in all three cases. Defining a single function
equal to this value concludes the proof:

ΔĤ = Ĥ(ΔX123) (A19)

The operation of taking the difference \ in extended RV space may have more than
one outcome. It can be shown already on the XOR gate example. Taking the variable that
represents the whole system W = O1 ∪O2 ∪O3, we have two candidates O2, O3 for the
result of the difference W\O1. Substituting them into the definition (28), we find out that
both are valid, despite being explicitly unequal:

Oi=2,3 ∩O1 = ∅,
Oi ∪ (W ∩O1) = Oi ∪O1 = W (A20)

Appendix B. Information Atoms

A convenient notation of antichains was proposed in the partial information decom-
position [4,15] to describe pieces of information. Let us denote each joint variable by the
collection of variables’ indices:

(Xi1 , Xi2 , . . . , Xim)→ {i1i2 . . . im} = A (A21)

There is a trivial partial order A � B ⇔ ∀i ∈ A i ∈ B and we can use it to represent
the intersections. A set of strong antichains α ∈ A(N) is taken on the above poset:

α = A1A2 . . . An = {i11 . . . i1m1}{i21 . . . i2m2} . . . {in1 . . . inmn}, (A22)
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where all indices are chosen from 1, N and never coincide iab �= icd. The partial order � can
be extended to antichains:

α � β ⇔ ∀B ∈ β ∃A ∈ α : A � B (A23)

Now, a general inclusion–exclusion term (37) in an N-variable system can be denoted
by an antichain α ∈ A(N):

Ξα[C = n] =
n⋂

j=1

( mj⋃
k=1

Xijk

)
(A24)

The covering C is always equal to the cardinality of the corresponding antichain (the
number of brackets {}):

C = n = |α| (A25)

The inclusion order on Ξ-terms follows from the antichain order �. The latter is
independent of the chosen random variables and holds for every system:

α � β ⇒ Ξα ⊆ Ξβ (A26)

The new notation allows us to replace the first index of the parthood table fij with an
antichain and simplify the formulation of the multivariate theory’s axioms:

Ĥ(Ξα) = ∑
i

fαiΠi[ci],

Ξα ⊆ Ξβ ⇒ ∀i fαi ≤ fβi,
ci = max

α: fαi=1
|α|

N

∑
k=1

H(Xk) = ∑
i

ciΠi[ci] (A27)

Lemma A4. Two inclusion–exclusion terms that are equal as members of extended RV space have
identical parthood matrix rows:

Ξα = Ξβ ⇒ ∀i : Πi > 0 fαi = fβi (A28)

Set-Theoretic Solution

This is a complete replica of set theory, fully compliant with the distributivity axiom.
For N = 3 variables, condition (30) is necessary and sufficient for non-negativity of
all atoms:

Π{1}{2}{3} = I(X1; X3) + I(X2; X3)− I(X1, X2; X3) ≥ 0,
Π{i}{j} = I(Xi; Xj|Xk) ≥ 0,
Π{i} = −H(Xj, Xk) + H(X1, X2, X3) ≥ 0 (A29)

For an arbitrary number of variables N, there is no variability in the inclusion–
exclusion formulas and the atoms are recovered via the Möbius inversion with respect to
the antichain order �. Let us also denote the atoms by a special subset of antichains ι with
a single index in each bracket:

Ĥ(Ξα) = ∑
ι�α

Πι[n], ι = {i1}{i2} . . . {in},

Πι =
N

∑
m=n

(−1)m−n ∑
in+1,...im

Im(Xi1 ; . . . Xim), (A30)
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where Im is the mth order interaction information function defined as a sign-changing sum
of entropies ∑m

k=1(−1)k−1 ∑j1,...jk H(Xj1 , Xj2 , . . . , Xjk ).
Set-theoretic systems never exhibit synergistic properties. The following result can

be understood in the sense that the lack of distributivity is a necessary condition for the
existence of synergy in any N-variable system

Lemma A5. In a set-theoretic system, mutual information is always subadditive:

I((X1, . . . XN); XN+1) ≤
N

∑
i=1

I(Xi; XN+1) (A31)

Proof. Let us substitute the atoms (A30) into the inequality:

∑
ι�{12...N}{N+1}

Πι ≤
N

∑
k=1

∑
ι′�{k}{N+1}

Πι′ (A32)

For any atom on the left side, we have by (A23):

ι � {12 . . . N}{N + 1} ⇒ ∃{ia}, {ib} ∈ ι :

{
{ia} � {12 . . . N}
{ib} � {N + 1} (A33)

Since ι is composed of single indices, we have:

ia = 1, N,
ib = N + 1 (A34)

Then, this term can also be found on the right side of (A32):

∃ι′ � {ia}{N + 1} : ι = ι′ (A35)

The non-negativity of all atoms concludes the proof.

XOR Gate

The XOR gate contains a completely different set of atoms. With three pairwise
independent initial variables, the set of inclusion–exclusion terms simplifies to:

Ξ{123}[1] = O1 ∪O2 ∪O3 Ĥ(Ξ{123}) = 2,

Ξ{ij}[1] = Oi ∪Oj Ĥ(Ξ{ij}) = 2,

Ξ{i}[1] = Oi Ĥ(Ξ{i}) = 1,

Ξ{ij}{k}[2] = (Oi ∪Oj) ∩Ok Ĥ(Ξ{ij}{k}) = 1

In the extended RV space Ξ{ij}{k} = Ξ{k}, Ξ{ij} = Ξ{123} and by Lemma A4, we only
need to find decompositions of Ξ{i} and Ξ{123}. Due to the symmetry of the problem,
decomposition of Ξ{i} may contain three types of atoms: three distinct atoms Πi, each
being a part of only the respective Ξi; three distinct atoms Πi,j, each being a part of both
specified terms; or one symmetrically shared Πs, as we have guessed in (15)

Ĥ(Ξ{ij}{k}[2]) = Ĥ(Ξ{k}[1]) = Πk[2] + Πi,k[2] + Πj,k[2] + Πs[2] (A36)

The coverings are calculated by definition (A27). For Ξ{123}, one more atom Πg may
be added:

Ĥ(Ξ{ij}[1]) = Ĥ(Ξ{123}[1]) =
= Π1[2] + Π2[2] + Π3[2] + Π1,2[2] + Π2,3[2] + Π1,3[2] + Πs[2] + Πg[1] (A37)
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The following parthood table contains columns for all atoms discussed above.

f Πs Πg Π1 Π2 Π3 Π1,2 Π1,3 Π2,3

{1}{2}{3} 0 0 0 0 0 0 0 0
{1}{2} 0 0 0 0 0 0 0 0
{1}{3} 0 0 0 0 0 0 0 0
{2}{3} 0 0 0 0 0 0 0 0
{12}{3} 1 0 0 0 1 0 1 1
{13}{2} 1 0 0 1 0 1 0 1
{23}{1} 1 0 1 0 0 1 1 0
{1} 1 0 1 0 0 1 1 0
{2} 1 0 0 1 0 1 0 1
{3} 1 0 0 0 1 0 1 1
{12} 1 1 1 1 1 1 1 1
{13} 1 1 1 1 1 1 1 1
{23} 1 1 1 1 1 1 1 1
{123} 1 1 1 1 1 1 1 1

In a symmetric solution, the atom sizes are invariant with respect to index permuta-
tions, and hence, let:

Πs = x,
Πi,k = y,
Πi = 1− 2y− x,
Πg = 2− x− 3y− 3(1− 2y− x) = 2x + 3y− 1 (A38)

Substituting this into the information conservation law:

∑
i

H(Xi) = 3 = 2x + 2 ∗ 3y + 2 ∗ 3 ∗ (1− 2y− x) + 2x + 3y− 1 = 5− 2x− 3y,

2x + 3y = 2 (A39)

However, we know that all atoms have non-negative sizes, which means that most
atoms disappear from the solution (have zero sizes):

Πi = 1− 2y− x = −0.5y ≥ 0,
y = 0,
x = 1 (A40)

Theorem A2. The XOR gate has a unique symmetric decomposition:

Πs[2] = 1 bit,
Πg[1] = 1 bit (A41)
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f Πs Πg

{1}{2}{3} 0 0
{1}{2} 0 0
{1}{3} 0 0
{2}{3} 0 0
{12}{3} 1 0
{13}{2} 1 0
{23}{1} 1 0
{1} 1 0
{2} 1 0
{3} 1 0
{12} 1 1
{13} 1 1
{23} 1 1
{123} 1 1

N-Parity

A generalization of the XOR gate is the N-parity setup, also a symmetric system, for
which one of the variables is fully determined by the combination of all the others:

X1,N =

{
0, 50%
1, 50%

, ∀i = 1, N Xi ≡ ∑
j �=i

Xj mod 2 (A42)

The set of inclusion–exclusion terms is quite simple: 1-covered terms coinciding with
the entropies, whose size is equal to the number of participating variables (for N variables
it remains at N + 1 bits since the last variable is deterministic of the rest):

Ξ{i1i2...in}[1] =
⋃

k=1,n

Xik ,

Ĥ(Ξ{i1i2...in}) = min(n, N − 1) (A43)

and 1-bit 2-covered intersections between two unions:

Ξ{i1i2...in}{in+1...iN}[2] =

⎛⎝ ⋃
k=1,n

Xik

⎞⎠ ∩
⎛⎝ ⋃

l=n+1,N

Xil

⎞⎠,

Ĥ(Ξ{i1i2...in}{in+1...iN}) = 1 (A44)

The rest of Ξ-terms are empty. A solution can be easily guessed: a single symmetric
2-covered atom Πs[2] = 1 and a set of N− 2 ghost atoms Πgk [1] = 1, k = 1, N − 2, such that:

Ĥ(Ξ{i1i2...in}{in+1...iN}) = Πs,

Ĥ(Ξ{i1i2...in}) = Πs +
n−2

∑
k=1

Πgk (A45)

We immediately see that the information conservation law is satisfied:

∑
i

H(Xi) = N = 2Πs +
N−2

∑
k=1

Πgk (A46)

Arbitrary Trivariate System
A Venn-type diagram for any three variables can be constructed using the following

universal system of equations and parthood table (Table A1).

H(X1) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{1}{3}[2] + Π{1}[1],
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H(X2) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{2}{3}[2] + Π{2}[1],
H(X3) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{3}[2] + Π{2}{3}[2] + Π{3}[1],
H(X1, X2) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{1}{3}[2] + Π{2}{3}[2]+
+Π{1}[1] + Π{2}[1] + Πg[1],
H(X1, X3) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{1}{3}[2] + Π{2}{3}[2]+
+Π{1}[1] + Π{3}[1] + Πg[1],
H(X2, X3) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{1}{3}[2] + Π{2}{3}[2]+
+Π{2}[1] + Π{3}[1] + Πg[1],
H(X1, X2, X3) = Π{1}{2}{3}[3] + Πs[2] + Π{1}{2}[2] + Π{1}{3}[2] + Π{2}{3}[2]+
+Π{1}[1] + Π{2}[1] + Π{3}[1] + Πg[1],
Πs[2] = Πg[1] (A47)

Table A1. Parthood table for a universal trivariate decomposition.

f Π{1}{2}{3} Πs Π{1}{2} Π{1}{3} Π{2}{3} Π{1} Π{2} Π{3} Πg

{1}{2}{3} 1 0 0 0 0 0 0 0 0

{1}{2} 1 0 1 0 0 0 0 0 0

{1}{3} 1 0 0 1 0 0 0 0 0

{2}{3} 1 0 0 0 1 0 0 0 0

{12}{3} 1 1 0 1 1 0 0 0 0

{13}{2} 1 1 1 0 1 0 0 0 0

{23}{1} 1 1 1 1 0 0 0 0 0

{1} 1 1 1 1 0 1 0 0 0

{2} 1 1 1 0 1 0 1 0 0

{3} 1 1 0 1 1 0 0 1 0

{12} 1 1 1 1 1 1 1 0 1

{13} 1 1 1 1 1 1 0 1 1

{23} 1 1 1 1 1 0 1 1 1

{123} 1 1 1 1 1 1 1 1 1

Lemma A6. Any system of three random variables can be decomposed into a set of non-negative
atoms (A47).

Proof. One can find the sizes of atoms Π{i} from the last four equations in the system:

Π{1} = H(X1, X2, X3)− H(X2, X3) ≥ 0,
Π{2} = H(X1, X2, X3)− H(X1, X3) ≥ 0,
Π{3} = H(X1, X2, X3)− H(X1, X2) ≥ 0 (A48)

For the rest of the set-theoretic atoms, we have:

I(X1; X2) = Π{1}{2}{3} + Π{1}{2},
I(X1; X3) = Π{1}{2}{3} + Π{1}{3},
I(X2; X3) = Π{1}{2}{3} + Π{2}{3} (A49)

To satisfy the non-negativity requirement, we need:

Π{1}{2} = I(X1; X2)−Π{1}{2}{3} ≥ 0,
Π{1}{3} = I(X1; X3)−Π{1}{2}{3} ≥ 0,
Π{2}{3} = I(X2; X3)−Π{1}{2}{3} ≥ 0, (A50)
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which is equivalent to:

0 ≤ Π{1}{2}{3} ≤ min(I(X1; X2), I(X1; X3), I(X2; X3)) (A51)

The last independent equation can be written using a third-order information interac-
tion function:

I3(X1; X2; X3) = Π{1}{2}{3} −Πs, (A52)

therefore:

Πs = Πg = Π{1}{2}{3} − I3(X1; X2; X3) ≥ 0 (A53)

The obtained set of conditions is indeed self-consistent, as:

min(I(X1; X2), I(X1; X3), I(X2; X3)) ≥ I3(X1; X2; X3) (A54)

Appendix C. Partial Information Decomposition (PID)

The partial information decomposition atoms are only a subset of all atoms Π. Yet, for
some systems, it may be equal to the full set. Indeed, when the output is exactly the joint
variable of all inputs, it essentially “covers” the whole diagram of the system of inputs. The
entropies of inputs completely turn into mutual information about the output.

Lemma A7. The partial information decomposition with inputs X1, . . . XN and their joint variable
chosen as an output XN+1 = (X1, . . . , XN) contains all information atoms Π of the system
X1, . . . XN+1.

Proof. The PID atoms are by definition the ones contained in the intersection of the form:

(X1 ∪ X2 ∪ · · · ∪ XN) ∩ XN+1 (A55)

By conditions of the lemma, in extended random variable space, we have:

(X1 ∪ X2 ∪ · · · ∪ XN) ∩ XN+1 = (X1 ∪ X2 ∪ · · · ∪ XN) =
= (X1 ∪ X2 ∪ · · · ∪ XN) ∪ XN+1 (A56)

Applying Lemma A4 concludes the proof.

A stronger statement can be made that the whole structure of the resulting
N + 1 variable decomposition is equivalent to the lesser decomposition of just the in-
puts X1, . . . XN with a single extra covering added to each atom to account for the output
XN+1, covering the whole system one more time.

Theorem A3. A decomposition for the N + 1 variable system X1, . . . XN+1 with:

XN+1 = X1 ∪ X2 ∪ · · · ∪ XN (A57)

defined by a set of atoms {Πi[ci]}i∈I and parthood table f can be obtained from the decomposition
{Π̃j[c̃j]}j∈J , f̃ of the N variable system X1, . . . XN as:

∀α ∈ A(N + 1), i ∈ I

⎧⎪⎨⎪⎩
fαi = f̃F(α)j(i)

Πi = Π̃j(i)

ci = c̃j(i) + 1

(A58)
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where j(i) is a bijection of indices and (surjective) function F : A(N + 1) → A(N) removes a
bracket from an antichain if this bracket contains index N + 1.

Proof. Examining the inclusion–exclusion terms, we find that:

∀α ∈ A(N + 1) Ξα = ΞF(α) (A59)

By Lemma A4, this guarantees the equivalence of the corresponding parthood ta-
ble rows:

∀i ∈ I, α ∈ A(N + 1) fαi = fF(α)i (A60)

Now, we need to determine the parthood table rows only for α ∈ Im(F) = A(N).
Knowing the solution {Π̃}j∈J for the N-variable system, we substitute the same atoms into
the larger N + 1 variable system and define a bijection of indices j(i):

Ĥ(Ξα) = Ĥ(ΞF(α)) = ∑
j∈J

f̃F(α)jΠ̃j = ∑
i∈I

fαiΠi,

∀i ∈ I, α ∈ A(N + 1) Πi = Π̃j(i), fαi = f̃F(α)j(i) (A61)

Finally, to ensure the validity of the new solution, we check its compliance with
axioms (A27):

1. Monotonicity:

Ξα ⊆ Ξβ ⇒ ΞF(α) ⊆ ΞF(β) ⇒ ∀i ∈ I fαi = f̃F(α)j(i) ≤ f̃F(β)j(i) = fβi (A62)

2. Covering numbers: {
N + 1 ∈ α ⇒ |α| = |F(α)|+ 1
N + 1 /∈ α ⇒ |α| = |F(α)| (A63)

ci = max
α∈A(N+1): fαi=1

|α| = max
β∈A(N): f̃βj(i)=1

|β|+ 1 = c̃j(i) + 1 (A64)

3. Information conservation law:

H(XN+1) = H(X1, . . . XN) = ∑
j∈J

Π̃j,

N

∑
k=1

H(Xk) = ∑
j∈J

c̃jΠ̃j,

N+1

∑
k=1

H(Xk) = ∑
j∈J

c̃iΠ̃i + H(XN+1) = ∑
j∈J

(c̃j + 1)Π̃j = ∑
i∈I

ciΠi (A65)
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Unique Information Through the Lens of Channel Ordering:
An Introduction and Review

Pradeep Kr. Banerjee

Institute for Data Science Foundations, Blohmstraße 15, 21079 Hamburg, Germany; pradeep.banerjee@tuhh.de

Abstract: The problem of constructing information measures with a well-defined inter-
pretation is of fundamental significance in information theory. A good definition of an
information measure entails certain desirable properties while also providing answers to
operational problems. In this work, we investigate the properties of the unique information,
an information measure that quantifies a deviation from the Blackwell order. Beyond
providing an accessible introduction to the topic from a channel ordering perspective, we
present a novel resource-theoretic characterization of unique information in a cryptographic
task related to secret key agreement. Our operational view of unique information entails
rich physical intuition that leads to new insights into secret key agreement in the context of
non-negative decompositions of the mutual information into redundant and synergistic
contributions. Through this lens, we illuminate new directions for research in partial
information decompositions and information-theoretic cryptography.

Keywords: comparison of channels; unique information; Blackwell order; information-
theoretic cryptography; secret key rate; secrecy monotones; synergy; redundancy; Le Cam
deficiency; resource theories

1. Introduction

Shannon’s pioneering work [1] characterized the capacity of a physical channel by
way of maximum mutual information. Since then, information theory has had a special
relation to communication engineering, even though ideas and tools from information
theory have been successfully applied in many other research fields, such as cryptography,
statistics, machine learning, complex systems, and biology, to name a few.

Despite significant progress in information theory, many fundamental questions re-
main regarding the nature of information. One of the primary challenges is that information
is not a conserved quantity, making it difficult to track and describe its distribution across
composite systems. A composite system consists of multiple interacting subsystems, each
of which may hold unique (or exclusive) information, or share redundant (or shared) infor-
mation. Additionally, there are cases where some information is not directly accessible to
any individual subsystem but can only be determined by considering the entire system.
For example, a checksum for a set of digits can only be computed when all the digits are
known. Such synergistic effects are especially relevant in cryptography, where the objective
is for the encrypted message to reveal no information about the original message without
the corresponding key.

How should the amount of unique, shared, and synergistic information be measured?
This question can be approached from two different points of view, namely, the axiomatic
and the operational [2]. In an axiomatic approach, one posits certain desirable properties
that a measure of information should satisfy. This point of view goes back to Shannon [1],
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233



Entropy 2025, 27, 29

who showed that his definition of entropy is the only one that satisfies certain intuitively
appealing properties. Shannon notes that such an axiomatic characterization is “in no way
necessary for the theory” but “lends a certain plausibility” to the definitions and that the “real
justification of these definitions, however, will reside in their implications” [1]. Thus, in Shannon’s
view, the ultimate criterion for accepting some quantity as a measure of information is
whether it provides answers to interesting problems. This is an operational or pragmatic view
of information. For example, Shannon’s coding theorems endow the entropy and mutual
information with concrete meaning in operational tasks related to data compression and
transmission. Rényi [2,3] and Csiszár [4,5] comment that for problems that lay outside the
scope of these theorems, both the axiomatic and the operational points of view deserve
attention and can, in fact, be used to “control” or inform the other when constructing new
measures of information. Understanding the properties of these measures helps clarify the
fundamental limits of operational problems. Dually, analyzing such problems motivates
the quest for new information measures.

This review investigates the properties of the unique information (UI), an informa-
tion measure introduced by Bertschinger et al. [6], which quantifies deviations from the
Blackwell order. We adopt Shannon’s pragmatic stance, focusing on an operational view of
unique information from a channel ordering perspective. This builds on the original defini-
tion of UI in [6], which is motivated by the idea that unique information should be “useful”.
Bertschinger et al. formalized this idea in terms of decision problems: Whenever Bob has
unique information about something Alice knows (which is not accessible to Eve), there
is a decision problem in which Bob has an advantage over Eve. By leveraging tools from
resource theories [7–11], we provide a concrete formalization of this conceptual framework.

Resource theories provide an abstract operational framework for studying what physi-
cal transformations between a given set of objects are possible under restrictions that follow
from the nature of the system under investigation. Within this framework, resources are
measured by monotones, quantities that do not increase under allowed operations. We
present a novel resource-theoretic characterization of UI in a fundamental cryptographic
task related to secret key agreement, showing that UI functions similarly to classical secret
key rates [12–15], and is in fact a monotone that quantifies the “resourcefulness” or secrecy
content of a source distribution. This operational characterization not only extends the
applicability of UI in cryptographic settings but also opens up new avenues for its study
within resource theory.

Our resource-theoretic approach represents a significant departure from existing
frameworks on bivariate partial information decompositions, offering a fresh perspective
on how UI can be leveraged in the broader context of information-theoretic cryptography.
While most existing approaches have focused on the shared information within these
decompositions using an axiomatic framework, we shift the focus to an operational view
of UI, grounded in the context of channel preorders. Shannon emphasized that the value
of an information measure should be judged by its implications in practical tasks, rather
than its adherence to abstract properties alone. Following this viewpoint, we argue that
UI’s significance emerges most clearly when applied in concrete settings like decision-
making or cryptographic problems, where operational utility takes precedence over purely
axiomatic considerations.

This work serves as both a review and a formalization of existing research on UI and
related measures based on channel orderings, with a particular focus on interpreting these
insights through the lens of resource theories. The focus of this review is primarily on
measures akin to UI, particularly those rooted in channel orderings, and does not extend to
other types of information measures that fall outside this framework. We draw extensively
from previously published works [16–21] and integrate key insights from unpublished
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portions of the author’s PhD thesis [22], which are not available in the public domain. By
synthesizing these contributions, this review not only provides a comprehensive overview
of prior research on UI and channel preorders, but also introduces novel resource-theoretic
perspectives, offering a fresh and compelling advancement in the study of bivariate partial
information decompositions and information-theoretic cryptography.

Outline. The paper is organized as follows: Section 2 provides a brief review of
prior work on non-negative bivariate information decompositions and presents a formal
description of the problem, with a focus on the properties of the function UI as intro-
duced by Bertschinger et al. [6]. Section 3 offers a self-contained exposition on channel
orderings in information theory. In Section 4, we review Le Cam deficiencies and their
generalizations [23–25], which exhibit properties analogous to the UI. These deficiencies
quantify the cost of approximating one channel by another through randomization, captur-
ing deviations from output- and input-degraded channel orderings. This provides insight
into the distinctions between the bivariate decompositions of Bertschinger et al. [6] and
Harder et al. [26]. In Section 5, we review the operational significance of UI in a crypto-
graphic task related to secret key agreement [16,17]. Finally, Section 6 presents a novel
resource-theoretic characterization of the main results from Section 5, demonstrating that
the UI serves as a resource “monotone” quantifying the secrecy content of a given distribu-
tion under a specific class of allowed operations.

2. Bivariate Partial Information Decompositions

Notation and conventions. We shall use notation that is commonly used in infor-
mation theory [27,28]. We assume that random variables S, Y, Z, etc., are finite, as are all
other random variables in this work. The set of all probability measures on a finite set S is
denoted by PS . A channel μ from S to Z is a family μ = {μs}s∈S of probability distributions
on Z , one for each possible input s ∈ S . We write M(S ;Z) to denote the space of all chan-
nels from S to Z . Given two channels, μ ∈ M(S ;Z) and ρ ∈ M(Z ;Y), the composition
ρ ◦ μ ∈ M(S ;Y) of μ with ρ is defined as follows: ρ ◦ μs(y) = ∑z∈Z ρz(y)μs(z) for all s ∈ S ,
z ∈ Z . A binary symmetric channel with parameter p, denoted as BSC(p), is a channel from
S = {0, 1} to Y = {0, 1} that flips each bit independently with some error probability
p ∈ [0, 1

2 ]. A binary erasure channel on S = {0, 1} with erasure probability ε ∈ [0, 1], denoted
as BEC(ε), is a channel from S to Y = S ∪ {e} such that Y = S with probability 1− ε and
Y = e with probability ε. Given two distributions P and Q, the Kullback–Leibler (KL) di-
vergence from P to Q is denoted as D(P‖Q). H(S) denotes the Shannon entropy of random
variable S. h(·) is the binary entropy function, h(p) = −p log p− (1− p) log(1− p) for
p ∈ (0, 1) and h(0) = h(1) = 0.

The mutual information of two random variables S and Y is defined as

I(S; Y) = H(S) + H(Y)− H(SY). (1)

I measures the total amount of correlation between S and Y and possesses the follow-
ing key properties [28,29]:

I(S; Y) = I(Y; S) (symmetry), (2a)

I(S; Y) ≥ 0; I(S; Y) = 0 ⇐⇒ S is independent of Y (non-negativity), (2b)

I(S; YZ) ≥ I(S; Y) (strong subadditivity). (2c)

Strong subadditivity is equivalent to the non-negativity of the conditional
mutual information:

I(S; Z|Y) ≥ 0; I(S; Z|Y) = 0 ⇐⇒ S−Y− Z,
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where S − Y − Z denotes that S, Y, and Z form a Markov chain in that order. Strong
subadditivity also implies the following key property of the mutual information, namely,
its monotonicity with respect to data processing

S− Z−Y =⇒ I(S; Z) ≥ I(S; Y), with equality i f and only i f S−Y− Z

(data processing inequality).

Another integral property of the mutual information is the following equality, which
is called the chain rule:

I(S; YZ) = I(S; Y) + I(S; Z|Y) (chain rule). (3)

In general, conditioning on an additional random variable can either increase or
decrease the mutual information. We consider three canonical distributions to illustrate
this point. Each of these distributions capture a fundamentally different kind of interaction
between three jointly distributed random variables.

Example 1. The RDN, XOR, and the COPY distributions.

RDN: If S, Y, and Z are uniformly distributed binary random variables with S = Y = Z, then
conditioning on Z decreases the mutual information between S and Y. This is an instance of
a purely redundant interaction where Y and Z convey the same information about S.

XOR: If S and Y are independent binary random variables, and Z = S⊕Y (where ⊕ denotes the
binary XOR operation), then conditioning on Z increases the mutual information between
S and Y. This is an instance of a purely synergistic interaction where neither Y nor Z
individually conveys any information about S, but jointly, they fully determine S.

COPY: If Y and Z are independent uniformly distributed binary random variables, and S = (Y, Z)
then I(S; Y) = I(S; Y|Z) = H(Y) = 1 bit, and I(S; Z) = I(S; Z|Y) = H(Z) = 1 bit.
This is an instance of an interaction that is neither redundant nor synergistic, but purely
unique, for now, Y and Z each uniquely conveys 1 bit of information about S.

In general, all three forms of interaction—unique, redundant, and synergistic—can
coexist simultaneously. Our goal is to disentangle the individual contributions to the
mutual information between S and (Y, Z) arising from these interactions. Specifically, we
distinguish S as the target variable of interest, with Y and Z serving as predictor variables.

Let ŨI, S̃I, and C̃I be non-negative functions that depend continuously on the joint
distribution of (S, Y, Z). The mutual information between S and Y can be decomposed
into two components: information Y has about S that is unknown to Z (referred to as the
unique or exclusive information of Y with respect to Z), and information Y has about S that
is known to Z (referred to as the shared or redundant information). This decomposition is
given by the following:

I(S; Y) = ŨI(S; Y\Z)︸ ︷︷ ︸
unique Y with respect to Z

+ S̃I(S; Y, Z)︸ ︷︷ ︸
shared (redundant)

. (4)

Conditioning on Z eliminates the shared information but introduces complementary (or
synergistic) information arising from the interaction between Y and Z. This is expressed
as follows:

I(S; Y|Z) = ŨI(S; Y\Z)︸ ︷︷ ︸
unique Y with respect to Z

+ C̃I(S; Y, Z)︸ ︷︷ ︸
complementary (synergistic)

. (5)
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The unique information can be interpreted either as the conditional mutual information
without synergy or as the mutual information without redundancy. Applying the chain
rule for mutual information, the total mutual information between S and (Y, Z) can be
decomposed into four distinct terms, as illustrated in Figure 1:

I(S; YZ) = ŨI(S; Y\Z) + S̃I(S; Y, Z) + ŨI(S; Z\Y) + C̃I(S; Y, Z). (6)

UIY\Z UIZ\Y

CI

SI

I(S
;Y
|Z)

I(S
; Z
)

I(S; Z|Y)

I(S;Y)

I(S; YZ)

Figure 1. An illustration of the information decomposition in Equations (4)–(6).

Equations (4)–(6) leave only a single degree of freedom; i.e., it suffices to specify either
a measure for S̃I, for C̃I, or for ŨI. Any definition of the measure ŨI fixes two of the terms
in (6), which, in turn, also determines the other terms by (4) and (5). This gives rise to the
following consistency condition:

I(S; Y) + ŨI(S; Z\Y) = I(S; Z) + ŨI(S; Y\Z). (7)

The coinformation [30] is defined as the difference between the shared and synergistic
information. It serves as a symmetric measure of correlation among three random variables:

CoI(S; Y; Z) = S̃I(S; Y, Z)− C̃I(S; Y, Z) = I(S; Y)− I(S; Y|Z). (8)

Coinformation is called interaction information (with a change of sign) in [31] and
multiple mutual information in [32]. The XOR distribution in Example 1 shows that CoI
can be negative. Coinformations and entropies are related by a Möbius inversion [30].
Equation (8) can equivalently be written as a linear combinations of entropies:

CoI(S; Y; Z) = H(S) + H(Y) + H(Z)− H(SY)− H(SZ)− H(YZ) + H(SYZ). (9)

Yeung [33] discusses properties of the CoI as a signed measure using analogies between
sets and random variables. Te Sun [34] studies the more general question of what linear
combinations of entropies are always non-negative.

Yet, another way to express the CoI is in terms of mutual informations:

CoI(S; Y; Z) = I(S; Y) + I(S; Z)− I(S; YZ). (10)

Equation (10) shows that CoI can be interpreted as a measure of the “extensivity”
of mutual information, i.e., how the mutual information increases as we combine Y and
Z [35]: If CoI = 0, then the mutual information is exactly extensive in the sense that
I(S; YZ) is the sum of the mutual informations I(S; Y) and I(S; Z). If CoI > 0, then the
mutual information is subextensive and the shared component dominates the synergistic
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component. Conversely, if CoI < 0, then the mutual information is superextensive and the
synergistic component dominates the shared component.

Coinformation is a widely utilized measure in neuroscience and related fields, with
positive values interpreted as redundancy and negative values as synergy [36–45]. However,
it cannot detect interactions where redundancy and synergy are perfectly balanced [46].

The correlational importance, a non-negative measure for evaluating the role of corre-
lations in neural coding [47–49] (see also [50]), aligns conceptually with complementary
information. Notably, it can sometimes exceed the total mutual information, as demon-
strated in specific examples [51].

Non-negative decompositions of the form (4)–(6) that seek to disentangle the syn-
ergistic and redundant contributions to the total information that a pair of predictors
convey about the target S were first considered by Williams and Beer [46]. Some notable
follow-up works include [6,26,52–59]. For the general case of k finite predictor variables,
Williams and Beer proposed the partial information lattice framework to decompose the
mutual information between the target and predictors into a sum of non-negative terms
corresponding to the different ways in which combinations of the predictor variables con-
vey shared, unique, or complementary information about S. The lattice is a consequence of
certain natural properties of the shared information, sometimes called the Williams–Beer
axioms. The underlying idea is that any information about S can be classified according
to “who knows what”, i.e., which information about S is shared by which subsets of the
predictors [59]. Specializing to the bivariate case (k = 2), the Williams–Beer axioms only
put crude bounds on the values of the functions S̃I, ŨI, and C̃I in (4)–(6). Additional
axioms have been proposed in [26,60]. See Appendix A for a brief review of these axioms.
Unfortunately, some of these axioms contradict each other, and the question for the right
axiomatic characterization of shared information is still open.

Bertschinger et al. [6] proposed a pragmatic approach to decompositions of the form
(4)–(6) based on the idea that if Y has unique information about S with respect to Z, then
there must be a situation or task where such unique information is useful. This idea is
formalized in terms of decision problems. We recall the definitions in [6].

Definition 1 ([6]). For some finite state spaces Y ,Z , and S , let PS×Y×Z be the set of all joint
distributions of (S, Y, Z). Given P ∈ PS×Y×Z , let

ΔP :=
{

Q ∈ PS×Y×Z : QSY(s, y) = PSY(s, y) and QSZ(s, z) = PSZ(s, z)
}

(11)

denote the set of all joint distributions of (S, Y, Z) that have the same marginals on (S, Y) and (S, Z)
as P. The unique information that Y conveys about S with respect to Z is defined as

UI(S; Y\Z) = min
Q∈ΔP

IQ(S; Y|Z), (12a)

where the subscript Q in IQ denotes the joint distribution on which the function is computed.
Specifying (12a) fixes the other three functions in (6), which are then

UI(S; Z\Y) = min
Q∈ΔP

IQ(S; Z|Y), (12b)

SI(S; Y, Z) = max
Q∈ΔP

CoIQ(S; Y; Z), (12c)

CI(S; Y, Z) = I(S; Y|Z)−UI(S; Y\Z). (12d)

The functions UI, SI, and CI are non-negative and satisfy (4)–(6) (and hence (7)). Fur-
thermore, the function SI satisfies the bivariate Williams–Beer axioms [6] (see Appendix A):
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SI(S; Y, Z) = SI(S; Z, Y) (symmetry),

SI(S; Y) = I(S; Y) (self-redundancy), (13)

SI(S; Y, Z) ≤ SI(S; Y) with equality if Z is a function of Y (bivariate monotonicity).

The definition of the function UI is rooted in a notion of channel domination due to
Blackwell [61]. Intuitively, one channel dominates another if the latter can be “simulated”
by the former by some stochastic degradation. UI satisfies the following key property
which we call the Blackwell property (see Definition 10):

Lemma 1 (Vanishing UI [6], Lemma 6). For a given joint distribution PSYZ, UI(S; Y\Z)
vanishes if and only if there exists a random variable Y′ such that S− Z− Y′ is a Markov chain
and PSY′ = PSY.

Blackwell’s theorem [61,62] establishes that UI(S; Y\Z) = 0 is equivalent to the
assertion that, for any decision problem involving the prediction of S, having access to Z
provides the same predictive capability as having access to Y (see Theorem 1).

Given (S, Y, Z) ∼ P, let

Q0(s, y, z) =

⎧⎪⎨⎪⎩
P(s, y)P(s, z)

P(s)
, if P(s) > 0,

0, else.
(14)

Observe that Q0 ∈ ΔP. Moreover, Q0 defines a Markov chain Y− S− Z. The following
lemma gives conditions under which the function SI vanishes:

Lemma 2 (Vanishing SI [6], Lemma 9). SI vanishes if and only if IQ0(Y; Z) = 0.

Lemma 3 characterizes the quantities UI, SI, and CI among alternative definitions of
information decompositions.

Lemma 3 ([6], Lemma 3). Let ŨI(S; Y\Z), Ũ I(S; Z\Y), S̃I(S; Y, Z), and C̃I(S; Y, Z) be non-
negative functions on PS×Y×Z satisfying equations (4)–(6), and assume that the following holds:

(∗) ŨI depends only on the marginal distributions of the pairs (S, Y) and (S, Z).

Then, ŨI ≤ UI, S̃I ≥ SI, and C̃I ≥ CI with equality if and only if there exists Q ∈ ΔP such
that C̃IQ(S; Y, Z) = 0.

By Lemma 3, (12a–12d) is the only information decomposition that satisfies (∗) and
the following property:

(∗∗) For each P ∈ Δ, there is Q ∈ ΔP with CIQ(S; Y, Z) = 0.

Assumption (∗) in Lemma 3 is motivated by the Blackwell property, which also
depends only on the marginal distributions of the pairs (S, Y) and (S, Z).

Given (S, Y, Z) ∼ P, let

Q∗ ∈ arg min
Q∈ΔP

IQ(S; Y|Z). (15)

By definition, IQ∗(S; Y|Z) = UI(S; Y\Z). The distribution Q∗ is called a minimum
synergy distribution as

CIP(S; Y, Z) = 0 if and only if P ∈ arg min
Q∈ΔP

IQ(S; Y|Z). (16)
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Although theoretically promising, the operational significance of the UI is not imme-
diately evident, except in cases where it vanishes, reflecting the Blackwell property. One of
our main aims is to address this gap by examining UI’s operational relevance in practical
model systems through the following key observations:

• The Blackwell relation induces a partial order on channels with the same input alpha-
bet. Most channels are incomparable, meaning one cannot always simulate another
by degradation. In such cases, UI quantifies the degree of deviation from simulating
one channel by another.

• Weaker notions of channel comparison, such as the “less noisy” property [63], have
operational significance through vanishing CS, where CS is the secrecy capacity of
the wiretap channel [64,65]. Similar to how CS measures deviation from the less
noisy order, a nonvanishing UI quantifies a deviation from the Blackwell order and
bounds operational quantities in secret key agreement tasks. In particular, UI acts
as a secrecy monotone, never increasing under local operations in one-way secret key
agreement protocols, making it an upper bound on the one-way secret key rate S→ [66].
This endows the UI with operational significance.

• Finally, the best-known upper bounds on the two-way secret key rate S↔ involve a secret
key decomposition [67]. We show that UI satisfies a similar property, ensuring UI is never
greater than the best-known computable upper bound on S↔. We conjecture that UI
serves as a lower bound on S↔ and identify a class of distributions where they coincide.

3. Comparison of Channels

Given two channels that convey information about the same random variable, a
natural question is “which channel is better?”. Depending on the task at hand, some
orderings are more natural or mathematically more appealing than others. For example,
ordering channels according to their capacity is often too coarse to be useful in practice. In
a seminal paper [61], David Blackwell introduced an ordering of channels in terms of risks
of statistical decision rules. Blackwell showed that such an ordering can be equivalently
characterized in terms of a purely probabilistic relation between the channels. Blackwell
formulated his result in terms of a decision problem, where a decision maker or agent reacts
to the outcome of a statistical experiment. In information-theoretic parlance, a statistical
experiment is just a noisy channel [4,25]. Shannon [68] independently introduced a criterion
for ordering communication channels from a random coding perspective, which is weaker
than Blackwell’s criterion.

We provide a self-contained introduction to channel orderings in information theory.
Such orderings are a well-studied subject in network information theory [69]. For instance,
the capacity region of broadcast channels (without feedback) depends only on the compo-
nent channels and is known for a number of special cases when one of the components is
“better” than the other in some well-defined sense (see, e.g., [70,71]).

The Blackwell order. The Blackwell order evaluates channels with a common input
alphabet by comparing the minimal expected loss a rational agent incurs when making
decisions based on their outputs. This concept is formalized through decision problems
under uncertainty (see [24] for an in-depth discussion).

Consider a decision problem (πS,A, �), where A is the set of possible actions, �(s, a)
represents the bounded loss incurred when the agent chooses action a ∈ A in state s ∈ S ,
and πS is the prior distribution over the state space S .

The agent observes a random variable Z via a channel μ : S → Z before choosing an
action. A rational agent selects a strategy ρ ∈ M(Z ;A) to minimize the expected loss (or
risk), defined as follows:
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R(πS, μ, ρ, �) := ∑
s∈S

πS(s) ∑
a∈A

ρ ◦ μs(a)�(s, a). (17)

The optimal risk for channel μ is as follows:

R(πS, μ, �) := min
σ∈Aμ

∑
s∈S

πS(s) ∑
a∈A

σs(a)�(s, a). (18)

where Aμ = {ρ ◦ μ : ρ ∈ M(Z ;A)}. Optimal strategies can always be chosen deterministi-
cally, so it suffices to consider deterministic strategies.

Now, suppose the agent has access to another random variable Y via a second chan-
nel κ ∈ M(S ;Y) with the same input alphabet S . The agent will always prefer Z to Y if, for
any decision problem, the optimal risk using Z is no greater than that using Y. This leads
to the following definition.

Definition 2. Given μ ∈ M(S ;Z), κ ∈ M(S ;Y), and a probability distribution πS on S
such that PSZ(s, z) = πS(s)μs(z) and PSY(s, y) = πS(s)κs(y), we say that Z is always more
informative about S than Y and write Z �S Y if R(πS, κ, �) ≥ R(πS, μ, �) for any decision
problem (with πS fixed as above).

The variables can also be ranked probabilistically: Z is always preferred over Y if, given
access to Z, a single use of Y can be simulated by sampling y′ ∈ Y after each observation
z ∈ Z . This implies that Y provides no additional utility beyond what Z already offers.

Definition 3. Write Z �′S Y if there exists a random variable Y′ such that the pairs (S, Y) and
(S, Y′) are statistically indistinguishable, and S− Z−Y′ is a Markov chain.

Intuitively, Z knows everything that Y knows about S in both these situations. Black-
well showed the equivalence of these two relations [61]. The following is a statement of
Blackwell’s theorem for random variables [62]:

Theorem 1 (Blackwell’s theorem for random variables). Z �S Y ⇐⇒ Z �′S Y.

The original statement of Blackwell’s theorem [61] allows us to directly compare the
channels κ and μ and the input distribution on S can be arbitrary.

Definition 4. We say that μ is always more informative than κ and write μ �S κ

if R(πS, κ, �) ≥ R(πS, μ, �) for any (πS,A, �).

Definition 5. We say that κ is output-degraded (or post-garbled) from μ and write μ �odeg
S κ

if κ = λ ◦ μ for some λ ∈ M(Z ;Y).

The relation �odeg
S is also called the degradation order (see, e.g., [72]).

Theorem 2 (Blackwell’s Theorem (1953) [61]). μ �S κ ⇐⇒ μ �odeg
S κ.

See [73] for a simple proof of Blackwell’s theorem.
If πS has full support, then μ �S κ ⇐⇒ Z �S Y (Theorem 4 in [62]) and it suffices to

look only at different loss functions. In the sequel, we assume that πS has full support, and
we call �S and �S the Blackwell orders.

Strictly speaking, the Blackwell order is only a preorder rather than a partial order as
there exist channels κ �= μ that satisfy κ �S μ �S κ (when κ arises from μ by permuting the
output alphabet). However, for our purposes, such channels can be treated as equivalent.
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We write μ �S κ if μ �S κ and κ ��S μ. By Blackwell’s theorem, this indicates that μ

performs at least as well as κ in any decision problem and that there exist decision problems
in which μ outperforms κ.

A related order is the zonotope order, which is weaker than the Blackwell order [62,74].
For the special case of binary-valued channel inputs, i.e., |S| = 2, the Blackwell order
defines a lattice and is identical to the zonotope order [62,74] and its generalization, the
k-decision order [61].

The Shannon order. Shannon proposed a criterion for simulating one channel from
another based on a random coding argument [68]. Shannon’s criterion allows for random-
ization at both the input and the output of the simulating channel as well as for shared
randomness between its input and output.

Definition 6 ([68]). Given two channels κ ∈ M(S′;Y) and μ ∈ M(S ;Z), we say that μ

includes κ and write μ �inc κ if for some k ∈ N, there exists a probability distribution g ∈ P[k]
and k pairs of pre- and post-channels (αi, βi) ∈ M(S′;S) ×M(Z ;Y), 1 ≤ i ≤ k, such that
κ = ∑k

i=1 g(i)(βi ◦ μ ◦ αi).

Shannon showed that if μ �inc κ, then the existence of a good coding scheme for κ

implies the existence of a good coding scheme for μ, where “goodness” is measured in the
sense of low probability of error. Let Σ be the set of all convex combinations of products of
the channels in M(S′;S) with those in M(Z ;Y), i.e.,

Σ = conv
(
α⊗ β ∈ M(S′ × Z ;S × Y) : α ∈ M(S′;S), β ∈ M(Z ;Y)), (19)

where conv(C) denotes the convex hull of C, and (α⊗ β)s′ ,z(s, y) = αs′(s)βz(y) for each
s ∈ S , s′ ∈ S′, z ∈ Z , and y ∈ Y . By Carathéodory’s theorem [75], any channel χ ∈ Σ can
be represented as a convex combination of at most |S′ × Z × S × Y|+ 1 product channels.
Given μ ∈ M(S ;Z) and χ ∈ Σ, define the skew-composition χ ◦s μ ∈ M(S′;Y) of μ with χ

as follows: χ ◦s μ(y|s′) = ∑s∈S ,z∈Z χs′ ,z(s, y)μs(z) for all s′ ∈ S′, y ∈ Y . We then have the
following equivalent characterization of the Shannon order:

Proposition 1 ([76]). μ �inc κ if and only if there exists χ ∈ Σ such that κ = χ ◦s μ.

Nasser [76] gave a characterization of the Shannon order that is similar to Black-
well’s theorem.

In Definition 6, the input and output alphabets of both κ and μ may be different. If
the channels share a common input alphabet, i.e., S′ = S , then μ �odeg

S κ =⇒ μ �inc κ.
The converse implication is not true in general and the Shannon order is weaker than the
Blackwell order [25].

The input-degraded order. Given two channels that share a common output alphabet,
Nasser [77] introduced the following ordering:

Definition 7 ([77]). Let κ̄ ∈ M(Y ;S) and μ̄ ∈ M(Z ;S) be two channels with a common output
alphabet. We say that κ̄ is input-degraded from μ̄ and write μ̄ �ideg

S κ̄ if κ̄ = μ̄ ◦ λ̄ for
some λ̄ ∈ M(Y ;Z).

Proposition 2 ([77]).

μ̄ �ideg
S κ̄ ⇐⇒ conv

({κ̄y}y∈Y
) ⊂ conv({μ̄z}z∈Z )

where conv(C) denotes the convex hull of C.
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Nasser [77] gave a characterization of the input-degraded order that is similar to
Blackwell’s theorem.

The more capable and less noisy orders. Given two channels κ ∈ M(S ;Y) and
μ ∈ M(S ;Z) with a common input alphabet, Körner and Marton introduced the following
two orderings [63]:

Definition 8. μ is said to be more capable than κ, denoted μ �mc κ, if I(S; Z) ≥ I(S; Y) for
every probability distribution PS ∈ PS .

Definition 9. μ is said to be less noisy than κ, denoted μ �ln κ, if I(U; Z) ≥ I(U; Y) for every
PUS such that U − S−YZ is a Markov chain.

An equivalent characterization of the less noisy relation is the following [78]: μ �ln κ

if and only if I(S; Z)− I(S; Y) is a concave function of the input probability distribution PS.
We note the following relationship between the Blackwell, less noisy and the more

capable preorders:

Proposition 3 ([63]).

μ �odeg
S κ =⇒ μ �ln κ =⇒ μ �mc κ. (20)

As the following examples show, the converse of neither implication is true in
general [63].

Example 2 (Broadcast channel consisting of a BSC and a BEC [69,79]). A memoryless broadcast
channel model (S , ξs(y, z),Y ×Z) consists of three sets S , Y , andZ , and a channel ξ ∈ M(S ;Y ×
Z). Let κs(y) := ∑z∈Z ξs(y, z) and μs(z) := ∑y∈Y ξs(y, z) be the two components of ξ.

Consider a broadcast channel with κ = BSC(p) with crossover probability p ∈ (0, 1/2),
and μ = BEC(ε) with erasure probability ε ∈ (0, 1). Then, the following hold:

1. For 0 < ε ≤ 2p, Y is output-degraded from Z.
2. For 2p < ε ≤ 4p(1− p), Z is less noisy than Y, but Y is not output-degraded from Z.
3. For 4p(1− p) < ε ≤ h(p), Z is more capable than Y, but not less noisy.
4. For h(p) < ε < 1, ξ does not belong to any of the three classes.

Example 3 (Doubly symmetric binary erasure (DSBE) source [12,80]). A DSBE source with
parameters (p, ε) is defined as follows: PSYZ(s, y, z) = PSY(s, y)pZ|SY(z|s, y) where PSY(0, 0) =
PSY(1, 1) = p/2, PSY(0, 1) = PSY(1, 0) = (1− p)/2, and PZ|SY(z|s, y) is an erasure channel,
i.e., Z = SY with probability 1− ε and Z = e with probability ε. Without loss of generality, we
may assume p > 1

2 . Then, the following hold:

1. For 0 < ε ≤ 2(1− p), Y is output-degraded from Z.
2. For 2(1− p) < ε ≤ 4p(1− p), Z is less noisy than Y, but Y is not output-degraded from Z.
3. For 4p(1− p) < ε ≤ h(p), Z is more capable than Y, but not less noisy.
4. For h(p) < ε < 1, a DSBE(p, ε) source does not belong to any of the three classes.

4. Unique Information and Channel Deficiencies

How can we determine whether Y possesses unique information about S that is not
available to Z? Consider the channels κ and μ with a common input alphabet S , as illustrated
in Figure 2a. If μ can be reduced to κ by appending a post-channel λ at its output, then μ

can be said to include κ. Similarly, for the channels κ̄ and μ̄ with a common output alphabet
S , as shown in Figure 2b, μ̄ can be considered to include κ̄ if it reduces to κ̄ by adding a
pre-channel λ̄ at its input.
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In both cases, one would expect Y to provide no unique information about S relative
to Z. A nonzero unique information would then serve as a measure of the extent to which
one channel deviates from being an inclusion or randomization of the other.

Figure 2. (a) Simulation of the channel κ through a randomization at the output of μ, where κ and
μ share a common input alphabet S . (b) Simulation of the channel κ̄ through a randomization at the
input of μ̄, where κ̄ and μ̄ share a common output alphabet S .

The function UI in Definition 1 is based on the idea of approximating one chan-
nel by randomizing its output (see Figure 2a). In contrast, Harder et al. [26] defined a
measure of shared information through a difference in two KL divergence terms, where
one term involves randomization at the input (see Figure 2b). In both cases, the resulting
decompositions of the total mutual information are non-negative.

Banerjee et al. [16] introduce two quantities that generalize Le Cam’s notion of weighted
deficiency [23–25] between channels. Weighted deficiencies quantify the cost of approximat-
ing one channel from another via randomizations and are closely related to the function
UI. Depending on whether the randomization occurs at the output or input, two different
forms of weighted deficiency arise: the weighted output KL deficiency and the weighted input
KL deficiency. Both of these induce non-negative bivariate decompositions [16]. Interestingly,
the decomposition corresponding to the weighted input deficiency coincides with the one
introduced by Harder et al. [26] (see Proposition 8).

4.1. Generalized Le Cam Deficiencies

The Blackwell order provides a natural criterion to determine if a variable Y has
unique information about S with respect to Z or not; see Definitions 2 and 3.

Definition 10 (Blackwell property). Y has no unique information about S with respect to
Z :⇐⇒ Z �′S Y.

The function UI satisfies the Blackwell property (see Lemma 1). When UI(S; Y\Z)
vanishes, we say that Z is Blackwell-sufficient for Y with respect to S.

Theorem 1 states that if the relation Z �S Y (resp. Y �S Z) does not hold, then there
exist a loss function and a set of actions that render Y (resp. Z) more useful. This statement
motivates the following definition [6]:

Definition 11. Y has unique information about S with respect to Z if there exists a set of
actions A and a loss function �(s, a) ∈ RS×A such that R(πS, κ, �) < R(πS, μ, �).

The relation �odeg
S is a preorder on the family of all channels with the same input

alphabet S (see Definition 5). In general, we cannot always simulate one channel by a
randomization of the other. To be able to compare any two channels, Lucien Le Cam
introduced the notion of channel deficiencies [23,24]:

Definition 12. Given μ ∈ M(S ;Z) and κ ∈ M(S ;Y), the Le Cam deficiency of μ with respect
to κ is

δ(μ, κ) := inf
λ∈M(Z ;Y)

sup
s∈S

‖λ ◦ μs − κs‖TV. (21)
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where ‖ · ‖TV denotes the total variation distance.

Note that δ(μ, κ) = 0 if and only if μ �odeg
S κ.

Definition 13. Given μ ∈ M(S ;Z), κ ∈ M(S ;Y) and a probability distribution πS on S , the
weighted Le Cam deficiency of μ with respect to κ is

δπ(μ, κ) := inf
λ∈M(Z ;Y)

Es∼πS ‖λ ◦ μs − κs‖TV. (22)

The Le Cam randomization criterion [23] establishes that deficiencies quantify the maximal
gap in optimal risks between decision problems when using the channel μ instead of κ.

Theorem 3 ([23]). Fix μ ∈ M(S ;Z), κ ∈ M(S ;Y), and a probability distribution πS on S ,
and write ‖�‖∞ = maxs,a �(s, a). For every ε > 0, δπ(μ, κ) ≤ ε if and only if R(πS, μ, �)−
R(πS, κ, �) ≤ ε‖�‖∞ for any set of actions A and any bounded loss function �.

Raginsky [25] introduced a broad class of deficiency-like quantities based on a “gen-
eralized” divergence between probability distributions that maintains a monotonicity
property with respect to data processing. Specializing this to the KL divergence, we have
the following definition:

Definition 14. The output KL deficiency of μ with respect to κ is

δo(μ, κ) := inf
λ∈M(Z ;Y)

sup
s∈S

D(κs‖λ ◦ μs), (23)

where the subscript o in δo emphasizes the fact that the randomization is at the output of the
channel μ.

In a spirit similar to [25] and Section 6.2 in [24], one can define a weighted output KL
deficiency [16]:

Definition 15. The weighted output KL deficiency of μ with respect to κ is

δπ
o (μ, κ) := min

λ∈M(Z ;Y)
D(κ‖λ ◦ μ|πS). (24)

The weighted output KL deficiency quantifies the cost of approximating one observed
variable from the other (and vice versa) through Markov kernels. Notably, δπ

o (μ, κ) = 0 if
and only if Z �′S Y, capturing the intuition that a small value of δπ

o (μ, κ) implies that Z is
approximately Blackwell-sufficient for Y with respect to S. Using Pinsker’s inequality, we obtain
the following:

δπ(μ, κ) ≤
√

ln(2)
2 δπ

o (μ, κ). (25)

Bounding the weighted output KL deficiency is sufficient to guarantee that the differ-
ences in optimal risks remain bounded for any decision problem of interest [16]:

Proposition 4. Fix μ ∈ M(S ;Z), κ ∈ M(S ;Y), and a prior probability distribution πS on S , and
write ‖�‖∞ = maxs,a �(s, a). For every ε > 0, if δπ

o (μ, κ) ≤ ε, then R(πS, μ, �)− R(πS, κ, �) ≤√
ε

ln(2)
2 ‖�‖∞ for any set of actions A and any bounded loss function �.

Recall the data processing inequality for the mutual information:
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Z−Y−W =⇒ I(Z; W) ≤ min{I(Z; Y), I(Y; W)}. (26)

Lemma 4 shows that the weighted output KL deficiency satisfies a similar inequality:

Lemma 4. Let μ ∈ M(S ;Z), κ ∈ M(S ;Y), and ν ∈ M(S ;W) be three channels with a common
input alphabet and let πS be a given distribution on S . Then,

Z �S Y �S W =⇒ δπ
o (μ, ν) ≤ min{δπ

o (μ, κ), δπ
o (κ, ν)}.

See Appendix B for a proof. One can also define a weighted deficiency for the input-
degraded order in Definition 7 [16].

Definition 16. The weighted input KL deficiency of μ̄ with respect to κ̄ is

δπ
i (μ̄, κ̄) := min

λ̄∈M(Y ;Z)
D(κ̄‖μ̄ ◦ λ̄|πY), (27)

where the subscript i in δi emphasizes the fact that the randomization is at the input of the channel μ̄.

The weighted input KL deficiency satisfies the following monotonicity property:

Lemma 5. Let μ̄ ∈ M(Z ;S), κ̄ ∈ M(Y ;S), and ν̄ ∈ M(W ,S) be three channels with a common
output alphabet, and let πW be a given distribution onW . Then,

μ̄ �ideg
S κ̄ =⇒ δπ

i (μ̄, ν̄) ≤ δπ
i (κ̄, ν̄).

The proof is similar to the first part of the proof of Lemma 4 and is omitted.

4.2. Non-Negative Mutual Information Decompositions

Given an information measure that captures some aspect of unique information but
does not satisfy the consistency condition (7), we can construct the corresponding bivariate
information decomposition as follows:

Lemma 6 ([81], Proposition 9). Let δ : PS×Y×Z → R be a non-negative function that satisfies

δ(S; Y \ Z) ≤ min{I(S; Y), I(S; Y|Z)}.

Then, a bivariate information decomposition is given by

UIδ(S; Y \ Z) = max
{

δ(S; Y \ Z), δ(S; Z \Y) + I(S; Y)− I(S; Z)
}

,

UIδ(S; Z \Y) = max
{

δ(S; Z \Y), δ(S; Y \ Z) + I(S; Z)− I(S; Y)
}

,

SIδ(S; Z, Y) = min
{

I(S; Y)− δ(S; Y \ Z), I(S; Z)− δ(S; Z \Y)
}

,

CIδ(S; Z, Y) = min
{

I(S; Y|Z)− δ(S; Y \ Z), I(S; Z|Y)− δ(S; Z \Y)
}

.

We refer to the construction in Lemma 6 as the UI construction. The unique informa-
tion UIδ generated by this construction is the smallest UI function among all bivariate
information decompositions with UI ≥ δ.

This construction can be used to derive new non-negative bivariate decompositions.
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4.2.1. Decomposition Based on the Weighted Output KL Deficiency

Proposition 5 ([16]). Let (S, Y, Z) ∼ P, and let πS be the marginal distribution of S. Let
κ ∈ M(S ;Y) resp. μ ∈ M(S ;Z) be two channels describing the conditional distribution of Y resp.
Z, given S. Define

δ(S; Y \ Z) = δπ
o (μ, κ), (28)

where δo is the weighted output KL deficiency (24). Then, the functions UIδ, SIδ, and CIδ in
Lemma 6 define a non-negative bivariate decomposition.

Lemma 7 ([16]). Define

UIo(S; Y\Z) = max{δπ
o (μ, κ), δπ

o (κ, μ) + I(S; Y)− I(S; Z)}. (29)

Then, UIo(S; Y\Z) vanishes if and only if Y has no unique information about S with respect
to Z (according to Definition 10).

From Lemma 3, we have the following relationship between the different quantities:

Lemma 8.

δπ
o (μ, κ) ≤ UIo(S; Y\Z) ≤ UI(S; Y\Z),

The next proposition follows from Lemmas 1 and 7, and Definition 15.

Proposition 6.

δπ
o (μ, κ) = 0 ⇐⇒ UIo(S; Y\Z) = 0 ⇐⇒ UI(S; Y\Z) = 0.

4.2.2. Decomposition Based on the Weighted Input KL Deficiency

Proposition 7 ([16]). Let (S, Y, Z) ∼ P, and let πY resp. πZ be the induced marginal distributions
of Y resp. Z, both assumed to have full support. Let κ̄ ∈ M(Y ;S) and μ̄ ∈ M(Z ;S) be two channels
such that κ̄ = PS|Y and μ̄ = PS|Z. Define

δ(S; Y \ Z) = δπ
i (μ̄, κ̄), (30)

where δi is the weighted input KL deficiency (27). Then, the functions UIδ, SIδ, and CIδ in Lemma 6
define a non-negative bivariate decomposition.

Harder et al. [26] introduced a measure of shared information based on reverse informa-
tion (rI) projections [82] onto a convex set of probability measures.

Definition 17. For C ⊂ PS , let conv(C) denote the convex hull of C. Let

Qy↘Z(S) ∈ arg min
Q∈conv({μ̄z}z∈Z )⊂PS

D(κ̄y‖Q)

be the rI-projection of κ̄y onto the convex hull of the points {μ̄z}z∈Z ∈ PS . Define the projected
information of Y onto Z with respect to S as

IS(Y ↘ Z) := E(s,y)∼κ̄×πY
log

Qy↘Z(s)
κ̄◦πY(s)

, (31)
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and the shared information as

SIred(S; Y, Z) := min{IS(Y ↘ Z), IS(Z ↘ Y)}. (32)

Proposition 8 states that implicit in the above construction is the weighted input KL
deficiency δπ

i (μ̄, κ̄).

Proposition 8 ([16]). IS(Y ↘ Z) = I(S; Y)− δπ
i (μ̄, κ̄).

An immediate consequence of Proposition 8 is that the decomposition proposed
by Harder et al. [26] and that in Proposition 7 are equivalent.

Remark 1 (SIred is not continuous). IS(Y ↘ Z) and IS(Z ↘ Y) are defined in terms of
conditional probability κ̄y = PS|Y=y and μ̄z = PS|Z=z, which are only defined for those y, z with
πY(y) > 0 and πZ(z) > 0. Therefore, IS(Y ↘ Z) and IS(Z ↘ Y) are discontinuous when
probabilities tend to zero. For a concrete example, see Example 3 in [18].

Remark 2 (Vanishing sets of UI and deficiencies). The Blackwell order compares two channels
with a common input alphabet. This order has found applications in network information the-
ory [69,79]. In wiretap channel models [64,65] (see Section 5.2), one considers a memoryless broad-
cast channel ξ : S → Y ×Z where Alice selects the inputs to ξ, while Bob and Eve observe, resp.,
the Y-outputs and the Z-outputs. Bob’s component channel is defined as κs(y) = ∑z∈Z ξs(y, z)
and Eve’s as μs(z) = ∑y∈Y ξs(y, z). The secrecy capacity of the wiretap channel, CS, quantifies a
deviation from the less noisy order and depends on ξ only through the component channels κ and μ

(see Proposition 9). Likewise, when the distribution of the input to ξ is fixed, the UI and weighted
output deficiency δπ

o quantify a deviation from the Blackwell order and depend on ξ only through κ

and μ. Proposition 6 shows that the sets on which UI and δπ
o vanish are the same.

On the other hand, the weighted input deficiency δπ
i quantifies a deviation from the input-

degraded order, which compares two channels with a common output alphabet. This ordering
appears more natural in some settings, e.g., when learning a classifier (see, e.g., [81]). We can again
define a channel model ξ̄ : Y × Z → S . The associated component channels κ̄(s|y) and μ̄(s|z)
are, however, not uniquely determined by ξ̄ (also see Remark 1). In Theorem 22 of [6], it was
claimed that the vanishing sets of δπ

i and UI coincide. However, Banerjee et al. [83] showed that
this assertion is incorrect (see Example 28b in [83]).

Remark 3 (Decompositions based on known bounds on the secret key rates). In Section 5,
we show that the function UI shares conceptual similarities with secret key rates [12,84]. The UI
construction can be used to obtain bivariate information decompositions from the one-way (S→,
(42)) and two-way secret key rates (S↔), as well as from related information functions defined as
bounds on these rates. These functions include the secrecy capacity of the wiretap channel CS (36),
the intrinsic information I↓ (47), the reduced intrinsic information I↓↓ (50), and the minimum
intrinsic information B1 (52). Each of these bounds can be expressed as optimization problems
over Markov kernels of bounded size. For the complete chain of inequalities, see (57). Like UI, both
S→ and CS depend solely on the marginal distributions of the pairs (S, Y) and (S, Z). However,
unlike UI, none of these functions satisfy the consistency condition (7). Nevertheless, since these
bounds are upper-bounded by min{I(S; Y), I(S; Y|Z)}, we can utilize the UI construction outlined
in Lemma 6 to derive new non-negative decompositions. An analysis of the properties of these
decompositions is reserved for future study.
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5. Unique Information and Secrecy Monotones

The contents of this section have a distinct cryptographic flavor. Our main goal
is to establish the operational significance of the UI in Definition 1. In order to keep
the exposition reasonably self-contained, we collect all relevant definitions and models
in Section 5.2. Theorem 8, the triangle inequality for the UI (Property P.7), and Theorem 9
are the main results in this section. Theorem 8 was first derived in [16], while the contents
of Sections 5.4 and 5.5 expands on the work in [16,17].

5.1. Motivation and Synopsis

Consider the source model for secret key agreement between Alice and Bob, who are
distant from each other and must communicate over a noiseless but insecure (public)
channel in the presence of an adversary, Eve [12,85]. Alice, Bob, and Eve observe i.i.d.
copies of random variables S, Y, and Z, respectively, where (S, Y, Z)∼P. Alice and Bob
aim to agree on a secret key by exchanging messages over the public channel according
to a predefined protocol. Eve is aware of the protocol and can intercept and read all the
messages exchanged. The maximum rate at which Alice and Bob can compute a key such
that Eve’s total information (from both Z and the entire communication) about the key is
negligibly small is referred to as the two-way secret key rate, S↔. If Alice is allowed to send
only one message and Bob sends none, the corresponding key rate is called the one-way
secret key rate, S→.

The secret key rates are conceptually similar to the function UI. While UI(S; Y\Z) is
interpreted as the information about S known to Y, but not to Z, S↔(S; Y|Z ) can be interpreted
as the information common to S and Y, which is unique with respect to Z.

For example, consider the RDN distribution from Example 1, where Alice, Bob, and
Eve each share one uniformly random bit. In this case, since Eve knows the exact values of
S and Y, Alice and Bob cannot share a secret. This is reflected in the values of UI(S; Y\Z)
and UI(Y; S\Z), both of which are zero.

As another example, consider the XOR distribution in Example 1, where the values
of any two variables in (S, Y, Z) determine the third. Clearly, if Alice can only observe S
and Bob can only observe Y, they cannot generate a secret key. This is also apparent from
the values of UI(S; Y\Z) and UI(Y; S\Z), both of which are zero. However, if Alice is also
able to observe Z, she can compute Y, which can then be used as a key that is perfectly
secret from Eve, since Eve’s variable Z is independent of the key Y.

Intuitively, when Alice and Bob share some common information that is unique with
respect to Eve, they can exploit this information to generate a secret key. A distribution
combining elements of the XOR and RDN models exemplifies the potential advantage of
such a setup:

Example 4 (The XORRDN distribution [12,84]). Consider the following distribution: PSYZ(0, 0, 0)
= PSYZ(0, 1, 1) = PSYZ(1, 0, 1) = PSYZ(1, 1, 0) = 1

8 , and PSYZ(2, 2, 2) = PSYZ(3, 3, 3) = 1
4 .

The table below shows the distribution (with Z’s value in parentheses):

S

Y (Z) 0 1 2 3

0 1/8 (0) 1/8 (1) . .
1 1/8 (1) 1/8 (0) . .
2 . . 1/4 (2) .
3 . . . 1/4 (3)
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If Eve observes 2 or 3, she can determine the exact values of S and Y. When she observes 0 or 1,
she can infer that Alice and Bob’s values lie within {0, 1}, but within this range, their observations
are independent. Consequently, no secret key agreement is possible in this case. This is reflected in
the values of UI(S; Y\Z) and UI(Y; S\Z), both of which are zero.

Consider now the modified distribution: PSYZ(0, 0, 0) = PSYZ(0, 1, 1) = PSYZ(1, 0, 1) =

PSYZ(1, 1, 0) = 1
8 , and PSYZ(2, 2, 0) = PSYZ(3, 3, 1) = 1

4 , where Eve’s variable Z can only assume
binary values.

S

Y (Z) 0 1 2 3

0 1/8 (0) 1/8 (1) . .
1 1/8 (1) 1/8 (0) . .
2 . . 1/4 (0) .
3 . . . 1/4 (1)

Now Bob (resp. Alice) has 1 bit of unique information about Alice’s (resp. Bob’s) values with
respect to Eve (namely, the ability to distinguish whether Alice sees values in the XOR or the RDN
quadrant) which can be used to agree on 1 bit of secret.

A computable characterization of the one-way secret key rate is known [66]
(see Theorem 6). In contrast, determining the two-way key rate for a given distribu-
tion, or even the condition when it is positive, seems difficult, and its value is known only
for a handful of distributions [66,67,86,87]. For protocols with unbounded communication,
computing the two-way key rate for a general distribution is a fundamental and open area
of inquiry in information-theoretic cryptography.

A standard technique for deriving upper bounds on the two-way key rate is to consider
functions of joint distributions called secrecy monotones or simply monotones, which satisfy
the following property: In any secret key agreement protocol, a monotone can never increase
if Alice and Bob are only allowed to perform a well-defined class of physical operations
called local operations (LOs) and public communication (PC) [14,67,88]. Theorem 8 shows
that the UI is an upper bound on the one-way secret key rate. This is a consequence of
the fact that the function UI is a monotone when the class of allowed operations is local
operations and one-way public communication.

The state-of-the-art upper bounds on the two-way key rate are based on the following
key property (see Theorem 4 in [67]): For any tuple (S, Y, Z, Z′),

S↔(S; Y|Z ) ≤ S↔
(
S; Y
∣∣Z′ )+ S→

(
SY; Z′|Z ). (33)

In [67,89], a heuristic interpretation of this decomposition is provided: Let s = S↔(S; Y|Z ).
Consider a fourth party, Charlie, who receives i.i.d. copies of Z′ but does not have access
to the public channel. If we decompose s into two parts: s1, which Charlie does not know,
and s2 = s− s1, which Charlie knows about the shared secret key between S and Y with
respect to Z, then s1 is at most S↔(S; Y|Z′ ), while s2 is at most S→(SY; Z′|Z ).

Gohari et al. [80] gave an alternative interpretation of (33): For any (S, Y, Z, Z′)∼P, if
the induced channel PZ|SY dominates PZ′ |SY in the less noisy sense (see Definition 9), then
the second term S→(SY; Z′|Z ) vanishes. Thus, S→(SY; Z′|Z ) represents the “penalty” for
deviating from the less noisy condition when substituting PZ|SY with PZ′ |SY.

The function UI satisfies a triangle inequality, which implies the following property
that resembles (33): For any (S, Y, Z, Z′),

UI(S; Y\Z) ≤ UI(S; Y\Z′) + UI(SY; Z′\Z). (34)
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From (34), we conclude that the UI is never greater than the best-known computable
upper bound on S↔. We also give an example where the UI is not lower than the best-
known lower bound on the two-way rate. We conjecture that the UI lower-bounds the
two-way key rate and discuss implications of the conjecture.

5.2. Information-Theoretic Secrecy Models

We begin by reviewing some fundamental models in information-theoretic cryptogra-
phy. Some excellent references include [13–15] and Section 17.3 in [27].

Suppose that Alice wishes to transmit a message to Bob over a noiseless channel
such that an adversary, Eve, who has access to the channel, obtains no information about
the message. The channel is assumed to be authenticated in the sense that Eve has only
read access to the channel and cannot modify or insert messages without being detected.
Authentication can be guaranteed, for instance, if Alice and Bob initially share a short secret
key [90]. The assumption that the channel is noiseless entails no loss of practicality if we
assume that powerful error correction schemes exist, so that the message can be recovered
with an arbitrarily small probability of error. This assumption is convenient because
it allows us to focus solely on secrecy without having to worry about communication
efficiency. We will call such a noiseless and authenticated channel the public channel. The
terminology is, of course, suggestive of the fact that the channel is insecure. While it is
often impractical to assume that a secure channel (e.g., a trusted courier) is always available
whenever such a need arises, without loss of generality, we will assume that insecure public
channels (e.g., telephone lines) are always available.

The Shannon model. Shannon introduced a simple model of a cryptosystem [91]
as follows. Let random variables M ∈ M and C ∈ C model, resp., the message and
the codeword or ciphertext. Alice and Bob share a common secret key modeled by a
random variable K ∈ K. We assume that K is independent of M. Let e : M×K → C and
d : C × K → M denote, resp., Alice’s encoding and Bob’s decoding function. The pair
(e, d) is called a coding scheme. We assume that Eve has no knowledge of the key but knows
the coding scheme and that Bob can decode messages without error, i.e., M = d(C, K)
if C = e(M, K). Alice encodes M into a ciphertext C using the secret key before sending it
over the public channel. Since the channel is public, Eve receives an identical copy of C
as Bob. A coding scheme is said to achieve perfect secrecy if Eve’s equivocation about the
message given the ciphertext as measured by the conditional entropy H(M|C) equals her a
priori uncertainty about the message, i.e., H(M|C) = H(M), or, equivalently I(M; C) = 0.
Shannon gave a necessary condition for communication in perfect secrecy.

Theorem 4 ([91]). If a coding scheme achieves perfect secrecy, then H(K) ≥ H(M).

To see this, note that by assumption, H(M) = H(M|C). Since Bob can decode mes-
sages without error, we have H(M|CK) = 0. The claim follows from H(M) = H(M|C) =
H(M|C)− H(M|CK) = I(K; M|C) ≤ H(K|C) ≤ H(K).

From an algorithmic perspective, perfect secrecy can be realized using a public channel
and a secret key by means of a simple coding scheme called the one-time pad (OTP) [92]:

Example 5 (OTP). The message M is a l-bit string and the key K is a uniformly distributed l-bit
string which is independent of the message. Alice computes C = M⊕ K and Bob computes C⊕ K,
where ⊕ denotes a bit-wise XOR operation. Alice’s encoding guarantees that H(C) = l. Also,
H(C|M) = H(K|M) = H(K) = l, since there is a one-to-one mapping between C and K given
M, and K is independent of M. We thus have I(M; C) = H(C)− H(C|M) = 0, which shows
that the OTP achieves perfect secrecy.
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The OTP guarantees that Eve can do no better than randomly guess M and that
there exists no algorithm that could extract any information about M from C. The OTP is
unconditionally secure in the sense that this is true even when Eve has unlimited computing
power. The OTP is also provably secure in the sense that very precise statements can
be made about the information that is leaked to Eve under some well-defined notion of
statistical independence (or near-independence) of the message from Eve’s observations.

Contrast this with computationally secure cryptosystems which are based on computa-
tional complexity theory [93,94]. The security of these systems is based on the following
assumptions: (a) Eve’s computational resources, specified by some model of computation,
are bounded and, (b) certain one-way functions exist that are computationally “hard” to
invert (see Chapter 2 in [95]). The existence of such one-way functions is an open con-
jecture [96]. Candidates for one-way functions are the discrete-logarithm and the integer
factorization problem which form, resp., the basis of the Diffie–Hellman key exchange [93]
and the RSA public-key cryptosystem [94]. Efficient randomized algorithms are known
for the discrete-logarithm and the integer factorization problem on quantum comput-
ers [97]. Hence, public-key cryptosystems are not only provably insecure in theory, but also
potentially in practice.

The OTP implements unconditional secrecy with low complexity. However, its ap-
plicability is limited in practice since Alice and Bob must share a secret key in advance.
Furthermore, the key must at least be as long as the message and can be used only once.
Theorem 4, however, shows that the OTP is optimal with respect to key length. Hence, any
unconditionally secure cryptosystem is necessarily as impractical as the OTP.

On the other hand, the assumption that the Eve has precisely the same information
as Bob (except for the secret key) is unrealistic in general. This is, for instance, the case
in computational security schemes, which assume that Eve’s channel is noiseless, but her
computational resources are bounded. Physical communication channels are noisy, and
in real systems, Eve has some minimal uncertainty about the signal received by Bob. The
following example shows that if Eve’s observation is in some sense “noisier” than Bob’s,
then information-theoretically secure communication is possible even when Alice and Bob
do not share a secret key in advance.

Example 6 (The binary erasure wiretap channel [13,64]). Consider the following simplistic
scenario: Alice wishes to send one bit of information to Bob over a binary public channel. Eve’s
channel is not as perfect as Bob’s: she observes a corrupted version of the bit at the output of a
BEC(ε). Hence, Eve knows the bit with probability 1− ε, and her equivocation equals ε.

Let us assume that Alice has access to a source of private randomness which is independent of
the message and the channel. To augment Eve’s equivocation, Alice chooses a message M uniformly
at random from the set {0, 1} and employs the following coding scheme: She takes the set of all
n-bit sequences {0, 1}n and splits them into two bins, b0 and b1, which comprise all n-bit sequences
with odd, resp., even parity. To send a message m ∈ {0, 1}, Alice transmits a codeword Sn chosen
uniformly at random in bm. The rate of the code is 1

n bits per transmitted channel symbol.
Clearly, Bob can recover the correct message by determining the parity of the received codeword.

Eve, however, observes a sequence Zn ∈ {0, 1, e}n that has nε erasures on average. Define a binary
random variable E such that E = 0 if Zn contains no erasures and E = 1 otherwise. If E = 0, Eve
can decode the message correctly. However, if E = 1, the parity of the erased bits is equally likely to
be odd or even. We can lower bound Eve’s equivocation as follows:

H(M|Zn) ≥ H(M|Zn, E)
(a)
= H(M|Zn, E = 1)(1− (1− ε)n)

= H(M)(1− (1− ε)n) = 1− (1− ε)n,
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where equality (a) follows from the fact that Pr[E = 1] = 1− (1− ε)n and H(M|Zn, E = 0) = 0.
Hence, I(M; Zn) ≤ (1− ε)n, which vanishes exponentially fast in n. By repeating this process,
Alice and Bob can agree on a secret key of arbitrary length.

The coding scheme in Example 6 is secure in an asymptotic sense since it re-
quires that the total amount of information leaked to Eve vanishes as n goes to infinity,
i.e., limn→∞ I(M; Zn) = 0. This is less stringent than requiring an exact statistical indepen-
dence of M and Zn and is often mathematically more tractable [13]. We call this the strong
secrecy condition. Alternatively, one can require that the rate at which information is leaked
to Eve vanishes as n goes to infinity, i.e., limn→∞

1
n I(M; Zn) = 0. We call this the weak

secrecy condition. This requirement is weaker than the strong secrecy condition since it is
satisfied as long as I(M; Zn) grows at most sublinearly in n.

The wiretap channel model. Example 6 shows that one can use a noisy channel as
a “cryptographic resource”. We now consider a more general case first considered by
Wyner [64] and subsequently generalized by Csiszár and Körner [65], where the main chan-
nel from Alice to Bob is no longer noiseless. Given a broadcast channel ξ ∈ M(S ;Y ×Z),
let κs(y) := ∑z∈Z ξs(y, z) and μs(z) := ∑y∈Y ξs(y, z) be the two components of ξ. Alice
chooses the input to ξ, and we refer to κ as the “main channel” and μ as “Eve’s channel”.

Alice uses a stochastic encoder to map the message M into an input Sn to the channels κ

and μ. Bob and Eve observe, resp., the corresponding outputs Yn and Zn. Bob wishes to
decode the message with a small probability of error such that Eve’s information about the
message is arbitrarily small. The largest achievable rate at which Alice can send a message
to Bob is called the secrecy capacity CS(S; Y|Z). We give a formal definition.

Definition 18 ([65]). The secrecy capacity of the wiretap channel is the largest rate R such that
for every ε > 0, δ > 0, and sufficiently large n, there exist random variables M, Sn, Yn, and Zn

satisfying M − Sn − YnZn, where Yn and Zn are connected with Sn via the channels κ and μ,
resp., and M is distributed on a setM with 1

n log |M| > R− δ and with a suitable (deterministic)
decoder d : Yn →M,

Pr[d(Yn) �= M] < ε (reliability), (35a)

H(M|Zn) > log |M| − ε (strong secrecy). (35b)

Equation (35a) ensures that the Bob’s probability of error is arbitrarily small while (35b)
ensures that Eve has negligible information about the message.

The secrecy capacity of the wiretap channel admits the following characterization.

Theorem 5 ([65], Corollary 2). The secrecy capacity CS(S; Y|Z) of the wiretap channel is

CS(S; Y|Z) = max[I(U; Y)− I(U; Z)] (36)

for random variables (U, S, Y, Z) such that U− S−YZ is a Markov chain and PY|S = κ, PZ|S = μ.
The auxiliary variable U may be assumed to have a range of size at most |S|.

CS depends on ξ only through its marginals κ and μ [65]. When the distribution of the
input to ξ is fixed, CS depends only on the marginal distributions of the pairs (S, Y) and
(S, Z). Hence, we can analyze if secure communication is possible or not by restricting our
attention to ΔP (see Definition 1). Proposition 9 shows that one can interpret the quantity CS

as quantifying a deviation from the less noisy order.
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Proposition 9 ([65], Corollary 3).

μ �ln κ ⇐⇒ CS(S; Y|Z) = 0. (37)

The setting originally considered by Wyner [64] is a special case of the wiretap channel
model where Eve’s channel is physically degraded from the main channel in the sense that
ξ = κ× λ for some λ ∈ M(Y ;Z). We call this the degraded wiretap channel model. The binary
erasure wiretap channel in Example 6 is an instance of this model where κ is a noiseless
channel and μ = BEC(ε). The coding scheme in this example is apparently not that useful
since the transmission rate goes to zero as n goes to infinity, albeit more slowly than does
I(M; Zn). Nevertheless, the example suggests that when Alice is allowed to use a stochastic
encoder, she can map a given message to a bin of codewords, and then select one of them
at random to “confuse” Eve and achieve some secrecy guarantee. This intuition is brought
to bear by Wyner, who showed that it is possible to transmit at a rate bounded away from
zero and still achieve some secrecy guarantee by using a random binning scheme.

The secrecy capacity of the degraded wiretap channel is

Cw
S (S; Y|Z) = max

PS
[I(S; Y)− I(S; Z)] = max

PS
I(S; Y|Z), (38)

where the second equality follows from the fact S−Y− Z is a Markov chain by assumption.
Note that CS(S; Y|Z) ≥ Cw

S (S; Y|Z) since U = S is a valid choice in (36). Also note that
if Eve obtains the same information as Bob; i.e., if Z = Y, then Cw

S = CS = 0. This is
consistent with our analysis of Shannon’s model and the general idea that it is impossible to
realize unconditional security “from scratch”, i.e., if only public channels are available.

For jointly distributed random variables (S, Y, Z) ∼ P, I(S; Y|Z) is a concave function
of PS for fixed PYZ|S (see Lemma 3.3 in [13]). Thus, the optimization problem in (38) is a
convex program. We can also relate Cw

S to the main channel capacity Cκ := maxPS I(S; Y)
and to Eve’s channel capacity Cμ := maxPS I(S; Z) as follows:

Cw
S (S; Y|Z) = max

PS
[I(S; Y)− I(S; Z)] ≥ max

PS
I(S; Y)−max

PS
I(S; Z) = Cκ − Cμ.

The secrecy capacity of the degraded wiretap channel is hence at least as large as the
difference between the main channel capacity and Eve’s channel capacity. Note that if μ is
physically degraded from κ, then κ �odeg

S μ, but not conversely. However, since CS and
Cw

S depend on ξ only through its marginals κ and μ, there is no real difference between
output-degraded channels and physically degraded channels from the point of view of
secure communication.

For the models discussed so far, a necessary condition for Alice and Bob to be able to
communicate in secrecy is that they have an explicit physical advantage over Eve. In Shannon’s
model, for instance, Alice and Bob need to share a secret key in advance, while in Wyner’s
model, the main channel must be less noisier than Eve’s. An obvious weakness of these
models is that in a practical application, it may not often be possible to guarantee such an
advantage. A key question is whether Alice and Bob can exchange messages in secrecy when
they do not have a physical advantage to start with. Consider the following example:

Example 7 (Binary broadcast channel with independent BSCs, Lemma 1 in [85]). Let
ξ = κ× μ where κ = BSC(ε) and μ = BSC(δ) and ε ≤ 1

2 , δ ≤ 1
2 . The secrecy capacity of ξ is

CS(S; Y|Z) =
⎧⎨⎩h(δ)− h(ε), if δ > ε

0, otherwise
(39)
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CS vanishes whenever Bob’s channel is noisier than Eve’s in the sense that δ ≤ ε. Here, h(·) is the
binary entropy function.

Consider now a variation in the scenario in Example 7, where Bob can also send
messages to Alice over an insecure public channel. We are interested in whether secrecy
guarantees are possible in the range 0 < δ ≤ ε < 1

2 for this augmented scenario. The
following example, due to Maurer [85], shows an ingenious trick to achieve this.

Example 8 (Public feedback from Bob to Alice increases secrecy capacity [85]). Alice inputs
a random bit S to the “real” channel ξ where S ∼ Bernoulli

(
1
2

)
. Let E ∼ Bernoulli (ε) and

D ∼ Bernoulli(δ) be, resp., the independent error bits of the main channel and Eve’s channel. Bob
observes Y = S⊕ E and Eve observes Z = S⊕ D. We assume that the main channel is noisier
than Eve’s in the sense that δ ≤ ε.

To send a message bit C, Bob computes W = C⊕Y = C⊕ S⊕ E and sends it over the public
channel. Since Alice knows S, she computes W⊕ S = C⊕ E. Eve, on the other hand, only knows Z,
and she computes W⊕Z = C⊕ E⊕D. In effect, this procedure simulates a “conceptual” broadcast
channel from Bob to Alice and Eve, where the conceptual main channel (to Alice) is equivalent to the
real main channel and Eve’s conceptual channel is a composition of the real main channel and Eve’s
real channel. This corresponds exactly to Wyner’s degraded wiretap channel scenario, where Eve’s
conceptual channel is physically degraded from the main channel, thus allowing for some positive
secrecy rate. Maurer showed that a suitably modified notion of secrecy capacity (called the secrecy
capacity with public discussion) for this augmented scenario is equal to h(ε + δ− 2εδ)− h(ε),
which is strictly positive unless ε = 1

2 , δ = 0 or δ = 1, (see Proposition 1 in [85]).

Example 8 highlights the important fact that noiseless feedback can increase the
secrecy capacity. This is true even when the feedback is known to Eve and she has a
physical advantage over Bob. Crucially, the latter finding suggests that the necessity of the
condition that Bob has a physical advantage over Eve to achieve a positive secrecy capacity
in Example 7 stems from a restriction imposed by rate-limited one-way communication.
These observations motivate the study of more general models of secret key agreement
using two-way or interactive public communication.

The source model for secret key agreement using public discussion. Maurer intro-
duced the source model for secret key agreement [12,85]. In this model, Alice, Bob, and Eve
observe n i.i.d. copies of random variables S, Y, and Z, respectively, where (S, Y, Z) follows
a joint distribution known to all parties, referred to as the source. Alice and Bob aim to
agree on a common secret key by communicating interactively over a public channel that is
observable by Eve.

The two-way public communication protocol proceeds in rounds, with Alice and Bob
alternately exchanging messages. Alice sends messages in the odd-numbered rounds, and
Bob sends messages in the even-numbered rounds. Each message is a function of the
sender’s observation and all previously exchanged messages. At the conclusion of the
protocol, Alice (resp. Bob) computes a key K (resp. K′) as a function of Sn (resp. Yn) and C,
the set of all exchanged messages.

Definition 19 ([85]). The two-way secret key rate for the source model, denoted as S↔(S; Y|Z ),
is the maximum rate R such that for every ε > 0 and sufficiently large n, there exists a two-way
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public communication protocol that outputs keys K and K′ (ranging over some common set
K) satisfying

Pr
[
K = K′

] ≥ 1− ε (reliability), (40a)
1
n I(K; C, Zn) ≤ ε (weak secrecy), (40b)

1
n H(K) > 1

n log |K| − ε (uniformity), (40c)

and achieving 1
n H(K) ≥ R− ε, where C is the amount of public communication consumed in

the protocol.

Equations (40a) and (40c) ensure, resp., that the keys are equal to each other with high
probability and that they are almost uniformly distributed. Equation (40b) ensures that
the rate at which Eve learns information about the keys is negligibly small. A still stronger
definition requires that Eve’s total information about the key is negligibly small, i.e.,

I(K; C, Zn) ≤ ε; (strong secrecy). (41)

Both these definitions give the same secret key rate [98]. Moreover, this rate is achiev-
able without using private randomness at either Alice’s or Bob’s end. This is unlike the
wiretap channel model, where coding schemes for the strong secrecy and the weak secrecy
condition are very different [13] and randomness in the encoding process plays a crucial
role in enabling secure communication.

Note that Definition 19 of the two-way rate says nothing about the amount of public
communication (i.e., the number of rounds) required to agree on a secret key, which
can be arbitrarily large. However, models imposing some restriction on the possible
communication are also of interest. We say that the protocol is one-way if Alice is allowed
to send only one message and Bob none. The corresponding key rate is called the one-way
secret key rate S→(S; Y|Z ). The one-way key rate is a lower bound on the two-way key rate.
S→ admits the following characterization.

Theorem 6 ([66], Theorem 1). The one-way secret key rate S→(S; Y|Z ) for the source model is
the solution of the following optimization problem:

S→(S; Y|Z ) = max
PUV|SYZ :V−U−S−YZ

I(U; Y|V)− I(U; Z|V). (42)

In this optimization problem, it suffices to restrict the range of the random variables U and V
to sizes |S|2 and |S|, respectively.

The bounds on the cardinalities imply that the optimization domain is a set of stochas-
tic matrices of finite size, which makes it possible to turn this theorem into an algorithm to
compute S→.

The following trivial bounds on the two-way rate are known [85]:

Proposition 10.

max{I(S; Y)− I(S; Z), I(Y; S)− I(Y; Z)} ≤ S↔(S; Y|Z ) ≤ min{I(S; Y), I(S; Y|Z)}.

For some sources, the lower bound in Proposition 10 can be negative (see [99] for an
operational interpretation of the lower bound when such is the case). If neither I(S; Y) >
I(S; Z) nor I(Y; S) > I(Y; Z) holds, then Alice and Bob can exploit the authenticity of
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the public channel to “distill” observations for which Alice and Bob have an advantage
over Eve.

Maurer [85] and Maurer and Wolf [100] considered a scenario where a satellite broad-
casts random bits at a low signal power and earthlings Alice, Bob, and Eve receive these
bits over independent binary channels. Secret key agreement is always possible in this
scenario unless Eve’s channel is noiseless or either Alice or Bob receives no information
at all about these bits. The following example describes an advantage distillation strategy
called the “repeat-code protocol” for this scenario.

Example 9 (The “satellite” source with independent BSCs [85,100]). Let R∼Bernoulli
(

1
2

)
.

We pass R through three independent binary symmetric channels with parameters α, β, and ε, resp.,
to obtain S, Y, and Z. We assume that 0 ≤ α, β < 1

2 , and 0 < ε < min{α, β}. Thus, Eve has an
initial advantage over Alice and Bob in the sense that I(S; Z) > I(S; Y) and I(Y; Z) > I(Y; S).

Given n realizations of the source, Alice and Bob exploit the authenticity of the public channel
to reverse Eve’s advantage as follows: Alice generates a bit C∼Bernoulli

(
1
2

)
and sends Sn ⊕ Cn

over the public channel, where ⊕ denotes a bit-wise XOR operation and Cn is a vector consisting of
n repetitions of the bit C. Bob computes (Sn ⊕ Cn)⊕Yn and publicly “accepts” if and only if his
output is equal to either (0, 0, . . . , 0) or (1, 1, . . . , 1), when Alice retains C; or else, Alice discards
C. In other words, Alice and Bob make use of a code comprising two n-bit codewords (0, 0, . . . , 0)
and (1, 1, . . . , 1) and retain a bit only if their observations are either highly correlated or highly
anti-correlated. Eve computes (Sn ⊕ Cn)⊕ Zn and her optimal guess for C is 0 if at least half of the
bits in her string is 0, and 1 otherwise. As n goes to infinity, Bob’s average error probability when
guessing the bit C sent by Alice decreases asymptotically faster than Eve’s and that the secret key
rate is strictly positive in this scenario. This protocol can be used over multiple rounds to further
reduce Eve’s information.

The design of practical secret key agreement protocols turns out to be a simpler
problem than the construction of wiretap channel codes [13]. A wiretap code needs to
simultaneously guarantee reliable communication of a message to Bob (35a) and secrecy
against Eve (35b). On the other hand, keys are random strings that are not meant to convey
any information by themselves and do not need to be known in advance. Alice and Bob
can freely shuffle, combine, or discard their observations. This allows for the design of
sequential key distillation strategies that handle the reliability constraint (40a) and secrecy
constraint (40b) independently. Since one can always post-process weakly secret keys, strong
secrecy comes “for free,” i.e., a rate achievable under the weak secrecy condition (40b) is
also achievable under the strong secrecy condition (41) (see Theorem 1 in [98]).

A typical key agreement protocol operates in sequential phases [13]: First, Alice, Bob,
and Eve observe n realizations of a source. Second, if neither Alice nor Bob has an initial
advantage over Eve, they use an advantage distillation strategy to reverse Eve’s advantage.
Third, Alice and Bob exchange messages over the public channel and apply error correction
techniques to process their observations and agree on a common bit string. This phase is
called information reconciliation. Since the error correction information is public, the common
bits are only partially secret from Eve. Fourth, Alice and Bob use a suitable hash function
to distill a (shorter) highly secret string about which Eve has virtually no information. This
phase is called privacy amplification by public discussion [101]. Finally, they use the key as an
OTP for secure encryption.

The channel model for secret key agreement using public discussion. A channel
model for secret key agreement generalizes the source model [66,85]. The model involves a
channel ξ ∈ M(S ;Y ×Z). Alice selects the inputs to ξ, while Bob and Eve observe, resp.,
the corresponding Y-outputs and the Z-outputs of ξ. Alice and Bob also have access to a
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public channel. The definitions of the two-way and one-way secret key rates are similar
to those for the source model (see Section 17.3 in [27]). Given a channel model, Alice can
emulate the associated source model by choosing i.i.d. copies of a random variable S as
inputs to ξ. The corresponding channel outputs are i.i.d. copies of Y and Z. Hence, any key
rate achieved by a source model with generic variables (S, Y, Z) subject to PYZ|S = ξ is also
achieved by the associated channel model [66].

The wiretap channel model may be regarded as a channel model where no public
communication is allowed. Clearly, the secret key rate for the channel model defined by ξ

is at least as large as the secrecy capacity CS of the associated wiretap channel defined by
the components κ and μ of ξ (see Theorem 5). Ahlswede and Csiszár [66] showed that
the one-way secret key rate for the channel model is equal to the secrecy capacity of the
associated wiretap channel model. Thus, the one-way rate depends on ξ only through κ

and μ. Note, however, that the same is not true for the two-way rate [27].
The secret key rate for the channel model is sometimes called the secrecy capacity

with public discussion [85] (e.g., see Example 8). This denomination is slightly misleading
because the former characterizes a secret key rate, not a secure communication rate [13].

In the sequel, we shall concern ourselves primarily with the source model.

5.3. Known Bounds on the Two-Way Secret Key Rate
5.3.1. Lower Bounds

The best-known lower bound on S↔ uses two-way public communication [67,80].
Given random variables U1, U2, · · · , Uk satisfying the Markov chain conditions

Ui − SU1:i−1 −YZ, for odd i (43)

Ui −YU1:i−1 − SZ, for even i (44)

and for any integer ζ such that 1 ≤ ζ ≤ k, we have S↔(S; Y|Z ) ≥ L(S; Y|Z) where

L(S; Y|Z) = ∑
i≥ζ
odd i

I(Ui; Y|U1:i−1)− I(Ui; Z|U1:i−1)+ ∑
i≥ζ

even i

I(Ui; S|U1:i−1)− I(Ui; Z|U1:i−1), (45)

and the cardinality bounds on U1, U2, . . . , Uk satisfy

|Ui| ≤

⎧⎪⎪⎨⎪⎪⎩
|S| i−1

∏
l=1
|Ul | for i odd,

|Y| i−1
∏
l=1
|Ul | for i even.

(46)

The bound (45) is difficult to evaluate but is quite intuitive: depending on whether i is
odd or even, the individual terms can be understood from the form of the one-way secret
key rate in Theorem 6 when either Alice or Bob sends a public message.

5.3.2. Upper Bounds

As noted in Proposition 10, a trivial upper bound on S↔(S; Y|Z ) is min{I(S; Y),
I(S; Y|Z)} [85].

The two-way rate equals the conditional mutual information when Eve helps Alice
and Bob by announcing her variable, i.e., S↔(SZ; YZ|Z ) = I(S; Y|Z). This ascribes an
operational meaning to I(S; Y|Z) as the key rate obtained when Alice and Bob have an
explicit advantage over Eve.

258



Entropy 2025, 27, 29

If Eve sends Z through a channel PZ′ |Z, then the key rate cannot decrease. Thus, we
have S↔(S; Y|Z ) ≤ S↔(S; Y|Z′ ) ≤ I(S; Y|Z′) for any PZ′ |Z [12]. This observation motivates
an improved bound by way of the intrinsic information, I↓:

S↔(S; Y|Z ) ≤ I(S; Y↓Z) := min
PZ′ |Z : SY−Z−Z′

I(S; Y|Z′). (47)

where Z′ may be assumed to have a range of size at most |Z| [102]. Unlike the UI, which
depends only on the marginal distributions of the pairs (S, Y) and (S, Z), I↓ depends on the
full joint distribution, and also does not satisfy the consistency condition (7). Proposition 11
shows that I↓ is never lower than the UI.

Proposition 11. UI(S; Y\Z) ≤ I(S; Y↓Z).

See Appendix B for a proof.
Renner and Wolf [84] noted that the intrinsic information exhibits a property called

“locking”; i.e., it can drop by an arbitrarily large amount on giving away a bit of information
to Eve. In contrast, the two-way rate satisfies

S↔(S; Y|ZU ) ≥ S↔(S; Y|Z )− H(U) (48)

for jointly distributed random variables (S, Y, Z, U) (see Theorem 3 in [84]), and the condi-
tional mutual information satisfies an analogous property:

I(S; Y|ZU) ≥ I(S; Y|Z)− H(U). (49)

Renner and Wolf [84] proposed an improved upper bound called the reduced intrinsic
information I↓↓, which does not exhibit locking:

I(S; Y↓↓Z) := inf
PU|SYZ

I(S; Y↓ZU) + H(U) (50)

≥ inf
PU|SYZ

S↔(S; Y|ZU ) + H(U) = S↔(S; Y|Z ).

Choosing U to be a constant, one immediately obtains I(S; Y ↓↓ Z) ≤ I(S; Y ↓ Z).
I(S; Y↓↓Z) does not lock since

I(S; Y↓↓Z) = inf
PV|SYZ

I(S; Y↓ZV) + H(V) ≤ inf
PU′ |SY(Z,U)

I(S; Y↓ZUU′) + H(UU′)

≤ I(S; Y↓↓ZU) + H(U),

where the inequality in the second step follows from restricting the infimum to random
variables V = UU′.

The tightest known upper bound on the two-way rate is [67]

B2(S; Y|Z) := inf
pZ′ |SYZ

I(S; Y|Z′) + S→
(
SY; Z′|Z ). (51)

Unfortunately, B2 cannot be computed explicitly, as no bound on the size of Z′

is known.
A slightly weaker but computable upper bound is given by the minimum intrinsic

information [67].

B1(S; Y|Z) := min
PZ′ |SYZ

I(S; Y|Z′) + I(SY; Z′|Z), (52)
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where |Z′| ≤ |S||Y||Z|.
Summarizing, we have the following chain of bounds on the two-way rate.

CS(S; Y|Z) ≤ S→(S; Y|Z ) ≤ L(S; Y|Z) ≤ S↔(S; Y|Z )

≤ B2(S; Y|Z) ≤ B1(S; Y|Z)
≤ I(S; Y↓↓Z) ≤ I(S; Y↓Z) ≤ I(S; Y|Z). (53)

5.4. Properties of the UI

In this section, we show that the function UI shares some fundamental properties of
the secret key rate.

We first recall the trivial bounds on the UI [6]:

I(S; Y)− I(S; Z) ≤ UI(S; Y\Z) ≤ min{I(S; Y), I(S; Y|Z)}. (54)

These bounds match the trivial bounds on the two-way secret key rate in Proposition 10
(note that S↔(S; Y|Z ) is symmetric under permutations of S and Y, while UI(S; Y\Z) is
not). In the adversarial setting in Example 4, if either Eve has less information about S than
Bob or, by symmetry, less information about Y than Alice, then Alice and Bob can exploit
this difference to extract a secret key.

Property P.1 states that the UI does not exhibit locking.

P.1 (UI does not lock). For jointly distributed random variables (S, Y, Z, U),

UI(S; Y\ZU) ≥ UI(S; Y\Z)− H(U). (55)

This property is useful as it ensures that the unique information that Y has about S
with respect to an adversary Z cannot “unlock”, i.e., drop by an arbitrarily large amount
on giving away some information to Z.

Property P.1 and Proposition 11 together imply that UI(S; Y\Z) ≤ I(S; Y↓↓Z), a fact
that will be generalized later in Theorem 9.

Property P.2 states that UI can never increase under local operations of Alice and Bob.
The counterpart of this property for the secret key rate is Lemma 4 in [12]. On a related note,
in Section 6.3, we discuss a construction that enforces monotonicity under local operations
for an arbitrary information measure.

P.2 (Monotonicity under local operations (LOs) of Alice and Bob). For all (S, S′, Y, Z) such that
YZ–S–S′ is a Markov chain, UI(S; Y\Z) ≥ UI(S′; Y\Z). Likewise, for all (S, Y, Y′, Z)
such that SZ–Y–Y′ is a Markov chain, UI(S; Y\Z) ≥ UI(S; Y′\Z).

Suppose Alice publicly announces the value of a random variable. Then, Property P.3
states that UI can never increase.

P.3 (Monotonicity under public communication (PC) by Alice). For all (S, Y, Z) and func-
tions f over the support of S, UI((S, f (S)); (Y, f (S))\(Z, f (S))) ≤ UI(S; Y\Z).

The basic unit of secrecy is the “secret bit” Φ. This is any distribution defined on the
sets {0, 1} × {0, 1} × Z such that

Φ(s, y, z) := 1
2 δs,y ×QZ(z), (56)

where QZ is an arbitrary distribution.
For the secret bit, UI satisfies an intuitive normalization property:

P.4 (Normalization). UIΦ(S; Y\Z) = UIΦ(Y; S\Z) = 1.

Given many independent copies of (S, Y, Z)∼P, the goal of a secret key agreement
protocol is to distill as many copies of Φ as possible. The following two properties, additiv-
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ity and asymptotic continuity, are important since we are concerned with the asymptotic
rate of secret key distillation.

P.5 (Additivity on tensor products). Let random variables (S, S′, Y, Y′, Z, Z′) be such that
(S, Y, Z) is independent of (S′, Y′, Z′). Then, UI(SS′; YY′\ZZ′) = UI(S; Y\Z) +
UI(S′; Y′\Z′).

Property P.5 is shown in Lemma 19 of [6].
Asymptotic continuity is a stronger form of continuity that takes into account conver-

gence in relation to the dimension of the underlying state space [11,18,103–105]. Specifically,
a function f is said to be asymptotically continuous if

| f (P)− f (P′)| ≤ Cε log |S|+ ζ(ε)

for all joint distributions P, P′ ∈ PS , where C is a constant, ε = 1
2‖P− P′‖1, and ζ : [0, 1]→

R+ is a continuous function that converges to zero as ε → 0 [11].
As an example, entropy is asymptotically continuous (see, e.g., Lemma 2.7 in [27]): for

any P, P′ ∈ PS , if 1
2‖P− P′‖1 ≤ ε, then

|HP(S)− HP′(S)| ≤ ε log |S|+ h(ε),

where h(·) is the binary entropy function. Likewise, the conditional mutual information
satisfies asymptotic continuity in the following sense [84,106]: for any P, P′ ∈ PS×Y×Z , if
1
2‖P− P′‖1 ≤ ε, then

|IP(S; Y|Z)− IP′(S; Y|Z)| ≤ ε log min{|S|, |Y|}+ 2h(ε).

Note that the right-hand side of the above inequality does not depend explicitly on
the cardinality of Z.

The function UI is as asymptotically continuous:

P.6 (Asymptotic continuity). For any P, P′ ∈ PS×Y×Z and ε ∈ [0, 1], if ‖P − P′‖1 = ε,
then UIP′(S; Y\Z)−UIP(S; Y\Z) ≤ ζ(ε) + 5

2 ε log min{|S|, |Y|} for some bounded,
continuous function ζ : [0, 1]→ R+ such that ζ(0) = 0.

The function UI satisfies a triangle inequality:

P.7 (Triangle inequality). For any (S, Y, Z, Z′),

UI(S; Y\Z) ≤ UI(S; Y\Z′) + UI(S; Z′\Z).

An intuitive understanding of Property (P.7) can be gained by iterating the funda-
mental idea of information decomposition as follows: In the presence of a fourth variable
Z′, we aim to decompose u := UI(S; Y\Z) into two components—a part u1, which is also
known to Z′, and the remainder u2 = u− u1, which Z′ does not know. Clearly, u1 should
be upper-bounded by UI(S; Z′\Z), as Z′ alone knows what Z′ and Y share. Moreover,
u2 ≤ UI(S; Y\Z′), since what neither Z nor Z′ knows is less than what Z′ does not know.
Together, these observations provide a heuristic argument for why the triangle inequality
should hold.

Property P.7 relies on the following monotonicity property: UI can only increase under
local operations by Eve.

P.8 (Monotonicity under local operations of Eve). For all (S, Y, Z, Z′) such that SY–Z–Z′ is a
Markov chain, UI(S; Y\Z) ≤ UI(S; Y\Z′).

Using Property P.7 and Property P.2, we conclude:

Corollary 1. For any (S, Y, Z, Z′), UI(S; Y\Z) ≤ UI(S; Y\Z′) + UI(SY; Z′\Z).
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We can interpret Corollary 1 like inequality (33): Given (S, Y, Z, Z′) ∼ P, if the in-
duced channel PZ|SY dominates the channel PZ′ |SY in the Blackwell sense, then the second
term UI(SY; Z′\Z) vanishes (see Lemma 1). One can interpret UI(SY; Z′\Z) as quantifying
a deviation from the Blackwell order when we replace PZ|SY with PZ′ |SY.

5.5. UI-Based Bounds on Secret Key Rates

General properties of upper bounds on secret key rates have been studied within
the framework of secrecy or protocol monotones—non-negative real-valued functionals
of joint distributions that remain non-increasing throughout the execution of a protocol
(see, e.g., [14,67,88,89,107]). For example, the intrinsic information in (47) is a protocol
monotone [84]. We defer a more general discussion on protocol monotones in the context
of resource theories to Section 6.

The following theorem gives sufficient conditions for a function to be an upper bound
for the secret key rate.

Theorem 7 (Theorem 3.1 in [107], Lemma 2.10 in [88]). Let M be a non-negative real-valued
function of the joint distribution of the triple (S, Y, Z) that satisfies Properties P.2–P.6. Then, M is
an upper bound for the one-way secret key rate.

If, in addition, M does not increase under public communication by Bob (Property P.3, with
f (S) replaced by g(Y) for some function g over the support of Y), then M is an upper bound for the
two-way secret key rate.

Like the UI, S→ depends only on the marginal distributions of the pairs (S, Y)
and (S, Z) [66]. Since UI satisfies Properties P.2–P.6, the following result is immediate
from Theorem 7:

Theorem 8. UI(S; Y\Z) is an upper bound for the one-way secret key rate S→(S; Y|Z ).

Corollary 1 implies the following result.

Proposition 12. UI(S; Y\Z) ≤ B1(S; Y|Z).

From Theorem 8 and Proposition 12, we have the following chain of inequalities
relating the bounds on the two-way rate.

Theorem 9.

CS(S; Y|Z) ≤ S→(S; Y|Z ) ≤ UI(S; Y\Z) ≤ B1(S; Y|Z)
≤ I(S; Y↓↓Z) ≤ I(S; Y↓Z) ≤ I(S; Y|Z). (57)

Remark 4. Given (S, Y, Z) ∼ P, let

Q∗ ∈ arg min
Q∈ΔP(S,Y,Z)

IQ(S; Y|Z). (58)

By definition, IQ∗(S; Y|Z) = UI(S; Y\Z). Recall that the distribution Q∗ is a minimum
synergy distribution (see Equation (16)). An immediate consequence of Theorem 9 is as follows:
choosing P = Q∗, all known upper bounds on the two-way rate collapse to the UI and the conditional
mutual information, respectively.
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The following example [80,108] shows that there exists a distribution for which
UI(S; Y\Z) is not lower than L(S; Y|Z), the best-known lower bound on the two-way
rate (see (45)).

Example 10 (Doubly symmetric binary erasure (DSBE) source). Consider the DSBE source
with parameters (p, ε) in Example 3.

If ε = 0, we have Z = SY and S↔(S; Y|Z ) = 0, while if ε = 1, we have Z = e and
S↔(S; Y|Z ) = I(S; Y).

For this source, the two-way rate vanishes if and only if (see Theorem 14 in [12])

ε ≤ 1− p
p

. (59)

On the other hand, both the one-way secret key rate S→(S; Y|Z ) and the best-known lower
bound L(S; Y|Z) vanish if and only if (see Theorem 7 in [80])

ε ≤ 4p(1− p), (60)

while both UI(S; Y\Z) and UI(Y; S\Z) vanish if and only if

ε ≤ 2(1− p). (61)

For p > 1
2 , we have 1−p

p < 2(1− p) < 4p(1− p). Figure 3 illustrates these bounds for a
DSBE(0.6, ε) source.
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min{I(S;Y ), I(S;Y |Z)}

Figure 3. Bounds on the two-way secret key rate for a DSBE(0.6, ε) source.

On the other hand, the following example shows that UI is not an upper bound on S↔
(see also Example 12).

Example 11 (Satellite source with independent BECs [86]). Let R∼Bernoulli
(

1
2

)
. We pass

R through three independent erasure channels with parameter ε to obtain S, Y, and Z. Thus,
PSYZR(s, y, z, r) = PR(r)PS|R(s|r)PY|R(y|r)PZ|R(z|r). Observe that PSY(a, b) = PSZ(a, b) =

PYZ(a, b) for all a, b ∈ {0, 1, e}. Therefore, all the UIs vanish. Gohari and Anantharam [86]
showed that a secret key agreement protocol exists such that S↔(S; Y|Z ) = I(S; Y|Z) = ε(1− ε)2

is an achievable rate. ε(1− ε)2 is strictly positive for ε ∈ (0, 1).

We make the following conjecture:

Conjecture 1. UI(S; Y\Z) ≤ S↔(S; Y|Z ).
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Remark 5 (Sandwich bound on S↔(S; Y|Z )). If Conjecture 1 is true, then

UI(S; Y\Z) = IQ∗(S; Y|Z) ≤ S↔(S; Y|Z ) ≤ IP(S; Y|Z). (62)

Equation (62) implies that the set of all Q∗ as in (58) is a set of distributions for which the UI
equals the two-way rate.

A related work [87] gives necessary conditions for when the two-way rate equals the
conditional mutual information.

Definition 20. Define the following functions on PS×Y×Z .

BsUI(S; Y|Z) := inf
PZ′ |SYZ

UI(S; Y\Z′) + UI(SY; Z′\Z).

BgUI(S; Y|Z) := inf
PZ′ |SYZ

I(S; Y|Z′) + UI(SY; Z′\Z).

As the following proposition shows, BgUI(S; Y|Z) is a new upper bound on the
two-way rate which is juxtaposed between the two best-known bounds B2 and B1.

Proposition 13.

BsUI(S; Y|Z) = UI(S; Y\Z) ≤ BgUI(S; Y|Z) (63)

B2(S; Y|Z) ≤ BgUI(S; Y|Z) ≤ B1(S; Y|Z) (64)

It remains to be seen if there exist scenarios where the BgUI bound is strictly better
than the B1 bound. This remains a scope for future study.

5.6. The Blackwell Property and Secret Key Agreement Against Active Adversaries

In the source model for secret key agreement, we assume that the public channel
is authenticated; i.e., Eve is only a passive adversary. In practice, this is guaranteed by
authentication schemes that require Alice and Bob to share a short secret key in advance [90].
However, if this assumption is no longer valid and Eve gains both read and write access to
the public channel, Maurer and Wolf [109] established an all-or-nothing result: either the
same secret key rate as in the authenticated channel case can be achieved, or no key can
be established at all. Maurer introduced the following property of a joint distribution to
characterize the impossibility of secret key agreement in the presence of an active adversary:

Definition 21. Given (S, Y, Z) ∼ P, we say that Y is simulatable by Z with respect to S and
write simS(Z → Y) if there exists a random variable Y′ such that the pairs (S, Y) and (S, Y′) are
statistically indistinguishable, and S− Z−Y′ is a Markov chain.

It is immediately apparent that simS(Z → Y) and Z �′S Y in Definition 3 are equiva-
lent. We now restate Maurer’s impossibility result in terms of the function UI. We write
S∗↔ to denote the secret key rate in the active adversary scenario.

Theorem 10 ([109], Theorem 11). Let (S, Y, Z) be a triple of random variables such that
S↔(S; Y|Z ) > 0. If either UI(S; Y\Z) = 0 or UI(Y; S\Z) = 0, then S∗↔(S; Y|Z) = 0, else
S∗↔(S; Y|Z) = S↔(S; Y|Z ).

Remark 6. Theorem 10 gives another operational interpretation of the vanishing UI; namely, if
either S or Y possesses no unique information about each other with respect to Z, then Alice and
Bob have no advantage in a secret key agreement task against an active Eve.
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Example 12 shows a distribution for which S↔(S; Y|Z ) > 0 but S∗↔(S; Y|Z) = 0.

Example 12 ([110], Example 4). Consider the distribution PSYZ(0, 0, 0) = PSYZ(0, 0, 1) =

PSYZ(0, 1, 0) = PSYZ(1, 0, 0) = PSYZ(1, 1, 1) = 1
5 . This distribution has I(S; Y↓ Z) = 0.02.

Gisin and Wolf [110] showed that a secret key agreement protocol exists such that S↔(S; Y|Z ) > 0.
However, since the pairwise marginal distributions of (S, Y), (S, Z), and (Y, Z) are all identical, all
the unique informations vanish. Thus, S∗↔(S; Y|Z) = 0.

For the passive key agreement scenario, Example 9 shows that two-round protocols
can be strictly better than one-round protocols. In general, there exists no upper bound on
the number of rounds required to agree on a secret key [111]. Orlitsky and Wigderson [112],
however, gave a necessary and sufficient condition for the existence of a secret key: S↔ > 0, if
and only if S↔ is positive with only two rounds of communication. Property P.3 shows that
the UI can never increase in a one-round secret key agreement protocol where Alice sends a
public message to Bob. An analysis of the behavior of the UI in two-round protocols, where,
in addition, Bob feeds a message back to Alice, is reserved for future study.

6. Resource Theories of Secrecy

In this concluding section, we sketch the resource-theoretic underpinnings behind
Theorem 8. Resource theories study a set of objects endowed with a preorder. Classical
and quantum information theories can be viewed as examples of resource theories [113]. A
resource-theoretic formulation of thermodynamics is implicit in Lieb and Yngvason’s ax-
iomatic derivation of the second law of thermodynamics [114]. We refer the reader to [7–11]
for detailed exposition on resource theories. We next study the problem of interconvert-
ibility between a given pair of source and target distributions from a resource-theoretic
perspective. This is similar in spirit to the work in [52] that briefly studied interconversions
between the different partial information terms in (6) under local operations.

6.1. Theories of Resource Convertibility

Resource theories provide an abstract operational framework for studying what phys-
ical transformations between objects are possible under a certain class of constraints. The
set of all possible operations on these objects can be divided into those that can be imple-
mented in a cheap or simple way (called “free operations”), and those that entail a costly
implementation. Given access to the set of free operations. the theory seeks to study the
structure that is induced on the objects. We say that objects A and B are ordered as A → B,
if A can be converted to B by free operations. An object is free if it can be generated from
scratch using only free operations; all other objects are resources. The resource content of an
object cannot increase under free operations.

For example, in the source model for secret key agreement (Section 5.2), the objects of
interest are the set of all source distributions. The set of free operations is local operations
and public communication (LOPC) by Alice and Bob. The free objects are the set of all
distributions under which Alice and Bob’s observations are mutually independent; all
other objects are resources. The basic resource unit is the secret bit Φ (see (56)). Resources
are valuable in the sense that when combined with free operations, they can generate other
resources or simulate non-free operations. For example, one can simulate a one-time pad
(OTP) using LOPC and a secret bit (see Example 5).

Any non-negative, real-valued function M that respects the preorder in the sense that
if A → B, then M(A) ≥ M(B) is called a monotone. M can be interpreted as an assignment
of a value to each object in a way that is consistent with the preorder. If M(A) < M(B),
then a conversion of A to B is not possible. This property is useful in practice for checking
the infeasibility of a conversion.
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When an exact conversion of A to B is not possible, we can instead ask for an ap-
proximate conversion at a many-copy level: convert n independent realizations of A to B′

which is close to m independent realizations of the desired target B, i.e., A⊗n→ B′ # B⊗m

under the free operations. The rate or yield of this conversion is γ := m
n . The existence of a

monotone that satisfies certain additivity and continuity properties allows us to obtain an
upper bound on the rate of such conversions (Theorem 7).

The UI is a monotone that quantifies the resourcefulness or secrecy content of a source
distribution when the set of free operations is local operations by Alice and Bob and one-
way public communication by Alice. In particular, UI is non-increasing under this set of
free operations. A consequence of this property is that the UI is an upper bound on the
one-way secret key rate S→ (Theorem 8).

We now study two other “symmetric” monotones, the total correlation (TC)
(see (65)) and the dual total correlation (DTC) (see (66)), which can be viewed as mul-
tipartite generalizations of the mutual information.

6.2. Total Correlation and Dual Total Correlation

Given (S, Y, Z) ∼ P, the total correlation (TC) [115] is defined as follows:

TC(S; Y; Z) = D(PSYZ‖PS × PY × PZ)

= H(S) + H(Y) + H(Z)− H(SYZ)

= I(S; Y) + I(Y; Z) + I(Z; S)− CoI(S; Y; Z). (65)

TC measures the total amount of correlations between S, Y, and Z. TC is symmetric
in its arguments, non-negative, and vanishes if and only if PSYZ = PS × PY × PZ. Total
correlation is called multi-information in [116,117] and stochastic interaction in [117].

Te Sun [34] defined a related quantity called the dual total correlation (DTC) based on
the lattice-theoretic duality of Shannon information measures [32]:

DTC(S; Y; Z) = H(SYZ)− H(S|YZ) + H(Y|SZ)− H(Z|SY)

= I(S; Y|Z) + I(Y; Z|S) + I(Z; S|Y) + CoI(S; Y; Z). (66)

Like the TC, DTC is symmetric in its arguments, non-negative, and vanishes if and
only if PSYZ = PS × PY × PZ [34]. From (65) and (66), we have the following relation
between TC and DTC:

TC(S; Y; Z) + DTC(S; Y; Z) = I(S; YZ) + I(Y; SZ) + I(Z; SY). (67)

TC and DTC capture different aspects of the correlations between S, Y, and Z. To see
this, consider the RDN and XOR distributions in Example 1: The correlations in the RDN

distribution can be attributed purely to pairwise interactions since S, Y, and Z are identical
random variables. On the other hand, correlations in the XOR distribution arise purely due
to triplewise interactions, since S, Y, and Z are pairwise independent. For the RDN, we
have TC = 2 log 2 > log 2 = DTC, and for the XOR, we have DTC = 2 log 2 > log 2 = TC.
For distributions where S, Y, and Z have binary supports, TC is maximized by the RDN

distribution, while DTC is maximized by the XOR distribution [117].
Te Sun [34] studied higher-dimensional analogs of these quantities and argued that

TC is effective in measuring “local” lower-order correlations, whereas DTC is effective in
measuring overall higher-order correlations (see, e.g., Example 6.2 in [34]). For many prac-
tical distributions of interest, most of the TC resides in the lower-order correlations [118].
Austin [119] studied the different nature of the structures induced by small values of TC
and DTC on a metric space of probability measures: if a joint distribution P has a small
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TC, then P is close to a product measure, where closeness is in the sense of the Wasser-
stein distance; on the other hand, if P has a small DTC, then it is close to a mixture of
product measures.

Interconvertibility between probability distributions under LOPC. Of immediate
interest to us are the monotonicity properties of TC and DTC in relation to the problem
of converting a given probability distribution to another. Concretely, we consider the
following setup: Three collaborating parties, Alice, Bob, and Charlie observe i.i.d. copies
of random variables S, Y, and Z, resp., distributed according to some known source
distribution P. The goal is to convert P into a target distribution P′ when the set of free
operations is LOPC by Alice, Bob, and Charlie.

Cerf et al. [120] showed that TC and DTC are monotones under LOPC. In particu-
lar, in the tripartite case, TC(S; Y; Z), DTC(S; Y; Z), I(S; YZ), I(Y; SZ), and I(Z; SY) are
five monotones. From (67), it is shown that these monotones are not all linearly indepen-
dent. However, none of these monotones can be expressed as a linear combination of
the others with only positive coefficients. Hence, for a given source–target pair, these
five monotones set independent constraints on the possible interconversions under LOPC.

Table 1 lists the values of the monotones for some distributions in Example 1. We see,
for instance, that the conversion XOR → RDN is not feasible since TC increases from 1 to 2
while going from XOR to RDN. Likewise, RDN → XOR is not feasible since DTC increases
from 1 to 2 while going from RDN to XOR.

Table 1. Values of the five tripartite monotones for the secret bit Φ, and the RDN and XOR

distributions [120].

I(S; YZ) I(Y ; SZ) I(Z; YS) DTC(S; Y ; Z) TC(S; Y ; Z)

Φ 1 1 0 1 1
RDN 1 1 1 1 2
XOR 1 1 1 2 1

On the other hand, the following conversions are feasible and can be achieved using
simple protocols [120]:

• XOR → Φ: Charlie publicly announces the value of his bit.
• RDN → Φ: Charlie forgets his bit (e.g., sends Z through a channel that completely

randomizes it).
• XOR⊗2 → RDN: Alice, Bob, and Charlie observe, resp., the bits (s, s′), (y, y′), and

(z, z′), where z = s⊕ y and z′ = s′ ⊕ y′. Alice publicly announces s and Bob y′. Since
Charlie knows (z, z′), she computes z⊕ s = y and z′ ⊕ y′ = s′ and publicly announces
w = y⊕ s′. Finally, since Alice knows s′, she computes s′ ⊕ w = y. Thus, Alice, Bob,
and Charlie end up sharing the bit y.

• RDN⊗2 → XOR: Alice, Bob, and Charlie observe, resp., the bits (s, s′), (y, y′), and
(z, z′). Alice and Bob forget, resp., s and y′, while Charlie computes z⊕ z′ and forgets
the values z and z′.
Cerf et al. [120] considered the more general question of a reversible interconversion

between an arbitrary PSYZ and the distributions ΦSY, ΦYZ, ΦZS, RDN, and XOR, where we
write ΦSY for the secret bit shared between S and Y, and likewise for ΦYZ and ΦZS. More
concretely, does there exist yields γ1, . . . , γ5 such that the following reversible conversion
is feasible under LOPC?

PSYZ 	 Φ⊗γ1
SY ⊗Φ⊗γ2

YZ ⊗Φ⊗γ3
ZS ⊗ XOR⊗γ4 ⊗ RDN⊗γ5 . (68)
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Cerf et al. [120] showed that the five monotones in Table 1 do not forbid, in principle,
the following reversible conversions under LOPC:

• If CoI = 0, then PSYZ 	 Φ⊗γ1
SY ⊗Φ⊗γ2

YZ ⊗Φ⊗γ3
ZS .

• If CoI > 0, then PSYZ 	 Φ⊗γ1
SY ⊗Φ⊗γ2

YZ ⊗Φ⊗γ3
ZS ⊗ RDN⊗γ5 .

• If CoI < 0, then PSYZ 	 Φ⊗γ1
SY ⊗Φ⊗γ2

YZ ⊗Φ⊗γ3
ZS ⊗ XOR⊗γ4 ,

where CoI = SI − CI is the coinformation (see (8)). It is, however, plausible that additional
monotones exist that might render some of these conversions infeasible (see, e.g., [84,121]).
One natural candidate for such a monotone is an “extractable” version of the function SI in
Definition 1, which we describe next.

6.3. Extractable Shared Information and Monotonicity Under Local Operations

Rauh et al. [52] and Bertschinger et al. [60] argue that shared information should never
increase under local operations (e.g., coarse graining) of the target and/or the predictors.
Specifically, for local operations of the predictors, the function SI in Definition 1 satisfies
the following property called right monotonicity (see A.7 in Appendix A):

SI(S; Y, Z) ≥ SI(S; f1(Y), f2(Z)) (69)

for all functions f1 and f2. However, for local operations on the target, SI does not
exhibit a corresponding property, referred to as left monotonicity (see A.8 in Appendix A).
Rauh et al. [19] proposed a construction that enforces left monotonicity. Define

SI(S; Y, Z) = sup
f :S→S′

SI( f (S); Y, Z), (70)

where the supremum runs over all functions f : S → S′ from the domain of S to an
arbitrary finite set S′. By construction, SI satisfies left monotonicity, and SI is the smallest
function bounded from below by SI that satisfies left monotonicity. One can interpret SI as
a measure of “extractable” shared information [19]. The intuition is that SI is the maximal
possible amount of SI one can extract from (Y, Z) by transforming S locally. Furthermore,
one can generalize the construction to define a probabilistic version of extractability by
replacing f by a stochastic matrix. This leads to the definition

SI(S; Y, Z) := sup
PS′ |S : YZ−S−S′

SI(S′; Y, Z). (71)

By definition, SI is monotone under local operations. A study of the monotonicity
properties of SI with respect to public communication is reserved for future study.

Remark 7. More generally, one can apply the “extractable” construction to arbitrary information
measures. Furthermore, by iterating the construction, one can construct an information measure
that is monotonic in all arguments [19]. An example of this construction is the intrinsic information
I↓ in (47). The use of min instead of max in Definition (47) reflects that I↓ can only increase under
local operations by Eve, a monotonicity property it shares with the function UI (see Property P.8
and Proposition 11). Work in a similar vein include [103], where a construction called “arrowing”
is used for building probabilistically extractable versions of a given function (see also [122]).
Galla and Gühne [123] discuss probabilistic extractability for a measure of correlation called the
“connected correlation” [124–128], which are based on projections onto exponential families [129].

6.4. Left Monotonic Information Decompositions

Is it possible to construct an information decomposition where all measures satisfy left
monotonicity? The seemingly simple strategy of starting with an arbitrary decomposition
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and replacing each partial information measure with its extractable counterpart fails, as
this would increase all partial measures (unless already extractable), leading to an overall
increase in their sum. For instance, if S̃I is replaced by a larger function, then ŨI must be
reduced due to constraint (4).

As argued in [52], it is intuitive that ŨI be left monotonic. In particular, the function
UI in Definition 1 satisfies left monotonicity (see Property P.2 in Section 5.4). Likewise, it is
also desirable that S̃I be left monotonic [52,60]. The intuition for synergy is much less clear.
The extractable construction cannot be directly generalized to ensure left monotonicity for
both unique and shared information. However, such a decomposition may still exist, with
left monotonicity affecting the measure of shared information. Suppose that S̃I, ŨI, and C̃I
define a bivariate information decomposition satisfying (4)–(6), and suppose that S̃I and
ŨI satisfy left monotonicity. Then,

S̃I( f (Y, Z); Y, Z) ≤ I(Y; Z) (72)

for any function f [19]. Inequality (72) is related to the identity axiom
(see A.6 in Appendix A). Indeed, it is easy to derive (72) from the identity axiom and
from the assumption that S̃I is left monotonic. None of the non-negative information
decompositions proposed so far satisfies (72). Griffith et al. [130] proposed a function I� as
a measure of shared information that satisfies left monotonicity. However, this function
does not induce a non-negative information decomposition (see A.4 in Appendix A).

The next proposition shows that left monotonicity of the shared information is not
consistent with the Blackwell property of the unique information:

Proposition 14 ([19,20]). There is no bivariate information decomposition satisfying (4)–(6) in
which ŨI satisfies the Blackwell property and S̃I satisfies left monotonicity.

A resource-theoretic characterization of the complementary information appears chal-
lenging. The problem resides with the fact that it is difficult to postulate how the com-
plementary information should behave if, say, one or more parties perform some local
operations on their subsystems. Two studies in this direction deserve notice: Rauh et al.’s
Section IV.C in [52] show that the measure CI in Definition 1 can either increase or decrease
under local operations of the targets and/or the sources. Another work is a decomposition
of the total correlation (TC) due to Amari [124]. The total correlation among three vari-
ables can be decomposed into a sum of two non-negative terms that quantify, resp., the
amount of correlations arising from purely pairwise and purely triplewise interactions [124]
(Equation 78). The latter term can be interpreted as the synergistic component of the total
correlation. However, examples are known where this component violates monotonic-
ity under local operations [123]. Finally, an axiomatic approach to information flow in
computational systems is motivated in [131], where it is shown that the CI in Definition 1
provides an intuitive and insightful measure of information flow volume. This warrants
further investigation.
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Appendix A. The Axiomatic Approach to Shared Information

An axiomatic approach to the concept of shared information was pioneered by
Williams and Beer [46]. Recall that the shared information can be interpreted as mutual
information without the unique information; see (4).

For the general case of k finite predictor variables Y1, . . . , Yk, Williams and Beer [46]
proposed the partial information lattice framework to decompose the total mutual informa-
tion I(S; Y1, . . . , Yk) into a sum of terms (called partial information terms) corresponding to
the different ways in which combinations of the variables Y1, . . . , Yk convey shared, unique,
or complementary information about the target S. When k = 2, writing Y1 ≡ Y and Y2 ≡ Z,
the decomposition has the form given by (4)–(6).

The partial information lattice is a consequence of certain natural properties of the
shared information (sometimes called the Williams–Beer axioms). The underlying idea is
that any information about S can be classified according to “who knows what”, i.e., which
information about S is shared by which subsets of {Y1, . . . , Yk}. This idea resonates with
secret-sharing schemes, a fundamental tool used in many cryptographic protocols [132]. A
secret-sharing scheme involves a secret (S), a finite set K = {1, . . . , k} of parties, and a
family A of (nonempty) subsets of K called the access structure that is closed to taking
supersets. The goal is to distribute the secret (S) among k parties such that only elements
of A can reconstruct the secret, while all other subsets of K obtain no information about
the secret. There is a one-to-one correspondence between the partial information terms of
Williams and Beer’s decomposition scheme and the set of access structures of secret-sharing
schemes with k parties [59].

Let S̃I(S; Y1, . . . , Yk) denote the information about S that is shared among the random
variables Y1, . . . , Yk. It is natural to demand that S̃I satisfies the following properties [46]:

A.1 (Symmetry). S̃I(S; Y1, . . . , Yk) is symmetric under permutations of Y1, . . . , Yk.
A.2 (Self-redundancy). S̃I(S; Y1) = I(S; Y1).
A.3 (Monotonicity). S̃I(S; Y1, . . . , Yk−1, Yk) ≤ S̃I(S; Y1, . . . , Yk−1), with equality if

Yi = f (Yk) for some i < k and some function f .

We refer to properties A.1–A.3 as the Williams–Beer axioms. Any function satisfying
these axioms is non-negative [46]. The axioms, however, do not uniquely characterize the
function S̃I. When S̃I is defined, we can associate with each element of the partial informa-
tion lattice a “local” quantity (the partial information term) that is uniquely determined
from S̃I by a Möbius inversion. The total mutual information I(S; Y1, . . . , Yk) is then a
sum of these local terms [46]. In general, however, the local terms can be negative. For a
non-negative decomposition, we require the following additional property:

A.4 (Local positivity). All the partial information terms in the induced decomposition are
non-negative.

Williams and Beer defined a function

Imin(S; Y1, . . . , Yk) = ∑
s

PS(s) min
i

{
∑
yi

PYi |S(yi|s) log
PS|Yi

(s|yi)

PS(s)

}
= ∑

s
min

i

{
∑
yi

PSYi (s, yi) log
PSYi (s, yi)

PS(s)PYi (yi)

}
, (A1)

and showed that Imin satisfies A.1–A.3 and that the decomposition induced by Imin satisfies A.4.
While the measure Imin has subsequently been criticized for “not measuring the right
thing” [26,53,60], there has been no successful attempt to find better measures, except for
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the bivariate case (k = 2) [6,26]. One problem seems to be the lack of a clear consensus
on the values of the shared information for some paradigmatic examples. For example, it
seems natural that the shared information is zero for the COPY distribution in Example 1
since Y and Z are independent [6,26,60]. However, Imin assigns 1 bit of shared information
in this case. The second problem relates to the difficulty of coming up with a minimal
number of “natural” and “essential” properties for the shared information.

Bertschinger et al. [60] proposed the following additional axiom:

A.5 (Left chain rule). S̃I(SS′; Y1, . . . , Yk) = S̃I(S; Y1, . . . , Yk) + S̃I(S′; Y1, . . . , Yk|S),
where S̃I(S′; Y1, . . . , Yk|S) = ∑s∈S PS(s)S̃I(S′; Y1, . . . , Yk|s).

A.5 is a natural generalization of the chain rule of mutual information (3).
Specializing to the bivariate case, A.4 and A.5 together imply the following prop-

erty [60], which was first proposed in [26]:

A.6 (Identity). S̃I((Y, Z); Y, Z) = I(Y; Z).

The identity property states that if S is an identical copy of the predictor variables,
i.e., if S = (Y, Z), then the shared information should equal the mutual information be-
tween Y and Z. Rauh et al. [52], however, showed that A.6 is incompatible with A.4
for k ≥ 3. This implies that A.4 and A.5 are not compatible for k ≥ 3.

Rauh et al. [52] argue that shared information should never increase if the target and/or
the predictors perform some local operation (e.g., coarse graining) on their subsystems. For
local operations of the predictors, the Williams–Beer axioms imply the following property:

A.7 (Right monotonicity). S̃I(S; Y1, . . . , Yk) ≥ S̃I(S; f1(Y1), . . . , fk(Yk)) for all functions
f1, . . . , fk.

On the other hand, the left chain rule A.5 implies the following property [60]:

A.8 (Left monotonicity). S̃I(S; Y1, . . . , Yk) ≥ S̃I( f (S); Y1, . . . , Yk) for all functions f .

Appendix B. Deferred Proofs

Proof of Lemma 4. Since Z �S Y, there exists some λ′ ∈ M(Z ;Y) such that
κ = λ′ ◦ μ. Hence,

δπ
o (κ, ν) = min

λ∈M(Y ;W)
D(ν‖λ ◦ κ|πS)

= min
λ∈M(Y ;W)

D(ν‖λ ◦ λ′ ◦ μ|πS)

≥ min
λ∈M(Z ;W)

D(ν‖λ ◦ μ|πS) = δπ
o (μ, ν).

Since Y �S W, there exists some λ′ ∈ M(Y ;W) such that ν = λ′ ◦ κ. Hence,

δπ
o (μ, ν) = min

λ∈M(Z ;W)
D(ν‖λ ◦ μ|πS)

= min
λ∈M(Z ;W)

D(λ′ ◦ κ‖λ ◦ μ|πS)

≤ min
λ∈M(Z ;Y)

D(λ′ ◦ κ‖λ′ ◦ λ ◦ μ|πS)

≤ min
λ∈M(Z ;Y)

D(κ‖λ ◦ μ|πS) = δπ
o (μ, κ),

where the inequality in the last step follows from the data processing inequality for the KL
divergence (Theorem 2.2 in [28]).

Proof of Proposition 11. We shall use the following variational characterization of the UI,
which follows from Property P.8:
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UI(S; Y\Z) = min
PZ′ |Z :SY−Z−Z′

UI(S; Y\Z′). (A2)

Let (S, Y, Z) ∼ P and let (S, Y, Z′) ∼ P′ such that P′ = P · PZ′ |Z ≡ ∑z∈Z PSYZPZ′ |Z.
Let Q ∈ ΔP and Q′ = Q · PZ′ |Z ∈ ΔP′ . We then have

UI(S; Y\Z) = min
PZ′ |Z :SY−Z−Z′

UI(S; Y\Z′)

= min
PZ′ |Z :SY−Z−Z′

min
Q′∈ΔP′

IQ′(S; Y|Z′)

≤ min
PZ′ |Z :SY−Z−Z′

min
Q∈ΔP

IQ·PZ′ |Z (S; Y|Z′)

= min
Q∈ΔP

min
PZ′ |Z :SY−Z−Z′

IQ·PZ′ |Z (S; Y|Z′)

= min
Q∈ΔP

IQ(S; Y↓Z) ≤ IP(S; Y↓Z),

where the first step is just (A2), and the inequality in the third step follows since for any
Q ∈ ΔP, Q′ lies in ΔP′ .
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116. Studenỳ, M.; Vejnarová, J. The multiinformation function as a tool for measuring stochastic dependence. In Learning in Graphical

Models; Springer: Berlin/Heidelberg, Germany, 1998; pp. 261–297.
117. Wennekers, T.; Ay, N. Spatial and temporal stochastic interaction in neuronal assemblies. Theory Biosci. 2003, 122, 5–18. [CrossRef]
118. Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural

population. Nature 2006, 440, 1007. [CrossRef]
119. Austin, T. Measures of correlation and mixtures of product measures. arXiv 2018, arXiv:1809.10272.

275



Entropy 2025, 27, 29

120. Cerf, N.J.; Massar, S.; Schneider, S. Multipartite classical and quantum secrecy monotones. Phys. Rev. A 2002, 66, 042309.
[CrossRef]

121. Prabhakaran, V.M.; Prabhakaran, M.M. Assisted common information with an application to secure two-party sampling. IEEE
Trans. Inf. Theory 2014, 60, 3413–3434. [CrossRef]

122. Horodecki, K.; Horodecki, M.; Horodecki, P.; Oppenheim, J. Locking entanglement with a single qubit. Phys. Rev. Lett. 2005,
94, 200501. [CrossRef] [PubMed]

123. Galla, T.; Gühne, O. Complexity measures, emergence, and multiparticle correlations. Phys. Rev. E 2012, 85, 046209. [CrossRef]
124. Amari, S.I. Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 2001, 47, 1701–1711. [CrossRef]
125. Schneidman, E.; Still, S.; Berry, M.J., II; Bialek, W. Network information and connected correlations. Phys. Rev. Lett. 2003,

91, 238701. [CrossRef]
126. Kahle, T.; Olbrich, E.; Jost, J.; Ay, N. Complexity measures from interaction structures. Phys. Rev. E 2009, 79, 026201. [CrossRef]
127. Linden, N.; Popescu, S.; Wootters, W.K. Almost every pure state of three qubits is completely determined by its two-particle

reduced density matrices. Phys. Rev. Lett. 2002, 89, 207901. [CrossRef]
128. Zhou, D.L. Irreducible multiparty correlations can be created by local operations. Phys. Rev. A 2009, 80, 022113. [CrossRef]
129. Ay, N.; Jost, J.; Vân Lê, H.; Schwachhöfer, L. Information Geometry; Springer: Berlin/Heidelberg, Germany, 2017; Volume 8.
130. Griffith, V.; Chong, E.K.P.; James, R.G.; Ellison, C.J.; Crutchfield, J.P. Intersection Information Based on Common Randomness.

Entropy 2014, 16, 1985–2000. [CrossRef]
131. Venkatesh, P.; Dutta, S.; Grover, P. How should we define information flow in neural circuits? In Proceedings of the IEEE

International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 176–180.
132. Beimel, A. Secret-sharing schemes: A survey. In Proceedings of the International Conference on Coding and Cryptology; Springer:

Berlin/Heidelberg, Germany, 2011; pp. 11–46.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

276



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editor. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editor and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-3614-7


