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Non-Parametric Calibration of the Inverse Kinematic Matrix of
a Three-Wheeled Omnidirectional Mobile Robot Based on
Genetic Algorithms

Jordi Palacín *, Elena Rubies, Ricard Bitrià and Eduard Clotet

Robotics Laboratory, Universitat de Lleida, Jaume II, 69, 25001 Lleida, Spain
* Correspondence: jordi.palacin@udl.cat

Featured Application: Odometry calibration of a three-wheeled omnidirectional mobile robot.

Abstract: Odometry is a computation method that provides a periodic estimation of the relative
displacements performed by a mobile robot based on its inverse kinematic matrix, its previous
orientation and position, and the estimation of the angular rotational velocity of its driving wheels.
Odometry is cumulatively updated from tens to hundreds of times per second, so any inaccuracy in
the definition of the inverse kinematic matrix of a robot leads to systematic trajectory errors. This
paper proposes a non-parametric calibration of the inverse kinematic (IK) matrix of a three-wheeled
omnidirectional mobile robot based on the use of genetic algorithms (GA) to minimize the positioning
error registered in a set of calibration trajectories. The application of this non-parametric procedure
has provided an average improvement of 82% in the estimation of the final position and orientation
of the mobile robot. This is similar to the improvement achieved with analogous parametric methods.
The advantage of this non-parametric approach is that it covers a larger search space because it
eliminates the need to define feasible physical limits to the search performed to calibrate the inverse
kinematic matrix of the mobile robot.

Keywords: odometry; odometry calibration; inverse kinematic; omnidirectional mobile robot

1. Introduction

Odometry is a direct computation method that provides a periodic estimation of the
relative displacement of a mobile robot through the use of its inverse kinematic matrix,
its previous orientation and position, and the estimation of the angular rotational velocity
of its driving wheels. Odometry is cumulatively updated from tens to hundreds of times
per second so any inaccuracy in the definition of the inverse kinematic matrix of the robot
causes systematic trajectory estimation errors. Borenstein et al. [1] proposed the University
of Michigan Benchmark (UMBmark) test to estimate and correct systematic odometry
errors in differential drive mobile robots. The existence of systematic odometry errors in
a differential drive mobile robot is usually evidenced when a straight trajectory becomes
curved. The UMBmark defines a motion experiment in which a differential drive mobile
robot follows a square-shaped path in either a clockwise or counterclockwise direction
in order to provide unbiased error compensations in both directions. The UMBmark test
assumes that systematic odometry errors are caused by an inaccurate definition of the
distance from the wheels to the center of rotation of the mobile robot and by an inaccurate
definition of the diameters of the wheels. However, the trajectory of the mobile robot may
also be conditioned by such other parameters as the controllers driving its motors [2–4]. The
effects of all the error sources in the odometry of the mobile robot are usually summarized
in the computation of its effective inverse kinematics [5].

Compared with non-holonomic robots, odometry estimation in omnidirectional mobile
robots is far more complex due to their enhanced motion capabilities. The additional
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degrees of freedom offered by omnidirectional robots, along with a larger number of
parameters involved in the definition of their kinematic models, can accentuate the effects
of systematic errors [6,7]. In the case of a three-wheeled omnidirectional motion system,
Maddahi et al. [8] proposed a method to reduce odometry errors based on the application
of two corrective indices to the inverse kinematic matrix of the robot. In summary, the
application of these two corrective indices has the effect of correcting the angular velocities
of the wheels, which can be considered equivalent to a parametric calibration of the
radii of the wheels. Maddahi et al. [8] concluded that the application of these corrective
indices provides better error reduction in the case of the mobile robot performing straight
trajectories rather than curved trajectories. Alternatively, Lin et al. [9] proposed a method
to reduce odometry errors based on the direct correction of the kinematic model of an
omnidirectional mobile robot using different calibration trajectories. Similarly, the inverse
kinematics and trajectory performance of four-wheeled omnidirectional mobile robots have
been specifically analyzed by different authors. Maulana et al. [10] analyzed the inverse
kinematics in a mecanum mobile robot using stepper motors. Jia et al. [11] analyzed the
kinematic model of a mecanum wheeled robot with four wheels. Xu et al. [12] analyzed the
tracking performance of a four-wheeled omnidirectional mobile robot using sliding mode
control. Li et al. [13] proposed a procedure to reduce odometry errors by considering the
problem of wheel slippage due to the motion constraints originated by wheel redundancy
in four-wheeled omnidirectional mobile robots. In this case, Li et al. [13] proposed the
determination of a non-parametric velocity compensation matrix that is applied to the
kinematic model of the mobile robot with the objective of reducing the specific odometry
error caused by wheel slippage. In a similar direction, Savaee et al. [14] proposed a non-
parametric approach to calibrate the effective kinematic matrix of an omnidirectional mobile
robot. This proposal was based on the comparison of trajectory simulations, performed
with a virtual mobile robot, with experimental trajectory measurements performed by
the real mobile robot. Under such conditions, the assumption was that offline calibration
of the kinematic matrix of the mobile robot was less prone to local minima effects [15].
Prados et al. [16] analyzed the motion performance of a four-wheeled omnidirectional
mobile robot tailored for surveillance application in limited spaces.

Finally, in a previous work [17], we performed the parametric optimization of the
inverse kinematic matrix of a real three-wheeled omnidirectional mobile robot. This
approach was based on the definition of a set of benchmark omnidirectional trajectories
and an offline parametric optimization based on odometry computation. The parameters
analyzed as possible error sources were: the radius of the three omnidirectional wheels,
the distance from the wheels to the center of rotation of the mobile robot and the angular
orientation of the wheels. These nine parameters (three error sources for each of the three
wheels) were iteratively calibrated in order to optimize the inverse kinematic matrix that
defines the odometry of the mobile robot. The underlying hypothesis of this parametric
optimization was the possibility of directly identifying assembling imprecisions originated
during the construction of the robot and thus being able to correct the cause of systematic
errors in the trajectory of the robot. However, the analysis of the results obtained in [17]
showed that the calibrated values of the parameters have no direct feasible interpretation
in the mobile robot. For example, the diameter of the wheels that improves the odometry
does not correspond to the wheel diameters obtained with accurate measurements.

New Contribution

This paper proposes a non-parametric calibration of the inverse kinematic (IK) matrix
of a three-wheeled omnidirectional mobile robot. This calibration procedure is based on
the multidimensional search capabilities of genetic algorithms (GA), which are used to
iteratively fit a numerical description of the inverse kinematic matrix that improves the
odometry of a three-wheeled omnidirectional mobile robot.

Genetic algorithm optimization has many practical applications in robotics [18–22].
In this paper, genetic optimization is applied in an offline procedure that recomputes the
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odometry from the mobile robot data registered in 36 representative straight and curved
trajectories. These trajectories were inspired by the proposal of Maddahi et al. [8] and
Batlle et al. [23] and were already proposed in [17] as a benchmark for offline omnidirec-
tional mobile robot calibration.

The performance of the experimental application of this non-parametric calibration
procedure in a real three-wheeled omnidirectional mobile robot has been evaluated in
terms of odometry improvement. The main advantage of this non-parametric calibration
procedure, relative to a parametric calibration [17], is that it does not require the definition
of feasible physical-interpretable limits during the iterative search performed by genetic
algorithms. As a result, the search space is larger but the iterative calibration procedure
converges faster. The main theoretical disadvantage of this non-parametric calibration
procedure is the leak of feasible physical interpretation of the fitted inverse kinematic
matrix (such as wheel diameter, distance of the wheel, etc.), although a previous work [17]
showed that the result of a parametric calibration cannot be physically interpreted.

2. Materials and Methods

The materials and methods used in this paper are: the APR-02 three-wheeled omnidi-
rectional mobile robot, the method used to compute the odometry of the mobile robot, the
representative calibration trajectories, and the dataset of training and validation trajectories
used to calibrate the inverse kinematic matrix of this mobile robot.

2.1. APR-02 Three-Wheeled Omnidirectional Mobile Robot

The robot assessed in this paper is the autonomous APR-02 three-wheeled omnidi-
rectional robot, which was initially devised as a mobile telepresence platform [24]. The
inclusion of an onboard high-end computer in the following prototypes allowed the de-
velopment of autonomous applications, e.g., supporting and guiding older people with
mobility impairments [25], and an early gas leak detection system [26]. The main character-
istic of this assistive mobile robot [27] is the use of an omnidirectional motion system based
on three optimal omnidirectional wheels [28] driven by three brushed direct current motors
(BDCM) [29]. The odometry of the robot is calculated from the information provided by
the encoders of the motors. The advantage of a three-wheeled against a four-wheeled
omnidirectional motion system is the avoidance of wheel slippage [17,30].

Figure 1 shows some images of the APR-02 mobile robot completing a displacement.
The trajectory of the mobile robot is controlled by a target motion command (v, α, ω, tr) [30]
that defines: the translational velocity of the motion (v); the angular orientation of the
planned motion (α), defined in a complete range from 0◦ to 360◦; the angular rotational
speed of the base of the mobile robot (ω) while performing a displacement; and the
time duration of this motion command (tr), which can be replaced by a target distance
displacement. The path planning algorithm of the mobile robot periodically updates the
target motion command every 300 ms. The maximum value of the time duration (tr) is
always lower than 500 ms as a kind of watchdog security measure to stop the mobile robot
automatically in case of malfunction of its central processing unit. This omnidirectional
mobile robot is able to move in any angular orientation (α) without having to perform any
previous maneuver, also being able to rotate over itself while moving [30].

The determination of the ground truth trajectory of the mobile robot is based on the
application of SLAM [31] to the precise information gathered from its onboard Hokuyo
UTM-30LX 2D LIDAR, which is placed horizontally or tilted down [32] depending on the
expected surrounding environment. The practical disadvantage of using a high-precision
LIDAR is its high cost. There are also other cheaper positioning alternatives that have
been proven useful for kinematic calibration [33] and in the application of mobile robots
intended to operate in the presence of dynamic obstacles, such as people [34].
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(a) (b) (c) (d) 

Figure 1. APR-02 mobile robot performing a transversal (or lateral) displacement: (a) starting point;
(b,c) intermediate points; and (d) destination point.

2.2. Odometry Estimation

Odometry is a computation method that provides a periodic estimation of the rela-
tive displacement of a mobile robot. This computation requires an accurate and precise
definition of its inverse kinematic matrix, its previous position and orientation, and the
estimation of the angular rotational velocities of its driving wheels. The consequence of any
inaccuracy or imprecision is the generation of systematic odometry errors. Additionally,
odometry interprets the angular rotational speeds of the wheels of the mobile robot as
linear displacements, so it requires non-slippage wheel conditions throughout the trajectory.
In the case of a three-wheeled omnidirectional mobile robot, the wheels have no motion
constraints and no slippage is originated while performing any continuous motion [30].

The kinematics and the odometry of a three-wheeled omnidirectional mobile robot
such as the APR-02, was described previously in [17,30]. This practical odometry estimation
is challenging because of the degree of freedom provided by its omnidirectional motion
system. Figure 2 presents the definition of the omnidirectional motion system of the APR-02
mobile robot: (x, y, θ) is the position of the mobile robot referred to the absolute or fixed
world frame (XW , YW), (XR, YR) is the relative mobile robot frame, (v, α, ω) is the motion
command that specifies the target trajectory planned for the mobile robot, (ωa, ωb, ωc)
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are the angular velocities of the wheels required to implement the motion command, and
(Va, Vb, Vc) are the deduced linear velocities of the wheels.

Figure 2. Detail of the omnidirectional motion system of the APR-02 mobile robot. (XR, YR) is the
mobile robot frame in which XR represents the front and forward direction of the robot.

Odometry uses the instantaneous estimate of the current angular velocities of the
three wheels, a, b, c, given as (ωa(k), ωb(k), ωc(k)), and defined in rad/s; and the previous
position of the mobile robot (x(k − 1), y(k − 1), θ(k − 1)), defined in the absolute world
frame (XW , YW). Both values are used to update the current position of the mobile robot
(x(k), y(k), θ(k)) by using the following expression [17]:⎡⎣x(k)

y(k)
θ(k)

⎤⎦
World

=

⎡⎣x(k − 1)
y(k − 1)
θ(k − 1)

⎤⎦
World

+ Δt·R(θ(k − 1))−1·M−1·
⎡⎣ωa(k)

ωb(k)
ωc(k)

⎤⎦ (1)

where Δt is the sampling time at which the angular velocities of the wheels of the robot
are updated and k is the current discrete sample number that describes a time elapsed t(k)
(where t(k) = Δt·k) since the initialization of the robot. In the case of the APR-02, this
sampling time coincides with the sampling time used internally by the three proportional,
integral, and derivative (PID) controllers (Δt = 10 ms) [29] of the three brushed direct
current motors (BDCM) driving its three omnidirectional wheels.

In Equation (1), R(θ(k − 1))−1 is the inverse of the rotation matrix computed from the
previous instantaneous angular orientation of the mobile robot θ(k − 1):

R(θ(k − 1))−1 =

⎡⎣cos(θ(k − 1)) − sin(θ(k − 1)) 0
sin(θ(k − 1)) cos(θ(k − 1)) 0

0 0 1

⎤⎦ (2)

and M−1 is the inverse of the compact kinematic matrix of the mobile robot that can be
computed analytically as [17]:

M−1 = 1
Ra sin(δb−δc)−Rb sin(δa−δc)+Rc sin(δa−δb)

·⎡⎣ra(Rb cos(δc)− Rc cos(δb)) −rb(Ra cos(δc)− Rc cos(δa)) rc(Ra cos(δb)− Rb cos(δa))
ra(Rb sin(δc)− Rc sin(δb)) −rb(Ra sin(δc)− Rc sin(δa)) rc(Ra sin(δb)− Rb sin(δa))

ra sin(δb − δc) −rb sin(δa − δc) rc sin(δa − δb)

⎤⎦ (3)

where (ra, rb, rc) are the radii of the wheels, (Ra, Rb, Rc) are the distances between the
center of the robot and the wheels, and (δa, δb, δc) are the angular orientations of the wheels
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defined in the mobile robot frame (XR, YR). Figure 3 presents the definition of all these
parameters involved in the omnidirectional motion system of the APR-02. These have the
following design values: ra,b,c = 0.148 m, Ra,b,c = 0.195 m, δa = 60◦, δb = 180◦, δc = 300◦.

Figure 3. Parametric definition of the omnidirectional motion system of the APR-02 mobile robot.
(XR, YR) represents the mobile robot frame in which XR is the front of the mobile robot.

2.3. Calibration Trajectories

The calibration trajectories used in this paper are the same 36 representative bench-
mark trajectories proposed in [17]. These trajectories were proven useful for improving the
odometry of a three-wheeled omnidirectional mobile robot [17]. The motion commands
required to generate the calibration trajectories are listed in Table A1 of [17]. These bench-
mark trajectories define a characteristic flower-shaped figure that is representative of the
motion capabilities of an omnidirectional mobile robot.

Table 1 lists the information registered by the APR-02 mobile robot while performing
a calibration trajectory defined by a motion command (v, α, ω), executed over a predefined
distance or time. The path-planning algorithm of the mobile robot converts this target
motion into the target angular rotational velocities (ωMa, ωMb, ωMc) to be applied to the
three PID controllers [29] that supervise the motors of the robot. The main information
registered in Table 1 is the complete sequence of angular rotational velocities of the wheels
measured during a displacement, ωa,b,c. This information is used by the mobile robot to
compute the odometry in real-time, but the registration of this information allows future
offline re-computation of the odometry with a different inverse kinematic matrix (allowing
its calibration). The APR-02 also estimates its position by applying SLAM to the 2D scans
provided by its onboard LIDAR. This real-time information is stored as the reference
ground truth trajectory followed by the mobile robot during the experiment, along with
the scans provided by the LIDAR sensor for future offline analysis.
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Table 1. Information registered by the mobile robot while performing a calibration trajectory.

Parameter Description

(v, α, ω, d) Target motion command for the robot
v: translational velocity of the displacement of the robot, (m/s)
α: angular orientation of the displacement, (◦)
ω: angular rotational speed of the robot during the
displacement, (rad/s)
d: linear distance to be achieved during the displacement, (m)

(ωMa, ωMb, ωMc) Target angular velocities for the wheels
ωMi: target angular velocity defined for the motor of the wheel
i, computed when receiving the motion command, (rpm)

ωa,b,c =

⎡⎢⎢⎣
t(k = 1 . . . F)

ωa(k = 1 . . . F)
ωb(k = 1 . . . F)
ωc(k = 1 . . . F)

⎤⎥⎥⎦
Angular velocities of the wheels provided by the encoders
t(k): time the update k was received, (s)
ωi: instantaneous angular velocity measured by the encoder of
the motor i, updated periodically at a frame rate of 10 ms, (rpm)

(x, y, θ) =

⎡⎣x(k = 1 . . . F)
y(k = 1 . . . F)
θ(k = 1 . . . F)

⎤⎦ Trajectory of the mobile robot estimated with the odometry
x, y: location of the robot, (m)
θ: angular orientation of the robot, (◦)

LIDAR =

⎡⎢⎢⎣
tLIDAR(p = 1) tLIDAR(p = N)⎡⎣ d(1)

. . .
d(1080)

⎤⎦1

. . .

⎡⎣ d(1)
. . .

d(1080)

⎤⎦N

⎤⎥⎥⎦
Scans provided by the onboard LIDAR
tLIDAR(p): time the scan p was received, (s)
d(r): distance scan corresponding to the angular orientation r,
updated periodically at a frame rate from 200 to 300 ms, (mm)

(x, y, θ)LIDAR =

⎡⎣xLIDAR(p = 1 . . . N)
yLIDAR(p = 1 . . . N)
θLIDAR(p = 1 . . . N)

⎤⎦ Ground Truth trajectory of the mobile robot estimated with SLAM
xLIDAR, yLIDAR: location of the robot, (m)
θLIDAR: angular orientation of the robot, (◦)

2.4. Dataset of Training and Validation Trajectories

This paper uses two datasets composed of training and validation trajectories. The
training dataset is used to calibrate the inverse kinematic matrix of the APR-02 mobile robot.
The training dataset is the same one used in [17] to obtain comparable calibration results.
The training dataset is composed of 36 benchmark calibration trajectories, each repeated
5 times, with a total of 180 trajectories registered for training. The validation dataset
is used to assess the final performance of the non-parametric inverse kinematic matrix
fitted. The validation dataset is composed of 36 new benchmark calibration trajectories.
Once again, each trajectory is repeated 5 times, making up a total of 180 new trajectories
registered for the testing phase. Figure 1 shows the mobile robot APR-02 completing a
calibration trajectory.

3. Procedure for Genetic Algorithm Calibration of the Inverse Kinematic Matrix

The non-parametric procedure used in this paper to calibrate the inverse kinematic
matrix of the APR-02 mobile robot is based on the multivariate search capabilities of
genetic algorithms [35]. This nature-inspired search is used to recompute the odometry of
the mobile robot offline (Equation (1)) with the information registered while completing
a trajectory. The application of a genetic search iteratively finds a local unconstrained
minimum of an objective cost function in a multivariate search space. Figure 4 shows a
diagram describing the genetic algorithm search, which is started from an initial population
that defines a starting point in the search space and then performs a bounded search.

7



Appl. Sci. 2023, 13, 1053

 

 

Iterative Genetic Algorithm 
optimization of the Inverse 

Kinematic matrix, –1  

Recompute the odometry of the 
mobile robot with the population of 
the Inverse Kinematic matrix, –1  

Calibrated Inverse Kinematic matrix, –1 

Evaluate the average relative 
change of the cost function,   

Compute the cost function, , 
between the ground truth trajectories 

and the recomputed trajectories  

Select the best population  

Training dataset with the 
180 calibration trajectories 

registered 

Initial value of the Inverse 
Kinematic matrix, –1 

Figure 4. Diagram of the Genetic Algorithm search performed to calibrate the inverse kinematic
matrix of the APR-02 mobile robot.

The initial population of the search is the theoretical value of the inverse kinematic
matrix M−1 defined in Equation (3). This is interpreted by the genetic algorithm as a
population vector, V, that defines the ninth-dimensional search space:

M−1 =

⎡⎣m1,1 m1,2 m1,3
m2,1 m2,2 m2,3
m3,1 m3,2 m3,3

⎤⎦ (4)

V =
[
m1,1 m1,2 m1,3 m2,1 m2,2 m2,3 m3,1 m3,2 m3,3

]
(5)

The upper and lower bounds (VUB and VLB) of the GA search were configured to allow
a ±10% variation of the values defined in the initial population V.

The iterative search performed by genetic algorithms requires the computation of
a cost function CF to evaluate the performance of each population proposed during the
search. This cost function is the same one used in [17] to compare the previous reference
parametric calibration results [17] with the non-parametric calibration presented in this
paper. This function is defined as:

CF =
1
Z
·

Z

∑
i=1

√(
xi

LIDAR(N)− xi(F)
)2

+
(
yi

LIDAR(N)− yi(F)
)2

+
(
θi

LIDAR(N)− θi(F)
)2 (6)
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where Z is the number of trajectories used to compute the cost function (the 180 trajectories
included in the training dataset); i represents an individual trajectory completed by the
mobile robot; xi

LIDAR(p) is the x location of the mobile robot estimated by applying SLAM
to the p scan provided by the onboard LIDAR while completing the trajectory i; N identifies
the last scan provided by the LIDAR when the robot reaches the end of the trajectory; xi(k)
is the x location of the mobile robot estimated with the internal odometry using the current
values of the inverse kinematic matrix M−1; F identifies the last odometry evaluation
obtained when the robot reaches the end of the trajectory; θ is the final angular orientation
of the mobile robot.

This cost function formulation was used to calibrate the effective kinematic parameters
of an omnidirectional mobile robot by Savaee et al. [14]. This cost function apparently
applies the same weights to the distance and angular error obtained at the end of the
displacement. However, this perception is incorrect because an error in a specific angular
orientation of the robot affects the estimation of the subsequent trajectory cumulatively
(see Equation (1)). Therefore, any error in the intermediate estimation of the angular
orientation has a huge potential cumulated weight in the computation of the cost function.

At this point, note that this cost function is computed using only the ending position
of the mobile robot. Therefore, the evaluation of this cost function only requires: (1) the
last position of the ground truth trajectory estimated with the SLAM procedure (computed
while completing the trajectory) and (2) the last location estimated with the odometry using
the inverse kinematic matrix defined by the current population analyzed in the iteration.
This offline computation of the odometry requires all the information provided by the
encoders during the displacement; this is why each trajectory registered by the mobile
robot also includes the information provided by the encoders.

Finally, the iterative search performed by the genetic algorithm stops if the average
relative change in the best population found of a cost function CF is less than or equal to
10−6, which is the default value used in standard GA searches.

4. Results

This section compares the performance of the inverse kinematic matrices of the APR-
02 mobile robot. This section presents: (1) the reference theoretical value of the inverse
kinematic matrix of the mobile robot, (2) the reference parametric calibration of the inverse
kinematic matrix obtained previously in [17], and (3) the result of the non-parametric
calibration performed in this paper.

4.1. Reference Theoretical Value of the Inverse Kinematic Matrix

The exact or theoretical value of the inverse kinematic matrix (M−1) of the APR-02
mobile robot can be computed analytically from Equation (1) as [17]:

M−1 =

⎡⎣−0.0854478398400646 0.0000000000000000 0.0854478398400646
0.0493333333333333 −0.0986666666666667 0.0493333333333333
0.2529914529914529 0.2529914529914529 0.2529914529914529

⎤⎦ (7)

Figure 5 shows the evolution of a sample trajectory followed by the APR-02 mobile
robot: the red line displays the ground truth trajectory estimated with SLAM [31] and the
blue line the odometry computed using the theoretical value of the inverse kinematic matrix.
As could be expected, Figure 5 shows differences between the ground truth trajectory and
the odometry due to the existence of systematic odometry errors. At this point, note that the
inverse kinematic matrix of a three-wheeled omnidirectional robot is very sensitive to any
inaccuracy in the implementation of the parameters of the motion system [17]: radii of the
wheels (ra, rb, rc), the distance between the center of the robot and each wheel (Ra, Rb, Rc),
and the angular orientation of each wheel in the mobile robot frame (δa, δb, δc). In any case,
the effects of the systematic errors are best evidenced in a mobile robot performing curved
trajectories (Figure 5) rather than straight trajectories [17]. In the case of an omnidirectional
mobile robot, the difference between a curved and a straight trajectory depends only on
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the target angular rotational speed, which is the ω parameter in the motion command,
(v, α, ω).

Figure 5. Sample trajectory followed by the APR-02 mobile robot for the motion command
(v, α, ω �= 0) = (0.2 m/s, 30◦, 0.35 rad/s). The ground truth trajectory was estimated from the
information of the LIDAR (red line) while the odometry was estimated with the theoretical value of
the inverse kinematic matrix of the mobile robot (blue line).

4.2. Reference Parametric Optimization of the Inverse Kinematic Matrix (from [17])

The parametric optimization presented in [17] was focused on calibrating the value of the
parameters of the APR-02 mobile robot and the computation of the inverse kinematic matrix
of the robot from these parameters. Nine specific mobile robot parameters were calibrated
in [17]: the radii of the wheels (ra, rb, rc), the distance between the center of the robot and each
wheel (Ra, Rb, Rc), and the angular orientation of each wheel (δa, δb, δc). The computation of
this parametric optimization required 903 s in a high-performance workstation.

The exact value of the inverse kinematic matrix (MPARAMETRIC
−1) obtained from the

parametric calibration presented in [17] is:

MPARAMETRIC
−1 =

⎡⎣−0.0892930568372762 −0.0005606566978203 0.0867466159313470
0.0520955668635434 −0.1010213675626970 0.0533117820461363
0.2364093797047320 0.2341358647406650 0.2353792947863630

⎤⎦ (8)

This parametric inverse kinematic matrix represents the following errors in the deter-
mination of the parameters of the mobile robot: 4.7% in the size of the radius of the wheel
a (ra), 2.4% in rb, 3.2% in rc, 12% in the distance from the wheel a to the center of rotation
of the robot (Ra), 10% in Rb, 11% in Rc, 0.4% in the angular orientation of the wheel a (δa),
0.2% in δb, and 0.5% in δc. These huge errors obtained in the parametric calibration, higher
than 10% in some cases, were too high to be justified as being caused by assembling or
manufacturing errors. Therefore, the drawback of the parametric calibration was that the
results could not be interpreted as an improved description of the physical parameters
of the mobile robot: the radii of the wheels (ra, rb, rc), the distances from the wheels to
the center of rotation of the mobile robot (Ra, Rb, Rc), and the angular orientations of the
wheels (δa, δb, δc). Consequently, these results suggested the development of a comparative
non-parametric calibration of the inverse kinematic matrix of the mobile robot.

4.3. Non-Parametic Inverse Kinematic Matrix Calibrated with Genetic Algorithms

As stated above, the difficult physical interpretation of the parametric optimization
results obtained in [17] combined with the difficulty of establishing feasible limits to
the parametric search suggested the implementation of an alternative non-parametric
calibration of the inverse kinematic matrix of the mobile robot. The complete procedure
used in this non-parametric calibration is described in Section 3. The optimization is
based on the multivariate search capabilities of the genetic algorithms, which are less
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prone to local minima than other gradient search algorithms. The computation of this
non-parametric optimization required 637 s in the same high-performance workstation
used in the reference parametric optimization [17] (29% less time).

The best non-parametric inverse kinematic matrix (MNON−PARAMETRIC
−1) obtained

with the application of the calibration procedure proposed in this paper (described in
Section 3) is:

MNON−PARAMETRIC
−1 =

⎡⎣−0.0883286476963123 0.0000000000000000 0.0873330402667908
0.0522829495809178 −0.1008246738469390 0.0536189007203205
0.2357044251338890 0.2338948216993490 0.2348793373133590

⎤⎦ (9)

The following expression is used to compare the inverse kinematic matrix obtained
with the parametric (Equation (8)) and non-parametric calibration (Equation (9)). This
expression performs the Hadamart product (element-wise product) [36] of the difference
between these two matrices.(

MNON−PARAMETRIC
−1
)

ij
·(1 + MDIFFERENCE

−1)ij =
(

MPARAMETRIC
−1
)

ij
(10)

MDIFFERENCE
−1 =

⎡⎣ 1.091% 1.505 × 1015% −0.671%
−0.358% 0.195% −0.572%

0.299% 0.103% 0.212%

⎤⎦ (11)

The difference matrix MDIFFERENCE
−1 shows that the results of both calibrations

(parametric and non-parametric) are very similar, with differences lower than 0.7% except
in the case of the coefficients m1,1 (1.091%) and m1,2 (1.505 × 1015%). The huge difference
in the coefficient m1,2 is because the non-parametric calibration maintained the original
value defined in the theoretical inverse kinematic matrix (Equations (3) and (7)), with
a value very close to zero: −1.208 × 10−17. Alternatively, the result of the parametric
calibration performed in [17] (displayed in Equation (8)) showed m1,2 to reach the value of
−0.00056, which is very difficult to interpret as a parametric inaccuracy originated during
the assembling the robot. The differences between the parametric and non-parametric
calibration of the inverse kinematic matrices are small but cannot be neglected because the
odometry is cumulatively updated ten times per second with the displacement information
provided by the encoders.

Figure 6 compares the offline computation of the odometry of four randomly chosen
validation trajectories (from the 36 × 5 available in the validation dataset). The ground truth
trajectory computed from the LIDAR information is labeled in red and the odometry is
computed using the different inverse kinematic matrices evaluated in this paper: theoretical
IK (green), parametric IK (brown), and non-parametric IK (magenta). Figure 7a–d shows
in detail the final position of the robot achieved in the trajectories depicted in Figure 6.
Figure 7a–d shows small differences between the ground truth trajectory of the mobile robot
(red line) and the odometry computed with the parametric (brown line) and non-parametric
(magenta line) inverse kinematic matrices obtained for the APR-02.

Finally, Tables 2 and 3 compare the performance of the non-parametric calibration
performed in this paper. Table 2 presents the average values of the cost function (CF) ob-
tained with the 180 benchmark trajectories contained in the training dataset. The reference
cost function, CFTheoretical IK, was computed using the theoretical inverse kinematic matrix
which is described in Equations (3) and (7). The values of the parametric inverse kinematic
matrix (Parametric IK) were obtained in [17] and its values are presented in Equation (8).
The numerical values of the non-parametric optimization of the inverse kinematic matrix
performed in this paper with genetic algorithms (Non-parametric IK) are described in
Equation (9). Table 2 shows that the best cost function computed with the training trajec-
tories is practically the same for the parametric and non-parametric calibrations. Please
note that the column indicating CFTRAINING presents the cost function computed with the
calibration trajectories included in the training dataset.
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(a) 

 

(b) 

(c) 

 

(d) 

 

Figure 6. Comparison between the ground truth trajectory followed by the mobile robot (red line)
and the odometry estimated with: the theoretical IK (green line), the parametric IK (brown line) and
the non-parametric IK (magenta line). Trajectories originated by the following motion commands,
(v, α, ω): (a) (0.2 m/s, 30◦, 0.35 rad/s); (b) (0.2 m/s, 210◦, 0.35 rad/s); (c) (0.2 m/s, 120◦, 0.35 rad/s);
and (d) (0.2 m/s, 300◦, 0.35 rad/s).
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(a) (b) 

 
(c) (d) 

Figure 7. Detail of the final position of the robot corresponding to the full trajectories displayed
in Figure 6. Ground truth trajectory of the mobile robot (red) and odometry of the mobile robot
computed using the theoretical IK (green), the parametric IK [17] (brown) and the noon-parametric
IK (magenta).

Table 2. Values of the cost function obtained when computing the odometry of the 180 trajectories
included in the training dataset with the theoretical and calibrated inverse kinematic matrices.

M−1 CFTheoretical IK CFTRAINING Improvement

Theoretical IK 0.1234 - -
Parametric IK [17] 0.1234 0.0215 82.61%

Non-parametric IK * 0.1234 0.0215 * 82.60% *
* Calibration result obtained in this paper.

Table 3. Values of the cost function obtained when computing the odometry of the 180 trajectories
included in the validation dataset with the theoretical and calibrated inverse kinematic matrices.

M−1 CFTheoretical IK CFVALIDATION Improvement

Theoretical IK 0.1251 - -
Parametric IK [17] 0.1251 0.0229 81.68%

Non-parametric IK * 0.1251 0.0227 * 81.81% *
* Calibration result obtained in this paper.
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Table 3 shows the value of the cost function evaluated with the trajectories included in
the validation dataset. These validation trajectories were registered several months after the
registration of the trajectories included in the training dataset. Table 3 shows that the offline
computation of the odometry of the 180 trajectories included in the validation dataset offers
practically the same cost function and the same improvement with both the parametric
and non-parametric inverse kinematic matrices. Additionally, the similarity between the
values of the cost function obtained with the training dataset (Table 2) and the validation
dataset (Table 3) seems to indicate no over-time changes in the kinematics of the mobile
robot APR-02.

5. Discussion and Conclusions

This paper proposes a non-parametric calibration procedure of the effective inverse
kinematic matrix of a three-wheeled omnidirectional mobile robot based on the search capa-
bilities of genetic algorithms. The calibration procedure used a training dataset composed
of five repetitions of 36 representative benchmark trajectories (180 trajectories in total).
These benchmark trajectories summarize the motion performances of a three-wheeled
mobile robot [17]. The calibration procedure is based on genetic algorithms because the
mutation and combination performed during the search is less prone to local minima
during the multivariate searches required to optimize the kinematics of a robot [14,17].

The application of this non-parametric calibration procedure to the offline computa-
tion of the odometry of the training trajectories reduced the value of the cost function from
0.1234 to 0.0215, representing an improvement of the cost function of 82.6% (see Table 2).
This improvement is practically the same as that (82.6%) obtained in the parametric cali-
bration procedure conducted previously in [17] with the same training trajectories. The
analysis implemented with the validation trajectories confirmed an average improvement
in the cost function of 81.8% (see Table 3) which is visually observable in the estimated trajec-
tory of the mobile robot (see Figures 6 and 7). The calibration results obtained in this paper
have a similar order of magnitude as the improvements presented by Maddahi et al. [8] and
Batlle et al. [23], who highlighted the importance of using curved trajectories for calibrat-
ing the kinematics of an omnidirectional mobile robot. Nevertheless, the use of different
calibration trajectories precludes direct comparison of the achievements.

As a summary, the non-parametric calibration of the inverse kinematic matrix of
a three-wheeled omnidirectional mobile robot has two main advantages: (1) it avoids
the problem of defining feasible physical-interpretable limits applied in the parametric
calibration; and (2), as a consequence, this non-parametric calibration is much easier to
implement and converges faster than the parametric calibration. The offline implementation
of the non-parametric calibration in a high-performance workstation required an average
of 637 s, while the parametric calibration conducted previously in [17] required 903 s (41%
more computational time). The definition of feasible, physically interpretable limits in
a parametric calibration of the kinematic matrix is a problem that cannot be neglected
because of the complex numerical relationship between the parameters that define the
inverse kinematic matrix of a mobile robot. The comparative analysis of the results obtained
in this paper demonstrates that the improvement in odometry that can be obtained with
a non-parametric calibration is practically the same as that which can be obtained with a
parametric calibration. Finally, the disadvantage of performing a non-parametric calibration
of the inverse kinematic matrix of a mobile robot is that the calibration result is a numerical
matrix that cannot be physically interpreted. However, this disadvantage does not really
exist because the parameter variation obtained in the parametric calibration performed
in [17] could not be physically interpreted either.

Future work will analyze the application of this non-parametric procedure in several
three-wheeled omnidirectional mobile robots and the application of alternative methods
based on artificial neural networks [37] to estimate the kinematics of an omnidirectional
mobile robot.
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Abstract: This study addresses multi-robot distributed rendezvous controls in cluttered underwater
environments with many unknown obstacles. In underwater environments, a Unmanned Under-
water Vehicle (UUV) cannot localize itself, since a Global Positioning System (GPS) is not available.
Assume that each UUV has multiple signal intensity sensors surrounding it. Multiple intensity
sensors on a UUV can only measure the amplitude of signals generated from its neighbor UUVs.
We prove that multiple UUVs with bounded speed converge to a designated rendezvous point,
while maintaining the connectivity of the communication network. This study further discusses
a fault detection method, which detects faulty UUVs based on local sensing measurements. In
addition, the proposed rendezvous control is adaptive to communication link failure or invisible
UUVs. Note that communication link failure or invisible UUVs can happen due to unknown ob-
stacles in the workspace. As far as we know, our study is novel in developing 3D coordinate-free
distributed rendezvous control, considering underwater robots that can only measure the amplitude
of signals emitted from neighboring robots. The proposed rendezvous algorithms are provably
complete, and the effectiveness of the proposed rendezvous algorithms is demonstrated under
MATLAB simulations.

Keywords: distributed rendezvous control; unmanned underwater vehicle; signal amplitude; faulty
robot; network connectivity; three dimensional environments; fault tolerant control; underwater robot

1. Introduction

Networked robots have various applications, such as monitoring large environments,
rescue missions, and target chasing [1–4]. Multiple coordinated robots are also used to per-
form many specific tasks, such as rendezvous [5–7], spacecraft docking [8], environmental
monitoring [9–11], underwater target chasing [12], and formation control [13–15].

This study addresses multi-robot rendezvous controls in cluttered underwater envi-
ronments with many unknown obstacles. Unmanned Underwater Vehicles (UUVs) can
be divided into two categories based on whether their bodies are streamlined. The UUV’s
shape is determined by the requirements of the application. For example, a streamlined
shape reduces water resistance and is preferable if the UUV is required to move at high
speeds. However, if underwater detection or operation tasks are the primary roles of a
UUV, a non-streamlined shape is often preferred.

Because of the good water pressure resistance of spherical objects, spherical UUVs
can perform rotational motions with a 0 degree turn radius. In the literature, various
spherical UUVs have been developed [16–20]. References [16,18–21] addressed a spherical
UUV with hybrid propulsion devices including vectored water jet and propeller thrusters.
The three Degree-of-Freedom (DoF) motions, including surging, heaving, and yawing,
were performed in a swimming pool. References [16,19,21] further demonstrated that by
adopting vectored water jets, a spherical UUV can be made to maneuver freely in any
direction. Considering a spherical UUV, [22] used fuzzy proportional–integral–derivative
(PID) controllers to independently control the robot’s movement in all directions. Since
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spherical UUVs are highly maneuverable, our study considers a spherical UUV [16–20] as
our platform.

We address practical application scenarios where multi-robot rendezvous controls are
used. Recently, several studies [23–25] handled distributed formation control of multiple
robots in environments with obstacles. For instance, a group of robots can be used for
tracking a target while measuring the target’s signal [26]. During the robots’ maneuvering
in formation controls, robots need to preserve the network connectivity. In order to make
all robots gather close to each other, distributed rendezvous controls can be applied occa-
sionally. In other words, distributed rendezvous algorithms can be used as a multi-robot
control module to allow a team of robots to maintain network connectivity while they
maneuver. For example, we can run rendezvous controls occasionally, so that all robots get
closer to a root robot which leads the formation. Moreover, all robots need to get closer to
the root robot, in the case where they move through a narrow tunnel.

Furthermore, rendezvous algorithms can be utilized in multi-robot collection or charg-
ing scenarios [27]. Suppose that there is a charging station close to a robot, called the root.
All the robots can be charged from the charging station, once they gather close to the root.

The difficulty of the rendezvous problem decreases when a robot is equipped with
Global Positioning Systems (GPS). However, GPS is unavailable in underwater environ-
ments. In difficult scenarios without GPS, robots cannot move toward a designated ren-
dezvous point directly. Thus, we introduce a distributed rendezvous approach that does
not require global localization.

A rendezvous algorithm is considered distributed, when it depends on the local inter-
action between neighboring robots. A distributed rendezvous algorithm is practical, since a
robot cannot communicate with another robot that is too far away. Furthermore, obstacles
in cluttered 3D environments can easily block the communication links between robots. In
this study, we propose distributed rendezvous algorithms for UUVs in 3D unknown envi-
ronments with many obstacles. Here, unknown obstacles can lead to communication link
failure or invisible robots. The proposed rendezvous control is adaptive to communication
link failure or invisible robots.

Considering 3D underwater environments, this study addresses the problem of en-
abling a network of UUVs to rendezvous at a designated root robot. Any robot in the
network can be set as the root robot. Thus, the rendezvous system in this study is referred
to as the any-robot rendezvous system.

The rendezvous controls in this study consider a UUV that can only measure the signal
intensity emitted from its neighbor UUV. Thus, the proposed rendezvous control is suitable
for a cheap UUV, which only has sensors for measuring the signal strength.

Reference [28] addressed a received signal strength (RSS) sensor model for underwater
sound propagation. We consider multiple UUVs such that each UUV has multiple signal
intensity sensors surrounding it. Each intensity sensor can measure the RSS of sound
generated from a neighbor UUV [28].

Multiple intensity sensors on a UUV can only measure the amplitude (intensity) of
signals emitted from its neighboring UUVs. To enable a distributed rendezvous based
on amplitude-only measurements, we utilize a method of making a UUV approach the
source of the signal (neighbor UUV) by measuring the intensity of signal at multiple
intensity sensors.

We demonstrate that our distributed rendezvous algorithms are provably complete
in achieving multi-robot rendezvous in cluttered 3D environments. The proposed 3D
rendezvous controls assure the convergence to a designated UUV, while maintaining the
connectivity of the time-varying and position-dependent communication network.

Moreover, the proposed rendezvous controls can handle the case where some UUVs
are broken. While controlling the networked system, any UUV, including the root UUV,
can become faulty owing to various reasons, such as hardware malfunction. This study,
thus, discusses a fault detection method, which detects faulty UUVs based on local sensing

18



Appl. Sci. 2023, 13, 4130

measurements. Once a UUV failure is sensed, then we update the network structure, so
that healthy UUVs without faults can be controlled effectively.

This study handles scenarios where multiple UUVs are deployed in cluttered 3D
environments (e.g., [29]). In obstacle-rich environments, the communication (interaction)
link between UUVs may be easily blocked owing to obstacles. Furthermore, invisible UUVs
may occur, since line-of-sight can be blocked by unknown obstacles. In such scenarios, it is
important to assure that the communication link is preserved, while every UUV maneuvers.
The proposed distributed rendezvous control is unique in overcoming communication link
failure or invisible UUVs. Note that communication link failure or invisible UUVs may
happen due to unknown obstacles in cluttered 3D environments.

We address a distributed rendezvous control for spherical UUVs with bounded speed,
such that each UUV can only measure the strength of signals emitted from neighboring
UUVs. The contributions of our study are summarized as follows.

1. As far as we know, this study is novel in developing 3D distributed rendezvous
controls, considering a UUV that can only measure the strength of signals emitted
from neighboring UUVs.

2. The proposed 3D rendezvous controls are provably complete, since we prove the
rendezvous to the root UUV, while maintaining the connectivity of the time-varying
and position-dependent communication network.

3. To the best of our knowledge, our study is unique in addressing a fault detection
method that detects faulty UUVs based on local sensing measurements. In addition,
the proposed rendezvous controls are adaptive to communication link failure or
invisible UUVs.

The study is organized as follows. Section 2 provides the literature review of this
study. Section 3 provides the background information of this study. Section 4 discusses
the 3D distributed rendezvous controls introduced in this study. Section 5 provides the
simulation results of this study. Section 6 provides the conclusions of this study.

2. Literature Review

Considering 2D environments, there are many studies on distributed controllers to
make all robots rendezvous, considering the case where a robot measures the relative posi-
tion of its nearby robot [7,30–32]. In [33], circumcenter-based consensus algorithms were
introduced to achieve distributed rendezvous of multiple robots. However, how to handle
faulty robots was not discussed in [33]. Considering 2D environments, [34] introduced ren-
dezvous controllers that are tolerant to faulty robots. However, this method needs a control-
lable sensing range, which may not be feasible in practice. The authors of [35] considered
the optimal consensus problem of asynchronous sampling single-integrator and double-
integrator multi-robot systems utilizing distributed model predictive control algorithms.

Event-driven rendezvous strategies [36–38] for multi-agent systems were motivated
by the use of embedded microprocessors with limited resources that will gather infor-
mation and actuate the individual agent controller updates. Considering event-triggered
rendezvous controls, [38] proved that if the communication graph is connected, consen-
sus is achieved exponentially. The authors of [37] showed that with appropriate control
gains in event-triggering conditions, subsystems employing discrete-time signals from
neighbors achieve the state consensus. The authors of [36] studied the rendezvous problem
of multi-robot systems by parallel event-triggered connectivity-preserving controls. The
event-triggered control laws in [36] can assure the system convergence, and can maintain
the connectivity of the time-varying and position-dependent communication network.
However, [36–38] considered 2D environments without obstacles. In cluttered underwater
environments, obstacles can block the communication link between robots, resulting in the
loss of a robot.

Our study handles practical scenarios where multiple underwater robots are deployed
in cluttered environments (e.g., [29]). In obstacle-rich environments, the communication
(interaction) link between robots may be blocked owing to obstacles. In such scenarios, it is
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important to assure that the communication link is preserved while every robot maneuvers.
As far as we know, the proposed distributed rendezvous control is unique in overcoming
communication link failure or invisible robots.

As far as we know, other studies on distributed rendezvous controls [7,30–32,36–38]
assumed that a robot can measure the relative position of its neighbor robot using local sensors,
such as laser. However, no physical sensors were clearly described for this local interaction. In
other words, other rendezvous controls in [7,30–32,36–38] were designed, while the specific
sensors that were used for the controls were not considered. However, considering specific
sensors is crucial, since robots move based on local sensing measurements.

Considering 2D environments, [39] addressed rendezvous algorithms using received
signal strength indicator (RSSI) data from the radio. Reference [40] addressed a simple
rendezvous algorithm using RSSI data from the radio. Reference [40] used a small, low-cost,
modular robotics platform in 2D environments. Reference [40] explored the potential
for using RSSI in platforms equipped with radios in order to rendezvous at a desired
location or agent. The authors of [39] addressed multi-robot rendezvous with range-only
measurements. However, references [39,40] considered simple 2D environments with no
obstacles. In addition, [39,40] did not show that their rendezvous algorithm is provably
complete in achieving multi-robot rendezvous. Moreover, [39,40] did not consider how to
handle the case where a UUV is broken.

In [41], the authors applied radars with a variable sensing range in order to make
all robots rendezvous in 3D environments. However, obstacle environments were not
considered in [41]. Unknown obstacles can block the communication link between robots in
practice. Moreover, in underwater environments, electromagnetic signals easily dissipate,
and thus, radars are not suitable in underwater environments.

In 3D underwater environments, a UUV needs to be equipped with expensive 3D
sonar sensors with sensing arrays, in order to measure the relative position of its neighbor
UUV. However, the intensity sampling sensors used in our study are not sufficient for
measuring the relative position of a neighbor UUV. In other words, intensity sensors used
in our study cannot be used for measuring the relative position of a neighbor UUV.

To the best of our knowledge, our study is novel in developing provably complete 3D
distributed rendezvous controls, considering a UUV which can only measure the strength
of signals emitted from neighboring UUVs. Moreover, our study is unique in introducing a
3D rendezvous control, which is robust to intensity sensor failures or UUV failures.

3. Background Information

3.1. Reference Frames

Two reference frames are used in our study: an inertial reference frame {I} and a
body−fixed frame {B} [42]. The origin of {I} is an appropriate position with three axes
pointing north, east, and down, respectively. The body−fixed frame {B} is fixed to a UUV’s
body and acts as the moving frame. The origin of {B} is fixed at the UUV’s center.

Let φ, θ, ψ present the euler roll, euler pitch, and euler yaw, respectively. The counter-
clockwise (CC) rotation of ψ centered at the z-axis in {B} is as follows:

R(ψ) =

⎛⎝ cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎞⎠. (1)

The CC rotation of θ centered at the y-axis in {B} is as follows:

R(θ) =

⎛⎝ cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

⎞⎠. (2)

The CC rotation of φ centered at the x-axis in {B} is as follows:
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R(φ) =

⎛⎝ 1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎞⎠. (3)

The combined rotation matrix is built by multiplying the yaw, pitch, and roll rotation
matrices in this order to obtain the following:

R(ψ, θ, φ) = R(ψ)R(θ)R(φ). (4)

Figure 1 depicts three euler angles (φ, θ, and ψ). In this figure, there is a spherical
UUV, and we plot a cross-shaped propeller at the back of the UUV. Furthermore, this figure
depicts the inertial reference frame {I} and the body−fixed frame {B}.

North

East

Depth

xB

yB

zB

Roll φ

pitch θ

yaw ψ

{I}

{B}

Figure 1. This figure depicts three euler angles (φ, θ, and ψ). In this figure, there is a spherical UUV,
and we plot a cross-shaped propeller at the back of the UUV. Furthermore, this figure depicts the
inertial reference frame {I} and the body−fixed frame {B}.

3.2. Graph Theory

We present several definitions from graph theory in [43]. First, G = (V(G), E(G)) is
an undirected graph with a vertex set V and an edge set E. The two vertices at the end of
an edge e are called neighbors.

A tree (T) is a connected graph containing no cycles. Thus, a path connecting any two
vertices in a tree T is unique. One vertex of T is set as the root. In T, p(v), the parent of v, is
the neighbor of v along the path to the root. Furthermore, c(v), the child of v, is a vertex
such that v is the parent of c(v). A leaf is a vertex with no children. A descendant of v is
a vertex that is either c(v) or is the descendant of c(v) (recursively). An ancestor of v is a
vertex that is either p(v) or is the ancestor of p(v) (recursively). Figure 2 depicts a tree T.

root

v
p(v)

c(v)

Tree T

Figure 2. This figure depicts a tree T.
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3.3. Assumptions and Definitions

This subsection discusses the assumptions and definitions used in this study. Suppose
we have N UUVs in total. Let ui indicate the i-th UUV (i ∈ {1, 2, . . . , N}). Let uN indicate
the root in the robot network. In our study, uN is set as the root of a tree graph T. In the
inertial reference frame, ui ∈ R

3 is the 3D location of a UUV ui.
A UUV has communication devices to enable information sharing with its neighboring

UUVs. This local communication ability is fundamental for multi-agent controls as well as
for handling UUV faults.

Consider a UUV that has six signal intensity sensors surrounding it. Each intensity
sensor can measure the received signal strength of sound generated from a neighbor
UUV [28]. As a UUV, e.g., ui, detects a signal from its neighbor UUV uj, six intensity
sensors on ui can measure the strength of the signal emitted from uj.

Figure 3 plots the local coordinates of every intensity sensors positioned on a UUV.
The local coordinates are defined in the UUV’s body−fixed frame. In Figure 3, the path
of signal emitted from the emitter is illustrated with dotted arrow. The origin of the local
coordinates frame is at the UUV’s center. The numbering in front of local coordinates
indicates the index of the associated intensity sensor. For instance, 1 : [dr, 0, 0] indicates
that the first sensor has local coordinates [dr, 0, 0]. We can see that every intensity sensor is
positioned at an equidistant point from the UUV’s center. Here, dr is the relative distance
between the UUV’s center and any other sensor.

1:(dr,0,0)2:(-dr,0,0)

3:(0,dr,0)

4:(0,-dr,0)
6:(0,0,-dr)

5:(0,0,dr) Emitter

Figure 3. The local coordinates of every intensity sensor positioned on a UUV. The origin of the
local coordinates frame is at the UUV’s center. The numbering in front of local coordinates indicates
the index of the associated intensity sensor. We can see that every intensity sensor is positioned at
equidistant point from the UUV’s center. Here, dr is the relative distance between the UUV’s center
and any other sensor.

In the body−fixed frame of ui, let cr
i ∈ R

3 indicate the local coordinates of the r-th
intensity sensor (r ∈ {1, 2, . . . , 6}) of ui. Let P(cr

i ) ∈ R indicate the signal power received
by the r-th intensity sensor (r ∈ {1, 2, . . . , 6}) of ui. Recall that Figure 3 plots the local
coordinates of every intensity sensor positioned on ui.

In emitter localization, complexity increases owing to obstacles blocking the line-of-
sight (LOS) path between an intensity sensor and an emitter [44–49]. Considering an LOS
emitter, the Received Signal Strength Indicator (RSSI) is modeled utilizing a log-normal
shadowing model [28,50]. Based on the log-normal shadowing model in [28], we use the
following equation:

P(cr
i ) = P0 − 10Eplog10(dI) + γ(dI − 1) + nP. (5)

where dI indicates the relative distance between the intensity sensor at the local coordinates
cr

i ∈ R
3 and the emitter, P0 (dB) is the received signal power at 1 m, Ep is the propagation

exponent, and nP is a random variable with mean 0 and standard deviation σP.
In Equation (5), γ is the path loss exponent (PLE), which models the geometric spread-

ing loss. The term γ (dB/m) is the frequency-dependent medium absorption, and γ can be
determined using Thorp’s model, which is based on the experiments in [28].
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We consider the case where all sensors of a UUV are identical to those of another UUV.
Let P(ui) ∈ R denote the average intensity measurement associated with ui. We have

P(ui) =
1
6

6

∑
r=1

P(cr
i ). (6)

It is assumed that P0, Ep, and σP in Equation (5) are known a priori. This is feasible
using experiments with UUVs [28]. For realistic simulations of the RSSI for an underwater
emitter, we use the model parameters in [28]. In Equation (5), P0 = 100 dB, Ep = 2, γ = 0.05,
σP = 1 are used, according to [28]. In this case, Figure 4 shows the relationship between dI
and P(ui) using (5) and (6). As dI increases, P(ui) decreases.
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Figure 4. The relationship between dI and P(ui) using Equations (5) and (6). As dI increases,
P(ui) decreases.

It is assumed that if P(ui) > Pthres, then SNR is sufficiently large and the intensity
sensor can detect the LOS signal generated from the emitter. We say that a UUV ui is a
neighbor to UUV uj if P(ui) > Pthres and P(uj) > Pthres. Here, Pthres is a tuning parameter
for determining a neighbor.

The neighbor information can be set by mutual communication between ui and uj. In
the case where ui and uj are neighbors, ‖ui − uj‖ < rs(Pthres) and the LOS between ui and
uj is not blocked by obstacles. Here, rs(Pthres) can be considered as the maximum sensing
range for a UUV. Note that rs(Pthres) is determined by Pthres. As Pthres decreases, rs(Pthres)
increases using (5).

For notation convenience, we use rs instead of rs(Pthres). See Figure 4 for an illustration.
If we set Pthres = 52 dB, then rs = 10 m; if we set Pthres = 20 dB, then rs = 60 m.

We say that a UUV ui encounters uj if ‖ui − uj‖ < ε ≈ 0. Let Pe denote the signal
power measured when ui encounters uj. Thus, using Equation (5), we obtain the following:

Pe = P0 − 10Eplog10(ε) + γ(ε − 1). (7)

If both P(ui) and P(uj) exceed Pe, then we assume that ui encountered uj.
Let G = (V(G), E(G)) indicate the graph presenting the networked system. Every

node in V(G) indicates a UUV. An edge, e.g., {ui, uj} ∈ E(G), indicates that ui and uj are
neighboring UUVs. Recall that ui is a neighbor to uj if P(ui) > Pthres and P(uj) > Pthres.
Since we check both P(ui) and P(uj) for detecting neighbors, G is an undirected graph.

Let G0 = (V0, E0) indicate the initial connectivity network (at sampling step t = 0).
Without loss of generality, it is assumed that G0 is connected. As far as we know, this
initial connectivity assumption is required for any distributed rendezvous controls in the
literature [34,41,51,52]. This is due to the fact that distributed rendezvous controls are
based on local interaction between neighboring agents.
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Note that the initial connectivity assumption does not assure that the network con-
nectivity is maintained during the maneuver of an agent. As agents move around, the
communication link among them may be broken due to obstacles in the environments.
Moreover, an agent cannot communicate with another agent if the relative distance between
them is larger than rs. Thus, we need to develop distributed rendezvous controls, which
assure that the network connectivity is maintained while all agents rendezvous at uN .

In the inertial reference frame, let hi(k) ∈ R
3 present the heading direction of ui at

sampling step k. Note that hi(k) ∈ R
3 is a unit vector. Let dt indicate the sampling interval

in discrete-time systems. As a UUV’s dynamic model in the inertial reference frame, we
utilize the following equation:

ui(k + 1) = ui(k) + hi(k) ∗ dt ∗ si(k). (8)

This simple motion model is commonly utilized in the literature on multi-agent
systems [51,53–60]. In Equation (8), si(k) denotes the linear speed of ui at sampling step k.
We assume that si(k) ≤ smax for all k. This implies that smax is the speed limit of every UUV.

This study considers a spherical UUV. The authors of [16,19,21] showed that by adopt-
ing vectored water jets, a spherical UUV can maneuver freely in any direction. The control
of a spherical UUV appeared in [22]. The reference [22] proposed a decoupling motion
control algorithm based on the robot attitude calculation for an underwater spherical robot.
The reference [22] used fuzzy PID controllers to independently control the robot’s move-
ment in all directions. Since a spherical UUV is highly maneuverable, the process model in
Equation (8) is feasible.

4. Robust Distributed Rendezvous Control

4.1. Distributed Breadth First Search (BFS) Algorithm to Generate a Spanning Tree T

In our study, uN is set as the root of a tree graph T. In order to generate a tree T rooted
at uN , we use a distributed Breadth First Search (BFS) algorithm in [61]. We acknowledge
that [61] addressed a distributed BFS algorithm, so that a node in the network can guide a
moving object across the network to the goal. Algorithm 2 in [61] can be applied to make a
tree T rooted at uN . The tree T is rooted at uN , and T has a unique path from the UUV ui
to uN .

Algorithm 1 shows a distributed BFS algorithm to generate a tree T containing all
UUVs. The goal sensor in Algorithm 2 of [61] represents the root uN in Algorithm 1.
Initially, every UUV u contains hopsg(u), which indicates the hop distance to the root. The
root uN sets hopsg(uN) = 0 initially. For every UUV except for the root, we initially set
hopsg(u) = ∞, where u �= uN . Here, hopsg(u) = ∞ implies that one has not set the hop
distance for u �= uN .

Algorithm 1 Distributed BFS algorithm to generate a spanning tree T

1: Every UUV u contains hopsg(u), which indicates the hop distance to the root;
2: The root uN sets hopsg(uN) = 0 initially;
3: We initially set hopsg(u) = ∞, where u �= uN ;
4: Initially, uN sends its hop distance information hopsg(uN) to its neighbor UUVs;
5: repeat
6: u ← every UUV;
7: if the UUV u satisfies hopsg(u) = ∞, and it receives a hop distance message from its

neighbor UUV, e.g., n then
8: The UUV u updates its hop distance information using (9);
9: The UUV u broadcasts hopsg(u) to its neighbors;

10: end if
11: until hopsg(u) �= ∞ for all u;
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Initially, uN sends its hop distance information hopsg(uN) to its neighbor UUVs. Sup-
pose a UUV u satisfies hopsg(u) = ∞, and it receives a hop distance message from its neigh-
bor UUV, e.g., n. Then, u updates its hop distance information using the following equation:

hopsg(u) = min(hopsg(u), hopsg(n) + 1). (9)

Using Equation (9), hopsg(u) can be updated to hopsg(n) + 1. In this case, the parent
of u is updated to n. Thereafter, u broadcasts hopsg(u) to its neighbors. In Equation (9),
min(a, b) returns a smaller value between a and b.

References [61,62] proved that the number of message broadcasted by every UUV is 1
in this distributed BFS algorithm. This implies that the distributed BFS has the computa-
tional complexity O(1).

Utilization of Signal Intensity Sensors to Detect Neighbors

Note that in Algorithm 1, every UUV ui utilizes its signal intensity sensors to detect
its neighbors. Recall that ui is a neighbor to uj if P(ui) > Pthres and P(uj) > Pthres. Based
on the signal intensity measurements, ui finds its neighbors, e.g., Ni. For instance, if ui
detects two UUVs uj and ul , then we set Ni = [uj, ul ]. By making a UUV ui stand still while
measuring the signals from neighbor UUVs, ui can determine Ni.

The obstacle environment is not known in advance. In order to build T in unknown
obstacle environments, every UUV ui utilizes its signal intensity sensors to detect its
neighbors. As every UUV ui turns on its signal intensity sensors while standing still, ui can
detect its neighbors.

For the detection of neighbors, we assume that a UUV, e.g., uj, can identify another
UUV, e.g., ul , by analyzing the signal emitted from ul . Each UUV emits signal using Binary
Phase Shift Keying (BPSK) with a distinct frequency band. Suppose that every UUV shares
the frequency band information of all UUVs. Suppose that a UUV, e.g., uj, receives the
signal from another UUV, e.g., ul . Then, uj runs a bandpass filter to analyze the frequency
of the signal. By running the bandpass filter, uj can detect that the signal was generated
from ul . In this way, a UUV can distinguish the signal of a UUV from that of another UUV.
Moreover, the bandpass filter in a UUV can be used to filter out signal interference, such as
a signal generated from unknown transmitters.

We acknowledge that there exists a serious delay of underwater communication. This
implies that uj cannot detect its neighbors instantly. A UUV uj needs to emit signals and
receive signals from its neighbors. However, this delay does not cause problems, since no
UUV moves while we generate a spanning tree T using Algorithm 1.

4.2. Distributed Rendezvous Algorithms

While all UUVs stop, Algorithm 1 in Section 4.1 runs to build a spanning tree T in a
distributed manner. Based on the tree T, Algorithm 2 runs to achieve rendezvous at uN . In
other words, Algorithm 2 makes every UUV encounter at the root uN .

We explain Algorithm 2. Initially (t = 0), all leaf UUVs begin visiting every UUV
along the path to uN . Each leaf UUV finds a path to uN using T. Since T is a tree graph,
only one path exists from a node to the root in T. Once the path is found, each UUV stores
the UUV indexes along the path to uN . How to make a UUV visit the UUVs along the path
to the root uN is discussed in Section 4.4.

In order to maintain network connectivity, the maneuver of a UUV must not disconnect
the network. Therefore, each UUV does not begin moving until it encounters all its
descendants in T. This implies that each UUV needs to store the UUV indexes associated
with its all descendants.

Let us consider a UUV u′ with at least one child. From u′ to uN in T, only one path
exists. As soon as u′ encounters all its descendants, u′ starts visiting every UUV along the
path to uN under Algorithm 2. As time elapses, p(u′) encounters all its descendants and
p(u′) starts visiting every UUV along the path to uN . This procedure continues until all
UUVs encounter at uN .
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Algorithm 2 Distributed rendezvous strategy

1: While all UUVs stop, Algorithm 1 in Section 4.1 runs to build the tree T rooted at uN ;
2: repeat
3: u ← every UUV;
4: if u is a leaf in T then
5: The UUV u finds a path to uN using T;
6: The UUV u starts visiting every UUV along the path;
7: else if u is not a leaf in T then
8: if u encounters all its descendants then
9: The UUV u finds a path to uN using T;

10: The UUV u starts visiting every UUV along the path;
11: end if
12: end if
13: if a UUV is broken or interaction link between two neighboring UUVs in T is broken

by moving obstacles then
14: All UUVs stop moving, and re-build a tree T by re-running Algorithm 1 in

Section 4.1;
15: end if
16: if an invisible UUV blocked by unknown obstacles appears suddenly then
17: All UUVs stop moving, and re-build a tree T by re-running Algorithm 1 in

Section 4.1;
18: end if
19: until every UUV encounters uN ;

Whether a UUV encounters another UUV can be detected utilizing signal power
measurements. Recall that if both P(ui) and P(uj) exceed Pe, then we assume that ui
encountered uj.

As long as we consider static obstacles, the connectivity of the path to the root uN is
not broken by obstacles. In other words, as long as obstacles have not moved after the
initial tree generation, the maneuver of a UUV along the path to the root is not blocked
by obstacles.

Theorem 1 proves that Algorithm 2 is distributed. Furthermore, Theorem 1 proves
that network connectivity is preserved while a UUV maneuvers until reaching the root.
This implies that under Algorithm 2, every UUV reaches the root, while preserving net-
work connectivity.

Theorem 1. Algorithm 2 is distributed. Under Algorithm 2, every UUV reaches the root, while
preserving network connectivity to the root.

Proof. Suppose that u has been visiting UUVs along the path to uN in Algorithm 2. Let
PATH indicate the path for convenience. Suppose that PATH consists of a set of UUVs
p1 → p2 → p3 . . . → pend in this order. Here, pend is the root uN . As u moves along this
path, it reaches the root in the end.

We first prove that pi, where i ∈ {1, 2, . . . , end − 1}, starts moving only after u en-
counters pi. A UUV, other than a leaf starts moving only after all its descendants in T
encounter it. Any UUV on PATH is an ancestor of u. Hence, pi does not start moving
before it encounters u.

In the case where u has just encountered pi, u can sense pi+1 utilizing its local sensors.
Since u moves based on local sensing measurements, Algorithm 2 is distributed.

As u moves along PATH, it reaches the root in the end. We next prove that u remains
connected to the root, during its maneuver along PATH to the root. Consider the case
where u has just encountered pi and starts moving towards pi+1. In this case, u is connected
to pi+1. All UUVs in pi+1 → pi+2 → pi+3 . . . → pend = uN stand still. Hence, pi+1 is
connected to uN . Since u is connected to pi+1, u is also connected to uN . It is proved that
any UUV u remains connected to the root during its maneuver along PATH to the root.
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4.3. Handling of Dynamic Scenarios, including Faulty UUVs

One may have a situation where a UUV is broken or the interaction link between two
neighboring UUVs in T is broken by moving obstacles. Moreover, we may have a situation
where an invisible UUV blocked by unknown obstacles appears suddenly. In these cases,
every UUV stops moving, and we re-build a tree T utilizing Algorithm 1 in Section 4.1, so
that network connectivity among UUVs can be re-established. Then, Algorithm 2 re-runs
to achieve rendezvous at uN . In this way, we can handle dynamic scenarios which may
happen due to unknown obstacles.

As we re-build a tree T utilizing Algorithm 1 in Section 4.1, we may have a case where
a tree T cannot be generated. This implies that a UUV may not be connected to the root,
even after running Algorithm 1 in Section 4.1. For handling this case, we need to increase
the number of neighbors for each UUV.

For handling the case where a UUV may not be connected to the root, we increase
P0 in Equation (5) for each UUV. As P0 increases, the number of neighbors can increase,
since a UUV ui is a neighbor to uj if P(ui) > Pthres and P(uj) > Pthres. By increasing the
signal emission strength, ui can detect a UUV that is located far from ui. This emission
power increase was also used in [41], for improving the network connectivity in multi-agent
systems. We acknowledge that by increasing the signal emission strength, ui consumes
more power.

4.3.1. Discard Faulty UUVs

Note that a UUV can become faulty owing to various reasons, such as hardware
malfunction. We next address how to handle faulty UUVs. Let a healthy UUV denote a
UUV having no faults.

Every UUV is encountered by its child under Algorithm 2. Thus, every faulty UUV,
including a faulty root, can be detected by its child. Once a healthy UUV meets with a
faulty UUV, the healthy UUV sends signal to the faulty UUV. A healthy UUV responds
with an acknowledge signal whenever it receives a signal. If a UUV does not respond
to the received signal, then the healthy UUV can find that a fault has occurred in the
responding UUV.

Algorithm 2 is further designed to cope with a faulty UUV (including a faulty root).
We discuss how to handle faulty UUVs from now on.

We first introduce a method of discarding (dropping) faulty UUVs once they are
sensed. Once a broken UUV, e.g., uB, is sensed, then a tree T is updated by applying
Algorithm 1 in Section 4.1 without uB. Thereafter, Algorithm 2 runs utilizing the updated
T. The updated T does not contain uB. This implies that we discarded (dropped) uB.

If there are too many faulty UUVs, then it may be impossible to build a tree T without
them. If we cannot build a tree without faulty UUVs, then we cannot make every healthy
UUV encounter at the root UUV.

4.3.2. Using Static Faulty UUVs as Waypoints

There may be a case where a static faulty UUV has a communication ability, and thus,
can emit a signal from it. We discuss a method which does not discard a static faulty UUV
with communication ability. In this method, every UUV utilizes static faulty UUVs as
“waypoints” along the path to the root UUV. Note that we do not discard faulty UUVs
under this method.

Note that a healthy UUV, which does not have faults, can still measure the signal from
a static faulty UUV. Assume that a healthy UUV, e.g., u, has a static faulty UUV, e.g., f ,
as its ancestor. In this case, the healthy UUV can still visit UUVs along the path, which
contains f , to the root. This implies that u utilizes f as “waypoints” along the path to the
root UUV.

Note that if f is healthy, then f waits until it encounters all its descendants. However,
since f is faulty and static, f cannot move even after all its descendants encounter f . In

27



Appl. Sci. 2023, 13, 4130

this case, p( f ), the parent of f , cannot begin moving, since f is faulty and cannot move
towards p( f ).

In order to resolve this problem, p( f ) removes f from its descendants list. In this way,
p( f ) starts moving after all its descendants, other than f , encounter p( f ).

4.4. Visiting UUVs along the Path to the Root, Based on Signal Strength Measurements

At the beginning of Algorithm 2, Algorithm 1 in Section 4.1 runs to build a spanning
tree T in a distributed manner. Algorithm 1 has the computational complexity O(1) [61,62].
Once T is generated, the only control applied to each UUV is visiting UUVs along the path,
e.g., PATH, to the root in T. This control is a high-level control of every UUV.

We introduce a local control to make one UUV visit UUVs along PATH utilizing
signal strength measurements. Consider the case where PATH consists of a set of UUVs
p1 → p2 → p3 . . . → pend in this order. Here, pend is the root. In the inertial reference frame,
let pj ∈ R

3 indicate the 3D position of pj for convenience.
Suppose that ui encountered pj−1 ∈ R

3 and that the next UUV to encounter is pj ∈ R
3.

Since ui encountered pj−1, ui can detect the signal emitted from pj utilizing its intensity
sensors. Each intensity sensor on ui measures the strength of signals emitted from pj.

Signal field intensity is maximized at the signal source. See Equation (5) for RSSI.
The gradient direction of a field defines the direction which maximizes the increase in the
field. We let a UUV ui move in the gradient direction of the field. Since the gradient is the
direction representing the maximum increase of the field, this maneuver makes the UUV
move towards the signal source.

The gradient direction is measured in the body−fixed frame of ui. In the body−fixed
frame of ui, let gri(P) ∈ R

3 present the gradient of P at the center of ui. Moving in the
direction of gri(P) makes ui move towards the signal source pj.

We next discuss how to derive gri(P) utilizing signal intensity measurements. The
local coordinates of every intensity sensor are presented in Figure 3.

Assume that ‖cr
i ‖ is sufficiently small for all r ∈ {1, . . . , 6}. Through Taylor expansion

up to the first-order derivative, one obtains the following:

P(cr
i ) = P(ui) + cr

i ∗ gri(P), (10)

which leads to:

P(cr
i )− P(ui) = cr

i ∗ gri(P). (11)

At each sampling step k, one obtains the following:

PS = [P1
c , P2

c , . . . , P6
c ]. (12)

Here, Pr
c = P(cr

i )− P(ui). Furthermore, we utilize the following:

CS = [c1
i ; c2

i ; . . . c6
i ]. (13)

Utilizing (11)–(13), we derive the following:

PT
S = CS ∗ gri(P). (14)

Thereafter, gri(P) ∈ R
3 is derived using the pseudo-inverse as follows:

gri(P) = (CT
S ∗ CS)

−1 ∗ CS ∗ PT
S . (15)

where gri(P) ∈ R
3 defines the gradient of P, measured in the the body−fixed frame of ui.

In order to make ui head towards the signal source, the heading of ui is set as the gradient
direction. Since the gradient is the direction representing the maximum increase of the
field, this maneuver makes the UUV move towards the source.
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In Equation (8), the UUV’s heading vector hi(k) ∈ R
3 is defined in the inertial reference

frame. Since gri(P) is defined in the body−fixed frame of ui, one changes gri(P) into a
gradient vector in the inertial reference frame.

Notice that R(ψ(k), θ(k), φ(k)) ∗ gri(P)
‖gri(P)‖ is a gradient vector in the inertial reference

frame. In order to set the heading of ui as the gradient direction, ui sets its new heading using
the following equation:

hi(k + 1) = R(ψ(k), θ(k), φ(k)) ∗ gri(P)
‖gri(P)‖ . (16)

Note that a UUV does not have to measure its attitude φ, θ, ψ for moving towards the
signal source. The UUV can move in the gradient direction gri(P) in its body−fixed frame.
For instance, suppose that the gradient field gri(P) is estimated as [1,0,0] in the UUV’s
body−fixed frame. Using (16), the UUV’s control command is generated for moving in the
direction of [1,0,0] in its body−fixed frame.

We next discuss how ui can detect the moment when it encounters pj. If P(ui) in
Equation (6) exceeds Pe in Equation (7), then we assume that ui encountered pj. Thus, ui
begins moving towards pj+1 if it exists.

For collision avoidance, we make ui slow down as it gets closer to pj. The UUV’s
linear speed si(k) is set as follows. If P(ui) in Equation (6) is larger than Pe, then ui begins
moving towards pj+1. Otherwise, we set the following:

si(k) = min(smax, β ∗ (Pe − P(ui))). (17)

where β > 0 is a tuning parameter. In MATLAB simulations, we use β = 10. In
Equation (17), min(a, b) returns a smaller value between a and b.

When a UUV ui is sufficiently close to pj ∈ R
3, it begins moving towards the next

UUV pj+1. In this way, ui avoids collision with UUVs on its path to the root. In the case
where ui encounters the root, ui stops moving.

This study considers a spherical UUV. The authors of [16,19–21] showed that by
adopting vectored water jets, a spherical UUV can maneuver freely in any direction.
The control of a spherical UUV appeared in [22], which used fuzzy PID controllers to
independently control the robot’s movement in all directions.

While ui maneuvers, a moving obstacle may abruptly appear in practice. In this case,
the UUV ui can avoid collision using reactive collision avoidance controls. We acknowledge
that any reactive control method can be applied for this evasion [63–65].

5. Simulations

The MATLAB R2014a simulator is utilized to demonstrate the effectiveness of the
proposed rendezvous controllers. The system environment includes Window 10, Intel
CoreTM i5-7600K CPU@3.80 GHz. The controllers are implemented in a discrete-time
system, and the sampling time interval to discretize the UUV’s velocity control (8) is 0.3 s.

We simulate a 3D underwater environment (200 × 200 × 200) with many obstacles. For
realistic simulations of the RSSI for an underwater emitter, we use the model parameters used
in [28]. In Equation (5), P0 = 100 dB, Ep = 2, γ = 0.05, and σP = 1 are used, according to [28].

Recall that we said that a UUV ui is a neighbor to UUV uj if P(ui) > Pthres and
P(uj) > Pthres. We set Pthres = 52 dB. Using Figure 4, the associated maximum sensing
range rs is 10 m. In this way, the relative distance between two neighbor UUVs is less
than 10 m.

The maximum speed of every UUV is set as smax = 2 (m/s). Recall that if P(ui, pj)
and P(uj, pi) exceeds Pe, then we assume that ui encountered pj. We set Pe = 100 (in dB),
which is identical to P0. Using (7), Pe = 100 (in dB) is associated with ε = 1 m.

In this study, a UUV uses six intensity sensors. Figure 3 plots the local coordinates of
every intensity sensors positioned on a UUV. dr is the relative distance between the first
sensor and any other sensor. dr is a tuning parameter in our control.
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If dr is too small, then intensity measurements of six sensors on a UUV are not distinct
from each other. In this case, the gradient direction at the UUV position cannot be estimated
accurately. If dr is too large, then we cannot apply the Taylor expansion in Equation (10). In
the simulations, six intensity sensors are installed such that dr = 1 m.

To prove the robustness of the proposed methods, we run 100 Monte Carlo (MC)
simulations, such that the initial network satisfies this initial connectivity assumption.
As far as we know, this initial connectivity assumption is required for any distributed
rendezvous controls in the literature [34,41,51,52].

At the beginning of each MC simulation, 50 UUVs are randomly deployed until the
following two conditions are met:

1. No UUV is deployed inside an obstacle boundary.
2. The deployed UUVs satisfy the initial connectivity assumption.

Once these two conditions are satisfied, then 50 UUVs begin to move under Algorithm 2.
Otherwise, we keep deploying 50 UUVs until the above two conditions are met.

Once these two conditions are satisfied, then 50 UUVs begin to maneuver under
Algorithm 2. This maneuver indicates the beginning of a single MC simulation. In all MC
simulations, rendezvous is achieved for every UUV.

Considering one MC simulation, Figure 5 shows the initial position of every UUV. The
initial position of every UUV is plotted with a green circle. This figure shows the obstacle
boundaries with spheres. We also plot the tree graph T (blue line segments) generated initially.

Figure 5. The initial position of every UUV is plotted with a green circle. We also plot the tree graph T
(blue line segments) generated at time 0 (one MC simulation). We can see that the initial connectivity
assumption is satisfied. Obstacles are plotted with spheres.

Figure 6 shows each UUV’s maneuver until t = 20 s have passed. We also plot the
tree graph T (blue line segments) generated at time 0. Every UUV’s maneuver is illustrated
as circles with a distinct color. After 148 s have passed, all UUVs encounter at the root
UUV while avoiding collision with obstacles. Figure 7 shows each UUV’s maneuver
once the rendezvous is completed. Figure 8 shows the final position (green circle) of
every UUV.
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Figure 6. Every UUV’s maneuver until t = 20 s has passed (one MC simulation). Every UUV’s
maneuver is illustrated as circles with a distinct color. We also plot the tree graph T (blue line
segments) generated at time 0. Obstacles are plotted with spheres.

Figure 7. Every UUV’s maneuver once the rendezvous is completed (one MC simulation). Every
UUV’s maneuver is illustrated as circles with a distinct color. Obstacles are plotted with spheres.

31



Appl. Sci. 2023, 13, 4130

Figure 8. Every UUV’s final position (green circle in this figure) after the rendezvous is completed
(one MC simulation). Obstacles are plotted with spheres.

5.1. Using the Discard Approach in Section 4.3.1

We utilize the initial position of every UUV as in Figure 5. In this scenario, 25 UUVs
among 50 UUVs are broken after 20 s have elapsed. Recall that Figure 6 shows each UUV’s
maneuver until t = 20 s pass.

To handle broken UUVs, we utilize the discard approach in Section 4.3.1. Considering
one MC simulation, Figure 9 plots every UUV’s maneuver until t = 20 s have passed. In this
figure, every UUV’s maneuver is illustrated as circles with a distinct color. At t = 0 s, we
build a tree T (blue line segments in Figure 9) containing all UUVs. At t = 20 s, 25 broken
UUVs are illustrated with red circles in Figure 9. At t = 20 s, we re-build a connected tree
T without broken UUVs. The re-built tree T is marked with red line segments in Figure 9.

Figure 9. Every UUV’s maneuver until t = 20 s have passed (one MC simulation). Every UUV’s
maneuver is illustrated as circles with a distinct color. At t = 0 s, we build a tree T (blue line
segments) containing all UUVs. At t = 20 s, 25 broken UUVs are illustrated with red circles. At
t = 20 s, we re-build a connected tree T without broken UUVs. The re-built tree T is marked with red
line segments. Obstacles are plotted with spheres.
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Considering UUVs’ faults, Figures 10 and 11 show the movement of every UUV under
our 3D distributed rendezvous controllers. In the figures, every UUV’s maneuver is illustrated
as circles with a distinct color. In total, 25 broken UUVs are illustrated with red circles. To
handle broken UUVs, one utilizes the discard approach in Section 4.3.1. In total, 25 healthy
UUVs spend 180 s to encounter at the root, while avoiding collision with obstacles. Figure 11
shows every UUV’s final position (green circles) after the rendezvous is completed (discard
approach is utilized). A total of 25 broken UUVs are illustrated with red circles.

Figure 10. Every UUV’s maneuver once the rendezvous is completed (the discard approach is
utilized). Every UUV’s maneuver is illustrated as circles with a distinct color. A total of 25 broken
UUVs are illustrated with red circles. Obstacles are plotted with spheres.

Figure 11. Every UUV’s final position (green circles) after the rendezvous is completed (the discard
approach is utilized). A total of 25 broken UUVs are illustrated with red circles. Obstacles are plotted
with spheres.

5.2. Using the Waypoint Approach in Section 4.3.2

We utilize the initial position of every UUV as in Figure 5. In this scenario, 25 UUVs
among 50 UUVs are broken after 20 s have elapsed. Recall that Figure 6 shows each UUV’s
maneuver until t = 20 s pass.
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Considering UUVs’ faults, Figures 12 and 13 show the movement of every UUV
under our 3D distributed rendezvous controllers. In the figures, every UUV’s maneuver is
illustrated as circles with a distinct color. To handle broken UUVs, we utilize the waypoint
approach in Section 4.3.2. At t = 0 s, we build a tree T (blue line segments in Figure 12)
containing all UUVs. A total of 25 broken UUVs are illustrated with red circles. In Figure 13,
all healthy UUVs (green circles) rendezvous at the root. We can see that healthy UUVs use
broken UUVs as waypoints for reaching the root. A total of 25 healthy UUVs spend 148 s
to encounter at the root UUV, while avoiding collision with obstacles.

Figure 12. Every UUV’s maneuver once the rendezvous is completed (the waypoint approach is utilized).
Every UUV’s maneuver is illustrated as circles with a distinct color. At t = 0 s, we build a tree T (blue line
segments) containing all UUVs. A total of 25 broken UUVs are illustrated with red circles. Healthy UUVs
use broken UUVs as waypoints for reaching the root. Obstacles are plotted with spheres.

Figure 13. Every UUV’s final position after the rendezvous is completed (the waypoint approach is
utilized). A total of 25 broken UUVs are illustrated with red circles. All healthy UUVs (green circles
in the figure) rendezvous at the root. Obstacles are plotted with spheres.
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6. Conclusions

This article proposed distributed rendezvous controllers to solve the multi-robot ren-
dezvous problem in cluttered 3D environments without GPS. The proposed 3D rendezvous
controls assure the convergence to the root, while maintaining the connectivity of the
time-varying and position-dependent communication network.

This study considers multiple UUVs such that each UUV has multiple signal intensity
sensors surrounding it. Multiple intensity sensors on a UUV can measure the strength of
signals, and the UUV moves based on the signal strength measurements. Our rendezvous
algorithms are robust to faults in the system. This study proves the convergence of the
proposed rendezvous algorithms and demonstrates the effectiveness of the proposed
algorithms utilizing MATLAB simulations.

Note that the proposed rendezvous algorithms do not rely on the dimension (2D or
3D) of the environment. This implies that our algorithms can be applied for the rendezvous
problem of autonomous aerial vehicles, autonomous underwater vehicles, or autonomous
ground vehicles. In future studies, we will perform experiments utilizing real UUVs to
verify the effectiveness of the proposed rendezvous algorithms.
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Abstract: A proposed optimized model for the trajectory tracking control of a wheeled inverted
pendulum robot (WIPR) system is presented in this study, which addresses the problem of poor
trajectory tracking performance in the presence of unknown disturbances due to the nonlinear
and underactuated characteristics of the system. First, a kinematic controller was used to track a
reference trajectory and generate a control law that specifies the desired forward and rotation speeds
of the system. Next, a nonlinear disturbance observer (NDO) was designed to enhance the system’s
robustness to external disturbances and improve its tracking performance. Then, the coupled system
state variables were decoupled into two subsystems: a forward rotation subsystem and a tilt angle
velocity subsystem. An improved hierarchical sliding mode controller was designed to control these
subsystems separately. Finally, simulation experiments were conducted to compare the proposed
method with a common sliding mode control approach. The simulation results demonstrate that the
proposed method achieves better tracking performance in the presence of unknown disturbances.

Keywords: wheeled inverted pendulum robot; underactuated; nonlinear disturbance observer;
hierarchical sliding mode control

1. Introduction

With the rapid development of technology, human society has simultaneously achieved
increased convenience and comfort [1]. In today’s factory warehouses and production
lines, a variety of robots add to the possibilities of Industry 4.0. In the warehouses of more
advanced companies, transport robots can be found everywhere, replacing traditional
manpower and eliminating the need for workers to carry out repetitive lifting and carrying.
These “smart” robots can accomplish a task as long as they can follow the requirements of
a given transport trajectory. This paper studies the trajectory tracking of a mobile wheeled
inverted pendulum on a given reference trajectory to achieve perfect tracking of the ideal
motion trajectory of the robots, meeting the requirements of factory transport robots and
providing a powerful source of assistance to realizing smart factories [2–5].

Mobile wheeled inverted pendulum models, such as WIPRs, have attracted much at-
tention because of their special advantages, such as compactness, mobility, and human-like
functions. WIPRs are widely used to verify the effectiveness of nonlinear underactuated
control methods, and compared with the traditional inverted pendulum, WIPRs have more
applications than traditional inverted pendulum vehicles, especially in unknown, dynamic,
and nonlinear environments, and are commonly used in logistics transportation, commut-
ing, and navigation, as well as in the aforementioned application in the environment of
factory transportation. However, a WIPR is classified as a typical model of nonlinear under-
actuated systems with two input torques driving two wheels and three degrees of freedom
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(forward, rotation, and tilt angle of the pendulum), and achieving its high-performance
motion control is still a challenging task for the control community [6–9].

On the one hand, when a WIPR moves, it is always assumed that the ground can
provide enough friction to prevent the robot from side-slipping and wheel-sliding (i.e., the
robot is guaranteed to move with purely rolling wheels without skidding phenomena),
which is a non-complete constraint at this point. On the other hand, consider that the
underdriven inverted pendulum body needs to use the input torque of two driving wheels
to control the three degrees of freedom of WIPR forward movement, rotation, and the angle
of the inverted pendulum. If we want to use MWIPR to track the trajectory, we need to
drive a WIPR in real time to control the three form variables with two input variables, which
is a typical underactuated problem. Finally, in the real world, WIPRs operate in factories
or other similar environments and always encounter various unknown disturbances that
interfere with the system. Therefore, the three problems of incomplete constraints and
underactuated and unknown perturbations are the main challenges faced by this particular
mobile robot for trajectory tracking control [10–13].

The three issues mentioned above are of importance for the following reasons. First,
the incomplete constraint will lead to the WIPR being unable to follow any trajectory
movement, especially in the case of high-speed heavy load; if the robot’s incomplete
constraints are not considered in motion planning, this is likely to lead to untimely obstacle
avoidance and unreachable trajectory. Second, underdriven robots often have excellent
dynamic performance or price advantages in terms of drive cost, but their biggest problem
is the higher requirements in controller design. Finally, unknown disturbances will affect
the control accuracy of the system to a certain extent, and more seriously, will affect the
stability of the control system [14,15].

Many researchers and practitioners have proposed several control algorithms to
overcome the difficulties faced by the problems associated with WIPR systems. One
of the widely used methods is fuzzy control, which is an empirical, rule-based control
technique that can effectively control nonlinear systems. By establishing a dynamic model
of the WIPR, a fuzzy-logic-based controller can be designed to take the position and angle
information of the WIPR as the input and output control signals to control its motion state.
For instance, Jian Huang, in [16], proposed an Integral Interval Type 2 Fuzzy Logic (IT2FL)
method that can maintain the MTWIP equilibrium while obtaining the desired position
and orientation to make it work in an uncertain environment. However, the disadvantages
of fuzzy control include low control accuracy, strong dependence on control rules, and
difficulty in designing control rules.

The second control algorithm type is neural network control. Chenguang Yang [17]
decomposed the underdriven WIPR model into two subsystems. The approximation
characteristics of the neural network were used for motion control of the fully driven
subsystem, and the sub-fully driven system was used to indirectly control the tilt angle
motion of the pendulum. However, the method requires a large number of wavelet
coefficient vectors, making the neural network computationally intensive.

Finally, sliding mode control, as the most typical robust control method, shows good
tracking performance and strong robustness, which support its wide use in linear and
nonlinear systems. For underactuated systems, various sliding mode control methods have
been proposed by researchers to achieve different control effects, such as integral sliding
mode control, terminal sliding mode control, and hierarchical sliding mode control [18–20].
Among them, the application of hierarchical sliding mode control in practical underdriven
systems is receiving more and more attention, such as balancing control of a double-inverted
pendulum and trajectory tracking control of a wheeled inverted pendulum. Nabanita
Adhikary, in [21], proposed an integral inverse-step sliding mode controller for underdriven
system control. A feedback control law was designed based on the backpropagation
method, and a sliding surface was introduced in the final stage of the algorithm. Jian
Huang, in [22], designed two terminal sliding mode controllers to control the speed and
braking of a UW-Car based on the dynamic model and the terminal sliding mode control
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method. He Ping [23] proposed a hierarchical sliding mode controller (HSMC) developed to
simultaneously perform speed control and balance control of a two-wheeled self-balancing
vehicle (TWSBV).

Hierarchical sliding mode control is a control strategy based on sliding mode control,
which divides the sliding surface into two layers. In the first layer, a high-speed sliding
surface is introduced, and the control system approaches the desired state quickly. In the
second layer, a low-speed sliding surface is introduced, and the control system stabilizes
near the desired state. The layered sliding mode control can improve the control accuracy
and stability and also has a good effect on the response speed and robustness of the
system. Therefore, hierarchical sliding mode control has the same drawback in that it is
insensitive to disturbances, which can easily cause the “jitter” phenomenon of the system.
To address the shortcomings of sliding mode control, this paper proposes an improved
hierarchical sliding mode control method with adaptive exponential convergence law,
which can adaptively adjust the control convergence law according to the control state and
smooth the sign function, thus effectively improving the problem of the strong jitter of
the traditional sliding mode control, and combining the nonlinear disturbance observer
(NDO), which is the most powerful method for the control of sliding mode. The NDO can
effectively solve the negative impact caused by the unknown disturbance and make the
system more robust, and achieve an ideal control effect on the trajectory tracking ability of
the WIPR system [24–30].

Overall, this paper includes the following four aspects: the first part constructs the
dynamic model of the WIPR system, decouples the multi-coupled state variables, and facil-
itates the subsequent controller design; the second part establishes the kinematic trajectory
tracking controller of the system and solves to obtain the desired speed of the dynamic
control system. In the third part, an optimization model of the WIPR system combining
nonlinear disturbance observer and hierarchical sliding mode control is designed, and
the convergence of the nonlinear disturbance observer and the stability of the improved
hierarchical sliding mode controller is demonstrated. The fourth part constructs the simu-
lation model using the MATLAB/Simulink platform and conducts numerical simulation
comparison experiments.

The contributions of this paper are as follows:

(1) A wheeled inverted pendulum robot with a transport platform is envisioned for use
in warehouses or other application scenarios to move goods.

(2) The convergence law of hierarchical sliding mode control is improved to mitigate the
jitter phenomenon of the sliding mode control system, and an adaptive function is
introduced to minimize the system jitter.

(3) By combining a nonlinear disturbance observer and hierarchical sliding mode control
to estimate unknown external disturbances as input compensation, the system is
made to control more accurately.

2. Materials and Methods

2.1. WIPR Model

A WIPR is a wheeled inverted pendulum transport robot with a placement table,
as illustrated in Figure 1. Its left and right wheels are independent drive wheels that
control the robot’s movement speed, rotation direction, and tilt angle of the pendulum
using the principle of differential drive to manage the position and posture of WIPR.
The generalized world coordinate system is denoted ΣOXYZ while (x, y), representing
the center coordinate of the robot wheels. The robot’s forward velocity and rotational
angular velocity are denoted as v and w, respectively. The angle of the robot’s direction of
motion concerning the X-axis is represented by θ, while α is the tilt angle of the pendulum
concerning the Z-axis. M refers to the total weight of the transport platform plus the
pendulum, whereas m denotes the weight of each drive wheel. The distance between the
two wheels is represented by d, while τr, and τl are the torque of the right wheel and the
left wheel, respectively. The rotational inertia of each driven wheel is denoted by Iw and IM
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represents the rotational inertia of the transport platform and the pendulum together. The
length of the pendulum is represented by L. Detailed introduction of robot parameters can
be seen in Table 1.

Table 1. Parameter descriptions.

Parameter Description

mw Mass of each wheel
M The total weight of the transport platform plus the pendulum
Iw The rotational inertia of each driven wheel
IM The rotational inertia of the transport platform and the pendulum
d The distance between the two wheels
L The length of the pendulum
τl The torque of the left wheel
τr The torque of the right wheel
v WIPR forward velocity
w WIPR rotation velocity
θ WIPR Yaw angle
α The tilt angle of the pendulum

Remark 1. The forward velocity of MWIPR is xv, and xv =
.
x cos θ +

.
y sin θ.

Assumption 1. The tires of the MWIPR do not experience any skidding, and there is no potential
for lateral deflection during its motion.

Figure 1. WIPR system.

According to Assumption 1, the incomplete constraint equation of WIPR in Equation (1)
can be listed as follows:

.
x sin θ − .

y cos θ = 0, (1)

The position and posture of the WIPR in the world coordinate system are represented
by q = [x, y, θ, α]T . As the Lagrangian modeling method does not require the inclusion
of internal forces within the system, it is a quick and straightforward method of building
a model. This property makes it particularly well-suited for constructing multivariable
and nonlinear dynamic models for the WIPR, as demonstrated in this paper. By dividing q
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into qm and α, the position of the robot in the coordinate system is denoted by qm, while
the angle of the pendulum is represented by α. Therefore, the Lagrangian method [31] is
employed to establish the dynamic model of the WIPR, and the resulting mathematical
model is presented below as Equation (2).[

Mm(q) Mmα(q)
Mαm(q) Mα(q)

][ ..
qm..
α

]
+

[
Cm(q) Cmα(q)
Cαm(q) Cα(q)

][ .
qm.
α

]
+

[
Gm
Gα

]
=

[
Bm(qm)τm

0

]
+

[
AT(qm)λ

0

]
+

[
dm
dα

]
,

(2)

By defining A(qm) = [sin θ,− cos θ, 0], the incompleteness constraint of Equation (1)
yields the following result:

A(qm)qm = 0, (3)

The WIPR system’s incomplete constraint force is AT(qm)λ, where λ is the Lagrange
Multiplier. To eliminate the constraint forces in the system, we seek to find a matrix
S(qm) ∈ R

3×2 that satisfies ST(qm)AT(qm) = 0.
By defining ν = [v, w]T , therefore, Equation (4) can be deduced.

.
qm = S(q)ν, (4)

To eliminate the incompetent constraint forces, a new vector
.
ζ =

[ .
ζ1,

.
ζ2,

.
ζ3

]T
=
[
v, w,

.
α
]T

is defined and used to transform the equation. The transformation involves multiplying
both sides of the equation by a scalar ST(qm), resulting in Equation (5):

M(q)
..
ζ + C

(
q,

.
q
) .
ζ + G(q) = τ + τd, (5)

The dynamics of the system can be described using the following equation, in which
M(q) ∈ R

3×3 represents the inertia matrix, C
(
q,

.
q
) .
q ∈ R

3×3 is the Coriolis force matrix,
G(q) ∈ R

3×1 is the gravity matrix, τ is the control input matrix, and τd is the total unknown
disturbance. The detailed expressions of each vector or matrix are presented below.

M(q) =
[

ST MmS ST Mmα

MαmS Mα

]
=

⎡⎣m11 0 m13
0 m22 0

m31 0 m33

⎤⎦, C
(
q,

.
q
)
=

[
STCmS + ST Mm

.
S Cmα

CαmS + Mαm
.
S Cα

]
⎡⎣0 0 c13

0 c22 c23
0 c32 0

⎤⎦, G(q) =
[

STGm
Gα

]
=

⎡⎣ 0
0
g3

⎤⎦ =

⎡⎣ 0
0

−MgL sin α

⎤⎦, τ =

[
ST Bm(qm)τm

0

]
=

⎡⎣τ1
τ2
0

⎤⎦
τd =

[
STdm

dα

]
=

⎡⎣d1
d2
d3

⎤⎦.

The value of each variable in the expression is indicated as m11 = 2m + 2IM/r2 + M,
m13 = m31 = ML cos α, m22 = d2m/2 + IMd2/2r2 + Iω + ML2 sin2 α, m33 = ML2 + IM,
c22 = (1/2)ML2 .

α sin2(2α), c23 = −(1/2)ωML2 sin(2α), c13 = −ML
.
α sin α, c32 =−(1/2)ωML2 sin(2α).

Due to the coupling of the state variables in the system, Equation (5) is decoupled into
Equation (6). ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(m11m33 − m13m31)
..
ζ1 − m13c32

.
ζ2 + m33c13

.
ζ3 − m13g3

= m33(τ1 + d1)− m13d3

m22
..
ζ2 + c22

.
ζ2 + c23

.
ζ3 = τ2 + d2

(m11m33 − m13m31)
..
ζ3 + m11c32

.
ζ2 − m31c13

.
ζ3 + m11g3

= m11d3 − m31(τ1 + d1)

, (6)
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By defining ξ1 = [ζ1, ζ2, ζ3]
T , ξ2 =

[ .
ζ1,

.
ζ2,

.
ζ3

]T
, Equation (6) is converted to Equation (7).{ .

ξ1 = ξ2.
ξ2 = f (ξ) + g(ξ)τ + D

, (7)

where

f (ξ) =

⎡⎣ f1
f2
f3

⎤⎦ =

⎡⎢⎢⎢⎣
1
Ω

(
m13c32

.
ζ2 − m33c13

.
ζ3 − m13g3

)
1

m22

(
−c22

.
ζ2 − c23

.
ζ3

)
1
Ω

(
m11c32

.
ζ2 − m31c13

.
ζ3 + m11g3

)
⎤⎥⎥⎥⎦, g(ξ) =

⎡⎢⎣
m33
Ω
1

m22−m31
Ω

⎤⎥⎦,

D =

⎡⎣D1
D2
D3

⎤⎦ =

⎡⎢⎣
m33d1−m13d3

Ω
d2

m22
m11d3−m31d1

Ω

⎤⎥⎦.

where Ω = m11m33 − m13m31.

2.2. The Design of the Kinematic Control Law

In kinematic trajectory tracking control for a WIPR, the system can be simplified to
a general two-wheeled non-complete mobile robot for trajectory tracking. The process
involves utilizing a reference trajectory state vector qmr = [xr, yr, θr]

T , an actual state
vector qm = [x, y, θ]T , and a control objective designed to manage linear and angular
velocities. The objective is to ensure that the actual robot travel trajectory aligns with the
reference trajectory, even if the trajectory error qme =

[
ex, ey, eθ

]T
= [xr − x, yr − y, θr − θ]T

approaches zero. To meet the requirement expressed above, the control laws for vd and wd
can be devised as Equation (8).

lim
t→∞

‖qme‖ = 0, (8)

The Lyapunov function is selected as Equation (9).

V1 =
1
2

x2
e +

1
2

y2
e + 1 − cos θe, (9)

While the error persists, the value V1 remains greater than zero, thereby rendering the
function positive definite. Equation (10) describes the derivative of V1.

.
V1 = ex

.
ex + ey

.
ey +

.
eθ sin eθ

= ex
(
wey − v + vr cos eθ

)
+ ey(−wex + vr sin eθ) + (wr − w) sin eθ

= −vex − w sin eθ + exvr cos eθ + eyvr sin eθ + wr sin eθ ≤ 0,

(10)

Lyapunov’s stability theorem [32] establishes that the system can achieve asymptotic
stability if the function is negative definite, i.e., if

.
V1 ≤ 0. Accordingly, the sought control

law is as follows (11). {
vd = vr cos eθ + k1ex
wd = wr + vrey + k2 sin eθ

, (11)

Both k1 and k2 are positive constants.
Substituting the control law into

.
V1 gives the following equation.

.
V1 = −ex(vr cos eθ + k1ex)−

(
wr + vrey + k2 sin eθ

)
sin eθ + exvr cos eθ + eyvr sin eθ + wr sin eθ

= −exvr cos eθ + exvr cos eθ − k1e2
x − wr sin eθ + wr sin eθ − vrey sin eθ + eyvr sin eθ − k2 sin2

eθ

= −k1e2
x − k2 sin2

eθ
≤ 0.

(12)
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Therefore,
.

V1 ≤ 0 can be proven.
So far, the desired velocity required for the design of the dynamical system is shown

in Equation (11), and the velocity tracking problem of the dynamical system and the angle
tracking problem of the pendulum will be solved next.

2.3. The Design of NDO

A nonlinear disturbance observer is developed to estimate the actual disturbance in
the system for an unknown disturbance D, thereby strengthening the system’s robustness.
To address practical considerations, it is assumed that any disturbance is bounded as
follows [33–35].

Lemma 1. For initial conditions that are bounded, a Liapunov function is also uniformly bounded
x(t) if there exists a continuous positive definite Liapunov function V(x) satisfying the follow-
ing conditions:

δ1(‖x‖) ≤ V(x) ≤ δ2(‖x‖), .
V(x) ≤ −κV(x) + c, (13)

where δ1, δ2 : Rn → R is the V class function, and κ, c all are positive constants.

Assumption 2. Since no disturbance can be infinite in the real world, we assume that the perturba-
tions in the WIPR system studied in this paper are all bounded, and their first-order derivatives and
second-order derivatives are assumed to be bounded; thus, the following equations can be obtained.

‖ .
D‖ ≤ ε1, ‖ ..

D‖ ≤ ε2, ε1 > 0, ε2 > 0

‖ · ‖ represents the Euclidean norm of the vector. The NDO is designed as in Equation (14).

D̂ = Z1 + P1(ξ2)
.
Z1 = −L1(ξ2)

[
f (ξ) + g(ξ)τ + D̂

]
+

.̂
D

.̂
D = Z2 + P2(ξ2)

.
Z2 = −L2(ξ2)

[
f (ξ) + g(ξ)τ + D̂

]
,

(14)

D̂ and
.̂

D represent the estimates of the total perturbation and its derivative, respec-
tively, while Z1 and Z2 are intermediate variables in the observer. To meet the requirements
of the system, the self-designed nonlinear functions P1(ξ2) and P2(ξ2) are used and must
satisfy the conditions L1(ξ2) =

∂P1(ξ2)
∂ξ2

and L2(ξ2) =
∂P2(ξ2)

∂ξ2
.

Property 1. The error between the estimated and actual values of the disturbance is represented by

D̃ = D − D̂, while
.̃

D =
.

D − .̂
Drepresents the error between the derivative of the actual value of a

perturbation and the derivative of the estimated value of the same perturbation.

The derivation of D̃ and
.̃

D substitution of Equations (7) and (14) into the above equation

leads to results
.

D̃ and
.̃

D, which are the equations of the NDO, (15) and (16), respectively.

.
D̃ =

.
D −

.
D̂ =

.
D − .

Z1 − ∂P(ξ2)
∂ξ2

· dξ2
dt =

.
D − .

Z1 − L1(ξ2)
.
ξ2

=
.

D + L1(ξ2)
[

f (ξ) + g(ξ)τ + D̂
]− .̂

D − L1(ξ2)
.
ξ2

.
D + L1(ξ2)

[
f (ξ) + g(ξ)τ + D̂

]− .̂
D − L1(ξ2)[ f (ξ) + g(ξ)τ + D]

= −L1(ξ2)D̃ +
.̃

D,

(15)
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.
.̃

D =
..
D −

.
.̂

D =
.

D − .
Z2 − ∂P(ξ2)

∂ξ2
· dξ2

dt =
..
D − .

Z2 − L2(ξ2)
.
ξ2

=
..
D + L2(ξ2)

[
f (ξ) + g(ξ)τ + D̂

]− L2(ξ2)[ f (ξ) + g(ξ)τ + D]

= −L2(ξ2)D̃ +
..
D,

(16)

By letting E =

[
D̃T ,

.̃
D

T]T

and substituting the appropriate Equations (15)–(17) can

be obtained. .
E = LE + δ

..
D, (17)

where L =

[−L1(ξ2) I3
−L2(ξ2) 0

]
, δ =

[
0
I3

]
. The observer’s stability is examined, and a Lyapunov

function is selected to make sure that it can reliably predict the system state despite any
nonlinear disturbances. By selecting an appropriate Liapunov function, we rigorously
prove the stability of the observer and the precision of its estimation precisely.

Property 2. L is a skew-symmetric matrix.

V2 =
1
2

ETE, (18)

The proof of the derivative of V2 can be expressed as follows:

.
V2 = ET

.
E = ET

(
LE + δ

..
D
)
≤ ET

(
L + 0.5‖δ‖2 I6

)
E + 0.5ε2

2, (19)

The above design of an NDO for a WIPR can be summarized in the following theorem.

Theorem 1. For the existence of an unknown disturbance in a WIPR system, the perturbation
estimation error is bounded for the observer designed according to Equation (14).

Proof. The design parameters L1(ξ2) =
∂P1(ξ2)

∂ξ2
and L2(ξ2) =

∂P2(ξ2)
∂ξ2

are such that L+ 0.5‖δ‖2I6
is a negative definite matrix, according to Lemma 1, then E is bounded. �

2.4. The Design of Improved Slide Mode Control

The sliding mode control algorithm consists of two key elements: (i) the design
of the sliding mode surface; and (ii) the design of the convergence rate. The design of
the sliding mode surface is mainly based on the system structure as well as the control
objective. As for the design of convergence law, there are four different convergence laws:
the isokinetic convergence law, exponential convergence law, power convergence law, and
general convergence law. In this paper, based on the optimal control objective of WIPPR to
cope with nonlinearity and underdrive, as well as unknown disturbances, the traditional
exponential convergence law is improved by introducing an adaptive control function, and
an improved sliding mode control based on the adaptive exponential convergence law
is proposed, which can weaken the system jitter while speeding up the system response,
making the sliding mode control more suitable for tracking the reference trajectory of the
WIPR system under the action of unknown disturbances [36]. The design for the traditional
exponential convergence law is shown in Equation (20).

.
s = −ηsgn(s)− μs, (20)

where: s denotes the slip surface function; the parameters η, μ denote the convergence
coefficient; and sgn(s) denotes the sign function.

In the traditional exponential convergence law, the isokinetic term is denoted −ηsgn(s),
and the exponential term is denoted −μs. When the state of the system is far from the
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slip surface, the exponential term and the isokinetic term in the convergence law act si-
multaneously to help the system move toward the slip surface, and the magnitude of the
isokinetic term and the exponential term are mainly determined by the reference η, μ. The
exponential term is small, and the isokinetic term acts mainly when the system is moving
close to the surface.

This paper makes a corresponding improvement based on the traditional exponential
convergence law and introduces the adaptive o(s) function to adjust the convergence
law in accordance with the control state of the system, as shown in Figure 2, which
can accelerate the convergence speed of the sliding mode and weaken the overshoot
phenomenon. This allows the sliding mode control to reduce the jitter phenomenon of
the system. Following the inclusion of the adaptive function o(s), the new exponential
convergence law is as follows:{ .

s = −ηo(s)sgn(s)− μs
o(s) = (|s|+1 )[loga(|s|+a )]

|s|+ loga(|s|+a )+b
, (21)

where a > 0, b > 0, η > 0, μ > 0.

Figure 2. The adaptive function o(s).

Through the analysis, relative to not adding the adaptive function (i.e., o(s) = 1), it
can be found that when the system motion point is far away from the sliding surface
(namely, when s is far away from the origin 0), the adaptive function o(s) will increase
the convergence law, which will speed up the system convergence speed, shorten the
system state convergence time to the target state, and reduce the control time; when the
system motion point is close to the sliding surface, |s| will converge to 0 and o(s) will be
less than 1. The role of o(s) here is to suppress the jitter amplitude and weaken the state
variable fluctuation problem after the system is stabilized, and the suppression effect will
be more obvious as the parameter b increases. To further weaken the jitter problem of the
stabilized system, the smoothing process is carried out for the symbolic function sgn(s)
in this paper, which is known as the traditional symbolic function [37], as shown in the
following equation.

sgn(s) =

⎧⎨⎩
1 s > 0
0 s = 0
−1 s < 0

, (22)
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The symbolic function after the smoothing process is shown below.

sgn(s) =
s

|s|+ β
, β = 0.01, (23)

2.5. The Design of the Forward-Rotation Subsystem

For convenience, the system has been reorganized into the following form (24).⎧⎨⎩
..
ζ1 = 1

Ω

(
m13c32

.
ζ2 − m33c13

.
ζ3 − m13g3

)
+ m33

Ω τ1 + D1
..
ζ2 = 1

m22

(
−c22

.
ζ2 − c23

.
ζ3

)
+ 1

m22
τ2 + D2

, (24)

The state variables in the system described by Equation (24) are highly coupled. To
address this issue and to expand the system’s asymptotic stability domain, a hierarchical
sliding mode controller was designed. The controller’s primary objective is to utilize an
input control law that can simultaneously control both system variables ζ1 and ζ2, thereby,
mitigating the problem of system coupling [38].

Having obtained the expected forward velocity (vd) and angular velocity (wd) from
Equation (11), the error between the actual and expected values can be defined as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

exv = ζ1d − ζ1 = xr cos θr + yr sin θr − xv

ev =
.
ζ1d −

.
ζ1 = vd − v

eθ = ζ2d − ζ2 = θr − θ

ew =
.
ζ2d −

.
ζ2 = wd − w

, (25)

To design the sliding mode control error tracking scheme for the v-w subsystem, two
mutually independent first-layer sliding mode surfaces were initially constructed. The
equations used to create these slide surfaces are as follows:

s1 = γ1exv + ev, γ1 > 0, (26)

s2 = γ2eθ + ew, γ2 > 0, (27)

The results of deriving Equations (26) and (27) are presented below.

.
s1 = γ1

.
exv +

.
ev = γ1

.
exv +

..
ζ1d −

..
ζ1 = 0

.
s2 = γ2

.
eθ +

.
ew = γ2

.
eθ +

..
ζ2d −

..
ζ2 = 0, (28)

According to Filippov’s equivalent control theory, the equivalent control laws for ζ1
and ζ2 are as follows:⎧⎨⎩ τeq1 = − Δ

m33

(
γ1

.
exv +

..
ζ1d + D̂1

)
+ 1

m33

(
m13c32

.
ζ2 − m33c13

.
ζ3 − m13g3

)
τeq2 = m22

(
γ2

.
eθ +

..
ζ2d

)
+ c22

.
ζ2 + c23

.
ζ3 − D̂2

(29)

The second sliding surface can be expressed as a linear combination of the first sliding surface.

s3 = γ3s1 + γ4s2, γ3,γ4 > 0, (30)

To control ζ1 and ζ2, the equivalent control law must be included at the same time to
control and enter their designed sliding surface, respectively. Therefore, the total control
law is shown in the following equation.

τu = τeq1 + τeq2 + τsw, (31)
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τsw is the switching law of the converging slide surface phase, and the expressions are
as follows.

τsw =
−
(

γ3
m22
Ω τeq2 + γ4

1
m22

τeq1 + η1o(s3)sgn(s3) + μ1s3

)
γ3

m22
Ω + γ4

1
m22

, (32)

To mitigate the jitter phenomenon of the system, the isokinetic and exponential terms
of the sliding mode control are improved, where η1 and μ1 are the isokinetic and exponential
terms of the previous design convergence law, and both are positive constants; o(s3) and
sgn(s3) are the adaptive and symbolic functions designed in the previous paper. To prove
that the designed controller is stable, the Lyapunov function is chosen as follows.

V3 =
1
2

s2
3 > 0 (33)

The derivative of V3 for time is given by the following expression.
.

V3 = s3
.
s3 = s3

(
γ3

.
s1 + γ4

.
s2
)
= s3

[
γ3
(
γ1

.
exv +

.
ev
)
+ γ4

(
γ2

.
eθ +

.
ew
)]

= s3
[
γ3
(
γ1

.
exv +

.
vd −

.
v
)
+ γ4

(
γ2

.
eθ +

.
wd −

.
w
)]

= s3
{

γ3
[
γ1

.
exv +

.
vd − f1 − m33

Ω
(
τeq1 + τeq2 + τsw

)− D1
]
+ γ3

[
γ2

.
eθ +

.
wd − f2 − 1

m22

(
τeq1 + τeq2 + τsw

)− D2

]}
= s3

[−η1o(s3)sgn(s3)− μ1s2
3 + γ1

(
D̂1 − D1

)
+ γ2

(
D̂2 − D2

)] ≤ −η1o(s3)|s3| − μ1s2
3 + |s3|

(
γ1

∣∣∣D̃1

∣∣∣+ γ2

∣∣∣D̃2

∣∣∣)
(34)

By design η1o(s3) > γ1

∣∣∣D̃1

∣∣∣+ γ2

∣∣∣D̃2

∣∣∣, the result of the following equation can be obtained.

.
V3 ≤ −η1s2

3 ≤ −η1

2
V3 (35)

From Lemma 1 in [38], the following equation can be obtained.

V3(t) ≤ e−
η1
2 (t−t0)V(t0) (36)

It can be seen that the V3(t) index converges to 0, and the rate of convergence depends
on η1.

As demonstrated by the preceding equation, the error state can attain the slip surface
in a finite amount of time. Subsequently, the first layer of slip surfaces s1 and s2 can
converge asymptotically to zero, leading to the convergence of both the rotational and
forward velocities of WIPR to the desired values.

2.6. The Design of the Tilt-Angle Subsystem

The system discussed in the previous section can achieve complete tracking of ζ1 and
ζ2 within a finite time, which enables us to transform it into the following form:

..
ζ3 =

1
Ω

(
m11c32

.
ζ2d − m31c13

.
ζ3 + m11g3

)
− m31

Ω
τ3 + D3, (37)

As WIPR aims to maintain a vertical and stable direction of the pendulum during
its motion, all relevant parameters (αd,

.
αd,

..
αd) can be set to zero. As such, the following

definitions can be employed: {
eα = αd − α = −α
e .

α =
.
αd − .

α = − .
α

, (38)

Let the sliding mode surface be defined as Equation (39), with its derivative expressed
as Equation (40).

s4 = γ5eα + e .
α, (39)

.
s4 = γ5

.
eα +

.
e .

α = −γ5
.
α − ..

α = −η2o(s4)sgn(s4)− μ2s4, (40)
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After substituting Equation (37), the control law for the tilt angle subsystem can be
derived as presented in Equation (41).

τα = − Φ
m31

(
γ5

.
α + D̂3

)− 1
m31

(m11c12
.
ζ2 − m31c13

.
ζ3+m11g3 − η2o(s4)sgn(s4))−μ2s4 (41)

To prove the stability of the designed system, the Lyapunov function is chosen as follows.

V4 =
1
2

s2
4 (42)

The derivative of V4 for time is given by the following expression.

.
V4 = s4

.
s4 = s4

(−γ5
.
α − ..

α
)
= s4

(
−γ5

.
α − f3 − 1

m22
τα − D3

)
= s4

[−η2o(s4)sgn(s4)− μ2s2
4 + γ5

(
D̂3 − D3

)] ≤ −η2o(s4)|s4| − μ2s2
4 + γ5

∣∣∣D̃3

∣∣∣ (43)

By choosing η2o(s4) > γ5

∣∣∣D̃3

∣∣∣, it enables
.

V4 < 0 to hold, indicating that the system
achieves asymptotic stability.

Figure 3 displays the schematic block diagram of the control system.

Figure 3. The control system.

3. Simulation

The focus of this section is to discuss the trajectory-tracking effect of the system in a
simulation environment, and to verify the feasibility of the proposed control scheme and
what the advantages of the proposed method are compared with other control systems
in this paper. Next, the simulation results of different control systems in the face of the
same disturbance will be compared to verify the control effectiveness of each system. The
parameters in the system are shown in the following Table 2.

The simulation experiments in Matlab/Simulink verified the high-precision trajectory
tracking capability of the system and the stability of the pendulum in robot motion. During
the simulation study, the initial position was set as qm = [0, 0, 0]T , and the initial position
of the reference trajectory was set as qmr = [0, 0, π/2]T , where the desired tracking veloc-
ity = 1 m/s and the angular velocity = 1 rad/s. Therefore, the trajectory of the robot should
be a circle with a radius of 1 m, and the center of the circle is (0, 0). Therefore, the time
function of the reference trajectory was chosen as {x = sin t, y = cos t}.
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Table 2. The value of each parameter variable in the system.

Parameter (Unit) Value

M(kg) 8
m(kg) 0.5

IM
(
kg · m2) 5

Iw
(
kg · m2) 0.3
d(m) 0.5
L(m) 0.5
r(m) 0.1

An external perturbation was added, as shown in the following equation.⎧⎨⎩
D1 = 0.4 sin(0.4t)Nm
D2 = 0.5 cos(0.5t)Nm
D3 = 0.6 sin(0.6t)Nm

, (44)

To demonstrate the superiority of the proposed method in this paper, three com-
parative experiments were conducted under the given disturbance conditions: the first
experiment involved the simulation results of the unimproved HSMC method, the second
experiment involved the simulation results of the improved IHSMC method with adaptive
law but without nonlinear disturbance observer, and the third experiment involved the
simulation results of the proposed method in this paper (referred to as PC).

First of all, by observing Figures 4–6, it can be concluded that the proposed method
in this paper is better than the other two control methods in terms of both the speed of
convergence of the error to the steady state and the magnitude of the fluctuation of the
error after reaching the steady state when compared with the other two methods. This
undoubtedly reflects the effectiveness of the method in this paper, which can track the
given reference trajectory very accurately.

Figure 4. The error of x.
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Figure 5. The error of y.

Figure 6. The error of θ.

Figures 7 and 8 give the tracking of the desired speed of the WIPR system under the
three control methods. Compared with the other two methods, firstly, the control method
in this paper can track the desired speed more rapidly, reaching the effect of tracking the
desired speed at 0.7 s, whereas the other two methods track the desired speed in more than
1 s, which is much slower than the method in this paper, and the fluctuation frequency is
high, which may affect the stability of the WIPR. As can be seen from Figure 8, the present
method exceeds the other two methods in the tracking effect of rotational velocity relative
to the forward velocity, for one. The convergence speed is fast, and more importantly, the
proposed method is very stable after the velocity tracking reaches the steady state, which
can be regarded as showing no fluctuation compared with the other two methods.
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Figure 7. WIPR forward velocity v.

Figure 8. WIPR rotation velocity w.

The HSMC method with general exponential convergence law has more frequent
angle oscillations, and the system is more unstable, as can be seen from the angle change of
the WIPR pendulum shown in Figure 9, whereas the IHSMC improved convergence law
method’s pendulum has smoother oscillations after reaching stability, and the control effect
is obviously stronger than that of the HSMC with general exponential convergence law. In
terms of response time and maximum overshoot, the suggested method outperforms the
other two ways, and it can continue to operate smoothly and without oscillations once it
has reached the stabilization point.
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Figure 9. The angle of the WIPR pendulum α.

The variograms of the input torque for the three control methods are presented in
Figures 10–12. The results indicate that when the convergence law of HSMC follows the
general exponential convergence law, the jitter vibration of the input torque for the left and
right wheels of WIPR is evident, which adversely affects the output of the actuator (i.e.,
affects the output of the drive motors of the left and right wheels). In contrast, Figure 11
illustrates that the improved convergence law significantly reduces the jitter phenomenon,
resulting in a more beneficial improvement for the actuator.

Figure 10. Input torque under HSMC.
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Figure 11. Input torque under IHSMC.

Figure 12. Input torque under PC.

Figure 12 presents the variation of input torque under the proposed control method. It
can be observed that the input torque obtained by this method is smoother than IHSMC,
and the jitter suppression effect is more satisfactory. This approach achieves a better torque
input graph, making it the most effective method among the three for actuator benefits.
Therefore, the proposed control method demonstrates superior performance in terms
of reducing jitter and enhancing actuator benefits compared with the other two control
methods, making it a better solution.

Figure 13 shows the trajectory tracking diagrams of different control systems. From
an intuitive point of view, the proposed scheme is also significantly better than the other
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two schemes. As shown by the simulation comparison experiment, the method proposed
in this paper is feasible, and its effect is excellent.

Figure 13. Tracking of circular trajectories.

4. Conclusions

The purpose of this paper was to study the trajectory-tracking problem for WIPRs and
propose a hierarchical sliding mode controller with a nonlinear perturbation observer to
achieve accurate control of the reference trajectory and maintain the pendulum stability
during motion. A nonlinear disturbance observer was designed to make the system more ro-
bust to unknown external disturbances. The underdriven coupling of WIPRs was addressed
by dividing the system into two subsystems through the decoupling of its control state
variables. The hierarchical sliding mode control method with an improved convergence
law was then applied to control the system and suppress the “jitter” phenomenon. Finally,
the Lyapunov function was chosen to verify the stability of the system mathematically.

The feasibility of the control system was verified using simulation software. However,
considering the complexity of the real-world environment and external uncertainty, future
work will focus on building a hardware system for the robot to study the real effects of the
control method of WIPRs in the real world.
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Abstract: This article introduces a ship defense strategy using a planar grid formation of multiple
drones. We handle a scenario where a high-speed target with variable velocity heads towards the
ship. The ship measures the position of the target in real time. Based on the measured target, the
drones guidance laws are calculated by the ships on-board computer and are sent to every drone
in real time. The drones form a planar grid formation, whose center blocks the Line-Of-Sight (LOS)
line connecting the target and the ship. Since the target is guided to hit its goal (ship), the drones
can effectively block the target by blocking the LOS line. We enable slow drones to capture a fast
target by making the drones stay close to the ship while blocking the LOS at all times. By using a grid
formation of drones, we can increase the capture rate, even when there exists error in the prediction
of the target’s position. To the best of our knowledge, this article is unique in using a formation of
multiple drones to intercept a fast target with variable velocity. Through MATLAB simulations, the
effectiveness of our multi-agent guidance law is verified by comparing it with other state-of-the-art
guidance controls.

Keywords: ship defense; drone; target tracking; multiple drones; multi-agent guidance law; fast
target; grid formation; high-speed target

1. Introduction

This article introduces a ship defense strategy using a clustered formation of multiple
drones. We handle a scenario where a high-speed target with variable velocity heads
towards the ship. The role of the drone team is to protect the ship from the incoming target.

We propose a ship defense approach with multiple drones, such that each drone is not
equipped with powerful sensors or an on-board computer. Thus, a drone cannot measure
the target, and the target moves based on the commands sent by the ship. In this way, we
can decrease the cost of a drone, which can be destroyed once it intersects the target. This
enables us to develop rather cheap drones.

Instead, the ship measures the position of the target in real time. Position measure-
ments can be provided by various sensors, such as radar, IR, or laser sensors of the ship.
Each drone’s guidance law is calculated by the ship’s on-board computer and is transmitted
to each drone in real time. (This approach relies on the communication between the ship
and a drone. Since the signal speed is sufficiently fast (3 × 108 m/s) in the air, we argue
that signal delay is negligible in our ship defense scenario.)

Consider a high-speed target whose goal is to hit a ship. The target heads towards its
goal (ship) at least in the terminal phase. Otherwise, it is impossible to make a target hit
the ship.

Therefore, this paper lets multiple drones form a planar grid formation, whose center
lies on the line segment connecting the target and the ship. Moreover, the planar grid
formation is generated to be perpendicular to the line segment connecting the target
and the formation center. The grid formation can be considered as a “net” structure for
capturing the incoming target. The target may perform elusive maneuvers, and there may
be measurement noise in measuring the target position. By maximizing the grid formation
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size, we can increase the capture rate, even when there exists error in the prediction of the
target’s position. Since the target is guided to hit its goal (ship), the drones can effectively
block the target using this grid formation.

As an interceptor, we consider a highly maneuverable drone, such as a quadrotor
drone [1–3], which is much slower than the incoming target. This article addresses a high-
level path planner, which generates reference position signals for a low-level controller [1–3].

To the best of our knowledge, our paper is novel in developing a ship defense approach
using clustered multiple drones. Our paper is novel in addressing a 3D formation of
multiple drones for intercepting a high-speed target with variable speeds. We show that in
the case where the drones block the LOS line between the target and the ship, the target
cannot reach the ship without being captured by the drones. Since the target is guided to
hit its goal (ship), the drones can effectively block the target using this strategy. We further
let slow drones stay close to the ship in order to protect the ship from the fast target. As far
as we know, our paper is novel in showing that slow drones can capture a fast target by
staying close to the ship while blocking the LOS at all times.

Our paper is unique in capturing a maneuvering target with variable speeds, which
can be faster than the interceptors. In order to estimate the pose of a maneuvering high-
speed target, we applied target-tracking filters in [4]. We control the drone formation,
based on the prediction of the target’s position after one sample-index in the future. This
prediction may be erroneous due to the target’s elusive maneuvers or measurement noise.
This is the motivation for utilizing a grid formation of drones instead of a single drone.
Since we use a grid formation, we can increase the capture rate even when the target
prediction is erroneous. By maximizing the grid formation size, we can increase the capture
rate even when there exists error in the prediction of the target’s position.

To the best of our knowledge, our paper is novel in the following aspects:

1. We develop a ship defense approach using clustered multiple drones;
2. We use a 3D formation of multiple drones for intercepting a high-speed target with

variable speeds;
3. We let the drones stay close to the ship while blocking the LOS between the ship and

the target. Thus, we enable slow drones to capture a fast target.

Through MATLAB simulations, the effectiveness of our multi-agent guidance law is
verified by comparing it with other state-of-the-art guidance controls.

We organize this article as follows. Section 2 addresses the literature review of this
paper. Section 3 addresses the preliminary information of this paper. Section 4 discusses
several definitions and assumptions in this article. Section 5 introduces our multi-agent
guidance law. Section 6 shows simulation results to present the effectiveness of the proposed
guidance law. Section 7 provides a conclusion.

2. Literature Review

There are many papers on interceptors’ guidance laws [5–8]. The authors of [9–16]
applied motion camouflage to develop the guidance law of an interceptor. Here, we say
that the interceptor is in the motion camouflage state if an interceptor moves in the presence
of a target while appearing stationary at a focal point.

References [17,18] developed a motion camouflage guidance law so that the interceptor
approaches the target while appearing stationary at a focal point that is infinitely far from
the interceptor. The authors of [19] used a neural network architecture to perform motion
camouflage in 2D environments. The authors of [12] developed an optimal control approach
to derive a 2D motion camouflage position for an interceptor, assuming there is a constant
velocity (speed and heading) target. However, assuming a target with constant velocity is
not realistic since a maneuvering target could escape from the interceptor. Our paper thus
handles a target with variable velocity.

Proportional Navigation Guidance (PNG) laws have been widely applied to let an
interceptor hit the target [20–23]. PNG laws are designed considering an interceptor that
can measure the bearing of the target by utilizing on-board sensors. PNG laws are based
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on the fact that two vehicles are on a collision course when their direct Line-Of-Sight (LOS)
does not change direction as they get closer to each other. PNG laws are designed so
that the interceptor velocity vector rotates at a rate proportional to the rotation rate of the
line-of-sight and in the same direction.

Multi-agent systems can be applied for many tasks, such as monitoring environ-
ments [24,25], multi-agent herding [26], and sensor deployment [27–30]. References [31,32]
controlled multiple mobile sensors to estimate the target position in real time. Refer-
ences [33,34] considered the case where two interceptors, which measure bearings of a
target, track the target in two dimensions. The formulation of the homing problem of multi-
ple missiles against a single target, subject to constraints on the impact time, was discussed
in [35]. In [36], a fully distributed adaptive method was proposed to solve the simultaneous
attack problem with multiple missiles against maneuvering targets. The authors of [37]
considered the relative interception angle constraints of multiple interceptors, which is
intended to enhance the survivability of multiple interceptors against a defense system
with a high value target and also to maximize the collateral target damage. The authors
of [38] addressed simultaneous cooperative interception for a scenario where the successful
handover cannot be guaranteed by a single interceptor due to the target maneuver and
movement information errors at the handover moment.

As far as we know, other guidance laws in the literature make one or more interceptors
continue to chase the target. Our paper is unique in making slow interceptors (drones in
our paper) stay close to the ship, so they can block a fast target from reaching the ship. This
blocking strategy is desirable considering the energy consumption of an interceptor since
an interceptor does not have to move far from the ship. Through MATLAB simulations, the
effectiveness of this blocking strategy is verified by comparing it with other state-of-the-art
guidance controls.

3. Preliminaries

This article utilizes two frames: an inertial reference frame {I} and a body-fixed frame
{B} [39]. We address several definitions in rigid-body dynamics [39].

The origin of {I} is a point with three axes pointing North, East, and Down, respec-
tively. We use the virtual agent for drone controls. The virtual agent is a virtual drone
located at the center of the grid formation. {B} is fixed to the virtual agent, such that the
origin of {B} is at the virtual agent’s center.

The virtual agent changes its yaw and pitch while not rotating its body. In rigid-body
dynamics [39], θ and ψ define pitch and yaw, respectively. For convenience, let c(η) define
cos(η). In addition, let s(η) define sin(η). Let t(η) define tan(η).

The rotation matrix indicating the counterclockwise (CC) rotation of an angle ψ cen-
tered at the z-axis in {B} is

MR(ψ) =

⎛⎝ c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

⎞⎠. (1)

The rotation matrix representing the CC rotation of an angle θ centered at the y-axis in
{B} is

MR(θ) =

⎛⎝ c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

⎞⎠. (2)

The combined rotation matrix is built by multiplying Equations (1) and (2) to obtain

MR(ψ, θ) = MR(ψ)MR(θ). (3)
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4. Assumptions and Definitions

This section discusses assumptions and definitions in our paper. max(a, b) returns a
bigger value between two variables (a and b). In addition, min(a, b) returns a smaller value
between two variables (a and b). In our paper, bold characters are used to denote vectors
and matrices. ∠(v1, v2) is the angle formed by two vectors (v1 and v2). Mathematically,
∠(v1, v2) = arccos( v1·v2

‖v1‖∗‖v2‖ ). Here, 0 ≤ ∠(v1, v2) ≤ π. l(A, B) is the line segment
connecting two locations A and B. Furthermore, ‖l(A, B)‖ indicates the length of l(A, B).

This article uses the discrete-time system, where T denotes the sample duration. In this
article, all drones make a planar grid formation to protect against the incoming target. The
grid formation can be considered as a “net” structure for capturing the incoming target.

Let M indicate the total number of drones. M is selected such that

M = G2, (4)

where G ≥ 1 is a positive integer.
In the case where G = 1, we use only one drone. In this case, the grid formation cannot

be used, and the waypoint of the drone is set as the virtual agent.
In the inertial reference frame, let r0,k define the 3D Cartesian coordinates of the virtual

agent. In the inertial reference frame, let ri,k (i ∈ {1, 2, . . . , M}) denote the 3D Cartesian
coordinates of the i-th drone at sample-index k. Note that the subscript k indicates the
sample-index k.

In the inertial reference frame, let rt
k denote the target’s 3D Cartesian coordinates

at sample-index k. In the inertial reference frame, let rs
k denote the ship’s 3D Cartesian

coordinates at sample-index k.
Let vt

k denote the target’s speed at sample-index k. Let vi,k denote the speed of the i-th
drone at sample-index k. Let vmax indicate the maximum speed of a drone or the virtual
agent. Note that vt

k, vi,k, and vmax are scalar values.
We say that the target is captured when the relative distance between the target and any

drone is less than a constant, say Δ. The motion model of the i-th drone (i ∈ {1, 2, . . . , M}) is

ri,k+1 = ri,k + T ∗ vi,k ∗ ui,k. (5)

Here, ui,k indicates the i-th drone’s heading vector at sample-index k. Note that ui,k is a
unit vector presenting the i-th drone’s heading direction. The motion model in Equation (5)
is commonly used in multi-drone systems [40–46].

In Equation (5), ri,k+1 generates the high-level reference position signal at every sample-
index k. For letting the i-th drone move towards ri,k+1 at every sample-index k, one utilizes
low-level controls in [1–3].

The motion model of the virtual agent is

r0,k+1 = r0,k + T ∗ v0,k ∗ u0,k. (6)

Recall that the virtual agent is at the center of the grid formation. We say that the
virtual agent is in the lineState at sample-index k if the line segment l(rt

k, rs
k) meets the virtual

agent position r0,k. At every sample-index k, v0,k and u0,k are set so that the virtual agent is
in the lineState.

Let Lk denote the infinite line crossing both rs
k and rt

k at sample-index k. Let L̄k+1
denote the infinite line crossing both rs

k+1 and rt
k+1. ck is the point on L̄k+1, which is the

closest to r0,k.
Figure 1 depicts the case where the ship moves as the time index changes from k

to k + 1. The ship positions are indicated by crosses. In this figure, Lk, L̄k+1, and ck
are depicted.
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r0,k

ck L̄k+1

rtk+1

rtk

Lk

rsk

rsk+1

gk

vmax × T

Figure 1. The case where the ship moves as the time index changes from k to k + 1. The ship positions
are indicated by crosses. In this figure, Lk, L̄k+1, and ck are depicted.

Assumptions

This article assumes that both the ship and a drone’s 3D Cartesian coordinates are
measured in real time. Global Positioning Systems (GPSs) and Inertial Measurement Units
(IMUs) can be used for this localization.

Furthermore, the ship can measure the target’s 3D Cartesian coordinates at every
sample-index. Position measurements can be provided by various sensors, such as radar
sensors or laser sensors. Therefore, the ship at sample-index k can derive Lk.

Furthermore, based on the target’s recent trajectory, the ship at sample-index k can
predict rt

k+1, the target’s 3D Cartesian coordinates, after one sample-index in the future.
Section 5.1 shows how to predict the target’s 3D Cartesian coordinates after one sample-
index in the future.

The ship can also predict rs
k+1, the ship’s 3D Cartesian coordinates, after one sample-

index in the future. This is feasible because the ship has GPS and IMU. Therefore, the ship
can predict L̄k+1, which crosses both rt

k+1 and rs
k+1.

It is desirable that as the target is caught, it is sufficiently far from the ship. Otherwise,
the ship may be partially caught by the debris of the target. Let β > 0 define the safety
distance. The safety distance is set by the operator of the drones. As the target is caught, it
is desirable that its distance from the ship is bigger than the safety distance β. This way, we
can assure the safety of the ship.

5. Multi-Drone Guidance Law

We consider a high-speed target whose goal is to hit a ship. The target heads towards
its goal (ship) at least in the terminal phase. Otherwise, it is impossible to make a target hit
the ship.

Therefore, we let multiple drones form a planar grid formation, whose center lies on
the line segment connecting the target and the ship. Moreover, the planar grid formation is
generated to be perpendicular to the line segment connecting the target and the formation
center. The grid formation can be considered as a “net” structure for capturing the incoming
target. By maximizing the grid formation size, we can increase the capture rate, even when
there exists error in the prediction of the target’s position. Since the target is guided to hit
its goal (the ship), the drones can effectively block the target using this grid formation.

The proposed multi-drone guidance law is summarized as follows. At every sample-
index, the ship measures the 3D Cartesian coordinates of the incoming target. Thereafter,
we run the Kalman filter to predict the target’s 3D Cartesian coordinates after one sample-
index in the future. See Section 5.1 for the prediction of the target’s position after one
sample-index.

Based on the predicted target pose, the virtual agent is guided to remain in the lineState.
See Section 5.2 for the guidance law of the virtual agent. In addition, each drone is guided to
generate a grid formation centered at the virtual agent. See Section 5.3 for the guidance law
of a drone. Figure 2 shows the block diagram of the proposed multi-drone guidance law.
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At each sample-index, the incoming target is measured

Predict the target pose after one sample-index in the future

All drones are guided based on the predicted target pose

Run the Kalman filter to estimate the target state

Figure 2. Block diagram of the proposed multi-drone guidance law.

5.1. Prediction of the Target’s Position after One Sample-Index

The ship can measure the target’s 3D Cartesian coordinates at every sample-index. To
track a target with variable velocity, we present how to predict the target one sample-index
forward in time. In order to track a maneuvering target, we applied target-tracking filters
to [4].

In the inertial reference frame, let [xt
k, yt

k, zt
k] indicate the vector presenting the 3D coordi-

nates of the target at sample-index k. In addition, [ẋt
k, ẏt

k, żt
k]

T denotes the vector presenting
the target velocity at sample-index k. Furthermore, [ẍt

k, ÿt
k, z̈t

k]
T defines the vector presenting

the target acceleration at sample-index k. Let Xk = [xt
k, ẋt

k, ẍt
k, yt

k, ẏt
k, ÿt

k, zt
k, żt

k, z̈t
k]

T define the
vector presenting the target state. Based on [4], the target’s process model is set as

Xk+1 = F ∗ Xk + wk, (7)

where wk is the process noise with following properties: wk ∼ N (0, Q). Here, N (0, α)
denotes a Gaussian distribution with a mean of 0 and a covariance matrix α. Furthermore, F

in Equation (7) is

F =

⎛⎝ MF 0 0
0 MF 0
0 0 MF

⎞⎠, (8)

where we use

MF =

⎛⎜⎝ 1, T, a∗T−1+e−a∗T

a2

0, 1, 1+e−a∗T

a2

0, 0, e−a∗T

⎞⎟⎠. (9)

In wk, Q is set as

Q = 2 ∗ a ∗ σ2
m ∗

⎛⎝ MQ 0 0
0 MQ 0
0 0 MQ

⎞⎠, (10)

where

MQ =

⎛⎝ T5/20, T4/8, T3/6
T4/8, T3/6, T2/2
T3/6, T2/2, T

⎞⎠. (11)

a and σm in Equation (10) are tuning parameters for tracking a maneuvering target. Detailed
derivations of Equation (7) appear in [4].
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At every sample-index k, the ship measures the target’s 3D position, say mk. See the
first block of Figure 2. The target measurement model is

mk = H ∗ Xk + vk (12)

where H is

H =

⎛⎝ 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

⎞⎠. (13)

Furthermore, vk is the measurement noise, such that vk ∼ N (0, Rk). We assume that Rk is
known a priori.

The Kalman filter (KF) [47] is applied to obtain the estimate vector and its covariance at
every sample-index. The KF is composed of the prediction step and the measurement update
step. In the KF, the prediction step uses Equation (7), and the measurement update step uses
Equation (12).

Let X̂k|k define the estimation of Xk derived using all measurements up to sample-index
k. Let Pk|k define the error covariance matrix of X̂k|k.

In the prediction step of the KF, we derive the predicted state vector as

X̂k+1|k = F ∗ X̂k|k, (14)

where Equation (7) is used. Utilizing Equations (7) and (10), the covariance matrix is
predicted as

Pk+1|k = F ∗ Pk|k ∗ FT + Q. (15)

The measurement update step is

X̂k+1|k+1 = X̂k+1|k + Wk ∗ (mk − H ∗ X̂k+1|k), (16)

where
Wk = Pk+1|k ∗ HT ∗ S−1. (17)

Here, we use

S = HPk+1|kHT + Rk. (18)

In addition, the covariance matrix is updated using

Pk+1|k+1 = Pk+1|k − Wk ∗ S ∗ WT
k . (19)

The ship at sample-index k predicts the target state after one sample-index forward in
time using Equation (14). Let r̂t

k+1 denote the target position at sample-index k + 1, which
is predicted using all measurements up to sample-index k. Using Equation (14), r̂t

k+1 is
predicted as

r̂t
k+1 = H ∗ X̂k+1|k. (20)

Here, recall that H was defined in Equation (13).
We acknowledge that the prediction of the target’s position may not be accurate due

to the target’s elusive maneuvers or measurement noise. This is the motivation for using a
formation of drones instead of a single drone.

In our paper, a formation of drones is used instead of a single drone in order to increase
the capture rate. Since we use a drone formation, we can increase the capture rate even
when the target prediction is erroneous. Through MATLAB simulations, the effectiveness
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of our formation-based guidance law is verified by comparing it with other state-of-the-art
guidance controls.

5.2. Guidance Law of the Virtual Agent

Using the predicted 3D coordinates of the target, the virtual agent is guided to remain
in the lineState. At every sample-index k, the virtual agent is guided to head towards the
guidance point gk, which is defined as follows:

1. Suppose that ‖rs
k − r0,k‖ < β. This implies that the ship needs to expel the virtual

agent away from the ship. Moreover, suppose that

‖r0,k − ck‖ ≤ vmax ∗ T (21)

holds. Then, we set the guidance point as

gk = ck +
rt

k+1 − ck

‖rt
k+1 − ck‖

∗ δk. (22)

Here, δk > 0 is defined as

δk =
√
(vmax ∗ T)2 − (‖r0,k − ck‖)2. (23)

This implies that ‖gk − r0,k‖ is vmax ∗ T. See Figure 1 for an illustration of this case.
2. Otherwise, we set the guidance point as

gk = ck. (24)

At every sample-index k, the virtual agent moves to reach gk if possible. Suppose that
‖rs

k − r0,k‖ < β. Furthermore, suppose that Equation (21) holds, as depicted in Figure 1.
Consider a sphere centered at r0,k, whose radius is vmax ∗ T. Using Equation (21), L̄k+1
meets this sphere at two points. Between these two points, gk is the point that is closer
to rt

k+1. In this way, the virtual agent can approach the target while staying on the line
segment that connects the target and the ship.

The direction command u0,k is selected to make the virtual agent move towards gk at
sample-index k + 1. At every sample-index k, the direction command is set as follows. At
every sample-index k, the virtual agent sets the new direction command u0,k as

u0,k =
gk − r0,k

‖gk − r0,k‖ . (25)

Note that the direction command is a unit vector.
In addition, the speed command at sample-index k is set as follows. At every sample-

index k, the virtual agent sets the new speed command v0,k as

v0,k = min(
‖gk − r0,k‖

T
, vmax). (26)

This implies that the virtual agent moves with the maximum speed vmax when it is too far
from the guidance point gk.

Consider the situation in which ‖r0,k − rt
k+1‖ < vmax ∗ T holds. In this situation,

the virtual agent heads towards rt
k+1 directly while not using the direction command

u0,k =
gk−r0,k

‖gk−r0,k‖ . In this way, the target is caught at sample-index k + 1.
According to the definitions of the guidance point gk (see Equations (22) and (24)), gk

lies on l(rt
k+1, rs

k+1).
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In the case where ‖gk−r0,k‖
T ≤ vmax, the heading command (Equation (25)) and speed

command (Equation (26)) lead to

r0,k+1 = gk. (27)

We thus have the following theorem.

Theorem 1. Suppose that ‖ck−r0,k‖
T ≤ vmax. The heading command (Equation (25)) and speed

command (Equation (26)) make r0,k+1 exist on l(rt
k+1, rs

k+1).

Theorem 1 implies that in the case where ‖ck−r0,k‖
T ≤ vmax, the virtual agent position

r0,k+1 is on the line segment l(rt
k+1, rs

k+1). Since the target’s goal is reaching the ship, the
target must be hit by the virtual agent eventually.

Lk and L̄k+1 Meet at a Point

Next, we consider a special case where Lk and L̄k+1 meet at a point. Here, recall that
L̄k+1 denotes the infinite line crossing both rs

k+1 and rt
k+1. In the inertial reference frame, let

IL denote the 3D coordinates of the intersection between Lk and L̄k+1. For instance, if the
ship is static, then Lk and L̄k+1 meet at the ship position rs

k = rs
k+1.

Suppose that r0,k lies on l(rt
k, rs

k). Let ct
k denote the point on L̄k+1, which is the closest

to rt
k. Let lk = ‖ck − r0,k‖ for convenience.

Figure 3 depicts the case where Lk and L̄k+1 meet at IL. Using the geometry in this
figure, we have

‖ct
k − rt

k‖ =
lk ∗ ‖IL − rt

k‖
‖IL − r0,k‖ . (28)

r0,k

ck L̄k+1

rtk+1

rtk

Lk

IL
gk

vmax × Tctkrsk

rsk+1

Figure 3. The case where Lk and L̄k+1 meet at IL.

Since the target speed is vt
k, we have

vt
k ∗ T ≥ ‖ct

k − rt
k‖. (29)

Using Equations (28) and (29), we have

vt
k ∗ T ∗ ‖IL − r0,k‖

‖IL − rt
k‖

≥ lk. (30)

Suppose that the drone’s maximum speed vmax satisfies

vmax >
vt

k ∗ ‖IL − r0,k‖
‖IL − rt

k‖
. (31)

66



Appl. Sci. 2023, 13, 4397

The next theorem addresses the condition for remaining in the lineState at every
sample-index.

Theorem 2. Suppose that Lk and L̄k+1 meet at a point, say IL. Suppose that r0,k lies on l(rt
k, rs

k).
The target speed is vt

k. If the drone’s maximum speed satisfies Equation (31), then r0,k+1 lies on
l(rt

k+1, rs
k+1).

Proof. Suppose the drone’s maximum speed satisfies Equation (31). Then, Equations (30)
and (31) lead to

vmax ∗ T > lk. (32)

This implies that Equation (21) is met. In the case where Equation (21) is met, Theorem 1
makes r0,k+1 exist on l(rt

k+1, rs
k+1). The proof is complete.

In practice, the ship moves much slower than the target. Thus, the ship position is
close to IL, as plotted in Figure 3. Consider the case where the virtual agent is sufficiently
close to the ship. In this case, ‖IL − r0,k‖ is small to satisfy Equation (31). Then, using
Corollary 2, r0,k+1 lies on l(rt

k+1, rs
k+1). Thus, the virtual agent remains in the lineState at

sample-index k + 1.
In the case where the virtual agent stays in the lineState at all times, the target cannot

reach the ship without being captured by the virtual agent. In order to stay in the lineState
at each sample-index, it is desirable that the virtual agent does not become too far from
the ship.

In the case where ‖rs
k − r0,k‖ ≥ β is met, the guidance point is set using Equation (24)

instead of Equation (22). In this way, drones stay close to the ship while staying in the
lineState at all times.

Note that Equation (31) can be satisfied even when vmax < vt
k. This implies that even

slow drones can capture a fast target when the drones stay close to the ship while staying
in the lineState at all times.

5.3. Guidance Law of Every Drone

We let multiple drones form a planar grid formation, such that the formation is
perpendicular to the line segment connecting the target and the formation center. The
grid formation can be considered a “net” structure for capturing the incoming target. By
maximizing the grid formation size, we can increase the capture rate, even when there
exists error in the prediction of the target’s position. Since the target is guided to hit its goal
(ship), the drones can effectively block the target using this grid formation.

We next handle the guidance law of a drone for the generation of the grid formation.
At sample-index k, let grid formation denote a planar formation composed of G × G cells,
each with side length sk. The grid formation is centered at the virtual agent, and we adjust
the grid formation so that it is normal to l(rt

k, r0,k) at each sample-index k. We change the
pitch and yaw of the virtual agent, but we do not change the roll of the virtual agent. Thus,
the grid formation does not roll either.

Let rR
k = rt

k − r0,k denote the relative position of the target with respect to the virtual
agent at sample-index k. At each sample-index k, the planar grid formation is oriented,
such that the formation plane is perpendicular to rR

k .
For i ∈ {0, 1, 2, . . . , G − 1} and j ∈ {0, 1, . . . , G − 1}, let n[i, j] be defined as

n[i, j] = 1 + i + G ∗ j. (33)

Since i ∈ {0, 1, 2, . . . , G − 1} and j ∈ {0, 1, 2, . . . , G − 1}, we have

n[i, j] ∈ {1, 2, . . . , M = G2}. (34)
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Here, Equation (4) is used. Using Equations (33) and (34), the drone index n ∈ {1, 2, . . . , M =
G2} has its associated n[i, j].

For i ∈ {0, 1, 2, . . . , G − 1} and j ∈ {0, 1, . . . , G − 1}, let

wB
n[i,j],k = (0,− sk ∗ G

2
+ i ∗ sk,− sk ∗ G

2
+ j ∗ sk)

T (35)

denote the n-th drone’s waypoint in the body-fixed frame at sample-index k. See that these
G × G waypoints are generated on the yz plane in the body-fixed frame. From now on, n
denotes n[i, j] for notation simplicity.

In the case where we set G = 1, we use only one drone. In this case, the grid formation
cannot be generated. If we use only one drone, then the drone’s waypoint in the body-fixed
frame is set as

wB
1,k = (0, 0, 0)T , (36)

instead of Equation (35). Equation (36) is used to make the single drone move towards the
virtual agent. In other words, the waypoint of the drone is set as the virtual agent.

At sample-index 0, all drones are located inside the grid cell of the ship. At sample-
index 0, the planar grid formation’s orientation (normal vector) is represented as initial
yaw ψ0 = 0 and initial pitch θ0 = π/2, respectively. Under Equation (3), the n-th drone’s
initial position is located at wn,0, which is given as

wn,0 = MR(0, π/2) ∗ wB
n,0. (37)

Equation (37) implies that all drones are initially located to form the grid formation with
side length s0.

Once the drones are launched from the ship, the planar grid formation at each sample-
index k is oriented, such that it becomes perpendicular to rR

k = rt
k − r0,k. The unit vector

associated with rR
k is

uR = (uR(1), uR(2), uR(3))T , (38)

where uR =
rR

k
‖rR

k ‖
.

At each sample-index k, the planar grid formation’s orientation (normal vector) is
represented as ψk and θk, respectively. Since the virtual agent does not rotate, the forma-
tion’s orientation does not include rolling motions. Under Equation (3), the n-th drone’s
waypoint in the inertial frame is

wn,k = r0,k + MR(ψk, θk) ∗ wB
n,k. (39)

The axis of the grid formation is oriented towards the target rt
k since uR =

rR
k

‖rR
k ‖

, where

rR
k = rt

k − r0,k. In other words, the planar grid formation is oriented such that it is perpen-
dicular to rR

k .
We next calculate the planar grid formation’s orientation (normal vector), ψk, and

θk in Equation (39), associated with uR in Equation (38). We apply uR(1) = c(ψk) ∗ c(θk),
uR(2) = s(ψk) ∗ c(θk), and uR(3) = −s(θk). Here, uR(j) indicates the j-th element of uR.

Under Equation (38), we obtain

θk = atan2(−uR(3),
√

uR(1)2 + uR(2)2). (40)

Under Equation (38), we derive ψk as follows. If c(θk) ≥ 0, then we use

ψk = atan2(uR(2), uR(1)). (41)

68



Appl. Sci. 2023, 13, 4397

If c(θk) < 0, then we use

ψk = atan2(−uR(2),−uR(1)). (42)

Recall that wn,k defines the waypoint assigned to the n-th drone at sample-index k.
The heading command of the n-th drone is set towards wn,k at every sample-index k. The
heading vector un,k from Equation (5) is set as follows.

un,k =
wn,k − rn,k

‖wn,k − rn,k‖ . (43)

At every sample-index k, the n-th drone sets its speed command vn,k from Equation (5) as

vn,k = min(
‖wn,k − rn,k‖

T
, vmax). (44)

The control commands, Equations (43) and (44), are used to satisfy

rn,k+1 = wn,k, (45)

if possible. Once Equation (45) is met for all n ∈ {1, 2, . . . , M}, then all drones form a grid
formation at sample-index k + 1.

Consider the case where ‖rn,k − wn,k‖ < vmax ∗ T at every sample-index k. In this case,
Equation (45) is met at every sample-index k.

At sample-index 0, all drones are located inside the ship. At sample-index 0, all
drones form the initial grid formation, as presented in Equation (37). Note that each
drone is assigned to a waypoint that is in the body-fixed frame of the virtual agent. See
Equation (39) for waypoint assignments.

Moreover, [48] can be used to assign a drone to each waypoint, such that the makespan
(time for all robots to reach their waypoints) is minimized while also preventing collisions
among drones. The authors of [48] mentioned that their assignment algorithm scales well,
such that it can compute the mapping for 1000 robots in less than half a second.

In the worst case, there may be a case where a drone meets another drone while
moving toward its assigned waypoint. This case can happen due to localization errors or
environment disturbance, such as wind. The drone then uses reactive collision avoidance
controls, such as [49–52], to avoid an abrupt collision with another drone. Under reactive
collision avoidance controls, the drone can change its speed and heading to avoid a sudden
collision. We acknowledge that a drone may not reach its waypoint, as it performs evasive
maneuvers to avoid a sudden collision with another drone. For instance, suppose that a
drone slows downs to avoid a sudden collision at sample-index k. At the next sample-index
k + 1, the drone needs to speed up to reach its new waypoint at sample-index k + 1.

Control of the Side Length in the Grid Formation

Considering the uncertainty in the target position, it is desirable to make the formation
cover as large of an area as possible. However, in the case where the formation is too sparse,
the target can get through the formation without being captured by a drone. Furthermore,
in the case where the formation is too dense, a large number of drones must be used to
cover a large area.

Recall that sk denotes the side length at sample-index k. Initially, all drones are stored
in the grid cells of the ship, such that s0 = 1 meters in Equation (37).

Let su denote the upper bound for the side length. In order to capture a target, the side
length is increased gradually using

sk = η ∗ sk−1 + (1 − η) ∗ su. (46)
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Here, 0 < η < 1 is a positive constant. η is a tuning parameter indicating the sensitivity
for the radius update. In MATLAB simulations, η = 0.9 is used. As time elapses, sk
monotonically increases to su. This implies that the formation size increases as time elapses.

Recall that a target is captured when the relative distance between the target and a
drone is less than Δ. In the simulation section, Δ = 10 m is used. If su ≤ Δ, then the target
cannot get through the grid “net” generated by the drones. Thus, su = Δ is set in our
simulations.

6. MATLAB Simulation

This section demonstrates the effectiveness of our multi-agent guidance law through
MATLAB simulations. The sample interval is T = 0.5 s. The safety distance β is set as
100 m.

In Equation (12), the measurement noise vk is generated with vk ∼ N (0, Rk), where Rk
is the identity matrix such that every diagonal element is 1. This implies that the standard
deviation of measurement noise is 1 meter.

Considering the process noise, the motion model of the i-th drone (i ∈ {1, 2, . . . , M}) is

ri,k+1 = ri,k + T ∗ vi,k ∗ ui,k + ni. (47)

Here, ni indicates the process noise of the i-th drone, such that each term in ni has a
Gaussian distribution with a mean of 0 and a standard deviation of 1 meter. Because
Equation (47) contains the process noise term ni, Equation (47) is distinct from Equation (5).

At sample-index 0, the target is at (0, 10,000, 5000) in meters, and the virtual agent is
at the origin. The ship is located at (0,0,0) at sample-index 0. Furthermore, the maximum
speed of a drone is vmax = 20 meters per second. At every sample-index k, the target’s
speed, vt

k, is 200 meters per second. See that the target moves much faster than a drone.
We say that a target is captured when the distance between a drone and the target is

less than Δ = 10 meters. Moreover, a target is captured at sample-index k when l(rt
k, rt

k−1)
crosses the grid formation between sample-index k − 1 and k. Because su = Δ, the target is
considered to be captured between sample-index k − 1 and k.

Furthermore, a simulation ends when the distance between the ship and the target is
less than Δ. This implies that the ship is hit by the target.

6.1. Monte-Carlo Simulations

Multiple Monte-Carlo (MC) simulations are needed to prove the effectiveness of the
proposed method rigorously since the measurements are noisy. We run mC = 50 MC
simulations while changing generated noise.

At the end of each MC simulation, the target hits the ship or is captured by a drone.
We use three metrics (captureRate, endDist, and simTime) to analyze the proposed controls.

Let captureN denote the number of MC simulations where the target is captured by a
drone. Considering the analysis of mC MC simulations, captureRate = captureN

mC presents the
capture rate (in percents) as we run mC MC simulations. It is desirable that the captureRate
is as large as possible.

Let endDist (m) represent the average distance between the ship and all drones’ center
position when an MC simulation ends. In the case where a single drone is considered,
endDist represents the average distance between the ship and the drone when an MC
simulation ends. Large endDist implies that at the end of a simulation, a drone is far from
the ship.

Let simTime denote the average time (in seconds) spent until each MC simulation ends.
Note that an MC simulation ends when the target hits the ship or is captured by a drone.

6.2. 3D PNG Law

The target applies the PNG laws in [20] to approach the ship as time elapses. We briefly
introduce the 3D PNG law in [20]. The rotation vector of the line-of-sight at sample-index k is
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Ωst,k = Rst,k ∗ Vst,k/(r2), (48)

where Vst,k is the relative velocity of the ship with respect to the target. Furthermore,
Rst,k = rs

k − rt
k, and r = ‖Rst,k‖. The PNG law is set as

cpng,k = NpVst,k ∗ Ωst,k, (49)

where Np = 3 is a constant. The target’s velocity is updated as

vt
k+1 = vt

k + T ∗ cpng,k. (50)

Then, the target’s position is updated using

rt
k+1 = rt

k + T ∗ vt
k

vt
k

‖vt
k‖

. (51)

6.3. Scenario 1

In this scenario, the ship moves at a velocity of (−5,0,0) in m/s.
We set G = 3 in Equation (4). This implies that we use M = G2 = 9 drones in total.

Figure 4 shows the result of one MC simulation using nine drones. In Figure 4, the target’s
position at every 3 s is marked as blue circles. The position of every drone at every 3 s is
depicted as circles with distinct colors. A red asterisk depicts the position of the virtual
agent at every 3 s. The position of the ship at every 3 s is indicated by red diamonds.

Figure 4. The result of one MC simulation using the proposed multi-agent guidance law. The
proposed multi-agent guidance law is applied to hit the target. The position of every drone at every
3 s is depicted as circles with distinct colors. A red asterisk depicts the position of the virtual agent at
every 3 s. The target’s position at every 3 s is marked as blue circles. The position of the ship at every
3 s is indicated by red diamonds.
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Figure 5 is the enlarged figure of Figure 4. The position of every drone at every 3 s is
depicted as circles with distinct colors. The drones generate a grid formation for protection
against the incoming target.

Considering the scenario in Figure 5, Figure 6 removes the plots for the target’s
positions in order to see the drones’ maneuvers clearly. The position of every drone at
every 3 s is depicted as circles with distinct colors. A red asterisk depicts the position of the
virtual agent at every 3 s. The position of the ship at every 3 s is indicated by red diamonds.
A black asterisk presents the target’s position when the target is hit by a drone.

Figure 5. The enlarged figure of Figure 4. The position of every drone at every 3 s is depicted as circles
with distinct colors. The drones generate a grid formation for protection against the incoming target.

Figure 6. Considering the scenario in Figure 5, we remove the plots for the target’s positions in order
to see the drones’ maneuvers clearly. The position of every drone at every 3 s is depicted as circles
with distinct colors. A red asterisk depicts the position of the virtual agent at every 3 s. The position
of the ship at every 3 s is indicated by red diamonds. A black asterisk presents the target’s position
when the target is hit by a drone.
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Figure 7a plots the distance between the virtual agent and the target as time elapses.
The relative distance keeps decreasing as time elapses. Figure 7b depicts the distance
between the virtual agent and the ship as time elapses. You can see that the virtual agent
stays close to the safety distance β while protecting the ship. Figure 7c depicts the side
length as time elapses. As time elapses, the side length increases to Δ.
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Figure 7. The result of one MC simulation using grid formation. The proposed guidance law is
applied to hit the target. (a) depicts the distance between the virtual agent and the target as time
elapses. The relative distance keeps decreasing as time elapses. (b) plots the distance between the
virtual agent and the ship as time elapses. See that the virtual agent stays close to the safety distance
β while protecting the ship. (c) depicts the side length as time elapses.

6.3.1. The Effect of Changing System PARAMETERS (Number of Drones and Noise Strength)

We discuss the effect of the number of drones. We also present the effect of noise on
the control performance. Let Ns denote the standard deviation of measurement noise. In
Equation (12), the measurement noise vk is generated with vk ∼ N (0, Rk), where Rk is the
diagonal matrix such that every diagonal element is N2

s . This implies that the standard
deviation of measurement noise is Ns in meters.

Table 1 summarizes the MC simulation results representing the effect of system pa-
rameters. We apply three metrics (captureRate(cR), endDist(eD), and simTime(sT)) to
analyze the proposed controls. As the number of drones increases, captureRate increases
in general. This is due to the fact that as we deploy more drones, the area covered by the
drones increases. Furthermore, as the measurement noise Ns increases to 10 meters, the
captureRate decreases. Note that an MC simulation ends when the distance between a
drone and the target is less than Δ = 10 m.
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Table 1. MC simulation results. The effect of changing system parameters, G and Ns.

G Ns cR eD sT

3 1 100 95 57

1 1 100 108 57

3 10 100 94 57

1 10 60 105 57

6.3.2. Comparison with Other State-of-the-Art Guidance Laws (Scenario 1)

To the best of our knowledge, this article is novel in developing a ship defense ap-
proach using clustered multiple drones. For comparison, we consider the case where only
one drone is used, and the virtual agent applies the 3D PNG law in Section 6.2 to capture
the target. We also consider the case where only one drone is used, and the drone applies
the 3D Motion Camouflage Guidance (MCG) law in [18] to chase the target. We further
consider the case where only one drone is used, and the drone applies the 3D Command to
Line-Of-Sight (CLOS) guidance law in [53].

Table 2 shows the MC simulation comparison results of Scenario 1. We run mC MC
simulations per each control law. Let PROq indicate the proposed guidance law using
G = q in Equation (4). Note that only one drone is used in PRO1. Moreover, nine drones
are used in PRO3.

In Table 2, MCG presents the case where the 3D MCG law is used. PNG presents the
case where the 3D PNG law is used. CLOS presents the case where the 3D CLOS law is
used. See that the proposed control outperforms all other state-of-the-art controls.

Table 2. Comparison with other state-of-the-art controls (Scenario 1).

Control Ns cR eD sT

PRO3 1 100 95 57

PRO1 1 100 108 57

PNG 1 0 280 57

MCG 1 0 280 57

CLOS 1 20 276 56

Note that Equation (31) can be satisfied even when vmax < vt
k. This implies that

even slow drones can capture a fast target when the drones stay close to the ship while
staying in the lineState at all times. However, other state-of-the-art guidance laws (MCG,
PNG, and CLOS) make a drone continue to chase the target. This maneuver makes the
drone move away from the ship, which is not desirable for capturing a fast target using a
slow interceptor.

Other state-of-the-art guidance laws (MCG, PNG, and CLOS) make a single drone
chase the target. In our paper, we let multiple drones form a planar grid formation, which
can be considered a “net” structure to capture the incoming target. The target may perform
elusive maneuvers, and there may be measurement noise in measuring the target position.
By maximizing the grid formation size, the capture rate is 100, even when there exists error
in the prediction of the target’s position. Since the target is guided to hit its goal (ship), the
drones can effectively block the target using this grid formation.

6.4. Scenario 2

We introduce Scenario 2 in Figure 8. The distinctions of Figure 8 from Figure 4 are as
follows. As the relative distance between the target and the ship is less than 3000 m, the
target moves towards the ship directly while increasing its speed to 240 m/s.
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Figure 8 depicts the result of one MC simulation. We set G = 5 in Equation (4), i.e., we
use G2 = 25 drones in total. The position of every drone at every 3 s is depicted as circles
with distinct colors. A red asterisk depicts the position of the virtual agent at every 3 s.
Figure 8 shows the case where the target is captured by a drone.

Figure 8. The result of one MC simulation using the proposed grid formation. The position of every
drone at every 3 s is depicted as circles with distinct colors. A red asterisk depicts the position of the
virtual agent at every 3 s.

Figure 9 is the enlarged figure of Figure 8. The position of every drone at every 3 s is
depicted as circles with distinct colors. See that the grid formation is generated to protect
the ship from the incoming target.

Considering the scenario in Figure 9, Figure 10 removes the plots for the target’s
positions in order to see the drones’ maneuvers clearly. The position of every drone at
every 3 s is depicted as circles with distinct colors. A red asterisk depicts the position of the
virtual agent at every 3 s. The position of the ship at every 3 s is indicated by red diamonds.
A black asterisk presents the target’s position when the target is hit by a drone.

Figure 11a depicts the distance between the virtual agent and the target as time elapses.
See that the relative distance continuously decreases over time. Figure 11b depicts the
distance between the virtual agent and the ship as time elapses. See that the virtual agent
stays close to the safety distance β while protecting the ship. Figure 11c depicts the side
length as time elapses. As time elapses, the side length increases to Δ.
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Figure 9. The enlarged figure of Figure 8. The position of every drone at every 3 s is depicted as
circles with distinct colors. See that the grid formation is generated to protect the ship from the
incoming target.

Figure 10. Considering the scenario in Figure 9, we remove the plots for the target’s positions in
order to see the drones’ maneuvers clearly. The position of every drone at every 3 s is depicted as
circles with distinct colors. A red asterisk depicts the position of the virtual agent at every 3 s. The
position of the ship at every 3 s is indicated by red diamonds. A black asterisk presents the target’s
position when the target is hit by a drone.
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Figure 11. (a) depicts the distance between the virtual agent and the target as time elapses. See that
the relative distance continuously decreases over time. (b) plots the distance between the virtual
agent and the ship as time elapses. See that the virtual agent stays close to the safety distance β while
protecting the ship. (c) depicts the side length as time elapses.

Comparison with Other State-of-the-Art Guidance Laws (Scenario 2)

Table 3 shows the MC comparison results of Scenario 2. In this table, Ns denotes the
measurement noise. We run mC MC simulations per each control law.

In Table 3, PROq indicates the proposed guidance law using G = q in (4). Note that
only one drone is used in PRO1. Moreover, 25 drones are used in PRO5.

Table 3 shows that the proposed control outperforms all other controls. MCG, PNG, and
CLOS make a drone keep chasing the target. This maneuver makes the drone move away
from the ship, which is not desirable for capturing a fast target using a slow interceptor.

Table 3. Comparison with other state-of-the-art controls (Scenario 2).

Control Ns cR eD sT

PRO5 10 100 247 67

PRO1 10 95 260 67

PNG 10 0 339 68

MCG 10 0 339 68

CLOS 10 0 339 68

Other state-of-the-art guidance laws (MCG, PNG, and CLOS) make a single drone
chase the target. Our strategy is to let multiple drones form a planar grid formation, which
can be considered as a “net” for capturing the incoming target. By maximizing the grid
formation size, the captureRate is 100 even when there exists error in the prediction of the
target’s position.
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7. Conclusions

This article introduces a multi-agent guidance law so that a formation of drones
protects the ship from an incoming high-speed target. The drones generate a planar grid
formation, whose center is guided to remain on the line connecting the target and the
ship. Moreover, the planar formation is generated to be perpendicular to the line segment
connecting the target and the formation center. Since a target heads towards its goal at least
in the terminal phase, maintaining a position on this line segment is effective in protecting
the ship.

We enable slow drones to capture a fast target by letting the drones stay close to
the ship while staying in the lineState at all times. This blocking strategy is desirable
considering the energy consumption of the interceptor since an interceptor does not have
to move far from the ship.

We control the drone formation based on the prediction of the target’s position after
one sample-index in the future. Since we use a grid formation of drones, we can increase
the capture rate even when the target prediction is erroneous.

As far as we know, this article is novel in developing a ship defense approach using
multiple clustered drones. In addition, our paper is novel in addressing the 3D formation
control that can handle uncertainty in the target prediction. The effectiveness of our
multi-agent guidance law is shown by comparing it with other state-of-the-art guidance
laws under MATLAB simulations. We verify that the proposed multi-drone guidance
scheme increases the capture probability significantly compared to the case where a single
interceptor is used. In the future, we will do experiments to verify our multi-agent guidance
law using real drones.

In practice, the presence of wind can affect and modify a drone’s path. Many pa-
pers handled how to control a drone under the effect of wind [54–58]. The authors of
[54] improved the accelerated A-star algorithm with a converted wind vector, and [55]
addressed the problem of a drone’s path planning operating in complex four-dimensional
(time and spatially varying) wind-fields. Additionally, refs. [56–58] handled adaptive path
planning in windy conditions. The authors of [58] added a wind model to the existing path
planning algorithm and combined it with a drone’s control systems. In the future, we will
combine the proposed guidance scheme with a wind model so that multiple drones can
safely maneuver in time-varying wind-fields.

Note that the proposed guidance scheme can be applied to protect an entity other
than a ship, as long as the goal of the target is known a priori. For instance, the proposed
multi-agent guidance law can be generalized to protect any vehicles, such as tanks or
ground stations.
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Abstract: Path planning is an important aspect and component in the research of mobile-robot-related
technologies. Many path planning algorithms are only applicable to static environments, while in
practical tasks, the uncertainty in dynamic environments increases the difficulty of path planning
and obstacle avoidance compared with static environments. To address this problem, this paper
proposes an RRT*-FDWA algorithm. RRT* first generates a global optimal path, and then, when
obstacles exist nearby, an FDWA algorithm fixes the local path in real time. Compared with other
path planning algorithms, RRT*-FDWA can avoid local minima, rapidly perform path replanning,
generate a smooth optimal route, and improve the robot’s maneuvering amplitude. In this paper, the
effectiveness of the algorithm is verified through experiments in dynamic environments.

Keywords: RRT*-FDWA; maneuver amplitude; dynamic path planning; local minimum

1. Introduction

In the field of automatic navigation of wheeled mobile robots, path planning is a
frequently researched area. The main goal of a path planning algorithm is to plan a
collision-free path from the initial state to the target in the constructed space of the robot [1].
Path planning is divided into global path planning and local path planning. Global
planning [2–4] is able to accomplish the task in known static environments. However,
environments and obstacles change dynamically in most navigation processes. When a
mobile robot performs tasks according to global path planning, it must use various devices
on board, such as lidar, depth cameras, and IMUs, to sense the surrounding environment
and its own state and quickly plan local collision-free paths. For navigation, robots therefore
usually use a combination of global path planning and local path planning [5–7].

The Rapid Exploration Randomized Tree [8] (RRT) has been shown to be a very
effective global path planning algorithm; RRT can plan paths quickly and simply by
generating a tree structure at high-speed increments in the construction space to find a goal.
However, RRT algorithms also possess some constraints, such as not having asymptotic
optimality [9,10] and an the inability to avoid dynamic obstacles; variants of improved
RRT algorithms have, therefore, been proposed. Jin-Gukang [11] et al. proposed a “Post-
Triangular Rewiring” method, which reduces the path planning time, improves efficiency,
and creates an algorithm close to the global optimum. Moon C [12] et al. proposed a
dual-tree fast exploration random tree (DT-RRT) algorithm to decrease the computational
complexity of the RRT. In addition, DT-RRT reduces the length of the path and increases
the coverage of the sampling points. Nasir J et al. proposed an RRT* [13] algorithm which
can make the path asymptotically optimal. Chen L et al. [14] introduced the dual-tree
structure into an RRT* algorithm, thereby creating separate extension and optimization
processes and improving the convergence speed. In addition, some scholars have attempted
to improve global path planning methods such as RRT* to avoid dynamic obstacles. Qi
et al. [15] applied the RRT* algorithm to dynamic environments and introduced Pareto
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theory to propose a multi-objective dynamic fast exploration stochastic algorithm (MOD-
RRT*), which improved the effective performance of the RRT* algorithm in avoiding
unknown obstacles.

However, there are many limitations in global path planning and dynamic environ-
ments. Compared with static environments, there are many uncertainties, such as randomly
moving obstacles. It is, therefore, very difficult to predict the movement path of obsta-
cles. Thus, local path planning in dynamic environments is currently an area of great
research interest.

In recent years, researchers have proposed many local path planning algorithms, such
as the dynamic window approach [16] (DWA) and the artificial potential field method [17]
(APF). Furthermore, Young-In Choi [18] et al. proposed a collision avoidance algorithm
based on the D*Lite algorithm for mobile robots; this algorithm was applied to a logistics de-
livery scenario to effectively avoid collision and safely reset the robot’s optimal movement
route when the robot encounters a crossover situation at an intersection. Kumar [19] et al.
proposed a combination of the sine cosine algorithm and ant colony algorithm for multiple
environments such as static and dynamic, and applied the algorithm in multi-robot for-
mations. Guo [20] et al. constructed a risk region of dynamic obstacles using the Kalman
filter state estimation, combining it with a nonlinear model predictive control to achieve
safe obstacle avoidance. DWA has been extensively applied because of its dynamic charac-
teristics combined with those of the robot. Later, Zhong [21] et al. proposed an adaptive
rolling window method based on the edges of obstacles and the target point, which has
good safety and environmental applicability. Chang [22] et al. combined Q learning with
the DWA algorithm and proposed two new evaluation functions. This demonstrated a high
navigation efficiency and success rates in complex unknown environments, but incurred a
higher time cost. Xiang [23] et al. implemented adaptive weight coefficients for the DWA
algorithm for complex environments, making the path of the mobile robot smoother when
avoiding obstacles. Many new and improved algorithms have been derived for obstacle
avoidance in dynamic environments. Wu [24] et al. combined the A* algorithm and the
DWA algorithm to produce an algorithm that was closer to the global optimal path but
with less smoothness.

Nevertheless, the improved DWA algorithms are still unable to avoid the problem of
local optimal solutions and may fail to complete the task due to the lack of global planning.
An algorithm may get stuck at local minima during planning and consume more energy. A
suitable path planning algorithm should be able to plan a complete collision-free path that
satisfies the robot dynamics.

Therefore, to resolve the path planning problem in a dynamic environment, this paper
proposes an RRT*-FDWA algorithm. The contribution of the proposed algorithm to the
path planning problem is as follows:

• A fuzzy controller is added to the adaptive weight index of the DWA algorithm. This
makes the weights adaptive, improves the safety of path planning, and enables timely
avoidance of dynamic obstacles.

• By combining the RRT* algorithm with the FDWA algorithm, local planning can avoid
hitting local minima. The RRT*-based path re-planning is able to replan the global
path after local path planning; this enhances the robot’s maneuverability and improves
target fit.

The manuscript is divided into the following parts: Section 2 explains the original
algorithm, the dynamics required to move the robot, and the related work. Section 3
discusses the FDWA algorithm and the fuzzy control principle. Section 4 discusses the RRT*-
FDWA algorithm. Section 5 provides experimental results to demonstrate the effectiveness
of the RRT*-FDWA. Section 6 discusses the results and future work.
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2. Related Work

Collision-free path planning is usually divided into two stages. The first stage is global
path planning—RRT* in this paper. The second stage is local path planning, for which this
paper adopts the FDWA algorithm.

2.1. RRT* and DWA Algorithm

The RRT* algorithm is mainly improved by the RRT algorithm. The RRT* algorithm
adds Rewire, by routing the algorithm to reselect the parent node, thereby achieving
the global optimal. The RRT* algorithm, therefore, has probabilistic completeness and
asymptotic optimality.

Path planning in the DWA first calculates the current sampled velocity range based
on the mobile robot’s own characteristics. The sampled acceleration and angular velocity
are used to simulate the trajectory of the robot in a certain range, and the trajectory in the
range is evaluated using an evaluation function with certain rules; after the trajectory in
the range has been obtained, the optimal path is selected to enable the robot to move.

2.2. Kinematic Model

Mobile robots can be divided into omnidirectional and non-omnidirectional robots ac-
cording to the kinematics of casters, and the robot used in this paper is a non-omnidirectional
mobile robot. In Figure 1, XOY represents the global coordinate system. x1Py1 is the local
coordinate system, x1 is the linear movement direction of the robot, y1 is perpendicular to
the x1 axis, P is the center of the robot as the origin of the local coordinate system, and θ
is the heading angle. Thus, the robot’s global coordinates, position ε, can be obtained, as
shown in Equation (1). To map the global coordinate system to the local coordinate system,
the rotation matrix Rθ is used. Equation (3) is converted from global coordinates to local
coordinates Rε.

ε =

⎡⎣ x
y
θ

⎤⎦ (1)

Rθ =

⎡⎣ cos θ
− sin θ

0

sin θ
cos θ

0

0
0
1

⎤⎦ (2)

Rε = Rθ × ε (3)

Figure 1. Reference system coordinates.
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In a non-omnidirectional moving robot, the robot only has a linear velocity V in the
x1 direction and an angular velocity ω of rotation. Suppose the sampling time is ΔT, the
distance the robot travels is ΔS, and the coordinates of the robot are ΔX, ΔY.

ΔS = V ∗ ΔT (4)

{
ΔX = V ∗ ΔT cos θT
ΔY = V ∗ ΔT sin θT

(5)

According to the coordinates of the robot, Xn,Yn, the current sampling time can be
obtained by summing up its state and increment.{

Xn = Xn−1 + V ∗ ΔT cos θT
Yn = Yn−1 + V ∗ ΔT sin θT

(6)

The DWA algorithm [25–27], in Equation (6), has three evaluation metrics. They are the
azimuth evaluation function, heading(v, w), which denotes the angular difference between
the robot and the target point. dist(v, w), which denotes the distance between the robot and
the nearest detected obstacle, is the distance function. velocity(v, w) denotes the relative
velocity magnitude of the robot trajectory. α, β, and γ denote the weight coefficients of
the function and σ denotes the normalization required to obtain the evaluation function
G(v, w).

γ = 1 − β − α (7)

G(ν, ω) = σ(α ∗ heading(ν, ω) + β ∗ dist(ν, ω) + γ ∗ velocity(ν, ω)) (8)

3. FDWA Algorithm

The RRT* algorithm is able to perform global path planning in an already established
map model environment or with static obstacles. However, in the real environment, there
are many uncertainties, such as unknown obstacles. If global path planning alone is
used, the robot will easily collide with obstacles in such unknown environments. There-
fore, in order to achieve the dynamic obstacle avoidance capability of a mobile robot,
this paper incorporates a local path planning algorithm—the FDWA—for local dynamic
obstacle avoidance.

3.1. FDWA Fuzzy Distribution

In the DWA algorithm, the percentage of weights has a very strong influence on the
results of the path planning algorithm. Therefore, in order to improve the efficiency of the
algorithm and be better able to adapt to the complex environment, the fuzzy inference and
DWA algorithm are combined, enabling adaption of the evaluation index weights. Fuzzy
inference is performed on the azimuth evaluation function weights α and distance function
weights β, (β, α ∈ [0, 0.5]), and a dual-input, dual-output fuzzy controller is designed.
The angle θd at which the actual trajectory of the robot deviates from the predetermined
trajectory and the distance Od to the nearest obstacle are used as dual inputs, and the
azimuth evaluation function weight, α, and the distance function weight, β, are used as
dual outputs. The membership function of the fuzzy system uses trigonometric functions,
which are suitable for describing well-defined ranges and information precisely. The input
membership functions θd and θd are shown in Equation (10): (μ(u) ∈ [0, 1]]). The output
affiliation function of weight α is μ(o), shown in Equation (11): (μ(o) ∈ [0, 1]). Figure 2a
shows the input membership function and Figure 2b shows the output.

μ(u) ∈ [Od, θd], μ(o) ∈ [β, α] (9)

84



Appl. Sci. 2023, 13, 5234

μ(u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − 2u 0 ≤ u ≤ 0.25
2u 0.25 < u < 0.5
2 − 2u 0.5 ≤ u ≤ 0.75
2u − 1 0. 75 < u < 1

(10)

μ(o) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8o 0 ≤ o ≤ 0.125
1 − 8o 0.125 ≤ o ≤ 0.1875
8o − 1 0.1875 ≤ o ≤ 0.25
3 − 8o 0.25 ≤ o ≤ 0.2975
8o − 2 0.2975 ≤ o ≤ 0.375
4 − 8o 0.375 ≤ o ≤ 0.5

(11)

 

(a) (b) 

Figure 2. Membership function graph. (a) Input membership; (b) output membership.

3.2. Fuzzy Rules and Clarification

First, the input and output variable domains of the fuzzy controller are defined as [0, 1],
which is a continuous domain. The fuzzy sets are defined as 0, PS, PM, and PB, i.e., zero,
positive small, positive medium, and positive large. Tables 1 and 2 show the design method
fuzzy rules, α and β, as follows.

1. When Od, θd, ∈ PB. The mobile robot should reduce the value of θd,θd as shown in
Figure 3, θd =|θ1 − θ2|, and should reduce the value of α and β so that the difference
between the current trajectory and the desired trajectory is reduced and the path is
smoother. This will make, the velocity function increase in weight and make the robot
accelerate toward the target.

2. When θd ∈ PB, Od ∈ PS. The robot will reduce the value of α to make the path smoother.
The β value should be large to make the robot avoid the obstacle.

3. When θd ∈ PS, Od ∈ PB. The value of α should be made moderate to maintain the
smoothness. The value of β should be deceased; this will make the velocity function
increase its share in the weight and make the robot accelerate toward the target.

4. When θd, Od ∈ PS. The value of α should be increased and the value of β should be
increased to ensure that the robot passes the obstacle safely.
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Table 1. α rule list.

θd

Od
0 PS PM PB

0 PB PB PS 0
PS PB PB PS 0
PM PB PM PM 0
PB PB PM PM PS

Table 2. β rule list.

θd

Od
0 PS PM PB

0 PB PB PM PS
PS PB PB PM PS
PM PB PB PM 0
PB PB PB PS 0

Figure 3. Change in heading angle.

The fuzzy logic inference uses the Mamdani inference method. The clarity value U
is (α, β). The exact value of α, β at the current moment is obtained after defuzzification to
prevent the FDWA algorithm from falling into local minima. The maximum membership
averaging method can effectively eliminate extreme cases, so the maximum membership
averaging method is used to solve the problem, as in Equation (12). A(oj) = max(A(o)),
j = 1, 2 . . . n.

U = ∑ n
j=1 A(oj)/2 (12)

4. Dynamic Path Planning Algorithm Based on RRT*-FDWA

4.1. RRT*-FDWA Algorithm Flow

The RRT*-FDWA path planning algorithm uses both the RRT* and FDWA algorithms.
When the global optimal path is completed according to the RRT* algorithm, a path
replanning judgment is performed. When a moving obstacle is encountered, the FDWA
algorithm is used for local path planning; after successfully avoiding the obstacle, the
RRT* algorithm plans a new global path for the mobile robot to continue driving. The
RRT*-FDWA process algorithm is shown in Figure 4.
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Figure 4. RRT*-FDWA flow chart.

The algorithm flows as follows:

Step 1: Create a map of the known environment and set target points.
Step 2: The RRT* algorithm plans a collision-free global optimal path based on the already

established map environment and its own sensors, such as lidar.
Step 3: Determine whether the robot can reach the target point according to the end

condition of the algorithm; if so, end the algorithm; if not, continue the execution.
Step 4: Determine whether there is an environment or moving obstacle in the established

map; if the lidar determines that the moving obstacle is dangerous, jump to the
FDWA algorithm for local path planning to avoid the obstacle.
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Step 5: Perform a new global path plan, determine the optimal path, and continue driving
along the global path. Judge whether it is possible to reach the target point: if ‘No’,
jump to the Step 3 loop; if ‘Yes’, end the algorithm. Figure 5 represents the global
path planning, encountering moving obstacles in the path replanning process.

 
Figure 5. Path planning diagram.

4.2. RRT*-FDWA Local Minima and Pseudocode

In the DWA algorithm, the overall generation value increases as the value of its weight
coefficient increases the closer it gets to the obstacle. This will cause the robot to fall into
local minima during local path planning. In the RRT*-FDWA algorithm, to avoid local
minima, the robot can quickly enter global path planning once it has successfully avoided
an obstacle, as shown in Equation (13). K is the reward and punishment function of the
DWA algorithm.

G′(ν, ω) = K · G(ν, ω) (13)

Δt(ν, ω) = ΔS/ΔV (14)

K =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a t < 0.5
1 t= 0.5
b 0.5 < t < 1
0 t > 1

(15)

In Equation (14), Δt(v, ω) is the time function with the obstacle. In Equation (15), a
and b represent the reward and punishment function K, where a < 1 < b. When the value
of t is less than 0.5, it is not caught in the local minimum; when t is greater than 0.5, it is
regarded that the robot is caught in the local minimum. Global path planning uses the
RRT* [25] algorithm, while local path planning uses the FDWA algorithm. The pseudo
code of the RRT*-FDWA algorithm is shown in Algorithm 1; Algorithm 2 is the Rewire in
Algorithm 1.
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Algorithm 1 RRT*-FDWA Algorithm.

input: pini, pgoal , Map, v, w, K
output: pini→pgoal path
WHILE Target_not_reach DO

FOR i in range(n): prand ← Sample(Map
pnearest ← Nodelist ( prand, pini)
pnew ←Steer( pnearest, prand)
Cost( xnew) ←d( pnerarest, pnew) + Cost(pnearest)

IF (Check_collision( pnearest, pnew)) THEN
pnear ← f indnearnodes(pnew)

pnew ← C_parent( pnear, pnew)
Node_list ← append(p new)
pparent ← Rewire(pnew, pnear)

IF (Check_ Moving obstacle ( pnearest, pnew)) THEN
DWA( pnear, pnew) ← G′(v, w), K
G′(v, w), K ← Rule(α, β)

α, β← clari f ication
IF (Check_collision( pnearest, pnew)) THEN
end

IF
(

pnew → pgoal

)
THEN

IF(Check_conlision(pnew, pgoal)) THEN

Temppath ← cunrrrent
(

pini → pgoal

)
Return path
End while

Algorithm 2 Rewire (P1,P2).

IF Collision_free ( p1, p2)THEN
pparent2 ← p2[i − 1]
IFCost(p2)> Cost(p 1)) THEN

IF(Check_collision(pnearest, p2))THEN
pparent ← p2

Cost ← Cost(p2)
End if

End if

In Algorithms 1 and 2 in this paper, the following terms are used:
Sample (Map): The number of sampling points generated randomly on the map towards

the target node is in the range [0, 100].
Node_list (p1, p2): The set of Euclidean distances between the sampling point and the

parent node, where the coordinates of the random sampling point and the parent node are
ps (x1, y2) and pp (x2, y2), respectively.

pnearest: Minimum of Node_list (p1, p2) min (Node_list)
Steer (p1, p2): The angle between p1 and the line connecting p1 and p2 of its parent

node; multiply the steering angle by the step size β to get pnew. Let the steering angle be θ;
pnew is obtained by the following Equations (16) and (17).

pnew,x = β cos θ (16)

pnew,y = β sin θ (17)

Check_collision (p1, p2): Check if there are obstacles between p1 and p2.
Target_not_reach: If or not the target point is reached: the return value is 1 if the target

point is reached and 0 if the opposite is true.
Cost(x): Return along the total path length of the target node from node p.
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find near_nodes (p1): Find a new parent node near node p again at random.
C_parent (p1, p2): Add a new optional parent node and define its length, angle, and

generation value.
D (p1, p2): Denotes the Euclidean distance between nodes p1 and p2.
Rewire (p1, p2): Determine whether p2 can replace p1 as the new parent node.
Collision_free (p1, p2): Check whether it is feasible and that there are no obstacles

between node p1 and node p2.
G’ (v, ω): Evaluation function of the DWA algorithm with local minimum judgment

added.
Rule (α, β): Fuzzy rule table for α and β.

5. Experimental Results

In this paper, the algorithm was simulated in an AMD Ryzen 7 5800H 3.2 GHz and 16
G RAM computer, and a Matlab simulation was used (Matlab version 2019b). A two-wheel
differential speed mobile robot with a universal wheel-manipulable wheel in the front
was used.

5.1. RRT*-FDWA Global Path Planning

First, RRT* was used to simulate the global planning path. As shown in Figure 6, for
the random moving obstacle environment, dashed and solid lines represent the global path.
The dashed line shows the process of the RRT* algorithm rewiring and selecting a new
node for the first time; the blue circle represents pnew and the black objects represent the
moving obstacles. A size [10,10] map with a start point of [1.2,1.2] and a target point of [9,9]
was used.

Figure 6. RRT*-FDWA global path planning.

5.2. FDWA Lobal Path Planning

In order to verify its effectiveness, the FDWA algorithm was simulated. First, the
initial values of the weight coefficients in the evaluation function were set at α = 0.2, β = 0.4,
and γ = 0.4; the maximum linear and angular velocities were also set to v = 0.5 m/s and
ω = 0.3 rad/s. a and b represent the reward and punishment function K: a = 0.5 and b = 1.5.
The time for forward simulation was 3 s and dt = 0.1.

Figure 7 shows the FDWA algorithm planning diagram and demonstrates the effec-
tiveness of the algorithm in the presence of unknown obstacles. The solid purple line
indicates the path simulated by the FDWA algorithm in the constant forward direction,
and the dashed line indicates the final completed trajectory. The blue solid circles indicate
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stationary obstacles; the blue solid hollow circles indicate the current position of the moving
obstacle; and the blue dashed circles indicate the position of the moving obstacle at the
previous moment. When the mobile robot simulates the path forward, an optimal local
path is found according to the evaluation function and the local minimum problem can be
successfully avoided.

  

(a) (b) 

 

(c) (d) 

Figure 7. FDWA path planning diagram. (a) Position planning diagram at the moment t = 0.5.
(b) Position planning diagram at the moment t = 1. (c) Position planning diagram at the moment
t = 3. (d) Position planning diagram at the moment t = 5.

To further verify the effectiveness of the FDWA, this paper is validated by a real robot.
Figure 8a shows the experimental robot tianbot_mini, a two-wheel differential drive robot
with a drive wheel at the rear and a gimbal at the front, and with classic PD control for
the drive wheel. It has a ydlidar x2 LIDAR for obstacle detection. The linear velocity is
constrained, v ∈ (0, 0.5 m/s), and the FDWA algorithm is encapsulated as a local path
planner for the ROS navigation package. The experimental environment is the same as the
simulation environment, and the white mobile robot in Figure 8b is regarded as a moving
obstacle with a handle control and a speed of 0.10 m/s. Figure 8b–f shows the FDWA
path planning process, and the experimental results better validate the effectiveness of
the algorithm.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 8. FDWA real environment path planning map. (a) the experimental robot (b) The robot
position map at the moment t = 0. (c) The robot position map at the moment t = 3. (d) The robot
position map at the moment t = 5. (e) The robot position map at the moment t = 8. (f) The robot
position map at the moment t = 10.
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5.3. Experimental Comparison

In this paper, we used a two-wheel differential speed robot for the simulation. The
maneuverability degree, δm, of this mobile robot can, therefore, be obtained as two, and
according to Equation (18), rank[Cα(βα)] is the number of maneuverable wheels.

δm = 3 − rank[Ca(βa)] (18)

In dynamic obstacle avoidance, robot behavior includes deceleration or acceleration to
avoid obstacles when it encounters them, but such behaviors may cause damage to safety. In
this paper, the behavior of avoiding obstacles is proposed as the standard deviation formula
for speed, the smaller value of which represents higher safety, as shown in Equation (19),
where vi indicates the line speed at the current moment. The integrated speed difference
formula presents the maneuvering magnitude, which indicates the robot’s evasion ability
when encountering obstacles, and the higher its value, the better the evasion ability, as
shown by Equation (20).

σ2
w =

√
∑n

i=1 (vi − v)2

n
(19)

δr = σ2
wδm/θd × 100% (20)

Figure 9 shows the RRT*-FDWA path planning process; the solid red circles indicate
the current position and solid blue circles indicate pnew. Hollow circles indicate the previous
moment position and the planned route and dashed hollow circles indicate the moving
obstacle at the previous moment.

   

(a) (b) 

 
(c) (d) 

Figure 9. RRT*-FDWA path planning diagram. (a) Position planning diagram at the moment t = 1.
(b) Position planning diagram at the moment t = 2. (c) Position planning diagram at the moment
t = 5. (d) Position planning diagram at the moment t = 7.
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Figure 10 shows the RRT*-FDWA experimental path planning diagram, and the ex-
perimental results show that the algorithm is effective in practical applications. The
RRT*-FDWA algorithm was packaged into the path planner in the ROS navigation package
before experimental validation. In the figure, the basketball and the white mobile robots
are treated as moving obstacles and the experimental environment was the same as the
simulation experiment. In the real experimental process, there was an error in the path
planning process due to the robot control drive factor.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Cont.
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(g) (h) 

Figure 10. RRT*-FDWA real environment path planning map. (a) The robot position map at the
moment t = 0. (b) The robot position map at the moment t = 3. (c) The robot position map at the
moment t = 5. (d) The robot position map at the moment t =7. (e) The robot position map at the
moment t = 9. (f) The robot position map at the moment t = 13. (g) The robot position map at the
moment t = 16. (h) The robot position map at the moment t = 18.

The RRT*-FDWA algorithm proposed in this paper was compared to the hybrid A*—an
improved DWA algorithm—the hybrid algorithm being SOTA. Figure 11 shows the final
completed path planning graph for both algorithms, the red dot [1,1] is the starting point
and the green dot [9,9] is the target point; it can be seen that the A*-DWA algorithm still
falls into local minima, while the RRT*-FDWA algorithm can complete the path planning
more smoothly.

Figure 11. Algorithm comparison procedure.

It can be seen from Table 3 that the σ2
w of the RRT*-FDWA algorithm is smaller and δr

is 12% higher than those of the A*-DWA algorithm, and it takes less time to complete. This
indicates that the RRT*-FDWA algorithm is safer, fits better, and plans faster.

Table 3. Algorithm efficiency test comparison.

σ2
w Time (s) δr

A*-DWA 0.548 11.93 79%
RRT*-FDWA 0.424 9.62 91%
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The general comparison of the four algorithms is given in Table 4. The RRT*-FDWA
algorithm proposed in this paper considers both global and local optimality and can
successfully plan a collision-free optimal path in both dynamic and static environments. In
Table 4, E means Exist, N means None, L means Low, and H means High.

Table 4. Algorithm comparison.

Dynamic
Obstacle

Avoidance

Local
Optimality

Global
Optimality

Smooth Path

RRT* N N E L
DWA N E N L

Fuzzy-DWA E E N H
RRT*-FDWA E E E H

6. Conclusions and Future Work

In this paper, mobile robot path planning in a dynamic environment was studied
and an RRT*-FDWA algorithm was proposed. First, the RRT* algorithm was used for
global path planning to obtain a global optimal route. The uncertainty of moving obstacles
increases the difficulty of obstacle avoidance in the path planning process. When obstacles
are encountered, the FDWA algorithm is added to improve robot adaptability in the face
of a dynamic environment. The combination of the algorithms enables better avoidance
of local minima and global replanning according to the new environment after the local
planning has been completed. As a result, the robot has good maneuvering magnitude and
safety and can complete the task in a shorter time.

The future goal is to apply this algorithm in multi-robot formation path planning to
enable multi-robot formations with dynamic obstacle avoidance.
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Abstract: The artificial potential field method is a highly popular obstacle avoidance algorithm which
is widely used in the field of industrial robotics due to its high efficiency. However, the traditional
artificial potential field method has poor real-time performance, making it less suitable for modern
factory work patterns, and it is difficult to handle situations when the robotic arm encounters singular
configurations. In this paper, we propose an improved artificial potential field method in joint space,
which effectively improves the real-time performance of the algorithm, and still performs well when
the robotic arm falls into a singular configuration. This method solves the gradient of the repulsive
potential field in advance by defining the shortest distance from each joint of the robotic arm to
the obstacle, and only needs to calculate potential field function once per cycle, which significantly
reduces the calculation time. In addition, when a robotic arm falls into a local minimum position
in potential field, the algorithm adds a virtual obstacle to make it leave the position, while this
virtual obstacle does not require additional input information. Experimental results show that the
algorithm obtains short movement paths and requires very little computing time in the face of
different obstacles.

Keywords: robotic arm; real-time obstacle avoidance; artificial potential field method; joint space

1. Introduction

The utilization of robotic manipulators enhances the efficiency and automation of in-
dustrial manufacturing processes. In the 3c industry (computer, communication, consumer
electronics), rapidly updated products and complex production patterns require highly
flexible robotic arms to complete tasks. In the process of performing the task, the robotic
arm may collide with obstacles, so a real-time obstacle avoidance algorithm is needed to
control the robotic arm [1–6].

The obstacle avoidance algorithm is widely studied in the field of robot motion plan-
ning, and it is a computational method to find the path from the starting point to the target
point without colliding with obstacles when the robotic manipulator is working in an envi-
ronment with obstacles. At present, researchers have proposed various obstacle-avoidance
algorithms, such as genetic algorithm, rapidly exploring random tree (RRT), and proba-
bilistic roadmap (PRM). However, they all have limitations in practical applications [7].

The RRT algorithm begins by selecting the starting point as the root node and proceeds
to generate a randomly expanded tree structure by iteratively sampling and adding leaf
nodes, and the shortest path from the starting point along the leaf node to the target position
is the obstacle avoidance path. Nevertheless, the calculation speed of RRT is slow, and
the smoothness of the trajectory obtained by this algorithm is unsatisfactory, which makes
the manipulator shake easily [8]. The genetic algorithm finds an intermediate point with
position and velocity information, and connects the starting position to the intermediate
point and the intermediate point to the target position through two polynomial paths. The
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two paths are concatenated to obtain an obstacle avoidance path. Although the genetic
algorithm can obtain a smooth obstacle avoidance trajectory, the computational efficiency is
very low [9,10]. The PRM algorithm establishes a complete undirected graph by sampling
and collision detection, and then obtains a feasible obstacle avoidance path through a graph
search algorithm (such as the A* algorithm). However, the process of establishing the
map using the PRM algorithm is complex and time-consuming. Moreover, the connection
between two nodes in the undirected graph does not take into account the robot’s motion
model [11,12]. Although the above algorithms can obtain obstacle avoidance trajectories,
their real-time performance is weaker than the artificial potential field method. This paper
only discusses the artificial potential field method.

The artificial potential field (APF) method is a widely recognized motion planning
strategy in the field of robotics. In 1986, Oussama Khatib first proposed the artificial
potential field method (APF) for the motion planning of robots [13]. The APF method
extensively borrows the concept of potential fields from physics and transforms the path
planning problem of robots or moving objects into a problem of searching for the optimal
path in a virtual potential field. The core idea is to consider the target location as an
attractive source and obstacles or infeasible areas as repulsive sources. High potential
fields are assigned around obstacles, while low potential fields are assigned around the
target location. By calculating the forces and directions, the APF guides the robot or object
to move along the direction of decreasing potential energy, thereby achieving the goal of
avoiding obstacles and reaching the target location.

The APF method is characterized by its simplicity, intuitiveness, ease of implemen-
tation, and real-time capabilities. As a result, it has been widely applied in the industrial
field. For example, in automated warehousing systems, robots utilize the APF method
to navigate around obstacles and find the shortest path based on the layout and obstacle
positions within the warehouse. This potential field guidance enables them to efficiently
and swiftly accomplish tasks such as cargo handling [14,15]. In the field of autonomous
driving, the APF method establishes a potential field within the road network. It considers
other vehicles, pedestrians and obstacles as repulsive sources while regarding the target
destination as an attractive source. This enables vehicles to navigate to their destination
safely and smoothly [16,17]. In multi-agent cooperation, the APF method guides robots
to avoid collisions and collaboratively accomplish complex production tasks. It achieves
this by considering robots and target positions as attractive sources, and other robots as
repulsive sources [18,19]. These application cases highlight the significant role of the APF
method in achieving efficient, safe, and flexible industrial operations.

The coordinate systems of the APF method can be divided into two categories: Carte-
sian space and joint space. If attraction and repulsion forces are calculated in Cartesian
space, the coordinate system for this method is the Cartesian space. If attraction and
repulsion forces are calculated in joint space, the coordinate system for this method is the
joint space.

In studies based on Cartesian space, Hui Zhang et al. proposed an obstacle avoidance
strategy for the dual-arm robot by improving the potential field into a velocity field [20].
Sun-Oh Park et al. proposed a numerical method based on a Jacobian matrix to solve
the obstacle avoidance problem of a redundant robotic arm [21]. All the above obstacle
avoidance strategies in Cartesian space need to be mapped to joint space, and the inverse of
the Jacobian matrix cannot be solved when the robotic arm falls into a singular configuration.
In studies based on joint space, Lufeng Luo et al. uses a sampling method to generate
anti-collision path points [22]. Anoush Sepehri et al. used a numerical method to solve the
gradient of potential field [23]. All of the above obstacle avoidance strategies in joint space
require the multiple calculations of the potential field function, so the real-time performance
is low. In Section 3, we introduced these above algorithms and compared them with the
algorithm in this paper.

In an intelligent workshop, the robotic arm is required to grip the workpieces on the
conveyor belt and move them to the target position without collisions. Due to the uncertain

99



Appl. Sci. 2023, 13, 6973

initial position of the workpieces, a real-time obstacle avoidance algorithm is needed. This
paper proposes an improved artificial potential field method specifically designed for the
aforementioned industrial scenario. The algorithm generates a suitable trajectory for the
robotic arm, so that it can start from any specified starting point and reach the target point
without colliding with obstacles in the process. We propose a way to calculate the shortest
distance from the obstacle to the joint of the robotic arm, whereby an analytic formula for
the gradient of repulsive potential field can be solved in advance. In addition, we propose
a way to make the robotic arm jump out of the local minimum.

The contributions of this study are novel and unique in various aspects. (1) Compared
with the APF method in Cartesian space, this algorithm does not need to calculate the
inverse of the Jacobian matrix. (2) Compared with others’ studies on the APF method in
joint space, this algorithm only needs to calculate the potential field function once during
each cycle. Therefore, the algorithm has a very high real-time performance. (3) In addition,
the algorithm provides an effective way to avoid the robotic arm falling into the local
optimum by introducing a virtual obstacle, which does not need additional information.

The subsequent sections of this paper are structured as follows: in Section 2, the D-H
parameters and kinematic model of the robot are presented. Section 3 describes the principle
and flow of the algorithm, which is the focus of this paper. In Section 4, the simulations
and experiments are presented. Section 5 discusses the advantages and disadvantages of
the algorithm proposed in this paper compared to other algorithms. Section 6 summarizes
the conclusions.

2. Kinematics Model of n-DOF Robot

It is firstly necessary to establish the kinematics model of the robotic manipulator to
prevent collision.

To describe the structure and coordinate system of robot, we used 1-n to represent each
joint of the manipulator, and x1y1z1-xnynzn to represent the coordinate systems of each link.
We used the modified D-H parameter method to establish the kinematics model of the robotic
manipulator. Equation (1) describes the relationship between any two adjacent joints.

i
i−1T = Rotxi−1(αi−1)× Transxi−1(ai−1)× Rotzi (θi)× Transzi (di) =⎡⎢⎢⎣

Cθi
SθiCαi−1
SθiSαi−1

0

−Sθi
CθiCαi−1
CθiSαi−1

0

0
−Sαi−1
Cαi−1

0

ai−1
−Sαi−1di
Cαi−1di

1

⎤⎥⎥⎦ (1)

where θi represents the angle of rotation of the i-th joint, Sθi = sinθi, Cθi = cosθi, and
i

i−1T , i = 1, 2, · · · , n is the homogeneous transformation matrix built from D-H parameters.
If the D-H parameters of the n-DOF robot are known, the homogeneous transformation
matrix of each link can be obtained by substituting these parameters into Equation (1), so
that the coordinate system transformation from the base to the end of the manipulator can
be expressed as Equation (2):

0
nT = 0

1T × 1
2T × 2

3T × · · · × n−1
nT (2)

0
nT represents the position and orientation of the end-effector in Cartesian space, and

it can be expressed as (3):

0
nT =

⎡⎢⎢⎣
nx
ny
nz
0

ox
oy
oz
0

ax
ay
az
0

px
py
pz
1

⎤⎥⎥⎦ (3)

where n, o, a denote the orientation and p denotes the position. Our industrial background
involves a robotic arm gripping objects on a conveyor belt in workshops and moving
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them to the end position. In order to maintain a stable grip and prevent object dropping,
the robotic arm’s end-effector should predominantly move along the z axis of Cartesian
space when approaching and placing the objects [24]. According to the requirements of the
industrial task, the positions and orientations of both the starting point and the endpoint of
the task are known. The Cartesian coordinates of the task starting point and goal point can
be mapped to joint space by inverse kinematics.

As evidenced from (1) and (2), the position of joint i depends on a series of variables
related to joint angles θi, i = 1, · · · , n, with these variables ranging from θ1 to θi−1, so the
position of joint i can be expressed as {x(θ), y(θ), z(θ)}.

3. Improved Artificial Potential Field Method Based on Joint Space

3.1. Traditional Artificial Potential Field Algorithm

In APF, the robotic arm is subjected to two forces when moving to the target point.
One force is the attractive force that pulls the robot towards the target position, while the
other force is the repulsive force exerted by obstacles on the robot. Under the combined
force of these two forces, the robotic arm can quickly reach the target position without
colliding with obstacles in this process. The force analysis of the robotic arm in the potential
field is shown in Figure 1. The force on each joint and link of the robotic arm is shown in
Figure 2.

Figure 1. The force of the robotic arm in the APF.

Figure 2. Force on each joint and link of the robotic arm.

Frep represents the repulsive force; Fatt represents the attractive force; and Fn is the
combined force of the two forces, which makes the manipulator reach the target position.

The attraction field produced by Fatt can be obtained by Equation (4):

Uatt(θ1, · · · , θn) =
1
2

μd2
(

q, qgoal

)
(4)
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where Uatt(θ1, · · · , θn) is the attraction field, μ is the correction coefficient of the attractive
potential field, q represents the current position configuration of the robot, qgoal represents

the position configuration of the robot when reaching the target position, and d
(

q, qgoal

)
is

the distance between the robot and the target position.
The repulsive potential field produced by Frep can be obtained by Equation (5):

Urep(θ1, · · · , θn) =

{
1
2 k
(

1
d(q,qobs)

− 1
d0

)2
, d(q, qobs) ≤ d0

0, d(q, qobs) > d0

(5)

where Urep(θ1, · · · , θn) is the repulsive potential field, k is the correction coefficient of
the repulsion potential field, qobs represents the position configuration of the robot when
colliding with an obstacle, d(q, qobs) is the real-time distance between the robotic arm and
the obstacle, and d0 represents the influence radius of the obstacle. When d(q, qobs) > d0,
the repulsion field will not affect the movement of the robot.

The total potential energy function can be expressed as Equation (6):

U(θ1, · · · , θn) = Uatt(θ1, · · · , θn) + Urep(θ1, · · · , θn) (6)

3.2. The Gradient of the Potential Field Function

The potential energy function is only dependent on joint angles (θ1, · · · , θn) for a
robotic arm. We use the gradient descent method to minimize the potential energy function
and determine a set of angles so that the robotic arm can reach the target position in the
direction of the fastest potential energy descent without a collision with obstacles.

The attraction Fatt is the negative of the gradient of the attraction potential field Uatt,
and it can be expressed as (7):

Fatt = −∇Uatt(θ1, · · · , θn) = −μd
(

q, qgoal

)
∇d(q, qgoal) (7)

q is the current position configuration of the robot, and qgoal is the position configura-
tion of the robot when reaching the goal position. If the manipulator is entirely composed
of revolute joints, q can be assumed to be [θ1, · · · , θn], and qgoal can be assumed to be[
θ∗1 , · · · , θ∗n

]
. Then, d

(
q, qgoal

)
can be expressed as (8):

d
(

q, qgoal

)
=
√

∑n
i=1

(
θi − θ∗i

)2 (8)

If the manipulator comprises both prismatic joints (from joint 1 to joint j) and revolute
joints (from joint j + 1 to joint n), in this case, q can be assumed to be

[
d1, · · · , dj, θj+1, · · · , θn

]
,

qgoal can be assumed to be
[
d∗1, · · · , d∗j , θ∗j+1, · · · , θ∗n

]
, and we assign a weight ω1 to the pris-

matic joint and a weight ω2 to the revolute joint to eliminate the units of nonhomogeneous
form. Then, d

(
q, qgoal

)
can be expressed as (9):

d
(

q, qgoal

)
= ω1 ×

√
∑j

i=1

(
di − d∗i

)2
+ ω2 ×

√
∑n

i=j+1

(
θi − θ∗i

)2 (9)

The repulsive force Frep is the negative of the gradient of the repulsive potential field
Urep can be expressed as (10):

Frep = −∇Urep(θ1, · · · , θn) =

{
k
(

1
d(q,qobs)

− 1
d0

)
1

d2(q,qobs)
∇d(q, qobs), d(q, qobs) ≤ d0

0, d(q, qobs) > d0
(10)

We use the gradient descent to minimize the potential energy function in Equation (6).
Equation (11) presents the generalized formula utilized for the sth iteration of gradient
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descent. and Equation (12) shows how the learning rate λ is calculated. qs represents the
position configuration of the robot arm at the sth cycle.

qs = qs−1 − λ ×∇U(θ1, · · · , θn) (11)

λ = ε1 + ε2 × d
(

q, qgoal

)
+ ε3 × d(q, qobs) (12)

The learning rate λ is dynamic, and it depends on the distance between the end-
effector and goal point and the distance between the joints of robot and obstacle. ε1, ε2, ε3
are positive constants. ε1 specifies the basic learning rate and ε2, ε3 specify the sensitivity
to the position of manipulator. As the end-effector approaches the goal point and the joint
of the robot approaches the obstacle, the learning rate decreases. This is performed to
avoid collision with obstacles and reach the goal point more accurately. If faster algorithm
execution is desired, the values of ε1, ε2, and ε3 can be increased accordingly. In this paper,
ε1, ε2, and ε3 are adjusted within the range of 0.5–1.

The gradient of the attractive potential field is easy to calculate, while the gradient of
the repulsive potential field is difficult to calculate, because the shortest distance d(q, qobs)
between the robotic arm and the obstacle is difficult to calculate. This section focuses on
the calculation of the shortest distance d(q, qobs) when facing different obstacles.

There are two types of obstacles on the factory assembly line usually, which are
obstacles with complex shapes and obstacles with regular shapes. The obstacle can be
simulated using the ball envelope method [25], as shown in Figures 3 and 4.

Figure 3. The shortest distance d(q, qobs) between the point on the joint and an obstacle with a
complex shape.

Figure 4. The shortest distance d(q, qobs) between the point on the joint and an obstacle with a
regular shape.
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The parameters describing the obstacle are {a, b, c, r}, where a, b, c represent the spatial
location coordinates of the obstacle and r represents the radius of the ball envelope obstacle.

For an obstacle with a complex shape, it can be enveloped by a single sphere. Accord-
ing to the conclusion of Section 2, the position configuration coordinates of q are determined
by a series variable of the joint angle, and can be solved by kinematics. Therefore, the
coordinates of q can be expressed as q : {x(θ), y(θ), z(θ)}. Then, the shortest distance
between the joint of the robot and the obstacle can be expressed as (13):

d(q, qobs) =

√
(x(θ)− a)2 + (y(θ)− b)2 + (z(θ)− c)2 − r1 − r2 (13)

where r1 denotes the radius of the enveloping obstacle sphere and r2 denotes the thickness
of the joint.

For an obstacle with a regular shape, it can be enveloped by a series of spheres whose
coordinate parameters are denoted by {ai, bi, ci, ri}. The distance between the joint and the
nearest sphere is the shortest distance d(q, qobs) between the joint and the obstacle with a
regular shape. In order to make the motion of the robotic arm smooth, the manipulator
receives repulsive forces from the two sources, one is the nearest ball, and the other is the
ball adjacent to the nearest ball.

On the left side of Figure 5, ball 2 is closest to the joint, and the robotic arm is subject
to the repulsive force of ball 2 and the adjacent ball 1. When the robotic arm moves to the
next state, as shown in the right side of Figure 5, ball 3 is closest to the joint and the robot is
subject to the repulsive force of ball 3 and the adjacent ball 2.

Figure 5. The repulsive force on the robotic arm during movement.

The derivative of Equation (13) can lead to Equation (14):

∇d(q, qobs) =
(x − a) ∂x(θ)

∂θ + (y − b) ∂y(θ)
∂θ + (z − c) ∂z(θ)

∂θ√
(x − a)2 + (y − b)2 + (z − c)2

(14)

The analytic formula of the gradient of the repulsive potential field ∇Urep can be
obtained by substituting Equations (13) and (14) into Equation (10), and it is determined by
the series variable of the joint angle. This algorithm has a very high real-time performance
because it only needs to calculate the potential field function once per cycle.

3.3. The Virtual Obstacle

Sometimes, the robotic arm has not reached the target, but the resultant force is zero. At
this time, the robotic arm falls into the local minimum state, and it can be expressed as (15):

−∇U(θ1, · · · , θn) = Fatt + Frep = 0 (15)
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We make the robotic arm jump out of the local minimum state by adding a virtual
obstacle. In Figure 6, we treat the center of the ball which envelops the obstacle as a virtual
obstacle, and q1 is the position configuration of the robot when colliding with the center of the
ball. The position coordinates of this virtual obstacle come from the obstacle, so there is no
need to introduce additional information. Frep_vir is the repulsive force generated by q1 when
the robot is trapped in a local minimum state, and it is calculated as shown in (16) and (17).

Frep_vir = k
(

1
d(q, q1)

− 1
d0

)
1

d2(q, q1)
∇d(q, q1) (16)

d(q, q1) =

√
(x(θ)− a)2 + (y(θ)− b)2 + (z(θ)− c)2 (17)

Figure 6. The repulsive force of a virtual obstacle to joint.

To ensure successful obstacle avoidance, the repulsion coefficient k of the virtual
obstacle is set to 1–103 times the general obstacle, and the influence radius of the virtual
obstacle is set as 1.5–3 times that of general obstacles [26].

3.4. Joint Angle Constraints

Typically, each joint of a robotic arm has angle limitations. To ensure that the joint
angles of the robotic arm do not exceed their respective limits during obstacle avoidance,
the algorithm proposed in this paper must satisfy the following requirements.

Taking an n-degree-of-freedom robotic arm as an example, we assume that the joint
angle limits for each joint of the robotic arm are in the range of [θi_min, θi_max].

Solution 1: In the first step of the algorithm, the initial and target positions of the robotic
arm can be transformed from Cartesian space to joint space using inverse kinematics. qstart
can be assumed to be [θ1, · · · , θn] and qgoal can be assumed to be

[
θ∗1 , · · · , θ∗n

]
. Due to the

existence of multiple solutions in inverse kinematics, it is necessary to select an appropriate
solution in this step, ensuring that θi_min < θi < θi_max and θi_min < θ∗i < θi_max.

Solution 2: The algorithm imposes limitations on the magnitude of attraction Fatt and
repulsion forces Frep during the computation (such as Fatt ≤ 0.1, Frep ≤ 0.1). This serves to
prevent the joint angles from exceeding the constraint range.

Solution 3: During obstacle avoidance, it is possible that the strong repulsive force
from an obstacle may cause one of the joint angles of the robotic arm to exceed the specified
limit. In the case depicted in Figure 7, we can appropriately reduce the repulsive force by
adjusting the repulsion coefficient k. This allows the robotic arm to complete the obstacle
avoidance task while ensuring that the joint angles remain within the allowed range.
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Figure 7. Reducing Frep to prevent the angle of joint i from exceeding the limit range.

3.5. Algorithm Comparison

The flowchart of the artificial potential field algorithm in joint space is shown in
Figure 8, and the pseudocode is shown in Algorithm 1. The values of ε1, ε2, and ε3 can be
adjusted appropriately according to the requirements. It can be seen that each iteration only
requires the calculation of the potential field function once from the algorithm flowchart.
The configuration at the starting position and the target position are obtained by inverse
kinematics. In order to obtain a smooth obstacle avoidance trajectory, the values of Frep and
Frep_vir are limited to less than ε3.

 
Figure 8. The flowchart of the algorithm.
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Algorithm 1 The pseudocode of the algorithm.

Algorithm 1: Improved artificial potential field

1: Set Start position: qstart and Goal position: qgoal
2: qstart = [θ1, · · · , θn]start, qgoal = [θ1, · · · , θn]goal by inverse kinematics

3: While d(q, qgoal) > ε1 %Determine whether the target point has been reached
4: For i = 1 : n %Calculate the attraction and repulsive forces on each joint

5: Fatt(i) = −μd
(

q, qgoal

)
; d(q, qobs) =

√
(x(θ)− a)2 + (y(θ)− b)2 + (z(θ)− c)2 − r1 − r2

6: Frep(i) =

{
k
(

1
d(q,qobs)

− 1
d0

)
1

d2(q,qobs)
∇d(q, qobs), d(q, qobs) ≤ d0

0, d(q, qobs) > d0
7: if Frep > ε3 Frep = ε3 end %Ensure smooth trajectory
8: Fatt = sum(Fatt(i)), Frep = sum(Frep(i)) end
9: ∇U(θ1, · · · , θn) = Fatt + Frep
10: if ∇U(θ1, · · · , θn) < ε2 %Determine whether the robot falls into local optimum

11: d(q, q1) =
√
(x(θ)− a)2 + (y(θ)− b)2 + (z(θ)− c)2

12: Frep_vir = k
(

1
d(q,q1)

− 1
d0

)
1

d2(q,q1)
∇d(q, q1) %adding a virtual obstacle

13: ∇U(θ1, · · · , θ6) = Fatt + Frep + Fvir_rep end

14: λ = ε1 + ε2 × d
(

q, qgoal

)
+ ε3 × d(q, qobs) %Determine iteration step size

15: qs = qs−1 − λ ×∇U(θ1, · · · , θn) %Update joint angles using gradient descent method
16: end

3.5.1. Comparison with APF Algorithm in Cartesian Space

This type of method [20] calculates repulsion and attraction in Cartesian space, and
maps the resultant force from Cartesian space to joint space using the Jacobian matrix. The
process of this type of method is as Algorithm 2 follows:

Algorithm 2: APF in Cartesian space

STEP1: Calculate the coordinates of each joint using kinematics
STEP2: Calculate attraction Fa and repulsive forces Fr in the Cartesian space, and convert them into the
velocity V =

[
vx, vy, vz

]
of the end-effector

STEP3: Calculate the Jacobian matrix J(q)and its inverse J−1(q)
STEP4: Converting velocity V into joint space using Jacobian matrix

.
q = J−1(q)V

STEP5: qs+1 = qs + h × .
q %h is the iteration step size

The coordinate system of this method is constantly transformed between Cartesian
space and joint space, and this method cannot solve the inverse matrix of the Jacobian
matrix when the robotic arm falls into a singular configuration (J(θ) = 0). Because the
algorithm in this paper is directly in joint space so that it does not require STEP3 and
STEP4. It has much higher real-time performance and efficiency than the APF algorithm in
Cartesian space.

3.5.2. Comparison with APF Algorithm Using a Sampling Method

This type of methods [22] uses a sampling method to calculate the fastest decreasing
direction of the potential field function. Its process is as Algorithm 3 follows:

Algorithm 3: APF using a sampling method

STEP1: Each joint angle θi has three variations in the next moment
For example: θ′1 ← {θ1 − h, θ1, θ1 + h} %h is the iteration step size
STEP2: Calculate all cases of U(θ′) and find the lowest value of U(θ′)
%θ′ =

[
θ′1, θ′2, θ′3, · · · , θ′n

]
. The joint angle θ changes to θ′ along the negative gradient direction of the

potential field function.
STEP3: Update joint angle from θ to θ′
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This type of method needs to calculate the potential field function 3n times in each
cycle, while our algorithm only needs to calculate the potential field function once in each
cycle. Thus, the algorithm in this paper has a higher real-time performance.

3.5.3. Comparison with APF Algorithm Using a Numerical Method

This type of method [23] uses the Euler method to calculate the gradient of the potential
field function, as shown in Equations (18) and (19):

∇U(θ1, · · · θn) = (
∂U
∂θ1

, · · · ,
∂U
∂θn

) (18)

∂U
∂θi

=
U(θi + h · · · , θn)− U(θi − h · · · , θn)

2h
(19)

h is the iteration step size. This method requires calculating the potential field function
twice to obtain the gradient direction of a joint angle, and each cycle requires calculating the
gradient of six joint angles. Therefore, the method requires 2n calculations of the potential
field function per cycle, while our algorithm only needs to calculate the potential field function
once in each cycle. Thus, the algorithm in this paper has a higher real-time performance.

4. Experiment and Result

In this paper, the ROCR6 is our research object. ROCR6 is a six-axis robotic arm
developed by a Chinese company, Si Valley. Figure 9 shows the structure and coordinate
system of the robot, and Table 1 shows the modified D-H parameters of the 6-DOF robot.

Figure 9. The structure and coordinate system of the robot.

Table 1. Modified D-H parameters of the 6-DOF robot.

Joint θi αi−1 ai−1 (mm) di (mm)

1 θ1 0 0 122.3
2 θ2 − π/2 π/2 0 0
3 θ3 0 −270 0
4 θ4 − π/2 0 −253 123.3
5 θ5 π/2 0 207.1
6 θ6 −π/2 0 99.1
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We performed kinematic simulations in Simscape in Matlab, and these simulations
were divided into two cases, namely obstacle avoidance for a sphere and obstacle avoidance
for a rectangular beam. To demonstrate the real-time capability of our algorithm in this
paper, we compared it with the algorithms discussed in Section 3.5. Additionally, we
compared it with the genetic algorithm to showcase the performance of the results obtained
by our algorithm.

4.1. The Obstacle Avoidance for a Sphere

Table 2 shows the task information and the parameter details of the spherical obstacle.
The motion process of the robotic arm using the APF algorithm is shown in Figure 10, where
the red trajectory represents the running trajectory of the middle joint and end-effector.
The change in each joint angle using the improved APF algorithm is shown in Figure 11,
and the change in each joint angle using the genetic algorithm is shown in Figure 12, and
their operation indexes are shown in Table 3. Table 4 compares the running time of our
algorithm with each of the algorithms in Section 3.5.

Table 2. The information of the spherical obstacle and the configuration of the robot.

Spherical Obstacle and Robot Information

Starting position [590,−131,112] (mm)
The configuration at the starting position

[−0.0130,−1.0585,−0.6853
0.1730, 1.5780, 1.5578

]
(rad)

Target position [104,−600,120] (mm)
The configuration at the target position

[−1.1953,−1.0796,−0.6122
0.1210, 1.5780, 0.3755

]
(rad)

Obstacle coordinates [250,−300,112] (mm)
Obstacle radius 75 mm

   

Figure 10. The motion process of the robotic arm using APF.

Figure 11. Change of the joint angle using APF.
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Figure 12. Change of the joint angle using genetic algorithm.

Table 3. The performance of algorithms result.

Algorithm Improved APF Genetic

Joint angle increment 2.9510 (rad) 10.8894 (rad)
Path length 880.6657 (mm) 895.9892 (mm)

Table 4. The run time of algorithms.

Algorithm Run Time

Improved APF 0.3558 (s)
APF in Cartesian space 8.8696 (s)

APF using a sampling method 260.3108 (s)
APF using a numerical method 6.2696 (s)

4.2. The Obstacle Avoidance for a Rectangular Beam

Table 5 shows the parameter details of the rectangular beam. The motion process of
the robotic arm using the APF algorithm is shown in Figure 13, where magenta trajectory
represents the running trajectory of the middle joint and end-effector. The change of each
joint angle using the improved APF algorithm is shown in Figure 14, the change of each
joint angle using genetic algorithm is shown in Figure 15, and their operation indexes are
shown in Table 6. Table 7 shows the running time of each algorithm.

Table 5. The information of the rectangular beam and the configuration of the robot.

Rectangular Beam Obstacle and Robot Information

Starting position [590,−131,110] (mm)
The configuration at the starting position

[−0.0130,−1.0716,−0.7080
0.2088, 1.5780, 1.5578

]
(rad)

Target position [104,−600,160] (mm)
The configuration at the target position

[−1.1953,−1.0659,−0.4804
0.0245, 1.5780, 0.3755

]
(rad)

Obstacle coordinates [250,−300,0] (mm)
Obstacle bottom edge 60 × 60 (mm)

Obstacle height 300 mm

Table 6. The performance of the algorithms.

Algorithm Improved APF Genetic

Joint angle increment 4.1690 (rad) 10.1739 (rad)
Path length 1246.6496 (mm) 838.3892 (mm)
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Figure 13. The motion process of the robotic arm using APF.

Figure 14. Change of the joint angle using APF.

Figure 15. Change of the joint angle using genetic algorithm.

Table 7. The run time of algorithms.

Algorithm Run Time

Improved APF 0.3912 (s)
APF in Cartesian space 9.7521 (s)

APF using a sampling method 286.2102 (s)
APF using a numerical method 6.8694 (s)

4.3. Experimentation in the Real World

The improved APF algorithm has now been tested in the real world for the rectangular
beam obstacle in Section 4.2. Figure 16 shows each joint of the real robotic arm and the
obstacle. Figure 17 shows the experimental result in the real world, and the robot avoids
the obstacle and reaches the target position.
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Figure 16. The experiment detail of the real robotic arm.

  
(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 17. The motion process of the real robotic arm. (a) depicts the motion of the robotic arm from
0 to 1 s. (a) depicts the motion of the robotic arm from 0 to 1 s. (b) depicts the motion of the robotic
arm from 1 to 2 s. (c) depicts the motion of the robotic arm from 2 to 3 s. (d) depicts the motion of the
robotic arm from 3 to 4 s.
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5. Discussions

In smart factories, trajectory planning algorithms require high real-time capability
to adapt to complex and dynamic industrial tasks. The algorithm proposed in this paper
meets this requirement by demonstrating an excellent real-time performance. As evident
in Tables 4 and 7, the improved artificial potential field method presented in this paper
outperforms other APF methods in terms of real-time performance, as it can complete
trajectory planning tasks within a mere 0.4 s.

The algorithm should strive to compute excellent trajectories, as excellent trajectories
can save the energy consumed by the robotic arm, reduce the impacts during motion,
and enhance the operational efficiency. From Tables 4 and 7, it can be observed that the
algorithm presented in this paper exhibits smaller joint angle variations compared with the
genetic algorithm. This indicates that using the algorithm proposed in this paper can reduce
the energy consumption during the operation of the robotic arm. However, the algorithm
proposed in this paper still has some drawbacks. In comparison to the genetic algorithm,
this algorithm may cause the robotic arm’s end effector to move slightly further, thereby
reducing the efficiency of the robotic arm’s operation. Additionally, the smoothness of the
paths obtained by this algorithm is lower than that of the genetic algorithm, which may
result in a greater impact on the robotic arm. Lastly, taking the rectangular beam obstacle in
Section 4.2 as a case study, we conducted real-world testing using the algorithm presented
in this paper. It can be observed that the robotic arm can effectively avoid obstacles.

6. Conclusions

Robotic arms are widely used in factory assembly lines. A real-time obstacle avoidance
algorithm that can adapt to changes in the starting position and goal position at any time
is needed. In this paper, we propose an improved artificial potential field method in
joint space, which can realize the real-time obstacle avoidance of the robotic arm. The
experimental results show that the algorithm can achieve good performance under different
obstacles. The algorithm completes the computation very quickly, and the performance of
the obstacle avoidance trajectory obtained by this algorithm is higher than the trajectory
obtained by genetic algorithm. Its main advantages are as follows:

1. The algorithm prevents the transformation of coordinate system from Cartesian space
into joint space, and the robotic arm still performs well when it is caught in a singular
configuration.

2. The algorithm can solve the gradient expression of repulsive potential field in advance.
The potential field function only needs to be calculated once during each iteration,
and the calculation efficiency is very fast.

3. The algorithm proposes an effective method to prevent the robotic arm falling into a
local minimum state without introducing additional information.

In future work, we will further improve this algorithm to make the motion trajectory
smoother. In addition, the algorithm can obtain the angle, velocity, and acceleration
information of each joint during operation. We intend to combine this algorithm with
dynamics to control robotic arms in the future.
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Abstract: The difference in fuel consumption of wheel loaders can be more than 30% according to
different shoveling trajectories for shoveling operations, and the optimization of shoveling trajectories
is an important way to reduce the fuel consumption of shoveling operations. The existing shoveling
trajectory optimization method is mainly through theoretical calculation and simulation analysis,
which cannot fully consider the high randomness and complexity of the shoveling process. It is
difficult to achieve the desired optimization effect. Therefore, this paper takes the actual shoveling
operation data as the basis. The factors that have a high impact on the fuel consumption of shoveling
are screened out through Kernel Principal Component Analysis. Moreover, the mathematical model
of fuel consumption of shoveling operation is established by Support Vector Machine and combined
with the Improved Particle Swarm Optimization algorithm to optimize the shoveling trajectory. To
demonstrate the generalization ability of the model, two materials, gravel, and sand, are selected.
Meanwhile, the influence of different engine speeds on the shoveling operation is considered. We
optimize the shoveling trajectories for three different engine speeds. The optimized trajectories are
verified and compared with the sample data and manually controlled shoveling data. The results
show that the optimized trajectory can reduce the fuel consumption of shoveling operation by 27.66%
and 24.34% compared with the manually controlled shoveling of gravel and sand, respectively. This
study provides guidance for the energy-efficient operation of wheel loaders.

Keywords: trajectory optimization; machine learning; wheel loader; fuel consumption

1. Introduction

The wheel loader is a relatively versatile construction vehicle widely used in many
civil engineering and mining projects. It usually performs a variety of tasks, including
shoveling, transporting, and dumping [1]. Among them, the most important form of
operation is shoveling. The fuel consumption in the process of shoveling is one of the
critical indicators for evaluating the operational efficiency of wheel loaders [2]. Reducing
the fuel consumption of wheel loaders in shoveling operations has become an urgent
problem. Numerous studies have shown that the fuel consumption of wheel loader shov-
eling operation is closely related to the shoveling trajectory. The shoveling trajectory is
the track of the wheel loader bucket moving in the pile. The fuel consumption of wheel
loader shoveling operations with different trajectories has obvious differences [3,4]. Thus,
optimizing the shoveling trajectory is an effective way to reduce the fuel consumption of
shoveling operations.

The wheel loader is usually divided into three phases, namely the insertion phase,
scooping phase, and lifting phase, when carrying out the shoveling operation. Among
them, the optimization of the shoveling trajectory in the insertion phase and the shoveling
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trajectory in the scooping phase is the key to reducing the fuel consumption of the wheel
loader shoveling operation. The main point for the shoveling trajectory in the insertion
phase is to determine the insertion depth. Sarata et al. [5] concluded that if the wheel
loader is inserted too deep into the pile, the bucket resistance may exceed the maximum
power of the wheel loader, and the bucket may get stuck in the pile. Hong et al. [6] planned
three shoveling trajectories based on different insertion depths. The different insertion
depths resulted in large differences in fuel consumption, and the best insertion depth was
obtained in the three trajectories. Xu et al. [7] analyzed the relationship between insertion
depth and resistance of the wheel loader and established a mathematical model for the
optimization of insertion depth. The results showed that there exists an optimal bucket
depth when the wheel loader is shoveling the pile. For the scooping phase, which is the
phase with the highest fuel consumption in the whole shoveling process, it is important
to determine the shoveling trajectory of the scooping phase to reduce the resistance and
fuel consumption. Gong et al. [8] compared the shoveling operation with linear shovel-
ing trajectory and curved shoveling trajectory by ADAMS software and concluded that
the energy consumption of linear shoveling trajectory is smaller. Zhang et al. [9] pro-
posed the concept of parallel trajectory, which means the trajectory of the scooping phase
should be parallel to the pile plane, and with this trajectory, the resistance of the bucket
will be the smallest. The corresponding fuel consumption will be lower. Filla et al. [10]
generated 800 sets of trajectories based on four shoveling methods and compared them.
The shoveling trajectories with parallel trajectories have obvious advantages. The above
studies only start from the part of the shoveling process and ignore the continuity of
the shoveling process, which has a limited effect on the optimization of the shoveling
trajectory. Meng et al. [11] established the resistance model of the bucket based on the
Coulomb theory and obtained the optimized trajectory based on the principle of minimum
energy consumption. Yu et al. [12] established the agent model of shoveling trajectory and
shoveling efficiency by the Kriging method and obtained the optimized shoveling trajectory
under different working conditions by joint RecurDyn-EDEM simulation. Osumi et al. [13]
established the bucket resistance model and optimized the shoveling trajectory with the
objectives of resistance reduction and energy consumption reduction. Some other scholars
optimized the shoveling trajectory by establishing a mathematical model of the shoveling
process. Zhang et al. [14] established the trajectory motion model of the electric shovel by
kinetic, combined with the pseudospectral method to convert the kinetic model into the
algebraic format. They obtained the optimal excavation trajectory by solving the nonlinear
programming. Shen et al. [15] modeled the whole excavation process and obtained the
excavation trajectory by a rule-based planning method, which significantly reduced fuel
consumption. Frank et al. [16] used a dynamic planning method to generate the shoveling
trajectory. They conducted tests in a gravel pile, and the results showed a 15% improvement
in fuel economy with this method. Yao et al. [17] established a mathematical model of the
shoveling process to optimize the shoveling process to reduce fuel consumption, which can
be reduced by 30% through simulation analysis. However, in these studies, the optimiza-
tion of shoveling trajectory is mainly carried out by theoretical analysis and simulation
analysis. It ignores the high randomness and complexity of the shoveling operation process,
and there is a specific error between the dynamics or mathematical model and the actual
shoveling operation [18–20]. As a result, it is difficult to achieve the desired effect in the
actual shoveling operation.

Research has always focused on modeling the fuel consumption of shoveling oper-
ations. At present, the common fuel consumption modeling method is the theoretical
calculation method [21–23]. This method is mainly based on theoretical analysis of energy
consumption during the shoveling operation of wheel loaders and then calculates the
overall fuel consumption. This method usually cannot consider the large randomness
in the process of wheel loader shoveling operation, and there is a large error between
it and the actual shoveling operation. In recent years, machine learning methods have
shown excellent properties in solving real engineering problems. There have been several
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successful applications of using machine learning to achieve modeling of operational fuel
consumption of engineering vehicles. Dindarloo et al. [24] analyzed the fuel consumption
of mining dump trucks at each stage of operation with the objective of fuel consumption of
a single operating cycle and constructed a fuel consumption model using machine learning
methods. Siami-Irdemoosa et al. [25] established an Artificial Neural Network fuel con-
sumption model to achieve fuel consumption prediction of mining trucks in each cycle with
a model error of 10%. Alamdari et al. [26] used machine learning methods such as multiple
linear regression, Random Forest, Artificial Neural Network, Support Vector Machine, and
Kernel nearest neighbor to predict the fuel consumption of transport trucks and compared
the accuracy of each model. Gong et al. [27] used a binary logistic regression model to
analyze 21 fuel consumption influencing factors of heavy trucks and obtained 8 influencing
factors that have a significant effect on fuel consumption. Meanwhile, the accuracy of the
fuel consumption model was compared using Decision Tree, Artificial Neural Network,
and Random Forest. Shen et al. [28] constructed an excavator data collection system and
proposed an improved PSO-BP model for excavator energy consumption prediction, which
achieved good prediction accuracy.

However, there are fewer applications for modeling the fuel consumption of wheel
loaders using machine learning. Liu et al. [29] constructed a BP neural network model with
wheel loader driver, pile type, and bucket capacity as input features, although the accuracy
of the model was high. However, in this study, there are problems of fewer data samples
and unreasonable selection of fuel consumption influencing factors, which are difficult to be
extended to other application scenarios. Since the shoveling process itself is a high random-
ness process. There are many factors that can have a great impact on the fuel consumption
of shoveling operations. Therefore, determining the reasonable influence factors on the fuel
consumption of shoveling is the key task to establishing the fuel consumption model by
machine learning. Therefore, this study selects the Kernel Principal Component Analysis
(KPCA) method to filter the factors that have a strong influence on the fuel consumption
of shoveling operations. Compared with the traditional Principal Component Analysis
(PCA) method, KPCA has better nonlinear data processing capability [30]. After obtaining
the factors with a strong influence on the fuel consumption of the shoveling operation, a
model of the fuel consumption of the shoveling operation is constructed using Support
Vector Machine (SVM), a typical machine learning method. It replaces the empirical risk
in traditional neural networks with the structured risk minimization principle. It solves
the drawback that it is difficult to overcome the local extremes when the sample size is
small [31]. After establishing the fuel consumption model, the Improved Particle Swarm
Optimization (IPSO) algorithm is selected in this study to optimize the factors with a strong
influence on fuel consumption. Compared with the Particle Swarm Optimization (PSO)
algorithm, IPSO greatly improves the ability of local optimization search. The optimiza-
tion algorithm has been widely used to improve operational efficiency by optimizing the
operational trajectory. For example, Yuasa et al. [32] optimized the excavating trajectory
of an excavator by a Genetic Algorithm based on a parametric mathematical model of
the excavating trajectory, loading, and linkage mechanism, which effectively improved
the operational efficiency of the excavator. Bi et al. [33] obtained the optimal shoveling
trajectory of a cable shovel by a Multi-Objective Genetic Algorithm with the operating time
and energy consumption per payload as the optimization objectives.

In response to the above issues and discoveries, this study proposed a method to
construct a fuel consumption model by SVM and optimize the shoveling trajectory by IPSO.
Firstly, the wheel loader was shoveled several times with three different engine speeds
on the gravel pile and sand pile to obtain samples. After that, the factors with a strong
influence on the fuel consumption of shoveling operation were selected by KPCA and
combined with a Grey relation analysis (GRA) to validate, and the fuel consumption model
of shoveling operation was established by SVM. Finally, the factors with a strong influence
on the fuel consumption of shoveling operation were optimized by the IPSO algorithm.
The lowest energy consumption trajectory was obtained at different engine speeds. The
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optimized shoveling trajectory was used for validation experiments and compared with
the sample data and manually controlled shoveling data to verify the optimization effect.

2. Shoveling Experiments and Analysis

2.1. Shoveling Principle and Experiment Design

The shoveling method is characterized by the insertion of the wheel loader into the
pile to a certain depth. Then, the bucket is turned and lifted by the action of the lift
arm, tilt level, and connecting rod to complete the shoveling. Finally, the bucket is lifted.
Among them, the shoveling trajectory of the scooping phase is parallel to the surface
of the pile, as shown in Figure 1. Thus, the wheel loader can be regarded as a system
with three degrees of freedom when carrying out the shoveling operation, which is wheel
loader advancing, bucket lifting, and bucket turning. Among them, the bucket lifting
and turning are controlled by the lift cylinder and the tilt cylinder, respectively, as shown
in Figure 2. The wheel loader displacement, lift cylinder displacement, and tilt cylinder
displacement are not the same in different shoveling trajectories, which is the reason for
the large difference in fuel consumption during the shoveling operation of wheel loaders.
Meanwhile, the different engine speeds provide different power to the wheel loader. Even
if the same shoveling trajectory is used, however, due to the difference in engine speed,
the fuel consumption of the shoveling operation will also appear as a large gap. Therefore,
optimizing the shoveling trajectory at different engine speeds is a critical way to reduce the
fuel consumption of the shoveling operation.

 
Figure 1. Shoveling trajectory.

 
Figure 2. The process of shoveling operation.

To execute the shoveling trajectory better and avoid the errors caused by manual
operation. And to obtain more accurate data about the shoveling process, this study
has developed an automatic shoveling experiment platform for a wheel loader. The
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platform will carry out automatic shoveling by preplanning the shoveling trajectory and
setting the relevant shoveling parameters. The relevant parameters during the shoveling
operation are recorded, including the wheel loader displacement, cylinder displacement,
fuel consumption, engine speed, operation time, and shoveling weight. The recording
frequency is 500 Hz, which is recorded once every 0.002 s. The automatic shoveling platform
and the main sensors are shown in Figure 3.

 

Figure 3. Automatic shoveling platform and sensors. As shown above, 1 fifth wheel gauge, 2 flow
sensor, 3 vehicle PC system, 4 fifth wheel gauge control module, 5 signal receiving system, 6 all data
acquisition system, 7 lift cylinder displacement sensor, 8 shoveling weight acquisition system, 9 tilt
cylinder displacement sensor.

2.2. Trajectory Planning

Due to the different insertion depths, the shoveling trajectories are also different. The
fuel consumption of shoveling operations with different shoveling trajectories has obvious
differences. In this study, a variety of insertion depths are randomly selected, ranging from
600 mm to 1000 mm. Two types of materials are selected, including gravel and sand. Gravel
is characterized by non-uniform, high-density, and large particles. At the same time, sand
is characterized as uniform, low-density, and with small particles. Both above materials
have high representativeness, and the relevant parameters of the two materials are shown
in Table 1. Due to the different angles of repose of the two piles, their shoveling trajectories
are also different, as shown in Figure 4.

 
(a) (b) 

Figure 4. Range of shoveling depths. (a) Gravel pile; (b) Sand pile.
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Table 1. Pile parameters.

Type of Pile Density (kg/m3) Angle of Repose (◦) Particle Diameter (mm)

Gravel 2672 35.0 20–60
Sand 2392 36.5 <1

The shoveling area S consisting of the shoveling trajectory and the surface of the pile
is shown in Figure 5. According to the geometric relationship in Figure 5, the shoveling
area can be expressed as shown in Equation (1). However, the shoveling trajectory is not
the same. However, the shoveling area composed of the shoveling trajectory and surface of
the pile is always constant and equal to the bucket cross-section. When the length of lAB is
determined, both lBC and lCD can be expressed as a function of lAB only. This is shown in
Equation (2). When the shoveling area is held constant, different shoveling trajectories can
be obtained by adjusting the length of lAB.

S =
V
L

=
1
2

lABlBQ + lBClBP (1)

where V is the bucket volume, and L is the bucket length.⎧⎪⎪⎪⎨⎪⎪⎪⎩
lBP = lAB sin(α)
lCD = lBQ = lAB tan(α)
lBC = S

lBP
− lBP

sin(2α)

lBC′ = lBC cos(α)

(2)

where lAB is the insertion depth of the insertion phase, lBC is the shoveling length of the
scooping phase, lCD is the shoveling length of the lifting phase, lBP is the horizontal distance
between the trajectory of the scooping phase and the surface of the pile, and lBC′ is the
wheel loader displacement of the scooping phase.

 

Figure 5. Shoveling area.

2.3. Engine Speed Analysis

To obtain the optimal trajectory with different engine speeds. Three different engine
speeds are selected, 900 RPM, 1200 RPM, and 1500 RPM, and 40 shoveling operations
are performed on the gravel pile and the sand pile with each engine speed. The relevant
parameters are recorded during the shoveling process. The pile is recovered after each
shoveling operation. The process of shoveling gravel and the process of shoveling sand
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are shown in Figure 6. The experimental environment is an open flat area. The average
temperature is 22 ◦C, and the average relative humidity is 83%.

 
Figure 6. Shoveling gravel and shoveling sand.

When the engine speed is 1500 RPM, the engine speed for shoveling gravel and
shoveling sand is shown in Figure 7. The shoveling operation process can be divided into
four phases with the change of displacement of the lift cylinder and the tilt cylinder, which
are the insertion phase, scooping phase, stopping phase, and lifting phase, corresponding
to S1, S2, S3, and S4 in Figure 7, respectively.

1. Insertion phase: There is no change in the displacement of the lift cylinder and the
displacement of the tilt cylinder. The engine speed is maintained at 1500 RPM, but a
smaller oscillation will occur. This oscillation is more violent at the beginning of the
insertion phase. However, as the insertion depth increases, it gradually calms down
and stays at 1500 RPM.

2. Scooping phase: The displacement of the tilt cylinder increases rapidly, and the
displacement of the lift cylinder steps up. With the increasing displacement of the
cylinder, there is a large change in engine speed. When the displacement of the
cylinder starts to increase, the engine speed decreases at first, then increases rapidly
and is higher than 1500 RPM. When the displacement of the cylinder is stable, the
engine speed also falls back to 1500 RPM rapidly.

3. Stopping phase: The displacement of the tilt cylinder and lift cylinder has no change,
and the engine speed decreases to a lower state in a short time.

4. Lifting phase: The displacement of the lift cylinder increases rapidly, and the dis-
placement of the tilt cylinder is almost unchanged. The engine speed decreases to the
lowest point in the whole shoveling process in a short period and then increases.
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(a) (b) 

Figure 7. Engine speed during the shoveling process. (a) Shoveling gravel; (b) Shoveling sand.

2.4. Fuel Consumption Analysis

The wheel loader fuel consumption per unit time, wheel loader displacement, lift
cylinder displacement, and tilt cylinder displacement during the wheel loader shoveling
process are shown in Figure 8.

1. Insertion phase: The wheel loader is inserted into the pile at a certain distance with
traction. In the early insertion phase, the insertion speed of the wheel loader is fast.
However, as the insertion depth increases, the resistance to the bucket also increases
rapidly, and the wheel loader insertion speed gradually decreases. Meanwhile, the
fuel consumption per unit of time rises rapidly after the insertion of the pile and then
remains in a relatively stable state.

2. Scooping phase: The wheel loader continues to keep moving forward. In the early
scooping phase, the wheel loader can move forward rapidly because the material is
scooped up by the bucket to provide space for the wheel loader to move forward. In
the later scooping phase, the wheel loader advances at a slower speed due to resistance.
It is obvious that when the lift cylinder and tilt cylinder remain unchanged, the fuel
consumption per unit time remains at a relatively stable level. The fuel consumption
per unit time increases rapidly when the displacement of the lift cylinder and tilt
cylinder increases and then is in a stable state.

3. Stopping phase: The resistance of the wheel loader increases sharply, and the wheel
loader is forced to stop moving forward. However, to prevent the wheel loader from
moving backward, the wheel loader will continue to keep moving ahead and move
forward for a short distance. The fuel consumption per unit time is then reduced to
the lowest state during the entire shoveling operation.

4. Lifting phase: The wheel loader is subjected to inertia in the process of lifting the
bucket and continues to keep moving forward. And the fuel consumption per unit
time increases with the displacement of the lift cylinder and then remains stable.

  
(a) (b) 

Figure 8. Fuel consumption during the shoveling process. (a) Shoveling gravel; (b) Shoveling sand.
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The sensor on the wheel loader is a flow sensor. The total fuel consumption needs to
be obtained by the calculation formula, which is shown in Equation (3). As an example, in
Figure 8, the total fuel consumption, the fuel consumption of each phase, and the percentage
of the total fuel consumption by each phase are shown in Table 2.

C =

n
∑

i=1
ci

f ·3600
·1000 (3)

where C is the total fuel consumption, mL, c is the fuel consumption per unit time at a
certain moment, L·h−1, f is the frequency, Hz.

Table 2. Fuel consumption.

Type of Pile Parameter Insertion Phase Scooping Phase Stopping Phase Lifting Phase Total

Gravel
Fuel consumption (mL) 27.12 49.27 4.10 15.61 96.10

Percentage (%) 28.22 51.27 4.27 16.24 100.00

Sand
Fuel consumption (mL) 15.97 41.15 6.45 24.68 88.26

Percentage (%) 20.51 52.83 8.29 31.68 100.00

According to Figure 8 and Table 2. The fuel consumption in the scooping phase is the
highest, and the fuel consumption in the stopping phase is the lowest. In shoveling gravel,
the fuel consumption in the insertion phase is higher than that in the lifting phase. While
shoveling sand, the fuel consumption in the insertion phase is less than that in the lifting
phase. This is related to the material properties, as gravel is a denser and less loose material.
The wheel loader needs more operation time and energy consumption when inserting
the gravel pile. Sand, on the other hand, is less dense and relatively looser. The wheel
loader is easier to insert from the sand pile and therefore generates less fuel consumption
when inserting into the sand pile. In short, the fuel consumption of shoveling gravel is
higher than that of shoveling sand with the same engine speed, which is determined by
the material characteristics. From Figure 8, the lift cylinder displacement and tilt cylinder
displacement within different phases all affect fuel consumption, which increases with the
expansion of cylinder displacement. Meanwhile, the different engine speed of the wheel
loader leads to the different initial velocity of the wheel loader when inserted into the
pile, which will directly affect the time of wheel loader shoveling operation. Moreover,
the engine speed is related to the wheel loader power, which will have a direct impact on
the fuel consumption of the shoveling operation. In addition, the final shoveling weight
will also have an impact on the fuel consumption of the shoveling operation. It is mainly
reflected in the lifting phase; if the shoveling weight is too high, it will increase the extra
fuel consumption.

3. Research Methodology

3.1. KPCA and GRA

KPCA is an improved processing method of PCA. As for PCA, it only applies to linear
data, and there is a significant error when dealing with nonlinear data. In contrast, KPCA
can largely preserve the local structure of nonlinear data by introducing kernel functions.
Meanwhile, PCA will map data points into a low-dimensional space when dealing with
high-dimensional data, facing dimensional disaster and leading to the loss of distance
information between data points. Therefore, KPCA is more advantageous than PCA [34].
The basic idea is to project the samples that are linearly indistinguishable in the low-
dimensional space to the high-dimensional space and make them linearly distinguishable
by the kernel function [35]. For a set of samples X = [x1, x2, . . . , xn] ∈ Rm, the mapping
function is

n

∑
i=1

ϕ(xi) = 0(ϕ : Rm → Rk(k � m)) (4)
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where ϕ(xi) is the mapping function, Rm is an m-dimensional vector, and Rk is a k-
dimensional vector.

Then the covariance matrix can be expressed as

C =
1
n

n

∑
i=1

ϕ(xi)ϕ(xi)
T (5)

Suppose the eigenvalue of C is λ, and its corresponding eigenvector is v, the result is

λv = Cv = (
1
n

n

∑
i=1

ϕ(xi)ϕ(xi)
T)v =

1
n

n

∑
i=1

(ϕ(xi)
Tv)ϕ(xi) (6)

For λv = Cv, by multiplying each left and right by ϕ(xi), we can obtain λϕ(xi)v = Cvϕ(xi).
The introduced kernel function matrix can be expressed as Kij = K(xi, xj) = ϕ(xi)ϕ(xj). Then,
we can obtain nλa = Ka, where a is the eigenvector of K. Then, the projection of x into the
higher dimensional space can be expressed as

vϕ(x) =
n

∑
i=1

ai ϕ(xi)ϕ(x) =
n

∑
i=1

aiK(xi, x) (7)

In this study, the Gaussian kernel function is chosen as the kernel function, which is
defined as follows:

K(x, q) =
exp(−‖x − q‖2)

σ2 (8)

where σ is the function parameter, and q is the center of the function.
GRA is an analytical method based on grey system theory, mainly used to study

the strength of association between influencing factors. It converts the grey information
between multiple factors into black-and-white information, then uses the magnitude of the
grey relation coefficient value as the basis for evaluating the strength of the correlation. The
specific steps are as follows.

1. Select the parent sequence Y and the subsequence X.
2. To eliminate the influence of the magnitude, the parent sequence and the subse-

quence are normalized, and the normalized parent sequence is recorded as Y′ and the
subsequence is recorded as X′.

3. The formula is shown in Equation (9) to calculate the grey relation coefficient.

ξ(i) =
mini(min|Y′ − X′(i)|) + ρmaxi(max|Y′ − X′(i)|)

|Y′ − X′(i)|+ ρmaxi(max|Y′ − X′(i)|) , i = 1 · · · n (9)

where ρ is the discriminant coefficient, which takes values from 0 to 1 and is taken as 0.5 in
this paper.

3.2. SVM

SVM is to use the kernel function to map the sample data eigenvalues in the low-
dimensional space to the corresponding high-dimensional space. And the optimal hyper-
plane is determined in the high-dimensional space based on the structural risk minimization
principle [36]. The expression of the classification hyperplane is shown in Equation (9), the
objective function is shown in Equation (10), and the constraints are shown in Equation (11).

f (x) = w·x + b (10)

min
1
2
‖w‖2 + g

m

∑
i=1

(ξi + ξ∗) (11)
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s.t.

⎧⎨⎩
yi − (w·ϕ(xi) + b) ≤ ε + ξi
(w·ϕ(xi) + b)− yi ≤ ε + ξ∗i
ξi ≥ 0, ξ∗i ≥ 0 (i = 1, 2, · · · , m)

(12)

where w is the normal vector of the hyperplane, x is the input vector, b is the hyperplane
translation distance, ξ is the relaxation factor, g is the penalty factor, m is the number of
samples, ε is the insensitivity coefficient factor, and ϕ is the mapping function.

The output function of the SVM can be expressed as

g(x) =
m

∑
i=1

aiK(xi, xj) + b (13)

where ai is the Lagrange multiplier, and K is the kernel function, and the radial basis kernel
is chosen as the kernel function in this paper, as shown in Equation (13):

K(xi, xj) = exp(
−∥∥xi − xj

∥∥2

2c2 ) (14)

where c is the kernel function parameter.
For machine learning models, optimizing hyperparameters is decisive for the model

performance [37]. A reasonable choice of hyperparameters is beneficial to improve the
performance of the model. Studies have shown that the optimization of penalty factor g
and kernel function parameter c in SVM is an effective way to improve the accuracy of
SVM [38]. To obtain reasonable g and c and avoid overfitting of the model. In this study,
we choose the method of K-fold Cross Validation (CV) to obtain reasonable parameters,
and the pseudo-code of K-fold CV optimize g and c is shown in Algorithm 1.

Algorithm 1 K-fold Cross Validation

1: begin

2: bestaccuracy; cbest; gbest;
3: for c = cmin

2:cmax
2

4: for g = gmin
2:gmax

2

5: divide the dataset equally into K groups;
6: for = 1:K
7: divide the dataset equally into K groups;
8: train(K) as the test set, the rest as the training set;
9: record the accuracy of the test set ace(K);
10: end;
11: cv = (ace(1) + ace(2) + · · · + ace(K))/K;
12: if cv > bestaccuracy
13: bestaccuracy = cv; cbest = c; gbest = g;
14: end;
15: end;
16: end;
17: end.

3.3. IPSO

PSO is inspired by the foraging behavior of bird populations in nature, and the basic
units in PSO are particles. Each particle is described by three features: fitness value,
position, and velocity. Each particle in the algorithm is measured by the fitness function
to measure the degree of merit of this particle. The velocity of the particle is influenced
by itself and the population and can be adjusted during each iteration. And the position
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describes the current location of the particle and is updated by the velocity. The updated
formulas for velocity and position are shown in Equations (14) and (15), respectively [39].

vi = wvi + c1r1(pi − xi) + c2r2(gbest − xi) (15)

xi = xi + vi (16)

where w is the inertia coefficient, c is the acceleration factor, and r is a random number
of [0, 1].

The choice of the inertia coefficient w directly affects the convergence of the PSO. In
traditional PSO, w is taken as 1 by default. w tends to be the global search for larger PSO
and the local search for smaller PSO. To avoid premature maturation of the algorithm and
oscillation of particles near the global optimal solution in the late stage of the algorithm,
the value of w is usually taken to decrease linearly with the increase of the number of
iterations. However, it requires repeated trials to determine the maximum, minimum, and
number of iterations, and the optimal value may not be found. Thus, an Improved Particle
Swarm algorithm is applied in this study for implementing a nonlinear dynamic adaptive
adjustment of the inertia coefficient w such that the inertia coefficient w can follow the
change of the fitness value, calculated as shown in Equation (16) [40].

w =

{
wmin + (wmax−wmin)( f− fmin)

favg- fmin
( f ≤ favg)

wmax( f > favg)
(17)

4. SVM Fuel Consumption Model and IPSO Optimization

4.1. KPCA Processing and GRA Verification

From the previous analysis, it can be seen that the wheel loader displacement, lift
cylinder displacement, and tilt cylinder displacement in different phases will influence fuel
consumption. Meanwhile, the initial velocity, operation time, and shoveling weight will
also influence fuel consumption. Since the displacement of the lift cylinder and the tilt
cylinder in some phases do not change. The displacement of the wheel loader in the four
phases, the displacement of the lift cylinder and the tilt cylinder in the scooping phase, the
displacement of the lift cylinder in the lifting phase, the initial velocity, the operation time,
and the shoveling weight, a total of 10 factors, are taken as the initial fuel consumption
influencing factors. The partial data of the gravel sample and the sand sample are shown
in Table 3.
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Due to the different magnitudes among the initial fuel consumption influence factors,
they need to be normalized. After the normalization process and then the KPCA opera-
tion, the contribution rate and cumulative contribution rate are calculated as shown in
Equation (17). The contribution rate and cumulative contribution rate of each factor are
shown in Table 4. The factors that have the greatest influence on the fuel consumption
of shoveling operation are initial velocity and insertion phase displacement of the wheel
loader. The initial velocity is related to the engine speed, which is responsible for providing
power for the whole shoveling operation process. While the wheel loader displacement
in the insertion phase is related to the insertion resistance, and the wheel loader reaches
the peak of resistance in the insertion phase, which is the key factor that influences fuel
consumption. In the sand sample, the contribution of shoveling weight is greater than the
operation time, while in the gravel sample, the contribution of operation time is slightly
greater than the shoveling weight. This is related to the experimental environment, which
is affected by the climate, where the humidity in the air increases and the sand appears
to stick, so the shoveling weight is higher when shoveling sand. The scooping phase is
the most important phase in the shoveling operation process, so the displacement of the
wheel loader in this phase also has a greater influence on the fuel consumption of the
shoveling operation. From Figure 8, the cylinder displacement will influence the fuel
consumption of the shoveling operation, but compared with other factors, the influence
of cylinder displacement on the fuel consumption of the shoveling operation is not great.
According to the principle of KPCA preference, the requirement of replacing all factors can
be achieved for factors with a cumulative contribution of 90% [41]. In the gravel samples
and sand samples, the initial velocity, wheel loader displacement in the insertion phase,
shoveling weight, operation time, and wheel loader displacement in the scooping phase,
the cumulative contribution rate is greater than 90%. Thus, these five factors are selected as
the key factors for the influence of fuel consumption of shoveling operation, and further
research is conducted. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ =
λj

n
∑

i=1
λi

γ′ =
m
∑

i=1
λj

n
∑

i=1
λi

(j = 1, 2, · · · , n) (18)

where λ is the eigenvalue, γ is the contribution rate, and γ′ is the cumulative contribution rate.

Table 4. Contribution rate and the cumulative contribution rate of each factor.

Gravel Sand
Parameters γ (%) γ′ (%) Parameters γ (%) γ′ (%)

Initial velocity 31.64 31.64 Initial velocity 31.00 31.00

Displacement of wheel loader
in insertion phase 27.04 58.68 Displacement of wheel loader

in insertion phase 24.42 55.42

Operation time 15.36 74.03 Shoveling weight 13.99 69.41

Shoveling weight 15.35 89.39 Operation time 13.79 83.20

Displacement of wheel loader
in scooping phase 6.56 95.95 Displacement of wheel loader

in scooping phase 10.70 93.89

Displacement of wheel loader
in stopping phase 2.65 98.60 Displacement of wheel loader

in stopping phase 5.64 99.53

Displacement of wheel loader
in lifting phase 1.13 99.73 Displacement of wheel loader

in lifting phase 0.29 99.82

Displacement of lift cylinder
in scooping phase 0.24 98.97 Displacement of lift cylinder

in scooping phase 0.16 98.99

Displacement of lift cylinder
in lifting phase 0.02 99.98 Displacement of lift cylinder

in lifting phase 0.01 99.99

Displacement of tilt cylinder
in scooping phase 0.01 100.00 Displacement of tilt cylinder

in scooping phase 0.01 100.00

129



Appl. Sci. 2023, 13, 7659

In order to verify the correlation between the key factors of fuel consumption influence
and fuel consumption, the GRA is selected to test the correlation. The fuel consumption
is chosen as the parent sequence, and the key factors of fuel consumption influence the
subsequence. After calculation, the grey relation coefficients of gravel samples and sand
samples are shown in Table 5. The more the grey relation coefficient value tends to 1, the
higher the correlation between the subsequence and the parent sequence. The grey relation
coefficient values are greater than 0.75 in the gravel samples and sand samples. There
is a greater correlation between fuel consumption and key factors of fuel consumption
influence. It proves that the key factors of fuel consumption influence screened by KPCA
are effective.

Table 5. Grey relation coefficients.

Type of Pile
Initial

Velocity
Displacement of Wheel

Loader in Insertion Phase
Shoveling

Weight
Operation

Time
Displacement of Wheel

Loader in Scooping Phase

Gravel 0.792 0.782 0.834 0.789 0.779

Sand 0.762 0.795 0.894 0.846 0.822

4.2. SVM Model

According to the results of KPCA, the initial velocity, the displacement of the wheel
loader in the insertion phase, the shoveling weight, the operation time, and the displace-
ment of the wheel loader in the scooping phase are selected as the input layer, and the fuel
consumption as the output layer. Among 120 sets of gravel samples and sand samples,
respectively, 100 sets of samples are randomly selected as the training set, and the other
20 sets are used as the test set. Meanwhile, the penalty factor g and the kernel function
parameter c are optimized by combining them with the CV method. The optimal c and g
for the gravel fuel consumption model are 3.03 and 143.58, respectively, and for the sand
fuel consumption model, they are 4.32 and 123.52, respectively. The accuracy effect of the
fuel consumption model is shown in Figure 9. Meanwhile, root mean square error (RMSE),
average relative error (ARE), and goodness of fit R2 are used in this study as indicators
to evaluate the performance of the fuel consumption model. The smaller the RMSE and
ARE, the smaller the deviation between the predicted value and the true value, and the
higher the accuracy of the model. The value of R2 is closer to 1, which indicates a higher
degree of fit and higher accuracy of the model, and its calculation formula is as follows.
The evaluation indicators of the fuel consumption model are shown in Table 6.

RMSE =

√
1
n

n

∑
i=1

(yi
∗ − yi)

2 (19)

ARE =
1
n

n

∑
i=1

∣∣∣∣yi − yi
∗

yi

∣∣∣∣ (20)

R2 = 1 −

n
∑

i=1
(yi − yi

∗)2

n
∑

i=1
(yi − yi)

2
(21)

where yi is the true value, yi
∗ is the predicted value, yi is the mean of the true value, and n

is the number of samples.
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(a) (b) 

Figure 9. Prediction performance of fuel consumption model. (a) Gravel fuel consumption model;
(b) Sand fuel consumption model.

Table 6. Fuel consumption model evaluation indicators.

Type of Pile ARE (%) RMSE R2

Gravel 4.91 5.91 0.9764
Sand 3.49 3.08 0.9494

In the gravel fuel consumption prediction model, the ARE is 4.91%, the RMSE is
5.91, and the R2 is 0.9764. While in the sand fuel consumption prediction model, the
ARE is 3.49%, the RMSE is 3.08, and the R2 is 0.9494. In terms of prediction accuracy,
the prediction accuracy of the gravel fuel consumption prediction model is lower than
that of the sand fuel consumption prediction model. And in terms of fitting ability, the
gravel fuel consumption prediction model has a better fitting ability. Overall, the SVM
fuel consumption prediction model showed better prediction ability in both the gravel
samples and the sand samples. The deviation between the predicted and true values of the
model is slight, and the model has high stability and generalization ability. To further test
the rationality of KPCA. Different dimensions of fuel consumption influence factors are
selected as input layers in the SVM fuel consumption model. The same training set and test
set are selected, and ARE is used as the evaluation indicator. The prediction performance of
the gravel model and sand model is shown in Figure 10. When the dimension increases, the
value of ARE decreases rapidly, and when the dimension is 5, the ARE of the gravel model
and sand model reaches the lowest point. When the dimension continues to increase, the
values of ARE both have a small increase.

4.3. IPSO Optimization Process

To obtain the optimal shoveling trajectory with different engine speeds. IPSO is used
to optimize the SVM fuel consumption model. The indicators of optimization are the
input features of the SVM model, which are the initial velocity, the displacement of the
wheel loader in the insertion phase, the shoveling weight, the operation time, and the
displacement of the wheel loader in the scooping phase. Among them, the initial velocity
exists in different intervals depending on the engine speed. The displacement of the wheel
loader in the scooping phase is not involved in the optimization search due to the limitation
of trajectory planning, and the results are obtained by the calculation of wheel loader
displacement in the insertion phase. As for the operation time and shoveling weight, which
is a posteriori data, as long as they correspond to the upper and lower limits of the sample
data, the optimization intervals of each parameter are shown in Table 7.
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Figure 10. Dimension of fuel consumption influence factors and model accuracy.

Table 7. Optimization intervals for each parameter.

Parameters Interval
Gravel Model Sand Model

900 RPM 1200 RPM 1500 RPM 900 RPM 1200 RPM 1500 RPM

Initial velocity
(m·s−1)

Upper limit 0.6 0.95 1.3 0.6 0.95 1.3

Lower limit 0.3 0.65 1.05 0.3 0.65 1.05

Displacement of wheel
loader in insertion phase

(mm)

Upper limit 1000

Lower limit 600

Shoveling weight (kg)
Upper limit 5526 5545 5558 7294 7441 7520

Lower limit 4459 4609 3913 5400 5773 5519

Operation time (s)
Upper limit 25 23 21 25 26 23

Lower limit 12 12 10 11 12 10

Displacement of wheel
loader in scooping phase

(mm)
Calculated according to Equation (2)

In the IPSO algorithm, c1 and c2 are set to 1.5. The number of iterations is set to 200.
The population size is set to 30. The optimal trajectories of the gravel model and the sand
model are optimized for three different engine speeds, respectively. The optimization
process is shown in Figure 11, and the optimization results are shown in Table 8.
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Figure 11. IPSO optimization iterative process. (a) Gravel-900 RPM; (b) Gravel-1200 RPM;
(c) Gravel-1500 RPM; (d) Sand-900 RPM; (e) Sand-1200 RPM; (f) Sand-1500 RPM.

Table 8. Optimization results.

Type of Pile
Engine Speed

(RPM)

Initial
Velocity
(m·s−1)

Displacement of Wheel
Loader in Insertion

Phase (mm)

Displacement of Wheel
Loader in Scooping

Phase (mm)

Fuel
Consumption

(mL)

Gravel
900 0.59 704 1778 55.05

1200 0.86 686 1843 59.58
1500 1.16 698 1799 48.59

Sand
900 0.48 839 1272 48.12

1200 0.79 749 1520 48.16
1500 1.25 733 1569 56.87

5. Validation Experiment and Discussion

5.1. Validation Experiment

To verify the performance of the optimized shoveling trajectory, the corresponding
trajectories were planned at different engine speeds according to the data in Table 8, and the
research line of thought is shown in Figure 12. Three experiments at each of three different
engine speeds with optimized trajectories in a gravel pile and sand pile and the results of
the shoveling experiments with the shoveling operation parameters are shown in Table 9.
Due to the large randomness of the shoveling operation itself and the accuracy problem
in the data collection process, which led to certain errors in the testing process, it was
difficult to ensure that the trajectory remained the same as the theoretical trajectory even by
using the automatic shoveling platform. Therefore, in the insertion phase, when the error
between the actual insertion distance of the wheel loader and the theoretical distance is
less than 20 mm, it can be considered as basically conforming to the theoretical trajectory.
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Figure 12. The research line of thought.

Table 9. Validation experiment shoveling operation parameters and fuel consumption.

Type
of Pile

Engine
Speed
(RPM)

Number
Initial

Velocity
(m·s−1)

Displacement
of Wheel
Loader in

Insertion Phase
(mm)

Displacement
of Wheel loader

In Scooping
Phase (mm)

Operation
Time (s)

Shoveling
Weight

(kg)

Fuel
Consumption

(mL)

Average Fuel
Consumption

(mL)

Gravel

900
1 0.56 719 1690 10.99 4492 53.50
2 0.53 713 1710 11.79 4602 51.91 54.50
3 0.49 722 1703 11.20 4570 58.09

1200
1 0.83 702 1804 12.02 4641 67.64
2 0.81 704 1785 12.49 4713 58.68 61.97
3 0.81 694 1748 12.55 4596 59.60

1500
1 1.14 726 1737 8.01 4388 45.09
2 1.12 704 1844 10.56 4414 47.30 44.59
3 1.09 725 1745 7.33 3770 41.38

Sand

900
1 0.52 826 1432 10.52 4232 49.24
2 0.47 855 1342 9.85 5357 50.23 49.98
3 0.49 819 1436 9.90 5207 50.48

1200
1 0.81 747 1668 9.31 4966 49.78
2 0.77 758 1601 10.10 4550 47.54 50.00
3 0.87 730 1643 10.39 4843 52.69

1500
1 1.14 728 1594 10.65 6514 56.50
2 1.14 739 1603 11.12 6442 64.64 57.42
3 1.15 749 1488 11.37 4758 51.11

The average fuel consumption of the validation experiment, the theoretical fuel con-
sumption of IPSO optimization, the minimum fuel consumption of the sample, the maxi-
mum fuel consumption of the sample, and the average fuel consumption of the sample are
shown in Figure 13. The deviation between the average fuel consumption of the validation
experiment and the theoretical fuel consumption of IPSO optimization is small. The maxi-
mum deviation value is 8.23%, and the accuracy of the fuel consumption model is high.
The deviation from the actual shoveling operation is small. In Gravel-1200 RPM, the experi-
mental average fuel consumption is slightly higher than the minimum fuel consumption of
the sample, and the fuel consumption is improved by 0.62%. However, in the other models,
the average fuel consumption of the validation experiment is reduced compared with the
minimum fuel consumption of the sample. Among them, the maximum reduction in fuel
consumption is 22.63% in Gravel-900 RPM. The average fuel consumption of the validation
experiment is substantially reduced compared to the sample maximum fuel consumption,
with a maximum reduction of 73.65% and a minimum reduction of 55.70%. In the gravel
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model with three different engine speeds, the average fuel consumption of the validation
experiment is reduced by 60.93%, 45.79%, and 49.10%, respectively, compared to the sample
average fuel consumption. In the sand model with three different engine speeds, the
average fuel consumption of the validation experiment is reduced by 30.93%, 35.56%, and
28.59%, respectively, compared with the sample average fuel consumption. The optimized
shoveling trajectory effectively reduced the fuel consumption of the shoveling operation.

Figure 13. Fuel consumption comparison.

To further compare the performance of the optimized shoveling trajectory, a com-
parison with the shoveling operation of a manually operated wheel loader is selected. In
manually controlled shoveling, there are no restrictions on the parameters such as the
engine speed of the wheel loader, displacement of the wheel loader in the insertion phase,
and displacement of the wheel loader in the scooping phase. Wheel loader drivers will
conduct random shoveling according to their driving habits and operating experience. To
increase the comparability, two drivers are selected to carry out 10 shoveling operations on
the gravel pile and sand pile, respectively, in the same experimental conditions and record
the parameters during the shoveling operations. The parameters of shoveling operations
are shown in Figure 14, and the fuel consumption of shoveling operations is shown in
Table 10.

Table 10. Fuel consumption by manually controlled shoveling.

Driver
Shoveling
Operation

Fuel Consumption
Average Fuel
Consumption

Driver A
Shoveling gravel 71.67 64.06 92.31 72.56 75.38 71.89 63.60 71.72 76.12 66.70 72.60
Shoveling sand 72.65 62.36 72.07 64.77 68.66 92.63 76.10 72.38 65.51 66.17 71.33

Driver B
Shoveling gravel 84.85 65.72 74.56 77.76 72.16 74.00 65.73 68.77 96.22 78.53 75.83
Shoveling sand 61.17 57.76 67.28 61.05 74.34 66.57 69.00 74.26 68.23 74.09 67.38
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Figure 14. Parameters of the shoveling process for driver A and driver B. (a) Engine speed; (b) Initial
velocity; (c) Displacement of wheel loader in insertion phase; (d) Displacement of wheel loader in
scooping phase; (e) Operation time; (f) Shoveling weight.

The average fuel consumption for the validation experiments of the three optimized
trajectories decreased by 29.54%, 19.84%, and 42.33%, respectively, compared to driver A’s
control of shoveling gravel and by 30.39%, 21.42%, and 43.46%, respectively, compared
to driver B. The average fuel consumption of the validation experiments for the three
optimized trajectories decreased by 33.63%, 33.60%, and 23.76%, respectively, compared to
driver A shoveling sand, and by 29.99%, 29.96%, and 19.58%, respectively, compared to
driver B. The average fuel consumption for shoveling gravel with optimized trajectory with
three engine speeds is 53.69 mL, which is 26.05% and 29.20% lower compared to Driver
A and Driver B, respectively. And the average fuel consumption of shoveling sand with
optimized trajectory with three engine speeds is 52.47 mL; compared with Driver A and
Driver B, the average fuel consumption is reduced by 26.44% and 22.12%, respectively. The
average fuel consumption for manually controlled shoveling of gravel is 74.22 mL, and
the average fuel consumption for manually controlled shoveling of sand is 69.35 mL. The
fuel consumption can be, on average, reduced by 27.66% when shoveling gravel with an
optimized trajectory and by 24.34% when shoveling sand with an optimized trajectory. In
conclusion, compared with the manually controlled shoveling operation, the shoveling
operation, according to the optimized trajectory, can effectively reduce fuel consumption of
shoveling operation.

In order to test the significance of the reduction in fuel consumption for the optimized
shoveling trajectory, a t-test is chosen to test it in this paper. The samples are selected from
the fuel consumption of the optimized shoveling trajectory and the fuel consumption of
drivers A and B shoveling gravel and sand, respectively. The t-test allows us to obtain
statistical conclusions about the significance of the difference between the means of the
two groups of samples and to determine their level of statistical significance. First, the
hypothesis is established. The null hypothesis H0 is that there is no significant differ-
ence between the fuel consumption data of the optimized shoveling trajectory and the
fuel consumption data of the manually controlled shoveling. The alternative hypothesis
H1 is that the fuel consumption data from the optimized shoveling trajectory performs
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significantly better than the fuel consumption data from the manually controlled shoveling,
as shown in Equation (22). After that, the significance level needs to be determined. In
this paper, the significance level α is chosen as 0.05. Finally, the T-value is calculated and
compared with the critical value of the two-sided test, and the formula for calculating
the T-value is shown in Equation (23). The fuel consumption of shoveling gravel with
optimized shoveling trajectory is 5.02 and 5.50 compared to driver A and B, respectively,
while the fuel consumption of shoveling sand with optimized shoveling trajectory is 5.80
and 5.83 compared to driver A and B, respectively, with all T-value greater than the critical
value t0.05/2(17) = 2.11. Therefore, the null hypothesis can be rejected, and the alternative
hypothesis is selected. Thus, we can conclude that the fuel consumption with an optimized
shoveling trajectory performs significantly better than the fuel consumption with manually
controlled shoveling. At the restricted significance level, fuel consumption is significantly
reduced with the optimized shoveling trajectory.{

Ho : μ1 = μ2
H1 : μ1 > μ2

(22)

where μ1 is the overall mean value of fuel consumption for manually controlled shoveling,
and μ2 is the overall mean value of fuel consumption for optimized shoveling trajectory.

T =
x1 − x2√

s2
1

n1
+

s2
2

n2

(23)

where x1 is the sample mean value of fuel consumption of manually controlled shoveling,
x2 is the sample mean value of fuel consumption of optimized shoveling trajectory, s1 is the
sample standard deviation of fuel consumption of manually controlled shoveling, s2 is the
sample standard deviation of fuel consumption of optimized shoveling trajectory, n1 is the
sample number of fuel consumption of manually controlled shoveling, n2 is the sample
number of fuel consumption of optimized shoveling trajectory.

5.2. Discussion

This paper is based on the constructed automatic operation platform of the wheel
loader. The mathematical model of fuel consumption is established by SVM. And the
optimized shoveling trajectory with three different engine speeds in the gravel pile and
the sand pile is obtained by combining IPSO. By comparing with the fuel consumption
of manually controlled shoveling, the fuel consumption with the optimized shoveling
trajectory has been significantly reduced. In this study, only the effect of different engine
speeds and different shoveling trajectories on fuel consumption has been considered. There
are other influencing factors for fuel consumption. The main factors include the driver’s
operating ability and the age of the wheel loader. The driver’s operating ability will directly
affect the fuel consumption, varying from two to three times for different drivers [42].
The influence of manual operation on fuel consumption mainly includes the selection of
insertion depth [43], the bucket attitude control during shoveling [44], and the cooperation
between the gas pedal and the brake pedal [45]. The power possessed by the wheel loader
is different at different engine speeds. When the engine speed is low, if the insertion is
too deep, the bucket will get stuck in the pile and cause the tires to slip, increasing fuel
consumption. Moreover, if the bucket is turned too much during the shoveling process,
the resistance to the bucket will surge, which requires additional fuel consumption. It is
worth noting that the shoveling process is not a uniform speed process, which needs a
moderate increase and decrease, that is, better cooperation between the gas pedal and the
brake pedal. For the age of the wheel loader, it is sure that with the increase in use time,
there will be different degrees of wear between the mechanisms, and fuel efficiency will be
reduced. In particular, the bucket tip of the bucket, as the part that contacts the pile, suffers
the most wear during the long-term shoveling process [46]. Timely replacement or repair of
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bucket tips is an effective way to reduce fuel consumption. Automatic shoveling of wheel
loaders has undoubtedly become the mainstream development trend in the future [47,48],
and automatic shoveling means a more standard operation mode, higher fuel economy,
and a corresponding reduction in wear for wheel loaders. At the same time, human safety
is ensured to a large extent. Most importantly, automatic shoveling is an effective way
to reduce fuel consumption. Azulay et al. [49] developed a controller based on deep
reinforcement learning. They conducted experiments on a shoveling robot with three
degrees of freedom, which included lift, turn, and speed, and the shoveling efficiency of
the robot with this controller was significantly higher than that of the robot with manual
control. Dadhich et al. [50] proposed a time-lag neural network-based shoveling operation
method for wheel loaders was conducted, and several experiments were successful, with
only 26% longer operation time and improved fuel economy for the same shoveling weight.
Huang et al. [51] established an automatic shoveling model for wheel loaders by Q-learning,
which could reduce fuel consumption by 8.0% and 10.6%, respectively, compared to manual
operation by two drivers. Our study promotes the development of automatic shoveling
by planning a reasonable shoveling trajectory for it. Moreover, it demonstrates excellent
advantages and potential compared to manually controlled shoveling.

In this study, we consider only the fuel consumption with an optimized shoveling tra-
jectory. However, the shoveling weight is the critical indicator for evaluating the efficiency
of wheel loaders. The importance of shoveling weight and fuel consumption varies for
different shoveling environments. It is essential to recognize that higher shoveling weights
are not better. If the wheel loader is overloaded for a long time, it may lead to greater
wear on the wheel loader and reduce its service life. In conclusion, the weighting between
shoveling weight and fuel consumption must be determined in actual operation. In the
future, we will optimize the shoveling trajectory for the actual shoveling environment to
balance fuel consumption and shoveling weight. In the meantime, we have only tested in
gravel piles and sand piles. Although these two materials are highly representative, we
plan to extend them to other applications, such as large rocks. As the material size and
irregularities increase, the bucket will shake significantly during shoveling and may even
deviate from the planned shoveling trajectory. We must ensure that this deviation is within
an acceptable range. Of course, the control of the shoveling process will also become a
new challenge.

6. Conclusions

In this study, the shoveling trajectories of gravel and sand are optimized at different en-
gine speeds. The corresponding optimized trajectories were obtained with the optimization
objective of reducing the fuel consumption of shoveling operations. The results show that
the optimized shoveling trajectory effectively reduces the fuel consumption of shoveling
operation, and the main conclusions are as follows.

1. In this study, the factors with a strong influence on the fuel consumption of shoveling
operations are screened by experimental analysis and KPCA. The factors with a strong
influence are initial velocity, the wheel loader displacement in the insertion phase,
the shoveling weight, the operation time, and the wheel loader displacement in the
scooping phase. KPCA results show that the cumulative contribution rate of the
above five factors can reach 90%. Meanwhile, the grey relation coefficients between
key factors of fuel consumption influence and fuel consumption are all greater than
0.75. It proves that the screening of key factors of fuel consumption influenced by
KPCA is effective.

2. In this study, the fuel consumption model is established by SVM, and the penalty
factor and kernel function parameters in SVM are optimized by CV. The SVM fuel
consumption model has high stability and generalization ability, and the deviation
between the predicted and true values of the model is small. In the gravel samples, its
ARE is 4.91%, RMSE is 5.91, and R2 is 0.9764. While in the sand samples, the ARE is
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3.49%, RMSE is 3.08, and R2 is 0.9494. The deviation between the true values and the
predicted values from the SVM fuel consumption model is small.

3. In this study, the optimized shoveling trajectories are obtained by IPSO for shoveling
gravel and shoveling sand at three engine speeds. Validation experiments are con-
ducted based on the optimized trajectory and compared with the sample data fuel
consumption and manually controlled shoveling fuel consumption. The results show
that the optimized trajectory can significantly reduce the fuel consumption of shovel-
ing operations. For shoveling gravel, the average fuel consumption of the validation
experiment is reduced by 60.93%, 45.79%, and 49.10%, respectively, compared with the
sample average fuel consumption with three engine speeds. For shoveling sand, the
average fuel consumption in the validation experiment is reduced by 30.93%, 35.56%,
and 28.59%, respectively, compared with the sample average fuel consumption with
three engine speeds. Compared with manually controlled shoveling gravel and sand,
fuel consumption can be reduced by 27.66% and 24.34%, respectively.
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Abstract: In the wake of advancing technology, autonomous vehicles and robotic systems have
burgeoned in popularity across a spectrum of applications ranging from mapping and agriculture
to reconnaissance missions. These practical implementations have brought to light an array of
scientific challenges, a crucial one among them being Coverage Path Planning (CPP). CPP, the
strategic planning of a path that ensures comprehensive coverage of a defined area, while being
widely examined in the context of a single-robot system, has found its complexity magnified in the
multi-robot scenario. A prime hurdle in multi-robot CPP is the division and allocation of the operation
area among the robots. Traditional methods, largely reliant on the number of robots and their initial
positions to segment the space, often culminate in suboptimal area division. This deficiency can
occasionally render the problem unsolvable due to the sensitivity of most area division algorithms
to the robots’ starting points. Addressing this predicament, our research introduced an innovative
methodology that employs Affinity Propagation (AP) for area allocation in multi-robot CPP. In our
approach, the area is partitioned into ‘n’ clusters through AP, with each cluster subsequently assigned
to a robot. Although the model operates under the assumption of an unlimited robot count, it offers
flexibility during execution, allowing the user to modify the AP algorithm’s similarity function factor
to regulate the number of generated clusters. Serving as a significant progression in multi-robot CPP,
the proposed model provides an innovative approach to area division and path optimization, thereby
setting a strong foundation for future exploration and practical enhancements in this field.

Keywords: affinity propagation; area allocation; coverage path planning

1. Introduction

Over the past few decades, we have witnessed an exponential advancement in technol-
ogy that has fundamentally reshaped the global landscape [1]. With a broad gamut ranging
from telecommunications and computing to artificial intelligence and robotics, these tech-
nological breakthroughs have drastically altered the ways in which humans operate and
perform tasks [1–3]. Once labor-intensive or monotonous tasks are now executed with
unparalleled speed, precision, and efficiency, largely due to automation and the advent of
intelligent systems.

A predominant player in this transformational journey has been the field of robotics.
Robots, once confined to the realms of science fiction, now pervade numerous sectors, such
as manufacturing [4], healthcare [5], agriculture [6–8], and logistics [9], serving as invalu-
able tools for enhancing productivity and improving the quality of services. In disaster
management, robots have been instrumental in executing search-and-rescue missions in
environments too hazardous for human intervention [10,11]. In agriculture, robotic systems
are leveraged for tasks ranging from seeding to harvesting, contributing significantly to
precision farming.

However, as with any emergent technology, the rapid rise of robotics has posed a
unique set of challenges, requiring innovative solutions. A prominent challenge in the
domain of robotics is Coverage Path Planning (CPP). In essence, CPP is the process of
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developing a route or path that allows a robot to cover an entire operational area in an
efficient manner [12,13]. A vital aspect of numerous applications, CPP is integral to tasks
such as field inspection in agriculture [14–16], where a robotic system needs to cover a farm
field to assess crop health.

The complexity of CPP intensifies when we move from single-robot systems to multi-
robot systems. Multi-robot CPP involves devising paths for multiple robots to ensure
comprehensive and efficient coverage of a larger or more complex area [17–26]. A pressing
issue in multi-robot CPP is the division of the operational area among the robots, a problem
known as the ‘area division problem’. For example, consider a team of drones deployed
for large-scale environmental monitoring or a fleet of autonomous vehicles performing a
search-and-rescue mission in a disaster-stricken area. The optimal allocation of specific
regions to individual robots can drastically enhance the coverage efficiency and operational
coordination, reducing redundancies and saving valuable time. Addressing the area
division problem effectively is paramount for the successful deployment of multi-robot
systems across a range of real-world applications. As such, it remains a vibrant area of
research, inviting novel solutions and methodologies that can meet the evolving demands
of modern robotic systems.

Several researchers have proposed models to resolve the multi-robot CPP problem,
yet they often encounter significant limitations. A prevalent limitation of multi-robot
CPP algorithms lies in the arbitrary selection of the number of robots and their starting
locations. Both these factors wield substantial influence over the efficacy of the algorithm.
For example, an inadequate number of robots may yield incomplete coverage, resulting in
overlooked regions. Conversely, deploying an excessive number of robots can render the
task inefficient and unnecessarily complicated, thus elevating the cost and computational
burden. Likewise, the robots’ initial placement crucially impacts the effectiveness of the
algorithm, dictating the distribution of robots and the thoroughness of area coverage. An-
other major constraint is the limited scalability of the algorithms, referring to the capability
of an algorithm to perform optimally as the number of inputs or variables increases. In
the context of multi-robot CPP, scalability pertains to the algorithm’s ability to manage
expansive environments and multiple robots cooperating to execute a task.

This paper presents a significant contribution to the field of multi-robot CPP by
introducing a novel model for area division predicated on the Affinity Propagation (AP)
algorithm. The fundamental premise of the proposed approach is to deconstruct the multi-
robot CPP problem into a collection of single-robot CPP tasks, which may or may not
be interdependent. While numerous models in the literature adopt a similar divide-and-
conquer strategy, our model distinguishes itself in three vital respects:

(i) The proposed approach assigns territory to robots without arbitrarily defining the
number of robots (and hence the number of areas). The AP clustering algorithm
leverages a weighted similarity index (SI) function to discern similar cells and ascertain
the optimal number of robots for the multi-robot CPP task. This effectively liberates
the user from the responsibility of determining the appropriate number of robots for
the task. To our knowledge, we are the first to incorporate an AP algorithm to address
the multi-robot CPP problem.

(ii) The algorithm proposed in this paper presents a novel perspective on multi-robot area
division, where the number of robots and their respective areas are not predesignated
arbitrarily by the user. A common drawback of many existing algorithms is their
inability to handle scenarios where the robots’ initial positions are in close proximity,
leading to inefficient area division and path planning. Unlike these approaches,
our proposed algorithm demonstrates exceptional resilience to such situations. It
intelligently circumvents the constraints of predefined robot counts and positions,
thereby offering a more flexible and efficient solution for area division in multi-robot
coverage path planning.

(iii) The similarity function of the AP algorithm takes into consideration several factors,
such as layer type, the spatial connectivity of cells, and their “normalized distance”,
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before incorporating them into a cluster. This results in reduced area blending rates,
meaning that the cells within the final clusters created by this method are less likely
to be enveloped by cells from other clusters.

The structure of the remaining manuscript is as follows:
Section 2 of the document introduces similar works from the literature and highlights

their advantages and disadvantages. Following that, in Section 3, the formal problem
definition is provided. The subsequent section, Section 4, elaborates on the algorithm we
propose. Section 5 presents the experimental data and techniques employed to assess
the effectiveness of our algorithm. The algorithm’s limitations, possible performance
improvements, and the usage of parallel computing are discussed in Section 6. Finally,
Section 7 contains concluding remarks.

2. Literature Review

This section will delve into research endeavors in the literature that confront the
multi-robot coverage path planning problem, particularly emphasizing area division and
allocation. The objective of this section is to furnish a comprehensive review of extant algo-
rithms and methodologies employed to mitigate the problem of multi-robot coverage. An
analysis, comparison, and critical evaluation of related works were conducted to highlight
their respective merits and demerits, thereby establishing a foundation for assessing the
scientific contribution and novelty of the model proposed in this paper and identifying
lacunae in the prevailing state-of-the-art.

A widely recognized offline multi-robot CPP algorithm is the one proposed by
Tang et al. [21] using the MSTC* framework. This algorithm primarily aims to gener-
ate coverage paths for multiple robots while considering realistic physical constraints such
as obstacles and communication paths among robots. The MST technique, employed to di-
vide the target environment into smaller sub-regions, forms the backbone of the algorithm.
Robots are then allocated to these sub-areas according to their capabilities and workload
requirements. This algorithm possesses the advantage of addressing physical constraints, a
pivotal aspect in real-world scenarios where robots need to maneuver through complex
and dynamic environments. However, the algorithm does not consider environmental un-
certainties, leading to sub-optimal performance in volatile and dynamic situations. Further,
it predetermines the number of robots, thereby deciding the number of sub-areas. It is
notable that Tang et al.’s problem formulation aligns with the problem formulated in this
paper in terms of area division and allocation, although the specific problem details the
authors address are distinct.

Another noteworthy offline multi-robot CPP algorithm is the one developed by Rah-
man et al. [24] for autonomous radiation mapping using a mobile robot. The primary
objective of this algorithm is to create coverage paths that a single robot can traverse to
conduct radiation mapping in a designated area. The method draws from a genetic algo-
rithm, utilized to generate a multitude of potential coverage paths, and, subsequently, the
optimal path is selected based on criteria such as coverage efficiency and path length. The
flexibility of this algorithm lies in its adaptability; it can be modified to cater to varying
radiation mapping scenarios. Moreover, the algorithm’s computational efficiency makes it
suitable for extensive application. However, it uses the K-means clustering technique to
partition the overall space into smaller sub-spaces, implying that the algorithm necessitates
a completely arbitrary selection of the number of robots.

The DARP algorithm [18] represents a notable approach in the domain of multi-robot
coverage path planning. It offers a systematic solution by dividing the total environment
into distinct sub-areas, each allocated to a specific robot. The primary objective of DARP is
to minimize the total coverage time, accomplished by intelligently dividing the environment
based on its characteristics and the robotic fleet’s capabilities. However, the algorithm
makes predetermined assumptions about the number of robots and their initial positions,
leading to potential limitations in more complex environments.
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An interesting approach was proposed by Idir et al. [19], who suggested a multi-robot
CPP algorithm based on the DARP algorithm. The authors sought to tackle the problem
of weight allocation for multi-robot coverage using a weighted approach. The algorithm
employs a grid-based representation of the environment and segregates the environment
into a collection of cells necessitating coverage. The robots are assigned weights and the
DARP algorithm is utilized to distribute these weights among the robots and determine
their coverage paths. The strengths of this approach encompass handling the weight
allocation problem, thereby enhancing coverage performance, and the ability to manage
large-scale scenarios. Despite its improvements over the original DARP algorithm, it retains
the limitation of being unable to find a solution when the initial positions of the robots are
proximate.

Another DARP-based algorithm was proposed in [25]. The authors presented an
A*-modified DARP algorithm. This modified version of the DARP algorithm assigns
tasks to the appropriate robot and based on an Up-First approach the Spanning Trees are
constructed in order to ensued full coverage of the initial area. The authors claim that,
compared to the original DARP algorithm, their modifications yield higher efficiency and a
higher coverage rate.

A different approach for multi-robot CPP was proposed in [26] that uses Ant Colony
Optimization. The authors introduced an improved Ant Colony Optimization (ACO)
algorithm for single-robot CPP, which optimizes the energy and time consumption by
building the best possible Spanning Tree (ST) and, consequently, an optimal path. For
multi-robot scenarios, the study employed the DARP algorithm [18], dividing the total
area into smaller, equally sized sections, thus simplifying the complex computation. Each
subarea then constructs a spanning tree using the improved ACO. In the final stage, the end
nodes are shared among subareas to develop ideally-shaped spanning trees that minimize
the number of turns in the coverage path. The algorithms are proven to be near polynomial,
and simulation results highlight benefits including complete coverage, no backtracks,
minimum path length, zero preparation time, and the least number of turns. However, the
implementation of this approach still suffers from the drawbacks of the DARP algorithm,
meaning the arbitrary choice of robot’s initial positions.

Given the literature review, it is evident that multi-robot CPP has garnered consid-
erable attention from researchers. However, a direct evaluation and comparison of these
research works is challenging as each paper addresses a subtly different problem. A com-
monality that most offline multi-robot CPP algorithms share, including those mentioned
above, is their reliance on arbitrarily defining the number of robots and sensitivity to the
initial environmental conditions. Further research is imperative to devise new multi-robot
CPP algorithms that are devoid of these limitations, are more efficient, and tailored for
real-world applications. The Affinity Propagation algorithm proposed in this paper demon-
strates the potential to address these issues, and thus presents a significant advancement in
this field.

3. Problem Definition

The effective division of a given environment into distinct sub-areas for the deploy-
ment of multiple robots presents a challenging problem, particularly in the context of
ensuring contiguous access within each sub-region. To lay a solid foundation for our
investigation, we embarked on a mathematical formulation of this problem, succinctly
capturing the essential aspects and constraints involved. This mathematical model serves as
an unambiguous representation of the underlying problem, illuminating its core elements
and thus guiding the development of algorithmic solutions.

Our environment is described as a binary matrix representation, defining accessible
areas and obstacles. We considered robots that are assigned to different sections of this
environment, each section described as a ‘sub-area’. We also incorporated the distinct nature
of the terrain, assigning different types to each cell in the environment. The fundamental
goal was to find a valid division of the environment into sub-areas, each assigned to a
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unique robot, with the sub-areas satisfying a set of constraints related to accessibility and
continuity. The mathematical model elucidated below presents a precise description of the
problem, facilitating further discussion and solution design.

Given:

• An environment A of size X × Y represented as a binary matrix, A =
[
ai,j

]
, where

ai,j ∈ {0, 1} for all 1 ≤ i ≤ X and 1 ≤ j ≤ Y. In the environment matrix A, ai,j = 0
signifies an obstacle, whereas ai,j = 1 represents an accessible cell. By definition, robots
can only traverse accessible cells.

• A set of robots R = {r1, r2, . . . , rn}, where n is the number of robots.
• A matrix T =

[
ti,j
]
, where, that describes the type of each cell ai,j.

• A matrix E =
[
ei,j
]
, where, that describes the elevation level of each cell ai,j.

• An elevation weight value EW which represents the elevation weight importance factor,
and a floor type FW which represents the floor type elevation weight importance factor.

• A matrix Tw = [w1, w2, . . . , wn] where wi represents the weight assigned to the i th
floor type. The number of values in Tw is equal to the number of different floor types.
Based on this information, we seek:

• A set of sub-areas S = {s1, s2, . . . , sn}, where each sub-area si is a contiguous partition
of A assigned to robot ri. Formally, we define the following constraints:

• Each sub-area si maintains 4-neighbor continuity for all its accessible cells (Figure 1),
i.e., for each pair of accessible cells cm1,n1 and cm2,n2 in si, there exists a sequence of
accessible cells cmk ,nk , k = 1, . . . , p, such that cm1,n1 = cm1,n1 , cmp ,np = cm2,n2 , and cmk ,nk

is a 4-neighbor of cmk+1,nk+1 for all k = 1, . . . , p − 1. The 4-neighbor criterion specifies
that connectivity between cells must be either horizontal or vertical—not diagonal.
Thus, in essence, every cell in the sequence is horizontally or vertically adjacent to its
successor, for all values of k ranging from 1 to p − 1.

• This condition ensures a continuity or chain of 4-neighbor connections between any
two accessible cells within a given sub-area, thereby preserving the rule of 4-neighbor
connectivity throughout the entire grid.

• The environment A is the union of all sub-areas S, i.e., A = Un
i=1si.

• The intersection of any two distinct sub-areas si and sj for i �= j is empty, i.e., si∩ sj = ∅

for all i �= j.
• The problem is to find a bijective function f : R → S such that f (ri) = si for all

1 ≤ i ≤ n, fulfilling the constraints mentioned above.

Figure 1. Image (a) depicts a cluster that consists of a single cell (blue cell). Green cells represent the
cells that have 4-neighbor connectivity with the blue cell. Image (b) depicts a larger environment
along with its 4-neighbors. Essentially, 4-neighbor connectivity between cells prevents a robot from
moving diagonally within the environment.

4. The Proposed Algorithm

4.1. Data Initialization

To develop a strong solution for the multi-robot CPP problem, we introduced a new
algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly
used for dividing and assigning areas. In our approach, we rely on AP to group data points
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into meaningful clusters. The algorithm operates by exchanging messages containing real
values among the data points. These messages help the algorithm determine the best
number of clusters and how to assign the data points to those clusters. The algorithm
continues this message exchange process until a consensus is reached on the optimal cluster
configuration. This methodology allows us to bypass the necessity to predetermine the
number of robots or the dimensions of the respective sub-areas arbitrarily. As opposed to
conventional applications, we employed a meticulous transformation process to adapt our
grid-like environment, A, into a dataset suitable for AP (Figure 3).

Figure 2. The initialization step prepares the data, converts the grid to a set of data points, and
calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility
matrix reflects how well suited a data point is to serve as the exemplar for the other data points. Next,
the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each data
point to serve as its exemplar. Finally, the algorithm iterates until the maximum number of iterations
set, or until there are no changes from the last iteration.

Figure 3. The initial environment (a) consists of obstacles (black cells), cells of type grass (green cells),
and cells of type asphalt (gray cells). In order to divide the environment into multiple sub-areas, we
first have to convert the environment into a set of data points. (b) depicts the data points in a X, Y
Cartesian coordinate system.

4.2. Calculating Normalized Distance

In this process, each cell within the initial environment is mapped onto a data point
in a two-dimensional coordinate system. To discern the relationship between data points,
we define a similarity function. In many standard applications of AP, similarity is gauged
by the negative of Euclidean distance. This inversely proportional relationship implies a
smaller similarity for larger absolute distances between data points.
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However, the application of Euclidean distance to our context of CPP within a two-
dimensional grid, where we aim to preserve each cluster’s continuity and its cell’s 4-
neighbor relationship, is not fitting. This metric fails to account for obstacles that may
disrupt the path between two locations. This discrepancy between Euclidean distances
and actual traversable distances can lead to significant errors, with the disparity being
exacerbated by the presence of numerous obstacles.

Understanding the inherent constraints of the traditional approach, we adapted our
similarity function to include a more tailored and nuanced model (Algorithm 1).

Algorithm 1: Calculating the normalized 4-neighbor distance between two points

1. Input: Binary matrix A with dimensions X by Y, starting point (x1, y1), and target point (x2, y2)
2. Output: minimum distance D between the starting and target points
3. Function 4_neighbor_actual_distance (A, x1, y1, x2, y2):
4. Step 1: Initialize a distance matrix D with dimensions X by Y, set all elements to infinity
5. Step 2: Initialize a queue Q
6. Step 3: Set D [x1, y1] = 0 and add (x1, y1) to Q
7. Step 4: While Q is not empty:
8. Step 4.1: Dequeue a point (x, y) from Q
9. Step 4.2: Loop through each of its four neighbors (xn, yn) in the environment A:
10. Step 4.2.1: If (xn, yn) is an obstacle (A[xn, yn] = 0), skip this neighbor
11. Step 4.2.2: If D[xn, yn] > D[x, y] + 1:
12. Step 4.2.2.1: Update D[xn, yn] = D[x, y] + 1
13. Step 4.2.2.2: Add (xn, yn) to Q
14. Step 5: Return D[x2, y2] as the minimum distance D between the starting and target points
15. End Function

Our novel algorithm not only calculates the minimum 4-neighbor distance between
cells, similar to a BFS approach, but also takes into account the type of floor and elevation of
each cell, thereby capturing crucial information about the landscape’s unique characteristics.
It thereby ensures a more accurate and practical representation of the environment’s
traversability. Incorporating these parameters directly into the similarity function provides
a more realistic framework for area division in 2D grid environments. This ultimately leads
to enhanced efficiency and effectiveness in our CPP solutions, as it ensures more prudent
and strategic allocation of sub-areas to robots, factoring in complex grid conditions that
could impact their performance.

4.3. Calculating the Similarity Matrix

In the similarity matrix, each element holds a singular metric quantifying its resem-
blance to the other elements in the adjacent vicinity (Algorithm 2). The degree of similarity
between any two elements augments in direct proportion with the increase in the similarity
value. It warrants highlighting that, due to the intrinsic characteristics of the AP method,
the similarity function S(p1, p2) may not necessarily be identical to S(p2, p1). Although
this directional feature is not incorporated in the current implementation of our proposed
methodology (Figure 4), potential future adaptations of the algorithm may consider its
integration to facilitate directional clustering of cells and other specific elements. Utilizing
the AP methodology, we classified data points into distinct sub-regions for each robot,
following an assessment of the similarity quotient between each pair of data points. The
AP algorithm operates through the transmission of messages that denote a data point’s
proclivity towards a particular cluster. Subsequent to the resolution on the number of
clusters and the allocation of data points to respective clusters, these messages are subject
to iterative refinement.
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Algorithm 2: The procedure that calculates the weighted Similarity Matrix S

1. Input:
2. Environment matrices: binary A, weight W, elevation E, floor F
3. Significance multipliers: t, q, r
4. Output: similarity matrix S
5. Function similarity_calculation(A, X, Y, W):
6. Step 1: Initialize an X by Y matrix S
7. Step 2: Loop through each pair of data points (x1, y1) and (x2, y2) in the environment A:
8. Step 2.1: Calculate the distance between the data points:
9. d = 4_neighbor_actual_distance (x1, y1, x2, y2)
10. Step 2.2: Calculate the elevation difference
11. e = |E[x1, y1]− E[x2, y2]|
12. Step 2.3: Calculate the floor discrepancy
13. f = |F[x1, y1]− F[x2, y2]|
14. Step 2.2: Multiply each metric by its weight factor:
15. d = t × d
16. e = q × e
17. f = r × f
18. Step 2.3: Store the similarity between the data points in the similarity matrix S:
19. S[x1, y1, x2, y2] = −(d + e + f )
20. Step 3: Return the similarity matrix S
21. End Function

Figure 4. Two points (denoted with blue color) will always have the same similarity matrix with each
other. In practice, this means that going from point p1 to point p2 has the same cost as going from
point p2 to p1.

4.4. Generation of Clusters

After calculating the similarity between all pairs of data points, the AP algorithm was
used to cluster the data points into sub-areas for each robot. The AP algorithm works by
passing messages between data points, which indicate their preference for a particular
cluster. These messages are updated iteratively until a consensus is reached on the number
of clusters and which points belong to which cluster.

Upon the conclusion of the iterative message-passing phase, the AP algorithm pro-
ceeds towards the establishment of sub-areas (Algorithm 3). This crucial stage determines
the most suitable exemplar for each cluster—a data point that accrues the maximum prefer-
ence value when both availability and responsibility are taken into account. Consequently,
each data point (cell) is assigned to the exemplar of its respective cluster.
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Algorithm 3: Generating the sub-areas using AP

1. Input: grid-like area A with dimensions X by Y
2. Output: sub-areas for each robot
3. Step 1: Convert the grid-like area A into a set of data points
4. Represent each grid cell as a data point in a two-dimensional coordinate system
5. Step 2: Calculate the similarity between every pair of data points
6. Calculate the similarity based on Algorithms 1 and 2 (taking into consideration the weight
factor)
7. Store the similarity in a matrix S
8. Step 3: Initialize messages between data points
9. Initialize two matrices, R and A, to store the messages between data points
10. Initialize the self-similarity matrix, S, to store the similarity between a data point and itself
11. Step 4: Iterate until convergence
12. Update the responsibility matrix, R
13. Update the availability matrix, A
14. Step 5: Identify exemplars
15. Identify the data points with the highest responsibility and availability values as
exemplars
16. Step 6: Assign sub-areas to each robot
17. Assign each non-exemplar data point to the closest exemplar (only if they are spatially
connected using the 4-neighbor scheme)
18. Group the data points assigned to each exemplar into a sub-area
19. Step 8: Return the sub-areas for each robot

A key attribute of the proposed algorithm lies in its capacity to autonomously ascertain
the optimal number of clusters (sub-areas), without any need for user-defined inputs. This
ability to self-regulate cluster formation ensures flexibility and adaptability, which is
particularly beneficial in complex real-world applications.

The final output of the algorithm is a list of cluster labels for each data point in the
initial environment, indicating the respective robot assignment for each cell (Figure 5). This
clustered set of data points serves as the foundation for subsequent stages of the proposed
model, leading to the final path planning for the robots.

Figure 5. The initial environment as depicted in (a) contains two layer types (denoted by green and
gray cells). The output of the algorithm in (b) shows the two clusters (blue and yellow), as they were
generated by the algorithm. It is worth mentioning that different values of the importance value Tw

may result in slightly different clusters.

5. Experimental Results

In this section, we present the findings obtained from our in-depth analysis of the
proposed algorithm. The experimental results validate the efficiency and adaptability of
our algorithm in effectively decomposing the environment into suitable sub-areas. The
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evaluation metrics employed primarily centered on the criteria of computational time and
the quality of the generated clusters.

In terms of comparison with existing algorithms, it is important to highlight that our
proposed AP-based algorithm addresses a unique problem in the field of multi-robot CPP.
In the literature, many algorithms attempt to solve the issue of dividing an initial area
into multiple sub-areas for each robot. However, the identical problem that our algorithm
solves, without arbitrarily pre-determining the number of robots and their initial positions,
is lacking in the current literature. Nevertheless, we embarked on an indirect comparative
analysis, contrasting our algorithm’s performance with traditional algorithms for area
division in CPP, which rely on pre-specified robot counts and locations. The comparative
study primarily emphasized the improvements in efficiency, flexibility, and adaptability
introduced by the proposed algorithm. Despite the inherent differences in the problem
contexts, the comparative analysis provided a clear demonstration of the strides made by
the AP-based approach, particularly in situations where the initial robot positions are in
close proximity.

The conducted simulations predominantly operated in two meticulously constructed
environments of distinct sizes, each featuring distinct characteristics. Both environments
were generated using a pseudo-random process, offering a unique combination of accessible
areas and obstacles along with varying environmental types, ensuring the robustness of
the simulated scenarios.

The smaller 24 × 24 environment served as an essential proving ground for our
proposed algorithm, presenting a grid with a variety of unique parameters and diverse
characteristics. The total area consisted of 576 cells, with approximately 80% of the grid
being accessible and approximately 20% assigned as obstacles. These obstacles were
evenly scattered throughout the grid to simulate potential hindrances that robots might
encounter in real-world scenarios. Beyond mere accessibility, cells in the environment were
characterized by two distinct terrain types—grass and asphalt. The grass cells accounted
for roughly 60% of the accessible area, while the asphalt cells constituted the remaining 40%.
This bifurcation of terrain types aimed to emulate real-world environments where robots
might encounter varied terrains requiring different path planning strategies and navigation
capabilities. To augment the realism of the simulation, cells were assigned varying elevation
levels. The elevations ranged from 0 to 10 units, with a standard deviation of three units to
ensure a substantial variation in elevation across the grid. An elevation weight factor of 0.1
was applied to indicate the importance of elevation. Similarly, the type of terrain also had
an associated weight factor to indicate the importance of terrain type.

Subsequently, a second, larger, and more complex environment was introduced for
a more in-depth simulation. The dimensions of this environment are 100 × 100. The rest
of the parameters were the same as those of the previous smaller environment. Due to its
substantial size, detailed visualization was rendered impractical. Nevertheless, we present
empirical data and statistics to illustrate the algorithm’s performance. This larger grid
serves to emulate more complex real-world scenarios, thereby demonstrating the scalability
and adaptability of the proposed AP algorithm in diverse, challenging situations.

The computational experiments were conducted on a dedicated testbed configured
to ensure accurate and consistent results. The hardware setup encompassed a high-
performance workstation equipped with an Intel Core i7-9700K 8-core processor clocked at
3.60 GHz, bolstered with 32 GB of DDR4 RAM and enabling efficient data handling and
manipulation, which were particularly critical given the size of the datasets and complexity
of operations involved in Affinity Propagation.

Table 1 shows the experimental results for each setup. For each algorithm, we con-
ducted 20 experiments using the aforementioned parameters. The table shows the average
values for the number of generated clusters and the cluster quality.
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Table 1. Experimental results for two environments using three clustering algorithms for CPP.

Environment Size Algorithm Generated Clusters Cluster Quality

24 × 24 [18] n = 2 2 0.66
24 × 24 [19] n = 2 2 0.84
24 × 24 [25] n = 2 2 0.89
24 × 24 Proposed 2.19 0.91

100 × 100 [18] n = 2 2 0.39 (often failed to find solution)
100 × 100 [19] n = 2 2 0.85
100 × 100 [25] n = 2 2 0.92
100 × 100 Proposed 6.52 0.94

It is worth mentioning that it is difficult to evaluate the proposed algorithm by directly
comparing it with others found in the literature, since these algorithms are not config-
urable to identify the different cell types, elevation, and importance factor. Therefore, we
could only compare the results of these algorithms by taking into account the quality of
the clustering. The quality of clustering was calculated using the Silhouette Coefficient
(SC) [28].

The SC, also known as Silhouette Score, is a well-established and popular metric for
evaluating the quality of a clustering algorithm. The essence of this method lies in its dual-
faceted measurement approach, quantifying both cohesion and separation simultaneously
for each individual cell. It operates by comparing the average distance of a cell to all other
points within its own cluster (cohesion) against the average distance to points in the nearest
cluster (separation). The coefficient thus provides an aggregate measure of how similar
a given data point is to its own cluster relative to other clusters. Higher values of the SC
suggest that the cell is well-clustered and lower values imply that the specific cell might
have been better assigned to a neighboring cluster. It is widely regarded well due to its
intuitive interpretation, its capability to work with any distance metric (in our example the
normalized distance as presented in Algorithm 1), and its agnosticism towards the specific
clustering algorithm used. To properly evaluate the proposed algorithm, we calculated the
SC not only for the average distances but also for the similarity with regard to elevation
and floor type. The total SC calculated was weighted based on the respective weights of
floor type and elevation.

A more nuanced evaluation of the proposed algorithm was achieved by conducting
multiple runs in the same environment but with varied importance factors attached to
floor type and elevation. This exploratory approach aimed to investigate the algorithm’s
capability to adapt and respond to shifts in preference and the importance of environmental
features. For this experiment, the main focus was on gauging the homogeneity of the
resulting clusters. Homogeneity here was defined as the proportion of a cluster that
exhibits uniformity in terms of either floor type or elevation. When the importance factor
assigned to floor type was modified, we anticipated observing clusters that largely contain
the same floor type. Consequently, the algorithm’s sensitivity to floor type would be
reflected by the degree of homogeneity of the resulting clusters. Analogously, when the
emphasis is shifted to elevation, the homogeneity of the clusters, in terms of their elevation,
becomes the pivotal measure of algorithm performance. The experimental results are
presented in Table 2.

The experimental results indicate that the importance factors affect the final clusters
and their cells. It is important, however, to fine tune the exact values for each multi-robot
CPP task, based on the capabilities of the available robots. A visual representation of a
10 × 10 environment and the output of the algorithm with different importance factor TW
are depicted in Figure 6. A larger 24 × 24 environment is depicted in Figure 7.
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Table 2. Experimental results from the execution of the proposed algorithm in the same environment
using different elevation Ew and floor type FW weight factors. These values range from 0 to 1 and
describe how important the preservation of elevation or floor type within a generated sub-area is.
Increasing or decreasing both values at the same time reduces the importance of both variables within
the clustering process.

Environment Importance Factors (Ew, FW) Height Homogeneity Floor Homogeneity

100 × 100 (0, 0) 0.61 0.49
100 × 100 (0.8, 0) 0.75 0.45
100 × 100 (0.8, 0.8) 0.59 0.53
100 × 100 (0, 0.8) 0.53 0.78

Figure 6. The initial environment as depicted in (a) contains two layer types (green and gray). The
second image (b) shows the output clusters of the algorithm (blue and yellow) with an importance
factor TW = 0. The third image (c) shows the output of the algorithm for the same input environment
where the importance factor TW is equal to 0.8. Increasing the importance factor of floor type
increases the likelihood that the algorithm will consider two cells of the same type to be more similar.

Figure 7. An example environment with dimensions 24 × 24. The initial environment (a) contains
two layer types (green and gray). The second image (b) shows the output clusters of the algorithm
(blue and yellow) with an importance factor TW = 0.3.

6. Discussion

6.1. Limitations

While this paper proposed an innovative application of AP in the field of multi-robot
CPP, it is not without limitations. A clear understanding of these potential constraints is
essential for refining the algorithm, enhancing its applicability, and identifying areas for
future research.
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The primary limitation arises from the AP’s inherent computational complexity. With a
time complexity of O(N2T), where N represents the number of data points and T denotes the
number of iterations, AP can be computationally expensive for large-scale environments.
This computational cost is primarily due to the calculation of the similarity matrix and
the iterative exchange of “responsibility” and “availability” messages. This renders the
algorithm less practical for real-time operations, particularly for larger environments, as it
may lead to increased latency in area division and subsequent path planning.

Another important limitation is the static nature of the AP algorithm, which is very
hard if not impossible to adjust for dynamic environments. The AP algorithm, as applied
in this context, assumes a static environment where the position of obstacles and the type
of each cell are known beforehand. In scenarios where the environment changes over time,
the algorithm would need to be rerun, potentially leading to delays and inefficiencies. The
ability to adapt to dynamic environments remains a significant challenge in the field of
multi-robot CPP and represents a key area for future research.

6.2. Performance Improvement

The performance of the AP algorithm, as is the case with most computational proce-
dures, is pivotal in real-world applications. The urgency for efficiency and execution speed
improvements is even more pronounced when dealing with multi-robot coverage path
planning, given the scale of the task and the inherent complexity associated with environ-
ment mapping and path planning. In light of this, several strategies can be considered to
enhance the execution speed and overall efficiency of the AP algorithm.

One crucial step of the AP algorithm is the calculation of the similarity matrix. Given
that this phase accounts for a significant portion of the computations (approximately 40%),
improving its efficiency is imperative. Given its intrinsic parallelizable nature, where the
similarity between each pair of data points can be calculated independently, we could
potentially harness the power of parallel computing. By distributing the calculation of
similarity measures across multiple cores or nodes in a parallel computing environment,
we can expedite this process markedly, thereby increasing the overall efficiency of the AP
algorithm.

On the other hand, the message passing phase of the AP algorithm, which is pivotal
for its iterative structure, is more challenging to parallelize. Although in theory, each
“responsibility” and “availability” message update could be computed in parallel, the
iterative nature of the AP algorithm necessitates the results of each preceding iteration.
Nonetheless, we could explore certain forms of “soft” parallelization, such as utilizing
vectorized operations or parallel map functions provided by high-level languages and
libraries. Even though this approach would not offer true parallelization due to each
iteration still needing to await the completion of all message updates, it could still provide
substantial speed improvements.

Besides parallel computing, other potential strategies for improving the efficiency
of the AP algorithm could include optimization of the algorithm’s parameters or the
application of hardware accelerators such as Graphics Processing Units (GPUs) [29]. Fine-
tuning parameters like the damping factor or the preference value could potentially reduce
the number of iterations required for convergence, thereby accelerating the execution speed.
Similarly, using GPUs, which are particularly suited for parallelizable tasks, could lead
to substantial reductions in computation time. However, such strategies would require
careful evaluation to balance efficiency gains against the potential impact on the quality of
the results.

7. Conclusions

The presented research introduces a paradigm shift in the domain of multi-robot CPP
by utilizing AP for optimally dividing the operational area among the robots. Instead of
using traditional methods, which largely rely on the number of robots and their initial
positions, this innovative methodology partitions the area into ‘n’ clusters using AP and
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subsequently assigns each cluster to a robot. This model, while functioning under the
assumption of an unlimited number of robots, provides a unique flexibility by allowing
the modification of the AP algorithm’s similarity function factor to control the number of
generated clusters.

One field where the proposed algorithm can find profound applications is precision
agriculture. This industry, already substantially automated, requires precision farming,
which involves the distribution of multiple tasks, such as seeding, fertilizing, and harvest-
ing, across a fleet of robotic entities. Identifying the optimal number of sub-areas becomes
paramount to prevent overlap and redundancy in operations. The proposed algorithm,
by facilitating automatic partitioning of farmland into sub-areas based on factors such as
crop type and topography paves the way for improved resource management. It ensures
optimal task distribution amongst autonomous agricultural machines, enhancing their
overall operational efficiency, thereby contributing to a significant reduction in the time
and cost associated with agricultural practices.

Additionally, this algorithm can significantly revolutionize urban search and rescue
operations. Typically, these operations are time-sensitive, requiring the division of large,
affected areas into smaller manageable sub-areas to enable quick and efficient search
strategies. The conventional method of dividing areas based on available rescuers may not
be effective, especially in scenarios where the rescuers are robotic entities. By employing
this algorithm, we could efficiently partition the search area into the appropriate number of
sub-areas (clusters) regardless of the number of robots, optimizing the search strategy and
increasing the likelihood of successful rescue operations. Moreover, with the AP algorithm’s
adaptable similarity function factor, the rescue team has flexibility in regulating the number
of generated clusters, facilitating a more efficient and coordinated search operation.

As a significant progression in multi-robot CPP, this methodology paves the way
for novel research directions and practical enhancements in this field. The capability to
deliver effective area division and path optimization, without burdening the user with the
arbitrary decision of the number of robots or their initial positions, sets a new benchmark
for multi-robot CPP implementations. Moreover, our work provides a strong foundation
for the development of enhanced strategies that can address the existing complexities of
multi-robot CPP and further expedite the deployment of autonomous systems in diverse
fields ranging from agriculture to reconnaissance missions. Future work will focus on
refining the proposed model, incorporating more complex environmental factors, and
exploring the potential of integrating this method with different path planning algorithms
for better performance.
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Abstract: In complex environments, path planning for mobile robots faces challenges such as insensi-
tivity to the environment, low efficiency, and poor path quality with the rapidly-exploring random
tree (RRT) algorithm. We propose a novel algorithm, the complex environments rapidly-exploring
random tree (CERRT), to address these issues. The CERRT algorithm builds upon the RRT approach
and incorporates two key components: a pre-allocated extension node method and a vertex death
mechanism. These enhancements aim to improve vertex utilization and overcome the problem of
becoming trapped in concave regions, a limitation of traditional algorithms. Additionally, the CERRT
algorithm integrates environment awareness at collision points, enabling rapid identification and
navigation through narrow passages using local simple sampling techniques. We also introduce the
bidirectional shrinking optimization strategy (BSOS) based on the pruning optimization strategy
(POS) to further enhance the quality of path solutions. Extensive simulations demonstrate that the
CERRT algorithm outperforms the RRT and RRV algorithms in various complex environments, such
as mazes and narrow passages. It exhibits shorter running times and generates higher-quality paths,
making it a promising approach for mobile robot path planning in challenging environments.

Keywords: path planning; RRT; path optimization; complex environments

1. Introduction

Path planning is a crucial research field in the robotics industry. Its purpose is to find
a safe, collision-free path for a mobile robot to traverse from its starting position to its
destination in a specified area that contains obstacles [1]. It has widespread applications
in complex environments such as urban roads, factory production lines, and outdoor
exploration. Currently, path planning mainly uses algorithms based on search, heuristics,
and sampling. Among them, sampling-based path planning algorithms have become a
research hotspot due to their wide applicability, ease of implementation, and lack of need
to construct complex structures [2].

In the class of sampling-based algorithms, the rapidly-exploring random tree (RRT)
algorithm, which is widely used, can avoid complex space constructions by implementing a
collision check module, making it suitable for solving high-dimensional or multi-constraint
planning problems [3]. However, the efficiency of the RRT algorithm is typically affected
when it faces complex environments such as multiple obstacles, mazes, narrow passages,
and concave traps. In recent years many researchers have proposed improved RRT al-
gorithms to address these issues. For instance, Kuffner et al. propose a straightforward
and efficient bidirectional random tree algorithm, denoted as RRT-Connect [4], alternately
expands two trees to improve the algorithm’s efficiency. However, its performance still
suffers in complex environments. Tahirovic et al. introduced a rapid exploration algo-
rithm named Rapid Random Vine (RRV) [5] for efficient exploration. It determines the
local environment type using principal component analysis (PCA), a dimensionality re-
duction technique that captures the most significant variations in the data. By analyzing
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the relationships among environmental features, RRV selects an appropriate direction in
which to expand, thereby solving the narrow passage problem well. However, its perfor-
mance is poor in complex environments without passages. Hsu et al. [6] augmented the
Rapidly-Exploring Random Tree (RRT) algorithm with a bridge-testing technique, which
increased the sampling probability in narrow passages and decreased the sampling prob-
ability in non-interest regions, thereby addressing narrow passage issues. However, the
unevenness of the sampling probability may cause the algorithm to ignore some feasible
paths. Wu et al. proposed the Fast-RRT [7] algorithm, which detects narrow passages by
re-randomizing the expansion direction at collision points, but the algorithm’s stability is
poor. Cai et al. combined RRV with bridge testing [8], enabling efficient identification and
expansion in complex environments without the need for additional collision detection,
greatly reducing computational intensity, but the algorithm can generate a large number of
useless vertices in open areas. Building upon RRV and RRT-Connect, Li et al. proposed
an adaptive random tree algorithm called ARRT-Connect [9], which effectively improves
the algorithm’s performance, but the algorithm may fall into concave traps. Chi et al. [10]
introduce a heuristic path-planning algorithm based on the Generalized Voronoi Diagram
(GVD), which significantly improves the algorithm’s performance in maze environments
but requires preprocessing of the map and does not consider the narrow passage problem.
Taheri et al. proposed a Fuzzy Greedy Rapidly Exploring Random Tree (FG-RRT) [11]
algorithm, which significantly reduces computation time in maze, narrow passage, and
convex obstacle environments, but the algorithm requires the setting of nine fuzzy rules,
and the parameter settings are complex.

To address the problem of low-quality generated paths, the RRT* algorithm was intro-
duced by Karaman et al. [12], which introduced the ChooseParent and Rewire processes
when adding new nodes to the tree, making the algorithm asymptotically optimal. As
the number of iterations tends to infinity, the probability of finding the optimal solution
approaches 100%. RRT* is a milestone in the development of RRT. To improve the conver-
gence speed of the RRT* algorithm, numerous scholars have conducted extensive research,
mainly optimizing the sampling, ChooseParent, and Rewire processes of RRT*. Islam et al.
put forth an intelligent sampling tree named RRT*-Smart [13] to expedite the convergence
rate of the algorithm, but the quality of the generated path depends largely on the initial
solution. Inspired by node exclusion, Gammell et al. [14] employ a direct sampling method
within the hyperellipsoid to enhance algorithm performance, but the algorithm is no longer
applicable when the ellipsoid is larger than the planning domain. P-RRT* [15] combines
APF and RRT* to provide feasible directions for sampling exploration, which speeds up the
convergence speed. Jeong et al. improved the ChooseParent and Rewire procedures using
the triangle inequality to propose the Quick-RRT* [16], which generates better initial paths
and faster convergence. Inspired by Quick-RRT*, F-RRT* [17] creates a parent node near the
obstacle for each sampled point, obtaining better initial solutions and faster convergence
speed than Quick-RRT* and RRT* under the same conditions. Although algorithms based
on the RRT* framework can find the optimal or approximate optimal solution, they all
require a large number of samples to gradually search for the optimal path. Therefore,
when the important parameter for an algorithm is its running speed, optimizing the path
directly generated by RRT is necessary. To optimize the initial path generated by RRT,
Qian et al. [18] proposed a method to optimize the initial path generated by RRT by merging
trees based on the initial path to form a closed-loop path and then performing optimization
to obtain the relatively optimal path. Chen et al. [19] introduced a bidirectional pruning
optimization strategy that prunes redundant nodes from both the starting and ending
points of the path and selects the shortest optimized path, effectively improving the quality
of the path.

In conclusion, extensive research has been conducted on path planning utilizing the
RRT algorithm in complex environments. However, no algorithm currently exists that
effectively and simply addresses the dual issues of subpar performance in complex environ-
ments and inferior path quality. To remedy this, the present paper proposes the complex
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environments rapidly-exploring random tree (CERRT) path planning algorithm inspired
by RRV, which greatly improves the efficiency of the algorithm in complex environments
and optimizes the generated initial feasible paths.

The main contributions of this paper are as follows:

(1) We have designed a new process for environmental perception. This process deter-
mines the type of environment by sampling the local area, eliminating the need for
principal component analysis and significantly reducing computational complexity.

(2) We propose a pre-allocated vertex expansion method in conjunction with a vertex
death mechanism. This approach foregoes the expansion of inactive tree vertices to
prevent the algorithm from getting stuck in concave areas. When combined with the
environment-aware capability, the algorithm deftly navigates complex environments
such as mazes, narrow passages, and concave regions.

(3) We also suggest a bidirectional contraction optimization strategy. Once a feasible path
is identified, its points are contracted in both directions, yielding a more streamlined
and efficient path.

The rest of this paper is structured as follows: Section 2 outlines the mathematical
definition of the planning problem along with a brief introduction to the core principles of
RRT, RRV and Fast-RRT. Section 3 offers an in-depth description of our proposed CERRT
algorithm framework. Section 4 presents simulation experiments that compare the new
algorithm against RRT and RRV. Finally, Section 5 concludes the paper.

2. Background

In this section, we first introduce the mathematical definition of the path planning
problem and then briefly describe the RRT and RRV algorithms.

2.1. Problem Definition

Let X be the configuration space, Xobs be the obstacle region, and Xfree = X/Xobs be
the feasible region. (X, Xstart, Xgoal) defines a path planning problem, where xstart ∈ Xfree is
the initial state and Xgoal ⊂ Xfree is the goal area. Let a continuous function σ:[0, n] → X of
bounded variation be a path, where n is the path point number. If ∀τ ∈ [0, n], σ(τ) ∈ Xfree,
then σ is a feasible path, defined as σf ree.

Definition 1. Feasible Path Solution.
For the (X, Xstart, Xgoal) problem, if ∃σ ∈ σf ree, where σ(0) = Xstart and σ(n) ∈ Xgoal, then

the path is called a feasible path solution σ∗; otherwise, report a path planning failure.

Definition 2. Approximate Optimal Path Solution.
For the (X, Xstart, Xgoal) problem, if ∃σ∗ satisfies C(σ∗) ≤ min

{
C(σ) : σ ∈ σf ree

}
∗ 1.05,

then output path σ∗ is the approximate optimal path solution; otherwise, report a failure.

2.2. RRT

RRT explores the configuration space by maintaining a tree T. The algorithm sets the
root node of the tree as xstart and performs an iterative expansion. In each iteration, the
sampler randomly selects a sample xrand from the configuration space, finds the vertex
xnearest in T closest to xrand, and extends a step size dstepsize from xnearest toward xrand to obtain
the node xnew for expansion. If the local path from xnearest to xnew is collision-free, then xnew
is added to the tree. The algorithm terminates either when a feasible path is obtained or
when the maximum number of iterations ‘N’ is exceeded.

However, the randomness of the sampler often results in a low sampling probability in
narrow passages, leading to fewer sampling points in such areas. Consequently, it becomes
challenging for the expansion tree to detect these narrow passages. This limitation hampers
the effectiveness of the RRT algorithm in complex environments.
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2.3. RRV

RRV is an algorithm developed to overcome the narrow passage problem found in
the RRT algorithm. It uses principal component analysis to identify the local environment
type, as it can effectively map high-dimensional data to a lower-dimensional space while
maximizing information retention, which facilitates the extraction of data features. Specifi-
cally, this process involves mapping sampled points within obstacles into a single feature
vector that maximally retains information from the obstacle points. Subsequently, the xrand
point is projected onto the feature vector passing through xnearest. The resulting projected
point, xprojected, serves as a novel direction for the expansion of RRV. This strategic extension
enables the random tree to circumvent obstacles, similar to the growth of a vine, along the
obstacle boundaries.

As illustrated in Figure 1, the RRV algorithm generates local random sampling points
(shown in red and green) and performs principal component analysis on the red obstacle
points. The confidence ellipse is then used to determine the type of environment. If the
ellipse does not contain a green point, it is classified as a convex obstacle environment
(Figure 1a). If it contains a green point but not xnearest, it is identified as a passage entrance
environment (Figure 1b). If it contains both a green point and xnearest, it is a passage interior
environment (Figure 1c).

Figure 1. Environment judgment and expansion in RRV. (a,d) represent convex obstacles, (b,e) repre-
sent the entrance of the passage, and (c,f) represent the interior of the passage.

Then, the xrand point is projected onto a principal component analysis feature vector
passing through xnearest to obtain xprojected, and the tree is expanded toward this point to
avoid growing toward obstacles. If the environment is identified as a convex obstacle or a
passage interior, the tree is expanded along the obstacle (as shown in Figure 1d,f). If it is
identified as a narrow passage entrance, as shown in Figure 1e, the tree is further expanded
along the obstacle to xnew1 and toward the interior of the passage to xnew2. This enables
RRV to discover narrow passages more effectively than the classic RRT algorithm, and once
a narrow passage is discovered, the expansion tree can grow quickly.

However, when applied to environments without narrow passages, the performance
of RRV falls short compared to the original RRT algorithm. This indicates a high degree of
environmental dependence in its performance.

3. CERRT

The CERRT algorithm seeks to correct the insensitivity of traditional RRT algorithms
to the environment. It utilizes a novel node expansion strategy to improve expansion
efficiency and incorporates new environmental awareness capabilities to address narrow
passage problems. Moreover, it introduces a path optimization strategy to enhance the
quality of the paths generated, making it a more efficient solution overall.
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3.1. Algorithm Framework

The CERRT algorithm is an optimization of the RRT algorithm. It uses an array V to
store expandable points in tree T and constantly deletes non-extensible points, known as
dead nodes.

The CERRT algorithm initially stores the starting point xstart point as the root node
in the tree and pre-allocates a corresponding set of expandable points, xstart.CAND for it
(Lines 1–3 in Algorithm 1). The sampler is adjusted to amplify the tree’s growth orientation
by systematically sampling points within the goal region with a certain probability. (Line 5
in Algorithm 1).

Following sampling, the algorithm selects the nearest point xnearest to the sampling
point from the array V and queries the closest vertex to the sampling point xrand from the
expansion point set xnearest.CAND of xnearest to obtain the new node xnew. Once found, the
point is removed from xnearest.CAND. If xnearest.CAND is empty after removal, and the vertex
xnearest is deemed dead and removed from the vertex array V (Lines 6–11 in Algorithm 1).

Should a collision happen during expansion, the algorithm enters the environment
perception phase to determine the type of environment where xnearest is located. If xnearest
is near a channel, a new xnew point is calculated for expansion; otherwise, resampling is
performed (Lines 13–14 in Algorithm 1).

If no collision occurs during the expansion, xnew is added to tree T, and a corresponding
set of candidate nodes for xnew is pre-allocated. If the set of candidate nodes overlaps with
any existing nodes in the tree, no allocation is performed. If the set of candidate nodes for
xnew is empty after allocation, it is not added to array V (Lines 17–21 in Algorithm 1).

Finally, after obtaining a feasible path, the algorithm optimizes it to reduce the cost
C(σ) (Line 24 in Algorithm 1). A more detailed description of the algorithm process is
given in the subsequent section.

Algorithm 1 CERRT(xstart, xgoal, dstep, dgap, N, Map)

1: T = {xstart};
2: V = T;
3: xstart.CAND = initTree(xstart);
4: for i = 1 to N do

5: xrand = GetSample(i);
6: (xnearest, nearidx) = GetNearest(V, xrand);
7: (xnew, newidx) = min(distance(xnearest.CAND(:), xrand));
8: Delete(xnearest.CAND(newidx));
9: if Empty(xnearest.CAND) then

10: Delete(V(nearidx));
11: end if

12: if Overlap(xnew, T) then continue; end if

13: if Collision(xnew, xnearest, Map) then

14: (xnew, Fig) = Aware(xnearest.parent, xnearest, Map, dstep, dgap);
15: if ~Fig then continue; end if

16: end if

17: xnew.CAND = SetCAND(xnearest, xnew, dstep, T, V);
18: if NoEmpty(xnew.CAND)
19: V = V ∪ {xnew};
20: end if

21: T = T ∪ {xnew};
22: if xnew ∈ Xgoal then break; end if

23: end for

24: σ = GetPath(σ);
25: return σ = OptPath(σ);
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3.2. Vertex Expansion Method

The traditional rapidly-exploring random tree (RRT) algorithm randomly samples the
configuration space to guide the tree’s expansion and exploration. When the RRT algorithm
expands a new vertex, it calculates the distance ‘d’ between the point and the goal. If ‘d’ is
less than a predetermined threshold ‘r’, it means the algorithm has found the goal point
and the search ceases. If not, the search continues.

In this regard, each time a new node is expanded, the RRT algorithm explores the
region with a radius of ‘r’ centered on that node. The unexplored regions of tree nodes
are referred to as the ‘unknown regions’, while the explored areas are defined as ‘explo-
ration regions’. With each expansion, new exploration regions are created within the
unknown regions.

The RRT algorithm achieves the exploration of the entire space by continuously
sampling and expanding. However, this process brings about a scenario where some
exploration regions are revisited, some even more than twice. The exploration efficiency
is thus measured by the area of novel exploration regions explored by newly expanded
vertices and the frequency of re-exploration of already known regions. Efficiency is high
when the area of unexplored regions explored is large, but it is low if the area of already
known regions explored is large or if they are explored multiple times.

Figure 2 illustrates the issue of redundant exploration in known regions. In this
figure, the blue region represents the explored area, while the overlapped area denotes the
repeated examination. The green zone denotes the exploration area for new vertices, and
new vertices conduct repeated exploration on region ‘T’ enclosed by the red circle more
than three times.

Figure 2. Issue of redundant exploration in known regions. (a) Redundant exploration using the
traditional extension strategy. (b) Improved extension strategy to reduce redundancy.

Figure 2a elucidates the traditional RRT expansion process. This diagram illustrates
that vertices x0, x1, and x2 have already examined the ‘T-region’ twice. Following this,
vertex x1 extends toward the xrand point and produces a fresh vertex xnew. Regrettably, this
new vertex instigates a third redundant exploration of the ‘T-region’. Multiple explorations
of the same area are pointless.

In response to the problem mentioned earlier, our research suggests that setting
the angle at 120 degrees between each vertex and its connected points can drastically
decrease unnecessary exploration in space, as shown in Figure 2b. When a new point, xnew,
extends from vertex x1, the angles between the three edges x1-x0, x1-x2 and x1-xnew are all
120 degrees. This decreases the ‘T-region’ to a mere 30% of what it is in Figure 2a. The
exploration process also avoids repeating exploration areas over three times, which greatly
increases efficiency.

To achieve this, we propose pre-allocated expansion points and a vertex dead strategy
to ensure that the angle between each vertex’s edges is 120 degrees. Algorithm 2 presents
the detailed process of allocating candidate extension points. Initially, the angle ang0
of the edge xnew-xnearest is computed within the Cartesian coordinate system. Following
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this, candidate extension points are created with a 120-degree bias angle (Lines 1–4 in
Algorithm 2). If the candidate extension point coincides with a tree node, the allocation
fails (Lines 6–10 in Algorithm 2).

Figure 3 depicts the improved vertex expansion strategy. In this figure, the black, red,
green, and yellow dots, respectively, represent standard tree vertices, xnearest, xnew, and
xrand sample points. Dashed circles are potential expansion points for each vertex, while
red-crossed points signify discarded vertices removed from array V.

 

Figure 3. Improved vertex expansion process. (a) Before expansion. (b) Selection of xnearest after
sampling. (c) After expansion.

Upon expanding a new vertex xnew, xnew.CANDj (where j is the candidate point index
j = 0, 1, 2) is pre-assigned to maintain each vertex’s edge angle at 120 degrees. Additionally,
if a vertex’s candidate point set is vacant, it is classified as a discarded vertex and removed
from array V. Figure 3a shows that every vertex logs its corresponding candidate expansion
points xi.CANDj (where i is the vertex index in the growing tree T, i = 0, 1, ..., n). If xi’s
candidate point set is void, it is deemed a discarded vertex and excluded from array V.

The expansion process of the CERRT is conveyed in Figure 3b. After sampling xrand
randomly, the closest vertex xnearest is selected from array V as the starting point. Since x1 is
a discarded vertex and has been eliminated from array V, x3 is chosen as the nearest vertex.
Subsequently, vertex xnew is selected from the candidate expansion points of x3 based on
its proximity to xrand. After calculation, x3.CAND2 is chosen as xnew for expansion and
x3.CAND2 is removed from the candidate set of x3. As x6.CAND2 coincides with x3.CAND2,
it is also removed from the candidate set of x6. Since the candidate set of vertex x6 is now
empty, x6 becomes a dead vertex and is deleted from array V.

If edge xnew-xnearest collides with obstacles, the algorithm advances to the environment
awareness stage. Otherwise, xnew is added as a new vertex to tree T, and a set of candidate
expansion points is pre-allocated for xnew. It is worth noting that the candidate points must
not overlap with any existing points in tree T. This process is illustrated in Figure 3c.

Algorithm 2 SetCAND(xnearest, xnew, dstep, T, V)

1: ang0 = GetCartesianAngle(xnearest, xnew);
2: ang1 = ang0 + 120; ang2 = ang0 + 240;
3: new1 = xnew + dstep*[sin(ang1), cos(ang1)];
4: new2 = xnew + dstep*[sin(ang2), cos(ang2)];
5: CAND = [];
6: if NoOverlap(new1, T) then

7: CAND(end + 1) = new1;
8: else if NoOverlap(new2, T) then

9: CAND(end + 1) = new2;
10: end if

11: return CAND;
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3.3. Environmental Awareness

Algorithms based on Sampling often encounter difficulties when navigating narrow
passages due to their lack of environmental sensitivity. However, whether a passage is
deemed narrow is contingent on the extension step length. If the step length is much
smaller than the narrow passage, it can be considered a spacious road. Conversely, if the
step length is too small, the search accuracy will be too high, resulting in lower algorithm
efficiency. To combat this, an environment perception strategy is proposed to enable the
random tree to quickly identify and pass through narrow passages without decreasing the
step length. When a collision occurs with an obstacle during the tree expansion process,
expansion is halted and enters the environment perception stage. Algorithm 3 provides a
comprehensive outline of this phase.

To begin the environmental perception process, local spatial information is collected
around the xnearest point through local sampling. Local sampling uniformly samples n
points around the vertex to be expanded using the expansion step length as the radius and
stores them in a point set S. Here, n = 16 is used as an example. Set S is then separated
into two subsets, Sobs and Sfree, based on whether the position of S lies within the obstacle
area. The boundary points between Sfree and Sobs are selected and stored in Sbdry, where
Sbdry ⊆ Sfree (Lines 2–3 in Algorithm 3). Figure 4 illustrates the schematic diagram of local
sampling, where the red point represents the expanding vertex where a collision occurred,
the blue points represent Sobs sampling points, the green points represent boundary points
Sbdry, and the yellow and green points represent Sfree points. In Figure 4, the obstacle is
recognized as a wall obstacle.

 
Figure 4. Local sampling process and wall obstacle types.

For the local sampling to accurately identify narrow passages, it is crucial to further
clarify the quantity of local sampling points n and the extension step size dstep. Given the
width dgap of the minimum feasible driving passage and the extension step size dstep, to
ensure that the local sampling can sample the interior of the passage, the spacing between
adjacent sampling points should not exceed dgap. The number of sampling points n must
align with Equation (1).

n ≥ 2π

arccos
(

1 − d2
gap

2d2
step

) (1)

After local sampling, environments are categorized based on the numerical relation
between the point sets Sfree and Sbdry. The environment is split into two primary classifi-
cations: wall obstacles and passage environments. If Sbdry has only two vertices and Sfree
has more than two vertices, the environment is classified as a wall obstacle, as shown
in Figure 4. In this case, the algorithm exits the environment perception and performs
resampling (Lines 4–6 in Algorithm 3). Otherwise, the environment is considered a narrow
passage environment, which can be further classified into entrance, interior, exit, and
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multi-branching regions, as shown in Figure 5. In this figure, the red point represents the
xnearest point, the yellow points represent Sfree sample points, the green points represent
the boundary points Sbdry, and the blue points represent the Sobs sample points. The green
sector area R contains a continuous set of Sfree points.

Figure 5. Narrow passage perception. (a) Entrance of the passage; (b) Interior of the passage; (c) Exit
of the passage; (d) Multiple branching passages.

To traverse the narrow passage, multiple sector regions are divided using xnearest as the
fulcrum and the expansion step as the radius. Each sector region contains only a continuous
set of Sfree points. The resulting n sector regions are denoted as Ri (i = 1, 2, . . ., n). The sector
area that does not contain the xparent point is selected as the area for expansion. An Sfree
point that will not cause a collision is then selected from it as the xnew point for expansion
(Lines 8–13 in Algorithm 3).

For example, Figure 5a illustrates the entrance of a narrow passage. After the area
is divided into two sector regions (R1, R2), Sbdry2 is selected from R2 as the xnew point for
expansion since xparent is positioned in R1. The same expansion approach is applied to the
narrow passage interior shown in Figure 5b and the exit in Figure 5c.

If the number of sector areas n is greater than 2, it is considered a multi-passage
branching situation, as shown in Figure 5d. After division, three sector areas (R1, R2, R3)
are obtained. Since R1 contains the xparent point, two Sfree points are selected from the R2
and R3 regions that will not cause collisions as xnew for expansion.

Algorithm 3 Aware(xparent, xnearest, Map, dstep, dgap)

1: xnew = []; Fig = false;
2: (Sfree, Sobs) = LocalSample(xnearest, Map, dstep, dgap);
3: Sbdry = GetBoundary(Sfree, Sobs);
4: if size(Sbdry) == 2 && size(Sfree) > 2 then

5: Fig = false;
6: return (xnew, Fig);
7: else

8: (R, n) = DivideRegion(Sfree, Sobs, Sbdry);
9: for i = 1 to n do

10: if xparent ∈ Ri then R = R−Ri end if

11: end for

12: xnew = ChoseNew(R, Sfree, n−1);
13: Fig = true;
14: end if

15: return (xnew, Fig);

3.4. Path Optimization Strategy

Sampling-based algorithms for path planning can often generate redundant nodes
due to their random nature, potentially lowering the quality of path planning. In this paper,
a bidirectional shrinking optimization strategy (BSOS) is proposed based on the pruning
optimization strategy (POS) to further enhance the quality of the path.
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In Figure 6a, moving from x0 to x7 requires avoiding an obstacle, and the black line
path x0-x1-x2-x3-x4-x5-x6-x7 in the figure is the original planned path. This path contains a
large number of redundant nodes. By using the pruning strategy and based on the triangle
inequality theorem, the robot can move directly from x0 to x2 without passing through x1,
thus identifying x1 as a redundant node.

Figure 6. Path optimization strategy. (a–c) show pruning optimization of the original path, where the
yellow path represents the pruned optimized path. (d–f) show bidirectional shrinkage optimization
of the path, where the green path represents the final optimized path.

Figure 6b illustrates the application of the pruning operation on the entire initial path,
eliminating superfluous nodes x1, x3, x5, and x6. The remaining nodes are connected to
obtain the pruned and optimized yellow path x0-x2-x4-x7, as shown in Figure 6c. The
yellow path obtained by POS has not only fewer path points but also a shorter path length,
but it is not an approximate optimal path.

This paper proposes a bidirectional shrinking-based optimization of path points on
the basis of pruning the path x0-x2-x4-x7. The endpoints x0 and x7 are excluded from the
shrinking process, leaving the remaining points to participate in two phases of reduction.

In the first round, each path point moves toward the next point with a higher number
according to the sequence of the point number. At the same time, it constantly checks
whether there is any collision with the previous path point. If a collision is about to occur,
the point stops moving, as shown in Figure 6d. For instance, path point x2 moves toward
x4 until the x0-x2 segment is about to collide with the obstacle, and then the point stops.
After that, path point x4 moves toward x7 until the x2-x4 segment is about to collide with
the obstacle, and then the point stops. Once all path points have completed the shrinking
movement, the blue path x0-x2-x4-x7 in Figure 6d is obtained, indicating that the first round
of shrinking is completed.

In the second round of contraction, the order is reversed, with the points moving
from high to low according to their vertex number. As shown in Figure 6e, path point x4
moves toward x2 first, and then it stops when the x4-x7 segment is about to collide with
the obstacle. Then, path point x2 moves toward x0 until the x2-x4 segment is about to
collide with the obstacle. Once all path points have completed the shrinking movement,
the green path x0-x2-x4-x7 in Figure 6f is obtained, which is the final path obtained by the
bidirectional search optimization strategy. The bidirectional shrinking method results in a
path that is shorter and closer to the optimal configuration.

The specific process of using the bidirectional shrinking path optimization strategy to
optimize the CERRT planning path is shown in Figure 7.
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Figure 7. Bidirectional shrinking optimization strategy flowchart.

(1) Obtain the initial optimized path σ (x0, x1, . . ., xn) using the CERRT and pruning
optimization strategies, where xi (i = 0, 1, . . ., n) is a path point and i is the path
point number.

(2) Initialize i = 1.
(3) Check whether i is less than n. If it is, put xi into the temporary variable xtemp, put xi-1

into the variable xpre, and put xi + 1 into the variable xpost. If not, go to step (6).
(4) Move the current variable point xtemp one step toward the variable point xpost.
(5) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i + 1, and go to step (3). If there is no collision, go to step (4).

(6) Set i = n − 1.
(7) Check whether i is greater than 0. If it is, put xi into the temporary variable xtemp, put

xi+1 into the variable xpre, and put xi-1 into the variable xpost. If not, the optimized path
is obtained, and the process ends.

(8) Move the current variable point xtemp one step toward the variable point xpost.
(9) Check whether the path segment xtemp-xpre collides with any obstacles. If there is a

collision, move xtemp one step toward the opposite direction of xpost, update the path
point xi to xtemp, set i = i − 1, and go to step (7). If there is no collision, go to step (8).

After the entire process is executed, the path points are updated by shrinking, and the
obtained path σ(x0, x1, . . ., xn) is the final optimized path. Note, that “moving one step” in
the process refers to moving one pixel.

4. Simulation and Experiment

To verify the algorithm performance of CERRT, this study conducted a comparative
analysis of the RRT, RRV [5], Fast-RRT [7] and CERRT algorithms in a simple environment, a
maze environment, a narrow passage environment, and a bug environment. The accessible
passage width was set to dgap = 10 px, and the map size was 1000 px × 1000 px, as shown
in Figure 8. The tree expansion step was set to dstep = 30 px, and the detection radius
was r = dstep. The sampler probability of sampling in the target area was 0.05, and the
probability of sampling in the random area was 0.95. The maximum sampling value was
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set to 80,000, and if the number of samples exceeded the maximum value, the path planning
was considered a failure.

(a) (b) (c) (d) 

Figure 8. Environments for the simulations. (a) Simple. (b) Maze. (c)Narrow. (d) Bug Trap.

The algorithm performance was evaluated using three criteria: execution time, number
of tree vertices generated, and success rate. These evaluations were conducted by repeating
each simulation 100 times. The execution time and number of vertices were only counted
for successful path planning. In the path optimization experiment, this study compared
the original planned path, the pruning optimized path, and the proposed bidirectional
shrinking optimized path and evaluated the path quality C(σ∗) using two indicators: path
length and smoothness. All simulations were performed on a machine with an Intel (R)
Core (TM) i7-12700H 2.30 GHz CPU and 16 GB of RAM. The simulation platform was
MATLAB R2022a, and the function min was employed in all algorithms to find the nearest
neighbor in all algorithms. The collision detection program used the linear trial method [20].

4.1. Path Planning Simulation

In the path planning simulations, we tested the performance of the RRT, RRV, Fast-
RRT and CERRT algorithms in four 2D environments. The objective of using a simple
environment was to assess if the new algorithm’s performance was significantly impacted
by additional computation. On the other hand, the maze environment, narrow environment,
and Bug Trap environment were utilized to assess the algorithms’ performance in complex
scenarios. The red dots in the map represent the starting points, the green dots represent
the target points. The entire exploration process is represented by the green lines, and the
generated path is represented by the red lines. The sampling method was consistent across
all experiments.

4.1.1. Simple Environment

The purpose of testing the algorithm in a simple environment was to evaluate the
performance loss of the new algorithm with additional computational costs. The planning
scenarios are shown in Figure 9, and the expansion shapes of the four random trees were
generally similar.

Figure 9. Performance comparison of four algorithms in sample environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.
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Table 1 presents the performance of the algorithm in a simple environment. The
success rates of the four algorithms are all 100%, and the average number of tree nodes was
similar. The average running time of RRV was four times that of RRT, the average running
time of Fast-RRT was 1.5 times that of RRT, and the average running time of CERRT was
1.7 times that of RRT. The time variance of CERRT was close to that of RRT and much
smaller than that of RRV.

Table 1. Results for planning in a simple environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 9.08 5.61 14.48 2.04 263 1.00
RRV 37.04 7.33 71.00 10.90 281 1.00

Fast-RRT 13.15 6.58 32.45 3.94 355 1.00
CERRT 15.86 9.28 24.63 2.81 286 1.00

The data indicate that the performance loss of CERRT was significantly more than
that of RRV, and its overall performance was almost identical to RRT, indicating that the
performance loss caused by the additional computational cost of CERRT was minimal.

4.1.2. Maze Environment

The maze environment was designed to evaluate the performance of algorithms in
complex environments without passages. Figure 10 illustrates the planning situations of
the four algorithms, indicating that the utilization rates of tree nodes were low for RRV,
RRT, and Fast-RRT, and there were numerous repeated exploration points on the left side of
the map. In contrast, CERRT’s tree nodes were evenly distributed, enabling the exploration
of a broader area with fewer points.

Figure 10. Performance comparison of four algorithms in maze environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 2 presents the algorithms’ performance in the maze environment. RRT’s time
consumption was 2.7 times that of CERRT, Fast-RRT’s time consumption was 1.7 times
that of CERRT, and RRV’s time consumption was 15 times that of CERRT. CERRT had the
shortest running time and the smallest number of tree nodes. Furthermore, CERRT’s time
standard deviation was significantly lower than those of RRT and RRV, further indicating
that this algorithm was most stable in the Maze environment.

Table 2. Results for planning in a maze environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 108.29 83.66 153.99 13.97 2284 1.00
RRV 603.24 438.86 1001.21 120.67 3042 1.00

Fast-RRT 68.93 48.75 135.38 11.58 1368 1.00
CERRT 39.73 34.59 112.35 8.66 610 1.00
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Based on the above, it can be concluded that the new CERRT algorithm outperformed
the RRT, RRV, and Fast-RRT algorithms in various aspects in complex non-navigable
environments. The main reason for this is the improved vertex expansion strategy, which
effectively improved the utilization rate of vertices by pre-allocating them for expansion.
This strategy reduced repeated exploration of the same region and introduced a vertex
death mechanism to eliminate useless vertices, thus reducing the time cost of selecting the
optimal neighboring vertex.

4.1.3. Narrow Environment

The RRT algorithm faced challenges in solving narrow passage problems, while the
RRV algorithm was specifically designed to address this issue. Additionally, the Fast-
RRT has also proposed solutions for narrow passages. In this study, we used a narrow
environment to test the performance of the new algorithm and evaluate its environmental
adaptability. Figure 11 shows the planning process of the four algorithms. It can be seen
that RRT had a large number of vertices on the left side of the map, and the algorithm could
not effectively detect the narrow passages on the walls. Fast-RRT expands multiple times
near obstacles to find passages. RRV and CERRT were quickly able to discover and pass
through the narrow passage.

Figure 11. Performance comparison of four algorithms in narrow environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 3 showcases the performance of the algorithms in the narrow passage environ-
ment. The planning success rate of the RRT algorithm was 0.97, while the other algorithms
were both 1.00, highlighting the shortcomings of RRT in narrow environments. The average
running time of RRT was 27 times that of CERRT, the average running time of RRV was four
times that of CERRT, and the average running time of Fast-RRT was slightly higher than
that of CERRT. The new algorithm had a shorter planning time. The tree vertex numbers
of CERRT and RRV were similar, and much lower than that of the RRT and Fast-RRT
algorithm, indicating that both derived algorithms can solve narrow passage problems.
RRT’s time standard deviation was 135 times higher than CERRT, RRV’s time standard
deviation was 20 times higher than CERRT, and Fast-RRT’s time standard deviation was
75 times higher than CERRT, suggesting that CERRT exhibited optimal stability.

Table 3. Results for planning in a narrow environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 455.13 7.52 5189.01 871.53 2931 0.97
RRV 65.72 25.04 1287.83 127.12 259 1.00

Fast-RRT 58.03 4.87 3779.04 487.47 869 1.00
CERRT 16.70 11.66 74.69 6.42 255 1.00

Based on the above analysis, we can conclude that the new CERRT algorithm out-
performed the RRT, RRV and Fast-RRT algorithms in narrow environments. The main
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reason for this is that RRV requires complex principal component analysis to determine
the environment, while CERRT’s environmental perception ability only requires simple
sampling to determine the surrounding environment and select new expansion points
without complex calculations, effectively reducing the environmental recognition cost.

4.1.4. Bug Trap Environment

The bug trap environment is created by adding concave traps to a narrow environment
to assess the algorithm’s ability to handle such obstacles. Figure 12 shows the planning
process of the four algorithms. Notably, both the RRT and Fast-RRT algorithms performed
extremely poorly in the Bug Trap environment, as evidenced by a significant accumulation
of tree vertices inside the trap. The RRV algorithm can only recognize convex obstacles
and mistakenly identified the concave traps as entryways, resulting in multiple attempts to
expand within the trap area, which greatly reduced the algorithm’s performance, with the
number of tree vertices still high. The CERRT algorithm effectively utilizes each vertex to
explore the space and can quickly discover and pass through the real channel.

Figure 12. Performance comparison of four algorithms in Bug Trap environment. (a) RRT; (b) RRV;
(c) Fast-RRT; (d) CERRT.

Table 4 illustrates the performance of the algorithms in the Bug Trap environment. The
planning success rates of RRT and Fast-RRT were only 0.90 and 0.92, respectively, while
the other two algorithms achieved rates of 1.00. The average running time of RRT was 101
times that of CERRT, the average running time of Fast-RRT was 20 times that of CERRT,
and the average running time of RRV was 52 times that of CERRT, with the new algorithm
having the shortest planning time. The average number of tree vertices of RRT was 29 times
that of CERRT, the average number of tree vertices of Fast-RRT was 21 times that of CERRT,
and the average number of tree vertices of RRV was six times that of CERRT, indicating that
the new algorithm had the highest vertex utilization rate. Moreover, RRT’s time standard
deviation was 526 times higher than CERRT, Fast-RRT’s time standard deviation was 371
times higher than CERRT, and RRV’s time standard deviation was 329 times higher than
CERRT, underscoring the superior stability of the CERRT algorithm.

Table 4. Results for planning in a Bug Trap environment.

Algorithm Avg. Time (ms) Min Time (ms) Max Time (ms) Std Avg. Nodes Success Rate

RRT 2725.83 504.12 8782.20 1856.74 13902 0.90
RRV 1418.43 31.42 6234.62 1160.86 2679 1.00

Fast-RRT 1674.35 267.01 9574.50 1313.36 9798 0.92
CERRT 26.97 13.36 35.28 3.53 474 1.00

Based on the above analysis, it can be concluded that the new CERRT algorithm
outperformed the RRT and RRV algorithms in the Bug Trap environment. The reason is that
the vertex death mechanism can deactivate the vertices inside the traps, preventing the algo-
rithm from becoming stuck in the concave traps. Combined with environmental awareness,
the CERRT algorithm was quickly able to break through the bug trap environment.

171



Appl. Sci. 2023, 13, 9666

4.2. Path Optimization Simulation

In the path optimization experiments, complex Maze and Bug Trap environments
were used to test the quality of the four algorithms’ paths after pruning and bidirectional
shrinking optimization. To assess the stability of the optimization strategy, the experiment
was repeated 100 times. The quality characteristics of the generated paths were evaluated
by comparing the average length and smoothness values. The path lengths were calculated
using the Euclidean distance, which refers to the straight-line distance connecting two
points on a plane, and can be computed using the Pythagorean theorem, Additionally, the
path smoothness values were obtained by accumulating the turning angles of each path,
measured in radians.

4.2.1. Maze Environment Path Optimization

The purpose of the experiments in the Maze environment was to test the performance
of the proposed optimization strategy. Figure 13 illustrates the results of pruning and
bidirectional shrinking optimizations. It is evident that the original paths generated by all
algorithms were convoluted and intricate. However, after the pruning optimization, the
quality of the paths improved, but they were not optimal, while bidirectional shrinking
optimization generated paths that were close to the optimal path. A detailed comparison of
the paths is provided in Table 5. The path lengths of bidirectional shrinking optimization
were the shortest, and the path smoothness values were the lowest, indicating that the
generated paths were optimal. The paths generated by the four algorithms were all able
to be optimized to approximate the optimal path. Hence, it can be concluded that the
bidirectional shrinking path optimization strategy outperformed the pruning optimization
strategy in complex environments.

Figure 13. Pruning and bidirectional shrinking optimization in the Maze environment. The blue lines
indicate the original paths, the green lines indicate the pruned optimized paths, and the red lines
indicate the bidirectional shrinking optimized paths.

Table 5. Results for Optimization in a Maze Environment.

Algorithm Path Cost POS Cost BSOS Cost
Path

Smoothness
POS

Smoothness
BSOS

Smoothness

RRT 5346.20 4413.83 4076.84 78.24 12.20 11.16
RRV 4838.35 4392.98 4056.15 33.77 12.50 11.31

Fast-RRT 5426.26 4408.72 4062.23 65.32 11.78 11.24
CERRT 6033.47 4397.60 4071.37 226.11 11.85 11.12

4.2.2. Bug Trap Environment Path Optimization

The purpose of the experiments conducted in the Bug Trap environment was to test
the performance of the proposed optimization strategies in narrow passage environments.
Figure 14 displays the results of pruning and bidirectional contraction optimization. The
pruned paths were not able to determine the optimal route, while the bidirectional con-
traction path generated the optimal paths close to the wall. A detailed comparison of the
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paths is provided in Table 6. The paths generated by the four algorithms all had relatively
low quality, and after pruning optimization, the path smoothness values were effectively
improved, but the path lengths were not optimal. After bidirectional contraction path
optimization, the paths had the lowest smoothness values and the shortest lengths and they
were close to the optimal path. Therefore, it is evident that the bidirectional contraction
path optimization strategy still outperformed the pruning optimization strategy in narrow
environments and was applicable to all initial paths generated by sampling algorithms.

Figure 14. Pruning and bidirectional shrinking optimization in the Bug Trap environment. The
blue lines represent the original paths, the green lines represent the pruned paths, and the red lines
represent the paths optimized by bidirectional shrinking.

Table 6. Results for Optimization in the Bug Trap Environment.

Algorithm Path Cost POS Cost BSOS Cost
Path

Smoothness
POS

Smoothness
BSOS

Smoothness

RRT 1723.38 1386.87 1289.38 32.75 4.48 4.15
RRV 1618.49 1383.94 1281.70 13.58 4.78 4.34

Fast-RRT 1682.35 1375.54 1285.46 29.74 4.36 4.21
CERRT 1619.61 1323.14 1283.38 55.53 4.08 4.05

4.3. Evaluation of Algorithms in Real Environment

In order to evaluate the performance of the algorithm, we have chosen an actual map
scenario, which is Tianjin Central Square with geographical coordinates of 117◦04′56.88′′
E, 39◦05′49.19′′ N, as shown in Figure 15a. The map covers an area of 175 m × 175 m and
is divided into a grid of 1000 px × 1000 px, where each pixel represents an actual area
of 0.03 m × 0.03 m. Figure 15b depicts the map generated based on the real scene, where
black represents the obstacle areas and white represents the free space.

 

Figure 15. Actual map environment.

The coordinates of the starting point are marked with a red circle at [100, 480], and
the coordinates of the target point are marked with a green circle at [870, 240]. We will
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perform path planning tasks 100 times for a mobile robot in this scenario and evaluate the
algorithm’s performance by taking the average.

Algorithm Comparison

In Figure 16, the path planning results of four algorithms in a real-world environment
are depicted. Notably, a curved narrow passage shortcut can be observed on the map. All
four algorithms can generate feasible paths for the mobile robot, but only CERRT is able to
discover and navigate through the curved passage shortcut in the actual environment. The
other algorithms struggle to solve the narrow passage problem in the real environment,
further confirming the practical value of the proposed algorithm. Additionally, the path
quality is significantly improved after optimizing with BSOS compared to the initial paths.

Figure 16. Performance comparison of four algorithms in real environment. The blue lines represent
the original paths and the red lines represent the paths optimized by bidirectional shrinking.

Since RRT-based algorithms have probabilistic completeness, the success rate of all
four algorithms in planning paths in the actual environment is 100% when the sampling
limit is not restricted. Table 7 displays the performance parameters of these algorithms. The
average runtime of RRT is approximately five times that of CERRT, RRV is approximately 50
times that of CERRT, and Fast-RRT is approximately seven times that of CERRT. CERRT has
the shortest average runtime with a standard deviation of only 4.68, which is significantly
lower than the other three algorithms, indicating excellent performance of the proposed
algorithm in the actual environment.

Table 7. Results for planning in actual map.

Algorithm Avg. Time (ms) Std Avg. Nodes Path Cost BSOS Cost

RRT 278.31 139.61 3126 2499.48 2104.93
RRV 2782.19 435.89 3149 2446.17 2036.01

Fast-RRT 365.72 138.94 2674 2545.87 2124.81
CERRT 55.23 4.68 907 1990.01 1706.98
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Regarding path optimization, a horizontal comparison reveals that the path lengths
after applying BSOS are all smaller than the initial paths, confirming the practicality of
BSOS. A vertical comparison shows that the path length generated by CERRT is smaller
than the other three algorithms. This is because CERRT is able to quickly discover and
navigate through the curved passage shortcut in the actual environment, while the other
algorithms struggle to pass through the curved passage efficiently.

In conclusion, the CERRT algorithm outperforms the other three algorithms in a real-
world environment. The main reason is that the expansion principle of CERRT is inspired
by the hexagonal honeycomb structure found in nature. Reference [21] mentions that a
hexagonal honeycomb provides the least-perimeter way to enclose and separate infinitely
many regions of unit area, indicating that using a hexagonal expansion strategy can greatly
improve the utilization of each tree node and thus enhance the algorithm’s performance.

5. Conclusions

In this paper, we propose a sampling-based path planning algorithm, CERRT, which
performs better than other algorithms in complex environments and effectively solves
the narrow passage problem. CERRT consists of two important parts: the first part limits
the selection and expansion of tree vertices to maximize the utilization of each vertex,
while the second part involves environment perception, where vertices are sampled near
obstacles to ensure feasible passages are discovered. By combining the vertex selection
method of the first part with the sampling strategy of the second part, the algorithm
avoids redundant and useless exploration near trap-type obstacles, significantly improving
planning performance. Numerical simulations comparing the proposed algorithm with
others validate its effectiveness. Since sampling-based algorithms generally generate lower-
quality paths, we propose the BSOS strategy to optimize the initial paths. The suitability of
the algorithm has been verified through path optimization for different sampling algorithms.
The optimized paths produced by the BSOS algorithm were superior to those produced by
the well-known pruning optimization strategy (POS). However, for the algorithm proposed
in this paper, the number of locally sampled points in three-dimensional environments
may increase dramatically, limiting the environmental perception capability. Therefore, the
next step is to study the performance of the algorithm in high-dimensional environments.
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Abstract: To improve the positioning accuracy of unmanned ships, a multi-sensor system includ-
ing ZigBee, a Global Positioning System (GPS), and BeiDou Navigation Satellite System (BDS) is
constructed, and an adaptive multi-sensor data fusion positioning method based on the threshold
and hierarchical capacity particle filter (TCPF) is designed. First, the ZigBee-GPS/BDS multi-sensor
measurement data is preprocessed to achieve a consistent space–time reference and transformed into
the same coordinate system by projection. Then, the fault data is weighted and corrected through the
consistency inspection of ZigBee-GPS/BDS multi-sensor positioning data, and the corresponding
confidence factor is given according to the confidence distance of the positioning data; furthermore,
the confidence factor is associated with stratified sampling. After that, the multi-sensor positioning
data is filtered and denoised using a basic particle filter. Finally, a TCPF data fusion algorithm is
designed, and the navigation positioning data of the unmanned ship is fused and filtered to obtain
its positioning information. Numerical tests show that compared with other filtering algorithms,
the mean square root error and standard deviation of the proposed TCPF algorithm decrease by an
average of 25.0% and 28.0%, respectively, which verifies its high filtering accuracy and its advantages
in suppressing particle degradation and avoiding sample scarcity. The experimental tests show that
compared with other fusion algorithms, the proposed TCPF algorithm can not only realize the precise
positioning during unmanned ship navigation, but also in the positioning and fault tolerance test, the
average positioning error, root-mean-square error, and standard deviation of the former decrease by
36.0%, 38.0%, and 37.0%, respectively, and the corresponding performance indicators of the latter
decrease by an average of 20.0%, 19.5%, and 17.5%, which verifies that it has the advantages of high
data reliability and good filtering fault tolerance, and helps to improve the positioning accuracy of
unmanned ships.

Keywords: unmanned ship; multi-sensor data; data fusion; positioning system; particle filter

1. Introduction

The water quality of rivers directly affects people’s lives. In the early days, traditional
water quality testing mainly relied on manual testing and reporting methods. Currently,
water quality testing still relies primarily on manual testing, but data is uploaded through
the Internet. Both traditional and current water quality testing face the following problems:
(1) high labor input and cost; (2) high manual collection intensity and low efficiency; (3) data
easily influenced by subjective factors; and (4) untimely information transmission. In recent
years, unmanned ships have been widely used in the field of water quality monitoring due
to their strong maneuverability and good controllability [1]. Based on this background,
this paper conducts research on modern water quality testing based on unmanned ships.
Unmanned ships carry various water quality sensors such as pH value, conductivity,
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turbidity, dissolved oxygen, etc., and can autonomously conduct regular water quality tests
throughout the river area and transmit real-time data to a monitoring center via the Internet.
This method has the following advantages: it (1) reduces labor costs; (2) improves detection
efficiency; (3) unaffected by subjective factors, improves accuracy; and (4) ensures timely
data availability. From the above analysis, it can be seen that unmanned ships play a key
role in modern water quality monitoring, with their autonomous navigation positioning
accuracy directly affecting safety and efficiency.

How to achieve accurate positioning of unmanned ships based on multiple combined
sensors has been the focus of research [2]. Shen et al. [3] used GNSS/GPS combination
sensors to obtain coordinates of unmanned ship positions while reducing noise interference
caused by long-distance nodes, but they suffer from signal loss due to external environ-
mental interference leading to reduced positioning accuracy. Wu et al. [4] realized the
positioning of the unmanned ship by solving its position information collected by the
GPS/INS combined sensors, but the INS has the problem of mechanical fault jumping.
As time goes by, the GPS/INS combined sensor is likely to cause a large positioning de-
viation of the unmanned ship. Deng et al. [5] obtained the position information of the
unmanned ship by fusing the GPS/IMU combined sensor data, but in the fusion process,
if the sensor data is lost at a certain moment, it will cause a large fusion deviation and
affect the positioning accuracy. Data fusion based on two kinds of sensors is the current
mainstream technology for unmanned ship positioning, but there is a deficiency in that
the positioning accuracy and reliability are affected due to the weakening or loss of a
certain sensor signal. In recent years, how to improve positioning accuracy by further
fusing data from three or more types of sensors has become a research hotspot. Wang
et al. [6] achieved the reliable positioning of trains by using the combined positioning
method of PPP-GPS/IMU. However, the built multi-sensor positioning system is prone to
environmental interference, which reduces the reliability of data samples. Tang et al. [7]
realized the elimination of abnormal signals by setting outlier identification in the process
of IMU/ODM/UWB multi-sensor data fusion, which improved the positioning accuracy
of multi-sensors, but reduced the fault-tolerant performance of the algorithm because the
fault data was not weighted. Sofia et al. [8] divided the observation information of different
sensors into blocks according to the size of the scale to obtain a multi-scale system model,
which effectively solved the problem of measurement delay, but the efficiency and accuracy
of algorithm fusion were reduced because no data confidence assignment was performed
during data processing. As can be seen from the above, adding sensors helps to improve
the reliability and accuracy of positioning. However, there is still a lack of research on how
to further enhance the accuracy and efficiency of algorithm fusion through data confidence
interval testing, as well as how to achieve effective positioning under low- or weak-signal
conditions through data correction. Therefore, a ZigBee-GPS/BDS multi-sensor position-
ing system is built in this paper, which realizes the accurate and reliable positioning of
unmanned ships by complementing and weighted-correcting signals from three types
of sensors, as well as assigning confidence values. In multi-sensor data fusion, filtering
algorithms are crucial, and particle filtering has been widely used due to its ability to handle
various probability distribution models, but it has also become the focus of research due
to its heavy dependence on initial state estimation and particle degradation. Ha et al. [9]
expanded the search space of particle states by designing crossover operators and mutation
operators in the particle filter calculation module, which improved the filtering accuracy of
multi-sensor data but also reduced the computational efficiency. Alam et al. [10] processed
the prefetched value in the weight storage of the particle-filter algorithm in parallel with the
value in the random function generator, which reduced the time required for resampling
and improved the fusion efficiency of sensor data, but it did not suppress the degradation
of particle samples very well. Wu et al. [11] used the unscented particle-filter algorithm
with constrained residuals to fuse the two sets of sensor positioning data, which effectively
overcomes external environmental disturbances. However, the filtering accuracy is prone
to divergence after multiple iterations. A large number of studies have shown that although
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the existing multi-sensor data fusion algorithms have improved the positioning accuracy of
moving targets to a certain extent, their fault-tolerant performance is not good. In addition,
they did not carry out pre-judgment processing on the collected data, and the problem
of low filtering accuracy has not been solved when the data collected by the multi-sensor
combined positioning system is fused and filtered. Therefore, a multi-sensor data fusion
positioning method based on adaptive threshold and hierarchical capacity particle filter
is designed in this paper. Firstly, the basic particle filter is introduced to denoise multi-
sensor data. Then, the latest multi-sensor positioning data is incorporated into the proposal
distribution using unscented transformation. After that, the Gaussian mixture model is
constructed and the adaptive threshold is set, and the data confidence factor is associated
with hierarchical sampling to further improve the fusion filtering accuracy of the algorithm.
Finally, the validity of the method is verified by the numerical test of the model and the
experimental test of unmanned ship navigation.

2. Unmanned Ship Positioning System and Its Multi-Sensor Data Fusion Framework

2.1. Construction of Unmanned Ship Positioning System

In order to realize the information complementarity among the multi-sensor mea-
surement data, reduce the interference of the surrounding environment on the working
state of the positioning system, improve the reliability of the multi-sensor data samples,
and then improve the positioning accuracy of an unmanned ship for water quality detec-
tion, a ZigBee-GPS/BDS multi-sensor combined positioning system, as shown in Figure 1,
was constructed. The entire positioning system includes a ZigBee multi-node positioning
system, GPS positioning system, BDS positioning system, PC communication system, etc.

Figure 1. ZigBee-GPS/BDS multi-sensor combined positioning system for an unmanned ship.

A GPS/BDS positioning system is mainly composed of space, ground monitoring,
and user receiver. First, the ground monitoring part monitors and controls the operation
of each satellite through the main control station and monitoring station, traverses the
navigation message, and maintains the system time. Then, the GPS and BD satellites in
space continuously send their own ephemeris and time information to the GPS/BDS dual
module installed in the unmanned ship. Finally, the GPS/BDS dual module calculates the
latitude and longitude coordinates of the unmanned ship in real time by analyzing the
signal messages sent by the respective satellites [12].

A ZigBee multi-node positioning system is mainly composed of blind nodes, reference
nodes, and wireless gateway nodes. First, the communication environment of the full grid
network is constructed according to the reference nodes with known position coordinates.
Then, a blind node installed on the unmanned ship is placed in a communication network
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composed of reference nodes [13]. After that, the wireless gateway node is connected to
the PC through the serial port. On the one hand, it receives the configuration data of each
reference node and mobile node from the monitoring software and forwards them to the
corresponding nodes. On the other hand, it receives the valid data fed back by each node
and transmits them to the monitoring software. Finally, the RSSI technology is used to
determine the distance or direction from the unknown node to the beacon node, and the
maximum likelihood estimation method is used to calculate the position of the blind node
on the unmanned ship during navigation in the river.

Figure 2 shows the self-developed unmanned ship for water quality testing. The
unmanned ship is equipped with a detector with multiple water quality detection sensors
connected to the launch and recovery device, as well as a positioning system including
Zigbee, GPS, and BDS modules. The controller of the unmanned ship is an industrial
computer with a Linux system, which is responsible for receiving and processing the data
of each sensor, issuing control instructions, and transmitting signals with the PC.

 
Figure 2. Test platform for unmanned-ship positioning system.

The lidar of Silan A3 is responsible for collecting the environmental information
around the unmanned ship. The ATK1218-GPS-BDS dual-positioning module is selected in
the GPS/BDS positioning system to obtain the latitude and longitude information of the
unmanned ship. The CC2530 wireless module is selected in the ZigBee positioning system
to obtain the plane coordinate information of the unmanned ship. The Hikvision DS-2
camera is selected in the vision system to be responsible for the collection of environmental
information of the unmanned-ship channel.

2.2. Framework of Multi-Sensor Data Fusion

In order to improve the reliability, fault tolerance, and accuracy of multi-sensor data
fusion for the unmanned ship for water quality detection, a new multi-sensor-data-fusion
positioning framework based on particle filtering as, shown in Figure 3, was designed.
From the figure, it can be seen that the longitude and latitude information of the unmanned
ship was first unified in time and space, and projected into the local coordinate system
constructed by the ZigBee multi-node module through coordinate transformation, so as
to realize mutual complementarity among sensor data. Then, through the consistency in-
spection of the multi-sensor data, the fault data are weighted and corrected to improve the
fault-tolerant performance of the data fusion algorithm. At the same time, the correspond-
ing confidence factor was given according to the confidence distance of the positioning
data, and the confidence factor was associated with hierarchical sampling to improve the
fusion efficiency and accuracy of the data fusion algorithm. After that, the basic particle
filter was used to de-noise the multi-sensor positioning data to improve the reliability of the
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data samples. Finally, an improved particle-filter algorithm was designed to fuse and filter
the multi-sensor positioning data to achieve accurate positioning of the unmanned ship.

 

Figure 3. Particle filter-based multi-sensor data fusion positioning framework for unmanned ships.

3. Pre-Processing of Multi-Sensor Data from the Unmanned Ship

3.1. System Modeling
3.1.1. Measurement Equation of GPS/BDS

The measurement equation of GPS/BDS consists of nonlinear pseudorange measure-
ment equations [14]. The measurement equations of the BDS pseudorange pB and the GPS
pseudorange pG are expressed as follows:

pB
i (k) =

∣∣r(k)− rB
i (k)

∣∣+ cδtB + εi(k) + vi(k)

=
√
(Xj(k)− XB

i (k))
2
+ (Yj(k)− YB

i (k))
2 + (Zj(k)− ZB

i (k))
2

+δtB + εi(k) + vi(k)
(1)

pG
j (k) =

∣∣∣r(k)− rG
j (k)

∣∣∣+ cδtG + ε j(k) + vj(k)

=
√
(Xj(k)− XG

j (k))
2
+ (Yj(k)− YG

j (k))2
+ (Zj(k)− ZG

j (k))
2

+δtG + εi(k) + vi(k)

(2)

where Xj(k), Yj(k) and Zj(k) are the position coordinates of the receiver at time k; XB
i (k), YB

i (k)
and ZB

i (k) are the position coordinates of the ith BDS satellite at time k; XG
j (k), YG

j (k) and

ZG
j (k) are the position coordinates of the jth GPS satellite at time k; r(k) is the position vector

of the receiver; rB
i (k) and rG

j (k) are the position vectors of the ith BDS and the jth GPS satellite

at time k, respectively; pB
i (k) and pG

j (k) are the pseudoranges of the ith BDS and the jth GPS
satellite at time k, respectively; δtB, δtG is the error of the BDS- and GPS-receiving clock,
respectively; εi(k) is the non-white noise error of channel i at time k; νi(k) is the measurement
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noise of channel i at time k, i = 1, 2, . . ., nl, j = 1, 2, . . ., n2, k = 1, 2, . . ., T. n1 and n2 are the
number of BDS and GPS satellites received, respectively. T is the maximum duration.

When the signals of n satellites (n = n1 + n2 ≥ 5) are received, the observation variables
of the system are

zB,G(k) =
[

pB
1 (k), pB

2 (k), · · ·, pB
n1
(k), pG

1 (k), pG
2 (k), · · ·, pG

n2
(k)

]
T (3)

Assuming that the number of GPS and BDS satellites observed at time k are equal
(namely n1 = n2), the observation equation of the GPS/BDS satellite positioning system is
established as

zB,G(k) =
[

pB(k)
pG(k)

]
+ R(k) (4)

where pB =
{

pB
1 , pB

2 , · · ·, pB
n1
}

is the BDS pseudorange, pG =
{

pG
1 , pG

2 , · · ·, pG
n2
}

is the GPS
pseudorange, and R is the covariance matrix of observation noise.

3.1.2. Measurement Equation of ZigBee

According to the principle of ZigBee positioning networking in this paper, and taking
the sampling time Tk of basic particle filter (BPF) as the time reference, the measurement
equation of RSSI signal collected by the ZigBee positioning system was defined [15]. The
specific steps were as follows:

Step 1 Establish the signal strength power model P̃R
i of the ith reference node according

to the path loss principle.

P̃R
i = P0 − 10ϑlg(

√
(xz − xR

i )
2
+ (yz − yR

i )
2/d0) (5)

where ∀ i ∈ [1, n], (xR
i , yR

i ) is the coordinate of the ith reference node; P0 is the received
power of the reference node at d0 from the unmanned ship; ϑ is the path loss coefficient,
and (xz, yz) is the blind node coordinate.

Step 2 Establish the covariance matrix RRSSI of the observation equation.

RRSSI = diag(σ2
dBR

1
, σ2

dBR
2

, · · ·, σ2
dBR

n

)
(6)

where ∀ i ∈ [1, n], σ2
dBR

i
is the initial variance of the signal strength of the ith ZigBee

reference node.
Step 3 Define the observation equation for RSSI measurements collected by ZigBee.

zRSSI(k) = [P̃
R
(k), RRSSI(k)]

T
+ v(k) (7)

where P̃
R
=

{
P̃R

1 , P̃R
2 , · · · , P̃R

n

}
is the signal strength power model; v is the covariance

matrix of the observed noise.

3.1.3. Multi-Sensor Data Definition for the Unmanned Ship

In order to facilitate the description of the subsequent algorithm, the following data
definition was carried out in this paper: The data collected by the sensor or the known
data was defined as the measurement data, which involves the reference node coordinates
(xR, yR) in the ZigBee system and the geodetic coordinates (B, L) collected by the GPS/BD
system. The data obtained by calculation and conversion was defined as positioning data,
which involves the coordinates of blind nodes (xz, yz) in ZigBee system, and the plane
positioning coordinates (xG, yG) and (xB, yB) in GPS/BDS system. The GPS positioning
data set was defined as Hg = {hg

1, hg
2, . . ., hg

n}, the BDS positioning data set as Hb = {hb
1, hb

2,
. . ., hb

n}, and the ZigBee blind node positioning data set as Hz = {hz
1, hz

2, . . ., hz
n}, where hz

i =
(xz

i , yz
i ), hg

i = (xG
i , yG

i ), hb
i = (xB

i , yB
i ) are the ith positioning data in the ZigBee, GPS, and BDS

data sets, respectively, i = 1, 2, . . ., n.
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3.2. Unification of GPS/BDS Space-Time Reference

In order to obtain the trajectory information of the unmanned ship collected by the
GPS/BDS dual-module sensor, it is necessary to unify the time of the GPS and BDS satellite
systems. Due to the jump error between GPS time (GPST) and UTC time (UTCT) [16],
as time goes by, the deviation between the two gradually increases, and at present the
deviation has reached 16 s, that is

GPST ≈ UTCT + 16 (8)

BDS time (BDST) takes the national standard unit system s as the basic unit for time
accumulation. Because there is no jump second in BDST, it is continuous time. The start
time of BDST is converted into the number of weeks of GPST and the count of seconds in a
week is 1356 weeks—14.000 s. Therefore, the following relationship exists between BDST
and GPST

BDSTweek number = GPSTweek number + 1356 (9)

BDSTSeconds of the week count = GPSTSeconds of the week count + 14 (10)

Each country has established different spatial benchmarks according to its own satellite
navigation system, so it is necessary to unify the spatial benchmarks when performing
combined positioning of different satellite systems. WGS-84 was used for GPS, and the
2000 National Geodetic Coordinate System (NGCS2000) was used for the BDS. The origin,
scale, orientation, and the scale evolved from the orientation defined by the two coordinate
systems were the same, and both are closely related to the Earth Reference System (ERS).
After multiple optimizations, the difference between the two is only at the centimeter
level [17]. For most non-precision positioning applications such as navigation, the WGS-84
and NGCS2000 coordinate systems do not need to be converted, so they are considered as
unified coordinate systems in this paper.

3.3. Network Positioning of Zigbee System

In order to meet the multi-node effective communication of the unmanned-ship Zigbee
positioning system, n reference nodes were set in the positioning network coordinate system
in this paper, so that the blind node on the unmanned ship is in a network composed of n
reference nodes with a known signal strength and position coordinates [18]. The specific
steps are as follows:

Step 1 Define the RSSI theoretical value of the signal strength indication of the received
power, and calculate the distance between the blind node and the reference node.

RSSI = −(10ϑ · lgd + A) (11)

From Equation (11), we can obtain

d = 10−
A+RSSI

10ϑ (12)

where ϑ is the path loss coefficient, d is the distance between the blind node and the
reference node, RSSI is the signal strength value, and A is the strength of the initial signal
at the transmitter.

Step 2 Establish the following distance equations among the blind node and the
reference nodes in the plane:⎡⎢⎢⎢⎢⎣

(xR
1 − xz)

2
+ (yR

1 − yz)
2

(xR
2 − xz)

2
+ (yR

2 − yz)
2

...
(xR

n − xz)
2
+ (yR

n − yz)
2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
d2

1
d2

2
...

d2
n

⎤⎥⎥⎥⎦ (13)
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where ∀ i ∈ [1, n], di is the distance between the blind node and the ith reference node.
Step 3 Based on the reference node’s distance equation set established by Equation (13),

the linear transformation equation 2A
[

xz

yz

]
= B of the blind node coordinates of the

unmanned ship was constructed, where A and B are expressed as follows:

A =

⎡⎢⎢⎢⎣
xR

1 − xR
n yR

1 − yR
n

xR
2 − xR

n yR
2 − yR

n
...

xR
n−1 − xR

n yR
n−1 − yR

n

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎣
d2

n − d2
1 − (xR

n )
2
+ (xR

1 )
2 − (yR

n )
2
+ (yR

1 )
2

d2
n − d2

2 − (xR
n )

2
+ (xR

2 )
2 − (yR

n )
2
+ (yR

2 )
2

...
d2

n − d2
n−1 − (xR

n )
2
+ (xR

n−1)
2 − (yR

n )
2
+ (yR

n−1)
2

⎤⎥⎥⎥⎥⎦ (14)

Step 4 The coordinates (xz, yz) of the blind node in the ZigBee system network are
obtained by the least-squares method.[

xz

yz

]
=

1
2
(AT A)

−1
AT B (15)

3.4. Coordinate Transformation

In order to perform data fusion filtering on GPS/BDS positioning data and ZigBee
blind node location information, it is necessary to transform the WGS-84/NGCS2000
coordinate system [19] and unify it to the local plane coordinates of the unmanned-ship
navigation test with the ZigBee multi-node networking coordinate system. For this reason,
the existing geodetic coordinates (B, L) were used in this paper to transform them into plane
coordinates through Gauss–Kruger projection, and translate and rotate them to make them
unified with the local plane coordinates of the unmanned ship navigation. The specific
steps are as follows:

Step 1 convert WGS-84/NGCS2000 geodetic coordinates (B, L) to WGS-84/NGCS2000
Gaussian plane coordinates (xs, ys):

xs = XB
0 + 1

2 Np · t · m2
0 +

1
24 (5 − t2 + 9η2 + 4η4)Np · t · m4

0
+ 1

720 (61 − 58t2 + t4)Np · t · m6
0

(16)

ys = Np · m0 +
1
6 (1 − t2 + η2)Np · m3

0
+ 1

120 (5 − 18t2 + t4 + 14η2 − 58η2 · t2)Np · m5
0

(17)

where m0 = ΔL
γ cos(B), t = tan(B), η2 = (e′)2 cos2 B and ΔL are the difference between the

longitude (L) of the desired point and the longitude (L0) of the central meridian, namely
ΔL = L − L0. γ is the positioning coefficient error, B is the latitude of the desired point, and
its unit is radians, and e′ is the second eccentricity of the ellipsoid.

Np is the curvature radius of the primary vertical circle passing through this point,
which can be described as

Np =
a√

1 − e2 sin 2φ
(18)

where a is the long radius of the ellipsoid, e is the first eccentricity of the ellipsoid, and ϕ is
the geodetic dimension.

XB
0 is the arc length from the equator to the central meridian cut by a parallel circle

passing through this point and can be described as

XB
0 = C0 − cos B(C1 sin B + C2 sin3 B + C3 sin5 B + C4 sin7 B) (19)

where C0, C1, C2, C3 and C4 are ellipsoid parameters.
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Step 2 transform the Gaussian coordinates of the unmanned ship navigation collected
by GPS/BDS into the local coordinate system of the unmanned ship test through translation
and rotation. [

xG, B

yG, B

]
=

[
Δx
Δy

]
+ (1 + m)

[
cos θ′ sinθ′
− sin θ′ cosθ′

][
xs

ys

]
(20)

where (xG, B, yG, B) are the GPS/BDS plane positioning coordinates of the unmanned ship,
Δx and Δy are the translation amount of the coordinate system, m is the scale factor, and θ′
is the rotation angle of the two coordinate systems.

4. Confidence Determination of Multi-Sensor Data

In order to improve the fusion efficiency and filtering accuracy of multi-sensor data
of the unmanned ship, the confidence distance judgment and credibility assignment of
ZigBee-GPS/BDS multi-sensor data was carried out in this paper. Firstly, the credibility of
the positioning data was determined by performing a confidence interval test on the sensor
positioning data. Then, the credibility was divided into the corresponding confidence
intervals according to its size, and the corresponding confidence factors were assigned.
Finally, the confidence factor was associated with the TCPF algorithm to improve the
filtering accuracy of the algorithm.

4.1. Judgement of Confidence Distance

When the location information of the unmanned ship is positioned based on the
ZigBee-GPS/BDS multi-sensor positioning system, its sensor characteristic function can be
described by the Gaussian distribution curve p (xi) [20], and the positioning data xi follows
the normal distribution N(μ, σ), namely

p(xi) =
1√
2πσ

e
(xi−μ)2

2θ2 (21)

where xi is the ith positioning data of the sensor, μ is the true value of the positioning data,
θ is the measurement accuracy of the sensor information, and σ is the measurement error
of the sensor information, i = 1, 2, . . ., n.

Let X = {Hz, Hg, Hb}, xZGB
i = { hz

i , hg
i , hb

i }, ∀ i ∈ [1, n], xZGB
i ∈ X: the confidence distance

of the sensor positioning data is determined using the defined p(xi). The specific steps are
as follows:

Step 1 calculate the confidence distance among the positioning data of the ZigBee-
GPS/BDS unmanned-ship positioning system at different times.

di(k) = pr

⎧⎨⎩
∣∣xZGB

i (k)− xZGB
i (k + 1)

∣∣√
�
τ min(τZGB

i (k), τZGB
i (k + 1))

⎫⎬⎭ (22)

where pr{·} is a probability function, xZGB
i (k) and xZGB

i (k + 1) are the observation values of
the ith positioning data at time k and k + 1, respectively, τZGB

i (k) and τZGB
i (k + 1) are the

measurement variances of the ith positioning data at time k and k + 1, and
�
τ is the mean of

the measurement variance, k = 1, 2, . . ., T.
Step 2 determine the credibility of the sensor information at time k according to the

confidence level ε of the preset sensor support.{
High data credibility, i f di(k) ≤ 1 − ε
Low data credibility, i f di(k) > 1 − ε

(23)
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Step 3 Divide the positioning data into corresponding confidence intervals according
to the confidence distance of the positioning data [21].{

di(k) > 1 − ε, xZGB
i (k) ∈ [ ε

�
τ
− ι, ε

�
τ
]

di(k) ≤ 1 − ε, xZGB
i (k) ∈ [ ε

�
τ

, ε
�
τ
+ ι]

(24)

where ι is the variable coefficient of the sampling sample in the probability interval.
In this paper, the credibility between sensor information at different times was deter-

mined by calculating the ZigBee-GPS/BDS confidence distance, and the determined data
was divided into corresponding confidence intervals according to the probabilistic mea-
surement value between the positioning data, which caused the credible data to be close to
the region with higher confidence. Giving priority to the confidence factors of the sensor
positioning data is helpful in improving the efficiency of data fusion. The set confidence
level ε corresponded to the mean value

�
τ of the sensor measurement variance, which was

used to represent the change in the confidence degree of the multi-sensor positioning data
at different times. The classification of the corresponding confidence interval also changed
when the mean value

�
τ of the measurement variance was different, which improved the

assignment accuracy of the data fusion algorithm to the sensor positioning data.

4.2. Credibility Assignment

After the confidence distance was determined for the ZigBee-GPS/BDS positioning
data, the multi-sensor positioning data was divided into corresponding confidence intervals.
In order to improve the filtering accuracy of the data fusion algorithm, the confidence
factor was given according to the confidence distance of the positioning data, and the
confidence factor was associated with the hierarchical sampling of the proposed TCPF
algorithm. The higher the confidence of the positioning data, the higher the corresponding
fusion bias, which helps to improve the filtering accuracy of the TCPF algorithm for the
location information of the unmanned ship. The specific steps are as follows:

Step 1 define βi as the comprehensive support degree of the ith positioning data, which
is composed of several confidence weight coefficients [22].

βi = y1ω′
1 + y2ω′

2 + . . . + ynω′
n (25)

ω′
i =

1
n
− 1

2a
+

1
na

n

∑
i=1

di (26)

n

∑
i=1

βi = 1 (27)

where ω′
i is the confidence weight coefficient of the ith positioning data, n is the numeri-

cized amount of information collected by multiple sensors, and a is the adjustment parame-
ter and can be expressed as a = (n − 1)/2. y1, y2, . . ., yn are a set of non-negative numbers.

Step 2 according to the comprehensive support degree of the defined positioning data,
the norm equation of the dynamic support factor βo

i (k) for multi-sensor information and
the probability model pr(xZGB

i (k)) for the positioning data is constructed.

βo
i (k) =

∥∥pr(xZGB
i (k))

∥∥
F

n
∑

i=1

∥∥pr(xZGB
i (k))

∥∥
F

(28)

where ||.||F is the Frobenius norm, k = 1, 2, . . ., T, i = 1, 2, . . ., n.
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Step 3 Calculate the multi-sensor measurement error wZGB
i according to the dynamic

support factor βo
i (k):

wZGB
i (k) = xZGB

i (k)− Aβo
i (k) (29)

where A is the state transition matrix.
Step 4 The credibility of the positioning data of the unmanned ship positioning system

is assigned using wZGB
i :

ςZGB
i (k) =

(wZGB
i (k))−1

ω′
i

n
∑

i=1
wZGB

i (k)
(30)

where ςZGB
i (k) is the confidence factor of the ZigBee-GPS/BDS multi-sensor positioning

data.

5. Inspection and Weighted Compensation of Multi-Sensor Data

In the data set collected by the ZigBee-GPS/BDS multi-sensor system of the unmanned
ship, some data were valid, but some data may have caused measurement deviation due to
environmental or noise interference. In order to improve the fault-tolerant performance of
the data fusion algorithm, the consistency inspection of the positioning data set collected
by the multi-sensor positioning system was carried out in this paper, and the inconsistency
fault data was corrected by weighting.

5.1. Consistency Inspection of Sensor Data

For the multi-sensor positioning system composed of ZigBee-GPS/BDS, the ith posi-
tioning data xZGB

i can be expressed as

xZGB
i = xt

i + ξi (31)

where xt
i is the true value, and ξi is the measurement noise, i = 1, 2, . . ., n.

The obtained multi-sensor positioning data were arithmetically averaged and in-
spected for consistency [23]. The specific steps were as follows:

Step 1 the arithmetic mean of the positioning data, x, k = 1, 2, . . ., T, was calculated:

xi = (
T

∑
k=1

xZGB
i (k))/T (32)

Step 2 according to the arithmetic mean value of the positioning data, the consistency
inspection of the multi-sensor positioning data was carried out.∣∣∣xZGB(k)− xi

∣∣∣ ≤ τ (33)

where xZGB(k) = {xZGB
1 (k), xZGB

2 (k), . . ., xZGB
n (k)} is the multi-sensor positioning data, and τ

is the system requirement error.
Through the set system error requirements, the consistency inspection of the multi-

sensor positioning data was carried out. If the difference between the sensor positioning
data and the arithmetic mean value was less than the error required by the system, the
positioning data was determined to be consistent, that is, credible data, and could be
denoised using basic particle filtering. On the contrary, the variance of the sampled data
needed weighted correction to meet the sampling requirements of the basic particle filter
for data samples.
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5.2. Weighted Correction for Variance

When the ZigBee-GPS/BDS multi-sensor positioning system was used to locate the
navigation path of the unmanned ship at different positions in the same space, the mea-
surement noise of each sensor followed Gaussian distribution [24]. The variance of the ith
positioning data can be expressed as

�
σ

2
i = E(xZGB

i − xt
i )

2 (34)

In the real navigation situation of the multi-sensor positioning system of the unmanned
ship, since the true positioning value xt

i in Equation (34) is unknown, the arithmetic mean
value xi of the positioning data in Equation (32) was taken as the unbiased estimate of the
true value xT

i , namely
σ′

i
2
= D(xZGB

i − xi) (35)

In order to improve the credibility of data samples, the multi-sensor positioning
system in this paper measured the position of the unmanned ship m times, and integrated
the m times of positioning data into a data set. The jth positioning value of the ith sensor
information was xij, and the sensor positioning data xZGB

i was replaced in Equation (35)
with xij to obtain the information variance of the data set, which can be expressed as

σ2
i =

1
m

m

∑
j=1

(xij − xi)
2 (36)

where j = 1, 2, . . ., m.
According to the variance of the data collected by the sensor, the fusion weight κi of

the fault data was defined as follows:

κi =
(σ2

i )
−1

n
∑

i=1

1
σ2

i

(37)

n

∑
i=1

κi = 1 (38)

According to the obtained fusion weight κi, the multi-sensor fault data was weighted
and fused.

x̃(k) = x̂o(k)κ (39)

where x̃(k) = {x̃1(k), x̃2(k),. . ., x̃n(k)} is the multi-sensor positioning data after variance
weighting,

�
x

o
(k) = {

�
x 1

o(k),
�
x 2

o(k),. . .,
�
x n

o(k)} is the multi-sensor fault data, and κ = {κ1,
κ2,. . ., κn} is the fusion weight, i = 1, 2, . . ., n.

By weighting the variance of the fault data, a certain amount of information correction
was realized, and the fault-tolerant performance of the data fusion algorithm was improved.
Even if the ZigBee signal had measurement deviation due to environmental interference, or
the GPS/BDS signal was weakened or lost due to environmental occlusion, data samples
with high credibility based on the proposed method could still be obtained.

6. Denoising Processing of Positioning Data Based on Particle Filter

In order to improve the reliability of the information collected by the ZigBee-GPS/BDS
multi-sensor positioning system and reduce external noise interference, the multi-sensor
data after the consistency inspection and variance weighting were filtered and denoised
using the basic particle-filter algorithm [25].
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6.1. Principle of Particle-Filter Algorithm

The design idea of the standard particle-filter algorithm is to approximate the probabil-
ity density function of the system with some discrete random sampling points and replace
the integration operation with the sample mean to obtain the minimum variance estimate
of the state. First, a set of random particle samples was generated according to the prior
condition of the system state vector, and the weight of each sampled particle was calculated.
Then, according to the system observation information, the particle weights and positions
were continuously corrected, and the corrected particles were used to approximate the
posterior probability density function of the target state, so that the approximate posterior
probability density function can be used to estimate the target state. Finally, the particle
filter state was output, namely

x̂i(k) =
n

∑
i=1

ωi(k)xi(k) (40)

Pi(k) = ∑ ωi(k)[xi(k)− x̂i(k)][xi(k)− x̂i(k)]
T (41)

where xi(k) is the state of ith particle iterated at time k, x̂i(k) is the weighted estimation
state of the particle, Pi(k) is the estimated variance, and ωi(k) is the particle weight, k = 1,
2, . . ., T, i = 1, 2, . . ., n.

6.2. Denoising Processing of Sampling Data Based on Particle Filter

Particle propagation was achieved by sampling the ZigBee-GPS/BDS multi-sensor
state-transition model q(x(k) x(k − 1), z(k)) and generating new particle states xi(k). In
order to reduce the interference of environmental noise on the positioning data, BPF was
used to filter and denoise the multi-sensor positioning data [26], and the latest data collected
by sensors was substituted into the observation equation to establish a new particle filter
observation equation, which improves the reliability of multi-sensor data samples. The
specific steps were as follows:

Step 1 The filtering model of the multi-sensor of the unmanned ship was established,
and the state and measurement model of the multi-sensor system was defined as follows:{

x(k) = f (x(k − 1)) + λ(k − 1)
z(k) = h(xZGB(k), x̃(k)) + ν(k)

(42)

where x(k) is the system state, z(k) is the sensor recursive positioning data, f (·) is the state
transition function, h(·) is the measurement function, x(k − 1) is the system state at the last
moment, xZGB(k) is the sensor positioning data at time k, x̃(k) is the sensor positioning
data weighted by the variance at time k, λ(k − 1) is the estimation noise, and ν(k) is the
measurement noise.

Step 2 initialization: the prior density p(x0) was randomly sampled and the initializa-
tion particle set x(0) was generated.

Step 3 importance sampling.
(a) Randomly select n particle samples that satisfy the following distribution from the

importance density function:

xi(k) ∼ q(x(k)|x(k − 1), z(k)) = p(x(k)|x(k − 1)) (43)

(b) Calculate the weights of the sampled particles and update them as follows:

ωi(k) = ωi(k − 1)(p(z(k)|xi(k))p(xi(k)|xi(k − 1))/q(xi(k)|xi(k − 1), z(k)) (44)

where ωi(k) is the ith particle weight at time k.
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(c) Normalized the importance weights.

ω̃i(k) = ωi(k)[
n

∑
i=1

ωi(k)]−1 (45)

Step 4 Resampling.

Calculate the effective particle number Neff = (
n
∑

i=1
(ωi(k))

2)−1. If Neff is less than the

threshold value Nth, the particle set {xi(k), ω̃i(k)} is resampled; otherwise, no resampling
is required.

Step 5 Output the local estimation and covariance matrix of the filtered multi-sensor
positioning data:

x̂i(k) =
n

∑
i=1

ω̃i(k)xi(k) Pi(k) = ∑ ω̃i(k)[xi(k)− x̂i(k)][xi(k)− x̂i(k)]
T (46)

where x̂i(k) is the local estimation of particle information, and Pi(k) is the covariance matrix,
k = 1, 2, . . ., T, i = 1, 2, . . ., n.

7. Sensor Data Fusion Based on TCPF

When the basic particle-filter algorithm is used to filter the ZigBee-GPS/BDS sensor
state-transition function q(x(k) x(k− 1), z(k)), BPF can obtain a posterior probability that is
close to the real state estimation because it is based on the Bayesian recursion of the sensor
state prediction information according to the sampling idea. However, when filtering and
fusing three or more input data, BPF will suffer from a low operating efficiency and lack of
particle samples in the resampling process [25]. In order to meet the requirements of fusion
filtering processing of the multi-input data model based on ZigBee-GPS/BDS, a particle-
filter algorithm based on adaptive threshold and hierarchical capacity was proposed to
perform fusion filtering processing of the multi-input data, so as to realize the precise
positioning of the unmanned ship.

7.1. Principle of TCPF Algorithm

The proposed TCPF algorithm first used unscented transformation [27] to integrate
the latest observation information into the proposal distribution, so that the proposal
distribution was close to the real distribution of the probability density function:

�
x i(k)

← TO(xi(a)(k − 1)). Then, a Gaussian mixture model was constructed and an adaptive
threshold was set to reduce the operation steps of clustering similar components in the
Gaussian mixture and improve the clustering efficiency. Finally, the stratified sampling
proportion capacity was set, the continuous probability density function was layered, and
the combination of particle weights from the inferior layer was optimized to improve
particle diversity. The specific steps are as follows:

Step 1 integrate the latest observation information into the proposal distribution.
(a) Extract the particle state and covariance matrix processed by the basic particle-filter

algorithm, and calculate the sigma point set:

xi(a)(k − 1) =
[

xi(a)(k − 1), xi(a)(k − 1)±
√
(na + λ)Pi(a)(k − 1)

]
(47)

where xi(a)(k − 1) is the sigma point set, xi(a)(k − 1) is the sigma point set after the un-
scented transformation, Pi(a)(k − 1) is the covariance matrix of the sigma point set, na is the
dimension of the sigma point set, and λ is the scale parameter.

(b) Integrate ZigBee-GPS/BDS multi-sensor positioning data into the obtained Sigma
sampling point set, and update the system status and covariance.

�
x i(k) = xi(a)(k − 1) + kkz(k − 1) (48)
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�
p i(k) = pi(a)(k − 1)− kk pi(z(k−1))(k − 1)kT

k (49)

where
�
x i(k) is the update state of the system,

�
p i(k) is the update covariance of the system,

kk is the Kalman gain, and pi(z(k−1))(k − 1) is the covariance matrix of the positioning data.
(c) Construct a proposal distribution that is closer to the target probability function

using the system state and covariance, and sample from it.

�
x i(k) ∼ q(x(k) x(k − 1), z(k)) = N(

�
x i(k),

�
p i(k)) (50)

where N(·) is the Gaussian function.
Step 2 construct a Gaussian mixture model.
(a) Generate a posterior probability density function ph(x(k)|z(k)) with time step k

according to the Gaussian mixture components.

ph(x(k)|z(k)) =
C(k)

∑
i=1

ξi N(x(k)|mi, vi) (51)

where N(x(k) | mi, vi) is the ith component in the mixed Gaussian model, C(k) is the number
of component units of discrete samples, and ξ is the number of component units for discrete
samples, k = 1, 2, . . ., T, i = 1, 2, . . ., n.

(b) Integrate the discrete sampling points sampled by Equation (50) and their corre-
sponding weight {

�
x i(k),

�
ωi(k)} into the Gaussian mixture component unit of Equation (51),

and use the reconstructed continuous posterior probability density function pg(x(k)|z(k))
to resample the discrete particles:

pg(x(k)|z(k)) =
n

∑
i=1

�
ωi(k)N(

�
x i(k)|�x i(k − 1), h · p(k)) (52)

where
h = 0.5N−2/nx (53)

..
p(k) =

n

∑
i=1

�
ωi(k)(

�
x i(k)− ..

xi(k))(
�
x i(k)− ..

xi(k))
T

(54)

..
xi(k) = (

n

∑
i=1

�
ωi(k)

�
x i(k))/n (55)

where
..
p(k) is the covariance of the discrete particle filter distribution,

..
xi(k) is the mean

value of the discrete particle filter distribution, h is the normalized constant, and nx is the
particle distribution dimension.

(c) Merge similar units of the Gaussian mixture in pg(x(k)|z(k)) using cluster analysis.
Step 3 set the adaptive threshold Tc for merging similar units in cluster analysis.
(a) Take the particle xm with the largest weight in the discrete particle sample set as

the cluster center, and calculate the Mahalanobis distance Di between the other particles i
and xm after selecting the importance sampling process.

Di =

√
(xm − βi

c)
TS−1(xm − βi

c) (56)

where βi
c is the probability density of particle i, and S is the covariance matrix.

(b) Calculate the number of effective particle samples Ne in the cluster unit.

Ne =
n

1 + σ2
βc

(57)
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where n is the number of particle samples and σ2
βc is the covariance of particle probabil-

ity density.
(c) Construct threshold T:

T = T0 +
ke

Ne
· R (58)

where T0 is the initial value of the threshold, ke is the proportion coefficient, and R is the
classification times.

(d) Substitute Equation (57) into Equation (58) to obtain the adaptive threshold Tc.

Tc = T0 +
ke(1 + σ2

βc)

n
· R (59)

(e) Compare Di with the adaptive threshold Tc. If Di is less than or equal to Tc, the
particle is classified into the component unit related to its probabilistic mass; on the contrary,
skip the particle and cluster other particles.

(f) Select the particle with the largest weight from the remaining particle samples as
the cluster center, and repeat step (e) until the clustering ends.

(g) Substitute the clustered component units into the continuous probability den-
sity function p̂(x(k)|z(k)) of the constructed particle set. The p̂(x(k)|z(k)) is expressed
as follows:

p̂(x(k)|z(k)) =
C(k)

∑
i=1

βi N(
�
x i(k)|γi, pi),

C(k)

∑
i=1

βi = 1 (60)

where βi is the probability mass of the similar component i, γi is the mean of component i,
and pi is the covariance of component i, i = 1, 2, . . ., n.

Step 4 set the hierarchical sampling proportional capacity.
(a) According to the layering theory [28], the continuous probability density function

p̂(x(k)|z(k)) is divided into l layers, and the probability density function of each layer is
defined as pi(x). According to its probability quality, the component layers are divided
into a group of weight advantage layers and two groups of disadvantage layers, and are
defined as la, lb and lc, respectively.

(b) Set the proportional capacity of the particle number in layers la, lb and lc as n/4,
n/3 and n/3, respectively.

(c) The particles whose weights are less than the average value �(k) in lb and lc layers
are optimized and combined to obtain the optimized particle weights ψ′

i(k), and the sample
data is sampled hierarchically. The �(k) and ψ′

i(k) are calculated as follows:

�(k) =
1
n

n

∑
i=1

�
ωi(k) (61)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ′

i(k) =
η−1

η

�
ωi(k) + 1

η �(k),
i f

�
ωi(k) < �(k),

Divide particles into lb layer

ψ′
i(k) =

�
ωi(k),

i f
�
ωi(k) ≥ �(k),

Divide particles into la layer

(62)

where η is the proportional coefficient.
(d) Output the sampling results of multi-sensor data fusion.
In the process of importance sampling, the current positioning data was integrated into

the design of the proposal distribution of particle sets, which made the proposal distribution
closer to the real posterior probability density and improved the estimation performance
of the algorithm. By constructing Gaussian mixture probability density function instead
of resampling, and constructing adaptive threshold in the cluster analysis of Gaussian
mixture, the discrete particle samples were merged into similar component units, which
reduces the complexity of clustering operation, and improves the real-time performance and
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operational efficiency of system signal processing. In addition, the continuous probability
density function was stratified and the proportional capacity was set to ensure that there are
enough particles in the inferior layer for weight optimization combination, which improved
the diversity of particles, effectively suppressed the lack of particle samples, and improved
the fusion processing accuracy of the TCPF algorithm for multi-input data.

7.2. Association of Stratified Sampling with Sensor Confidence

In order to further improve the fusion filtering accuracy of the algorithm, a new design
was made for the hierarchical sampling step of the TCPF algorithm in this paper. The
confidence factor ςZGB

i (k) of Equation (30) was associated with the hierarchical sampling of
the TCPF algorithm, and a new weight optimization equation was obtained. The specific
steps are as follows:

Step 1 substitute the confidence factor into the calculation of the weight optimization.

ψ′
i(k) =

ςZGB
i (k)− 1
ςZGB

i (k)
�
ωi(k) + ςZGB

i (k) · �(k),
�
ωi(k) < �(k) (63)

Step 2 the data samples are stratified according to the weights of multi-sensor sampling
particles after optimized combination.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ψ′
i(k) =

ςZGB
i (k)−1
ςZGB

i (k)
�
ωi(k) + ςZGB

i (k) · �(k),
i f

�
ωi(k) < �(k),

Divide particles into lb layer

ψ′
i(k) =

�
ωi(k),

i f
�
ωi(k) ≥ �(k),

Divide particles into la layer

(64)

The confidence factor of the positioning data was associated with the stratified sam-
pling in the TCPF algorithm, so that the sensor positioning data with a large confidence
factor would be sampled first when the TCPF algorithm was used to sample and fuse
the positioning data, which would improve the sampling efficiency of the TCPF algo-
rithm. The larger the confidence factor data, the higher the credibility, which improved the
reference value of samples from sensor information fusion, further improved the fusion
filtering accuracy of the TCPF algorithm, and finally realized the precise positioning of the
unmanned ship.

7.3. Steps of Sensor Data Fusion Based on TCPF

Step 1 generate an initial particle sample set {xi(0), i = 1, 2, . . ., n} by sampling from the
state transition function q(x(k)| x(k − 1), z(k)) of the ZigBee-GPS/BDS multi-sensor.

Step 2 perform basic UPF operations:
�
x i(k) ← TO(xi(a)(k − 1)), k ∈ [1,T], i ∈ [1,n].

Step 3 sample particles from the proposal distribution N(
�
x i(k),

�
p i(k)):

�
x i(k) ∼ q(x(k)| x(k − 1), z(k)) = N(

�
x i(k),

�
p i(k))

Step 4 construct an adaptive threshold Tc, and a Gaussian mixture continuous proba-
bility density function p̂(x(k)|z(k)) using cluster analysis.

Step 5 the continuous probability density function is sampled hierarchically, and the
sampling space is divided into la, lb, and lc layers.

Step 6 set the proportional capacity, and divide the particles into la, lb, and lc layer
groups according to the weight of the confidence factor ςZGB

i of the sampled particles.
At the same time, the weights of particles in the inferior layer lb and lc layer groups are
combined and optimized, and they are added to the la layer to participate in sampling after
the optimized particle weight ψ′

i(k) is obtained.
Step 7 output the fusion sampling results.
Step 8 k = k + 1, and return to step 2.
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8. Numerical Simulation and Experimental Testing

8.1. Simulation of Data Fusion Algorithm Based on TCPF

In order to verify the performance of the proposed fusion positioning algorithm,
30 independent tests were carried out on the simulation model shown in Equations (63)–(65),
and the test results were compared with the results of an Extended Kalman Filter (EKF) [29],
Unscented Kalman Filter (UKF) [30], Unscented Particle Filter (UPF) [31] and Basic Particle
Filter (BPF) [32] in terms of root-mean-square error (RMSE) and standard deviation (Std).

f1 =

{
x(k) = sin(0.6π(k − 1)) + 2x(k − 1) + 6 +

√
Q × randn()

z(k) = 0.5x2(k) +
√

R × randn()
(65)

f2 =

{
x(k) = 2.2x(k − 1) + 3x(k−1)

2+x2(k−1) + cos(5(k − 1)) +
√

Q × rand()

z(k) = 0.35x2(k)− 8 +
√

R × rand()
(66)

f3 =

{
x(k) = x(k − 1) + 6x(k−1)

1+x2(k−1) + 4 cos(5(k − 1)) +
√

Q × randn()

z(k) = 0.25x2(k)− 3 +
√

R × randn()
(67)

The remaining parameters of TCPF were set as follows: N was 100, σ was 0.75, τ was
2; the process noise variance Q and measurement noise variance R were separately set
according to different models, that is, the Q of the f 1, f 2 and f 3 test models were Q1~N
(0,0.5), Q2~N (0,1) and Q3~N(0,5), respectively; and the R of the f 1, f 2 and f 3 test models
were R1~N(0,1), R2~N(0,5) and R3~N(0,10), respectively. The parameters of the algorithm
to be compared were taken from the corresponding references.

Table 1 shows the model test results of five algorithms. From the table, it can be seen
that the mean and maximum values of RSME and Std from the proposed TCPF are smaller
than the corresponding performances from the other four algorithms, which indicates that
the filter fusion accuracy of TCPF was the highest. The superior performances were mainly
due to the fact that in the process of importance sampling in this paper, the latest positioning
data were integrated into the importance function through unscented transformation,
which improved the credibility of particle samples. In addition, the algorithm in this
paper clustered discrete particles by constructing an adaptive threshold in the Gaussian
mixture and optimized the weights of particles in the inferior layer, which improved the
diversity of data samples. The performance comparison shows that compared with the
other four algorithms, the mean values of RMSE and Std of data fusion based on the
proposed TCPF decreased by 25.0% and 28.0%, respectively, which fully shows that the
TCPF data fusion algorithm can effectively suppress the particle shortage problem and
improve the filtering accuracy.

Table 1. Model test results of five algorithms.

Test Model
Mean Value of RMSE Mean Value of Std

EKF UKF BPF UPF TCPF EKF UKF BPF UPF TCPF

f 1 0.493 0.421 0.646 0.390 0.345 0.473 0.393 0.622 0.381 0.235
f 2 4.433 2.554 3.972 3.383 2.485 4.210 2.574 2.792 2.893 2.367
f 3 5.456 3.598 4.812 4.563 3.487 5.498 3.702 3.710 4.236 3.396

Test Model
Maximum Value of RMSE Maximum Value of Std

EKF UKF BPF UPF TCPF EKF UKF BPF UPF TCPF

f 1 0.910 0.568 0.940 0.613 0.409 0.877 0.566 0.891 0.599 0.412
f 2 6.681 3.459 6.142 4.624 3.317 6.391 3.431 3.452 4.283 3.283
f 3 7.856 4.192 6.121 6.142 3.998 7.731 4.214 4.172 5.931 3.969
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Figure 4 shows the results of 30 RSME and Std tests of five algorithms against three
types of models (f 1, f 2, f 3). From the figure, it can be seen that when the noise variance was
small, the RMSE and Std values of the TCPF data fusion algorithm were smaller than the
values of the other four algorithms in each independent simulation experiment. When the
noise variance increased, the RMSE and Std values of the five algorithms increased, which
indicates that the filtering performance of the algorithms decreased, but the estimation
accuracy of TCPF was still significantly higher than those of the other four algorithms. The
test results in Figure 4 also verify that the filtering optimization performance of the TCPF
data fusion algorithm was the best, and the filtering accuracy was the highest.

  
(a) (b) 

  
(c) (d) 

Figure 4. Cont.
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(e) (f) 

Figure 4. RMSE and Std tests of five algorithms against different models: (a) f 1 model, Q1~N(0,0.5),
R1~N(0,1); (b) f 1 model, Q1~N(0,0.5), R1~N(0,1); (c) f 2 model, Q2~N(0,1), R3~N(0,5); (d) f 2 model,
Q2~N(0,1), R3~N(0,5); (e) f 3 model, Q3~N(0,5), R5~N(0,10); and (f) f 3 model, Q3~N(0,5), R5~N(0,10).

8.2. Experimental Testing and Analysis
8.2.1. Establishment of Unmanned-Ship Experimental Environment

In order to further verify the effectiveness of the multi-sensor data fusion positioning
method of the unmanned ship for water quality testing based on the proposed TCPF,
the ZigBee-GPS/BDS multi-sensor combined positioning system test platform as shown
in Figures 1 and 2 was established with the three-body unmanned ship as the carrier,
and the unmanned ship navigation positioning experiment was carried out in the river
channel of Zhangjiagang Campus of Jiangsu University of Science and Technology. In
order to facilitate the experimental analysis and calculation, the starting point coordinate
was subtracted from the preprocessed unmanned ship coordinate data, and the relative
coordinate was used for testing. After calculation, the starting point coordinate of the
unmanned ship was set to (3.8941, 0).

In order to evaluate the filtering accuracy of the unmanned-ship position information
based on the proposed TCPF data fusion algorithm, first, the industrial computer equipped
with the Linux system collected the position information of the unmanned ship using
multiple sensors and outputted it from the serial port to the PC in the form of a log file
through the wireless communication module. Then, the PC integrated the received position
information of the unmanned ship into a data set [33]. After that, the designed TCPF
data fusion algorithm was used to fuse and filter the position information data set of the
unmanned ship, and finally realize the precise positioning of the unmanned ship. Figure 5
shows the experimental environment for the unmanned-ship positioning.

In order to verify the validity and superiority of the ZigBee-GPS/BDS multi-sensor
positioning system for unmanned-ship navigation in different environments, the test river
was divided into two sections, A and B, and two groups of ZigBee reference nodes were set
along the A/B river according to the ZigBee networking principle. Among them, section A
was located on the west side of the school library, which has an open water surface and was
easy for the unmanned ship to navigate. However, the B section of the river was located
on the west side of the school gymnasium, with dense vegetation and narrow channels,
which had a certain environmental disturbance effect on the signal transmission of the
ZigBee-GPS/BDS sensors. Figure 6 shows the schematic diagram of the node layout and
navigation trajectory on the A/B river.
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(a) (b) 

Figure 5. Experimental environment for unmanned ship positioning: (a) Communication node;
(b) PC terminal.

  
(a) (b) 

Figure 6. Schematic diagram of node layout and navigation trajectory on A/B river: (a) ZigBee node
layout; (b) navigation trajectory of unmanned ship.

8.2.2. Unmanned-Ship Positioning Test Based on Multi-Sensor Data Fusion

In order to verify the superior performance of the proposed TCPF algorithm, some
unmanned-ship navigation and positioning experiments based on the multi-sensor po-
sitioning system were carried out. According to the unmanned-ship positioning data
collected by the sensors in the A/B experimental river, the test results of the six algorithms,
namely TCPF, EKF, UKF, UPF, KF, and BPF, were compared against the three performance
indicators of average positioning error, RMSE and Std. The filtering data of the proposed
TCPF algorithm was ZigBee-GPS/BDS positioning data, and the sensor positioning data of
the other five algorithms were all ZigBee-GPS. Figure 7 shows the filtering results of the
unmanned-ship navigation trajectory based on six filtering algorithms.
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(a) (b) 

Figure 7. Filtering results of the unmanned-ship navigation trajectory based on five filtering algo-
rithms: (a) positioning trajectories on section A; (b) positioning trajectories on section B.

From Figure 7b, it can be seen that when the unmanned ship sailed on the experi-
mental river in section B, the sensor signal transmission was affected to a certain extent by
environmental disturbances, such as dense trees and a narrow river. Except for the TCPF
algorithm, the filtering and positioning results of other algorithms seriously deviated from
the expected trajectory of the unmanned ship in some places; in particular, at the turning of
the river, the positioning results were prone to large jumps, which caused the unmanned
ship to gradually deviate from the expected trajectory and reduced the positioning accu-
racy and reliability. From Figure 7a, it can be seen that because the water surface of the
experimental river in section A was more open than that in section B, and there were fewer
shelters along the river, the positioning results of the other five algorithms showed that the
unmanned ship could basically navigate according to the expected trajectory, but there was
still a certain jump at the turning.

Combining Figure 7a,b, it can be seen that compared with the other five algorithms,
the positioning accuracy of the unmanned ship based on the proposed TCPF algorithm
was significantly higher. No matter whether at the turning of the river or in a straight line,
the unmanned ship could basically navigate along the expected trajectory. This was mainly
because the TCPF data fusion algorithm achieves the weighted correction of multi-sensor
fault data through consistency inspection, which improves the fault-tolerant performance
of the algorithm, and makes the TCPF algorithm have a high-reliability data sample for
filtering. If the data are not inspected and corrected, when a type of sensor is subjected
to a large environmental disturbance, the positioning data will be deviated, which will
reduce the credibility of the data sample, and then reduce the positioning accuracy of the
unmanned ship. Thus, this shows that the proposed TCPF algorithm of ZigBee-GPS/BDS
not only ensures the accuracy of fault data inspection but also improves the fault-tolerant
performance of the algorithm.

Tables 2 and 3 show the comparison results of trajectory positioning for six algorithms.
From the tables, it can be seen that the test results of the proposed TCPF algorithm were
smaller than those of the other five algorithms, regardless of the average positioning error
or the maximum positioning error of the A/B section, which indicates that the proposed
method has the highest filtering and fusion accuracy. This is mainly because the posterior
probability density function representing the state was approximated as a Gaussian mixture
distribution in this paper, and particle samples were extracted on it instead of resampling,
which ensured the diversity of ZigBee-GPS/BDS multi-sensor sampling particles, and
avoided a lack of samples.
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Table 2. Trajectory positioning test results in section A.

Performance Index

Algorithm
EKF UKF BPF UPF KF TCPF

Average positioning error 3.265 4.110 3.538 2.821 3.856 2.352
Maximum positioning error 5.221 6.010 5.319 4.114 5.589 2.941

RMSE 3.057 3.956 3.432 2.719 3.854 2.351
Std 0.435 0.589 0.542 0.395 0.498 0.345

Table 3. Trajectory positioning test results in section B.

Performance Index

Algorithm
EKF UKF BPF UPF KF TCPF

Average positioning error 3.786 4.539 4.464 3.658 4.365 2.875
Maximum positioning error 6.519 8.018 7.699 6.393 7.856 4.463

RMSE 3.658 4.389 4.358 3.572 4.215 2.723
Std 0.952 1.853 1.258 1.152 1.562 0.876

From the performances of Std and RMSE in the A/B section, compared with the other
five algorithms, the value of the TCPF algorithm was also the smallest, which shows that
the estimation performance of the TCPF algorithm is also the best. This is mainly due to
the fact that the proposed TCPF algorithm integrated the latest multi-sensor positioning
data collected by the unmanned-ship positioning system into the proposal distribution of
the particle set in the importance sampling process, which made the proposal distribution
closer to the real posterior probability density and improved the estimation performance of
the algorithm. In addition, the integration operation in Bayesian estimation was solved
according to the Monte Carlo method adopted by the basic particle-filter algorithm, which
reduced the interference of environmental noise on the information collected by multi-
sensors, and improved the credibility of multi-sensor positioning data samples.

The calculation shows that, compared with the other five algorithms, when the un-
manned ship navigated based on TCPF in section A, the average positioning error, RMSE
and, Std performances of its trajectory decreased by 35.0%, 36.0%, and 35.0%, respectively.
In addition, the average positioning error, RMSE and, Std performance of its trajectory in
section B decreased by 37.0%, 40.0%, and 39.0%, respectively. In the experiment involving
the whole river, the three performances of TCPF decreased by an average of 36.0%, 38.0%,
and 37.0%, respectively, which fully shows that the proposed TCPF algorithm had a high
estimation performance and fault-tolerant performance, and the positioning accuracy of
the unmanned ship’s navigation trajectory was improved.

8.2.3. Fault-Tolerance Test of the Unmanned-Ship Positioning Algorithm

In order to further verify the fault tolerance and filtering performance of the TCPF
data fusion algorithm, two sets of fault-tolerance tests were carried out. One set of test
data was from ZigBee-GPS, and the other set of selected test data was from ZigBee-BDS. In
addition, the BPF algorithm was selected as the comparison algorithm for the performance
test, and the positioning error, RMSE, and Std were used as performance indicators. The
test data set of BPF was from ZigBee-GPS/BDS. Figure 8 shows the trajectory fusion results
of the unmanned ship based on different algorithms in the A/B river.

From Figure 8, it can be seen that although the positioning results of the unmanned
ship, based on the TCPF algorithm for different data sets, basically fitted the expected
trajectory, the positioning accuracy of the TCPF algorithm for the ZigBee-GPS/BDS data
set was significantly higher, and the positioning jump error at the river turn was also
smaller, because the TCPF algorithm realized the information complementarity between
the GPS and BDS data set. When a signal in the positioning system was lost, another
sensor could supplement the collected position information of the unmanned ship to the
sampling data set; thus, the sensor signal-loss problem caused by the large deviation in the
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unmanned ship position has been effectively overcome, which verifies that the constructed
ZigBee-GPS/BDS multi-sensor positioning system performed the function of information
complementarity between the data.

  
(a) (b) 

Figure 8. Trajectory fusion results of the unmanned ship based on different algorithms in the A/B
river: (a) section A positioning trajectory; (b) section B positioning trajectory.

Combining the performance indicators of the average positioning error in Figure 8 and
Tables 4 and 5, it can be seen that the BPF algorithm using the ZigBee-GPS/BDS data set
improved the positioning accuracy of the unmanned ship to a certain extent, but there was
still a certain gap compared with the positioning accuracy of the TCPF algorithm, which
was mainly due to the optimization performance of the TCPF algorithm itself. Firstly, the
adaptive threshold was constructed in the cluster analysis of Gaussian mixture units, and
the discrete particle samples were merged into similar component units, which reduces
the complexity of clustering operations and improves the real-time performance of data
fusion algorithms for signal processing. Secondly, the samples of the continuous probability
density function of the constructed weighted point set were stratified, and the proportional
capacity of each sampling layer was set, which ensured the reasonable distribution of the
number of sampling particles in the stratification. Next, the layer group la was sampled,
and the particle weights in the layer group lb and lc were optimally combined, which
increased the probability quality and prevented the lack of samples.

Table 4. Data positioning test results in section A.

Performance Index

Algorithm
TCPF-Z + G TCPF-Z + B BPF-Z + G/B TCPF-Z + G/B

Average positioning error 2.558 2.606 2.532 1.828
Maximum positioning error 3.438 4.013 3.663 2.676

RMSE 2.541 2.648 2.588 1.860
Std 0.368 0.605 0.381 0.332

From Tables 4 and 5, it can be seen that the RMSE and Std performance indicators
of the TCPF algorithm were better than those of the BPF algorithm. This was mainly
because the confidence factor of multi-sensor positioning data is associated with hierarchical
sampling in the TCPF algorithm, so when using the TCPF algorithm to filter and fuse
ZigBee-GPS/BDS multi-sensor positioning data, the sensor positioning data with a large
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confidence factor will be fused and sampled first, which improves the sampling efficiency
of the TCPF algorithm. Because the confidence factor reflects the credibility of the data, the
larger the confidence factor was, the higher the reliability of the data sample was, which
further improved the reference value of the sensor-information fusion sample, and further
improved the fusion filtering accuracy of the TCPF algorithm for multi-input data, and
finally achieved the accurate positioning of the unmanned ship.

Table 5. Data positioning test results in section B.

Performance Index

Algorithm
TCPF-Z + G TCPF-Z + B BPF-Z + G/B TCPF-Z + G/B

Average positioning error 2.754 2.864 2.727 2.092
Maximum positioning error 4.561 4.875 4.945 3.631

Positioning RMSE 2.834 2.973 2.847 2.168
Positioning Std 0.572 0.717 0.751 0.506

The calculations show that, compared with the other three algorithms, the average
positioning error, RMSE and Std performances of the unmanned ship, based on the TCPF
algorithm during navigation in river A, decreased by 22.0%, 20.0%, and 17.0%, respectively,
and the average positioning error, RMSE, and Std in river B decreased by 18.0%, 19.0%,
and 18.0%, respectively. The three performances of the unmanned ship in the whole
experimental river decreased by an average of 20.0%, 19.5%, and 17.5%, respectively, which
fully demonstrates that the TCPF algorithm has a better optimization performance and
fault-tolerant performance compared with the basic particle-filter algorithm, and improves
the ship’s positioning accuracy under the interference of the unmanned-ship environment.

9. Discussion

Accurate positioning is the key to achieving the high-precision autonomous navigation
of unmanned ships, and the positioning of unmanned ships based on multiple combined
sensors has always been the focus of research by scholars. Data fusion based on two types of
sensors is the current mainstream technology for unmanned-ship positioning, but there are
shortcomings in affecting positioning accuracy and reliability due to the weakening or loss
of certain sensor signals. In recent years, how to improve positioning accuracy by further
fusing the data of three or more types of sensors has become a research hotspot. Adding
sensors can help improve the reliability and accuracy of unmanned-ship positioning, but
there is still a lack of research on how to further improve the accuracy and efficiency of
data fusion through testing the confidence distance of data, as well as how to achieve
effective localization under low or weak signals through data correction. In view of this,
for the positioning of unmanned ships, in this paper, a multi-sensor positioning system
incorporating ZigBee, GPS, and BDS was first built. Then, the particle-filter algorithm was
introduced for denoising multi-sensor data. Next, the latest positioning data from multiple
sensors were integrated into the proposed distribution using unscented transform to cause
the proposed distribution to be close to the real distribution of the probability density
function. Finally, the Gaussian mixture model was constructed, the adaptive threshold
was set, and the data-confidence factor was associated with the hierarchical sampling to
further improve the fusion filtering accuracy of the positioning data. The numerical test
results of the three groups of models and the experimental test results of the navigation
path all show that the proposed method not only realizes the mutual complementation,
weighted correction, and confidence assignment of multi-sensor signals, but also signifi-
cantly reduces their root-mean-square error and standard deviation compared with other
filtering algorithms, which verifies that the proposed method has the advantages of high
data reliability and a good filtering-fault-tolerance performance, and achieves the accuracy
and reliable positioning of unmanned ships.

201



Appl. Sci. 2023, 13, 10390

10. Conclusions and Future Work

In this paper, a multi-sensor data fusion positioning method for unmanned ships
based on a threshold- and hierarchical-capacity particle filter was proposed to address the
issues of significant deviation in data fusion accuracy caused by signal weakening and loss
in conventional integrated positioning systems in unmanned ships. Through algorithm
simulation and experimental testing, the following conclusions could be obtained:

(1) The positioning data collected by the ZigBee-GPS/BDS multi-sensor is used to com-
plement the information, which effectively overcomes the problem of sensor signal
weakening or loss caused by environmental masking, and improves the accuracy and
effectiveness of multi-sensor data fusion.

(2) By conducting consistency checks on the multi-sensor positioning data and weighted
correction of the faulty data, not only does it enhance the fault-tolerance performance
of the data fusion algorithm but also strengthens the credibility of the data set samples.

(3) The latest positioning data of multiple sensors are integrated into the proposal dis-
tribution of the particle set, which causes the suggested distribution to be closer to
the true posterior probability density and improves the estimation performance of
the algorithm. At the same time, the adaptive threshold is constructed in the cluster
analysis of Gaussian mixing units, and the discrete particle samples are merged into
similar component units, which improves the real-time performance and computing
efficiency of the system’s signal processing.

(4) Through stratified sampling and the setting of proportional capacity, a sufficient
number of particles in the disadvantage layer are ensured for weight optimization and
combination, and the diversity of particles is improved. Simultaneously, associating
confidence factors with the TCPF algorithm’s layered sampling prioritizes the selection
of positioning data with larger confidence factors for sample fusion during the fusion
filtering process of the unmanned ships position information to enhance the efficiency
and accuracy of the data fusion algorithm.

The multi-sensor data fusion method in this paper was mainly oriented to unmanned
ships that conduct water quality detection in inland rivers. In recent years, unmanned ships
have also been applied in various fields such as maritime rescue, maritime monitoring,
and maritime cargo transportation. The marine environment is much more complex than
inland rivers. Whether the multi-sensor fusion algorithm proposed in this paper is suitable
for the marine environment will be the next research topic.
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Abstract: SLAM (simultaneous localization and mapping) technology incorporating QR code naviga-
tion has been widely used in the mobile robotics industry. However, the particle kidnapping problem,
positioning accuracy, and navigation time are still urgent issues to be solved. In this paper, a SLAM
fused QR code navigation method is proposed and an improved adaptive Monte Carlo positioning
algorithm is used to fuse the QR code information. Firstly, the generation and resampling methods
of initialized particle swarms are improved to improve the robustness and weights of the swarms
and to avoid the kidnapping problem. Secondly, the Gmapping scan data and the data generated
by the improved AMCL algorithm are fused using the extended Kalman filter to improve the accu-
racy and stability of the state estimation. Finally, in terms of the positioning system, Gmapping is
used to obtain QR code data as marker positions on static maps, and the improved adaptive Monte
Carlo localization particle positioning algorithm is matched with a library of QR code templates,
which corrects for offset distances and achieves precise point-to-point positioning under grey-valued
raster maps. The experimental results show that the particles encountered with kidnapping can be
quickly adjusted in position, with a 68.73% improvement in adjustment time, 64.27% improvement in
navigation and positioning accuracy, and 42.81% reduction in positioning time.

Keywords: SLAM; adaptive Monte Carlo localization; kidnapping; Gmapping; QR code template
library; extended Kalman filter

1. Introduction

An automated Guided Vehicle is a robot used for equipment handling and automatic
assembly [1]. With the development of industry and the increase in the cost of human
resources, material handling in industrial production has been gradually replaced by
intelligent AGVs [2], which are equipped with various kinds of photoelectric sensors
to network and interconnect, and issue scheduling instructions to realize the intelligent
material handling system. According to the different navigation methods, AGVs can be
divided into QR code, magnetic, inertial, laser, etc. [3]. When AGVs convey material along a
planned route, their surroundings and ground cleanliness partially impact most navigation
methods [4]. As we all know, QR code navigation requires a neat and clean floor, and the
QR code must be protected to a large extent [5]. On the contrary, SLAM navigation does not
require ground road conditions to build a map but has a strong need for the surrounding
environment [6]. For the above situation, the navigation method is established as SLAM
fused QR code navigation, and the improved AMCL positioning algorithm is used to match
the QR code information to improve the positioning accuracy.
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AGV navigation has been a fundamental problem for logistics robots. The key to this
is the combination of algorithms with various navigation and optimization methods. Bach
S H et al. [7] corrected the cumulative error in attitude estimation by combining the internal
coded sensor data with the remaining external QR code data. Kulaç N. et al. [8] used RGB
cameras and QR codes for mapping and localization, eliminating permanent localization
errors, but the light source affects the actual localization. P. Kumar [9] used EKF for the data
tracking of QR codes and the experiments proved that the positioning accuracy is improved
but the quality of the QR code is required and regular maintenance is needed. C. Zhou’s [10]
use of QR codes for AGV navigation has been shown through experiments to reduce costs
and improve positioning accuracy. Still, the system uses machine vision to recognize QR
codes and therefore has an impact on the scanning time as well as precision. Adaptive
Monte Carlo localization is a very effective solution for localizing the robot in a given
environment [11]. Zhang, X. et al. [12] proposed an improved EKF intelligent algorithm to
reduce and eliminate the deviation in the fusion of various sensor data. When in a highly
similar working environment, the positioning accuracy, stability, and data processing will
be significantly affected [13]. The parameter changes in the AMCL positioning algorithm
also impact the algorithm response and actual positioning [14,15].

SLAM [16] is the abbreviation for “simultaneous localization and mapping,” mainly
used to solve the problem of localization and map construction when a robot moves in an
unknown environment. It consists of four main parts: front-end scanning and matching,
back-end optimization, closed-loop detection, and map construction [17]. Gmapping is
a SLAM algorithm based on laser sensors, which has high map building and position-
ing accuracy, and is able to build accurate maps in real time and achieve more accurate
positioning [18]. AMCL localization algorithms are widely used because they are highly
flexible, adaptive and can handle noise and uncertainty [19]. However, in localization,
AMCL is highly dependent on the accuracy of the sensors, which will affect the accuracy
of the localization if the data fails. In this paper, an enhanced AMCL based on QR code
information is proposed. The improved AMCL algorithm is able to automatically adjust
the weights and distributions of the particles according to the estimation error through an
adaptive sampling strategy, which improves the accuracy and robustness of localization.
Accurate localization is still achieved in the presence of dynamic environment and sen-
sor errors. To meet the requirements of the real-time and positioning accuracy of visual
navigation, this paper uses the QR code as a landmark. A QR code is a two-dimensional
matrix composed of QR code symbols and has the advantages of a fast reading speed,
large amount of information, low cost, and high reliability [20]. In the process of the AGV
moving, the QR code camera at the bottom of the vehicle scans the QR code. It determines
the position and attitude information of the AGV by identifying the current QR code. In
this process, the angular error and positional error in the motion process are analyzed and
calculated. By using various algorithms for correction and compensation, the positioning
accuracy of the robot is improved to a certain extent. Based on the above problems, an
improved AMCL particle localization algorithm is introduced into the SLAM fusion QR
code, connecting the world coordinates of the QR code to enhance the number of particles
in the AMCL algorithm, optimizing the particle sampling strategy, and improving the
motion model to introduce a non-linear model to improve the localization accuracy.

The AGV navigation and positioning system researched in this paper is characterized
by a high accuracy, low latency, reduced maintenance cost and improved work efficiency. It
can solve the navigation and positioning problems encountered by AGVs in practical work.
According to the requirements of the actual production environment, this paper describes
the improved methods and measures, and compares them with the unimproved methods
and measures. Figure 1 shows the system framework diagram of AGV.
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Figure 1. System Framework.

The following are the main contributions made by this paper:

(1) Improve the way of generating and resampling the initial particle swarm of the AMCL
algorithm, so that the particle performance is more stable, and can effectively match
the set template library to improve the positioning accuracy.

(2) In the navigation process, even if the QR code is damaged and stained, it still does
not affect the navigation and positioning. Hybrid navigation can complement each
other and complete the navigation task independently.

(3) The improved AMCL algorithm fuses QR code navigation. The two types of data are
fused using EKF in order to improve the positioning accuracy and at the same time
reduce the navigation time and improve the navigation efficiency.

(4) The improved AMCL algorithm can effectively reduce or avoid the occurrence
of particle abduction events and increase the reliability of accurate AGV position-
ing. The superiority of the improved algorithm can be effectively proved through
field experiments.

2. Improved AMCL Algorithm

The AMCL suits local and global localization problems [21,22]. The improved AMCL
algorithm can effectively solve the problem of low positioning accuracy by dynamically
adjusting the number of particles and incremental particle weights and improving the
resampling method, which can effectively improve the accuracy and stability of positioning.

Based on the above problem, state fusion is performed by introducing an extended
Kalman filter using the outputs of the two algorithms. The different data information
from the improved AMCL algorithm and the Gmapping constructed graph are fused.
The map position generated using Gmapping is fused with the robot position generated
by the improved AMCL, matching the AGV position estimation with the map data to
obtain more accurate localization results. The improved AMCL localization algorithm
inputs a parameter file to subscribe to the map information scanned using Gmapping. The
sensor information received by the LiDAR is input to the AMCL positioning algorithm,
and the EKF enhances the positioning accuracy by fusing the output states based on the
received map data information and the AMCL positioning algorithm information. Figure 2
shows the process of data fusion between the AMCL algorithm data and lidar sweep map
information by the extended Kalman filter.
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Figure 2. The overall architecture of the AMCL work.

2.1. AGV Motion Modelling and Chassis Structure Analysis

According to the drive mode, it is known that the AGV uses differential drive, so the
motion model sketch of the QR code navigation AGV is shown in Figure 3.

 

(a) (b) 

Figure 3. AGV structure and motion modelling: (a) chassis structure; (b) movement model.

As shown in the figure, the AGV dimensions R1, R2, and R3 are: 38 cm, 30 cm, and
46 cm, respectively. The AGV is powered by a pair of differential wheels, with two followers
at the front and rear supporting the AGV body. In Figure 3b, v is the linear velocity of the
centre of the AGV, ω is the angular velocity of the AGV, and the attitude of the AGV at the
moment t + 1 at P0. The kinematic model of the AGV is shown in Equation (1).⎧⎪⎪⎨⎪⎪⎩

xt+1 = xt − v
ω sin(θt) +

v
ω sin(θt + ωΔt)

yt+1 = yt − v
ω cos(θt)− v

ω cos(θt + ωΔt)

θt+1 = θt + ωt

(1)
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where Δt is the sampling interval, (xt, yt, zt) is the attitude of the AGV at moment t, and
(xt+1, yt+1, zt+1) is the attitude at moment t + 1.

2.2. Improving the Flow of the Algorithm

Aiming at resampling the AMCL algorithm in the iterative computation process which
will increase the computation amount, an improved AMCL algorithm combining QR code
information is proposed to improve the positioning accuracy, reduce the computation
amount, and shorten the navigation time. The effect of the improved algorithm is shown in
Figure 4.

Figure 4. The effect of the improved algorithm.

2.3. Improved Odometer Motion Model Sampling

In the time interval (t − 1, t), the given motion information ut is

ut =

[
xt−1

xt

]
(2)

where xt is the coordinates inside the robot; the difference between xt−1 and xt enables
an estimate of the difference between the two poses. The relative distances can be calcu-
lated from three steps: initial rotation δrot1, translation δtrans, and secondary rotation δrot2.
Calculate one translation and two rotations by the given motion information ut.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δtrans =

√(
x − x′

)2
+
(

y − y′
)2

δrot1 = arctan2
(

y′ − y, x′ − x
)
− θ

δrot2 = θ′ − θ − δrot1

δtrans =

√(
x − x′

)2
+
(

y − y′
)2

(3)

Since the AGV runs for a long time, it will lead to cumulative errors. The actual values
of translation and rotation can be obtained by subtracting the observed value from the
interference error εb2 , the variance of which is b2. Therefore, the motion error model can be
written as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

δ̂trans = δtrans − εα1δ2
trans

+ α4δ2
rot1 + α4δ2

rot2

δ̂rot1 = δrot1 − εα1δ2
rot1

+ α2δ2
trans

δ̂rot2 = δrot2 − εα1δ2
rot2

+ α2δ2
trans

(4)

εα1 ∼ εα4 is the cumulative error of motion.
To obtain the actual location xt from xt−1 after the initial rotation angle δ̂rot1, follow

the pan delta δ̂trans, then add to another rotation angle δ̂rot2:

⎛⎝x′
y′
θ′

⎞⎠ =

⎛⎝x
y
θ

⎞⎠+

⎛⎜⎜⎝
δ̂transcos

(
θ + δ̂rot1

)
δ̂trans sin

(
θ + δ̂rot2

)
δ̂rot1 + δ̂rot2

⎞⎟⎟⎠ (5)
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Then, the final odometer error is:⎧⎪⎪⎨⎪⎪⎩
δtrans − δ̂trans

δrot1 − δ̂rot1

δrot2 − δ̂rot2

(6)

2.4. Improved Resampling to Avoid Kidnapping
2.4.1. Adjustment of KLD Dynamic Resampling

The kidnapping problem refers to the fact that when the robot undergoes a drastic
change in the environment or is moved to a new location, the particles in the particle filter
will gather at the wrong location, resulting in inaccurate localization. In order to effectively
reduce or avoid the kidnapping problem in the AMCL algorithm, this can be achieved by
improving the resampling strategy of the particle filter. Traditional resampling methods,
such as uniform resampling, are prone to lead to the kidnapping problem. Therefore, the
kidnapping problem is avoided by using an improved KLD (Kullback–Leibler divergence
resampling) sampling method to decide whether to resample or not by calculating the
information entropy of the particle weights.

The Kullback–Leibler distance represents the approximation error between two proba-
bility distributions p and q, i.e.,

K(p, q) = ∑
x

p(x)log
p(x)
q(x)

(7)

The Kullback–Leibler distance is non-negative and has a value of zero if and only if
the two probability distributions p and q agree.

Assuming there is a discrete distribution with k different subspaces, where the vector
X = {X1, X2, X3, . . . , Xk} represents the number of particles sampled from each subspace
and the vector P = {P1, P2, P3, . . . , Pk} represents the true probability of each subspace, the
maximum likelihood estimation probability density is P̂ = X

n . When n satisfies a certain
number, it can be ensured that the Kullback–Leibler distance K

(
P̂, P

)
between the true

probability density and the estimated probability density is less than a threshold value
ε, which ensures that the approximation error between the true probability density and
the estimated probability density is minimized. At this point, according to the Wilson
Ferty transformation method, the approximate calculation formula for n with the minimum
approximation error can be obtained as follows:

n =
k − 1

2ε
{1 − 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ}3 (8)

where z1−δ is the standard normal distribution for the upper quartile 1 − δ.
From the above equation, the number of particles required to minimize the approxima-

tion error between the estimated and true posterior distributions can be obtained. The main
purpose of particle filtering is to estimate a posterior distribution, so it is only necessary
to determine the number of effective subspaces k and the pre-given ε and δ to obtain the
minimum number of particles required to ensure the estimation performance of particle
filtering. It follows that the the improved KLD dynamically adjusted resampling process is
as follows:

1. Input the collection of particles St−1 =
{(

x(i)t−1, w(i)
t−1

)∣∣∣i = 1, . . . , n
}

after resampling
at moment t− 1, the observation B, set ε and δ, the minimum value of the total number
of particles nxmin, and the number of particles nt−1 at moment t − 1.

2. Set the predicted particle set at time t to
∼
s t = ∅, with a total number of particles of

n = 1500, a number of particles on the line nxmax = 100000, and variables k and α
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both being 0. Use the dynamic adjustment method to resample particle x(i)t−1 to obtain

the predicted particle x(i)t , and calculate the corresponding weight w(i)
t .

3. Accumulation of weights:
∼
s t =

∼
s t ∪

{
x(n)t , w(n)

t

}
, place the newly predicted particles

into the set of predicted particles b. If x(n)t falls into the space interval b, then k = k + 1,
while the interval b becomes non-empty.

4. If n ≥ nmin then nx = k−1
2ε

{
1 − 2

9(k−1) +
√

2
9(k−1) z1−δ

}3
, n = n + 1, followed by

weight orthogonalization: w(i)
t , and finally return

∼
s t.

2.4.2. Simulation to Verify the Analysis of the Adjusted Dynamic Results

Verify the effectiveness of KLD dynamically adjusting resampling particles to solve
the kidnapping problem through the state estimation of nonlinear systems. The simulation
uses a Windows 64 bit system and the simulation software is MATLAB 2021B.

Simulation research is conducted on the state estimation problem of nonlinear systems,
and the nonlinear system state equation used is as follows:⎧⎪⎪⎨⎪⎪⎩

xk = 1 + sin(0.04πk) + 0.5xk−1 + vk−1

y =

{
0.2x2

k + nk k ≤ 30

0.5xk − 2 + nk k > 30

(9)

where the system noise is: vk ∼ Gamma(3, 2), and the observation noise is: nk ∼ N(0, 0.00001).
The system noise is taken as gamma noise and the observation noise is Gaussian white

noise. The initial azimuthal misalignment angle is 10◦; the initial horizontal alignment
angle is 1◦; the accelerometer constant drift is 3 × 10−5g; the accelerometer random drift
is 1 × 10−5g; the gyroscope constant drift is 0.05◦/h; and the gyroscope random drift is
0.01◦/h.

From the simulation results in Figure 5a, it can be seen that the KLD and the improved
KLD resampling methods conclude that only the improved KLD resampling has a more
stable convergence speed and consistency, and can effectively solve the fluctuation problem
of particle filtering. From Figure 5b, it can be seen that the alignment accuracy and
convergence speed of the improved KLD resampling are significantly better than that of
the unimproved method, and the improved simulation curve eliminates the fluctuation
phenomenon present in other algorithms and has better stability.

  
(a) (b) 

Figure 5. Simulation results: (a) comparison of mean square error results; (b) simulation results of
heading angle error.
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Under the same simulation conditions, the KLD and the improved KLD methods are
run for 1000 steps each, and the results of calculating the mean square deviation of the
state estimation of the different methods and the running time consumed by running the
simulation for 1000 steps are shown in Table 1.

Table 1. Comparison of alignment accuracy and runtime.

Algorithm
Standard KLD Resampling

Method
Improved KLD Resampling

Method

Running Time 232 75
∅E/(′) Variance 1.63 0.71
∅N/(′) Variance 1.35 0.84
∅U/(′) Variance 2.59 0.93

From Table 1, it can be concluded that the estimation accuracy of the improved KLD
resampling method is better than that of the KLD method, and the computation time
consumed is less than 1/2 of that of the KLD method, which evidently has a better real-time
processing capability and is more suitable for real-time applications.

2.5. Improvement of AMCL Algorithm Initial Particle Swarm Generation

1. Random sampling from Gaussian distribution to generate initial particles. Use the
global coordinate system as the reference coordinate system, use the initial positional
attitude (default 0) as the mean value of the initial particle distribution, and obtain
the covariance matrix of the positional attitude from the parameter server.

2. Prediction of particle orientation. When the odometer information is received, it is
sampled from the odometer model to estimate the predicted position of the parti-
cle swarm.

3. Update particle position. When receiving the measurement data, the measurement
data is put under the position of each particle, to judge the possibility of the mea-
surement data occurring, and update the weights of the particles with this possibility.
Put the laser measurement data into each particle position, and then calculate the
distance between the endpoint of the laser measurement and the nearest obstacle on
the map, the smaller the space is, the greater the likelihood of the laser measurement
data occurring, and the greater the weight of the particle. The darker the color of the
particle, the greater the weight.

4. Resample. If resampling, the program will judge the variance of the weights of the
particle set; the larger the variance the smaller the effective particles and the more
serious the particle degradation. In this case, it is necessary to carry out the resampling.
After resampling, the number of particles will remain unchanged, particles with
smaller weights will be filtered out, and particles with larger weights will be copied.

5. Place the resampled particles into the histogram. The bit positions of the particles after
resampling are put into the corresponding histogram. Maintain the data structure
of the histogram with kd-tree, with the bit positions of the histogram as key and
the weights of the particles as value. the more particles within the histogram, the
darker the color of the histogram, which represents a more significant weight of
that histogram.

6. Clustering statistics results. Recursively find if there are histograms containing par-
ticles at nine fixed distances around each histogram (here, the size of a histogram
edge is used as the distance), and cluster them into one class if there are, and where
it is clear that c1 is the highest-weighted class. Again, generate the variable particle
swarm, find the particles in c1 and take the mean of their bit positions as the final
result to publish.

Figure 6a,b represent the particle’s position information in global coordinates and
the odometer’s re-prediction of the particle’s position by Gaussian noise, respectively.
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Figure 7a,b represent the change in the particle weights, the size of the weights based
on color discrimination and the particles with larger weights are replicated, respectively.
Figure 8a–c represent the process of dividing the particles based on regions, finding particles
with high weights using clustering methods, and publishing particles, respectively. From
the analysis of the above steps, it can be concluded that the sampling method based on
the probabilistic model is used to generate the particle swarm more evenly and uniformly.
According to the weights of the particles, filter out the particles with smaller weights and
copy the particles with larger weights to better cover the area where the AGV is located
and improve the robustness of the algorithm. For the improved initial particle swarm
optimization, this can improve the initial positioning accuracy and convergence speed of
the algorithm. In addition, the improved initial particle swarm generation method can
also improve the accuracy of the algorithm, enabling it to effectively locate in different
environments and initial conditions.

 
 

(a) (b) 

Figure 6. Initial particle generation: (a) obtaining the covariance matrix of the position; (b) updating
and re-prediction of particle positions.

  
(a) (b) 

Figure 7. Particle weights and updating iterative particles, the weight of yellow particles is smaller
than that of light green particles, and the weight of dark green particles is the largest: (a) update
particle weights; (b) filter less weighted particles.
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(a) (b) (c) 

Figure 8. Analysis of clustering statistics results: (a) sampled particles are divided into regions
based on weights; (b) clustering to find particles with higher weights; (c) Comparison of weighting
information for different clustered regions.

2.6. Comparison of Performance Metrics of the Improved AMCL Algorithm

The AMCL and improved AMCL algorithms are tested in simulation experiments,
respectively. The simulated AGV is started on ROS with a Gmapping raster map, and the
start point and end point are set to use the two algorithms for trajectory tracking planning,
respectively. The distance between the cyclic Gmapping maps is 10 m, and the walking
of 10 circles is one round, ten rounds. The data of each travel is recorded using a rosbag
file and then imported into Matlab for simulation analysis. As shown in Figure 9, the
simulation is carried out in the ROS operating system.

 
(a) (b) 

Figure 9. Simulation path planning: (a) from the starting point to the target point; (b) return from the
target point to the starting point.

Where the parameters are set to c = 0 .357, ε = 0.2, τ = 0.05, δ = 0.01. The rest of the
parameters were kept unchanged.

The packet rosbag obtained on ROS was imported into Matlab 2021B, after which the
data was extracted to obtain the following plot of fitted and analyzed data.

The data for each of the simulations are shown in Table 2. Table 2 represents the
parameter differences between the two different algorithms in the simulation case.
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Table 2. AMCL and improved AMCL fusion QR code algorithm comparison.

Parametric Algorithm Value

Maximum offset angle AMCL 30◦
Improved AMCL 21◦

Minimum offset angle AMCL 24◦
Improved AMCL 10◦

Average travel time for one lap AMCL 7.3 s
Improved AMCL 5.5 s

Maximum error from target point AMCL 34 cm
Improved AMCL 11 cm

Minimum error from target point AMCL 24 cm
Improved AMCL 5.2 cm

As can be seen from the illustration, the trace of the error is consistent with the offset
error generated during AGV traveling. Still, it needs to be corrected concerning the actual
speed value, a priori estimate, and a posteriori estimate. That is, the following predicted
path in the process of traveling has a significant deviation from the real path, and it is easy
to produce a situation in which the command route is not the same as the real route.

The improved algorithm was tested in the simulation by setting the initial yaw angle
to 60◦. The value change in the optimized algorithm, while ensuring that the rest of the
parameters are the same, yields the silky smoothness of the real trajectory graph running
over the time of (a) in Figure 10. The improved algorithm is better smoothed compared to
the AMCL. (b) The grey lines in the figure serve as the measured data, with a large degree of
deviation; the green lines serve as the modelled values, with a smaller degree of deviation;
and the final filtered results are much closer to the true values, and the traces of error
have converged to a minimum. From the figure, it can be concluded that the fluctuation is
small and the performance is relatively smooth. The thin line represents the AMCL algo-
rithm test results, and the thick line represents the improved AMCL algorithm test results.
(c) and (d) in Figure 10 illustrate that the improved AMCL algorithm performs smoother
for the fluctuation of the errors of the true value of the speed, the a priori estimate and the
a posteriori estimate for different directions, the errors are within the permissible range,
and the improvement of the algorithm meets the requirements and performs well.

 
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. AMCL algorithm simulation: (a) trace of error; (b) trajectory map; (c) x-axis speed;
(d) y-axis speed.

3. QR Code Navigation and Construction of a Template Matching Library

The experimental simulation verifies that the improved AMCL algorithm has better
performance, yielding better data in terms of positioning accuracy, arrival time and offset
angle. Therefore the improved algorithm can be verified by fusion experiments.

3.1. QR Code Navigation Process

First, the AGV uses SLAM to navigate to the area near the specified QR code. Then,
the AGV opens the QR code scanning function and switches to QR code navigation after
scanning the QR code setting information. Then, the AGV approaches the direction of
the center of the QR code until the scanning center of the AGV chassis coincides with the
center of the QR code. The vehicle-mounted camera takes the position of the QR code
center as the relative position, obtains the spatial coordinates through calculation and
conversion, and uses the coordinate transformation to make the AGV scan the center of the
QR code and realize normal movement. Figure 11 shows the flow chart of QR code scanning
and recognition.

To calculate the geometric information of objects in three-dimensional space, it is
necessary to calibrate the camera. From this, the camera’s internal parameter matrix A
and R are obtained, and the camera’s orientation relative to the world coordinate system is
determined. Since the camera’s focal length is not 0, and the matrices A and R are reversible,
the actual coordinates of pixels in the photo in the AGV coordinate system are calculated
using Formula (10). ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎣X
Y
Z

⎤⎦ = R−1·

⎛⎜⎝A−1·
⎡⎣u

v
1

⎤⎦−1⎞⎟⎠
(uc, vc) =

(
u1+u3

2 , v1+v3
2

) (10)
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Figure 11. QR code scanning recognition process.

When the central coordinate of the QR code p(uc, vc) is known, the coordinates
P(XC, YC, ZC) of the car body coordinate system can be calculated. Due to the use of
QR code three-point positioning, the coordinates of the three points of the QR code in
the image (u1, v1), (u2, v2), (u3, v3), and because the position of the required detection
pattern is known, the coordinates of the center p(uc, vc) of the QR code can be calculated,
and p(uc, vc) is substituted to obtain the coordinates P(XC, YC, ZC) of the QR code in the
coordinate system of the car body. Combined with the coordinate information of the current
QR code in the entire map, the position of the AGV in the map can be determined. In
Figure 12 (a) represents the relationship between the three coordinate systems, (b) AGV
scanning for coordinate transformation.
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(a) (b) 

Figure 12. Coordinate transformation between QR code and AGV. (OW − XWYW ZW), represents
world coordinate system describing camera position, (OC − XCYCZC) represents camera coordinate
system, (o − xy) represents image coordinate system, f —the camera focal length, equal to the
distance of o to the Oc. (a) World, camera, image physics, pixel coordinate system relationship;
(b) the relationship between camera coordinate system and image physical coordinate system.

3.2. Construction of the Template Matching Library

The stability of QR code navigation depends on the performance of the reader (de-
coding speed, accuracy, and precision) and the performance of the IMU (accuracy and
stability) [23,24]. The higher the decoding efficiency of the reader, the higher the AGV
can travel. However, if the QR code is dirty and damaged, the navigation accuracy will
significantly decrease. Therefore, we propose a library of QR code templates to improve
the positioning accuracy. QR codes of the same size with different recognition areas are
generated by a QR code generator, and each QR code template library contains nine inde-
pendent QR codes, each of which is unique. In other words, multiple QR codes are fused
into a QR code combination map, and the QR code template libraries are constructed based
on the “different codes” in the QR code recognition area, and the current pose is quickly
determined by triangulation matching.

To further improve the localization accuracy of QR code labels in the global graph, a
particle-based localization algorithm in AMCL is used to match the QR code combination
graph. The Gmapping grid map is drawn using SLAM navigation. Use the three points
of the QR code identification area to form a triangle as the coordinate position of the QR
code (the QR code itself also stores the position information), and save it in the map. The
location of the QR code label is used as a landmark, and the AGV recognizes its ID by
matching the triangles and obtains the corresponding coordinates when it detects the
QR code landmark. Since each QR code tag area generates different particles, but the
template library is unique, the similar triangles identified above for triangle matching
can be matched with the template library. As shown in Figure 13a shows the graphic
and storage information area of the QR code, Figure 13b shows the formation of QR code
landmarks through multiple QR codes, and Figure 13c shows the QR code landmarks
affixed to the experimental site. For example, when different numbers of particles are
generated at the position of the label of the template library in the front A, then scanning
the position in front can obtain a lot of similar triangles according to the different positions
of the particles, at this time, the triangles generated by the particles in the fixed area are
matched with the triangles of the current correct position area, which is similar but the
direction is different, and thus the AGV is automatically adjusted to the angle. Therefore,
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the distance and offset angle between the AGV and the label can be determined. Firstly, the
AGV calculates the relative position of the QR code tag in the SLAM global map based on
the received QR code data, thus obtaining the approximate orientation of the detected QR
code. Then, the AGV performs a self-tracking motion based on the approximate position in
the map and quickly determines the part of the QR code label based on triangle matching.

 
  

(a) (b) (c) 

Figure 13. Identification code used in navigation: (a) foundation template; (b) composite template;
(c) paste the template in the experiment.

The matching template library formula is as follows:

l49, l48, l89, (x4, y4), (x8, y8), (x9, y9), 1

l48, l18, l14, (x1, y1), (x4, y4), (x8, y8), 2

l33, l12, l26, (x3, y3), (x7, y7), (x5, y5), 3
...

lxy, lxy, lxy,
(
xx, yy

)
,
(
xx, yy

)
,
(
xx, yy

)
, r

...
lxy, lxy, lxy,

(
xx, yy

)
,
(

xx, yy
)
,
(
xx, yy

)
, n

(11)

In the above equation, lxy is the edge length of the triangle template library, and(
xx , yy

)
is the coordinate value of each point.

In this paper, we use the estimated position of the AGV as the input to fuse the world
coordinates of the QR code and increase the weight of particles in the AMCL algorithm.
Many QR code landmarks were detected in the process of AGV moving, and the location
of QR code landmarks was quickly determined according to the triangle matching. The
relationship between the AGV and the detected QR code landmark is as follows:

(xV − x1)
2 + (yV − y1)

2 = r2
1

(xV − x2)
2 + (yV − y2)

2 = r2
2

...
(xV − xi)

2 + (yV − yi)
2 = r2

i
...

(xV − xn)
2 + (yV − yn)

2 = r2
n

(12)
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where (xV , yV) represents the estimated position of the AGV car, which can be obtained by
solving the formula. (xi, yi) is the ith location of the QR code detected. In addition, it can
be obtained that the direction of the AGV is

θV =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi

]
xi > xV

1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi + π

]
yi ≥ yV , xi < xV

1
n

n
∑

i=1

[
arctan

(
yi−yV
xi−xV

)
− ϕi − π

]
yi < yV , xi < xV

1
n

n
∑

i=1

[
π
2 − ϕi

]
yi > yV , xi = xV

1
n

n
∑

i=1

[−π
2 − ϕi

]
yi < yV , xi = xV

(13)

where θV represents the direction of the AGV car and ϕ is the observation angle of the
detected QR code landmark. Therefore, the estimated pose of the AGV car can be expressed
as μV = (xV , yV , zV).

The estimated position of the AGV car can be obtained from Equations (12) and (13),
and the position weight of the particle can be calculated as follows:

d[i] =
1

(2π)
3
2

EXP(−1
2
(x[i]t − μV)

T
(x[i]t − μV)) (14)

where the position and direction of the particle are x[i]t = (xi, yi, ϕi).
The AMCL algorithm covers the whole map evenly, and then the particles converge

near the QR code according to the location of the QR code landmark. As shown in
Figure 14a,b. When scanning the QR code landmark at a specific location, triangular
matching joins to the QR code landmark. As in Figure 14c. The coordinates of a, b, and
c are (xa, ya), (xb, yb), and (xc, yc), respectively. The side lengths of the three measured
triangles are lab, lac, and lbc, respectively. First, search for similar triangles in the QR code
template library. As in Figure 14d. The three sides are unequal in length but proportional,
and the angles are equal. Thus, the detected Δabc matches the Δ835 in the library. As in
Figure 14e,f.

Triangle detected:
lab, lac, lbc, (xaya), (xbyb), (xcyc) (15)

Matching template library:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l49, l48, l89, (x8, y8), (x3, y3), (x5, y5), 1
...

l28, l29, l89, (x2, y2), (x8, y8), (x9, y9), k
...

l35, l34, l55, (x1, y1), (x3, y3), (x9, y9), n

(16)

Triangular matching identification:⎧⎪⎪⎨⎪⎪⎩
a(xa, ya) = 8(x8, y8)

b(xb, yb) = 3(x3, y3)

c(xc, yc) = 5(x5, y5)

(17)
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In the navigation process, the completeness and accuracy of the constructed map is
one of the decisive factors in determining the accuracy of navigation and positioning [25].
Significant errors in map construction often directly lead to problems such as positioning
failure and unguaranteed accuracy [26]. To improve the map-matching accuracy in naviga-
tion, the weight of the particles in the AMCL algorithm is increased in the code reading
area. Then, the AGV position information is updated, and the data is estimated to be within
the normal range according to the recognition of the new.

  

 

(a) (b) (c) 

  
(f) (e) (d) 

Figure 14. Process of AMCL particle distribution and triangulation matching. The number of the QR
code reflection surface detected by (a–c) is the ID of the QR code landmark in the template library:
(a) particles flatten the entire map; (b) the particle converges to the landmark position of the QR code;
(c) use triangular matching positioning to increase the weight when scanning the QR code; (d) a, b
and c are the detected QR code reflecting surfaces; (e) there are all kinds of triangles in the template
library; (f) the two triangles are proportional in length and match in shape.

Establish a simulation environment and analyze and improve the various types of
problems that occur in the algorithm through simulation experiments to verify the algo-
rithm. Figures 15 and 16 represent the fusion process of QR codes in the simulated state and
in the improved algorithmic positioning shown simultaneously in the RVIZ and Gazebo
environments, respectively.
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(a) (b) (c) 

Figure 15. Building a simulation environment: (a) synchronize environment on Rviz; (b) synchronize
environment on Gazebo; (c) simulation model.

Figure 16. Improved AMCL algorithm localization process for QR code navigation fusion.

3.3. Extended Kalman Filter Fusion Data

The estimated position of the QR code navigation AGV sweep data and the AMCL algo-
rithm can be fused by a fusion method to obtain a more accurate position estimation [27,28].
In the fusion process, it is first necessary to convert the QR code navigation AGV scanning
data into positional information, which is usually obtained by decoding the QR code to
obtain the position and attitude information of the QR code. Then, this position informa-
tion is fused with the estimated position of the AMCL algorithm. The fusion method is
as follows:
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1. Prediction steps.

Establishing the equation of state:

Xk+1 =

⎡⎢⎢⎢⎢⎣
xk
yk
vk
θk
ωk

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
vk· cos(θ)·Δt
vk·sin(θ)·Δt

0
ω·Δt

0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 ·αv,k· cos(θ)·Δt2

1
2 ·αv,k· sin(θ)·Δt2

αv,k·Δt
1
2 ·αω,k·Δt2

αω,k·Δt2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ωk �= 0 (18)

where x is the x-direction coordinate, y is the y-direction coordinate, v is the radial velocity,
θ is the yaw angle, ω is the yaw angular velocity, αv,k is the acceleration of the radial velocity
v, and αω,k is the acceleration of the yaw angular velocity ω.

Condition prediction:

x̂k+1|k =
[

f
(

x̂k|k
)
+ Fk

(
xk − x̂k|k

)
+ ωk

]
(19)

where f
(

x̂k|k
)

is the state estimate, xk is the state vector, and Fk is the higher order term
derivation.

From Equations (18) and (19) the predicted covariance prediction can be derived as

Pk+1|k = [F
k

(
xk − x̂k|k· cos(θ)Δt

)
+ αv,k·Δt] ·[F k

(
xk + x̂k|k· sin(θ)Δt

)
− αω,k·Δt2] (20)

2. Update steps.

Convert the QR code navigation AGV scanning data into an observation model, i.e., the
position and attitude information of the QR code is converted into a positional observation.
Compare the observation model with the predicted position and attitude, and calculate the
observation residuals:

ŷ = zk − Hkx̂k|k+1 (21)

zk is the state estimation transfer equation and Hk is the observation matrix.{
zk = Hk·xk + vk

xk = Fkxk−1 + Bkuk + ωk
(22)

vk is the observation noise and Bk is the input control model acting on the controller
vector uk.

Calculate the Kalman gain:

Kk = P̂k·HT ·
(

H·P̂k HT + R
)−1

(23)

R is the measurement noise covariance matrix and H is the measurement matrix.
Based on the Kalman gain and observation residuals, the updated bit position estimate

is

h
(
x′
)
=

⎡⎣ρ
ψ
.
ρ

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

√
P2

x + P2
y

arctan
(

Px
Py

)
PxVx+PyVy√

P2
x+P2

y

⎤⎥⎥⎥⎥⎥⎥⎦ (24)

where Px, Py, Vx, and Vy are the positions and velocities of the fused a priori estimates.
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3. Simulation result diagram.

The two were fused for simulation to test the correlation relationship.
Figure 17 shows the accuracy test of the EKF fusion data. Simulations using EKF fused

data can yield close to the true values and can be used with this fusion method.

  
(a) (b) 

Figure 17. Simulation test: (a) convergence to true value; (b) the estimated value is near the true
value.

4. Experimental Validation

In order to verify the effectiveness of the proposed combination algorithm, a simulation
platform is established and real experimental scenarios are built to verify the effectiveness.
The AGV used in the simulation is 0.5 m × 0.3 m × 0.2 m in size, with a mass of 10 Kg,
LIDAR on top, and an inertia matrix of [0.01, 0, 0; 0, 0.02, 0; 0, 0, 0.03]T . The mean value
of the measurement noise is set at 0, and the covariance matrix at [0.01, 0; 0, 0.01], which
means that the variance of the measurement noise in the x- and y-directions is 0.01.

The parameters are set for simulation experiments and the rest of the data is kept
constant. The data obtained in the simulation experiment platform is analyzed using
MATLAB2021B. Table 3 shows the parameter settings of the AGV.

Table 3. AGV setup parameters.

Name Number

Maximum linear speed 1 m/s
Maximum angular velocity 1 rad/s

Maximum linear acceleration 0.5 m/s2

Maximum angular acceleration 0.5 rad/s2

Radar scanning angle 320◦
Radar scanning frequency 10 Hz

Maximum measurement distance of radar 10 m
Improved AMCL algorithm particle initial value 1000

Resampling measurement Low variance resampling

4.1. Improved AMCL Algorithm Simulation Comparison Experiment

A raster map is generated using SLAM laser navigation, and AMCL localization
particles are tiled over the raster map until the whole map is tiled. The AMCL algorithm
and the improved AMCL algorithm are introduced separately, and the different situations
among the two are observed and data is collected for analysis. The size of the map is
10 m × 10 m, and travelling one lap is recorded as one complete distance.
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Navigation was tested using different algorithms in the same environment, and
Figure 18 show the different scenarios in which the particles behaved separately.

  
(a) (b) 

  
(c) (d) 

Figure 18. AMCL algorithm with improved AMCL algorithm particle changes: (a) AMCL algorithm
for particle changes at the starting point; (b) AMCL algorithm changes of particles at the end point;
(c) improved AMCL algorithm for particle changes at the starting point; (d) improved AMCL
algorithm for particle changes at endpoints.

Photoelectric sensors were set up on both sides of the laying of the QR code and at the
start-end position to detect the number of corrections and the maximum distance of error
when different algorithms were used for tracking the trajectory, in order to record a week’s
navigation time as well as the maximum distance from the set point of the target error.

It can be learnt from the distribution of the particles that the distribution of the
improved algorithm particles performs better compared to the previous algorithm, dis-
tributing on the real trajectory with less error, and the rest of the particles of the regions
not involved by the AGVs disappear, only in the aggregation of the labels. From Figure 19
it can be seen that during approximately the first 30 messages released by the AMCL,
the localization error is small; once 30 messages are released, the AGV is abducted to
produce a large error. As the AGV moves, the positioning error gradually decreases, and
after multiple messages, the error tends to 0, restoring the original positioning accuracy.
Although the improved AMCL algorithm also encounters kidnapping, the adjustment time
is improved by 68.73% compared to the unimproved algorithm.
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(a) (b) 

Figure 19. Particle distribution and position error: (a) particle distributions generated by the AMCL
algorithm and improved algorithms on trajectories; (b) AMCL and improved AMCL algorithm for
processing information in case of kidnapping.

The maximum data for the offset recorded by the photoelectric sensor in Figure 20a is
(−18.79, 22.38) when using the AMCL algorithm, while the improved AMCL algorithm is
(−4.79, 6.82). That is to say, adjusting the trajectory to the left exceeds the set trajectory line
by a maximum of 22.83 cm and 6.82 cm, and adjusting the trajectory to the right exceeds
the distance by a maximum of 18.79 cm and 4.79 cm, from which the comparison can
be significantly concluded that the improved algorithm is superior. Figure 20b with the
increase in the running time, the error gradually increases and reaches a peak at a certain
point, and then the error gradually decreases, but the adjustment time also gradually
increases. In contrast, because of the addition of the algorithm to eliminate the cumulative
error link, in the improved algorithm, the error will be adjusted quickly with a slight
difference between the scan data and the simulation algorithm. Because of the large
deviation, the velocity variation is large, the maximum velocity cannot be reached, and
the velocity variation has to be adjusted in each sweep, and the fluctuation of linear and
angular velocities in Figure 20c,d are fluctuate more compared to the improved AMCL
algorithm. Table 4 shows the performance of different algorithms with the same conditions.

4.2. Real Scene Experimental Test

The simulation experiments have proved that the proposed algorithm has good per-
formance and the localization time and error distance are greatly reduced, so it can be
significantly shown that the improved AMCL algorithm has better superiority. Therefore,
the real effectiveness of the improved algorithm is verified, and the experiments are carried
out and analyzed in real scenarios. Figure 21a,b shows the front and side view of the AGV
used in the experiment. Figure 21c shows the experimental site used in the experiment,
and Figure 21d shows the QR code labels pasted in the experimental site.

Real experimental scenarios are established and tested using the improved AMCL
algorithm to obtain valid data for analyzing the reliability of the algorithm.

The map generated using the SLAM technique is shown in Figure 22, where the
thin green line from 0 to 1 is the trajectory of the AGV. The round-trip is one lap, and
the data of the AGV travelling ten laps are saved and imported into MATLAB2021B for
analysis, which proves the validity of the proposed algorithm by comparing the data with
the positional error of AGV arriving at the target point, the maximal corrective angle, the
speed fluctuation, and line acceleration.
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(a) (b) 

  
(c) (d) 

Figure 20. Comparison between the data of the simulation experiment: (a) distance offset on both
sides when travelling; (b) relationship between error and time; (c) line speed fluctuation during
scanning; (d) angular velocity fluctuations during sweeping.

Table 4. AMCL and improved AMCL fusion QR code algorithm comparison.

Parametric Algorithm Value

Starting particle AMCL 1500
Improved AMCL 1500

Time from start to target
(10-turn average)

AMCL 12.59 s
Improved AMCL 7.42 s

Offset maximum distance
(both sides)

AMCL (−18.79, 22.38) cm
Improved AMCL (−4.79, 6.82) cm

Deviation distance to target point
(10-turn average)

AMCL 27.36 cm
Improved AMCL 4.81 cm

Dissolution of kidnapping recovery time
(10-turn average)

AMCL 2.2 s
Improved AMCL 0.39 s
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(a) (b) 

  
(c) (d) 

Figure 21. Real scene testing: (a) AGV front; (b) AGV side; (c) experimental site and AGVs used;
(d) paste a column of QR code landmarks.

  
(a) (b) 

Figure 22. Gmapping build synchronization action: (a) a half-turn from 0 to 1; (b) a half-turn from 1
to 0.

4.2.1. Improved AMCL Matching Template Library Accuracy Test

Use SLAM to generate particles on the QR code, mark the coordinate position of the
QR code on the map, turn off the camera, use the particles to determine the coordinate
position of the QR code, and the AGV travels to the particle aggregation area until it reaches
the matching QR code marking point. Compare the position information with the actual
coordinate position information of the QR code and analyze the error distance between
the two.
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Figure 23a shows that the improved AMCL particles converge on the QR1 position, at
which time, Figure 23b shows that the AGV stopping position is in the area directly above
the landmark. From the actual test, it is concluded that the AGV identifies the particle
template on QR1 to match the exact position of the first landmark on the SLAM construction
map, and then accurately travels to the first landmark area location, waiting for the next
command. At this time, the industrial camera is opened to scan the code, and the real
position of the AGV at this time is obtained through coordinate conversion, comparing
the coordinate information and measuring the position error interval between the particle
triangular matching position information using the improved AMCL algorithm and the
position error interval of the QR code scanning information.

  
(a) (b) 

Figure 23. The scanning process: (a) synchronised Rviz; (b) scanning the QR code.

Taking the forward direction of the AGV as the y-axis and the left-right offset distance
as the x-axis, two photoelectric sensors are installed before and after the QR1 landmark po-
sition, and the coordinate information of each arrival position is re-recorded and weighted
average. Table 5 shows that the combination of code-sweeping positioning and improved
AMCL algorithm has the highest accuracy, with the maximum offset of coordinate infor-
mation not exceeding 1 cm, and the reading distance before and after the combination
not exceeding 0.5 cm, and the navigation and positioning accuracy has been improved by
64.27% on the original basis.

Table 5. AMCL and improved AMCL fusion QR code algorithm comparison.

Average
Value

Actual Position
Coordinates

Particle Triangulation
Matching Position

Coordinates

Industrial Camera
Scanning Position

Coordinates

Scanning Fusion
Improved AMCL

Maximum Left Offset
Maximum Right

Offset

Cycle 5 times (0, 375.00) cm (1.96, 377.92) cm (3.24, 373.16) cm (0.59, 374.25) cm (0.88, 0.53) cm
Cycle 10 times (0, 375.00) cm (2.88, 373.40) cm (2.64, 377.88) cm (0.36, 375.40) cm (0.56, 0.62) cm
Cycle 20 times (0, 375.00) cm (3.72, 377.34) cm (1.52, 377.50) cm (0.42, 375.34) cm (0.78, 0.62) cm
Cycle 30 times (0, 375.00) cm (2.48, 373.68) cm (2.44, 373.32) cm (0.44, 375.32) cm (0.84, 0.66) cm
Cycle 50 times (0, 375.00) cm (1.54, 377.12) cm (3.72, 377.48) cm (0.72, 374.48) cm (0.76, 0.64) cm

4.2.2. AGV Particle Kidnapping Experiment

In previous simulation experiments, it was found that the particles generated by the
AMCL algorithm were prone to kidnapping events during the positioning process. The
improvement of the algorithm as well as the improvement of resampling can effectively
avoid such situations, so it is verified in real experiments that the algorithm can effectively
improve the robustness and reliability of AGV positioning.
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The experiments show that the particles in the AMCL algorithm will not disperse
automatically after AGV is kidnapped, so it is impossible to relocate. However, the im-
proved AMCL algorithm will scatter some particles at the kidnapped position, which can
be relocated. Figure 24 shows the process of the kidnapping and location recovery of the
AGV when the improved AMCL algorithm is started. Figure 24a shows the initial state of
the AGV. At this time, the AGV is ready to accept the command to move forward, and the
particles are in a dispersed state. Figure 24b shows the state that the AGV moves to QR2
point, at which time the particles are in a convergent state. Figure 24c shows that the AGV
is kidnapped, and the particles gather in this area and do not diverge with the movement
of AGV. As shown in Figure 24d, to detect the kidnapping event, the improved algorithm
is adjusted and the positioning state is restored. To calculate the kidnapping time, calculate
the duration of the kidnapping time based on the start time and end time of the kidnapping
event. To monitor the positioning error, sensors or other positioning systems are used to
monitor the difference between the actual position of the AGV and the position estimated
by the AMCL algorithm. When the positioning error exceeds a certain threshold, it can be
determined that an kidnapping event has occurred. Record the start time of the abduction
event. When the positioning error exceeds the threshold, record the current time as the start
time of the kidnapping event. To monitor the positioning recovery, continue to monitor the
positioning error, and when the positioning error recovers to within an acceptable range, it
can be judged that the kidnapping event is over.

  
(a) (b) 

  
(c) (d) 

Figure 24. Kidnapping and location recovery: (a) initial stage; (b) travelling to QR2; (c) kidnapping
situations; (d) dissolution of kidnapping.
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The AGV was driven for 10, 20, and up to 50 laps, respectively, for the experimental
testing, the time used when the kidnapping event occurred and the time after adjustment
were recorded, and the data were analysed and counted in Table 6. From Table 6, it can
be clearly concluded that the use of the improved AMCL algorithm can effectively avoid
the occurrence of kidnapping events, and the solution of the kidnapping problem can
save 42.81% of the AGV navigation time, and once such an event occurs, it can be quickly
adjusted to avoid the problem of inaccurate positioning in the process of moving forward.

Table 6. Measurements of the occurrence of kidnappings.

Number of
Cycles

Algorithm
Number of

Kidnapping
Incidents

Cumulative Time
/Average Time (s)

Maximum/Minimum
Recovery Time (s)

Maximum/Minimum
Positioning Error (cm)

10
AMCL 17 51.64/3.04 2.59/1.75 22.81/15.69

Improved AMCL 2 1.18/0.59 0.12/0.06 3.88/1.72

20
AMCL 31 79.04/2.54 2.78/1.16 19.26/10.71

Improved AMCL 3 1.56/0.52 0.21/0.02 4.33/2.28

30
AMCL 44 119.68/2.72 2.13/1.54 21.16/9.31

Improved AMCL 5 2.26/0.45 0.51/0.03 3.29/1.61

40
AMCL 60 146.28/2.44 2.88/1.02 18.74/11.26

Improved AMCL 8 3.28/0.40 0.96/0.02 5.10/2.13

50
AMCL 71 162.64/2.29 1.35/0.97 16.89/8.92

Improved AMCL 10 4.18/0.41 0.29/0.05 3.77/1.02

4.3. Discussion

QR code-navigated AGVs are widely used in agriculture, industrial automation,
healthcare, logistics, and other fields. There are a large number of researchers contributing
to QR code navigation, localization, path planning, etc. in the related literature. With the
development of industrial automation, visual navigation is widely adopted because of
its high accuracy and low latency. However, single navigation still faces many problems,
such as a long processing time and high sensor requirements. Ref. [7] proposed to use
EKF combined with an internal encoder and external QR code to correct the cumulative
error generated by attitude estimation. This method can effectively solve the error problem
and improve the positioning accuracy, providing a new reference for navigation methods.
However, the error increases as the distance of the QR code paste increases.

In this article, EKF can only calculate the a posteriori estimate of the state through
the current measurement value and the a priori estimate, and cannot directly consider the
influence of historical data, so it is susceptible to the cumulative error of the sensor. EKF as-
sumes that the noises in the system model and the measurement model are linear Gaussian
distributed, but there may be nonlinear noises and non-Gaussian distributed noises in the
actual application, which may lead to the filtering results of accuracy degradation. Our
work meets the positioning requirements of high-precision navigation systems in terms of
adaptive tuning, positioning accuracy, and navigation time.

When in a suitable environment, the navigation and positioning scheme proposed by
some researchers can achieve 100% positioning and permanently eliminate accumulated
errors. The method proposed by [8] can achieve 100% accuracy and complete given
commands under suitable circumstances. It has achieved a qualitative leap in the field
of navigation and positioning. However, due to its use of RGB sweep detection, when
encountering bright light environments, or when obstacles are similar in color to the
transported object, it can adversely affect the results to detect the completion of instructions.

Zhang, H., and Dong, S. et al. [29,30] proposed different fusion methods to improve the
positioning accuracy and reduce the time required for navigation. However, when AGVs
are in an environment similar to a long corridor, they are prone to map distortion, incorrect
judgement of current position, continuing along the wrong route and collision problems.
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Through the simulation experiments and scenario tests in this section, a large number
of experimental comparisons can be made to conclude the superiority of the proposed
method in this paper, which is better than similar methods in terms of the adaptive adjust-
ment time, positioning accuracy, and navigation time.

5. Conclusions

This paper introduces an AGV navigation and positioning system that integrates
navigation and precise positioning. The AMCL particle positioning algorithm is used to
perform triangular matching, establish a library of QR code templates, and quickly identify
the current position of the QR code for precise positioning. The accuracy of the proposed
algorithm is verified through a large number of comparative experiments and simulation
data, and the positioning and navigation tasks can be completed in a real experimental
environment. It solves the problems of inaccurate positioning and low precision, which are
common in the market at present, and provides reference for the accurate positioning of
AGV. The focus of this research is to develop hybrid navigation AGVs based on the market
scarcity to serve the public and shift from industry to service. The main contributions of
this paper are as follows:

1 This article provides an in-depth analysis and research on the development status of
AGV’s critical domestic and international technologies and researches robot naviga-
tion, positioning, and path planning technology. The advantages and disadvantages
of various methods are compared, and the overall navigation scheme and system
navigation method are designed in detail. Finally, the feasibility and benefits of this
choice are verified through experiments.

2 An ROS operating system was used to build the simulation environment of the AGV,
and the real positioning system platform was established to prepare for the research
of the AGV positioning system. The localization system proposed in this paper uses
SLAM global mapping to obtain the absolute coordinates of ground punctuation.
It uses the improved AMCL algorithm to combine QR codes, which improves the
positioning time and accuracy in the navigation process.

3 Improving the generation of the initial particle swarm can improve the convergence
speed and accuracy of the algorithm, and improve the resampling method to effec-
tively reduce or avoid the kidnapping problem. By building the simulation model
and testing the simulation using MATLAB software, the algorithm can be made to
converge faster and more accurately to the AGV position, as well as improving the
real-time and responsiveness of the system, and greatly reducing the time required
for navigation.

4 When the particles generated by the AMCL algorithm encounter the kidnapping
situation, i.e., the AGV generates too much offset and the particle state does not
change with the movement of the AGV. Through comparison, it can be learnt that
the improved AMCL algorithm can quickly adjust the attitude and correct the off-
set distance, so that it can quickly return to the original travelling route, and the
resumption of the adjustment time has been improved by 68.73% compared with the
unimproved algorithm.

5 During AGV navigation, the time required for navigation was reduced by 42.81%
compared to the unimproved algorithm. The navigation time is greatly reduced,
which speeds up the time to process the goods and improves the turnaround speed
and capacity of the goods. The positioning accuracy is an important criterion to
measure the accuracy of the proposed algorithm. In this paper, by comparing and
contrasting, it is concluded that the positioning accuracy is improved by 64.27%
compared to the previous algorithm.

In the following research, we will pay more attention to the accuracy and practicality
of AGVs in positioning and navigation. For example, we will study the practical application
of visual navigation in AGVs and further combine visual information with or instead of QR
code data to improve the ability of AGVs to sense their surroundings. In addition, we aim
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to make a major breakthrough in visual autonomous navigation in AGVs, i.e., to achieve
more accurate positioning and no interference throughout the autonomous navigation
process, and to apply it to more complex operational tasks and environments.
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Abstract: At present, aircraft radome coating cleaning mainly relies on manual and chemical meth-
ods. In view of this situation, this study presents a trajectory planning method based on a three-
dimensional (3D) surface point cloud for a laser-enabled coating cleaning robot. An automated
trajectory planning scheme is proposed to utilize 3D laser scanning to acquire point cloud data
and avoid the dependence on traditional teaching–playback paradigms. A principal component
analysis (PCA) algorithm incorporating additional principal direction determination for point cloud
alignment is introduced to facilitate subsequent point cloud segmentation. The algorithm can adjust
the coordinate system and align with the desired point cloud segmentation direction efficiently and
conveniently. After preprocessing and coordinate system adjustment of the point cloud, a projection-
based point cloud segmentation technique is proposed, enabling the slicing division of the point
cloud model and extraction of cleaning target positions from each slice. Subsequently, the normal
vectors of the cleaning positions are estimated, and trajectory points are biased along these vectors to
determine the end effector’s orientation. Finally, B-spline curve fitting and layered smooth connection
methods are employed to generate the cleaning path. Experimental results demonstrate that the
proposed method offers efficient and precise trajectory planning for the aircraft radar radome coating
laser cleaning and avoids the need for a prior teaching process so it could enhance the automation
level in coating cleaning tasks.

Keywords: coating cleaning; point cloud alignment algorithm; B-spline curve; robot path planning

1. Introduction

The maintenance and repair of aircraft radomes play a pivotal role in ensuring the
integrity and functionality of aerospace systems. Radomes are subjected to various environ-
mental factors during operation, including climate variations, flight friction, and airflows.
These factors contribute to the wear and damage of the radome’s surface coatings and
bottom paint. Consequently, in the maintenance process, regular treatment of the radome
surface coatings is an essential step for preserving its performance.

Conventional methods for aircraft paint removal include mechanical cleaning, solvent-
based cleaning, and ultrasonic cleaning [1]. While these methods have reached a consider-
able level of maturity, they also come with significant drawbacks. For instance, chemical
and mechanical cleaning methods are labor-intensive, prone to substrate damage, and
can generate substantial waste, which leads to environmental pollution [2,3]. In compar-
ison, laser cleaning technology is regarded as a greener and more promising alternative,
particularly in the context of the global manufacturing industry’s transformation. This
technology operates by inducing a series of optical, thermal, and mechanical changes in a
short period, effectively removing contaminants through their coupled effects [4–8]. Laser
cleaning is considered the most promising green cleaning technology of the 21st century,
as it enables minimal damage through precise control of laser parameters [9,10]. With the
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advancements in robotics and computer numerical control (CNC) technology, multi-joint
robots have found widespread applications in various fields, including laser cleaning,
processing, and welding, due to their high degrees of freedom, exceptional flexibility, and
programmability [11–13]. Path planning for robot machining is a primary requirement for
achieving automation in robot-based machining. Researchers have conducted relevant
research on robot path planning according to the characteristics of different machining
methods. Wang conducted path planning for robot machining using a parameter-optimized
surface model [14]. Bian developed an offline programming system based on computer-
aided design (CAD) models for robot polishing path planning [15]. Cai proposed a novel
software package design based on CAD surface modeling, integrated into the offline pro-
gramming software RobotStudio™ (Product of ABB Company, Sweden), which considered
both simple coating models and torch kinematic parameters to generate robot trajectories
automatically [16]. Morozov utilized reverse engineering techniques to reconstruct the CAD
model of an aircraft wing mask and generated scanning trajectories for non-destructive
testing with high positioning accuracy [17]. Most of the above studies are based on the
CAD models of the workpieces. However, these methods are unable to accurately execute
when the CAD model of the workpiece is missing or when the actual surface shape of
the workpiece does not match the CAD model data. Point cloud information can clearly
reveal the surface features of the inspected workpiece, leading many researchers to utilize
point cloud data for robot path planning [18–21]. Jin et al. indirectly obtained the stere-
olithography (STL) model of the workpiece using a 3D scanning device and performed
laser cleaning path planning through offline programming software, demonstrating the
effectiveness of robot laser cleaning [22]. For simple parts, traditional robot path-planning
methods can be employed for robot laser cleaning path planning. However, for large,
curved surface workpieces, these methods fail to meet the requirements of precise laser
cleaning operations and cannot achieve curved surface cleaning.

This work focuses on processing point cloud data of aircraft radomes in the absence of
CAD models to generate motion trajectory planning for a coating laser cleaning robot. By
successfully integrating point cloud data with robot actions, an automated robot coating
laser cleaning system is achieved, significantly improving the cleaning efficiency in the
absence of CAD models. The distance between the cleaning actuator and the surface is
determined by estimating the normal vector of trajectory points and utilizing the focal
length of the laser. This distance is maintained, allowing the cleaning actuator to move along
the complex surface to be cleaned. Simultaneously, the laser beam remains perpendicular
to the workpiece surface, achieving the desired cleaning posture planning. This approach
ensures both curved surface cleaning and reduces energy loss of the laser, thereby enhancing
the cleaning quality.

2. Materials and Methods

2.1. Measurement and Preprocessing of Point Cloud Data for Radar Dome Surfaces

This section presents the development of an automated robot coating laser cleaning
system by incorporating 3D sensors, robots, laser cleaning actuators, and computers. The
system aims to achieve efficient and precise coating removal through automated laser
cleaning. The flowchart of the laser cleaning trajectory planning algorithm is as shown
in Figure 1, written using the C++ (c plus plus) programming language. The operational
schematic of the system is shown in Figure 2.

Figure 1. Flow chart of the laser cleaning trajectory planning algorithm.
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Figure 2. Development of an automated robot coating laser cleaning system.

2.1.1. Measurement of Raw Point Cloud Data

With the rapid development of 3D data acquisition technology, the utilization of
3D sensors for detecting the 3D profiles of objects has gained extensive application. In
comparison to coordinate measuring machines (CMM) and articulated arm measuring
machines, the advantages of 3D sensors are their non-contact measurement capability and
wider detection range. In this study, measurements were performed using a 3D scanning
sensor. Figure 3 presents a three-dimensional point cloud of an aircraft radome surface.
The rotational symmetric radome was positioned with a base, as its vertical direction was
aligned with the radome’s vertical axis.

 
Figure 3. An aircraft radome and its 3D scanned point cloud of aircraft radome.

2.1.2. Point Cloud Data Preprocessing

During the acquisition of point cloud data on the surface of the aircraft radome, various
factors may introduce disturbances. These factors include uneven lighting, vibrations,
object occlusions, and aging of the scanning equipment, which could result in noise and
voids in the point cloud data. Therefore, preprocessing the point cloud data becomes
necessary to ensure its smoothness and uniformity. In order to handle the high-density
point cloud data acquired by the 3D sensor, this study employed a voxel filtering method
for down sampling [23]. It is a method that effectively reduces the number of data points
while preserving the details of the point cloud. Additionally, a statistical filtering technique
was employed to remove outliers in the down sampled point cloud [24]. For each point Qi
in the point cloud, its 50 nearest neighboring points (Ni1, Ni2, Ni3, Ni50) are first determined.
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Subsequently, the Euclidean distance dij between the point Qi and its neighboring points
was calculated using the following formula:

dij =
√(

Qix − Nijx
)2

+
(
Qiy − Nijy

)2
+
(
Qiz − Nijz

)2 (1)

where Qix, Qiy, Qiz, Nijx, Nijy, and Nijz represent the coordinates of the points Qi and Nij

along the x, y, and z axes, respectively. Next, for each point Qi, the average distance di to
its 50 nearest neighboring points is calculated:

di =
1

50∑50
j=1 dij (2)

Additionally, the global average of the mean distances between all points and their
neighboring points was calculated, resulting in two values, denoted as μ and σ.

μ =
1
N ∑N

i di (3)

σ =

√
1

N − 1∑N
i=1

(
di − μ

)2
(4)

here, N represents the total number of points in the point cloud.
Lastly, a threshold value T = μ + k·σ was set, where k is a constant (in this paper, k is

set to 1). Any point Qi with an average distance di exceeding this threshold (i.e., di > T)
was considered an outlier and was removed from the point cloud. The radome point cloud
shape after preprocessing is shown in Figure 4.

 

Figure 4. Radome point cloud shape after preprocessing.

2.1.3. Point Cloud Data Alignment

After preprocessing, the point cloud shape of the aligned radome became evident.
However, it was necessary to align the coordinates of measuring and cleaning systems
before the segmentation of the radome point cloud. To solve this issue, this study intro-
duced the principal component analysis (PCA) algorithm for aligning the point cloud data.
Specifically, the research focuses on studying the orientation determination of the principal
axis vectors for point cloud alignment. A PCA-based point cloud alignment algorithm was
proposed, incorporating an additional criterion for determining the main direction. The
algorithm’s specific steps for aligning the point cloud data are outlined as follows.

Firstly, decentralize the point cloud dataset P = {P1, P2, P3, · · · , Pn}:

QP =
∑n

i=1 Pi

n
(5)

238



Appl. Sci. 2024, 14, 1163

The covariance matrix of dataset P can be calculated as:

CP =
1
N ∑n

i=1

(
Pi − QP

)(
Pi − QP

)T (6)

Through eigenvalue decomposition calculation, the covariance matrix Eigenvalues
and eigenvectors of CP can be expressed as:

CP = UPDPUT
P (7)

where UP is a 3 × 3 matrix composed of the eigenvectors of the covariance matrix CP,
used to identify the main directions of the point cloud data, and DP is a 3 × 3 diagonal
matrix whose diagonal elements are the eigenvalues of the covariance matrix, indicating
the variance of data in each direction.

Then a new O-XYZ right-hand coordinate system needed to be established. By taking
the centroid coordinates QP as the origin of the new coordinate system, the first principal
component of the eigenvector corresponding to the maximum eigenvalue was chosen
as the X-axis of the new coordinate system. The second principal component of the
eigenvector corresponding to the second largest eigenvalue was chosen as the Y-axis of
the new coordinate system. Thereby, the O-XY plane was formed. By performing a cross-
product operation on the X-axis and Y-axis, the new Z-axis coordinate was obtained and
the new O-XYZ coordinate system was established.

By utilizing the newly constructed O-XYZ coordinate system, the coordinate trans-
formation matrix (RP, TP) dataset could be computed to obtain the axis-aligned set P′.{

RP = UT
P

TP = −RP ∗ QP
(8)

P′ = P ∗ RP + TP (9)

where RP is the rotation matrix and TP is the translation vector.
There may exist a problem with the Z-axis orientation, resulting in a scenario where the

aligned point cloud exhibits an inverted orientation as depicted in Figure 5b. Specifically,
when the Z-component values of the point cloud data are negative, it indicates a reversal in
the Z-axis direction. Consequently, after the initial alignment of the point cloud coordinate
system, it was necessary to perform Z-axis direction determination and correction.

Figure 5. Alignment of radar hood point cloud coordinates (Z-axis rendering): (a) radar hood point
cloud before coordinate alignment, (b) radar hood point cloud after initial alignment, (c) radar hood
point cloud aligned through Z-axis correction, and (d) bottom-up view of the radar hood point cloud
after alignment.

We needed to search for the maximum point P′
k1 and the minimum point P′

k2 in the point
cloud set P′. Extract the corresponding Z-axis component values zk1 and zk2, respectively.
Take the absolute values of zk1 and zk2 and calculate their difference as shown in Equation (10).
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From the perspective of the point cloud data, this step involves comparing the maximum and
minimum points of the point cloud set to determine if the Z-axis is reversed.

m = |z k1|−|zk2| (10)

Based on the value obtained in Equation (10), denoted as m, if m is determined to be
negative, it indicates that the Z-axis is reversed. In such cases, a Z-axis correction is required,
as shown in Equation (11), resulting in the aligned point cloud set P′′ . Figure 5b illustrates
the initial alignment of the point cloud and the Z-axis direction correction, leading to the
aligned point cloud depicted in Figure 5c.

P′′ = P′ ∗ R1 (11)

where R1 =

⎡⎣1 0 0
0 1 0
0 0 −1

⎤⎦.

2.2. Slicing and Visualization of Radome Point Cloud Data
2.2.1. Radome Point Cloud Data Slicing Processing

After repositioning the point cloud coordinate system at the origin, it was necessary
to consider slicing the radar hood point cloud model. Due to the inherent geometric
characteristics of the radar hood, vertical slicing was performed first based on its height
symmetry, followed by horizontal slicing. Considering the complexity of horizontally
slicing the radar hood point cloud model in three-dimensional space, a projection-based
point cloud slicing technique was proposed. This technique enables rapid and accurate
horizontal segmentation of the radar hood point cloud model.

Slicing in the Z-Axis Direction

The radar hood point cloud model was divided into several layers based on the
z-coordinate. The division was determined by the laser cleaning range, denoted as h, and
took into account an angle θ. (The choice of θ was dictated by factors such as the physical
structure of the radar hood and the positioning of the cleaning equipment.) The height of
each layer was calculated as Δh = h ∗ cos θ. For a radar hood with a height of H, it was
divided into G = H/Δh sections. The height at which each layer’s slicing line was located
was denoted as Zk(1 ≤ k ≤ G + 1). The point cloud was sorted in ascending order based
on the z-coordinate, and each point was assigned to the corresponding layer based on its
z-coordinate value.

Projection-Based Point Cloud Segmentation for Radar Hood Geometry

Considering the geometric characteristics of radar domes, the annular structure formed
after height segmentation requires further horizontal segmentation. The projection-based
point cloud segmentation technique is a method that projects the point cloud onto a 2D
space for processing, aiming to reduce the complexity of horizontal slicing of the point
cloud. The algorithm flow of this technique is illustrated in Figure 6.

The point cloud of the radar radome was projected onto the Z-direction and underwent
normalization and binarization after height segmentation. By extracting the contour of
the binarized image, the annular segments of the radar dome were obtained, as shown in
Figure 7. Based on the horizontal scanning range of the laser, the segmentation dimensions
were calculated and the radar dome was horizontally segmented into annular sections.
The circumference of each radar dome ring was denoted as W, the horizontal cleaning
range as w, the angle of the ring as α, and the number of segmentations within the ring
as M. Thus, M = W/(w ∗ cos α). After partitioning, each segmentation line was assigned
an angle αg(0 ≤ g ≤ M). The regions within each ring were assigned corresponding pixel
values based on the magnitude of αg. An image with the same size as the binarized
image was initialized, with all pixel values set to 0, referred to as the label image. In each
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segmented region of the ring, the positions of non-zero pixels within the current region
were identified and the corresponding pixel values in the label image were set to the current
label value. Using the label image obtained, the current original point cloud data within the
segmented ring were labeled, cached, and fused, with the point cloud list being promptly
updated. Upon traversing all the layers of points, the data were saved into the point
cloud segmentation database, resulting in a collection of point cloud slices, denoted as S{

s1, s2, s3, · · · , sj
}

.

Figure 6. Projection-based point cloud segmentation process.

 

Figure 7. Projection of height-segmented image.

2.2.2. Visualization of Projected Slices

In terms of visualizing the sliced data of the radar dome point cloud, this study utilized
the visualization tool based on PCL (Point Cloud Library). Prior to visualization, the radar
dome point cloud model was segmented along the z-axis and the horizontal direction,
with each slice sequentially stored in the collection S. Each slice was indexed based on the
slicing order and assigned a unique RGB color to ensure color uniqueness and consistency.
Figure 8 illustrates the unfolded view of the radar dome point cloud data slices, which
facilitates a clearer observation and analysis of the sliced data.
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Figure 8. Splitting expansion of radome point cloud data: (a) top model segmentation of radome and
(b) expanded slice data.

2.3. Laser Cleaning Robot Trajectory Planning

The trajectory of the robot should be generated prior to the laser coating cleaning
process. To achieve optimal cleaning results, two principles must be followed:

(1) The trajectory of the robot for laser coating cleaning should align with the surface
height of the component to be cleaned;

(2) The central axis of the laser cleaning actuator held by the robot should always be
perpendicular to the surface of the workpiece.

2.3.1. Calibration of Coordinate Relationship between Radome Measurement Point Cloud
and Cleaning Robot

The aligned point cloud coordinate system differs from the robot coordinate system.
In this study, a homogeneous transformation matrix was employed to perform the trans-
formation from the point cloud coordinate system to the robot coordinate system. The
transformation matrix was defined as follows:

M4×4 =

[
R t
0 1

]
(12)

where R is a 3 × 3 rotation matrix and t is the translation vector.

2.3.2. Calculation Model for Laser Cleaning Actuator Point Coordinates
Geometric Relationship Model between Cleaning Actuator Points and Sliced Point Cloud

The definition of the laser coating cleaning actuator point is the central point of the
effective processing area of the laser spot during a single cleaning operation. In a single
cleaning operation, the laser cleaning device can achieve comprehensive coverage and
cleaning of the effective processing area. Therefore, all points within this area can be
simplified to a single cleaning point, represented by the centroid of the point cloud slice.
The calculation formula for this point is as follows:

usj =
1
j ∑j

b=1 qb (13)

Among them, the set of slice points is
{

q1, q2, q3, · · · , qj
}

. Store the cleaning point data
usj in the point set ListU.

The Estimation of the Normal Vector for the Cleaning Points

For a regular surface S in three-dimensional space, the normal vector u at point us can
be approximated as the normal vector of the surface at point us. In the tangent plane p at
us, vectors a and b are two non-collinear vectors, as shown in Figure 9.
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Figure 9. Illustration of point cloud normal vector estimation.

The data stored in ListU consist of a series of points, forming a sampling point set U.
The normal vector at each data point usj in the sampling point set represents the normal
vector of the local tangent plane at that point on the surface. There are two main methods
for estimating the normal vectors. One method involves the scattered data’s triangulated
topology, where the normal vector is obtained from the normal vectors of the relevant
triangles in the point cloud data, considering the triangulated topology of the point cloud
data. The other method utilizes the neighborhood information of each point and employs
the least squares principle to locally fit a plane to the K neighboring points. The fitted plane
can be considered as the local tangent plane at that point. The normal vector of the local
tangent plane at that point is then regarded as the normal vector of the sampling point.
This method provides better flexibility by adjusting the neighborhood size to balance the
smoothness and details of the normal vectors. The following formula is used to calculate
the plane fitting for each point’s K neighborhood:

pj
(
uj, d

)
= argmin

(uj ,d)
∑k

l=1

(
ujpl − d

)2 (14)

where uj represents the normal vector of the locally fitted plane pj, while pl(l = 1, 2 · · · k)
denotes the k neighboring points of usj within sj. The variable d represents the distance
from the fitted plane pj to the origin of the coordinate system.

The normal vector of plane pj is determined through principal component analysis
(PCA), by analyzing the eigenvector corresponding to the minimum eigenvalue of the
covariance matrix A. This minimum eigenvector represents the normal vector of plane pj.
The covariance matrix A is defined as follows:

A = ∑k
l=0 (pl − p)T(pj − p

)
(15)

where p denotes the centroid of the k neighborhood points around point usj .
To fit the plane pj, satisfying the condition of minimizing the sum of squared distances

between the neighboring points and the plane, we utilized the Lagrange theorem to solve the
covariance matrix A and the plane’s normal vector, uj, which satisfied the following relationship:

Auj = λuj (16)

where λ represents the eigenvalues of matrix A. When λ reaches its minimum value,
the corresponding vector uj is the normal vector of the fitted plane pj, which can be
approximated as the normal vector of point uj, denoted as usj .

The direction of the normal vector can be determined using the viewpoint method.
Let us consider a point q within the object under inspection. If the relationship between usj

and q satisfies Equation (17), then the direction of the normal vector remains unchanged.
However, if the relationship does not hold, the direction of the normal vector is reversed to
ensure uniformity in the direction of the normal vectors.

ujQ > 0 (17)
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where Q is the normal vector of point q.

2.3.3. Execute Point Fitting to Generate Cleaning Robot Trajectory

Discrete Point Fitting for Generating Cleaning Robot Trajectory

In accordance with the requirements of laser cleaning tasks performed by the cleaning
robot, the vertical distance from the laser cleaning actuator to the surface of the target
workpiece was denoted as L. The trajectory parameters of the laser cleaning actuator can
be obtained using the following offset algorithm:

Qj = usj + L
uj

‖uj‖ (18)

As shown in Figure 10, the point Qj includes the position (coordinate values) and
directional information (opposite to the direction of uj) of the end effector of the laser
cleaning actuator.

 
Figure 10. The position and direction of the laser cleaner at point usj .

To obtain the offset point set Q, a similar method was applied to traverse all points in
the sampling point set R. Consequently, the information contained in the entire point set Q
represented the trajectory parameters (position and direction) of the laser cleaning device
on the operating surface during the cleaning process.

B-spline curves are derived from the basis of Bézier curves, which were introduced
by Schoenberg in the 1940s [25] and later formulated recursively by De Boor [26,27] and
Cox [28]. The recursive nature of B-spline curves makes the computation straightforward
and stable, leading to widespread adoption. These curves are generated by combining
control points with B-spline basis functions to define the shape of the curve. In this paper,
B-splines were employed for curve fitting purposes. The mathematical expression for a
pth-degree B-spline curve is given by Equation (19). By connecting the respective execution
points, a continuous path was formed, which can be transformed into a specific model
of laser cleaning robot’s motion program. This enabled automated laser cleaning of the
workpiece surface for coating removal.

C(d) = ∑s
t=0 Nt,p(d)bt l1 ≤ d ≤ l2 (19)

where p represents the degree of the spline curve and {bt} denotes the control points of the curve.
The control polygon, formed by connecting the control points in a specific order, is

referred to as the control polygon of the curve. Typically, the parameter values l1 = 0 and
l2 = 1 are used. Nt,p(d) represents the basis function of a pth-degree B-spline curve, as
given by Equation (21), which is defined as a piecewise polynomial function determined
by the knot vector D = {d0, d1, · · · , de}. The knot vector is a non-decreasing sequence
composed of all the knots. In B-spline curves, the first and last control points are typically
used as the start and end points of the curve, while the intermediate control points serve as
the breakpoints or knots of the curve. To ensure that the pth-degree spline curve passes
through the first and last control points, the first and last knots are repeated p+1 times. In
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this paper, the knot vector was parameterized using the cumulative chord length method,
as shown in Equation (20).⎧⎨⎩

d0 = d1 = d2 = d3 = 0
dj+3 = dj+2 +

∣∣Δqj
∣∣, j = 1, 2, · · · , s − 1

ds+3 = ds+4 = ds+5 = ds+6 = 1
(20)

where Δqj =
qj−qj−1

∑s
j=1|qj−qj−1| represents the normalized chord length vector.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nt,0(d) =

{
1, dt ≤ d ≤ dt+1
0, others

Nt,p(d) = d−dt
dt+p−dt

Nt,p−1(d) +
dt+p+1−d

dt+p+1−dt+1
Nt+1,p−1(d)

set : 0
0

(21)

where the number of control points are (s + 1), the degree of the spline curve (p) and the
number of knots (e + 1) satisfies e = s + 1 + p. Once the degree (p) and the knot vector (D)
are determined, the basis functions of the B-spline curve can be computed.

Hierarchical Smooth Transition of Motion Trajectories

During laser cleaning processes, it is crucial for the robot to achieve smooth transitions
between different cleaning levels. By employing B-spline curve fitting, discrete cleaning
execution points have been successfully transformed into continuous path planning. How-
ever, it is necessary to ensure smooth and appropriate transitions between these paths at
different levels, reducing trajectory discontinuities when switching between levels, thus
ensuring stability and efficiency in the cleaning process.

Between the endpoints of each level and the starting points of the next level, the
adjustment of control points in B-spline curves enables achieving consistent first-order
derivatives at the connecting points of two different levels. This optimization of the
connection path ensures smoothness, as shown in Equation (22). When the first-order
derivatives at the connecting points of two different-level curves are equal, it indicates
continuity in the tangent direction at those points. Figure 11 provides a comparative
illustration, demonstrating the difference between connecting points of two different-level
curves with and without the implementation of the first-order derivative consistency
constraint. This approach helps avoid abrupt changes in angles at the path connections,
ensuring smoother and more natural robot motion.

C′(d1) = C′(d2) (22)

Figure 11. Comparative illustration of connecting points of two different-level curves. (a) Connecting
points of two curves without the constraint of first-order derivative consistency. (b) Connecting
points of two curves with the constraint of first-order derivative consistency.

In the equations, C′(d) represents the first derivatives of the curve at point d. d1 and
d2 are the parameter values at the connection points of adjacent level paths.

During the robot’s transition between levels, it is essential to reduce its motion speed
appropriately to avoid mechanical arm vibrations and posture deviations caused by rapid
movements. Moreover, adjustments to the robot’s posture are necessary to maintain an
appropriate distance and angle between the laser cleaning head and the workpiece surface.
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This helps decrease mechanical wear and the potential risks of malfunctions resulting from
improper motion.

3. Results

The remote-control system hardware used in the experiment consists of an ABB
(Asea Brown Boveri) IRB (Industrial Robot) series 6700 robot, a control cabinet, and a
computer. The computer communicates with the control cabinet using the RAPID language
in RobotStudio software, which controls the robot’s motion. The host computer, running
laser cleaning software on the Windows operating system, acts as the main control system.
It establishes communication and connection with the ABB robot through the Internet
options or TCP/IP protocol of the robot’s PC. Additionally, it connects and communicates
with the Siemens 1200 series PLC via Ethernet or other communication methods to control
the robot system and laser system and monitor device status. Offline trajectory planning
is performed on the 3D point cloud, which offers more freedom and accurate trajectory
planning compared to online programming in RobotStudio software.

In this study, a radar dome of an aircraft was chosen as the experimental object. A 3D
scanner was used to scan the radar dome and obtain point cloud data. The point cloud
data were then preprocessed and aligned to generate a 3D model of the radar dome’s
surface. This model was imported into the offline programming software, and based on
the surface curvature of the radar dome, limitations of the laser cleaning area, and focal
depth requirements (in this experiment, the angle θ is 36.87 degrees), the surface of the
radar dome was divided into regions, as shown in Figure 12.

Figure 12. Radome point cloud model segmentation: (a) vertical segmentation effect of point cloud,
(b) top view after point cloud segmentation, (c) horizontal segmentation effect of point cloud, and
(d) local segmentation effect of point cloud segmentation.

By employing a point cloud segmentation algorithm, a series of slices were generated,
as shown in Figure 12c. For each slice, a centroid calculation was performed to extract
the cleansing positions of the radar radome, as shown in Figure 13a. In Figure 14a, an
estimation of the normal vectors at the extracted cleaning points is presented, and numerical
annotations within the figure denote the sequence of the motion trajectory during the
laser cleaning process. Leveraging the B-spline curve fitting method and hierarchical
stitching processing, the spatial trajectory of the laser cleaning robot was obtained, as
shown in Figure 13b.
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Figure 13. Execution point fitting generates cleaning robot trajectory: (a) extracted cleaning point
positions, (b) trajectory planning for robot laser cleaning, (c) local enlarged layered connections, and
(d) cleaning the movement trajectory of the robot.

 

Figure 14. Estimation of normal vector for cleaning point location: (a) normal vector for cleaning
execution point and (b) local enlarged display.

Before trajectory planning for laser cleaning by the robot, it was necessary to perform
point cloud-to-robot calibration, which involves transforming the coordinate system of
the radar radome point cloud to that of the robot. To achieve this problem, point selection
calibration between the point cloud and the robot was carried out. In order to improve
accuracy, a total of 10 data sets was collected and the homogeneous transformation matrix
for the point cloud-to-robot calibration was computed. The computed transformation
matrix is shown below.

M4×4 =

⎡⎢⎢⎣
−0.999999 0.00101104 0.000331104 2499.81
−0.00101122 −1 0.000034034 −0.0950298
0.000331193 0.000033379 1 25.4204

0 0 0 1

⎤⎥⎥⎦
To illustrate the practicality of the proposed method in real-world scenarios, a surface

coating laser cleaning was conducted on an actual radar radome. Prior to the execution of
the cleaning trials, it was imperative to fine-tune the laser cleaning parameters on a test
piece composed of identical material to guarantee the attainment of thorough cleanliness in
a solitary scan. The parameters for laser cleaning are delineated in Table 1. The system em-
ploys a pulsed fiber laser, characterized by a central wavelength of 1064 nm, a circular core
diameter of 400 um, and a maximum output power of 1000 W. Figure 15 provides a clear
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demonstration of the effectiveness of laser cleaning. The efficiency of this robotic laser clean-
ing system was determined by calculating the ratio of cleaning duration to the area cleaned,
yielding a cleaning efficiency of 2.94 m2/h. This represents a significant improvement over
the efficiency of 0.396 m2/h reported in [29], thereby highlighting a marked enhancement
in performance metrics. The trajectory planning method mentioned successfully removed
the coating from the test section, meeting the experimental requirements.

Table 1. Laser cleaning parameters.

Designation Parameters

Pulse width 100 ns
Beam diameter 340 um
Repetition rate 20–50 kHz (continuously adjustable)

Maximum single pulse energy 50 mJ

Figure 15. Laser cleaning: (a) the cleaning of a slice of workpieces and (b) the movement of the laser
cleaning head between different slice layers.

4. Conclusions and Discussion

This research developed a path-planning method for the shape-following laser clean-
ing automated robot of aircraft radar coating. The proposed method enables accurate clean-
ing of coating on the radar without known surface equations or CAD models. Through the
aircraft radar radome laser cleaning experiments, the effectiveness of the proposed method
was validated. The final cleaning results demonstrate the wide potential and high cleaning
efficiency in industrial applications.
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Abstract: This study aims to contribute academically valuable insights into energy-efficient drives
for the positioning control of flexible structures. It focuses on the point-to-point (PTP) motion control
of a flexible manipulator to suppress residual vibration and reduce driving energy simultaneously.
The driving energy for PTP motion is influenced by the initial deflection of the flexible manipulator.
Considering this phenomenon, the study proposes a trajectory planning method for the joint angle
of a flexible manipulator. In this method, the evaluation function is defined as the sum of drive
torques, and its minimization through particle swarm optimization generates an optimal trajectory
that minimizes drive energy and suppresses residual vibration. Numerical simulations indicate that
significant energy savings can be achieved by actively deforming the manipulator. These simulation
results are corroborated by experimental data, which demonstrate the practical applicability and
effectiveness of the proposed method.

Keywords: trajectory planning; flexible structure; energy conservation; vibration control; flexibility
utilization

1. Introduction

Robotic manipulators, designed for repetitive pick-and-place tasks, must be lightweight
to minimize energy costs. However, their reduced weight often leads to increased vibrations
due to decreased rigidity. Addressing this issue, various approaches have been developed
to mitigate vibrations in flexible manipulators [1–6]. These approaches fall into two primary
categories: feedback and feedforward control schemes. Feedback control is effective in man-
aging disturbances and variable parameters in the objects being controlled. Feedforward
control, which does not require sensors to measure vibrations (as demonstrated in [7,8]),
is cost-effective and has received significant attention from researchers aiming to refine
vibration control in flexible manipulators [9–22].

Recent studies on feedforward vibration control include the application of the finite
element method to investigate vibration control in single-link flexible planar and curved
manipulators, particularly focusing on triangular and trapezoidal velocity motion com-
mands [23]. Malgaca et al. [23] reported that the residual vibrations of flexible manipulators
were suppressed by selecting appropriate deceleration times in the trapezoidal velocity
profile. Yang et al. [24] introduced a method for nonlinear dynamic modeling and trajec-
tory planning in a flexure-based macro-micro manipulator, significantly reducing residual
microscopic-level vibrations. Xin et al. [25] presented an optimization strategy for mini-
mizing residual vibrations in space manipulator systems, utilizing an absolute coordinate
model. Enhancements in existing input shaping techniques were reported by Kim and
Croft [26], enabling the determination of multiple vibration modes in industrial robots with
joint elasticity through the optimal S-curve trajectory, robust zero-vibration shaper, and
dynamic zero-vibration shaper. Yoon et al. [27] examined the timing of jerks in trapezoidal
motion profiles to minimize vibrations in a six-degrees-of-freedom (DOF) commercial
articulated robot with a cantilevered beam. Further advancements included a trajectory
planning method based on quintic polynomials for suppressing vibrations in spatial flexible
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manipulators with curved links [28], where a dynamic model was established as a differ-
ential algebraic equation using the absolute nodal coordinate formulation and Lagrange
equation. Li et al. [29] studied vibration suppression in a planar multi-DOF serial manipu-
lator with flexible links, proposing an online vibration-suppression path-planning method
using backpropagation neural networks. A zero residual vibration position control strategy
combining motion planning and optimization algorithms for two-DOF flexible systems
was introduced by Meng et al. [30]. This method was applied to various systems, including
a car-spring-car system, a planar two-dimensional overhead crane, and a planar single-link
flexible manipulator, and its effectiveness was demonstrated through numerical simula-
tions. Lastly, İlman et al. [31] presented an improved method for suppressing transient and
residual vibrations in flexible industrial robots by adjusting acceleration/deceleration times
in trapezoidal velocity profiles and incorporating a decision tree classification algorithm
(C4.5) to refine input pre-shaping.

However, the aforementioned studies focused only on vibration control, and methods
targeting energy conservation were limited to manipulator systems with rigid links. Soori
et al. [32] conducted a comprehensive review of the literature on the optimization of energy
consumption in industrial robots, in which they reviewed 136 papers published between the
years 2004 and 2023. Focusing on industrial robots, autonomous vehicles, and embedded
systems, Vásárhelyi et al. [33] provided a systematic review of the classification and analysis
of various methodologies and solutions developed to improve the energy performance
of robotic systems. Consequently, feedforward control techniques have been introduced
to address both vibration control and energy conservation in flexible manipulators. Our
earlier work [34,35] explored the point-to-point (PTP) motion in systems with flexible
links, introducing a neural network-based trajectory planning method that simultaneously
minimizes driving energy and residual vibration. Mu et al. [36] developed a trajectory
planning approach for flexible servomotor systems, aiming to achieve minimal energy
consumption and zero residual vibration while adhering to state constraints on velocity,
acceleration, and jerk. Furthermore, the present author [37] developed an open-loop control
technique to further reduce driving energy without inducing residual vibrations in the
PTP motion of flexible structures, employing a combination of cycloidal and polynomial
functions for optimal trajectory generation.

In the context of efforts to combat global warming, there is an increasing demand
across various sectors for CO2 emission reduction (i.e., energy conservation). This trend
highlights the need for more research focusing on energy-efficient approaches in flexible
manipulator systems. A common hypothesis suggests that driving a flexible manipulator
along a smooth trajectory, which minimizes vibration excitation, can achieve both residual
vibration suppression and energy-efficient operation. But is this assumption accurate? This
study seeks to answer this critical scientific question and introduces an energy-saving feed-
forward control method for the PTP control problem in flexible manipulators. Simulations
indicate that active deformation occurs in the manipulator during PTP motion, allowing
for significant reductions in drive energy due to the interaction between the restoring force
of deformation and the angular acceleration of rotation. Experimental validation further
demonstrates the effectiveness and feasibility of the proposed method.

2. Single-Link Flexible Manipulator

2.1. Experimental Setup

Figure 1 shows the experimental setup of the single-link flexible manipulator used in
this study. The manipulator, a brass beam, measures 550 mm in length, 50 mm in width,
and 1 mm in thickness. Its one end is securely attached to a hub with a radius of 42 mm.
The displacement of the manipulator was measured using a strain gauge attached at a
distance of 30 mm from the clamped end. The joint angle of the flexible manipulator was
measured using a serial encoder connected to an AC servomotor (SGMMJ; Yaskawa Electric
Corp., Kitakyushu, Japan). For the precise tracking of the joint angle, the AC servomotor
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operated in speed control mode, governed by a servo drive (SGDV; Yaskawa Electric Corp.).
This servo drive implemented the following control law [34]:

v = K1(θre f − θen) + K2(
.
θre f −

.
θen) + vre f , (1)

where θref represents the given reference angle, while θen is the joint angle measured by the
serial encoder. The dot represents differentiation with respect to time, v is the input voltage
to the servo drive, and vref is the reference voltage corresponding to θref. The feedback gains,
K1 and K2, were set at 20 and 0.1, respectively. It should be noted that the motor torque
was monitored using the servo drive. The control law (Equation (1)) was implemented
on a digital signal processing board (DS1104; dSPACE GmbH, Paderborn, Germany) at a
sampling rate of 500 Hz, and the dSPACE ControlDesk (Release 6.6) monitor software was
used to save the experimental data (joint angle, displacement, and motor torque).

 
Figure 1. Photograph of the experimental setup.

2.2. Equations of Motion

A schematic of the experimental setup is illustrated in Figure 2, where θ is the joint
angle, a represents the radius of the motor hub securing one end of the flexible manipulator,
and w is the displacement of the manipulator; u is the displacement in the x-axis direction
owing to significant deflection [7,34,38]. From a theoretical analysis based on finite defor-
mation theory, the system’s equation of motion is given by the following equations [34]:

α1
..
θ + α2

..
W + c

.
θ = τ, (2)

..
W + 2ςω

.
W + ω2W + β1

..
θ + β2

.
θ

2
W = 0. (3)

Equations (2) and (3) correspond to the rotational motion and vibration of the flexible ma-
nipulator, respectively. Here, W is the amplitude of the first-order vibration mode, τ is the
driving torque, and αi and βi are the coefficients of the equations of motion. The model in-
corporates the viscous damping coefficient ζ and the viscous friction coefficient c to account
for the damping and friction effects observed in the experiments. The trajectory planning
method, discussed in Section 4, falls under feedforward vibration control and requires an
accurate mathematical model. Therefore, the values of the coefficients ζ, c, αi, and βi and
the natural frequency ω were determined through parameter identification experiments.
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Figure 2. Schematic of the flexible manipulator.

For parameter identification [8,34], cycloidal motion was implemented to rotate the
manipulator on an actual machine, as described by Equation (4):

θcyc(t) = θE

[
t

TE
− 1

2π
sin

(
2πt
TE

)]
, (0 ≤ t ≤ TE), (4)

where t represents time, TE is the driving time, and θE is the target angle of the manipulator.
Parameters were optimized to ensure that the numerical simulation results aligned with
the experimental data on the deflection and drive torques of the flexible manipulator. The
identified values are as follows:

α1 = 1.663 × 10−2 [kgm2], α2 = 6.310 × 10−2 [kgm], c = 3.205 × 10−2 [Nms/rad],
ς = 8.238 × 10−3 [−], β1 = 2.353 × 10−1 [m], β2 = 3.311 × 10−1 [−], ω = 12.52 [rad/s]

}
. (5)

Figure 3 presents a time-series comparison of simulation and experimental results.
Figure 3a–d show the joint angle, angular velocity, manipulator displacement, and motor
torque, respectively. This comparison confirms the validity of the parameter identification,
as indicated by the close agreement between the simulation and experimental findings.
Notably, cycloidal motion generates a large-amplitude residual vibration, as shown in
Figure 3c.

t

t

t

t

w
l

Figure 3. Comparison of the simulation and experimental results obtained using cycloidal mo-
tion (TE = 0.8 s and θE = π/2 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and
(d) motor torque.
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3. Relationship between Initial Deflection and Drive Energy

Figure 4 depicts the impact of initial deflection on both the displacement (w) and
the drive torque (τ) of the manipulator when it follows cycloidal motion (Equation (4))
under specific driving conditions (TE = 0.6 s and θE = π/6 rad). In the figure, the dotted,
thin, and thick lines represent the results for initial deflections w(l, 0) of 5, 0, and −5 cm,
respectively. As depicted in Figure 4c,d, the maximum amplitude is smaller with a negative
initial deflection (thick line) compared to scenarios with no initial deflection (thin line)
and a positive initial deflection (dotted line). Correspondingly, the driving torque is also
reduced. The driving energies, calculated using Equation (6), are listed in Table 1:

E =
∫ θE

0
|τ| dθ . (6)

Consistent with the observations from Figure 4, a negative initial deflection results in
the lowest driving energy. Thus, it is inferred that driving energy can be minimized by
inducing a substantial negative deflection in the flexible manipulator immediately after
initiating the drive.

t

t

t

t

w
l

w l

w l

w l

w l

w l

w l

Figure 4. Effect of initial deflection on response and torque (TE = 0.6 s and θE = π/6 rad): (a) joint
angle, (b) angular velocity, (c) tip displacement, and (d) motor torque.

Table 1. Effect of initial deflection on driving energy E [J].

Value of the Initial Deflection

w(0, l) = −5 cm w(0, l) = 0 w(0, l) = 5 cm

5.28 × 10−2 1.05 × 10−1 1.60 × 10−1

4. Trajectory Planning Method Focused on Flexibility Characteristics

This study addresses the PTP control problem of rotating a manipulator to a target an-
gle θE at time TE. The author’s previous study [37] introduced an energy-saving trajectory
planning method where the joint angular trajectory of a flexible manipulator is repre-
sented by a combination of a cycloid function and a power series. Numerical simulations
demonstrated that this method conserves more energy compared to neural networks [32].
However, the physical phenomena discussed in Section 3 suggest that energy savings
can also be achieved by significantly deflecting the manipulator in the negative direction
immediately following activation. Therefore, the following trajectory planning method
is proposed.
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The optimized trajectory θopt(t) of the manipulator joint angle is formulated as the
sum of a cycloid curve with drive time T0 and target angle θ0 and a cycloid function with
the input represented as a power series:

θopt(t) = θcyc(t) + θ f (t), (7)

θcyc(t) = θ0

[
t

T0
− 1

2π
sin

(
2πt
T0

)]
, (0 ≤ t ≤ T0), (8)

θ f (t) = (θE − θ0)

{
u(t)− sin[2πu(t)]

2π

}
, (9)

u(t) =
t

TE
+ (1 − T2)

N

∑
n=1

anTn−1, (10)

T = −1 +
2t
TE

, (0 ≤ t ≤ TE). (11)

Here, the ranges of θ0 and T0 are defined as follows:

0 ≤ θ0 < θE, 0 ≤ T0 < TE. (12)

Equation (8) describes a cycloidal curve with time T0 and angle θ0, aiming to reduce
the driving energy by significantly deflecting the flexible manipulator. Meanwhile, as
indicated by Equations (9) and (10), the input u(t) is given as a power series up to time TE,
generating a trajectory toward the target angle θE. If θ0 = 0, then θopt = θf, aligning with
the trajectory equation from our previous study [37]. The trajectory θopt(t) generated from
Equation (7) depends on T0 and θ0 in Equation (8) and the coefficients an of the power
series in Equation (10). The procedure for the trajectory planning method for energy-saving
and residual vibration suppression is outlined below.

Optimization parameters include T0 and θ0 from Equation (8) and the coefficients an
from Equation (10), used to generate the joint angle trajectory θopt(t) from Equations (7)–(11).
The numerical integration of Equation (3), based on this trajectory, reveals the dynamics of
the flexible manipulator. The results from this integration are then applied to deduce the
drive torque τ via inverse dynamics analysis of Equation (2). To achieve both drive energy
minimization and residual vibration suppression, the evaluation function F is defined
as follows:

F = F1 + F2 =
I

∑
i=1

|τi|+
I+J

∑
i=I+1

|τi| (13)

where τi is the drive torque per time interval Δt = 2 ms, and I = TE/Δt. Thus, F1 represents
the sum of the drive torque during rotation up to time TE, with its minimization signifying
drive energy reduction. F2 represents the sum of the torque over 1 s after positioning, set
to J = 1/Δt. As shown in Figure 3c,d, when residual vibration occurs after positioning,
torque is required to maintain the joint angle at θ(t) = θE (t ≥ TE) against this vibration. F2
is then considered to mitigate residual vibration. Hence, F is the sum of the drive torque
from the start of the drive to TE + 1 s. By considering the drive torque from the end of the
drive to 1 s later, both energy savings and residual vibration suppression are achievable.
We employ particle swarm optimization (PSO) [39] to optimize the search parameters for
minimizing the evaluation function (Equation (13)). In our previous studies [8,38], PSO was
shown to be an effective method for trajectory planning in flexible manipulators. The PSO
algorithm is also described in [7]. The algorithm of the trajectory planning method was
implemented in Python. The result of this optimization process generates a trajectory that
conserves energy and suppresses residual vibration. By rotating the manipulator along this
optimized trajectory, both drive energy and residual vibration can be reduced. Therefore,
this method belongs to the category of feedforward vibration control.
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5. Simulation and Experimental Results

This section presents the results from numerical simulations and experiments con-
ducted to validate the proposed energy-saving trajectory planning method. In these
simulations, the numbers of individuals and iterations in the PSO were set to 100 and 200,
respectively. The range of optimized parameters was established as follows:

T0 ∈ [0, TE/3], θ0 ∈ [0, θE/4], an ∈ [−0.4, 0.4] (n = 1, 2, · · · , N), (14)

where the number of terms in the power series (Equation (10)) was N = 4. PSO was then
employed to minimize the evaluation function (Equation (13)).

Initially, the driving conditions were the same as in Figure 3 (θE = π/2 rad, TE = 0.8 s),
and the results of the proposed method were compared with those of the previous study [37],
as shown in Figure 5. In Figure 5a–e depict the joint angle, angular velocity, angular acceler-
ation, tip displacement of the manipulator, and motor torque, respectively. In the previous
study [37], the trajectory of the joint angle was represented by θopt(t) = θf (t), with the
number of terms in the power series (Equation (10)) set to N = 6. The evaluation function
was defined as follows:

F1 = max
t∈S

[|w(t, l)|], (S : TE ≤ t ≤ TE + 1 s), F2 =
∫ θE

0
|τ| dθ. (15)

Here, F1 and F2 represent the maximum tip displacement within 1 s after positioning and
the operating energy until positioning, respectively. To minimize these two evaluation
functions, an optimal trajectory was generated by tuning the coefficients an using vector-
evaluated PSO [40], a multi-objective optimization method. The range for the coefficients
was the same as in Equation (14). The values of the optimized parameters obtained by
both methods are provided in Appendix A. As shown in Figure 5d, the residual vibra-
tion was effectively suppressed by both methods. A comparison with Figure 3 reveals
that both approaches are successful in reducing residual vibrations. The trajectories of
angular velocity and acceleration were smoother in the previous method. The trajectory
in the proposed method is generally less smooth, with a notable peak in angular velocity
at t ≈ 0.09 s, attributable to the cycloid function in Equation (8). The cycloid function
predominantly influences the trajectory from the start of rotation until T0 = 1.644 × 10−1 s,
causing significant negative deflection in the manipulator due to large variations in angular
acceleration. This deformation leads to a higher maximum torque in the present method
compared to the previous study, although the torque becomes smaller after t ≈ 0.18 s.

The following are the results of the experiments conducted to verify the feasibility of
both methods. Figures 6 and 7 show the experimental results of the previous and proposed
methods, respectively. The driving conditions were identical to those in Figure 5. As shown
in Figures 6 and 7, the simulation and experimental results are consistent, confirming the
validity of the flexible manipulator modeling and the feasibility of both methods. The joint
angle trajectory in the proposed method is less smooth compared to that in the previous
method, which might be interpreted as exciting higher-order vibration modes. However,
both methods effectively suppress higher-order vibration modes, significantly reducing
residual vibration.
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Figure 5. Comparison of the simulation results obtained by the proposed method and those obtained
by the previous method (TE = 0.8 s and θE = π/2 rad): (a) joint angle, (b) angular velocity, (c) angular
acceleration, (d) tip displacement, and (e) motor torque.
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Figure 6. Comparison of the simulation and experimental results obtained by the previous method
(TE = 0.8 s and θE = π/2 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) mo-
tor torque.

In Figures 8 and 9, the results were derived under driving conditions set to (θE = π/4 rad,
TE = 0.7 s) and (θE = π/6 rad, TE = 0.6 s), respectively. These figures show that the experimental
results (solid lines) align closely with the simulation results (dotted lines), indicating successful
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tracking control and manipulator modeling in the experimental setup. The dashed lines in
Figures 8c,d and 9c,d represent the experimental results for the cycloidal motion (Equation (4)).
The feedforward control of the proposed method effectively mitigates residual vibration
after positioning, even under varying driving conditions, confirming the method’s efficacy in
vibration suppression.
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Figure 7. Comparison of simulation and experimental results obtained by the proposed method
(TE = 0.8 s and θE = π/2 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) mo-
tor torque.
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Figure 8. Comparison of the simulation and experimental results obtained by the proposed method
(TE = 0.7 s and θE = π/4 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) motor
torque.

Next, the energy-saving effects of the proposed method are discussed. Table 2
compares the experimental drive energy values for three different driving conditions:
(θE = π/2 rad, TE = 0.8 s), (θE = π/4 rad, TE = 0.7 s), (θE = π/6 rad, TE = 0.6 s). In the
table, “Cyc” refers to the cycloidal motion, with simulation results presented in paren-
theses. The experimental results confirm that residual vibration is suppressed without
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inducing higher-order vibration modes under all three driving conditions in the previous
method. For reference, a comparison of the simulation and experimental results from the
previous method under these conditions is shown in Figures A1 and A2 in Appendix A.
The experimental drive energy values were higher than the simulation values, likely due
to unaccounted factors such as motor friction. As indicated in Table 2, the values for the
proposed method are lower than those of the previous studies for all driving conditions,
demonstrating substantial energy savings. Therefore, it can be concluded that the proposed
method generates an optimal trajectory that not only suppresses residual vibration but also
significantly reduces energy consumption.
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Figure 9. Comparison of the simulation and experimental results obtained by the proposed method
(TE = 0.6 s and θE = π/6 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) mo-
tor torque.

Table 2. Comparison of driving energy E [J].

θE [rad] TE [s] Cyc
Previous
Method

Proposed
Method

π/2 0.8 5.65 × 10−1

(5.59 × 10−1)
2.98 × 10−1

(2.88 × 10−1)
2.34 × 10−1

(2.06 × 10−1)

π/4 0.7 1.98 × 10−1

(1.84 × 10−1)
9.82 × 10−2

(8.57 × 10−2)
8.06 × 10−2

(6.94 × 10−2)

π/6 0.6 1.18 × 10−1

(1.05 × 10−1)
6.58 × 10−2

(5.52 × 10−2)
5.43 × 10−2

(4.85 × 10−2)

The effectiveness of the proposed method in reducing drive energy is also explored.
The drive torque, as outlined in Equatuon (2), comprises three components. To illustrate,
consider the driving conditions (θE = π/2 rad, TE = 0.8 s). A comparative analysis of the
time histories of these three components is shown in Figure 10. Figure 10a,b show the
simulation results of the proposed method and the previous study, respectively. Figure 10a
reveals that α1

..
θ and α2

..
W in the present method have an opposite phase relationship, with

τ = 0 at the center. This opposite phase relationship is not present in the previous method
during the time interval of approximately 0.1 to 0.7 s. Although the proposed method
increases the magnitude of angular acceleration, it effectively reduces the overall drive
torque due to this opposite phase relationship, thereby achieving energy savings. As
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illustrated in Figure 11, the proposed method can generate an optimal trajectory whereby
the angular acceleration and the elastic restoring force counteract each other, enabling
energy-efficient operation by utilizing the flexibility characteristics of the manipulator.

t t

W
c

W
c

Figure 10. Time histories of torque components (TE = 0.8 s and θE = π/2 rad): (a) proposed method
and (b) previous method.

Figure 11. Schematic of the offset relationship between acceleration and elastic restoring force due to
deformation.

Finally, the efficacy of the proposed trajectory planning method was validated. In a
previous study [37], the amplitudes of residual vibration and driving energy were used as
the two evaluated values, with trajectories for energy-saving residual vibration suppression
derived from multi-objective optimization. In contrast, the present study generates trajecto-
ries through the minimization of the sum of the drive torques from the start of operation to
the positioning time TE + 1 s. In this case, driving energy was not evaluated directly. Hence,
to reaffirm the validity of the proposed method’s evaluation function, a comparison with
simulation results from the previous study [37] was conducted. The following parameters
were employed in Equations (2) and (3) [37]:

α1 = 2.383 × 10−2 [kgm2], α2 = 9.261 × 10−2 [kgm], c = 3.091 × 10−2 [Nms/rad],
ς = 9.963 × 10−3 [−], β1 = 2.555 × 10−1 [m], β2 = 2.614 × 10−1 [−] , ω = 10.43 [ rad/s]

}
(16)

Table 3 presents a comparison of driving energies under the three driving conditions. The
coefficient values obtained by the proposed method and a comparative diagram of the time
history data from both methods, demonstrating the effectiveness in suppressing residual
vibration, are provided in Appendix B. Table 3 indicates that the proposed method achieves
a significant reduction in driving energy compared to the previous study. Thus, it can be
concluded that minimizing the evaluation function in Equation (13) is effective for both
suppressing residual vibration and minimizing drive energy.
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Table 3. Comparison of driving energy E [J] for the previous mathematical model.

TE [s] θE [rad] Ref. [35] Proposed Method

0.8 π/6 5.15 × 10−2 3.80 × 10−2

1.0 π/2 2.96 × 10−1 1.94 × 10−1

1.1 π/2 2.23 × 10−1 1.60 × 10−1

6. Conclusions

This study addressed the PTP control problem of a single-link flexible manipulator
and proposed a trajectory planning method aimed at simultaneously minimizing drive
energy and residual vibration. The approach was based on the physical phenomenon
where drive energy decreases with initial deflection in the manipulator. The study focused
on generating a trajectory that induces significant deformation immediately after activation.
In the proposed method, the trajectory of the joint angle was expressed as the sum of a
cycloid curve and a cycloid function, with the input represented as a power series. To
achieve both drive energy minimization and residual vibration suppression, the sum of
the torques was defined as the evaluation function. The parameters of the trajectory
were tuned using PSO to minimize the evaluation function, and the optimal trajectory
was then generated. The efficacy and feasibility of this proposed method were verified
through both simulations and model experiments. The proposed method can reduce energy
consumption while also suppressing residual vibrations. Generally, energy conservation in
manipulator operation is often associated with the need for smooth trajectory execution to
minimize vibration. However, the proposed method produced results that differed from
this concept. These findings contribute new knowledge to the field of energy conservation in
the context of flexible manipulators. This study, therefore, makes a significant contribution
to understanding and improving energy efficiency in robotic systems. Our future challenge
is to apply the utilization of flexibility for energy saving in a multi-link flexible manipulator.
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Appendix A

Table A1. Optimized parameters by the proposed method.

θE [rad] TE [s] θ0 T0 a1 a2 a3 a4

π/2 0.8 1.741 × 10−1 1.644 × 10−1 1.672 × 10−2 −1.401 × 10−2 −9.818 × 10−2 −3.069 × 10−1

π/4 0.7 1.591 × 10−1 1.813 × 10−1 −3.666 × 10−2 7.198 × 10−2 −3.034 × 10−1 −2.686 × 10−1

π/6 0.6 1.309 × 10−1 1.688 × 10−1 −6.456 × 10−2 6.375 ×10−2 −3.997 × 10−1 −1.309 × 10−1

Table A2. Optimized parameters by the previous method [35].

θE [rad] TE [s] a1 a2 a3 a4 a5 a6

π/2 0.8 1.622 × 10−2 −6.449 × 10−2 2.813 × 10−2 −2.859 × 10−1 6.359 × 10−2 3.733 × 10−2

π/4 0.7 1.261 × 10−2 −1.084 × 10−1 4.721 × 10−2 −2.348 × 10−1 −3.868 × 10−2 −1.834 × 10−1

π/6 0.6 1.197 × 10−2 −1.666 × 10−1 9.232 × 10−2 −3.002 × 10−1 −2.920 × 10−1 6.456 × 10−2
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Figure A1. Comparison of the simulation and experimental results obtained by the previous method
(TE = 0.7 s and θE = π/4 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) motor
torque.
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Figure A2. Comparison of the simulation and experimental results obtained by the previous method
(TE = 0.6 s and θE = π/6 rad): (a) joint angle, (b) angular velocity, (c) tip displacement, and (d) motor
torque.

Appendix B

Table A3. Optimized parameters by the proposed method for the previous mathematical model.

θE [rad] TE [s] θ0 T0 a1 a2 a3 a4

π/6 0.8 1.150 × 10−1 2.279 × 10−1 −4.718 × 10−2 −6.422 × 10−2 −3.702 × 10−1 −1.136 × 10−1

π/2 1.0 1.865 × 10−1 2.601 × 10−1 −4.564 × 10−3 6.426 × 10−3 −1.281 × 10−1 −3.045 × 10−1

π/2 1.0 8.355 × 10−2 2.405 × 10−1 3.046 × 10−2 −4.206 × 10−2 −4.232 × 10−2 −2.388 × 10−1
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Figure A3. Comparison of the simulation results obtained by the proposed method and those
obtained by the previous method (TE = 0.8 s and θE = π/6 rad): (a) joint angle, (b) angular velocity,
(c) angular acceleration, (d) tip displacement, and (e) motor torque.
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Figure A4. Comparison of the simulation results obtained by the proposed method and those
obtained by the previous method (TE = 1.0 s and θE = π/2 rad): (a) joint angle, (b) angular velocity,
(c) angular acceleration, (d) tip displacement, and (e) motor torque.
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Figure A5. Comparison of the simulation results obtained by the proposed method and those
obtained by the previous method (TE = 1.1 s and θE = π/2 rad): (a) joint angle, (b) angular velocity,
(c) angular acceleration, (d) tip displacement, and (e) motor torque.
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Abstract: Insects are good examples of ground locomotion because they can adapt their gait pattern
to propel them in any direction, over uneven terrain, in a stable manner. Nevertheless, replicating
such locomotion skills to a legged robot is not a straightforward task. Different approaches have
been proposed to synthesize the gait patterns for these robots; each approach exhibits different
restrictions, advantages, and priorities. For the purpose of this document, we have classified gait
pattern generators for multi-legged robots into three categories: precomputed, heuristic, and bio-
inspired approaches. Precomputed approaches rely on a set of precalculated motion patterns obtained
from geometric and/or kinematic models that are performed repeatedly whenever necessary and
that cannot be modified on-the-fly to adapt to the terrain changes. On the other hand, heuristic
and bio-inspired approaches offer on-line adaptability, but parameter-tuning and heading control
can be difficult. In this document, we present the K3P algorithm, a real-time kinematic gait pattern
generator conceived to command a legged robot. In contrast to other approaches, K3P enables the
robot to adapt its gait to follow an arbitrary trajectory, at an arbitrary speed, over uneven terrain. No
precomputed motions for the legs are required; instead, K3P modifies the motion of all mechanical
joints to propel the body of the robot in the desired direction, maintaining a tripod stability at all
times. In this paper, all the specific details of the aforementioned algorithm are presented, as well as
different simulation results that validate its characteristics.

Keywords: hexapod robot; kinematics; gait pattern generation

1. Introduction

Locomotion is the act of moving from place to place. To move forward, legged animals,
as do insects, use their limbs in a gait pattern. When considering each leg individually,
a cycle of the gait pattern is divided into two phases: swing and support. In the swing
phase, the limb rises from the ground and moves in the desired direction of movement; the
support phase begins when the limb lands and supports a fraction of the total weight of
the animal. During the whole cycle, static and/or dynamic equilibrium conditions must be
kept for the gait pattern to be stable.

Static stability is achieved when the projection on the ground of the robot’s center
of mass (CoM) falls inside the support polygon, defined as the convex hull of all feet in
support phase [1,2]. Dynamic stability occurs when the zero moment point (ZMP)—the
point with respect to which reaction forces at the contacts between the feet and the ground
do not produce any moment in the horizontal direction—is maintained inside the support
polygon throughout the gait. Gait patterns whose stability is determined by dynamic
conditions allow for faster displacements of the robot because the CoM projection can be
located outside of the support polygon for short periods of time [3,4]. Therefore, in order
to guarantee stable locomotion, gait synthesizing algorithms must coordinate all limbs of
the robot to make it move in the desired direction, while satisfying the static or dynamic
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equilibrium condition. In general, the stable locomotion is achieved by using precomputed
gait patterns for given trajectory and terrain conditions, or by using parametric-adjusting of
the gait by heuristic or bio-inspired approaches to cope with trajectory and terrain changes.

The algorithm we propose, called K3P for kinematic tripod, is a real-time kinematic
gait generator capable of on-the-fly computing of the limb motions of a legged robot in
order to move along an unknown arbitrary trajectory on uneven terrain, while maintaining
static equilibrium, maximizing horizontal displacement of the feet contact points, and
avoiding collisions between two consecutive limbs. In this paper, we describe some related
approaches, analyze the performance of K3P in a virtual test scenario, and use torque
estimations to measure the viability of the synthesized gait pattern.

2. Related Work

Legged robots perform different gait patterns depending on the desired horizontal
speed and stability criteria [5–8]. Figure 1a shows a simplified view of the robot limb and
the two phases of the gait. Complementarily, Figure 1b shows a complete gait cycle for
what is known as static fast gait; as it can be observed, a minimum of three limbs (a tripod)
support the robot during walking. The ratio of duration of the support phase to the total
cycle duration defines the duty factor β of a gait cycle [9], Figure 1b displays gait cycle for
a duty factor β = 0.5. Medium speed gaits (or ripple gait) allow for two legs on opposite
sides of the robot to be in the swing phase. In slow gait (or tetrapod gait), only one limb
at a time performs the swing phase while the rest support the robot; therefore, it is the
most stable of the three gaits [10]. So, the problem of synthesizing a gait pattern consists of
defining the best sequence of movements for all the robot limbs, where each limb features
from one [11,12] up to four degrees of freedom [10,13].

(a)

(b)

Figure 1. The gait cycle of an hexapod robot. (a) Side view of a leg performing a gait cycle: During the
swing phase, the end side of the limb describes a curve or a triangular trajectory. Every DoF is marked
with a circle; thus, the limb displayed above has 3 DoF. (b) Fast gait diagram: The beginning and end
of the lines, marked with a circle, correspond to the landing and lifting of every limb, respectively.
Every limb is marked as a combination of (T)op, (B)ottom, (M)iddle, (L)eft, and (R)ight, according
to its position. When the surface is flat and every trajectory for the legs is precomputed, this gait
sequence is sufficient [10].

For the purpose of this work, we have classified the related works according to the
use of precomputed, heuristic, or bio-inspired approaches to generate the gait.
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2.1. Precomputed Approaches

In these approaches, closed mathematical models (geometric and/or kinematic) are
used to compute, in advance and for each limb, a sequential set of joint configurations
that, when performed, will propel the robot body forward during the support phase, while
during the swing phase, the limb tip describes a given parametric trajectory to the next
support point, using most commonly sine, Bezier, and triangular trajectories [6,14–17].
During locomotion, these trajectories are repeated in a logical sequence; in some cases, the
trajectory during the swing phase can be adapted to increase or decrease the horizontal
travel distance and/or clearance of the gait (see Figure 1b). Furthermore, depending on the
chosen mathematical model, actions such as jumping, main body orientation and clearance
control may be considered [7]. Another option to a mathematical model are Probabilistic
Graphical Models (PGMs) that can be trained and sampled to infer a walking gait [18].

A different paradigm consists of a footstep planning before the actual locomotion.
For example, the robot ATHLETE, designed at the Jet Propulsion Laboratory (Pasadena,
CA, USA), computes in advance the most useful support points across the terrain before
performing any movement [19]. This planning implies that the robot must be able to accu-
rately build a model of its surroundings, using exteroceptive sensors such as rangefinders,
increasing the complexity and the total computational cost required for the robot’s loco-
motion. In contrast, other approaches embrace the uncertainty of the terrain, not focusing
on planning the position of all support points beforehand, and instead propelling low-
dexterity hexapods with a fixed gait and focusing their efforts on correct state estimation
under high-uncertainty circumstances [12].

These approaches allow us to obtain a precise estimation of energy consumption
during the locomotion through, for example, a two-layer hierarchical cooperative control
scheme [20]. A top-level controller determines the forces and torques that every limb
should exert on the body of the robot, so that the robot can follow a given trajectory, while
low-level controllers independently command every leg of the robot to exert such forces.
Because energy consumption may vary depending on the type of surface the robot is
walking on, the travel speed can be adapted by performing slow, medium, or fast gaits,
depending on the energy consumed by the actuators driving every limb [15]. Another
approach to hierarchical control is to use a top-level exteroceptive methodology to observe
and evaluate the terrain and command a low-level routine to switch among precomputed
gait patterns, with the objective of maximizing the stability of the robot when traversing
uneven terrain [21].

2.2. Heuristic Methods

The major drawback of purely mathematical models is the complexity of the model
itself; therefore, roboticists turned to heuristics to generate a gait pattern while still using
the precomputed trajectories from an external optimization process under energetic criteria
or faulty conditions.

In order to use a simpler model during the gait generation, heuristic approaches
enclose a biological notion of locomotion learned from analyzing the movement of animals,
expressed as simple rules for the movement of legged robots. Heuristics such as genetic
algorithms (GA) can help to generate the walk pattern for a virtual legged robot [22,23],
where the main criterion for fitness calculation is the stability of the robot while walking
in a straight line over a flat surface, within preset borders and stability [2]. The energy
efficiency, traveled distance, and deviation of trajectory from the straight line are used as
feedback information for the GA [24]. The final result is a set of static gait patterns for the
robot, learned without an explicit mathematical model, from which the robot can choose
during locomotion.

Also, Finite State Automata (FSA) can be used to generate walking patterns [25] as
well as flow charts [6], as these models can encode a sequence of movements for every limb
used during locomotion maneuvers. By definition, these approaches are also static, and
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adaptability to faulty conditions comes at the cost of increasing the complexity of the FSA
or the flow chart.

These approaches can also emulate reflexive motions using a reactive control scheme,
allowing a legged robot to react to the irregularities of the terrain it is walking on. These re-
flexes are triggered when a limb or foot collides unexpectedly with the terrain or an obstacle.
The collision detection can be performed with a set of touch sensors [14] or by measuring
the electric current, forces, and torques consumed by the actuators on every joint [10].

Heuristics allow for blind-walking, i.e., the robot is able to walk through irregular terrain
based only on proprioceptive information [26]. Neural networks can be implemented in
hardware with miniaturization and energy efficiency as the main objective [27]. The Virtual
Model Control [27] is one of the most relevant heuristics in order to obtain a model from
experimental data, simulating the same dynamic behavior of complex mechanical systems
using much simpler components such as springs, dampers, masses, etc. The resulting
model is less complex but accurate enough to compute the forces acting on the robot
body [28,29].

2.3. Bio-Inspired Methods

Most bio-inspired approaches for synthetic gait generation are based on central pat-
tern generators (CPGs). CPGs are oscillators that can generate rhythmic patterns from
non-rhythmic signals or no inputs at all. When applied to legged locomotion [23,30–32],
the rhythmic output of CPGs corresponds to the gait pattern, in response to inputs as a
gait velocity command and the proprioceptive sensor information from the limbs of the
robot; this means that sensory information plays an important role in CPG-based gait
generation [33]. The biggest difficulty with regard to CPGs is determining the correct range
of values for the input as well as tuning the internal oscillator parameters, so that the output
corresponds to the desired movement of the limbs and the transition between different
gaits is smoothly performed [34]. Tuning such parameters is usually performed by trial
and error, and some authors have even turned to GAs to tune CPGs [35]. Furthermore, in a
decentralized scenario, where there are as much CPGs as limbs, an additional higher-level
control is required [36]. In recent works, CPGs can generate a dynamic walking pattern,
based on the turning radius of the desired trajectory and switch from tripod, ripple, and
tetrapod gaits [37].

2.4. Main Features of K3P Algorithm

The K3P algorithm, the approach we propose for generating the walking gait for
legged robots, is based on a centralized kinematic planner. This algorithm performs a
steadily fast gait cycle while also being able to drive the robot at an arbitrary speed by
dynamically adjusting the duty factor β. Also, K3P blurs the differentiation between
slow, medium, and fast walks under static stability conditions. Basically, K3P moves the
robot’s limbs in tripod configurations, keeping a support tripod while swinging the second
tripod to a new location, according to the actual desired speed and trajectory of the robot’s
center of mass.

The main differences between K3P and other approaches are as follows:

1. K3P is self-contained and makes it possible for a legged robot to walk at an arbitrary
speed along an arbitrary trajectory over uneven terrain, within the physical limitations
of the robot.

2. K3P does not require any precomputed limb trajectories for straight or turning maneu-
vers; instead, it computes the limb trajectories in real-time, to make the robot move
straight ahead or in a sharp or wide curve, according to the terrain level.

3. Since K3P moves the robot’s center of mass from a supporting tripod to the next one,
K3P guarantees static equilibrium during the march while controlling the clearance of
the robot to ground level.

4. The kinematic planner behind K3P also guarantees slip-free locomotion and collision
avoidance among limbs.
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Despite the mathematical complexity behind K3P, its use is fairly simple: it requires
as input the physical dimensions of the robot and some PD controller gains. We must
highlight that none of the limb displacements is computed beforehand, as in most of the
mathematical or heuristic approaches; instead, K3P can change robot displacement at any
moment. K3P takes into account the actual position and velocity of the center of mass of the
robot, as well as its target trajectory, in order to compute the best position for landing the
swinging legs to place the next supporting tripod. Furthermore, K3P verifies the stability
of the gait by measuring how close the projection of the center of mass is to the support
polygon’s edges.

In comparison to precomputed approaches, K3P exhibits flexibility by allowing the
dynamic adjustment of the gait pattern during execution in accordance with the specified
trajectory. For example, it enables modifications to the body clearance over varied terrain.
Moreover, while precomputed methods enforce minimal fixed curvature for the robot’s
trajectories, K3P overcomes this constraint by adapting the gait pattern to ensure that the
instantaneous turning radius of the robot matches the specified trajectory. Unlike many
heuristic methods that demonstrate comparable performance, K3P distinguishes itself
through its ease of tuning, facilitated by the concrete nature of all its parameters.

3. Robot Description and Nomenclature

In this section, we will describe the radial hexapod robot on which the K3P algorithm
was tested, as well as the nomenclature used (see Table 1). Figure 2a shows the structure
of the robot, the main body is circular and the six limbs are evenly distributed along its
perimeter; with the center of mass (CoM) at the origin of the B reference frame [14,19,29].
Each limb has three DoF as shown in Figure 2b. By convention, all Z axes are coaxial
with the rotation’s axis of each joint. With respect to B, the mounting point for the i-th
limb is denoted by the Mi reference frame. The first joint provides the protraction and
retraction movements, marked by the variable θs in the S reference frame. The L reference
frame is located in the second DoF, denoted as θL; it provides the depression and elevation
movements. The third DoF is marked as θk in the K reference frame, providing flexion and
extension movements. The length of every link are lc, l f , and lt for the coxa, femur, and
tibia, respectively. The supporting point SP is at the point where the limb makes contact
with the ground, supporting the body of the robot.

Table 1. Nomenclature.

Parameter Description

Physical parameters of a limb

θs, θl , θk The three DoF of a limb.
lc, l f , lt Length of the coxa, femur, and tibia, respectively.

Physical parameters of the gait

lh Body clearance.
lmax Maximum length of the gait.

lg Limb clearance.

Gait state variables

η Swing tripod is landing, moving, or taking off ∈ {−1, 0, 1}.
κ Parity ∈ {−1, 1}.
P Support positions for the even and odd limbs.
ρ Instantaneous turning radius.
Z Touch sensor located at SP.
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Table 1. Cont.

Parameter Description

K3P input variables

vc Velocity command vector.
BXk The k-th current position of the legged robot.
Kp The proportional gains for the PD controller.
Kd The derivative gains for the PD controller.

Thresholds and work ranges

lρ Turning radius threshold.
ϕL Angle threshold for two consecutive limbs.
θl Range of movement for the swing joint.
θk Range of movement for the knee joint.

(a)

(b)

Figure 2. The mechanical description of the radial hexapod tested with K3P. (a) The radial hexapod
as tested with the K3P algorithm. (b) A detailed mechanical description for one of the legs of the
radial hexapod.

The six limbs are divided into two subsets, three non-contiguous limbs form the odd
legs subset, while the rest are grouped in the even legs subset (see Figure 2a). Each subset
defines a tripod support structure with its own reference frame, E and O, for the even and
odd subsets, respectively. The subset supporting the robot defines the parity of the gait κ; if
κ = 1, even limbs support the robot.
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To deal with spatial relationships between two reference frames, say frame b with
respect to frame a, we used rigid body transformations in homogeneous coordinates
denoted as

b
aA =

[b
aR bta
0 1

]
where b

aR ∈ SO(3) denotes the rotation matrix of frame b with respect to a and bta is the
position vector of origin of b, also with respect to a.

From the mounting point of the i-th limb, marked as Mi in Figure 2b, the links and
joints of each limb form a kinematic chain. The corresponding Denavit–Hartenberg (DH)
parameters [38] are summarized in Table 2. Since all limbs are equal, these parameters are
valid for all limbs of the radial hexapod. These parameters allow us to compute the rigid
body transformation between link n with respect to n − 1, n

n−1A. Finally, the rigid body
transformation from frame N with respect to the base link (n = 0) is given by

N
0A =

N

∏
n=1

n
n−1A

Therefore, with these relations, we can compute from the six sets of joint parameters
θs, θL, θk, the position of all six leg tips SPi with respect to B. Also, the inverse kinematic
model can be solved for each leg, so the joint parameters can be obtained from the position
of each point SPi. Moreover, thanks to these physical dimensions and parameters, we can
predict the maximum extension of the gait lmax, given a desired body clearance lh and limb
lg clearance over the floor.

Table 2. Denavit–Hartenberg parameters for every leg.

Kinematic Chain

n D-H Parameter
Description

d θ a α

0 0 0 0 0 The mounting point for the leg Mi.

1 0 θs 0 0 The swing DoF.

2 d2 0 lc π
2 The length of the coxa

3 d4 θl − π
2 l f 0 The lift DoF

4 d5 −θk lt 0 The knee DoF, tip of leg (OSP)

4. The K3P Algorithm

In this section, the K3P algorithm will be described (see Algorithm 1), beginning with
the description, the objectives of the algorithm, and finally, a global overview. Subsections
A to H will discuss the details of every phase of the algorithm.

The main objective of the K3P algorithm is to drive the CoM along an arbitrary
trajectory at an arbitrary speed vc, while the two subsets of limbs perform a cyclic gait
pattern, swing–support, to follow the movement of the robot’s CoM and to maintain the
static stability criteria. The real-time operation of the K3P algorithm is obtained by an
update rate Δt at which the position of every limb is computed and updated. At the
initial state, the two subsets of legs are landed and supporting the body of the robot. The
movement begins with the odd subset starting the swing phase, while the even subset
remains in the support phase of the gait cycle and propels the CoM B along the desired
trajectory by updating the even tripod configuration according to the given velocity vc.
Concurrently, K3P also drives the tripod on the swing phase forward ahead in the direction
encoded by vc.
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Algorithm 1 K3P

Require: ṙd, BXk, lh, lmax, lg, Kp, Kd, lρ, lϕ, θl , θk
1: if κ = 1 then zk ← mean([EBA Pe]z)

2: m
BAk ← O

BA, f
BAk ← E

BA

3: else zk ← mean([OBA Po]z)

4: m
BAk ← E

BA, f
BAk ← O

BA

5: if η = 0 then

6: DXk ← BXk + [ṙΔt, lh − zk, 0, 0, ψ̇Δt, vx, vy,
lh − zk

Δt
, 0, 0, ψ̇]T

7: else DXk ← BXk

8: ek =
DXW,k − BXW,k

9: u ← Kpek + Kd
∂ek
∂t

, BXk+1 = BXk + uΔt

10: B
WAk ← Υ(BXk), B

WAk+1 ← Υ(BXk+1),
mXB,k ← Υ−1(m

BAk)

11:
f
BAk+1 ← B

WA−1
k+1{ B

WA
f
BA}k

12: ρ ← ‖ ṙ ‖
[q̇]ψ

, θr ← lmax

2 ρ

13: LXB,k ←

⎧⎪⎨⎪⎩
[

1
2 lmax, 0, lg, 01×9

]T
if |ρ| ≥ lρ[

1
2 lmax cos θr, sign(θr)

1
2 lmax sin θr, lg, 01×9

]T

14: eL,k ← LXB,k − mXB,k

15: uL ← KpeL,k + Kd
∂eL,k

∂t
16: mXB,k+1 ← mXB,k + uLΔt
17: Δz ← [mXB,k+1]z − [mXB,k]z
18: if η = −1 ∧ any(Zi) then [pi]z ← [pi]z + Δz
19: else if η = −1 ∧ all(Zi) then κ ← (−1)κ, η ← 1
20: else if η = 1 then highest

(
[pm]z

) ← highest
(
[pm]z

)− Δz
21: else if η = 1 ∧ none(Zi) then η ← 0
22: if κ = 1 then O

BAk+1 ← Υ(mXB,k+1), E
BAk+1 ← f

BA

23: else E
BAk+1 ← Υ(mXB,k+1), O

BAk+1 ← f
BA,

24: Θs, Θl , Θk ← Inverse kinematics
(

O
BAk+1, E

BAk+1, P
)

25: m
f A ← m

BA
f
BA−1, lgait ←‖ mr f ‖

26: ri =
O
BA p{1,3,5}, ri =

E
BA p{2,4,6} ϕi = arccos(ri • ri−1) ∀ i ∈ [1, 6]

27: if lgait ≥ lmax ∨ any(ϕi ≤ lϕ)∨ any(ΘL /∈ θL)∨ any(ΘK /∈ θK) then
28: η ← −1
29: Execute

(
Θs, Θl , Θk

)
The act of landing the swing tripod to receive the robot’s weight and to allow the

other tripod to take off is called a phase shift of the gait cycle. These phase shifts must
be performed in such a way that the projection of the CoM on the ground remains at
the interior of the supporting polygon at all times, and the total number of phase shifts
along the trajectory is kept at minimum, so the step length is maximum. To decide a
phase shift of the gait cycle, the algorithm K3P makes use of three different criteria, named
K3P1, K3P2, and K3P3, in order to minimize the number of phase shifts during walking
while guaranteeing a static stable gait. These criteria are described in subsection F.

The KP3 algorithm uses different frames to describe the configuration of the hexapod
robot and to compute the gait: the main reference frame B attached to the robot’s body and
CoM, a frame E to describe the tripod formed by the even subset of limbs, and a frame O
to describe the odd subset. While in the support phase, any of the two subsets defines a
tripod-supporting structure, standing on the ground, so the support polygon corresponds
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to a triangle at ground level. All support points SPi are described with respect to either E
or O reference frames, depending on whether they belong to the even or odd subset (see
Figure 2a). As will be shown later, the actual configuration of the robot can be computed
from these frames at any time.

In the following subsections, we will introduce some key aspects that give shape to
K3P, starting by describing how the CoM is propelled forward along the desired trajectory,
given an arbitrary speed command vc. We will also cover how K3P seamlessly distinguishes
the forward and turn maneuvers and how K3P performs the phase shift of the gait cycle
using the three aforementioned criteria.

4.1. Gait Cycle

From the odd and even subsets of limbs, the supporting tripod of the gait cycle is
determined by the parity κ of the gait cycle. If κ = 1, the even subset is fixed to the ground,
supporting the body of the robot, while the odd subset is moving over ground level, further
ahead of the CoM, in a swing motion; the opposite occurs for κ �= 1. For each case, the
rigid body transformations at time instant k of the swing m

BA and supporting legs f
BA can

be obtained using the position of frames E and O, both with respect to B, using the inverse
kinematic models of the limbs (lines 1 and 3 of Algorithm 1).

4.2. Propelling Forward the Body of the Robot

The position and orientation of the robot’s body frame B, as well as their corresponding
derivatives, with respect to the world reference frame W, describe the desired trajectory of
the robot. This target trajectory can be expressed by the state vector:

BXW,k = [r, q, ṙ, q̇]T

where r = (x, y, z)T corresponds to the three-dimensional coordinates of B, while vector
q = (θ, φ, ψ)T contains the three Euler angles that define the orientation of the robot’s body,
both with respect to the world frame W.

K3P works at a fixed rate, so after every time step Δt, the desired position DXW,k for
the CoM of the robot is determined by the commanded velocity vector ṙd = (ṙ, q̇)T and
the current position of the robot (see line 7 of Algorithm 1). This is only carried out if the
robot is moving η = 0, otherwise DXW,k remains the same. The [ṙ]z component is updated
to manage any elevation changes of the terrain. To determine [ṙ]z with respect to B, the
difference between the average height of the leg tips SP of the supporting tripod (see lines 1
and 3 of Algorithm 1), and the commanded clearance height is divided by Δt.

The spatial difference between BXW,k and DXW,k defines an error metric (line 10 of
Algorithm 1), which is fed to a PD controller; the result is a control command u to propel
B in the direction encoded in vc (line 11 of Algorithm 1). Diagonal matrices Kp and Kd
contain the proportional and derivative gains.

4.3. Tripod in Support Phase

Given the desired position of the center of mass BXk+1 (line 11 of Algorithm 1) and
the current tripod supporting the robot B

f Ak (lines 1 and 3 of Algorithm 1), K3P defines the
new configuration for the support tripod (line 13 of Algorithm 1) constrained by

W
f Ak =

W
f Ak+1. (1)

Such a constrain implies that all limbs corresponding to the support tripod remain
fixed to the ground with respect to W. In consequence, the gait generated is slip-free and
none of the limbs loses contact with the ground. We can solve for B

f Ak+1:
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{W
BA B

f A}k = {W
BA B

f A}k+1

B
f Ak+1 = W

BA−1
k+1{W

BA B
f A}k

where W
BAk and W

BAk+1 are determined by the present and desired poses of B. From these
matrices, the inverse kinematic model for the supporting legs can be solved.

4.4. Tripod in Swing Phase

As described earlier, K3P defines dynamically the desired position for the CoM; thus,
K3P also defines dynamically the desired position for the tripod during the swing phase.
The target position L for the swing tripod is defined with respect to B based on three
different parameters: the maximum gait distance lmax (see Figure 3a); the instantaneous
turning radius of the hexapod ρ; and the swing tripod clearance lg.

(a)

(b)

(c)

Figure 3. The position in the XYW plane and the orientation ψ of the robot, while traversing the lem-
niscate on uneven terrain. (a) The theoretical maximum gait for the radial hexapod. (b) The dexterous
work envelope of two opposite limbs (represented with dotted lines). (c) The shaded area represents
the best trade-off between clearance and longest horizontal travel.

The first parameter lmax is determined by the dexterous work envelope of two opposite
limbs. Figure 3b displays such a dexterous work envelope when θk ∈ [0,−3π/4] and
θL ∈ [−π/4, π/2]. The envelope defines the horizontal travel distance that a limb can perform.
In order to keep phase shifts at minimum, a good compromise between body clearance lh
and the maximum gait distance lmax has to be found. In Figure 3c, we plot the maximum
limb extension vs. the clearance; the shaded area represents the range of walk heights for
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which the K3P algorithm can guarantee a horizontal travel distance of 70% of maximum
limb extension. Therefore, K3P considers lmax to be equal to the 70% of the theoretical
maximum extension of the legged robot (see Figure 3a), with a walking height within the
shaded range in Figure 3c.

The second parameter that determines the location of frame L is based on the in-
stantaneous turning radius ρ of the CoM B. Such a turning radius is given by the ratio
between the current velocity ṙ =‖ ẋ, ẏ, ż ‖ and the angular velocity around the ZB axis
[q̇]ψ (line 12 of Algorithm 1). If ρ is above a given threshold lρ, then L is located straight
ahead 1

2 lmax meters from B in the direction of ṙ (see Figure 4a); otherwise, it is located over
the instantaneous circular trajectory such that the arc length from B to L is equal to 1

2 lmax
(see Figure 4b). Determining the most suitable position for L based on the magnitude of
the instantaneous turning radius ρ is how the algorithm differentiates from straight and
turning maneuvers.

(a)

(b)

Figure 4. The two situations that may occur when driving the subset of legs during the swing phase
of the gait. (a) Gait forward, ρ ≥ lρ, reference frame E moves towards L, which is located straight
ahead from B, along the x axis, dmax meters. (b) Turning gait, ρ < lρ. Reference frame L is located
dmax meters ahead over the momentaneous trajectory around the turning point C.

The third and last parameter lg represents how high the tripod will be raised during
the swing phase. This parameter is expressed as a percentage of clearance lh and it can be
changed dynamically, depending of the roughness of the terrain.

The desired position for the tripod in the swing phase is computed in line 13 of
Algorithm 1. Similar to Section 4.2, an error metric eL,k is fed to a PD controller to generate a
control command uL over the subset legs in the swing phase, lines 14 and 15 of Algorithm 1,
respectively. Then, the position of the tripod performing the swing phase at time instant
k + 1 can be computed (line 16 of Algorithm 1).

4.5. Joint Reconfiguration

In lines 9 and 16 of Algorithm 1, the new positions of the body body frame B and both
tripods O and E are obtained, using PD controllers on their target positions.
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After the corresponding location for the tripods in the support and swing phases have
been updated to follow the movement of the CoM B, their corresponding state vectors
BXW,k+1, OXB,k+1 and EXB,k+1 define the spatial relationships between reference frames W,
B, O, and E. From here, it is possible to obtain the positions of each leg tip SPi with respect
to the robot’s body and, using the inverse kinematics of the 3 DoF RRR limb (line 24 of
Algorithm 1), we can compute the values for all articular joints [θs, θl , θk]1,2,...,6 [6].

At this moment, K3P tests the stability of the arrangement at time instant k + 1 by
measuring the Euclidean distance from the projection of B on the support polygon to all
edges; in case the minimum distance falls below a predefined threshold lthd, K3P will
command the robot to come to a halt. This rarely occurs because the phase shift tests
K3P1,2,3, which will be introduced in the following section, were designed to guarantee a
stable gait.

4.6. Phase Shift

While the robot is walking, a phase shift occurs when the two tripods toggle the phase
of the gait they are in. The tripod in the support phase takes off to begin the swing phase
and the swing tripod lands to start supporting the main body of the robot. In order to
maintain the robot in static equilibrium throughout the walking cycle, the K3P algorithm
determines when to shift phases based on three different criteria, named K3P1, K3P2, and
K3P3. In particular, K3P1 and K3P2 ensure a collision-free gait pattern.

The first condition K3P1 ensures that every step is as long as mechanically possible for
the robot, before the CoM approaches the border of the support polygon too closely, and
the gait becomes unstable. For the tripod in the swing phase, K3P1 measures the horizontal
traveled distance from the starting point to the current position of its origin, if the traveled
distance reaches the maximum travel distance lmax (see Figure 5a), K3P1 will trigger a phase
shift (line 25 of Algorithm 1).

The second condition K3P2 avoids collisions between two consecutive limbs during a
turning maneuver (line 26 of Algorithm 1). K3P2 works by measuring the angle ϕ, formed
by the projections on the XYB plane of two consecutive position vectors SP,itB. If ϕ is smaller
than a certain threshold, this criterion triggers a phase shift (see Figure 5b).

Together, the criteria K3P1 and K3P2 reduce the number of phase shifts when the robot
is walking, allowing it to make big steps while advancing and/or turning; additionally,
these criteria are enough to control the robot in open-loop blind-walking if all position
controllers driving each joint are accurate enough. That said, K3P incorporates the inherent
position information of all limbs as a third criterion, named K3P3, to make sure they are
working properly. K3P3 tests the stability of the inverse kinematics solution; so all joint
angles of every limb [θs, θl , θk]1,2,...,6 remain within a certain range of operation, avoiding
the proximity to the mechanical limits and singularities that otherwise could lead to an
unstable walking pattern.

If any of these criteria are met, then the algorithm K3P commands a shift phase of the
gait cycle (line 27 of Algorithm 1). The CoM stops its motion to wait for the subset of legs
in the swing cycle to land on the ground and begin the stand phase; while the opposite
occurs for the subset of legs in stand phase.
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(a)

(b)

Figure 5. First two criteria that trigger a phase shift. (a) K3P1. The linear distance between centroids
at start and end positions is limited to lmax meters. (b) K3P2. As the even legs turn counter-clockwise,
the angle ϕ cannot be smaller than ϕm.

4.7. Uneven Terrain

When a phase shift has been triggered, the tripod in the swing phase has to land. If
the surface is uneven, the limbs have to adapt to the elevation changes of the surface. In
contrast to the tripod control strategy, where the three legs are commanded simultaneously,
during landing, each limb is controlled individually and the three landing events are
treated separately. By utilizing interoceptive information, the position of each leg is always
known. K3P considers that the swing phase has ended only when all three limbs of the
swinging tripod have touched the surface, and therefore, it can begin the support phase of
the gait cycle (line 19 of Algorithm 1). To adapt to changes in elevation, K3P must receive
information when every SP has touched the surface and updates their height with respect
to its corresponding reference frame (E or O). The update process is carried out according
to the displacement Δz performed by the tripod in swing phase while landing (lines 18 and
20 of Algorithm 1). The displacement update Δz for the i-th limb (line 17 of Algorithm 1)
is expressed as the difference of the z components of two consecutive state vectors of the
moving tripod.

The swing phase ends when all limbs have landed, and at this moment, their posi-
tions with respect to B have been adapted to the elevation of the terrain below the robot.
In order to perceive ground contact, we consider using inexpensive ToF distance sensors
(for example, VL53L0X by ST semiconductor). Eventually, when a tripod restarts its swing
phase, the limbs take off, starting from the lowest limb (line 20 of Algorithm 1). The update
process Δz is applied only to those limbs at the same elevation with respect to B, making
the limbs separate from the ground in the opposite order on which they landed and move
at unison once all the limbs of the tripod have taken off.
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Using this approach, the K3P algorithm does not require prior information about the
terrain texture. In the Results section, simulations obtained with predefined values of lh
and lg are shown. However, it is possible to adapt these parameters during execution
based on information obtained, for example, from visual data regarding terrain conditions,
allowing a higher-level trajectory planning module to modify these parameters.

However, it is important to highlight the limitations of the algorithm: the gait pat-
tern generator will fail when encountering obstacles of significant height, such as large
debris or stairs. Additionally, the terrain must be rigid; hence, viscous terrains cannot be
considered either.

4.8. Torque Estimation

To test the mechanical viability of the K3P algorithm driving the hexapod robot, we
estimated the torques exerted on the knee K, swing S, and lift L joints, as they represent
the electric actuators which exert a torque to drive every limb in the commanded direction.
Considering that every limb consists of one or more concentrated masses mj, the way to
estimate the torque τττS,i for the any given joint, say ϑ, is

τττϑ,i =
J

∑
j=1

CoG,jtϑ × mjg (2)

where g is the gravity vector with respect to W, mj is the mass for the j-th link, and CoG,jtϑ

is the position vector for the CoM of the j-th link with respect to reference frame ϑ. Table 3
lists the three joints of interest along the CoM coordinates for every concentrated mass
mj that exerts a torque on the j-th joint. Using Equation (2), the torques on the knee,
swing, and lift joints were estimated, and the results will be shown when we describe the
simulation process.

Table 3. Parameters for torque estimation with respect to listed reference frames.

Torque Variables

J Reference Frame Link CoG

1 K, Knee Tibia [1/2lt, 0, 0]T

2 L, Lift Femur [1/2l f , 0, 0]T

3 S, Swing Coxa [1/2lc, 0, 0]T

5. Test Results

In this section, we show the test results of the K3P algorithm when commanding an
hexapod robot with a radial base of 0.65 m in a virtual uneven terrain. The numerical values
for all physical dimension and parameters are listen in Table 4. The results shown in this
section were obtained from computations on Matlab in order to simulate the kinematics of
the robot.

During the simulation, the speed commands vc for the robot were generated so that
it describes a lemniscate trajectory. We chose the lemniscate trajectory because it defines
two turns in opposite directions and two almost straight segments for the robot to travel.
The parametric equations of the lemniscate rd(s) is shown in Equation (3):

rd(s) =

⎡⎢⎢⎢⎢⎢⎢⎣
xd(s)

yd(s)

zd(s)

ψd(s)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a sin( s

ε )

b sin( 2s
ε )

c sin( 3s
ε )

arctan 2(ẏd, ẋd)

⎤⎥⎥⎥⎥⎥⎥⎦ (3)
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Table 4. Simulation parameters.

Hexapod

θl [−2π/9, 2π/9] θk [−π/4, π/4]
lmax 0.165 m ϕL 15◦

lc 0.06 m l f 0.16 m
lt 0.16 m vB 0.15 m/s

BXW,0 = [0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

Controller gains

Kp = diag(2, 2, 2.5, 0, 0, 0.9, 0, 0, 0, 0, 0, 0)
Kd = diag(0.05, 0.05, 0.1, 0, 0, 0.05, 0, 0, 0, 0, 0, 0)

Lemniscate parameters

a 1.75 b 1.15
c 0.0 ε 30

For this numerical example, the robot is commanded to follow a lemniscate covering
a rectangular region of 3.5 m long and 2.3 m wide; the values for all parameters of the
lemniscate equations are listed in Table 4. For a given speed value vB and time step
Δt, we iteratively computed the increment for the parameter Δs that yields an equal
incremental displacement Δrd = vBΔt. This incremental displacement is then used as the
input command for the K3P algorithm vc (Section 4.2) as

vc =

⎡⎢⎢⎣
vx
vy
vz
ψ̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
ẋd(s + Δs )
ẏd(s + Δs )
żd(s + Δs )

arctan 2(ẏd + Δs, ẋd + Δs )

⎤⎥⎥⎦
Figure 6a shows how K3P drove the hexapod around the lemniscate trajectory over

uneven terrain, as well as the trail of all limbs; the initial state of the robot was

BXW,0 = [0, 0, 0.16, 01×9]
T

Figure 6b shows the trajectory described by the CoM of the robot, overlapping the
desired trajectories in the XYW plane. Figure 6c shows the transient response at the
beginning of the trajectory when the hexapod aligns itself with the lemniscate trajectory
from its initial state; the shaded areas represent the moments at which the even subsets of
legs are at the swing phase of the gait cycle. The reader can verify that after every phase
shift is triggered, the desired angle of orientation ψd(t) equals ψ(t); this causes the robot
to stop spinning while the swinging tripod lands. Figure 6d displays how K3P adapts to
the elevation of the terrain zd(t) as measured from right below B. K3P tries to maintain
a constant walking height z(t) with respect to the surface elevation ≈0.16 m (Section 4.7).
Figure 7 shows several footprints of the hexapod right after a phase shift occurs, and
both subsets of legs are touching the ground. The corresponding locations of B1,2,...,15 are
shown to display that the gait is stable because B is within the support polygon of the
vehicle. Furthermore, Figure 7 shows where the turning radius is smaller than the threshold
ρm = 0.8 m used in the simulation to better determine the desired location L for the swing
tripod, as discussed in Section 4.4.
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Figure 6. K3P driving the hexapod robot over uneven terrain, describing the lemniscate trajectory.
(a) Walk gait around the lemniscate over uneven terrain (lighter colors indicate higher elevations of
the terrain). (b) Desired (xd(t) and yd(t)) and actual (x(t) and y(t)) trajectories. (c) The transient ψ

response. (d) Walking height z(t) vs. terrain elevation zd(t).

Figure 7. The stability of the walking gait. Consecutive orange dots over the trajectory represent the
location of B where ρ < 0.8 m.

Figure 8a represents the first 40 s of simulation when the hexapod traverses the
lemniscate trajectory; the shaded areas show when the even tripod is in the swing phase,
while the white areas show where the odd tripod is performing the swing phase of the gait
cycle. At every change in shading, the graph shows the criterion triggering the phase shift
at the specific moment in time it occurred: number 1 for K3P1, number 2 for K3P2, and
3 for K3P3. At the beginning of the simulation, when the hexapod robot aligns with the
lemniscate, K3P2 triggers the phase shift because the legs were getting too close to each
other during the turning maneuver; this corresponds to the transient response in the ψ
angle as displayed in Figure 6c. Then, K3P1 triggers the phase shift because the traveled
distance of the swinging tripod is longer than lmax. The dotted lines correspond to the
thresholds 1

2 lmax and ϕm, for the maximum gait distance and minimum angle between two
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consecutive legs, respectively. Moreover, to display that K3P is capable of commanding
the robot to move at an arbitrary velocity through an arbitrary trajectory, the graph in
Figure 8a displays a change in velocity, commanded right after the fourth phase shift at
t ≈ 22 s. The velocity is doubled from v = 0.02 m/s to v = 0.04 m/s; the change in velocity
can be observed from the duration of the swing phase, where they become narrower after
t ≈ 22 s because it takes less time for the robot to cover the maximum traveled distance lmax.
Note, however, that the change in speed can be commanded at any given time, changing
immediately the duty factor β.
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Figure 8. The phase shifts and torques generated when the hexapod robot traverses the lemniscate.
Only the first 40 s of simulation are shown. (a) The phase shifts triggered during the first 40 s of the
simulation. The commanded speed starts at v = 0.02 m/s; after the fourth phase shift (t ≈ 22 s),
it was changed to v = 0.04 m/s. (b) For the odd tripod, the torques exerted on the L and K joints
around the z axis.

After running the simulation, we estimated the torques exerted on every joint of the
robot. We modeled the robot as a set of discrete masses, listed in Table 5, whereby the
overall mass of the robot is approximately 1.6 kg. Figure 8b shows the resulting torques on
the knee and lift joints for the odd subset of limbs during the same period of time and phase
shifts as previously discussed for Figure 8a. Torques for the even subset of limbs are in the
same order of magnitude, since the robot is symmetrical. Because the axis of rotation of the
knee and lift joints are coaxial with the two axes [K]z and [L]z, in Figure 8b, we only show
[τττL,i]z and [τττK,i]z. We omitted the torque exerted on the swing joint, because [τττS,i]z ≈ 0. As
it can be observed, the maximum torques exerted on the lift and knee joints occur when the
even tripod is in the support phase of the gait cycle; furthermore, the maximum absolute
values were 1.36 Nm and 0.60 Nm for the [τττL,i]z and [τττK,i]z axes, respectively, which are
manageable for commercially available servo motors.
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Table 5. Discrete masses that form the robot.

Mass Distribution of the Robot

Qty. Link Unit Mass [gr] Subtotal

1 Main body 640 640
6 Coxa 80 480
6 Femur 53 318
6 Tibia 26 156

Total weight 1594

As mentioned in Section 4.4, the K3P algorithm can command the swing tripod to
increase or decrease the maximum clearance of the robot. Figure 9 displays two different
values of clearance when the robot travels in a straight line uphill: the first (see Figure 9a)
with a clearance equal to 50% of lh and the second with a clearance of 90%. The latter
causes the support point SP to travel almost as high as the CoM B. If required, the walk
clearance can be updated at any moment to better adapt to the terrain’s changes in elevation.
Section 4.4 also shows the profile of every gait cycle that the K3P algorithm describes. Right
after a phase shift is triggered, the limbs are taken to land to begin the support phase of the
gait cycle.
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Figure 9. The trajectories of SP1 when K3P drives the hexapod uphill (black solid line) at two different
settings for the maximum height. The hexapod robot moves from left to right, the trajectory of B is
also shown. For simplicity, we only show the trajectory for leg number 1. (a) The limbs are swinging
at 50% of clearance. (b) The limbs are swinging at 90% of clearance.

6. Conclusions

In this article, the K3P algorithm is proposed as a novel approach for dynamic gait
generation for hexapod robots. This new algorithm is based on a kinematic planner for the
legs organized as tripods. The core of K3P are three shift phase conditions, K3P1,2,3, that
ensure the static slip-free stability of the robot throughout its operation, without requiring
any precomputed paths or trajectories whatsoever.

The methodology and numerical results are presented for a radial hexapod traversing
a lemniscate trajectory, shown as a versatile methodology when commanding an hexapod.
Compared to other approaches, K3P does not require any precomputed information from
the trajectory to be followed, nor the trajectory for every support point SPi, nor precom-
puted gait patterns. Instead, all trajectories for every tripod were dynamically generated in
real-time and made possible that B described a smooth arbitrary trajectory at an arbitrary
velocity while the support points remained still over the uneven surface that the robot was
walking on. Additionally, K3P is able to dynamically change the clearance of the robot, and
we studied the trade-off between clearance vs. step length, given the physical dimensions
of the robot.
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The K3P algorithm is executable on commercially available embedded computers,
using fast linear algebra computation libraries, such as Lapack. Modern CPUs support
instruction sets enabling parallelization, such as Single Instruction Multiple Data (SIMD),
while GPUs can further enhance the algorithm’s execution speed. The possibility of
implementing the algorithm on an FPGA can also be considered. Consequently, K3P
algorithm finds application in real-time scenarios for robot control. However, it can also
be utilized in offline contexts. For example, K3P could serve as a teaching tool for neural
networks, with K3P criteria employed to reinforce the learning process of walking.

Because the K3P algorithm performs at real-time and under static stability, it can
change the direction of movement of the robot at any given moment. This can be useful
if the robot performs in an ever-changing environment with static and dynamic obstacles,
e.g., humans or other mobile robots. Such is the case in collaborative robotics; in this
emerging research field, robots perform alongside humans or other robots [25]. K3P can
offer a development opportunity in collaborative robotics because it can make the robot
stop or perform an immediate change in direction of movement when close to a moving
obstacle or in a dangerous situation.

The viability of the algorithm is proven by estimating the torques exerted on the knee
and lift joints, which are below the maximum torque of commercially available electric
servo motors.

As it was shown in the previous section, the K3P algorithm can drive a hexapod
robot over irregular terrain without planning in advance every step of the robot at an
arbitrary speed. This key design choice for K3P has an important implication: a higher-
level trajectory planner can determine the most suitable path for the robot to follow, so that
all traversed portions of the terrain can support a footstep. Therefore, K3P can be described
as a low-level kinematic planner for a hexapod robot operating in open loop. Its features
would allow us to use it alongside different abstraction models of a hexapod to make the
robot change its shape when walking in confined environments [39]. Changing the shape
of the robot when walking can be useful to adapt to not only uneven terrain as shown here,
but to also adapt to constrained and unstructured environments such as a tunnel.

7. Future Work

As future work, we plan to test K3P with an actual robot. The main purpose will
be to integrate this algorithm as a low-level feature, allowing for higher-level algorithms
to plan the desired trajectory for the robot. Additionally, we plan to integrate an Inertial
Measurement Unit as a loop back sensor to work in a closed-loop scheme for the position
and pose of the robot; this would make it possible for the robot to display some level of
adaptation to sudden external perturbations (mud, gliding, external agents, etc.).
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37. Čížek, P.; Milička, P.; Faigl, J. Neural based obstacle avoidance with CPG controlled hexapod walking robot. In Proceedings of
the International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 650–656. [CrossRef]

38. Corke, P.I. A Simple and Systematic Approach to Assigning Denavit-Hartenberg Parameters. IEEE Trans. Robot. 2007, 23, 590–594.
[CrossRef]

39. Russell, B.; Tirthankar, B.; Marko, B.; Lorenz, W.; Marco, H.; Navinda, K. Walking Posture Adaptation for Legged Robot
Navigation in Confined Spaces. IEEE Robot. Autom. Lett. 2019, 4, 2148–2155. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

311



Citation: Wang, F.; Sun, W.; Yan, P.;

Wei, H.; Lu, H. Research on Path

Planning for Robots with Improved

A* Algorithm under Bidirectional JPS

Strategy. Appl. Sci. 2024, 14, 5622.

https://doi.org/10.3390/

app14135622

Academic Editor: Jonghoek Kim

Received: 18 May 2024

Revised: 20 June 2024

Accepted: 24 June 2024

Published: 27 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Research on Path Planning for Robots with Improved A*
Algorithm under Bidirectional JPS Strategy

Fujie Wang, Wei Sun, Pengfei Yan, Hongmei Wei and Huishan Lu *

School of Mechanical Engineering, North University of China, Taiyuan 030051, China;
wangfujie@nuc.edu.cn (F.W.); 18235908468@163.com (W.S.); ypf5321@163.com (P.Y.); weihmchina@163.com (H.W.)
* Correspondence: 13934597379@139.com

Abstract: Aiming to address the A* algorithm’s issues of traversing a large number of nodes, long
search times, and large turning angles in path planning, a strategy for multiple improvements to
the A* algorithm is proposed. Firstly, the calculation of the heuristic function is refined by utilizing
the Octile distance instead of traditional distance, which more accurately predicts the optimal path
length. Additionally, environmental constraints are introduced to adaptively adjust the weight of
the heuristic function, balancing the trade-off between search speed and path length. Secondly, the
bidirectional jump point search method is integrated, allowing simultaneous path searches from both
directions. This significantly reduces path search times and the number of nodes traversed. Finally,
the path undergoes two rounds of smoothing using a path smoothing strategy until the final path is
generated. To validate the effectiveness of the improved A* algorithm, simulations are conducted on
ten types of grid maps. Results demonstrate that the improved A* algorithm markedly decreases
path search times while maintaining path length, with greater speed improvements observed as the
map size increases. Furthermore, the improved algorithm is applied in experiments with mobile
robots, achieving significant reductions in average path search times of 79.04% and 37.41% compared
to the traditional A* algorithm and the JPS algorithm, respectively. This enhancement effectively
meets the requirements for rapid path planning in mobile robotics applications.

Keywords: robot; path planning; A* algorithm; heuristic function; jump point search

1. Introduction

In today’s society, with the continuous development of intelligent manufacturing
technology, robots have received widespread attention and have permeated various aspects
of human life. Currently, research on robot autonomous navigation is primarily divided
into three parts: perception, planning, and execution. Among these, path planning, referred
to as “planning”, serves as the bridge connecting the other two components and is also the
core focus of robotics research [1,2]. The importance of path planning can be reflected in
the framework diagram of navigation, as shown in Figure 1. The navigation framework is
mainly composed of the following key components. The ‘Move_base’ node is the core of the
navigation framework, being responsible for coordinating and managing other modules.
It receives the target position, calls Global_Planner and Local_Planner to generate a path,
and sends control commands to Base_controller. The ‘Global_Planner’ node calculates
the optimal path from the start point to the target point based on the static map and
the target position. The ‘Local_Planner’ node is responsible for generating local paths
suitable for the current environment during the execution of the global path, performing
real-time obstacle avoidance and path adjustment. The ‘Base_controller’ node transforms
high-level path planning instructions into actual motion control signals to ensure that
the robot can navigate accurately and safely to the target position. The ‘Costmap’ node
consists of the Global_costmap node and Local_costmap node, representing the traversal
costs of different locations in the environment. Global_costmap is based on a static map
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while Local_costmap is based on real-time sensor data. The ‘Recovery_behaviors’ node
is used to handle faults in various modules during navigation. Recovery behaviors are
activated when there are failures in global planning, local planning, or oscillations. The
‘Amcl’ node is responsible for robot localization based on sensor data and the map. The
‘Map_server’ node provides the static environment map, usually generated by SLAM. This
map is used for path planning and localization. The ‘Odometry source’ node provides the
robot’s position information and motion state in the environment, estimating the robot’s
posture and position changes relative to its starting position. The ‘Sensor sources’ node
collects data about the robot’s surroundings using sources such as LiDAR, depth cameras,
and ultrasonic sensors. These data are used to build and update the costmap. The ‘Sensor
transforms’ node converts the data collected by the sensors into a unified coordinate
system or reference frame for consistent processing and decision making. Additionally, by
using communication mechanisms such as topic communication with topics like “/map”,
the nodes work collaboratively. The navigation framework achieves key autonomous
navigation functions through the coordinated work of Global_Planner and Local_Planner.
Path planning specifically means that the robot plans an optimal path from the start
position to the goal position without any collision with obstacles in the space when the
environment is known or unknown. Path planning according to the degree of mastery of
the environment information is divided into two forms. One is global path planning with
full knowledge of the environment; at present, the commonly used global path planning
algorithms are the Dijkstra algorithm [3], A* algorithm [4–8], ACO algorithm [9], etc. The
other is local path planning with only partial or no knowledge of the environment; local
path planning algorithms mainly include the DWA algorithm [10,11], artificial potential
field method [12], etc.

 

Figure 1. Framework diagram of navigation.

The A* algorithm is a path planning algorithm based on graph search that is widely
used in global path planning due to its fast computation speed, high efficiency, and maturity,
being the most established path planning algorithm known so far. However, the A*
algorithm still has many shortcomings. For example, it constantly visits the surrounding
eight neighboring nodes during pathfinding, adding them to OpenList; selects the node
with the smallest cost as the current node for expansion after calculating its evaluation
function value; and adds it to CloseList after expansion, resulting in a large number of
redundant nodes being stored and accessed. When the map scene is large, it will lead to the
wastage of both storage space as well as time due to the increase in computation, resulting
in inefficient pathfinding. Therefore, many scholars have made a series of improvements
to the A* algorithm through research based on these problems. Zhang Mo et al. [13]
reduced the number of turns in diagonally planning paths by changing the equation for
total cost, i.e., increasing the influence of the predicted cost on the total cost, and smoothed
the paths by introducing the five-point cubic smoothing method, but the algorithm still
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suffers from the problem of having too many redundant nodes. Gong Yunxin et al. [14]
used an extension to include convex corner points that satisfy the adjacency relationship
as the pattern of adjacency extension for the A* algorithm. This modification reduces
access to unnecessary nodes and effectively improves the algorithm’s search efficiency.
However, the improved A* algorithm’s efficiency is still not high in scenarios with too many
convex corner points, and it fails to meet real-time demands. Harabor et al. [15] proposed
a jump point search algorithm that removes non-essential nodes through screening and
pruning rules, enables jumping between nodes with variable step sizes, and improves
the pathfinding speed. However, the path planned by this method still suffers from the
problem that the turning angles are not smooth and cannot satisfy the robot’s motion
characteristics. In Zhao Xiao et al.’s [16] method, which combines the A* algorithm with the
JPS algorithm to improve the A* algorithm, a series of representative nodes are screened
for expansion by preprocessing the nodes, which not only saves memory but also enhances
the algorithm’s efficiency. In this paper, we analyze and study the existing improved A*
algorithms and a new strategy for the improvement of the A* algorithm is proposed. It
involves the following steps:

1. Improve the heuristic function of the A* algorithm: firstly, utilize the Octile distance
formula instead of the commonly used distance formula to approximate the predicted
cost of the heuristic function to the actual path length. Afterward, environmental
constraints, i.e., the percentage of obstacles, are introduced to make the algorithm
adaptive to the changes of the environmental map;

2. Incorporating a bidirectional JPS search strategy: the searched jump points are added
to OpenList for access and expansion. This replaces the need to access and com-
pute a large number of neighboring nodes in the A* algorithm, thereby reducing
memory consumption and significantly accelerating the path search speed through a
bidirectional search strategy;

3. Further optimize the generated paths: first reduce the number of redundant nodes
on the paths, then eliminate unnecessary inflection points on the paths, and, finally,
smooth the paths further using the dynamic circular cutting method to improve the
turning angles of the paths.

2. Traditional A* Algorithm

2.1. Modeling of Grid Maps

Establishing a map model of the environment is the primary prerequisite for path
planning, and commonly used methods for map modeling include the grid method, visual
graphic method, topological map method, Voronoi diagram, and others [17]. The grid
method is widely adopted for its intuitive representation, simple operation, and ease of
implementation. In this paper, 2D grids of uniform size are used to abstractly represent
information about the actual environment, with each grid corresponding to a unique
coordinate. Each grid is classified into two states based on whether it is occupied by an
obstacle [18]. One is the free state, represented by white grids in Figure 2, indicating areas
where the robot can freely pass; the other is the occupied state, represented by black grids
in Figure 2, indicating areas impassable for the robot.

Commonly used neighborhood expansion patterns in A* algorithms include four-
neighborhood expansion and eight-neighborhood expansion [19]. In actual robot opera-
tions, the model’s complexity is increased due to uncertainties in the robot’s operational
state, which affect its movement direction. To mitigate this complexity, this paper selects an
eight-neighborhood expansion pattern when there are no boundaries or obstacles around
the robot, as depicted in Figure 3.
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Figure 2. Grid map.

Figure 3. Eight-neighborhood expansion.

2.2. Traditional A* Algorithm

The A* algorithm is a heuristic path planning algorithm designed for static scenarios
that introduces a Best First Search algorithm, i.e., heuristic function, based on the Dijkstra
algorithm, which enhances the heuristic of the algorithm, makes the algorithm more
purposeful in searching towards the goal point, and reduces the algorithm’s traversal
of the redundant nodes. The evaluation function of the A* algorithm is given in the
following equation:

f (n) = g(n) + h(n) (1)

In Equation (1), g(n) denotes the total actual cost accumulated from the start node to
the current node n; h(n) is a heuristic function representing the predicted cost from the
current node n to the target node; and f (n) is an evaluation function representing the total
predicted cost for the start node to reach the target node via node n.

The heuristic function h(n) is crucial in determining the efficiency of the algorithm.
When h(n) is smaller than the actual cost h*(n), the algorithm can definitely plan the optimal
path, but it may traverse more nodes, slowing down the search speed; when h(n) is 0, h(n)
must be less than or equal to h*(n), i.e., when the algorithm degenerates into the Dijkstra
algorithm; when h(n) is greater than the actual cost h*(n), the algorithm reduces the number
of traversed nodes, speeding up the search, but it will ensure that the path planning result
is not the optimal solution; when h(n) is much larger than h*(n), the algorithm evolves to
the Best First Search algorithm; the A* algorithm needs to consider the search speed during
the search process while ensuring that the optimal path is found. Therefore, for optimal
efficiency, h(n) should closely approximate h*(n).
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Commonly used representations of heuristic functions are Euclidean distance and
Manhattan distance. Let the coordinates of the current node be (xn,yn) and the coordinates
of the target point be (xg,yg); then, the Euclidean distance formula is as below:

h(n) =
√
(xg − xn)

2 + (yg − yn)
2 (2)

The Manhattan distance formula is as follows:

h(n) =
∣∣xg − xn

∣∣+∣∣yg − yn
∣∣ (3)

Due to the presence of obstacles in the actual environment and the selected expansion
method in this paper being eight-neighborhood expansion, when using a Euclidean dis-
tance of h(n), the distance value must be smaller than the actual cost h*(n); when using a
Manhattan distance of h(n), the distance value is larger than the actual cost h*(n). In this
paper, we need to select an appropriate distance formula that makes h(n) closer to h*(n).

The A* algorithm will add the node with the smallest value of the current evaluation
function as the current node to CloseList during the path search and, at the same time, visit
the neighboring nodes reachable by this node and add them to OpenList, then calculate
the node with the smallest value of the evaluation function in OpenList to add it to
CloseList. It will repeat this process until the target point becomes the current node,
completing the pathfinding. Finally, the final path is generated by backtracking the parent–
child relationships of the nodes. The pathfinding process is illustrated in Figure 4, which
highlights that the A* algorithm generates a large number of redundant nodes, represented
by the light blue grids in the figure. Maintaining and accessing these nodes increases the
computational workload of the algorithm and wastes storage space, thereby impacting the
efficiency of path planning.

Figure 4. Pathfinding process of A* algorithm.

3. Improved A* Algorithm

3.1. Improvement of the Heuristic Function
3.1.1. Selection of Heuristic Function

The heuristic function, as the core of the A* algorithm, significantly impacts the
result of the planned path. In response to the issues with the general heuristic function’s
expression mentioned above, this paper proposes a new distance expression for the heuristic
function, namely Octile distance. Octile distance is a combination of Euclidean distance and
Manhattan distance that brings the predicted distance closer to the actual distance, thus
improving the efficiency of the algorithmic search. Octile distance is illustrated in Figure 5,
where the yellow grid indicates the starting point, the purple grid indicates the target point,
the gray grid indicates the actual path, the blue straight line indicates the Octile distance,
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the red straight line indicates the Euclidean distance, and the green straight line indicates
the Manhattan distance. From the figure, it can be seen that Euclidean distance is suitable
for multi-neighborhood expansion, Manhattan distance is suitable for four-neighborhood
expansion, and Octile distance is more suitable for the eight-neighborhood expansion
proposed in this paper.

Figure 5. Octile distance.

The Octile distance formula is as below:

h(n) = (
∣∣∣xg − xn

∣∣∣+∣∣∣yg − yn

∣∣∣) + (
√

2 − 2)min(
∣∣∣xg − xn

∣∣∣, ∣∣∣yg − yn

∣∣∣) (4)

In Equation (4), (xn,yn) are the coordinates of the current node and (xg,yg) are the
coordinates of the target point.

To verify the effect of the heuristic function of the A* algorithm on pathfinding ef-
ficiency, a simulation test was performed on a 20 × 20 grid map, as shown in Figure 6.
Figure 6a represents the result of using Octile distance as the heuristic function, Figure 6b
represents the result of using Euclidean distance as the heuristic function, and Figure 6c
represents the result of using Manhattan distance as the heuristic function. By comparing
the three graphs, it can be seen that the paths obtained in Figure 6a,b are equal in length
and shorter than the paths obtained in Figure 6c while the number of nodes traversed in
Figure 6a is less than the number of nodes traversed in Figure 6b. In summary, it can be
concluded that Octile distance as a heuristic function is more efficient than the traditional
distance formulas when choosing the eight-neighborhood expansion for path planning.

  
(a) (b) (c) 

Figure 6. Simulation comparative testing of heuristic functions: (a) Octile distance; (b) Euclidean
distance; (c) Manhattan distance.
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3.1.2. Introduction of Environmental Constraints

Environmental constraints, i.e., the percentage of obstacles, are also critical factors that
affect the efficiency of path planning. When the percentage of obstacles in the environment
is high, the planned path is prone to local optimization issues, leading to path search failures.
Conversely, when the percentage of obstacles is low, the search speed may decrease due to
the broader path search range. To address these issues, this paper introduces an obstacle
percentage coefficient Os to adaptively adjust the heuristic function. Additionally, to ensure
data smoothness, the obstacle percentage coefficient Os is first logarithmically transformed
and then taken in its absolute value to ensure non-negativity. The improved heuristic
function formula is as follows:

h′(n) = αh(n) (5)

α = |ln Os| (6)

Os =
N

(
∣∣xg − xs

∣∣+1)× (
∣∣yg − ys

∣∣+1)
(7)

Here, N is the number of obstacle grids between the starting point and the endpoint and
(xs, ys) and (xg, yg) are the coordinates of the starting point and the endpoint, respectively.

From the improved heuristic function, it is evident that as the percentage of obstacles
increases (i.e., the occupancy factor of obstacles becomes larger), α decreases. A smaller α
indicates a reduced weight of the heuristic function in the evaluation function. At this point,
the A* algorithm tends to behave more like the Dijkstra algorithm, expanding its search
range and thus avoiding local optimization problems. Conversely, when the percentage
of obstacles decreases (i.e., there is a smaller occupancy factor of obstacles), α increases.
A larger α indicates a greater weight of the heuristic function in the evaluation function.
In this scenario, the A* algorithm leans towards behaving more like the BFS algorithm,
narrowing its search range and resulting in a faster search.

The test results of the algorithm before and after the introduction of environmental
constraints on a grid map of 20 × 20 are shown in Figure 7. Figure 7a shows the test
results before introducing environmental constraints and Figure 7b shows the results after
their introduction. From the figures, it can be observed that the nodes expanded by the
algorithm increase after the introduction of environmental constraints, resulting in a larger
search range. However, the final path length obtained is shorter than that achieved without
environmental constraints.

 
(a) (b) 

Figure 7. Simulation comparative testing: (a) without environmental constraints; (b) with environ-
mental constraints.
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3.2. Combining the Bidirectional JPS Algorithm
3.2.1. Traditional JPS Algorithm

Jump Point Search (JPS) is a more efficient path planning algorithm that screens natural
neighbor nodes and forced neighbor nodes through specific screening rules and further
screens to obtain the jump points needed for path planning, which well solves the problem
of the A* algorithm accessing more redundant nodes.

Natural neighbor nodes are nodes that extend directly along the current search direc-
tion in the hopping point search algorithm; using these nodes can efficiently skip interme-
diate invalid nodes, reduce the search space, and improve the speed of path planning.

Forced neighbor nodes are the nodes that must be considered in the jump point search
algorithm in order to bypass obstacles. By checking these nodes, JPS can effectively avoid
obstacles in path search and ensure that it remains the optimal path.

The screening rules are as follows.
(1) No obstacles around the node
As shown in Figure 8, node x represents the current node, node P(x) is the parent of

node x, and n is a neighboring node of x. The length of the path taken by the parent node
P(x) to reach node n through x, when moving horizontally, must be shorter than the lengths
of other paths that do not pass through x to reach node n. Similarly, the length of the path
taken by the parent node P(x) to reach node n through x, when moving diagonally, must be
less than or equal to the lengths of other paths that do not pass through x to reach node n.

 
(a) (b) 

Figure 8. Screening rules without adjacent obstacles: (a) horizontal move; (b) diagonal move.

Therefore, the following screening rules for natural neighbor nodes can be derived:

• When moving horizontally, the natural neighbor node n satisfies the following equation:

L(< P(x), x, . . . , n >) < L(< P(x), . . . , n >|x) (8)

Here, L(<P(x), x, . . ., n>) denotes the length of the path from the starting point P(x) through
x to reach n and L(<P(x), . . .,n>|x) denotes the length of the path from the starting point
P(x) to reach n without passing through x.

• When moving diagonally, the natural neighbor node n satisfies the following equation:

L(< P(x), x, . . . , n >) ≤ L(< P(x), . . . , n >|x) (9)

(2) Presence of obstacles around the node
As shown in Figure 9, the black grid indicates the obstacles. At this time, in addition to

screening the natural neighbor nodes, it is also necessary to screen out the forced neighbor
nodes. The forced neighbor nodes are shown in the green grid in the figure.
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(a) (b) 

Figure 9. Screening rules with adjacent obstacles: (a) horizontal move; (b) diagonal move.

The screening rules for natural neighbor nodes are the same as the screening rules
when there are no obstacles around a node. The screening rules for the forced neighbor
nodes are as follows:

• n is not a natural neighbor of node x;
• n satisfies the following equation:

L(< P(x), x, . . . , n >) < L(< P(x), . . . , n >|x) (10)

For the natural neighbor nodes and forced neighbor nodes obtained by the above
screening rules, it is necessary to further screen them to obtain the jump point. The jump
point screening rules are as follows:

• If node n is a starting or goal point, then n is a jump point;
• If node n has at least one forced neighbor, then n is a jump point;
• A node n is a jump point if the parent node P(x) is in a diagonal direction from node n

and n has nodes in the horizontal or vertical directions that satisfy conditions (1) and
(2) above.

The purpose of the integration of the A* algorithm with the JPS algorithm is to first
use the JPS algorithm to preprocess to obtain representative jump points, then add these
jump points to OpenList and select the node with the smallest cost as the current node for
expansion, then continue to screen its jump points to be added to OpenList. At the same
time, the jump points after the expansion is completed are added to CloseList. This process
is repeated until the current node is the target point, at which point the path planning
is complete.

3.2.2. Bidirectional JPS Algorithm

The traditional JPS algorithm can better deal with the problems of the A* algorithm
accessing more redundant nodes and having a high computation and memory consumption.
However, in larger scenes or with more obstacles, a substantial number of jump points can
still be generated, leading to slower pathfinding. Therefore, this paper proposes to improve
the A* algorithm by using the bidirectional JPS algorithm on the basis of the traditional
JPS algorithm.

Using the bidirectional JPS algorithm means that both the starting point and the goal
point are used as the starting point and each takes the other as the goal point for path
planning. Typically, the search from the starting point to the goal point is referred to as the
forward search while the search from the goal point to the starting point is known as the
reverse search. A successful path search is indicated when the currently expanded node of
one party is the currently expanded node of the other party or exists in the CloseList of the
other party.
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The pathfinding process of the A* algorithm incorporating the bidirectional JPS algo-
rithm is shown in Figure 10. Node s represents the start node, node g represents the target
node, the black grids denote obstacles, and the red arrows and green arrows represent
the paths for the forward and reverse searches, respectively. The flow of the algorithm is
as follows:

• Create four lists, OpenList1, OpenList2, CloseList1, and CloseList2. Place node s into
OpenList1 and node g into OpenList2;

• Start the bidirectional search; during the forward search, place jump point a into
OpenList1; during the reverse search, place jump point b into OpenList2. Place node s
into CloseList1 and node g into CloseList2;

• Continuing the forward search with a as the current node yields jump points c and d,
which are added to OpenList1. In the reverse search, jump point e is found for b and
added to OpenList2. Nodes a and b are placed into CloseList1 and CloseList2, respectively;

• Since d is the node with the smallest value of f(n) in OpenList1, the forward search
expands d to obtain jump points e and f, which are added to OpenList1. In the reverse
search, jump point h is found for e and added to OpenList2. Nodes d and e are placed
into CloseList1 and CloseList2, respectively;

• Node e has the smallest value of f(n) in OpenList1, so e is selected as the current node
for forward expansion. Since e exists in CloseList2, the path search is successful.

Figure 10. Schematic diagram of bidirectional JPS algorithm.

According to the process diagram of pathfinding using bidirectional JPS shown in
Figure 10, theoretically, bidirectional JPS can double the efficiency compared to unidirec-
tional JPS. However, bidirectional JPS also has drawbacks. When there is symmetry in
the environment map, bidirectional JPS may plan two symmetric paths. This results in
the paths searched in the forward direction not intersecting with the paths searched in the
reverse direction. At this time, each search may independently plan a path, which not only
fails to improve the efficiency of path planning but may even reduce it. To address this
issue, this paper proposes an improved method where each search considers the other’s
current extended node as the target node.

3.3. Path Smoothing
3.3.1. Primary Smoothing

The paths planned by the improved algorithm still exhibit issues such as having
numerous redundant nodes and excessive turning points. Therefore, this paper employs
a redundant point removal strategy to enhance path smoothness by reducing both the
number of redundant nodes and excessive turning angles. The steps of the redundant point
removal strategy, i.e., primary smoothing, are as follows:

• Plan the optimal path using the improved algorithm and save information such as the
path length and number of nodes;

• Create a collection of path nodes, R = {Ni}, i ∈ [0, n], where N0 is the start node, Nn is
the goal node, and N1, . . ., Nn−1 are the intermediate nodes;
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• Determine whether the vectors
→

N0N1 and
→

N1N2 formed by points N0, N1, and N2
are parallel using the principle of vector parallelism. If they are parallel, the three
points are collinear, and the redundant node N1 is removed. If they are not parallel,
then the three points are not collinear, and there is no redundant node. If node N1 is
removed, then continue to evaluate nodes N2, N3, and N4 to determine whether they
are collinear. Otherwise, evaluate nodes N1, N2, and N3 for collinearity. Repeat this
process until no more collinear nodes exist in the path. Create a new set P of path
nodes and add the reserved nodes to set P. Set P = {pj}, j ∈ [0, m], where p0 is the start
node, pm is the goal node, and p1, . . ., pm−1 are the intermediate nodes;

• Create the set K of nodes that the path must pass through. Add p0 to set K and consider
p0 as the current point for evaluation. First, connect nodes p0 and pm to determine
whether the straight line segment p0 pm passes through obstacles. If it does not, p0 pm
is considered a viable path, and one should add pm to set K. If p0 pm is obstructed,
connect p0 to pm−1 and continue the evaluation. If p0 pm−1 is clear, add pm−1 to set K.
If p0 pm−1 is obstructed, connect p0 to pm−2 and continue evaluating. Continue this
process until the must-pass node pt1 is identified and added to set K. Then, use pt1
as the current point and repeat the evaluation process. Repeat these steps until pm is
added to set K;

• Connect the nodes extracted from set K sequentially; the resulting path is the path
after one smoothing. The schematic diagram of the redundant node removal process
is shown in Figure 11.

  
(a) (b) (c) 

Figure 11. Schematic diagram for removing redundant nodes: (a) original path; (b) removing collinear
nodes; (c) removing redundant turning nodes.

3.3.2. Quadratic Smoothing

Although the path after primary smoothing reduces the number of redundant nodes
and inflection points, it still exhibits problems such as unsmooth turning angles, which do
not satisfy the motion characteristics of the robot. Therefore, to enhance the smoothness of
the path, this paper adopts the dynamic circular cutting method for secondary smoothing.
The schematic diagram of the dynamic circular cut method is shown in Figure 12.

For the turning corner shown in Figure 12 ∠ABC, the steps of the dynamic circular
cut method are as follows:

Compare the lengths of the sides of ∠ABC. Choose the endpoint A of the shorter side
AB as the tangent point and draw a perpendicular line through A to intersect the angle
bisector BO0 of ∠ABC at point O1. Then proceed to step 2;

Make a circle with O1 as the center and AO1 as the radius. Judge whether the arc AQ
crosses obstacles or not. If it does, perform step 3; otherwise, use the arc AQ instead of the
straight lines AB and BQ;
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The tangent point A is moved upward along AB by a length λ (the value of λ is chosen
according to the actual situation), denoted as A1. Use A1 as the tangent point to perform
step 1;

Figure 12. Schematic diagram of the dynamic circle cutting method.

• Determine whether all the turning corners have been smoothed. If yes, the secondary
smoothing is completed; otherwise, continue with step 1.

4. Simulation Analysis and Experimental Validation

4.1. Simulation Analysis

In order to verify the effectiveness of the improved algorithm, this paper simulates and
tests the A* algorithm, the JPS algorithm, and the improved A* algorithm on ten different
grid maps. The computer we use is configured with a Windows 11 operating system, an
R7-5800H processor with 3.2 GHz, and 16 GB of RAM.

The results of the three algorithms tested on a grid map of size 40 × 40 with a 30%
obstacle ratio are shown in Figure 13. In the figure, the green grid indicates the start node,
the red grid indicates the target node, the black grids indicate obstacles, the blue grids
indicate nodes added to OpenList, and the yellow grids indicate nodes added to CloseList.
The blue solid line represents the planned path, the green solid line represents the path
obtained by primary smoothing, and the red solid line represents the final path obtained
after secondary smoothing. As can be seen from Figure 13, the length and the number of
turns of the optimal path obtained by the improved A* algorithm are better than those of the
other two algorithms in the same environment. Other data obtained from the simulations
are shown in Tables 1 and 2.

Table 1 compares the three algorithms in terms of the nodes traversed, path lengths,
numbers of turns, and search times in grid maps of different sizes with a consistent
obstacle percentage of 30%. It is evident that the number of nodes traversed by the
improved algorithm is better than that of the A* algorithm and worse than that of the JPS
algorithm. However, due to the nature of bidirectional search, it is guaranteed that the
search time will outperform the other two algorithms. In 20 × 20 maps, the improved
algorithm’s search time efficiency improves by 50.29% and 26.37%, respectively, relative
to the other algorithms; in 40 × 40 maps, it improves by 62.07% and 30.59%, respectively;
in 60 × 60 maps, it improves by 68.66% and 37.13%, respectively; in 80 × 80 maps, it
improves by 72.62% and 42.41%, respectively; and in 100 × 100 maps, it improves by
78.37% and 50.43%, respectively. From these data, it can be concluded that as the map
size increases, the algorithm’s improvement in search speed becomes more significant.
However, in some cases, this improvement may lead to longer path lengths. Additionally,
the improved algorithm’s paths also exhibit significantly fewer turns compared to the other
two algorithms.
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(a) (b) 

 
(c) 

Figure 13. Comparison diagram of simulation results for three algorithms: (a) traditional A* algo-
rithm; (b) traditional JPS algorithm; (c) improved algorithm.

Table 2 compares the three algorithms in terms of the nodes traversed, path lengths,
numbers of turns, and search times in grid maps of varying sizes with a consistent obstacle
percentage of 70%. It shows that the improved algorithm can generally plan optimal paths,
as evidenced by shorter path lengths and fewer turns compared to the other two algorithms.
According to Table 2, the search time efficiency of our algorithm improves by 26.14%
and 12.70% relative to the other two algorithms in 20 × 20 maps, 39.25% and 20.80% in
40 × 40 maps, 52.47% and 32.10% in 60 × 60 maps, 58.21% and 39.79% in 80 × 80 maps,
and 66.58% and 48.22% in 100 × 100 maps. It can be seen that the larger the size of the map
is, the more effective the algorithm is in improving search speed. But in cases where the
proportion of obstacles is higher, the improvement in search speed is not as significant as
when the proportion of obstacles is lower. However, the optimal path is guaranteed to be
obtained when the proportion of obstacles is higher.
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Table 1. Comparison of three algorithms on grid maps with low proportions of obstacles.

Map Size
Experimental
Algorithms

Number of Nodes
Traversed (Number)

Path Length
(Meters)

Number of Turns
(Times)

Search Time
(Seconds)

Percentage
of Obstacles

20 × 20

A*
algorithm 77 24.7279 7 0.233068

30%

JPS algorithm 20 24.7279 7 0.157325
Improved algorithm 26 24.1381 6 0.115842

40 × 40

A*
algorithm 326 61.0122 17 0.707153

JPS algorithm 39 61.0122 17 0.386459
Improved algorithm 32 58.0070 10 0.268241

60 × 60

A*
algorithm 290 88.3259 11 1.101714

JPS algorithm 38 88.3259 11 0.549135
Improved algorithm 30 93.5291 6 0.345265

80 × 80

A*
algorithm 836 131.6396 21 3.334070

JPS algorithm 51 131.6396 21 1.585116
Improved algorithm 52 134.3342 15 0.912868

100 × 100

A*
algorithm 876 160.5097 23 5.128762

JPS algorithm 55 160.5097 23 2.237949
Improved algorithm 48 159.7931 16 1.109351

Table 2. Comparison of three algorithms on grid maps with high proportions of obstacles.

Map Size
Experimental
Algorithms

Number of Nodes
Traversed (Number)

Path Length
(Meters)

Number of Turns
(Times)

Search Time
(Seconds)

Percentage
of Obstacles

20 × 20

A*
algorithm 131 29.3137 12 0.448762

70%

JPS algorithm 40 30.7279 9 0.379653
Improved algorithm 57 30.2587 9 0.331437

40 × 40

A*
algorithm 183 62.6274 25 1.247487

JPS algorithm 79 62.6274 25 0.956823
Improved algorithm 125 60.3749 18 0.757804

60 × 60

A*
algorithm 280 100.7696 34 2.161697

JPS algorithm 86 100.7696 32 1.513218
Improved algorithm 128 99.3118 29 1.027475

80 × 80

A*
algorithm 694 136.9117 31 4.919608

JPS algorithm 113 136.9117 31 3.414556
Improved algorithm 132 134.7762 24 2.055904

100 × 100

A*
algorithm 791 173.3970 35 7.117738

JPS algorithm 127 173.3970 35 4.593951
Improved algorithm 144 169.9316 27 2.378748

The simulation results indicate that the efficiency of the improved A* algorithm is
influenced by the size of the environment map and the ratio of obstacles. Specifically, the
improved algorithm demonstrates greater efficiency in improving the search speed with
larger maps. Conversely, with smaller maps, the efficiency of the improved algorithm in
enhancing the search speed diminishes. When the ratio of obstacles in the map varies, due
to the introduction of environmental constraints, if the percentage of obstacles is low, the
improved algorithm shows less noticeable improvement in path length, and in some cases,
the path length may even worsen. However, the improvement in search time is significant.
Conversely, when the percentage of obstacles is higher, the improved algorithm demon-
strates more pronounced improvement in path length, but the improvement in search
time deteriorates compared to the scenario with a lower obstacle percentage. However, in
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general, compared to the other two algorithms, the improved A* algorithm has significantly
enhanced both the efficiency of pathfinding and algorithm optimization.

4.2. Experimental Validation

In order to verify the feasibility of the improved A* algorithm in the actual operation of
the mobile robot, the algorithm was applied to the two-wheel-drive differential robot built
by our team, as shown in Figure 14a.The differential robot utilizes the RPLIDAR A1 laser
rangefinder to obtain the 2D point cloud data of the external environment. It integrates
odometer data for localization and constructs a 2D map using the Amcl and Gmapping
function packages. Finally, it performs global path planning using the global planner in the
Move Base function package [20]. The experimental scene described in this paper was a
section of aisles in the laboratory, as shown in Figure 14b.

  
(a) (b) 

Figure 14. Mobile robots and experimental environments: (a) differential robot; (b) laboratory.

The two path plannings performed by the differential robot at the experimental site
are shown in Figure 15. The results of the planning have been displayed using the ROS
visualization tool Rviz, where the orange square represents the model of the cart and the
green solid line depicts the path planned by the improved A* algorithm.

  
(a) (b) 

Figure 15. The results of path planning using the improved algorithm: (a) planning for Path 1;
(b) planning for Path 2.

The search times of the three algorithms for the two paths are shown in Tables 3 and 4,
respectively. It can be concluded that the improved algorithm proposed in this paper
further enhances search speed while essentially producing optimal paths. Therefore, the
improved algorithm outperforms the other two algorithms significantly.
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Table 3. Comparison of pathfinding times of the three algorithms for Path 1.

A* Algorithm JPS Algorithm
The Algorithms in

This Paper

Path length/m 16.8 16.7 16.5
Search time/ms 267.89 84.43 56.25

Table 4. Comparison of pathfinding times of the three algorithms for Path 2.

A* Algorithm JPS Algorithm
The Algorithms in

This Paper

Path length/m 14.7 14.7 15.0
Search time/ms 217.43 78.10 45.47

5. Conclusions

In this paper, for the traditional A* algorithm in path planning, there are many re-
dundant nodes, which lead to problems such as high memory consumption and long
search time, etc.; an improved A* algorithm under the combination of bidirectional JPS
strategy is proposed. The effectiveness of the improved algorithm has been demonstrated
by analyzing and comparing the results of the three algorithms for path planning under
different grid maps. The simulation results in different grid maps demonstrate that while
ensuring basic path length guarantees, the algorithm proposed in this paper not only signif-
icantly improves path search speed but also notably reduces the number of turns in a path.
Especially in larger scenarios, the effect of improving the search speed is more pronounced.
The improved algorithm has been applied to the robot platform for experiments, and the
experimental results fully demonstrate that the improved algorithm meets the requirements
for fast path planning, with noticeable optimization effects.

Author Contributions: Project administration, F.W.; writing—original draft preparation, W.S.; writing—
review and editing, P.Y. and H.W.; supervision, H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: “This research was funded by the Fundamental Research Program of Shanxi Province,
grant number 20210302123054” and “Supported by the Opening Foundation of Shanxi Provincial
Key Laboratory for Advanced Manufacturing Technology (No. XJZZ202307)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article. The dataset is available on
request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Qu, D.K.; Du, Z.J.; Xu, D.G.; Xu, F. Research on Path Planning for a Mobile Robot. J. Robot. 2008, 30, 97–101+106.
2. Cui, W.; Zhu, F.Z. Review of Path Planning Algorithms for Robot Navigation. J. Comput. Eng. Appl. 2023, 59, 10–20.
3. Xu, Y.; Guan, G.F.; Song, Q.W.; Jiang, C.; Wang, L.H. Heuristic and random search algorithm in optimization of route planning for

Robot’s geomagnetic navigation. J. Comput. Commun. 2020, 154, 7–12. [CrossRef]
4. Zhi, C.B.; Zhang, A.J.; Du, X.Y.; Peng, P. Research on Global Path Planning of Mobile Robot Based on Improved A* Algorithm.

J. Comput. Simul. 2023, 40, 486–491.
5. Qi, F.L.; Wang, X.Q.; Zhang, W.Y. Research on AGV Obstacle Avoidance Path Planning Based on Improved A* Algorithm. J. Mach.

Tool Hydraul. 2023, 51, 34–39.
6. Chen, C. Research on Robot Shortest Path Planning with Improved A* Algorithm. J. Comput. Digit. Eng. 2023, 51, 1697–1701.
7. Zhong, X.Y.; Tian, J.; Hu, H.S.; Peng, X.F. Hybrid Path Planning Based on Safe A* Algorithm and Adaptive Window Approach for

Mobile Robot in Large-Scale Dynamic Environment. J. Intell. Robot. Syst. 2020, 99, 65–77. [CrossRef]
8. Sang, T.T.; Xiao, J.C.; Xiong, J.F.; Xia, H.Y.; Wang, Z.Z. Path Planning Method of Unmanned Surface Vehicles Formation Based on

Improved A* Algorithm. J. Mar. Sci. Eng. 2023, 11, 176. [CrossRef]

327



Appl. Sci. 2024, 14, 5622

9. Huang, C.J. Robot Path Planning Design Based on Improved Ant Colony Algorithm. J. Value Eng. 2023, 42, 51–53.
10. Fu, Q.; Ning, Y.K.; Ji, Y.F.; Sun, X.Y. Path Planning Based on Improved RRT and DWA Fusion Algorithm. J. Comput. Simul. 2023,

40, 429–435.
11. Wang, Y.; He, T.; Silva, P. Wide-band high-accuracy ADC using segmented DAC with DWA and mismatch shaping. J. Electron.

Lett. 2017, 53, 713–714. [CrossRef]
12. Gao, F.X.; Hao, W.J.; Wu, Y.; Sun, C. Research on Robot Obstacle Avoidance Path Planning Based on Improved Artificial Potential

Field Method. J. Comput. Simul. 2023, 40, 431–436+442.
13. Zhang, M.; Wu, Y.Z. Optimization of transfer robot path planning based on A* algorithm. J. Mod. Electron. Tech. 2023, 46, 135–139.
14. Gong, Y.X.; Liu, G.H.; Zhang, W.K.; Yu, D.Y.; Cui, Y.X.; Shen, Z.B. Path Planning Method of Improving A* Algorithm Using

Convex Corner. J. Comput. Eng. Appl. 2023, 59, 309–315.
15. Harabor, D.; Grastien, A. The JPS pathfinding system. In Proceedings of the 5th Annual Symposium on Combinatorial Search,

Niagara Falls, ON, Canada, 19–21 July 2012.
16. Zhao, X.; Wang, Z.; Huang, C.K.; Zhao, Y.W. Mobile Robot Path Planning Based on an Improved A*Algorithm. J. Robot. 2018, 40,

903–910.
17. Lv, T.Z.; Zhao, C.X.; Xia, P.P. Global path planning based on simultaneous visibility graph construction and A* algorithm.

J. Nanjing Univ. Sci. Technol. 2017, 41, 313–321.
18. Jeddisaravi, K.; Alitappeh, J.R.; Pimenta, A.C.L.; Guimarães, G.F. Multi-objective approach for robot motion planning in search

tasks. J. Appl. Intell. 2016, 45, 305–321. [CrossRef]
19. Zhang, W.M.; Zhang, Y.; Zhang, H. Path planning of coal mine rescue robot based on improved A*algorithm. J. Coal Geol. Explor.

2022, 50, 185–193.
20. Harabor, D.; Grastien, A. Online graph pruning for pathfinding on grid maps. In Proceedings of the 25th AAAI Conference on

Artificial Intelligence, Menlo Park, CA, USA, 7–11 August 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

328



Citation: Lee, H.J.; Kim, M.-S.; Lee,

M.C. Path Planning Based on

Artificial Potential Field with an

Enhanced Virtual Hill Algorithm.

Appl. Sci. 2024, 14, 8292. https://

doi.org/10.3390/app14188292

Academic Editor: Christos Bouras

Received: 27 August 2024

Revised: 9 September 2024

Accepted: 12 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Path Planning Based on Artificial Potential Field with an
Enhanced Virtual Hill Algorithm

Hyun Jeong Lee 1, Moon-Sik Kim 2,* and Min Cheol Lee 1,*

1 School of Mechanical Engineering, Pusan National University, Pusan-si 46241, Republic of Korea;
lhjeong98@gmail.com

2 Department of Intelligent Mobility Engineering, Kongju National University,
Cheonan-si 31080, Republic of Korea

* Correspondence: mskim2@kongju.ac.kr (M.-S.K.); mclee@pusan.ac.kr (M.C.L.)

Abstract: The artificial potential field algorithm has been widely applied to mobile robots and robotic
arms due to its advantage of enabling simple and efficient path planning in unknown environments.
However, solving the local minimum problem is an essential task and is still being studied. Among
current methods, the technique using the virtual hill concept is reliable and suitable for real-time path
planning because it does not create a new local minimum and provides lower complexity. However,
in the previous study, the shape of the obstacles was not considered in determining the robot’s
direction at the moment it is trapped in a local minimum. For this reason, longer or blocked paths are
sometimes selected. In this study, we propose an enhanced virtual hill algorithm to reduce errors in
selecting the driving direction and improve the efficiency of robot movement. In the local minimum
area, a dead-end algorithm is also proposed that allows the robot to return without entering deeply
when it encounters a dead end.

Keywords: mobile robots; artificial potential field; local minima problem; enhanced virtual hill;
dead-end algorithm

1. Introduction

Unlike complex global path planning [1], which requires a vast amount of prior
information, the local method allows for path planning, including obstacle avoidance, in an
unknown environment with a small amount of computation. Local path planning using the
APF (artificial potential field) technique has been widely used in real-time path planning
due to its easy implementation and high computational efficiency [2–9]. APF is formed by
the sum of the attractive potential field to reach the destination and the repulsive potential
field to avoid obstacles [10]. Due to the potential at each point, the robot travels to the
destination without colliding. In this process, when the sum of potentials approaches ‘0’,
local minima may occur, in which the robot stops operating [11,12]. In order to apply the
APF technique, this problem must be solved, and various techniques have been studied
so far. There are methods of modifying the potential field function or the repulsive force
function [6,13–15] or adding vortex fields or local attractors [16–18]. In [17], vortex fields
prevent collisions between obstacles and robots and enable smooth running when the
robot moves through narrow corridors. However, it is difficult to determine when to
apply vortex potential for optimal performance, and it may not be effective in complex
environments. References [7,19] propose a short and optimal path planning method using
bacterial foraging optimization. In [7], virtual particles are initially moved randomly, the
cost is calculated at each location, the best particle is found, and the robot’s driving path
is created. The optimal path can be found even in complex environments. Reference [19]
shows that when a robot is trapped in a local minimum, a virtual obstacle suitable for the
location condition is created, and the robot is guided to move to a new path. However, both
of these techniques require an iterative learning process to optimize the path and virtual
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obstacles. In the bacterial potential field method [20], the problems of the APF are solved
by applying the bacterial evolutionary algorithm (BEA) in addition. There are also methods
to plan the optimal path while solving the local minimum using simulated annealing (SA),
a genetic algorithm (GA), or reinforcement learning [21–24]. Reference [24] introduces an
algorithm that converges to the optimal path using reward and value functions. The optimal
path can be found through automatic learning without prior information. However, since
it starts randomly, it can be unstable and requires a lot of calculations to optimize the path.
References [25,26] propose new algorithms to be combined with APF. In [26], the improved
A* algorithm is fused with APF, and search accuracy and efficiency are improved using a
heuristic method. To escape the local minimum, a virtual target point is set in [27,28], and a
grid-based obstacle cell is used in [29,30]. In [30], efficient computation is possible using
a discrete grid, and local minima can be avoided by creating a new repulsive potential
between adjacent obstacles. However, if the resolution of the grid is low, precise path
planning is difficult, and if the resolution is high, the amount of calculation increases. A
perpendicular approach based on APF has been proposed as a local path plan for unknown
obstacles along with a global path plan performed before the departure of the robot [31].
This method can solve the local minima problem with a relatively short calculation time,
but it is difficult to apply in an unknown environment because it requires prior information
about obstacles.

Recently, research on learning-based optimization techniques has been introduced to
overcome the shortcomings of APF. These methods can find the optimal path for robots even
in complex environments and efficiently avoid and escape local minima. However, there
are issues such as the robot being unstable at the beginning of the learning process, results
varying depending on the initial conditions, and high computational load. Additionally, in
unknown environments, the robot’s responsiveness is reduced until the learning process
is completed, making immediate path planning difficult. On the other hand, the artificial
potential field algorithm with a virtual hill used in this paper has the advantage of being
able to avoid obstacles, escape local minima, and reach the destination without a learning
process in unknown environments.

In [32], a method of escaping from the local minimum using a virtual hill is introduced.
The virtual hill generates extra force instead of attractive force to repel the robot from a
local minimum. The virtual hill technique does not require prior information about space
and obstacles, modeling [33] and learning [23,24] processes for generating potential fields
may be omitted, and a new local minimum is not created. It also has the advantage of
being applicable to dynamic environments and being easy to implement. And in most
cases, a robot can escape from the local minimum. This is an easy and safe way for a robot
to move to a destination while avoiding obstacles in an unknown environment without
being trapped in a new local minimum. The virtual hill technique is a method of moving
along the outline of the obstacle that caused the local minimum. The robot determines
which direction to follow among the left and right obstacles to drive as soon as it is trapped
in the local minimum. Efficient and reliable path planning is possible if the robot selects
the obstacle that leads to the shortest distance. In the previous study [32], the direction
of movement was selected only in the relative positional relationship between the robot,
the closest obstacle, and the destination without considering the shape of the path. As a
result, the robot may go a long distance or choose a dead end. Therefore, there is a need to
reduce errors in the selection of the direction of driving regardless of obstacle shape and to
improve the efficiency of the robot’s movement.

This paper proposes ‘the enhanced virtual hill’ technique, a method of determining
the driving direction that considers the shape of surrounding obstacles. At the moment
the robot is trapped in a local minimum, the distance to obstacles is measured, and it is
determined which of the two directions is the more open path. The driving efficiency of
the robot can be improved by blocking closed-path driving in advance. Additionally, a
dead-end algorithm is proposed that allows the robot to come back without going deep
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when it encounters a dead end. Through simulations, it is confirmed that the robot’s
moving distance is reduced when the proposed methods are applied.

2. Simulation Environments

For evaluating the path planning algorithm, a mobile robot model, LiDAR sensor,
visualization function, and maps provided by MATLAB 2022b’s Mobile Robotics Simulation
Toolbox are utilized. Figure 1a,b shows the directions of the linear velocity and angular
velocity of the robot and the environment of the Mobile Robotics Simulation Toolbox,
respectively. The forward/inverse geometry of the robot is provided, and the position,
posture, movement path, sensor measurement distance(the dashed blue lines), etc. of the
robot are shown through the visualization function, as in Figure 1b. For the simulation,
the radius of the wheel of the mobile robot is set to 0.1 [m], and wheelbase, which is the
distance from the left wheel to the right wheel, is set to 0.5 [m]. The local coordinate
system of the robot is fixed to the center of the robot. In the simulation environment, the
LiDAR sensor is configured in a radial form, with the center of the robot as the origin.
According to the user settings, the robot obtains obstacle information of up to 4 m at
19 points through the LiDAR sensor. LiDAR sensors are widely used to create maps or
model and track objects using numerous measurement points. However, in this paper,
since large amounts of data in the form of a cloud are not required, the LiDAR sensor is
simulated by a low-cost ultrasonic sensor widely used in mobile robots. In the reference
paper [32], 5–7 robot skeleton points are set, and the distance from each point to the obstacle
is calculated and simulated. Although this paper also uses the LiDAR sensor supported by
MATLAB’s Toolbox, it receives distance data by dividing 360 degrees into 19 points as if it
were equipped with 19 ultrasonic sensors. Computation time can be saved by reducing the
amount of processed data. The maximum measurement distance is set to 4 m. This study
targets mobile robots that provide services in offices or commercial facilities. Accordingly,
4 m is considered the distance that people can feel as an open space in general indoor
office environments. At too far a distance, the spacing between each sensor data increases,
making it inappropriate to treat it as information about continuous obstacles. Reference [32]
is referred to for the path planning and control process of the robot. All simulations are
saved as figures, data files, and videos.

 

 
(a) (b) 

Figure 1. MATLAB 2022b simulation environment: (a) mobile robot model, linear velocity v, angular
velocity ω; (b) visualizer of the Mobile Robotics Simulation Toolbox.

3. Virtual Hill Concept and Open Path Indicator, New eb

The virtual hill concept allows the robot to escape from the local minimum by generat-
ing extra force instead of attractive force when in the local minimum area. As explained in
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Section 3.1, the extra force follows the direction of the unit tangent vector et of γ, which
represents the trajectory of the nearest obstacle while the robot is moving within the local
minimum. The unit tangent vector is determined as the cross product of the unit normal
vector en and the unit binormal vector eb. Since en is the vector between the nearest obstacle
and the robot, the decisive factor that determines the robot’s driving direction is eb. Unlike
the previous eb determined according to the relative positions of the robot, the closest
obstacle, and the goal, the new eb proposed in this paper operates as an open path indicator.
new eb, which is determined by the shape of surrounding obstacles, makes the robot travel
on a more open path, improving path efficiency.

3.1. Virtual Hill Concept

APF can be expressed as the sum of the attractive potential corresponding to the
goal and the repulsive potential generated by the obstacle [10]. The artificial forces that
determine the control output of the robot, that is, the linear velocity and angular velocity,
are the negative gradients of the potentials [10,12]. The attractive potential Uatt, force Fatt,
and the repulsive potential Urep, force Frep, are obtained as follows.

Uatt =

{
kad2, d ≤ d0

ka
(
2d0d − d2

0
)
, d > d0

(1)

Fatt = −∇Uatt =

⎧⎨⎩ −2ka

(
P − Pgoal

)
, d ≤ d0

−2kad0
P−Pgoal

d , d > d0

(2)

Urep =

{
1
2 kr

(
1
ρ − 1

ρ0

)2
, ρ ≤ ρ0

0 , ρ > ρ0

(3)

Frep = −∇Urep =

{
kr

(
1
ρ − 1

ρ0

)
P−Pco

ρ3 , ρ ≤ ρ0

0 , ρ > ρ0
(4)

d0 is the radius of the quadratic range, ka is the proportional gain of the function,
and d =

∥∥∥P − Pgoal

∥∥∥. In the quadratic area, the attractive force is proportional to distance
between the goal and the robot. If d0 is large, a robot smoothly and slowly stops at the goal.
P and Pgoal are the position vectors of the robot and the goal. ρ0 is a potential field’s distance
limit of repulsive potential influence, and ρ is the shortest distance between the robot and
its closest obstacle, where ρ = ‖P − Pco‖. Pco is the position vector of the closest obstacle
to the robot. The entire artificial force Ftotal is Fatt + Frep. The robot is controlled by this
force, which is converted to speed and angular velocity according to the force-to-velocity
conversion method [32].

However, before arriving at the goal, the robot is trapped in local minima and stops
driving when the attractive force and the repulsive force are the same or very similar. In [32],
the virtual hill allows the robot to escape from the LM (local minimum) by generating an
extra force instead of an attractive force when in the LM area. The artificial force, Ftotal ,
applied to the robot from the moment of being trapped in the LM to the moment of escape,
is Frep + Fext. After the robot is out of the LM, Ftotal = Fatt+Frep is applied to move to the
goal. Extra force can be applied even in complex environments and does not create a new
local minimum. Extra potential is applied from the moment the robot is trapped in the LM
until the escape is completed and is defined as follows.

Uext = −ke1Ψ + ke2ρ2 (5)

ke1 and ke2 are proportional constants. ρ is the distance between the robot and the
closest obstacle. Ψ is the path integral, which is the line integral for γ and expressed as
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Ψ =
∫

γ
dΨ, γ(t) : {Q(t∗) : t0≤ t∗ ≤ t and t0 ≤ t ≤ tk } (6)

Q(ti) = Pco(ti) where i = 0, 1, · · · , K (7)

γ is defined as the path of the closest obstacles, indicating the trajectory of the clos-
est obstacle while the robot is moving within the LM. The concept of γ is shown in
Figure 2a [34]. t0 is the time when the robot is trapped in the LM, and tk is the time when
it escapes from the LM. Q is the position vector of the closest obstacle on the continuous
trajectory. Pco is the position vector of the closest obstacle measured discretely by the range
sensor. ti represents a discrete sampling time of the range sensor. Assuming that Q is
continuously interpolated and differentiable, Ψ can be written as follows.

Ψ(t) =
∫

γ(t)
dΨ =

∫ t

t0

dΨ
dt

dt =
∫ t

t0

.
‖Q‖dt where

.
Q = dQ/dt (8)

 
(a) (b) 

Figure 2. Within the local minimum area: (a) concept of γ; (b) concept of et, en, and eb with respect
to γ.

Ψ(t) denotes a distance from Q(t0) to Q(t) along γ. The extra force is the negative
gradient of extra potential, and it is shown in Equation (9).

Fext = −∇Uext = ke1∇Ψ − ke2∇
(

ρ2
)

(9)

This can also be expressed as Equation (10) [34].

Fext = ke1et − 2ke2ρen (10)

In Figure 2b, et is defined as the unit tangent vector of γ, and the derivative of Q has
the direction of et.

et =

.
Q
.

‖Q‖
= en × eb (11)

et(t0) can be obtained by the cross product of the unit normal vector en and unit
binormal vector eb.

en =
P − Pco

‖P − Pco‖ =
P − Pco

ρ
(12)

eb = et × en = et × P − Pco

ρ
(13)

Pco is the closest point from the robot to γ, and PPco is always vertical to γ. The initial
direction of γ is determined by et(t0). In order for the initial direction of γ to be directed
toward goal, eb is defined as follows.
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eb =

(
Pgoal − Pto

)
× (P(t0)− Pto)∥∥∥(Pgoal − Pto

)
× (P(t0)− Pto)

∥∥∥ where Pto = Pco(t0) (14)

P(t0) is the position vector of the robot when it is trapped in the LM. As shown in
Figure 3, eb is set to K or −K at the time of t0 according to the relative positions of the robot,
the closest obstacle, and the goal. At the moment the robot is trapped in the LM, et(t0),
which is the direction for the robot to move, is determined according to the sign of eb.

 
(a) (b) 

Figure 3. Direction of γ: (a) when eb = K; (b) when eb = −K.

3.2. Problems with Previous eb

Ftotal = Frep + Fext =

{
ke1et +

(
kr

(
1
ρ − 1

ρ0

)
1
ρ2 − 2ke2ρ

)
en, ρ ≤ ρ0

ke1et − 2ke2ρen, ρ > ρ0
(15)

From the moment the robot is trapped in the LM to the moment of its escape, the
artificial force applied to the robot is Frep + Fext. In Equation (10), the first term ke1et of Fext
acts for a robot to move along the obstacle. The second term −2ke2ρen acts in the opposite
direction to the repulsive force so that the robot does not move too far away from the
obstacle. The extra force operates to move the robot along the outline of the obstacle until
the robot escapes the LM without being too far away from the obstacle. In the previous
virtual hill algorithm, eb was determined by the location relationship, and the form of the
surrounding obstacle was not considered. Therefore, depending on the form of the map,
the robot sometimes set an inefficient path. Figure 4 shows the moment when the robot
is trapped in the LM, and Pto is the position of the closest obstacle at the moment when it
is trapped in the LM. According to Equation (14) used in the previous algorithm, eb has
the −K direction. In the LM section, since et indicating the driving direction is en × eb, the
robot moves in the negative direction (clockwise). Eventually, it goes around the blocked
path, as shown in Figure 5 (Point E is the moment it is determined that the robot has escaped
the LM). Depending on which direction is selected at the moment when the robot is trapped
in the LM, it may take quite a long path, or a dead path may be selected. Determining eb by
considering only the relative positions, as in Equation (14), may complicate the movement
path, as in Figure 5. Therefore, a more effective path planning algorithm that considers the
form of obstacles is required.

3.3. Open Path Indicator, New eb

new eb is proposed, in which the obstacle form is considered. As soon as the robot is
trapped in the LM, it is necessary to select in which of the two directions to move. This is
divided into the (+) direction and (−) direction based on P(t0). For each direction, the rate
of change in the obstacle contour is calculated. The direction with the larger rate of change
is considered the more open path, that is, the driving direction. This direction setting helps
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the robot avoid a closed path and reach the destination with a shorter moving distance.
More efficient path planning becomes possible when the driving direction is determined in
consideration of the shape of the obstacle.

 
(a) (b) 

Figure 4. Direction determined by previous eb: (a) the moment the robot is trapped in the local
minimum; (b) et determined by previous eb.

Figure 5. Driving path determined by previous eb. The path length is 44.26 [m].

3.3.1. Two-Directional Obstacle Measurement and New eb

In the simulation environment, the range sensor is configured in a radial form with
the center of the robot as the origin. The degree of openness in both directions is estimated
using the rate of change in the detection distance according to the measurement angle of
each sensor data. In order to calculate the rate of change in the obstacle detection distance,
it is expressed as a polar coordinate system fixed to the center of the robot. Figure 6 shows
the polar coordinate system with the origin at the center of the robot and the angle of each
sensor data set in the simulation. The angle and detection distance for each sensor data
are expressed as θi and ri. At the moment when the robot is trapped in the LM, the rate of
change in the outline of the obstacle is calculated for both the left and right directions based
on the n-th sensor data that measured Pto. The one with the larger value is considered
the open path and becomes the direction for the robot to move. When the contour of the
two-directional obstacle is expressed as continuous functions χp and χm, the moment of
the LM is shown in Figure 7. The differential lengths dχp and dχm in the polar coordinate
system can be written as follows.

d
→
χp = dr ar + r dθ aθ d

→
χm = dr ar + r dθ aθ (16)
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(a) (b) 

Figure 6. Local polar coordinate system with an origin at the center of the robot: (a) sensor measure-
ment angle θi and detection distance ri; (b) sensor data numbers (1· · ·L) and measurement angles.

Figure 7. The (+) directional obstacle χp and (−) directional obstacle χm based on the n-th sensor
data in which Pto is measured (enlargement of Figure 4a).

The rate of change in the obstacle contour for θ, dχp/dθ and dχm/dθ, is as follows.

∣∣∣∣dχp

dθ

∣∣∣∣ =
√(

dr
dθ

)2
+ r2

∣∣∣∣dχm

dθ

∣∣∣∣ =
√(

dr
dθ

)2
+ r2 (17)

The obstacle contour is discretized as distance values received from the L sensor data,
{R1(r1, θ1), R2(r2, θ2), . . . , Ri(ri, θi), . . . RL(rL, θL)}. If dr/dθ is replaced with Δr/Δθ, the
sum of the power of the rate of change in each of the two directions based on the n-th
sensor data may be written as follows.

Psum =
n+L/2

∑
i=n

(
ri+1 − ri

Δθ

)2
+ r2

i Msum =
n

∑
i=n−L/2

(
ri+1 − ri

Δθ

)2
+ r2

i (18)

The angle and obstacle measurement distance of the i-th and (i + 1)-th sensor data
are expressed in the polar coordinate system, as in Figure 8. The angle change Δθ with
the neighboring sensor data is determined according to the sensor resolution L and is
calculated as 2π/L. Psum is the sum of squares of the rate of change in the obstacle contour
in the (+) direction based on the n-th sensor data, and Msum is the sum of squares of the
rate of change in the (−) direction. The direction with the further distance to the obstacle
and the greater rate of change is regarded as an open path. That is, eb is set to +K when
Psum > Msum and to −K when Psum < Msum. In the map of Figure 4, previous eb is −K,

and the robot rotates in the direction of −θ. new eb, determined by the new algorithm, is
+K, and the robot rotates in the direction of +θ, as shown in Figure 9. More efficient path
planning is possible. If the degree of opening in both directions is similar by satisfying the
following conditions, previous eb is maintained. threshold is determined experimentally.
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Figure 8. The i-th and the (i + 1)-th vectors of the L sensor data.

Figure 9. Driving path determined by new eb (in comparison to Figure 5). The path length is 13.82 [m].

i f Psum > threshold & Msum > threshold then new eb = previous eb (19)

3.3.2. Dead-End Algorithm

When the robot encounters a dead end while traveling to the destination, it is efficient
to avoid it unless the destination is inside the dead end. When a robot encounters a dead
end, if it is not on the way to its destination, it can avoid the dead end using the dead-end
algorithm. Figure 10a shows the path planning results when et is determined by previous eb.
This is the path where the robot trapped in the LM at point P(t0) moves to the destination
along the obstacle ABCD section using the virtual hill technique. The ABCD section is a
dead end and unnecessarily increases the robot’s travel distance and time. In this case, the
robot can also come back through the dead-end algorithm just as people come back after
confirming that it is a dead-end path.

   
(a) (b) (c) 

Figure 10. Dead-end algorithm: (a) driving path determined by a virtual hill with previous eb. The
path length is 32.87 [m]. (b) The moment the robot notices a dead end. (c) Driving path determined
by the dead-end algorithm. The path length is 28.99 [m].
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The robot returns to the point P(t0) and then moves in the opposite direction. The
robot travels along obstacles closer to the destination. If the dead-end algorithm is applied
when encountering a dead end, the robot can avoid the dead end without completely
entering it, as shown in Figure 10c. This algorithm is applied between the beginning and
the end of the LM. The flowchart of the dead-end algorithm is shown in Figure 11. The
criteria for determining that the robot is at a dead end are as follows.

i f r(θ) < maxRange,−π

2
≤ θ ≤ π

2
then the path is a dead end. (20)

Figure 11. Flowchart of the dead-end algorithm.

r(θ) is the distance of the obstacle detected by the sensor, and maxRange is the sen-
sor’s maximum detection distance. If the obstacle detection distance of all sensor data
in the [−π/2,π/2] section corresponding to the front portion of the robot is shorter than
maxRange, it is determined that the robot has entered a dead end. If the robot is at a dead
end, whether to enter or avoid further depends on the location of the destination. The
following two conditions are examined to determine whether the destination is inside or
outside the dead end. ⎧⎨⎩

∣∣∣PL
goal

∣∣∣ < rk

−π
2 ≤ α ≤ π

2 , PL
goal =

∣∣∣PL
goal

∣∣∣ ∠α
(21)

PL
goal represents the location vector of the destination for the local coordinate system

with an origin at the center of the robot, as shown in Figure 6a. rk is the measured distance

of the k-th sensor data, which is at the angle closest to the vector
→

Pgoal − P among all sensor

data.
∣∣∣PL

goal

∣∣∣ < rk means that there is no obstacle between the robot and the destination. α

is the angle of PL
goal in the local coordinate system. −π/2 ≤ α ≤ π/2 means that the goal is

at the front portion of the robot. If both conditions are satisfied, it is determined that the
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destination is inside the dead end. If the destination is inside the dead end, the robot is
controlled to the destination with Ftotal = Fatt+ Frep. This Fatt is an attractive force heading
to the initially set goal (destination). If the destination is outside the dead-end road, the
robot returns to P(t0) and moves in the opposite direction. In order for the robot to return
to P(t0), Pgoal is temporarily changed to P(t0), and Ftotal = Fatt(P(t0))+ Frep is applied to
the control. Fatt(P(t0)) described an attractive force generated when P(t0) is set as Pgoal .
When the robot arrives at the position P(t0), Pgoal is reset to the initial goal, and it moves in
the opposite direction to et(t0). Ftotal = Fext+ Frep is applied until the robot escapes from
the LM.

4. Simulations

Some conditions for simulation are referred to in [32]. The virtual hill algorithm has
several parameters for controlling the robot, such as the constant coefficients of the extra
force, the application distance of the reactive force, and the like. Depending on the setting,
the degree to which the robot approaches or moves away from obstacles, the straightness
of the driving, and similar parameters may vary. Some maps provided by MATLAB are
applied in sizes of 10 [m] × 10 [m]. The total artificial force is converted into linear velocity
and angular velocity by the force-to-velocity conversion method [32]. The path length is
indicated in each figure description.

Figures 12 and 13 show the results of the enhanced virtual hill algorithm. In the
previous algorithm, when the robot is trapped in an LM (local minimum), the direction
of progress is determined by the relative positions of P(t0), Pto, and the goal. According
to this algorithm, as shown in Figure 12a, the robot moves along the obstacle BCDE. On
the other hand, when the enhanced virtual hill algorithm including new eb is applied, the
robot moves along the obstacle BA, as shown in Figure 12b. When the robot reaches the
goal by following the obstacle BA, the efficiency of the driving path may be improved.
In the case of Figure 13, according to the direction determination by the previous virtual
hill algorithm, that is, previous eb, the robot goes around in the (+) direction, as shown in
Figure 13a. The robot moves along the obstacle ABCDEFGH until it escapes the LM. Since
the path determined by new eb goes to the goal along obstacle OA, unnecessary driving
may be avoided. In Figure 13, the driving distance varies considerably depending on the
direction determination at the LM.

  
(a) (b) 

Figure 12. Driving paths: (a) Determined by previous eb. The path length is 16.51 [m]. (b) Determined
by new eb. The path length is 11 [m].

Figures 14–19 show the simulations of the driving path by new eb and the dead-end
algorithm. If the robot recognizes that it is at a dead end while driving in the LM section, it
returns to the robot’s position P(t0). At P(t0), the robot moves in the opposite direction and
follows a closer obstacle to its goal. In the case of Figure 14a, at the point of t0, it travels in
the (−) direction and travels along the obstacle ABCDEFGHI for a long distance. Figure 14b
travels along the (+) direction according to new eb and travels the shortest distance along
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the obstacle BA. Figure 14c shows the result of applying the dead-end algorithm during
driving, as shown in Figure 14a. After recognizing the obstacle BCDE as a blocked road,
the robot returns to P(t0) and moves in the direction of obstacle BA. In Figure 17c, as the
robot rotates in the (+) direction, the recognition of the blocked road, arrival at P(t0), and
setting of the opposite direction occur almost simultaneously, drawing a path similar to
that in Figure 17b without any special driving.

  
(a) (b) 

Figure 13. Driving paths: (a) Determined by previous eb. The path length is 41.08 [m]. (b) Determined
by new eb. The path length is 12.91 [m].

   
(a) (b) (c) 

Figure 14. Driving paths: (a) Determined by previous eb. The path length is 36.66 [m]. (b) Determined
by new eb. The path length is 12.87 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 21.7 [m].

   
(a) (b) (c) 

Figure 15. Driving paths: (a) Determined by previous eb. The path length is 35.95 [m]. (b) Determined
by new eb. The path length is 15.98 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 21.72 [m].
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(a) (b) (c) 

Figure 16. Driving paths: (a) Determined by previous eb. The path length is 25.6 [m]. (b) Determined
by new eb. The path length is 17.33 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.02 [m].

   
(a) (b) (c) 

Figure 17. Driving paths: (a) Determined by previous eb. The path length is 32.34 [m]. (b) Determined
by new eb. The path length is 18.96 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.14 [m].

   
(a) (b) (c) 

Figure 18. Driving paths: (a) Determined by previous eb. The path length is 32.87 [m]. (b) Determined
by new eb. The path length is 20.17 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 28.99 [m].
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(a) (b) (c) 

Figure 19. Driving paths: (a) Determined by previous eb. The path length is 26.12 [m]. (b) Determined
by new eb. The path length is 16.61 [m]. (c) Determined by previous eb and the dead-end algorithm.
The path length is 19.48 [m].

In Figure 20, (c) shows the moment of the LM, (a) shows the driving path determined
by previous eb, and (b) shows the driving path determined by the new eb. Using new eb, et
is determined so that the robot may travel on a more open path. However, depending on
the map, the direction that was the more open path may be blocked, as shown in Figure 20.
The more open direction is the (+) direction when comparing (+) and (−) directions from
the robot’s position shown in Figure 20c, but the robot eventually encounters a dead end.
Nevertheless, there is no significant difference in path length between Figure 20a,b. In
Figure 20a, the robot avoids the dead end using previous eb but follows obstacles far from
the destination. In Figure 20b, the robot enters the dead end, but the path length is reduced
by following obstacles closer to the destination due to new eb.

   
(a) (b) (c) 

Figure 20. For a map that contains a dead end: (a) The driving path determined by previous eb. The
path length is 29.41 [m]. (b) The driving path determined by new eb. The path length is 30.91 [m].
(c) The moment of the local minimum.

Table 1 shows how much the robot’s mileage is reduced by the proposed algorithm.
It represents the distance and ratio reduced by new eb and the dead-end algorithm based
on the path determined by previous eb for all simulations shown in the paper. The driv-
ing distance is reduced by up to 68 [%] using new eb and by up to 44 [%] using the
dead-end algorithm. It is confirmed that the virtual hill algorithm is improved by the
proposed method.
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Table 1. Reduction in mileage according to algorithms.

Mileage Using
Previous eb [m]

Mileage Using
New eb [m]

Mileage Using
Dead-End

Algorithm [m]

Reduction Proportion
Using New eb [%]

Reduction Proportion
Using Dead-End
Algorithm [%]

Figure 9 44.26 13.82 - 68.78 -
Figure 12 16.51 11 - 33.37 -
Figure 13 41.08 12.9 - 68.60 -
Figure 14 36.66 12.87 14.96 64.89 40.81
Figure 15 35.95 15.98 14.23 55.55 39.58
Figure 16 25.6 17.33 6.58 32.30 25.70
Figure 17 33.66 19.02 14.83 43.49 44.06
Figure 18 32.87 20.17 3.88 38.64 11.80
Figure 19 26.12 16.61 6.64 36.41 25.42
Figure 20 29.41 30.91 - −5.10 -

Average [%] - - - 43.69 31.23

5. Discussion

In order to compare with the previous virtual hill algorithm, simulations are performed
on the same environment for both previous eb and new eb. Also, the dead-end algorithm is
applied when entering a blocked road, and how the path changes is checked. The circle
mark is displayed at the position of P(t0) for visual confirmation at the moment the blocked
path is recognized. All simulations are saved as pictures, data files, and videos.

In Figures 12–19, each (a) is the result when previous eb is applied, and each (b) is the
result when new eb is applied. They show that the moving distance can be significantly
reduced when determining the driving direction by comparing the degree of openness of
the two-way route regardless of the relative position of the robot and the goal. (c) Shows
the result of applying the dead-end algorithm when a route including a blocked road is
selected. It is possible to reduce the moving distance by more than about 4 m by coming
back without entering deep into the dead end. In the service environment, if the mobile
robot travels at a low speed of less than 0.2 m/s, it can save more than about 20 s. The
saving distance and time can vary depending on the measurable distance of the sensor
and control techniques. Very occasionally, the path along the new eb is more inefficient, as
shown in Figure 20. The maximum measurement distance of the sensor is 4 m. Since the
distance from the robot position in Figure 20c to the obstacle CD is about 4 m, it is difficult
for the robot to recognize the dead end road in the (+) direction. Unless the robot has
map information in advance or creates a map while moving, it may encounter dead ends
when moving through an unknown space. The dead-end algorithm prevents the robot
from having to drive unnecessarily deep into dead ends.

6. Conclusions

The virtual hill technique, which moves along a nearby obstacle when a robot is
trapped in an LM, is easy to apply to an unknown variable environment. The virtual hill
technique does not require information about space and obstacles, does not create a new
the LM even in a complicated environment, and has the advantage of being easy to apply.
However, there is a problem in that the mileage can vary greatly depending on which
directional obstacle the robot moves along. In this study, the performance of the virtual
hill technique is improved by compensating for this shortcoming using new eb and the
dead-end algorithm. The enhanced virtual hill algorithm makes it possible for a robot to
reach its goal on a shorter path. Also, when a robot encounters blocked roads, it can come
back without entering through the dead-end algorithm.

In future research, when the robot is trapped in the LM and extra potential is generated,
it can be programmed to check in advance whether there is a dead end nearby and exclude
that direction. In cases like Figure 20a, it is necessary to recognize in advance that if the
robot moves in the (+) direction, it will lead to a dead end. In order to recognize dead
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ends from a long distance, the sensor’s obstacle measurement distance must be longer,
and more sensor data must be processed for accuracy. It is unnecessary to process this
much data in each control cycle. A method is needed to obtain detailed information
about distant obstacles only when needed. To verify the proposed algorithm, additional
simulations and experiments in diverse and dynamic environments are required. It is
also necessary to establish indicators to quantitatively evaluate the stability and flexibility
of robot driving. Through these, it is expected that the performance and limitations of
the proposed algorithm will be analyzed, and shortcomings can be resolved in various
conditions where static/dynamic obstacles exist in combination.
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