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Abstract: Due to the subjective nature of people’s aesthetic experiences with respect to images,
personalized image aesthetics assessment (PIAA), which can simulate the aesthetic experiences
of individual users to estimate images, has received extensive attention from researchers in the
computational intelligence and computer vision communities. Existing PIAA models are usually
built on prior knowledge that directly learns the generic aesthetic results of images from most people
or the personalized aesthetic results of images from a large number of individuals. However, the
learned prior knowledge ignores the mutual influence of the multiple attributes of images and
users in their personalized aesthetic experiences. To this end, this paper proposes a personalized
image aesthetics assessment method via multi-attribute interactive reasoning. Different from existing
PIAA models, the multi-attribute interaction constructed from both images and users is used as
more effective prior knowledge. First, we designed a generic aesthetics extraction module from the
perspective of images to obtain the aesthetic score distribution and multiple objective attributes of
images rated by most users. Then, we propose a multi-attribute interactive reasoning network from
the perspective of users. By interacting multiple subjective attributes of users with multiple objective
attributes of images, we fused the obtained multi-attribute interactive features and aesthetic score
distribution to predict personalized aesthetic scores. Experimental results on multiple PIAA datasets
demonstrated our method outperformed state-of-the-art PIAA methods.

Keywords: image aesthetics assessment; personalized aesthetic experiences; multiple attributes;
interactive reasoning

MSC: 68U10; 68T05

1. Introduction

In the past few years, with the prevalence of social networks (such as Facebook and
Wechat), people usually use multimedia data such as images to obtain information and for
other visual needs. Therefore, the visual experience of providing images in these social
networks plays a key role in attracting users. In this context, it is desirable to develop image
aesthetics assessment (IAA), which can simulate users’ visual experiences and automati-
cally assesses the aesthetics of images, e.g., digital cameras provide users with aesthetic
evaluation suggestions when taking photos. Consequently, massive IAA methods [1,2] have
been proposed by researchers in the pattern recognition and computer vision communities,
which has applicable value for various tasks, e.g., photo retrieval [3], image management [4],
image enhancement [5], image synthesis [6], and image recommendation [7].

Typically, IAA approaches can be classified into two broad categories: generic image
aesthetics assessment (GIAA) and personalized image aesthetics assessment (PIAA) [8].
As the name indicates, GIAA aims to infer the aesthetic experiences perceived by most
people [9], whereas PIAA is designed for the aesthetic ratings of a certain individual user
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for images [10]. Early IAA methods mainly leveraged general attributes in photography
and artistic painting (e.g., composition, color, light) to measure the aesthetics of images for
most people (GIAA) [2]. Specifically, the average rating of an image annotated by different
people is used as the “ground truth” to classify the image into high and low aesthetic
categories [11,12] or to map the image to a certain aesthetic score [13,14]. However, these
average results ignore an important fact that people’s aesthetic experience of images is
subjective. In view of this, existing GIAA methods mainly focus on directly predicting
the aesthetic distribution of most people’s ratings on images [15–18]. Although the image
aesthetic distribution can reflect the aesthetic subjectivity of people to a certain extent, this
task only measures people’s aesthetic ratings from the perspective of images. All in all,
GIAA methods are unable to infer individual users’ aesthetic preferences for images, which
is very valuable in many user-centric applications (e.g., personalized image recommenda-
tion [19], personalized image captioning [20] and personalized image enhancement [21]).
To deal with this issue, PIAA is proposed to obtain individual users’ personalized aesthetic
experience of images [22].

PIAA is a user-oriented approach that can only utilize the annotated data provided by
each individual user to build a PIAA model [10]. Usually, the number of annotated data
provided by a user is limited, which is unable to directly train an efficient PIAA model
based on a deep learning framework. Consequently, existing PIAA models mainly rely
on a large amount of labeled data rated by most users to train a prior model and further
use the labeled data of individual users for model fine-tuning [22–29]. These prior models
can be summarized into two types, including learning from the generic aesthetic results of
most users [22–26] or learning from the personalized aesthetic results of a large number of
individual users [27–29]. The former prior model can capture generic aesthetic experience
from the perspective of images, while the latter prior model directly obtains personalized
aesthetic experience from the perspective of users. However, the prior knowledge obtained
from images eliminates the aesthetic differences among individual users, while the prior
knowledge achieved directly from individual users cannot efficiently capture the general
aesthetics of images.

To alleviate the above issues, the prior model for PIAA should not only learn the
general aesthetics of images, but also model the aesthetic differences of individual users.
Specifically, the general aesthetics of an image is usually determined by its objective
attributes [30]. For example, Figure 1a shows an image and the corresponding objective
attributes. We can observe that the generic (average) aesthetics is closely related to multiple
attributes, and these attributes jointly influence most users’ aesthetic experience of images.
Besides, the aesthetic differences among individual users are usually affected by their own
subjective attributes [10]. As shown in Figure 1b, the subjective attributes of the two users
are quite different. For instance, User #1 has better education and photography skills than
User #2, which makes User #1 more stringent about the attributes such as composition
and light of the image. User #2 may prefer scenes such as buildings. All in all, User #1
gives the image a lower aesthetic score (0.3), while User #2 has a higher aesthetic score for
the image (0.9). Therefore, exploring the close relationship between the multiple objective
attributes of images and the multiple subjective attributes of users is the premise of inferring
the personalized aesthetics of a specific user. However, this interactive relationship has
not been exploited in the prior model of existing PIAA methods [22–29]. To this end,
we can leverage the interactive relationship between subjective and objective attributes to
capture aesthetic prior knowledge (multi-attribute interactions). Even when a user provides
limited annotated data, the aesthetic prior knowledge can also stably utilize the relationship
between the subjective attributes of similar users and the objective attributes of images for
reasoning about the user’s aesthetic preferences.
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Age 18

Gender Male

Education Junior high school

Artistic Competent

Photographic Beginner

Personality
(E, A, N, O, C)

(0.8, 0.8, 0.4, 0.6, 0.8)

Aesthetic score 0.90

Age 26

Gender Female

Education Junior college

Artistic Competent

Photographic Proficient

Personality
(E, A, N, O, C)

(0.4, 1.0, 0.2, 0.6, 1.0)

Aesthetic score 0.30

User #1 User #2Average aesthetics 0.70

Composition 0.72

Color 0.68

Depth of Field 0.68

Content 0.64

Light 0.60

Object emphasis 0.25

Scene categories building 

(b) Two users and subjective attributes(a) Image and objective attributes

Figure 1. An image and two different users who rated it from the Personalized image Aesthetics
database with Rich Attributes (PAPA) [10]. To their right, some objective attributes of the image
and several subjective attributes of the users are shown. These numerical attributes and aesthetic
scores are normalized between 0 and 1, and higher values indicate stronger attributes and aesthetics.
The personality of users here is measured by the Big-Five traits (extroversion (E), agreeableness (A),
neuroticism (N), openness (O), and conscientiousness (C)) [31].

In this paper, we propose a personalized image aesthetics assessment method via
multi-attribute interactive reasoning (PIAA-MIR). In order to reveal the personalized aes-
thetic preference of users for images, we expect to capture the aesthetic prior model that
reflects the potential interaction between the subjective attributes of users and the objective
attributes of images. Compared with the existing prior models that only learn the generic
aesthetics of most users [22–26] or the personalized aesthetics of a large number of indi-
vidual users [27–29], the proposed multi-attribute interaction can effectively characterize
the aesthetic mutual influence of users and images to accurately evaluate personalized
aesthetic preferences. Specifically, we first propose a generic aesthetics extraction module
from the perspective of images to simultaneously predict multiple objective attributes and
aesthetic distributions of images. From the perspective of users, a multi-attribute inter-
action reasoning network is then introduced to capture the interaction between multiple
attributes of users and images. To obtain the multi-attribute interaction, we utilized the
outer-product [32] to calculate the pairwise correlations between multiple attributes of
users and images. Based on the multi-attribute interactive features and aesthetic score
distribution, we used a regressor to fuse them for obtaining personalized aesthetic scores.
To sum up, the main contributions of the proposed method are as follows:

• We excavated the fundamental factors of users’ personalized aesthetic preferences for
images by constructing a multi-attribute interaction, which alleviates the insufficient
problem of directly obtaining prior knowledge only from the generic aesthetics of
images or the personalized aesthetics of a large number of individual users.

• We propose a generic aesthetics extraction module that can simultaneously predict
multiple attributes and aesthetic distributions of images. In the multi-attribute in-
teractive reasoning network, we can not only leverage multiple attributes of images
and users to construct an effective interaction, but also further use the multi-attribute
interactive features and aesthetic score distribution to jointly model personalized
aesthetic scores.

• We propose a personalized image aesthetics assessment method via multi-attribute in-
teractive reasoning (PIAA-MIR), whose experimental results on several PIAA databases
demonstrated that the proposed PIAA-MIR outperformed state-of-the-art PIAA meth-
ods. Besides, ablation studies also showed the effectiveness of our method in learning
a personalized aesthetic prior model.

3
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2. Related Works

Since existing PIAA methods are mainly built on the GIAA model, we first review
some works related to the GIAA methods and then introduce the PIAA methods.

2.1. Generic Image Aesthetics Assessment

Early researchers believed that people had a consensus on the aesthetic experience of
images [33] and generic image aesthetics perceived by most people could be measured by
aesthetic rules in photography (e.g., light, colorfulness, and composition) [34]. Generally,
GIAA methods can be divided into three categories: aesthetic binary classification [11,12],
aesthetic score regression [13,14], and aesthetic distribution prediction [15–18]. The goal of
the aesthetic binary classification task is to classify images into “high” and “low” categories
according to the aesthetic ratings of most people. Specifically, Murray et al. [11] introduced
a large general-purpose IAA database, AVA, and utilized hand-crafted features to train an
SVM for image aesthetic classification. Compared with the aesthetic binary classification
task, aesthetic score regression needs to more accurately predict image aesthetic scores. For
instance, Kong et al. [13] employed a deep Siamese network based on image pair ranking
learning, which can simultaneously predict the aesthetic attributes and content of images
and further learn to rank the aesthetic scores of images on the basis of aesthetic attributes
and content information.

Regardless of aesthetic binary classification or aesthetic score regression, it is necessary
to process the aesthetic ratings of different people into a unified result (“high” or “low”
and aesthetic score), which will introduce label uncertainty to a certain extent. The main
reason is that people’s aesthetic experiences are highly subjective, which makes the unified
result unable to effectively describe the image aesthetics perceived by different people.
Therefore, the task of aesthetic distribution prediction that directly models the image score
distribution rated by most people has received great attention from researchers. For exam-
ple, Talebi et al. [2] used the earth mover’s distance (EMD) loss function to train an IAA
model for predicting the image aesthetic distribution. The above methods mainly focus on
the image aesthetic distribution, ignoring the intrinsic relationship among the three tasks of
image aesthetics binary classification, aesthetic score regression, and aesthetic distribution
prediction. Therefore, some recent studies have proposed a unified deep learning frame-
work for the three GIAA tasks [15–17]. For example, Zeng et al. [16] proposed a deep model
with a unified probabilistic formula and introduced a loss function that is effective for all
three GIAA tasks to optimize the deep model. Based on the above analysis, we can find that
the current GIAA research mainly focuses on aesthetic distribution prediction. Therefore,
our generic aesthetics extraction module exploits the score distribution to represent generic
image aesthetics.

2.2. Personalized Image Aesthetics Assessment

The purpose of PIAA is to evaluate images by simulating the visual aesthetics of
individual users [22]. Since users’ aesthetic preferences are affected by multiple factors
such as age, education, and behavioral habits [35,36], the PIAA for a specific user is more
complicated and difficult than the GIAA for generic users. Due to the limited labeled
samples provided by individuals, PIAA is a small sample learning task [28]. Existing PIAA
models are usually built on a prior model with generic aesthetic knowledge, which utilizes
aesthetic data annotated by massive users for model training [22–29].

Among them, one approach is to take generic aesthetic results rated by most users
as the target for prior model learning from the perspective of images. For instance,
Ren et al. [22] found that users’ aesthetic preferences were closely related to image content
and aesthetic attributes and leveraged the average aesthetic scores of images, image content,
and aesthetic attributes to jointly infer personalized aesthetic scores. Li et al. [8] built a
prior model for the PIAA task by using the aesthetic distribution of images and the Big-Five
personality traits of users who prefer these images. However, these prior models learned
from images eliminate the aesthetic differences among individual users.

4
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Another approach is to learn the prior model directly from the personalized aesthetic
results of a large number of individual users from the perspective of users. In [28], Zhu et al.
proposed a PIAA model based on bi-level gradient optimization meta-learning, which
directly captured an aesthetic prior knowledge by training the PIAA tasks of extensive users.
Hou et al. [29] trained a prior aesthetic pattern for all individual users by leveraging the
interaction between user preferences and image content. In [27], the authors inferred the Big-
Five traits of users from their rated images and used the personalized aesthetics of massive
individual users to train a prior model. However, the above aesthetic prior models learned
directly from individual users are inefficient in capturing the general aesthetics of images.
To this end, we expect that the prior model of PIAA can both learn the general aesthetics of
images and model the aesthetic differences of various users. Therefore, we utilized multiple
attributes of images and users to characterize general aesthetics and aesthetic differences,
respectively, and capture the stable interactive relationship between objective attributes
and subjective attributes for easily inferring users’ personalized aesthetics of images.

3. Proposed Method

This section introduces the personalized image aesthetics assessment method via
multi-attribute interactive reasoning, which is called PIAA-MIR. In the proposed PIAA-
MIR, we obtain the prior model for the PIAA task of an individual user by implementing
a multi-attribute interaction between users and images. Figure 2 shows the overview
architecture of our PIAA-MIR, whose training process can be divided into three steps.
In the first step, a generic aesthetics extraction module is the software command line to
proceed with the extraction, which is trained with images and the annotated multiple
aesthetic attributes and score distribution. In the second step, we built a prior model from
a multi-attribute interaction between users, as well as their rated images, which further
reasons personalized scores by fusing interactive features and the score distribution. In the
third step, we leveraged an individual user’s personalized aesthetic data to fine-tune the
prior model for obtaining the PIAA model of the user.

Input image

User

Image feature extraction

Multiple objective 
attributes

(composition, 
color, light, … )

Distribution

Multiple subjective 
attributes

(personality, age, gender, 
education, …)

reshape

Interactive 
feature 

Personalized 
score

Multi-attribute 
interaction map

Interaction

Multi-attribute Interactive Reasoning Network

Generic Aesthetics Extraction Module1

2

MLP

FC

CNN

FC

FC

GAP

Composition : 0.75
Color : 0.72
Depth of Field : 0.72
Content : 0.74
Light : 0.75
Object emphasis : 0.76
Scene categories : night scene

Annotation 

Figure 2. The overview architecture of our PIAA model, whose training process can be divided
into three steps. In the first step, a generic aesthetics extraction module is used to simultaneously
predict multiple attributes and aesthetic distributions from the perspective of images. In the second
step, a multi-attribute interaction reasoning network is then introduced from the perspective of
users to capture a multi-attribute interaction between users, as well as their rated images. Based
on interactive features and the score distribution, a prior model is built to fuse them for obtaining
personalized aesthetic scores. In the third step, the PIAA model of an individual user can be obtained
by fine-tuning the user’s personalized data.
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3.1. Generic Aesthetics Extraction

To obtain the generic aesthetics of images, we designed a generic aesthetic extraction
module to jointly infer multiple objective attributes and the aesthetic score distribution.
Consequently, we introduced a convolutional-neural-network (CNN)-based multi-task
learning [8,37] to extract the shared image features of generic aesthetic attributes and
the distribution. The proposed CNN was inherited from the typical ResNet [38], which
removes the full connection layer. As shown in the upper part of Figure 2, we adopted
the CNN parameters pre-trained on ImageNet [39] as initial weights, which further use a
global average pooling (GAP) and two fully connected layers (FC) for mapping images to
multiple aesthetic attributes and score distributions.

In particular, for an input image x, the generic aesthetic extraction module can be
formulated as

â = FCθa(GAP( fθ(x))), d̂ = FCθd(GAP( fθ(x))), (1)

where θ represents the CNN parameters fθ and FCθa and FCθd denote the parameters
of an FC layer corresponding to the predicted multiple aesthetic attributes â and score
distribution d̂, respectively. Since this module aims to extract the aesthetic attributes and
score distributions of images rated by most people, we assumed Dimg = {xi, ai, di}Na

i=1 as
the set for training the generic aesthetic extraction module, where ai and di indicate some
annotated aesthetic attributes and score distribution of the i-th image xi (i = 1, 2, 3, . . . , Na),
respectively. Besides, Na denotes the number of images in this training set.

To enable the proposed generic aesthetic extraction module to effectively predict
aesthetic attributes and the score distribution, we employed the earth mover’s distance
(EMD) [40] and l2 loss functions to jointly optimize the parameters of this module (θ, θa,
and θd), which is defined as

La =
1

Na

Na

∑
i=1

(
(ai − âi)

2 + (
1
P

P

∑
k=1

|CDFdi (k)− CDFd̂i
(k)|2) 1

2

)
, (2)

where âi and d̂i are the predicted aesthetic attributes and score distribution by feeding
the i-th image into the generic aesthetic extraction module. Similar to [2], classes in the
image aesthetic score distribution are inherently ordered as dp1

i < . . . < dpP
i . Therefore, the

EMD, which contains the cumulative distribution function (CDF), is sensitive to the order
of aesthetic score buckets, which is suitable for calculating the loss of the image aesthetic
distribution. Specifically, P indicates the number of aesthetic score buckets, and CDFdi (k) =

∑k
j=1 d

pj
i represents the cumulative distribution function, where d

pj
i denotes the probability

of the j-th score bucket and ∑P
j=1 d

pj
i = 1. In this way, the generic aesthetics extraction

module that can simultaneously predict multiple attributes and aesthetic distributions of
images can be obtained by using the training data of Dimg from the perspective of images.

3.2. Multi-Attribute Interaction Reasoning

Before building the multi-attribute interaction, we need to utilize multiple subjective
attributes to characterize individual users. Assume that s represents the subjective attributes
of an individual user, which can be collected by users answering several questionnaires [10].
To enable the prior model also to robustly capture personalized aesthetic differences from
the perspective of users, we leveraged a large number of users’ personalized aesthetic data
on images to train the multi-attribute interactive inference network.

Suppose that Dusers = {sj, {xi,j, yi,j}Ns
i=1}Nb

j=1 denotes the set for training the multi-
attribute interactive inference network, where sj represents some subjective attributes of
the j-th user (j = 1, 2, 3, . . . , Nb) and yi,j indicates the user’s personalized score for the
image xi,j (i = 1, 2, 3, . . . , Ns). For the image xi,j, the multiple objective attributes and score

6



Mathematics 2022, 10, 4181

distribution can be extracted from the trained generic aesthetics extraction module, which
is formulated as

âi,j = FCθa(GAP( fθ(xi,j))), d̂i,j = FCθd(GAP( fθ(xi,j))), (3)

where âi,j and d̂i,j are the predicted aesthetic attributes and score distribution of the i-th
image in the subset of the j-th user. As shown in Figure 1, since the user’s personalized
aesthetic preference for images is affected by multiple attributes from both sides, we need
to obtain all pairwise interactive relationships between subjective attributes and objective
attributes. To achieve this, we employed the outer-product [32] to obtain the pairwise
interactions between multiple attributes of users and images, which takes the form

Ai,j = sj ⊗ âi,j, (4)

where Ai,j ∈ Rds×da denotes the multi-attribute interaction map, sj ∈ Rds×1 represents
the attributes of the j-th user, âi,j ∈ Rda×1 represents the attributes of the i-th rated image,
and ⊗ is the operation of the outer-product. In addition, ds and da indicate the number of
users’ subjective attributes and image objective attributes, respectively. The elements in
the interaction map Ai,j reflect the aesthetic preferences of users’ subjective attributes to
image objective attributes at different dimensions. For example, if a testing user has similar
subjective attributes to some trained users, his/her aesthetic preference for images can be
inferred from the stable relationships learned from the multi-attribute interaction map.

To make the prior model learn the aesthetic differences among individual users, we
further used the interaction map for reasoning users’ personalized aesthetic scores for
images. For this purpose, the interaction map Ai,j was reshaped to an interactive feature Ii,j,
and we leveraged a two-layer multilayer perceptron (MLP) to map the interactive feature
into aesthetic difference scores between different users, which is given by

r̂i,j = MLPθr (Ii,j), (5)

where r̂i,j denotes the aesthetic difference score of the j-th user for the i-th image relative
to most users and θr indicates the parameters of MLPθr , which contains two FC layers.
As mentioned above, the generic aesthetics of images can also affect users’ personalized
aesthetic preferences. Instead of taking the average ratings as the generic scores [8,27],
we utilized an FC layer to fuse the score distribution and aesthetic difference score for
obtaining a personalized score, which can be formulated as

ŷi,j = FCθs(d̂i,j) + r̂i,j, (6)

where ŷi,j indicates the predicted aesthetic score and θs denotes the parameters of FCθs .
Then, we employed the l2 loss function to optimize the parameters of the MLP and FC
layers (θr and θs), which is defined as

Ls =
1

Nb

Nb

∑
j=1

(
1

Ns

Ns

∑
i=1

(yi,j − ŷi,j)
2

)
, (7)

where Nb and Ns represent the number of training users and the corresponding rated
images, respectively. In this way, the proposed prior model can capture a robust multi-
attribute interaction map by learning extensive users’ personalized aesthetic ratings of
images from the perspective of users. Based on the learned multi-attribute interaction, the
proposed prior model can be efficiently transferred to the personalized aesthetics of a target
user through fine-tuning a small number of user-specific aesthetic data.
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3.3. PIAA Fine-Tuning for a Specific User

Since PIAA is aimed at the aesthetic preferences of a specific individual user, we
leveraged a user’s personalized aesthetic data to fine-tune the prior model for obtaining
the PIAA model. Assume that Du = {su, {xu

i , yu
i }Ns

i=1} represents the training set of a
specific user, where Ns denotes the number of small samples annotated by the user and
su denotes subjective attributes. Besides, xu

i and yu
i represent the i-th image, as well as

the corresponding aesthetic score. Firstly, we leveraged the generic aesthetics extraction
module to obtain the objective attributes and score distribution of the image, which can be
defined as

âu
i = FCθa(GAP( fθ(xu

i ))), d̂u
i = FCθd(GAP( fθ(xu

i ))), (8)

where âu
i and d̂u

i are the predicted aesthetic attributes and score distribution of the i-th
image. Then, we leveraged the user’s subjective attributes su and predicted objective
attributes âu

i for interaction and fused the interactive feature Iu
i and score distribution d̂u

i
to obtain a personalized aesthetic score, which can be computed by

ŷu
i = FCθs(d̂

u
i ) + MLPθr (Iu

i ), (9)

where ŷu
i indicates the predicted aesthetic score. In general, a specific user can only provide

a small number of annotated samples for model fine-tuning. Therefore, we only optimized
the parameters of the MLP and FC layers (θr and θs) by using the l2 loss function, which is
formulated as

Lu =
1

Nu

Nu

∑
i=1

(yu
i − ŷu

i )
2. (10)

In this manner, fine-tuning a small number of parameters (θr and θs) with annotated
samples can enable the prior model to be easily transferred to the PIAA model of the
specific user. For a testing image, we fed it into the PIAA model and obtained the user’s
personalized aesthetic score for the image.

4. Experimental Results

In this section, we employ extensive experiments to verify the effectiveness of our
PIAA-MIR, which were mainly performed on three public PIAA databases: PAPA (https:
//web.xidian.edu.cn/ldli/en/dataset.html, accessed on 7 October 2022) [10], FLICKR-AES,
and REAL-CUR (https://github.com/alanspike/personalizedImageAesthetics, accessed
on 7 October 2022) [22].

4.1. Databases

The PAPA [10] database contains 31,220 images with rich annotation rated by 438
users. Besides the aesthetic score, each image was annotated by several users with seven
objective attributes: composition, light, color, depth of field, object emphasis, content, and scene
category. For each user, the database also provided some subjective attributes: age, gen-
der, education experience, artistic experience, photographic experience, and Big-Five personality
traits [41]. The education experience was divided into six steps: junior high school, se-
nior high school, technical secondary school, junior college, and university. The artistic
experience and photographic experience included beginner, competent, proficient, and
expert. The Big-Five traits (extroversion (E), agreeableness (A), neuroticism (N), openness
(O), and conscientiousness (C)) of each user were collected by asking them to fill in the
BFI-10 questionnaire [42]. In this database, 40 users and their corresponding rated images
were randomly selected as the testing set, and the remaining users and their corresponding
rated images were used as the training set. Therefore, we can use the interaction between
the multiple attributes of images and users to train the proposed PIAA-MIR model.

The FLICKR-AES [22] database contains 40,000 images rated by 210 users. Among
them, 173 users and their rated 35,263 images were chosen as the training set, and the
remaining 37 users and their rated 4,737 images were used as the testing set. Since the
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database only provided each user’s personalized aesthetic score for the images, we could
use the general aesthetic extraction module trained by the PAPA database to obtain multiple
attributes of images. Similar to [27], we also could leverage users’ aesthetic ratings on
images to obtain their Big-Five personality traits. In this way, the Big-Five personality traits
were used as subjective attributes to interact with the objective attributes of images to train
our PIAA-MIR model.

The REAL-CUR [22] is a relatively small database that contains 14 users and their
personalized aesthetic ratings on images in their own photo albums. Each photo album
only consists of images ranging from 197 to 222. Due to the small number of users in
this database, we directly fine-tuned the prior model trained on the PAPA database with
the PIAA tasks of these 14 users, which can verify the generalization performance of the
proposed prior model for inferring users’ personalized aesthetics in a real scenario.

In the following experiments on these three databases, all aesthetic scores and numeri-
cal attributes were normalized to the range of 0 to 1, and higher values indicate stronger
aesthetics and attributes.

4.2. Experimental Settings

Implementation details: The initialized parameters of our CNN model ( fθ) came from
ResNet50 [38], which is pre-trained on ImageNet [39]. In the multi-attribute interaction
reasoning network, MLPθr consists of two FC layers with 1024 nodes and 1 node. All
parameters of FC layers were randomly initialized. In the training process of the generic
aesthetics extraction module and multi-attribute interaction reasoning network, we set the
initial learning rate to 5 × 10−5, and the learning rate was multiplied by 0.1 every 5 epochs.
Besides, the batch size and the number of epochs were set to 100 and 20, respectively. In
the PIAA model’s fine-tuning, the number of epochs was set to 5, and the learning rate was
set to 1 × 10−5. The proposed PIAA-MIR was performed on PyTorch, and Adam was used
as the optimizer of our model.

Evaluation criterion: As with the previous approaches [27,28], the Spearman rank-
order correlation coefficient (SROCC) was adopted to evaluate the effectiveness of the PIAA
models in predicting users’ personalized aesthetic scores on images. The values of the
SROCC range from −1 to 1, and higher values of the SROCC indicate better performance
of the PIAA methods.

4.3. Comparing with the State-of-the-Art PIAA Methods

Since PAPA is a recently released PIAA database, only a few results of the PIAA
models have been reported in this database [10]. To further examine the performance of the
proposed method, we also compared our PIAA-MIR with a generic aesthetic prior-based
method (PA_IAA [8]) and two personalized aesthetic prior-based methods (BLG-PIAA [28]
and PIAA-SOA [27]). Similar to [10], we randomly selected 40 users for testing and report
the average results of 10 repeated experiments. For each user, 10 or 100 images rated by the
user were selected to fine-tune the prior model for obtaining the PIAA model. To avoid
random bias, the fine-tuning process for each user was repeated 10 times, and the average
results and the corresponding standard deviation are reported.

Table 1 lists the comparison results of our PIAA-MIR with several PIAA methods on
the PAPA database [10], where the mean SROCC results of 40 testing users were used as
the final results, and the best results are highlighted in bold font. Overall, our PIAA-MIR
method achieved the best performance when fine-tuning with 10 or 100 images, which
indicates the effectiveness of the proposed multi-attribute interaction-based prior model.
Compared with the PIAA models only using a generic aesthetic prior (PAPA (unconditional)
and PA_IAA) or a personalized aesthetic prior (BLG-PIAA and PIAA-SOA), PIAA-MIR
achieved superior performance, demonstrating that it is efficient in jointly learning the
prior model from the perspectives of both users and images. In addition, the proposed
PIAA-MIR outperformed the three types of conditional PIAA models (PAPA (artistic),
PAPA (photographic), and PAPA (photographic)), which shows that it is more effective at
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learning users’ aesthetic preferences through multiple attributes’ interaction than directly
embedding subjective attributes.

Table 1. SROCC results of our PIAA-MIR with several PIAA methods on the PAPA database [10].
PAPA (unconditional) indicates the unconditional PIAA model proposed by the authors of PAPA.
Similarly, PAPA (artistic), PAPA (photographic), and PAPA (photographic) denote the PIAA model
by embedding three types of conditional information (artistic experience, photographic experience,
and personality traits).

Methods 10 Images 100 Images

PAPA (unconditional) [10] 0.681 ± 0.0015 0.695 ± 0.0014
PAPA (artistic) [10] 0.686 ± 0.0016 0.698 ± 0.0012

PAPA (photographic) [10] 0.683 ± 0.0014 0.698 ± 0.0010
PAPA (personality) [10] 0.691 ± 0.0009 0.705 ± 0.0015

PA_IAA [8] 0.683 ± 0.0013 0.690 ± 0.0016
BLG-PIAA [28] 0.688 ± 0.0015 0.697 ± 0.0013
PIAA-SOA [27] 0.692 ± 0.0014 0.703 ± 0.0012

PIAA-MIR 0.702 ± 0.00010 0.716 ± 0.0008

As with the experimental setup in [27], we verified the performance of the proposed
method on the FLICKR-AES and REAL-CUR databases. In Table 2, we summarize the
average SROCC results of the proposed PIAA-MIR and several state-of-the-art methods on
the 37 testing users of the FLICKR-AES database, where the best results are highlighted in
bold font. From the table, we can see that the proposed method significantly outperformed
all the PIAA methods, except PIAA-SOA. This illustrates that the objective attributes of
images learned on the PAPA database are also beneficial to building the prior model on
the FLICKR-AES database. Compared with PIAA-SOA, which directly integrates objective
attributes and subjective attributes, the proposed method utilizes multi-attribute interaction
to learn better personalized aesthetic prior knowledge for individual users. To verify the
effectiveness of the proposed prior model in adapting to users’ personalized aesthetic
preferences in real scenarios, we list the average SROCC results of our PIAA-MIR and three
PIAA methods reported in [27] on the 14 album users of the REAL-CUR database in Table 3.
As shown in the table, the proposed PIAA-MIR yielded the best performance in learning the
aesthetic preferences of individual users in real applications. This further proves that our
prior model learned on the PAPA database also has satisfactory generalization performance
for users of other databases.

Table 2. SROCC results of our PIAA-MIR with several PIAA methods on the FLICKR-AES
database [22].

Methods 10 Images 100 Images

PAM (attribute) [22] 0.518 ± 0.003 0.539 ± 0.013
PAM (content) [22] 0.515 ± 0.004 0.535 ± 0.017
PAM (content and

attribute) [22] 0.520 ± 0.003 0.553 ± 0.012

USAR_PPR [23] 0.521 ± 0.002 0.544 ± 0.007
USAR_PAD [23] 0.520 ± 0.003 0.537 ± 0.003

USAR_PPR&PAD [23] 0.525 ± 0.004 0.552 ± 0.015
ML-PIAA [25] 0.522 ± 0.005 0.562 ± 0.015

PA_IAA [8] 0.543 ± 0.003 0.639 ± 0.011
BLG-PIAA [28] 0.561 ± 0.005 0.669 ± 0.013
UG-PIAA [26] 0.559 ± 0.002 0.660 ± 0.013

PIAA-SOA [27] 0.618 ± 0.006 0.691 ± 0.015

PIAA-MIR 0.621 ± 0.005 0.713 ± 0.00016
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Table 3. SROCC results of our PIAA-MIR with three PIAA methods on the REAL-CUR database [22].

Methods 10 Images 100 Images

PA_IAA [8] 0.443 ± 0.004 0.562 ± 0.013
BLG-PIAA [28] 0.448 ± 0.007 0.578 ± 0.015
PIAA-SOA [27] 0.487 ± 0.006 0.589 ± 0.014

PIAA-MIR 0.498 ± 0.008 0.606 ± 0.013

To further verify the efficiency of our method in learning each user’s personalized
aesthetic experience from the proposed prior model, we examined the performance of the
prior model and the PIAA model fine-tuned on 100 images of each testing user from the
PAPA database [10]. To highlight the comparative results, we compared our PIAA-MIR
with the state-of-the-art PIAA-SOA and show the average SROCC results of 10 experiments
on 40 testing users in Figure 3. For both PIAA-SOA and the proposed PIAA-MIR, the PIAA
model yielded better performance than the prior model. For most users (27 out of 40),
PIAA-MIR outperformed PIAA-SOA in terms of the prior model (0.695 versus 0.686), which
shows the effectiveness of the proposed prior model in capturing the personalized aesthetic
experiences of individual users by using the interaction between multiple objective and
subjective attributes. In addition, when the prior model was fine-tuned on 100 images
rated by individual users, our method was also superior to PIAA-SOA in transferring users’
personalized aesthetics from the prior model (0.021 (from 0.695 to 0.716) versus 0.018 (from
0.686 to 0.703)). In summary, the proposed PIAA-MIR builds a robust prior model through
multi-attribute interaction, which can easily adapt to personalized aesthetic preferences
with a small number of annotated samples.
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Figure 3. SROCC results of PIAA-SOA [27] and our PIAA-MIR on the 40 testing users of the PAPA
database [10]. The testing results of the prior model and PIAA model on each user are shown.
Specifically, the testing results of PIAA-SOA are displayed with blue and green bars, and the testing
results of PIAA-MIR are displayed with yellow and purple bars.

4.4. Ablation Study

To further examine the contribution of each module in the proposed multi-attribute
interactive reasoning network for learning users’ personalized aesthetic preferences for im-
ages, an ablation study was conducted on the PAPA database [10]. In the generic aesthetics
extraction module, we removed the prediction branch of multiple objective attributes and
only leveraged multiple subjective attributes and score distributions to predict personalized
aesthetic scores, which is termed “PIAA-MIR w/o objective”. In the multi-attribute interac-
tive reasoning network, we replaced multiple subjective attributes with a one-hot encoding
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vector to characterize users (PIAA-MIR w/o subjective). We replaced the multi-attribute in-
teraction with simple attributes combined to predict personalized aesthetic scores, which is
called “PIAA-MIR w/o interaction”. In addition, to compare the prior model learned only
from generic aesthetics or personalized aesthetics, we introduced the baseline model by
only training the generic aesthetics extraction module from the perspective of images (Base-
line (generic)) or the multi-attribute interaction reasoning network from the perspective of
users (Baseline (personalized)).

Table 4 lists the test results of the ablation experiments. As shown in the table, the full
version of PIAA-MIR obtained the best results on the testing users of the PAPA database.
Compared with the baseline model learned only from generic aesthetics (Baseline (generic))
or personalized aesthetics (Baseline (personalized)), the proposed PIAA-MIR yielded
significant performance improvements, which shows that it is efficient at learning a prior
model from the perspectives of both images and users. When eliminating multiple objective
attributes (PIAA-MIR w/o objective) or multiple subjective attributes (PIAA-MIR w/o
subjective) in our model, PIAA-MIR showed worse prediction performance in learning
personalized aesthetics, which demonstrates the importance of embedding subjective and
objective attributes in the proposed PIAA-MIR. Besides, PIAA-MIR was also superior to
“PIAA-MIR w/o interaction”, which indicates that the proposed multi-attribute interaction
is crucial for exploring the underlying factors for users’ personalized aesthetic experiences.
All in all, the above modules contributed to promoting the evaluation performance of the
proposed method.

Table 4. SROCC results of our PIAA-MIR on the PAPA database [10] by eliminating different ablation
modules, where the best results of fine-tuning on 10 and 100 images are shown in boldface.

Methods 10 Images 100 Images

Baseline (generic) 0.679 ± 0.0014 0.692 ± 0.0015
Baseline (personalized) 0.682 ± 0.0015 0.698 ± 0.0016

PIAA-MIR w/o objective 0.689 ± 0.0011 0.700 ± 0.0011
PIAA-MIR w/o subjective 0.684 ± 0.0013 0.693 ± 0.0014
PIAA-MIR w/o interaction 0.696 ± 0.0012 0.707 ± 0.0010

PIAA-MIR 0.702 ± 0.00010 0.716 ± 0.0008

4.5. Visual Analysis

To intuitively show how PIAA-MIR leverages the interaction between multiple subjec-
tive and objective attributes for personalized aesthetic preferences reasoning, we randomly
selected two testing users, as well as two testing images rated by them from the PAPA
database [10]. The predicted results of our method are shown in Figure 4. We can see from
the figure that the predicted attributes and aesthetic scores of the proposed PIAA-MIR for
the four images were close to the ground truth (GT) results, which indicates that the pro-
posed generic aesthetics extraction module is efficient in predicting aesthetic attributes and
the score distribution. Since User #1 is a man with expert photography experience, he tends
to give higher aesthetic ratings to images with better composition and content. In addition,
User #1 is also a person with strong agreeableness and conscientiousness, so he prefers the
left image containing animals. By contrast, User #2 is a person with strong neuroticism
and has preliminary art and photography experience. Although the two images rated by
User #2 have the same average aesthetics, the user’s personalized aesthetic scores for these
two images differ greatly. This is because neurotic people prefer images with dim light and
monotonous color [41], which led User #2 to give a higher aesthetic score to the left image
than the right image. From the above analysis, we can draw a conclusion that the multiple
objective attributes of images and the multiple subjective attributes of users jointly affect
users’ personalized aesthetic experiences for images, and the proposed multi-attribute
interaction can effectively reveal the potential impact relationship between them.
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(a) User  #1 and two rated images

(b) User  #2 and two rated images

ID A54330d

Age 30

Gender Male

Education Junior college

Artistic Proficient

Photographic Expert

Personality
(E, A, N, O, C) (0.4, 0.8, 0.2, 0.6, 1.0)

Subjective attributes 
Average aesthetics 0.64 0.69

Composition 0.68 0.71

Color 0.61 0.66

Depth of Field 0.64 0.68

Content 0.62 0.57

Light 0.56 0.51

Object emphasis 0.20 0.16

Scene categories animal animal

Personalized scores 0.80 0.75

Image GT Predicted Image

Average aesthetics 0.52 0.57

Composition 0.56 0.59

Color 0.46 0.43

Depth of Field 0.52 0.50

Content 0.52 0.46

Light 0.42 0.46

Object emphasis 0.20 0.13

Scene categories plant plant

Personalized scores 0.40 0.46

GT Predicted

ID B3e2e63

Age 21

Gender Female

Education University

Artistic Beginner

Photographic Competent

Personality
(E, A, N, O, C) (0.6, 0.8, 1.0, 0.8, 0.6)

Subjective attributes 
Image Average aesthetics 0.58 0.63

Composition 0.69 0.74

Color 0.50 0.46

Depth of Field 0.61 0.57

Content 0.60 0.65

Light 0.52 0.45

Object emphasis 0.30 0.31

Scene categories building building

Personalized scores 0.90 0.81

GT Predicted Image

Average aesthetics 0.58 0.61

Composition 0.58 0.60

Color 0.62 0.59

Depth of Field 0.56 0.51

Content 0.53 0.48

Light 0.54 0.59

Object emphasis 0.20 0.11

Scene categories scene scene

Personalized scores 0.45 0.51

GT Predicted

Figure 4. Qualitative results of the proposed model on two testing users from the PAPA database [10].
The identification (ID) information and some subjective attributes of these two users are shown on
the left side. The average aesthetics of score distribution, objective attributes, and personalized scores
of images are shown on the right side. For comparison, we show both the ground truth (GT) and
predicted results, where aesthetic scores and numerical attributes are normalized to the range of 0 to
1 and higher values indicate stronger aesthetics and attributes.

5. Conclusions

In this paper, we introduced a personalized image aesthetics assessment method via
multi-attribute interactive reasoning (PIAA-MIR). Compared with existing PIAA methods,
the proposed method can effectively reason users’ personalized image aesthetic experiences,
which benefits from learning the prior model for PIAA from the perspectives of both
images and users. Specifically, the proposed generic aesthetics extraction module showed
its efficiency in predicting multiple aesthetic attributes and score distributions of images.
In addition, the multi-attribute interaction-based prior model learned from extensive users’
PIAA tasks can capture the robust impact of multiple subjective and objective attributes
on users’ personalized aesthetic preferences for images. Therefore, when an individual
user only provides a small number of annotation samples, the proposed multi-attribute
interaction can use this robust interactive relationship to effectively transfer the prior model
to the PIAA model for the individual user. The experimental results and visual analysis of
three PIAA databases demonstrated that the proposed PIAA model is effective in reasoning
individual users’ personalized visual aesthetics. In the future, our method will highlight a
novel strategy to analyze the implicit reasons for personalized aesthetic preferences from
the perspectives of both users and images.
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Abstract: The advanced smart home environment presents an important trend for the future of human
wellbeing. One of the prerequisites for applying its rich functionality is the ability to differentiate
between various user categories, such as gender, age, speakers, etc. We propose a model for an
efficient acoustic gender and age classification system for human–computer interaction in a smart
home. The objective was to improve acoustic classification without using high-complexity feature
extraction. This was realized with pitch as an additional feature, combined with additional acoustic
modeling approaches. In the first step, the classification is based on Gaussian mixture models. In the
second step, two new procedures are introduced for gender and age classification. The first is based
on the count of the frames with the speaker’s pitch values, and the second is based on the sum of the
frames with pitch values belonging to a certain speaker. Since both procedures are based on pitch
values, we have proposed a new, effective algorithm for pitch value calculation. In order to improve
gender and age classification, we also incorporated speech segmentation with the proposed voice
activity detection algorithm. We also propose a procedure that enables the quick adaptation of the
classification algorithm to frequent smart home users. The proposed classification model with pitch
values has improved the results in comparison with the baseline system.

Keywords: acoustic classification; acoustic signal processing; Gaussian mixture model; pitch analysis;
smart home

MSC: 68T10

1. Introduction

The intensive development of information communications technology (ICT) has
spread into all sections of everyday life, including the human living environment. Real-
life smart home systems already include successful automation and control support for
the variety of scenarios that human users are confronted with. Currently, the majority
of smart home users belong to the category of early adopters, but it is expected that the
future development of the technology will increase its broad acceptance in the general
population [1,2].

An important functionality in a smart home environment is the detection of the user’s
presence in a room. This can be fulfilled in different ways, focusing on non-invasive
methods, wherein users do not need to wear any dedicated device. One of the traditional
methods is passive infrared (PIR) motion detection, which yields relatively simple and
robust sensors. The disadvantage of this technology is its inability to distinguish between
different user categories, such as gender, age, speakers’ identity [3], etc. Another method
that cannot cope with user categories is speech activity detection (SAD) [4], which provides
the smart home system with information about a user’s presence solely from the captured
speech signal.

Human–computer interaction (HCI) can, in advanced smart home environments, pro-
vide rich functionality if it can differentiate between various user categories. To distinguish
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between them, machine learning classification can be used. The classification accuracy and,
in particular, system complexity largely depends on the category characteristics and intra-
category variance. The decision regarding which type of user classification (e.g., gender)
to apply is based on HCI scenarios and requested functionalities that need to be applied
in the smart home environment. The resulting HCI system in a smart home environment
can act accordingly, applying user scenarios, adapting functionality, or deploying entity
personalization. The area of personalization [5] covers a large number of possible scenar-
ios. Some smart home entities that are frequently included in the personalization process
include the user interface, media and users’ content, a recommendation system, AAL
functions, etc. The main personalization objective is to achieve better usage acceptability
and higher quality of experience. To be able to carry out such category-based presence
detection, a more sophisticated approach must be used than IR motion detection or SAD.
One possibility is to use image processing [6], and another is to use more complex audio
processing. The advantage of presence detection using audio as a modality is its lower
computational complexity, lower cost, and better acceptability among users. The user’s
acceptability is tightly connected with the data privacy question. In the case of audio, a
well-considered design can lead to local processing, without the need to use cloud-based
speech processing services.

Based on the above characteristics of the advanced HCI interface, we propose an
acoustic classification model that determines the age and gender of the speaker from the
captured speech signal. Such a classification approach can be used in a smart home envi-
ronment for precise presence detection. Broadly accepted smart home usage scenarios were
analyzed and a decision was made to classify users into three categories: male, female, and
child. This represents an effective combination of all speakers’ characteristics. A special
characteristic of the proposed model is the inclusion of the category of children in the classi-
fication, which is not typically represented in speech technologies. This aspect is important
due to the smart home user interface design and content-processing process. In the case of
children, the personalization steps must be more intensive and age-oriented, emphasizing
domain control and the adequacy of the information available to them. The first objective
of the proposed acoustic classification model is to provide accurate performance for all
three defined categories using pitch processing. Pitch is one of the signal processing values
that can contribute most extensively to classification accuracy, as it depends significantly
on the speakers’ characteristics. We propose an algorithm for efficient pitch calculation.
We also propose two-step solutions for including pitch in the classification to enable adap-
tation in the second step. The second objective of the proposed model is to simplify the
development of acoustic age and gender classification for presence detection in a smart
home environment. The motivation was to reuse available speech recognition modules
from a smart home environment. This results in less complex speech technology methods
that can even be used by resource-constrained devices.

Using speech as an input modality has both advantages and disadvantages. The
speech signal propagates through the room, which means that the capture devices need not
focus directly on the user. This can significantly improve the system’s usability. There are
two shortcomings present for speech modality. The first one is the sensitivity of the speech
signal in relation to other audio sources co-existing in the room. The disturbing audio
sources’ types vary according to the scenario: background music/TV, home appliances,
other speakers, domestic animals, street noise, etc. The second one is the issue of the
privacy of uttered information, which can be successfully handled by local processing in
the scope of the embedded systems. The speech-based presence detection system can be
combined with other presence detection entities, such as PIR motion detection sensors.
This can result in improved performance, as the modalities of signals and noises differ. The
end result is the limiting of shortcomings connected with the pure speech-oriented system.

The paper is organized as follows. Section 2 presents a literature review from two
perspectives: gender classification and smart home systems. Section 3 first presents the
proposed model and then describes the theory of acoustic gender classification, with an
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emphasis on approaches used in the experiments. Then, the system design applied in the
experiments is presented. The speech processing results are presented in Section 4. The
discussion is provided in Section 5, and the conclusion is provided in Section 6.

2. Literature Review

The objective of this work was to establish a back-end smart home service, which
could be used for detecting the presence of users solely via speech modality and classify
them accordingly. Thus, the addressed related work also covers two fields. The first one is
the field of digital signal processing and gender classification from speech. The second one
is the field of smart home systems and services.

The topic of acoustic gender classification is an area in spoken language technology
with a long history. The first systems emerged decades ago [7–9], mainly as sub-components
of automatic speech recognition systems. The basic idea—of how to detect gender from
acoustic signals—is usually pursued via the spectral and temporal characteristics of the
captured speech signal [10]. To be able to carry out gender classification, two approaches
need to be combined: first, the representative features are extracted from the captured
audio signal [11], and second, the appropriate machine learning approach is used to
classify them [12].

The acoustic feature extraction procedure is a key factor in successful gender classi-
fication. Various approaches, such as mel-frequency cepstral coefficients (MFCC) [13,14],
pitch [15], and RASTA [15], have been used for the gender classification task. In gen-
eral, MFCC feature extraction usually provides good classification results. The speech
rate, pauses, loudness, intonation, and voice quality can be categorized as paralinguistic
features. Similar to acoustic features, paralinguistic features can also be used for gender
classification [16], with the objective of broadening the data available for classification. This
can improve the overall classification accuracy.

An important issue in the case of gender classification from speech is its robustness
against the acoustic background and other degradation events. The background signal
and noise can reach high energy levels and, consequently, significantly disturb system
operation in smart home scenarios. Islam [17] showed that GFCC features also significantly
improve the robustness and effectiveness of gender classification in a harsh environment.

One of the baseline approaches to addressing gender classification is Gaussian mixture
models (GMMs) [18]. The GMM gender classification approach can show high precision
with relatively low complexity, which is important for smart home scenarios, where lim-
ited embedded resources are frequently available. Ranjan et al. [19] also showed that
GMM gender classification achieves good results in different languages, or even in a
multilingual environment.

Hidden Markov models (HMMs) have been used for gender and age classification [20],
and also for the classification of various human activities in natural environments [21]. The
use of HMMs introduces another model’s architecture to the classification task, which can
improve the robustness, accuracy, and reusability of real-life systems. The combination of
several statistical approaches is presented in [22], where universal modeling (UM) based
on GMM clustering was used.

Another machine learning approach used for gender classification is support vector
machines (SVMs). Bocklet et al. [23] showed that SVM can achieve high-accuracy gender
recognition results. The i-vector approach proposed by Dehak [24] was also applied
successfully for gender classification in complex spoken scenarios [19].

Deep neural networks (DNNs) were used for gender classification by various authors [25,26].
The main objective was to improve accuracy and combine the gender classification system
with the main automatic speech recognition system using the same architecture. Prior to
DNNs, other neural network methods, such as multi-layer perceptrons (MLPs) [27], were
also successfully implemented for gender classification.

The majority of gender classification systems found in the literature only deal with
adult speech, thus classifying between males and females (and unknown). In the case
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of a smart home, distinguishing between adult and child can also be important. The
Paralinguistic Special Session of Interspeech 2010 [28] addressed this topic. The aGender
speech database [29], which is applied for the classification task, originated from long
conversational telephone sessions, and the speakers were classified into three gender
categories and seven combined categories. Meinedo and Trancoso [30] presented a system
that used a combination of four different corpora with the fusion of acoustic and prosodic
features, and this was able to classify gender with an 84.3% average recall. Yücesoy and
Nabiyev [29] carried out gender classification on the aGender speech database with a
combination of three subsystems at the score level. The experimental system provided a
90.39% classification success rate for the gender category. This result shows that there are
still challenges in the area of gender classification when children’s speech is incorporated
into experiments.

With the development of algorithms, systems, and terminal equipment, the number
of possible use cases increased, and nowadays, gender classification systems can be used
successfully in the smart home environment [31]. Speech activity detection, which can
be seen as a simplified gender classification approach for the smart home, was addressed
by SASLODOM, part of the EVALITA 2014 challenge [32], wherein three different SAD
systems were presented. The best system achieved a 2.0% SAD error rate at the frame level,
which is already usable in real-life scenarios applicable to SAD. Gender classification can
also be helpful for social robots as part of the smart home environment [33]. The availability
of extended speech databases also enables a combined approach, whereby age and gender
were processed in parallel [34,35].

The literature review presents a general overview of approaches to carrying out the
gender classification task. In our work, the emphasis will be placed on particular solutions
for acoustic presence detection, as well as gender and age classification, in the smart home
environment, where the combination of accuracy and required system resources plays an
important role.

3. Materials and Methods

This section presents the proposed procedure used for gender and age classification
from input speech signals. First, we present the entire process of preprocessing and
extracting the necessary information from the input speech signal so that, in the end,
we can determine the presence of a male, female, or child in the environment through
classification procedures. Then, we present, in more detail, the voice activity detection
(VAD) algorithm and the procedure for determining the pitch value from the input speech
signal. The pitch value of an individual speaker gives essential information about whether
the speaker is a male, female, or child. Therefore, we chose the pitch value as one of the
more essential features in our proposed procedure. We presented the VAD algorithm and
the pitch value determination in one of our previous works [36]. We enhance the procedures
in this paper to improve the algorithm’s performance, which we also describe in more
detail in this section’s second and third subsections. Next, we present the feature extraction
algorithm included in our setup. The training of Gaussian mixture models (GMMs) is
presented thereafter.

3.1. Proposed Gender and Age Classification

Here, we present the proposed gender and age classification procedure in detail.
Figure 1 will form the basis for describing the details of the proposed procedure. We want
to extract information about a person’s gender (male or female) and age (adult or child)
from the speech signal spoken by a person present in an intelligent environment. The input
speech signal is divided into overlapping frames. All further information extraction is from
the frames. In the speech signal, most information about gender and age is present in the
voiced frames of the speech signal. The voice activity detection (VAD) algorithm detects
the voiced frames in the speech signal. The voiced frames of the speech signal are the basis
for determining the speaker’s pitch value. The next step in the procedure is calculating
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the 12 mel-frequency cepstral coefficient (C1–C12) features and energy, as specified in the
standard [37]. After that, we carried out the composition of the feature vectors that were
finally used. Because we did not want to change the size of the feature vector, we decided
to replace coefficient C12 with the pitch value. To improve the effectiveness of gender and
age classification, we have also calculated the first and second derivatives of the feature
vector coefficients. Once we derived the final feature vector and the pitch value for each
frame, we began classifying the person’s gender and age.

 

Figure 1. The proposed gender and age classification procedure.

We propose a gender and age classification procedure comprising two steps [38]. We
decided on a two-step classification process because, in the second step, based on the
analysis of the pitch value of the speakers present in an intelligent environment, we can
improve the classification. In the first step, gender and age classifications are based on
Gaussian mixture models (GMMs). For each frame, three probabilities, P(M), P(F), and
P(C), are determined, representing the probabilities of a male, a female, or a child. The
higher probability determines to which gender or age the frame belongs. Next, the frame
counters (NP(M), NP(F), and NP(C)) are determined for all three classification categories. For
each frame, only one frame counter is incremented; that is, the one whose frame has a
higher probability. The frame counter with the higher value indicates which gender or
age the entire input speech signal belongs to, and it is presented as the winner, WP, of
the classification based on GMMs. We completed the classification process if any frame
counter value stood out and was at least four counts greater than the other two. In this
case, we considered the GMM-based classification as a final conclusion of gender and age
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classification. However, if the difference between the two frame counters was less than
four, we continued with the second classification step. The right decision block in Figure 1
presents this decision.

In the second step, we propose two procedures of gender and age classification. These
are (a) classification based on the normalized pitch value counts and (b) classification based
on the normalized pitch value sums. The normalized pitch values are obtained in both
procedures by analyzing the speech recordings used to train the GMMs. All frames in
which we can determine the pitch value were used for analysis. First, we established three
groups of male, female, and child speakers. After that, we divided the pitch values into
intervals of 10 Hz. In the 80 Hz interval, there are pitch values between 80 and 90 Hz;
the 90 Hz interval covers all pitch values between 90 and 100 Hz, etc. The male speakers’
recordings exhibited the most pitch values between 110 and 120 Hz. All the counted pitch
values from the male, female, and child speakers were normalized according to the highest
value observed by the male speaker.

For the classification based on the normalized pitch value counts, we analyzed the
occurrence of the normalized pitch values for the male, female, and child speakers. For each
frame, three count areas, C(M), C(F), and C(C), were determined, representing the areas
for a male, a female, or a child speaker. If the normalized pitch value for a current frame
was below 160 Hz, it belonged to the count area C(M); if it was between 160 and 230 Hz,
it belonged to the count area C(F), and if it was above 230 Hz, it belonged to count area
C(C). Here, we also determined the frame counters (NC(M), NC(F), and NC(C)) for all three
classification categories. For each frame, only one frame counter was incremented—the one
whose frame belongs to a particular count area. The frame counter with the higher value
was used to determine to which gender or age group the entire input speech signal belonged
and was presented as the winner, WC, of the classification based on the normalized pitch
value counts.

The classification based on the normalized pitch value sums also uses the analysis
results. We have defined three sums: for male NΣ(M), female NΣ(F), and child NΣ(C) speakers.
For each frame in which we could detect the pitch value in the speech signal, we added the
normalized values obtained from the analysis to the sums of each speaker. For example,
a pitch value of 173 Hz was determined within a particular frame. This pitch value was
between 170 and 180 Hz, so a 170 Hz interval was selected for all classification groups.
Consequently, the normalized value of 0.14 was added to the NΣ(M), the normalized value
of 0.37 was added to the NΣ(F), and the normalized value of 0.08 was added to the NΣ(C).
Here, can be seen that a normalized value of 0.37, which was added to the NΣ(F), was the
largest compared to the other two values. This is understandable since this normalized
value is located between 160 Hz and 230 Hz, which belongs to the female speakers’ count
area C(F). The most significant sum value of three sums (NΣ(M), NΣ(F), and NΣ(C)) was
used to classify to which gender or age the entire input speech signal belonged, and was
presented as the winner, WΣ, of the classification based on the normalized pitch value sums.

The second classification step ends with collecting information about the winners (WC,
WP, and WΣ) of all three described classification procedures and majority voting, MV. We
performed all three classification procedures on the same speech signal. The results of all
three might be the same, but sometimes they give different results. When the results are
the same, the majority vote equals three. Then, all classification procedures can be used
to determine whether the speaker in the recording is a male, a female, or a child. In such
a case, the final decision of the second classification step is simple. If the majority vote is
equal to two, this means that at least two processes give an identical classification. In this
case, the final classification is the same as the majority vote winner. However, if all three
classification procedures give different results, the majority vote is equal to one. In such
a case, the final classification of gender and age is based on the first classification step or
GMM-based classification.

We will use the proposed gender and age classification system in a smart home
environment. There is always the question of how to update and improve such a system.
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In this paper, we propose another procedure that would allow for the fast adaptation of
the system to users who appear frequently in a smart home environment. The idea of the
procedure is based on the fact that the classification based on GMM remains the same.
It means that the test set does not influence the trained GMMs. The change is that the
system monitors the correctness of the classification and records pitch values on the basis
of the frame of the user in the smart home environment. When we have a sufficiently large
number of captured pitch values for users, we use these values to adapt the gender and age
classification system to them. This sufficiently large number of pitch values can be taken
from the analysis. An experiment has been performed to confirm the adaptation procedure,
and the results are provided in Section 4.

3.2. Voice Activity Detection Algorithm

An essential contribution of the voice activity detection (VAD) algorithm is real-time
noise energy estimation. Such an algorithm can be used in smart home environments
where the noise level can vary significantly. Frame energy and zero-crossing measures
are used for the VAD on each acoustic frame. A speech signal is cut into 50 percentage
overlapped frames with durations of 25 milliseconds. Owing to the fact that the speech
signal is sampled with a frequency of 16 kHz, the duration of each frame can be presented
as a 400-sample window. To explain the process of VAD decision determination, we will
use Figure 2. The frequency spectrum (Figure 2a) and signal representation in the time
domain (Figure 2b–f) of the specific values are provided for a captured spoken sample in
which the digit sequence “seven six one three” is uttered.

The frame energy, Ef, values are presented as a blue line in Figure 2b. The frame
energy, Ef, value is calculated as in (1) from the N samples of the input signal, s.

Ef =

N
∑

i=1
(s[i])2

N
(1)

We did not use the logarithmic function in calculating the frame energy, because it
would be more difficult to define the threshold that determines the presence of speech. The
noise area energy values, En, are presented in Figure 2c. The value En is calculated for each
frame as in (2) from the 10 values of the cyclic noise buffer, Nbuff.

En =

9
∑

i=0
Nbu f f [i]

10
(2)

The value En is calculated as an average value within a cyclic noise buffer, Nbuff, that
contains the frame energy, Ef, of the last 10 noisy frames.

The energy values, Ef, of the first 10 frames in the captured audio signal are mapped
into the cyclic noise buffer, Nbuff. After the first 10 frames, only the noisy frames with the
weighted energy values, Ef, are added in the last place of the cyclic noise buffer, Nbuff. The
decision regarding which energy value, Ef, contains noise is presented in

Nbu f f [9] =

⎧⎪⎨
⎪⎩

Ef ; Ef ≤ 2 · En

Ef /2; 2 · En < Ef ≤ 4 · En

Ef /4; 4 · En < Ef ≤ 8 · En

(3)

As can be seen in (3), the cyclic noise buffer, Nbuff, is not updated when the current
frame energy value, Ef, is 8 times larger than the noise area energy value, En, in the same
frame. This limit has been determined empirically. If the cyclic noise buffer, Nbuff, is not
updated, then the noise area energy value, En, is also not updated according to (2). This
is also presented in Figure 2c. This coincides with the beginning of the speech occurrence
(digit “seven”) in the captured audio signal and can be seen in Figure 2a.
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Figure 2. VAD decision determination: (a) Captured audio signal frequency spectrum. (b) Frame
energy values and threshold energy values. (c) Noise area energy values. (d) Threshold energy values.
(e) Zero-crossing measure values and threshold zero-crossing values. (f) VAD decision.

The next step in determining the VAD decision is to determine the threshold energy
value, ETh. The threshold energy value, ETh is calculated as in (4) with the help of factor, f,
and the noise area energy value, En.

f =

⎧⎪⎨
⎪⎩

100; En ≤ 100
100 − 0.1 · En; (En > 100) ∧ (En < 900)
10; En ≥ 900

ETh = f · En

(4)

The achieved result can be seen in Figure 2d. It is evident from the decision procedure
that we used a different factor value, f, to determine the threshold energy value, ETh. If the
noise area energy value, En, is small (smaller than or equal to 100), it is necessary to raise
the threshold energy value, ETh. If the value of factor f is 10, then a slight increase in frame
energy value Ef would lead to the wrong VAD decision, since the zero-crossing values
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(Figure 2e) in the non-speech areas are also large. Therefore, we need to use a larger factor
value, f, (in our case it is 100) so that wrong VAD decisions are less probable. On the other
hand, if the noise area energy value, En, is large (larger than or equal to 900), it is necessary
to reduce the threshold energy value, ETh. Such high energy values of En occur if there is
no silence at the beginning of the captured audio signal and speech occurs immediately. If
the value of factor f is 100, then the threshold energy value, ETh, would be too high, which
would mean that the VAD algorithm would not detect the voiced speech segments in the
captured audio signal. Therefore, in this case, we set a smaller factor value, f, (in our case,
10) so that the VAD algorithm can detect the speech segments in the captured audio signal.
The high noise area energy value, En, decreases as soon as the conditions in (3) are met.
However, if the noise area energy value, En, is between 100 and 900, then the value of factor
f, as well as the threshold energy value, ETh, changes linearly according to (4). Typically, for
the captured audio signal, the time domain representations of the noise area energy values,
En, (Figure 2c) and the threshold energy values, ETh, (Figure 2d) are identical but multiplied
by the constant factor, f, used. The time domain representations of the threshold energy
values, ETh, in Figure 2d are presented with a red line. The same value is also presented
with a red line in Figure 2b.

We can derive additional information for better VAD decisions from the zero-crossing
measure value, ZCm. The enormous zero-crossing measure value in the frame represents the
frame containing noise, or unvoiced speech, in the audio signal. For example, consonants
in the speech signal belong to unvoiced speech. Figure 2a shows the frequency spectrum of
the digit sequence “seven six one three”, and the words seven and six contain the consonant
“s”. In word seven, the consonant “s” is present from frame 18 to frame 30, while in word
six it is present from frame 53 to frame 63, and from frame 75 to frame 84. The value of
the zero-crossing measure is presented as a blue line in Figure 2e. The ZCm values in the
unvoiced speech and noise signal regions are large and much more significant than those
in a voiced speech signal region. The zero-crossing threshold value, ZCTh, determines
the segments of unvoiced speech and segments of the voiced speech signal. We set this
value to 50, which is presented in Figure 2e as a red line. As mentioned before, one frame
contains 400 samples. Having the value ZCTh set at 50 means that the signal crosses the
zero value at every 8 samples. This also means that the signal reaches its positive peak at
every 16 samples. In this case, for a sampling frequency of 16 kHz, the pitch value would
be 1000 Hz, which is almost impossible.

The proposed VAD decision is calculated from frame energy value Ef, zero-crossing
measure value ZCm, threshold energy value ETh, and zero-crossing threshold value ZCTh,
as presented in (5). For each frame, the VAD decides if it contains voiced speech or not.
Figure 2f shows the VAD decision on the captured audio signal. Voiced frames are then
used for pitch value determination.

VAD =

⎧⎪⎨
⎪⎩

1; (Ef > ETh) ∧ (ZCm < ZCTh)

0; (Ef > ETh) ∧ (ZCm ≥ ZCTh)

0; Ef ≤ ETh

(5)

3.3. Pitch Definition

A pitch value, or speaker’s fundamental frequency, can be determined from the speech
signal’s time domain representation or the frequency spectrum. Our pitch determination
process is based on a periodic pattern, which can be found in the time domain representation
of the speech signal. A repeating periodic pattern can be found in all vowels, sonorant
consonants (/n/, /m/, /l/, etc.), and also in voiced obstruents (such as /b/, /d/, /g/) [39].
To facilitate the interpretation of the pitch determination process, we will use time domain
representation of the vowel /i/ in word six of the captured audio signal with the digit
sequence “seven six one three”. The frequency spectrum of this digit sequence is presented
in Figure 2a. The time domain representation of the 65th frame of this sequence is presented
in Figure 3a. The blue line represents speech signal samples, and we can see a repeating
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periodic pattern. In the next paragraph, we will present the procedure by which the peaks
are detected in each frame. The pitch can then be calculated from the difference between
correct peaks.

Figure 3. The time domain representation of the 65th frame in the digit sequence “seven six one
three”: (a) Search for peaks in one speech signal frame. (b) Extraction of peaks, where 15 samples left
and right of the peak are set to 0. (c) All samples smaller than 75% of maximum/minimum value are
set to 0.

When we define pitch value, we must first define the highest maximum value between
positive samples’ values and the lowest minimum value between negative samples’ values.
The samples’ highest maximum and lowest minimum values in the frame are presented
as red lines in Figure 3a. After that, we must define positive and negative peaks. The
current peak maximums or minimums are detected in samples where greater than 75% of
the maximum or minimum value is detected in the frame. The maximums are searched
from the highest maximum to 75% of their value. The 15 samples left and right of the
positive or negative peaks are set to 0. Figure 3b shows the result of this procedure. In the
end, all other samples below 75% of the highest maximum or lowest minimum are set to 0.
Figure 3c shows this result. If we look at the positive peaks that we have found, we can
see that the first, second, third, and fifth are detected correctly. The fourth positive peak is
incorrect. For negative peaks, two peaks (third and fifth) are defined incorrectly.

Finding the difference or the number of samples between the peaks is the next step in
the procedure. As can be seen in Figure 3c, the difference is represented by the variable
τ. Differences are calculated between all adjacent peaks. Positive and negative peaks’
positions and the calculated differences between adjacent peaks can be seen in Table 1.
Only the differences between the first and the second peak and between the second and
the third peak of the positive peaks, and the difference between the first and the second
peak of the negative peaks, gave correct results that could be used to determine the correct
pitch value. After the calculation, the differences are sorted from the highest to the lowest
value. To determine the pitch, the maximum calculated difference is used, along with
those that deviate from this value by 10% or less. In the presented frame, only the first two
differences from the positive peaks are used (see Table 1, values 106 and 107), as well as
the first difference from the negative peaks (see Table 1, value 106). The average difference
is determined from the differences that are used. The fundamental frequency, F0, or pitch
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value can be calculated as in (6), where fsamp is the sampling frequency and τ is the average
difference between the peaks.

F0 =
fsamp

τ
(6)

Table 1. Positive and negative peaks’ positions in the 65th frame in the digit sequence “seven six one
three” and differences calculated between adjacent peaks.

Positive peak position Difference between adjacent peaks

64 106

170 107

277 31

308 76

384

Negative peak position Difference between adjacent peaks

49 106

155 31

186 75

261 31

292 77

369

This method of determining a pitch is only applicable when a repeating periodic
pattern is detected in the speech signal. In any case, such a signal is not present when
the VAD algorithm does not detect the presence of a voiced segment in the speech signal.
When we know the pitch of the speech signal’s voiced segments, then this information can
be used to detect the speaker’s gender in two ways. One is that we use different levels
of thresholds for determining a speaker’s gender, while the other is to use the pitch as
a feature for training different models. In this paper, Gaussian mixture models (GMMs)
are used for the model training process. When training GMMs, specific cases may arise
wherein it is not possible to train them if all the training values are not defined. In the noisy
or silent segments in the audio signal, and in the unvoiced speech segment, we do not have
information about the pitch, because it cannot be determined in these segments. Now the
question concerns which value to set in these audio signal segments. Our approach here is
that these values should be smaller than the value of the pitch that may occur in the voiced
part of the speech signal. We decided that this value should be less than 40 Hz. For the
modeling process, it is not appropriate that this value be constant for the whole unvoiced
speech signal segment. Therefore, we determined the apparent value of the fundamental
frequency, F0, or pitch value as in (7), where Fmax is the maximum apparent value of the
pitch, frameLength is the length of the frame, and averagePeak is the average value of the
peaks’ positions in the frame.

F0 =
Fmax · averagePeak

f rameLength
(7)

From Figure 4, we can determine these values. If the value frameLength is 400, the
value Fmax is set to 40, while the value of averagePeak is calculated by summing the positions
of the three positive peaks (218, 329, and 348) and the positions of the two negative peaks
(201 and 313). This gives the calculated average value of 281.8. The apparent pitch value is
then taken as 28.18 Hz.
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Figure 4. The time domain representation of the frame at the boundaries of the transition from the
unvoiced to the voiced segment of the audio signal: (a) The time domain representation of the signal.
(b) Extracted peaks in the time domain representation.

The proposed Equation (7) makes it possible to determine the apparent pitch in the
unvoiced speech signal segments. We also used (7) when we could not define the pitch
in the voiced speech signal segment. This occurs at the boundaries of the transition from
the voiced to the unvoiced segment of the speech signal, and vice versa. Figure 4 shows
an example in which we could not determine the pitch from the detected peaks correctly.
We decided to use (7) when the procedure did not detect any positive or negative peaks
between 0 and 200, or between 200 and 400 samples. This equation and procedure (7) are
also used in cases when we detect the following:

(a) Less than two positive or negative peaks;
(b) Twice as many positive or negative peaks between 0 and 200 as between 200 and

400 samples;
(c) Twice as many positive or negative peaks between 200 and 400 as between 0 and

200 samples;
(d) Two peaks where the difference between them is greater than 200 or less than 25 samples.

3.4. GMM Training

The Gaussian mixture models (GMMs) belong to the group of statistical speech recog-
nition methods that apply the weighted sum of the Gaussian probability density functions
as components. Each component is defined by the mean vector, mixture weights, and
covariance matrix, which is, in the case of speech processing, frequently diagonal. The
GMMs are trained in an iterative way with the Baum–Welch algorithm [40], which ap-
plies the expectation-maximization (EM) algorithm to determine the maximum likelihood
estimation of the unknown models’ parameters on a set of training feature vectors.

To train GMMs, we used 12 mel-frequency cepstral coefficient (C1–C12) features. We
replaced the coefficient C12 with the pitch value and added the energy coefficient. We
thus derived 13 coefficients in the feature vector. The most significant coefficients’ values
in the feature vector are the values of the energy coefficient, and these are in the range
of 20. However, since pitch values can also be up to 500 and over, we decided to divide the
pitch values by 10 so that these coefficient values would not be too high. To improve the
effectiveness of gender and age classifications, we have also calculated the first and second
derivatives of the feature vector coefficients.

The next step is to determine the number of models we have trained. The VAD
algorithm gives us the information wherein the audio recordings are speech signals and
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there is also silence. Based on this information, we trained four GMMs. On the speech
signal parts, we trained the models for a male, a female, and a child (a boy or a girl), and
for the rest of the signal, we trained silence. We used the hidden Markov model toolkit [40]
for the GMMs’ training. The GMMs’ training procedure is provided in Figure 5.

 
Figure 5. The GMM training procedure with up to 32 Gaussian mixtures per state.

When training GMMs, we started with a prototype model, which defines the required
model topology. The topology of a single GMM is presented as a single-state model, and
has the form of the required model, except that means are set to 0, variances are set to 1,
and mixture weights are set to 1. The next step is to provide initial estimates for the feature
vector single model parameters using a set of observation sequences for each model (male,
female, child, and silence, if used). The next step is to perform two basic Baum–Welch
re-estimations of the single model parameters using a set of observation sequences. Then,
we used the procedure to increase the number of Gaussian mixtures. In the following,
we again perform Baum–Welch re-estimation of the parameters, but it is now completed
three times. The last two steps are repeated all the way to training GMMs with up to
32 Gaussian mixtures.

3.5. Experimental Design

For the experimental design, we used the speaker-independent connected digits
American English speech database TIDIGITS [41]. This speech database is widely used for
speech technology research, and it is one of the few that also includes utterances spoken by
children in an equally balanced way. The original audio recordings were collected in a quiet
environment and digitized at a 20 kHz sampling rate. For the needs of this research and
the needs of the developed application, which will be used in the smart home environment,
we downsampled the original audio recordings to the 16 kHz sampling frequency. The
complete speech database contains 326 speakers, of which 111 are male, 114 are female,
and 101 are child speakers (50 boys and 51 girls). In our research, we did not separate
child speakers by gender. The age of male speakers is between 21 and 70 years, females are
between 17 and 59, and children are between 6 and 15 years. The recordings of the speech
database are divided into a training and a test set, which is proposed by the authors of the
speech database. The training material contains 163 speakers, of which 55 are male, 57 are
female, and 51 are child speakers—together representing 12,549 audio recordings. For the
test material, 163 speakers remained, of which 56 were men, 57 were female, and 50 were
children, which together represented 12,547 audio recordings. The speakers pronounced
the following English digits in the recorded database: zero, one, two, ..., nine, and oh.
Almost all of the speakers pronounced 77 isolated or connected digits, of which 22 were
isolated, and digit sequences two, three, four, five, and seven digits long were uttered
11 times.

4. Results

In this section, we will first present a pitch value analysis of each recording in a
speech database using the procedure for determining the pitch value presented in this
paper. This analysis helps us in the later interpretation of the results. For those frames in
the audio recording for which we were able to determine the pitch value, we compared
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their values. The pitch value most often detected is determined as the pitch value of the
speaker’s voice in the audio recording. The analyses are presented in Figure 6. As can be
seen from the analysis, the male speaker’s pitch value was the least distributed. Most of
the recordings with the male speakers had a pitch value of 110 Hz for both the training and
test set materials. The pitch values in recordings with female and child speakers were more
dispersed. When we look at the analysis results of the children’s recordings in Figure 6c,
we can see that most of the speakers in the training set of the audio recordings had slightly
higher pitch values than most speakers in the test set of the recordings, where their pitch
values were somewhat lower. Thus, the pitch values of the child speakers in the test set
recordings were closer to the pitch values of the female speakers that were used in the
recordings for the training set. If we look only at the pitch values, we can see frequent
confusion between child and female speakers in the gender and age classifications.

 Train Test
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Figure 6. The count of the files with the same pitch values for the recordings with (a) male, (b) female,
and (c) child speakers.

We will continue with presenting the results of the speaker’s gender and age classifica-
tion derived from experiments. The accuracy results of gender and age classification, and
the statistical analyses of the results with confidence intervals, are presented in Table 2. The
associated confusion matrices with recall results are provided in Table 3. The experiments
and associated notations used in Tables 2 and 3 are explained in the following list, where
(c)–(e) were experiments that were compared with the algorithms presented in the paper:
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(a) The classification was based on the count of the pitch values in all frames with
calculated pitch values. We performed a classification regarding whether it belongs
to a male, female, or child speaker. This decision is presented as a classification
based on the normalized pitch value counts. For this classification, we used the
notation Pitch value counts;

(b) The classification was based on the normalized pitch value counts in all frames
in which we could determine the pitch value. We have defined three sums of the
normalized pitch value counts for male, female, and child speakers. This decision
is presented as a classification based on the normalized pitch value sums. For this
classification, we used the notation Pitch value sums;

(c) The classification was completed on the basis of the trained three states of the left-to-
right monophone HMMs, the topology of which is described elsewhere [40]. In this
case, we used three HMMs for male, female, and child speakers and one additional
state, a silence HMM. HMMs were trained on the recordings with 11 mel-frequency
cepstral coefficients (C1–C11), the pitch value divided by 10, logarithmic energy, and
the first and second derivatives of those coefficients. For this classification, we used
the notation Three-state monophone HMMs—MFCC_Pitch_E_D_A;

(d) The classification was completed on the basis of the trained sixteen states of the word
HMMs, the topology of which is presented elsewhere [42]. In this case, we used
three sixteen-state HMMs for male, female, and child speakers and one additional
3-state silence HMM. HMMs were trained on the recordings with 11 mel-frequency
cepstral coefficients (C1–C11), the pitch value divided by 10, logarithmic energy, and
the first and second derivatives of those coefficients. For this classification, we used
the notation Sixteen-state word HMMs—MFCC_Pitch_E_D_A;

(e) The classification was based on an idea presented in previous work [22], where
universal modeling (UM) based on GMM clustering was used. In this case, we
used three types of features. The first type of feature was 13 mel-frequency cepstral
coefficients (C0–C12); the second type of feature was MPEG-7 low-level descriptors
(LLDs), as presented in [21]; and the third type of feature was perceptual wavelet
packets (PWP), as presented in [43]. For this classification, we used the notation
Universal modeling based on GMM clustering;

(f) GMMs were trained on segmented recordings with 12 basic mel-frequency cepstral
coefficients (C1–C12), logarithmic energy, and the first and second derivatives
of those coefficients. For this classification, we used the notation GMMs with
segmentation—MFCC_E_D_A;

(g) GMMs were trained on segmented recordings with 11 mel-frequency cepstral coeffi-
cients (C1–C11), the pitch value divided by 10, logarithmic energy, and the first and
second derivatives of those coefficients. For this classification, we used the notation
GMMs with segmentation—MFCC_Pitch_E_D_A;

(h) The proposed final gender and age classification was based on a combination of
the classifications used in all three experiments (a), (b), and (g). This proposed
classification is presented in Section 3.1. For this classification, we used the notation
Proposed algorithm with segmentation;

(i) The experiment applies in the same way as in experiment (h), with the exception that,
in this case, an adaptation of the proposed gender and age classification algorithm
is made. With a sufficiently large number of pitch values of the users, we can adapt
the normalized pitch value counts and sum. In the last paragraph of Section 3.1, we
propose a procedure that would allow for the fast adaptation of the system to the
users who occur most frequently in the smart home environment and would use such
a gender and age classification system. For this classification, we used the notation
Proposed algorithm with segmentation and pitch adaptation.
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Table 2. Accuracy results obtained by gender and age classification of the speaker and statistical
analysis of the results with a 95% confidence interval.

Gender and Age Classification of the Speaker Acc [%] Mean [%] 95% CI [min max]

(a) Pitch value counts 78.02 78.00 [77.33 78.66]
(b) Pitch value sums 80.98 80.99 [80.32 81.65]
(c) Three-state monophone HMMs—MFCC_Pitch_E_D_A 90.44 90.44 [89.94 90.95]
(d) Sixteen-state word HMMs—MFCC_Pitch_E_D_A 87.18 87.19 [86.63 87.70]
(e) Universal modeling based on GMM clustering [22] 93.32 93.31 [92.88 93.74]
(f) GMMs with segmentation—MFCC_E_D_A 89.32 89.31 [88.77 89.86]
(g) GMMs with segmentation—MFCC_Pitch_E_D_A 91.38 91.39 [90.88 91.85]
(h) Proposed algorithm with segmentation 91.46 91.47 [91.00 91.89]
(i) Proposed algorithm with seg. and pitch adaptation 92.25 92.25 [91.79 92.69]

Table 3. Confusion matrix results obtained by gender and age classification with recall results.

Male Female Child Recall [%]

(a) Pitch value counts

Male 4217 94 0 97.8
Female 514 3034 841 69.1
Child 185 1124 2538 66.0

(b) Pitch value sums

Male 4262 49 0 98.9
Female 142 3571 676 81.4
Child 41 1479 2327 60.5

(c) Three-state monophone HMMs—MFCC_Pitch_E_D_A

Male 4270 31 10 99.0
Female 52 4010 327 91.4
Child 0 780 3067 79.7

(d) Sixteen-state word HMMs—MFCC_Pitch_E_D_A

Male 4282 19 10 99.3
Female 58 3136 1195 71.5
Child 3 323 3521 91.5

(e) Universal modeling based on GMM clustering [22]

Male 4279 23 9 99.3
Female 76 4080 233 93.0
Child 12 485 3350 87.1

(f) GMMs with segmentation—MFCC_E_D_A

Male 4108 159 44 95.3
Female 190 3811 388 86.8
Child 24 535 3288 85.5

(g) GMMs with segmentation—MFCC_Pitch_E_D_A

Male 4264 43 4 98.9
Female 88 4014 287 91.5
Child 2 657 3188 82.9

(h) Proposed algorithm with segmentation

Male 4271 36 4 99.1
Female 91 4026 272 91.7
Child 3 665 3179 82.6

(i) Proposed algorithm with segmentation and pitch adaptation

Male 4276 29 6 99.2
Female 62 4085 242 93.1
Child 5 628 3214 83.5
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The accuracy, Acc, presented in Table 2 is defined in (8), where H is the sum of all
correct classifications for male, female, and child speakers, divided by the number of all
classifications, N.

Acc =
H
N

· 100[%] (8)

The correct classifications for male, female, and child speakers are marked in bold as
integer values in Table 3. In Table 3, the results are provided with a different evaluation
metric called Recall, which is defined in (9), where HR is the number of correct classifications
for male, female, or child speakers in the row divided by the number of all classifications,
NR, in the row for the corresponding class.

Recall =
HR
NR

· 100[%] (9)

The number of all classifications, NR, in the row for the male speakers is 4,311, for the
female speakers is 4,389, and for the child speakers is 3,847. From the confusion matrices in
Table 3, the calculated Recall value can be seen easily. For each classification, the integer
value in the row marked in bold is divided by the number of all possible classifications, NR,
in the row for a particular class.

5. Discussion

In this section, we will comment on the results of the experiments in the previous
section. First, we will describe the results in Table 2. In addition to the accuracy results, the
statistical analysis results with the given confidence interval are also provided. Bootstrap-
ping with 1000 replications was performed for each experiment. As we can see, there were
no significant differences between the mean values and the accuracy of the defined test set.
If we compare the proposed algorithm with segmentation (experiment h) and the proposed
algorithm with segmentation and pitch adaptation (experiment i), it can be seen that the
first’s accuracy was outside of the second’s confidence interval. Thus, we can conclude that
the obtained results were statistically significant and not due to chance in the selected test
set of the TIDIGITS database [41]. The experiments presented in Table 3 under (a) and (b)
mainly obtained their information from the pitch value when determining the speaker’s
gender and age classification from the recordings. The confusion matrices’ results show
that, in both cases, the male speaker in the recording was never incorrectly classified as
a child speaker. However, the maximum number of confusions in both experiments was
present when a female speaker was classified in the recordings even though there was
actually a child speaker in the recording. These gender and age classification errors were
derived from the pitch values in the training and test sets of the speech database itself, the
values of which are presented in Figure 6. The pitch values were determined on the basis of
the entire audio recording and the pitch value, which was in the majority of frames in the
audio recording, as presented in Figure 6. The pitch values in the children’s test set material
(Figure 6c) overlapped more severely with the pitch values in the training set material of the
female speakers (Figure 6b). Figure 6c shows that the pitch values in the test set were more
diffused than in the training set. Experiments (c) and (d) were both based on HMMs. The
first used three-state monophone HMMs, and the second used sixteen-state word HMMs.
The sixteen-state word HMMs provided worse accuracy (Table 2), most likely due to the
use of pitch value as a coefficient in the feature vector. This conclusion is based on the fact
that pitch values could only be defined in the voiced speech segment of the word and not
through the duration of the whole word, where there were also consonants. Experiment (e)
was carried out according to instructions provided elsewhere [22]. Here, the best accuracy
was achieved (Table 2), and the recall classification was very good (Table 3)—especially for
the child speakers, although the classification of a child speaker was still the most problem-
atic. Such good results were based on more advanced modeling techniques and the use of
a larger number of features, such as MPEG-7 low-level descriptors (LLDs), as presented
elsewhere [21], and perceptual wavelet packets (PWPs), as presented elsewhere [43]. Our
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motivation in this paper was to get closer to these results using less complex procedures
that would be more suitable for embedded systems in smart home environments. In the
following four experiments—(f)–(i)—we used segmentation based on the proposed VAD
algorithm. Experiment (f) was taken as a baseline since it used only MFCC_E_D_A features
without pitch values. Comparing experiments (f) and (g), Table 2 shows a more than 2%
accuracy improvement in classification performance when the pitch value was used as
an additional feature. In the subsequent two experiments—(h) and (i)—an additional
contribution can be seen, as we used the classification split into two steps, as proposed in
Section 3.1. A more significant contribution was made by the last experiment, (i), when
we adapted pitch values. With this experiment, we wanted to present the procedure by
which the classification system can be quickly adapted to the normalized pitch values of
the users in a smart home environment. As can be seen from experiment (i) in Table 2,
the accuracy was better when we performed the adaptation of the proposed classification
algorithm with a new set of normalized pitch values. The results in Table 3 show that the
recall values of the female speakers for this experiment were the highest of all experiments.
After reviewing all the experiments provided in Tables 2 and 3, we can conclude that the
biggest problems lie in the classification of female and child speakers. In the classification
of male speakers, it is possible to achieve very good results, the values of which were
above 99%.

The presented gender and age classification solution can be derived via an embedded
system or as a microphone array that captures the signal, and processing is completed on a
server. From the user’s perspective, how accurately users can be detected by such systems
is important. It is required that the system classify the gender and age of the user correctly
as often as possible. The speech database used in the tests included 163 speakers, most
of whom pronounced 77 isolated or connected digits. Table 4 presents an analysis of the
results wherein four parts were identified. First, we checked the number of speakers in
which the gender and age classification of the speaker was correct for all audio recordings.
In the second and third parts of the analysis, we checked the number of speakers for whom
the gender and age were classified incorrectly in 1 to 10 recordings or classified incorrectly
in 11 to 20 recordings. If incorrect gender and age classification occurred, the requirement
was that the number of these errors be as small as possible. In the fourth and final part
of the analysis, we checked the number of speakers in which the gender and age of the
speaker were classified incorrectly in 21 to 77 recordings. In this case, in most tests, there
were 13 to 17 speakers for which the gender and age were classified incorrectly. When
we analyzed these 17 speakers, we found that 11 of them appeared in all tests. There
were no male speakers among them, which is also understandable since the male speaker
classification was, in most cases, correct. There were eight child speakers and three female
speakers for whom gender and age classifications were incorrect in all tests. For these
11 speakers, most confusions in gender and age classification were between the female
speaker and child speaker, and vice versa. Of these 11 speakers, 5 speakers were almost
entirely incorrectly classified by gender and age in all experiments, which represents 3%
of the test material. For these speakers, we can say that they present a challenging task,
due to their characteristics, and they will almost always be classified as errors. As can
be seen from Table 4, the gender and age classification is presented for all three classes
separately (M for male, F for female, and C for child). The column labeled with S represents
the sum of values in individual classes. To understand the table better, let us remember
that the number of male, female, and child speakers in the test set were 56, 57, and 50,
respectively. In experiment (d), for 75 speakers, classification was correct for all audio
recordings of these speakers. This represents the best result, but this experiment has as
many as 31 speakers for which the gender and age of the speaker were classified incorrectly
in 21 to 77 audio recordings. Good results were achieved in experiment (e) due to the very
complex methodology, while the results of the proposed algorithm with segmentation and
pitch adaptation (experiment (i)) were very similar. However, if we compare experiments
(h) and (i), we can see that the adaptation of the system helped to improve the classification
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of the female speaker. The number of female speakers for which the female gender was
classified correctly in all recordings increased from 10 to 14.

Table 4. Gender and age classification analysis (M—male, F—female, C—child, S—sum of all gender
and age classifications) for all 163 speakers.

The Number of Speakers for
Which the Gender and Age of
the Speaker Were Classified:

Correctly in
All Recordings

Incorrectly in
1 to 10 Recordings

Incorrectly in
11 to 20 Recordings

Incorrectly in
21 to 77 Recordings

Experiments:
Gender and age: M F C S M F C S M F C S M F C S

(a) Pitch value counts 49 0 4 53 4 16 19 39 1 17 6 24 2 24 21 47
(b) Pitch value sums 50 11 1 62 4 26 16 46 0 6 10 16 2 14 23 39
(c) Three-state monophone
HMMs—MFCC_Pitch_E_D_A 46 9 9 64 9 37 21 67 1 7 9 17 0 4 11 15

(d) Sixteen-state word
HMMs—MFCC_Pitch_E_D_A 49 2 24 75 6 11 18 35 1 20 1 22 0 24 7 31

(e) Universal modeling based on
GMM clustering [22] 46 12 14 72 10 33 24 67 0 6 4 10 0 6 8 14

(f) GMMs with
segmentation—MFCC_E_D_A 30 6 16 52 20 30 19 69 4 11 5 20 2 10 10 22

(g) GMMs with segmentation—
MFCC_Pitch_E_D_A 44 11 10 65 11 30 21 62 1 10 8 19 0 6 11 17

(h) Proposed algorithm
with segmentation 45 10 12 67 10 31 19 60 1 11 9 21 0 5 10 15

(i) Proposed alg. with
segmentation and
pitch adaptation

46 14 11 71 10 35 23 68 0 6 4 10 0 2 12 14

The direct comparison of achieved results with other combined age and gender acous-
tic classification systems is difficult, as experiments were not conducted on the same speech
databases (type and amount of speech, language), and also the evaluation conditions dif-
fered. A general comparison for the male, female, and child speaker classifications shows
that accuracy in previous work [29] was 90.39%, while the proposed system achieved
92.25%, which is a statistically significant improvement. The gap in results between adults
and child classes is, in the case of [29], as high as ~35% (classification success: child (60.96%)
compared to female (94.50%) or male (96.09%)), while there is a gap in the case of the
proposed system i) of between ~10% and ~15% (recall: child (83.5%) compared to female
(93.1%) or male (99.2%)). It can be concluded that the inclusion of pitch values improved
the classification modeling balance between the child and adult categories.

We performed additional analyses because we wanted to find out how many digits
were in the recording when there was an error in the speaker’s gender and age classification.
Table 5 shows the average number of digits in the audio recordings when the gender and
age of the speaker were classified incorrectly. If we compare Tables 4 and 5, we can see
that, for 163 speakers, in most cases, errors occurred in 1 to 10 recordings. The number
of digits that appeared in these incorrectly classified recordings was, on average, 1.64. In
other words, 1 to 2 digits were pronounced in these recordings. The conclusion is that the
maximum number of errors occurs in recordings that have small speech content.

Table 5. The average number of digits in the recordings when the gender and age of the speaker were
classified incorrectly.

The gender and age of the speaker were classified incorrectly in 1 to 10 recordings. 1.63
The gender and age of the speaker were classified incorrectly in 11 to 20 recordings. 2.38
The gender and age of the speaker were classified incorrectly in 21 to 77 recordings. 3.12
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The use of such gender and age speaker classification, based on the acoustic detection
of the speaker’s presence in the room, is intended primarily for use in intelligent environ-
ments of smart homes. The objective is to adapt and personalize services and content to
particular user classes. If such a gender and age classification is used in the embedded
system, energy consumption is also important. Therefore, we suggest using such a detector,
in combination with a PIR motion detection sensor, to turn on the proposed system when
a person enters the room. Once gender and age speaker classification, based on acoustic
detection, has confirmed the gender or age of the speaker in the room with a high probabil-
ity, the system can be switched off automatically. Of course, there is still the question of
how to act if more people (e.g., an adult and a child) are present in the room. If the acoustic
presence detector detects two persons in the room, belonging to different classes (e.g., one
is an adult and the other is a child), it is not the task of the acoustic presence detector to
define how the smart home environment should react in this case. The issue is resolved at
a higher level of the decision support system in the smart home environment, which is not
part of the focus of this paper.

6. Conclusions

The presented acoustic presence detection system can be applied in a smart home
environment, either as a stand-alone solution or in combination with a PIR motion detection
sensor. In this paper, we presented a method for gender and age classification of the speaker,
which is based on three different methods completed in two steps. In the first step, the
gender and age classification is based on GMMs. Basically, it counts the frames and
calculates which frame has a greater probability of belonging to one of the gender and age
(male, female, or child) classifications. If the difference between the highest two counted
frames belonging to a male, female, or child speaker is less than 4, the second step of gender
and age classification is performed, whereby two additional gender and age classification
procedures are carried out. The first is based on the count of the frames with normalized
pitch values, and the second is based on the sum of the frames with normalized pitch
values, which belong to one of the speakers. If all three, or at least two, of the decisions
match, then we choose the gender and age that is in the majority. However, if all three
decisions are different, we adopt the classification based on GMMs.

Comparative experiments carried out in this paper have shown that algorithms with a
large number of different features (some of which are also computationally complex) and
more advanced modeling techniques provide slightly better results than in the presented
gender and age classification algorithm. However, the proposed classification algorithm
was developed for use in a smart home environment, where only simple and efficient
classification algorithms are acceptable.

When analyzing the results, we came to the important conclusion that most of the
incorrect classifications of the speaker’s gender and age occurred in cases where we had a
small amount of speech material to analyze. This was, in our case, when only one or two
words were captured in the audio recording. We also proposed a procedure that allows
us to quickly adapt the gender and age classification algorithm to the frequent users of
such a system in smart home environments. The proposed adaptation procedure further
improved the performance of speaker gender and age classifications. After performing an
extensive set of experiments, we can infer that the proposed method for gender and age
classification with adaptations to users could be a potential candidate for integration into
real-life smart home environments.

In future work, we will further improve the classification accuracy for children’s
speech using other low-complexity feature extraction methods, as we aim to use embedded
systems for smart home environments.
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Abstract: A mixed signal with several unknown modes is common in the industry and is hard to
decompose. Variational Mode Decomposition (VMD) was proposed to decompose a signal into
several amplitude-modulated modes in 2014, which overcame the limitations of Empirical Mode
Decomposition (EMD), such as sensitivity to noise and sampling. We propose an improved VMD,
which is simplified as iVMD. In the new algorithm, we further study and improve the mathematical
model of VMD to adapt to the decomposition of the broad-band modes. In the new model, the ideal
flattest response is applied, which is derived from the mathematical integral form and obtained from
different-order derivatives of the improved modes’ definitions. The harmonics can be treated via
synthesis in our new model. The iVMD algorithm can decompose the complex harmonic signal
and the broad-band modes. The new model is optimized with the alternate direction method of
multipliers, and the modes with adaptive broad-band and their respective center frequencies can
be decomposed. the experimental results show that iVMD is an effective algorithm based on the
artificial and real data collected in our experiments.

Keywords: mode decomposition; spectral decomposition; variational problem; augmented Lagrangian;
Fourier transform

MSC: 40B05; 68W01; 94D99

1. Introduction

With the development of science and technology, nonstationary signal processing and
its applications in engineering are gaining more and more attention. During recent decades,
scholars have developed many approaches to process single-channel nonstationary signals,
or even multi-channel ones, which are not discussed in this paper. Short-Time Fourier Trans-
form (STFT) [1] and Wavelet Transform (WT) [2] are two of the most popular algorithms
used to perform time–frequency (TF) transform on nonstationary signals. These transform
methods exhibit limited TF resolutions [3], and cannot separate a multi-component signal
into mono-components. These sometimes suffer from the consequences of the Heisenberg
uncertainty principle. However, data-driven signal decomposition methods can decompose
a multi-component signal into several modes—for example, Empirical Mode Decomposi-
tion (EMD) [4], and Variational Mode Decomposition (VMD) [5]. We develop a new signal
decomposition method here.

Variational Mode Decomposition (VMD) [5] and Variational Nonlinear Chirp Mode
Decomposition (VNCMD) [6] are proposed to adaptively extract a set of modes, which
are called Intrinsic Mode Functions (IMFs). VMD is a non-recursive algorithm method to
decompose a signal into several modes with quasi-orthogonality, intrinsics, and adaptiv-
ity [7]. VMD can concurrently look for the IMFs and their respective center frequencies.
Each IMF is compact at a particular band. Unlike the EMD-based methods, VMD is built
on well-founded mathematical theories.

Several other VMD-based algorithms have emerged. Due to the difficulty of selecting
the mode number, successive VMDs (SVMD) [8] need not predefine the mode number
K. The adaptive chirp mode pursuit (ACMP) [9] is proposed to recursively extract the
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nonlinear chirp modes. However, VNCMD and ACMP require high-limited instanta-
neous frequency (IF) initialization [6,9], and VMD and SVMD suffer from the narrowband
assumption of IMFs.

The VMD was proposed as a one-dimensional algorithm [5], and a two-dimensional al-
gorithm was later published [10,11]. Then, multivariate VMD (MVMD) [12] was developed
to achieve a better performance than the direct use of univariate VMD in a channel-by-
channel method. However, MVMD still suffered from the limited narrowband assumption,
and the VMD-based developed algorithms could not decompose signals composed of
wideband multivariate IMFs (MIMFs). A multivariate nonlinear chirp mode decomposition
(MNCMD) and its improved version, multivariate intrinsic chirp mode decomposition
(MICMD) [13], were developed. These two algorithms could process multichannel signals
involving wideband MIMFs.

The VMD has attracted a broad variety of time–frequency analysis applications, such
as signal decomposition in multivariate time–frequency analysis [3], speech signal process-
ing [14,15], emotional speech classification [7,16], system identification [17], medicine [18],
fault diagnosis [19], seismic signal analysis [20], and so on.

VMD suffers from the narrow band-limited mode, which has a center frequency, and
VMD cannot decompose a complex signal with harmonics, in theory [21]. In this paper, we
further develop a more adaptive variation method by augmenting the concept of flattest
response in the mathematical model with extra adaptive bandwidth, and we also consider
the high-order harmonics of the decomposed mode.

The rest of this paper is organized as follows: Section 2 reviews VMD primarily on the
definition of the mode and the model of VMD; Section 3 introduces our idea for improving
VMD mainly on the concept of the flattest response and bandwidth; Section 4 presents our
improved model and its solution; Section 5 contains our rich experiments and results; and
Section 6 concludes the discussion on iVMD.

2. Review of VMD

2.1. Mode Definition

Until now, there have been two definitions of mode.
Definition 1 of the Intrinsic mode function [2] is as follows: Intrinsic mode function

(IMF), as the original IMF definition, is an amplitude-modulated and frequency-modulated
(AMFM) signal, which is defined as

uk(t) = ak(t) cos(φk(t)). (1)

Here, the phase φk(t) is a nondecreasing function, while φ′
k(t) ≥ 0, and φ′

k(t) are
the instantaneous frequencies. The envelope is a non-negative, ak(t) ≥ 0. The maximum
frequency contained in ak(t) and φ′

k(t) is much smaller than that in φk(t) [2].
The original IMF is a signal whose number of local extreme and zero-crossings differ

at most by one [4]. IMFs are decomposed by VMD, and VMD IMFs [5] by VMD. The
definition of VMD IMF is slightly more strictive than the original IMF definition. VMD
IMF has a central frequency, ωk, with limited bandwidth, Bk, which is the total practical
IMF bandwidth.

Definition 2 on the total practical IMF bandwidth (VMD bandwidth definition) [5] is
as follows: total bandwidth of an IMF is defined as

Bk = 2(Δ f + fFM + fAM). (2)

Here, Δ f is one half of the variation range of the instantaneous frequency, while fFM is
the excursion of the mode according to Carson’s rule, and fAM is the highest frequency of
the envelope ak(t).

We offer a newer definition of each decomposed mode, whose bandwidths are decided
via the flattest response filter. Details are given in the next sections. In those sections, we
derive the adaptive bandwidth which is achieved via the flattest response filter.
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2.2. VMD Model

We set a real valued input signal x(t), which includes K modes, noted as uk(t), k = 1, · · · , K.
The goal of VMD [5] is to decompose x(t) into uk(t), k = 1, · · · , K. The modes uk(t) have
specific sparsity properties, and thus the modes are fully quasi-orthogonal. The constrained
variational problem of the VMD algorithm is

min
{uk ,ωk}

{
∑
k

∣∣∣∣∣∣ ∂
∂t

[((
δ(t) + j

πt

)
∗ uk(t)

)
e−jωkt

]∣∣∣∣∣∣2
2

}
st. ∑

k
uk(t) = x(t).

(3)

VMD and its related algorithms solve the inverse problem by decomposing a signal
into a given number K of modes with limited bandwidth [6,9], either exactly or in a
least square sense. A classical ADMM approach [22] is applied to solve the variational
problem. All the parameters, including the modes themselves, are updated directly in the
Fourier domain.

2.3. Wiener Filtering of VMD

Consider the AM–FM signal x(t), contaminated by an additive zero-mean Gaussian
noise. The observed signal x0(t) is,

x0(t) = x(t) + η (4)

Recovering the unknown signal x(t) is a typical ill-posed inverse problem [23], classi-
cally addressed using the Tikhonov regularization [24],

min
x

{
‖x − x0‖2

2 + α‖∂tx‖2
2

}
(5)

of which the Euler–Lagrange equations are easily obtained and typically solved in the
following Fourier domain,

x̂(ω) =
x̂0

1 + αω2 (6)

Here x̂(ω) = F{x(·)}(ω) = 1
2π

∫
R

x(t)e−jωtdt, with j =
√−1, and α is the coefficient.

K. Dragomiretskiy and D. Zosso [5] took the mode in (4) and its solution (6) as Wiener filter,
and applied it in the VMD mathematical model (3).

3. Ideas for Improving VMD

In this section, we briefly propose a few ideas for improving VMD. These ideas
constitute the building blocks of our improved VMD, which is simply abbreviated to iVMD.

3.1. The Flattest Response

VMD can recover an AM–FM mode with a low-pass, narrow-band selection of the
input signal. The form in (6) was taken as a Wiener filter, and thus the recovered mode
had a lowpass power spectrum. Based on the heuristic method of the filtering concept in
(5) and (6), we rewrite the differential part ∂

∂t x of the model in (3) as a time differential
equation to solve the model in (3), and generalize it as

P

∑
p=0

βn∂
p
t x(t) = x0(t) (7)

Here, ∂
p
t � ∂p

∂tp , p = 0, · · · , P is the p-th derivative operator with P ≥ 1, the highest
derivative order, and ∂0

t x(t) � x(t). We have noted that βp is the coefficient of ∂
p
t x(t)

and β0 = 1.
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Therefore, we can obtain the corresponding frequency domain form of (7),

x̂(ω) =
x̂0(ω)

1 + ∑P
p=1 βp(jω)p (8)

We set the ratio of x̂(ω)
x̂0(ω)

= HP(ω) as the filter system; therefore,

HP(ω) =
1

1 + ∑P
p=1 βp(jω)p (9)

When P = 1, 2, 3, their amplitude spectra are, respectively,

x̂1(ω) =
x̂0(ω)

1+β1jω ,

x̂2(ω) =
x̂0(ω)

1−β2ω
2+β1jω ,

x̂3(ω) =
x̂0(ω)

1−β2ω
2+j(β1ω−β3ω

3)

(10)

and thus,
|H1(ω)| = 1√

1+(β1ω)2
,

|H2(ω)| = 1√
(1−β2ω

2)
2
+(β1ω)2

,

|H3(ω)| = 1√
(1−β2ω

2)
2
+(β1ω−β3ω

3)
2

(11)

Table 1 provides the coefficients of the different lowpass filters, and Figure 1 shows
the squared amplitude frequency characteristic, |HP(ω)|2. The system is a lowpass filter
expressed by HP(ω), with its coefficients carefully selected via many methods of filter
designing from Butterworth, Chebyshev, etc. Here, we design the filter as a Butterworth
filter [25], which has the flattest response in the frequency as depicted in Figure 1. The
parameters of the Butterworth filter are calculated in the following equations:

P =

⎡
⎢⎢⎣1

2

lg
(

10
αs
10 −1

10
αp
10 −1

)

lg
(

ωs
ωp

)
⎤
⎥⎥⎦, ωc =

ωp(
10

αp
10 − 1

) 1
2P

(12)

Here, [·] is meant to take the maximum integer and add 1, while αp, αs are the band pass
and stop attenuations, respectively, and ωp, ωs are the responding frequencies. Certainly,
other filter-type designs can also be applied here.

Figure 1. Amplitude Spectra of different order P with normalization.
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Table 1. Coefficient of the lowpass Butterworth filter in the model (7).

P β1 β2 β3 β4 β5 β6

1 1
2

√
2 1

3 2 2 1
4 2.61312593 3.41421356 2.61312593 1
5 3.23606798 5.23606798 5.23606798 3.23606798
6 3.86370331 7.46410162 9.14162017 7.46410162 3.86370331 1

Note that β0 = 1.

3.2. To Set the Bandwidth

In the design of the lowpass Butterworth filter, we can adjust the bandwidth by
normalizing the frequency. We set the normalized frequency as ω

ωc
, and thus we can set the

lowpass bandwidth as B = ωc. Figure 1 shows the bandwidth is normalized by dividing
with B, where the cutoff frequency is 1 kHz.

From (9), we rewrite the system function as

Hp

(ω

B

)
=

1
1 + ∑P

p=1 βp
(
jωB
)p (13)

Based on the property of the Fourier transform, if denormalization means ω is divided
by B in the frequency domain, then the time domain response is Bhp(Bt), where hp(t) is the
inverse Fourier transform of Hp(ω). We obtain the denormalized version of the filter as

P

∑
p=0

βnB∂
p
t f (Bt) = f0(t) (14)

3.3. Harmonics

Continuous periodic signal (mode), uk(t), may have multiple harmonic components
with its base frequency of ωk, each of which has a gradually attenuated amplitude am with
the harmonic frequency mωk, m = 1, 2, · · · , Mk. We find that Mk is the highest order of
harmonic frequency. In theoretical application, M → ∞ . That is,

uk(t) = ∑
m

amejmωkt. (15)

Therefore, the composite signal may consist of one harmonic mode with maximum har-
monic order at Mk, and the center frequencies of the harmonic mode are mωk, m = 1, 2, · · · , Mk.

4. Improved VMD

4.1. Improved Optimal Problem

In this section, we introduce our improved mathematical model for the variational
mode decomposition based on the VMD idea [5] and the previous section.

The new model is similar to the model found in (3), except in a few aspects. The
sparsity in each mode is chosen to be its bandwidth, 2B, in the spectral domain. Each mode
without the harmonical frequencies, uk, is compact around a center pulsation, ωk, which is
to be determined among the decomposition. Each mode with the harmonical frequencies
is compact around the harmonical frequencies, mωk, m = 1, 2, · · · . Here, the sparsity also
indicates full quasi-orthogonality.

We propose the following improved idea to decompose the signal x(t): (1) for each
mode, uk, that has an adaptive bandwidth of 2B, we design the flattest response lowpass
filter which permits the mode to pass through; (2) for each mode, uk, we shift the mode’s
harmonic frequencies spectrum with the baseband, by multiplying it with an exponential,
e−jmωkt, which is tuned to the respective estimated center frequency, mωk.
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We set the analytical signal of uk(t) as,

ak(t) =
(

δ(t) +
j

πt

)
∗ uk(t) (16)

Here, ∗ is the convolution operator. The resulting constrained variational problem is

min
{uk ,ωk ,Bk}

{
∑
k

∑
m
‖∂P

t
[
Bkak(Bkt)e−jmωkt]‖2

2

}
st. ∑

k
uk(t) = x(t)

(17)

where uk, k = 1, · · · , K is the mode to be decomposed, where K is the given number of
the modes, where Bk is the basic bandwidth of the mode uk, and where ωk is the center
frequency corresponding with the mode uk.

4.2. Solution to the Problem

The constraint optimal problem (17) can be solved via the augmented Lagrangian
method. Lagrangian multipliers λ(t) are set with a quadratic penalty term to render the
problem unconstrained. The weight αk of the penalty term is set as the factor of each
mode uk.

First, we project the minimization problem (17) into solving the extreme point of the
augmented Lagrangian equation [26], which is

L(uk, ωk, Bk, λ) = αk ∑
k

∑
m
‖∂t

[
Bkak(Bkt)e−jmωkt

]
‖2

2
+

∣∣∣∣∣
∣∣∣∣∣x(t)− ∑

k
uk(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

+ 〈λ(t), x(t)− ∑
k

uk(t)〉 (18)

The augmented Lagrangian (18) is in a sequence of alternate direction methods of
multipliers (ADMM) [27]. Next, we detail how the respective sub-problems can be solved.

4.3. Minimization w.r.t uk

To update the modes uk, the problem (18) is rewritten as the following unconstraint
goal function for uk:

Luk = αk ∑
m
‖∂t

[
Bkak(Bkt)e−jmωkt

]
‖2

2
+

∣∣∣∣∣
∣∣∣∣∣x(t)− ∑

k
uk(t) +

λ(t)
2

∣∣∣∣∣
∣∣∣∣∣
2

2

(19)

This was achieved via Parseval–Plancherel Fourier isometry [28], and we take ω+mωk
Bk

→ ω
in the first term; then,

Lûk = αk ∑
m

∣∣∣∣∣
∣∣∣∣∣

P

∑
p=1

βp(jBkω − jmωk)
p[(1 + sgn(ω))ûk(ω)]

∣∣∣∣∣
∣∣∣∣∣
2

2

+

∣∣∣∣∣
∣∣∣∣∣x̂(ω)− ∑

k
ûk(ω) +

λ̂(ω)

2

∣∣∣∣∣
∣∣∣∣∣
2

2

(20)

By exploiting the Hermitian symmetry of the real signals,

Lûk =
∫ +∞

0

⎧⎨
⎩4αk ∑

m

∣∣∣∣∣
P

∑
p=1

βp(Bkω − mωk)
pûk(ω)

∣∣∣∣∣
2

+ 2

∣∣∣∣∣x̂(ω)− ∑
k

ûk(ω) +
λ̂(ω)

2

∣∣∣∣∣
2
⎫⎬
⎭dω (21)

Letting the first variation vanish, i.e., δ
δuk

Luk = 0, for the positive frequencies. Thus,

ûk(ω) =
x̂(ω)− ∑i �=k ûi(ω) +

λ̂(ω)
2

1 + 2αk ∑m ∑P
p=1 β2

p|Bkω − mωk|2p (22)
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When M = 1, P = 1, Bk = 1, and β1 = 1, which is taken from Table 1, then the above
equation is simplified as,

ûk(ω) =
x̂(ω)− ∑i �=k ûi(ω) +

λ̂(ω)
2

1 + 2αk|ω − ωk|2
(23)

If we set αk = 1, M = 1, P = 1, and β1 = 1 in Equation (22), then,

ûk(ω) =
x̂(ω)− ∑i �=k ûi(ω) +

λ̂(ω)
2

1 + 2B2
k

∣∣∣ω − ωk
Bk

∣∣∣2 . (24)

When M = 1, P = 2, and βp which is taken from Table 1, then Equation (22) is,

ûk(ω) =
x̂(ω)− ∑i �=k ûi(ω) +

λ̂(ω)
2

1 + 2αk ∑m

(√
2|Bkω − mωk|2 + |Bkω − mωk|4

) (25)

When αk = 1 and M = 1, Equation (25) is clearly identified as a Butterworth filtering
of the current residual.

4.4. Minimization w.r.t ωk

The center frequency ωk is solved via the optimization of the following goal function,

Lωk = ∑
m
‖∂t[Bkak(Bkt)]e−jmωkt‖2

2 (26)

As described previously, the minimization of (26) can work in the Fourier domain;
that is,

Lωk =
2
π

∫ +∞

0
∑
m

∣∣∣∣∣
P

∑
p=1

βp(Bkω − mωk)
p

∣∣∣∣∣
2

|ûk(ω)|2dω (27)

We also take the derivative of Lωk to ωk, and set it to be zero; then,

∑
m

P

∑
p=1

P

∑
p′=1

mp′βp′ βp

∫ +∞

0
(Bkω − mωk)

p+p′−1|ûk(ω)|2dω = 0 (28)

Applying the binomial theorem, we get,

P

∑
p=1

P

∑
p′=1

p+p′−1

∑
i=0

[
(−1)p+p′−isp+p′−i

m p′βp′ βpCi
p+p′−1Bi

kωi
]
ω

p+p′−1−i
k = 0 (29)

Here, we find that Ci
n = n!

i!(n−i)! , ωn =
∫ +∞

0 ωn|ûk(ω)|2dω, and sn
m = ∑M

m=1 mn.
Equation (29) is a polynomial 2P-power equation about ωk. We rewrite (29) as

2P−1

∑
n=0

cnωn
k = 0 (30)

Here, cn is the n-power coefficient, and

cn = ∑
n=p+p′−1−i
p,p′=1,2,...,P

i=0,1,...,p+p′−1

(−1)p+p′−isp+p′−i
m p′βp′ βpCi

p+p′−1Bi
kωi (31)
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Solving the above equation in (30), we can obtain the solution of ωk via the Newton–
Raphson method, or others. Since Equation (28) is complex, it is not easy to obtain the
solution. In fact, we find that M, P are not large, so we provide the different possible values
of M, P, and obtain the corresponding solutions. Table 2 shows the different solutions
of ωk under M, P, and shows that ωk should be selected via the conditions, (1) ωk > 0;
(2) ωk being a real number. Additionally, the solution exists in practice, which can be clearly
proven since the power order is odd.

Table 2. The different solutions of ωk(M, N).

P M ωk(M,P)

1

1
c1 = ω0, c0 = −Bkω

ωk = Bk

∫ +∞
0 ω|ûk(ω)|2dω∫ +∞

0 |ûk(ω)|2dω

2 ωk = Bk
3
∫ +∞

0 ω|ûk(ω)|2dω

5
∫ +∞

0 |ûk(ω)|2dω

m ωk = Bk
∑m m

∫ +∞
0 ω|ûk(ω)|2dω

∑m m2
∫ +∞

0 |ûk(ω)|2dω

2 m

c3ω3
k + c2ω2

k + c1ωk + c0 = 0
Here,

c3 = 2ω0s4
m

c2 = [−2
√

2
−

ω0 −√
2
−

ω0 − 6Bk

−
ω1]s3

m

c1 =
[
2ω0 + 4

√
2Bkω1 + 2

√
2Bkω1 + 6B2

kω2
]
s2

m

c0 =
[
−2Bkω1 − 2

√
2B2

k ω2 −√
2B2

k ω2 − 2B3
k ω3
]
s1

m

3 m

c5ω5
k + c4ω4

k + c3ωkω3
k + c2ω2

k + c1ωk + c0 = 0
Here,

c5 = +3ω0s6
m

c4 =
(
−15Bkω1 − 10ω0

)
s5

m

c3 =
(
+30B2

k ω2 + 40Bkω1 + 16ω0
)

s4
m

c2 =
(
−30B3

k ω3 − 60B2
k ω2 − 48Bkω1 − 12ω0

)
s3

m

c1 =
(
+15B4

k ω4 + 40B3
k ω3 + 48B2

k ω2 + 24Bkω1 + 4mω0
)

s2
m

c0 =
(
−3B5

k ω5 − 10B4
k ω4 − 16B3

k ω3 − 12B2
k ω2 − 4Bkω1

)
s1

m

4.5. Minimization w.r.t Bk

The Bandwidth, Bk, is solved via optimization of the following goal function:

LBk = ∑
m
‖∂t[Bkak(Bkt)]e−jmωkt‖2

2 (32)

The minimization of (32) can be completed in the Fourier domain; that is,

LBk =
2
π

∫ +∞

0
∑
m

∣∣∣∣∣
P

∑
p=1

βp(Bkω − mωk)
p

∣∣∣∣∣
2

|ûk(ω)|2dω (33)

We also take the derivative of LBk to Bk, and set it to be zero; that is, ∂
∂Bk

LBk = 0, then,
via the binomial theorem, we get,

P

∑
p=1

2p−1

∑
i=0

p(−1)iωi+1s2p−1−i
m βp

2Ci
2p−1ωk

2p−1−iBk
i = 0 (34)
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Here, we still rewrite (34) as

2P−1

∑
i=0

d2P−1−iBi
k = 0 (35)

Here, di is the i-power coefficient, and

d2P−1−i = (−1)iωi+1
P

∑
p=1

ps2p−1−i
m βp

2Ci
2p−1ωk

2p−1−i (36)

When P = 1, then
d0 = ω2M
d1 = ω1s1

mωk
(37)

And

Bk = ωk
s1

mω1

Mω2
(38)

As in the previous section, when solving the above equation in (35), we can obtain the
solution of Bk via the Newton–Raphson method, or others.

4.6. Complete Algorithm

The Lagrangian multiplier λ(t) is updated with the following equation [5]:

λn+1(t) = λn(t) + τ

(
x(t)− ∑

k
uk(t)

)
(39)

As well as in the frequency domain,

λ̂n+1(ω) = λ̂n(ω) + τ

(
x̂(ω)− ∑

k
ûk(ω)

)
(40)

Here, n is the iterative number, and τ is the update parameter.
We directly optimize in the Fourier domain, and then we obtain the complete algorithm

for iVMD in Algorithm 1.

Algorithm 1: Complete optimization of iVMD

Initialize {û1
k}, {ω1

k},
{

B1
k
}

, λ̂1, n ← 1
Repeat

n ← n + 1
For k = 1 : K do

Update ûk for all ω ≥ 0:

ûn+1
k (ω) ← x̂(ω)−∑i<k ûn+1

i (ω)−∑i>k ûn
i (ω)+ λ̂n (ω)

2

1+2α ∑m ∑P
p=1 β2

p|Bkω−mωn
k |2n

Update ωk:
ωn+1

k ← ωk(M, N) in Table 2
Bn+1

k ← Solving (35)
End for

Update Lagrangian multiplier for all ω ≥ 0:

λ̂n+1(ω) = λ̂n(ω) + τ

(
x̂(ω)− ∑

k
ûn+1

k (ω)

)
Until convergence

∑
k

‖ûn+1
k −ûn

k ‖
2

‖ûn
k ‖2 < ε
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4.7. Reconstruction versus Denoising

The role of the Lagrangian multiplier [5] λ(t) is the same in iVMD as in VMD, which
serves to enforce the constraint, while the quadratic penalty αk improves convergence.

The iVMD algorithm adds the extra bandwidth Bk, and it acts as a penalty factor, as
detailed in Equation (24). Both the penalty factor and the bandwidth improve convergence,
and we can initially set the factor and leave the bandwidth adaptively undated. If we set
the bandwidth as Bk = 1, the penalty factor of iVMD acts as the VMD.

5. Experiments and Results

To demonstrate the effectiveness of the iVMD algorithm, we consider the same test
signals that were previously suggested [2,5] with the purpose of increased comparability.

5.1. Example 1 with Linear Trend

The first signal is

xSig1(t) = 6t + cos 8πt +
1
2

cos 40πt. (41)

The signal composes three parts, detailed in (41). The linear growth term in (41)
has higher-order harmonics, which spread over the whole spectrum. Figure 2 shows the
effective partition of the input spectra via iVMD, and we compare it with the results run
via the VMD in Figure 3. The results are almost identical.

 
Figure 2. iVMD decomposition of xSig1(t). The left shows the IMF’s spectra, and the right shows the
reconstructed modes. In the left figure, legend x(t) expresses the spectrum of xSig1(t), and legend 4
and 20, respectively, express the spectra of the components at 4 Hz and 20 Hz.

 
Figure 3. VMD decomposition of xSig1(t).
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5.2. Example 2 with a Piecewise Signal

The second signal is

xSig2(t) = 6t2 + cos
(

10πt + 10πt2
)
+

{
cos 60πt t ≤ 0.5

cos(80πt − 10π) t > 0.5
(42)

We set K = 4 in the iVMD algorithm, thus assigning each half of the piecewise-constant
frequency signal to a separate mode. Both iVMD and VMD achieve effective convergence
with the expected center frequencies after carefully tuning the parameters of the respective
algorithms. For details, see Figures 4 and 5. When comparing the peaks in frequencies at
30, 40 Hz, the results run via iVMD show slightly better results.

 
Figure 4. iVMD decomposition of xSig2(t) run via iVMD. The left figure shows the IMF’s spectra, and
the right shows the reconstructed modes.

 
Figure 5. VMD decomposition of xSig2(t).

5.3. Example 3: Intrawave Frequency Modulation

The third signal is

xSig3(t) =
1

1.2 + cos(2πt)
+

cos(32πt + 0.2 cos(64πt))
1.5 + sin(2πt)

(43)

The iVMD and VMD results are almost identical, as illustrated in Figures 6 and 7. In
fact, the second term in (43) quickly converges with the correct main frequency of 16 Hz.

5.4. Example 4: Sawtooth Signal

The fourth signal is
xSig4(t) = x41(t) + x42(t). (44)

The components x41, x42 are sawtooth signals of different center frequencies, 10 Hz and
80 Hz, and amplitudes at 2. Figure 8, run via iVMD, shows the decomposition of the two
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sawtooth composite signals. The iVMD algorithm can obtain effective decomposition with
the relatively small-value difference curve between the raw sawtooth and the estimated
sawtooth. The two are compared by running at different settings of harmonical order—
M, M = [1; 3; 5]—the bigger M is taken to allow more harmonical components, and the
difference is smaller.

 
Figure 6. iVMD decomposition of xSig3(t) run via iVMD. The left shows the IMF’s spectra, and the
right shows the reconstructed modes. In the reconstructed modes, we show four figures. The left two
are the IMFs, and the right two show the differences between the estimated IMF and the original.

 
Figure 7. VMD decomposition of xSig3(t).

Figure 8. iVMD decomposition of xSig4(t) run via iVMD. The algorithm iVMD is run at M = [1; 3; 5],
the figures of which are noted in the titles. Each figure has four sub-figures, with the left two being
decomposed IMFs and the originals, while the right two are the correspondence differences.
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For comparison, we still provide the results run by the VMD with the same aspect,
which is depicted in Figure 9. The difference between the original and decomposed signal
is relatively smoother in the iVMD results.

Figure 9. VMD decomposition of xSig4(t).

5.5. Example 5: An Electrocardiogram

The fifth signal, xSig5(t), is an electrocardiogram (ECG). The data are shared by [2].
The data present numerous components in which there exists an oscillating low-frequency
pattern, and a noise with a high frequency. Figure 10 illustrates the spectra and the results
run via iVMD. A high number of 12 modes is detected. The center frequencies are effectively
detected, which converges with ECG spectral peaks. The first mode represents the baseline
oscillation, and the last mode represents the high-frequency noise.

Figure 10. iVMD decomposition of xSig5(t). We set K = 12. The left figure shows the IMFs, and the
right shows the reconstructed ECG signal, where the first and last modes are discarded.

6. Conclusions and Outlook

We further developed the algorithm of VMD as iVMD from three points: (1) flattest
response, (2) harmonic, and (3) bandwidth. The flattest response is applied in iVMD and
thus, we can set the higher differential order P with respect to time, which results in the
added weighting coefficient which can be obtained via Butterworth filter designing. As
the harmonics may exist in the input signal, the mathematical model of VMD is further
studied and modified via the harmonic order M, and the improved version can support
M-order harmonical center frequency, mωk. Each mode may have its adaptive bandwidth,
and we set it in the model in (13) and (17). Through the above three points, we developed
the algorithm iVMD.
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In our experiments, iVMD works effectively with the same abilities as VMD and
achieves a better performance than VMD.

The assumption of iVMD is the same as VMD, except that we can set the differential
order and harmonic order with adjustable bandwidth, Bk. We explain the reasons behind
decomposing the two sawtooth composite signals, and it is due to setting the M-order
harmonics in the mathematical model.

The algorithm iVMD is now being further extended with two-dimension decomposi-
tion, and we expect further challenges to decompose more complex composite signals.
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Abstract: Analyzing electroencephalography (EEG) signals with machine learning approaches has
become an attractive research domain for linking the brain to the outside world to establish commu-
nication in the name of the Brain-Computer Interface (BCI). Many researchers have been working on
developing successful motor imagery (MI)-based BCI systems. However, they still face challenges
in producing better performance with them because of the irrelevant features and high computa-
tional complexity. Selecting discriminative and relevant features to overcome the existing issues is
crucial. In our proposed work, different feature selection algorithms have been studied to reduce
the dimension of multiband feature space to improve MI task classification performance. In the
procedure, we first decomposed the MI-based EEG signal into four sets of the narrowband signal.
Then a common spatial pattern (CSP) approach was employed for each narrowband to extract and
combine effective features, producing a high-dimensional feature vector. Three feature selection
approaches, named correlation-based feature selection (CFS), minimum redundancy and maximum
relevance (mRMR), and multi-subspace randomization and collaboration-based unsupervised feature
selection (SRCFS), were used in this study to select the relevant and effective features for improving
classification accuracy. Among them, the SRCFS feature selection approach demonstrated outstand-
ing performance for MI classification compared to other schemes. The SRCFS is based on the multiple
k-nearest neighbour graphs method for learning feature weight based on the Laplacian score and
then discarding the irrelevant features based on the weight value, reducing the feature dimension.
Finally, the selected features are fed into the support vector machines (SVM), linear discriminative
analysis (LDA), and multi-layer perceptron (MLP) for classification. The proposed model is evaluated
with two benchmark datasets, namely BCI Competition III dataset IVA and dataset IIIB, which are
publicly available and mainly used to recognize the MI tasks. The LDA classifier with the SRCFS
feature selection algorithm exhibits better performance. It proves the superiority of our proposed
study compared to the other state-of-the-art BCI-based MI task classification systems.

Keywords: BCI; automatic feature selection; CFS; mRMR; SRCFS; CSP; MI classification; SVM; LDA;
MLP

MSC: 68T10

1. Introduction

Brain-Computer Interface (BCI) is a promising technology mainly used to help the
neuromuscular disorders of paralyzed patients and in motor rehabilitation centres. It also
established a linking channel and control capabilities to transform messages between the
electronic devices and the brain [1–3]. In recent decades, BCI-related systems have gained
exponential importance due to the numerous applications in different sectors, specifically in
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the neuro-engineering and neuroscience fields. It has encouraged to use of neuroplasticity in
brain stroke patients. In addition, it has made a huge contribution to people with disabilities
to help them communicate with other people using emotion [4,5], event-related potential
detection [6], and sleep detection [7]. Furthermore, it can collaborate with other individuals
with disabilities to articulate their needs, ideas, and thoughts and assist in operating their
assistive devices, such as wheelchairs. It also aids in the execution of daily tasks without
physical movement by detecting emotions. BCI applications span from communication and
rehabilitation to entertainment. Recently, researchers have integrated BCI with artificial
intelligence (AI) and created adaptable BCI systems that enable the control of various
robotic equipment through brain activity. For example, brain-controlled home automation,
robotic arms, and prosthetic arms [3–5,8]. The main reason for using a robotic or prosthetic
arm is that brain activity and thinking commands cannot pass through the muscle and
peripheral nerves. At the same time, we collect the signal through the electroencephalogram
(EEG) sensor and translate it into a digital command to control the assistive devices for
locked-in people.

There are various ways to measure and capture brain activity in a non-alive approach:
EEG, magnetoencephalogram (MEG), and functional magnetic response imaging (fMRI)
are most of them. Among them, the BCI system with EEG signal is the most cost-effective
and can be implemented with minimal clinical risk because the non-invasive approach
does not require any operation; however, it needs some electrodes on the scalp [9–11].
Here, the person needs to imagine a specific muscle movement or limb movement without
any patient action (motor action). That imagination makes a great oscillatory action with
rhythmic tremors which is known as different kinds of event-related function ERD or
ERS, which can be recognized with a machine learning algorithm [12,13]. The main
goal of the BCI-based application is to identify actual human activity during the MI task
aiming to translate human thinking to the corresponding digital command, which can be
controlled by different kinds of machines. To implement the goal, researchers have been
working to extract effective features and search the compatible machine learning algorithm
for classification.

Various feature extraction methods have been applied to the EEG signal for motor
imagery (MI) task classification; among them, common spatial pattern (CSP) is one of
the most used feature extraction algorithms [14]. The main concept of the CSP method
is to employ the optimal spatial filter on the training EEG datasets, which produces the
weight matrix for each electrode and measures the electrode information’s significance.
Later, researchers replaced the spatial pattern of the CSP with common patterns such
as frequency domain, time domain, or combined time-frequency domain to produce the
effective features for the MI-based EEG signals [15]. The primary issue with these methods
is that they employ Common Spatial Pattern (CSP) on a broad frequency range, such as
1–30 Hz. Due to the intricate nature of the EEG signal, narrow-band signals perform better
than full-band frequencies. Researchers have proposed that the EEG signal is composed
of various types of rhythms and bands, such as delta, theta, alpha, beta, gamma, and mu.
Among these, alpha, beta, and gamma exhibit significant rhythmic properties of the EEG
signals [16–18]. Luo et al. first applied a subband-based feature extraction technique with
the CSP to include the narrow-band rhythmic properties in the system [19]. The primary
issue with this study is that it has increased the computational complexity exponentially due
to the multiband increase in the number of signals, which is virtually n times. Additionally,
initially, researchers collected the imagination data with a minimum number of electrodes,
which could be 1, 2, or 3. However, recently researchers have collected signals with many
electrodes, creating a challenging situation for implementing a portable, inexpensive, and
fast BCI system for daily activities. Furthermore, this large amount of electrode information
produces redundant and noisy data, which adds significant computational complexity [20].
So the feature selection procedure is inevitable for the EEG-based MI classification task;
however, no one used the following work [16–19].
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As we said, the multiband processed features have been extracted from the individual
band and combined to produce the final features; thus, it derived a very higher dimension [21]
and it affected the classification algorithm by reducing the performance [22]. Various kinds of
supervised and unsupervised feature selection algorithms are available in data science and
other machine learning-related research domains [23]. Molla et al. employed a supervised-
based feature selection algorithm, neighbourhood component analysis (NCA). They extracted
spatial features by using the CSP and then combined the four band features, resulting in a
large dimension of features. Finally, they used NCA to select the potential number of features
that are less than or equal to 50% of the original feature. The main drawback of their concept
is that they selected the feature based on the weighted value and less than or equal to 50%,
which may result in difficulties in producing high performance because of the inefficiency of
the feature.

To overcome the problems mentioned above, we proposed CFS, mRMR, and SRCFS
feature selection approaches along with the SVM, LDA, and MLP classifiers where the
LDA and SRCFS-based MI tasks classification system outperforms using EEG signals. The
main idea of the SRCFS method is to divide the features into multi-subspace and produce
a Laplacian score, which is considered a weight value for each channel using the multi k
nearest neighbour technique. Based on the Laplacian score, we selected features from 50%
of the original number of features here. We have also implemented the traditional feature
selection methods such as f-test, random forest, and logistic lasso and it is proved that our
proposed system is far better than the traditional methods.

2. Related Works

There are numerous studies that have been conducted to develop MI classification
systems based on the EEG signal. In the year 1875, the first EEG signal was collected by
Richard Caton from the animal brain, and later, in 1929, the EEG signal was collected from
the human brain first by Hans Berger [24]. Recently, steady-state visual-evoked potential
(SSVEP)-based BCI has been developed to assist paralyzed patients by recognizing SSVEP-
based commands [25]. EEG mainly records the biological electrical activity of the human
brain using many electrodes that are essential for many human-oriented applications to
make life easier, especially for people with complete paralysis or extreme disability [26].

To classify the EEG-based classification, Pfurtscheller et al. first applied LDA with adap-
tive autoregressive (AAR) for classifying left- and right-hand MI-EEG [27]. Many researchers
have employed the common spatial pattern (CSP) as an optimal spatial filter to extract a
weighted score of each electrode based on a significant score that proves the importance of
each electrode [17,18]. The main drawback of these methods is that they consider only a
broader range of frequencies in EEG signals, but a narrow signal is more effective compared to
a broader signal. Usually, researchers divide the broader EEG signal into different subbands,
namely mu, beta, alpha, beta, and gamma rhythm [28]. Pfurtscheller et al. showed that
narrowband frequency, specifically the mu and beta rhythms, contain essential information
for voluntary movement, and these two rhythms should be considered when implement-
ing the EEG-based MI task classification [16,29]. There are many methodologies that have
been proposed for considering each narrow band rhythm such as subband CSP, discrimi-
nant filter bank with CSP [30,31], sparse filter-band CSP, and filter bank CSP [21]. However,
combining multiband features into a feature yields a large feature vector size, increasing the
computational complexity and reducing the system’s performance.

To solve the problem, it is inevitable to reduce feature dimension and size to improve
performance. Both supervised, and unsupervised algorithms are mainly used to select the
effective feature from the large feature dimension [22]. All features in the feature vector
might not be relevant and important for the MI task classification, which can be considered
a garble for the classification algorithm and degrades the method’s performance [32].
Molla et al. divided the EEG signal into multiple sub-bands and then extracted features
from each subband, producing large feature dimensions. Lastly, they employed Graph
Eigen Decomposition (GED) to reduce the dimensionality of the feature vector to improve
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the performance and achieved 99.39% accuracy for epileptic seizer detection [33]. Siuly
et al. proposed a Logistic Regression with a cross-correlation technique for classifying
the EEG-based MI tasks [34]. In the procedure, they first extracted features with the CSP
and then reduced the feature dimension with the hybrid unsupervised feature selection
technique. Ali et al. proposed a CSP approach to extract the feature and then rank that
feature with the mutual information score. Finally, they applied LDA to classify the MI task
and achieved good performance [35]. Kevrich et al. applied empirical mode decomposition,
wavelet packet decomposition, and discrete wavelet transforms to generate the narrowband
of the EEG signal from a broader frequency [36]. They converted the feature vector into
a group of features to justify the performance of the specific set of features. Finally, they
claimed that the multiscale principal component analysis (PCA) feature achieved better
performance accuracy, which was produced by the highest averaging technique.

Siuly et al. employed an updated CC-LR algorithm to improve the MI tasks classifi-
cation accuracy where they focused on the specific electrode features and evaluated their
method with the BCI III dataset [37]. Song et al. applied a supervised feature selection algo-
rithm that included regression and classification as a unified framework [38]. Goldberger
et al. employed a supervised-based neighbourhood component analysis (NCA) feature
selection algorithm [39].

Chen et al. proposed a feature selection approach called conditional covariance
minimization (CCM) which employs kernel-based measures of independence to find a
subset of covariates that is maximally predictive of the response. They carried out numerous
experiments using synthetic and real-world data and found that it outperforms other state-
of-the-art approaches including Minimum Redundancy Maximum Relevance (mRMR),
Backward Elimination Hilbert-Schmidt Independence Criterion (BAHSIC), and Mutual
Information (MI) [40]. Constantinopoulos et al. presented a Bayesian method for mixture
model training that addresses the feature selection and the model selection problems at
the same time. This approach combines a mixture model formulation considering the
saliency of the features and a Bayesian approach to mixture learning that can automatically
determine the number of components and the saliency of features. Authors proved that
this algorithm outperforms the MML-based approaches [41]. A deep learning-based
method—Graph Convolutional Network Feature Selector (GRACES) has been implemented
to select important features for the high-dimensional and low-sample size (HDLSS) data
in [42]. Chen et al. demonstrated empirical evidence that GRACES can achieve a superb
and stable performance on both synthetic and real-world HDLSS datasets by utilizing
GCN along with different overfitting-reducing strategies including multiple dropouts, the
introduction of Gaussian noises, and F-correction.

Molla et al. employed a CSP feature extraction approach and then used a nearest-
neighbour-based discriminative features selection method to select the potential feature and
discard the garble feature to improve MI classification using multichannel EEG signal [43].
Finally, they applied a machine learning algorithm SVM and evaluated their method with
the BCI Competition III dataset IIIB, and IVA obtained superior performance compared
to the recently developed algorithms. Based on their algorithm, they selected 50% of the
feature from the extracted feature. To overcome the lacking, we proposed an unsupervised-
based sequential feature selection algorithm, which is able to achieve higher accuracy than
the existing performance available in the literature.

3. Dataset Description

To evaluate our model, we used two benchmark datasets for MI classification. These
are BCI Competition III Dataset IVA, and BCI Competition III Dataset IIIB are described in
Sections 3.1 and 3.2 consequently.

3.1. BCI Competition III Dataset IVA

In this study, we consider conducting experiments using publicly available MI data,
which is available online with a detailed description that can be found at [44]. This recorded
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signal was collected from 5 healthy people, namely aa, al, av, aw, and ay where 118 EEG
electrodes were used to record the signal. Each person performed four tasks which are
considered here MI tasks, namely right foot, right hand, left hand, and limb. In this
study, we have considered only binary classifications, which are left and right classes.
The electrodes are placed on the scalp of the subject by following the instruction of the
international 10–20 system. The subject is in a relaxed mode during the signal recording,
and the subject is asked to imagine specific motor imagery tasks: left and right-hand
movements. Each trial is recorded in intervals of 1.25 s to 2.25 s. The recorded signals
were filtered with a filter, namely a bandpass filter in the frequency range from 0.05 Hz
to 200 Hz, and digitized at 1000 Hz with 16-bit precision. After that, the filtered signal
is downsampled at 100 Hz and used in the experiment for the duration of 0.5 s to 3 s in
each cue.

3.2. BCI Competition III Dataset IIIB

Another dataset we used here to evaluate our model, BCI competition III dataset IIIB
is recorded from the three subjects, namely O3, S4, and X11. This dataset was recorded
with the three electrodes which are placed on the subject scalp based on the international
10–20 system. A trial signal consists of a seven-second duration recorded signal. Different
trials are collected from the different subjects, such as 320 trials collected from the O3
subjects, and 1080 trials collected from S4 and X11, respectively. This recorded signal was
sampled with a ratio of 125 Hz then it was filtered with a notch filter in the range of 0.5 to
30 Hz [45]. Since the experiment was conducted in the virtual reality (VR) paradigm for
the O3 subject, we have discarded this subject for performance evaluation of our proposed
method (see the Figure 1).

Figure 1. The timing sequence of BCI experiments when only the MI section from each dataset
is used.

4. Proposed Method

The working flow architecture of the proposed method is given below in Figure 2,
where we included the key contributions of this research and the implementation sequence
of the study.

Step-1 Preprocessing of multichannel EEG signal
Step-2 Decompose each trial of EEG signal into subbands through filter bank analysis
Step-3 Extract the spatial from each subband by applying CSP
Step-4 Combine the features obtained from the individual subband to derive a feature

vector
Step-5 Potential features are selected with feature selection algorithms named CFS, mRMR,

and SRCFS, which are used as the final reduced feature vector for the classifier
Step-6 SVM, LDA and MLP classifiers are employed for the reduced features to distinguish

the activities of MI EEG signals
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Figure 2. Working flow architecture of the proposed study.

4.1. Preprocessing

We applied a bandpass filter to remove noise from the raw EEG signal because raw
EEG usually consists of different kinds of artefacts like eye blinking, sudden sound, muscle
movement, body movement, environmental noises, etc. Furthermore, some narrowband
EEG signal components are more sensitive to specific MI tasks. As a result, it is not
surprising that using sub-bands rather than the entire EEG bandwidth results in more
accurate MI task classification. According to a related study, the majority of brain activity
associated with MI tasks occurs between 7 Hz and 36 Hz [46,47]. This study divides the
broader 8–35 Hz frequency band EEG signal into multiple narrowband signals to calculate
the exact feature information of the EEG signal. We have mainly decomposed the signal
into four equivalent narrowband signals, namely Mu-band (8–13 Hz), low-beta (13–22 Hz),
high-beta (22–35 Hz), and full-band (8–35 Hz) for our experimental purposes [43].

4.2. Feature Extraction

In this study, to extract the effective features from the narrowband signals, we have
employed a well-known feature extraction method in multichannel EEG-based BCI the
CSP [14,48,49]. The main concept of the algorithm is to minimize the variance among the
intra-class features and maximize the variance among the inter-class. In addition, the CSP
method finally projects the high-dimensional data into a low dimension, which is known
as spatial feature subspace, by using a projection matrix. We have used the CSP algorithm
as a spatial filter for making high-variance features between the right-hand and right-foot
classes, resulting in peak variances between those classes. Let Ec1

i and Ec2
i be EEG signal of

ith trial, c1 and c2 represent the class 1 and class 2. The projection matrix WCSP is computed
by first calculating the normalized spatial covariance matrix for both classes as follows in
Equations (1) and (2).

CL =
Ec1 Ec1

′

trace(Ec1 Ec1
′)

(1)

CR =
Ec2 Ec2

′

trace(Ec2 Ec2
′)

(2)
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where E′ is the transpose of E. The averaged normalized covariances C̄L and C̄R are then
computed by averaging all segments within each class. Equation (3) denotes the total
composite spatial covariance.

Cc = C̄L + C̄R (3)

The following is the factorization of this covariance matrix into its eigenvalues and
eigenvectors.

Cc = UcλcU′
c (4)

Here, the eigenvector matrix and diagonal eigenvalue matrix are denoted by Uc and
λc, respectively, which are organized in descending order. Following the above formula,
we can calculate the whitening transformation using the following Equation (5).

P =

√
λ−1

c U′
c (5)

where whitening transformation is denoted by P. The covariance matrices of the two
classes are transformed by Equation (5). The projection matrix WCSP is defined by

WCSP = P′B = [w1, w2, . . . , w(ch−1)wch] ∈ R(ch×ch) (6)

where ch is the channel and B is an orthonormal matrix.
A matrix WCSP = [w1, w2, . . . , w2m] ∈ R(2×k), including the spatial filters, represents k

largest and smallest eigenvalues formed by the eigenvectors by solving the Equation (6).
The final feature can be written as f = [ f1, f2, . . . , f2k].

f j = log(var(W ′
CSPE), j = 1, 2, . . . , 2k (7)

Here, variance is represented by var(.), and log transformation is used for normalizing
the elements of f j.

4.3. Feature Selection

Since EEG signals are complex and collected using multiple electrodes, they often
contain irrelevant information. Discarding such information is one of the most crucial
steps in BCI. Features have a direct impact on how well a BCI system performs, and
recent studies have focused on improving currently used methods or creating new ones.
The extracted multiband feature dimensions are large and contain less effective features,
which is not helpful for classification and increases computational complexity, resulting
in reduced performance. In fact, machine learning algorithm performance is typically
diminished by specific features. Feature selection techniques are divided into two groups:
filter approaches and wrapper approaches [37]. Feature selection techniques can be divided
into two groups: filter approaches and wrapper approaches. Filter approaches rely on
predetermined criteria and are independent of the learning criteria. They create subsets
that are assessed using a search algorithm. Wrapper approaches, on the other hand, require
the use of a learning algorithm, and the performance of the selected feature subsets is
evaluated using this algorithm.

In this study, we investigated three feature selection approaches: CFS, mRMR, and
SRCFS. These methods have been recently developed and successfully applied in MI
classification. We found that SRCFS outperformed the other two methods in terms of
classification accuracy. In addition, the HSIC Lasso [50] and three conventional feature
selection schemes named f-test, random forests, and logistic lasso have been investigated
to evaluate the performance of our proposed system.
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4.3.1. Correlation-Based Feature Selection (CFS)

The working idea of the CFS algorithm is to calculate a subset of the feature by
following the initial hypothesis, which is mainly correlated with the output classes not
correlated with themselves [22]. The usefulness of the features in class prediction and
their connection with other features serve as the validation criteria. The subset calculation
process of this algorithm can be written as the following formula,

CFSs =
f (r̄tq)√

f + f ( f − 1)r̄qq

(8)

Here, the mean of correlation among the inter-class and the mean of correlation among
the intra-class are denoted by r̄tq and r̄qq, respectively. In addition, the heuristic merit of
each subset is denoted by f . The denominator measures the degree of redundancy among
the features that make up the feature subset, and the numerator measures how predictive
the feature subset is. The technique thus detects aspects that are superfluous or redundant.
The search algorithm we utilized included backward exclusion and forward selection, and
it was called Best First.

4.3.2. Minimum Redundancy and Maximum Relevance (mRMR)

A heuristic resembling CFS is used by the lowest redundancy and maximum relevance
algorithm. The metric employed in this instance to verify the significance of the features
is mutual information, which leads to a ranking of the features based on how well they
cooperate with other features and the class. The most pertinent feature shares the least
mutual information with the other features and the most with the class. This is achieved by
increasing the value of the following expression,

FmRMR =

1
n f

∑ I(c, f )
1

n2
f

∑ I( f1, f2)
. (9)

Here, the number of features, the mutual information between two classes, and the
mutual information between two features are denoted by n f , ∑ I(c, f ), and ∑ I( f1, f2),
respectively. After the ranking phase, this approach creates a subset with a varying number
of features and orders it with the ranking score [51]. The machine learning algorithms
finally validate these feature groups based on the ranking score.

4.3.3. Multi-Subspace Randomization and Collaboration-Based Unsupervised Feature
Selection (SRCFS)

The SRCFS is a powerful framework for unsupervised feature selection in huge
datasets where this algorithm conceals the original high-dimensional feature in several
sub-groups [38,52]. Primarily, this algorithm creates a huge number of random subgroup
features and after scoring each subspace it concatenated all the subgroups into a single
feature vector based on the score of each group. Suppose, the feature partition variable is
denoted with F(i) for the ith basic feature partition, and random subspace for jth position
can be denoted with F(i,j) of the F(i) partition. We can express the feature partition formula
according to the following Equation (10). Then F(i) can be represented as follows,

F(i) =
{

F(i,1), F(i,2), . . . , F(i,z)
}

. (10)

Here, F(i), and F(i,1) denote the feature partition and subspace in the partition, re-
spectively. The quantity of random subspaces in F is given by z where an ideal condition
would be for all subspaces to have the same size because the three must be equal to all
random subspaces. Individual feature partition is created repeatedly, which can form
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a composed feature which is known as a final feature F and can be expressed with the
following Equation (11).

F =
{

F(1), F(2), . . . , F(g)
}

. (11)

The total number of basic partitions and ith basic partition are denoted with g and F(i),
respectively. In each partition, there is an unknown number of subspaces which can be
denoted with g.z, but the number of subspaces in each partition must be equal. It actually
calculates g number of Laplacian scores where every partition must produce an individual
score, which produced a final Laplacian score vector. The average Laplacian score can be
calculated using the following formula which is the average of the Laplacian score for the
basic partition F.

Lz( f ) =
1
g

g

∑
i=1

Ls(F) (12)

Here, Lz( f ) ∈ R represents the full Laplacian score vector that be obtained by concate-
nating the Laplacian score vectors for all of its z random subspaces. To reflect the structure
information of all g.z numbers of random subspaces, we build g.z numbers of KNN graphs.
The combining information of the KNN Graph and the local preserving power of each
subspace can lastly be used to compute the main score which is used to rank the feature
and selected potential features called Laplacian scores of the features in each subspace.

4.4. Classification Using LDA, SVM and MLP

In this study, we used three well-known and mature machine learning-based classifi-
cation algorithms, namely LDA, SVM, and MLP, to classify the left-hand and right-hand
human motor imagery EEG signal. The goal is to find out and evaluate which one can
be produced the best outcomes. LDA, also known as the Fisher linear discriminant, is
a simple and well-known technique for categorizing BCI data. A linear binary classifier
maps a p-dimensional input vector x to a hyperplane that divides the input space into
two half spaces, each of which denotes a class (+1 or −1). The SVM is a relatively new
classification method developed by Vapnik. It has a strong mathematical base in statistical
learning theory and has demonstrated great performance in a variety of practical issues,
particularly in BCI. To translate a higher-dimension row of training data, it uses a nonlinear
map. Within this new dimension, it looks for the linear optimal dividing hyperplane (also
known as a “choice border” separating the tuples of one class from another). A proper
nonlinear mapping can always be used to split data from two classes into a suitably large
dimension via a hyperplane. Support vectors are used by the SVM to find this hyper-
plane (“essential” training tuples) and margins (identified by the support vectors). SVM
classifier with radial basis function (RBF) kernel is used to assess the proposed technique.
A detailed description of these two methods can be found in [53,54]. MLP is a popular
machine learning algorithm and a powerful tool for classifying brain activities. The inputs
to the MLP are typically features extracted from EEG or other neuroimaging data. These
features are then passed through multiple layers of interconnected nodes, with each node
performing mathematical calculations on the input data. The output layer of the MLP
represents the predicted class label for the input data. During training, the MLP’s weights
are changed to minimize the difference between the expected and actual output using
techniques such as backpropagation. Their performance, however, is heavily influenced by
the quality and significance of the input data, as well as the size and complexity of the MLP
architecture [55,56]. The size of the hidden layers used in our experiment is ten.

5. Results and Discussion

To evaluate the model, we used here two well-known publicly available EEG-based
MI task datasets. For each of the trials of the dataset, we decomposed into four narrowband
signals to extract the exact information contained in the signal. The CSP approach is used
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to extract features from each narrow band and combine each feature to produce a final
feature vector which generates a high-dimensional feature vector. The discriminative
features are chosen using the CFS, mRMR, and SRCFS-based techniques. As a result, the
collected features are utilized to train three classifiers, SVM, LDA, and MLP, separately.
Then test data are used to assess the performance of the classifiers. Each 2.5 second trial for
every person is taken out of the EEG data. Each frequency band is subjected to the CSP
in order to extract the spatial information. From each subband, four pairs of spatial filters
producing eight features are chosen from dataset BCI III-IVA and two pairs of spatial filters
are chosen from BCI III-IIIB. For each trial, 32 (4 × 8) and 8 (4 × 2) dimensional feature
vectors are created by combining the CSP features collected from each of the four bands
from dataset BCI III-IVA and BCI III-IIIB, respectively. The high-dimensional feature space
is then subjected to the CFS, mRMR, and SRCFS-based feature selection techniques. They
give each feature a weight based on the label of the training data. The features are ranked
based on the weights established by each of the feature selection approaches. The number
of top-ranked features is chosen for classification.

5.1. Experimental Setting

We evaluated the proposed model with 5-fold cross-validation formula where we
took the individual subject dataset feature and randomly divided the feature into five
folded. After that, we randomly trained the model with four folded and tested the model
with the rest one-fold features and preserved the accuracy for the first fold feature. We
repeatedly preserved the accuracy five times and finally, we average the performance
score and produced the final average performance score. We computed the accuracy (%)
matrix using the following formula, which is also known as a best performance calculation
procedure.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
× 100 (13)

where, Tp, Tn, Fp, and Fn represents true positive, true negative, false positive, and false
negative, respectively. The accuracy values from the several experiments conducted mainly
show the effectiveness of the proposed approach. Two different feature selection methods
CFS, and mRMR have been employed and the result was compared with the SRCFS-
based feature selection method. To evaluate the classifier performance, SVM and MLP are
employed along with LDA. We have also calculated some statistical performance metrics
like AUROC, F1 scores, and computational time of different subjects on two datasets to
ensure the robustness and effectiveness of the proposed approach.

5.2. Performance Result with BCI Competition III Dataset IVA

Figure 3 demonstrates the performance comparison of different feature selection
methods where SVM, LDA, and MLP are used, respectively. These figures proved that the
SRCFS feature selection method’s performance is better in most cases than others.

Figure 4 demonstrates that SRCFS with LDA outperforms the other for dataset BCI
III-IVA. The result also showed that the feature selection technique has certain benefits
in terms of enhancing classification performance. Without feature selection, the mean
accuracy (across all subjects) is substantially lower than the other approaches that use
feature selection methods. The method without feature selection uses extra features that
are irrelevant and lowers the classifier’s performance as a result.

Figure 5 compares the accuracy of the proposed method with different combinations
of feature selection and classifier as a function of the number of selected features. It has
been found that utilizing 16 well-chosen features from dataset BCI III-IVA enables the
classification of objects with the highest degree of accuracy.
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Figure 3. The motor imagery (MI) classification performance comparison among CFS, mRMR, SRCFS
feature selection methods and without feature selection. The left, middle, and right subplots represent
the accuracies of different subjects for the BCI III-IVA dataset, where SVM, LDA, and MLP classifier
has been used, respectively.

Figure 4. The motor imagery classification performance comparison between LDA, SVM, and MLP
classifier using SRCFS feature selection method and without feature selection. The figure represents
the accuracies of different subjects for the BCI III-IVA dataset.

Figure 5. The motor imagery classification performance comparison using CFS, mRMR, and SRCFS
feature selection methods with SVM, LDA, and MLP classifiers for different numbers of selected
features. The left, middle, and right subplots represent the accuracies of the BCI III-IVA dataset for
different numbers of features (50% to 100%) selected by the feature selection algorithm where SVM,
LDA and MLP classifiers have been used.
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5.3. Performance Result with BCI Competition III Dataset IIIB

Figure 6 demonstrates the performance comparison of different feature selection
methods with SVM, LDA, and MLP classifiers, respectively. These figures show that the
SRCFS feature selection method’s performance is stable. This dataset has been used to
verify the extensive generalizability property of our proposed method.

Figure 6. The motor imagery (MI) classification performance comparison among CFS, mRMR, SRCFS
feature selection methods and without feature selection. The left, middle, and right subplots represent
the accuracies of different subjects for the BCI III-III B dataset, where SVM, LDA and MLP classifier
has been used, respectively.

Figure 7 demonstrates that without feature selection and SRCFS-based feature selection
have similar accuracy for the dataset BCI III-III B. Due to the fewer number of channels,
the dataset BCI-IIIB produced two pairs of spatial filters resulting in eight features. For
low feature dimensions, SRCFS with LDA can not overcome the accuracy without feature
selection. However, selecting features reduces classification complexity.

Figure 7. The motor imagery classification performance comparison between SVM, LDA, and MLP
classifier using SRCFS feature selection method and without feature selection. The figure represents
the accuracies of different subjects for the BCI III-IIIB dataset.

Figure 8 compares the accuracy of the proposed method with different combinations
of feature selections and classifiers as a function of the number of selected features. It
has been found that utilizing four well-chosen features from dataset BCI-IIIB enables the
classification of objects with the highest degree of accuracy.
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Figure 8. The motor imagery classification performance comparison using CFS, mRMR, and SRCFS
feature selection methods with SVM, LDA, and MLP classifiers for different numbers of selected
features. The left, middle, and right subplots represent the accuracies of for BCI III-IIIB dataset for
different numbers of features (50% to 100%) selected by the feature selection algorithm where SVM,
LDA, and MLP classifiers have been used.

Moreover, different statistical performance evaluation metrics have been calculated
to validate the performance of our proposed method. Table 1 demonstrated the state-of-
the-art comparison of the proposed model where our study achieved superiority over
the competitive models. In addition,Tables 2–4 show the performance of the area under
the ROC, F1 score, and computational time, respectively, of different subjects on BCI
competition III dataset IVA. On the other hand, Table 5 shows the performance of AUROC,
F1 score, and computational time, respectively, of different subjects on BCI competition III
dataset IIIB. Here, the computational time is measured in seconds (s) and it represents the
time required for training and classification of a single fold required by the classifier in a
five-fold cross-validation technique. Moreover, some traditional feature selection methods
like f test, random forests, and logistic lasso have also been studied. But, the performance
of these methods is not further compared because of their high computational cost and low
MI recognition rate. In addition, they are rarely used for MI task classification in BCI.

Furthermore, we have tested another feature selection technique named HSIC Lasso
for 07 (seven) different kernels with LDA classifier using BCI competition III dataset IVA
and IIIB. Since the LDA classifier performed best for our proposed method and other
studied methods, we have considered this classifier for testing HSIC Lasso feature selection
method in terms of AUROC, F1 score, computational time, and accuracy performance
metrics. From our experimental results, it is shown that the performance of the HSIC Lasso
with the best kernel ADMM is almost similar to mRMR for BCI Competition III dataset
IVA, the accuracy of both HSIC Lasso and mRMR is 88.93 % and the performance of the
mRMR is better than HSIC Lasso for BCI Competition III dataset IIIB, the accuracy of
the mRMR and HSIC Lasso are 75.17% and 69.91%, respectively, in this case. Since the
overall performance of HSIC Lasso is almost similar on BCI Competition III dataset IVA
and slightly lower on BCI Competition III dataset IIIB compared to the proposed and other
studied feature selection methods, the performance of this method is not further compared
with others.

5.4. State of the Art Comparison with Previous Methods

Table 1 compares and contrasts the suggested method’s classification accuracy results
with those of recently developed algorithms. The proposed method’s overall average
classification accuracy is 90.05%. The performance of the proposed method is compared
with the methods CSP-R-MF [57], R-MDRM [58], MKELM [59], and so on. It is observed
that the average classification accuracy of the proposed method outperforms the other
recently developed algorithm, as shown in Table 1. Table 1 demonstrated that for subjects
aa, aw, and ay, the proposed method achieved the best performance.
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Table 1. Performance comparison in terms of classification accuracy on BCI competition III dataset
IVA of the proposed method with state-of-the-art works. The highest accuracy is marked in boldface.

Studies Methods
Subjects

Mean ± SD
aa al av aw ay

Belwafi et al. [32] WOLA-CSP 66.07 96.07 52.14 71.43 50.00 67.29

Dai et al. [38] TKCSP 68.10 93.88 68.47 88.40 74.93 79.17

She et al. [39] H-ELM 63.39 98.39 64.08 85.67 85.16 79.33

Park et al.[60] SSS-CSP 74.11 100 67.78 90.07 89.29 84.46

Jian et al. [57] CSP-R-MF 81.43 92.41 70.00 83.57 85.00 82.48

Selim et al. [61] AM-BA-SVM 86.61 100 66.84 90.63 80.95 85.00

Singh et al. [58] SR-MDRM 79.46 100 73.46 89.28 88.49 86.13

Zhang et al. [59] MKELM 83.30 98.50 71.40 91.30 93.30 87.50

Singh et al. [62] R-MDRM 81.25 100 76.53 87.05 91.26 87.21

Proposed Method SRCFS + LDA 88.03 97.98 74.17 94.76 95.31 90.05 ± 9.60

Table 2. Performance of different studied methods in terms of area under the receiver operating
characteristic curve (AUROC) on BCI competition III dataset IVA for each of the five subjects, the
best result is marked in boldface.

AUROC
Feature Selection Methods

and Classifiers aa al av aw ay

CFS + SVM 0.9306 0.9922 0.8297 0.9836 0.9826

mRMR + SVM 0.9205 0.9936 0.7916 0.9921 0.9796

SRCFS + SVM 0.9242 0.9881 0.7513 0.9717 0.9823

CFS + LDA 0.9030 0.9911 0.7743 0.9914 0.9821

mRMR + LDA 0.9363 0.9968 0.7530 0.9929 0.9838

SRCFS + LDA 0.9356 0.9918 0.8072 0.9905 0.9861

CFS + MLP 0.9135 0.9944 0.8115 0.9802 0.9731

mRMR + MLP 0.9192 0.9892 0.7664 0.9795 0.9621

SRCFS + MLP 0.9263 0.9972 0.8137 0.9864 0.9844

Table 3. Performance of different studied methods in terms of F1 score on BCI competition III dataset
IVA for each of the five subjects, the best result is marked in boldface.

F1 Score
Feature Selection Methods

and Classifiers aa al av aw ay

CFS + SVM 0.8593 0.9638 0.7287 0.9534 0.9534

mRMR + SVM 0.8364 0.9712 0.7015 0.9606 0.9568

SRCFS + SVM 0.8571 0.9562 0.6512 0.9187 0.9391

CFS + LDA 0.8470 0.9825 0.7000 0.9568 0.9373

mRMR + LDA 0.8582 0.9788 0.7254 0.9677 0.9373

SRCFS + LDA 0.8633 0.9789 0.7317 0.9496 0.9489

CFS + MLP 0.8443 0.9753 0.7092 0.9386 0.9353

mRMR + MLP 0.8520 0.9788 0.6886 0.9603 0.9304

SRCFS + MLP 0.8592 0.9787 0.7285 0.9458 0.9500
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From Tables 1–4, it is clearly depicted that the SRCFS and LDA-based MI tasks clas-
sification system is robust and effective in terms of the performance metrics: accuracy,
AUROC, F1 score, and computational time for BCI competition III dataset IVA. On the other
hand, Table 5 shows that the computational time of the SRCFS and LDA-based system is
low compared to others for the BCI competition III dataset IIIB dataset. It is also observed
that the MLP classifier is more computationally costly than the others. From the above
discussion, we can conclude that the SRCFS feature selection method with LDA classifier is
undoubtedly a robust and effective system for MI tasks classification using EEG signal.

Table 4. Performance of different studied methods in terms of computational time on BCI competition
III dataset IVA for each of the five subjects, the best result is marked in boldface.

Computational Time (s)Feature Selection Methods
and Classifiers aa al av aw ay

CFS + SVM 0.1804 0.0133 0.0085 0.0082 0.0090

mRMR + SVM 0.1582 0.0137 0.0091 0.0087 0.0089

SRCFS + SVM 0.1573 0.0154 0.0087 0.0088 0.0087

CFS + LDA 0.1857 0.0133 0.0074 0.0101 0.0096

mRMR + LDA 0.1683 0.0127 0.0080 0.0082 0.0077

SRCFS + LDA 0.1642 0.0134 0.0079 0.0075 0.0073

CFS + MLP 0.7557 0.1970 0.1480 0.1629 0.2056

mRMR + MLP 0.8339 0.3850 0.1699 0.1936 0.2653

SRCFS + MLP 0.7235 0.2497 0.1937 0.2041 0.2471

Table 5. Performance of different studied methods in terms of AUROC, F1 score, and computational
time (Com. Time) on BCI competition III dataset IIIB for each of the two subjects, the best result is
marked in boldface.

Evaluation Metrics

AUROC F1 Score Com. Time (s)

Feature Selection
Methods and

Classifiers
S4 X11 S4 X11 S4 X11

CFS + SVM 0.8379 0.7567 0.7430 0.6640 0.2093 0.0149

mRMR + SVM 0.7670 0.7488 0.6863 0.6402 0.1819 0.0143

SRCFS + SVM 0.7916 0.7236 0.7188 0.6439 0.1866 0.0147

CFS + LDA 0.7811 0.7638 0.6965 0.6992 0.2040 0.0115

mRMR + LDA 0.7384 0.7481 0.6704 0.6732 0.1860 0.0115

SRCFS + LDA 0.8054 0.7552 0.7431 0.6922 0.1675 0.0108

CFS + MLP 0.8216 0.7482 0.7395 0.6614 0.8545 0.1718

mRMR + MLP 0.7276 0.7298 0.6756 0.6654 0.7804 0.1800

SRCFS + MLP 0.7509 0.7119 0.6922 0.6504 0.8262 0.1709

6. Conclusions

Supervised and Unsupervised feature selection methods are investigated in this paper
to classify motor imagery-based EEG signals. The experiment is evaluated using two
publicly available BCI Competition III Dataset IVA and BCI Competition III Dataset IIIB.
The multichannel EEG signal is decomposed into four subbands. Features are extracted
from each subband. Then the extracted features are combined to make a high-dimensional
feature vector. Not all features are important for classification. The irrelevant feature
may degrade the performance of the system. The performance of the classification is
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improved by properly removing redundant and irrelevant characteristics from the feature
vector, which increases the feature vector’s discriminative power. With the given class
label, the unsupervised feature selection outperforms the supervised feature selection,
as demonstrated in Table 1. The key benefit of using an unsupervised feature selection
method is that each sample of a feature vector does not need to have its labels provided. It
chooses features by taking the relationship between feature dimensions into account. It is
clear that when the feature selection method has been applied, the accuracy is increased.
The combination of features also plays a vital role. As shown in Table 1, the proposed
combination of full band and subband signals and the use of the feature selection strategy
improve the MI classification accuracy. It can be expanded to include multiclass MI
classification issues in the BCI paradigm and we will study more feature selection methods
and classifiers in future work.
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Abbreviations

BCI Brain-Computer Interface
EEG Electroencephalography
MEG Magnetoencephalogram
fMRI Functional Magnetic Response Imaging
MI Motor Imagery
SSVEP Steady-State Visual-Evoked Potential
SVM support vector machines
MLP Multi-layer Perceptron
LDA Linear Discriminant Analysis
AAR Adaptive Autoregressive
CSP Common Spatial Pattern
NCA Neighbourhood Component Analysis
PCA Principal Component Analysis
CSP Common Spatial Pattern
CFS Correlation-Based Feature Selection
mRMR Minimum Redundancy and Maximum Relevance

SRCFS
Multi-Subspace Randomization and Collaboration-Based
Unsupervised Feature Selection

GCN Graph Convolutional Network
GRACES Graph Convolutional Network Feature Selector
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ERD Event-Related Desynchronization
ERS Event-Related Synchronization
GED Graph Eigen Decomposition
HSIC Hilbert-Schmidt Independence Criterion
Lasso Least Absolute Shrinkage and Selection Operator
BAHSIC Backward Elimination Hilbert-Schmidt Independence Criterion
CCM Conditional Covariance Minimization
MML Meta Machine Learning
VR Virtual Reality
HDLSS High-Dimensional and Low-Sample Size
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Abstract: In the field of human–computer interaction (HCI), text entry methods can be evaluated
through controlled user experiments or predictive modeling techniques. While the modeling ap-
proach requires a language model, the empirical approach necessitates representative text phrases
for the experimental stimuli. In this context, finding a phrase set with the best language representa-
tiveness belongs to the class of optimization problems in which a solution is sought in a large search
space. We propose a genetic algorithm (GA)-based method for extracting a target phrase set from the
available text corpus, optimizing its language representativeness. Kullback–Leibler divergence is
utilized to evaluate candidates, considering the digram probability distributions of both the source
corpus and the target sample. The proposed method is highly customizable, outperforms typical
random sampling, and exhibits language independence. The representative phrase sets generated
by the proposed solution facilitate a more valid comparison of the results from different text entry
studies. The open source implementation enables the easy customization of the GA-based sampling
method, promotes its immediate utilization, and facilitates the reproducibility of this study. In
addition, we provide heuristic guidelines for preparing the text entry experiments, which consider
the experiment’s intended design and the phrase set to be generated with the proposed solution.

Keywords: text entry; phrase sets; text corpus sampling; genetic algorithm; Kullback–Leibler divergence

MSC: 68W50

1. Introduction

Text entry has been a significant area of research in human–computer interaction
(HCI) since its inception, driven by the increasing need for office automation. This trend
has continued in modern mobile computing, where text entry occurs on various devices
using different interaction techniques. Touchscreen-based technology is now a platform of
particular interest, as it enables the development of innovative software-based keyboard
solutions. Various keyboard customizations, automatic adjustments, character layouts,
and input assistance methods are being introduced to enhance convenience, reduce errors,
improve efficiency, and ensure accessibility for all users.

New text entry methods are usually evaluated in controlled user experiments that
focus on input speed and error rates as output metrics. In such an experimental approach,
text-copy tasks requiring that users transcribe the provided phrases are favored over
text-creation tasks, which assume the free input of arbitrary text [1].

While preselected phrases are commonly used as control stimuli in text entry experi-
ments, there is currently no formally standardized phrase set that can serve as a reference.
Kristensson and Vertanen [2] argue that choosing an appropriate phrase set may be im-
portant not only for the internal validity of the experimental research but also for its
reproducibility, the heterogeneity of the study, and the external validity of the results.
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Different ad hoc generated phrase sets make systematic review and comparison with the
previously published results of text entry studies difficult. External validity requires conclu-
sions that can be generalized to contexts outside the laboratory. This is difficult to achieve
if the phrase sets do not adequately represent the domain or language in question.

There have been some notable attempts to create commonly accepted phrase sets.
While we mention the major efforts in Section 1.1, this paper focuses on creating a represen-
tative phrase set from a single, presumably large, and pre-existing text corpus.

Predictive modeling is another way to evaluate text entry methods. It is an alternative
to the empirical approach, which does not necessitate explicit testing with real users.
Soukoreff and MacKenzie [3] presented a quantitative prediction technique that combines
both a motion and a linguistic model:

WPMmax =
1

∑
i∈C

∑
j∈C

(Pij · MTij)
· 60

5
(1)

While the movement model aims to predict the time MTij required to enter a character
j preceded by a previously entered character i, the linguistic model uses digram frequencies
in a given language (with the character set C), resulting in computed occurrence proba-
bilities Pij for each digram. These models are combined to develop a prediction for the
average number of characters entered per second, and thus for the theoretical upper limit
of text entry speed WPMmax (WPM here stands for words per minute). This approach
generally uses a variation of the Fitts’s law [4] to predict the movement time between two
consecutive keys, leading to the following formalization:

MTij = a + b · log2

(
Aij

Wj
+ 1

)
(2)

Equation (2) shows that the predicted time MTij depends on Aij—the distance be-
tween the center of key i and the center of key j; and Wj—the width of the target key.
The coefficients a and b are constants obtained by linear regression.

The predictive modeling of text entry efficiency based on Fitts’s law and the digram
probability distribution has been successfully applied in several domains, including the
development of various keyboards and input devices [3,5,6] and in target languages other
than English [7,8]. This approach proved particularly important for modeling text entry
methods that rely on a single pointing device.

The practical utility of Fitts’s law in modeling text input is why we focus on the
digram-based statistical properties of input text. Namely, predictive modeling results
are often compared to the empirically obtained outcomes in text entry research. In this
context, it is helpful to use the digram distribution to develop representative phrase sets
for experiments since, as shown above, the same digram statistics are also used in the
predictive modeling process. Therefore, our main goal is to develop an efficient method for
extracting phrase sets from existing large corpora with the following subtasks:

• When searching for the “most representative” phrase set by sampling from a text
corpus of a given language, representativeness should be considered as a function of
the digram probability distribution;

• The proposed sampling procedure should outperform existing methods;
• A proof-of-concept should be demonstrated for several different languages.

1.1. Related Work

This subsection describes publicly available phrase sets that have already been consid-
ered a resource in text entry research. The main features are described for each phrase set,
and the development process in those cases where the design procedure is known.
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MacKenzie and Soukoreff [9] published a phrase set of 500 English sentences described
as “moderate in length, easy to remember, and representative of the target language”.
As a metric for representativeness, the authors used the correlation coefficient between the
distribution of individual letters in their phrase set and the letter frequencies previously
derived by Mayzner and Tresselt [10]. Thus, the representativeness of this phrase set is
derived from an outdated source of 20,000 words, which is an undersized sample compared
to contemporary text corpora. Nonetheless, the corresponding phrase set has been used by
many researchers, even in the mobile text entry domain. However, the phrases provided
are unlikely to match well with text written in actual mobile messaging.

The AAC Research Group at the University of Nebraska [11] published several vo-
cabulary lists and context-specific messages. The latter represents a collection of short
conversational phrases suggested by AAC specialists that can be used as stimuli in text
entry experiments. The phrases are categorized according to context, e.g., conversation
control phrases, communication repairs/corrections, location markers, temporal markers,
and social comments. It seems reasonable to use this set when a text entry experiment
replicates a particular context of a written conversation. However, the representativeness
of the language was not considered in the development of this phrase set.

Paek and Hsu [12] presented a method for generating phrase sets by randomly se-
lecting n-grams, i.e., phrases with n words, from a large corpus, choosing the set with
the digram probability distribution closest to the digram probability distribution of the
source corpus. Hence, they proposed “a more mathematically principled method” based
on the notion of representativeness on information theory. To compare the digram proba-
bility distributions between the source corpus and the target phrase set, they used relative
entropy—also known as Kullback–Leibler divergence (KLD):

D(p||q) = ∑
x∈C×C

(
p(x) · log2

p(x)
q(x)

)
(3)

In Equation (3), p(x) gives the probability distribution of character digrams for a
sample phrase set, and q(x) is the probability distribution of character digrams for the
source corpus. At the same time, C represents the set of characters in a given language.
Paek and Hsu, in interpreting relative entropy, state that it is not a true “distance metric”
since it is neither symmetric nor satisfies the triangle inequality [13]. However, since it is
always non-negative and only equals zero when p(x) and q(x) are identical, one can argue
that the phrase set is more representative of the source corpus when the relative entropy is
closer to zero. The single sampling trial from the authors’ proposed procedure is shown in
Figure 1.

Figure 1. A phrase set sampling method by Paek and Hsu [12]. The sample is randomly generated
from the source corpus, and its representativeness is calculated using the relative entropy based on
the respective digram distributions.

Paek and Hsu used a predetermined number of random samples to find the most
representative phrase set. They targeted four-word phrases only, regardless of whether
they formed a meaningful sentence. In addition, phrase duplicates were allowed to remain
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in the phrase set. The phrase set generated from the Enron Email corpus [14] was made
publicly available.

Vertanen and Kristensson [15] focused on mobile text entry and the memorability
of the provided phrases. Their primary text resource was the Enron Email corpus, but
only messages written on mobile devices were used for further analysis. The authors
enriched each phrase in this dataset with memorability, expected input speed, and error
rate information. This information was obtained empirically by conducting crowdsourc-
ing experiments in which actual users performed text-memorization and text-copy tasks.
The authors published five sets of 40 phrases for evaluations where memorable text was
required. In addition, they created four phrase sets that are recommended when repre-
sentativeness is desired instead. In their search for representative phrase sets, they used
the procedure described by Paek and Hsu [12]. However, they modified it slightly to
discard n-grams in the middle of the sentence, thus only obtaining intelligible phrases.
They restricted their phrase sets to sentences with 3–9 words.

In their continued effort to provide phrase sets for mobile text entry, Kristensson and
Vertanen [2] analyzed the NUS SMS corpus [16]—a publicly available collection of actual
SMS messages. Since the source corpus contained noise due to many meaningless messages
with poor grammar, it was first appropriately filtered. The authors demonstrated that
selecting a particular phrase set as a stimulus for text entry experiments makes a difference.
Namely, the SMS-based phrase set proved to be significantly more error-prone due to the
“strange language, abbreviations, and sentence fragments”. On the other hand, using the
AAC phrase set resulted in significantly higher input rates, likely due to “simple, short, and
familiar phrases that avoided proper names, unusual vocabulary, and difficult grammar”.

Leiva and Sanchis-Trilles [17] focused on generating sets of memorable phrases while
trying to preserve the language representativeness. In doing so, they decided to model
the character error rate (CER) as a function of several language-independent features
to predict memorability. Statistical analysis was performed on the corpus from which
the phrases were taken to ensure representativeness. The final score is assigned to each
candidate phrase, favoring low CER (i.e., high memorability) and high representativeness.
The proposed approach requires two different corpora: one large enough to describe the
target language and one from which the phrases are selected. This method was successfully
applied in [18], wherein a collection of 30 datasets for ten major languages was obtained.

Yi et al. [19] proposed a phrase set sampling procedure that emphasizes a word clarity
metric based on probability theory, which indicates how likely the word is to be confused
with other words. The proposed method additionally considers digram frequency and
memorability. However, the proof-of-concept phrase sets were not developed from a
large-text corpus but from a phrase set developed by MacKenzie and Soukoreff.

Gaines and Vertanen [20] developed a 5000-phrase set from comments on the Reddit
web forum. Each phrase in this set is assigned a difficulty rating from 1 to 10. The difficulty
rating is based on the character error rate, which was determined by simulations of text
input. In their research, however, the authors did not consider the representativeness of a
target phrase set.

Abbot et al. [21] utilized text-to-speech systems to synthesize the audio clips of all phrases
from the set of MacKenzie and Soukoreff. They provided a set of 92 phrases that could be
transcribed without comprehension errors. Although representativeness was not considered
in this study, it is still interesting because it shows that a phrase set does not have to be strictly
in the form of the text as an experimental stimulus in a text entry experiment.

In general, related work suggests that three different sampling approaches can be
automated with the goal of producing phrase sets that are comparable across languages
and domains:

• The random selection of phrases from available text corpora where representativeness
is not explicitly targeted.

• Random selection of phrases, where phrase sets with better representativeness are
selected [12].
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• Specific methods that consider the representativeness of a phrase set but focus on other
metrics such as memorability [17] or word clarity [19] and analyze the aggregated
metrics accordingly.

Table 1 summarizes the features of the phrase sets described in the related work.

Table 1. Available phrase sets for text entry empirical research.

Phrase Set Source Corpus
Development
Procedure

Representativeness Main Statistics

MacKenzie and
Soukoreff [9] N/A “Randomly” collected

phrases

Normalized letter
frequency correlated to
Mayzner and
Tresselt [10]

500 phrases
2712 words
14,304 characters

AAC N/A
Phrases suggested by
AAC specialists;
context-specific

N/A
928 phrases
3771 words
17,221 characters

Paek and Hsu [12] Enron Email

Random sampling of
n-word phrases;
searching for the
representative sample

Relative entropy
between the target
phrase set and the
source corpus (KLD)

500 phrases
2000 words
11,275 characters

Vertanen and
Kristensson [15] Enron Email (filtered)

Metadata tagging;
filtering; random
sampling for
representative datasets

Relative entropy
between the target
phrase set and the
source corpus (KLD)

600 phrases
3730 words
19,211 characters

Kristensson and
Vertanen [2] NUS SMS (filtered)

Filtering based on
phrase length and
existing dictionary lists

N/A
769 phrases
5442 words
25,261 characters

Sanchis-Trilles and
Leiva [18]

OpenSubtitles 2011,
Wikipedia

Modeling over
language-independent
features; statistical
analysis of the corpus
from which phrases are
selected

Weighting phrases with
a probability density
function over several
phrase features

Language-specific;
see [18] for details

Yi et al. [19] MacKenzie and
Soukoreff

Combined analysis of
word clarity, digram
frequency, and
memorability

Relative entropy
between the target
phrase set and the
source corpus (KLD)

Four sets with 20, 40,
80, and 160 phrases;
see [19] for details

Gaines and
Vertanen [20] Reddit (2005–2019)

Computing character
error rates and
assigning difficulty
ratings

N/A
5000 phrases (full set),
1000 phrases
(recommended set)

Abbot et al. [21] MacKenzie and
Soukoreff

Synthesizing audio
clips; targeting phrases
with no comprehension
errors

N/A 96 audio clips

1.2. Contributions and Structure

In the context of research on representative phrase sets, we want to develop a new
method that: (1) targets phrase set representativeness; (2) outperforms typical random
sampling; (3) can work with multiple languages; and (4) requires a single-large-text corpus.
We consider KLD a metric for representativeness because digram probability is essential
for curating phrase sets and the predictive modeling of text entry (see Equation (1)). Our
method is directly motivated by the work described in [12]; however, we attempt to provide
a more efficient method of corpus sampling and more representative phrase sets. Although
we are not targeting the memorability feature, we want to design the proposed method to

76



Mathematics 2023, 11, 2550

use many different parameters, including the desired thresholds for the number of words in
a phrase. Since the most memorable phrases are those with the fewest words, memorability
could be targeted in this, albeit trivial, way.

To the best of our knowledge, no method has been proposed that uses (heuristic) opti-
mization techniques (or the like) to exclusively target representativeness metrics, intending
to find such a small phrase set from a single-large-text corpus that matches both the digram
statistics of the original corpus and the intended design of the text-entry experiment. There-
fore, we aim to provide this method not only as a proof-of-concept but, more importantly,
as an out-of-the-box implementation that all text entry experimenters can use immediately
and adapt as needed. In addition, we want to propose heuristic guidelines for preparing
and running a text entry experiment, which would include generating a phrase set to be
utilized in its entirety (which is often not the case).

In line with the above, the main contributions of this paper are as follows:

• A novel method for sampling text corpora using the GA approach aiming to achieve
near-optimal representativeness of the phrase set;

• An open source implementation of the proposed method that can be readily used
regardless of the target language, available corpora, target character set, number of
words in the phrases, size of the phrase set, and choice of GA parameters;

• A set of heuristic guidelines for preparing text entry experiments that consider the
experiment’s intended design and the set of phrases to be generated by the pro-
posed solution.

This paper is structured as follows. Section 2 describes our proposal for generating
representative phrase sets from available text corpora, focusing on mapping the domain
problem into a GA implementation. The results of the initial comparison with the random
sampling method, GA tuning, and application of the solution for different languages are
presented in Section 3. The discussion of the obtained results is presented in Section 4, and
Section 5 brings the final conclusions.

2. Materials and Methods

Finding the most representative phrase set from the large source corpus is a search
problem with a wide range of possible solutions. To better understand the size of such a
typical search space, we can consider a hypothetical text corpus with 50,000 phrases, a mod-
erate volume from today’s point of view. We can further assume that the desired number of
phrases in the target phrase set is 200. If we want to evaluate the representativeness of all
possible phrase sets that can be derived by corpus sampling (with no duplicates allowed),
the number of available combinations in our case increases to C(50K, 200) = 5.297e + 564.
Of course, an exhaustive search would be both time-consuming and resource intensive
in terms of computational power. As mentioned earlier, Paek and Hsu [12] used a prede-
termined number of samples in their method, i.e., they searched for the best solution out
of 100 samples. They argued that the number of sample phrase sets researchers want to
analyze depends on how much time they can spend collecting and evaluating candidates.
Nevertheless, such an approach leaves much of the search space unexplored.

Proposing an alternative sampling method requires a benchmark to evaluate its effi-
ciency. Therefore, we implemented our version of Paek and Hsu’s method and named it
“brute force” sampling (BF). The BF method is shown in Figure 2.

First, for a given source corpus (SC), the probability distribution q(ij) of character
digrams is computed. Here, ij represents a general term of the character digram, where
both i and j must be elements of a previously defined target character set. For example,
if only a lowercase English text without punctuation and non-alphabetic symbols other
than the space character is considered, the total number of digrams is 27 × 27 = 729. After
computing q(ij), the source corpus is filtered to extract only n-grams, and thus condensed
to the reduced corpus (RC). Unlike the original procedure of Paek and Hsu, we selected
candidates from the RC that contain formed sentences with exactly n words (where n is
a user-defined value). The sampling procedure of RC itself is quite simple and consists
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of a predefined number of trials (TRIALS) where the best of the observed solutions is
retained. The single sampling trial involves: (i) generating the phrase set candidate (PSC)
by randomly selecting it from RC; (ii) computing the digram probability distribution p(ij)
for the generated PSC; (iii) computing the Kullback–Leibler divergence (KLD); and (iv)
declaring the current PSC as the target phrase set (TPS) if the associated KLD has the lowest
value so far. Since the described procedure leads to finding the best-of-TRIALS phrase
set, whose digram distribution is closest to the digram distribution over the entire SC, we
declare the final TPS as the “most representative” phrase set determined by BF sampling.

Figure 2. Procedure for finding representative phrase sets using the source corpus BF sampling.

Our case is obviously a typical mathematical optimization problem in which a sub-
optimal solution is sought in a large search space. To explore this search space of possible
phrase sets more efficiently than BF, we propose a meta-heuristic approach using a genetic
algorithm (GA). The basic idea of the corresponding method is shown in Figure 3.

As can be seen, the initial operations remain the same as in the BF sampling approach:
based on the input target character set, the digram probability distribution q(ij) is computed
for the SC. At the same time, the n-gram reduction is performed to obtain the RC dataset.
The main difference is that the genetic algorithm handles the process of actual sampling
and sample evaluation. As a heuristic routinely used to generate solutions for optimization
and search problems by mimicking the process of natural selection, a genetic algorithm
seems a logical choice for our case. For now, we can consider GA as a black box that can
generate a target phrase set that is likely to be more representative compared to the BF
approach. However, this needs to be supported by actual data, so the GA parameters such
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as population, chromosome length, fitness function, termination criteria, and operators such
as mutation, crossover, and elitism need to be appropriately applied to the problem domain.

Figure 3. Procedure for finding representative phrase sets using the source corpus GA sampling.

2.1. Mapping the GA to the Problem Domain

Although a huge amount of literature deals with the theoretical foundations of
genetic algorithms, only the basic principles and notations are briefly explained here.
The implementation of a GA starts with a population of candidate solutions, usually ran-
domly selected and declared as chromosomes. The population then enters an evolutionary
process, representing one generation in a single iteration. Within a given generation, each
chromosome is evaluated against a defined fitness function, usually corresponding to the
main criteria for solving the problem. Chromosomes that represent a better solution to
the target problem are then given more chances to “reproduce”, i.e., they are subjected to
crossover and random mutation after the intermediate selection process. As such, a new
generation of candidate solutions is formed for the next iteration. Various termination
criteria can be used to terminate the genetic algorithm, such as the specified maximum
number of generations, the desired level of fitness, or the number of generations that do
not increase fitness. More information on the computational behavior of GAs and how they
support complex search problems can be found in [22].

Making an initial random population within our problem domain is illustrated in
Figure 4.

Individual phrases from the reduced corpus represent genes in terms of the genetic
algorithm. The phrases are randomly selected and grouped to form a single phrase set
candidate (PSC) corresponding to a single chromosome. The number of phrases in the
PSC (chromosome length) is a user-defined value. Our implementation does not allow
for phrase duplicates to be present in a given chromosome. The number of PSCs we want
to analyze iteratively represents a population size, which is also an arbitrary parameter.
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Once the initial population of PSCs is created, their evolution towards better solutions
can begin.

Each PSC from the population is evaluated using the fitness function, which in our
case, is represented by the Kullback–Leibler divergence. The relative entropy between a
given PSC and the SC can indicate how representative the phrase set in question is, i.e.,
how “good” the corresponding chromosome is. Concerning the KLD, chromosomes whose
associated value is closer to zero are considered fitter.

Figure 4. Population, chromosomes, and genes representation in the text corpus sampling prob-
lem domain.

One of the basic principles of GA assumes that the best candidates should be retained
and bred to produce even better solutions for the next generation. Choosing chromosomes
for a potential crossover operation represents a selection process, and several methods
provide this functionality in GA. Simple truncation selection, for example, eliminates a
fixed percentage of the weakest candidates and is considered less sophisticated because
weaker solutions may not survive at all. Weaker solutions can sometimes be an advantage
in the crossover process since there is always some chance of obtaining genes that might
prove useful. Therefore, we opted for fitness selection, also known as roulette wheel
selection, in which the probability of an individual being selected for a crossover increases
with the fitness of the individual in question. We used the two-point technique for the
crossover method, in which two parent chromosomes are combined to generate two new
child chromosomes (see Figure 5).

Figure 5. Two-point crossover swaps the text phrases between the parent chromosomes, based on
the positions of two points, resulting in the generation of two new PSCs.

The resulting offspring replace the parent chromosomes in the current population,
thus performing a generational change. The main advantage of such an approach is its
ease of implementation; however, the obvious disadvantage is that highly fit individuals
are not guaranteed to pass unchanged into the next generation. For this reason, our
implementation includes an additional elitism operator. Elitism allows a certain percentage
of the best candidates (elitism percentage) to be included in the next generation without
being modified beforehand, ensuring that future generations do not lack quality.

80



Mathematics 2023, 11, 2550

Finally, we had to account for genetic diversity by including the mutation operator.
Unlike the binary crossover operator, the unary mutation operator acts on a single chromo-
some by changing one or more gene values. While crossover directly supports convergence
to a local optimum, the mutation operator is, in turn, used to cause divergence by adding
new genetic information. Mutation occurs with a user-defined mutation probability, usu-
ally set relatively low. However, setting the best value for the mutation rate is highly
problem-specific, as this value defines the desired trade-off between the exploration and
exploitation capabilities of the GA.

A custom mutation operator is proposed and implemented to support specific require-
ments within the problem domain. Along with the mutation probability, we introduced an
additional parameter—a number of phrases to be altered in a mutating PSC. In our case,
the mutation probability represents the chance that a given PSC will undergo the mutation
process. When such a mutation is eventually triggered, a predefined number of phrase
swaps are made at random positions within the PSC. The corresponding mutation process
is shown in Figure 6.

Figure 6. The mutation operator used in our implementation.

Each single mutation session consists of three basic operations: (i) based on the
predefined number of gene modifications, phrases to be randomly replaced within the
respective chromosome are determined; (ii) the same number of new phrases are randomly
extracted from the subset of RC; and (iii) the determined current phrases are swapped with
the new ones. In Figure 6, the number of mutations is assumed to be 3. Phrases P2, P7,
and Pn−3 are swept and become part of the RC subset in the next generation if they are not
already contained in one of the remaining chromosomes.

The design of our mutation operator, in which several phrases (genes) in a set (chromo-
some) can be changed simultaneously, retains all the essential features of a typical mutation
operator. This facilitates the exploration by including diversity even in cases where a
representative set with a large number of phrases is required. When introducing multiple
mutations, avoiding excessive population disruption is important. Care must be taken
to ensure that the number of changed phrases in a set is reasonable and does not lead to
chaotic or unpredictable behavior. In addition, our mutation operator ensures that diversity
is maintained in the population, as it only replaces existing phrases with those not yet
present in the entire population. Even though our operator allows a kind of “fast” mutation
within a generation, combinations of phrases that have previously shown a good fit are
protected from mutation by the elitism operator. Thus, the additional parameterization of
the mutation operator allows further adaptation to our domain problem and the properties
of the target phrase set. After all, the proposed GA method can be used to set the number
of target genes for mutation in the described operator to 1, effectively turning our mutation
operator into the default one.

Figure 7 shows the structure of the GA process pipeline used in our implementation.
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Figure 7. GA process pipeline utilized for corpus sampling.

2.2. Implementation of GA-Based Text Corpora Sampling

The proposed procedure for sampling a text corpus using a genetic algorithm is
implemented in C# within the .NET platform. To support the functionality of GA, we used
the freely available genetic algorithm framework (GAF)—the single multi-thread assembly
that provides programming resources for many types of genetic algorithms [23]. While the
most common genetic operators are built into GAF, external operators can also be developed
and added to the standard GA process pipeline. No problems were encountered in mapping
the properties of the problem domain to the appropriate programming structures, and
implementing our custom mutation operator was quite straightforward.

As a final result of our project development phase, we provided several C# classes
with a number of useful methods for dealing with corpora sampling. Some of the function-
alities provided by our implementation, which includes both BF and GA approaches, are
as follows:

• Loading the corpus from a text file;
• Reducing the available source corpus to the dataset containing only n-word phrases;
• Computing the letter/digram probability distribution for the provided text corpus

based on the defined target character set;
• Computing the relative entropy (KLD) between two digram probability distributions;
• Parameterized BF sampling;
• Setting GA by defining the basic parameters, the processing pipeline, and the input

datasets (RC and the character set for a target language);
• Specific GA event handling (managing the completion of a single generation or a

GA run).

We provide simple C# code snippets that perform all the necessary analysis and
computation to demonstrate how easily the provided implementation can be used to obtain
the phrase sets. As can be seen in Figure 8, corpus sampling can be invoked with just a few
lines of code, regardless of whether the BF or GA approach is preferred. Furthermore, the
corresponding methods are parameterized to allow the easy customization of the sampling
process. For example, defining completely new GA parameters at one point is possible.
This forms the basis for a simple GA parameter tuning in the later phase of the analysis of
the results.

Other useful features of our implementation can be highlighted:

• The n-gram reduction from the SC is performed on sentence-based premises so that
only meaningful phrases can be included in the further analysis;

• The RC does not contain duplicate phrases; consequently, each phrase set candidate,
as well as the target phrase set, is duplicate-free;

• The probability distributions do not have to be recalculated, but can be loaded from
the respective files with the previously computed digram/letter frequencies (this is
especially useful while working with large text corpora);
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• The methods are designed in such a way that large text corpora can be analyzed inde-
pendently of the available hardware resources: file processing is implemented using
byte streams so that large text files do not have to be entirely loaded into memory;

• The whole sampling procedure depends on a defined target character set (which can
be easily changed), while the algorithm itself is not language-specific since corpora
can be sampled by analyzing the whole or restricted alphabet of a given language,
with or without punctuation and additional characters;

• The sampling steps are recorded in the corresponding log file, including all relevant
parameters and intermediate results, so that the performance of both BF and GA can
be checked in detail.

Figure 8. Starting BF and GA sampling with the provided C# methods. In both cases, only two
resources are required as input arguments: the source corpus (a file that presumably contains a large
amount of text) and the target character set for a given language.

The implementation’s source code is freely available as an open source project on
GitHub [24]. Researchers can use this resource and experiment by “feeding” the provided
methods with different text corpora and different sampling features to obtain representative
phrase sets with the desired properties (language, character set, phrase set size, and phrase
length). The result of the GA-based sampling procedure can be examined in more detail
using different combinations of GA parameters and compared with the benchmark BF
approach. In addition, the provided source code can be modified and/or adapted to
support some specific domain problems and tackle performance issues. For example, a
different way of handling unwanted characters in the source corpus can be considered,
alternative BF sampling approaches can be used, a new version of the GA mutation operator
can be developed, and so on. A completely different fitness function can even be introduced
to analyze possible new metrics for phrase set representativeness.
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3. Results

This section gives an overview of all the results obtained by applying the proposed
solution. In doing so, we describe the initial tests and compare the effects of BF and GA
on the available Croatian text corpus. The Croatian language was chosen for the reason
that it is the native language of the authors of this work, and there are no representative
phrase sets that could be used for the text entry experiments in this language. Then, we
show the procedure and the results of tuning the GA, and finally, we present the results of
applying the tuned algorithm to text corpora from several different languages. All results
were obtained on the following computer PC configuration: CPU Intel i7-5600U @3.20 GHz,
12 GB RAM, 512 GB SSD.

3.1. Initial Assessment of BF and GA Sampling Effects

The proposed procedure was first tested for sampling the Croatian text corpus. As
the main source corpus, we chose fHrWaC [25], a filtered version of the Croatian web
corpus hrWaC, initially compiled by Ljubešić and Erjavec [26]. hrWaC is a web corpus
collected from the .hr top-level domain, containing 1.2 billion tokens in its first version
and distributed under the CC-BY-SA license. Since this resource was found to contain
segments of non-textual content, such as code snippets and formatting structures, as well
as some encoding errors and foreign language content, we decided to use the filtered
version instead. The final filtered corpus contains 50,940,598 sentences, is licensed under
CC-BY-SA 3.0, and can be downloaded from a website maintained by the Text Analysis
and Knowledge Engineering Lab (TakeLab) [27] at the University of Zagreb.

A sampling of the fHrWaC corpus was initially conducted using the BF approach. It
was decided that an analysis would be performed based on the character set consisting
of the lowercase alphabet typically used in Croatian QWERTY layouts. This includes all
26 English characters as well as five additional Croatian diacritical marks: č, ć, d̄, š, and ž.
Except for the space character, no other punctuation characters were considered, so our
digram matrix includes exactly 32 × 32 = 1024 records. As the first step of the sampling
procedure, we derived the digram probability distribution for the source corpus. Table 2
shows the statistics for the ten most frequent digrams in the fHrWaC corpus.

Table 2. Ten most frequent digrams in the fHrWaC corpus (based on the used character set).

Character Digram Number of Occurrences Probability

a-space 215,614,936 0.032759789
e-space 190,822,444 0.028992904
i-space 155,658,921 0.023650279
je 152,481,601 0.023167528
space-s 115,031,757 0.017477528
o-space 110,503,789 0.016789564
u-space 107,987,401 0.016407233
space-p 105,068,195 0.015963699
na 87,110,973 0.013235341
space-n 80,275,325 0.012196756

Based on the calculated fHrWaC digram probability distribution q(ij), it can be seen
that digrams containing the blank are generally more frequently used, which is not surpris-
ing if we know that they represent the beginning and/or the end of words. As mentioned
earlier, the sampling procedure should now search for a phrase set with its digram proba-
bility distribution p(ij) being the most representative of the obtained q(ij) with respect to
the KLD.

We decided to retrieve the target phrase sets of exactly 200 phrases and focus on
phrases of 3–15 words. Naturally, shorter phrases are the preferred stimuli in text entry
experiments where the text to be typed must be memorized beforehand. In comparison,
shorter and longer phrases can be used simultaneously in typical experimental text typing
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tasks. A total of 1000 trials were conducted, resulting in 13 different phrase sets whose
representativeness values are shown in Figure 9. It can be seen that both the mean relative
entropy and its minimum value decrease with increasing phrase length. Thus, we conclude
that better representativeness is more difficult to achieve when the target set contains
shorter phrases. Since most text entry experiments use short phrases, finding representative
solutions becomes even more challenging.

Figure 9. Sampling 200 phrase sets from an fHrWaC reduced to n words using the BF approach with
1000 random trials. In addition to the KLD mean value, the corresponding standard deviation is
also shown.

We set the benchmark phrase length to five words for further analysis. According to
the initial results from BF, the minimum value of relative entropy obtained for a phrase
set containing 200 phrases of five words is 0.079179. Next, the effect of the phrase set
size was assessed by an additional round of sampling with six different sizes. Again,
1000 random trials were used in each BF sampling run. The corresponding results are
shown in Figure 10.

Figure 10. Sampling phrase sets with a variable size from a 5-word reduced fHrWaC using the BF
approach with 1000 random trials. In addition to the KLD mean value, the corresponding standard
deviation is also shown.
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Again, the results show that relative entropy (both average and minimum values)
generally decreases as the amount of text in the target phrase set increases. This confirms
analogous results from Paek and Hsu [12], where the corresponding trend was attributed
to smaller quantization effects for larger phrase sets. Thus, it has already been argued that
“it is much more important to make sure that a sample phrase set is representative of the
source corpus when there is a small number of phrases”. Therefore, we decided to stick
with 200-phrase sets for further analysis.

Finally, we wanted to analyze how the number of random trials in the BF procedure
affects the best value of relative entropy. As mentioned earlier, this number significantly
depends on how much time can be spent on BF sampling concerning the search space under
investigation. We sampled the RC eight times, from a run with only ten random trials
to the more time-consuming processes, the last of which involved half a million samples.
The results obtained are shown in Figure 11.

Figure 11. Sampling 200-sentence phrase sets from the 5-word reduced fHrWaC using the BF
approach with a different number of random trials. In addition to the KLD mean value, the corre-
sponding standard deviation is also shown.

No major differences were observed between the mean values of relative entropy
(ranging from 0.105109 to 0.107923) and their respective standard deviations. However, the
KLD minimum values associated with the most representative phrase sets found in each BF
sampling procedure generally showed a negative trend. This is an understandable effect
since a more extended search means a higher probability of finding a more appropriate
phrase set. We can now be interested in the absolute gain in terms of relative entropy values:
a BF run with 500,000 random trials yielded the best sample with min(KLD) = 0.075669.
In contrast, the second best result was observed in a procedure with 1000 random trials
with min(KLD) = 0.079320. The best value obtained serves as the final BF benchmark to
be compared with the proposed GA sampling procedure.

After analyzing the effects of BF sampling, the next step was to test the support of
GA. In line with the previous analysis, the proposed GA sampling procedure was used
to obtain a representative set of 200 phrases with exactly five words. The reduced corpus
was already available through the BF sampling procedure. The initial parameters of GA
were set as follows: a population of 50 phrase sets (chromosomes), elitism of 2%, crossover
probability of 0.65, mutation probability of 0.1, five new genes involved in each mutation
process, and a maximum number of generations (500) as the criterion for GA termination.
This preliminary GA run produced the results shown in Figure 12.

Within the initial population, the most representative phrase set of 50 randomly
selected candidates had the corresponding KLD value of 0.086755. Further crossovers
and mutations in the GA process pipeline resulted in the KLD value being more than
halved after only 500 generations. Thus, even the first run of GA yielded a target phrase set
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which was more representative of the source corpus (KLD = 0.032082) than any phrase
set previously obtained using the BF approach. This was somewhat surprising since the
BF procedure had already involved a large number of trial runs without being able to
derive a phrase set with a value even close to the KLD value obtained in the first run of GA.
Thus, the most representative phrase set yet was easily obtained, but the next task was to
experiment with the parameters of GA to search for possibly better solutions.

Figure 12. Sampling 200-sentence phrase sets from the 5-word reduced fHrWaC using the GA
approach with initially set parameters.

3.2. GA Parameter Tuning

Determining the “right” parameters for the GA to solve a particular search problem
is anything but a trivial task. Generally, this task can be divided into parameter tuning
and parameter control. As explained in Eiben and Smit [28], parameter control assumes
that parameter values change during a GA run, so initial parameter values must be fixed
and appropriate tuning strategies must be used. On the other hand, parameter tuning
is less complicated because no changes occur during a GA run, and only a single value
per parameter is required. However, since there are a large number of options that can be
manipulated, parameter tuning remains a serious issue. Considering that there are several
possible approaches for tuning the GA parameters, a possible analysis of the respective
tuning algorithms is beyond the scope of this paper. The existing tuning algorithms and
their impact on GA-based corpus sampling, both in terms of performance improvements
and computational costs, are viable options for future studies. The parameterized features
of the provided implementation (including GAF support and our sampling methods) allow
such an analysis without modifying the genetic algorithm.

Consequently, a more conservative approach to parameter tuning was adopted in
our work. Values are selected by convention (general principles or rules of thumb such as
“lower mutation rate”), ad hoc decisions (e.g., two-point crossover), and, most importantly,
experimental comparisons with a limited number of parameter combinations. When exper-
imenting with different parameter values, particular emphasis was placed on algorithm
performance, convergence to the best solution, and final KLD values after a certain number
of GA generations. Some parameters are directly related to the observed results, e.g., a
larger population size and/or a higher number of generations increases the time required
to complete GA. On the other hand, it is not immediately obvious how a particular combi-
nation of parameters, here including the probabilities of crossover and mutation, affects
the outcomes of GA. Approximately 60 combinations were tested, resulting in a similar
decreasing trend of the KLD value.

All tuning sessions showed a faster decline in KLD values in the first generations and
a slower convergence to the best solution in the later stages of the GA run. Regarding
the execution speed, a single GA run with 1000 generations and a population size in
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the range of 500–1500 was completed in less than an hour with the aforementioned PC
configuration. Since we considered this time a reasonable cost for the investment in
parameter tuning, and due to the similarity of the obtained KLD trends, it was decided that
the final GA parameters should be selected according to the best obtained KLD value across
all tuning runs with 1000 generations. As a result, the parameter values were set as follows:
population size—500; elitism—5%; crossover probability—0.8; mutation probability—0.2;
and number of genes involved in the mutation process—20.

When testing different values for the custom mutation operator, we observed a typical
effect: for better results, the combination of a very high mutation rate and a large number
of variable genes should be avoided, as well as a combination of a very low mutation rate
and a small number of variable genes. Several aspects can explain the positive effects of
a somewhat higher mutation rate in our case. First, the search space for representative
phrase sets is very large, corresponding to the size of modern text corpora. The risk of
premature convergence, where GA gets stuck in a suboptimal solution, is more pronounced
in such a large domain. A higher mutation rate introduces additional randomness into the
population, helping to explore different regions of the search space and avoid premature
convergence by leaving local optima. In addition, a higher mutation rate promotes explo-
ration by introducing more disruptive changes into candidate phrase sets. Such exploration
can help discover new combinations of phrases that exhibit higher representativeness, even
if they may initially be far from the optimum. Moreover, a higher mutation rate helps main-
tain diversity by introducing new phrases that are not yet present in the population, which
is ensured by the design of our mutation operator. This diversity promotes the exploration
of different linguistic patterns and increases the chances of finding more representative
phrase sets.

Once the final parameters for GA were established, it was possible to formally compare
the BF and GA sampling methods. Assuming that 500 solutions (GA population size) are
evaluated in every single GA generation, a complete GA run with 1000 generations would
include a total of 500 × 1000 = 500,000 evaluations. In this respect, comparing such a GA
run with the BF procedure involving the same number of random sampling trials is fair.
The result of this analysis is presented in Figure 13.

Figure 13. Comparison of sampling results between the BF procedure with 500,000 random trials and
a GA with 1000 generations and a population size of 500 (200-sentence phrase sets from the 5-word
reduced fHrWaC were sampled).
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The ordinal number of BF trials can be tracked on the upper horizontal axis and is
relevant for the highly variable KLD values obtained with the BF method (upper part
of the graph). In contrast, the ordinal number of GA generation can be tracked on the
lower horizontal axis and is relevant to the decreasing KLD values obtained with the GA
approach (lower part of the graph).

The advantage of the GA approach is apparent in terms of the final solution and
performance. The most representative phrase set found from the fHrWaC corpus reduced
to five words using the BF procedure has the associated KLD value of 0.075669493. The
phrase set with better representativeness was found within the first generations of the
corresponding GA run. Moreover, the GA eventually resulted in a target phrase set with
a considerably lower KLD, namely 0.023117662. In terms of execution speed, GA also
outperforms BF sampling. However, this can be attributed to the multi-threading support
in GA implementation, in contrast to the BF procedure, which relies on serial iterations with
a sample-and-evaluate rate of almost 200 phrase set candidates per minute. Therefore, the
results of BF shown in Figure 14 were obtained in no less than 40 h, which is significantly
more compared to the GA approach.

Figure 14. Final results of fHrWaC corpus GA-based sampling (only the first 100 generations
are shown).

3.3. The Final Outcomes and a Multi-Language Context

In order to obtain representative phrase sets for the Croatian language, in a final
step, we decided to target sets of exactly 200 phrases with seven different phrase lengths
(3–9 words). We used the proposed GA sampling procedure, setting the parameters of GA
as previously described. In addition, we configured GA to terminate after 10,000 genera-
tions to further improve the final solutions. Since all n-word reduced corpora (n ∈ [3, . . . , 9])
were previously generated by BF sampling runs, additional n-word filtering was not re-
quired. Each GA run was then applied to the corresponding reduced corpus, and thus, the
most representative phrase sets after 10,000 generations were found.

The results confirm that the relative entropy of the best solutions decreases when the
target set contains phrases with more words. To see the differences between the seven KLD
trends more clearly, we show the GA sampling results, but only within the first 100 GA
generations, where the convergence speed is higher (see Figure 14).

The characteristics of the phrase sets obtained, the corresponding values of the KLD
metric, and an example sentence from each phrase set (with an English translation) are
given in Table 3.
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Table 3. Characteristics of the most representative phrase sets sampled from the fHrWaC source
corpus found using the proposed GA-based approach. Example phrases in Croatian are additionally
translated into English (EN) for clarity.

Phrase
Length

Phrase Set Characteristics Example Phrase

3 words

200 phrases, 600 words
4.57 characters/word
KLD( f HrWaC):
0.035726331

jako ih volim
EN: I like them very much

4 words

200 phrases, 800 words
4.87 characters/word
KLD( f HrWaC):
0.025814862

tajna je u preljevu
EN: the secret is in the dressing

5 words

200 phrases, 1000 words
5.06 characters/word
KLD( f HrWaC):
0.020257031

želim otići iz toga kaosa
EN: I want to leave this chaos

6 words

200 phrases, 1200 words
5.11 characters/word
KLD( f HrWaC):
0.019554355

igra nije bila za visoku ocjenu
EN: the game was not for high rating

7 words

200 phrases, 1400 words
5.22 characters/word
KLD( f HrWaC):
0.014567244

ostala sam jedan dan više u bolnici
EN: I stayed one more day in the hospital

8 words

200 phrases, 1600 words
5.25 characters/word
KLD( f HrWaC):
0.012153204

za večeru pojedite pitu ili čips od jabuke
EN: have apple pie or chips for dinner

9 words

200 phrases, 1800 words
5.29 characters/word
KLD( f HrWaC):
0.011310758

na njegovom posljednjem albumu ona je napisala
osam pjesama
EN: on their last album she wrote eight songs

After completing the search for representative phrase sets using the GA procedure, a
problem remains that needs to be addressed. Large web-scraped corpora usually contain,
in addition to the inevitable spelling and grammatical errors, some parts with offensive
language that are difficult to filter out automatically. The fHrWaC corpus is no exception in
this respect, so there is a possibility that the obtained phrase sets contain some undesirable
texts. Therefore, it is recommended that the phrase sets are manually checked by correcting
possible errors and removing unwanted content. Such a modification of the obtained phrase
sets inevitably leads to a change in their digram statistics and, consequently, their relative
entropy. A minor change in the KLD value can be expected if only a few grammatical issues
are involved. However, finding the correct replacements may become a larger problem if
many phrases need to be completely removed. Therefore, it would be ideal to have large
text corpora that have been adequately “cleaned” beforehand at disposal.

In order to prove the usefulness and effectiveness of the proposed method on a general
level, we decided to apply it to different languages. It is important to generate representative
sets of phrases for different languages because it has already been proven that language plays
a significant role in text entry experiments and directly affects the efficiency of text input [29].
We additionally extended the method’s capabilities to generate sets containing phrases with
different word counts. In this way, it is left to the end user (the operator of the text entry
experiment) to generate a representative set for the target language that best fits the intended
design of the experiment. For example, if the goal is to test the input of memorable phrases,
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generating a set of phrases containing between 3 and 5 words is possible. On the other hand,
if one wants to study the effects of transcribing a larger amount of text, the method can be
used to generate a phrase set with longer sentences.

The proof of concept was carried out, in parallel with the native Croatian language
(HR), for English (EN), Italian (IT), Spanish (ES), Russian (RU), Polish (PL), French (FR),
and German (DE). For each of the above languages, a corresponding character set had to
be defined—a set of all letters/graphemes that can form valid digrams in that language.
Following common practice in text entry research, we limited phrases to lowercase letters
without punctuation, such as commas and periods. We chose phrase sets with different
numbers of phrases (150, 200, 250, 300) containing different numbers of words (3–5, 4–6,
5–6, 6–7). Sampling was performed for each language using the BF and GA methods, thus
allowing the comparison with the baseline method. In doing so, we decided to make two
GA runs for each language – with two thousand and three thousand generations.

We used the OpenSubtitles 2013 collection [30,31] as a resource for text corpora in
different languages. It should be noted that the mentioned corpora are not filtered with
respect to the possible presence of undesirable parts of the text. The results of the sam-
pling methods applied to this resource, targeting eight different languages, are shown in
Figure 15.

Figure 15. Results of applying the proposed method to several different languages from the Open-
Subtitles 2013 corpora.

The upper part of the diagram shows box-and-whiskers plots illustrating the variability
of the results of the separate experiments in which the BF approach was used (with
500,000 sample trials). In contrast, the lower part of the diagram shows the results of
the GA approach—performed with a total of 1000 and 3000 generations. Since the best
result of BF sampling is the one with the lowest KLD value, we connected all BF minima
with a line. With this kind of visualization, we wanted to point out the following:
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• The shape of the three lines shows that the final results of the different experiments
(referring to different languages and target phrase sets) have a similar relationship,
regardless of whether the BF or GA is used.

• The mutual distance between the three lines shows how effective GA is in finding
better solutions, given the difference in the KLD values obtained.

As can be seen, it is once again shown that the proposed GA method outperforms the BF,
this time in the context of different languages. Regardless of the target language, of how many
phrases the target set contains, and of how many words phrases in the target set contain, the
GA method is proven to be able to find a phrase set of higher linguistic representativeness. As
expected, GA runs with 3000 generations yielded more appropriate solutions.

The details of the phrase sets obtained from sampling the corpora of different lan-
guages are given in Table 4.

Table 4. Characteristics of the most representative phrase sets sampled from the OpenSubtitles 2013
(OS) source corpora found using the proposed GA-based approach with 3000 generations. Eight
languages are selected for the analysis.

Language Phrase Length Phrase Set Characteristics Example Phrases

Italian (IT) 3–5 words
150 phrases, 656 words
4.72 characters/word
KLD(OS − IT): 0.02193727

siete tutti sani
prendila come un gioco
hai chiamato a casa sua

Spanish (ES) 3–5 words
150 phrases, 679 words
4.45 characters/word
KLD(OS − ES): 0.034925941

prepare el carro
me harté de llorar
ofender no era mi intención

Croatian (HR) 4–6 words
300 phrases, 1490 words
4.50 characters/word
KLD(OS − HR): 0.012102423

to je samo sok
bila sam jutros u banci
ja ću ti paziti na opremu

English (EN) 4–6 words
300 phrases, 1567 words
4.08 characters/word
KLD(OS − EN): 0.010343915

go with the plan
that goes for every man
love is like taking a train

Russian (RU) 5–6 words
200 phrases, 1103 words
4.94 characters/word
KLD(OS − RU): 0.025255478

я вижу ты чтото знаешь
я вернулся так скоро как смог

Polish (PL) 5–6 words
200 phrases, 1103 words
5.24 characters/word
KLD(OS − PL): 0.021751797

nie ma leków na amnezję
przyjechałam tak szybko jak tylko usłyszałam

French (FR) 6–7 words
250 phrases, 1618 words
4.49 characters/word
KLD(OS − FR): 0.014245106

vous aurez votre chance cette nuit
combien de fois vas tu regarder ça

German (DE) 6–7 words
250 phrases, 1622 words
4.87 characters/word
KLD(OS − DE): 0.013459111

niemals mehr will ich dich verlieren
man muss den kunden bei laune halten

4. Discussion

Text entry is still a hot topic among the HCI community. Many novel text entry
methods and solutions for various application domains have recently been introduced.
These include text entry in immersive virtual environments [32,33] and augmented reality
systems [34], speech-based text entry [35], and typing on passive surfaces [36,37]. All these
work uses a common phrase set, namely that developed by MacKenzie and Soukoreff,
whilst related experiments sometimes only use part of the set. This suggests that, while
there are ways to generate phrase sets with better language representativeness, many
researchers have not yet utilized them. The above work points to another problem: text
entry is mostly tested in English, even though the experiments are not necessarily conducted
with native English speakers. Evaluations of text entry methods in other languages are
limited, and when English is not the focus, either ad hoc phrase sets are invented [38] or
MacKenzie and Soukoreff’s phrase set is translated [39]. These facts further contextualize
the potential and the need for representative phrase sets.

Although GA can be considered an old technique, it continues to attract attention. In
recent research efforts, it has been successfully applied in text analysis, particularly for text
feature selection [40], text clustering [41], and text summarization [42].
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Besides GA, other heuristic algorithms such as simulated annealing, particle swarm
optimization, and ant colony optimization could also be considered to solve the observed
problem. However, one of the main reasons for using the genetic algorithm was the
interpretability of this method and its relation to the problem domain. Namely, the process
of encoding phrases and their evolution by genetic operators allows the direct mapping
of solutions to the problem domain. The set of phrases can be directly represented as a
candidate chromosome, with each phrase representing a single gene. This representation is
consistent with the nature of the problem and allows GA, with its crossover and mutation
operators, to work directly with the units of interest. In addition, GAs are well suited for
nonlinear optimization problems where the relationship between the input variables and
the objective function is complex and may exhibit nonlinearity. In our phrase set selection,
the fitness function is based on Kullback–Leibler divergence, which involves nonlinear
relationships between character digrams, making GA a favorable choice for optimizing
such an objective. Finally, since GAs have been extensively studied and implemented in
various domains, numerous programming resources are available for implementing and
tweaking GAs. Therefore, the proposed GA-based sampling method can be offered as a
readily available resource for various platforms.

Although GA offers the above advantages, we recognize that the effectiveness of any
optimization method depends on the specific problem and its characteristics and that it
is important to also evaluate other algorithms. Implementing alternative optimization
methods and comparisons with GA represents future research opportunities.

The current versions of all obtained phrase sets only include only lowercase phrases,
as using only such phrases in HCI text entry experiments is common. If the inclusion of
uppercase letters is preferred instead, corpora sampling without explicit lowercasing would
be required, and the target character set would need to be defined differently. The same
applies to including numbers, additional symbols, and punctuation marks. For example,
suppose we want to add only simple punctuation (comma and period) to the current
lowercase alphabet. In that case, the input charset file should be updated accordingly, e.g.,
for English, this would mean the following string: “abcdefghijklmnopqrstuvwxyz”. In this
case, the digram matrix would have the size 29 × 29 = 841, with the corresponding digram
frequency values calculated in the first step of the sampling procedure. Once computed,
this digram probability distribution can be readily used as a language model for predictive
text input evaluation. Namely, it can be combined with previously derived motion models
(e.g., the well-known Fitts’s law in Equation (2)) to obtain predictions about text entry
speed for a given input technique. At the same time, the digram probability distribution of
the source corpus serves as a baseline for assessing the representativeness of the selected
phrase set.

The proposed sampling procedure can be easily used to develop phrase sets with
specific features that match the desired experimental design. The preferred source cor-
pus, target language, associated character set, number of phrases, and phrase length can
all be configured using input arguments from readily available programming methods.
In this way, user-defined experimental stimuli can be generated without interfering with
the proposed procedure’s internal implementation logic. The parameters of GA can also be
configured in this way, allowing the further analysis of the efficiency of the procedure under
different combinations of crossover probability, mutation rate, and elitism percentage.

Besides using the GA sampling procedure by simply applying the already provided
methods, it is possible to modify the implementation’s source code to adapt GA sampling to
more specific requirements. Here are some customization possibilities that can be performed,
provided that some experience in .NET/C# programming has been acquired beforehand:

• A target phrase set could be generated according to a specific phrase length distribu-
tion (or average length);

• The use of a different language unit to evaluate the representativeness of a phrase
set, e.g., a word-based KLD would include the relative entropy between the word
probability distributions of the target phrase set and the SC;
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• The initial preprocessing of the SC by removing phrases containing words from a list
of known offensive terms;

• Introducing an adaptive mutation operator (e.g., with a phrase length-dependent
number of genes involved in the mutation process).

Better source corpora will undoubtedly produce better target phrase sets.
Therefore, it is desirable to obtain such text resources in which grammatical errors, rare
dialect expressions, unpleasant content, and semantically meaningless phrases are rare.
However, we must be aware that the language used in text entry is highly context-specific.
For example, punctuation, grammar, and capitalization are largely ignored in today’s mo-
bile messaging. At the same time, abbreviations and contractions (“1drfl” for “wonderful”),
as well as specific shortenings (“lol” for “laughing out loud”) and pictograms (“i < 3 u” for
“I love you”), are commonly used. Thus, if mobile text input is the subject of an experimen-
tal evaluation, it seems reasonable to use NUS SMS or public Facebook/Twitter feeds as the
initial corpus for GA-based sampling, regardless of the potentially higher efforts required
for initial filtering.

In empirical research on text entry, phrase sets should be used in such a way that the
phrases they contain are evenly distributed among different tasks and participants so that
the high linguistic representativeness of the sets supports the external validity of the results.
In this context, the proposed method can either be used to generate a unique phrase set to
standardize it for the target language or to create a customized phrase set corresponding to
a specific experiment. For the latter case, we introduce the following heuristic guidelines to
prepare the text entry experiment:

1. Select a high-quality and as large as possible text corpus for the target language and
target domain of the text entry experiment;

2. Determine the number of test subjects to participate in the text entry experiment (N);
3. Determine how many unit tasks (typing different text phrases) the user must perform

using the observed method (M);
4. If M is large (e.g., 100+ sentences), the proposed method can generate a representative

set of M phrases, requiring participants to go through the entire set. On the other
hand, if M is smaller (at the level of 10–20 sentences, which is common in text entry
experiments), it is proposed to generate a set of M× N phrases, where each participant
would type different M phrases from this set;

5. Report the statistics of the phrase set used, indicating the total number of phrases, the
total number of words in the set, and the average number of characters in a word.

Conducting a text entry experiment with such a manipulation of phrase sets would
help in standardization efforts, ensure the representativeness of the target language, and
allow the valid comparison of results from different text entry studies.

Although it is known that target language and representativeness affect the efficiency
of text input, we plan to study these effects in more detail in future work using phrase sets
obtained with our method. In doing so, we plan to collaborate with researchers worldwide
to organize experiments with participants who would write the text in both English and
their native language.

5. Conclusions

Representative phrase sets play an essential role in empirical research on text en-
try, as they allow for a more accurate comparison of different text entry techniques.
While Mackenzie and Soukoreff’s phrase set has emerged as a de facto standard, there
have been notable efforts to improve the quality and contextual appropriateness of phrase
sets. Instead of indiscriminately collecting random phrases, a more rigorous approach
involves sampling from large, trustworthy text corpora to select linguistically more repre-
sentative sets.

To tackle the optimization challenge of finding a relatively small, highly representative
phrase set within the vast search space of a single-text corpus, we proposed a GA-based
approach that utilizes Kullback–Leibler divergence to evaluate candidate sets. As demon-
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strated in the paper, this method is highly customizable, outperforms typical random
sampling, and exhibits language independence.

The implementation of the proposed method is readily available in the public GitHub
repository [24], which promotes its immediate utilization and the reproducibility of this
study. Researchers can quickly obtain representative phrase sets tailored to their designs
of text entry experiments, considering factors such as the target language, source corpus,
character set, phrase lengths, set size, and GA parameter values.

Finally, along with the proposed method and its source code, we provide heuristic
guidelines for preparing and conducting text entry experiments. These guidelines include
the generation of the target phrase set using the proposed method and its utilization in
its entirety.
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Abstract: The Sel’kov model for glycolysis is a highly effective tool in capturing the complex feedback
mechanisms that occur within a biochemical system. However, accurately predicting the behavior of
this system is challenging due to its nonlinearity, stiffness, and parameter sensitivity. In this paper, we
present a novel deep neural network-based method to simulate the Sel’kov glycolysis model of ADP
and F6P, which overcomes the limitations of conventional numerical methods. Our comprehensive
results demonstrate that the proposed approach outperforms traditional methods and offers greater
reliability for nonlinear dynamics. By adopting this flexible and robust technique, researchers can
gain deeper insights into the complex interactions that drive biochemical systems.

Keywords: biochemical system; nonlinear dynamics; neural network; Sel’kov model; coupled
differential equations
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1. Introduction

The human body is an intricate system capable of exhibiting a range of behaviors,
ranging from low complexity and seemingly disordered behavior to high complexity and
unpredictable behavior [1]. The field of nonlinear dynamics [2] aims to comprehend the
complex and frequently unforeseeable behavior of systems that adhere to nonlinear equa-
tions [3]. Nonlinear dynamics can be a valuable tool in comprehending the behavior of
biological systems [4] within the human body, such as the nervous system [5], muscu-
loskeletal [6], and circulatory systems [7]. Through studying the dynamics of these systems,
we can gain a better understanding of the underlying mechanisms of various diseases and
conditions, as well as potential solutions.

We are considering one of the nonlinear dynamical systems: a mathematical model that
depicts the behavior of a biochemical reaction network [8] containing glycolysis [9], a crucial
metabolic process [10] in living creatures, known as the Sel’kov glycolysis model [11,12],
which was first put forth by Russian biochemist Anatolii Sel’kov in 1968. Due to the
model’s simplicity and capacity to grasp crucial aspects of glycolytic oscillations found
empirically in yeast and other organisms, it has received extensive study and analysis in
the field of systems biology. The Sel’kov model for glycolysis has been studied using a
variety of methodologies, including analytical methods, numerical methods, data-driven
approaches, and sensitivity analysis [11,13]. Moreover, finding the bifurcation points in
a system is crucial for stability analysis in order to comprehend the system’s dynamics
and transition [14]. Researchers commonly combine several approaches to gain a deeper
knowledge of the dynamics and behavior of the system.

Deep neural networks (DNNs) [15] have demonstrated great potential in the field of
solving nonlinear dynamical systems because of their capacity to recognize intricate, non-
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linear relationships between input and output factors [16]. DNNs have been particularly
effective in modeling and predicting the behavior of complicated nonlinear systems. Tradi-
tional numerical methods [17] to solve complicated nonlinear differential equations [18]
require high computational cost and simplification of the underlying system that might
not always be suitable; the capacity of the DNN-based approach to approximate extremely
complex and nonlinear relationships between input and output variables made them well
suited for the solution of differential equations with complex dynamics. In summary, the
application of deep neural networks (DNNs) has the potential to enhance the handling and
prediction of complex nonlinear dynamical systems across a range of disciplines, including
applied mathematics [19], engineering [20], and biology [21]. By providing a powerful
tool for capturing nonlinear dynamics and bifurcation behavior, DNNs offer significant
opportunities for advancing our understanding of complex systems and developing more
effective approaches for managing and predicting their behavior.

2. Mathematical Model and Deep Neural Network

Sel’kov Glycolysis Model

The theories of nonlinear dynamics, or “the study of complexity,” offer a strict, math-
ematical foundation for the description of living things. Consequently, both nonlinear
dynamicists and biologists need to be knowledgeable about nonlinear dynamics. We
considered the Sel’kov model in order to apply our proposed DNN-based approach to
the simulation of nonlinear dynamics. Two nonlinear differential equations are used in
the model to characterize the amounts of the two chemical species that are engaged in
glycolysis. Its simplified version of temporal dynamics in mathematical form is given as
follows: ⎧⎨

⎩
du
dt = −u + av + u2v (a)
dv
dt = b − av − u2v (b)
u(0) = 1, v(0) = 0

⎫⎬
⎭ (1)

With the inclusion of both positive and negative feedback mechanisms, the Equation (1)
reflects the dynamics of the two variables u and v over time.

The dependent variables u and v represent concentrations of adenosine diphosphate
(ADP) [22] and fructose 6-phosphate (F6P) [23] in the process of glycolysis. Equation (1)(a)
represents the rate of change in the concentration of ADP with respect to time. The term
−u indicates the decay of ADP, a (a > 0) is the rate of the constant for the production of
F6P, the term av with a positive sign is responsible for the rate of production of ADP due to
presence of v scaled by using parameter a, and u2v is responsible for nonlinearity, implying
that the concentration of u promotes its own production multiplied by the concentration
of v.

Equation (1)(b) represents the rate of change in the concentration of fructose 6-phosphate.
The term b (b > 0) is the rate constant for the decay of ADP and the term −av is responsible for
the rate of consumption of F6P due to the reaction of u and v. The product term u2v indicates
nonlinear interactions between two chemical species, suggesting that the concentration of u
inhibits the production of v. Due to the squared components involving u2v, the model shows
nonlinearity, which can result in fascinating behaviors such as oscillations or the establishment
of persistent steady states.

3. Methodology

For the simulation of the aforementioned problem, we took advantage of a DNN-based
strategy to solve a set of nonlinear differential equations. The working rule that DNN
follows to solve differential equations is that it codifies the differential equation [24] as
a loss function [25,26] for optimization problems and then curtails the loss by adopting
different optimization techniques. Here, a thorough explanation of how neural networks
function and perform is offered.
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3.1. Data Preparation

In approximating a dependent variable of a differential equation using DNN, the type
of data typically consists of input features and corresponding dependent variable values.
The parameters a and b in our system of differential equations serve as the input features.
By input features, we mean the variables or parameters that are known in the situation
at hand. We must select definite a and b values as well as the time period at which we
wish to approximate. The dependent variable values u(t) and v(t) are the solutions of a
given system of differential equations at a different time t; these are unknown and must be
approximated by DNN. Pairs of input characteristics (a, b) with their associated values of
(u(t), v(t)) at various time points t would make up the dataset.

The fully connected layer can estimate the dependent variable for new input config-
urations by utilizing this dataset to understand the underlying patterns and connections
between the input characteristics and the dependent variable values. The dataset is divided
into a training set and a testing set as per the setup of the Python package known as
NeuroDiffEq [27].

3.2. Neural Network Architecture Design

As baseline architecture, we adopted a fully connected neural network (FCNN) to
meet our task described in our proposed methodology.

For each dependent variable, the settings in our model that make the neural network
architecture consist of one input layer, one output layer, and three fully connected hidden
layers. The first two hidden layers each contain 64 units of neurons, and the third layer has
128 neurons. Before moving on to the next layer, the input is stimulated during the process
by using an activation function. The activation function [28], which is in charge of activating
neurons, aims to create nonlinearity between the levels. The activation function used in
our setup, the Tanh function activation [29], is smooth and continuous. This characteristic
of the Tanh activation function enables the network to have continuous and differentiable
outputs, supporting gradient-based optimization techniques such as backpropagation. In
this baseline architecture of DNN, we adjusted the hyperparameters including the learning
rate, activation function, optimization technique, number of layers, and number of neurons
per layer manually in the process of training a neural network. Figures 1 and 2 unveil the
inner working of the neural network intended for use in the simulation of a given problem.
There are several layers in the network, including input, hidden, and output layers, which
are connected by weighted connections. To approximate the behavior of the glycolysis
system, each layer carries out specialized computations.

3.3. Training of the Model

The model is trained by initializing random weights and biases after all structural
settings have been completed. For the training loop, we set epochs to 30,000 and the
learning rate to 0.01. The input data are sent forward over the network. After computing
the weighted sum of the inputs in each layer, the activation function is applied and the
output is propagated to the next layer. A specified threshold value is used by the activation
function to determine whether or not a neuron should be stimulated to transfer output to
the next layer. This loop keeps running until the output layer is reached. The activation
function enhances the expressive power of the fully connected layer. Through this predicted
output, the error or the loss is calculated using the appropriate loss function.

Mean squared error (MSE) [30], which is frequently used as a metric for regression
problems [31], is adopted here to calculate the average difference between predicted and
actual output values in order to measure the performance of the model during training.
The mathematical form of MSE is given in Equation (2).

MSE =
1
n

(
n

∑
i=1

(yi_true − yi_predicted)2

)
(2)
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n = the number of sample points in the dataset,
yi_true = true values of the ith sample
yi_predicted = predicted values of the ith sample

Figure 1. The figure visually encapsulates the in-depth exploration, unveiling the intricate inner
workings of neural networks.

Figure 2. The complete neural architecture comprises hidden layers 1, 2, and 3, consisting of 64, 64,
and 128 units respectively.

Using optimization techniques [32] in backpropagation [33], this loss is then mini-
mized to update the model’s parameters (weights and biases) and improve accuracy. The
optimization technique we utilized is the integration of momentum and adaptive learning
rate techniques; that is, the Adam (adaptive moment estimation) algorithm [34]. It is
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efficient because even with large datasets, it tends to converge rapidly. The working rule of
the Adam algorithm can be summarized mathematically as follows:

⎧⎪⎪⎨
⎪⎪⎩

mt = β1mt−1 + (1 − β1)(gt)
2

Vt =
√

β2Vt−1 + (1 − β2)(gt)
2

θt+1 = mt − η

√
(1−β2)

(1−β1)
. mt
Vt+ε

⎫⎪⎪⎬
⎪⎪⎭ (3)

The term mt is the first-moment estimate and is the mean of the gradients calculated
at each time step t, β1 and β2 are exponential decaying parameters, Vt is the second-
moment estimate which is the variance of the gradients calculated at each time step, gt is
the gradient calculated at each time step t, η is the learning rate for regulating the step size
in the parameter update, and θt+1 is the updated parametric value at time t + 1.

3.4. Analysis of the Model’s Performance

Once the model is trained, we validated the model, which helps to improve the
performance of the model by adjusting parameters [35] and hyperparameters such as the
number of epochs and the learning rate, and then we test the model to see if it could handle
new data points. As a final stage, the accuracy and loss of the suggested methodology
were determined by comparing the findings to those of a conventional numerical method.
We took advantage of the state-of-the-art programming language Python to simulate and
visualize the results of our model of a system of a differential equation. The DNN-based
technique is clearly illustrated in Figure 3, which makes it easier to analyze and comprehend
the steps required in approximating a dependent variable with a DNN.

Figure 3. Description for the DNN-based model for the simulation of a nonlinear dynamical system.

102



Mathematics 2023, 11, 3216

4. Results and Discussion

This section will discuss the simulation results achieved using the suggested DNN-
centered scheme. We carried out various experiments to observe how changes in the
parametric values of the nonlinear temporal dynamical model provided in Equation (1)
can affect the solution of a set of differential equations.

Figure 4 shows oscillations produced during the glycolysis process evaluated using
a DNN-based method. We noticed impacts of various values of parameter “b” ranging
from 0.10 to 0.95 on the oscillations while holding the parameter “a” fixed to a value of 0.08
as shown in all the graphs of Figure 4. In the second training run, these outcomes were
attained. In Figure 4, the orange color represents the solution of Equation (1)(a) and the
blue color represents the solution of Equation (1)(b). Figure 4 shows that as the value of “b”
rises, there are a growing number of oscillations. For smaller values of b, the oscillations
begin as tiny and the graphs for v show monotonic declines while graphs for u show abrupt
increases that eventually achieve their maximum value. Oscillation values rise along with
increasing values of b, and they abruptly shift after a while.

 

Figure 4. Representing the solutions of the Sel’kov glycolysis model for different values of kinetic
parameters using a DNN-based approach.

A comparison between the DNN-based solutions and the solutions obtained from
the numerical method (the Runge–Kutta method) are plotted in Figure 5. It is obvious
from the graphical results how beautifully the neural network approximated the solution
of the nonlinear dynamical system presented in Equation (1). Figure 5 shows plots with
dotted lines for neural network approximation and solid lines for numerical method
approximation that are very well matched with one another. Runge–Kutta and other
numerical techniques can be computationally costly, especially for complicated systems or
large-scale problems. Moreover, the cost of computation rises as more iterations are needed
to reach a solution. DNN-based solutions can offer predictions or answers significantly
faster than numerical approaches once they have been trained. The Runge–Kutta method is
predicated on the assumptions and the underlying mathematical model; on the other hand,
a DNN can potentially generalize to a wider range of problems once trained on diverse
and representative data.
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We performed an error analysis and documented the loss and accuracy of the desired
model in order to verify the veracity of our suggested advanced DNN-based scheme, as
is evident from the bar graph shown in Figure 6. It shows the loss and accuracy for both
u and v. It is clear that, starting at b = 0.95, we have little loss but high accuracy, and
that, for b = 0.85, accuracy temporarily decreases. However, for a decrease in the value of
parameter b, we observed maximum accuracy in the case of b = 0.10. It is observed that the
proposed architecture of the DNN outperformed the traditional numerical techniques for
the nonlinear dynamical system, as it produces findings that are precise and effective.

 

Figure 5. A comparison of DNN-based solutions and numerical solutions of the Sel’kov glycolysis
model with different kinetic parameters.

 

Figure 6. Error analysis of the Sel’kov glycolysis model with different kinetic parameters.
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5. Conclusions

In conclusion, the proposed DNN-based strategy has proven to be a powerful tool for
simulating the Sel’kov glycolysis model, which is a complex nonlinear dynamical system.
Through a series of experiments, we have demonstrated that the DNN architecture is
effective in capturing the system’s nonlinear dynamics and bifurcation behavior, even
when parametric values are changed. In an error analysis, it is helpful to visualize the
effects of each parametric value on the dependent variable. The deviance and trends that
the model identified are highlighted in the graphical findings. These findings suggest that
the DNN-based approach can provide a valuable means for understanding and analyzing
the concentration profiles of biochemical reactions. We are confident that our research
will contribute to the development of more advanced and effective approaches to solving
nonlinear dynamical systems, paving the way for new discoveries in this field. Overall,
this study highlights the immense potential of the DNN-based approach in understanding
complex systems and advancing scientific research. The proposed strategy can be integrated
with recently proposed activation functions to optimize and better capture the complexities
of nonlinear dynamical systems. Additionally, extending the proposed methodology to
more complex biological models beyond Sel’kov and incorporating the oscillatory activation
function [27,36] can offer new opportunities to investigate chemical reactions with vibratory
structures.
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Abstract: Recent advanced systems in the speech recognition domain use large Transformer neural
networks that have been pretrained on massive speech data. General methods in the deep learning
area have been frequently shared across various domains, and the Transformer model can also be
used effectively across speech and image. In this paper, we introduce a novel masking method for
self-supervised speech representation learning with salt-and-pepper (S&P) mask which is commonly
used in computer vision. The proposed scheme includes consecutive quadrilateral-shaped S&P
patches randomly contaminating the input speech spectrum. Furthermore, we modify the standard
S&P mask to make it appropriate for the speech domain. In order to validate the effect of the proposed
spectral S&P patch masking for the self-supervised representation learning approach, we conduct
the pretraining and downstream experiments with two languages, English and Korean. To this end,
we pretrain the speech representation model using each dataset and evaluate the pretrained models
for feature extraction and fine-tuning performance on varying downstream tasks, respectively. The
experimental outcomes clearly illustrate that the proposed spectral S&P patch masking is effective
for various downstream tasks when combined with the conventional masking methods.

Keywords: self-supervised learning; speech representation learning; salt-and-pepper masking;
spectrum patch masking

MSC: 68T10

1. Introduction

The majority of recent speech representation models typically depend on large Trans-
former neural networks [1] that are pretrained using self-supervised learning methods
with thousands of hours of speech data. In general, self-supervised speech representation
learning utilizes the structure of the input speech itself for the learning process without
any annotations. Through speech representation pretraining with massive speech datasets,
researchers have been able to achieve state-of-the-art performance on a diverse set of speech-
related tasks, such as speech recognition (ASR), phoneme recognition, emotion recognition,
and speaker verification [2–6]. Overall, the pretraining of large Transformer networks using
self-supervised learning techniques has become a key strategy for advancing state-of-the-art
speech processing technology.

Various promising outcomes of neural network models and sophisticated method-
ologies are often adapted to various other domains as well. Specifically, the Transformer
network was first proposed in natural language processing (NLP) tasks such as machine
translation and language modeling and has become popular in various domains, including
computer vision, speech, and signal processing. Moreover, the masked language modeling
for self-supervised learning introduced in BERT [7] has found extensive use in speech
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representation learning tasks [3,6,8–12]. Contrastive Predictive Coding (CPC) [13], a well-
known technique for representation learning, is extensively applied in speech [2,4,10,14,15],
NLP [16,17], and computer vision domains [18–20], even in a supervised setting [21].

Especially, speech spectrograms share similar data formats with images, and conse-
quently, there has been a mutual influence between data preprocessing techniques and data
training neural networks. For example, several applications of transfer learning from visual
to audio tasks have been demonstrated to be effective [22,23]. The vision Transformer [24],
derived from the Transformer for word sequences, has enabled patch embedding in audio
streams [25,26].

SpecAugment [27] is a speech data augmentation technique inspired by “Cutout” [28],
an augmentation method proposed in the computer vision domain. Within the domain of
self-supervised speech representation learning, masking techniques based on SpecAugment
are mainly used in reconstruction tasks [3,6,8–12]. Similar to image processing techniques,
SpecAugment performs masking over continuous time–frequency regions of a given input
spectrogram by drawing continuous blocks with zero values. By reconstructing these
masked regions to their original forms, the pretrained model can learn more robust speech
representations and has outperformed conventional techniques in several downstream
tasks [3,6,8,9,11,12].

In the computer vision domain, salt-and-pepper (S&P) noise refers to a type of impulse
contamination in an image, where random white and black dots appear. This kind of noise
can often be eliminated by using techniques such as denoising autoencoders [29,30] and
convolutional-neural-network-based median layers [31,32]. These denoising pretext tasks
aim to remove or reduce the noise to improve their quality and make them more useful for
downstream tasks.

Inspired by this, we introduce a novel self-supervised speech representation learning
strategy that utilizes the S&P mask. The proposed masking method involves consecutive
quadrilateral-shaped S&P patches that contaminate the speech spectrogram by a randomly
determined percentage. The S&P noise in computer vision, however, cannot be effectively
applied to the speech domain due to the difference in resolution or scale between the
spectrograms and images. To cope with this problem, the proposed scheme uses the S&P
mask modifying the standard S&P noise to make it suitable for the speech domain. Figure 1
presents the overall framework of this paper.

Figure 1. The overall framework of this paper consists of two parts. The left side illustrates the
architecture of the speech representation model that uses the proposed spectral S&P patch masking
for self-supervised learning. On the right side, labeled speech data are finally trained using the
pretrained speech representation model. In other words, the pretrained encoder is connected to the
downstream model, which can be used as a feature extraction (weight frozen) or fine-tuning (gradient
flow) approach.
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To assess the efficacy of the proposed spectral S&P patch masking method for self-
supervised speech representation learning, pretraining experiments are performed sep-
arately in two languages: English [33] and Korean [34]. The pretrained model is then
evaluated in two ways, namely feature extraction and fine-tuning, on several downstream
tasks, which include speech recognition for both the English and Korean datasets, phoneme
classification, keyword spotting, and speaker identification. Furthermore, a comparative
analysis is conducted to determine the effectiveness of the spectral S&P patch masking
method on its own, as well as in combination with other conventional masking approaches.
Our findings confirm that the proposed spectral S&P patch masking, when utilized in
conjunction with conventional masking techniques, yields superior results for various
speech-related downstream tasks. These results indicate that the proposed method can
serve as a valuable supplement to existing self-supervised learning techniques, potentially
leading to improvements in speech representation learning.

The main contributions of this paper can be summarized as follows:

• We propose a straightforward and novel masking method for self-supervised speech
representation learning with consecutive quadrilateral-shaped S&P patch blocks. S&P
masking has not been attempted before for speech representation learning.

• Due to the difference in resolution or scale between the spectrogram and the image,
applying S&P noise directly is not a useful method. To this end, we demonstrate that
modifying S&P noise is more applicable for reconstruction objectives of self-supervised
speech representation learning.

• We show that the combination of the proposed spectral S&P patch method with the
conventional reconstruction-based speech representation learning approach is more
effective in several speech downstream tasks compared with using the traditional
masking methods alone.

The rest of this paper is organized as follows: A concise overview of related works on
S&P noise and masking reconstruction for self-supervised speech representation learning
is provided in Section 2. In Section 3, the details of the proposed spectral S&P patch
masking and pretraining method are introduced. In Section 4, detailed information about
the experimental setting is provided, including various downstream tasks such as feature
extraction, fine-tuning, and the datasets used. In Section 5, extensive experimental results
are presented to validate the effectiveness of the proposed method. Finally, the discussion
and conclusion of this paper are given in Sections 6 and 7.

2. Related Work

In this section, we briefly review the S&P noise in the computer vision domain and the
masking-based reconstruction method for self-supervised speech representation learning.

2.1. Salt-and-Pepper Noise

S&P noise is a common type of image distortion caused by impulse contamination in
the field of computer vision, where white and black pixels are randomly caused throughout
the image, resembling grains of salt and pepper. In the conventional approaches, the
removal of this kind of noise involves using median filtering, which replaces each pixel in
the image with the median value of the neighboring pixels [35,36] and CNN-based median
layers [31,32]. Furthermore, recent approaches to the utilization of S&P noise as a pretext
task for unsupervised learning have been demonstrated to be effective [30,37,38]. As a
result, pretrained models are able to obtain improved performance in downstream tasks
by learning to extract stable and consistent features, achieved through reconstructing the
original input data from noisy and contaminated data. In contrast to existing research
focused on the image domain, our study introduces a novel modification to the conven-
tional pointwise S&P noise technique by transforming it into quadrilateral-shaped patch
masking. This adaptation ensures its suitability for the speech domain, and we utilize it as
a reconstruction objective for self-supervised speech representation learning. Furthermore,
the pretrained speech representation model with the proposed spectral S&P patch masking
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demonstrates synergistic effects when combined with conventional masking approaches
across various downstream tasks.

2.2. Masked Reconstruction for Self-Supervised Speech Representation Learning

Inspired by BERT [7], masking-based reconstruction is one of the most commonly
used in self-supervised speech representation learning techniques [2–6,8,9,11,12]. The
objective of the masking-based speech representation model is to restore the original speech
frames from the masked ones using a reconstruction loss function. To this end, continuous
time frames of the given spectrogram are randomly chosen and then masked by zero
value or replaced with other frames. Similar to SpecAugment [27], a more recent method
includes masking both time and frequency regions of spectrograms. This process enables
the pretrained model to restore the contaminated input speech features while also acquiring
robust speech representation. In this study, we introduce a straightforward spectral S&P
patch masking method for self-supervised speech representation learning that randomly
masks selected regions with consecutive quadrilateral-shaped S&P blocks, without any
complex operations. Adding the proposed method to the previous studies [3,6,12] will
demonstrate more effectiveness for various speech downstream tasks compared with
conventional masking methods only.

3. Method

3.1. Modified S&P for Speech Representation Learning

Typically, image pixels usually have integer values between 0 to 255, where 0 and
255 represent black and white color in the image, respectively. S&P noise in computer
vision refers to a type of impulse contamination that results in random white and black
dots appearing in image pixels. Directly applying the S&P noise technique originally
designed for image data in the computer vision domain to spectrograms would not yield
effective results. This is primarily because of the inherent differences in data scales between
spectrogram and image. Generally, spectrograms consist of floating-point values, while
image data are represented using that of an integer. As a consequence, applying the S&P
noise method to spectrograms as a masking strategy that operates on a different scale
may lead to suboptimal outcomes when we perform self-supervised speech representation
learning. Therefore, it is crucial to consider the specific characteristics and requirements of
spectrogram data to enhance speech representation learning effectively. In this work, the
proposal is made to modify S&P noise to enhance its suitability for speech samples.

Let x f ,t, for ( f , t) ∈ S ≡ {1, . . . , F}×{1, . . . , T}, be the original F-by-T spectrogram x at
pixel location ( f , t) and [vmin, vmax] be the dynamic vector range of x, i.e., vmin ≤ x f ,t ≤ vmax
for all ( f , t) ∈ S . Consequently, a noisy spectrogram is denoted as y. Therefore, the
proposed S&P noise for speech samples at pixel location ( f , t) is given by

y f ,t =

⎧⎪⎨
⎪⎩

vmax, with probability s
vmin, with probability p
x f ,t, with probability 1 − p − s

(1)

where s and p are the probability of salt and pepper noise, respectively, with α representing
the noise level defined as the sum of s and p. In this work, we set s and p to 0.002, resulting
in α being equal to 0.004. Note that the speech data are normalized with zero mean and
unit variance before obtaining the salt values used for self-supervised learning.

3.2. Consecutive Quadrilateral-Shaped Spectral S&P Patch Masking for Self-Supervised Learning

Unlike image data, speech has continuous characteristics and is larger than the image
in scale (time frames). Scale issues may prevent accurate self-supervised speech represen-
tation learning when the original S&P noise is applied to the masking strategy. Figure 2
shows the different point sizes of the S&P noise applied to masking the spectrograms. As
shown in Figure 2b, the original point-shaped S&P noise (frame-level noise) is a very small
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portion of the given spectrogram. As a result, conventional point-shaped S&P noise is
not very effective for self-supervised pretext tasks in the speech domain, since the single
pointwise noise is a tiny fraction of the spectrogram (e.g., 10 s is 1000 frames and the
pointwise 1 frame noise is 25 ms), that is, typically extracted with a window size of 25 ms.

Figure 2. Illustration of the S&P patch masking on the spectrogram with various consecutive factor C
but same total noise masking level α = 0.004. (a) shows the input original spectrogram while (b–g)
illustrates the masked spectrogram on different hyperparameters C = 1, 2, 4, 6, 8, 10, respectively.

To consider the specific scale characteristics of spectrogram data and improve the
effectiveness of the masking strategy using S&P for speech representation learning, we
propose a solution that substitutes consecutive quadrilateral-shaped patches for point-
shaped noise, illustrated in Figure 2. To this end, a consecutive factor C is employed, which
determines the number of frames to be masked during pretraining. This encourages the
model to learn contextualized representations from the spectrogram structure. Specifically,
the initial step of the process entails the random selection of a spectrum point denoted
as y f ,t according to Equation (1). Subsequently, a quadrilateral-shaped region with a side
length of C is masked starting from the selected point, where C represents a certain value.
For instance, if C is assigned a value of 3, the masking process involves 9 points within
the square region, resulting in a square size of 9 × 9. The termination condition for each
random point y f ,t is when it intersects with either the endpoint of a horizontal or vertical
point within the spectrogram or when it is moved by C.

When a larger value of C is used (Figure 2e,f), the model is encouraged to learn
relationships between more distant parts of the spectrogram. This can be advantageous
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for capturing higher-level structures and dependencies that span across larger temporal
contexts. On the other hand, when a smaller value of C is employed (Figure 2c,d), the
model is focused more on local relationships within shorter temporal windows. This can
be beneficial for capturing fine-grained details and local patterns within the spectrogram.

Using excessively small or large values of C, however, can lead to challenges in
accurate speech representation learning. Extremely small values (Figure 2b) might overly
constrain the model’s ability to learn meaningful representations, limiting its capacity to
capture the relevant information within the spectrogram. Conversely, excessively large
values might (Figure 2f) hinder the model’s capability to faithfully reconstruct the original
input spectrogram. Therefore, finding an appropriate range for the value of C is crucial
for ensuring accurate speech representation learning. We provide an exposition on how
the consecutive factor C affects the learning of speech representation for its performance of
downstream tasks in Section 5.

3.3. Pretraining with S&P Patch Masking for Self-Supervised Learning

To pretrain the speech representation model in self-supervision manner, the first
step involves applying the proposed spectral S&P patch masking to the original input
spectrogram. Figure 3 provides an overview of the masking process using the proposed
spectral S&P patch.

Figure 3. The overall process of the proposed spectral S&P patch masking with α = 0.004 and
C ∼ [3, 5]. (a) shows the input original spectrogram while (b) and (c) demonstrate the spectrogram
after being masked with the S&P patches and conventional time-frequency regions masking respec-
tively, and (d) shows the combination of both (b) and (c). In (d), both the pepper and conventional
masking regions (green) are masked with zero value and the salt (yellow) regions consist of the
maximum value in the given spectrogram. (e) shows that the yellow area in the spectrogram denoted
where the model will be learned during the reconstruction pretext tasks. The masked input spectro-
gram (d) is subsequently fed into the speech feature representation model. The model is trained with
the objective of accurately reconstructing the masked spectrogram (d) to the original spectrogram (a)
using the reconstruction loss.
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Initially, the input original spectrogram (Figure 3a) is masked by applying S&P values.
The process of setting the region masked by the S&P patch involves assigning a value of
zero to half of the region and the maximum value of the given spectrogram to the other half,
depending on the total masking value α. This ensures that half of the masked region contains
no information (represented by a value of zero), while the other half retains the maximum
value from the original spectrogram. This approach helps to introduce randomness and
variability in the masked region, promoting robust feature learning during the self-supervised
training process. In Figure 3b, the pepper and salt patch regions are depicted in green and
yellow colors, respectively. We use a random value of C between 3 and 5 (denoted C ∼ [3, 5])
with α = 0.004 condition during pretraining to encourage the model to learn contextualized
representations from spectrogram structure. Note that the quadrilateral-shaped spectral
S&P patches can be rectangle or square and overlapped with each other.

In addition, the proposed spectral S&P patch masking approach can be easily inte-
grated with other masking methods. Figure 3c depicts the conventional time–frequency
region masking method [6], while Figure 3d illustrates the combination of Figure 3b,c. Note
that the existing masking methods can be time, frequency, or time–frequency regions for
reconstruction [3,6,12]. In Figure 3e, the yellow area in the spectrogram represents the
specific region where the model focuses on reconstruction for pretraining tasks.

To reconstruct the masked spectrogram shown in Figure 3d back to its original form in
Figure 3a, 3-layer bidirectional Transformer encoders with 768 hidden sizes and position
encoding, 3072-dimensional feed-forward networks, and 12 multihead attentions are used.
Speech sequence length is limited to under 1500 to fast model training, which is approxi-
mately 15 s. The proposed pretrained model utilizes the masked spectrogram as input and
generates a reconstructed version using L1 loss as the objective function for minimizing
between the original spectrogram and predicted outputs.

In order to perform the aforementioned process using the proposed spectral S&P
patch masking, we use 80-dimensional log Mel Fbank (filter bank) features, which were
extracted with a window size of 25 ms and an overlap size of 10 ms. These speech features
are normalized with a mean of zero and a unit variance to use as input to the model. To
optimize the pretrained model, the AdamW optimizer with a learning rate scheduler is
used, which increases from 0 up to a maximum value of 0.0002 after 7% of the training
steps have been completed and then decreases back to 0. In the pretraining experiments,
32 batch size and 4 gradient accumulation steps are used until 1,000,000 steps, which are
approximately 100 epochs, to learn optimal model parameters that minimize the L1 loss for
reconstruction. For reproducibility reasons, we use the same configuration as described in
the S3PRL toolkit [39].

To summarize the pretraining stage, we aim to let the pretrained model learn representa-
tions that capture essential information from the masked spectrogram in Figure 3d in order to
successfully reconstruct the original spectrogram in Figure 3a using the reconstruction loss.

3.4. Training Pretrained Model on Downstream Tasks

To evaluate the effectiveness of the pretrained model using the proposed S&P patch
masking, there are two ways to measure several downstream tasks.

(1) Speech representation extraction: To obtain speech representations from the pretrained
model, we extract the hidden states of the last layer of the model, which correspond to
the deepest Transformer encoder layer. Subsequently, these extracted representations are
utilized as inputs for the downstream model, effectively replacing the speech features
(e.g., log Mel Fbank). By feeding the speech representations of the pretrained model to
the downstream model, we enable it to leverage the rich and meaningful information
encoded in the representations for performing various tasks. Note that when training the
downstream tasks in this manner, the parameters of the pretrained model are frozen. In
other words, the parameters of the pretrained model are not updated during the training
process of the downstream tasks. This allows the pretrained model to serve as a fixed
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speech feature extractor, providing stable and reliable representations for the downstream
tasks. This method is represented as “feature extraction” in later experimental tables.

(2) Fine-tuning: Another approach for utilizing the pretrained model is through fine-
tuning in conjunction with downstream models. In this method, the output of the pretrained
model is connected to a downstream model, and the downstream model can be of any
type, depending on the specific task at hand. Initially, while the pretrained model retains
its learned knowledge, the parameters of the downstream model are randomly initialized.
During fine-tuning, both the pretrained model and the downstream model are updated
together. The fine-tuning process involves jointly optimizing the parameters of both models
using task-specific training data. This method is denoted as “fine-tuning” in subsequent
experimental tables.

4. Experimental Setup

In this section, a comprehensive evaluation of the proposed spectral S&P patch mask-
ing for self-supervised speech representation learning by performing six downstream tasks
is conducted.

4.1. Dataset Description

We standardize the audio sampling rate to 16 kHz to ensure that all speech data used
in the experiments have a consistent quality. Table 1 shows all the datasets used in this
paper. Details of various datasets used in this paper are as below.

Table 1. Speech datasets summary used in the pretraining and downstream experiments in this paper.
The symbols � and �denoted yes and no.

Dataset Specific Used For

Name Hours Pretraining Downstream Task

LibriSpeech [33] 960 � Phoneme Classification (100 h)
English ASR (100 h)

TIMIT [40] 5.4 � Phoneme Classification (All)

Speech Commands [41] 18 � Keyword Spotting (All)

VoxCeleb1 [42] 352 � Speaker Identification (All)

KsponSpeech [34] 1000 � Korean ASR (All)

(1) LibriSpeech: The LibriSpeech dataset [33] is one of the widely used benchmarks
for speech recognition research. This dataset encompasses a large-scale collection of En-
glish speech recordings totaling approximately 960 h from audiobooks. The training set
comprises three subsets: train-clean-100, train-clean-360, and train-other-500. The “clean”
designation indicates the absence of noise, while “other” denotes the presence of noise.
The numbers 100, 360, and 500 refer to the respective hour durations of the subsets. For
evaluation purposes, the dataset includes the dev-clean, dev-other, test-clean, and test-other
subsets. In our experiments, we utilize a total of 960 h from the LibriSpeech dataset for
pretraining. For the downstream tasks, the train-clean-100 subset is used for training the
phoneme classification and English ASR tasks, and the dev-clean and test-clean subsets are
used for evaluation.

(2) TIMIT: The TIMIT [40] dataset is a well-known corpus used for speech recognition
and acoustic–phonetic studies. This dataset consists of recordings from 630 American
English speakers pronouncing phonetically rich sentences. In our experiments, we only
use this dataset for conducting phoneme classification for downstream tasks. The TIMIT
dataset is divided into three subsets: “train”, “dev”, and “test”. During our experiments,
we train the downstream tasks using the training set and determine the best-performing
checkpoint on the dev set to assess the performance on the test set.
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(3) Speech Commands: The Speech Commands [41] dataset is usually used in the
field of keyword spotting, which is specifically designed to recognize and classify spoken
commands of keywords. The dataset comprises recordings of short spoken commands
from a diverse set of speakers, covering different categories such as “yes”, “no”, “up”,
“down”, “left”, “right”, “stop”, “go”, and more. In our experiments, we train the keyword
spotting downstream model using the training set and then evaluate the performance of
the model on the development set and test set. Note that the Speech Commands dataset is
not utilized for pretraining in our experiments.

(4) VoxCeleb1: The VoxCeleb1 [42] dataset is an audio–visual dataset that contains more
than 100,000 utterances from 1251 celebrities. These utterances are extracted from videos
on YouTube. The VoxCeleb1 dataset is widely used for tasks such as speech recognition
and speaker identification. For conducting the speaker identification downstream task,
we utilize the VoxCeleb1 training and test set split provided within the dataset itself. The
VoxCeleb1 dataset is not used for pretraining in this paper.

(5) KsponSpeech: To explore the effectiveness of the proposed method in languages
other than English, the KsponSpeech [34] dataset is used for both pretraining and ASR
downstream tasks. By using a non-English dataset, we can evaluate the performance and
generalizability of the proposed method in different linguistic contexts. This allows us
to investigate the applicability and effectiveness of the method beyond the English lan-
guage. The KsponSpeech dataset is widely used in the Korean ASR domain and comprises
around 1000 h of speech from native Korean adult males and females, providing a total of
620,000 training examples. For pretraining, the speech samples that are shorter than 3 s
were excluded, so only 517,144 samples were utilized for self-supervised learning with
the proposed method. In contrast, all the KsponSpeech training samples were used to
measure ASR performance in the downstream task. In the Korean ASR experiment, the
ASR performance is reported on the KsponSpeech dev set.

4.2. Downstream Tasks Details

In this subsection, the respective six downstream tasks setup and training details are
explained.

(1) LibriSpeech phoneme classification: The framewise phoneme prediction performance
is evaluated using classifiers trained on the last hidden state of representations for both
the feature extraction and fine-tuning stages. To ensure reproducibility, this downstream
task follows previous work as described in [39]. For the phoneme classification task on the
LibriSpeech [33] dataset, the train-clean-100 subset includes 41 possible phoneme classes
used for training. To ensure consistency, we make use of aligned phoneme labels, train/test
split, and the development set derived from 10% of the training set as provided in [39].
In evaluating the LibriSpeech phoneme classification task, the phoneme classification
accuracy (%) on the development and test sets employing two measurement approaches
are provided: 1-linear classifier and 2-linear classifier. In the 1-linear classifier approach, a
single linear classifier is employed to evaluate the linear separability of phonemes. This
setting is denoted as “1-linear classifier”. Furthermore, the incorporated classifiers with
a single hidden layer of 768 dimensions are referred to as the “2-linear classifier” setting.
During training, the AdamW [43] optimizer with a learning rate of 0.0002 and a batch size
of 32 is used. The training process continues until 500,000 steps.

(2) TIMIT phoneme classification: For the TIMIT [40] phoneme classification task, frame-
wise phoneme predictions are estimated based on the manual phoneme transcriptions
provided in the TIMIT dataset. To ensure reproducibility, the procedures outlined in previ-
ous work [39] are followed. In experiments, the phoneme classification task is conducted
using the TIMIT training set, which comprises 39 phoneme classes, as described in [39,44].
The phoneme classification accuracy (%) on the test set is reported using three different
measurement approaches: conv-bank classifier, 1-linear classifier, and 2-linear classifier. In
the conv-bank classifier approach, a 64-dimensional hidden layer is utilized, along with
three 1D-CNN layers with kernel sizes of [3, 5, 7] and channel sizes of [32, 32, 32]. This is
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followed by a 96-dimensional hidden layer and a phoneme classifier. This specific setting
is referred to as the “conv-bank classifier” approach. The structures of both the 1-linear
classifier and the 2-linear classifier are equivalent to the phoneme classification setting
used for the LibriSpeech task. For training, the AdamW optimizer is employed with a
learning rate of 0.0002 and a batch size of 16. The training process for this task continues
until 500,000 steps.

(3) Keyword spotting: To evaluate the quality of representations for the keyword spotting
task in both the feature extraction and fine-tuning stages, the Speech Commands [41] dataset
is used, following the setup employed in the S3PRL toolkit [39]. In this setup, keyword
spotting is treated as a 12-class classification problem. A two 256-dimensional hidden layer
feed-forward classifier is employed for this task. Prior to the output layer, mean pooling
over time is applied to the representations, as described in [39]. The evaluation metric
reported is the keyword classification accuracy (%) on the test set. This evaluation allows
for the assessment of the pretrained model’s representation transferability across different
domains. During the keyword spotting training, the Adam optimizer [45] is used with a
learning rate of 0.0001 and a batch size of 32. The training process for this task continues
until 200,000 steps.

(4) Speaker identification: For evaluating the speaker identification task in both the
feature extraction and fine-tuning stages, the VoxCeleb1 dataset [42] is used. A frame-wise
linear transformation is applied, followed by mean-pooling across all sequences. This is
then followed by another linear transformation with a cross-entropy loss for the utterance-
level task. This setting is consistent with the approach described in [39,46]. The evaluation
metric used for this task is accuracy (%), which measures the percentage of correctly
identified speakers. During training, the Adam optimizer is utilized with a learning rate
of 0.0001 and a batch size of 8. Additionally, 4 gradient accumulation steps are employed
until reaching 200,000 training steps.

(5) English ASR: To evaluate the English Automatic Speech Recognition (ASR) down-
stream performance in both the feature extraction and fine-tuning stages, the LibriSpeech
dataset [33] is utilized. Specifically, the train-clean-100, dev-clean, and test-clean subsets of
LibriSpeech are used for training, validation, and testing, respectively. The performance of
two types of deep neural network settings, BiGRU and BiLSTM, is measured as described
in [39,46]. For both the BiGRU and BiLSTM settings, a 2-layer bidirectional GRU and
bidirectional LSTM with a dimensionality of 1024 are used. The models are optimized
using the Connectionist Temporal Classification [47] loss on 32 English characters. Once
trained, the ASR models are decoded using the LibriSpeech official 4-gram language model
performed by KenLM [48] and the Wav2letter toolkit [49]. The evaluation metric reported
for English ASR modeling on the LibriSpeech dataset is the word error rate (WER, %) on
the test-clean subset. During the training stage, the Adam optimizer is used with a learning
rate of 0.0001, a batch size of 32, and a beam size of 5 until 200,000 steps.

(6) Korean ASR: To evaluate the performance of Korean ASR downstream performance
for feature extraction, the KsponSpeech dataset [34] is employed. In order to compare the
performance of feature extraction, the weights of various pretrained models are kept frozen.
The speech representations are extracted from the hidden state of the final bidirectional
Transformer encoder. These representations are then fed into the ASR model architecture
described in [50]. Specifically, an ESPNet [51]-like Transformer model is used for ASR
architecture, which includes 7-layer CNNs with 8 subsampling operations, followed by
3 Transformer encoder layers and 6 Transformer decoder layers. The maximum input
length for the training set is set to 25 s, and no additional normalization or preprocessing is
applied. During training, the AdamW optimizer is utilized with a learning rate of 0.001,
and a Transformer learning rate scheduler [1] is employed. The model is trained using a
total batch size of 64 on 4 TITAN RTX GPUs until 50 epochs. Label smoothing [52] is also
applied during training.

Unlike English characters, the KsponSpeech dataset includes 2311 symbols, including
special tokens such as "start", "end", "mask", "pad", and "unk". This makes the Korean ASR
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downstream task more challenging to predict accurately. To evaluate the performance of the
Korean ASR downstream task, the character error rate (CER, %) is used as a commonly em-
ployed metric in Korean ASR. The CER is computed at the syllable level by measuring the
Levenshtein distance [53] between the ASR-predicted results and the corresponding labels.

4.3. Software and Hardware Details

In all the experiments of this paper, the following software and hardware configu-
rations are utilized. By using these specific versions of the software and libraries, the
reproducibility and consistency of the experimental setup are ensured.

• Python version: 3.9.15
• GPU server: The pretraining and downstream experiments are conducted on an

NVIDIA RTX A6000 GPU (48GB) server and TITAN RTX GPU (24GB) server running
Ubuntu 18.04.6 LTS, respectively.

• Deep learning framework: PyTorch [54] version 1.12.1 with CUDA version 11.3 and
CuDNN version 8.21. These libraries enable efficient GPU acceleration for training
and inference.

• Speech preprocessing: For speech preprocessing tasks, we rely on the TorchAudio [55]
library (version 0.12.1) for audio-related operations. Additionally, Numpy [56] (ver-
sion 1.23.5) and SoundFile (version 0.11.0) are used for numerical computations and
reading and writing audio files, respectively.

• English ASR downstream: For English ASR tasks, both KenLM [48] (Available online:
https://github.com/kpu/kenlm, accessed on 14 June 2023) and Wav2letter++ [49]
(Available online: https://github.com/flashlight/wav2letter, accessed on 14 June
2023) libraries are employed. KenLM is used for language modeling, while
Wav2letter++ provides useful ASR functionality.

• Korean ASR downstream: In the case of Korean ASR tasks, the python-Levenshtein
library (version 0.20.9) is utilized to compute the edit distance metric.

5. Results

In all the downstream tasks, the effectiveness of the proposed spectral S&P patch masking
alone or combined with previous speech representations learning methods is compared.

Table 2 presents seven selected methods, including diverse self-supervised representa-
tion learning techniques (Fbank, APC [15], NPC [10], Mockingjay [3], Audio ALBERT [12],
TERA [6], and the proposed spectral S&P Patch). Note that the Fbank refers to the input
that is directly converted from the original speech without using any pretrained speech
feature representation. These methods have been chosen to provide a comprehensive eval-
uation of the proposed S&P patch masking in relation to existing approaches. In Table 2,
the designation of * models indicates the utilization of their pretrained weights from the
S3PRL [39] toolkit, which are employed for our downstream tasks without modification.
On the contrary, the † models listed in Table 2 signify the pretrained speech representation
models that we implement ourselves using the S3PRL toolkit.

Furthermore, the experimental results are presented by integrating their approaches
with contemporary self-supervision masking methods. In our experiments, note that
these combined experiments exclusively focus on parallel network-type models that are
composed of Transformer-based architectures [3,6,12], namely Mockingjay + Ours, Audio
ALBERT + Ours, and TERA + Ours.
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Table 2. Details of various self-supervised speech representation approaches. Nonparallel and
Parallel denote the using Non-Transformer and Transformer-based neural network architecture for
pretraining, respectively. * represents the pretrained model provided in the S3PRL toolkit. † denotes
the pretrained model we implemented ourselves using the S3PRL toolkit.

Representations Network Type No. Model Paramaters

Fbank * - 0

APC * [15] Non-parallel 9,107,024
NPC * [10] Non-parallel 19,380,560
Mockingjay * [3] Non-parallel 22,226,928
Audio ALBERT * [12] Non-parallel 7,805,264
TERA * [6] Non-parallel 21,981,008
S&P Patch † (Ours) Non-parallel 21,981,008

Combined with other representations

Mockingjay + Ours † Parallel 22,226,928
Audio ALBERT + Ours † Parallel 7,805,264
TERA + Ours † Parallel 21,981,008

5.1. LibriSpeech Phoneme Classification Results

Figure 4 demonstrates the performance of both feature extraction and fine-tuning for
the LibriSpeech [33] phoneme classification task using various representations. All the pre-
trained models of these features are extracted from the final layer. For the feature extraction,
all the pretrained model parameters are kept fixed when conducting the downstream task,
and the representations are provided as input to the downstream model. In contrast to the
feature extraction, all the pretrained model parameters are updated during the fine-tuning
experiments on the downstream task.

In Figure 4a, the proposed method outperforms the Mockingjay [3], considering the
average results from two methods: 1-linear classifier and 2-linear classifier. It is also
observed that combining the proposed method with representations from previous parallel-
based approaches yields better performance on average than when they are used alone.
Notably, the relatively lower performance of Mockingjay is significantly improved when
integrated with the proposed method (Mockingjay + Ours).

(a) Feature extraction performance.

Figure 4. Cont.
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(b) Fine-tuning performance.

Figure 4. Feature extraction (a) and fine-tuning (b) performance on LibriSpeech [33] phoneme
classification task between different representations. The higher the better.

According to the results presented in Figure 4, the fine-tuning performance (Figure 4b)
of all representations surpasses the performance observed on the feature extraction perfor-
mance (Figure 4a). Particularly, the proposed method demonstrates notable improvement
when compared with its performance in the feature extraction stage when used alone.
Furthermore, it is observed that the proposed method exhibits significant enhancement
compared with feature extraction, outperforming the APC [15] and NPC [10] approaches
in terms of average results from the 1-linear and 2-linear classifier. Additionally, it is
discovered that the proposed method shows synergistic performance when combined with
other methods for fine-tuning, similar to its performance in the feature extraction stage.

5.2. TIMIT Phoneme Classification Results

The performance of both feature extraction and fine-tuning for the TIMIT [40] phoneme
classification task using different representations are presented in Figure 5. As mentioned
previously, the conv bank classifier results for both the feature extraction and fine-tuning
stages are added to Figure 5. Among the various pretrained representations, the proposed
spectral S&P patch masking achieves the lowest performance among other pretraining
approaches on the feature extraction performance (Figure 5a) but outperforms the APC on
the fine-tuning performance (Figure 5b). However, when combined with other methods, it
exhibits effective performance, resulting in improved overall performance. Particularly, it
is found that when the pretrained models using the proposed method on the LibriSpeech
dataset are applied to a downstream task with a different domain (TIMIT dataset), they
still demonstrate a synergistic effect.

Furthermore, it is observed that all representations exhibit improved performance
when used with a deeper downstream model, both in the context of feature extraction and
fine-tuning. This can be a restricted labeled data environment, as observed in the TIMIT
dataset. Specifically, the performance achieved with the 2-linear classifier outperforms
that of the conv bank classifier and the 1-linear classifier for all representations. This
observation suggests that the 2-linear classifier is capable of extracting more informative
features compared with 1-linear classifier, leading to enhanced performance across all
representations. As a result, it is worth noticing that the pretrained model combined with
the proposed method and previous approaches for both feature extraction and fine-tuning,
even with limited labeled data (TIMIT dataset), shows synergistically to further improve
the overall performance.
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(a) Feature extraction performance.

(b) Fine-tuning performance.

Figure 5. Feature extraction (a) and fine-tuning (b) performance on TIMIT [40] phoneme classification
task between different representations. The higher the better.

5.3. Keyword Spotting Results

Figure 6 provides an overview of the keyword classification performance on the Speech
Commands [41] dataset, considering both feature extraction and fine-tuning tasks. Overall,
the results indicate that fine-tuning demonstrates higher performance compared with
feature extraction. Interestingly, the proposed method achieves the lowest keyword spotting
performance (80.40%) among the pretrained representations in the feature extraction but
achieves 92.86% accuracy, which outperforms the APC [15] (90.45%) and NPC [10] (90.34%)
methods when applied in the fine-tuning stage. Furthermore, a substantial improvement
is noted when the proposed method is combined with other representations, compared
with using them individually. Specifically, it is observed that the combination of the
proposed method with TERA [6], Audio ALBERT [12], and Mockingjay [3] leads to an
average performance boost, respectively, compared with using TERA, Audio ALBERT, and
Mockingjay alone.
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Figure 6. Feature extraction and fine-tuning performance for keyword spotting task on the Speech
Commands [41] dataset between different representations, respectively. The higher the better.

5.4. Speaker Identification Results

Figure 7 summarizes the speaker identification results for the VoxCeleb1 [42] dataset
across feature extraction and fine-tuning experiments. During feature extraction, the pro-
posed spectral S&P patch masking showed significantly outperforms the non-parallel-based
architectures of APC [15] and NPC [10]. Surprisingly, all representations exhibit perfor-
mance degradation when fine-tuning is applied to speaker identification downstream
tasks. Despite following the same settings as described in [39,46], it is conjectured that
the chosen hyperparameters for fine-tuning may not be suitable. Interestingly, the fine-
tuning performance using the proposed method outperforms that of NPC [10], as well
as the parallel-based architectures of Mockingjay [3] and Audio ALBERT [12]. Moreover,
experimental results indicate that combining the proposed method with other feature repre-
sentations leads to improved overall performance. This suggests that the proposed spectral
S&P patch masking can serve as simple yet effective self-supervised speech representation
learning techniques for speaker identification tasks.

Figure 7. Feature extraction and fine-tuning performance for speaker identification task on the
Voxceleb1 [42] dataset between different representations, respectively. The higher the better.

5.5. English ASR Results

In this section, the proposed method and the comparison results in terms of the
Word Error Rate (WER) metric are presented. The ASR models are trained using feature
extraction and fine-tuning approaches, respectively. All methods are pretrained with
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960 h of the LibriSpeech [33] dataset. For decoding and rescoring, the setup described in
Section 4.2 is employed for all representations, using both BiGRU and BiLSTM models as
ASR architectures.

In Tables 3 and 4, a summary of the results obtained from the feature extraction and
fine-tuning approaches using both BiGRU and BiLSTM frameworks is presented. These
tables include results from previous literature, as well as the proposed method. Overall,
when comparing the results from feature extraction and fine-tuning, it is consistently ob-
served that fine-tuning yields superior performance compared with using the extracted
speech feature representations for ASR downstream tasks. Similar to the findings in the Lib-
riSpeech phoneme classification task described in Figure 4, a significant improvement in the
performance of the proposed method is observed when transferring from feature extraction
to fine-tuning, especially outperforming the non-parallel-based approaches [10,15].

Table 3. Feature extraction and fine-tuning performance on LibriSpeech [33] ASR downstream task
using BiGRU network between different representations, respectively. The lower the better (↓).

Representations
Feature Extraction (↓) Fine-Tuning (↓) Average (↓)

WER Rescore WER Rescore WER Rescore

Fbank 27.90 18.42 27.90 18.42 27.90 18.42

APC [15] 23.66 16.58 21.44 15.37 22.55 15.98
NPC [10] 24.18 16.25 21.20 14.55 22.69 15.40
Mockingjay [3] 26.45 17.59 19.48 14.43 22.97 16.01
Audio
ALBERT [12] 24.32 16.14 19.16 14.27 21.74 15.21

TERA [6] 22.47 14.96 19.95 14.16 21.21 14.56
Ours 26.35 16.83 20.39 14.52 23.37 15.68

Combined with other representations

Mockingjay +
Ours 26.35 16.83 20.39 14.52 23.37 15.68

Audio ALBERT
+ Ours 26.23 17.30 19.25 14.05 22.74 15.68

TERA + Ours 21.74 14.04 17.78 13.03 19.76 13.54

Table 4. Feature extraction and fine-tuning performance on LibriSpeech [33] ASR downstream task
using BiLSTM network between different representations, respectively. The lower the better (↓).

Representations
Feature Extraction (↓) Fine-Tuning (↓) Average (↓)

WER Rescore WER Rescore WER Rescore

Fbank 22.89 15.35 22.89 15.35 22.89 15.35

APC [15] 21.94 15.32 19.18 13.26 20.56 14.29
NPC [10] 22.21 15.45 19.42 13.36 20.82 14.41
Mockingjay [3] 21.56 15.31 17.75 12.52 19.66 13.92
Audio
ALBERT [12] 21.13 14.54 17.20 12.25 19.17 13.40

TERA [6] 19.90 13.33 17.18 12.06 18.54 12.70
Ours 22.03 15.89 17.88 13.02 19.96 14.46

Combined with other representations

Mockingjay +
Ours 21.22 15.06 17.31 12.42 19.27 13.74

Audio ALBERT
+ Ours 20.58 14.24 17.03 12.02 18.81 13.13

TERA + Ours 18.02 12.94 16.37 11.51 17.20 12.23

In conclusion, it is found that the overall performance of the BiLSTM-based ASR
model in Table 3 exhibits notably better performance compared with the BiGRU model
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in Table 4. Furthermore, it is also observed that combining the proposed method with
other approaches leads to increased ASR performance in both the feature extraction and
fine-tuning stages.

5.6. Korean ASR Results

To measure the proposed spectral S&P patch masking on the Korean ASR downstream
task, we compare previous works that were pretrained on the KsponSpeech [34] dataset.
For training the Korean ASR downstream task, each pretrained model is utilized as a feature
extractor for the respective ASR model. All the pretrained comparisons experimental results
use the S3PRL toolkit [46]. We report the CER (%) on the KsponSpeech dev set.

Table 5 demonstrates the performance of feature extraction for the overall Korean
ASR performance, including the proposed method. According to our experimental results,
the ASR performance using the proposed spectral S&P patch masking alone achieves a
14.66% CER, which outperforms the NPC [10] (14.78%), Mockingjay [3] (17.25%), and Audio
ALBERT [12] (16.95%), respectively. This indicates that the proposed spectral S&P patch
can be simple yet effective for masking strategy, which can be useful for ASR downstream
tasks.

Table 5. Feature extraction performance on Korean ASR downstream task. The lower the better (↓).

Representations CER (↓)

Fbank 15.31

APC [15] 13.36
NPC [10] 14.78
Mockingjay [3] 16.95
Audio ALBERT [12] 17.25
TERA [6] 13.86
SVR1K [50] 12.32
Ours 14.66

Combined with other representations

Mockingjay + Ours 14.83
Audio ALBERT + Ours 15.87
TERA + Ours 12.14

In addition, while the ASR performances of conventional Mockingjay [3], Audio
ALBERT [12], and TERA [6] are 16.95%, 17.25%, and 13.86% of CER, respectively, each
method combined with the proposed S&P patch masking obtain performances of 14.83%,
15.87%, and 12.14%, which implies a relative average improvement of 10%. In particular,
when the proposed method was added to TERA (TERA + Ours), it outperformed the results
of SVR1K [50], which had the best ASR performance among all speech representations. As
a result, our results demonstrate that combining the proposed spectral S&P patch with
conventional masking methods is a useful supplement to the existing self-supervised
techniques for speech representation learning.

5.7. Ablation: Impact of Two S&P Patch Masking Hyperparameters

In this section, an ablation study is performed to further explore the effectiveness of the
proposed spectral S&P patch masking for self-supervised speech pretraining. Specifically,
we experiment and report on two hyperparameter factors: the total amount of the S&P patch
α and the consecutive noise patches factor C. The goal is to investigate the contribution of
quadrilateral-shaped noise patches in the speech domain. To this end, ablation studies are
conducted on the LibriSpeech phoneme classification task for both feature extraction and
fine-tuning, as well as on the Korean ASR task for the feature extraction task.

First, an investigation is conducted on six different values of α and eight different
values of C in the TERA + Ours setting for the LibriSpeech phoneme classification tasks.
According to the phoneme classification accuracy results obtained from the LibriSpeech
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test-clean set, as presented in Table 6a,b, our experimental findings indicate that when using
the parameters α = 0.004 and C ∼ [3, 5], the most promising outcomes are achieved for
both feature extraction and fine-tuning processes. In our findings, it is observed that there is
no significant difference in the fine-tuning performance when varying the hyperparameters.
However, a notable gap is noticed in the feature extraction performance across different
hyperparameter settings, especially in C. This observation supports the hypothesis that a
point-shaped S&P patch (C = 1) is not effective for learning speech feature representation.

Table 6. Ablation study on hyperparameters of the proposed S&P noise patches. The higher the better
(↑). (a) LibriSpeech phoneme classification for both feature extraction and fine-tuning performance
comparison according to the various α. (b) LibriSpeech phoneme classification for both feature
extraction and fine-tuning performance comparison according to the various C. Bold denotes the
best result.

(a)

α C Feature Extraction (↑) Fine-Tuning (↑)

0.001

C ∼ [3, 5]

68.91 88.06
0.002 70.29 88.46
0.004 73.03 89.18
0.006 71.07 88.85
0.008 69.97 88.75
0.01 69.02 88.14

(b)

α C Feature Extraction (↑) Fine-Tuning (↑)

0.004

C = 1 70.84 87.89
C ∼ [1, 3] 71.82 88.13

C = 3 71.70 88.49
C ∼ [3, 5] 73.03 89.18
C ∼ [3, 8] 72.10 88.87

C = 5 71.59 88.49
C ∼ [1, 10] 68.85 88.44
C ∼ [3, 10] 71.76 88.86

As shown in Table 7, we also explore five different values of α and four different
values of C in the TERA + Ours setting for the Korean ASR downstream task. Similar to
Table 6, the best ASR performance is obtained when using the α = 0.004 and C ∼ [3, 5]
settings. In particular, it is observed that too small (point-shaped) or too large amounts of
S&P patches are not suitable for self-supervised pretext tasks. Additionally, considering
that the conventional pointwise (C = 1) S&P patch has a CER of 17.25%, the results provide
evidence that the proposed spectral S&P patch masking is highly effective. These findings
indicate that the consecutive patch masking factor C plays a crucial role in shaping the
effectiveness of the spectral S&P patch masking for speech representation learning.

According to the ablation study results for English and Korean ASR presented in
Tables 6 and 7, respectively, the optimal hyperparameter configuration that yielded the
best performance is α = 0.004 and C ∼ [3, 5]. Indeed, the results obtained from using
the representations of the fixed pretrained model without any parameter updates provide
support for the hypothesis that a point-shaped S&P patch with C = 1 is not effective for
speech representation learning. We also highlight the importance of using the proposed
quadrilateral-shaped patches to achieve effective speech feature representation learning.
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Table 7. Ablation study on hyperparameters of the proposed spectral S&P patch masking. The lower
the better (↓). (a) ASR performance comparison according to the various α. (b) ASR performance
comparison according to the various C. Bold denotes the best result.

(a)

α C CER (↓)

0.002

C ∼ [3, 5]

13.84
0.004 12.14
0.006 13.58
0.008 13.75
0.01 13.34

(b)

α C CER (↓)

0.004

C ∼ [1, 3] 17.25
C ∼ [3, 5] 12.14
C ∼ [3, 8] 13.51

C ∼ [3, 10] 15.82

6. Discussion

The primary goal of this paper is to successfully apply the spectral S&P patch masking
method for self-supervised speech representation learning. To the best of our knowl-
edge, this study is the first attempt to utilize the S&P patch as a masking strategy for
self-supervised speech representation learning. To address the difference in resolution or
scale between speech and image data, we have introduced the novel salt value and consec-
utive quadrilateral-shaped patches for masking, which allows for the useful extraction of
continuous information from the speech input.

In our experiments, we conducted an extensive investigation of a diverse range of
speech downstream tasks using the proposed method. Firstly, we obtained two pretrained
speech representation models on both English and Korean datasets. To ensure a fair
comparison of the proposed method, various pretrained weights (models) available in the
S3PRL toolkit were directly utilized, and the performance gap across different downstream
tasks was reported. As a result, the proposed method achieved similar performance to
other recent approaches when used alone for various downstream tasks. Furthermore, we
have shown that combining the proposed spectral S&P patch masking with conventional
methods for self-supervised speech representation learning leads to effective results in
various downstream tasks.

The primary limitation of our study lies in the fact that the proposed spectral S&P
patch masking method can only be utilized or combined with masking-based speech
representation learning approaches. To gain a more profound understanding of speech
representation pretraining, further research is required to extend the proposed method,
such as investigating its applicability to directly extracting speech using CNNs like wav2vec
2.0 [2] and HuBERT [5]. Second, in our study, we limited the pretraining to 960 h of the
LibriSpeech [33] dataset for the English ASR downstream task. To ensure fair comparisons
with other conventional masking-based approaches, we utilized the S3PRL framework
using 960 h of LibriSpeech dataset, as described in TERA and SUPERB. However, the
amount of data used for pretraining has a significant impact on the performance of models
in various downstream tasks. Even when using a large-scale speech dataset such as 60,000 h
of Libri-Light [57], further validation is required so verify whether the proposed method
shows reliable results. This will enable us to estimate the method’s scalability and its
potential to yield robust results under more data-rich conditions. Third, we observed that
keeping the pretrained weights frozen worked better than fine-tuning them during the
training of the Korean ASR model. In the future, we plan to concentrate on addressing
these limitations and potentially striving to improve the performance further.
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In conclusion, our findings demonstrated that the proposed spectral S&P patch mask-
ing shows reasonable performance on several downstream tasks, but it significantly en-
hanced effectiveness particularly when combined with other conventional approaches. We
believe that the proposed methods can be extended to various benchmarks and down-
stream tasks.

7. Conclusions

In this paper, we introduced simple yet effective spectral S&P patch masking for self-
supervised speech representation learning. In order to handle the difference in resolution
or scale between spectrograms and images, we also suggested consecutive quadrilateral-
shaped patches that extract the continuous information from spectrograms. Experimental
results demonstrate the effectiveness of the proposed method on several speech down-
stream tasks and show it can be a useful supplement to existing self-supervised techniques
for speech representation learning.

In our experiments, we observed that keeping the pretrained weights frozen worked
better than fine-tuning them during the training of the Korean ASR model. Moreover,
further studies are required to ensure that the proposed spectral S&P method can surpass
masking-based approaches and encompass direct waveform extraction using CNNs or
pretraining with quantizers. In the future, we plan to focus on these issues and potentially
improve the performance further.
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Miholca, D.-L.; Moroz-Dubenco, C.;

Petras, cu, V.; Dascălu, G. Machine-
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Abstract: Sentiment analysis has increasingly gained significance in commercial settings, driven by
the rising impact of reviews on purchase decision-making in recent years. This research conducts
a thorough examination of the suitability of machine learning and deep learning approaches for
sentiment analysis, using Romanian reviews as a case study, with the aim of gaining insights into their
practical utility. A comprehensive, multi-level analysis is performed, covering the document, sentence,
and aspect levels. The main contributions of the paper refer to the in-depth exploration of multiple
sentiment analysis models at three different textual levels and the subsequent improvements brought
with respect to these standard models. Additionally, a balanced dataset of Romanian reviews from
twelve product categories is introduced. The results indicate that, at the document level, supervised
deep learning techniques yield the best outcomes (specifically, a convolutional neural network model
that obtains an AUC value of 0.93 for binary classification and a weighted average F1-score of 0.77 in
a multi-class setting with 5 target classes), albeit with increased resource consumption. Favorable
results are achieved at the sentence level, as well, despite the heightened complexity of sentiment
identification. In this case, the best-performing model is logistic regression, for which a weighted
average F1-score of 0.77 is obtained in a multi-class polarity classification task with three classes.
Finally, at the aspect level, promising outcomes are observed in both aspect term extraction and aspect
category detection tasks, in the form of coherent and easily interpretable word clusters, encouraging
further exploration in the context of aspect-based sentiment analysis for the Romanian language.

Keywords: sentiment analysis; latent semantic indexing; machine learning; deep learning; CNN;
dense embedding layer; aspect term extraction; aspect category detection; Romanian language

MSC: 68T50

1. Introduction

The increased prevalence of digital communication in recent years has amplified the
importance of automatically extracting and assessing sentiment in textual data, with or-
ganizations and researchers engaged in exploration of models with this capability, that
allow them to gain insights into customer preferences and pinpoint emerging trends. An
especially relevant application domain for sentiment analysis (SA) research revolves around
the examination of consumer product reviews, which have evolved into an integral com-
ponent of the purchasing process. Given that reviews inherently consist of opinions and
evaluations of products and often employ subjective language, there is significant potential
for sentiment identification at multiple textual levels. This includes the assessment of over-
all product evaluations (document-level SA), finer-grained analysis that aims to capture
shifts in sentiment within a document (sentence-level SA), and the exploration of targeted
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sentiment, which involves identifying pairs of product features and the specific sentiments
expressed in relation to these features (aspect-level SA).

This work presents an extensive examination of SA approaches for texts in Romanian,
proposing an in-depth analysis at the document, sentence, and aspect levels, with the
objective of filling a gap in the existing literature, which lacks multi-level investigation of
datasets that hold commercial value for the Romanian language. Thus, the primary goal of
this study is to assess the appropriateness of current machine learning and deep learning
models for sentiment analysis in the context of the Romanian language, in order to acquire
a comprehensive understanding of their viability for practical implementation in various
business scenarios.

The original contributions of our study are as follows: (1) an in-depth exploration of SA
models’ performance at multiple textual levels for Romanian-language documents; (2) the
introduction of a balanced dataset of Romanian reviews (structured in twelve different
product categories), with five automatically assigned labels; and (3) improvements that we
bring with respect to the standard models.

Below, we summarize the research questions we aim to answer within this paper.

RQ1 Is latent semantic indexing (LSI) in conjunction with conventional machine learning
classifiers suitable for sentiment analysis of documents written in Romanian?

RQ2Can deep-learned embedding-based approaches improve the performance of document-
and/or sentence-level sentiment analysis, as opposed to classical natural language
processing (NLP) embedding-based deep learning approaches?

RQ3What is the relevance of different textual representations in the task of sentence polarity
classification, and what impact do additional preprocessing steps have in this task?

RQ4 In terms of aspect extraction, is it feasible for a clustering methodology relying on
learned word embeddings to delineate groups of words capable of serving as aspect
categories identified within a given corpus of documents?

RQ5How can the aspect categories discussed within a document be identified, if an aspect
category is given through a set of words?

The rest of this paper is structured as follows. Section 2 includes a succinct description
of the tasks addressed in this paper. A literature review on sentiment analysis models for
the Romanian language and other related aspects is provided in Section 3. Section 4 is
dedicated to the description of the methodology employed, while Section 5 presents the
results we obtained. Additionally, we include a comparison of our approach with existing
works in the literature and an analysis of the obtained results in Section 6. The last section,
Section 7, contains conclusions and directions for future work.

2. Sentiment Analysis

Sentiment analysis is the area of research concerned with the computational study of
people’s opinions, sentiments, emotions, moods, and attitudes [1], and it involves a number
of different tasks and perspectives. In this section, we include descriptions of the specific
tasks from the sentiment analysis domain we have addressed in the present study.

2.1. Document-Level Sentiment Analysis (DLSA)

At the document level, sentiment analysis systems are concerned with identifying the
overall sentiment from a given text. The assumption this task is based on is that a single
opinion is expressed in the entire document. The advantage of simplicity in the definition
of the problem has encouraged a substantial amount of work, especially in the early stages
of exploration within the field.

In a machine learning and deep learning context, the DLSA task can be viewed
as a classic text classification problem, in which the classes are represented by the senti-
ments/polarities [1]. The task can be formalized as a binary classification problem, in which
the two classes are represented by the positive and negative polarities. There are various
multi-class formulations of the sentiment analysis task in the literature. Most commonly,
a third neutral class is considered besides the positive and negative ones to define a
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three-class classification problem [2,3]. In cases in which finer-grained sentiment labels are
available, the targeted classes are, usually, strongly negative, negative, neutral, positive,
and strongly positive [4–6]. In this context, any features or models used in the traditional
text classification tasks may be applied, or new, explicit sentiment-oriented features, such
as the occurrence of words from a sentiment lexicon, may be introduced.

However, a main disadvantage of DLSA refers to the assumption that a document,
regardless of its length, contains a single opinion, and, consequently, a single overarching
sentiment is expressed. Evidently, this does not always hold. Thus, researchers have
progressively shifted their focus towards more fine-grained types of analysis.

2.2. Sentence-Level Sentiment Analysis (SLSA)

The objective of sentence-level sentiment analysis is to ascertain the sentiment con-
veyed in a specific sentence [7].

The motivation behind SLSA stems from the recognition that a single document can
contain diverse opinions with varying polarities. This is particularly evident in texts like
reviews, where users may make positive evaluations and negative evaluations in the same
review. For example, a review with an average number of stars in a defined rating system
is almost guaranteed to comprise both. Additionally, it is not uncommon for reviews to
include neutral and objective statements of fact. This task thus serves as a connection
between DLSA and aspect-level sentiment analysis. It aims to offer a more comprehensive
view of the sentiment expressed in a document, without the intention of identifying the
exact entities and aspects that the sentiment is directed towards. When considering the
level of complexity, it can be observed that, although sentences may be regarded as short
documents (and, thus, the problem can be formalized in an identical manner as for DLSA),
they possess significantly less content compared to full-length documents. Consequently,
the process of categorization becomes more challenging [8].

2.3. Aspect-Based Sentiment Analysis (ABSA)

While it is crucial to obtain an understanding of user opinion through analysis at the
document level, and decompose it further into a study at the sentence level, in reviews,
users often make evaluations with respect to different aspects of a given product, where an
aspect refers to a characteristic, behavior, or trait of a product or entity [9]. For instance,
for mobile phones, aspect categories of interest to users, generally, are battery life, photo and
video quality, sound, and performance. Thus, creating a system that provides a summary
of opinion polarity with regard to each of these aspects would be of great use for both users,
who could benefit from customized recommendations aligned with their preferences and
priorities, and for businesses, who could pinpoint areas of improvement in their products or
services and make targeted changes to enhance product quality and customer satisfaction.

Aspect-based sentiment analysis is defined as the problem of identifying aspect and
sentiment elements from a given text (usually a sentence) and the dependencies between
them, either separately or simultaneously [10]. There are four fundamental elements of
ABSA: aspect terms (words or expressions that are explicitly included in the given text,
and that refer to an aspect that is the target of an opinion), aspect categories (a unique aspect
of the given entity that usually belongs to a small list of predefined characteristics that are
of interest), opinion terms (expressions through which a sentiment is conveyed towards
the targeted aspect), and sentiment polarity (generally, positive, negative, or neutral).

Separate tasks can be defined to identify each of these elements and their dependencies:
aspect term extraction (ATE), aspect category detection (ACD), opinion term extraction
(OTE), and aspect sentiment classification (ASC). The ATE task aims to identify the explicit
expressions used to refer to aspects that are evaluated in a text [10]. If formulated as a
supervised classification task, then the goal is to label the tokens of a sentence as referring
to an aspect or not. Since this implies the existence of annotated data, which is scarce
for most languages besides English, a significant number of works employ unsupervised
approaches. In recent years, this type of approach has involved the use of word embeddings
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in various self-supervised techniques enhanced with attention mechanisms to learn vector
representations of aspects [11,12].

As for ACD, which aims to identify the discussed aspect categories for a given sen-
tence, most state-of-the-art approaches formalize the task as a supervised text classification
problem where a generally small set of predefined, domain-specific aspect categories repre-
sent the classes [13]. Unsupervised formulations often involve two steps: first extracting
candidate aspect terms (the ATE task), and then grouping or mapping these terms to
corresponding aspect categories. Manual assignment of labels to the obtained groups is
a common practice in such approaches [11,14], but recent works [12,15] have proposed
various methods to automate the process.

3. Related Work

This section presents an overview of recent SA approaches found in the literature,
structured according to the distinct levels of sentiment analysis addressed by our study
(document, sentence, and aspect) and focusing on those targeting the Romanian language.

With respect to sentiment analysis (and NLP tasks, in general), Romanian is known
as an under-resourced language, with few comprehensive, publicly available datasets
or corpora, as well as dedicated tools. As indicated by the LiRo benchmark and leader-
board platform [16], LaRoSeDa [17] is, to date, the only publicly available large corpus
for sentiment analysis in Romanian. It consists of 15,000 positive and negative product
reviews, extracted from an electronic commerce platform, that have been automatically
labeled based on the number of associated stars. Although perfectly balanced (out of the
total number of reviews, half being positive and the other half negative), the dataset is
highly polarized, the great majority of positive reviews being rated five stars, while most
of the negative ones, one star. Moreover, the authors admit that the labeling process is
sub-optimal (as stars’ numbers do not always faithfully reflect the associated polarity of a
review), mentioning manual labeling or noise removal as future improvement tasks.

Regarding models, in recent years, transformer-based ones (both multi- and mono-
lingual) have become the de facto standard within the NLP domain. BERT (bidirectional
encoder representations from transformers) has been adopted as the baseline for trans-
former models, providing state-of-the-art results for various NLP tasks. For Romanian
sentiment analysis, there are multi-lingual (mBERT [18], XML-RoBERTa [19]), and dedicated
BERT-models available (Romanian BERT [20], RoBERT [21]), with the ones in the latter cat-
egory performing better, due to their training on comprehensive language-specific datasets.
In addition, approaches aimed at achieving higher performance on domain-specific analysis
(such as JurBERT [22]) or at adapting the large-scale pretrained Romanian BERTs to com-
putationally constrained environments (such as DistilBERT [23] or ALR-BERT [24]) have
also been reported. When it comes to speed and efficiency, the multi-lingual, lightweight
fastText [25] (also covering Romanian) is a popular alternative to multi-lingual BERTs,
with the latter being more suited though for complex, data-intensive tasks.

In addition to the previously mentioned approaches, several research papers (detailed
in the following) have reported the usage, improvement, or comparison of various classical
and deep learning models, with the purpose of achieving similar or better results for SA
in Romanian. As resulted from our investigation, most of the existing work has targeted
the document level, with only a few studies explicitly covering the sentence- and aspect-
based ones.

3.1. DLSA for Romanian

The papers mentioned in this subsection report experimenting with either only classi-
cal machine learning (ML) approaches, only deep learning (DL) ones, or both.

Within the first category, the work of Burlăcioiu et al. [26] aims to capture users’ percep-
tions with respect to telecommunications and energy services, by analyzing 50,000 scraped
reviews of mobile applications, offered by Romanian providers in these fields. They com-
pare the results of five well-known SA models (logistic regression (LR), decision trees (DT),
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k-nearest neighbors (kNN), support vector machines (SVM), and naïve Bayes (NB)) on
a balanced, automatically labeled version of the dataset, using term frequency–inverse
document frequency (TF-IDF) encoding [27]. The best accuracy is obtained by employing
DT and SVM (79.5% on average for the two models), with the former achieving better time
performance. Russu et al. [28] provide a solution for sentiment analysis at the document
and aspect levels, considering unstructured documents written in Romanian. They employ
two different methods for sentiment polarity classification: one using SentiWordnet [29] as
a lexical resource, and one based on the use of the Bing search engine. The experiments
are conducted on a perfectly balanced corpus, consisting of 1000 movie reviews written
in Romanian (500 positive and 500 negative), manually extracted from several blogs and
websites. The documents have been manually labeled, based on the individual scores
assigned by the user (in the range [1–10]). To identify document-level polarity, the authors
experiment with random forest (RF), kNN, NB, and SVM, the maximum precision values
obtained being 81.8% (using SentiWordnet) and 79.2% (using Bing queries).

Regarding DL approaches, the authors of LaRoSeDa, Tache et al. [17], propose using
self-organizing maps (SOM), instead of the classical k-means algorithm, for clustering word
embeddings generated by either word2vec [30] or Romanian BERT. The top accuracy rate
reported on test data is 90.90%, by employing BERT-bag of word embedding (BERT-BOWE).
Echim et al. [31] aim to optimize well-known NLP models (convolutional neural network
(CNN), long short-term memory (LSTM), bi-LSTM, gated recurrent unit (GRU), Bi-GRU)
with the aid of capsule networks and adversarial training, the new approaches being used
for satire detection and sentiment analysis in Romanian. For the latter task, they use the
LaRoSeDa dataset, the best accuracy (99.08%) being obtained using the Bi-GRU model with
RoBERT encoding and dataset augmentation.

Belonging to the category of combined ML approaches, there is the work of Neagu
et al. [32], whose general purpose is building a multinomial classifier (negative/positive/
neutral) to be used for inferring the polarity of Romanian tweets in a video-surveillance
context. By using both classical (Bernoulli NB, SVM, RF, LR) and deep learning approaches
(deep neural network (DNN), CNN, LSTM), together with different types of encodings
(TF-IDF/doc2vec for classical ML and DNN, word2vec for CNN and LSTM), they argue
that, by adapting the NLP pipeline to the specificity of the data, good results can be
achieved even in the absence of a comprehensive Romanian dataset (their dataset consists of
15,000 tweets, translated from English). The best obtained accuracy (78%) has resulted from
using Bernoulli NB with TF-IDF encoding, while the state-of-the-art value (81%) is provided
by the multi-lingual BERT, with a training time penalty though. Istrati and Ciobotaru [33]
report on creating a framework aimed at brands’ monitoring and evaluation, based on the
analysis of Romanian tweets, that includes an SA binomial classifier trained and tested on
a corpus labeled by the authors. The data are preprocessed using four proposed pipelines,
the resulting sets being used to train and test various ML models, both classical and modern.
The best accuracy and F1-scores are achieved by using a neural network with fastText [25],
that being the model chosen for the framework classifier. Coita et al. [34] use SA in order to
assess the attitude of Romanian taxpayers towards the fiscal system. In this respect, they
try to predict the polarity of each of the answers provided by around 700 respondents to
a 3-item questionnaire, using a BERT model pretrained and tested on a corpus of around
38,000 movie and product reviews in Romanian. BERT is chosen, as it provides maximum
accuracy (98%) among several compared models, namely itself, recurrent neural network
(RNN), and three classical ML approaches: LR, DT, and SVM.

3.2. SLSA for Romanian

Buzea et al. [35] introduce a novel sentence-level SA approach for Romanian, us-
ing a semi-supervised ML system based on a taxonomy of words that express emotions.
Three classes of emotions are taken into account (positive, negative, and neutral). The ob-
tained results are compared to those provided by classical ML algorithms, such as DT, SVM,
and NB. Experiments are conducted using a corpus of around 26,000 manually annotated
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news items from Romanian online publishers and more than 42,000 labeled words from the
Romanian dictionary. In terms of F1-score, the proposed system outperforms the three clas-
sical algorithms for the neutral and negative classes, while for the positive class, the highest
metric value is achieved by DT.

Using a custom-made application, Roşca and Ariciu [36] aim to evaluate the per-
formance of the Azure Sentiment Analysis service at sentence level for five languages,
including Romanian. With this purpose, they generate 100 sentences per language, half
positive and the other half negative. Although the service performs SA using three senti-
ment classes (positive, negative, and neutral), their evaluation only considers the first two,
assuming any neutral label as incorrect. Classification accuracy is computed for three types
of sentences: shorter than 100 characters, in the range of 100–250 characters, and longer.
The reported accuracies are 83% for the first and last categories and 90% for the middle one.

3.3. Aspect Term Extraction (ATE) and Aspect Category Detection (ACD)

The only work that proposes a complete ABSA system for the Romanian language
is that of Russu et al. [28], who also aim to identify sentiment at the document level,
as described in Section 3.1. In this paper, the authors use seven syntactic rules to identify
aspect terms and opinion words in a set of movie reviews. The polarity associated with the
discovered entity is computed either using SentiWordnet or a search engine, using a set of
seed words.

In this context, we provide a succinct description of unsupervised approaches for the
ATE and ACD tasks, which are the two ABSA tasks we address in this paper.

For the task of aspect term extraction, early unsupervised approaches were generally
based on rules [37–39]. For instance, Hu and Liu [37] use an association mining approach
to identify product features and a WordNet-based approach to predict the orientation of
opinion sentences. Other works propose analyzing the syntactic structure of a sentence at
the word or phrase level to identify aspects and aspect-word/sentiment-word relations [39].
Such rule-based approaches are also frequently employed for aspect category detection. Hai
et al. [40] attempt to find features (aspects) expressed implicitly in text through a two-step
co-occurrence association rule mining approach. In the first phase, the co-occurrence
is computed for opinion words and explicit features, extracted from a set of cell phone
reviews in Chinese, and they refer to verbs and adjectives, and nouns and noun phrases,
respectively. Additional constraints based on syntactic dependencies are applied for the
extraction. In the second step, a k-means clustering algorithm is applied to the identified
rule consequences, which are the explicit aspects, to generate more robust rules that can
be then used for implicit aspect identification. Schouten et al. [41] propose a similar co-
occurrence-based approach, but their unsupervised model uses a set of seed words for the
considered aspect categories.

Another type of unsupervised approach to these tasks is represented by variants
of classic topic modeling techniques. Titov and McDonald [42], for example, propose a
multi-grain topic model (MG-LDA), which aims to capture two types of topics, global and
local, and pinpoint rateable aspects to be modeled by the latter, the local topics. Brody
and Elhadad propose the use of a standard LDA algorithm, but treat each sentence as a
separate document to guide the model towards aspects of interest to the user, rather than
global topics present in the corpus [43]. A topic modeling approach is also proposed by
García-Pablos et al. [44], but it is a hybrid one, also making use of word embeddings and a
Maximum Entropy classifier to tackle ABSA tasks.

In terms of neural models, He et al. [11] rely on word embeddings in the context of
an attention-based approach, through which aspect embeddings are learned by a neural
network similar to an auto-encoder. Tukens and van Cranenburgh [15] propose a simple
two-step technique for aspect extraction, which first selects candidate aspects in the form
of nouns with the help of a part-of-speech (PoS) tagger, and then employs contrastive
attention to select aspects.
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While there are approaches that rely mainly on clustering techniques, they are less
frequent. An example of a clustering-based approach is that of Ghadery et al. [45], who
use k-means clustering on representations of sentences obtained by averaging word2vec
embeddings and a soft cosine similarity measure, to determine the similarity between a
sentence and an aspect category, represented by a set of seed words.

As far as word clustering is concerned, the identification of semantically meaning-
ful groups in a vocabulary has been a topic of interest for decades. Recent approaches
either focus on using word clustering to detect topics in a document [46–48], or use it as
a technique to enhance the performance of classifiers by means of improved document
representations [17]. Sia et al. [46] explore the ability of embedding-based word clusters to
summarize relevant topics from a corpus of documents. Different types of word embed-
dings are examined, both contextualized and non-contextualized, along with a number of
hard (k-means, spherical k-means, k-medoids) and soft (Gaussian mixture models and von
Mises–Fisher Models) clustering techniques to identify topics in documents. CluWords,
the model proposed in [47], is shown to advance the state-of-the-art in topic modeling by
exploiting neighborhoods in the embedding space to obtain sets of similar terms (i.e., meta-
words/CluWords), which, in turn, are used in document representations with a novel
TF-IDF strategy designed specifically for weighting the meta-words.

4. Methodology

4.1. Case Study

This section describes the dataset used in our study, a new dataset comprising reviews
written in Romanian. We start by providing a brief summary of the data collection process
and our motivation in creating the RoProductReviews dataset, and then we present a
detailed description of its content, highlighting its suitability for the proposed tasks.

4.1.1. Data Collection

The reviews that make up the RoProductReviews dataset were manually collected from
a highly popular Romanian e-commerce website. Specifically, the gathered information
consists of the text of the review, the title, and the associated number of stars, which ranges
between 1 and 5, and can be viewed as a numerical representation of customers’ satisfaction
with the reviewed product. In this context, assigning 1 star to a review represents complete
dissatisfaction, while a 5-star evaluation indicates complete satisfaction with the product.
Reviews were collected for a total of 12 product categories of electronics and appliances.
The only criteria used in selecting reviews were the number of associated stars and the
length of the text: the first, in terms of having a balanced dataset on the whole with respect
to positive and negative sentiment, as we planned to use supervised learning techniques
for the task of sentiment analysis, and the second, with the ABSA task in mind, reviews
with longer texts were sought out to be included along with short, one-sentence reviews,
since, generally, in the longer reviews, discussions about specific aspects of the product
are included.

Through this data collection process, we built a balanced dataset with reviews writ-
ten between 2014 and 2023 that is representative of the various modes of expression
encountered in e-commerce product evaluations. To prevent the introduction of bias, ten
individuals with diverse backgrounds collected the data. Clear guidelines outlining the
purpose and intended structure of the dataset were provided to ensure consistency.

4.1.2. Dataset Description

Table 1 presents the number of reviews in the dataset associated with each number of
stars, as well as the number of sentences they consist of. Additionally, the total number of
tokens, the number of unique tokens, and unique lemmas are included for each category,
as well as the average sentence length, computed as the average number of words in
a sentence.
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Table 1. RoProductReviews statistics.

Number
of Reviews

Number
of Sentences

Average
Sentence
Length

Number
of Tokens

Number of
Unique Tokens

Number of
Unique Lemmas

1 star 1357 3574 16.51 67,188 7669 5547
2 stars 1152 3873 18.39 81,120 9152 6840
3 stars 1280 4014 18.54 84,997 9691 6984
4 stars 1309 3621 17.43 72,305 8671 6203
5 stars 1336 2869 14.03 46,282 6123 4436

The RoProductReviews dataset is utilized in its entirety, as presented in Table 1, for the
document-level sentiment analysis tasks. The classification labels for this dataset consist of
either the assigned number of stars (for multi-class classification) or a positive/negative
label derived from aggregating the higher- and lower-rated reviews, respectively (i.e., re-
views with ratings of 1 and 2 stars are considered negative, while reviews associated with
4 and 5 stars are deemed positive; reviews with a 3-star rating are discarded in this setting).
Although there is a possibility that the labels as obtained do not always faithfully reflect
the sentiment expressed in the review [17], we consider them sufficient in terms of the
intended experiments at the document level.

Nevertheless, when it comes to classifying sentiment at the sentence level, the rating
assigned to the review that contains the sentences is an inaccurate predictor of the sentiment
being communicated. Hence, a manual annotation procedure was utilized for a specific
subset of RoProductReviews. A total of 2067 short reviews, consisting of single sentences,
were annotated by 5 annotators who were only presented with the text of the review, but not
the number of stars associated with it. A sentiment label was assigned if it was agreed
upon by the majority; otherwise, the instance was discarded. Limitations exist in the anno-
tation process, primarily inherent to sentiment annotation. Specifically, we emphasize the
challenge of accurately identifying sentiment in extremely short sentences lacking explicit
sentiment words or featuring ambiguous language. Additionally, annotators may delineate
between neutral, positive, and negative sentiment differently, resulting in conflicting label
assignments for the same sentence. To address these limitations, the annotation process
incorporates majority voting, mitigating the impact of these challenges.

The reviews were chosen due to the fact that they did not require any additional
processing in terms of sentence segmentation. The annotators utilized a labeling system
that consisted of three categories: negative, neutral, and positive. As a consequence,
a subset consisting of 804 reviews (sentences) annotated with the label negative was
obtained. Additionally, there were 171 reviews annotated with the label neutral and
1092 reviews annotated with the label positive. A series of examples from this subset of
RoProductReviews is included in Table 2.

Generally, RoProductReviews is characterized by a relatively equitable distribution
among the various rating categories, with the exception of the 2-star category, which shows
a lower level of representation. This under-representation of reviews in the 2-star category
can be attributed to data availability constraints. During the data collection process, there
was a noticeable scarcity of 2-star ratings, with a significant portion of unfavorable reviews
predominantly attributed to a 1-star rating. It is plausible that customers articulating
adverse sentiments may encounter challenges in acknowledging positive aspects of the
reviewed product, which, in turn, might result in a milder form of negative evaluation,
namely, a 2-star rating.
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Table 2. Examples of manually annotated one-sentence reviews.

Review Text
Product
Category

Number
of Stars

Label

Asa cum m-am asteptat. . . face treaba pt birou
As expected. . . it does the job for the office. Monitor 5 Positive

Funct, ionează bine, mult, umit deocamdată de el
It works well, satisfied with it for now. Smartwatch 5 Positive

E un router ok
It’s an ok router Router 4 Positive

NU E ULTRA SUPER CALITATE DAR E BUN
It’s not ultra-super quality, but it’s good Speakers 4 Positive

Este doar bună pentru jocuri şi desene, pozele ies ca pe telefoanele mai vechi
It’s only good for games and drawings; the photos come out like on older phones Tablet 3 Neutral

Sunt acceptabile la redarea sunetului, dar la convorbiri nu prea
se aude microfonul
They are acceptable for sound playback, but the microphone is not very
audible during calls

Headphones 3 Neutral

Mi s-a blocat de nenumărate ori s, i pierdea des semnalul
It has frozen numerous times, and it often lost the signal Smartphone 2 Negative

Nu t, ine deloc bateria, după nici 12 ore de la încărcarea completă
(100%) s-a descărcat complet
The battery doesn’t hold at all; after not even 12 h from a full
(100%) charge, it completely discharged

Fitness bracelet 1 Negative

Cel mai silent, ios mouse, dar conexiune prin infraros, u mediocră,
se întrerupe non-stop
The quietest mouse, but with a mediocre infrared connection,
it keeps disconnecting non-stop

Mouse 1 Negative

Procesor slab rău
Terribly weak processor Laptop 1 Negative

Regarding sentence length, we can observe that sentences in the rating categories that
do not indicate complete satisfaction or dissatisfaction with the reviewed product (i.e., 2-,
3-, and 4-star categories) tend to be longer. This is intuitive, as in these cases, customers
are more likely to provide detailed accounts of both the strengths and weaknesses of the
product to justify their assigned rating. This is especially evident in reviews associated with
3 stars, an evaluation customers generally make after careful analysis of a series of positive
and negative aspects of the reviewed product. Alternatively, 1-star and 5-star reviews may
only consist of short sentences such as “Nu recomand/Don’t recommend”, “Calitate proasta/Bad
quality”, “Slab/Weak” and “Super/Super”, “Tableta excelentă/Excellent tablet”, “Multumit de
achizitie/Content with my purchase”, respectively.

Table 3 presents analogous statistics, this time segmented by product category. The dataset
exhibits diversity in terms of the number of reviews gathered for each category. For instance,
there is a nearly threefold difference in the number of reviews collected for smartphones
compared to routers.This diversity is essential for creating a realistic evaluation scenario for
various sentiment analysis models directed toward specific product categories (e.g., aspect-
based sentiment analysis), reflecting the real-world scenario where certain product types
enjoy more popularity and consequently accumulate more reviews than others.
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Table 3. RoProductReviews dataset description per category.

Product Category Number of Reviews Number of Sentences Average Sentence Length Total Number of Tokens Number of Unique Tokens Number of Unique Lemmas

Headphones 409 984 16.54 18,480 2990 2205
Fitness bracelets 599 1578 16.45 29,500 4117 2967
Keyboard 899 2522 17.71 51,160 5856 4249
Laptop 404 1313 16.70 25,005 4070 3038
Monitor 419 971 15.98 17,852 3061 2328
Mouse 395 1062 16.69 20,383 3157 2298
Router 300 853 17.25 16,785 2919 2248
Smartphone 897 2348 17.16 45,906 6432 4882
Smartwatch 577 1469 17.38 29,213 4285 3109
Speakers 455 1429 18.59 30,240 4325 3163
Tablet 680 1753 15.59 31,445 4440 3291
Vacuum cleaner 400 1669 18.88 35,923 4842 3418

TOTAL 6434 17,951 17.08 351,892 21,430 15,311

We note that, despite this imbalance across product categories, the distribution of
reviews in each star rating category is preserved. With a few exceptions (monitor, tablet,
smartphone), the sets are almost perfectly balanced in this respect.

Additionally, we present a series of statistics that further support the use of the RoPro-
ductReviews dataset for the sentiment analysis tasks addressed in this study. Specifically,
to provide context for the aspect identification task, which relies on the identification and
grouping of nouns, we computed the part-of-speech distribution within each product
category with the help of the NLP-Cube Part of Speech Tagging Tool [49]. We found that
nouns represent approximately 20% of all tokens for every category. The percentage of ad-
jectives ranges from 0.04 to 0.06, with vacuum cleaner reviews having the smallest proportion
and monitors, the highest. Alternatively, vacuum cleaner reviews are the richest in terms of
verbs (0.14), while reviews about peripherals, like monitors and keyboards, have the smallest
proportion of verbs, along with routers (0.11). Similarly, small differences are observed
with respect to adverbs: the highest percentage of adverbs can be found in headphones
reviews (0.12), with router at the other end (0.09). The notable presence of nouns in reviews
provides a favorable foundation for our proposed approach to aspect identification, which
relies on noun clustering, but underscores the necessity of devising an effective method
for discerning the most relevant nouns. As for adjectives, a part-of-speech traditionally
linked with sentiment, we note that their relatively low presence may be due to users often
expressing sentiment with regard to products by stating what works and what does not
(e.g., I can’t run multiple applications simultaneously), or by providing domain-specific clues
(e.g., the refresh rate is 144 Hz, and it shows). Nonetheless, out of all adjectives, between 38%
and 50% are valenced across categories (as identified by the lexicon RoEmoLex [50]), which
lends credit to the possibility of exploring dependency-based approaches to associating
sentiment with the aspect terms discovered through nouns. Interestingly, around 20–25%
of verbs in each category are also found in the sentiment lexicon, while only about 13–17%
of nouns and 5–6% of adverbs are used to express sentiment directly.

In view of this analysis, we consider that the proposed dataset is suitable for a case
study that aims to examine the appropriateness of different machine learning and deep
learning models for sentiment analysis for the Romanian language.

4.2. Theoretical Models

This section includes the formalization of the sentiment analysis tasks at each level,
which target D, a collection of documents that, in our case study, refers to the RoProduc-
tReviews dataset. Each doc ∈ D, where doc ={w1, w2, . . . , wN} represents a document from
the collection comprising N words, and wi with 1 ≤ i ≤ N is a word in the document. Let
V be the vocabulary used in this collection, defined as:

V =
⋃

doc∈D
doc (1)

Additionally, we denote by Dc the collection of documents in a given product category c.
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4.2.1. Document-Level Sentiment Analysis

The task of sentiment analysis at the document level assumes that the document doc
(for example, a movie review or, as in our case, a product review) expresses an opinion
regarding a specific (single) entity e. In this context, document sentiment classification aims
to determine the overall sentiment s expressed related to the entity e, which can be positive
or negative (in binary classification). The sentiment options, however, can be extended to a
range, in our case, the five stars ranging from 1 (strongly negative) to 5 (strongly positive),
leading to a multi-class classification problem [1].

4.2.2. Sentence-Level Sentiment Analysis

Sentence-level sentiment analysis assumes that each sentence st expresses a single
opinion, oriented towards a single known entity e. Therefore, the goal of classification
at the sentence level is to identify the sentiment s expressed in sentence st regarding the
entity e. Since reviews, by definition, express opinions about a product or service, it is
expected that at least one of the multiple sentences in a document expresses a positive
or negative opinion. This is why document-level analysis can ignore the neutral class,
but sentence-level analysis cannot: a sentence within a review can be objective, which
means that it does not express any sentiment or opinion and is therefore neutral [1].

4.2.3. Aspect Term Extraction and Aspect Category Detection

We address the aspect term extraction task through an examination of word embed-
dings and their subsequent properties in the learned vector space. We build on previous re-
search that indicates that aspects are explicitly referred to in texts through nouns [15,37,40],
and employ a clustering algorithm to obtain groups of similar words, particularly nouns,
that are interpreted as aspect categories.This analysis serves as an initial step for addressing
the ABSA task, which currently lacks extensive exploration in the context of the Romanian
language. We also provide a method to estimate the presence of an aspect in a document
(sentence/review), thus addressing the aspect category detection task, highlighting its
potential for application at both the document and sentence levels.

Let Nc be the set of nouns used in a category c. A clustering algorithm is applied on the
set Ec = {embeddingw|embeddingw = fmodel(w), w ∈ Nc}, which contains the embeddings
obtained through embedding model fmodel for the nouns used throughout documents
in category c. A partition P of set Ec is thus generated, with A ∈ P a set of similar
embeddings, where for similarity, a suitable metric is chosen.

The sets Aw,Aw = {w|embeddingw ∈ A} represent candidate aspect categories
and their members, candidate aspect terms. To obtain the most relevant aspects from
each product category, we apply the following heuristic: we eliminate from consideration
sets A for which |A| < 3 and |A| > 10, where |A| represents the number of elements in set
A. We based this decision on the potential interpretability of such word groups: less than
three words might not provide sufficient information for identifying an overarching aspect
category, while a group of more than ten words will most likely contain miscellaneous terms
with respect to semantic information, especially when considering the restricted vocabulary
of only nouns. Then, we rank the remaining sets A to obtain the most representative groups
with respect to the considered product category. Each set Aw is associated with a value
defined as score f req = ∑

w∈Aw

∑
doc∈Dc

f req(w, doc), which considers the overall frequency of

the nouns in set A in the considered reviews doc ∈ Dc from a given product category c. We
also experimented with a ranking based on the number of documents covered by the words
in the obtained sets, with scorecoverage = |⋃w∈Aw{doc|w ∈ doc, doc ∈ Dc}|, and obtained
similar results. Then, according to the ranking given by one of these scores, the top t percent
groups are considered the most relevant aspect categories, as, according to the ranking,
these are the most frequently discussed in the given category. A short, descriptive label is
assigned manually to each of these clusters based on its content.
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4.3. Data Representation
4.3.1. Preliminaries: Data Preparation and Preprocessing

This section describes the preprocessing steps taken for each of the proposed analyses.
In all cases, a preprocessing step was performed, which involved the transformation of

the text to lowercase and the removal of URL links. For stop word removal, the list provided
with the advertools library version 0.13.5 (https://github.com/eliasdabbas/advertools
(accessed on 20 January 2024)) was used, from which the words that may express opinions
or sentiments, such as bine (well), bună (good), or frumos (beautiful), were removed.

In the approach at the document level, the title of the review was concatenated at the
beginning of the review text to be classified. Moreover, the stop words were not removed,
to avoid loss of information relevant to the model and to be able to perform a baseline
comparison. Also, punctuation was not removed because there were several emoticons
which were punctuation based (and not Unicode characters).

For the sentence-level approach, the title of the review was not taken into consideration,
as it usually contains two or three words, summarizing the review without forming a
sentence. Similar to the document-level approach, the punctuation was not removed, due
to the possible existence of text emoticons. As for the stop words, experiments were run
both with and without removing them, to assess their impact on the model performance.

In terms of analysis at the aspect level, a number of preprocessing steps were followed.
Punctuation, stop words and URLs were also removed for this task, as they represented
elements that either could not represent aspect terms or could not contribute to the def-
inition of aspect categories. Additionally, lemmatization of the tokens was performed.
Part-of-speech tagging was the last step in our preprocessing process, the result of which
was only used at the clustering stage to identify the nouns in a given set of reviews.

4.3.2. TF-IDF Representation

Term frequency–inverse document frequency is a commonly used algorithm that
transforms text into numeric representations (embeddings) to be used with machine learn-
ing algorithms. As its name suggests, this method combines two concepts: term frequency
(TF)—the number of times a term w (word) appears in a document doc—and document
frequency (DF)—the number of documents in which a term appears. For the SLSA case,
we consider each sentence to be a document and, thus, compute the frequency with which
a specific term appears in a sentence and the number of sentences that contain that spe-
cific term.

Term frequency can be simply defined as the number of times the term appears in a
document, while inverse document frequency (IDF) works by computing the commonness
of the term among the documents contained in the corpus.

By using the inverse document frequency, infrequent terms have a higher impact,
leading to the conclusion that the importance of a term is inversely proportional to its
corpus frequency. While the TF part of the TF-IDF algorithm contains information about a
term’s frequency, the IDF results in information about the rarity of a specific term.

4.3.3. LSI Representation

In addition to the TF-IDF representation described in the previous subsection, we also
propose the examination of the relevance of features extracted by latent semantic indexing
(LSI) [51] in a sentiment classification task for the Romanian language.

LSI is a count-based model for representing variable-length texts (in our case, doc-
uments and sentences containing reviews written in Romanian) as fixed-length numeric
vectors. It builds a matrix of occurrences of words in documents and then uses singular-
value decomposition to reduce the number of words while keeping the similarity structure
between documents.

Therefore, each document doc is represented as a vector composed of numerical values
corresponding to a set F = { f t1, f t2, . . . , f tsize} of size features extracted from the review
text directly using LSI.
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• docLSI = (docLSI
1 , · · · , docLSI

size), where docLSI
i (∀1 ≤ i ≤ size) denotes the value of the

i-th feature computed for the document doc in the documents dataset by using the
LSI-based embedding.

As far as the experimental setup is concerned, for extracting the LSI-based embeddings
for the documents, we used the implementation offered by Gensim [52]. We opted for
size = 30 as the length of the embedding and for num_topics = 30 as the number of latent
dimensions that represents the number of topics in the given corpus. For the SLSA task,
the size was reduced to 10, since most of the sentences contain less than 30 terms even
before reduction.

4.3.4. Deep-Learned Representation

An alternative to count-based feature extraction for machine learning approaches
is represented by using neural models that can automatically generate features for the
considered tasks.

In deep learning approaches, specific word-embedding techniques have been devel-
oped, which are actually based on neural network layers and dense vectors [30]. In our
experiments, we used dense embedding in conjunction with four deep learning networks:
CNN, global average pooling (GAP), GRU, and LSTM.

As far as the experimental setup is concerned, after following the general preprocessing
step described in Section 4.3.1, we used word number encoding, considering a vocabulary
of 15,000 words, and a padding for each review to 500 words These encoding parameters
were chosen after performing a search of best parameters based on the characteristics
of our dataset and literature findings. The embedding is performed in the first dense
embedding layer of each machine learning model. The text document is encoded using a
word-embedding dense layer, which is then processed by the network layers. Formally,
given docEM, a text document embedded with a model of token sequences (in which a token
could be a word or a letter), with N terms in the document, we have docEM = x1x2 . . . xN ,
where xi = (x1

i , x2
i , . . . , xM

i ) ∈ RM is a token embedding of size M. Next, the embedding
is submitted to linear transformations (for the CNN model), average region functions (in
the GAP model), or memory units and gates (in recurrent neural networks, such as LSTM
and GRU).

4.3.5. Word Representations

As far as word representations are concerned, word2vec [30] embeddings are used,
a type of representation learned through a neural network from a text corpus. The word2vec
model, fw2v : V −→ Rmw, is an embedding model that maps each word w ∈ V to a vector
representation (embedding) that has size mw: embeddingw = (em1, em2, . . . , emmw), where
emi denotes the value of the i-th feature computed for the word w by the model fw2v.

For the proposed tasks, the word2vec model was trained on the corpus of all reviews,
with a number of preprocessing steps employed, as described in Section 4.3.1. Next, word
embeddings for all lemmas in the vocabulary were learned. We experimentally determined
the size of 150 for the word vectors to be the best performing.

4.4. Models
4.4.1. Supervised Classification

To assess the relevance of the TF-IDF and LSI-based embeddings when it comes to the
automatic polarity classification for reviews written in Romanian, we trained and evaluated
multiple standard machine learning classification models, such as SVM, RF, LR, NB, voted
perceptron (VP), and multilayer perceptron (MLP).

The models used in deep learning approaches were configured using a dense embed-
ding base layer, which assumes 500 as the embedding dimension, on top of which the
particular model layers are added. The CNN model has a convolution 1D layer, a global
max pooling 1D layer, and a hidden dense layer with output 24. For GRU, the hidden layers
consist of a bidirectional GRU layer and a dense layer with 24 output units, while LSTM
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contains a bidirectional LSTM layer and a dense layer with 24 output units. The GAP model
contains an average pooling layer and a dense one with 24 output units. The output dense
layer (which is the same for all models) has one unit in the case of binary classification and
five output units for multi-class classification. The activation function [53] for the hidden
dense layer is the rectified linear unit (ReLU). For binary classification, the output dense
layer is the sigmoid function, and the models are compiled using binary cross-entropy
as the loss function and the adaptive movement estimation optimizer Adam [54]. In the
case of multi-class classification with 3 or 5 classes, the models are compiled using the
sparse categorical cross-entropy function, and for the output dense layer, we use the
so f tmax function.

Each training session of a model was performed for at most 30 epochs, with early
stopping after five epochs without any improvement on the loss function. The implementa-
tion was performed using the scikit-learn version 1.3.1 (https://scikit-learn.org/stable/
(accessed on 20 January 2024)) and keras version 2.14.0 (https://keras.io/ (accessed on
20 January 2024)) Python packages.

4.4.2. Unsupervised Analysis

As a clustering technique, we employ k-means and SOM. For similar tasks, k-means is
the most frequently encountered [46,55], but SOM has shown better performance in recent
studies [56]. Therefore, we aimed to examine the suitability of the two techniques in terms
of a Romanian-language dataset. For both, the initial number of nodes/clusters was set
at 200, value which was experimentally determined to generate the best results for our
dataset. For k-means, the implementation from the scikit-learn library version 1.3.1 was
used, with no additional parameters. For SOM, we used the implementation from the
NeuPy version 0.6.5 (http://neupy.com/pages/home.html (accessed on 20 January 2024))
Python package, with the learning radius set at 1 and the step at 0.25. The distance used
was cosine. The top 5% percent of the obtained aspect clusters are considered representative
(t = 0.05).

4.5. Evaluation
4.5.1. Methodology

In order to reliably evaluate the performance of the proposed approaches, we per-
formed 10 repetitions of 5-fold cross-validation in all the experiments carried out on our
dataset, RoProductReviews.

During the cross-validation process, the confusion matrix for the classification task
was computed for each testing subset. Based on the values from the confusion matrix,
multiple performance metrics, as described in Section 4.5.2, were computed. For each metric,
the values were averaged during the cross-validation process, and the 95% confidence
interval (CI) of the mean values was calculated.

4.5.2. Performance Indicators

Supervised classification. Based on state-of-the-art views, the most used performance
metrics in sentiment analysis are accuracy (Accuracy), F1-score (F1), precision (Precision),
recall (Recall), specificity (Speci f icity), and area under the ROC curve (AUC). These can be
calculated individually for every class in the dataset or as an arithmetic or weighted average
for the entire model. To compute each metric, we require the resulting confusion matrix,
a matrix that, in supervised learning, evaluates the performance of a model comparing
the actual class of an entry versus the predicted class. In this sense, for a class k, we
denote with TPk the true positives of class k and with TNk the true negatives of class
k. TPk is defined as the number of instances from class k correctly classified in class k,
and TNk is defined as the number of instances that are not in class k and have been correctly
classified as a different class from k. FPk denotes the false positives, meaning the number of
instances that are not in class k but have been classified as being class k, and FNk denotes
the false negatives, meaning the number of instances that are in fact in class k but have
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been incorrectly classified to be a different class from k. In Equation (2), we define the
accuracy of a class k, denoted by Accuracyk. We present the definition for precision for a
class k, denoted as Precisionk, in Equation (3). In Equation (4), the formula for computing
the recall for a class k, denoted by Recallk, is presented. The specificity for a class k, denoted
as Speci f icityk, is computed as in Equation (5).

Accuracyk =
TPk + TNk

TPK + FPk + TNK + FNk
(2)

Precisionk =
TPk

TPk + FPk
(3)

Recallk =
TPk

TPk + FNk
(4)

Speci f icityk =
TNk

TNk + FPk
(5)

The area under the ROC curve is generally employed for classification approaches that
yield a single value, which is then converted into a class label using a threshold. For each
threshold value, the point (1 − Speci f icity, Recall) is represented on a plotm and the AUC
value is computed as the area under this curve. For the approaches where the direct
output of the classifier is the class label, there is only one such point, which is linked to the
(0, 0) and (1, 1) points. The AUC measure represents the area under the trapezoid and is
computed as in Equation (6).

AUCk =
Recallk + Speci f icityk

2
(6)

The last measure used, the F1-score for a class k, is defined in Equation (7).

F1k =
2 × Precisionk × Recallk

Precisionk + Recallk
(7)

All the previously mentioned performance evaluation measures range from 0 to 1.
For better classifiers, larger values are expected.

For a binary classification in sentiment analysis, we have two classes (the positive
class and the negative class); thus, we denote the metrics referring to positive predicted
values (PPVs) for the precision of the positive class and negative predicted values (NPVs)
for the precision of the negative class. In the general case of multi-class classification
with NC classes, having calculated the performance indicators per each class with the
above formulas, we define the overall weighted average for each performance metric
PI ∈ {Accuracy, Precision, Recall, F1} as in Equation (8).

PI =
NC

∑
k=1

weightk ∗ PIk, (8)

where PIk is the performance indicator for class k, and weightk is the weight of class k.
The weight of a class k is computed as weightk = Ik/INC, with Ik equal to the number of
instances from class k in the dataset and INC the total number of instances for all classes in
the dataset.

Unsupervised analysis. For the proposed unsupervised analysis, we used two eval-
uation measures, namely normalized pointwise mutual information (NPMI) [57] and a
WordNet-based similarity measure. NPMI is the normalized variant of pointwise mutual
information, a measure commonly used to evaluate association. This normalized variant
has the advantage of a range of values with fixed interpretation.
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NPMI(w1; w2) =
log
(

p(w1,w2)
p(w1)·p(w2)

)
− log p(w1, w2)

(9)

In Equation (9), the formula for computing the NPMI for two words is shown, where
p(w1) and p(w2) represent the probabilities of occurrence of words w1 and w2, respectively,
and p(w1, w2) is the probability of the co-occurrence of the two. For an aspect cluster
Aw = {w1, w2, . . . wNa}, containing Na words denoted by wi, 1 ≤ i ≤ Na, the NPMI value
is computed as an average over the NPMI values obtained for every pair (wi, wj), i < j.

While it was defined in the context of collocation extraction, the NPMI measure has
also been used in topic modeling literature to evaluate topic coherence [46,47], as it was
found to reflect human judgment [58].

The NPMI bases the assessment on the co-occurrence of terms, while the proposed
WordNet-based measure takes advantage of the hierarchy of noun and noun phrases in
WordNet, in which is-a (hyponymy/hypernymy) relations, as well as part-of associations,
are recorded. We are especially interested in the hierarchy determined by the is-a relation-
ships between nouns, as we need to evaluate the ability of determined groups of nouns
(aspect terms) to describe a more general concept (aspect category). Thus, we used a mea-
sure that describes how closely related two words are in this hierarchical structure of the
WordNet lexical database: the Leacock and Chodorow (LCH) similarity [59]. We compute
this metric as in Equation (10), using the Romanian WordNet (RoWordNet [60]).

LCH(synsetw1 , synsetw2) = − log2
sp(synsetw1 , synsetw2) + 1

2 · maxWNDepth
(10)

In Equation (10), the Leacock–Chodorow similarity is computed between the first
senses of the two terms w1 and w2, which are encapsulated in RoWordNet synsets. Thus, we
denote by sp(synsetw1 , synsetw2) the shortest path length between the concepts represented
by w1 and w2 in the WordNet hierarchy, while maxWNDepth represents the maximum
taxonomy depth.

The NPMI measure has the advantage of evaluating performance on an unseen test
set, providing a realistic measure of the proposed approach. However, we argue that,
while NPMI may be an informative measure with respect to the coherence of topics,
which are defined as sets of words that co-occur, it is less suitable for measuring the
coherence of groups of words meant to be interpreted as aspect terms which define an
aspect category. Usually, when discussing an aspect of a product, the number of aspect
terms from a given category used in the same sentence, and even review, is limited—in
fact, these aspect terms are often used interchangeably. For NPMI, the range of values is
[−1, 1], with values of −1 characterizing words that occur separately, but not together, and
values of 1 describing words that only occur together. As for LCH, the range of values is
(0, log(2 ∗ maxWNDepth)], where the maximum RoWordNet depth in the hypernymy tree
is 16. Considering that sp(synsetw1 , synsetw2) = 0 when w1 and w2 have the same sense,
a higher value for the LCH measure signifies increased relatedness between the concepts
represented by w1 and w2.

5. Results

In this section, we present the results of our study, which aims to investigate the
efficacy of machine learning techniques in sentiment analysis, specifically applied to a
dataset of Romanian reviews. Results are provided for the three textual levels we addressed:
document (as detailed in Section 5.1), sentence (outlined in Section 5.2), and aspect level
(discussed in Section 5.3).

5.1. Document Level

The first embedding we evaluated in the context of sentiment analysis when using the
RoProductReviews dataset is the one based on LSI.
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The classifiers employed in evaluating the relevance of the LSI-based embedding for
sentiment analysis were SVM, RF, LR, and a neural-network-based model (VP [61] for
binary classification and MLP for multi-class classification).

The results obtained when classifying the RoProductReviews reviews on two classes
of polarity, positive and negative, when representing the reviews as LSI-based embeddings,
are given in Table 4. For each of the four models, we present the mean value and confidence
interval calculated for each performance metric used in evaluation, methodology that was
described in Section 4.5. We have obtained AUC values up to 0.894 and F1-score values up
to 0.893. The best-performing classification model is LR, which is immediately followed by
VP, for which AUC and F1-score values of 0.891 were obtained.

The performances obtained in the case of multi-class classification are given in Table 5.
The conclusion that has been drawn for binary classification, regarding the relative perfor-
mance of the classifiers, holds, the best-performing classifier remaining logistic regression.
LR obtained a weighted average F1-score value of 0.690, while the second-best classifier is
still the artificial neural network model, in particular the MLP that replaced the VP used
for binary classification. A weighted average F1-score value of 0.676 was obtained by the
MLP classifier.

Table 4. Results obtained for LSI-based binary classification with the RoProductReviews dataset. The
highest value for each performance indicator is marked in bold.

SVM RF LR VP
Performance Indicator Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy 0.878 0.001 0.880 0.001 0.893 0.001 0.891 0.001
Precision PPV 0.924 0.001 0.903 0.002 0.911 0.001 0.897 0.002
Precision NPV 0.838 0.001 0.858 0.001 0.876 0.001 0.885 0.003
Average precision 0.881 0.001 0.881 0.001 0.893 0.001 0.891 0.002
Sensitivity/Recall—TPR 0.830 0.001 0.859 0.001 0.878 0.001 0.890 0.003
Specificity—TNR 0.928 0.001 0.902 0.002 0.909 0.001 0.892 0.003
AUC 0.879 0.001 0.881 0.001 0.894 0.001 0.891 0.001
F1-score Positive Class 0.875 0.001 0.881 0.001 0.894 0.001 0.893 0.001
F1-score Negative Class 0.881 0.001 0.880 0.001 0.892 0.001 0.889 0.001
Weighted F1-score 0.878 0.001 0.880 0.001 0.893 0.001 0.891 0.001

Table 5. Results obtained for LSI-based multi-class classification with the RoProductReviews dataset.
The highest value for each performance indicator is marked in bold.

SVM RF LR MLP
Performance Indicator Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy Avg 0.660 0.001 0.660 0.005 0.689 0.001 0.675 0.002

Precision

Class 1 Star 0.599 0.001 0.644 0.002 0.656 0.002 0.660 0.014
Class 2 Stars 0.568 0.002 0.579 0.004 0.602 0.003 0.604 0.016
Class 3 Stars 0.733 0.003 0.676 0.005 0.727 0.003 0.709 0.023
Class 4 Stars 0.617 0.004 0.622 0.004 0.650 0.002 0.628 0.011
Class 5 Stars 0.858 0.001 0.816 0.004 0.825 0.002 0.788 0.008

Recall

Class 1 Star 0.712 0.002 0.698 0.003 0.714 0.002 0.708 0.016
Class 2 Stars 0.607 0.003 0.588 0.005 0.606 0.004 0.593 0.019
Class 3 Stars 0.669 0.002 0.667 0.003 0.698 0.002 0.679 0.017
Class 4 Stars 0.680 0.003 0.671 0.003 0.696 0.003 0.657 0.015
Class 5 Stars 0.626 0.002 0.681 0.003 0.720 0.002 0.728 0.007

F1 Score

Class 1 Star 0.650 0.001 0.670 0.001 0.684 0.001 0.682 0.005
Class 2 Stars 0.587 0.002 0.583 0.004 0.604 0.003 0.597 0.005
Class 3 Stars 0.700 0.001 0.671 0.004 0.712 0.002 0.693 0.004
Class 4 Stars 0.647 0.003 0.646 0.003 0.672 0.003 0.642 0.004
Class 5 Stars 0.724 0.001 0.743 0.003 0.769 0.002 0.757 0.004

Precision Weighted Avg 0.677 0.001 0.670 0.001 0.694 0.002 0.680 0.003

Recall Weighted Avg 0.660 0.001 0.663 0.001 0.689 0.002 0.675 0.002

F1-Score Weighted Avg 0.663 0.001 0.665 0.001 0.690 0.002 0.676 0.002
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Table 6 shows the results obtained for binary classification on the RoProductReviews
dataset using the deep learning models, while in Table 7, results for multi-classification
with five classes are presented.

Table 6. Binary classification using deep learning models with the RoProductReviews dataset. The
highest value for each performance indicator is marked in bold.

LSTM GRU CNN GAP
Performance Indicator Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy 0.918 0.007 0.920 0.006 0.930 0.005 0.918 0.005
Precision PPV 0.924 0.014 0.925 0.012 0.930 0.007 0.929 0.010
Precision NPV 0.912 0.010 0.915 0.010 0.931 0.006 0.908 0.011
Average precision 0.918 0.012 0.920 0.011 0.931 0.006 0.918 0.011
Sensitivity/Recall—TPR 0.915 0.011 0.919 0.011 0.934 0.006 0.910 0.013
Specificity—TNR 0.920 0.017 0.921 0.014 0.926 0.008 0.926 0.012
AUC 0.918 0.007 0.920 0.006 0.930 0.005 0.918 0.005
AUPRC 0.920 0.006 0.922 0.006 0.932 0.004 0.920 0.005
F1-score Positive Class 0.919 0.006 0.921 0.006 0.932 0.004 0.919 0.005
F1-score Negative Class 0.916 0.007 0.918 0.007 0.928 0.005 0.917 0.005
Average F1-score 0.918 0.007 0.920 0.006 0.930 0.005 0.918 0.005
Weighted F1-score 0.918 0.007 0.920 0.006 0.930 0.005 0.918 0.005

Table 7. Multi-class classification using deep learning models with the RoProductReviews dataset.
The highest value for each performance indicator is marked in bold.

GAP LSTM GRU CNN
Performance Indicator Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy Avg 0.652 0.013 0.722 0.011 0.739 0.009 0.767 0.005

Precision

Class 1 Star 0.699 0.036 0.738 0.030 0.732 0.025 0.800 0.026
Class 2 Stars 0.527 0.039 0.626 0.027 0.645 0.026 0.692 0.023
Class 3 Stars 0.624 0.039 0.698 0.033 0.726 0.022 0.738 0.021
Class 4 Stars 0.637 0.026 0.727 0.024 0.751 0.022 0.750 0.019
Class 5 Stars 0.805 0.040 0.833 0.022 0.846 0.022 0.854 0.014

Recall

Class 1 Star 0.714 0.040 0.713 0.042 0.722 0.031 0.796 0.023
Class 2 Stars 0.557 0.064 0.646 0.039 0.665 0.030 0.691 0.029
Class 3 Stars 0.607 0.041 0.712 0.028 0.726 0.020 0.718 0.023
Class 4 Stars 0.605 0.047 0.713 0.031 0.750 0.023 0.767 0.019
Class 5 Stars 0.758 0.043 0.815 0.026 0.825 0.023 0.848 0.017

F1 Score

Class 1 Star 0.702 0.018 0.721 0.021 0.725 0.017 0.796 0.009
Class 2 Stars 0.533 0.032 0.633 0.022 0.653 0.021 0.690 0.012
Class 3 Stars 0.610 0.021 0.702 0.012 0.725 0.010 0.726 0.008
Class 4 Stars 0.617 0.025 0.718 0.015 0.750 0.014 0.757 0.009
Class 5 Stars 0.776 0.016 0.822 0.012 0.834 0.014 0.851 0.009

Precision Weighted Avg 0.663 0.014 0.727 0.010 0.743 0.009 0.769 0.006

Recall Weighted Avg 0.652 0.013 0.722 0.011 0.739 0.009 0.767 0.005

F1-Score Weighted Avg 0.652 0.014 0.722 0.011 0.740 0.009 0.767 0.005

The best results in the case of binary classification are obtained by the CNN model,
with accuracy 0.930, average precision 0.931, recall 0.934, and F1-score 0.930. The other
three models have a similar performance of accuracy 0.918 for LSTM, 0.920 for GRU, and
0.918 for GAP. We generally notice a slightly higher precision and F1-score for the positive
class than the negative class (for example, GAP precision PPV is 0.929, and LSTM precision
NPV is 0.908), which may be due to the slight imbalance of the dataset (2509 negative
reviews and 2615 positive reviews), but not very significant, meaning it could also be the
result of the random cross-validation experimental setup.

For multi-class classification, the best overall results are also obtained by the CNN
model (accuracy 0.767, precision 0.769), followed by GRU (accuracy 0.739, precision 0.743),
then LSTM (accuracy 0.722, precision 0.727), and the worst performance is obtained by
GAP (accuracy 0.652, precision 0.669).
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In terms of performance metric indicators per class, the best result is obtained by all
models for Class 5, corresponding to five stars, with the highest value of 0.854 for precision
using CNN. The next best value yielded by all models is for Class 1, corresponding to one-
star evaluations, with values up to 0.800 for precision using CNN. The worst performance
is obtained for class 2-star, for which the highest value is 0.692 for precision with CNN, and
the lowest is 0.527 for precision with GAP. This result could be somewhat influenced by the
slight imbalance of dataset classes (only 1152 instances of two-star reviews, while there are
1336 reviews with five stars). Moreover, the higher results for the classes with five stars
and one star could be explained by the fact that they are the extremes of the rating scale.
This means that the sentiment conveyed in the class 5-star and class 1-star reviews is more
intense and clearly expressed as positive (when the customer is clearly satisfied) or negative
(expressing customer dissatisfaction).

Consequently, the classifiers may also find it easier to identify sentiment patterns in
these two rating categories, while for the classes with two, three, and four stars, the re-
views may present reasons both in favor of and against the reviewed product, thus a mix
of sentiment.

In terms of computation time, the CNN model required the least time for training and
repeated cross-fold validation (approximately 8 h), as opposed to the other models, which
required between 31 and 48 h on the same hardware device. However, while in this case,
CNN proves to be the best choice among deep learning models, an important limitation
remained for the execution time, which was much higher than that of classical approaches,
for example, those based on LSI embedding and machine learning classifiers such as NB,
RF, or SVM.

In the following, we have compared the results obtained by the LR model, which
proved to be the best-performing classifier on the RoProductReviews dataset, with those
obtained using CNN, which proved to be the best-performing of the deep learning models.

The comparison for binary classification is visually presented in Figure 1a, while
Figure 1b depicts the comparison for multi-class classification, when the 95% confidence
intervals of the weighted average performance indicators values for the five classes was
considered. As Figure 1a,b show, CNN leads to consistent better performance.

We have also comparatively analyzed the results at the class level for both binary and
multi-class classification. The comparison at the class level is shown in Figure 2a,b and,
as it can be observed, it reinforces the conclusion that CNN behaves consistently better for
classifying product reviews written in Romanian in classes of polarity.

(a) Binary classification

Figure 1. Cont.
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(b) Multi-class classification

Figure 1. Comparison between CNN and LR for binary and multi-class classification on the RoPro-
ductReviews dataset.

While for the binary classification CNN performs similarly for both positive and
negative classes, LR presents small differences in performance for each class and measure.
However, for the multi-class classification, there is a consistent behavior of the two models
in which class 5 stars presents the best results, while class 2 stars presents the worst result.
This shows that specific characteristics of the dataset are most probably responsible for the
confusion in classification, namely the smaller number of reviews for two stars (1152) in
comparison with the other classes.

(a) Binary classification

(b) Multi-class classification

Figure 2. Comparison between CNN and LR for binary and multi-class classification on the RoPro-
ductReviews dataset at class level.
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5.2. Sentence Level

Tables 8 and 9 show the classification results obtained at sentence level for the RoPro-
ductReviews dataset, using the TF-IDF and LSI representations presented in Section 4.3,
both by removing and not removing stop words, configurations which are denoted as
“without”, and “with”, respectively. Specifically, Table 8 contains the results obtained for the
TF-IDF representation and Table 9, the results obtained for the LSI representation. These
experiments were performed with three goals in mind: (1) establishing whether the removal
of stop words influences the classification results, (2) deciding which representation works
best for the sentences from the RoProductReviews dataset, and (3) choosing the algorithm
that is best suited for sentence-level sentiment classification.

In order to answer the first question, we have analyzed the results from each table
individually, thus leading to a conclusion for each representation. For TF-IDF, almost all
the averaged performance indicators (accuracy, precision, recall, and F1-score) are higher
for the case when stop words are not removed, with the exceptions of precision for NB.
However, if we are to look at the percentage difference, which is 0.4%, we can state that
this exception does not impact the overall conclusion; that is, for the TF-IDF representation,
the removal of stop words negatively influences the classification results. This means
that, although stop words are, by definition, insignificant for determining the sentiment
expressed in a sentence, given the fact that sentences, as opposed to documents, contain
only brief opinions, the removal of stop words shortens the sentence even more, leading to
a decreased classification performance.

The same conclusion holds for the LSI representation as well: all the averaged per-
formance metrics are higher when not removing stop words, for all the classifiers used in
the experiments. Thus, we can answer the first question: the removal of stop words does
influence the classification results, in a negative manner.

Table 8. Results obtained for TF-IDF-based sentence-level classification with the RoProductRe-
views dataset. The highest value for each performance indicator is marked in bold.

SVM LR RF NB
Performance Indicator Stopwords Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy Avg Without 0.774 0.012 0.778 0.012 0.751 0.017 0.663 0.015
With 0.804 0.012 0.805 0.012 0.771 0.012 0.668 0.013

Precision Positive Without 0.817 0.018 0.806 0.016 0.776 0.025 0.643 0.017
With 0.815 0.016 0.814 0.017 0.800 0.018 0.662 0.017

Neutral Without 0.300 0.287 0.000 0.000 0.265 0.172 0.190 0.082
With 0.400 0.307 0.100 0.177 0.174 0.134 0.192 0.076

Negative Without 0.722 0.022 0.741 0.025 0.753 0.030 0.782 0.030
With 0.787 0.021 0.794 0.019 0.763 0.021 0.745 0.023

Recall Positive Without 0.837 0.021 0.853 0.014 0.854 0.026 0.938 0.010
With 0.899 0.014 0.907 0.013 0.868 0.016 0.905 0.013

Neutral Without 0.008 0.008 0.000 0.000 0.056 0.035 0.045 0.022
With 0.012 0.009 0.004 0.006 0.039 0.021 0.064 0.026

Negative Without 0.853 0.021 0.842 0.020 0.759 0.040 0.421 0.026
With 0.842 0.018 0.836 0.019 0.796 0.019 0.475 0.022

F1-Score Positive Without 0.827 0.014 0.828 0.014 0.812 0.014 0.763 0.013
With 0.855 0.011 0.858 0.012 0.832 0.011 0.764 0.011

Neutral Without 0.017 0.016 0.000 0.000 0.080 0.045 0.070 0.033
With 0.022 0.017 0.006 0.011 0.061 0.031 0.093 0.036

Negative Without 0.781 0.013 0.788 0.016 0.753 0.017 0.547 0.026
With 0.813 0.015 0.814 0.014 0.778 0.013 0.579 0.019

Precision Weighted Avg Without 0.741 0.027 0.715 0.016 0.725 0.022 0.661 0.017
With 0.772 0.026 0.747 0.022 0.734 0.019 0.657 0.015

Recall Weighted Avg Without 0.774 0.012 0.778 0.012 0.751 0.017 0.663 0.015
With 0.804 0.012 0.805 0.012 0.771 0.012 0.668 0.013

F1-Score Weighted Avg Without 0.743 0.013 0.745 0.014 0.728 0.018 0.621 0.017
With 0.770 0.014 0.771 0.013 0.748 0.012 0.637 0.016
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Table 9. Results obtained for LSI-based sentence-level classification with the RoProductRe-
views dataset. The highest value for each performance indicator is marked in bold.

SVM LR RF NB
Performance Indicator Stopwords Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Accuracy Avg Without 0.663 0.014 0.660 0.010 0.699 0.012 0.609 0.013
With 0.724 0.013 0.713 0.012 0.728 0.011 0.669 0.012

Precision Positive Without 0.781 0.018 0.763 0.020 0.738 0.020 0.683 0.017
With 0.745 0.018 0.725 0.013 0.749 0.013 0.698 0.014

Neutral Without 0.000 0.000 0.000 0.000 0.229 0.116 0.000 0.000
With 0.000 0.000 0.000 0.000 0.271 0.171 0.017 0.052

Negative Without 0.574 0.019 0.577 0.016 0.662 0.019 0.537 0.020
With 0.698 0.024 0.694 0.024 0.708 0.022 0.628 0.025

Recall Positive Without 0.639 0.017 0.641 0.019 0.781 0.017 0.632 0.018
With 0.821 0.019 0.833 0.017 0.829 0.017 0.780 0.019

Neutral Without 0.000 0.000 0.000 0.000 0.034 0.018 0.000 0.000
With 0.000 0.000 0.000 0.000 0.024 0.013 0.001 0.004

Negative Without 0.837 0.021 0.827 0.018 0.730 0.025 0.706 0.020
With 0.749 0.024 0.701 0.020 0.743 0.020 0.659 0.020

F1-Score Positive Without 0.702 0.014 0.697 0.014 0.759 0.013 0.656 0.014
With 0.781 0.012 0.775 0.010 0.786 0.010 0.736 0.010

Neutral Without 0.000 0.000 0.000 0.000 0.057 0.029 0.000 0.000
With 0.000 0.000 0.000 0.000 0.045 0.025 0.002 0.006

Negative Without 0.681 0.018 0.680 0.014 0.694 0.014 0.610 0.017
With 0.722 0.016 0.697 0.016 0.724 0.014 0.642 0.016

Precision Weighted Avg Without 0.636 0.016 0.629 0.013 0.667 0.016 0.570 0.014
With 0.666 0.016 0.653 0.014 0.695 0.018 0.616 0.015

Recall Weighted Avg Without 0.663 0.014 0.660 0.010 0.699 0.012 0.609 0.013
With 0.724 0.013 0.713 0.012 0.728 0.011 0.669 0.012

F1-Score Weighted Avg Without 0.637 0.015 0.633 0.011 0.675 0.013 0.584 0.013
With 0.693 0.015 0.681 0.013 0.701 0.013 0.639 0.012

Once we have established that better results are obtained without removing the stop
words, in order to answer the second question, we only compare the results obtained
for TF-IDF and LSI representations when keeping the stop words, presented in the same
tables (Tables 8 and 9, respectively). For all the averaged performance indicators, all
algorithms yield higher values for the TF-IDF representation, with the exception of NB. Yet,
the difference in accuracy and weighted recall is 0.1% between the two representations,
while the difference in F1-score is 0.2%. Taking all of these into consideration, we can
state that the TF-IDF representation is better suited for all the algorithms employed in
the experiments. This conclusion can be motivated by the nature of the representations
themselves since LSI attempts to reduce the dimensionality of the TF-IDF representation,
and sentences can be viewed as very short documents, reducing the dimensionality leads
to a loss of relevant information.

Finally, so as to choose the algorithm that is best suited for SLSA on the RoPro-
ductReviews dataset, we compare the performance indicators obtained with the TF-IDF
representation for SVM, LR, RF, and NB. Figure 3 presents these values, gathered from
Tables 8 and 9. The results for each category are not included in Figure 3, because we con-
sider the averaged performance indicators to suffice for the intended comparison; however,
the values for these metrics can be found in the respective tables. Therefore, considering
these performance indicators, LR obtains the highest values for accuracy, weighted recall,
and weighted F1-score, while SVM leads to the highest weighted precision value. Yet, since
the difference in weighted precision between the two algorithms is 0.025, we can conclude
that LR is the best-suited algorithm for the task of sentiment analysis at the sentence level,
which coincides with the conclusion drawn for the document level. Therefore, we can state
that sentiment analysis for Romanian can be performed at both the document and sentence
levels using the LR algorithm.

If we are to look at the results obtained for each class, as presented in Table 8, one can
notice that the results obtained for the neutral class are very low, which is explainable
given the unbalanced dataset. In order to solve this problem, a higher number of neutral
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sentences, comparable to that of the positive and negative sentences, should be used for
training the algorithms.

Figure 3. Sentence-level classification with the RoProductReviews dataset.

Concluding, from the results presented in Tables 8 and 9, in order to perform the task
of SLSA on the RoProductReviews dataset, the LR algorithm should be applied on the
TF-IDF representation of the sentences, without removing the stop words, leading to an
accuracy score of 0.805, a weighted precision score of 0.747, a weighted recall score of 0.805,
and a weighted F1-score of 0.771.

Given that CNN is the most effective model at the document level, embedding en-
coding and CNN are used in the deep learning technique at the sentence level on the
RoProductReviews subset for multi-classification with three classes. The results are pre-
sented in Table 10, and are comparable to the other approaches presented previously for
SLSA. The accuracy obtained is 0.790, while weighted precision is 0.780, weighted recall
0.790 and weighted F1-score 0.781. This means that, in comparison with the results ob-
tained for LR, the deep learning approach leads to better precision and F1-score, while the
classical ML algorithm obtains higher accuracy and recall values. Figure 4a presents this
comparison, for an easier analysis. Since the differences are very small—0.015 in accuracy
and 0.015 in weighted recall, in favor of LR, and 0.033 in weighted precision and 0.01 in
weighted F1 in favor of CNN—a clear conclusion cannot be drawn: each of these two
algorithms can be used to perform the task of SLSA.

Table 10. Multi-class classification using deep learning models at sentence level with three classes:
negative, neutral, and positive. The highest value for each performance indicator is marked in bold.

CNN
Performance Indicators Mean 95% CI

Accuracy Avg 0.790 0.011

Precision Negative 0.795 0.025
Neutral 0.360 0.078
Positive 0.833 0.017

Recall Negative 0.814 0.020
Neutral 0.203 0.050
Positive 0.864 0.021

F1-Score Negative 0.803 0.010
Neutral 0.246 0.045
Positive 0.847 0.007

Precision Weighted Avg 0.780 0.012

Recall Weighted Avg 0.790 0.012

F1-Score Weighted Avg 0.781 0.010
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However, there are very big differences in the performance indicators per class.
Given that the dataset is very unbalanced, this limits the deep learning model’s learn-
ing (1092 instances for the positive class, 171 instances for the neutral class, 804 instances
for the negative class). As such, the neutral class performs very poorly (the lowest value is
0.203 for recall), while the positive class performs the best (the highest value is 0.847 for
the F1-score). In comparison to LR, as presented in Figure 4b, CNN performs better for the
neutral class and obtains better precision for the positive and negative classes, while LR
outperforms CNN in terms of recall and F1-score for both the positive and negative classes.

(a) (b)

Figure 4. Comparison between CNN and LR for sentence-level classification with the RoProductRe-
views dataset: (a) overall and (b) with respect to class.

5.3. Aspect Level
5.3.1. Aspect Term Extraction

In general, in aspect-based sentiment analysis, aspects are specific to a product type.
Users may be interested in the battery life, photo/video quality, and performance of a phone,
but paying more attention to memory in case of an external hard drive and coverage for a
wireless router. Naturally, there are common aspects that can be evaluated for multiple
product types, which is owed to the overlap in the category taxonomy itself. For instance,
processing speed can be evaluated on all electronics with a processing unit, as can sound
quality on devices that support audio input and output. In this paper, we attempt to discover
the most important aspects of a product category from our dataset using two clustering
approaches.

Table 11 shows the results obtained for each of the two clustering algorithms employed,
SOM and k-means, in terms of a mean over the random states and the 95% CI, for each of the
product categories in the dataset. In terms of NPMI, in 8 out of 12 cases, the SOM algorithm
provides better results, with k-means clusters achieving a higher score for fitness bracelets,
headphones, and monitor product categories, though by small margins. For smartwatches,
the generated clusters obtain the same score for both algorithms. If the clusters are evaluated
using the LCH metric, for 7 out of 12 product categories, the SOM algorithm partitions the
considered words better.

Overall, the low NPMI scores could be explained by the nature of the word groups.
For some aspect categories, some aspect terms might be used interchangeably rather than
co-occur in the same review. For instance, in terms of evaluating the price of a product,
users most often limit themselves to either saying A lot of money, but it’s worth it or A good
price for what it offers, but not both in the same review, as the sentences have very similar
meaning. Therefore, nouns money and price may occur less frequently together than in other
types of text that discuss a finance topic. Alternatively, when evaluating the functionalities
of a smartwatch, one could talk, in the same text span, about health monitoring using a
number of different words: for instance, somn/sleep monitoring, puls/heart rate measuring,
tensiune/blood pressure.
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Table 11. Results for aspect term extraction and grouping in terms of NPMI and LCH. An average
over the random states is provided along with the value for the 95% CI.

SOM K-Means
NPMI LCH NPMI LCH

Product Category Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Fitness bracelets −0.698 0.017 1.412 0.031 −0.697 0.028 1.390 0.023
Headphones −0.627 0.025 1.484 0.036 −0.603 0.023 1.427 0.029
Keyboard −0.660 0.024 1.421 0.022 −0.666 0.023 1.432 0.024
Laptop −0.648 0.013 1.384 0.030 −0.685 0.017 1.385 0.025
Monitor −0.596 0.025 1.364 0.016 −0.587 0.022 1.386 0.022
Mouse −0.636 0.011 1.626 0.043 −0.654 0.019 1.526 0.026
Router −0.616 0.027 1.609 0.027 −0.736 0.019 1.497 0.032
Smartphone −0.700 0.016 1.406 0.034 −0.732 0.025 1.351 0.021
Smartwatch −0.687 0.016 1.352 0.024 −0.687 0.012 1.395 0.024
Speakers −0.632 0.019 1.487 0.016 −0.649 0.013 1.452 0.025
Tablet −0.735 0.013 1.352 0.024 −0.753 0.017 1.347 0.031
Vacuum cleaner −0.604 0.011 1.421 0.022 −0.642 0.016 1.448 0.019

The LCH score, on the other hand, might deal well with the first case, identifying price
and money as similar concepts, but lacks the ability to contextually assess the relatedness of
groups like the second example (e.g., sleep, heart rate, blood pressure).

In the following, we present more detailed results for a selected product category,
laptop. Appendix A includes results for another product category, monitors, to showcase the
ability of the approach to identify relevant aspect categories for different product types.

The noun groups Awl obtained in one example run for the category laptop are presented
in Table 12, which shows the eight aspect clusters that were obtained. As it can be seen,
these noun clusters are relatively easy to interpret. For the first cluster, Awl1

, the label of
durability/reliability was assigned, as the words within represent either words that refer to
time (perioadă/period, timp/time, an/year, lună/month) or to the use of the product (utilizare,
folosire/usage), with potential issues (pană/breakdown, problemă/problem). Temporal words are
also used to form Awl2

, but, in this case, it is more likely that the battery life of the laptop
is discussed, since the referenced periods of time are shorter: saptaman, saptamană/week,
oră/hour. This differentiation between temporal words used in battery life and durability
aspect clusters indicates that using word2vec embeddings trained on the review corpus
allows the clustering process to capture associations that go beyond classic semantic
categories (e.g., grouping together words that refer to time). The ability of the learned
representations to encode information from the specific usage patterns from the corpus
they are trained on aids the formation of meaningful groups in terms of their ease of
interpretability as aspect categories.

Table 12. Example clusters obtained using SOM for product type laptop.

Terms
Assigned
Label

NPMI LCH

Awl1

perioadă, timp, pană, problemă, utilizare, inceput, an, lună, folosire
period, time, breakdown, problem, usage, start, year, month Durability −0.481 1.805

Awl2

baterie, saptamană, saptaman, figură, oră
battery, week, issue, hour Battery life −0.445 1.595

Awl3

as, teptare, stea, ron, pret, ban, raport, leu
expectation, star, Romanian leu (RON), price, cent/money, ratio Price −0.516 0.890

Awl4

mufă, wireless, pachet, adaptor, laptop, receiver, cutie, usb
socket, wireless, package, adapter, laptop, receiver, box, USB Connectivity −0.543 1.708

Awl5

medie, design, slab, calitate, pro, ok, rest, aspect, dorit, material
average, design, poor, quality, pro, ok, otherwise, wanted, material

Build quality/
Design −0.564 1.608

Awl6

foto, imagine, rezolut,ie, hd, display, ecran, caracteristică
photo, image, resolution, HD (High Definition), display, screen, characteristic Display −0.635 1.385

Awl7

calculator, win, sită, desktop, stick, windows, ubunt
computer, win, site, desktop, stick, Windows, Ubuntu Operating system −0.407 1.779

Aw8
modul, proces, driver, instalar, bios, drive, boot, parolă
module, process, driver, installation, BIOS, drive, boot, password

Software
components −0.632 1.618
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Cluster Awl3
can be interpreted as referring to price or the value for money, while Awl4

can be assigned a label of connectivity based on words such as mufă/socket, adaptor/adapter,
receiver, wireless, USB. Awl6

is equally easy to interpret, as it contains nouns that almost
exclusively refer to the display aspect category. As far as aspect clusters Awl7

and Awl8
are concerned, we highlight the distinction between the operating system and software
components aspects, both of which can provide insights into the laptop’s hardware, software
and performance. However, the first terms (i.e., terms comprising Awl7

) are relevant when
discussing the laptop’s compatibility with various software, operating systems, and its
ability to access websites and web content effectively, while terms in Awl8

lean towards
descriptions of internal components and the system configuration, often discussed in laptop
reviews to evaluate its performance, ability to upgrade, and security features.

A somewhat less obvious cluster is Awl5
. The terms included in this group are

frequently used to either express an evaluation with regard to the quality of a product
(terms calitate/quality, pro), or address some general aspects (e.g., “În rest, n-au fost prob-
leme”/“Otherwise, there were no issues”, “În rest, e ok”/“Otherwise, it’s fine”).

This, in turn, highlights one of the limitations of the proposed approach, namely the
use of automatic PoS tagging, which may, at times, erroneously identify words as nouns,
either because of homonymy (for instance, “bun” can be both an adjective, meaning good,
or a noun, meaning asset) or the use of more informal constructions such as super ok, super
tare (super nice), super mult,umit (super content), which the tagger may have difficulties in
correctly processing.

5.3.2. Aspect Category Detection

In this subsection, we present results for the aspect category detection task, using the
aspect clusters presented in Section 5.3.1 for the product type laptop to identify their presence
in a review.

Table 13 provides a series of example reviews from the product category laptop, chosen
to reflect the diversity of expression in the corpus, both in terms of the length of reviews,
and in terms of the explicit and implicit discussion of aspects.

As it can be seen, our approach manages to identify both implicitly and explicitly
referred aspects. This is owed to the use of word embeddings that capture subtle semantic
similarities. For instance, if assessing the results obtained for reviews Rl6 or Rl7 , we observe
that in Rl6 , only operating systems are referred to explicitly, while the updating issues point
somewhat indirectly to the aspect software components. For Rl7 , it is interesting to see the
distribution of the aspects, with battery life, durability/reliability, and build quality/design iden-
tified to cover, in large part, the target of the opinion expressed in the short review. While
the use of a temporal quantifier (3 zile/3 days) makes the presence of the durability/reliability
aspect expected, the presence of battery life is less so. A laptop not turning on may indeed
involve an issue with the battery, which is knowledge the word2vec model likely learned
by seeing the verb a aprinde/turn on in contexts which also involved discussions about the
battery performance.

For an in-depth evaluation of the proposed approach’s performance with respect to
the length of reviews, we examine specific instances, namely reviews Rl2 , Rl3 , and Rl7 .
The succinct information provided in Rl2 aligns with categories exhibiting the highest
scores: price and build quality/design. The user’s phrase “good for this money” effectively
alludes to the laptop’s value for money and overall quality. Longer reviews are addressed
with equal proficiency, and increased references to discussed aspects may even contribute
to a clearer distinction between aspect categories. For example, Rl3 is exclusively assigned
to the operating system and software components categories. In contrast, Rl7 , which contains
a profoundly implicit reference to the product’s durability and battery life, is attributed to
every aspect category to varying degrees. These observations lead us to the conclusion that
the length of the considered text has a lesser role than the clarity with which aspects are
referenced in the precise identification of aspect categories.
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Lastly, while the results obtained provide encouraging results, there are cases in which
the proposed method encounters difficulties, such as Rl9 . The display aspect is explicitly
mentioned in the review, but it is unclear how connectivity and durability/reliability are
discussed. Moreover, in a review such as Rl4 , it can be argued that battery life should have a
higher score.

Table 13. Aspect category detection results with respect to a set of reviews from product category laptop.

Review Text
Durability/
Reliability

Battery
Life Price Connectivity

Build
Quality/
Design

Display
Operating
System

Software
Components

Rl1

Un laptop de buget se poate folosii pentru varsnici sau copii.
Pentru banii ceruti este un produs foarte bun.
A budget laptop can be used for seniors or children.
For the money asked, it’s a very good product.

0.004 0 0.792 0.001 0.203 0 0 0

Rl2
Bun ptr bani astia
Good for this money 0.015 0.007 0.497 0.003 0.470 0.006 0.002 0

Rl3

Instalarea Windows-ului la laptopurile HP cu procesoare Intel de
generatie 11 sau 12 necesita drivere speciale pentru fiecare model
in parte, altfel masina nu vede hardul. Este un bag de fabricatie.
Luati-le mai bine direct pe cele cu Windows-ul preinstalat.
Installing Windows on HP laptops with 11th or 12th generation
Intel processors requires special drivers for each model; otherwise,
the system doesn’t recognize the hard drive. It’s a manufacturing
glitch. It’s better to get the ones with pre-installed Windows.

0 0 0 0 0 0 0.384 0.616

Rl4

Nu încarcă bateria. Nu recomand decât dacă va dorit,i
un laptop fix, gen PC
It doesn’t charge the battery. I only recommend it if you want
a desktop-like laptop.

0.286 0.100 0.011 0.151 0.412 0.030 0.004 0

Rl5

Frat,ilor, nu vă sfătuiesc să vă zgârcit,i la câteva sute de lei
pentru că acest produs este foarte slab! Îl am de o lună s, i deja
s-a desfăcut toată rama din împrejurul display ului. . .
Foarte slab. . .
Brothers, I advise you not to skimp on a few hundred lei because
this product is very weak! I’ve had it for a month, and the frame
around the display has already come apart. . . Very poor. . .

0.090 0.001 0.210 0 0.695 0.003 0 0

Rl6

Nemult,umit. Îl voi returna cât de curând. Se tot actualizează,
ba se blochează. Are Windows-ul 10 instalat. Păcat de firma hp
s, i de HDD de 1T.
Unsatisfied. I will return it as soon as possible.
It keeps updating, and it even freezes. It has Windows
10 installed. It’s a shame for the HP brand and the 1TB HDD.

0.002 0.001 0.007 0.007 0.002 0.014 0.502 0.466

Rl7
Dupa a 3 zi nu s-a mai aprins.
After 3 days, it didn’t turn on anymore 0.220 0.198 0.046 0.080 0.220 0.089 0.067 0.081

Rl8

L. Am luat pentru gaming s, i des, i are rtx 3050 ti in jocuri
cu ray tracing nu depăs, es, te 25–30 cadre pe full hd, 2k/4k
nu mai discutam..
I got it for gaming, and even though it has an RTX 3050 Ti,
in games with ray tracing, it doesn’t go beyond 25–30 frames per
second at full HD. Let’s not even discuss 2K/4K.

0.001 0 0.003 0 0.003 0.991 0 0.002

Rl9
Laptopul este performant dar display-ul are probleme. . .
The laptop is performant, but the display has issues. . . 0.438 0.026 0.019 0.119 0.039 0.243 0.070 0.046

6. Discussion

In this section, we present the results of a comparison between our approaches for
document-level sentiment analysis and two existing approaches from the literature, as well
as an overall analysis of the obtained results in order to provide insights into the research
questions formulated in the Introduction.

6.1. Comparison to Related Work

In this study, we have also compared our approaches for document-level sentiment
analysis with two existing approaches: one based on SentiWordnet and one based on
searches using a search engine, proposed by Russu et al. in [28]. In addition, we have also
evaluated our approaches on the movie reviews dataset Russu et al. have employed in
their paper.

For a fair comparison, focused on the document representations, we have employed
the same classifiers as in [28], namely RF, kNN, NB, and SVM, the same implementation
for them (as offered by Weka) and the same evaluation methodology, that is, 10-fold cross-
validation. We repeated 10-fold cross-validation ten times and report 95% confidence
intervals for the performance measures.

The only two performance measures the authors report values for are weighted
precision and weighted recall, so we have computed the same performance indicators for
the LSI-based approach.
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The experimental results are numerically presented in Table 14 and visually repre-
sented in Figure 5a,b. In Table 14, the best performances are highlighted.

(a) (b)

Figure 5. Comparison to related work: LSI-based versus SentiWordnet-based [28] and search-
engine-based [28] document polarity binary classification with respect to two performance indicators:
(a) weighted precision and (b) weighted recall.

It can be observed that, when using naïve Bayes as a classifier, the LSI-based approach
is outperformed by the approaches proposed by Russu et al. [28], but when using support
vector machines (SVM), the LSI-based approach outperforms the search-engine-based
approach [28], while it is slightly outperformed by the SentiWordnet-based approach. How-
ever, when using both random forest and k-nearest neighbors as automatic classification
algorithms, the LSI-based approach we propose outperforms both the SentiWordnet-based
and the search-engine-based approaches proposed by Russu et al. [28].

When averaging the values for the performance indicators over the different classifiers
employed, the LSI-based approach leads to an overall weighted precision of 0.757, com-
pared to 0.755 for the SentiWordnet-based approach and 0.715 for the search-engine-based
approach, and an overall weighted recall of 0.755, compared to 0.748 for the SentiWordnet-
based approach and 0.694 for the search-engine-based approach. So, both performance
indicators confirm that the performance of using LSI-based embeddings for represent-
ing review documents written in Romanian as a basis for automatic sentiment polarity
classification leads to an overall slightly superior performance when compared to the
SentiWordnet-based and search-engine-based approaches proposed by Russu et al. [28]
for the considered movie reviews dataset.

As for the deep learning approach, dense embedding was integrated into the best-
performing model up to this point, so CNN was used for classification, and the same evalu-
ation methodology as in [28] was employed (namely, 10-fold cross-validation). The last line
in Table 14 presents the results obtained for the two performance indicators utilized. While
we notice the weighted precision 0.756 is comparable with the other approaches, the CNN
model performs better than all search-engine-based approaches and kNN approaches,
but it is outperformed by LSI-based representation used with SVM or RF. As for recall, this
performance indicator is the weakest of all with a value of 0.534. In this case, the weaker
performance of the deep learning approach in some cases could be explained by the small
number of training instances in the dataset (n = 1000 instances), which limits the deep
learning model’s capacity to learn. For the previous experiments, there were 2067 instances
for SLSA and 6434 instances for DLSA.
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Table 14. Comparison to related work: LSI-based versus SentiWordnet-based [28] and search-engine-
based [28] document polarity binary classification. The highest value for each performance indicator
is marked in bold.

Classifier Approach Weighted Precision Weighted Recall

LSI-based 0.794 ± 0.003 0.789 ± 0.002
SentiWordnet-based [28] 0.795 0.795SVM
Search engine-based [28] 0.729 0.705

LSI-based 0.784 ± 0.005 0.783 ± 0.004
SentiWordnet-based [28] 0.735 0.732RF
Search engine-based [28] 0.723 0.703

LSI-based 0.704 ± 0.005 0.704 ± 0.005
SentiWordnet-based [28] 0.671 0.646kNN
Search engine-based [28] 0.645 0.625

LSI-based 0.746 ± 0.005 0.743 ± 0.005
SentiWordnet-based [28] 0.818 0.818NB
Search engine-based [28] 0.763 0.744

CNN Dense Embedding 0.756 0.534

6.2. Analysis

In this section, we provide an analysis of the results obtained in our study, considering
the research questions we have started from.

RQ1: Is latent semantic indexing (LSI) in conjunction with conventional machine

learning classifiers suitable for sentiment analysis of documents written in Romanian?

The results obtained in the sentiment analysis task at the document level for the Ro-
ProductReviews dataset are presented in Section 5.1. The results provided in Tables 4 and 5
and the analysis of the performance of standard machine learning classifiers used in con-
junction with an LSI representation indicate an affirmative answer to RQ1: using an LSI
representation for documents written in Romanian as input for conventional machine
learning classifiers leads to good results in our sentiment analysis task. The comparison
with two existing approaches (presented in Section 6.1) also reinforces our conclusion.

RQ2: Can deep-learned embedding-based approaches improve the performance

of document- and/or sentence-level sentiment analysis, as opposed to classical natural

language processing (NLP) embedding-based non-deep-learning approaches?

In our study, we have experimented with deep learning approaches for sentiment
analysis at both the document and sentence levels, in a binary and a multi-class setting.
The obtained results at the document level are presented in Tables 6 and 7 and those
obtained at sentence level are shown in Table 10. We have also compared them with the
best results obtained using ML classifiers. The obtained results clearly show that deep
learning approaches can improve performance compared to a classical ML classifier at the
document level. For shorter texts, the improvement is less clear. Our experiments also
point out the drawbacks of deep learning approaches, namely the higher cost in terms of
resources such as running time and the need for a large dataset for training.

RQ3: What is the relevance of different textual representations in the task of sen-

tence polarity classification, and what impact do additional preprocessing steps have in

this task?

In our study, we have also examined different textual representations for sentence-level
sentiment analysis to determine if the representation used affects the obtained results. In
Tables 8 and 9, we have shown the results obtained by using conventional machine learning
classifiers in conjunction with two representations (TF-IDF and LSI). From these results,
we conclude that, while LSI is suitable for document-level analysis, its dimensionality
reduction component is not improving the sentence polarity classification; on the contrary,
thus, the TF-IDF method alone suffices for this granularity.
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Regarding the impact of the preprocessing step, our results have shown that the
additional step of stop words removal negatively influences the classification results. We
consider that this may be due to the smaller dimension of the sentences, compared to the
dimension of documents.

RQ4: In terms of aspect extraction, is it feasible for a clustering methodology re-

lying on learned word embeddings to delineate groups of words capable of serving as

aspect categories identified within a given corpus of documents?

We have experimented with clustering-based approaches for aspect term extrac-
tion and aspect category detection, the results obtained being presented in Section 5.3.
The performance of these two approaches for aspect term extraction is presented in
Tables 11 and 12, respectively, for a specific product category. From the results obtained, we
can conclude that the proposed methodology produces coherent aspect clusters for given
product types (namely, laptop and monitor in our experiments), resulting in interpretable and
easy-to-label aspect categories. The approach used has the ability to identify aspect clusters
(and, thus, aspect categories) with strong relevance to their respective product types.

RQ5: How can the aspect categories discussed within a document be identified,

if an aspect category is given through a set of words?

For the aspect category detection task, we have used in our experiments a simple and
completely unsupervised method based on word similarity in an embedding space, results
for which are shown in Table 13. From the obtained results, we can conclude that a simple
approach, like the one we have used, manages to correctly identify aspect categories in
units of texts of varying lengths containing both implicit and explicit mentions of them.

In terms of the full aspect term extraction-aspect category detection pipeline, we have
observed that the approach used demonstrates remarkable versatility, as it can be applied
in order to analyze aspects of a single product type in depth, or it can be scaled up to
handle more extensive categories of products. For instance, it can be effectively employed
to explore and categorize aspects within the product type category of peripherals, making
it a valuable tool for comprehensive product analysis. Moreover, the technique used for
identifying aspects that are discussed in a review can be modified to address text units of
varying lengths (e.g., sentences, sentence parts), which can then be assigned a sentiment
label using the appropriate model.

While the approach holds promise, it is not without its limitations. The quality and
effectiveness of the generated aspect clusters are directly influenced by the quality of the
preprocessing pipeline. Elements such as part-of-speech tagging and lemmatization play
a crucial role in the accuracy and relevance of the results. Additionally, the readability
and complexity of the language used in the corpus can impact the quality of the clusters.
Another limitation is the manual assignment of category labels, which can introduce
subjectivity and potential inaccuracies in the analysis.

6.3. Potential Challenges and Limitations

Data accuracy and accessibility. A first challenge in implementing a sentiment anal-
ysis system may refer to the availability and quality of data gathered from online sources.
The utility of such a sentiment analysis model is dependent on the representativeness of
the training data, which should encompass a comprehensive set of diverse examples that
cover the sentiments and language patterns that may be encountered in the target domain
or application. Additionally, the dataset should be balanced, providing the model with
sufficient information to capture the relevant patterns for each of the target classes. We
have addressed these aspects in Section 4.1, specifically Sections 4.1.1 and 4.1.2, which
describe our data collection process and its result.

Resistance to machine learning approaches. Another potential challenge in imple-
menting an automated sentiment analysis system is the lack of transparency in the decision-
making process of some models, as well as the hesitation to rely on machine predictions,
especially for a task like sentiment analysis. Sentiment and emotion are complex concepts,
and their interpretation and evaluation are at times difficult even for humans. In terms of
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the latter, we highlight the characteristics of the type of data we employ in our experiments.
In product reviews, users evaluate a product, describing either their satisfaction or their
dissatisfaction with the product (or, in some cases, both), thus purposefully expressing a
valenced opinion. This often leads to a straightforward expression of sentiment, with rare
use of ambiguous language or complex syntactic constructions, which may make it easier
for models to learn the particularities of sentiment expression, and thus, lead to more
confidence in the resulting predictions.

Generalization and adaptability. A limitation that follows from a focus on a specific
type of data, such as reviews, is the SA system’s decreased ability to handle other types of
texts (e.g., tweets, news, etc). However, the aim of this study is an in-depth, multi-faceted
analysis of the data considered, from which we hope to gain insights that may lead to
building robust, general models in future work. As far as dependency on a domain, we
have shown that, while we use a dataset of reviews about electronic devices as a case study,
the proposed approach also provides good performances for other domains, such as movie
reviews, as underlined in Section 6.1.

Ethical and Privacy Considerations. A crucial consideration in the analysis of user-
generated content pertains to ethical and privacy concerns associated with potentially
sensitive information. Notably, the RoProductReviews dataset utilized in all experiments
within this study consists exclusively of publicly available data. Furthermore, no details
regarding the identity of reviewers or any other personal information are included.

7. Conclusions and Further Work

In this study, an extensive examination of the performance of various machine learning
approaches for sentiment analysis on Romanian-language texts was conducted, addressing
multiple textual levels.

At the document level, the obtained results indicate that the LSI-based embedding is
relevant for an automatic sentiment analysis of review documents written in Romanian,
when feeding them into standard ML classifiers. Deep learning approaches, on the other
hand, may provide a boost in performance when the available training dataset is sufficiently
large, but at a higher cost with respect to resource utilization. Comparative studies using
a range of dataset sizes would be necessary for future research in order to establish the
precise contexts in which deep learning techniques outperform standard ML classifiers.
Additionally, performing hyperparameter tuning would allow assessing the maximum
potential of both conventional ML and deep learning classifiers.

At the sentence level, the results obtained for the task of sentiment analysis lead to
the conclusion that, as opposed to the analysis at the document level, the dimensionality
reduction step of the LSI algorithm hinders performance in the case of sentences, with the
TF-IDF representation used in conjunction with standard ML classifiers resulting in higher
performance. What is more, after examining the performance of a deep learning model
for the sentiment analysis task at the sentence level, and taking into consideration the
costs of deep learning methods, we conclude that standard ML algorithms are preferable
for solving the task. As for future work, we intend to validate our conclusions on other
datasets in Romanian and, additionally, to perform hyperparameter tuning so as to further
improve the results.

In terms of the unsupervised extraction of aspect terms and categories, results show
that the proposed technique based on word clustering manages to identify easily inter-
pretable groups of words that can be viewed as aspect terms that form an aspect category.
Additionally, a simple aspect category detection technique, based on word similarity in
an embedding space, provides information regarding the aspect categories discussed in a
review. Results for this task also reflect human interpretation to a high degree. To enhance
the aspect term extraction-aspect category detection approach further, one avenue is the
exploration of alternative word embeddings, such as BERT, which can potentially lead to a
more precise and insightful analysis of product aspects. Finally, in future work, we aim to
eliminate the manual aspect category label assignment step.
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We also point out a future direction for research at all analysis levels: looking at
language patterns used to express sentiment over time. This is because understanding the
dynamics of sentiment expression would greatly improve the potential applicability of
sentiment analysis systems, like the one this paper proposes, in real-world settings.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolution Neural Network
DL Deep Learning
DNN Deep Neural Network
DT Decision Trees
GAP Global Average Pooling
GRU Gated Recurrent Unit
kNN k-Nearest Neighbors
LR Logistic Regression
LSI Latent Semantic Indexing
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multilayer Perceptron
NB Naïve Bayes
RF Random Forest
RNN Recurrent Neural Network
SOM Self-Organizing Maps
SVM Support Vector Machines
TF-IDF Term Frequency–Inverse Document Frequency
VP Voted Perceptron

Appendix A

In this appendix, we include results for another product category, namely monitors, in
order to showcase the adaptability of the proposed approach to aspect term extraction and
aspect category detection with respect to identifying relevant aspect categories for different
product types.

The word groups Aw obtained in one example run for the category monitor are pre-
sented in Table A1 in order of the cumulative frequency of the containing terms.
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As it can be seen, the obtained noun clusters are, as it was the case for the laptop
category, easily interpretable. Awm1 ,Awm5 ,Awm6 describe various characteristics of the
display of a monitor: image quality, display technology (IPS stands for in-plane switching
technology, a type of display panel technology, while TN is short for twisted nematic,
a type of LED panel display technology), and other display characteristics (HD stands for
high definition). As it is a visual output device, having more than one aspect cluster that
encompasses a larger, more general aspect category display is to be expected, especially as
far as the technology used and the performance of the monitor in terms of color accuracy,
brightness and contrast in different lighting conditions. connectivity is also a crucial aspect
when buying a monitor, as a user will want to ensure that it has the necessary ports to
connect to their device (Awm2 ). The third aspect cluster is concerned with price, while the
fourth is with the durability and reliability of the product.

Table A1. Example clusters obtained using SOM for product type monitor.

Terms
Assigned
Label

NPMI LCH

Awm1
culoare, intensitate, intuneric, scenecadră, expunere
color, intensity, darkness, scenes/frames, exposure

Display
(Image Quality) −1.000 1.441

Awm2
mufă, adaptor, cutie, cablu, usb
socket, adapter, box, cable, USB Connectivity −1.000 2.009

Awm3
asteptar, pret, produs, leu
expectation, price, product, Romanian leu (RON) Price −0.384 1.000

Awm4
săptămână, problemă, achizit, ie, an, saptaman, lună
week, problem, purchase, year, month Durability −0.905 2.081

Awm5
vizibilitate, pixel, ips, visualizare, pixă, unghi, tn
visibility, pixel, IPS, visualization, angle, TN

Display
(Technology) −0.382 1.493

Awm6
imagine, monitor, hd, display, ecran
image, monitor, HD, display, screen

Display
(Characteristics) 0.258 1.279

Awm7
medie, calitate, pro, ok, rest, bun, super
average, quality, pro, ok, otherwise, good, great Quality −0.648 1.417

It is interesting to note the common aspect categories between the two types of
products: monitors and laptops: durability (Awm4 ), price (Awm3 ), connectivity (Awm2 ), and
display (Awm6 ). However, there are some differences in the aspect terms used for the
categories for each product type. A stark contrast can be observed between the level
of detail the display aspect category implied in the monitor reviews as opposed to the
laptop reviews, which is an intuitive distinction, as for laptops, the display is only one of
the components, while for a monitor, it can be argued that it is the most important one.
Alternatively, the aspect of durability/reliability tends to be characterized by temporal words
(i.e., year, month, duration, time, beginning) accompanied by synonyms of the word usage for
both product types.

Table A2 provides a series of example reviews from the product category monitors,
to exemplify the performance of the proposed aspect category detection technique on a
different product category. In general, for this product type, we observe that short reviews
such as Rm7 , which do not reference any particular aspects of the product, are dominated by
the quality/general category. Other similar reviews with a marked presence of this aspect are:

“Este destul de bun dar nu il recomand./It’s decent, but I don’t recommend it.” (0.903), “Un monitor
bun, claritate buna/A good monitor, good clarity.” (0.988), “E chiar bun imi place/It’s actually
good, I like it” (0.936) or even simply “Bun/Good” (0.797). Alternatively, high quality/general
scores are also obtained for long reviews in which no particular aspects are discussed.
For example, a review consisting of approximately 50 words through which indications
about a workaround for an issue (lack of component) was assigned a score of 0.999 for the
quality/general aspect category.

However, in reviews such as Rm2 or Rm8 , the quality/general aspect category is present
to a significant extent (for instance, bun pentru birou/good for the office in review Rm2 is a
general evaluation), but so are other factors like connectivity (Rm2—conexiune VGA/VGA
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connection, Rm8—port HDMI, DisplayPort, USB), which are identified by the proposed
method accordingly.

In addition, as it can be seen, aspects that are not explicitly referred (e.g., display
in Rm4 or durability/reliability in Rm1 and Rm3 are also indicated by our approach, which
supports the conclusion drawn regarding the wide applicability of the proposed aspect
term extraction-aspect category detection pipeline.

Table A2. Aspect category detection results with respect to a set of reviews from product cate-
gory monitor.

Review Text
Display
(Image Quality) Connectivity Price

Durability/
Reliability

Display
(Technology)

Display
Features

Quality/
General

Rm1
După o luna au apărut dungi pe ecran!!!
After a month, stripes appeared on the screen! 0.059 0.010 0.011 0.672 0.064 0.157 0.027

Rm2
Doar conexiune VGA s, i atât. Bun pentru birou.
Only VGA connection, and that’s it. Good for the office 0.067 0.179 0.065 0.055 0.065 0.080 0.490

Rm3

Am monitorul de mai mult de 3 ani si sunt foarte multumit
de el. Il folosesc doar pt gaming si se ridica as, teptărilor. Cumpărat, i cu încredere
I’ve had the monitor for more than 3 years, and I am very satisfied with it.
I use it exclusively for gaming, and it meets expectations. Buy with confidence.

0 0.001 0.105 0.817 0.002 0.006 0.068

Rm4
Are ghosting destul de urat.
Is ghosting quite ugly 0.176 0.057 0.082 0.060 0.178 0.183 0.264

Rm5
Pret calitate, DEZAMAGITOR!
Price quality, DISAPPOINTING! 0.005 0.003 0.147 0.037 0.020 0.017 0.771

Rm6

Nu am fost atent la detalii si am comandat unul cu port serial in loc de hdmi.
Are doar o singura intrare si depinde de model. . .
I wasn’t careful with the details, and I ordered one with a serial port instead
of HDMI. It has only one input, and it depends on the model.

0.006 0.839 0.003 0.003 0.113 0.027 0.009

Rm7
Super ok! Se comporta bine!
Super ok! It performs well! 0 0 0.001 0.007 0 0 0.992

Rm8

Business as usual de la Dell. Un monitor excelent.
ii dau totusi 4 stele pentru ca folosit cu doua deviceuri,
dureaza foarte mult functia de autoscan, este mai rapid
sa selectez manual input source cand am nevoie sa trec de la un PC la celalalt.
E destul de incomod si faptul ca are doar un singur port HDMI
si unul singur DisplayPort. USB-urile sunt excelente pentru cei fara docking station.
Evident ca cei care au un singur device nu sunt catusi de putin incomodati
de micile inconveniente sus mentionate.
Business as usual from Dell. An excellent monitor. However, I’m giving it
four stars because when used with two devices, the autoscan function
takes a long time. It’s faster to manually select the input source when
I need to switch from one PC to the other. It’s quite inconvenient that it
has only one HDMI port and one DisplayPort. The USB ports are excellent for
those without a docking station. Clearly, those with only one device aren’t
bothered at all by the minor inconveniences mentioned above.

0.012 0.473 0 0 0.002 0 0.512
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Abstract: Smart electric vehicles (SEVs) hold significant potential in alleviating the energy crisis
and environmental pollution. The augmented reality (AR) dashboard, a key feature of SEVs, is
attracting considerable attention due to its ability to enhance driving safety and user experience
through real-time, intuitive driving information. This study innovatively integrates Kansei engineer-
ing, factor analysis, fuzzy systems theory, analytic hierarchy process, grey relational analysis, and
factorial experimentation to evaluate AR dashboards’ visual imagery and subjective preferences. The
findings reveal that designs featuring blue planar and unconventional-shaped dials exhibit the best
performance in terms of visual imagery. Subsequent factorial experiments confirmed these results,
showing that drivers most favor blue-dominant designs. Furthermore, in unconventional-shaped
dial designs, the visual effect of vertical 3D is more popular with drivers than horizontal 3D, while
the opposite is true in round dials. This study provides a scientific evaluation method for assessing
the emotional experience of AR dashboard interfaces. Additionally, these findings will help reduce
the subjectivity in interface design and enhance the overall competitiveness of SEV vehicles.

Keywords: augmented reality dashboard; human-machine interface; multi-criteria decision-making;
Kansei engineering; fuzzy analytic hierarchy process-grey relational analysis

MSC: 91C05; 90C70

1. Introduction

By 2030, the number of cars worldwide is expected to increase from 1.3 billion to
2 billion [1]. The huge increase in the number of cars will bring enormous environmental
pressure to the region and the world, especially in terms of air pollution and the green-
house effect [2,3]. Recently, smart electric vehicles (SEVs) have undoubtedly become a hot
research topic for the Sustainable Development Goals [4,5], which have great potential to
facilitate the energy crisis and environmental pollution and appeal to many consumers
by emphasizing the user experience. The annual sales volume of new energy passenger
vehicles in China in 2023 has reached 7.736 million units, of which SEVs accounted for
6.619 million units, with a penetration rate of 85.6% [6]. As a way to reduce carbon emis-
sions and improve driver experience, SEVs have a bright future in China and worldwide.
With the development of augmented reality (AR) and In-Vehicle Information Systems
(IVISs), in-vehicle AR display technology has been widely applied and researched as an
important functional system for SEVs.

AR is an advanced form of Human-Computer Interaction (HCI) that provides intuitive
and rich interface information by embedding and overlaying virtual elements onto the real
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environment [7]. The applications of AR technology are extensive, spanning various do-
mains such as gaming, education, entertainment, and manufacturing [8]. In the automotive
sector, AR applications are primarily categorized into two types: one is in-vehicle display
systems designed to provide information to drivers, and the other is auxiliary systems
used during the automotive development process [7]. This study focuses on AR dashboard
display systems intended for drivers. An AR dashboard combines augmented reality tech-
nology with dashboard displays, overlaying driving data, navigation, and assisted driving
information onto live road video and presenting it to the driver through the dashboard
display [9]. If AR is appropriately integrated with real-time road video, it can enhance
drivers’ situational awareness and thereby improve driving safety [10]. Some automakers
have already adopted this technology in their production models. For example, China’s
SAIC Group launched the Rongwei MARVEL X in 2018, which pioneered the rendering
of visual recognition results, fused positioning results, and map navigation information
into AR images displayed in the in-vehicle dashboard. In addition, many scholars have
conducted research on in-vehicle AR for the human-machine interface (HMI). Calvi and
D’Amico [11] found that in-vehicle AR warnings significantly enhance the safety of left
turns. Liu and Yin found through eye-tracking experiments that the reading performance
on blue AR interfaces was the poorest, while green and adaptive colors demonstrated the
most stable performance [12]. Zhong and Cheng [13] studied how environmental illumi-
nance, interface color, and speed font design affect driver visual fatigue and visibility. Li
and Wang [14] examined the impact of AR interface color combinations on the visual search
performance and cognitive efficiency of drivers, considering gender and driving scenarios.
However, most HMI research on in-vehicle AR has focused on driver safety [7,11,14–16],
neglecting the experiential and emotional aspects of the driver. User experience is a pivotal
determinant in enhancing user engagement and overall usage [17]. It encompasses both
the behavior and emotions that users exhibit towards a particular object or system [18].
In addition, the user’s emotional experience significantly affects purchase intention [19],
usage intention, and user satisfaction [20]. Given its importance, this study aims to evaluate
the emotional experience elicited by the user interface of an in-vehicle AR dashboard.
Simultaneously, this study developed a method for evaluating the visual imagery and
subjective preferences related to in-vehicle HMIs.

2. Theoretical Background

2.1. Kansei Engineering

Kansei engineering is a product design and development method based on hu-
man emotions and needs. Its core lies in the quantitative analysis of user emotions and
feelings [21]. Kansei engineering focuses on capturing users’ “Kansei” during the design
process, which refers to their perceptions of aspects such as the color and shape of products
or interfaces. This approach emphasizes addressing users’ emotional needs, enabling de-
signers to create products that better align with users’ expectations and thus enhance user
satisfaction. Kansei engineering typically involves matching adjectives (emotional words)
with visual imagery and using inferential calculations to identify the most suitable design
solutions [22]. This process includes four steps: selection of visual imagery and adjectives,
semantic space expansion, properties space expansion, and relationship modeling [22].
Semantic space extension refers to the rational screening, categorizing, and evaluating per-
ceptual adjectives [23]. Semantic space expansion can usually be performed through factor
analysis, cluster analysis, principal component analysis, or other methods [24]. Properties
space expansion refers to the systematic definition and description of specific properties
of visual images. The purpose of this process is to create a detailed properties space that
enables features of visual images to be associated with semantic space. Relational model
construction refers to establishing a mathematical or statistical model to describe and
quantify the relationship between the attributes of the visual image (properties space) and
the user’s emotional response (semantic space). Kansei engineering has been widely used
in product development [24–27], user interface [28–30], and service design [31–34] and has
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achieved remarkable results. In the field of in-vehicle HMI, the dashboard’s visual imagery
is the driver’s most frequently interacted element. For this reason, conducting a Kansei
engineering study on the visual imagery of in-vehicle AR dashboards is necessary.

2.2. Multi-Criteria Decision Making (MCDM)

MCDM is a structured framework used to analyze decision problems with multiple
complex objectives [35]. The core of MCDM lies in systematically analyzing and sim-
plifying complex decision problems into manageable criteria and deriving the optimal
decision through the trade-off of these criteria [36]. Handling uncertainty and subjectivity
are common issues in the decision-making process, and MCDM methods provide decision
makers with effective and robust decision support [37]. In practice, MCDM encompasses
various methods, some of which include the analytic hierarchy process (AHP), grey rela-
tional analysis (GRA), the technique for order preference by similarity to the ideal solution
(TOPSIS), and fuzzy TOPSIS [37]. These methods each offer unique advantages in ad-
dressing different types of decision problems and are suitable for various decision-making
scenarios. The AHP, known for its structured approach and interpretability, is widely
applied to various decision-making problems and remains one of the most commonly used
MCDM methods to date [38]. Additionally, the AHP can be combined with triangular
fuzzy numbers from fuzzy theory to make the decision-making process more realistic.
However, when using the AHP or fuzzy AHP alone, the decision-maker judgment holds a
dominant position within the hierarchy, which can lead to personal biases influencing the
results [39]. GRA, on the other hand, is a flexible and adaptable MCDM method, but it is
recommended to use weighted GRA, as it offers greater reliability and estimation accuracy
compared to unweighted GRA [40]. TOPSIS is an MCDM method with relatively low
computational complexity, making it suitable for handling large-scale decision problems.
However, TOPSIS has certain limitations, such as the potential for rank reversal [41], and
its use of Euclidean distance does not account for correlation, which may affect the results
due to overlapping information [42]. Fuzzy TOPSIS, similar to the fuzzy AHP, incorporates
triangular or trapezoidal fuzzy numbers to enhance decision-making accuracy.

In the field of Kansei engineering, evaluating visual imagery is a typical MCDM
problem. For example, Jia and Tung [24] combined Kansei engineering with fuzzy theory to
assess the visual imagery of wrist-worn wearable devices. Additionally, Lin and Zhai [26]
applied TOPSIS within Kansei engineering to evaluate the visual imagery of automotive
central touchscreens. In the realm of HMI, Li and Chen [28] conducted similar decision
evaluations for visual imagery of waiting indicators. Wang and Yang [43] employed the
GRA method to extract Kansei words related to wickerwork lamp products and conducted
a study on Miryoku engineering. However, research combining MCDM with Kansei
engineering in the automotive HMI domain remains relatively scarce. Although some
scholars have used the AHP and GRA methods to evaluate the usability of automotive AR
head-up displays (HUDs), they have not incorporated Kansei engineering methods [44]. In
other research fields, fuzzy theory and TOPSIS have achieved certain successes in the study
of visual imagery [24,26,28]. However, these methods are also limited by their respective
theoretical foundations, and thus, they require a more comprehensive perspective. For
instance, combining multiple MCDM methods can effectively address the limitations of
individual methods, further enhancing the accuracy and reliability of decision analysis.
Overall, MCDM methods have become important tools in modern decision analysis due to
their scientific and systematic nature, with broad application prospects in complex systems
or multi-criteria decision-making problems.
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2.3. Fuzzy Analytic Hierarchy Process and Grey Relational Analysis (FAHP-GRA)

GRA is a significant method within MCDM. Its fundamental principle involves cal-
culating grey relational degrees among variables to ascertain the degree of influence each
factor has on the target variable, facilitating subsequent ranking and selection processes [45].
Compared to other decision-making methods, GRA exhibits clear advantages in handling
uncertainty and fuzziness in MCDM processes [40]. In this study, the visual imagery
investigation of the AR dashboard is evaluated based on the driver’s perception, and
human subjective judgment is subjective and fuzzy, so it is particularly suitable for using
the GRA analysis method. In practical applications, GRA has been widely employed in
decision-making problems across various fields, such as engineering, management, and
design. Its outstanding flexibility and effectiveness have been well demonstrated [46–48].

In addition, when conducting MCDM, we need to consider the weight value of each
factor to achieve a more accurate and reliable assessment [49]. Specifically, when using GRA
for decision making, weighted GRA is the optimal choice [40]. The fuzzy analytic hierarchy
process (FAHP) [50] is a weight calculation method that combines fuzzy theory [51] and
the analytic hierarchy process [52]. Because of the characteristics of human thinking
and cognitive patterns in the actual decision-making process, the quantitative numerical
approach may not accurately reflect the cognitive preferences of the decision maker [53]. If
cognitive preferences are expressed through fuzzy semantic variables, they can provide a
more flexible way of judgment [54]. Therefore, combining the FAHP and GRA methods
can solve the standardized weighting problem inherent in the GRA model and promote
the accuracy and science of MCDM assessment [55]. Additionally, the characteristics and
advantages of these methods in MCDM have already been discussed earlier, and the FAHP-
GRA method will be applied in the Kansei engineering process to construct and analyze
relational models, providing decision support and design guidance for the visual imagery
of in-vehicle AR dashboards.

2.4. Research Objectives

Interface evaluation is a typical MCDM problem. Additionally, the influence of HMI
on drivers’ subjective preferences is complex and ambiguous. Therefore, this study employs
a variety of rigorous analytical methods to conduct a comprehensive assessment of AR
dashboard information design types. These methods include Kansei engineering, factor
analysis, fuzzy theory, AHP, GRA, and factorial experiments. This study utilizes these
objective research methods to review user perceptions and preferences regarding existing
AR dashboard design types and conducts a design of experiments study on the main color,
visual effects, and dial styling of AR dashboards. The objectives of this study are as follows:

1. To establish evaluation dimensions and indicator weights for the visual imagery of
AR dashboards.

2. To rank the optimal design solutions for AR dashboards based on the visual imagery
evaluation dimensions.

3. To investigate the effects of three independent variables—main color, visual effects,
and dial styling—on drivers’ preferences.

4. To discuss the cross-validation results between drivers’ subjective evaluations and
their visual imagery assessments of AR dashboards.

3. Methodological Procedures

The evaluation process for the AR dashboard HMI in this study is illustrated in Figure 1.
Next, we will provide a detailed description of the three stages of Kansei engineering.
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Figure 1. Assessment architecture diagram of this study.

3.1. Phase 1: Selection and Expansion of Visual Imagery

The researchers collected 335 samples of dashboard interface design pictures and in-
vited 12 in-vehicle HMI design experts to systematically analyze and discuss these picture
samples. Among them were three user interface design experts, three user experience
experts, three human factors researchers, and three product managers. Based on the discus-
sion results of the in-vehicle HMI design experts, the researchers carried out the factorial
experiment planning and HMI design for the AR dashboard. After systematic analysis,
the main color, visual effect, and dial styling of the AR dashboard will be used as the
independent variables in the factorial experiment. Previous studies have also indicated
that the color and shape of a product are major factors influencing users’ emotional re-
sponses [56,57]. The visual effects and dial styling in this study are key aspects of the
AR dashboard’s shape, making them highly relevant for studying the visual imagery of
automotive dashboards. The main color and visual effect are a within-subjects factor, while
the styling of the dial is a between-subjects factor; the main color is divided into three
levels: blue (H:200, S:100, B:100), green (H:120, S:100, B:100), and yellow (H:60, S:100, B:100);
the visual effect is divided into three levels: plane, vertical 3D, and horizontal 3D; and
the styling of the dial is divided into two levels: round and unconventionally shaped.
In a usability study of speedometers, Francois and Crave [58] noted that combination
dials outperformed both analog and digital dials in the tasks of reading information and
detecting dynamic speed changes. A combination dial is a design that uses both numeric
and indicator elements to convey speed information. Therefore, we redesigned the AR
dashboard interface of the SEV based on the speedometer design guidelines proposed by
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Francois and Crave [58]. The SEV-AR dashboard interface information in this experiment
mainly consists of the speedometer and the power-to-weight ratio (PWR) dial. In designing
the AR dashboard interface, we adhered to Nielsen’s principles of consistency, aesthetics,
and minimalism [59]. The specific design proposal is shown in Figure 2. Based on the
different levels of the three independent variables, we developed 18 AR dashboard interface
design proposals. For example, the first design in the first row (Proposal 1) of Figure 2
features a blue planar and round dial.

Figure 2. Design proposal for 18 AR dashboards.

The design proposals were formatted in a 12.3-inch (292.528mm × 109.698mm) format,
and these designs were displayed on the liquid-crystal display. The evaluation task was
carried out in a laboratory environment. We strictly followed the driver sight distance
criterion proposed by Dreyfuss and Associates [60], where participants were asked to sit
at a distance of 550 mm from the sight distance of the dashboard screen. While observing
the design proposals, participants were able to swipe left and right to view each design
proposal while completing the scale questionnaire. The scoring was on a 7-point Likert
scale (1 for very low, 4 for average, 7 for very high). Figure 3 illustrates the process by
which participants switched between different design schemes during the experiment.
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Figure 3. Schematic diagram of design proposal switching.

3.2. Phase 2: Selection and Expansion of Adjectives

Visual imagery adjectives can effectively respond to the user’s mental feelings [28].
For instance, shapes and colors within visual imagery can have different impacts on users’
psychological responses [56]. One of the key tasks for designers is to evoke specific emo-
tional responses from users by manipulating visual imagery elements such as shapes and
colors [57]. Therefore, controlling the visual imagery of AR dashboards is a critical method
for designers to convey information to drivers and elicit emotional responses. At this stage,
we first collected many adjectives related to the visual imagery of the dashboard from auto-
motive portals, design resource websites, and the relevant research literature. For example,
we extracted adjectives from user reviews of dashboard HMIs on automotive portals and
design resource websites. Subsequently, after expert focus group discussions, adjectives
unsuitable for describing the in-vehicle HMI were eliminated, leaving 130 adjectives for sub-
sequent experiments. In the following study phase, we invited 12 designers and researchers
related to the vehicle HMI to participate in the experiment. The participants were asked to
select 40 to 50 adjectives from the aforementioned 130 that best describe the AR dashboard
interface. Finally, the researchers selected the 40 most recognized adjectives based on the
frequency of votes cast by the participants for the study of the factor analysis scale.

Factor analysis is a statistical method that uses a system of indicators to analyze or mea-
sure the extent to which multiple factors have an impression on an objective phenomenon [61].
Factor analysis is the most used analysis method in Kansei engineering, which can extract key
perceptual factors from a large number of sensibility words, and these factors can be used to
guide the subsequent design. Recently, many scholars have demonstrated that factor analysis
is a scientific and reliable method for studying visual imagery [24,28,62]. Therefore, we used
factor analysis in this phase to extract imagery adjectives for the AR dashboard interface.
Specifically, participants were invited to experience the AR dashboard design sample from
Phase 1 and then asked to evaluate 40 imagery adjectives using a 5-point Likert scale (1 for
very inappropriate, 3 for average, 5 for very appropriate). The collected data will be factor
analyzed to extract the adjectives that match the AR dashboard interface.

3.3. Phase 3a: Relationship Modeling—Fuzzy Analytic Hierarchy Process (FAHP) to Determine
Visual Imagery Evaluation Dimension Weights

In this stage, FAHP weights are calculated for the adjectives (assessment dimensions)
derived from the factor analysis, and the specific calculation steps are as follows.
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Step 1: Perform a pairwise comparison of the assessment dimensions.
This study will invite user interface designers, user experience designers, and product

managers to form an evaluation team to compare the importance of visual image dimen-
sions in pairs. The measurement scale uses a semantic scale with a 1–9 level pairwise
comparison [52], which is then converted into a triangular fuzzy number [50,63], as shown
in Table 1 and Figure 4.

Table 1. Triangular fuzzy conversion scale.

Linguistic Scale AHP Scale
Triangular Fuzzy Number Scale

Left Endpoint Middle Value Right Endpoint

Equal importance 1 1 1 3
Slight importance 3 1 3 5

Important 5 3 5 7
Strong importance 7 5 7 9

Extreme importance 9 7 9 9
Slight unimportance 1/3 1/5 1/3 1

Unimportant 1/5 1/7 1/5 1/3
Strong unimportance 1/7 1/9 1/7 1/5

Extreme unimportance 1/9 1/9 1/9 1/7

Figure 4. Linguistic variables describing weights of the FAHP.

Step 2: Create a pairwise comparison matrix.
The values of the pairwise comparison results of n image adjective dimensions are

placed in the upper triangular part of the pairwise comparison matrix A, and the lower
triangular part is the reciprocal of the relative position, that is, aji = 1/aij. Matrix A can be
expressed as follows:

A =

⎡
⎢⎢⎢⎢⎣

1 a12 · · · a1n
1

a12
1 · · · a2n

...
1

a1n

...
1

a2n

. . .
· · ·

...
1

⎤
⎥⎥⎥⎥⎦ (1)

Step 3: Calculate the maximum eigenvalue and conduct consistency identification.

Wi =
n

√
n

∏
i=1

Aij (2)

Wi = Wi/
n

∑
i=1

Wi (3)

Next, the maximum eigenvalue λmax is found based on Wi and the comparison matrix
A, as shown in Formula (4). Finally, find the random consistency ratio CR required in this
step. When the CR value is not greater than 0.1, the importance matrix has satisfactory
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consistency. CI is the consistency index, and RI is the average random consistency index.
The value range of the RI is visible in Table 2.

λmax =
1
n

/
n

∑
i=1

(AW)i
Wi

(4)

CI =
λmax − n

n − 1
(5)

CR = CI/RI (6)

Table 2. Value of random indexes (RI).

Matrix Size (n) 3 4 5 6 7

RI value 0.58 0.90 1.12 1.24 1.32

Step 4: Convert the original scores into triangular fuzzy numbers and establish a fuzzy
pairwise comparison matrix.

After passing the consistency test, each internal value of the pairwise comparison

matrix A is converted into a triangular fuzzy number
∼
Mij, and a fuzzy pairwise comparison

matrix M is established. That is,
∼
Mij =

(
Lij, Mij, Rij

)
, the fuzzy number of the evaluation

dimension i is relative to the evaluation dimension j, and the lower triangular part of the

matrix M is
∼
Mji = 1/

∼
Mij. The matrix M can be expressed as follows:

M =

[ ∼
Mji

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1, 1, 1
∼
M12 = (L12, M12, R12) · · · ∼

M1j =
(

L1j, M1j, R1j
)

∼
M21 = 1/

∼
M12 1, 1, 1 · · · ∼

M2j =
(

L2j, M2j, R2j
)

...
∼
Mj1 = 1/

∼
M1j

...
∼
Mj2 = 1/

∼
M2j

. . .
· · ·

...
1, 1, 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

Step 5: Calculate triangular fuzzy numbers and fuzzy weights.
Perform a geometric mean operation on the values in the fuzzy pairwise comparison ma-

trix M to obtain the geometric mean triangular fuzzy number M̀ =
(

L̀i, M̀i, R̀i
)

in each column
of each evaluation dimension, and then add up the geometric mean triangular fuzzy numbers
in each column. At the same time, to ensure that the left boundary value of the triangular
fuzzyweight issmaller than the right boundary value, the summed triangular fuzzy number
needs to be reciprocally converted. That is, `̀M =

(
`̀
iL, `̀

iM, `̀
iR
)
=
(

1/ `̀
iR, 1/ `̀

iM, 1/ `̀
iL,
)

. Fi-

nally, the triangular blur weight
∼

Wi =
(

1/ `̀
iRLi, 1/ `̀

iMMi, 1/ `̀
iLRi

)
is calculated. The weight

calculation methods of the FAHP and AHP are similar and can be deduced concerning
Formulas (2) and (3), which will not be described again.

Step 6: Defuzzification and normalization.

Defuzzification is performed on the obtained triangular fuzzy weight
∼

Wi, which is,
converted into a real value DWi. In addition, normalization needs to be performed again
to make the sum of the importance of each evaluation dimension equal to 1. Finally, the
fuzzy weight value DẀi of each element is obtained. Assuming the triangular fuzzy weight
∼

Wi = (WLi, WMi, WRi), the defuzzification and normalization formulas are as follows:

DWi =
(WRi − WLi) + (WMi − WLi)

3
+ WLi (8)
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DẀi =
DWi

∑n
i=1 DWi

(9)

3.4. Phase 3b: Relationship Modeling—Evaluating Visual Imagery Using FAHP-GRA

In this stage, a second user questionnaire was constructed based on the design pro-
posals and adjectives derived from Phases 1 and 2, thereby measuring the driver’s visual
image evaluation of the AR instrument panel design proposal. The questionnaire adopts
a 7-point Likert scale (1 for very low, 4 for medium, and 7 for very high). Subsequently,
the questionnaire data were calculated by FAHP-GRA to obtain the scores of each AR
dashboard design proposal. The calculation steps of FAHP-GRA are as follows.

Step 1: Construct reference and comparison sequences.
Based on the final scores of the 18 AR dashboards, the optimal value in each evaluation

dimension is selected as the reference sequence C0. At the same time, the scores of the 18
AR dashboards will be used as the comparison sequences C1, C2, C3, . . ., C18.

Step 2: Perform non-dimensionalization.
Although all assessment dimensions use a 7-point Likert scale, differences in the result-

ing data range may lead to numerical instability or calculation accuracy issues. Therefore,
the non-dimensionalization of reference and comparison sequences is required to improve
the stability of data calculations.

Xi(k) =
Ci(k)

Ck
(10)

Among them, Ck = 1/(n + 1)∑n
i=0 Ci(k), k = 1, 2, . . . , m.

Step 3: Determine the optimal value range of the distinguishing coefficient ρ.
Before performing the gray correlation calculation, the distinguishing coefficient ρ

value must be determined. The value range of ρ is (0, 1). Usually, ρ = 0.5 is taken. However,
since the distinguishing coefficient will affect the arrangement of related sequences, we
should not simply apply ρ = 0.5 or other values. Necessary calculations need to be performed
to determine the ρ value [64]. Therefore, this step adopts the calculation formula for the
value range of the distinguishing coefficient ρ proposed by Guo and Guo [65] as follows:

ρ1 = 0i(k)
max

· 1
e − 1

(11)

ρ2 = (e − 1)·ρ1 (12)

For this gray relational system, the distinguishing coefficient value is optimal between
[ρ1, ρ2].

Step 4: Calculate the grey relational degree of each sequence.
After determining the ρ value, the grey relational degree can be calculated [66]. The

formula is as follows:

ξ(i)(k) =
min

i
min

k

∣∣∣∣X(0)(k)− X(i)(k)
∣∣∣+ ρ max

i
max

k

∣∣∣X(0)(k)− X(i)(k)
∣∣∣∣∣X(0)(k)− X(i)(k)

∣∣+ ρ max
i

max
k

∣∣X(0)(k)− X(i)(k)
∣∣ (13)

Step 5: Calculate the weighting grey relational degree.
To compare different AR dashboard design proposals more scientifically and compre-

hensively, it is necessary to integrate the weight values and grey relational degree of each
evaluation dimension [67]. Let the grey relational degree of each design proposal be γi,
and its formula is as follows:

γ(i) =
n

∑
k=1

Wi·γ(i)(k) (14)
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When the γi value is larger, it indicates that the visual image of the AR dashboard
design proposal is better.

4. Analysis and Results

4.1. Visual Imagery Adjective Extraction Results

After referring to the HMI design of AR dashboards, the expert team sifted and sorted
out the 40 most common adjectives for evaluating AR dashboard interfaces from 130
imagery adjectives, which are all positive (see Table 3).

Table 3. Forty most common adjectives for visual imagery.

Visual Imagery
Adjectives

Detailed Dynamic Rich Concise Vivid
Responsive Cool Intelligent Technological Immersive
Innovative Secure Efficient Futuristic Aesthetic

Unique Stunning Abstract Visual Premium
Reliable Smooth Gorgeous Personalized Attractive

Harmonious Natural Interesting Diverse Practical
Orderly Dreamlike Clear Sleek Intuitive

Trustworthy Grand Rhythmic Fresh Agile

Next, we combined 40 adjectives with 18 AR dashboard HMI design proposals. Using
purposive sampling, a total of 140 questionnaires were collected. All participants were
required to have a driver’s license and possess certain driving information recognition
capabilities. In the end, 123 valid questionnaires were obtained, 60 from males and 63 from
females, with and an average age of 28.61 (SD = 5.46). Subsequently, we conducted the first
factor analysis on the questionnaire data and a second factor analysis on the 23 adjectives
with factor loadings greater than 0.6 (see Table 4).

Table 4. The 23 adjectives with factor loadings higher than 0.6.

Adjectives Initial Extraction Adjectives Initial Extraction

Premium 1.000 0.803 Efficient 1.000 0.722
Natural 1.000 0.762 Reliable 1.000 0.715
Unique 1.000 0.758 Intelligent 1.000 0.706

Aesthetic 1.000 0.758 Trustworthy 1.000 0.704
Attractive 1.000 0.751 Concise 1.000 0.701

Personalized 1.000 0.741 Diverse 1.000 0.699
Dreamlike 1.000 0.738 Stunning 1.000 0.679

Visual 1.000 0.736 Interesting 1.000 0.677
Smooth 1.000 0.735 Responsive 1.000 0.661

Gorgeous 1.000 0.734 Innovative 1.000 0.646
Technological 1.000 0.728 Rich 1.000 0.605

Clear 1.000 0.726
Extraction method: principal component analysis.

As shown in Table 5, after the second factor analysis, KMO = 0.896, Bartlett = 1949.631,
and p < 0.001 (df = 253), indicating a statistically significant difference. This result suggests
that the correlation matrices in the original group have common factors and are suitable for
factor analysis.

In addition, according to the principal component method and the eigenvalue prin-
ciple, there are five factors with an eigenvalue greater than 1, and their total explained
variance is 71.675% (see Table 6). Generally speaking, a value higher than 70% indicates a
good level of explanation. Therefore, five groups of similar factors were extracted at this
stage, as shown in Figure 5.
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Table 5. The KMO and Bartlett test results.

Visual Imagery Adjectives

Kaiser Meyer Olkin 0.896
Bartlett’s Sphericity Test Approximate Chi-Squared 1949.631

df 253
p <0.001 ***

* Significantly different at α = 0.05 level (p < 0.05). ** Significantly different at α = 0.01 level (p < 0.01).
*** Significantly different at α = 0.001 level (p < 0.001).

Table 6. Total variance explained.

Component
Initial Eigenvalues Squares Loading Extraction Transformed Squares Loading

Total Variance (%) Accumulative (%) Total Variance (%) Accumulative (%) Total Variance (%) Accumulative (%)

1 10.313 44.837 44.837 10.313 44.837 44.837 6.103 26.533 26.533
2 2.573 11.189 56.026 2.573 11.189 56.026 3.353 14.579 41.112
3 1.301 5.657 61.683 1.301 5.657 61.683 2.801 12.180 53.292
4 1.186 5.158 66.840 1.186 5.158 66.840 2.500 10.868 64.160
5 1.112 4.834 71.675 1.112 4.834 71.675 1.728 7.515 71.675

Figure 5. The scree plot of eigenvalues and the number of factors.

In Table 7, the difference between each adjective in the five components is obvious,
and it does not overwhelm multiple components. Moreover, the loadings of the factors are
all higher than the excellent standard of 0.6, indicating that these adjectives have very high
structural validity for evaluating the design of the AR dashboard HMI.

Table 7. The transformed component matrices.

Adjectives Component

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Unique 0.841 0.157 0.132 0.022 0.093
Dreamlike 0.829 0.097 0.070 0.139 0.129
Gorgeous 0.781 0.198 −0.060 0.279 0.058
Innovative 0.767 0.161 0.136 0.032 0.110

Diverse 0.755 0.228 0.184 0.200 0.054
Stunning 0.751 0.200 0.028 0.195 0.190

Personalized 0.738 0.376 0.189 0.126 0.056
Interesting 0.704 0.356 0.046 0.057 0.222

Rich 0.612 0.309 0.195 0.312 0.012
Premium 0.260 0.755 0.054 0.320 0.248
Aesthetic 0.269 0.701 0.157 0.330 0.246
Attractive 0.312 0.698 0.236 0.322 0.084

Technological 0.403 0.692 0.262 −0.133 −0.018
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Table 7. Cont.

Adjectives Component

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Intelligent 0.428 0.673 0.225 0.117 0.069
Visual 0.118 0.334 0.774 0.056 −0.090

Efficient 0.212 0.078 0.740 0.315 0.157
Clear 0.201 0.098 0.730 0.370 0.084

Concise −0.053 0.155 0.716 0.029 0.400
Trustworthy 0.047 0.227 0.285 0.743 0.132
Responsive 0.329 0.205 0.078 0.709 −0.049

Reliable 0.254 0.085 0.310 0.672 0.310
Natural 0.264 0.101 0.103 0.021 0.819
Smooth 0.175 0.238 0.242 0.339 0.689

Extraction method: principal component analysis. Transformed method: Kaiser normalized maximum
variance method.

After factor analysis, twenty-three adjectives in five groups were obtained in this stage.
Since the adjectives in each group are related, we invited language and literature experts to
rename each group. The results are shown in Table 8. These results created five basic visual
image evaluation dimensions for the next stage of research.

Table 8. Renamed adjectives and their codes.

Factor Adjective Groups Factor Renaming Code

1
Unique, Dreamlike, Gorgeous,
Innovative, Diverse, Stunning,
Personalized, Interesting, Rich

Novel and Splendid N&S

2 Premium, Aesthetic, Attractive,
Technological, Intelligent Technological and Aesthetic T&A

3 Visual, Efficient, Clear, Concise Visible and Concise V&C
4 Trustworthy, Responsive, Reliable Agile and Reliable A&R
5 Natural, Smooth Smooth and Natural S&N

4.2. Visual Imagery Weighting Results

At this stage, 12 experts were invited to rate important pairs of evaluation dimensions.
Experts include in-vehicle HMI user interface (UI) designers, user experience (UE) design-
ers, ergonomics researchers (ERs), and product managers (PMs). Next, we performed an
AHP weight calculation (referring to Formulas (2) and (3)) and a consistency test (referring
to Formulas (4), (5), and (6)) with the ratings of the 12 experts.

In Table 9, the CR values of all expert ratings are less than 0.1; that is, the weight matrix
of each expert has satisfactory consistency. Therefore, the importance of weight calculation,
defuzzification (refer to Formula (8)), and regularization (refer to Formula (9)) of the FAHP
are performed again, and the results are shown in Table 10.

Table 9. AHP weights and consistency test results of experts.

Expert Code N&S T&A V&C A&R S&N CI CR

UI 1 0.049 0.100 0.443 0.193 0.214 0.050 0.045
UI 2 0.050 0.050 0.367 0.379 0.155 0.070 0.063
UI 3 0.056 0.485 0.255 0.107 0.097 0.086 0.076
UE 1 0.043 0.071 0.057 0.335 0.494 0.076 0.068
UE 2 0.073 0.061 0.172 0.394 0.300 0.062 0.055
UE 3 0.055 0.173 0.239 0.318 0.216 0.039 0.035
ER 1 0.039 0.094 0.567 0.216 0.084 0.071 0.064
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Table 9. Cont.

Expert Code N&S T&A V&C A&R S&N CI CR

ER 2 0.046 0.078 0.228 0.206 0.441 0.072 0.064
ER 3 0.129 0.245 0.499 0.083 0.045 0.069 0.062
PM 1 0.037 0.171 0.439 0.182 0.171 0.026 0.024
PM 2 0.112 0.192 0.192 0.239 0.265 0.081 0.072
PM 3 0.046 0.079 0.166 0.355 0.355 0.060 0.053

Table 10. FAHP weights of experts.

Expert Code N&S T&A V&C A&R S&N

UI 1 0.055 0.123 0.403 0.218 0.201
UI 2 0.056 0.048 0.389 0.341 0.166
UI 3 0.071 0.449 0.264 0.126 0.090
UX 1 0.052 0.078 0.050 0.343 0.477
UX 2 0.092 0.059 0.191 0.395 0.264
UX 3 0.062 0.217 0.252 0.302 0.168
ER 1 0.046 0.116 0.536 0.217 0.085
ER 2 0.050 0.084 0.257 0.198 0.411
ER 3 0.137 0.254 0.460 0.097 0.052
PM 1 0.036 0.213 0.408 0.191 0.153
PM 2 0.145 0.231 0.195 0.221 0.208
PM 3 0.050 0.085 0.187 0.366 0.312

Geometric mean 0.065 0.132 0.260 0.232 0.180
Normalized weight 0.074 0.152 0.299 0.268 0.207

The results show that the weight of novel and splendid (N&S) is 0.074, technological
and aesthetic (T&A) is 0.152, visible and concise (V&C) is 0.299, agile and reliable (A&R) is
0.268, and smooth and natural (S&N) is 0.207.

4.3. FAHP-GRA Calculation Results

At this stage, 100 drivers (60 males and 40 females) were invited to evaluate the five
dimensions of N&S, T&A, V&C, A&R, and S&N of 18 AR instrument panels. Their average
age was 29.76 years (SD = 5.03). The evaluation score results are processed according to
the average, and the AR dashboard design solution’s performance value and comparison
sequence are obtained (see Table 11).

Table 11 shows the reference sequence C0 =
[
5.220 5.260 5.380 4.820 4.980

]
of

the AR dashboard and the comparison sequence from Proposals 1 to 18. First, we performed
non-dimensionalization processing on the reference and comparison sequences according
to Formula (10). Next, we calculated the values of the distinguishing coefficients ρ1 and ρ2
according to Formulas (11) and (12). The results show that the distinguishing coefficient is
optimal between 0.300 and 0.516. In this study, the ρ value takes the intermediate value of
0.4 for subsequent calculations. Finally, we calculated the gray relational degree of each
proposal according to Formula (13). We substituted its gray relational degree and the FAHP
results into Formula (14) to obtain the overall relational degree γi (see Table 12).

The closer the value of γi is to 1, the closer the proposal is to the ideal proposal
(reference sequence). In Table 12, the blue planar and unconventional-shaped dial design
(Proposal 10) has the closest value of γi to 1 (γ10 = 0.863). Therefore, this proposal is the
best AR dashboard design.
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Table 11. Performance scores of 18 proposals.

Proposal Codes N&S T&A V&C A&R S&N

Proposal 1 4.380 4.500 5.380 4.800 4.980
Proposal 2 5.220 5.260 4.840 4.600 4.740
Proposal 3 4.740 4.580 4.700 4.580 4.480
Proposal 4 4.380 4.300 4.600 4.420 4.460
Proposal 5 4.460 4.420 4.340 4.280 4.420
Proposal 6 4.260 4.220 4.160 4.060 4.060
Proposal 7 3.900 3.880 4.040 3.840 3.840
Proposal 8 4.080 3.920 3.860 3.880 3.900
Proposal 9 3.860 3.840 3.960 3.940 3.920
Proposal 10 4.400 4.680 5.340 4.820 4.980
Proposal 11 4.820 4.820 4.440 4.220 4.260
Proposal 12 4.900 4.780 4.800 4.440 4.460
Proposal 13 4.300 4.280 4.760 4.480 4.560
Proposal 14 4.440 4.280 4.340 4.180 4.100
Proposal 15 4.840 4.640 4.620 4.400 4.280
Proposal 16 4.160 4.000 4.520 4.120 4.140
Proposal 17 4.220 4.060 3.920 3.740 3.580
Proposal 18 4.360 4.120 4.360 3.860 4.040

Table 12. Weighted relational degree of each proposal.

Proposal Codes N&S T&A V&C A&R S&N γi Sequence

Proposal 1 0.031 0.066 0.299 0.259 0.207 0.862 2
Proposal 2 0.074 0.152 0.158 0.194 0.146 0.725 3
Proposal 3 0.041 0.071 0.141 0.189 0.111 0.553 5
Proposal 4 0.031 0.058 0.131 0.158 0.109 0.487 8
Proposal 5 0.033 0.063 0.110 0.138 0.105 0.449 10
Proposal 6 0.028 0.055 0.099 0.115 0.080 0.378 13
Proposal 7 0.023 0.046 0.093 0.099 0.070 0.331 17
Proposal 8 0.025 0.046 0.085 0.102 0.072 0.331 16
Proposal 9 0.023 0.045 0.090 0.106 0.073 0.336 15

Proposal 10 0.031 0.077 0.281 0.268 0.207 0.863 1
Proposal 11 0.044 0.087 0.117 0.131 0.092 0.472 9
Proposal 12 0.048 0.084 0.153 0.161 0.109 0.556 4
Proposal 13 0.029 0.057 0.148 0.168 0.120 0.523 6
Proposal 14 0.032 0.057 0.110 0.127 0.082 0.409 11
Proposal 15 0.045 0.074 0.133 0.155 0.094 0.501 7
Proposal 16 0.027 0.048 0.124 0.121 0.085 0.404 12
Proposal 17 0.028 0.050 0.088 0.093 0.061 0.319 18
Proposal 18 0.030 0.052 0.112 0.100 0.079 0.373 14

4.4. Factorial Experiment Results

This experiment utilizes a 3 (main color) × 3 (visual effect) × 2 (dial styling) mixed
factorial design. During the experiment, drivers were asked to rate both the visual imagery
of the AR dashboard proposal and their subjective preferences. We conducted a three-
way ANOVA on the subjective preference outcome data. Additionally, LSD post hoc
test analysis was performed on statistically significant variables. It is worth noting that
during the ANOVA analysis of repeated measures data, it is necessary to first examine the
sphericity of the data [68]. In this study, Mauchly’s test of sphericity indicated a significant
difference (p < 0.05), and we applied the Greenhouse Geisser correction to adjust the degrees
of freedom [69,70]. The results are shown in Table 13.
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Table 13. The mixed factorial ANOVA results of subjective preference (after correction).

Source SS df MS F p η2 Post Hoc

Main color 100.287 1.704 58.847 30.710 <0.001 *** 0.239 Blue > Green > Yellow
Visual effect 0.507 1.819 0.279 0.154 0.838 0.002
Dial styling 4.551 1.000 4.551 0.549 0.461 0.006

Main color × visual effect 7.307 3.484 2.097 3.426 0.013 * 0.034
Main color × dial styling 5.016 1.704 2.943 1.536 0.220 0.015
Visual effect × dial styling 10.702 1.819 5.883 3.249 0.046 * 0.032
Main color × visual effect

× dial styling 1.711 3.484 0.491 0.802 0.509 0.008

* Significantly different at α = 0.05 level (p < 0.05). ** Significantly different at α = 0.01 level (p < 0.01).
*** Significantly different at α = 0.001 level (p < 0.001).

The main color has a significant main effect (F1.704,98 = 30.710, p < 0.001; η2 = 0.239).
Further analysis using the LSD post hoc test showed significant differences in subjective
preferences between blue (M = 4.587, SE = 0.096), green (M = 4.143, SE = 0.110), and
yellow (M = 3.770, SE = 0.131). The subjective preference for blue is significantly higher
than for green and yellow, while the subjective preference for green is also significantly
higher than for yellow. However, the main effect of visual effects was not significant
(F1.819,98 = 0.154, p = 0.838 > 0.05; η2 = 0.002). Similarly, dial styling has no significant main
effect (F1.000,98 = 0.549, p = 0.461 > 0.05; η2 = 0.006).

The interaction between the main color and the visual effect was significant (F3.484,98 = 3.426,
p = 0.013 < 0.05; η2 = 0.034). To test the differences between groups within a certain level of an
independent variable [71], we conducted a simple effects analysis. A simple effects analysis on
the main color reveals that only the visual effect of green is significantly different (see Figure 6).
Specifically, when the main color is green, the visual effect of vertical 3D is significantly worse
than that of flat and horizontal 3D.

Figure 6. The results of the simple effects analysis of the main color within the interaction between
the main color and visual effects. Error bars represent +1 SEM. (Notes: * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001).

Additionally, there is a significant interaction between visual effects and dial styling
(F1.819,98 = 3.249, p = 0.046 < 0.05; η2 = 0.032). In the simple effects analysis of dial styling, sig-
nificant differences were found in the visual effects of different dial styles. For round dials,
the visual effect of vertical 3D is significantly better than horizontal 3D. For unconventional-
shaped dials, the visual effect of horizontal 3D is significantly better than vertical 3D
(see Figure 7).

Overall, the main color (η2 = 0.239) has a greater impact on subjective preference than
dial styling (η2 = 0.006) and visual effects (η2 = 0.002). In comparison, dial styling impacts
subjective preference more than visual effects. According to the results of FAHP-GRA, the
top five design solutions are all blue, with the highest-ranked design solution being a blue
planar and unconventional-shaped dial design (Proposal 10).
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Figure 7. The results of the simple effects analysis of dial styling within the interaction between
visual effects and dial styling. Error bars represent +1 SEM. (Notes: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤
0.001).

5. Discussion

5.1. Discussion of the Results

This study discusses the effects of the main color, visual effect, and dial styling of
AR dashboards on drivers’ visual imagery evaluation and subjective preference. Previous
studies have shown that in in-vehicle AR user interfaces, blue, green, and yellow colors
exhibit superior robustness and response efficiency compared to other colors [72]. This
study further concluded through visual imagery experiments that among the main colors,
drivers prefer blue the most, followed by green, with yellow being the least preferred.
However, recent studies have shown that AR heads-up displays (HUDs) with green as the
main color have the shortest response time [12]. In addition, there are studies showing that
red, yellow, green, and orange perform better than other colors in terms of visual search
performance and cognitive efficiency [14]. These studies have inconsistent evaluation
results regarding dominant colors, possibly due to experimental factors such as display
technology [73], ambient illumination [13], and driving scenes [14]. For example, the
photophysical properties of blue luminescent materials are worse than those of other
colors [74], particularly in terms of luminous efficiency, maximum brightness, and the
working life of blue quantum dots [75]. In any case, previous research mostly focused
on the objective effectiveness of in-vehicle AR display technology and did not study the
impact of in-vehicle AR interface displays on the driver’s emotional experience. This
research has identified a new direction for the automotive AR interface display field. From
the dimensions of the driver’s emotional experience, blue is the best choice. Although
blue light display technology is more challenging to develop than other colors of light, we
recommend that automobile manufacturers and related technicians prioritize advancing
blue light display technology to meet the emotional needs of most drivers.

In addition, the interaction between visual effects and dial styling was significantly
different. This is similar to the results of Chen and Lu [76], which showed no significant
difference between round and unconventional-shaped (hexagonal) designs in balanced
aesthetics experiments, but there is a significant difference between vertical and horizontal
ellipse images. Our results indicate that there is a significant difference between the vertical
3D design of a circle and the horizontal 3D design of a round. The round vertical 3D
design was more popular among drivers, and the visual imagery of this proposal was rated
higher. Our study further revealed an interaction between round and unconventional-
shapes in terms of visual effect, where the vertical 3D design of unconventional-shapes
was significantly less preferred than the horizontal 3D design of unconventional-shapes.
Drivers preferred the unconventional-shaped horizontal 3D design more, and the visual
imagery of that proposal was rated higher. This finding complements Chen and Lu [76]’s
theory on the interaction between styling and visual effect in visual aesthetics. Research on
the emotional aspects of products suggests that emotional experiences will help increase
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product utilization and influence future purchase choices [77]. Therefore, in developing
in-vehicle AR dashboard HMIs, automobile manufacturers should pay attention to the
effects of the main color, visual effect, and dial styling on the driver’s emotional experience.

5.2. Methodological Contributions

One of the important innovations of this study is the combination of various MCDM
and Kansei engineering methods to evaluate the visual image of vehicle HMIs. The visual
image evaluation of vehicle HMIs is influenced by factors such as participants’ personal
preferences, culture, and knowledge level and exhibits typical gray system characteristics
and ambiguity [78]. Therefore, the decision-making method using FAHP-GRA is partic-
ularly suitable. Recently, Yunuo and Xia [44] confirmed in a study on vehicle-mounted
AR-HUD that AHP-GRA is more reliable than entropy weights TOPSIS in determining
weights. Although the study by Yunuo and Xia [44] described the implementation of
AHP-GRA in HMIs in great detail, it did not use the methods of Kansei engineering and
factor analysis to construct evaluation indicators, which may affect the objectivity of the
program. In previous research, we made a preliminary attempt to apply AHP-GRA in the
usability evaluation of application programming interfaces and determined the feasibility
of this method in the HMI field through a triangulation model [79]. This study further
combines fuzzy system theory with the AHP-GRA method and introduces the research
method of Kansei engineering to conduct visual image research on vehicle-mounted AR
instrument panels. Additionally, we conducted interactive verification of the subjective
preference results and visual image assessment results through factorial experiments to
ensure the reliability of the MCDM results.

5.3. Limitations and Future Directions

Despite the rigorous examination conducted in this study, several limitations should be
considered. First, this research only explored the visual imagery of three variables within AR
dashboards. Future studies could expand to include more variables, such as the size, layout,
and brightness of elements in AR dashboards. Second, the participants in this study were
primarily drivers from the Chinese region, so caution should be exercised when generalizing
the findings to consumers in other countries or regions. Future research could involve a
comparative analysis of drivers from different countries or regions. Finally, the results of this
study have not yet been tested in real-world settings. Future research may need to conduct
usability tests and incorporate eye-tracking data and driving performance into the evaluation.

6. Conclusions

This study is highly innovative, both from a methodological perspective and within
the context of in-vehicle HMI research. Methodologically, this study integrates Kansei engi-
neering, fuzzy system theory, AHP, and GRA, proposing a subjective evaluation method
and process for assessing the visual imagery of in-vehicle HMIs. This approach helps
reduce the uncertainty in HMI design and effectively addresses the ambiguity inherent in
human factors. The FAHP results reveal that the dimensions affecting the visual imagery
evaluation of AR dashboards include novelty and splendor, technological and aesthetic
aspects, visibility and conciseness, agility and reliability, and smoothness and naturalness.
Among these dimensions, “visibility and conciseness” received the highest weight, while
“novelty and splendor” received the lowest. Further GRA analysis indicated that the design
featuring blue planar and unconventional-shaped dials (Proposal 10) was the optimal
choice based on visual imagery criteria. Conversely, the design with yellow vertical 3D
and unconventional-shaped dials (Proposal 17) was the least favored, a finding that was
corroborated by factorial experiments.

The factorial experiment results demonstrated that the main color of the AR dashboard
had the most significant impact on drivers’ subjective preferences. Blue was the most fa-
vored main color, followed by green, with yellow being the least favored. Avoiding vertical
3D visual effects in green AR dashboards is also recommended. The interaction between
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visual effects and dial styling in AR dashboards also requires special attention. In round
dials, drivers preferred vertical 3D effects more than horizontal 3D effects. Conversely,
horizontal 3D effects were more favored in unconventional-shaped dials than vertical 3D
effects. These findings provide scientific and detailed guidance for future SEV-AR dash-
board HMI designs, helping to enhance the in-vehicle user experience and, consequently,
improving SEV vehicles’ market competitiveness.
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Abstract: A robust biometric system is essential to mitigate various security threats. Electroen-
cephalography (EEG) brain signals present a promising alternative to other biometric traits due to
their sensitivity, non-duplicability, resistance to theft, and individual-specific dynamics. However,
existing EEG-based biometric systems employ deep neural networks, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), which face challenges such as high param-
eter complexity, limiting their practical application. Additionally, their ability to generalize across a
large number of subjects remains unclear. Moreover, they have been validated on datasets collected
in controlled environments, which do not accurately reflect real-world scenarios involving diverse
brain conditions. To overcome these challenges, we propose a lightweight neural network model,
GCT–EEGNet, which is based on the design ideas of a CNN model and incorporates an attention
mechanism to pay attention to the appropriate frequency bands for extracting discriminative features
relevant to the identity of a subject despite diverse brain conditions. First, a raw EEG signal is
decomposed into frequency bands and then passed to GCT–EEGNet for feature extraction, which
utilizes a gated channel transformation (GCT) layer to selectively emphasize informative features
from the relevant frequency bands. The extracted features were used for subject recognition through
a cosine similarity metric that measured the similarity between feature vectors of different EEG
trials to identify individuals. The proposed method was evaluated on a large dataset comprising
263 subjects. The experimental results demonstrated that the method achieved a correct recognition
rate (CRR) of 99.23% and an equal error rate (EER) of 0.0014, corroborating its robustness against
different brain conditions. The proposed model maintains low parameter complexity while keeping
the expressiveness of representations, even with unseen subjects.

Keywords: EEG brain signals; biometric recognition; convolutional neural network; deep learning

MSC: 68T07

1. Introduction

Identity recognition is crucial for verifying users and preventing imposters in various
biometric applications. Traditional methods such as cards, keys, and passwords are widely
used, but they are susceptible to loss or theft. Biometric traits such as fingerprints, iris
appearance, voice, and gait offer promising alternatives, though each has its limitations [1,2].
For instance, biometrics involving the eyes, fingers, or faces cannot be easily replaced
once compromised. To address these security concerns, EEG-based brain biometrics have
emerged as a viable solution [3]. The EEG has been extensively used in medicine to
assess brain health and in brain–computer interface systems, and is gaining acceptance
as a biometric method due to its user-friendliness, the availability of portable headsets,
and its non-invasive nature [4]. The EEG records electrical activity across the scalp using
electrodes, offering advantages such as cost-effectiveness, temporal precision, resistance to
theft, and the ability to verify live subjects. Each individual’s EEG is unique, exhibiting
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minimal intra-subject and significant inter-subject variability [5]. The primary challenge lies
in developing a reliable EEG-based recognition system that recognizes individuals despite
their brain activity variability. Numerous EEG-based biometric methods have evolved from
those based on hand-engineered features using conventional machine learning to more
advanced modern techniques such as convolutional neural networks (CNNs) [6–10] and
recurrent neural networks (RNNs) [11–14]. Traditional methods rely on hand-engineered
features, and they often preprocess EEG recordings to remove unwanted artifacts such as
power supply noise, eye blinking, or muscle activity [15]. After preprocessing, features are
extracted using methods such as auto-regressive (AR) models [16,17] and power spectral
density (PSD) [18–20]. They are often difficult to tune and time-consuming, and they
usually require expert knowledge. The designs of methods based on white-box models,
such as auto-regressive models, assume simple and linear relationships in the data, making
them less effective in capturing intricate patterns in EEG signals [4,21]. Therefore, simpler
models often miss essential details, whereas EEG signals vary between subjects and brain
states, and intricate patterns play a key role in discriminating subjects’ identities. In
contrast, a deep learning model automatically learns intricate patterns from the data
hierarchically, making it better suited to capture discriminative features relevant to the
identity of subjects from their EEG signals. There are many research works based on deep
learning for EEG-based recognition [6–14]. However, they are not generalizable because
their designs are based on small datasets that were collected during specific tasks with
fewer than 60 participants. This limits their applicability to real-world scenarios. Further
research is needed to improve the generalizability and applicability of EEG-based biometric
systems by developing task-independent feature extraction methods and ensuring low time
and space complexity in the model design. This study proposes a solution to tackle these
issues through a compact and efficient deep learning model that automatically captures
discriminative information for individual identification, thereby enhancing the system’s
usability and applicability in real-world scenarios. The key contributions of this research
include the following:

• A lightweight deep neural network model based on the design ideas of CNN models
and an attention mechanism to selectively focus on salient frequency bands for ex-
tracting discriminative features relevant to the identity of a subject from an EEG trial
under various brain conditions.

• A robust EEG-based system for identification and authentication that is agnostic to
various brain conditions, i.e., resting states, emotions, alcoholism, etc., and one that
uses a short EEG trial of one second to reveal or authenticate the identity of a subject.

• A thorough evaluation for validating the proposed EEG-based system using a large
dataset of 263 subjects who underwent EEG trials that were captured in various
brain states.

The remainder of this study is organized as follows: Section 2 presents an overview
of the existing works and Section 3 describes the proposed method. Section 4 explains
the evaluation method and Section 5 describes the detailed experiments with discussions.
Finally, the findings are summed up and future research is discussed in Section 6.

2. Related Work

The use of EEG-based biometrics has been explored since the 1980s, leveraging distinct
electrical activity patterns for individual identification [22]. Over the years, research efforts
have increasingly focused on extracting discriminative information from EEG recordings.
Maiorana [23] highlighted the effectiveness of deep learning techniques, particularly con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs), in extracting
unique features from various EEG representations and architectures. This section reviews
the current literature on deep learning methods for EEG biometrics, covering both identifi-
cation and verification approaches.

In the identification task, CNNs gained increasing attention due to their exceptional
feature learning and classification abilities. Das et al. [11] applied a CNN–LSTM model
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to identify 109 subjects from PhysioNet dataset, achieving 99.9 for eyes-closed (EC) and
98% for eyes-open (EO) tasks in trials of 12 s. Similarly, Jijomon and Vinod [12] developed
a CNN–LSTM model that was applied to a private dataset consisting of 20 subjects per-
forming auditory tasks (AEPs), reaching a 99.5% CRR with trials of 2 s. Wilaiprasitporn
et al. [14] also employed CNN–LSTM and CNN–GRU for 2D meshes on the DEAP dataset,
which involved 32 subjects performing emotion-related tasks, achieving a CRR of over 99%
with a 10 s trial length. Jin et al. [24] proposed the CTNN model, which was employed on a
private dataset of 20 subjects performing different brain tasks, achieving a CRR of 99.9%.

Different CNN-based models have also been used for verification tasks, such as
spatial–temporal convolutions [7], depth-wise separable convolutions [25], and Siamese
networks [9]. Chen et al. [7] used a CNN with global spatial and local temporal kernels
on multiple datasets with different brain tasks, achieving an EER of 2.94. Debie et al. [25]
applied a depth-wise separable convolution technique to a CNN on two public datasets
with fewer than 54 subjects, performing different kinds of tasks, achieving a false acceptance
rate (FAR) and false rejection rate (FRR) of less than 2%. In [13], a CNN–LSTM model was
applied to the PhysioNet dataset, achieving an EER of 0.41. Seha and Hatzinakos [10] used
3D tensors with a CNN encoder, and the features were classified using an SVM on a private
dataset of 13 subjects performing AEPs, achieving EERs between 3 and 7.5%.

Some previous methods treated identification and verification tasks as classification
problems, making them impractical in real-world applications. In contrast, other stud-
ies [26–28] treated these tasks as matching problems using CNNs and focusing on specific
protocols such as eyes-open (EO) and eyes-closed (EC) tasks or time-locked brain protocols
(e.g., event-related potentials, ERPs). Alsumari et al. [27] and Bidgoly et al. [26] used the
PhysioNet dataset, achieving correct recognition rates (CRRs) of 99.05% and 98.04%, with
error rates of 0.187 and 1.96, respectively. In [28], ERPs were extracted from two datasets
with 40 and 41 subjects, achieving CRRs of 95.63% and 99.92% and equal error rates (EERs)
of 1.37% and 0.14%, respectively.

Although EEG-based biometric systems have made great progress over the years,
research in this area still faces significant challenges. First, some methods [7,11,14,19,24]
stack layers to CNNs or apply an RNN on top of a CNN in an end-to-end model, leading
to parameter explosion as the number of subjects increases. To lower the number of
parameters, the recognition problem should be treated as a matching problem. Additionally,
most research works rely on private datasets or datasets with fewer than 100 subjects,
making them less generalizable. These systems often need repeated stimuli in controlled
environments, requiring subjects’ cooperation to create the same brain state each time,
which is not always possible because brain states are dynamic and not constantly at rest.
In addition, external factors such as fatigue, mood, and alcohol use are not considered in
many studies such that most research focuses on datasets such as PhysioNet, DEAP, and
private datasets, which are limited to specific tasks such as motor imagery (MI), visual
evoked potentials (VEPs), and auditory evoked potentials (AEPs).

Further, although some studies such as [11,14] achieved high accuracies, they used
long trial lengths of 10 and 12 s, respectively. Jijomon and Vinod [12] also achieved high
identification with only two electrodes, but their study involved a small number of subjects,
limiting its applicability to real-world scenarios. End-to-end models come with a high
cost in terms of time and space, as they need to be retrained every time a new subject
registers. With a large number of individuals, the number of parameters can grow rapidly.
While some techniques, such as depth-wise separable convolutions [24], help reduce spatial
complexity, the overall computational demands and the need to retrain models for new
subjects further limit their scalability. All these problems make the models less efficient for
real-time applications.

Despite advancements in EEG-based biometric systems, ensuring effective perfor-
mance in the presence of varying mental and physical activities remains a challenge, as
EEG signals are influenced by factors such as movement, artifacts, fatigue, and emotions.
These issues necessitate the development of a model that focuses on learning intricate
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intrinsic and discriminative features from EEG trials across diverse brain states, including
often neglected psychological factors such as fatigue. To address these issues, inspired by
the design of EEGNet [29] and the limitations of the existing deep models for EEG-based
recognition, we designed a model that incorporates depth-wise separable convolutions and
attention mechanisms to focus on the most important EEG features, improving accuracy
while reducing complexity.

3. The Proposed Method

We address the recognition problem using EEG brain signals as a biometric modality.
First, we define and formulate the problem. The challenging part of the solution to this
problem is the extraction of discriminative features from EEG signals. We present the
details of a lightweight deep neural network model for feature extraction from EEG trials.

3.1. Problem Specification and Formulation

In biometric recognition, there are two primary tasks. Given an EEG trial (a query
trial) of a subject, the aim is to reveal (identification problem) or authenticate (verification
problem) the identity l of the subject. In the identification task, the system determines the
identity of an unknown subject by matching the query EEG trial x against the trials of
all subjects in the gallery set; this task is formulated as a one-to-many matching problem.
Identification can be with a closed set, where the trials of the query subject are known to be
in the gallery set, or an open set, where the query subject may not be in the gallery set; this
trial design is more challenging. In the verification task, the system verifies the claimed
identity of a subject by comparing the query EEG trial x with the EEG trials of the same
subject in the gallery set; this task is formulated as a one-to-one matching problem.

We represent an EEG trial or epoch as a matrix of size C × T, i.e., x ∈ RC×T, where C is
the number of channels used to capture the brain’s electrical activity over different locations
on the scalp, and T is the number of timestamps recorded within a fixed time interval. Let
X = {X1, X2, . . ., XN} be the collection of EEG trials acquired from N subjects, such that
Xi = {xi

1, xi
2, . . ., xi

n} is the set of trials from the ith subject; for simplicity, we write this as
Xi = {x1, x2, . . ., xni}. In addition, let L = {1, 2, . . ., N} be the set of subject labels/IDs, and
l ∈ L be the ID or label of the lth subject. Let V = {V1, V2, . . ., VN}, where Vi = {vi

1, vi
2,. . ., vi

n}
is the set of feature vectors extracted from the EEG trials x1, x2, . . ., xni corresponding to the
ith subject; for simplicity, we write this as Vi = {v1, v2, . . ., vni}. The crucial part of the design
of the recognition system is the extraction of discriminative features vi from EEG trials xi.
Inspired by the outstanding performance of deep learning models in automatic feature
learning in various applications and, specifically, EEG-based applications [6,7], we design
a lightweight deep model f for feature extraction in such a way that f (x; θ) = v, where x
is the input EEG trial, v is the feature vector extracted by f, and θ represents the learnable
parameters of f. The complexity of the model depends on the learnable parameters θ; f
must be designed so that this complexity is low to avoid overfitting.

For the design of an identification or verification system, we divide the available
data of each subject into query and gallery sets, Vq

i and Vg
i , respectively. Let vq and vg be

the feature vectors extracted from a query and a gallery trial, respectively, i.e., vq ∈ Vq
i

and vg ∈ Vg
i . We compute the matching score sq,g ∈ [0 1] of vq and vg using the metric

d
(
vq, vg

)
and let t be a predefined threshold. In case of an open-set identification problem,

let sq
i = max

{
0, sq,g

∣∣sq,g ≥ t, vg ∈ Vg
i

}
be the maximum matching score of the query

vector vq from each of the gallery vectors vg ∈ Vg
i of the ith subject. The predicted label

of the query trail xq is lq, where lq =
max

1 ≤ i ≤ N

{
sq

i

∣∣∣i = 1, 2, . . . , N
}

. If each sq
i is zero,

the subject does not exist. In case of verification, let sq
i = max

{
0, sq,g

∣∣sq,g ≥ t, vg ∈ Vg
i

}
be the maximum matching score of the query vector vq from each of the gallery vectors
vg ∈ Vg

i of the query subject. The attempt is genuine if sq
i �= 0; otherwise, it is an impostor.
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We examine metrics such as Euclidean, Manhattan, and cosine similarity to compute the
similarity between two trials.

3.2. Deep-Learning-Based Feature Extractor

This section presents the details of a lightweight and task-independent deep model,
GCT–EEGNet. Its architecture is inspired by EEGNet’s success and excellent generaliz-
ability in various BCI paradigms [29]. It is designed as a feature extractor f to extract
discriminative features relevant to the identity of a subject from their EEG trial x. Figure 1
provides an overview of the model architecture, and Table 1 gives its complete specification.
First, an EEG trial x is preprocessed using the mapping ψ1, which normalizes the trial
and then decomposes it into frequency sub-bands (rhythms) using the discrete wavelet
transform (DWT). Then, mapping ψ2 assigns weights to each rhythm according to its con-
tribution to learning discriminative features; it is implemented as an attention block that
helps to pay attention to the significant rhythms. It follows the mappings ψ3 and ψ4, which
learn low-level spectral–spatio–temporal features using temporal convolution (TConv),
depth-wise channel convolution (DCConv), and average pooling. Finally, the mapping ψ5
learns high-level spectral–spatio–temporal features using separable temporal convolution
(STCov) and global average pooling (GAP) blocks. The output of GAP is the feature vec-
tor (v) used for identification and verification. Mathematically, f is a composition of the
following five mappings:

f (x; θ) = ψ5 ◦ ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1(x) (1)

where θ = { θ2, θ3, θ4, θ5} and θ2, θ3, θ4, θ5 are learnable parameters of ψ2, ψ3, ψ4, and
ψ5, respectively. The details of each mapping are given in the following paragraphs. The
GCT–EEGNet is trained as an end-to-end classification model; for this purpose, an FC layer
with the softmax function is added after GAP during the training time. After training, the
classification layer is removed, and the model is used as a standalone feature extractor.

Figure 1. The architecture of the attention-based EEGNet model (GCT–EEGNet), where B is the
number of frequency bands, T is the time points, C is the number of channels of the EEG signal, α, β,
γ, θ, and δ are the alpha, beta, gamma, theta, and delta frequency bands, respectively. The TConv,
CConv, BN, and GAP represent temporal and channel convolutions, batch normalization, and global
average pooling layers, respectively, and v is the learned feature vector and l is the subject label.
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Table 1. The specifications of the architecture of GCT–EEGNet, where C and D are hyperparameters,
C is the number of channels, and D is a depth multiplier that specifies the number of spatial filters for
each feature channel of the input feature map.

Transformation
Mapping

Block Layers #Kernel/Size Output Options
Learnable

Parameters

Input - 32 × 128 0

ψ1 Preprocessing - 5 × 32 × 128 0

ψ2 GCT - 5 × 32 × 128 15

ψ3
Conv2D 64/1 × 64 64 × 32 × 128 Padding = same 20,480

BatchNorm - 64 × 32 × 128 512

ψ4

Depthwise Conv2D D × 64/C × 1 64 × 1 × 128

D = 1
C = 32

2048
BatchNorm - 64 × 1 × 128 512

GELU - 64 × 1 × 128 0
Average Pooling2D 1 × 4 64 × 1 × 32 0

Dropout 0.5 64 × 1 × 32 0

ψ5

Separable Conv. 128/1 × 16 128 × 1 × 32 9216
BatchNorm - 128 × 1 × 32 128

GELU - 128 × 1 × 32 0
Average Pooling 2D 1 × 8 128 × 1 × 4 0

Dropout 0.5 128 × 1 × 4 0
GAP Layer - 128 0

FC + Softmax - 236 30,444

Total Parameters 62,764

3.2.1. Data Preprocessing

An EEG trial x is preprocessed with the mapping ψ1, which is composed of the
following two functions:

ψ1(x) = F ◦ ℵ(x) (2)

where the function ℵ normalizes the input EEG trial x, and then the function F decomposes
it into rhythms. The function ℵ is defined using Z-score normalization [13] as follows:

x′c,t =
xc,t − μc

σc
, c = 1, 2, . . . , C = 1, 2, . . . , T (3)

where c, t, μc, and σc refer to the channel identifier, the signal value at a specific time point,
and the mean and standard deviation of the cth channel, respectively. Note that the function
is applied on each channel individually to address differences in the feature unit and scale
while improving the convergence speed. Instead of utilizing the entire frequency spectrum,
which is rarely employed in biometrics, specific frequency bands or rhythms known to be
more discriminative are used [30]. The study in [15] indicated that EEG bands below 50 Hz
have higher energy for biometric identification. Consequently, the function F decomposes
each EEG trial into frequency bands—delta (1–4 Hz), theta (4–8 Hz), alpha (8–16 Hz),
beta (16–32 Hz), and gamma (32–50 Hz)—to assess their significance in the recognition
process. Following a previous study [31], the function F is based on the DWT due to the
nonstationary rapid fluctuations in EEG [32]. The DWT with the fourth-order Daubechies
mother wavelet (db4) is used to decompose an EEG segment into the A5 (low-frequency)
and D1–D5 (high-frequency) bands, where A5 is the delta (δ) band, while D2 to D5 are
the theta (θ), alpha (α), beta (β), and low gamma (γ) bands, respectively. The choice of the
DWT, specifically the db4 wavelet, is well suited for EEG analysis because its morphology
is similar to that of EEG data [33,34]. Finally, the mapping ψ1 transforms the input EEG
trial x ∈ RC×T into a tensor a(1)εRB×C×T of B bands, C channels, and T time samples, as
depicted in Figure 1.
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3.2.2. GCT Attention Block

For subject recognition, not all brain rhythms and channels are equally important.
Therefore, identifying the most significant ones without extensive experiments is crucial. To
address this issue, we employ an attention mechanism using the GCT block with mapping
ψ2, which is a composition of the following mappings:

ψ2

(
a(1); θ2

)
= X4 ◦ X 3 ◦ X2 ◦ X1

(
a(1); η

)
(4)

where θ2 = {η, λ, ω} are learnable parameters of X1 and X3, respectively. The GCT [35] is
a simple and effective attention module that simulates channel interactions without extra
parameters. It helps prioritize and emphasize key rhythms and channels for the recognition
task. It consists of the following three main components: global context embedding, channel
normalization, and gating mechanism, as depicted in Figure 2.

Figure 2. Gate channel transformation (GCT) module, where B is the number of frequency bands, T
is the time points, C is the number of channels of the EEG signal, α, β, γ, θ, and δ are the alpha, beta,
gamma, theta, and delta frequency bands, respectively. η denotes the trainable embedding weights,
W represents the global context information, λ and ω represent the gating weights and biases, and κ

is the output of tanh function. Different colors in the output a(1) indicate the varying significance
assigned to each band.

Initially, global contextual information is captured by mapping X1 using the l2-norm
from the EEG trail a(1) ∈ RB×C×T as follows:

X1

(
a(1); η

)
= W = [w1, w2, . . . , wb]

t, Wε RB×1×1 (5)

wb = ηb

√√√√[ C

∑
i=1

T

∑
j=1

(
a(1) i,j

b

)2
]
+ ε , b = 1, 2, ..., B (6)

where W = [w 1, w2, . . . , wb]
t represents the globally collected contextual information

along each frequency band dimension b ∈ B, ε serves as a small constant to avoid the
derivation problem at zero, η denotes the trainable embedding weights for controlling
and emphasizing each frequency band’s significance, and C and T refer to the number
of channels and time points, respectively. Then, channel normalization (CN) is applied
using mapping X2 by normalizing each component wb of W, as shown in the following
Equation (7):

X2(W) = Ŵ = (ŵ1, ŵ2, . . . , ŵb)
t, Ŵε RB×1×1 (7)
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where

ŵb =

√
B . wb√(

∑B
b=1 w2

b
)
+ ε

(8)

and the scaler
√

B is used to adjust the scale of Ŵ = (ŵ1, ŵ2, . . . , ŵb). This adjustment helps
prevent ŵb from becoming too small when the number of frequency bands is large. Channel
normalization encourages channel interactions, whereas the l2-norm operates across chan-
nels. It permits larger responses for some frequency band coefficients and suppresses others
with smaller feedback. Finally, using the normalized vector Ŵ and the frequency bands
a(1), gating adaptation takes place using mappings X3 and X4, as shown in the following:

X3
(
Ŵ; λ, ω

)
= κ = tanh

(
λŴ + ω

)
, κ ε RB×1×1, (9)

a(2) = X4

(
a(1), κ

)
= a(1) ⊕ a(1) ⊗ κ ; a(2)ε RB×C×T (10)

where λ and ω represent the gating weights and biases that control the activation of features,
while a(1), a(2) denote input and output features for the gating mechanism module, respec-
tively. The gating mechanism boosts competition and cooperation between frequency bands
during the training process. To enhance feature extraction and classification performance,
we employed convolutional layers to extract both temporal and spatial features.

3.2.3. Temporal Convolution Block

This block is designed to capture time-dependent features within an EEG trial, enabling
the model to learn important temporal relationships that are crucial for distinguishing
between different subjects. It operates along the time axis via a standard 2D convolutional
layer ϕ1, transforming the tensor a(2)εRB×C×T into the tensor a(3)εRk1×C×T through the
mapping ψ3 as defined below:

ψ3

(
a(2); θ3

)
= BN ◦ ϕ1

(
a(2); θ3

)
(11)

where k1 is the number of kernels used for temporal convolution with a size of 1 × 64 to
detect the temporal features for each frequency band. In our experiments, we set k1 to 64.
To enhance neural network performance and achieve faster training convergence, each
convolutional layer is followed by a subsequent batch normalization (BN) layer [36].

3.2.4. Depth-Wise Channel Convolution Block

To reduce the model’s computational complexity while extracting spatial features, a
depth-wise channel convolution layer ϕ2 is applied. Similar to the approaches used in
Xception [37] and MobileNet [38], this layer applies a single filter per input channel, effec-
tively isolating channel-specific features without the overhead of traditional convolution
operations. Using ϕ2, the mapping ψ4 transforms a(3) into a(4)ε Rk2×1× T

4 as follows:

ψ4

(
a(3); θ4

)
= Pa ◦ g ◦ BN ◦ ϕ2

(
a(3); θ4

)
(12)

where k2 is the number of kernels, each of size C × 1, and C is the number of channels.
These kernels are applied along the spatial (channel) axis, enabling the network to learn
D spatial kernels, with each kernel being dedicated to a distinct feature map. The result
is an output feature map of an extended dimension D × k2. This approach provides the
following two key advantages: first, it serves as a spatial cross-channel feature learner,
enhancing the global feature extraction, especially in multi-channel EEG data. Second, it
reduces the number of learnable parameters, as this layer is not connected to all outputs
from the preceding layer. Then, it is followed by BN. Unlike the original EEGNet activa-
tion function g, which utilizes exponential linear units (ELUs), we employ the Gaussian
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error linear unit (GELU) [39], which was motivated by its success in vision transformers
(ViTs) [40]. It is applied in the second and third convolutional layers, combining the benefits
of dropout [41] and randomly removing neurons during the training process. To further re-
duce dimensionality, an average pooling layer Pa with a window of size 1 × 4 is employed
after the GELU layers. All convolution layers are applied with a stride of one.

3.2.5. Separable Temporal Convolution Block

Finally, the separable convolution layer ϕ3 integrates depth-wise and pointwise con-
volutions to decompose the convolution process further, thereby enabling the model to
process spatial and temporal features independently. This approach not only improves
the model’s ability to capture complex patterns in EEG data but also enhances its compu-
tational efficiency, leading to more robust and accurate classification output. Specifically,
this layer employs a 1 × 16 kernel to aggregate individual feature maps. Then, a pointwise
convolution with 128 kernels, each of size 1 × 1, is employed to combine these feature maps
optimally. This setup effectively exploits temporal and spatial features for individual recog-
nition. Employing ϕ3, the transformation map ψ5 that converts the tensor a(4)ε Rk2×1× T

4

into a(5)ε Rk2×1× T
4×8 is defined as follows:

ψ5

(
a(4); θ5

)
= Pg ◦ Pa ◦ g ◦ BN ◦ ϕ3

(
a(4); θ5

)
(13)

where BN, g, and Pa denote the batch normalization, GELU, and average pooling with a
window of size 1 × 8, respectively. Instead of incorporating a fully connected layer, which
would increase the model complexity, a GAP layer Pg is utilized, where Pg

(
a(5)
)
= v.

This serves later as a feature extraction layer. This GAP layer reduces feature dimensionality
and model parameters for efficient feature extraction. The resulting feature vector v is then
fed into a softmax classifier with N units, corresponding to the total number of subjects
that the model is trained on.

3.2.6. Training of GCT–EEGNet

The network was trained as an end-to-end model using a categorical cross-entropy
loss for 100 epochs with a batch size of 500. The AdamW optimizer [42] with its default
parameters was used for training. The training stopped if validation loss did not improve
for three consecutive epochs, and an early stopping technique [43] was employed to
prevent overfitting.

For model evaluation, a stratified 10-fold cross-validation was applied based on the
subjects. In each fold, the subjects were divided into the following two groups: 90% were
used for training, and the remaining 10% were used for testing. This format ensured that
each fold used distinct subjects for testing [44]. After training, the model was utilized as
a feature extractor, and the identification and authentication performances were assessed
using 10% of the subjects reserved for testing. All results are reported as the average
performance across folds.

4. Evaluation Protocol

This section first describes the datasets used to evaluate the proposed method. Then,
it provides an overview of the performance metrics used for evaluation. For evaluation,
10-fold cross-validation was used, as described in Section 3.2.6.

4.1. Datasets

To validate the generalization of the proposed model across diverse brain activations,
three publicly available EEG benchmark datasets were combined to create a larger dataset
with a large number of subjects—263 in total—encompassing diverse human states. The
EEG signals in each dataset were downsampled to 128 Hz, and the same channels were
selected from all datasets.
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The DEAP [45] was developed to analyze human affective states. It was recorded from
32 individuals using a BioSemi headset with 32 EEG channels placed on the skull based on
a 10–20 system and a 512 Hz sampling rate. The subjects watched 40 one-minute music
videos that corresponded to different emotional states, i.e., valence, arousal, dominance,
and liking. For a fair comparison, we used the preprocessed version.

Physionet motor/imagination [46] is a well-known and widely used EEG dataset
with 64 channels; 160 Hz EEG recordings were captured from 109 healthy subjects. The
international 10–10 system for the placement of electrodes was utilized. Each participant’s
EEG was recorded over 14 tests. One baseline run lasted one minute in both “eyes-open”
(EO) and “eyes-closed” (EC) conditions, and the last four minutes contained four mo-
tor/imagination (MI) activities.

The EEG UCI dataset was produced for alcoholism-related genetic studies and involves
recordings from 122 patients, including 45 controls and 77 alcoholics, with each completing
120 one-second trials. It was collected using a 10–20 system with 64 electrodes at 256 Hz;
subjects viewed black-and-white photos [47] for 300 ms, with a separation of 1.6 s. Subjects
were asked to determine if the two photos were identical.

The combined dataset (CD) integrated data from all subjects across the DEAP, UCI,
and PhysioNet datasets. Due to differences in EEG data collection equipment, 32 channels
of each EEG trial were selected according to the 10–20 electrode placement system (see
Figure 3). The EEG records were then segmented into non-overlapping one-second epochs
(EEG trials), resulting in EEG trials of 32 × 128, where 32 was the number of channels,
and 128 was the number of time samples. This dataset included EEG trials from a total
of 263 subjects, with each having different brain activations. Subjects were numbered
sequentially for training purposes, starting with those from DEAP, followed by PhysioNet
and then UCI.

Figure 3. Channel positions of all 64 electrodes (channels) using a 10–20 system where the highlighted
channels were used in experiments [24].

4.2. Performance Metrics

Commonly used metrics for identification and verification tasks were employed to
evaluate the efficacy of GCT–EEGNet. The study considered the correct recognition rate
(CRR) and cumulative match characteristic (CMC) curve for identification and the equal
error rate (EER) and detection error trade-off (DET) curve for verification. A lower EER
signifies a better performance in authentication scenarios.

5. Experimental Results and Discussion

This section presents the details of the experiments conducted to validate the perfor-
mance of the method and discusses the results obtained. All experiments were performed
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on a computer with 128 GB of RAM and an NVIDIA Quadro RTX 6000 GPU. The model
was implemented using Python v3.7,Pytorch Lightning v1.7, and torch v1.13.1.

5.1. Ablation Study

In this section, we discuss ablation experiments that were performed to assess the
impact of each model component using 10-fold cross-validation. Initially, for each fold, we
trained the model using all 32 channels and used 90% of the subjects for training; e.g., in
the DEAP dataset, 28 subjects were used for training, and the remaining 10% were used
for testing. We utilized the same hyperparameters in GCT–EEGNet that are common in
EEGNet [29], the baseline network, which was trained for 100 epochs per fold. The impacts
of various factors and hyperparameters on the performance of the model are shown in
Table 2. The model configuration that gave the highest average validation accuracy over
10-fold cross-validation on the datasets was considered for further improvement.

5.1.1. Input Configuration and Optimizers

We compared the results obtained with the 3D input shape [5 × 32 × 128] with
those obtained with the original 2D shape [32 × 128] while keeping all hyperparameters
fixed in GCT–EEGNet as in the baseline EEGNet network. Besides the network’s archi-
tectural design, the training method affects the model’s performance [48]. The vision
transformer [49,50] introduced a new collection of modules and new training methods (e.g.,
the AdamW optimizer). As shown in Table 2, the 3D input shape using the same optimizer
achieved better performance for non-preprocessed datasets using the Adam optimizer,
particularly the UCI dataset, with a difference of almost 13%. In addition, we observed that
the AdamW optimizer yielded better outcomes for three datasets, with a slight decrease in
validation accuracy of 0.05% for DEAP.

5.1.2. Number of Kernels and Activation Functions

Table 2 also shows the impact of altering the number of kernels from (8, 16) to (32,
64) and (64, 128) for the first and second convolution layers, respectively, in GCT–EEGNet
while keeping the ELU activation function fixed. It is evident that using 64 and 128 kernels
produced the best results. A larger number of kernels in the first layer resulted in better
accuracy than a smaller number of kernels, with a slight improvement in the DEAP dataset,
since it was preprocessed, and there was a significant improvement in the other two
datasets in comparison with the small number of kernels (8, 16). In addition, the most
often used activation functions were assessed, and the results indicated that the GELU
activation function achieved the best results, with a modest improvement over ReLU and
ELU; the SiLU activation function showed a slight improvement for some datasets, but its
long training time is a major drawback.

Table 2. Ablation study of the performance of GCT–EEGNet; the performance is reported as the mean
validation performance ± standard deviation using 10-fold cross-validation; ELU is the exponential
linear unit, Avg is the average pooling layer, ReLU is the rectified linear unit, GELU is the Gaussian
error linear units, SiLU is the sigmoid linear unit, GAP is global average pooling, SE is squeeze and
excitation, GCT is gated channel transformation, and RMSProp is root mean squared propagation.

Experiment Choices
Datasets

DEAP PhysioNet EEG UCI Combined

Raw 2D input without DWT decomposition (32 × 128)

Optimizers,
kernels 8, 16

Adam 99.87 ± 0.08 74.51 ± 2.75 49.10 ± 7.29 69.80 ± 3.02
AdamW 99.92 ± 0.06 73.72 ± 2.14 50.50 ± 5.26 69.81 ± 3.05

Raw 3D input with DWT decomposition (5 × 32 × 128)

Optimizers,
kernels 8, 16

Adam 99.88 ± 0.05 76.90 ± 1.63 62.57 ± 2.74 74.56 ± 1.35
AdamW 99.87 ± 0.11 77.57 ± 0.87 64.22 ± 3.80 74.69 ± 1.41
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Table 2. Cont.

Experiment Choices
Datasets

DEAP PhysioNet EEG UCI Combined

Number of
kernels

32, 64 99.99 ± 0.02 99.13 ± 0.15 95.58 ± 0.64 98.69 ± 0.19
64, 128 100 ± 0.01 99.75 ± 0.05 97.41 ± 0.94 99.54 ± 0.08

Activation
functions

ReLU [51] 97.75 ± 0.77 99.67 ± 0.07 97.75 ±0.77 99.39 ± 0.09
SiLU [52] 97.84 ± 0.54 99.77 ± 0.07 97.84 ± 0.54 99.53 ± 0.04
GeLU [39] 100 ± 0.01 99.79 ± 0.06 97.90 ± 0.52 99.50 ± 0.03

Pooling Layer Max 100 ± 0.01 99.68 ± 0.08 97.50 ± 0.61 99.38 ± 0.09

GAP layer GAP 100 ± 0.00 99.80 ± 0.06 98.51 ± 0.40 99.58 ± 0.08

Attention Layer
SE 100 ± 0.00 99.68 ± 0.06 98.73 ± 0.36 99.54 ± 0.10

GCT 100 ± 0.00 99.84 ± 0.05 98.87 ± 0.33 99.66 ± 0.04

Dropout
0.5 - - - 99.66 ± 0.04
0.25 - - - 99.63 ± 0.06

Without dropout - - - 99.24 ± 0.19

5.1.3. Pooling Layer

To reduce the feature map dimensionality, pooling layers were employed. We com-
pared the following two most popular types of pooling in this experiment: average and
maximum pooling. Because the average pooling layer was used from the beginning of the
first test, all previous results included the average pooling layer. Table 2 shows that the
average pooling achieved good accuracy compared with max pooling.

5.1.4. GAP and Attention Layer

Instead of simply flattening or adding an FC layer, we used a GAP layer. The GAP
layer averaged spatial information to strengthen the input against spatial translations. The
results in Table 2 show that the validation accuracy improved with a notable reduction in
the learnable parameters. In addition, we evaluated two attention approaches to capture
the channel importance. The GCT layer was shown to be better than the squeeze and
excitation (SE) block, with a small difference.

5.1.5. The Effect of Employing GELU with Dropout

As the GELU activation function incorporated a dropout functionality, we needed to
guarantee that this layer had a positive effect on the presence of GELU or that the validation
accuracy would be reduced. As a result, we found that the dropout was beneficial for
this application, as removing this layer would result in a modest decline in outcomes
(see Table 2). Note that all previous experiments included dropout with a 50% rate. This
experiment applied only to the combined dataset.

5.2. The Identification and Verification Results

The ablation study helped to find the best configuration of GCT–EEGNet. Using its
best configuration, we extracted the feature vector of each EEG trial as the output of the GAP
layer. Then, we matched pairs of EEG trials by determining the similarity between their
feature vectors. We explored several similarity metrics for matching, including Euclidean,
Manhattan, and cosine similarity. The choice of a similarity metric can significantly impact
the results, and we aimed to identify the most effective one. Our findings revealed that
the cosine similarity measure (red line) consistently outperformed the others in both the
identification and verification scenarios (see Figures 4 and 5). Figure 4 shows the CMC
curves for the identification scenario, illustrating the top ten ranks for the combined
dataset. The best results were achieved using the cosine similarity measure with a CRR
of 99.23%. For the verification scenario, we considered genuine pairs (within a class) and
impostor (between classes) pairs, with 1080 and 28,080, respectively. The DET curves
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depicted in Figure 5 show that the cosine distance measure resulted in the lowest EER
of 0.0014%. The EER represents the threshold at which the false acceptance rate (FAR)
equals the false rejection rate (FRR). The results indicate that the cosine distance is the best
similarity measure, and this outcome was also confirmed by the authors of [26] using the
PhysioNet dataset.

Figure 4. Performance in identification: CMC curves for the combined dataset.

Figure 5. Performance in verification: DET curves for the combined dataset.

5.3. Robustness to Diverse Brain States

To replicate real-world scenarios and demonstrate the robustness of GCT–EEGNet
across diverse brain states, we extracted epochs (EEG trials) from EEG signals, regardless
of the onsets or offsets of cognitive tasks, and performed two experiments. This approach
ensured the generalization of GCT–EEGNet across diverse cognitive states, as shown in
Table 3. In the first experiment, the model was trained on cognitive states different from
those employed during the testing stage. The results indicated that the model achieved
a good CRR and EER on the DEAP dataset, where nearly equal samples were sampled
from each cognitive state. Additionally, the results from the PhysioNet and UCI datasets
highlighted the impact of the difference in training and testing sample sizes on the model
performance. For example, in the PhysioNet dataset, the performance decreased by nearly
9% from 97.83% to 88.72% when the model trained on a small number of samples (13,195)
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for EO and EC conditions and tested on a much larger sample size of 161,647 for PHY
and IMA. Conversely, when trained on the larger PHY and IMA sample, the model’s
performance improved, yielding a CRR of 97.83% and an EER of 0.0047. The performance
was particularly good for the UCI dataset when trained on the alcoholic state, which was
likely due to the larger sample size of 6989 for 77 subjects compared with the 4015 samples
from 45 subjects in the non-alcoholic training phase. These findings emphasize the critical
influence of the training data size on model performance.

Table 3. Test results of experiments with the CRR and EER (average ± standard deviation), where
HH is high valence, high arousal; HL is high valence, low arousal; LH is low valence, high arousal; LL
is low valence, low arousal; EO is eyes open; EC is eyes closed; PHY is motor physical activity; and
MI or IMA is motor imagination activity.

Experiment # 1

Dataset Training States Testing States CRR EER

DEAP

LL, HH LH, HL 99.99 ± 0.04 0.0215 ± 0.0183
LL, HL LH, HH 99.98 ± 0.05 0.0272 ± 0.0253
LL, LH HL, HH 99.96 ± 0.06 0.0283 ± 0.0106
HH, HL LL, LH 99.93 ± 0.09 0.1079 ± 0.0216
HH, LH LL, HL 99.98 ± 0.05 0.0860 ± 0.0597
LH, HL LL, HH 100.00 ± 0.00 0.0523 ± 0.0061

PhysioNet EO, EC PHY, IMA 88.72 ± 1.12 0.0514 ± 0.0105
PHY, IMA EO, EC 97.83 ± 1.66 0.0047 ± 0.0023

EEG UCI
Alcoholic Non-Alcoholic 84.25 ± 0.83 0.0087 ± 0.0015

Non-Alcoholic Alcoholic 77.47 ± 0.56 0.0041 ± 0.0008

Experiment # 2

Datasets CRR EER

DEAP 100.00 ± 0.00 0.0004 ± 0.0008
PhysioNet 98.90 ± 0.48 0.0043 ± 0.0014
EEG UCI 99.25 ± 0.91 0.0009 ± 0.0016

Combined 99.23 ± 0.50 0.0014 ± 0.0008

In addition, binding a system to a specific mental state during registration is often
impractical in real-world biometric applications. To address this variation, the model
was trained with diverse states, enabling it to adapt to subject variability. In the second
experiment, data from various brain states were merged for both training and testing. This
approach demonstrated that the proposed model achieved better identification results
(more than 98% for all datasets) and verification results of less than 0.004. This indicated
that the model generalized well over diverse cognitive states, even with new subjects that
were never introduced during the training procedure. This adaptability to intra-person EEG
variability makes the model a promising candidate for real-world biometric applications.

5.4. The Effects of Different Frequency Bands

This section examines how various frequency bands, including the delta, theta, alpha,
beta, and gamma bands, impacted the brainprints derived from EEG-generated sponta-
neous brain activity. The GCT attention block within the model played a crucial role in
determining the most contributive frequency bands for recognition. Attention weights
were computed per frequency band generated in the testing samples and then averaged to
account for subject variability, as the different subjects generated distinct attention patterns.
Figure 6a shows that the beta (14–32 Hz) and gamma (32–50 Hz) bands dominated the com-
bined dataset. These findings suggest that lower frequencies correspond to common brain
activities, while higher frequencies are associated with individual distinctiveness. To reveal
the significance of frequency bands, we applied the deepSHAP technique [53]. Figure 6b
presents a global interpretation of the model’s decisions, highlighting the prominence of
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the gamma band across all 32 channels, which aligns with the results observed in the GCT
layer. This suggests that the attention layer of our model could provide valuable insights
into identifying the frequency band with the greatest contribution.

 
(a) (b) 

Figure 6. The effect of frequency bands on the combined dataset. (a) The GCT attention mechanism
weights. (b) The respective mean SHAP values.

5.5. The Effect of Channel Reduction

In this experiment, we analyzed the effect of reducing the number of EEG channels
on the model performance. To improve the system’s user-friendliness, it was necessary to
minimize the number of electrodes while maintaining satisfactory performance. Figure 7a–
e displays five sets of EEG channels defined by Wilaiprasitporn et al. [14], with each
covering the following distinct regions of the scalp: frontal (F), central and parietal (CP),
temporal (T), occipital and parietal (OP), and frontal and parietal (FP). The results depicted
in Figure 8a illustrate the performance of these channel subsets using all frequency bands
on the combined dataset. The blue color represents the performance of five distinct channel
sets, while the red color indicates the performance difference between these subsets and
the full 32-channel configurations. The model performance was degraded as the number
of electrodes decreased. Moreover, the channels from the CP region exhibited the best
performance, exceeding 90%. Figure 8b shows the results when only the gamma band was
used; though there was a slight decrease in the performance, the gamma band played key
role in identification, as identified in the previous section.

     
(a) (b) (c) (d) (e) 

Figure 7. Five different channel configurations, each highlighting different regions of the scalp:
(a) frontal (F), (b) central and parietal (CP), (c) temporal (T), (d) occipital and parietal (OP), (e) frontal
and parietal (FP).
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(a) (b) 

Figure 8. Performance of the proposed method among five different sets of channels. (a) All frequency
bands, (b) gamma band, where CRR (5) denotes the performance of the five distinct channel sets,
while CRR (5)–CRR (32) indicate the performance differences among the five channel subsets and the
32 channels.

5.6. Comparison with the State of the Art

To demonstrate the effectiveness of the proposed method, we compared its perfor-
mance with that of state-of-the-art EEG-based deep learning biometric techniques on public
domain datasets, including DEAP, PhysioNet, UCI, and a combined dataset. It is to be
noted that many state-of-the-art methods also used DEAP and PhysioNet for evaluation;
the comparison of these datasets is given in Table 4.

Table 4. Comparison with state-of-the-art EEG-based biometric systems according to the number of
subjects (# Sub.), trial length (TL), number of channels (# Chan.), network (NW), Euclidean distance
(L2), and Manhattan distance (L1).

Dataset # Sub Method # Ch TL (sec.) CRR (%) EER (%) Parameters

Sun et al. [13]—2019 PhysioNet 109 CNN, LSTM 16 1 99.58 0.41 505,281,566

Wilaiprasitporn
et al. [14]—2019 DEAP 32 CNN, LSTM

CNN, GRU 5 10 >99 - 324,032
496,384

Jin et al. [24]—2020 MTED 20 CTNN 7 1 99 0.1 4600

Bidgoly et al.
[26] 2022 PhysioNet 109 CNN, Cosine 3 1 98.04 1.96 NA

Alsumari
et al. [27]—2023 PhysioNet 109 CNN, L1 2 5 99.05 0.187 74,071

Fallahi
et al. [28]—2023

ERP CORE 40 Siamese NW,
L2

30
0.10

95.63 1.37
NA

Brain Invaders 41 32 99.92 0.14

Proposed approach

DEAP 32

GCT–EEGNET,
Cosine

32 1

100.00 0.0004 35,900

PhysioNet 109 98.90 0.0043 45,000

UCI 122 99.25 0.0009 62,100

Combined 263 99.23 0.0014 62,800

Most of the state-of-the-art techniques were trained and evaluated on a single dataset
involving a small number of tasks, limiting their performance evaluation to specific scenar-
ios and often involving smaller groups of subjects. For instance, Sun et al. [13] evaluated
their CNN–LSTM model on the PhysioNet dataset (109 subjects, 16 channels), achieving
a high CRR of 99.58%. However, their model incorporated LSTM layers, increasing its
complexity to over 505 million parameters, which raised the risk of overfitting, especially
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when trained on a dataset with only 109 subjects. The large number of parameters also
makes the model computationally expensive and difficult to deploy in real-world systems,
unlike the proposed method, which uses only 62,800 parameters while maintaining com-
petitive performance. Similarly, Bidgoly et al. [26] utilized PhysioNet with three channels,
achieving a CRR of 98.04% by stacking CNN layers. However, this method uses only
three channels, thus it lacks the spatial information of EEG trials, leading to a relatively
higher EER of 1.96%. In addition, Alsumari et al. [27] employed the PhysioNet dataset
with only two channels, achieving a CRR of 99.05% but at the cost of higher error rates
(EER of 0.187%). Their model’s simplicity raises concerns about its robustness against
diverse brain conditions. In contrast, the proposed model captures richer spatial–temporal
information while maintaining low complexity and achieving a much lower EER of 0.0043%
on the same dataset. Wilaiprasitporn et al. [14] employed the DEAP dataset (32 subjects,
5 EEG channels) with CNN–LSTM and CNN–GRU networks, yielding a CRR of more
than 99%, but these models were tested on a relatively small number of subjects and brain
conditions. This limitation of dataset size could affect the generalization of the model
to larger populations. Similarly, the proposed model was applied to the DEAP dataset,
gaining 100% with a small number of parameters of 35,900. Jin et al. [24] used the MTED
dataset (20 subjects, 7 channels), which resulted in a CRR of 99% and an EER of 0.1%.
Although these metrics are impressive, the small dataset size (20 subjects) raises concerns
about the model’s applicability to broader real-world conditions. In contrast, the proposed
method demonstrated a much wider generalization by achieving an EER of 0.0014% on
a dataset of 263 subjects in diverse brain states. Fallahi et al. [28] used the ERP CORE
and Brain Invaders datasets with 40 and 41 subjects, respectively, achieving a CRR of
99.92%. However, their method relies on a Siamese network, which, while effective for
specific tasks, introduces a relatively higher EER of 1.37%. Moreover, these datasets focus
on specific cognitive tasks, limiting their applicability across broader EEG conditions. In
contrast, the proposed method was designed to perform well across multiple brain states
and cognitive conditions, as evidenced by its consistently low EER on the DEAP, Phys-
ioNet, UCI, and combined datasets. The method was tested on a large combined dataset
created from DEAP, PhysioNet, and UCI with a larger number of subjects, which helped
to validate its broader generalization. Despite using a low-complexity architecture with
fewer parameters, the method achieved competitive results. Specifically, it attained a CRR
of 99.23% and an EER of 0.0014% across diverse brain states and short temporal intervals of
one second. This indicated that the proposed model can handle the variability in real-world
EEG-based biometric input more effectively than more complex models that are tuned for
specific tasks or datasets. In conclusion, although the datasets vary in their characteristics,
the proposed method offers a balanced solution with good accuracy, lower complexity,
and greater flexibility across different EEG datasets. This highlights its practicality for
real-world EEG-based biometric systems, particularly in scenarios that require adaptability
across diverse brain conditions and subjects.

5.7. Visualization of the Features Learned by the Model from EEG Segments

To verify the effectiveness of the model, we employed the t-distributed stochastic neigh-
bor embedding (t-SNE) [54] method to visualize the learned features in lower-dimensional
2D space from the GAP layer. This technique helped us evaluate whether the model had
effectively learned features that distinguished individuals. Figure 9 shows the results for
the combined dataset, with each color representing a different subject. The visualization
shows the GAP layer’s remarkable ability to classify the testing subjects into distinct groups.
Although most subjects were well separated, there were a few outliers (i.e., S039, S034,
and S099), which appeared to be incorrectly grouped with other subjects. Overall, this
visualization indicated that our approach effectively extracted distinctive features from
EEG data for each individual, achieving this with just two layers.
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Figure 9. The t-SNE visualization for high-dimensional features of the GAP layer.

5.8. Discussion

This study presents an EEG-based biometric system based on GCT–EEGNET with
a large number of individuals (263) and diverse mental states. While several models
in [11–14] achieved high performance by integrating CNN and RNN layers to exploit
both spatial and temporal features, their robustness and generalization to a large number
of subjects are questionable due to increased complexity. To address this problem, our
approach utilized depth-wise separable convolution layers within a CNN architecture. This
design efficiently captured both spatial and temporal features while significantly reducing
parameter complexity to just 62,764 parameters. This reduction enhanced the model’s
efficiency and generalization, even with a larger number of subjects. An ablation study on
the model hyperparameter choices was discussed in Section 5.1.

Additionally, the method automatically selected optimal frequency bands through
the analysis of the GCT layer attention scores, reducing the need for costly experiments
(see Section 5.4). The results showed that the gamma and beta bands were the most
significant frequency bands, which was consistent with the prior findings in [24,27,55,56].
This indicated that distinctive human features prevail in higher-frequency bands. Channel
reduction simplified the system’s equipment and applicability. We observed a decline in the
model’s performance when employing fewer channels compared with utilizing 32 channels.
This decline may be attributed to the correlation between channels of an EEG segment.
Figure 9 confirms the model’s ability to discriminate against unseen subjects. Overall, the
system has potential benefits for individuals with disabilities and security concerns.

The proposed EEG-based biometric system shows promising results for recognizing
individuals with diverse brain states. However, several limitations need to be addressed
for real-world adoption. Reducing the number of EEG channels decreases its performance,
complicating practical use and requiring simpler setups. In addition, the limited availability
of large, multi-session datasets spanning long time intervals consisting of a large number
of subjects may affect the system’s ability to generalize across different brain conditions.
While the model performs well under diverse mental states, EEG signals exhibit high
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variability across sessions, even for the same individual. This variability could affect the
system’s long-term reliability in real-world applications, where EEG data may be collected
over weeks or months. Addressing these issues will be key for real-world adoption, with
future work focusing on improving robustness and acceptance by considering channel
reduction, handling cross-session variability, and reducing computational requirements for
broader applicability.

6. Conclusions

This study introduced an efficient, lightweight GCT–EEGNet model for EEG-based
biometric recognition by leveraging attention mechanisms and advanced convolutional
layers. Our model captures both temporal and spatial features from EEG signals, utilizing
diverse cognitive states. The results demonstrated the model’s effectiveness, achieving
a high CRR of 99.23 and a low EER of 0.0014 with a short one-second temporal window
while utilizing 32 electrodes on the combined dataset. The system required only a short
one-second temporal window for identification and verification. The integrated GCT layer
emphasized the significance of higher-frequency bands, particularly the beta and gamma
bands, for individual distinction. A depth-wise separable convolution layer was employed
to avoid excessive growth in the number of trainable parameters as the number of subjects
increased. Furthermore, comparisons with state-of-the-art methods showed GCT–EEGNet’s
ability to balance high performance with minimal computational complexity, making it
a strong candidate for scalable EEG-based biometric recognition. Future research could
explore alternative attention mechanisms for automated channel selection and further
investigate the system performance on multi-session datasets to enhance the system’s
real-world applicability and long-term usability.

Author Contributions: Conceptualization, L.A. and M.H.; Data curation, L.A.; Formal analysis, L.A.
and M.H.; Funding acquisition, M.H.; Methodology, L.A. and M.H.; Project administration, M.H.;
Resources, M.H.; Software, L.A.; Supervision, M.H.; Validation, L.A.; Visualization, L.A.; Writing—
original draft, L.A.; Writing—review and editing, L.A. and M.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported under the Researchers Supporting Project, number (RSP2024R109),
King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement: Public-domain datasets were used for the experiments. The DEAP
dataset is available at https://www.eecs.qmul.ac.uk/mmv/datasets/deap/download.html (accessed
on 16 December 2023). The PhysioNet dataset is available at https://physionet.org/content/
eegmmidb/1.0.0/ (accessed on 16 December 2023). The EEG UCI dataset is available at https:
//archive.ics.uci.edu/dataset/121/eeg+database (accessed on 16 December 2023).

Conflicts of Interest: The authors declare no competing interests.

References

1. Zhang, D.D. Automated Biometrics: Technologies and Systems; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7.
2. Jain, A.K.; Ross, A.; Prabhakar, S. An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20.

[CrossRef]
3. Poulos, M.; Rangoussi, M.; Chrissikopoulos, V.; Evangelou, A. Parametric Person Identification from the EEG Using Computa-

tional Geometry. In Proceedings of the ICECS’99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat.
No. 99EX357), Paphos, Cyprus, 5–8 September 1999; pp. 1005–1008.

4. Gui, Q.; Ruiz-Blondet, M.V.; Laszlo, S.; Jin, Z. A Survey on Brain Biometrics. ACM Comput. Surv. 2019, 51, 1–38. [CrossRef]
5. Van Dis, H.; Corner, M.; Dapper, R.; Hanewald, G.; Kok, H. Individual Differences in the Human Electroencephalogram during

Quiet Wakefulness. Electroencephalogr. Clin. Neurophysiol. 1979, 47, 87–94. [CrossRef] [PubMed]
6. Zhang, X.; Yao, L.; Wang, X.; Zhang, W.; Zhang, S.; Liu, Y. Know Your Mind: Adaptive Cognitive Activity Recognition with

Reinforced CNN. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11
November 2019; pp. 896–905.

7. Chen, J.X.; Mao, Z.J.; Yao, W.X.; Huang, Y.F. EEG-Based Biometric Identification with Convolutional Neural Network. Multimed.
Tools Appl. 2019, 79, 1–21. [CrossRef]

204



Mathematics 2024, 12, 3286

8. Xu, T.; Wang, H.; Lu, G.; Wan, F.; Deng, M.; Qi, P.; Bezerianos, A.; Guan, C.; Sun, Y. E-Key: An EEG-Based Biometric Authentication
and Driving Fatigue Detection System. IEEE Trans. Affect. Comput. 2021, 14, 864–877. [CrossRef]

9. Maiorana, E. Learning Deep Features for Task-Independent EEG-Based Biometric Verification. Pattern Recognit. Lett. 2021, 143,
122–129. [CrossRef]

10. Seha, S.N.A.; Hatzinakos, D. Longitudinal Assessment of EEG Biometrics under Auditory Stimulation: A Deep Learning
Approach. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August
2021; pp. 1386–1390.

11. Das, B.B.; Kumar, P.; Kar, D.; Ram, S.K.; Babu, K.S.; Mohapatra, R.K. A Spatio-Temporal Model for EEG-Based Person Identification.
Multimed. Tools Appl. 2019, 78, 28157–28177. [CrossRef]

12. Jijomon, C.M.; Vinod, A.P. Person-Identification Using Familiar-Name Auditory Evoked Potentials from Frontal EEG Electrodes.
Biomed. Signal Process. Control. 2021, 68, 102739. [CrossRef]

13. Sun, Y.; Lo, F.P.-W.; Lo, B. EEG-Based User Identification System Using 1D-Convolutional Long Short-Term Memory Neural
Networks. Expert Syst. Appl. 2019, 125, 259–267. [CrossRef]

14. Wilaiprasitporn, T.; Ditthapron, A.; Matchaparn, K.; Tongbuasirilai, T.; Banluesombatkul, N.; Chuangsuwanich, E. Affective
EEG-Based Person Identification Using the Deep Learning Approach. IEEE Trans. Cogn. Dev. Syst. 2019, 12, 486–496. [CrossRef]

15. Yang, S.; Deravi, F. On the Usability of Electroencephalographic Signals for Biometric Recognition: A Survey. IEEE Trans. Hum.
-Mach. Syst. 2017, 47, 958–969. [CrossRef]

16. Maiorana, E.; La Rocca, D.; Campisi, P. EEG-Based Biometric Recognition Using EigenBrains. In Proceedings of the 2015 IEEE
International Conference on Multimedia & Expo Workshops (ICMEW), Turin, Italy, 29 June–5 July 2015; pp. 1–6.

17. Rodrigues, D.; Silva, G.F.; Papa, J.P.; Marana, A.N.; Yang, X.-S. EEG-Based Person Identification through Binary Flower Pollination
Algorithm. Expert Syst. Appl. 2016, 62, 81–90. [CrossRef]

18. Thomas, K.P.; Vinod, A.P. EEG-Based Biometric Authentication Using Gamma Band Power during Rest State. Circuits Syst. Signal
Process. 2018, 37, 277–289. [CrossRef]

19. Jijomon, C.M.; Vinod, A.P. EEG-Based Biometric Identification Using Frequently Occurring Maximum Power Spectral Features. In
Proceedings of the 2018 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 December 2018; pp. 249–252.

20. Nakamura, T.; Goverdovsky, V.; Mandic, D.P. In-Ear EEG Biometrics for Feasible and Readily Collectable Real-World Person
Authentication. IEEE Trans. Inf. Forensics Secur. 2017, 13, 648–661. [CrossRef]

21. Zhang, S.; Sun, L.; Mao, X.; Hu, C.; Liu, P. Review on EEG-Based Authentication Technology. Comput. Intell. Neurosci. 2021, 2021,
5229576. [CrossRef] [PubMed]

22. Stassen, H.H. Computerized Recognition of Persons by EEG Spectral Patterns. Electroencephalogr. Clin. Neurophysiol. 1980, 49,
190–194. [CrossRef]

23. Maiorana, E. Deep Learning for EEG-Based Biometric Recognition. Neurocomputing 2020, 410, 374–386. [CrossRef]
24. Jin, X.; Tang, J.; Kong, X.; Peng, Y.; Cao, J.; Zhao, Q.; Kong, W. CTNN: A Convolutional Tensor-Train Neural Network for

Multi-Task Brainprint Recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 29, 103–112. [CrossRef]
25. Debie, E.; Moustafa, N.; Vasilakos, A. Session Invariant EEG Signatures Using Elicitation Protocol Fusion and Convolutional

Neural Network. IEEE Trans. Dependable Secur. Comput. 2021, 9, 2488–2500. [CrossRef]
26. Bidgoly, A.J.; Bidgoly, H.J.; Arezoumand, Z. Towards a Universal and Privacy Preserving EEG-Based Authentication System. Sci.

Rep. 2022, 12, 1–12. [CrossRef]
27. Alsumari, W.; Hussain, M.; Alshehri, L.; Aboalsamh, H.A. EEG-Based Person Identification and Authentication Using Deep

Convolutional Neural Network. Axioms 2023, 12, 74. [CrossRef]
28. Fallahi, M.; Strufe, T.; Arias-Cabarcos, P. BrainNet: Improving Brainwave-Based Biometric Recognition with Siamese Networks.

In Proceedings of the 2023 IEEE International Conference on Pervasive Computing and Communications (PerCom), Atlanta, GA,
USA, 13–17 March 2023; pp. 53–60.

29. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Neural
Network for EEG-Based Brain–Computer Interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef] [PubMed]

30. Fraschini, M.; Hillebrand, A.; Demuru, M.; Didaci, L.; Marcialis, G.L. An EEG-Based Biometric System Using Eigenvector
Centrality in Resting State Brain Networks. IEEE Signal Process. Lett. 2014, 22, 666–670. [CrossRef]

31. Kaur, B.; Singh, D.; Roy, P.P. A Novel Framework of EEG-Based User Identification by Analyzing Music-Listening Behavior.
Multimed. Tools Appl. 2017, 76, 25581–25602. [CrossRef]

32. Kawabata, N. A Nonstationary Analysis of the Electroencephalogram. IEEE Trans. Biomed. Eng. 1973, 444–452. [CrossRef]
33. Kumari, P.; Vaish, A. Brainwave Based User Identification System: A Pilot Study in Robotics Environment. Robot. Auton. Syst.

2015, 65, 15–23. [CrossRef]
34. Ting, W.; Guo-Zheng, Y.; Bang-Hua, Y.; Hong, S. EEG Feature Extraction Based on Wavelet Packet Decomposition for Brain

Computer Interface. Measurement 2008, 41, 618–625. [CrossRef]
35. Yang, Z.; Zhu, L.; Wu, Y.; Yang, Y. Gated Channel Transformation for Visual Recognition. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13 June 2020; pp. 11794–11803.
36. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.

205



Mathematics 2024, 12, 3286

37. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017; pp. 1251–1258.

38. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

39. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (Gelus). arXiv 2016, arXiv:1606.08415. [CrossRef]
40. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [CrossRef]
41. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
42. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101. [CrossRef]
43. Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315. [CrossRef]
44. Lin, C.; Kumar, A. A CNN-Based Framework for Comparison of Contactless to Contact-Based Fingerprints. IEEE Trans. Inf.

Forensics Secur. 2018, 14, 662–676. [CrossRef]
45. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A Database for

Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [CrossRef]
46. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley,

H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.
Circulation 2000, 101, e215–e220. [CrossRef]

47. Snodgrass, J.G.; Vanderwart, M. A Standardized Set of 260 Pictures: Norms for Name Agreement, Image Agreement, Familiarity,
and Visual Complexity. J. Exp. Psychol. Hum. Learn. Mem. 1980, 6, 174. [CrossRef]

48. Liu, Z.; Mao, H.; Wu, C.-Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A Convnet for the 2020s. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18 June 2022; pp. 11976–11986.

49. Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training Data-Efficient Image Transformers & Distillation
through Attention. In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 10347–10357.

50. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11
October 2021; pp. 10012–10022.

51. Agarap, A.F. Deep Learning Using Rectified Linear Units (Relu). arXiv 2018, arXiv:1803.08375. [CrossRef]
52. Elfwing, S.; Uchibe, E.; Doya, K. Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement

Learning. Neural Netw. 2018, 107, 3–11. [CrossRef]
53. Cui, J.; Yuan, L.; Wang, Z.; Li, R.; Jiang, T. Towards Best Practice of Interpreting Deep Learning Models for EEG-Based Brain

Computer Interfaces. arXiv 2022, arXiv:2202.06948. [CrossRef] [PubMed]
54. Van der Maaten, L.; Hinton, G. Visualizing Data Using T-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
55. Wang, M.; El-Fiqi, H.; Hu, J.; Abbass, H.A. Convolutional Neural Networks Using Dynamic Functional Connectivity for

EEG-Based Person Identification in Diverse Human States. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3259–3272. [CrossRef]
56. Fraschini, M.; Pani, S.M.; Didaci, L.; Marcialis, G.L. Robustness of Functional Connectivity Metrics for EEG-Based Personal

Identification over Task-Induced Intra-Class and Inter-Class Variations. Pattern Recognit. Lett. 2019, 125, 49–54. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

206



MDPI AG
Grosspeteranlage 5

4052 Basel
Switzerland

Tel.: +41 61 683 77 34

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

Disclaimer/Publisher’s Note: The title and front matter of this reprint are at the discretion of the

Guest Editors. The publisher is not responsible for their content or any associated concerns. The

statements, opinions and data contained in all individual articles are solely those of the individual

Editors and contributors and not of MDPI. MDPI disclaims responsibility for any injury to people or

property resulting from any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-7258-3656-7


