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Preface

The subject of Structural Health Monitoring (SHM) has become increasingly crucial in an era where

the complexity of infrastructure and machinery is constantly on the rise. Our aim with this reprint

is to present the latest advancements in SHM, spanning from cutting-edge sensing technologies to

innovative diagnostic and prognostic methods. The motivation behind this scientific work stems from

the urgent need to enhance the safety, reliability, and longevity of structures across various industries.

As structures age and operate in more demanding environments, traditional monitoring methods

fall short. The articles in this reprint offer solutions by exploring new techniques and technologies.

For instance, the integration of advanced sensors with intelligent data-driven algorithms can provide

real-time insights into structural conditions, enabling the early detection of potential failures. This

reprint is addressed to a diverse audience. It is a valuable resource for researchers in the field of

engineering, who can gain inspiration from the novel approaches presented. Practicing engineers

can also benefit, as the research findings can be applied to improve their current monitoring and

maintenance strategies. Furthermore, students interested in structural engineering and related fields

will find this collection a great source of knowledge to understand the latest trends. The contributions

in this reprint are the result of the hard work of numerous authors. Each author has brought their

unique expertise and perspective, whether it is in developing new theoretical models, conducting

experimental studies, or applying SHM in real-world scenarios. We would like to express our sincere

gratitude to all the authors for their outstanding contributions, whose research has made this reprint

a rich repository of knowledge. We also want to acknowledge the invaluable assistance from the

reviewers. Their detailed feedback and constructive criticism have significantly enhanced the quality

of the articles. Without their efforts, this reprint would not have reached its current level of excellence.

Finally, we are grateful for the support of the Editorial Board of Sensors, which has facilitated the

smooth publication process, ensuring that these important studies reach a wide readership.

Bing Li, Yongbo Li, and Khandaker Noman

Guest Editors
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Editorial

Structural Health Monitoring: Advanced Sensing, Diagnostics
and Prognostics

Bing Li 1, Yongbo Li 1,2,* and Khandaker Noman 3,*

1 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; bingli@nwpu.edu.cn
2 Aircraft Strength Research Institute of China, Xi’an 710065, China
3 School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China
* Correspondence: yongbo@nwpu.edu.cn (Y.L.); khandakernoman93@nwpu.edu.cn (K.N.)

Structural Heath Monitoring (SHM) can be considered one of the most prominent
emerging components of modern engineering applications. Ensuring the reliability and
safety of machinery and infrastructure has become more challenging due to their increasing
complexity. Over the course of time, SHM has evolved significantly beyond its conven-
tional foundations in aeronautical, civil, and mechanical engineering, with the discovery of
applications in domains such as nuclear energy, maritime constructions, and wind turbine
technology. The ability to detect failures earlier and forecast the remaining usable life (RUL)
of structures has become crucial over the years. Early identification not only prevents catas-
trophic failures but also enhances maintenance strategies, saving both money and time. In
recent years, different advanced sensing technologies, intelligent data-driven strategies,
and innovative diagnostic and prognostic methodologies have witnessed revolutionary
advancement. The integration of different analytical methods like non-destructive testing
(NDT), artificial intelligence-based detection, vibration, and wave analysis has improved
the precision and efficiency of conditioning monitoring. Advancements in these areas
provide substantial insights into structural behavior, improving dependability, optimiz-
ing performance, and reducing maintenance costs. This Special Issue of Sensors aims to
gather recent research findings and present the latest advancements in Structural Health
Monitoring (SHM) in relation to advanced sensing, diagnostics, and prognostics. Overall,
13 different research contributions are featured in this collection, presenting groundbreak-
ing applications of advanced sensing, diagnostics, and prognostics in the field of Structural
Health Monitoring (SHM).

To enhance the finite element model updating (FEMU) process for aging highway
viaducts, Hekič et al. used both acceleration- and strain-based assessments on a multi-span
concrete viaduct over 50 years old (Contribution 1). In this research, the authors used
mid-span strain readings from large trucks for strain-based FEMU and frequencies/mode
shapes for acceleration-based FEMU. Optimization methods, such as residual reduction
and error-domain model falsification (EDMF), were used to enhance structural parame-
ters. The findings demonstrate that the integration of strain data improves the accuracy
of FEMU, showing an estimated 20% increase in the viaduct’s design stiffness and a
25–50% overestimation of internal girder stiffness. The advantages of EDMF in producing
physically significant updates in bridge model calibration are highlighted.

Deriving coupled ordinary differential equations for the first two modes in in-plane,
out-of-plane, and torsional directions, Cui et al. investigated the spatial galloping behavior
of iced conductors under multimodal coupling (Contribution 2). This study analyzed criti-
cal conditions within the wind speed–sag parameter space and classified galloping patterns
into five distinct regions. The results obtained indicate that single-mode galloping exhibits

Sensors 2025, 25, 1313 https://doi.org/10.3390/s25051313
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elliptical motion, whereas coupled-mode galloping follows an “8”-shaped trajectory. The
theoretical understanding of multimodal galloping in transmission lines, which provides a
basis for designing anti-galloping measures, was enhanced by this study.

Hong et al. proposed a tensor optimization-based robust interval prediction method
in order to forecast intermittent demand for spare parts (Contribution 3). The authors
performed the integration of tensor decomposition with a stacked autoencoder to smooth
abnormal demand variations while preserving intrinsic evolutionary trends. To enhance
prediction reliability, an adaptive prediction interval algorithm was designed using Light-
GBM estimators and a dynamic update mechanism. Improved forecasting for small-sample
intermittent time series and provides a reliable elastic prediction interval. This study offers
a robust solution for intelligent inventory management.

Janeliukstis et al. proposed a wavelet-based output-only damage detection method
for composite structures, using continuous wavelet transform (CWT) methods to extract
modal features such as resonant frequencies and damping ratios (Contribution 4). The
extracted features were used to construct a statistical damage detection scheme based on
kernel density estimation (KDE), where deviations in modal features were identified via
the Euclidean distance between KDE centroids. Experimental validation on glass-fiber-
reinforced polymer cylindrical specimens demonstrated that the proposed method achieved
comparable accuracy to the Mahalanobis distance metric while providing a simpler and
more interpretable damage indicator.

Lu et al. simulated the random traffic flow of heavy vehicles via the incorporation
of the R-vine Copula model and an improved Latin hypercube sampling (LHS) method
(Contribution 5). Weigh-in-motion data were used in this study to examine correlations
in vehicle weight, establishing an ideal R-vine Copula model for describing the relation-
ships among vehicle weight characteristics. An improved LHS method was introduced
for enhancing sampling accuracy to ensure a more authentic distribution of traffic flow
characteristics. Finally, as visible from the load effect analysis, the consideration of vehicle
weight correlations yields more conservative and realistic structural safety and assessments
compared to the traditional Monte Carlo methods.

Estimating the torsional stiffness using an adaptive extended Kalman filter (AEKF)
with a forgetting factor update, Park et al. monitored crack development in rotating shafts.
To implement the AEKF, a dynamic system model was developed that allowed the real-
time detection of torsional stiffness reduction due to cracks (Contribution 6). Results from
the simulation and experiment demonstrated that the method successfully tracked the
stiffness changes. Also, the method quantitatively evaluated the fatigue crack growth.
This approach relies on the cost-effective rotational speed sensors, which makes it a viable
solution for the structural health monitoring of rotating machinery.

Single-sensor engine multi-type fault detection, conducted via the integration of a
variational mode decomposition (VMD) method with a Random Forest (RF) classifier,
was investigated by Tang et al. (Contribution 7). Through decomposition under multiple
operating conditions, the spectral energy distribution of engine signals was obtained.
They also optimized the mode number and penalty term to enhance the mode separation
and decomposition efficiency. The construction of a future set, including unit bandwidth
energy, center frequency, and a maximum singular value, was completed and input into
RF for classification. The results from comparative experiments showed that the proposed
IVMD-RF method outperformed all the other deep learning approaches in both accuracy
and training efficiency, demonstrating effectiveness in cross-speed fault diagnosis, with
minimal training data and low hardware requirements.

To detect the axially loaded beams subjected to seasonal thermal variations via prin-
cipal component analysis (PCA), Berardengo et al. developed a short-training damage

2



Sensors 2025, 25, 1313

detection method (Contribution 8). In this particular approach, PCA is applied to vibration-
based damage features to filter out temperature effects and improve detection reliability,
even given the constraints of a limited training set. Both numerical simulations and experi-
mental studies on a tie-rod structure, demonstrating superior robustness compared to the
conventional Mahalanobis squared distance (MSD)-based approach, validated this method.
The results obtained indicate that the proposed PCA-based strategy effectively isolates the
damage-sensitive components while suppressing environmental variations, making it a
suitable solution for structural health monitoring under varying thermal conditions.

Zhuang et al. used an IBA-ISMO-based method integrating variational mode decom-
position (VMD) and sample entropy and diagnosed the rolling bearing faults (Contribution
9). VMD algorithms were applied to decompose vibration signals into intrinsic mode
components (IMFs). The sample entropy was extracted as a feature for fault identifica-
tion. During the optimization of the sequence minimization optimization (ISMO) classi-
fier’s parameters, enhanced classification accuracy was ensured via an improved bat algo-
rithm (IBA). Experimental verification using the CWRA dataset showed that the proposed
IBA-ISMO model outperformed conventional methods in fault recognition, demonstrating
robustness in detecting different bearing fault types under variable working conditions.

Park et al. extracted degradation features for the prognostics of an extruder screw
using multi-source monitoring data from a real micro-extrusion system (Contribution 10).
The operational data were utilized in this work to develop a prognostic method for pre-
dicting screw wear, addressing the challenge of obtaining real-world run-to-failure data.
Based on physical and mechanical properties, integrating motor load, head pressure, and
puller speed to estimate screw deterioration, degradation features were derived. It is visible
from experimental validation that the extracted feature exhibited monotonic degradation
behavior, enabling the accurate prediction of remaining useful life. A practical solution
for monitoring extrusion systems health in industrial applications is also provided by the
proposed method.

In Jia et al.’s work (Contribution 11), high-precision features were extracted for aircraft
attitude sensor fault diagnosis using a RepVGG-based convolutional neural network with
an SENet attention mechanism. In this particular method, the transformation of time
domain sensor signals was performed to yield time–frequency representations, and SENet
was used to allocate weights for both signal domains. Following that, the weighted features
were fed into RepVGG for deep feature extraction and classification. Experimental obser-
vation validates the achievement of the proposed model as an optimal balance between
diagnostic accuracy and computational efficiency, making it suitable for real-time aircraft
fault diagnosis.

A TCP acceleration algorithm was developed by Liu et al. (Contribution 12) for
aerospace–ground service networks. This method leverages historical transmission charac-
teristics and congestion control optimizations. This study introduced BoostTCP, a learning-
based algorithm that dynamically adjusts transmission rates based on end-to-end delay
variations, feedback packet intervals, and random packet loss factors, and addressed the
inefficiencies of standard TCP in high-bandwidth, long-delay networks. The compara-
tive evaluations with conventional TCP congestion control algorithms demonstrated that
BoostTCP significantly improved throughput, fairness, and bandwidth utilization in both
simulated and real-world aerospace networks, and the results suggest that BoostTCP
provides a promising solution for high-speed satellite data transmission.

Yang et al. (Contribution 13) reviewed the status and applications of hydraulic pump
fault diagnosis, summarizing existing methodologies in fault detection, prediction, and
health management. The classification of hydraulic pump fault diagnosis methods into sig-
nal processing-based approaches, artificial intelligence-driven techniques, and mechanism
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analysis-based methods was performed in this paper. This work also addressed several
key challenges such as sensor selection, model construction, and multi-source data fusion,
and the growing role of AI in improving fault recognition accuracy was highlighted by the
comparative analysis of reviewed methods. Insights into future trends, emphasizing the
need for hybrid techniques that integrate physical modeling with data-driven strategies for
enhanced fault diagnostics and prognostics, were also provided.

The editors express their sincere gratitude to all the contributing authors for the
outstanding research contributions. Special thanks are also due to the reviewers for their
valuable feedback, which significantly helped to enhance the overall quality of this Special
Issue. Lastly, we also appreciate the support of the editorial board of Sensors for facilitating
the dissemination of these important studies.

Conflicts of Interest: The authors declare no conflict of interest.
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Improved Finite Element Model

Updating of a Highway Viaduct

Using Acceleration and Strain Data.

Sensors 2024, 24, 2788. https://

doi.org/10.3390/s24092788

Academic Editor: Mohammad Noori

Received: 23 February 2024

Revised: 17 April 2024

Accepted: 25 April 2024

Published: 27 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improved Finite Element Model Updating of a Highway
Viaduct Using Acceleration and Strain Data

Doron Hekič 1,2,*, Diogo Ribeiro 3, Andrej Anžlin 2, Aleš Žnidarič 2 and Peter Češarek 1
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2 Department of Structures, Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12,
1000 Ljubljana, Slovenia; andrej.anzlin@zag.si (A.A.); ales.znidaric@zag.si (A.Ž.)

3 CONSTRUCT-LESE, School of Engineering, Polytechnic of Porto, 4249-015 Porto, Portugal; drr@isep.ipp.pt
* Correspondence: doron.hekic@fgg.uni-lj.si

Abstract: Most finite element model updating (FEMU) studies on bridges are acceleration-based
due to their lower cost and ease of use compared to strain- or displacement-based methods, which
entail costly experiments and traffic disruptions. This leads to a scarcity of comprehensive studies
incorporating strain measurements. This study employed the strain- and acceleration-based FEMU
analyses performed on a more than 50-year-old multi-span concrete highway viaduct. Mid-span
strains under heavy vehicles were considered for the strain-based FEMU, and frequencies and
mode shapes for the acceleration-based FEMU. The analyses were performed separately for up to
three variables, representing Young’s modulus adjustment factors for different groups of structural
elements. FEMU studies considered residual minimisation and the error-domain model falsification
(EDMF) methodology. The residual minimisation utilised four different single-objective optimisations
focusing on strains, frequencies, and mode shapes. Strain- and frequency-based FEMU analyses
resulted in an approximately 20% increase in the overall superstructure’s design stiffness. This study
shows the benefits of the intuitive EDMF over residual minimisation for FEMU, where information
gained from the strain data, in addition to the acceleration data, manifests more sensible updated
variables. EDMF finally resulted in a 25–50% overestimated design stiffness of internal main girders.

Keywords: finite element model updating (FEMU); optimisation; calibration; monitoring; concrete
highway viaduct; structural health monitoring (SHM); error-domain model falsification (EDMF)

1. Introduction

The bridge management sector is facing many challenges strongly linked to climate
change, which, in recent years, has accelerated the rate of material and structural degrada-
tion. For example, increased temperatures strengthen the corrosion rates [1] and amplify
other risks [2], posing a significant threat to bridges’ safety and durability. Despite the
uncertainties associated with the magnitude of the changes [3], it is accepted that they
negatively affect infrastructure [4], which is subjected to longer and warmer dry spells and
more frequent and severe flooding events, leading to economic losses [5].

The increased traffic capacity demands add to the challenges. ITF Transport Outlook
states that tonne-kilometres of freight traffic worldwide will nearly double between 2019
and 2050 [6]. Furthermore, under the current ambition scenario, the share of road modes
will increase from 22% to 27% in 2050. Traffic count data near the case study viaduct,
designated in the following as the Ravbarkomanda viaduct, show that 3.6 million vehicles
over 3.5 tonnes crossed the viaduct in 2022 [7,8], nearly a three-time increase since 2002
when 1.3 million vehicles had been recorded.

At times of increasing loads, the infrastructure is ageing. The average age of European
and other developed countries’ bridges exceeds 50 years, as indicated in [9], affecting their
condition. Many bridges before 1970 were designed for a service life of 50 years and are
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thus approaching the end of their design life [10]. Moreover, once considered long-lasting,
reinforced concrete structures have not met these expectations, particularly those built in
the 1970s [11–13]. A 2019 review [14] reported that 12% of highway bridges in Germany
were in a very poor, insufficient, or inadequate condition, a figure that a 2022 report [15]
has updated to nearly 13%.

Joint Research Centre (JRC) Science for Policy report [16] states that Europe’s ageing
transport infrastructure needs effective and proactive maintenance to ensure its safe opera-
tion throughout its entire life cycle and ensure sufficient serviceability and safety. This can
be achieved with adequate investments in inspections and structural health monitoring
(SHM) systems and by prioritising interventions for critical structures with sustainable
retrofitting solutions. Applying such an approach requires further research, particularly
in benchmarking different SHM concepts. This is vital for standardisation and making
informed decisions about the most suitable solutions for various applications, as initiated
in the recent EU project IM-SAFE [17]. In the wake of significant events like the Morandi
bridge collapse in Genoa, Italy [18], it has embarked on one of the most extensive SHM
campaigns to date [19]. Such projects facilitate real-time monitoring that supplies critical
data to assure safety and structural integrity.

Ageing infrastructure and increasing loads underline the necessity for preventive
maintenance and inspection, visually and through SHM. Within SHM, various finite ele-
ment model updating (FEMU) strategies are employed based on static and/or dynamic
responses. Ereiz et al. [20] provide general guidelines about using SHM data to perform
FEMU accurately. The process of FEMU is described step by step, namely (i) the selection of
updating parameters (design variables); (ii) the definition of the model updating problem;
and (iii) the solution of the model updating problem using different methods, particularly
sensitivity-based, maximum likelihood, nonprobabilistic, probabilistic, response surface,
meta heuristic, and regularisation methods.

Traditionally, FEMU and the damage detection of bridges are based on modal parame-
ters (i.e., acceleration-based methods), using natural frequencies and mode shapes [21–25].
However, modal parameters may be limited because structures under traffic loads experi-
ence much larger amplitude responses than those under ambient ones. Also, bridges often
experience light/moderate nonlinear incursions, particularly at the bearing devices [26], the
track–deck interface [27], and the pavement–deck interface [28], among others. To overcome
these limitations, several authors included in the FEMU problem static responses (displace-
ments and strains) [29], dynamic responses (accelerations, displacements, and strains) [30,31],
or a combination of these, mainly under traffic loads. Most updated models are used for the
continuous condition assessments of bridges, particularly damage identification.

Comparative studies considering data from different sensor types (accelerometers,
displacement sensors, strain sensors, etc.) or other types of tests (static and dynamic)
are sparse. This paper contributes to a deeper perception of the differences between
acceleration- and strain-based FEMU strategies. Understanding these differences is vital as
the already established technologies are re-emerging, such as using bridge weigh-in-motion
(B-WIM) for SHM, as proposed in [32]. Moreover, this paper contributes to understanding
how the gradual increase in the number of variables affects the FEMU results. Lastly, the
error-domain model falsification (EDMF) methodology, which was adopted for FEMU,
in addition to the residual minimisation methodology, proved crucial, as it allowed for
gaining critical insights into the updated values of variables. Despite its success, EDMF
is still underused for FEMU. Hence, this study supports using EDMF for FEMU in civil
structures, such as highway bridges.

2. Materials and Methods

2.1. Description of the Viaduct

The case study, the Ravbarkomanda highway viaduct, is located in the southwestern
region of Slovenia. It is over 50 years old, 560 m long, and comprises a 16-span precast I
girder-type superstructure (Figure 1).
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Figure 1. A view under the case study viaduct.

As shown in Figures 1 and 2, the viaduct consists of two parallel independent struc-
tures, the left carrying traffic northeast and the right one in the opposite direction. Each
structure is divided into units bounded by expansion joints on both sides. Each of the
two structures has four units. Precast I girders are discontinued above the piers, i.e., each
girder bridges only one span, and the slab is continuous over the piers, except at expansion
joint locations [33]. A detailed description of the viaduct and the established long-term
monitoring that includes a B-WIM system can be found in [32].

Figure 2. Plan view of both Ravbarkomanda viaduct structures and side view of the right structure
with a notation of the P14D span and 4th unit, considered in this FEMU study (adapted from [32]).

This paper focuses on the fourth unit and the P14D span of the right structure, de-
noted as the viaduct throughout the paper. The paper follows the concept from a separate
study [32], where strain-based FEMU was performed on the P14D span. This span was
selected due to its extensive array of installed strain-gauge sensors, the largest of any span.
A B-WIM system is also installed in this span to collect axle loads and spacings of all
crossing vehicles.

2.2. Measurements of Strains under Passages of Calibration Vehicles

Strains were measured under crossings of three different calibration vehicles, desig-
nated V1 (two-axle rigid truck), V2, and V3. Both V2 and V3 were two-axle tractors with
a three-axle semi-trailer. The calibration vehicles’ passages were performed primarily to
calibrate the B-WIM system installed in the P14D span. Their axle loads and gross vehi-
cle weights (GVWs) were preweighted statically, and their axle spacings were measured
manually. The results are shown in Table 1.
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Table 1. Axle loads, axle spacing, and gross vehicle weights (GVWs) of the calibration vehicles.

1st Axle 2nd Axle 3rd Axle 4th Axle 5th Axle

Vehicle
Load
[kN]

Spacing
[m]

Load
[kN]

Spacing
[m]

Load
[kN]

Spacing
[m]

Load
[kN]

Spacing
[m]

Load
[kN]

GVW
[kN]

V1 67.69 3.30 85.35 1.35 88.29 / / / / 241.33
V2 68.67 3.60 93.20 5.60 76.52 1.30 75.54 1.30 76.52 390.44
V3 68.67 3.30 87.31 1.35 87.31 5.17 76.52 1.33 76.52 396.32

Vehicles V1, V2, and V3 crossed the structure in the driving lane (Figure 3) 16, 17,
and 18 times, respectively. Their response was measured by strain gauges installed at the
mid-span of the bottom flange of the P14D span’s main girders, labelled in Figure 3 as MG1,
MG2, MG3, and MG4.

Figure 3. Plan view and cross-section of the P14D span with dimensions and notations of the
structural and nonstructural elements: MG1–MG4 denote main girders, CG refers to cross-girders,
SB1 and SB2 refer to safety barriers, EB refers to edge beam and SLAB denotes slab (adapted from [32]).

Each girder had 2 or 3 nearby strain-gauge sensors installed near the mid-span. The
manufacturer’s instructions were strictly followed in all installation stages: (concrete)
surface preparation, glueing, protection, and connection of sensors. Two different types
of strain gauges were used: TML PL-60-11-1LJC-F (120 Ω, half-Wheatstone type bridge,
60 mm gauge length; Tokyo Measuring Instruments Laboratory Co., Ltd., Tokyo, Japan) and
Vishay C2A-06-20CLW-350 (350 Ω, half-Wheatstone type bridge, 50.8 mm gauge length;
Vishay Intertechnology, Inc., Malvern, PA, USA). Signals from the girders were averaged
to obtain more reliable strain responses per girder by reducing the errors due to possible
uncertainties in location and faulty behaviour of the individual strain gauges. More is
described in detail in Section 2.6.2 and in [32]. It is sufficient to assume that sensor SG_01
corresponds to the (average) measurements at the mid-span of girder MG1 and analogously
applies to sensors SG_02, SG_03, and SG_04. Locations of sensors are shown in Figure 4,
indicating that more strain-gauge sensors were installed at the same girder. Accelerometers
are also shown in the figure, which is described in Section 2.3.

For the strain-based FEMU, described in Section 2.6.2, it was necessary to postprocess
the strain measurements. The strain-based FEMU compared the measured strains to the FE-
modelled ones under the calibration vehicles. Only the maximum values of the modelled
and measured responses were compared, not the full-length signals. A separate study was
performed to determine the position of all three vehicles that gave the greatest response
at the strain-gauge sensor locations. Once determined, vehicles in the FE model were
positioned in this location at every FEMU analysis. Such response under linear static
analysis does not contain the dynamic component, and to compare it with the measured
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response, the latter should also be free of dynamics. The measured signals were, therefore,
postprocessed with a 2 Hz low-pass filter to eliminate the dynamic component of the signal,
thus obtaining the ‘pseudo-static’ response. A value of 2 Hz was selected based on a
two-pass calculation of dynamic amplification factor (DAF) [34]. Table 2 shows the number
of signals, mean, standard deviation, and coefficient of variation values for the maximum
measured values in strain-gauge sensors.

Figure 4. Render of a 4th unit with a detailed display of accelerometers and strain-gauge disposition
in the P14D span.

Table 2. The number of signals (n), means, standard deviations (STDs), and coefficients of variation
(CVs) for maximum measured values of calibration vehicle passages in lane L1.

n, Mean [μm/m], STD [μm/m], CV [%] V1 V2 V3

SG_01

n 32 34 36
Mean 19.1 29.5 31.5
STD 0.7 0.9 1.3
CV 3.5 2.9 4.2

SG_02

n 48 51 54
Mean 27.1 35.4 37.9
STD 1.3 1.2 1.4
CV 4.8 3.4 3.7

SG_03

n 48 51 54
Mean 27.9 35.5 36.8
STD 1.5 1.3 1.6
CV 5.3 3.5 4.4

SG_04

n 48 51 54
Mean 18.2 27.2 27.4
STD 0.9 1.2 1.6
CV 5.2 4.6 5.7

2.3. Ambient and Traffic-Induced Vibration Tests

The long-term monitoring system installed on the viaduct does not include accelerom-
eters on the superstructure. To perform the acceleration-based FEMU, additional short-term
acceleration measurements were taken on the 4th unit. They were performed at 10 locations
on the external main girders (MG1 and MG4) of the P14D span and on 30 more locations in
the adjacent spans, namely P15D, P16D, and P17D (10 per span). Figure 5 introduces the
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measurement setup as a plan view of this unit, highlighting the placement of mobile and
reference accelerometers. Measurements were performed in four setups; mobile sensors
were moved between setups, and reference sensors remained in the same position during
all setups.

Figure 5. Plan view of the 4th unit with the disposition of the accelerometers during ambient and
traffic-induced vibration tests; only YACC and ZACC signals were used.

Measurements were taken under a partial traffic closure; the hard shoulder was closed
for traffic, and the driving lane (lane L1) was closed for traffic most of the time. During
the measurements, the bridge experienced no congestion. However, trucks weighing over
3.5 tons were present, with an average frequency of one truck every 30 s.

For each setup, twelve Dewesoft type IOLITEi 3xMEMS-ACC triaxial MEMS ac-
celerometers (Dewesoft, Trbovlje, Slovenia) [35] were used for approximately 30 min at a
1000 Hz sampling frequency. Accelerometers were attached on the lower side of the bottom
flange of the main girders (Figure 4) via magnets and a steel plate glued to the concrete
surface. DewesoftX 2023.5 data acquisition software [36] was used for data recording.
Data were imported into the ARTeMIS Modal Pro 7.2 software [37] to estimate the modal
parameters. Only measurements in the Y and Z directions, according to Figure 5, were
used. Basic signal processing was performed before estimation, such as linear detrending
and decimation to a new frequency range of [0–100 Hz]. The operational modal analysis
(OMA) frequency domain decomposition (FDD) technique was used to extract the natural
frequencies and mode shapes, where the spectra resolution was set to 1024 Hz, with a 66%
overlap, representing a frequency resolution of 0.098 Hz.

The results of the first test setup, with eight mobile accelerometers installed in the
P14D span and four reference accelerometers in the P15D and P17D spans, are shown in
Figure 6. The figure presents singular values of spectral densities. It is annotated with
different coloured markers for the identified modes: 1st torsional mode (T-1), 1st and 2nd
bending modes (B-1 and B-2), 1st main girder local bending mode (MG_B-1), and 3rd
bending mode. All modes except T-1 appear on the first (highest) SVD line.

Table 3 provides a comprehensive look at the identified natural frequencies and
corresponding mode shapes from the experimental campaign. Mode shapes are shown in
general and close-up views of the P14D span. Although five modes were identified, only
four were considered for the acceleration-based FEMU. As shown in Figure 6, all modes
are well separated, except the T-1 and B-1 modes, which are closely spaced. The T-1 mode,
which appears on the second SVD line, and as such, is not the best estimate, according
to [38], was omitted from the acceleration-based FEMU.

Figure 7 presents the auto-modal assurance criterion (Auto-MAC) matrix for the
experimental mode shapes. MAC provides a measure of consistency (degree of linearity)
between the considered mode shapes [39], for example, the modelled mode shapes with
the measured ones. Auto-MAC is a version of the MAC used to compare mode shapes
with themselves [40], in this case, experimental mode shapes.
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Figure 6. Singular values of spectral densities for the 1st test setup, with blue, orange, green, cyan, and
magenta markers denoting 1st torsional mode (T-1), 1st bending mode (B-1), 2nd bending mode (B-2),
1st main girder local bending mode around the weak axis (MG_B-1), and 3rd bending mode (B-3).

Table 3. All identified natural frequencies and corresponding mode shapes from the experimen-
tal campaign. Red color indicates the greatest magnitude of displacements, while blue indicates
the lowest.

T-1 B-1 B-2 MG_B-1 B-3

3.22 Hz 3.32 Hz 10.65 Hz 13.67 Hz 20.31 Hz

Figure 7. Auto-MAC matrix for the experimental mode shapes.

It can be seen from Figure 7 that the experimental mode shapes of most nondiagonal
values are close to 0, showing a low level of consistency (linearity), except for the MG_B-1
and B-3 modes, where the auto-MAC value is 0.21. The similarity of those two mode shapes
can also be seen in Table 3.
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2.4. Finite Element (FE) Model

The finite element (FE) model for the analysis of the 4th viaduct unit was developed
in finite element analysis (FEA) software Abaqus 2019 [41] in two stages. First, the initial
model (in the following designated as M1_FULL_INIT) was created, on which preliminary
studies were performed. In the second stage, a model with reduced degrees of freedom
(DOFs) was created (in the following designated as M1_SUBSTR_INIT), focusing on the
P14D span, as shown in Figure 8. Besides the notations of the P14D span, substructure,
supports, and location of the interaction between the P14D span and substructure, Figure 8
also shows the location and notations of the structural bearings, described in Section 2.4.2.

Figure 8. Initial finite element (FE) model M1_SUBSTR_INIT of the 4th unit.

The main features of the initial model M1_FULL_INIT and its assumptions to form a
model with a reduced number of DOFs M1_SUBSTR_INIT are outlined in Sections 2.4.1–2.4.4.

2.4.1. Geometry and Materials

The FE model followed the geometry from original design documentation [33,42],
with minor simplifications of the edge beam. All elements were modelled with 3D solids
and isotropic elastic material whose properties were taken from original design documen-
tation [33,42] (Table 4).

Table 4. Material properties of structural elements according to design documentation [33,42].

Element Abbreviation
Young’s

Modulus [GPa]
Poisson

Ratio
Density [t/m3] 1

Piers / 34 0.20 2.500
Slab SLAB 33 0.20 2.500

External main girders EMG
(MG1, MG4) 35 0.20 2.575

Internal main girders IMG
(MG2, MG3) 34 0.20 2.575

Cross-girders CG 35 0.20 2.500
Safety barriers 1 SB1 33 0.20 2.500
Safety barriers 2 SB2 33 0.20 2.500

Edge beams EB 33 0.20 2.500
Asphalt ASPH 8 0.35 2.582

1 Density of the main girders is increased due to the large number of prestressing tendons and mass of the
equipment/installation attached to the main girders.
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2.4.2. Interactions

The viaduct superstructure elements were assembled in one part, including the main
girders, cross-girders, edge beams, slab, asphalt, and safety barriers. Consequently, their
full interaction was assumed, and the safety barriers were treated as structural elements,
fully contributing to the overall stiffness of the superstructure. A complex anchorage model
to the viaduct deck would be required to model their contribution to the superstructure’s
stiffness accurately, or reduction factors for their stiffness would need to be included in the
FEMU process. The former would increase the computing time of the FEMU process, and
the latter approach can yield a wide range of results, potentially complicating the overall
outcomes of the FEMU process, as already discussed in [32]. Piers are connected to the
superstructure with elastomeric bearings, modelled as wires (spring-dashpot assemblies)
connecting reference points on the pier–girder contact surfaces. “Cartesian + Rotation”
connector sections were assigned to these wires (assemblies), and their stiffness properties
were obtained from [33]. Values of translational, vertical, and rotational stiffness for all four
type of bearings were [3.10 × 103 kN/m, 1.08 × 106 kN/m, 3.09 × 103 kNm] (BEAR_A);
[2.43 × 103 kN/m, 8.43 × 105 kN/m, 2.32 × 103 kNm] (BEAR_B); [3.72 × 103 kN/m,
1.56 × 106 kN/m, 7.32 × 103 kNm] (BEAR_C); and [2.92 × 103 kN/m, 1.22 × 106 kN/m,
5.49 × 103 kNm] (BEAR_D). Positions of the elastomeric bearings are shown in Figure 8.

2.4.3. Boundary Conditions and Interaction with Adjacent Unit

The foundation of the piers is represented by fixing all translational degrees of freedom
for the nodes on the bottom surface of the piers, as shown in Figure 8. The 4th unit interacts
with the adjacent 3rd unit (Figure 2) only via a finger-type expansion joint. The adjacent
span P13D, part of the 3rd unit, additionally restricts the movement of the shared pier that
supports spans P13D and P14D. Therefore, in the M1_FULL_INIT model, the influence of
the 3rd unit was modelled using connectors that link the locations of elastomeric bearings
on the top of the pier with the ground. The stiffness properties of these connector sections
were the same as the properties of the bearings they represented, except for translational
stiffness in the X-direction, where the sum of the stiffness values in the X-direction of all
bearings in 1st, 2nd, and 3rd unit was assumed.

2.4.4. FE Mesh

Main girders, cross-girders, edge beams, slab, asphalt layer, and safety barriers were
meshed using hexahedral 20-node quadratic (C3D20R) elements with a maximum global
size of 0.50 m. Piers were discretised with 10-node quadratic tetrahedral elements (C3D10)
with a maximum global size of 0.50 m. The maximum global element sizes were determined
through a mesh convergence study. The global element sizes were gradually reduced, and
the resulting natural frequencies and MAC values from different models were compared.
The comparison was made for experimentally identified natural frequencies and corre-
sponding mode shapes. Table 5 shows natural frequencies for FE models with 0.50 m and
0.25 m global element sizes.

Table 5. Mesh convergence study of the natural frequencies for the M1_FULL_INIT FE model.

Mode
Natural Frequencies [Hz] for
0.25 m Global Element Size

Natural Frequencies [Hz] for
0.50 m Global Element Size

B-1 3.00 3.00
B-2 9.81 9.80

MG_B-1 12.83 12.78
B-3 20.39 20.37

Figure 9a shows the Auto-MAC matrix for the M1_FULL_INIT model with a 0.25 m
global element size. Figure 9b displays a MAC matrix for the M1_FULL_INIT model with
global element sizes of 0.50 m and 0.25 m. Due to the balance of accuracy and computational
efficiency, a global element size of 0.50 m was used.
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(a) (b) 

Figure 9. Mesh convergence study of the mode shapes for the M1_FULL_INIT FE model: Auto-
MAC matrix for M1_FULL_INIT FE model with 0.25 m global element size (a) and MAC matrix for
M1_FULL_INIT FE models with 0.50 m vs. 0.25 m global element size (b).

Even with larger finite elements, the M1_FULL_INIT model proved to be computa-
tionally intensive. To improve computational efficiency, a reduced-DOF model was created
using the substructure modelling capabilities of Abaqus. In this context, “substructure”
does not refer to the piers but to an entire structural component selected for separate
analysis from the main structure. The P14D span was designated as the main structure,
while the remaining parts of the 4th unit were modelled as a substructure (Figure 8). The
substructure only contributes to the retained DOFs, including the supported nodes and
nodes that interact with the main structure and provide stiffness of the substructure to the
main structure during analysis. The reduced mass matrix and 90 retained modes of the
substructure were computed to improve the accuracy of the main structure modal analysis
(P14D span). The model with the substructure reduced the analysis time by 3.7 times com-
pared to the M1_FULL_INIT FE model with 0.50 m global element size while maintaining
the same level of result accuracy; natural frequencies of the M1_SUBSTR_INIT FE model
(3.00 Hz, 9.83 Hz, 13.07 Hz, and 20.48 Hz) matched well with the M1_FULL_INIT FE model
(3.00 Hz, 9.80 Hz, 12.78 Hz, and 20.37 Hz). Both models had a global element size of 0.50 m.
Figure 10a shows the Auto-MAC matrix for the M1_FULL_INIT FE model, and Figure 10b
displays a MAC matrix for M1_FULL_INIT and M1_SUBSTR_INIT FE models. Figure 10c
shows the Auto-MAC matrix for the M1_SUBSTR_INIT FE model.

   
(a) (b) (c) 

Figure 10. Auto-MAC matrix for M1_FULL_INIT FE model (a), MAC matrix for M1_SUBSTR_INIT
vs. M1_FULL_INIT FE models (b), and Auto-MAC matrix for M1_SUBSTR_INIT FE model (c).

2.5. Comparison of the Initial FE Model M1_SUBSTR_INIT and Experiment

Table 6 compares natural frequencies and corresponding mode shapes of the M1_
SUBSTR_INIT FE model and experimental values for all four modes considered within
the acceleration-based FEMU: B-1, B-2, MG_B-1, and B-3. In addition, mode shapes were
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compared throughout the MAC matrix. From Figure 11, it is evident that the best match
between the modelled and measured mode is for MG_B-1, with the MAC value amounting
to 0.90. By contrast, the least similar are the B-1 mode shapes, with the MAC value of 0.68.

Table 6. Comparison of natural frequencies and corresponding mode shapes of the M1_SUBSTR_INIT
FE model and experimental values. Red color indicates the greatest magnitude of displacements,
while blue indicates the lowest.

Mode B-1 B-2 MG_B-1 B-3

FE model
M1_SUBSTR_INIT

Frequency 3.00 Hz 9.83 Hz 13.07 Hz 20.48 Hz

Mode Shape
(Full)

Mode Shape
(Z Cut)

Experiment

Frequency 3.32 Hz 10.65 Hz 13.67 Hz 20.31 Hz

Mode Shape

Figure 11. MAC matrix for M1_SUBSTR_INIT vs. experiment.

Comparison results for static analysis, where maximum strains under calibration
vehicles were calculated and compared to the measured strains, are shown in Table 7,
which compares the maximum modelled and measured strain values in sensors SG_01,
SG_02, SG_03, and SG_04 (P14D span) under calibration vehicles V1, V2, and V3. In
addition, for the measured strains, the STD (standard deviation) values are listed. Figure 12
graphically shows the values from Table 7.
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Table 7. Maximum strains in the M1_SUBSTR_INIT FE model compared to the mean and STD
(standard deviation) values of maximum measured strains in sensors SG_01, SG_02, SG_03, and
SG_04 under calibration vehicles V1, V2, and V3.

Strains [μm/m]
V1 V2 V3

Mean STD Mean STD Mean STD

SG_01
M1_SUSBSTR_INIT 21.0 / 31.4 / 33.4 /

Experiment 19.1 0.7 29.5 0.9 31.5 1.3

SG_02
M1_SUSBSTR_INIT 34.1 / 44.7 / 46.6 /

Experiment 27.1 1.3 35.4 1.2 37.9 1.4

SG_03
M1_SUSBSTR_INIT 35.2 / 45.5 / 47.0 /

Experiment 27.9 1.5 35.5 1.3 36.8 1.6

SG_04
M1_SUSBSTR_INIT 22.4 / 32.7 / 34.2 /

Experiment 18.2 0.9 27.2 1.2 27.4 1.6

Figure 12. Maximum strains in the M1_SUBSTR_INIT FE model compared to the mean ± STD
(standard deviation) values of maximum measured strains in sensors SG_01, SG_02, SG_03, and
SG_04 under calibration vehicles V1, V2, and V3.

Figure 12 shows how M1_SUBSTR_INIT overestimates responses in all sensors and
for all vehicles. The overestimation is the smallest in SG_01 sensor (<10%), and the most
significant one in SG_02 and SG_03 sensors (>20%, <30%).

2.6. Finite Element Model Updating (FEMU): Residual Minimisation

FEMU aims to reduce the difference between the modelled and measured response.
Two approaches for large-scale structures are often used for FEMU, namely Residual
minimisation and Bayesian interference, the first being considered in this study. Besides
the residual minimisation approach, the less common EDMF methodology [43] was also
performed in this study, which is described in Section 2.7.

A function that combines the measured and modelled responses is called an “index
of discrepancy” or objective function. In this section, the objective functions used for
the acceleration- and strain-based FEMU analyses are formulated, and the optimisation
algorithm used for the automatic nonlinear single objective optimisation is presented.

2.6.1. Objective Functions for Acceleration-Based FEMU

Three objective functions, namely J f , JMAC, and J f ,MAC, were considered for acceleration-
based FEMU. The J f objective function measures the similarity of the modelled and mea-
sured natural frequencies. It is defined as follows:

J f =
4

∑
i=1

(
fi,num − fi,exp

fi,exp

)2

, (1)
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where fi,num and fi,exp are the ith matching mode pair of the natural frequencies from the
FE model experiment, respectively. According to the [44], this is the “normalised” J2 type
objective function.

The JMAC objective function measures the similarity of the modelled and measured
mode shapes. It is defined, similarly as in [22] or [45], as follows:

JMAC =
4

∑
i=1

(1−MACi)
2, (2)

where MACi compares the ith mode shape of the FE model with the ith reference experi-
mental mode shape.

The J f ,MAC objective function combines the J f and JMAC objective functions, similar
to [22]. Since J f and JMAC are of different orders of magnitude, w f and wMAC weights were
considered to ensure that contribution of both to the determination of J f ,MAC would be
comparable:

J f ,MAC = w f ·J f + wMAC·JMAC. (3)

The value of w f and wMAC were set to 11.3 and 1.0, respectively. The value of 11.3 represents
the ratio of JMAC and J f , calculated for the M1_SUBSTR_INIT FE model.

2.6.2. Objective Function for Strain-Based FEMU

The Jε objective function is defined to measure the similarity of maximum modelled
and measured strains at the mid-span of the P14D span when loaded by calibration vehicles
V1, V2, and V3. It is defined as the sum of squared relative differences with standard
deviation as a normalisation term. According to [44], this is the J4-type objective function,
with a minor modification, considering average responses in SG_01, SG_02, SG_03, and
SG_04 sensors, as described in Section 2.2. The objective function Jε is defined as follows:

Jε =
nv

∑
v=1

ng

∑
g=1

(
znum,v,g − zexp,v,g

)2

STDexp,v,g
2 (4)

where znum,v,g and zexp,v,g are calculated as follows:

znum,v,g =
1

ng,s

ng,s

∑
s=1

εnum,v,g,s and (5)

zexp,v,g =
1

ng,s

ng,s

∑
s=1

(
1

nv,p

nv,p

∑
p=1

εexp,v,g,s,p

)
. (6)

The zexp,v,g and STDexp,v,g values are the “experimental” mean and STD values from
Table 7. Individual terms in equations are described as follows:

• g denotes the main girder index;
• ng denotes the number of main girders considered (four in this study);
• ng,s denotes the number of strain gauges considered in a given girder g (two or three

in this study);
• nv denotes the number of calibration vehicles considered (three in this study);
• nv,p denotes the number of vehicle v passages;
• p denotes the passage index of the selected calibration vehicle;
• s denotes the strain-gauge sensor index on the selected main girder;
• STDexp,v,g denotes the standard deviation of measured strains for main girder g and

vehicle v;
• v denotes the calibration vehicle index;
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• εexp,v,g,s,p denotes the maximum measured longitudinal strain (section) in the sth
strain-gauge sensor on the gth main girder, caused by the vth calibration vehicle
during pth passage;

• εnum,v,g,s denotes the FE model longitudinal strain, oriented parallel to the X (longi-
tudinal) direction of the viaduct, εXX, in the selected node that corresponds to the
sth strain-gauge sensor on the gth main girder, caused by the vth calibration vehicle
positioned on the location that results in the maximum strain at sensors SG_0g.

2.6.3. Optimisation Algorithm

In this study, the particle swarm optimisation (PSO) algorithm [46] was used to up-
date the FE model automatically, which is one of the most commonly used algorithms in
FEMU [20]. For the automatic FEMU, it is advantageous if the FEA software can interact
with external programming environments such as MATLAB, Python, and Mathematica.
This interaction involves preparing input files for analysis, submitting the FEA job, ex-
amining the FEA outcomes (output files), and generating new input files based on the
decisions of the optimisation algorithm. In this research, the Abaqus 2019 FEA software was
employed, along with Python 3.10, using the scipy.optimise.minimise [47] and pymoo [48]
libraries. All parameters of the PSO algorithm were set to default (according to [48]) for all
FEMU analyses, except for the population size, which was set to 100, and 20 generations
were set as the stop criteria.

2.7. FEMU: Error-Domain Model Falsification (EDMF)

EDMF is a methodology for structural identification, introduced for bridge load testing
in 2013 [43] and applied in 2019 [49] and recently in 2023 [50]. The falsification concept,
as stated by [43], has been well known in science for centuries but was formalised only
in the 1930s by Karl Popper, who stated that, in science, models cannot be fully validated
by data. Instead, they can only be falsified. EDMF identifies plausible values of the FE
model variables (parameters) based on experimental values from field measurements and
prescribed uncertainty levels. A population of FE model instances is generated where each
instance has a unique combination of variable values. Then, the FE model predictions
(responses) are compared with the sensor data collected during the experiment. FE model
instances where the difference between the modelled and measured responses exceeds
thresholds defined based on uncertainty levels are falsified (falsified models), and the rest
are designated as candidates. Updated ranges of variables are obtained by discarding
variable values from falsified model instances.

As stated by [51], using thresholds for falsification enables EDMF to be robust to
correlation assumptions between uncertainties; moreover, EDMF explicitly accounts for
model bias based on engineering heuristics. Consequently, EDMF, when compared with
traditional Bayesian model updating and residual minimisation, has been shown to provide
more accurate identification and prediction when there is significant systematic uncertainty.
EDMF has been gaining popularity in recent years, since only between 2015 and 2022, there
were nine case studies on bridges, four on buildings, and two on geotechnical excavations
reported worldwide [51].

EDMF for the considered case study was primarily utilised to verify the suspicious
FEMU results from the residual minimisation, particularly the final values of variables that
reached the lower and upper bound of the preset range and were not in accordance with
the engineering expectation.

3. Results

3.1. Sensitivity Study

A deterministic sensitivity study was performed to understand the impact of the
individual structural elements on the values of objective functions J f and JMAC. For
the Jε objective function, the sensitivity study results from the reference P14D-span-only
study [32] are shown.
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3.1.1. Variables

A sensitivity study for J f and JMAC was performed on the M1_SUBSTR_INIT FE
model such that the variable of the selected element was set to lower and upper values. In
contrast, the properties of all other elements in the model were kept constant. Variables
and their lower and upper values are defined in Table 8.

Table 8. List of variables considered in the sensitivity analysis with the description of modified variables.

Element/Variable/Property Lower Value 1 Upper Value 1 Description

ASPH, SB1, SB2, EB, EMG
(MG1, MG4), IMG (MG2,

MG3), SLAB, CG
0.75 × design 1.25 × design Young’s modulus change

BEARINGS TRANSL. STIFF. 0.75 × design 1.25 × design Horizontal (X and Y) stiffness change
BEARINGS VERT. STIFF. 0.75 × design 1.25 × design Vertical (Z) stiffness change
BEARINGS ROT. STIFF. 0.75 × design 1.25 × design Rot. (around Y) stiffness change

DENSITY 0.95 × design 1.05 × design
Change in the density of elements ASPH,

SB1, SB2, EB, EMG (MG1, MG4), IMG
(MG2, MG3), SLAB, and CG

1 Design values from [33,42].

For structural elements, the lower and upper values are defined as 0.75 and 1.25 times
the design Young’s elastic modulus values, which are shown in Table 4. For elastomeric
bearings, the lower and upper values are defined as 0.75 and 1.25 times the design stiffness,
as shown in Section 2.4.2. To assess the influence of density variations on the structural
elements, they were simultaneously adjusted to two different levels for all elements, i.e., to
0.95 (lower value) and 1.05 (upper value) times their design values (Table 4).

3.1.2. Acceleration-Based FEMU

The results of the sensitivity study for the acceleration-based FEMU are shown sep-
arately for natural frequencies (J f ) and mode shapes (JMAC). Figures 13 and 14 show
the sensitivity results where the FE model objective function, either taking a lower or
upper value, is first summed up over all four modes considered and then compared to
the summed-up objective function of the M1_SUBSTR_INIT FE model. The results are
shown in % as a relative change compared to the M1_SUBSTR_INIT FE model. Such
a representation gives a general insight into which variables contribute the most to the
relative change in the objective function.

Figure 13. The sensitivity study results of the influence of structural elements Young’s modulus,
bearing stiffness, and density on the relative change in the objective function J f .
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Figure 14. The sensitivity study results of the influence of structural elements Young’s modulus,
bearing stiffness, and density on the relative change in the objective function JMAC.

Figure 13 yields the conclusion that among all variables considered, the reduction in
the objective function J f is the most sensitive to EMG, IMG, and SLAB elements’ increase
in Young’s elastic modulus. Bearings do not have a significant impact. Figure 14, compared
to Figure 13, is less concrete in suggesting which variables the objective function JMAC is
most sensitive to. Reducing the objective function JMAC is mostly affected by SLAB and
SB1 elements’ decrease in Young’s elastic modulus and by an increase in Young’s elastic
modulus in CG and SB2. An increase in translational and vertical stiffness of elastomeric
bearings, as well as a decrease in their density, importantly reduces the objective function
JMAC.

3.1.3. Strain-Based FEMU

For the Jε objective function, the sensitivity study results are shown from the reference
study, where only the P14D span was modelled. The interested reader is referred to [32]
for a detailed description. The same structural elements and bearings were checked for
sensitivity as for J f and JMAC; only the density was omitted.

As seen in Figure 15, the reduction in the objective function Jε is the most sensitive to
EMG and IMG elements’ increase in Young’s elastic modulus. SB2, SB1, ASPH, and SLAB
elements have comparable but much smaller influence.
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Figure 15. The strain-based sensitivity study results show the influence of structural elements Young’s
modulus and bearing stiffness on the objective function value Jε (adapted from [32]).
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3.1.4. Variables Selected for FEMU

Based on the sensitivity study results, it was decided to update only Young’s modulus of
structural elements and consider the constant design values of other properties. Furthermore,
instead of updating Young’s modulus of individual structural elements, a grouping was
performed such that Young’s modulus for all elements in the same group was updated for the
same percentage/correction factor, in the following labelled as a “Young’s modulus adjustment
factor”. Grouping was performed to observe the influence of several variables on the FEMU
results. For the first FEMU studies, all structural elements were grouped. Thus, only one
variable (αALL) was updated. Later, the structural elements were regrouped into the EMG+IMG
(MG) group and the OTHER group, consisting of all other elements. Two variables, αMG and
αOTHER were updated in that case. Finally, the EMG+IMG (MG) group was split into EMG
and IMG groups. Thus, three variables were updated: αALL, αEMG, and αIMG. The variables
and ranges within which the updated variables can take values are described in Table 9.

Table 9. Description of variables selected for FEMU and their range.

Variable Description
Range

Res. Min. EDMF

αALL Young’s modulus adjustment factor for ASPH, SB2, SB1, EB, EMG, IMG, SLAB, and CG [0.9, 1.5] /
αMG Young’s modulus adjustment factor for EMG and IMG [0.9, 1.5] /

αOTHER Young’s modulus adjustment factor for ASPH, SB2, SB1, EB, SLAB, and CG [0.9, 1.5] [0.10, 1.90]
αEMG Young’s modulus adjustment factor for EMG [0.9, 1.5] [0.10, 2.00]
αIMG Young’s modulus adjustment factor for IMG [0.9, 1.5] [0.10, 2.00]

It is important to emphasise that the goal of FEMU, as stated by [43], is not to update
the model parameters to improve the agreement between predicted and measured values.
Instead, model-based system identification uses physics-based models to infer parameter
values. As such, the variables selected for FEMU do not represent the actual properties of
the structural elements, i.e., Young’s modulus (adjustment factor). Instead, they should be
treated as a mixture of structural properties condensed in a single variable. This needs to
be kept in mind, especially when interpreting the absolute values of updated variables.

3.2. Updated FE Model
3.2.1. List of Analyses

Twelve FEMU residual minimisation methodology analyses were performed. Four
of them considered one variable (αALL), four considered two variables (αMG, αOTHER), and
the last four involved three variables (αEMG, αIMG, and αOTHER). In each group, four FEMU
analyses were performed: frequency-based, MAC-based, frequency-and-MAC-based, and
strain-based. All acceleration-based analyses considered B-1, B-2, MG_B-1, and B-3 modes,
and all strain-based analyses considered all three calibration vehicles V1, V2, and V3.
Three FEMU analyses considered EDMF methodology, all for three variables. One was
acceleration-based, one was strain-based, and the last one was acceleration-and-strain-
based methods. A summary of all these analyses is presented in Table 10.

Table 10. List of FEMU analyses describing variables, mode shapes/vehicles considered, and type of
objective functions used.

Analysis
Number

Analysis
Type

Mode
Shapes/Vehicles

Considered
Variables

Acceleration-Based
Strain-Based

(Jε)Frequency-Based
(Jf)

MAC-Based
(JMAC)

Frequency-and-
MAC-Based

(Jf,MAC)

1 Res. min. B-1, B-2, MG_B-1, B-3 αALL X
2 Res. min. B-1, B-2, MG_B-1, B-3 αALL X
3 Res. min. B-1, B-2, MG_B-1, B-3 αALL X
4 Res. min. V1, V2, V3 αALL X
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Table 10. Cont.

Analysis
Number

Analysis
Type

Mode
Shapes/Vehicles

Considered
Variables

Acceleration-Based
Strain-Based

(Jε)Frequency-Based
(Jf)

MAC-Based
(JMAC)

Frequency-and-
MAC-Based

(Jf,MAC)

5 Res. min. B-1, B-2, MG_B-1, B-3 αMG, αOTHER X
6 Res. min. B-1, B-2, MG_B-1, B-3 αMG, αOTHER X
7 Res. min. B-1, B-2, MG_B-1, B-3 αMG, αOTHER X
8 Res. min. V1, V2, V3 αMG, αOTHER X

9 Res. min. B-1, B-2, MG_B-1, B-3 αEMG, αIMG, αOTHER X
10 Res. min. B-1, B-2, MG_B-1, B-3 αEMG, αIMG, αOTHER X
11 Res. min. B-1, B-2, MG_B-1, B-3 αEMG, αIMG, αOTHER X
12 Res. min. V1, V2, V3 αEMG, αIMG, αOTHER X

13 EDMF B-1, B-2, MG_B-1, B-3 αEMG, αIMG, αOTHER X
14 EDMF V1, V2, V3 αEMG, αIMG, αOTHER X

15 EDMF B-1, B-2, MG_B-1, B-3
& V1, V2, V3 αEMG, αIMG, αOTHER X X

3.2.2. FEMU Results: Residual Minimisation

In this section, the results for all twelve FEMU analyses are presented, and prior to
that, the evolution throughout the FEMU is shown for analysis number 5 (frequency-based
analysis). Figure 16 illustrates the evolution of the objective function J f including all data
(a) and using a zoomed-in view (b).

 
(a) (b) 

Figure 16. Evolution of the objective functions J f for analysis number 5, including all data (a) and
zoomed-in view (b).

The grey markers in Figure 16 represent the J f values of 2000 FE analyses, and the
white markers denote the minimum J f values of each of the 20 data subsets (populations),
each containing 100 results. The grey markers’ scatter decreases with the number of
analyses. Some analyses, despite the high sequence number, even after the 1000th analysis,
give a high J f value. This results from the incorrectly paired FE experimental modes, which
could not be completely eliminated. Figure 17a,b present the evolution of αMG and αOTHER,
respectively.

The most significant variation in αMG and αOTHER occurs within the first 500 analyses
and finally converges towards 1.20 and 1.09, respectively. Table 11 presents the FEMU
results for all analyses of 12 separately updated FE “M1_SUBSTR_UPDATE_i” models,
where i represents the analysis number. For each analysis, the final updated FE model was
selected as the best individual from the final data subset (the last white marker, shown in
Figure 16.

For single-variable analyses (αALL), frequency-based, and frequency-and-MAC-based
FEMU analyses give the same αALL value of 1.18, which matches the strain-based value of
1.21. MAC-based FEMU results differ considerably, with a value of 0.99.
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(a) (b) 

Figure 17. Evolution of αMG (a) and αOTHER (b) for FEMU analysis number 5.

Table 11. Summary of FEMU results: values of variables that correspond to the best match within the
last population.

Analysis
Number

Variables
Acceleration-Based

Strain-Based
Frequency-Based MAC-Based Frequency-and-MAC-Based

1, 2, 3, 4 αALL 1.18 0.99 1.18 1.21

5, 6, 7, 8 αMG, αOTHER 1.20, 1.09 0.96, 0.90 0.97, 1.33 1.17, 1.50

9, 10, 11, 12 αEMG, αIMG, αOTHER 0.91, 1.50 1.17 0.90, 0.96, 1.02 1.36, 0.93, 1.09 0.90, 1.50, 1.01

For analyses with two variables (αMG and αOTHER), a good match between the frequency-
and strain-based FEMU is observed for αMG: The values are 1.20 and 1.17, respectively.
MAC-based and frequency-and-MAC-based FEMU analyses for αMG give comparable
values of 0.96 and 0.99, which, however, are 20% lower than the frequency- and strain-based
values. Contrary to αMG, FEMU gives very different frequency- (1.09) and strain-based
αOTHER (1.50) results. As all objective functions are more sensitive to αMG than αOTHER, the
better match for αMG is reasonable.

For analyses with three variables (αEMG, αIMG, and αOTHER), a good match between
the frequency- and strain-based FEMU is again observed for αEMG, namely 0.91 and 0.90,
respectively. Additionally, MAC-based FEMU also gives a value of 0.90. Values of αIMG
are 1.50 for both frequency- and strain-based FEMU analyses, differing considerably from
MAC-based (0.96) and frequency-and-MAC-based (0.93) FEMU.

It is evident from Table 11 for analyses with three variables that αEMG reaches the lower
bound (0.90), and αIMG reaches the upper bound (1.50) of the preset range. One way to
avoid variables reaching these bounds is to rerun FEMU analyses 9–12 with extended lower
and upper bounds. The question of whether the results are reasonable in an engineering
context arises when the range is too wide, i.e., there is a concern about whether a global
minimum that does not reflect the physical properties of the considered problem is reached.

The following analysis pairs are expected to give comparable values of αOTHER: 5–9,
6–10, 7–11 and 8–12. These values are expected to be similar because the only difference
between them is the split of the MG group into the EMG and IMG groups. Elements within
the OTHER group remained unchanged. The previously mentioned analysis pairs do not
give comparable values of αOTHER, due to the insensitivity coincidence of the objective
functions to Young’s modulus of the elements in the OTHER group. Splitting the OTHER
group into more subsets would increase the insensitivity even more. Therefore, three
variables for the considered case study represent the sensible upper bound.

When comparing the FEMU results, it is important to stress the influence of tem-
perature during the experiments. Strain and acceleration measurements were not taken
simultaneously. The latter was obtained at a later stage, with the ambient temperature
roughly 3 ◦C above the average 15 ◦C recorded during the strain measurements. According
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to [52], such a temperature difference would cause an insignificant 1% decrease in Young’s
elastic modulus of concrete at higher temperatures.

Table 12 shows values of measured, initial model’s (M1_SUBSTR_INIT), and updated
model’s (M1_SUBSTR_UPDATE_i) natural frequencies for frequency-based, MAC-based,
and frequency-and-MAC-based FEMU analyses. As expected, the match between the
modelled and measured frequencies is the best for the frequency-based FEMU (analyses 1,
5, and 9). MAC-based FEMU (analyses 2, 6, and 10) generally underestimates the first three
frequencies by approximately 10%. Frequency-and-MAC-based FEMU analyses 3 and 11
give good matches for all four natural frequencies, comparable to frequency-based FEMU
analyses 1 and 9, respectively. By contrast, analysis 7 gives a poor match for frequencies—in
between the frequency-based analysis 5 and MAC-based analysis 6.

Figure 18 shows the MAC matrices for frequency-based, MAC-based, and frequency-
and-MAC-based FEMU analyses. Nine MAC matrices are shown, where mode shapes of
the FE models M1_SUBSTR_UPDATE_i are compared to the experimental mode shapes.
The modelled and experimental mode shapes match the best for MAC-based FEMU (anal-
yses 2, 6, and 10) and the worst for frequency-based FEMU (analyses 1, 5, and 9). The
most significant difference in the MAC values can be seen for the B-1 mode shape; while
frequency-based FEMU analyses give MAC values between 0.53 and 0.62, MAC-based
FEMU analyses give MAC values of 0.93. Frequency-and-MAC-based FEMU analyses
7 and 11 provide a good match for all mode shapes, comparable to MAC-based FEMU
analyses 2 and 8, respectively. By contrast, analysis 3 results in a poor match.

Figure 19 shows the maximum strains for the strain-based FEMU (analysis numbers
4, 8, and 12), compared to the maximum strains of the M1_SUBSTR_INIT FE model and
mean ± STD (standard deviation) values of the maximum measured strains in sensors
SG_01, SG_02, SG_03, and SG_04 under the calibration vehicles V1, V2, and V3. The best
match was achieved for FEMU analysis number 12, and the poorest match was recorded
for FEMU analysis number 4.

Figure 18. Cont.
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Figure 18. MAC matrices for frequency-based, MAC-based, and frequency-and-MAC-based FEMU
analyses: M1_SUBSTR_UPDATE_i FE model vs. experiment.

 

Figure 19. Maximum strains in the M1_SUBSTR_UPDATE_4, M1_SUBSTR_UPDATE_8, and
M1_SUBSTR_UPDATE_12 FE models compared to the M1_SUBSTR_INIT model and mean ± STD
(standard deviation) values of maximum measured strains in sensors SG_01, SG_02, SG_03, and
SG_04 under calibration vehicles V1, V2, and V3.
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Table 12. Results for all acceleration-based FEMU analyses: Values of measured, initial model’s
(M1_SUBSTR_INIT), and updated model’s (M1_SUBSTR_UPDATE_i) natural frequencies.

Analysis Number
(i)

Experiment [Hz] M1_SUBSTR_INIT [Hz] M1_SUBSTR_UPDATE_i [Hz]

B-1 B-2 MG_B-1 B-3 B-1 B-2 MG_B-1 B-3 B-1 B-2 MG_B-1 B-3

1

3.32 10.65 13.67 20.31 3.00 9.83 13.07 20.48

3.20 10.35 14.06 21.33

2 2.95 9.69 13.05 20.22

3 3.19 10.35 14.06 21.33

5 3.25 10.36 13.59 21.43

6 2.93 9.59 12.39 20.13

7 3.08 10.18 14.14 20.80

9 3.24 10.31 13.59 20.86

10 2.94 9.67 13.06 20.14

11 3.17 10.33 13.59 21.04

3.2.3. FEMU Results: EDMF

The EDMF methodology was adopted for FEMU considering the three variables, in
addition to the residual minimisation analyses 9–12, to gain a more comprehensive insight
into the problem. This allowed for more detailed insight into which variables and how
they affect the FE model’s response. As stated by [43], model simplifications are always
present when modelling full-scale civil structures, and the relationship between errors
is usually unquantifiable. Model simplifications usually come, among others, from the
omission of load-carrying elements (in this study, safety barriers) or improper distribution
of loads (in this study, the position of calibration vehicles and the filtration of the dynamic
strain signal).

EDMF results in this section are shown separately for acceleration-based, strain-
based, and acceleration-and-strain-based FEMU analyses. Initially, 9464 FE models with a
unique combination of variable values αEMG, αIMG, and αOTHER were calculated for static
analysis (strain-based FEMU) and modal analysis (acceleration-based FEMU). The range
for the variables was intentionally set to be wider than for analyses 9–12. This was carried
out to show the models with physically unacceptable variable values and how EDMF
methodology can help avoid them. The set of variable values was the same for αEMG and
αIMG. Each can take 26 different values: the minimum value of 0.10 (lower bound) and the
maximum value of 2.00 (upper bound). The range for αOTHER was defined between the
lower bound of 0.10 and the upper bound of 1.90 (14 values overall). As shown in Table 13,
the intervals between values are not uniform. To optimise the number of FE analyses, the
range for αOTHER was, based on the sensitivity study results, sparser than for the αEMG and
αIMG. After the FE analyses were performed, falsification thresholds were defined.

Table 13. Initial ranges of variables.

Variable Initial Range

αEMG [0.10, 0.20, . . ., 0.90, 0.95, . . ., 1.50, 1.60, . . ., 2.00]
αIMG [0.10, 0.20, . . ., 0.90, 0.95, . . ., 1.50, 1.60, . . ., 2.00]

αOTHER [0.10, 0.30, . . ., 0.50, 0.60, . . ., 1.30, 1.50, . . ., 1.90]

For acceleration-based EDMF, falsification thresholds were defined for natural frequen-
cies and MAC values of the mode shapes for all four modes. Threshold values were defined
iteratively, initially allowing natural frequencies to deviate±5% relative to the experimental
values, and the absolute MAC values being at least 0.90, following the recommendation
by [53] of a ‘good correlation’ between the FE model and experiment. For strain-based
EDMF, the initial falsification thresholds were set to ±5% relative to the experimental
values in sensors SG_01, SG_02, SG_03, and SG_04. Table 14 shows the final falsification
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threshold values, modified from the initial ones, to obtain enough candidates. Too narrow
thresholds could lead to too few or even no candidates, and too loose ones could give
too many.

Table 14. Falsification thresholds for EDMF.

Analysis Number Source
Falsification Thresholds 1

Min Max

13 Acc.-Based
Frequencies −5%, −5%, −5%, −5% +5%, +5%, +5%, +5%
MAC values 0.35, 0.20, 0.20, 0.20 0, 0, 0, 0

14 Strain-Based Strains −10%, −10%, −10%, −10% +10%, +10%, +10%, +10%

15 Acc.-and-Strain-
Based

Frequencies −5%, −5%, −5%, −5% +5%, +5%, +5%, +5%
MAC values 0.35, 0.20, 0.20, 0.20 0, 0, 0, 0

Strains −10%, −10%, −10%, −10% +10%, +10%, +10%, +10%
1 For frequencies, the threshold is defined as deviation in percentage from the measured frequencies; for MAC
values, it is defined as absolute deviation from 1.0; and for strains, it is defined as deviation in percentage from
the measured strains.

Finally, the results of all FE models were tested for the fit within the falsification
threshold bounds for the following factors:

• All frequencies and all MACs (acceleration-based EDMF, analysis number 13);
• All strains (strain-based EDMF, analysis number 14);
• All frequencies, all MACs, and all strains (acceleration-and-strain-based EDMF, analy-

sis number 15).

Only the FE models that fit all threshold bounds were designated as acceleration-
based, strain-based, or acceleration-and-strain-based candidates and were included in the
candidate model set, meaning their variable values are plausible. The last step was to
critically overview the candidate model sets in terms of whether the results were meaningful
in an engineering context. The acceleration-based EDMF results are shown in Figure 20.

Figure 20. Acceleration-based EDMF results.

Overall, 35 candidates that fit into all threshold bounds for acceleration-based EDMF
were identified (Table 15). However, not all of them were final, engineering-feasible candi-
dates. Recalling the partially connected safety barriers, modelled as structural elements
(described in Section 2.4.2 and [32]) and positioned close to the EMG elements, it was
expected that this would manifest in the αEMG lower than the αIMG. Therefore, only the
candidate model sets with αEMG < αIMG were expected to be the final candidates. The
strain-based EDMF results are shown in Figure 21.
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Table 15. Variable ranges: initial and after EDMF.

Variable

Initial Range

Range after EDMF

Analysis No. 13 Analysis No. 14 Analysis No. 15

Acceleration-Based Strain-Based Acceleration-and-Strain-Based

n = 9464 n = 35 n = 199 n = 7

αEMG [0.10, 2.00] [0.90, 1.60] [0.40, 1.20] [0.90, 1.10]

αIMG [0.10, 2.00] [0.80, 1.60] [1.05, 2.00] [1.25, 1.50]

αOTHER [0.10, 1.90] [0.90, 1.10] [0.30, 1.90] [1.00, 1.10]

Figure 21. Strain-based EDMF results.

Overall, 199 candidates were identified for the strain-based EDMF. Most (191) satisfied
the αEMG < αIMG criteria. Although the number of candidates was reduced from 9464 to
199 (≈2%), the range of the variables after strain-based EDMF, shown in Table 15, was
still wide, especially for αOTHER. Figure 22 shows the acceleration-and-strain-based EDMF
results.

Figure 22. Acceleration-and-strain-based EDMF results.

Overall, seven candidates were identified for the acceleration-and-strain-based EDMF.
All seven candidates satisfied the αEMG < αIMG criteria and the updated range of the
variables was narrowed significantly compared to the acceleration-based EDMF and strain-
based EDMF, as shown in Table 15. Moreover, none of the variables reached the lower and
upper bounds of the predefined range. As experimental values and falsified thresholds for
strains are not clearly visible in Figure 22, a similar plot in Figure 23 shows a limited range
of model sets with values of αEMG ≥ 0.7, αIMG ≥ 0.7, and αOTHER ≥ 0.7.
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Figure 23. Acceleration-and-strain-based EDMF results, shown for a limited range of model sets with
values of αEMG ≥ 0.7, αIMG ≥ 0.7, and αOTHER ≥ 0.7.

With the provided falsification thresholds, both acceleration-based EDMF and strain-
based EDMF significantly reduced the number of candidate model sets from an initial
9464 to 35 (0.4%) and 199 (2%), respectively. However, acceleration-based EDMF included
engineering unacceptable candidate model sets with values of αEMG greater than αIMG.
This was also true for a very small proportion of candidate model sets given by strain-
based EDMF. Only the candidate model sets, given by the acceleration-and-strain-based
EDMF, contained engineering-acceptable values of αEMG, αIMG, and αOTHER. The deviation
between ranges is mainly attributed to the safety barriers SB1 and SB2, which, although
modelled as fully connected to the superstructure, are only partially connected.

Although the 3D finite elements allow for a high level of the FE model detailing,
the systematic biases in the FE model remain present, resulting from the partially con-
nected safety barriers and the unknown exact position of the calibration vehicles. EDMF
methodology is computationally more demanding for the FEMU than the residual min-
imisation. Nevertheless, it was the key for the case study, as it allowed for combining
acceleration- and strain-based FEMU studies and making an engineering decision about
their updated values.

4. Conclusions

This paper presents the results of multiple FEMU studies of a highway viaduct that
considered both strain responses under the traffic loading and accelerations from the
traffic-induced and ambient vibration tests. The updated parameters from these two types
of tests were compared. Furthermore, the residual minimisation FEMU approach was
combined with the EDMF methodology. Despite being known to perform well in system
identification, the latter is still underused in FEMU, compared to residual minimisation
and Bayesian interference.

This study focused on updating structural parameters through Young’s elastic mod-
ulus of different groups of superstructure elements, e.g., all members, main, external
main, or internal main girders. A dozen FEMU analyses were performed considering
residual minimisation methodology. Four of them considered one variable (αALL), four
considered two variables (αMG, αOTHER), and the last four considered three variables (αEMG,
αIMG, and αOTHER). Four separate FEMU analyses were performed for each number of
variables: frequency-based, MAC-based, frequency-and-MAC-based, and strain-based.
Acceleration-based analyses considered four modes (natural frequencies and mode shapes),
while strain-based analyses considered the maximum strains measured under three cali-
bration vehicles. Frequency- and strain-based FEMU studies for the single variable αALL
yielded comparable values of 1.18 and 1.21. For analyses with two variables (αMG and
αOTHER), a good match between the frequency- and strain-based FEMU was observed for
αMG: 1.20 and 1.17. For analyses with three variables, αEMG reached the lower bound (0.90),
and αIMG reached the upper bound (1.50), in frequency- and strain-based FEMU analyses.
Three additional FEMU analyses for three variables, applying the EDMF methodology,
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yielded engineeringly sensible results for the considered problem. The last EDMF analysis,
which combined acceleration and strain data, proved to be crucial; initial ranges of variables
were narrowed to [0.90, 1.10] for αEMG, [1.25, 1.50] for αIMG, and [1.00, 1.10] for αOTHER.

The results of this study show that frequency- and strain-based FEMU similarly
overestimated the superstructure’s design bending stiffness by approximately 20%. When
the main girders were separated from other elements, both methods again overestimated
the design bending stiffness of the main girders by approximately 20%. When the main
girders were additionally split into external and internal ones, the acceleration- and strain-
based EDMF overestimated the internal main girders’ design bending stiffness by 25–50%.
No significant overestimation was obtained for the external main girders, most likely due
to the partially connected safety barriers.

The key advantages of the EDMF methodology over residual minimisation are high-
lighted in this study, particularly its intuitiveness and the capability of combining different
types of measurement within FEMU, without having to decide which one to put more
weight to. Furthermore, the EDMF revealed the engineering-acceptable candidate model
sets and narrowed the updated variable ranges in the FE model. This suggests that rely-
ing solely on modal parameters (frequencies and/or mode shapes) is not recommended,
particularly when the FE model will serve to simulate the response under traffic loads, for
example, to support bridge structural safety analyses.

The future aim is to extend the proposed FEMU approach with B-WIM results. This
will involve different magnitudes of traffic loading, even the extreme ones caused by
the exceptional heavy vehicles; the recorded strain responses under the crossing heavy
vehicles of known axle loads and configurations; the measured modal parameters; and the
measured, not theoretical, influence lines. Finally, the strain and vibration measurements
can be integrated into long-term monitoring systems, providing simultaneous strains and
modal parameters to allow for more reliable identification and variation of the mode shapes.
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Abstract: In this study, the coupled ordinary differential equations for the galloping of the first
two modes in iced bundled conductors, including in-plane, out-of-plane, and torsional directions, are
derived. Furthermore, through numerical analysis, the critical conditions of this modal galloping are
determined in the range of wind speed–sag parameters, and the galloping patterns and variation
laws in different parameter spaces are analyzed. The parameter space is then divided into five regions
according to the different galloping modes. Under the multimodal coupling mechanism of galloping,
the impact of single and two kinds of coupled mode galloping on the spatial nonlinear behavior
is explored. The results reveal that the system exhibits an elliptical orbit motion during single
mode galloping, while an “8” motion pattern emerges during coupled mode galloping. Moreover,
two patterns of “8” motion are displayed under different parameter spaces. This research provides a
theoretical foundation for the design of transmission lines.

Keywords: iced conductors; multimodal coupling; galloping behavior; nonlinear vibration

1. Introduction

The cross-sectional shape of iced conductors changes from circular to noncircular
under complex climatic conditions such as ice storm, snow, and freezing rain. Then, under
the excitation of a certain wind speed, the unstable aerodynamic nonlinear load in different
directions, including in-plane, out-of-plane, and torsional directions, induces galloping
of the iced conductor. It is a self-excited vibration phenomenon characterized by a low
frequency (approximately 0.08–3 Hz) and a large amplitude (reaching 5–300 times the
diameter of the conductor) [1]. The galloping lasts for several hours and can cause serious
damage to the power conductors, including tower damage, conductor fracture, insulator
damage, wear of fittings and components, and phase flashover, which pose a significant
threat to the safety of power conductors.

Until now, several researchers have explored the excitation mechanism of gallop-
ing, mainly focusing on the aerodynamic coefficients of iced conductors, line structure
parameters, etc. Further, the galloping phenomenon has been examined from different
perspectives. The three typical galloping mechanisms include vertical galloping [2], tor-
sional galloping [3], and inertially coupled galloping [4]. In recent years, researchers from
the China Electric Power Research Institute have investigated numerous domestic and
foreign galloping accidents and classified galloping as a dynamic instability phenomenon.
It has been reported that only unstable vibration can lead to large galloping. Accordingly,
the dynamic stability mechanism of galloping has been proposed to analyze different
types of galloping [5,6]. Based on these mechanisms, galloping has been explored through
theoretical analysis.

Due to the geometric nonlinearity of iced conductor structures and the aerodynamic
nonlinearity caused by aerodynamic loads, nonlinear coupling between multiple direc-
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tions/modes of galloping is very likely to occur. Jones [7] developed a dynamic model for
the coupling of in-plane and out-of-plane galloping and found that there is an inherent
coupling between the equations describing in-plane and out-of-plane motions. This model
demonstrated that out-of-plane motion has a significant impact on the stability of galloping.
Blevins and Iwan [8] developed a dynamic model considering the coupling of torsional
and in-plane motions, and they comprehensively analyzed galloping under both resonant
and nonresonant conditions. This study was the first to prove that torsional motion can
enhance galloping in the system. Liu et al. [9] used Hamilton’s principle to establish three
types of dynamic models for coupled galloping with in-plane, in-plane+torsional, and in-
plane+out-of-plane+torsional motions. By analyzing the in-plane amplitude and torsional
angle of galloping under various influencing factors, such as wind speed, air density, span
length, damping ratio, and initial tension, they found that the coupled dynamic model of
in-plane+out-of-plane+torsional motion was more accurate in evaluating the galloping
characteristics. Chen and Wu [10] then clarified the generation mechanism of various
galloping vibrations with different coupled motions. Matsumiya et al. [11] indicated the
coupling effects on in-plane oscillation by considering the energy balance of the in-plane
motion with the defined amplitudes and phase differences of the out-of-plane and torsional
motions. In addition, the finite element method is widely used to simulate the galloping
of iced conductors. Diana et al. [12] presented a finite-element model of quad-bundled
conductors, predicting the onset speed of galloping instability and the maximum oscillation
amplitudes through time-domain simulations and the proposed energy approach. The
complex structural part of the system can also be reproduced, including iced eight-bundled
conductors [13,14] and a tower line system [15]. Complex wind field conditions can also be
simulated, such as unsteady and stochastic wind fields [16].

Most studies have focused on the first-order modes in different directions. However,
Liu and Huo [17] included higher-order modes and established the coupled motion equa-
tions for the first four in-plane modes and the first torsional mode to describe the nonlinear
interactions between the in-plane and torsional vibration, considering geometrical and aero-
dynamic nonlinearities. They found that the galloping of higher-order modes can excite the
galloping of lower-order modes, and the energy transfer phenomenon between symmetric
and anti-symmetric modes was also analyzed. Huo et al. [18] established the coupled
motion equations for the first three in-plane modes and the first three torsional modes,
and the results revealed that the torsional modes contributed to the in-plane galloping
behavior. With the increase in wind speed, the lower-order in-plane modes were gradually
replaced by higher-order in-plane modes. Luongo and Nayfeh [19,20] also pointed out
that higher-order modes exist, and these modes can excite the galloping of lower-order
modes during the vibration of suspended cables. For such suspended structures, due to
the additional tension caused by motion-induced deformation, the natural frequency of the
in-plane symmetric mode exceeds that of the anti-symmetric mode, resulting in a frequency
crossover phenomenon [21–23]. The various correspondence relationships between fre-
quencies provide multiple possibilities for the interaction between modes. Accordingly, in
some previous studies, the first two modes of in-plane, out-of-plane, and torsional motion
were considered, and the nonlinear coupling between in-plane+out-of-plane+torsional
modes and high-order+low-order modes was investigated from the perspective of energy
transfer, clarifying the multimode coupling galloping mechanism of iced conductors. Under
the coupling effect of multiple modes, the galloping behavior of iced conductors is bound
to become complex and diverse. Therefore, exploring the galloping behavior under the
coupling of multiple modes is of immense theoretical significance for clearly understanding
the galloping of iced conductors and formulating effective anti-galloping measures.

To this end, in this study, the multimodal coupling mechanism of galloping in iced con-
ductors is utilized to investigate the spatial nonlinear behavior of galloping in iced bundled
conductors. The rest of this paper is organized as follows. In Section 2, for the common iced
bundled crescent-shaped conductors, considering geometric and aerodynamic nonlinearity,
the coupled vibration ordinary differential equations for the first two modes in the in-plane,
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out-of-plane, and torsional directions are derived. In Section 3, through numerical analysis,
the critical conditions for in-plane galloping are obtained in the wind speed–span parame-
ter space. Combined with the multimodal coupling galloping mechanism, the influence
of single-mode galloping and coupled-mode galloping on spatial galloping behavior is
analyzed for different galloping patterns within the parameter domain. Finally, this study
is concluded in Section 4.

2. Establishment of Dynamical Equations

Compared to a single conductor, the bundled conductors are affected by spacers, and
the twisting stiffness of its sub-conductors is much higher than that of a single conductor
with the same cross-section. This leads to a more irregular cross-sectional shape of the
iced bundled conductors, and the aerodynamic load acting on them is more complex and
prone to causing vibrations. Therefore, the common crescent-shaped iced quad-bundled
conductor is taken as the research object here.

The iced quad-bundled conductors are simplified as a single conductor for analysis
assuming both ends to be fixed. A detailed description of the galloping model is reported
in [24]; the main details are hereafter presented. In actual engineering, the sag-to-span
ratio of transmission lines is generally small, within the range from 0 to 0.1. The conductor
has a slender and flexible body structure, so the influence of bending stiffness can be
neglected. In addition, it is assumed that the ice is uniformly distributed along the surface
of the conductor with a length of l, and the incoming wind blows perpendicular to the
plane where the conductor is located with a speed U. A schematic of the spatial model
is shown in Figure 1a. The initial configuration of the iced conductor under its own
weight is represented by Γ0, while the dynamic configuration of the iced conductor under
aerodynamic loads is represented by Γ. u(x, t), v(x, t), w(x, t), and θ(x, t) represent the axial
(x-axis), in-plane (y-axis), out-of-plane (z-axis), and torsional (yOz plane) displacement,
respectively, of a point on the iced conductor at time t with respect to the coordinate
origin O. The differential element dx is studied, and a schematic of its motion is shown
in Figure 1b, where A0B0 and A2B2 represent the differential element before and after
structural deformation, respectively. The catenary equation of the structure at time t = 0 is
expressed as follows:

y0 =
−2H
mg

sinh
(mgx

2H

)
sinh

(
mg(l − x)

2H

)
(1)

where H is the initial horizontal tension of the iced conductor, m is the mass per unit length,
and g is the gravitational acceleration.

The aerodynamic force analysis diagram of the iced conductor cross-section is shown
in Figure 1c, where G is the centroid, er is the eccentricity, θ0 is the initial wind angle of
attack, I is the moment of inertia about point O, and the overdot denotes the derivative
with respect to time. FL, FD, and M are the aerodynamic lift force, drag force, and torsional
moment, respectively. α0 is the angle caused by vertical velocity, α is the angle of attack,
U is the mean wind speed, Ur is the relative wind speed, and D is the bare conductor
diameter.

Considering the geometric and aerodynamic nonlinearity and simplifying the axial
motion to the in-plane and out-of-plane directions, the coupled vibration ordinary differ-
ential equations of the first two modes, including in-plane, out-of-plane, and torsional
modes, can be derived using Hamilton’s principle and the Galerkin space-discretization
method [24], i.e.,
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where qvk(t), qwk(t), and qθk(t) are the generalized coordinates for in-plane, out-of-plane,
and torsional motions, respectively. ξvk, ξwk, ξθk; ωg,vk, ωg,wk, ωg,θk; and ϕwk, ϕvk, and
ϕθk are the damping ratios, natural frequencies, and natural modes corresponding to
the different order modal structures for in-plane, out-of-plane, and torsional directions,
respectively. gvi,k(i = 1, . . . , 22), gwi,k(i = 1, . . . , 20), and gθi,k(i = 1, . . . , 12) are the integral
coefficients.

∫ l
0 [ϕwk(x)Fwk]dx,

∫ l
0 [ϕvk(x)Fvk]dx, and

∫ l
0 [ϕθk(x)Mθk]dx are the aerodynamic

terms for in-plane, out-of-plane, and torsional directions, respectively [24].

(a) (b)

(c)

Figure 1. Galloping model of iced conductor. (a) Configuration. (b) Dynamic displacement of dx.
(c) Aerodynamic forces acting on the chosen section of the iced conductor.
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3. Numerical Analysis

The multimodal coupling mechanism of galloping is described [24] as follows: the
nonlinear interaction among the in-plane, out-of-plane, and torsional modes of the same
order leads to synchronized and limited galloping phenomena. The nonlinear coupling
between the torsional and in-plane modes is the fundamental reason for the limited gal-
loping characteristics. Regarding the synchronized galloping characteristics, the in-plane,
out-of-plane, and torsional modes of the same order are excited simultaneously and tend
to stabilize simultaneously, among which the galloping in the in-plane direction plays a
dominant role. Regarding the limited galloping characteristics, the galloping is limited to a
certain amplitude range. The multimodal coupling effect of galloping directly affects its
spatial nonlinear behavior.

3.1. Critical Conditions of Galloping

When the span and the unit mass per unit length of the conductor are determined, the
relationship between the sag (d) and the initial tension in the horizontal direction can be
obtained as follows:

d =
2H
mg

[
sinh(

mgl
4H

)

]2
(3)

During the actual installation process of power lines, the sag of the conductors must be
controlled based on different terrain sections to ensure a safe discharge distance. Therefore,
sag is chosen as a bifurcation parameter to examine the critical conditions for galloping.
The nonlinear dynamical equations (Equation (2)) are used to numerically analyze the
unstable regions of the first two modes in different directions. Further, the critical insta-
bility conditions for the in-plane, out-of-plane, and torsional modes are explored in the
wind speed (U) and sag (d) parameter plane. The common crescent-shaped iced quad-
bundled conductors 4 × LGJ-400/35 are taken as an example in this study, and the selected
equivalent parameters are shown in Table 1 [25].

Table 1. Equivalent parameters of iced bundled conductors.

Parameter Value

Span l 244 m
Mass per unit length m 6.92 kg/m

Bare conductor diameter D 28.6 mm
Tensile stiffness EA 1.105 × 108 N

Torsional stiffness GJ 23,746 N·m2/rad
Moment of inertia I 0.70065 kg·m

Inflow density ρa 1.29 kg/m3

Eccentricity er 1.39 × 10−4 m
Initial wind attack angle θ0 24◦
In-plane damping ratio ξv 0.005

Out-of-plane damping ratio ξw 0.005
Torsional damping ratio ξθ 0.02

Taking in-plane motion as an example, the critical conditions and galloping region
of the first two modes in the U-d parameter plane are shown in Figure 2. The blue and
red lines represent the critical conditions of the first- and second-order modal galloping,
respectively. According to this analysis, the following conclusions can be drawn:

(1) For the first-order modal galloping, as the sag increases, the vibration area first
increases and then gradually decreases. When d > 3.8 m, the vibration area begins
to decrease rapidly until the vibration disappears. However, when d > 5.6 m, the
first-order modal vibration is again excited because of the nonlinear coupling between
the first- and second-order modes in the in-plane direction [24]. Within the range of
5.6 m < d < 6.8 m, as the sag increases, the critical wind speeds for the upper and
lower limits of the vibration increase rapidly, and the vibration area is narrow but
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slowly increasing. When d > 6.8 m, as the sag continues to increase, the vibration
area first gradually increases, reaching a maximum around d = 8 m, and then begins
to gradually decrease. When d > 10 m, the first-order modal vibration is no longer
excited.

(2) When the sag is low, the second-order modal galloping is not excited if the wind
speed is within 20 m/s. When d > 3.8 m, the first-order modal galloping area begins
to decrease, and the second-order modal galloping starts to be excited. The galloping
area rapidly expands with the increase in sag. When d > 5 m, the galloping area enters
a slow expansion stage. It can also be observed that the area of second-order modal
galloping is significantly larger than that of first-order modal galloping, indicating
that the second-order modal galloping is more likely to occur.

Figure 2. Critical conditions and galloping region division of first- and second-order modal galloping
in the U-d parameter plane.

According to the different vibration patterns, the U-d parameter plane is divided
into five regions. Region I is the stable region where no galloping occurs. Region II and
Region III are both single-mode galloping regions, corresponding to single first-order
modal and single second-order modal galloping, respectively. Regions IV and V have the
same galloping mode, which arises from the coupling of first- and second-order modes.

3.2. Galloping Behavior

Now, the spatial galloping behavior of the five galloping regions is separately studied.
The in-plane galloping of the iced conductor is a self-excited vibration, and the vibration
frequency is basically the same as the natural frequency. Therefore, combined with the
multimodal coupling mechanism of galloping, by comparison with the natural frequency,
it can be numerically verified whether various order modes in the in-plane, out-of-plane,
and torsional directions exhibit galloping and instability. The natural frequencies of the
first two modes of in-plane, out-of-plane, and torsional motion at different inclinations are
listed in Table 2.

Table 2. First- and second-order natural frequencies along the three directions under different sags.

Direction

Natural Frequency

d = 4.3 m d = 4.6 m d = 6.8 m

1st 2nd 1st 2nd 1st 2nd

In-plane 0.421 0.534 0.433 0.516 0.516 0.424
Out-of-plane 0.267 0.534 0.258 0.516 0.212 0.424

Torsional 0.377 0.744 0.377 0.744 0.377 0.744
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In Region I, for any given nonzero initial displacement, the vibration amplitudes of the
first two modes in all the directions rapidly decay to zero, as shown in Figure 3, and there
is no modal vibration in this region. Keeping the sag constant, as the wind speed gradually
increases, the vibrations begin to enter Region II, and the system starts to become unstable.
When the wind speed increases to 14 m/s, the time history and spectral responses of the
first two modes in the in-plane, out-of-plane, and torsional directions are shown in Figure 4.
It can be seen that only the first-order mode in each direction is excited, and thus each
direction exhibits a single first-order mode vibration (Figure 4a). According to Figure 4b–d,
the frequencies of the first-order vibrations in all the directions are 0.402 Hz, which is
essentially the same as the first natural frequency in the in-plane direction (see Table 2),
indicating synchronous vibration characteristics, and the vibration of the first-order mode
in the in-plane direction plays the dominant role.

Figure 3. Time history responses of first- and second-order modal galloping along the three directions
in Region I (d = 4.3 m, U = 1 m/s).

The galloping behavior within Region II is shown in Figure 5. As only the first-
order modes are excited in the in-plane, out-of-plane, and torsional directions, the time
history responses at 1/2 span for all the directions are stable periodic signals (Figure 5a).
The galloping trajectory has only one peak in both in-plane and out-of-plane directions,
exhibiting a standard first-order galloping profile (Figure 5b). When observing from the
axial direction, the set of galloping trajectories in the entire span is elliptical (Figure 5c),
and the galloping trajectory at 1/2 span is an inclined ellipse, showing repetitive motion on
the same elliptical trajectory, as shown in Figure 5d. Therefore, the system vibrates along
an inclined elliptical trajectory at all points within this region. Consequently, under the
coupling effect of in-plane and out-of-plane motions, the spatial galloping trajectory has an
approximately inclined elliptical spherical shape.

Keeping the sag constant and further increasing the wind speed, the galloping behavior
gradually enters Region III. When the wind speed increases to 19 m/s, the time history and
spectral responses of the first two modal profiles in the in-plane, out-of-plane, and torsional
directions are shown in Figure 6. In this case, the first two modal profiles in the torsional
direction tend to be in a stable state. However, in the in-plane and out-of-plane directions,
only the second-order modal profile is excited, and the corresponding galloping frequency
in each direction is 0.552 Hz (Figure 6b,c), which is basically the same as the second-order
natural frequency in the in-plane direction (see Table 2).
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(a)

(b) (c)

(d)

Figure 4. Time history and spectral responses of first- and second-order modal galloping along
the three directions in Region II (d = 4.3 m, U = 14 m/s). (a) Time history responses of first- and
second-order modal galloping along the three directions. (b) Spectral response of first-order modal
galloping along the in-plane direction. (c) Spectral response of first-order modal galloping along
the out-of-plane direction. (d) Spectral response of first-order modal galloping along the torsional
direction.

The galloping behavior in Region III is shown in Figure 7. Since only the second-order
modes are excited in both the in-plane and out-of-plane directions, the node is located at
1/2 span, and the time history responses at 1/4 span are stable periodic signals (Figure 7a).
In this case, the galloping trajectories in both the in-plane and out-of-plane directions have
two peaks, indicating a standard second-order galloping profile, as shown in Figure 7b.
Observing from the axial direction, similar to Region II, the set of galloping trajectories for
the entire iced conductor has an elliptical profile (Figure 7c). The galloping trajectory at the
1/4 span position is a tilted ellipse, and it moves cyclically on the same elliptical trajectory,
as shown in Figure 7d. Therefore, it can be concluded that except for the node, all points on
the conductor in Region III are vibrating along a tilted elliptical trajectory. Consequently,
under the coupling of in-plane and out-of-plane motion, the spatial galloping trajectory
also shows two approximately tilted elliptical spheres with a stationary node between
them.
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(a)

(b)

(c) (d)

Figure 5. Galloping behavior in Region II (d = 4.3 m, U = 14 m/s). (a) Time history responses along
the three directions at 1/2 span. (b) Spatial galloping trajectories along the three directions and their
projections (t = 2997–3000 s). (c) Magnification of side view in (b). (d) Galloping orbit at 1/2 span.

Compared with Region II, in Region III, the galloping amplitude in the out-of-plane
direction is larger, resulting in a greater tilt of the motion trajectory. It should be noted that
in Region III, the phase difference between in-plane and out-of-plane motion is basically
180◦ (Figure 7a), which is larger than the difference in Region II. This results in a narrower
short axis of the elliptical motion at different span positions, appearing to move along a
diagonal line. Meanwhile, it can be seen that since single-mode galloping occurs in all the
directions of Region II and III, except for the node, the iced conductor at each point follows
its own elliptical trajectory of periodic motion.
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(a)

(b) (c)

Figure 6. Time history and spectral responses of first- and second-order modal galloping along
the three directions in Region III (d = 4.3 m, U = 19 m/s). (a) Time history responses of first- and
second-order modal galloping along the three directions. (b) Spectral response of second-order modal
galloping along the in-plane direction. (c) Spectral response of second-order modal galloping along
the out-of-plane direction.

Until now, the galloping behavior in different regions with single-mode galloping has
been analyzed. Next, the galloping behavior in Region IV and V, which both have coupled-
mode galloping, are examined. It can be seen in Figure 2 that Region IV is the transition
stage between the in-plane first-order and in-plane second-order modal galloping, with
a narrow galloping area. When d = 4.6 m and U = 5.5 m/s, the time history and spectral
response of the first two modes in the in-plane, out-of-plane, and torsional directions are
shown in Figure 8. In this case, the first mode with a galloping frequency of 0.429 Hz
(Figure 8b) is only excited in the in-plane direction, which is basically the same as the
first in-plane natural frequency in Tables 1 and 2. The second mode is excited in both the
in-plane and out-of-plane directions, and their galloping amplitudes are basically the same.
Their galloping frequency is also 0.519 Hz (Figure 8c,d), which is basically the same as the
second in-plane natural frequency in Table 1. The first two modes in the torsional direction
are essentially stable.

The galloping behavior in Region IV is shown in Figure 9. Because the node of the
second-order mode is located at 1/2 span, only the in-plane first-order mode component
exists at 1/2 span (Figure 9a). At 1/4 span, due to the coupling between the two in-plane
modes, the time history response is no longer a stable periodic signal and beats occur.
The out-of-plane galloping only involves a single second-order mode and the response
remains a stable periodic signal (Figure 9b). The galloping trajectory and its projections
in one period of the entire span in different directions are shown in Figure 9c. Due to the
coupling effect of the modes, there is no fixed peak and node in the in-plane galloping
trajectory, but the overall galloping trajectory exhibits an anti-symmetric profile. In the
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out-of-plane direction, the galloping trajectory has two peaks and one node, exhibiting a
standard second-order galloping profile.

(a)

(b)

(c) (d)

Figure 7. Galloping behavior in Region III (d = 4.3 m, U = 19 m/s). (a) Time history responses along
the three directions at 1/4 span. (b) Spatial galloping trajectories along the three directions and their
projections (t = 2996–2998 s). (c) Magnification of side view in (b). (d) Galloping orbit at 1/4 span.

Compared with the single-mode galloping regions, the trajectory in the axial direc-
tion is no longer a single ellipse, but rather a superposition of multiple inclined ellipses
(Figure 9d). The conductor moves along an elliptical path at 1/2 span, but its galloping
trajectory is no longer the same elliptical track, as shown in Figure 9e. However, due to
the coupling between the modes, the conductor no longer moves along a single galloping
trajectory at 1/4 span, as shown in Figure 9f,g. The conductor first moves in an inclined
ellipse along the blue line, then in an inclined “8” profile along the black line, and then
exhibits an inclined elliptical motion along the red line. Therefore, it can be inferred that in
this case, the galloping trajectory exhibits a mixed motion pattern of ellipse and “8” profile
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due to the coupling effect of multiple modes. Hence, the spatial trajectory of galloping is
anti-symmetrical and has no fixed profile.

(a)

(b) (c)

(d)

Figure 8. Time history and spectral responses of first- and second-order modal galloping along
the three directions in Region IV (d = 4.6 m, U = 5.5 m/s). (a) Time history responses of first- and
second-order modal galloping along the three directions. (b) Spectral response of first-order modal
galloping along the in-plane direction. (c) Spectral response of second-order modal galloping along
the in-plane direction. (d) Spectral response of second-order modal galloping along the out-of-plane
direction.

As the parameters continue to change, the galloping enters Region V. When d = 6.8 m
and U = 14 m/s, the time history and spectral responses of the first two modes in the
in-plane, out-of-plane, and torsional directions are shown in Figure 10. It can be seen that
all the modes except the second torsional mode are excited and there are dense sidebands
at each galloping frequency. Among them, the galloping frequency of the first in-plane
mode is the same as that of the second in-plane mode, both of which are dominated by
0.473 Hz (Figure 10b,c). Compared to Table 2, it is found that this frequency is the average
of the first and second intrinsic frequencies of the in-plane mode, which may be due to the
nonlinear coupling between the first and second in-plane modes, leading to frequent energy
exchange between them. In addition, the dominant frequency of the first-order mode in
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the out-of-plane and torsional directions is 0.237 Hz (Figure 10d–f)). This frequency is half
of the in-plane first-order mode frequency due to the synchronization among the three
first-order modes [24]. The dominant frequency of the out-of-plane second-order mode is
0.473 Hz (Figure 10e), caused by the synchronization of the three second-order modes [24].

(a)

(b)

(c)

Figure 9. Cont.
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(d) (e)

(f) (g)

Figure 9. Galloping behavior in Region IV (d = 4.6 m, U = 5.5 m/s). (a) Time history responses along
the three directions at 1/2 span. (b) Time history responses along the three directions at 1/4 span.
(c) Spatial galloping trajectory along the three directions and the projections (t = 4052–4060 s). (d) Mag-
nification of side view in (c). (e) Galloping orbit at 1/2 span. (f) Galloping orbit at 1/4 span.
(g) Enlarged view of section A in (f).

The galloping behavior of the system in Region V is shown in Figure 11. Although there
is a node of the second-order mode at 1/2 span, the time history responses are no longer
stable periodic signals at this location due to strong coupling between the in-plane first- and
second-order modes, resulting in beat phenomenon (Figure 11a). A similar phenomenon
occurs at 1/4 span with the coupling between different order modes (Figure 11b). The
galloping trajectory and its projection over a single cycle in different directions are shown
in Figure 11c. Due to nonlinear coupling between the modes, there are no fixed peaks
and nodes in both in-plane and out-of-plane directions, but the overall trajectory has an
anti-symmetric profile.

From the axial direction, the galloping trajectories of the entire iced conductor in
Region III are more complex than those in Region IV (Figure 11d). However, in this
case, the galloping trajectories of each point on the iced conductor have an approximately
horizontal “8” shape. Figure 11e shows the galloping trajectory at 1/2 span, where the
conductor continuously moves in an “8” pattern without any transition, and the trajectory
does not repeat at each cycle. The same is true for the galloping trajectory at 1/4 span
(Figure 11f). In this case, the spatial trajectory is also roughly anti-symmetric but without
a fixed profile. Moreover, compared to the other galloping regions, it has a wider spatial
range, especially in the out-of-plane direction, which can exacerbate wear and tear of the
conductor, leading to strand and line breakage as well as damage to the insulator strings
and their connections at both ends of the conductor. Therefore, it is necessary to avoid the
routing of transmission lines in such situations.
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(a)

(b) (c)

(d) (e)

(f)

Figure 10. Time history and spectral responses of first- and second-order modal galloping along
the three directions in region V (d = 6.8 m, U = 14 m/s). (a) Time history responses of first- and
second-order modal galloping along the three directions. (b) Spectral response of first-order modal
galloping along the in-plane direction. (c) Spectral response of second-order modal galloping along
the in-plane direction. (d) Spectral response of first-order modal galloping along the out-of-plane
direction. (e) Spectral response of second-order modal galloping along the out-of-plane direction.
(f) Spectral response of first-order modal galloping along the torsional direction.

47



Sensors 2024, 24, 784

(a)

(b)

(c)

(d)

Figure 11. Cont.
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(e) (f)

Figure 11. Galloping behavior in Region V (d = 6.8 m, U = 14 m/s). (a) Time history responses along
the three directions at 1/2 span. (b) Time history responses along the three directions at 1/4 span.
(c) Spatial galloping trajectories along the three directions and the projections (t = 2942–2970 s).
(d) Magnification of side view in (c). (e) Galloping orbit at 1/2 span. (f) Galloping orbit at 1/4 span.

In summary, from the axial direction, as the wind speed increases, the galloping
trajectories gradually change from an elliptical shape to an approximately “8” shape. The
results are basically consistent with those obtained by the finite element method [13,15]
and experiments [26].

4. Conclusions

In this study, a simplified dynamic model was established for analyzing the galloping
of iced quad-bundled conductors in the in-plane, out-of-plane, and torsional directions.
Using numerical analysis in the wind speed–span parameter space, the critical conditions
for the first- and second-order modal galloping were investigated, and the galloping modes
and their variations in different parameter space were analyzed. The parameter space was
divided into five regions based on different galloping patterns, and the spatial nonlinear
behavior of system galloping in different regions was discussed under the existence of
the multimodal coupling mechanism. The main results of this study are summarized as
follows:

(1) As the wind speed and span increased, the galloping process of the system underwent
the following sequential stages: first-order mode, coupling of first- and second-order
modes, second-order mode, coupling of first- and second-order modes, and second-
order mode. Further, first-order mode galloping was excited twice. Moreover, the area
of the second-order mode galloping was significantly larger than that of the first-order
mode galloping, making it easier to occur in practical situations.

(2) When the system was in a single-modal galloping state in all the directions, it exhibited
a stable periodic motion. Under the coupled effect of in-plane and out-of-plane motion,
except at the nodes, all the points on the iced conductor moved along a continuous,
overlapping, and inclined elliptical orbit. When the system was in a single first-
order mode galloping state, the spatial trajectory of the galloping motion was an
approximately inclined elliptical sphere. When the system was in a single second-
order mode galloping state, the spatial trajectory of galloping was approximately two
inclined elliptical spheres with an immobile node in the center.

(3) When the system was in a coupled-mode galloping state in certain directions, the
spatial trajectory of galloping was basically anti-symmetric but had no fixed profile.
During the first excitation stage of the first-order mode, the iced conductor moved
along a continuous, inclined, elliptical orbit at the 1/2 span position, while at the
other points, there was a mixed motion pattern of inclined elliptical and “8” profiles.
During the second excitation stage of the first-order mode, all the points on the iced
conductor vibrated along a continuous, approximately horizontal “8” profile.

49



Sensors 2024, 24, 784

Author Contributions: Conceptualization, F.C. and K.Z.; methodology, F.C., P.L. and H.W.; software,
K.Z., F.C. and P.L.; validation, F.C., K.Z., P.L. and H.W.; formal analysis, F.C. and K.Z.; investiga-
tion, P.L. and H.W.; resources, F.C.; data curation, K.Z.; writing—original draft preparation, F.C.;
writing—review and editing, K.Z., P.L. and H.W.; visualization, F.C.; supervision, K.Z., P.L. and H.W.;
project administration, K.Z.; funding acquisition, P.L. and H.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Where data is unavailable due to privacy restrictions.

Acknowledgments: The authors gratefully acknowledge the support of the Foundation Research
(Free Exploration) Youth Program in Shanxi (20210302124385), Scientific and Technological Innovation
Programs of Higher Education Institutions in Shanxi (2021L069), National Natural Science Foundation
of China (12201450 and 12102290), and Major Scientific and Technological Special Project in Shanxi
Province (202101120401007).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. EPRI. Conductor Reference Book: Wind-Induced Conductor Motion; Electric Power Research Institute: Palo Alto, CA, USA, 1979;
pp. 4–5.

2. Hartog, J.P.D. Conductor vibration due to sleet. Trans. Am. Inst. Electr. Eng. 1932, 51, 1074–1076. [CrossRef]
3. Nigol, O.; Buchan, P.G. Conductor galloping part II—Torsional mechanism. IEEE Trans. Power Appar. Syst. 1981, 100, 708–720.

[CrossRef]
4. Yu, P.; Shah, A.H.; Popplewell, N. Inertially coupled galloping of iced conductors. J. Appl. Mech. 1992, 59, 140–145. [CrossRef]
5. You, C. Stability mechanism of conductor galloping and its application on transmission line. Electr. Equip. 2004, 5, 13–17.
6. Zhu, K.; You, C.; Zhao, Y. Study and control on galloping of transmission lines. Electr. Power Constr. 2004, 25, 18–21.
7. Jones, K. Coupled vertical and horizontal galloping. J. Eng. Mech. 1992, 118, 92–107. [CrossRef]
8. Blevins, R.; Iwan, W. The galloping response of a two-degree-of-freedom system. J. Appl. Mech. 1974, 41, 1113–1118. [CrossRef]
9. Liu, B.; Zhu, K.; Sun, X.; Huo, B.; Liu, X. A contrast on conductor galloping amplitude calculated by three mathematical models

with different DOFs. Shock Vib. 2014, 2014, 781304. [CrossRef]
10. Chen, X.; Wu, Y. Explicit closed-form solutions of the initiation conditions for 3DOF galloping or flutter. J. Wind Eng. Ind. Aerodyn.

2021, 219, 104787. [CrossRef]
11. Matsumiya, H.; Yagi, T.; Macdonald, J.H.G. Effects of aerodynamic coupling and nonlinear behaviour on galloping of ice-accreted

conductors. J. Fluids Struct. 2021, 106, 103366. [CrossRef]
12. Diana, G.; Manenti, A.; Melzi, S. Energy method to compute the maximum amplitudes of oscillation due to galloping of iced

bundled conductors. IEEE Trans. Power Deliv. 2021, 36, 2804–2813. [CrossRef]
13. Zhou, L.; Yan, B.; Zhang, L.; Zhou, S. Study on galloping behavior of iced eight bundle conductor transmission lines. J. Sound Vib.

2016, 362, 85–110. [CrossRef]
14. Shunli, D.; Mengqi, C.; Bowen, T.; Junhao, L.; Linshu, Z.; Chuan, W.; Hanjie, H.; Jun, L. Numerical simulation of galloping

characteristics of multi-span iced eight-bundle conductors. Front. Energy Res. 2022, 9, 888327. [CrossRef]
15. Tian, B.; Cai, M.; Zhou, L.; Huang, H.; Ding, S.; Liang, J.; Hu, M. Numerical simulation of galloping characteristics of multi-span

iced eight-bundle conductors tower line system. Buildings 2022, 12, 1893. [CrossRef]
16. Chen, J.; Sun, G.; Guo, X.; Peng, Y. Galloping behaviors of ice-coated conductors under steady, unsteady and stochastic wind

fields. Cold Reg. Sci. Technol. 2022, 200, 103583. [CrossRef]
17. Liu, X.; Huo, B. Nonlinear vibration and multimodal interaction analysis of conductor with thin ice accretions. Int. J. Appl. Mech.

2015, 07, 1540007. [CrossRef]
18. Huo, B.; Li, X.; Yang, S. Galloping of Iced Conductors Considering Multi-Torsional Modes and Experimental Validation on a

Continuous Model. IEEE Trans. Power Deliv. 2022, 37, 3016–3026. [CrossRef]
19. Luongo, A.; Zulli, D.; Piccardo, G. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended

cables. J. Sound Vib. 2008, 315, 375–393. [CrossRef]
20. Nayfeh, A.; Arafat, H.; Chin, C.; Lacarbonara, W. Multimode interactions in suspended cables. J. Vib. Control 2002, 8, 337–387.

[CrossRef]
21. Irvine, H.; Caughey, T. The Linear theory of free vibrations of a suspended cable. Proc. R. Soc. A Math. Phys. Eng. Sci. 1974, 341,

299–315.
22. Luongo, A.; Piccardo, G. Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 2005, 288, 1027–1047.

[CrossRef]

50



Sensors 2024, 24, 784

23. Barbieri, R.; Barbieri, N.; Junior, O. Dynamical analysis of transmission line cables. Part 3—Nonlinear theory. Mech. Syst. Signal
Process. 2008, 22, 992–1007. [CrossRef]

24. Cui, F.; Zhang, S.; Huo, B.; Liu, X.; Zhou, A. Analysis of stability and modal interaction for multi-modal coupling galloping of
iced conductors. Commun. Nonlinear Sci. Numer. Simul. 2021, 2021, 105910. [CrossRef]

25. Lou, W.; Yang, L.; Huang, M.F.; Yang, X. Two-parameter bifurcation and stability analysis for nonlinear galloping of iced
conductors. J. Eng. Mech. 2014, 140, 04014081. [CrossRef]

26. Chen, Z.; Cai, W.; Su, J.; Nan, B.; Zeng, C.; Su, N. Aerodynamic force and aeroelastic response characteristics analyses for the
galloping of ice-covered four-split transmission lines in oblique flows. Sustainability 2022, 14, 16650. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

51



Citation: Hong, K.; Ren, Y.; Li, F.;

Mao, W.; Gao, X. Robust Interval

Prediction of Intermittent Demand

for Spare Parts Based on Tensor

Optimization. Sensors 2023, 23, 7182.

https://doi.org/10.3390/s23167182

Academic Editors: Yongbo Li, Bing Li

and Khandaker Noman

Received: 8 July 2023

Revised: 1 August 2023

Accepted: 4 August 2023

Published: 15 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Robust Interval Prediction of Intermittent Demand for Spare
Parts Based on Tensor Optimization

Kairong Hong 1, Yingying Ren 1, Fengyuan Li 1, Wentao Mao 2,* and Xiang Gao 2

1 China Railway Tunnel Group, Zhengzhou 450001, China
2 School of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
* Correspondence: maowt@htu.edu.cn; Tel.: +86-150-3730-1821

Abstract: Demand for spare parts, which is triggered by element failure, project schedule and
reliability demand, etc., is a kind of sensing data to the aftermarket service of large manufacturing
enterprises. Prediction of the demand for spare parts plays a crucial role in inventory management
and lifecycle quality management for the aftermarket service of large-scale manufacturing enterprises.
In real-life applications, however, demand for spare parts occurs randomly and fluctuates greatly,
and the demand sequence shows obvious intermittent distribution characteristics. Additionally,
due to factors such as reporting mistakes made by personnel or environmental changes, the actual
data of the demand for spare parts are prone to abnormal variations. It is thus hard to capture the
evolutional pattern of the demand for spare parts by traditional time series forecasting methods. The
reliability of prediction results is also reduced. To address these concerns, this paper proposes a tensor
optimization-based robust interval prediction method of intermittent time series for the aftersales
demand for spare parts. First, using the advantages of tensor decomposition to effectively mine
intrinsic information from raw data, a sequence-smoothing network based on tensor decomposition
and a stacked autoencoder is proposed. Tucker decomposition is applied to the hidden features of
the encoder, and the obtained core tensor is reconstructed through the decoder, thus allowing us to
smooth outliers in the original demand sequence. An alternating optimization algorithm is further
designed to find the optimal sequence feature representation and tensor decomposition factors for the
extraction of the evolutionary trend of the intermittent series. Second, an adaptive interval prediction
algorithm with a dynamic update mechanism is designed to obtain point prediction values and
prediction intervals for the demand sequence, thereby improving the reliability of the forecast. The
proposed method is validated using the actual aftersales data from a large engineering manufacturing
enterprise in China. The experimental results demonstrate that, compared with typical time series
prediction methods, the proposed method can effectively grab the evolutionary trend of various
intermittent series and improve the accuracy of predictions made with small-sample intermittent
series. Moreover, the proposed method provides a reliable elastic prediction interval when distortion
occurs in the prediction results, offering a new solution for intelligent planning decisions related to
spare parts in practical maintenance.

Keywords: demand prediction; intermittent time series; tensor decomposition; interval prediction;
time series forecasting

1. Introduction

In complicated equipment manufacturing enterprises such as shield tunneling, rail
transportation, and wind energy, the cost of maintaining an inventory of spare parts gener-
ally accounts for more than 60% of inventory costs [1]. Qualified inventory optimization [2]
and flexible scheduling of parts [3] are critical to improve the efficiency of aftermarket
service in lifecycle product management [4]. Due to various uncertain factors, such as
element failure, project schedule, safe inventory level, etc., there will be an inventory short-
age of spare parts in warehouses which, in turn, triggers the demand for spare parts. The
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demand for spare parts can then serve as a kind of sensing data to monitor the maintenance
efficiency and evaluate the aftermarket service quality. Accurate prediction of the demand
for spare parts plays a supporting role in intelligent inventory optimization. However, in
practical operations, parts planning is often linked to new online projects or associated
with the unavailability of spare parts, resulting in sporadic demand for spare parts. The
data distribution of the demand for spare parts therefore has intermittent characteristics.
Precisely predicting the demand of intermittent time series is challenging in spare parts
management for manufacturing enterprises.

Due to the intermittent characteristics of these demand data, predicting demand relies
heavily on time series prediction. Currently, time series prediction methods can be divided
into three categories [5]: (1) statistical methods (e.g., exponential smoothing [6] and moving
average [7]); (2) machine learning methods (e.g., support vector regression (SVR) [8], ran-
dom forests (RF) [9], and LightGBM (light gradient boosting machine) [10,11]); and (3) deep
learning methods (e.g., recurrent neural networks (RNN) [12] and long short-term memory
(LSTM) [13]). These methods are often applicable to time series with strong periodicity and
apparent trends. However, there are some challenges involved in effectively extracting
evolutionary patterns from time series with strong randomness, poor continuity, and, espe-
cially, small sample sizes, leading to low prediction accuracy for intermittent series. To solve
this problem, Croston [14] improved the exponential smoothing algorithm by decomposing
intermittent time series into zero-interval and demand sequences. The exponential smooth-
ing algorithm was then applied to each sequence separately, and the results were weighted
to improve prediction performance. Syntetos et al. [15] further improved the Croston algo-
rithm and designed the Syntetos–Boylan approximation (SBA) method. The SBA method
introduced a bias term (1− α/2) to mitigate the uncertainty of intermittent distributions.
In addition, some studies proposed different metrics, such as the average demand interval
(ADI) and the square of the coefficient of variation (CV2) [16], to explore intermittent
characteristics to better extract intrinsic information from demand sequences [17]. Another
typical approach is to perform hierarchical clustering on demand sequences [18], which
divides the original sequences with weak overall patterns into multiple clusters with more
significant patterns. Then, different regression algorithms can be applied to the clusters
for prediction. Shi et al. [19] proposed the block Hankel tensor-autoregressive integrated
moving average (BHT-ARIMA) model, which uses tensor decomposition [20] to extract
the intrinsic correlations among multidimensional small-sample sequences. Although the
aforementioned methods have achieved certain results, they still have some limitations.
First, they are mostly based on the assumption that all sequence demands have predictive
value and disregard the interference of abnormal values. In fact, in actual business, due to
special events such as natural disasters, emergencies, market fluctuations, and other factors,
some spare parts have abnormal demand patterns, which require manual analysis for
recognition. Second, demand prediction results are random and unreliable. Operations still
want to obtain trustworthy results regarding demand prediction, but the existing methods
fail to make valid decisions when the prediction results are distorted.

There is also a similar concept, i.e., abnormal demand forecasting, which refers to the
process of forecasting and analyzing abnormal demands that may occur in the future. Guo
et al. [21] utilized the passenger flow characteristics extracted by SVR into LSTM to predict
abnormal passenger flow. Liu et al. [22] combined statistical learning and linear regression
to build a model of the relationship between price discounts and demand for medical
consumables. Li et al. [23] proposed a multi-scale radial basis function (MSRBF) network
to predict subway passenger flow under special events. Nguyen et al. [24] combined LSTM
with SVM to detect outliers in a demand sequence, and then used an LSTM neural network
to predict the occurrence of outliers. Li et al. [25] proposed a combination model of time
series and regression analysis, plus dummy variables, to predict special factors related to
passenger flow. These methods aim to predict the occurrence of abnormal but meaning-
ful events in many fields. However, in the situation described by this paper, abnormal
demands are commonly found due to reporting mistakes made by personnel or environ-
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mental changes. Such abnormal demands are harmful to the prediction of the intermittent
time series, since the evolutionary pattern of the demand for spare parts is disturbed. There
is no value in predicting abnormal demands if such demands have no predictability. This
paper is, therefore, solely devoted to predicting normal demands against the disturbances
induced by abnormal demands, instead of predicting the abnormal demands.

To solve the problems mentioned above, this paper employs a tensor decomposition
technique to smooth the abnormal demands in demand sequences. Tensor Tucker decompo-
sition decomposes a tensor into a set of factor matrices and one core tensor that can describe
the intrinsic information from raw data. With the decomposed forms, tensor Tucker de-
composition brings the potential to extract the evolutionary trend from intermittent time
series. The concept of a prediction interval is further introduced to tackle the problem
of high uncertainty and less reliability in the prediction results. The methodology is as
follows: First, a tensor autoencoder network is constructed, which performs tensor Tucker
decomposition on the output features extracted from the hidden layers of the autoencoder.
Second, the core tensor is decoded and reconstructed with an alternating optimization
strategy to obtain the optimal feature representation of intermittent time series. Third,
an adaptive prediction interval (API) algorithm is developed with a dynamical update
mechanism to obtain point prediction values and prediction intervals, thus improving the
reliability of the prediction results. Finally, the performance of the proposed method is
validated using a set of real-life aftersales data from a large engineering manufacturing
enterprise from China.

The contributions of this paper can be summarized as follows:
(1) An intermittent series smoothing algorithm is proposed. By integrating tensor

Tucker decomposition into a stacked autoencoder network with an alternately optimizing
scheme, the proposed algorithm extracts the evolutionary trend of the intermittent time
series under irregular noise interference. Compared with existing time series anomaly
detection methods, the proposed algorithm does not require any pre-fixed detection thresh-
olds, and can adaptively identify outliers in the series. It is highly suitable for smoothing
the outliers in the intermittent time series. Moreover, the proposed algorithm is universally
applicable, e.g., the stacked autoencoder can be easily replaced by other deep models;

(2) An adaptive prediction interval algorithm is designed. Different from the existing
point prediction methods using a deterministic prediction model, this algorithm incorpo-
rates the prediction intervals with the point prediction, which can match the intermittent
characteristics of demand sequence for spare parts. This algorithm provides an effective
solution to address the uncertainty in the demand for spare parts. According to the litera-
ture survey, there is no related research about interval prediction, specifically for demand
prediction.

2. Background

2.1. Multi-Way Delay Embedding Transform

The multi-way delay embedding transform (MDT) [26] is capable of embedding low-
order data into a high-dimensional space, which can be used to construct Hankel matrices or
block Hankel tensors. The tensor obtained by MDT possesses the characteristics of low rank,
which can smooth the original data to make them easier to train. v = (v1, ..., vL)

T ∈ RL

denotes a vector that is transformed into a Hankel matrix with a delay of τ through MDT.
This process is referred to Hankelization of the vector. The transform process is shown in
Equation (1).

Hτ(vs.) :=

⎛
⎜⎜⎜⎝

v1 v2 · · · vL−τ+1
v2 v3 · · · vL−τ+2
...

...
. . .

...
vτ vτ+1 · · · vL

⎞
⎟⎟⎟⎠ ∈ Rτ×(L−τ+1)−b±√b2 − 4ac

2a
(1)
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First, the duplication matrix S ∈ {0, 1}τ×(L−τ+1)×L is constructed with a delay of τ, as
shown in Equation (2).

ST =

⎛
⎜⎜⎜⎝

Iτ

Iτ

. . .
Iτ

⎞
⎟⎟⎟⎠

τ×τ

T (2)

The vector v is transformed into a Hankel matrix denoted byHτ(vs.). The duplication
matrix S is essentially a linear transformation. The vectorization expansion is shown in
Equation (3):

vec(Hτ(vs.)) = Sv, Sv ∈ Rτ×(L−τ+1) (3)

where vec(·) expands the matrix along the column direction. The Hankel matrix through
delay embedding can be shown in Equation (4).

Hτ(vs.) = f old(L,τ)(Sv) := vH ,
f old(L,τ) : Rτ×(L−τ+1) → Rτ×(L−τ+1) (4)

where f old(L,τ) folds a vector into a matrix.
The inverse transform of multi-way delay embedding for vectors can convert the data

from a high-dimensional space to a lower-dimensional target space. This can be calculated
using Equations (5) and (6).

H−1
τ (VH) = S†vec(VH) (5)

S† :=
(

STS
)−1

ST (6)

where † is the Moore–Penrose inverse matrix [27].

2.2. Tensor Decomposition

Tensor decomposition aims to decompose high-order tensor data into low-rank matri-
ces or vectors [28]. It is commonly applied in data compression, dimensionality reduction,
feature extraction, etc. Tensor Tucker decomposition decomposes an Nth-order tensor
χ ∈ R

I1×I2×···×IN into the product of a core tensor ςt ∈ R
J1×J2×···×JN and N factor matrices

U(n) ∈ R
In×Jn , as shown in Equation (7). The factor matrices obtained from Tucker decom-

position represent the principal components of the tensor’s modular expansion, while the
core tensor captures the correlations between these components.

χ = ς× 1U(1) × 2U(2) · · · ×NU(N) (7)

where ς× 1U(n) is the n-mode product of the modular (n) expansion of tensor S and matrix
U(n) ∈ R

In×Jn :

[
ς×U(n)

]
j1···jn−1in jn+1···jN

=
Jn

∑
jn=1

gj1···jn−1in jn+1···jN uin jn

ς×U(n) ∈ R
J1×J2×···×JN

(8)

With the above equation, one data point in the tensor can be expanded by Equation (9)
as:

xi1i2···iN = ∑
j1,j2,···,jN

gj1···jN u(1)
i1 j1

u(2)
i2 j2
· · · u(3)

i3 j3
(9)

Figure 1 illustrates a three-order tensor decomposed using Tucker decomposition,
resulting in the product of a smaller core tensor and three factor matrices.
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Figure 1. Illustration of three-order tensor Tucker decomposition.

2.3. LightGBM

LightGBM, developed by Microsoft engineers [10], is a gradient-boosting framework
based on decision trees. By utilizing feature parallelism during its training process, Light-
GBM assigns discrete features to multiple bins and constructs decision trees using histogram
algorithms, which provides a quick and efficient training mechanism for LightGBM. Ad-
ditionally, LightGBM employs a sparse feature algorithm to significantly reduce memory
consumption, which is suitable for training with extremely large-scale data. Moreover,
LightGBM utilizes a leaf-wise tree growth strategy, which leads to faster convergence and
higher accuracy compared to traditional level-wise strategies.

3. Proposed Method

In this section, a tensor optimization-based robust interval prediction method of inter-
mittent time series is presented. This method consists of two parts: (1) a sequence smoothing
network based on tensor decomposition and a stacked autoencoder, which aims to smooth
anomalous demand values in the original sequence and to extract the evolutionary trend of
demand as well; and (2) an adaptive prediction interval algorithm, which aims to construct
a reliable prediction interval to avoid the oversupply risk or inventory shortage caused by
inaccurate predictions. In this method, the role of tensor Tucker decomposition is: (1) ex-
tracting core tensors from the demand sequence for representing the evolutionary trend; and
(2) smoothing the outliers in the sequence. The negative interference of anomalous demands
can then be effectively reduced under an unsupervised mode. Moreover, training a LightGBM
model with core tensors can better mine the trend information from the demand sequence.
Tensor Tucker decomposition is believed suitable for intermittent time series forecasting with
small samples.

The flowchart of the proposed method is shown in Figure 2. First, the hidden features
are extracted from the original data using a stacked autoencoder, then tensor Tucker de-
composition is performed on the hidden features to obtain the core tensors. An alternating
optimization scheme is designed to obtain the optimal core tensors by alternately updat-
ing the autoencoder parameters and tensor factor matrices. Second, an adaptive interval
prediction algorithm is constructed. The interval is calculated using the predicted values
and prediction residuals from LightGBM estimators. Finally, a dynamic update mechanism
is used to adjust the width of prediction interval. The detailed implementation will be
presented as follows.
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Figure 2. Flowchart of the proposed method.

3.1. Sequence Smoothing Network

Denote the demand sequence by X = {x1, x2, ..., xm} ∈ Rm×n, where m indicates the
sample number and n represents the time dimension. The sequence can be encoded and
mapped into a hidden layer, as shown in Equation (10).

h = f (Wx + b) (10)

where h represents the hidden layer features, f (·) is the activation function of the encoding
layer, and W ∈ R

r and b ∈ R
r are the weight matrix and bias vector of the encoding layer,

respectively. The obtained feature set is denoted by H = {h1, h2, · · · , hm} ∈ Rm×l , where l
represents the dimension of the deep features.

In order to adequately represent the temporal information between samples in the
feature set H, an MDT with the operations of multi-linear duplication and multi-way
folding is employed to transform the original sequence to a three-order tensor. This process
can also reduce noise disturbance. Denote by H = {h1, h2, · · · , hm} ∈ Rm×l the tensor of
X = {X1, ...,Xm−τ+1} ⊆ R

l×τ×(m−τ+1), then the MDT for X can be defined as:

Xi = Hτ(H) = Fold(m,τ)(H × 1S1 × · · · × m−τ+1Sm−τ+1) (11)

where τ and m represent the time window size and sample length, respectively, and S is a
duplication matrix. In this paper, τ is set to 6.

With the tensors constructed by MDT, the Tucker decomposition technique is in-
troduced to obtain the three-order core tensor G = {g1

1, ..., gl
m−τ+1

} ∈ Rl×τ×(m−τ+1) that
represents the essential information of the sequence:

G = X× 1U(1)T × 2U(2)T × · · · × VU(v)T

s.t. U(v)T
U(v) = I, v = 1, · · ·, V

(12)

where {U(v)}V
v=1 is the projection matrix and can maximally preserve the temporal conti-

nuity between core tensors, where the superscript v represents the tensor dimension, and
m− τ + 1 represents the sample length after reconstruction. Equation (12) means that the
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decomposition result consists of a core tensor and a series of factor matrices. Obviously,
the core tensor G contains the intrinsic information of an evolutionary trend. By optimizing
{U(v)}V

v=1, the inherent correlation between feature sequences can be sufficiently captured,
while noise interference can also be reduced. The loss of tensor reconstruction can be
calculated as:

LTensor = min
∥∥∥X− X̂

∥∥∥2

F
(13)

where X is the original tensor, and X = G × 1U(1) × 2U(2) × · · · × HU(H) is the tensor
reconstructed from the factor matrix {U(v)}V

v=1.
To implement the decoding operation, it is necessary to transform the core tensor G

back to the original input space. Here, the inverse MDT transform [6] is applied to G by
reversing the transformation along the time dimension to obtain a second-order core tensor
G′ = {g

′
1, ..., g

′
m} ∈ Rm×l , as shown in Equation (14). The core tensor G′ is then used as the

input of decoding to update the network.

G′ = H(G) = Un f old(m,τ)(G)× 1S1
† × · · · × m−τ+1S†

m−τ+1 (14)

where † is the Moore–Penrose pseudo-inverse.
Through decoding G′ , the reconstructed data x̂ can be obtained as follows:

x̂ = f ∗(W∗g
′
+ b∗) (15)

where f ∗(·) is the activation function of the decoding layer, W∗ ∈ R
n×r is the weight matrix

of the decoding layer, and b∗ ∈ R
n is the bias vector of the decoding layer. Consequently,

the reconstruction loss of the autoencoder can be calculated as:

LAE =
1
m

m

∑
i=1

1
2
‖x̂− x‖2 +

λ

2
(‖W‖F

2 + ‖W∗‖F
2) (16)

where λ is the weight decay parameter and ‖·‖ is the Frobenius norm.
Based on the aforementioned analysis, the whole loss function is:

Lloss =
M

∑
i=1
LAE+ηLTensor (17)

Minimizing Equation (17) can smooth anomalous demands in the demand sequence
and extract the evolutionary trend of the demand for spare parts. The key idea of this
process is to reduce the significant deviations of anomalous demands, making them suitable
for intermittent sequence anomaly detection. The crucial aspect of this process lies in
utilizing the core tensor to represent the evolutionary trend. As Equation (12) indicates,
{U(v)}V

v=1 is randomly initialized. Therefore, the optimization of tensor decomposition
in minimizing Equation (17) is required to obtain the optimal representation of the core
tensors.

3.2. Alternating Optimization Scheme

Minimization of Equation (17) includes the optimization of LAE and LTensor. The LAE
can be solved using a stochastic gradient descent (SGD) strategy [29]. However, SGD cannot
be directly applied to tensor decomposition. Therefore, this paper adopts an alternating
optimization strategy: fix {U(v)}V

v=1, and update W, W∗; then fix the updated W, W∗, and
update {U(v)}V

v=1. These two steps are performed alternately until convergence. It should
be noted that, since the number of tensor optimization iterations is typically smaller than
the number of W, W∗ updates, updating {U(v)}V

v=1 is set to stop when the difference
between two consecutive tensor optimizations of {U(v)}V

v=1 is less than a specific threshold.
W, W∗ is updated until the model converges. With the initialized W and W∗, the specific
optimization process is as follows:
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(1) Fix {U(v)}V
v=1, and update W, W∗;

1. Encoding stage: the partial derivatives of LAE with respect to the parameters are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂LAE
∂W

=
2
M

M

∑
m=1

(x̂(m) − x(m)) · ∂(x̂(m) − x(m))
T

∂W
+ 2λ

∂(‖W‖F
2 + ‖W∗‖F

2)

∂W

∂LAE
∂b

=
2
M

M

∑
m=1

(x̂(m) − x(m)) · ∂(x̂(m) − x(m))
T

∂b

(18)

The partial derivatives corresponding to the error term on each sample can be obtained
by: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂(x̂(m) − x(m))

∂W
=

M

∑
m=1

∂(x̂(m))
T

∂W
= f

′ · diag(X(m)) ∈ R
1×r

∂(x̂(m) − x(m))

∂b
=

M

∑
m=1

∂(x̂(m))
T

∂b
= f

′ · 1r ∈ R
1×1

(19)

where “·” represents the dot product operator, diag(·) is the diagonal matrix, 1r is the unit
column vector of size r, and f

′
is the derivative of the activation function;

2. Decoding stage: the partial derivatives of LAE with respect to the parameters are:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂LAE
∂W∗ =

2
M

M

∑
m=1

(x̂(m) − x(m)) · ∂(x̂(m) − x(m))
T

∂W∗ + 2λ
∂(‖W‖F

2 + ‖W∗‖F
2)

∂W∗

∂LAE
∂b∗ =

2
M

M

∑
m=1

(x̂(m) − x(m)) · ∂(x̂(m) − x(m))
T

∂b∗

(20)

For easy analysis, the error propagation term (i.e., the derivative of the error term with
respect to the hidden layer output) is briefly denoted by:

δH(m) =

(
∂(x̂(m) − x(m))

∂H(m)

)
(21)

Furthermore, following the chain rule, we have:

⎧⎪⎪⎨
⎪⎪⎩

∂(x̂(m) − x(m))

∂W∗ = δH(m) · ∂H(m)

∂W∗ = δH(m) · ( f
′ � diag(H(m)))T

∂(x̂(m) − x(m))

∂b∗ = δH(m) · ∂H(m)

∂b∗ = δH(m) · ( f
′ � 1r)

T
(22)

where “·” and diag(·) have the same meaning as in the encoding stage;
3. Substitute Equations (19) and (22) into Equations (18) and (20), respectively, and the

model parameters can be updated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(l+1) = W(l) − ξ · ∂LAE
∂W

∣∣
W=W(l)

b(l+1) = b(l) − ξ · ∂LAE
∂b

∣∣
b=b(l)

W∗(l+1) = W∗(l) − ξ · ∂LAE
∂W∗

∣∣∣W∗=W∗(l)

b∗(l+1) = b∗(l) − ξ · ∂LAE
∂b∗

∣∣∣b∗=b∗(l)

(23)

where ξ is the learning rate.
(2) Fix W, W∗ and update {U(v)}V

v=1.
Updating {U(v)}V

v=1 can be achieved by minimizing the tensor reconstruction error
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as shown in Equation (13). Since {U(v)}V
v=1 is an orthogonal matrix, Equation (13) can be

rewritten as follows:

∥∥∥X− X̂

∥∥∥2

F
=
∥∥∥vec(X)− (U(V) ⊗U(V−1) ⊗ · · · ⊗U(1)) · vec(G)

∥∥∥2

F

=
∥∥∥vec(X)− (U(V) ⊗U(V−1) ⊗ · · · ⊗U(1)) · (U(V) ⊗U(V−1) ⊗ · · · ⊗U(1))

T · vec(X)
∥∥∥2

F

= ‖vec(X)‖2
F −

∥∥∥UT · vec(X)
∥∥∥2

F

(24)

where UT = U(H) ⊗U(H−1) ⊗ · · · ⊗U(1). To minimize Equation (24), we should maximize
the following equation:

∥∥∥UT · vec(X)
∥∥∥2

F
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥U(1)T · A(1) · (U(H) ⊗U(H−1) ⊗ · · · ⊗U(2))
∥∥∥2

F∥∥∥U(2)T · A(2) · (U(H) ⊗U(H−1) ⊗ · · · ⊗U(1))
∥∥∥2

F

· · ·∥∥∥U(H)T · A(H) · (U(H−1) ⊗U(H−2) ⊗ · · · ⊗U(1))
∥∥∥2

F

(25)

where A(i) is the unfolding matrix of the tensor X along the i-th dimension. The alternating
least squares method [30] can be used to solve it, where each factor matrix in different
directions is fixed sequentially to find the least squares solution. This process is shown in
Equation (26):

U(v)
k+1 = arg min

{U(v)}V
v=1

∥∥∥X̂− G × MU
(V)

k × M−1 · · · ×1U
(1)

k

∥∥∥2

F
(26)

3.3. Adaptive Prediction Intervals (API)

After obtaining the optimal feature representation, this paper designs the API algo-
rithm to generate the point prediction values and reliable prediction intervals. The details
of the API algorithm are presented as follows. The API algorithm consists of two stages:
training and prediction. At the training stage, a fixed number of LightGBM estimators
are fitted from a subset of training data. Then, the predicted value from all the Light-
GBM estimators is aggregated using the leave-one-out (LOO) strategy to generate LOO
prediction factors and residuals. At the prediction stage, the API algorithm calculates the
LOO predicted value by averaging the prediction factors from each test sample. With
the predicted values, the center of the prediction interval is determined. The prediction
intervals are then established using the LOO residuals. The width of prediction interval
is updated using a dynamic updating strategy. The specific implementation steps are as
follows:

First, a LightGBM model f is trained using the training samples {(xt, yt)}T
t=1, and the

prediction interval at the t-th time step is calculated as:

Ĉα
t = [ f̂−t(xt) + qβ̂, f̂−t(xt) + q(1−α+β̂)] (27)

where α is the significance factor, f̂−t represents the t-th estimator of f , qβ̂ is the β̂-quantile

on {ς̂i}t−T
i=t−1, and q(1−α+β̂) is the (1− α + β̂)-quantile on {ς̂i}t−T

i=t−1. The LOO prediction

residual ς̂i and β̂ are defined as follows:

ς̂i = yi − f̂−t(xt) (28)
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β̂ = arg min
β∈[0,α]

( f̂−t(xt) + q(1−α+β̂) − f̂−t(xt) + qβ̂) (29)

Second, the interval center is f̂−t(xt), and the interval width is the difference between
the (1− α + β̂) and β̂-quantiles on the past T residuals.

However, the obtained interval values cannot adequately address the problem of large
fluctuations of demands for different spare parts. This section proposes an adaptive update
mechanism to improve the reliability of the prediction interval. The specific step is as
follows: First, each demand sequence is divided into a zero-interval sequence (i.e., the gap
between two subsequent demands occur) and a non-zero sequence (i.e., the real demand
values). The squared coefficient of variation is then calculated for the two sequences , which
are denoted by cv1 and cv2, respectively. A larger coefficient indicates greater sequence
fluctuation, thus requiring a larger interval width for prediction, and vice versa. Second,
initialize the interval width parameter α = 0.1 and update α by:

α = α + cv1 + cv2 (30)

The interval update mechanism, as shown in Equation (30), can improve the rationality
and reliability of the prediction interval for demand sequences with different volatility and
intermittency characteristics. Obviously, different values of interval widths will directly
affect the decision of inventory management, e.g., spare part coverage rate. The spare
part coverage rate, reflected by the interval coverage rate in this paper, is defined as the
ratio of the number of demands covered by the interval to the total number of demands
in the sequence. The mechanism begins by setting an initial interval with a larger width,
and then reduces the width to meet the fluctuations in the demand sequence. The update
process is stopped when the interval width reaches a certain threshold. In this study, the
threshold of the interval width is determined just by the interval coverage rate. The setting
of the coverage rate relies heavily on business logic. Different kinds of maintenance tasks
or enterprises have different requirement for the setting. In this experiment, we received
help from the maintenance engineers from our cooperative enterprise and set the lower
limit of coverage rate to be 60%. We also observe that, with this threshold, the prediction
results become stable, which indicates that the threshold runs well.

4. Validation Results and Analysis

4.1. Experimental Settings

The experimental data for validation are the real-life demand data of spare parts from a
large engineering manufacturing enterprise from China. The data set contains 75 sequences
of different spare parts, in which each sequence covers 34 months from November 2018
to August 2021. The training data are the demand values in the first 33 months, while the
data of the last month are for the test. The enterprise usually has one month in advance
to make inventory plans and implement the allocation. Therefore, in this experiment we
mainly focus on the prediction value of the last month in the whole sequence. To visualize
the intermittent characteristic of the demand data, we randomly select two spare parts and
illustrate their demand sequences in Figure 3.

For a fair comparison, we introduce six representative methods of time series fore-
casting in this experiment. These six methods are applicable for different kinds of time
series. It is worth noting that BHT-ARIMA, which also adopts tensor decomposition and
joint optimization strategy, can be viewed as the SOTA method for intermittent time series
forecasting. See Table 1 for detailed information.
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Figure 3. Example of demands for different spare parts used in this experiment. Due to commercial
confidentiality requirements, only the part index, instead of its specific name, is given here.

Table 1. Six prediction methods for comparison.

Method Name Type Implementation

Croston [14] Intermittent time series forecasting Exponential smoothing
BHT-ARIMA [19] Joint optimization with ARIMA and tensor decomposition

ARIMA [31] One-dimensional time series forecasting Autoregressive modeling with moving average

Random Forest [9] Multidimensional time series forecasting Ensemble prediction
LightGBM [10] Decision trees using histogram algorithm

LSTM [13] Temporal deep learning method Modeling long-term dependencies with memory units

In the experiment, the parameters α and β in the Croston method are set in the range
of [0.13, 0.26], and the step size is set to 0.07. The parameters p and q of BHT-ARIMA are set
to 1 and 3, respectively. For ARIMA, the parameters p and q are set to 2 and 3, respectively.
For Random Forest, a grid search strategy is adopted to select the optimal parameters,
with the parameters determined as max_depth = 5, n_estimators = 30, learning = 0.05, and
num_leaves = 20. The LSTM hidden layer is set to 20, and the learning rate is 0.001.

4.2. Result Analysis

In this experiment, the demand data of the first 33 months are used as training and
the demand data of the 34th month is for the test. The predicted values and prediction
intervals obtained by the proposed method are shown in Figure 4.

As suggested by the enterprise’s engineers, a prediction result within a range of
±30% around the real values can be regarded correct. From Figure 4, our method works
well when dealing with high-demand data. The reason is that, besides the unsupervised
feature extraction capability of the autoencoder network, the core tensors can represent the
evolutionary trend of the raw demand data well. More importantly, when the prediction
results are heavily biased, the prediction intervals obtained by the proposed method can
effectively cover the true value. It is clear that the prediction results by the proposed
method can improve the decision-making ability of enterprises in inventory management.

Figure 5 shows the comparison of different prediction methods on the demand se-
quences with different degrees of intermittent distribution.
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Figure 4. Prediction results of the proposed method on a total of 75 demand sequences.

(a)

(b)

(c)

Figure 5. Comparative results of different prediction methods on the demand sequences for the spare
parts, respectively, indexed by (a) No. 0052, (b) No. 0392, and (c) No. 1437. The demands for the
three spare parts are randomly selected for validation and appear different levels of intermittent
distribution characteristic. The left column is the prediction results, while the right column is the raw
sequence for reference.
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From Figure 5, the zero-interval of the No.1437 sequence is relatively stable, so the
Croston method can achieve good results. However, the Croston method performs worse
than the other methods on the sequences No.0392 and No.0052 with large demand fluctua-
tions. It indicates that Croston is only suitable for the intermittent series with a stationary
zero-interval. The other conventional methods also have similar effects. These methods all
have certain limitations and are only applicable to certain types of intermittent time series.
Our method outperforms the other methods. The key part of our method is the introduction
of tensor decomposition for smoothing anomalous demands, which is beneficial for the
effective extraction of evolutionary trends from intermittent time series. With no surprise,
our method shows superiority in the forecasting of intermittent time series with different
distribution characteristics.

We further evaluate the effectiveness of the designed prediction interval. As stated
above, a reliable prediction interval is able to provide a reference for inventory management,
even if the point prediction is heavily biased or distorted. Figure 6 shows the prediction
interval and predicted value of the demand sequences No. 0392, 0602, 0348, and 3082.

(a) (b)

(c) (d)

Figure 6. Prediction results of four parts sequences (a–d) with different intermittent distribution
characteristics.

From Figure 6, the point prediction values of the sequences No. 0392 and No. 0602 are
more accurate than the others. The prediction intervals also cover the real values, while
the interval range remains small. On the contrary, the demand number in the sequences
No. 0348 and No. 3082 is smaller, while the deviation of point prediction results is rather
large. The prediction interval can cover the real value, so the enterprise can obtain precise
information for the spare parts in this interval and make a more reliable plan on inventory
management.

For numerical comparison, we introduce three commonly-used error metrics: MAE,
RMSE, and RMSSE. The prediction errors obtained by different methods are listed in
Table 2. Our method obtains the lowest prediction error in terms of all three metrics. With
these results, our method is believed to provide a new reliable solution for enterprises to
realize inventory management and parts scheduling.

The mainstream method in this field is the demand prediction method based on
deep learning models. One advantage of the proposed method, compared to the current
mainstream deep learning model, is introduction of tensor decomposition. By applying
tensor decomposition, the core tensor can be extracted from the demand sequences. This
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effectively mitigates the impact of outliers in the demand sequences and diminishes their
interference on the prediction results. Additionally, by utilizing LightGBM prediction with
the core tensor, the proposed method can better capture the demand trend information in
the demand sequences. The proposed method is then more suitable than deep learning
methods for predicting intermittent time series with small samples.

We must point out the potential disadvantages of tensor Tucker decomposition. Ac-
tually, the process of tensor decomposition is rather computationally expensive. In the
experiment, each round of tensor decomposition needs about 0.6 s, while the alternating
optimization needs 3.07 s on average. The total cost of the proposed method is 30 s per
round. In contrast, LSTM takes an average of 2.15 s per round, and the other shallow
models like Croston, Random Forest, and ARIMA needs much less time. The high cost
raises the potential risks of the proposed method for applications that require high real-time
performance.

Table 2. Numerical comparison of different methods in terms of three error metrics on all 75 demand
sequences.

Algorithm MAE RMSE RMSSE

Random Forest 1.85 2.77 0.79
ARIMA 1.99 4.40 0.73
Croston 1.77 2.79 0.84

LightGBM 1.85 2.80 0.78
LSTM 1.74 3.20 0.91

BHT-ARIMA 1.67 2.73 0.71
Our method 1.64 2.57 0.58

5. Conclusions

In this paper, a new tensor optimization-based robust interval prediction method
of intermittent time series is proposed to forecast the demand for spare parts. With the
introduction of tensor decomposition, the proposed method can smooth the anomalous
demand while preserving the intrinsic information of evolutionary trend from the demand
sequences. Moreover, to tackle the distorted or biased prediction results of intermittent time
series, the API algorithm is designed to transform traditional point prediction to adaptive
interval prediction. The proposed method is able to provide a trustworthy interval for the
prediction results, and can accurately reflect the uncertainty of the prediction results.

This study is fundamental to develop the effect of inventory management. As a typical
extended application, the proposed method is critical to update the current safety stock
model to a dynamic version by integrating the evolutionary trend of demand for spare
parts. For instance, the prediction results from this paper can adjust the upper bound of
safety stock to match the fluctuations in the actual demands. We believe this operation can
decrease the cost level while keeping maintenance.

Another interesting issue is the correlation among the demand sequences for different
spare parts. The demand for two spare parts is probably correlated due to many factors
such as project cycle, climatic influence, failure probability, etc. As proven by many prior
works, the correlation information between two time series is valuable. Especially for
intermittent time series prediction, analyzing the correlation among some sequences is
believed to improve the predictability, which is critical for intermittent time series. The
joint prediction of two or more sequences is able to enhance the prediction performance in
terms of accuracy and numerical stability. We plan to explore the utilization of correlation
information in the future work. A feasible implementation is running adaptive clustering
algorithms with profile coefficients to determine the proper sequence clusters before the
prediction, which is expected to improve the predictability. We can further adopt multi-
output regression or multi-task learning algorithms to achieve joint prediction on the
sequences in the same cluster. We plan to explore the utilization of correlation information
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in the future work.
In our future work, transfer learning will be studied for the prediction of demand

for spare parts. In actual enterprises, the demand data are usually insufficient, especially
for newly deployed equipment. Considering the distinction between different types of
equipment, we plan to build a transfer learning model to incorporate the evolutionary
information of the demand from available equipment. The reliability of the prediction
interval is also an interesting work. It is necessary to find a reliable method to converge the
prediction interval into a prediction point with a high confidence level.
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Abstract: Health monitoring of structures operating in ambient environments is performed through
operational modal analysis, where the identified modal parameters, such as resonant frequencies,
damping ratios and operation deflection shapes, characterize the state of structural integrity. The
current study shows that, first, time-frequency methods, such as continuous wavelet transform, can
be used to identify these parameters and may even provide a large amount of such data, increasing
the reliability of structural health monitoring systems. Second, the identified resonant frequencies
and damping ratios are used as features in a damage-detection scheme, utilizing the kernel density
estimate (KDE) of an underlying probability distribution of features. The Euclidean distance between
the centroids of the KDEs, at reference and in various other cases of structural integrity, is used
as an indicator of deviation from reference. Validation of the algorithm was carried out in a vast
experimental campaign on glass fibre-reinforced polymer samples with a cylindrical shell structure
subjected to varying degrees of damage. The proposed damage indicator, when compared with the
well-known Mahalanobis distance metric, yielded comparable damage detection accuracy, while at
the same time being not only simpler to calculate but also able to capture the severity of damage.

Keywords: statistical damage detection; wavelet transform; modal features; composite structure

1. Introduction

Structures made of conventional materials are being extensively replaced by fibre-
reinforced polymer (FRP) composite materials in the aerospace, automotive, energy and
other industries owing to their superior specific strength [1], negligible thermal expansion,
as well as fatigue and corrosion resistance compared to metals. The safety and reliability of
structures, such as aircraft fuselages, helicopter blades, as well as wind turbine blades, is
ensured by surveys using non-destructive testing (NDT) methods or planned maintenance.
Many NDT approaches require manual inspection, whereas planned maintenance often
assumes taking the structure out of operation, which increases downtime and increases
costs. What is more is that sometimes the inspection is unnecessary due to lack of damage.
In order to detect the onset and progression of existing structural damage in a timely
manner and reduce the maintenance costs, effective structural health monitoring (SHM)
solutions are crucial.

Output-only SHM involves the detection and possible characterization of damage
by analysing only the response signals collected from sensors mounted on the structure.
Structural excitation can be provided if conditions for operational modal analysis (OMA)
are fulfilled [2]. In practice, such is the case of ambient excitation of a stochastic nature, for
example, that is caused by wind, sea waves or traffic loads. Specialized signal-processing
algorithms can be applied to these output-only responses to extract essential information
on the status of structural integrity. This is normally achieved through a statistical pattern
recognition framework, where damage-sensitive features (DSFs) are extracted from the
sensor measurements [3]. The DSFs in OMA are typically modal parameters—resonant
frequencies, damping ratios and mode shapes. Although several techniques of modal
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parameter identification exist, such as stochastic subspace identification [4] and least-
squares complex exponential [5], etc., it is possible to extract only a limited amount of
modal parameter observations and only from repeated measurements. For a statistical
damage-detection approach using a significantly larger amount of data, traditional OMA
modal parameter estimation techniques can be substituted by time-frequency analysis.

Time-frequency analysis methods, such as short-time Fourier transform, Wigner–Ville
distribution and Hilbert–Huang transform and wavelet transform (WT) [6], among others,
have become established techniques for analysing transient signals, which are nonstation-
ary in nature. In the case of OMA, free structural vibrations induced by ambient excitations
are transient signals with a finite energy localized in time and frequency. Another merit of
time-frequency techniques is that they have an ability to decompose a composite signal con-
sisting of several modes of vibration (degrees of freedom) into individual modes [7]. This
is normally achieved by finding wavelet ridges—high energy curves in a time-frequency
plane tracing that allow for system identification via the extraction of modal parameters.
Staszewski was the first to demonstrate the WT can be used as a tool for structural modal
parameter identification [8]. Wavelet transform has been used in modal parameter esti-
mation for real structures, such as long-span cable-stay bridges and suspension bridges
using continuous wavelet transform in [9]; a cable-stay bridge in Taiwan using wavelet
packet transform in [10]; a 600 m tall building in China using a combination of empir-
ical wavelet transform and Hilbert transform in [11]; and a pedestrian overpass in the
USA using multisynchrosqueezing transform, a variation of wavelet transform that yields
a more concentrated estimate of modal parameters at the cost of higher computational
complexity in [12]. Authors in [13] proposed an output-only modal identification and
structural damage detection technique based on time-frequency techniques, including
wavelets. The above studies have focused on modal parameter estimation via wavelet
transform. However, it has been demonstrated in [14] that the time-frequency approach
with continuous wavelet transform (CWT) allows for the extraction of numerous instances
of modal parameters which, when employed in statistical pattern recognition schemes, are
more beneficial, since more data are available. This leads to a larger dataset and, therefore,
issues of model overfitting and underfitting can be solved.

After the extraction of DSFs, an anomaly detection algorithm is employed to identify
outliers supposedly originating from damage or changes in environmental conditions [15].
A popular class of methods of anomaly detection is based on dissimilarities between a
reference structural state and a potentially anomalous state. The Mahalanobis distance
(MD) metric has been successfully used for such purposes [16–18], owing to its ability to
detect outliers in a multidimensional feature space with an arbitrary number of extracted
DSFs. However, for MD to be used, DSFs have to follow a normal distribution. On the
other hand, kernel density estimation (KDE) is an approach used to identify the underlying
probability density function without any assumptions regarding a probability distribution
of data. KDE was used for structural damage detection in [19,20].

Building on the concept introduced in [14], the aim of the present study was to
develop a structural damage detection algorithm using continuous wavelet transform as
an alternative modal parameter estimation technique. The use of CWT enables a statistical
approach to damage detection using KDE. The underlying tasks of the study were to
estimate the probability density function of the extracted modal parameters and calculate
the probability centroids for modal features. Finally, Euclidean distances between centroids
at a reference point and various states of damage were to be calculated, explored as a
potential damage indicator and compared with a Mahalanobis distance in terms of accuracy.

2. Modal Identification

The current study is based on the concepts described in detail in [14]. Wavelet ridges
are hidden constituent elements of a finite-energy signal revealed through wavelet de-
composition of a said signal. Ridges contain all of the essential information on structural
modal parameters of a structure whose impulse response is available. Wavelet phase can
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be used to extract numerous observations of resonant frequencies and damping ratios for
each mode of structural vibration. These instances comprise a dataset that is representative
of a structural condition in the current state. Each new structural state, for example, the
occurrence of damage is associated with changes in modal parameter values. This concept
can be utilized in machine-learning-aided structural damage detection and, in a broader
sense, structural health monitoring (SHM).

A quick recap of the methodology from [14] is given as follows:

• CWT on the recorded response signals y(t) is carried out using analytical Morlet
function and storing complex-valued CWT coefficients in a matrix form:

Wy =

⎡
⎢⎢⎣

Re
(
Wy(s1, b1)

)− iIm
(
Wy(s1, b1)

)
. . . Re

(
Wy(s1, bL)

)− iIm
(
Wy(s1, bL)

)
...

. . .
...

Re
(
Wy(sn, b1)

)− iIm
(
Wy(sn, b1)

)
. . . Re

(
Wy(sn, bL)

)− iIm
(
Wy(sn, bL)

)
⎤
⎥⎥⎦, (1)

where s =
[
s1 . . . sn

]T is the vector of scale factors, b =
[
b1 . . . bL

]T is the vector
of translation parameters, and L is the signal length.

• Wavelet ridges (in terms of scale parameters s∗i ) of each response signal are found
by, firstly, finding the s and b parameters (denoted by s∗ and b∗) corresponding to
the maximum value of modulus of CWT coefficients and, secondly, testing the ridge
condition at a fixed parameter b∗ (time instant when vibration amplitude is maximum).

d
ds

Wy(s, b∗) = 0. (2)

The conversion from scale parameter to frequency is performed through the follow-
ing relation:

f =
1

2π
× ω0

s
, (3)

where ω0 is the central frequency of wavelet function. It is essentially a pseudofrequency
or a frequency that the wavelet function would have if it was a harmonic function.

• Damped natural frequencies are calculated from the derivative of phase between the
real and imaginary parts of CWT coefficients along the wavelet ridge line with respect
to time. The wavelet ridge line is defined at the ridge scales s∗i along the whole time
span of free vibrations starting from the time instant b∗.

d
dt

Arg
(
Wy(s∗i , b∗ : bL)

)
= ωd

d
ds

Wy(s, b∗) = 0. (4)

Damping ratios are extracted in the following substeps:
The moduli of CWT coefficients are extracted along the wavelet ridge, and its natural

logarithm is calculated. It is denoted as ln
∣∣Wy

(
s∗i , b∗ : bL

)∣∣.
By plotting ln

∣∣Wy
(
s∗i , b∗ : bL

)∣∣ versus the time axis, a straight line is obtained for most
of the time span of response because the modulus of CWT coefficients decays exponentially
with time. This straight line is fit with a linear function, and the slope parameter is extracted.
This slope parameter is equal to

d
dt

ln
∣∣Wy(s∗i , b∗ : bL)

∣∣ = −ξi ×ωn = slope, (5)

where ξ is the damping ratio, and ωn is the undamped natural frequency.
The relationship between the damped and undamped natural frequencies is well-

known from structural dynamics as ωd = ωn ×
√

1− ξ2. Hence, in practice, the damping
ratio is obtained as

ξ = ±
√√√√ slope2

ω2
d + slope2 . (6)
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3. Damage Detection Algorithm

SHM systems estimate the health state of structures during operation to ensure their
safety and economic efficiency. Such structures can be industrial, transport or energy
equipment with structural elements, for example, wind turbines or wind generators and
their elements—tower and blades. An SHM system’s sensors network will be connected to
the structure, read the vibration data and send it to the workstation (computer). Then, an
operator estimates the modal parameters of the structure. The resulting parameters together
with the possible external operational factors, such as static loads, temperature or speed
of rotation (blades), are input to a modal passport [21,22], where the past measurements
are stored. Modal parameters in a reference or intact structural state together with their
deviations due to operational factors form a “signature” of a structure that is unique to
this structure or for structures of this type. As next step, a specialized algorithm analyses
the modal passport and recognizes a particular structure. By analysing modal parameter
changes with damage, one can infer on the severity of the damage, which allows for
further planning of the agenda of structural serviceability—repair, replacement or resuming
operation if damage is not significant.

The damage detection algorithm proposed for an SHM system originates from an
anomaly detection field. It has three distinct phases, namely, Phase I: signal collection,
Phase II: feature extraction, and Phase III: statistical control, as shown in Figure 1.

Figure 1. Anomaly detection algorithm.

3.1. Phase I—Signal Collection

Vibration signals as a response to structural excitation are measured with N sensors
connected to measurement channels Ch1 to ChN. In the case of numerous instances of
impact excitation (p excitation of the structure during the measurement session), any
individual free-vibration decay profile is isolated from the whole signal. Afterwards, p,
these individual vibration profiles, are averaged to obtain N averaged vibration responses.

3.2. Phase II—Feature Extraction

In Phase II, a time-frequency analysis of the averaged responses is performed using
CWT. CWT analysis involves the identification of wavelet ridges from the ridge condition
in Equation (2) in the time domain signal analysed. Wavelet ridges represent the oscillatory
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modes, which comprise the components of vibration decay signals. Subsequently, this
ridge information from the ridges identified at r = 1, . . . , R is used to identify the resonant
frequencies fr from wavelet phase (Equation (4)), and the decay profile of CWT coefficients
in time domain is used to extract the damping ratios ξr (Equation (6)). CWT analysis
involves operating with wavelet scale parameters. In order to convert the scale parameter
to frequency values, a wavelet scale-to-frequency conversion is realized through Equation
(3) and is illustrated in Figure 2 for the analytical Morlet wavelet function. In this study,
Morlet mother wavelet is used since it exhibits a high correlation with the time domain
vibration data. This mother wavelet has been used for structural damage detection [23,24].
The identified modal parameter value pairs form features fr and ξr that are organized
into a two-column matrix

[
fr ξr

]
, where rows correspond to observations and columns

correspond to features. This feature matrix is used in the next phase of the anomaly
detection algorithm proposed.

Figure 2. Wavelet scale-to-frequency conversion plot for the analytical Morlet wavelet.

3.3. Phase III—Statistical Control

Phase III is concerned with performing statistical control of the feature values. The
first stage is the feature-value filtering, which is carried out by using the interquartile range
(IQR) rule. The goal is to remove the outliers from the features. Unlike the threshold set to
mean plus/minus two or three standard deviations, the IQR approach for outlier removal is
appropriate for data that does not necessarily follow a normal distribution. The frequency
values for the ridges identified at r = 1, . . . , R are filtered according to

Q1( fr)− 1.5× IQR( fr) < fr < Q3( fr) + 1.5× IQR( fr), (7)

where IQR is the interquartile range, Q1 is the first quartile, and Q3 is the third quartile of
the filtered resonant frequencies from the previous step. The filtered resonant frequency
and damping ratio values are stored as two-column vectors

[
f ∗r ξ∗r

]
.

The next step involves exploring the underlying probability distribution of the filtered
features. For this purpose, the kernel density estimate (KDE) is computed. The reason is
that a kernel distribution representation of the probability density function (PDF) of the
data does not make any assumptions on the underlying distribution. The KDE is defined by
a smoothing function and a bandwidth value that controls the smoothness of the resulting
density curve. The kernel density estimator of the data at hand (x) is given by

f̂h(x) =
1

nh ∑n
i=1 K

(
x− xi

h

)
, (8)

where n is the sample size, K is the kernel-smoothing function governing the shape of the
curve used to generate the PDF estimate, and h is the bandwidth. In this study, the obtained
vectors of filtered frequency and damping ratio values are used as the data x, and normal

72



Sensors 2023, 23, 6121

density is used as a kernel smoothing function since the feature values approximately
follow Gaussian distribution. It is important to choose the optimum bandwidth parameter
since it regulates the degree of smoothing. In this work, bandwidth optimization was
carried out by the following procedure illustrated in Figure 3:

Figure 3. Optimization scheme for the kernel density bandwidth parameter.

1. Perform a cross-validation partition on the data to create 10 folds where one fold is
used for testing and 9 folds are for training. Perform 10 iterations of such a partition,
where a different fold is used for testing in each iteration.

2. Define a range of bandwidth parameters b to test.
3. In each training fold and the single testing fold, compute the KDE according to

Equation (8) for each value of the bandwidth parameter. Then, compute an error ε
between the KDEs of the testing and each training set according to

εb, k(k− 1) =
1
n ∑n

i log f̂hb
(k− 1), (9)

where k = 1 : 10 is the number of folds.
4. Calculate the cross-validation error as a mean-squared-error of the errors in Equation

(9) across all folds for each value b according to

CVEb, k =
1
k ∑k ε2

b,k. (10)

5. Find the optimum bandwidth parameter by calculating the minimum of these cross-
validation errors across all bandwidth values

bopt, k = b(min(CVEb,k, b)). (11)

Afterwards, the KDEs with these optimized bandwidth parameters are calculated for
reference and all monitoring cases. Then, a centroid value of the KDE for both features is
calculated according to

Cx =
∑n

i xi × f̂h, i

∑n
i f̂h,i

, (12)
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where data x in this study are the filtered feature values. Thus, both quantities, Cf ∗r and
Cξ∗r , are calculated for reference and all monitoring cases. Next, the centroid values of both
features are organized into a row vector for each case at hand, and the Euclidean distances
between centroids at reference and each monitoring case are calculated as

d(Cref, Ccase) =
√

∑m
i (Cref,i − Ccase,i)

2, (13)

where Cref =
[
Cf ∗r ,ref Cξ∗r ,ref

]
, Ccase =

[
Cf ∗r ,case Cξ∗r ,case

]
, and i = 1, 2 since the centroid

vector contains two values.
Once the Euclidean distance between the reference and all monitoring cases is calcu-

lated, a threshold value is established according to the following scheme:

6. Consider all available structures of the same type at their reference state.
7. Perform a modal parameters estimation to form feature vectors and calculate their

centroid values for each structure.
8. Calculate the Euclidean distance between centroid values in all possible combinations

of structure pairs.
9. Calculate the median value of these Euclidean distances and confidence bounds as

CB = Nq± z
√

Nq× (1− q), (14)

where N is the number of Euclidean distance samples, q = 0.5 is the quantile corresponding
to median (50% of data), and z is the critical value dependent on a chosen confidence level.
For confidence level 0.95, z = 1.96. The threshold of the Euclidean distances is set as a
lower confidence bound at T = Nq− z

√
Nq× (1− q).

4. Experimental Campaign

The algorithm proposed is validated on the modal parameters extracted from five
glass-fibre-reinforced polymer composite specimens with a cylindrical shape manufactured
in the scope of an SHM system prototype research project. Cylindrical structures mimic the
structural components of serial production, such as a helicopter tail boom, for which the
current anomaly detection algorithm is intended.

4.1. Specimens

Testing objects are the structures in the form of cylinders fabricated from a composite
material with the flanges made of plywood rings. The specimens are made of 300 g/m2

fibreglass fabric with a fibre orientation of 45◦ and LG 385 epoxy resin (HG 385 hardener).
The weight of the specimen with the upper and lower flanges is 4.37 kg. Photo of a specimen
is shown in Figure 4a. The specimen design includes (see Figure 4b):

• Item 1—composite cylinder made of fiberglass and epoxy resin;
• Items 2 and 3 —top and bottom annular flanges for cylinder fixation made of laminated

plywood (30 mm thickness), respectively;
• Item 4—a network of 48 piezoelectric strain sensors;
• Item 5—wires connecting the sensors;
• Item 6—4 D-SUB type connectors at the places for connector fastening.
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(a) (b) 

Figure 4. Specimen test object No. 1: (a) general view; (b) design.

The dimensions of the specimen are as follows: nominal diameter of 300 mm, nominal
length of 710 mm (with the flanges of 773 mm) and wall thickness of 1.45 ± 0.05 mm.

4.2. Measurement Subsystem

Each specimen includes its own sensor network, which outputs the signals during
testing to the measuring system, providing a registration and storage of the signals.

The sensor network of each specimen comprises 48 polyvinylidene fluoride piezo
film sensors connected to four conductor terminals and wiring harnesses with connectors.
These films are flexible, lightweight and have piezoelectric properties [3]. Due to these
properties, a strain in the film causes a change in stress. The piezo film is located between
two printed silver electrodes, forming a capacitor-like structure. The dimensions of the
sensors are roughly 45 mm × 20 mm × 0.05 mm, electrical capacity of 1.3 nF, operating
temperature from −40 ◦C to 60 ◦C. The view of the sensor prepared for gluing on the
specimen is shown in Figure 5a. The wires used for the SHM system prototype are the
small, lacquered copper wires with a diameter of 0.25 mm. These wires are glued to the
sensors with a special two-component epoxy glue, after which the sensor is covered with a
nonconductive insulating tape. The electrical conductors connecting the sensors with the
terminals (Figure 5b) are laid in the form of bundles in the longitudinal and circumferential
directions and fixed with adhesive tape. On each terminal, 12 similar (conditionally signal)
conductors are assembled on 12 contacts and 12 conditionally negative conductors on one
common contact. Bundles of wires are soldered to the terminal contacts. The sensors are
installed on the specimens in accordance with the premade markings, as shown in Figure 5c.
At this stage, the sensor network is covered with a protective composite layer, and the
specimen is glued into the annular grooves of the flanges.
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(a) (b) 

Figure 5. Installation of sensor system on the test specimens: (a) piezoelectric film sensor used in the
measurements; (b) sensor terminal glued around the circumference of the cylinder; (c) arrangement
of a sensor network on the specimen.

4.3. Modal Testing

After the instrumentation installation, each specimen is fixed on a U-shaped modal
testing stand, which, in turn, is mounted on a vibration isolation base (see Figure 6).
Structural excitation is performed by repeated impacts of the specimen with a plastic modal
hammer in the radial and vertical directions for 120 s. This test procedure is repeated
3 times. The Brüel & Kjær (B&K, Singapore) system LAN-XI Type 3053 is used as the
data-reading device. A total of four Type 3053 modules were used to measure 48 channels
simultaneously. A portable computer with software from the manufacturer of measurement
modules (B&K, Singapore), such as Pulse Labshop, was used for data collection, processing
and management. The entire signal recording with a duration of 20 s and sampling
frequency of 4096 Hz contained 4 to 6 free vibration decay responses corresponding to the
4 to 6 instances of impact excitation. The test cases realized in the current study involve
a reference state and progressing damage. The damage comprises a circular hole drilled
through the thickness of the specimens in the same location. The diameter of the hole is
increased and has the following values: 4, 8, 16, 24, and 32 mm.
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Figure 6. Modal test stand.

All test specimens manufactured were visually inspected to check for defects or
damage, as well as their compliance with the specifications. Local deviations and small
differences between the specimens were identified to be mainly due to the factors of hand-
made technology. These factors include uneven filling of the specimens and flange joint,
resin leaks on the specimen surface, air bubbles in the protective layer, undercut on the
flange of specimen No. 5, slightly different location of the first hole on the flange for
each specimen, resin pouring out at different locations on the inner and outer surfaces of
specimens, and differences in wire layouts for sensors.

4.4. Test Cases

The test cases realized in the current study involve reference state and progressing
damage, namely, a circular hole drilled through the thickness of the cylinders in the same
location. Diameter of the hole is increased in five stages as follows—4, 8, 16, 24, and 32 mm.
The location of the hole schematically is shown in Figure 7a, while the close-up photo view
of a 4 mm hole is shown in Figure 7b.

  
(a) (b) 

Figure 7. Damage in the test specimens: (a) schematic showing the location and size of the hole;
(b) photo of the 4 mm hole. The hole is located close to sensors No. 46 and 47.
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5. Results

5.1. Time-Frequency Analysis

An example of a response signal (specimen No. 1 from measurement channel 1) at
a reference state is shown in Figure 8. The sampling frequency of the signal recording
was 4096 Hz. This response signal was divided into separate free-vibration decay signals.
The duration of each of these vibration signals was approximately 0.1 s. Afterwards,
these responses were averaged and an averaged response for each measurement channel
was obtained.

Figure 8. Recorded free vibration decay (specimen No. 1, measurement channel 1).

CWT scalograms at the reference state for the averaged time domain responses are
shown in Figure 9. The scalogram is a useful analysis tool for signal analysis in joint time
and frequency domains via the CWT. It is a 3D plot providing an indication of relative
energy distribution across wavelet scales (related to frequencies) and time instants. Red
regions mark the coordinates in time-frequency plane with high energy localization. Ridge
identification using the ridge condition is shown on the bottom plots. The identified ridges
and the corresponding frequencies are presented in Table 1. The frequencies correspond to
the ones from the scale-to-frequency conversion from Figure 2 and do not consider variations
associated with individual specimens. The vibration modes at scales 6 and 14, corresponding
to 185.3 Hz and 106.4 Hz were identified for all five specimens. The vibration mode at scale 7
(172.9 Hz) was identified for all specimens, except for the second, while the vibration mode at
scale 5 (198.6 Hz) was identified only for the first and fourth specimens.

Table 1. Wavelet scales and frequencies of the identified wavelet ridges of the averaged response signals.

Specimen 1 2 3 4 5

Ridge # Scale s (-) f (Hz) f (Hz) f (Hz) f (Hz) f (Hz)

1 5 198.6 - - 198.6 -
2 6 185.3 185.3 185.3 185.3 185.3
3 7 172.9 - 172.9 172.9 172.9
4 14 106.4 106.4 106.4 106.4 106.4

78



Sensors 2023, 23, 6121

     

     

Figure 9. Resonant frequency identification with CWT. Top: CWT scalograms showing signal
energy distribution at different frequencies and time instants; bottom: derivative of moduli of CWT
coefficients versus wavelet scale. Scales at zero crossings (thick black line) corresponding to wavelet
ridges. Note the inverse proportionality of frequencies and wavelet scales.

5.2. Modal Parameter Estimation
5.2.1. Resonant Frequencies

The estimation of resonant frequencies from wavelet phase is shown in Figure 10a.
First, CWT coefficients were calculated from the averaged vibration response. Second, phase
angle between the real and imaginary CWT coefficients were calculated separately for each
identified wavelet ridge. Resonant frequencies were calculated as a derivative of wavelet
phase according to Equation (4). The number of identified observations of resonant frequency
increased with increasing the signal length and sampling frequency. Therefore, it was possible
to extract large sample size of features from a long signal with high sampling frequency.

  
(a) (b) 

Figure 10. Estimation of modal parameters from wavelet ridges: (a) CWT of the signal and estimation
of resonant frequencies from wavelet phase (two ridges shown); (b) extraction of slope of decay
related to damping ratio.
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5.2.2. Damping Ratio

The procedure of damping ratio estimation is shown in Figure 10b. First, the moduli of
the CWT coefficients was calculated at each wavelet ridge along the time axis. Second, the
natural logarithm was taken, and this result was approximated with a linear function. The
slope of this fit was recorded, and the damping ratio was calculated according to Equation (6).

5.2.3. Frequency Filtering

The results of the frequency filtering for the vibration mode at 185 Hz (scale 6) at
a reference state for specimen No. 2 are illustrated using histograms in Figure 11 and
shown numerically in Table 2. There are significant outliers in the extracted instantaneous
frequencies for all specimens. The small inset shows a histogram of the zoomed-in portion
before filtering the histograms, ignoring the outlier values. The histograms on the right
show the results after filtering. The bimodal character of frequency distribution can be
traced. The results in Table 2 show that while the mean frequency values change only
slightly, the standard deviation and, especially, frequency range reduced drastically after
the filtering process.

Figure 11. Resonant frequency filtering for a reference state, vibration mode at 185 Hz, specimen No. 2.

Table 2. Statistical descriptors of resonant frequency feature filtering.

Specimen No. 1 1 2 2 3 3 4 4 5 5

Filtering No Yes No Yes No Yes No Yes No Yes

Mean (Hz) 187.38 186.49 183.58 184.15 178.41 180.03 182.38 182.21 142.70 180.77
Variance (Hz2) 359.10 4.97 99.40 1.54 421.48 0.94 364.81 5.29 1474.56 1.49

Range (Hz) 1512.70 11.48 701.68 6.08 2501.22 4.37 2061.54 10.86 872.45 6.02

5.3. Kernel Smoothing

After feature filtering, the next step is computation of the KDE of the filtered features.
It was shown that feature values do not follow a clear normal distribution; therefore, KDE
is an appropriate tool for the estimation of the underlying probability density. In the
bandwidth optimization routine, bandwidth values were set from 0.01 to 1, with a total
of 100 values for testing. The bandwidth parameter optimization results for specimens at
the reference state are shown in Figure 12a. It can be seen that the optimum bandwidth
parameters are different for different specimens even if they are designed to be equal. The
range of optimum bandwidths is from 0.03 (specimen No. 2) to 0.14 (specimen No. 4). The
optimized KDE of the resonant frequency distribution at scale 6 for the specimen No. 1 at
reference in comparison to a KDE obtained with a default bandwidth parameter is shown
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in Figure 12b. The optimization procedure removes the spikes of the KDE producing a
smooth curve.

(a) 

(b) 

Figure 12. Bandwidth optimization. (a): cross-validation error for a range of bandwidth parameters
where minimum value is marked with a circle; (b): kernel density estimate of probability density
function for the optimized bandwidth parameter and default (specimen No. 1 at reference state).
Optimization of bandwidth has removed the spikes of KDE smoothing out the curve.

The optimized KDEs for a specimen No. 1 are shown in Figure 13. Here, all damage
scenarios are shown along with the reference for both resonant frequency and damping
ratio features. Centroids are marked as filled circles of a colour corresponding to one of the
associated KDE. The KDEs reveal complex multimodal distributions, indicating that the
underlying probability densities are, in fact, not classical Gaussian for all damage cases.

Figure 13. Kernel density estimate for specimen No. 1 at reference and damage states for resonant
frequency and damping ratio modal features. Centroids are marked with filled circles. Their position
with respect to the reference can be seen.
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5.4. Damage Detection
5.4.1. Threshold Estimation

The threshold values for the Euclidean distances of centroids at reference are estimated
from all five cylindrical specimens. Hence, the total number of combinations is 10 if that
particular vibration mode is identified for all structures. The Euclidean distances calculated
for three modes of vibration at 185, 176 and 106 Hz are shown in Figure 14. Only six
combinations for vibration mode at 176 Hz were obtained meaning that this particular
mode was identified in four out of five specimens. The values of the Euclidean distances
are not uniform, indicating a relatively high standard deviation, particularly for modes
at 185 and 106 Hz. Overall, the largest deviations from the reference are for the vibration
mode at 185 Hz, while the smallest are the for vibration mode at 176 Hz.

Figure 14. Euclidean distance values of centroids between reference states of all structures for the
extracted vibration modes.

The median values and their confidence bounds according to Equation (14) of the
calculated Euclidean distances are presented in Table 3 for all vibration modes. The
threshold value is set as a lower confidence bound to ascertain that the structural change
is detected.

Table 3. Threshold estimation results for each vibration mode.

Vibration Mode Scale 14 (106 Hz) Scale 7 (176 Hz) Scale 6 (185 Hz)

median
(

d
(

Cre f , Cre f

))
1.432 0.871 2.863

CB_lower 0.614 0.289 1.455
CB_upper 3.464 2.34 4.274

5.4.2. Damage Indication

The damage detection results are displayed in Figure 15. Red horizontal line shows
the threshold level. The scales for the Euclidean distances for each mode of vibration are
set to the maximum value among all five specimens to compare the magnitude of deviation
at the reference among different specimens. First of all, it can be seen that the values of
the Euclidean distances are increasing with progression of damage, indicating that the
approach proposed is sensitive to changes in damage severity. Secondly, the largest overall
deviations from the reference state are observed for features from the vibration mode at
106 Hz. Furthermore, the values of Euclidean distance for all damage scenarios are above
the threshold level for all specimens. From this perspective, the vibration mode at 185 Hz
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yields the poorest results since only the most severe damage cases are detected (above the
threshold) for specimens Nos. 1, 2 and 3. No damage for this vibration mode is detected for
specimens Nos. 4 and 5. Almost all cases of damage were detected for the vibration mode
at 176 Hz. These observations indicate that it is crucial to consider multiple modes when
detecting damage since, firstly, there might be missed detections if features were extracted
only from a single mode and, secondly, the features of different vibration modes display
different magnitudes of deviations from the reference.

Figure 15. Damage index as Euclidean distance between feature centroids at reference state and
damage states. Red horizontal line shows the threshold for each mode of vibration.
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Limitations of the algorithm proposed are directly associated with the quality of the
vibration signals recorded, which, in turn, strongly depend on the noise robustness of the
sensors to the environmental conditions in which the structure is operating. Secondly, the
algorithm does not consider the operational deflection shapes (ODSs) as an additional
feature. It is anticipated that information on the ODSs could potentially enhance the
discriminative power of the algorithm. It is possible to identify the ODSs with continuous
wavelet transform. However, it would significantly increase the complexity of the algorithm,
which was not the aim of this study. Thirdly, damage detection accuracy depends on
an accurate threshold estimation. Obviously, according to statistics, a larger sample of
structures would have yielded a more accurate threshold value for the Euclidean-distance
damage indicator. However, there is a trade-off of accuracy and number of structures
to be manufactured for such threshold calculations involving increased financial and
time resources.

5.4.3. Comparison with Mahalanobis Distance

The damage identification results obtained were compared to the well-known Maha-
lanobis distance (MD) metric. The MD values follow a chi-squared (χ2) distribution [25,26].
Thus, threshold for the MD values is defined as an inverse of χ2 cumulative distribution
function with υ degrees of freedom and a selected probability P: TMD =

√
χ2

ν,P. The
results of damage detection for specimen No. 1 are shown in Figure 16. The threshold
level is selected at 95% probability and two degrees of freedom (corresponding to the two
feature vectors in a feature matrix). It can be seen that while the majority of the green dots
(reference MD data) lie under the threshold, the damage MD data are largely above the
threshold for the vibration modes at 106 and 176 Hz. On the other hand, a poor damage
detection can be seen for the vibration mode at 185 Hz, since a relatively small proportion
of the damage MD data exceed the threshold.

Figure 16. Mahalanobis distance (MD) metric in logarithmic scale for the identified vibration modes
for specimen No. 1. Red line shows the threshold level. Different vibration modes have a different
damage detection performance.
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The evaluation power of both damage indicators is estimated through the false alarm
rate (FAR).

FAR = 1−Accuracy = 1− ∑m
i=1(MD > TMD)i

∑m
i=1 MDi

, (15)

where m is the number of observations of the Mahalanobis distance metric for each case.
The accuracy, on the other hand, is 1− FAR and is presented in Figure 17. The colourmaps
show the accuracy (in %) of damage detection for the Euclidean distance metric (on the left)
and Mahalanobis distance metric (on the right). The colour corresponds to the accuracy
percentage level. For the Euclidean distance, there can be either 0% or 100% accuracy
(Euclidean distance either does not reach the threshold or cross it), while for the Maha-
lanobis distance, any intermediate accuracy can be achieved since numerous observations
of this metric are obtained. Additionally, accuracy for a reference state for the Mahalanobis
distance can be assessed, which is not the case for Euclidean distance. NaN (not a number)
means that the vibration mode was not identified.

Figure 17. Colormaps of accuracy of Euclidean distance metric (left) and Mahalanobis distance
metric (right) for three vibration modes. NaN means that the vibration mode was not identified for
that particular case of damage.

The vibration mode at 185 Hz is the least favourable for damage detection (accuracies
are low for both methods), while both other modes are roughly equal in this regard. Overall,
the accuracies are comparable between both methods. In cases where there is 100% accuracy
for the Euclidean distance, the corresponding accuracy for the Mahalanobis distance is
usually lower, since not all observations have passed the threshold. The advantages of the
method proposed are that computation for the Euclidean distance is simpler and requires
less computational power since the covariance matrix does not need to be computed.

6. Conclusions

In the current study, an anomaly detection algorithm based on output-only structural
vibration responses of structural components was proposed. The algorithm detects changes
of modal parameters caused by structural degradation, such as the progression of damage.
Phase I deals with the acquisition of vibration response signals from the sensors mounted
on the structure and subsequent signal averaging and fusion. Phase II uses the modal
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parameters as the features identified with continuous wavelet transform routine. Phase
III is carried out for decision-making regarding the state of integrity of the structure in
question based on the statistical descriptors of the extracted features. Here, the feature
filtering scheme based on IQR Rule is adopted to remove outlier feature values. Feature
filtering revealed that the distribution for some specimens is, in fact, bimodal, while for
others it is skewed and not classical Gaussian. The probability density function of the
filtered features is estimated using a kernel density estimate (KDE) to avoid the assumption
that the underlying distribution is normal. The damage indicator is based on the Euclidean
distance between the centroid of KDE for both features at reference state and any state of
damage. The following can be concluded:

1. The Euclidean distance of the centroids of the modal features KDEs between the
reference and damage states can be used to detect damage.

2. The damage indicator proposed shows an upward trend for damage progression,
meaning that it is effective in detecting increasing severities of damage.

3. Some vibration modes are more sensitive to damage than others. Therefore, multiple
vibration modes have to be identified in order to increase the reliability of the damage
detection. For example, features originating from the vibration modes at 106 and
176 Hz have significantly higher deviations from the reference than the vibration
mode at 185 Hz. Therefore, these vibration modes were more effective in damage
detection. On the other hand, these vibration modes could not be identified for all
damage cases, while the vibration mode at 185 Hz was present in all scenarios.

4. There is a significant scatter of the feature value deviations from reference among the
test samples. For the most part, this is due to inconsistencies in the sample design and
instrumentation, as mentioned in Section 4.1. Specimens.

5. The damage indicator proposed was compared to the Mahalanobis distance metric
for damage detection. Both methods yield comparable damage detection accuracy.
Therefore, there is no reason to use a more computationally costly Mahalanobis
distance approach.

Future research will be devoted to the consideration of an influence of environmental
and operational factors on the structural characteristics and modal parameters for a practical
SHM system. To reduce the influence of the ambient temperature, for example, some
papers consider methods for suppressing this effect as interference [27], in others, methods
for constructing quantitative models, that accurately predict the modal frequency that
corresponds to temperature change are proposed [28]. A promising way to consider
influence factors is to utilize the modal passport mentioned above, which is a method
for collecting and processing all modal data of a structure while taking into account
environmental and operational variances.
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Abstract: The rationality of heavy vehicle models is crucial to the structural safety assessment of
bridges. To establish a realistic heavy vehicle traffic flow model, this study proposes a heavy vehicle
random traffic flow simulation method that fully considers the vehicle weight correlation based on the
measured weigh-in-motion data. First, a probability model of the key parameters in the actual traffic
flow is established. Then, a random traffic flow simulation of heavy vehicles is realized using the
R-vine Copula model and improved Latin hypercube sampling (LHS) method. Finally, the load effect
is calculated using a calculation example to explore the necessity of considering the vehicle weight
correlation. The results indicate that the vehicle weight of each model is significantly correlated.
Compared to the Monte Carlo method, the improved LHS method better considers the correlation
between high-dimensional variables. Furthermore, considering the vehicle weight correlation using
the R-vine Copula model, the random traffic flow generated by the Monte Carlo sampling method
ignores the correlation between parameters, leading to a weaker load effect. Therefore, the improved
LHS method is preferred.

Keywords: weigh-in-motion; random traffic flow; correlation; R-vine Copula; Latin hypercube sampling

1. Introduction

Transportation structures such as roads and bridges are designed to carry moving
traffic loads. However, with the rapid economic development, the load capacity and
occupancy of heavy vehicles are increasing [1,2], generating greater safety hazards to in-
service highway bridges and even leading to serious accidents [3]. The heavy vehicle weight
parameters indicate strong randomness and significant correlation between parameters;
therefore, it is of great importance to fully study the randomness and correlation of heavy
vehicle weights and propose a more realistic simulation method for heavy vehicle flow to
evaluate the safety of bridge structures.

Several scholars have implemented random traffic flow simulations considering sev-
eral parameters, such as vehicle type, vehicle weight, axle weight, and vehicle speed, based
on data measured utilizing a dynamic weighing system, weigh-in-motion (WIM). For exam-
ple, Zhouhong et al. [4], Yang et al. [5], and Liang and Xiong [6] developed random traffic
flow models applicable to specific regions using Monte Carlo simulation methods. Notably,
mass parameters, such as vehicle weight and axle weight, are important for the load effect,
and there is a significant correlation between the mass parameters of each traffic model.
To build a model closer to a real traffic flow, numerous scholars have used the Copula
theory to describe the nonlinear correlation of random parameters. For example, Li et al. [7]
analyzed the correlation between vehicle axle weights using the t-Copula function and
established a random traffic flow model based on a Monte Carlo simulation. Li [8] analyzed
the axle weight correlation according to the Copula distribution function, established a
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two-dimensional compound Poisson process for vehicle speed and weight using the Levy
Copula function, and finally established a random traffic flow model utilizing Monte Carlo
simulations. Torres-Alves et al. [9] used the vine Copula model to analyze the axle weight,
wheelbase, and vehicle distance to establish a random traffic flow model that considered the
correlations through random sampling. Sorianoa et al. [10] used the binary Copula function
to construct a joint distribution model for overweight trucks with regard to occupancy
and average daily traffic flow. In general, the accuracy of random traffic flow simulations
can be improved by considering the correlation between the mass parameters of each
vehicle. However, existing simulation methods have the following two shortcomings:
First, the parameters of the C-vine and D-vine Copula models used in random traffic flow
simulations are all based on fixed-type subjective assumptions, whereas the correlation
structure between the variables of each dimension in actual engineering is complex and
variable. Furthermore, accurately describing the parameters using a fixed structure is
difficult. Therefore, accurately constructing a high-dimensional variable correlation model
using the vine Copula model still has certain limitations [11,12]. Second, random traffic
flow simulations are mainly conducted by considering the correlation between parameters
through the Copula theory and Monte Carlo sampling. The correlation between parameters
is difficult to determine using solely the Monte Carlo sampling method because it leads to
inaccurate sampled parameters when correlating them. Therefore, a more rational sampling
method is urgently needed.

A literature review found the following theories to resolve the above two problems.
Morales-Nápoles et al. [13] proposed an R-vine Copula model for topology optimization
based on the data-driven nonparametric estimation of the decomposed Copula function,
which has better flexibility and practicality. Latin hypercube sampling (LHS), proposed
by McKay et al. [14], can achieve stratified sampling to avoid the sampling aggregation
phenomenon induced in Monte Carlo sampling while achieving improved accuracy and
efficiency. Iman and Conover [15] proposed a simulation method independent of the data
distribution. It derives the expected rank correlation matrix using multi-parameter input
random variables through matrix transformation to fully preserve the data correlation
characteristics. This method can be applied to any type of distribution sampling.

In light of this, 2020 WIM data was collected from the 49,010 Census Station of
Interstate 80 in the U.S. to analyze the statistical characteristics of daily traffic flow, vehicle
type, vehicle weight, vehicle speed, and other heavy vehicle parameters. Based on this, a
scholastic traffic flow model for heavy vehicles was established using the R-vine Copula
model with an improved LHS method. The applicability and superiority of the method
were verified. This method provides a reference for vehicle load modeling and load design
limit optimization.

2. Statistical Characterization of Heavy Vehicle Load Parameters

A WIM system equipped with dual loop sensors was installed on the 49,010 Census
Station of Interstate 80, the second largest freeway in Vacaville, California, U.S., as shown
in Figure 1. Monitoring data, which includes parameters such as vehicle type, axle weight,
vehicle weight, daily traffic volume, vehicle speed, and lane location, was collected, a total
of 181,800 data for the year 2020.
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Figure 1. Sensor layout at the mainline traffic survey station.

2.1. Model Classification and Lane Occupancy

According to the classification standard published by the Federal Highway Adminis-
tration (FHWA) [16], vehicle classification is based on the number of vehicle axles (Axle)
and the truck towing method. The towing method is subdivided into single unit (SU),
single trailer (ST), and multiple trailer (MT). The vehicle occupancy of each lane at the
assessment site is listed in Table 1, and the last six vehicle types in the table are defined by
the FHWA as heavy vehicles.

Table 1. Lane occupancy by vehicle type.

Vehicle Type Lane 0/‱ Lane 1/‱ Lane 2/‱ Lane 3/‱ Total/‱

2 Axle, 4T SU 1790.3000 1788.9550 2333.1040 965.8129 2985.4270
Bus 108.3499 107.5772 56.7047 104.5149 169.5703

2 Axle, 6T SU 3311.0860 3310.1770 3487.1130 2365.9790 5127.4970
3 Axle SU 302.7385 302.6917 418.3685 334.2686 119.7357

4+ Axle SU 33.4853 32.5274 91.9235 18.3512 7.454761
<4 Axle ST 422.6222 421.4048 370.9372 582.9789 140.6703
5 Axle ST 3178.3480 3178.6290 2240.7240 4686.4910 941.3933

6+ Axle ST 19.2045 18.9485 12.2632 29.1005 6.1783
<5 Axle MT 185.4344 185.2683 174.9283 257.5469 44.1158
6 Axle MT 86.8883 86.2973 36.8910 139.6438 27.8277

7+ Axle MT 3.1873 3.1622 3.0405 4.4789 0.6127

2.2. Vehicle Weight Statistics

Parametric and nonparametric methods are commonly used for estimating proba-
bility density functions. The parametric method assumes that the random variation of
variables conforms to a known distribution and performs parameter estimations based on
the monitoring data, whereas the nonparametric method can estimate probability density
functions without assuming the type of probability distribution. The parametric method
has the following limitations: First, the process of assuming the distribution type is often
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subjective. Second, the random behavior and dispersion of the monitoring data make it
difficult to determine the best assumption of the distribution type. Therefore, based on the
monitoring data, the nonparametric kernel density estimation method was used to fit the
vehicle weight distribution of heavy vehicles.

Estimating the nonparametric kernel density of the variable x as f̂ (x), the expression
becomes as follows:

f̂ (x) =
1

nh

n

∑
i=1

K(
x− xi

h
), (1)

where h is the smooth parameter, n is the sample capacity, and K is the kernel function. The
kernel functions typically used in such applications are the Gaussian, Box, trigonometric,
and Epanechnikov.

The nonparametric fit and R2 goodness-of-fit tests revealed that the probability density
and distribution functions of the weight of the six types of heavy vehicles are well-described
by the different kernel functions, as indicated in Figure 2. Among them, the values of the
R2 goodness-of-fit of the Gaussian kernel density estimation for the weight distribution of
the six heavy vehicles were all greater than 0.98. These values were slightly higher than the
nonparametric fitting results of the other three kernel functions. In this study, the Gaussian
kernel function was adopted, whose expression is as follows:

Kgausssian =
1

2π
e
(−u2

2 )

. (2)

  

  

Figure 2. Cont.
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Figure 2. Weight of heavy vehicles.

Vehicle weight is the most critical parameter influencing the vehicle load effect. Over-
loaded heavy vehicles are especially hazardous to the safety of highway bridges. The
vehicle weight of each vehicle type in a heavy traffic flow is random, and there is a correla-
tion between the weights of different types of vehicles. To realize an accurate simulation
of the heavy vehicle traffic flow, the correlation between the weights of different types of
vehicles must be analyzed in addition to considering the random behavior of the weight of
each vehicle type. The Pearson correlation coefficient is mainly used to describe a linear
correlation applicable to a single-peaked normal distribution. The Kendall rank correlation
coefficient can accurately measure the consistency of variation trends and the degree of
variation between variables, and is applicable to various distributions. Considering the non-
linear correlation between the vehicle weights of each heavy vehicle type, the Kendall rank
correlation coefficient was used as the index to evaluate the correlation. The calculation is
expressed as follows:

τ = ∑
i<k

(sign(x[j]− x[i])× sign(y[j]− y[i])). (3)

The Kendall rank correlation coefficients of heavy vehicle weights are listed in Table 2.
These coefficients indicate that the correlation of the vehicle weights of certain types of
heavy vehicles is more significant; thus, the correlation needs to be considered when
modeling a heavy vehicle traffic flow.

Table 2. Correlation coefficients of heavy vehicle weight.

<4 Axle ST 5 Axle ST 6+ Axle ST <5 Axle MT 6 Axle MT 7+ Axle MT

<4 Axle ST 1 0.3799 0.1725 0.4082 0.4032 0.0886
5 Axle ST 0.3799 1 0.2246 0.3463 0.3101 0.1076

6+ Axle ST 0.1725 0.2246 1 0.27 0.1613 0.194
<5 Axle MT 0.4082 0.3463 0.2700 1 0.4011 0.1313
6 Axle MT 0.4032 0.3101 0.1613 0.4011 1 0.0874

7+ Axle MT 0.0886 0.1076 0.1940 0.1313 0.0874 1
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2.3. Daily Traffic Statistics

The cumulative probability density of the daily traffic flow is shown in Figure 3. The
daily traffic flow was found to be mainly concentrated from 2500 to 6000 and from 7500 to
11,000 vehicles. When the daily traffic flow is less than 6000 vehicles, it is called the general
operation state, and when it exceeds 6000 vehicles, it is called the intensive operation
state. The average daily traffic volume is approximately 4900 vehicles/day for the general
operation state, 9600 vehicles/day for the intensive operation state, and 7800 vehicles/day
for the annual average daily traffic volume, not considering the operation state.

Figure 3. Cumulative distribution of average daily traffic volume.

2.4. Vehicle Speed Statistics

A statistical analysis of the measured speed for each vehicle in the traffic flow was
conducted. The measured speed data of each vehicle was fitted by Gaussian and multi-
peaked Gaussian distributions. The goodness-of-fit R2 results for each vehicle speed was
greater than 0.96. The results indicated that the speed of each vehicle in the traffic flow
conformed to Gaussian and multi-peaked Gaussian distributions. The fitting formula is
shown in Equation (4), and the fitting parameters of Gaussian and multi-peak Gaussian
distributions are listed in Table 3.

f (x) =
i

∑
1

aixe−
(x−bi)

2

ci . (4)

Table 3. Vehicle speed fitting parameters for each vehicle type.

Vehicle Type Parameters

<4 Axle ST a = 230.2 b = 58.78 c = 4.506

5 Axle ST
a1 = 1588 b1 = 60.68 c = 2.288
a2 = 432 b2 = 62.06 c = 5.881

6+ Axle ST a = 838.8 b = 61.44 c = 3.828
<5 Axle MT a = 1046 b = 61.2 c = 3.003

6 Axle MT
a1 = 306.4 b1 = 61.44 c1 = 1.296
a2 = 273.2 b2 = 60.57 c2 = 4.082

7+ Axle MT a = 188.9 b = 60.58 c = 5.524

3. Six-Dimensional Joint Distribution Model for Heavy Vehicle Weight

3.1. Six-Dimensional Joint Distribution Model for Vehicle Weight Based on R-Vine Copula

The Copula theory enables the modeling of joint distributions of multidimensional ran-
dom variables. Sklar’s theorem [17] provides the relationship between the joint distribution
function F(x1, x2, · · ·, xn) and the Copula distribution function C(u1, u2, · · ·, un),

F(x1, x2, · · ·, xn) = C(u1, u2, · · ·, un). (5)
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By deriving Equation (5), the corresponding probability density function is obtained
as follows:

f (x1, x2, · · ·, xn) = c(u1, u2, · · ·, uN)
N

∏
n=1

fn(xn). (6)

where c(u1, u2, · · ·, uN) =
∂C(u1,u2,···,uN)

∂u1∂u2···∂uN
is the Copula density function, and N is the density

function of the marginal probability density function fn(xn) (n = 1, 2, · · ·, N).
Although the above Copula model can effectively describe the correlation between

random variables, its application to high-dimensional random variables elicits the problems
of dimensional disaster and insufficient model accuracy. To resolve these problems, the R-
vine Copula model can decompose the high-dimensional Copula function into the product
of several two-dimensional Copula functions [18,19]. An n-dimensional R-vine Copula
model consists of n− 1 layer trees T1, T2, . . . Tn−1, where each edge in the tree corresponds
to a two-dimensional Copula distribution function, and the set of nodes in the tree is
denoted as N = {N1, N2, N3, . . . , Nn}. An n-dimensional R-vine structure is subject to the
following conditions:

(1) A tree T1 containing n vertices and n − 1 edges.
(2) The tree Ti contains n − i + 1 vertices and n − i edges.
(3) If an edge of the tree Ti connects two nodes, the two edges in the Ti − 1 tree corre-

sponding to these two nodes share the same node.

The symbol e represents an edge in the tree and the set of edges E in E = (E_1, E_2,
· · · , E_n−1); the edge e = a(e), b(e)|D(e) of Ei represents D(e) as a condition of a(e), b(e),
and a subset consisting of conditional variables. Each edge e = {a, b} ∈ Ei consists of two
nodes connected by an edge e. The density function corresponding to edge e is denoted as
Ca(e), b(e)|D(e). The n random variables are X1, X2, . . . , Xn, and the subvectors denoted
by XD(e) are determined by the condition set D(e). The i random variables of the marginal
probability density function are fi. Based on this, the final joint density function f is shown
in Equation (7).

f (x1, x2, · · ·xn) =
n

∏
k−1

fk(xk)
n−1

∏
i=1

∏
e∈Ei

ca(e),b(e)|D(e)

(
F(xa(e)|D(e)), F(xb(e)|D(e))

)
. (7)

Equation (7) shows that once the marginal probability density function fk(xk) of the six
heavy vehicle weights and the two-dimensional Copula distribution function ca(e),b(e)|D(e)
corresponding to each edge in the tree are determined, the joint probability density function
f (x1, x2, · · ·xn) can be determined, and the initial construction of the six-dimensional joint
distribution model of R-vine Copula can also be realized.

3.2. Optimization of the Joint Distribution Model of R-Vine Copula

For the six-dimensional joint distribution model of the above six-dimensional R-vine
Copula, there exist (6!/2) × 2(6−2)!/[2(6−4)!] possible topologies, and the correlation between
the random variables varies with topology. Therefore, determining the best correlation
between the random variables becomes a critical problem to resolve for the correlation
between high-dimensional random variables. Thus, the joint distribution models of the
six heavy vehicle weights were optimized in terms of the connection structure of each
layer of the tree, and the joint distribution model as follows: (1) Maximum spanning tree
optimization was conducted on the connection structure of each group of trees in the R-vine
structure according to the edge weight coefficients. The empirical Kendall weights τ̂ij were
used as the evaluation index, and the optimization formula for its structure is as follows:

max ∑
edges e={i,j} in spanning tree

∣∣τ̂ij
∣∣. (8)
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(2) To ensure the goodness-of-fit of each marginal distribution model with the final
generated joint distribution model, the optimal Copula distribution function was selected
using two criteria, namely, the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), to optimize each joint distribution model. The AIC and BIC were calculated
as follows:

AIC = 2k− 2 ln{RVine}(θ|u). (9)

BIC = ln n× k− 2 ln{RVine}(θ|u|r). (10)

where k is the number of parameters, and {RVine}(θ|u|r) denotes the set of parameters as θ,
u, and r.

In addition, the BIC can solve the problrm that the sample size n result to the complex
model possesing of large amount of calculation. Moreover, smaller values of AIC and BIC
indicate a more accurate description of the correlation between random variables.

The vine structure of the joint distribution model of the six heavy vehicle weights is
shown in Figure 4. The marginal distribution models of each layer of the tree, the Copula
distribution function, Copula distribution function coefficients (par1 and par2), and AIC
and BIC results of each marginal distribution model are listed in Table 4. The AIC and BIC
of the joint distribution models of the six heavy vehicles after optimization were −969.2181
and −921.9249, respectively.

Figure 4. R-vine structure of weight.
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Table 4. Parameters of R-vine Copula model.

Tree Edge Copula Par1 Par2 AIC BIC

1

1,6 Frank −0.7304 0.0157 2.9716
1,5 Frank 2.1041 −13.9431 −10.9872
1,2 Clayton 0.3003 −4.8657 −1.9099

2,3 Rotated
Clayton 1.3532 −25.6906 −22.7348

3,4 Gumbel 1.7000 −900.3170 −897.3612

2

2,5|1 Frank −0.5347 1.2936 4.2492
2,6|1 Student −0.0234 −39.9868 −34.0751
1,3|2 Frank −0.0837 1.9577 4.9134

2,4|3 Rotated
Joe 1.0329 1.9902 4.9460

3
5,6|21 Gaussian 0.0137 1.9094 4.8652
3,4|12 Gumbel 1.0623 2.0451 5.0009
1,4|23 Frank 0.2530 2.0387 4.9946

4
4,5|123 Frank −0.6243 0.4744 3.4302
3,6|125 Frank −0.2696 5.5349 2.0123 4.9682

5 4,6|1235 Clayton 0.0544 1.8483 4.8041

4. Application of Improved Latin Hypercube Sampling

The Monte Carlo method is often used for sampling in existing random traffic simula-
tions because of its advantages of simplicity and ease of implementation. However, when
the number of simulations is small, this method exhibits an aggregation phenomenon,
resulting in the neglect of small probability events. Furthermore, this method tends to
destroy the correlation between parameters when sampling multidimensional random vari-
ables. The LHS method avoids data aggregation by stratifying the probability distribution
and is suitable for multidimensional variable sampling with high accuracy and efficiency.
Diagrams of the two sampling methods are shown in Figures 5 and 6.

Figure 5. Monte Carlo sampling.
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Figure 6. Latin hypercube sampling (LHS).

Fundamentals of Improved Latin Hypercube Sampling

The improved random simulation method proposed by Iman and Conover [15] pre-
serves the correlation between random variables and is applicable to any distribution type.
This method is based on the following principle.

If the elements of the random vector x are uncorrelated and there is a correlation matrix
I, C is the expected correlation matrix generated by transforming x. C is positive, definite,
and symmetric and is equal to the target correlation coefficient matrix C*. According to the
Cholesky determinant used by Scheuer and Stoller [20], a lower triangular matrix P can be
obtained such that PP’ = C. The desired correlation matrix C is obtained by transforming
the vector XP’. The Cholesky determinant used is as follows:

pi,i = (ci,i −
i−1

∑
k=1

p2
i,k)

1
2

, (11)

pi,j = (ci,j −
i−1

∑
k=j

pi,k pj,k)÷ pj,j, (12)

where ci, i and pi, i are the diagonal elements in the matrix; i and j represent the rows and
columns in the matrix, respectively; and ci, k represents the elements of the i-th row and
k-th column in matrix C.

5. Simulation of Random Traffic Flow of Heavy Vehicles and Analysis of Load Effect

Based on the results of the analysis of statistical characteristics of heavy vehicle
load parameters, the six-dimensional joint distribution model of vehicle weight, and the
improved LHS method mentioned above, the simulation flow chart of the random traffic
flow of heavy vehicles is shown in Figure 7. based on the idea of this figure, the simulation
program for the random traffic flow of heavy vehicles was prepareand, and this random
traffic flow contains 300 vehicles during one hour, which considering the vehicle weight
correlation. Notably, the wheelbase-to-axle weight distribution ratios for the six types of
heavy vehicles were calculated according to the standard vehicle model provided by the
FHWA [21]. Due to sensor performance limitations, the WIM device was not able to collect
the following distance during system acquisition, so the authors used the average distance
in this article.

The traffic flow samples generated were used with the R-vine Copula model and
improved LHS method, called working condition I. To further verify the superiority of this
method, working condition II (R-vine Copula model and Monte Carlo sampling method)
and working condition III (Monte Carlo sampling method) was also set up, and its samples
were calculated separately. The comparison results between the samples generated by
the two working conditions and actual model occupancy are listed in Table 5. Working
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condition I was found to be closer to the monitoring data than working conditions II and
III, indicating that the method proposed in this study is superior.

Figure 7. Flow chart of the heavy vehicle random traffic flow model.

Table 5. Total weight of each vehicle in traffic.

<4 Axle ST 5 Axle ST 6+ Axle ST <5 Axle MT 6 Axle MT 7+ Axle MT

Monitoring data 0.0881 0.1329 0.1463 0.1637 0.1614 0.3075
Working condition 1 0.0883 0.1330 0.1463 0.1637 0.1614 0.3074
Working condition 2 0.0905 0.1343 0.1427 0.1682 0.1592 0.3055
Working condition 3 0.0891 0.1348 0.1460 0.1645 0.1609 0.3047

In order to further verify the necessity of considering the correlation of heavy vehicle
weight parameters, the load effects of three one-spans simply-supported beams under three
working conditions were calculated separately. Firstly, ANSYS, a finite element analysis
software, was used to build one-spans of 10 m, 20 m, and 30 m, respectively. The vehicle
load samples under the three working conditions were input into the structure to obtain
the maximum bending moment of the span section in turn, and the results are shown in
Table 6. When the correlation is not considered, the bending moment is the smallest; when
the correlation is considered by the R-vine Copula and the Monte Carlo sampling is used,
the bending moment is the second largest; when the traffic load sample is obtained by the
method of this paper, the bending moment is the largest. This shows that the load effect is
conservative if the correlation of the heavy vehicle weight is not fully considered. This is
since even if the R-Vine Copula theory is used to consider the vehicle weight correlation,
the sampling method still uses Monte Carlo, which leads to the concentration of the sample
on the lighter vehicle weight models and, thus, leads to the small load effect results, which
is noteworthy.

Table 6. The total weight share of each model in the traffic flow.

Working Condition 1/kN·m Working Condition 2/kN·m Working Condition 3/kN·m
10 m 3725 3348 3288
20 m 7511 7062 6491
30 m 12,255 11,253 10,776
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6. Conclusions

In this study, based on the monitored traffic data, a random traffic sample of heavy
vehicles considering vehicle weight correlations was generated using the optimal R-vine
Copula model and improved LHS method. The following conclusions were obtained.

(1) The nonparametric kernel density estimation can effectively estimate the probability
distribution function of the vehicle weight, and there is a correlation between the weight of
each type of heavy vehicle. The vehicle speed conforms to the Gaussian and multi-peaked
Gaussian distributions.

(2) Various Copula distribution functions of the R-vine Copula model can be selected to
connect the marginal distribution functions of each dimension flexibly. Using the maximum
spanning tree to choose the optimal topology, the AIC and BIC selected the R-vine Copula
model to achieve an accurate description of the joint distribution of the vehicle weight of
each vehicle model in the heavy vehicle traffic flow.

(3) The Monte Carlo sampling method destroys the correlation between multidimensional
variables, whereas the improved LHS method adequately preserves the data correlation.

(4) The random traffic samples of heavy vehicles generated by considering the vehicle
weight correlation based on the optimal R-vine Copula model and improved LHS method
are more in line with actual scenarios than other methods. Moreover, the calculated load
effect will be smaller if the vehicle weight correlation is not considered.

The authors concluded that the correlation between heavy vehicle weights may be
correlated with the industrial distribution and industrialization of each region. Subsequent
in-depth exploration of the statistical laws of heavy vehicle weight correlation needs to be
investigated based on a large amount of WIM data, using the improved method proposed
in this paper, and in conjunction with stochastic process theory.
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Abstract: In this study, we present an alternative solution for detecting crack damages in rotating
shafts under torque fluctuation by directly estimating the reduction in torsional shaft stiffness using
the adaptive extended Kalman filter (AEKF) algorithm. A dynamic system model of a rotating shaft
for designing AEKF was derived and implemented. An AEKF with a forgetting factor (λ) update was
then designed to effectively estimate the time-varying parameter (torsional shaft stiffness) owing to
cracks. Both simulation and experimental results demonstrated that the proposed estimation method
could not only estimate the decrease in stiffness caused by a crack, but also quantitatively evaluate
the fatigue crack growth by directly estimating the shaft torsional stiffness. Another advantage of the
proposed approach is that it uses only two cost-effective rotational speed sensors and can be readily
implemented in structural health monitoring systems of rotating machinery.

Keywords: crack monitoring; rotating shaft; torsional stiffness estimation; rotational speed sensors;
adaptive extended Kalman filter; forgetting factor update

1. Introduction

Rotating machinery (or turbomachinery) has steadily been in the field of interest
for industrial applications in internal combustion engines, power generators, turbines,
and high-speed machining [1]. Rotating machinery generally consists of a rotor and a
non-rotating part (stator), with torque transmitted through a rotating shaft. Cracks in
rotary shafts are among the most dangerous and significant defects. The crack occurs in
rotating shafts because of various mechanisms such as high and low cycle fatigue, stress
corrosion, or unbalanced force caused by the rotor offset [2]. The shafts of the above-
mentioned machines are typically subjected to harsh working conditions, such as loading
and temperature variations. Thus, successive failures can lead to enormous economic
and human resource losses. If a crack propagates continuously and is not detected in
advance, an abrupt failure may occur, leading to catastrophic consequences. Thus, real-
time monitoring of crack damage in the rotating shaft is essential.

Generally, contact sensors, which provide high data accuracy and convenience, can
be used to detect such cracks in a rotating shaft. However, rotating and internal parts are
generally difficult to measure directly. Thus, it is challenging to monitor shaft cracks using a
contact sensor, such as a strain gauge. Therefore, in recent years, fault diagnosis studies on
rotating machinery have focused on indirect detection methods through vibration response
characteristic analysis of components, such as bearings and gears. As a result, numerous
vibration-based crack detection techniques have been developed over the last decades [3].
These techniques include experimental signal-based and model-based methods. Several
model-based crack detection methods, such as wavelet transform [4], have been developed
to enhance fault diagnosis. Experimental signal-based methods using nonlinear vibration
responses have also been widely used for damage detection in structures [5,6].
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For more precise, reliable, and effective detection, various non-destructive techniques
(NDT), such as radiography, magnetic particle inspection, and ultrasonic methods, are
attempted to diagnose and monitor the behavior of rotating machines, although these
techniques consume more time and are expensive [7]. However, high-frequency amplitudes
are too small to detect cracks, and responses can be generated by assembly tolerances,
manufacturing state noise, and other defects.

These disadvantages of the current technology necessitate developing non-traditional
technology for detecting structural surface damage, such as cracks in the rotating
shaft [8–12]. Non-model-based crack detection has also been attempted as a statistical-
based data analysis method, using trained models from artificial neural networks [13]
and genetic algorithms [14]. Recently, machine learning has been studied as a solution
for detecting defects effectively without human experts [15]. However, this method is
data-inefficient because we cannot acquire sufficient experimental data on actual crack
sequences for large systems. Over the last decades, some research on structural health
monitoring has been conducted based on the adaptive extended Kalman filter algorithm
(AEKF) [16–20]. For example, the Kalman filter with the forgetting factor method had been
applied to several systems, such as a lithium-ion battery, to consider the variation of system
model parameters [21]. However, it is still necessary to study a new detection method,
although previous studies have shown promising results in detecting cracks in rotating
shafts.

Therefore, this study primarily aims to provide an alternative solution for detecting
crack damages in rotating shafts by directly estimating the change in stiffness using the
adaptive extended Kalman filter algorithm (AEKF) with a forgetting factor update. To the
best of our knowledge, we report for the first time that it is possible to achieve a new means
of detecting the torsional crack in a rotating shaft using AEKF with a forgetting factor
update algorithm. Cracks of varying geometry are caused by different types of stress-field
directions and are classified according to their orientation with respect to the shaft axis, as
shown in Figure 1a. The direction of the stress field depends on the type of stress (such as
bending or torsion) and geometric factors. When high cyclic stress is repeated, the crack
propagates such that the crack plane is perpendicular to the direction of the tensile stress
field. When bending stress is applied to the shaft, a stress field forms along the axis, and
the crack propagates into the shaft section, creating a transverse crack, which is frequently
called a breathing crack [22]. Torsional stress forms a tensile stress field in the direction
of 45◦ to the shaft axis. In this study, we focused on torsional slant cracks of shafts and
attempted to use Kalman-filter-based torsional stiffness estimation. When fatigue cracks
occur in rotating shaft systems under alternating torque excitation, the cracks gradually
grow larger over time as they are repeatedly opened and closed. As the cross-sectional area
decreases, the torsional stiffness of the shaft suddenly decreases, as shown in Figure 1b.
The AEKF-based estimator of shaft torsional stiffness using a dynamic model of rotating
machinery is described in Section 2. Simulation results using the proposed algorithm
under sinusoidal torque input are presented in Section 3. The simulation results were
experimentally validated, as described in Section 4.

Figure 1. Characterization of fatigue cracks: (a) two types of crack propagation: transverse and
torsion crack, (b) sudden torsional stiffness reduction.
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2. Design of Adaptive Extended Kalman Filters

2.1. Dynamic Modeling of Rotating Shaft

Although there are various connecting structures, such as bearings and shafts, in a
real rotating shaft system, the system model was formulated based on a dynamic circular
shaft, to which torque and rotational speed were applied together. It is assumed to be a
lumped-parameter model with two primary masses (i.e., a semi-definite system with a
single natural frequency) because it is unlikely to excite the higher modes in our simple test
bed system (single frequency excitation). The system elements simulated the driving-load
motor dynamo for experimental verification of the proposed algorithm. The stiffness of the
bellows coupling connecting the shaft and the damping effect of the bearing stand were
neglected. As shown in Figure 2, the rotating shaft model comprised four components. The
governing equation for the shaft rotation is given as follows:

Jm
..
θm + cm

.
θm + ks(θm − θl) = Tm, (1)

ks(θm − θl)− Jl
..
θl = 0, (2)

where Jm is the moment of inertia (driving motor), Jl is the moment of inertia (load motor),
ks is the torsional stiffness of the shaft, and cm is the damping coefficient of the viscous
friction of the driving motor. When torque is applied by the load motor, the angular velocity
difference between the two sides is caused by the stiffness of the shaft connecting the two
motors. It is necessary to express the dynamic model into a state-space model to implement
the Kalman filter algorithm.

.
x = Ax + Bu, (3)

y = Cx + Du, (4)

where x is the state vector, u is the input vector, and
.
x is the time derivative of the state

vector. In Equation (3), A is a state matrix, and B is an input matrix. In Equation (4), y is a
measurement variable, C is a measurement matrix, and D is a feed-forward matrix.

Figure 2. Schematic of the rotating shaft model with shaft torsional stiffness.

The four state variables for stiffness estimation are selected as shown in Equation (5).
In this study, the time-varying stiffness is treated as a state variable, and it is assumed to
be linearly proportional to the crack sizes for designing Kalman filters, although it can
be changed by the nonlinear dynamics of the rotating shaft system [23]. θm − θl is the
difference in angular displacement on both sides and ωl is the angular velocity of the load
motor. The fourth state variable is the angular velocity of the driving motor. The driving
motor torque is an input for the system. From Equations (1) and (2), the state space equation
was derived as follows:
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x = [x1x2x3x4]
T = [(θm − θl)ωlksωm]

T , (5)

u = Tm, (6)

.
x = f (x, u) =

⎡
⎢⎢⎣

.
x1.
x2.
x3.
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x4 − x2
x3x1

Jl
0

−cmx4−x3x1+u
Jm

⎤
⎥⎥⎥⎦, (7)

y = h(x) =
[

x2
x4

]
=

[
0
0

1
0

0
0

0
1

]⎡⎢⎢⎣
θm − θl

ωl
ks

ωm

⎤
⎥⎥⎦. (8)

The reformulated system model f (x, u) is a nonlinear model, and the measurement model
h(x) is a linear model with an actual measurable angular velocity value as the output.
For the estimation of torsional stiffness, an extended Kalman filter (EKF) that linearizes
a nonlinear model is required, and an adaptive EKF (AEKF) with a P-adaptive loop is
proposed to improve estimation performance. As the proposed AEKF algorithm is based on
the discrete-time domain, the continuous equation was discretized using the Euler method,
as shown in Equation (9).

.
x =

x(k)− x(k− 1)
Δt

→ x(k) =
.
x(k)Δt + x(k− 1), (9)

where Δt is the time step, and k and k − 1 represent the time instant at t = kΔt and
t = (k − 1)Δt, respectively. Substituting Equation (7) into Equation (9), Equations (10)
and (11) are defined as follows:{

xk = fk−1(xk−1, uk−1)
yk = hk(xk)

. (10)

2.2. Adaptive Extended Kalman Filters

Kalman filtering is a state-estimation technique developed by Rudolf Kalman in 1960.
It features a recursive structure and optimally estimates the state of a linear dynamic system
based on measurements contaminated by noises. Kalman filters are used in many industrial
fields, such as computer vision, robotics, and vehicular electronics [24,25]. The general
linear discrete-time system model required to design the KF is given as

xk+1 = Axk+Buk + wk
yk = Hxk + vk

, (11)

where wk is a multivariate Gaussian distribution system noise variable with a covariance
matrix, and vk is a multivariate Gaussian distribution measurement noise variable with
a covariance matrix. In this study, there was no input in the measurement model, and
the application of the EKF was based on the nonlinear model. The general discrete-time
equation is as follows: {

xk = fk−1(xk−1, uk−1) + wk−1
yk = hk(xk) + vk

. (12)

The extended Kalman filter assumes differentiability of the state-change function instead of
linearity of the model. The nonlinear system model was linearized using the Jacobian, and
the Jacobian matrix was calculated based on the previous estimate.

Ak−1 =
∂ fk−1

∂x

∣∣∣∣
x̂k−1

Bk−1 =
∂ fk−1

∂u

∣∣∣∣
x̂k−1

, (13)
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H(k) =
∂hk
∂x

∣∣∣∣
x̂k|k−1

. (14)

Matrices A and B of the rotating shaft system model linearized using Equations (13) and (14)
are as follows:

A∗ = ∂ f (x, u)
∂x

=

⎡
⎢⎢⎢⎣

0 −1 0 1
x3
JL

0 x1
JL

0
0 0 0 0
− x3

Jm
0 − x1

Jm
Cm
Jm

⎤
⎥⎥⎥⎦, (15)

B∗ = ∂ f (x, u)
∂u

=
[
0 0 0 1

Jm

]T
, (16)

H =

[
0 1 0 0
0 0 0 1

]
, (17)

where (*) indicates the system model matrix linearized using the Jacobian.
The discrete-time EKF algorithm has the following form:

� Initial estimation stage at k = 0

{
x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

. (18)

where E represents the expected value of the random variable.

� Prediction stage

x̂(k|k− 1) = fk−1(x̂k−1, uk−1, 0)
P(k

∣∣k− 1) = A(k, k− 1)P(k− 1)AT(k, k− 1) + Q(k− 1)
. (19)

A matrix was differentiated using the Jacobian in Equation (13). In the prediction stage, the
variables predicted are a priori state variable and an error covariance matrix.

� Correction stage

K(k) = P(k|k− 1)HT(k) (H(k)P(k
∣∣∣k− 1)HT(k) + R(k))

−1
, (20)

x̂(k) = x̂(k
∣∣∣k− 1) + K(k)[y(k)− hk(x̂k|k−1, uk, 0)]

P(k) = [I − K(k)H(k)]P(k|k− 1)
. (21)

In general, it is difficult to estimate the time-varying parameter (shaft stiffness) using
the EKF because filter estimation relies on past data, and state estimation can diverge when
past data are not adequate for recursive estimation methods. In this study, an AEKF with a
forgetting factor (λ) was used to resolve this technical limitation [26]. The updated forget-
ting factor corrects the error covariance matrix, and the Kalman gain matrix is increased by
the inverse of the forgetting factor. In general, the forgetting factor is considered a constant
tuning parameter. However, convergence decreases when the uncertainty is large, such as
in a nonlinear model. In this study, an adaptive loop was employed for more weighting
to recent data using the residual between the measured and estimated values [27,28]. The
AEKF equation is identical to the EKF in Equation (19), except for the forgetting factor in
the error covariance equation.

P(k + 1
∣∣∣k) = λ(k + 1)A(k + 1, k)P(k)AT(k + 1, k) + Q(k), (22)
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with λ(k) ≥ 1. Thus, divergence is prevented by considering the influence of the
most recently measured data on the state and parameter. The performance of the AEKF
is the most important factor because it completely depends on the forgetting factor. The
residual z(k) is defined as the difference between the measured and predicted values of the
measurement. The residual is a white noise sequence when the optimal filtering gain is
used.

z(k) = y(k)− H(k)x̂(k|k− 1). (23)

For any gain, the covariance of the residuals is expressed as:

C0(k) = E[z(k)zT(k)] = H(k)P(k
∣∣∣k− 1)HT(k) + R(k). (24)

The auto covariance of the residual is

Cj(k) = E[z(k + j)zT(k)]
= H(k + j)A(k + j, k + j− 1)
×[I − K(k + j− 1)H(k + j− 1)] · · · A(k + 2, k + 1)
×[I − K(k + 1)H(k + 1)]A(k + 1, k)
×[P(k∣∣k− 1)HT(k)− K(k)C0(k)]

∀j = 1, 2, 3, · · ·

. (25)

In general, Cj(k) in Equation (25) is equal to zero when Equations (20) and (24) are
substituted into Equation (25), implying that the residual sequences are uncorrelated when
the optimal gain is applied. However, the actual covariance of the residual C0(k) is different
from the theoretical covariance, owing to errors in the system model parameters and noise
covariance. Therefore, Cj(k) may not be equal to zero. In Equation (25), we can choose a
forgetting factor such that the last term of Cj(k) for all is zero.

P(k
∣∣∣k− 1)HT(k)− K(k)C0(k) = 0. (26)

In the optimal condition, S(k) and g(λ, k) are as follows:

S(k) = P(k
∣∣∣k− 1)HT(k)− K(k)C0(k), (27)

g(λ, k) =
1
2

n

∑
i=1

m

∑
j=1

S2
ij(k). (28)

The optimality of the Kalman filter can be determined through Equation (27), which is
a scalar function, and Sij(k) is (i, j) th element of S(k). As the smaller g(k) yields more
optimal filter, the forgetting factor λ(k) should be selected to minimize g(k).

Various studies have been conducted based on the least-squares estimation (LSE)
approach to better track time-varying parameters of dynamic systems. In this study, a
recursive estimation method with a forgetting factor update was introduced to track time-
varying parameters. The constant forgetting factor was optimally updated based on the
following Equation (i.e., the gradient descent method):

λl+1(k) = λl(k) + ϕ
∂gl(λ, k)
∂λl(k)

∀l = 0, 1, 2, . . . , (29)

with initial conditions
λ0(1) = 1, λ0(k) = λ(k− 1), (30)

where k is the time series and l is the iteration time of the time instant. ϕ is the step
length (i.e., learning rate, 0 < ϕ < 1). If Equation (31) is satisfied in the p-th iteration (i.e.,
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converges), the iteration is stopped, and the optimal forgetting factor is determined using
Equation (32). ∣∣∣λp(k)− λp−1(k)

∣∣∣ < ε. (31)

λ(k) = max{1, λp(k)}. (32)

However, the iterative numerical method does not guarantee real-time processing.
Finally, a one-step AEFK algorithm was used to resolve this computational burden. In the
given system, state Equations (12), (18), and (19) have the following assumption:

Assumption 1. Q(k), R(k) and P(0) are positive definite.

Assumption 2. The measurement matrix H(k) is fully ranked, and the optimal forgetting factor
can be calculated as

λ(k) = max{1, trace[N(k)]/trace[M(k)]}, (33)

where
M(k) = H(k)A(k, k− 1)P(k− 1)AT(k, k− 1)HT(k), (34)

N(k) = C0(k)− H(k)Q(k− 1)HT(k)− R(k). (35)

The C0(k) value was estimated using the recursive equation as follows:

C0(k) = G1(k)/G2(k), (36)

G1(k) = G1(k− 1)/λ(k− 1) + z(k)zT(k), (37)

G2(k) = G2(k− 1)/λ(k− 1) + 1 (38)

with initial conditions G1(0) = 0 and G2(0) = 0. The proofs of Equations (33)–(35)
was derived by substituting Equation (20), which derives the Kalman gain value into
Equation (26).

P(k
∣∣k− 1)HT(k)

×
{

I − [H(k)P(k
∣∣k− 1)HT(k) + R(k)]−1C0(k)

}
= 0

(39)

H(k)P(k
∣∣∣k− 1)HT(k) = C0(k)− R(k). (40)

Equation (40) implies that, with Assumptions 1 and 2, the optimality condition described in
Equation (26) is equivalent to Equation (24). Substituting Equation (14) into Equation (40),
and then reconstructing it yields the following:

λ(k)H(k)A(k, k− 1)P(k− 1)AT(k, k− 1)HT(k)
= C0(k)− H(k)Q(k− 1)HT(k)− R(k)

. (41)

The overall estimation process using the AEKF algorithm with a forgetting factor
update is shown in Figure 3.
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Figure 3. Overall flow chart of the AEKF algorithm for estimating the time-varying shaft torsional
stiffness.

3. Estimation of Shaft Torsional Stiffness

3.1. Simulation Scheme

Based on the proposed algorithm, a situation in which cracks occur owing to shaft
damage was simulated using MATLAB®. The parameter values of the system model are
listed in Table 1. In this study, to mimic crack fatigue due to persistent cyclic excitation, a si-
nusoidal torque input was applied (frequency of 1 Hz, Tm(t) = 10,000 sin(2πt) Nmm). The
angular velocity measurement data from the simulation model was set to be contaminated
by the white Gaussian random noise v(k) = N(0, (10−3)

2
).

Table 1. Parameters for the estimation of torsional stiffness.

Parameters (Unit) Value

Inertia moment of load motor Jl(Nmm2) 580

Inertia moment of driving motor Jm(Nmm2) 180

Damping constant cm (Nmm·s/rad) 1000

Shaft torsional stiffness ks (Nmm/rad) 735,000

To evaluate the response time of the proposed estimator, step response to a sudden
downward step input is used for the crack initiation scenario, which corresponds to
large cracks in an experiment. Then, it was assumed that the torsional stiffness suddenly
decreased from 735,000 to 345,000 Nmm/rad in 10 s, as shown in Figure 4.
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Figure 4. Crack scenario for sudden shaft torsional stiffness drop (735,000→ 340,000 Nmm/rad).

The initial state value and error covariance for estimation are as follows:

x0 = [0 0 735, 000 0]
P0 = diag ([0.01 1 800, 000 1])

. (42)

The system noise covariance matrix Q and the measurement noise covariance R for
Equations (21) and (22) were tuned in various cases as follows, and the optimal estimates
were derived:

Q =

⎡
⎢⎢⎣

10−8

10−7

10−7

10−7

⎤
⎥⎥⎦ , R =

[
10−3

10−3

]
. (43)

To evaluate the basic estimation performance of the AEKF, the root-mean-squared
error (RMSE) at the kth time instant was calculated for a more rigorous analysis.

RMSE(k) =

√√√√1
k

k

∑
i=1

(p(i)− p̂(i))2, (44)

where k is the time instant at t = kΔt, p(i) and p̂(i) are the true (i.e., Figure 4) and estimated
values, respectively. The steady-state mean of the RMSE (MRMSE) was then calculated to
exclude the effect of transient behavior. The basic estimation results for the sudden torsional
stiffness drop are shown in Figure 5. The AEKF accurately estimated the sudden torsional
stiffness change. In contrast, the EKF did not track the time-varying shaft stiffness change.
The forgetting factor was appropriately changed by the P-adaptive loop when the stiffness
rapidly decreased in 10 s. Additional scenarios with different reduction rates are applied
to the simulation model to investigate the effectiveness of the proposed algorithm. These
different scenarios allow for the evaluation of the tracking performance of the proposed
algorithm under the same conditions, such as process and measurement noise covariance
matrices. As shown in Figure 6, a gradual reduction from 1.5× 104 Nmm/rad starts at
approximately 5 s, drops to 0.4× 104 Nmm/rad at 35 s (simulating a situation where the
crack is propagating). When a crack growth is propagating and a gradual torsional stiffness
drop occurs, the AEKF can deal appropriately.
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Figure 5. Simulation result for tracking sudden torsional stiffness drop: (a) time response of torsional
stiffness, (b) corresponding time history of forgetting factor, and (c) RMSE, (d) convergence history of
covariance.

Figure 6. Simulation result for tracking gradual torsional stiffness drop for 30 s: (a) time response of
torsional stiffness, (b) corresponding time history of forgetting factor.

3.2. Robustness Analysis

The robustness of the proposed estimation model under noise and parametric model
uncertainty was analyzed by introducing perturbations to sensor noise and main parame-
ters. To evaluate the robustness under noise and parametric uncertainties, the relative error
to the nominal value (i.e., normalized performance measure) was quantitatively calculated.

Relative Error =
|MRMSEPerturbed −MRMSENominal|

MRMSENominal
. (45)
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As sensor information is inherently contaminated by electrical noise, the effect of electrical
noise on the estimated performance was examined. The sensor data were contaminated
by adding a white Gaussian random noise. A probability density function is shown in
Figure 7a,b as an example. Considering the random noise (error) distribution can be fitted
to a normal Gaussian distribution with variance (σ2 = 0.00197, Case 1; σ2 = 0.00298,
Case 2), it was confirmed by white Gaussian random noise. The proposed AEKF appeared
to be robust against the Gaussian random noise extracted from the sensor data because
the estimation results appeared to be similar to the original data, with no significant
discrepancy, as shown in Figure 7c,d.

Figure 7. Simulation results of shaft stiffness estimation under noise uncertainty. Gaussian random
distribution: (a) Case 1, and (b) Case 2, (c) torsional shaft stiffness, (d) forgetting factor.

The estimation performance of the proposed AEKF model was evaluated under
parametric uncertainty, such as the moment of inertia. The moment of inertia on both
sides is an important model uncertainty because it depends on the size, weight, and
connection structure of the coupling. The nominal value for the moment of inertia of the
load motor (580 Nmm2) was perturbed by −20% (464 Nmm2) and +20% (696 Nmm2),
and the nominal inertia moment of the driving motor (180 Nmm2) was also perturbed
by −20% (144 Nmm2) and +20% (216 Nmm2). The damping coefficient varied under
normal operating conditions (800~1200 Nmm·s/rad), depending on the bearing lubrication
condition. As the estimation results were similar to the nominal values within a reasonable
range under various parametric uncertainties, the robustness of the proposed model was
demonstrated, as shown in Figure 8.
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Figure 8. Simulation results of shaft stiffness estimation under parametric uncertainty: (a) inertia
moment of load motor, (b) inertia moment of driving motor, (c) damping constant, and (d) relative
errors.

4. Experimental Validation

4.1. Experimental Set-Up

The proposed shaft health-monitoring method was experimentally validated using a
torque dynamo. An aluminum hollow-rod specimen (Do: 20 mm, Di: 18.2 mm, L: 550 mm)
was used for the rotating shaft, as shown in Figure 9. The torque dynamo comprises a
driving motor and torque-controlled load motor (Mitsubishi HG-SR152, 10 Hz bandwidth).
Sinusoidal torque (Tm(t) = 10,000 sin(2πt) Nmm) was applied at a rotating speed of
5.23 rad/s (50 RPM). For the shaft crack scenario, the shaft was exchanged in turn from
a normal shaft without cracks to a cracked shaft in the 45◦ direction (Figure 9b). The
crack depth was set to 5 mm to ensure that the shaft stiffness could suddenly drop from
the original value. To examine the possibility of applying a non-contact angular velocity
sensor (tachometer), the measurement model considered the angular velocity values on
both sides of the rotating shaft. The angular velocities of both sides were measured
using a photoelectric detector-type rotational velocity sensor (ONO SOKKI, model: LG-
930), which calculates the rotation speed by counting the light reflected on the gear per
rotation as a pulse. The real-time monitoring performance was evaluated using a dSPACE®

system (DS1104).
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Figure 9. Schematic of experimental set-up: (a) overall photograph, and (b) details of cracked shaft.

In this study, the recursive least square estimator (RLSE) was used to identify the
unknown model parameters. The rotating shaft model expressed in Equations (1) and (2)
were reformulated in the matrix form as follows:

yk = hT
k θk + vk (46)

where

yk =

[
Tm
0

]
, hT

k =

[ ..
θm 0

.
θm (θm − θl)

0 −
..
θl 0 (θm − θl)

]
, θk = [Jm, Jl , cm, ks]

T (47)

In addition to the measured data from the sensors, other information was required for the
two matrices yk and hT

k . First, the input torque (Tm) in matrix yk was measured using an
in-line torque sensor (model: YDR-2K), as shown in Figure 9. The angular displacement
(θm − θl) and two angular accelerations (

..
θm,

..
θl) for the matrix hT

k was obtained by directly
differentiating and integrating using the low-pass filtering of the angular velocity signal.
The RLSE was then designed as follows:

� Initial estimates

θ̂0 = E[θ] (48)

P0 = E
[(

θ − θ̂0
)(

θ − θ̂0
)T
]

(49)

� Kalman gain calculation

Kk+1 = Pkhk+1

(
hT

k+1Pkhk+1 + w−1
k+1

)−1
(50)

� Parameter update

θ̂k+1 = θ̂k + Kk+1

(
yk+1 − hT

k+1θ̂k

)
(51)

� Covariance update
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Pk+1 =
(

I − Kk+1hT
k+1

)
Pk (52)

All parameters of the rotating system are successfully estimated because they converge
to a steady-state final positive value after 5000 iterations, as shown in Figure 10. The
identified system parameters of the rotating shaft model are listed in Table 2.

Figure 10. Convergence histories in system identification: (a) inertia moment of load motor, (b) inertia
moment of driving motor, (c) damping constant, and (d) shaft torsional stiffness (inset: zoomed view
of A).

Table 2. Identified system parameters of the rotating shaft model.

Parameters (Unit) Value

Inertia moment of load motor Jl(Nmm2) 595

Inertia moment of driving motor Jm(Nmm2) 20

Damping constant cm (Nmm·s/rad) 280

Shaft torsional stiffness ks (Nmm/rad) 15,000

4.2. Results and Discussion

For the AEKF estimation model, the initial states were set, and the two noise covariance
matrices (Q and R) were tuned by trial and error, as listed in Table 3. The shaft stiffness
estimated using the proposed algorithm was compared in Figure 11. The estimated stiffness
became steady-state and converged after 15 s in both cases. In the case of the normal state
(no crack), the convergence value was identical to the system identification value (i.e.,
15,000 Nmm/rad). When the stiffness changes owing to the sudden drop of crack (crack
depth 5 mm) from 15,000 Nmm/rad (normal) to a certain value (abnormal crack, in this
case approximately 7500), the proposed algorithm can detect this sudden drop. However,
it was difficult to conform to the shift in shaft stiffness by naked eyes from the two angular
velocity inputs.
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Table 3. Tuning parameters for the AEKF estimation model.

P0 diag[0.1 1 650,000 1]

Q diag[1 2.1 2 2.1] × 10−5

R diag[9 9] × 10−8

Figure 11. Experimental results: (a,b) estimated responses of torsional stiffness, (c,d) angular velocity
inputs, (a,c) without crack, (b,d) with crack (crack depth 5 mm).

A different crack scenario was established to further investigate the effectiveness of
the proposed algorithm. The crack depth was further increased (11 mm) to suddenly drop
from 15,000 Nmm/rad to below 7500 Nmm/rad owing to the reduction in cross-sectional
area (the ratio of the crack segment area to the original cross-sectional area was 65%) [29,30].
Similar to Figure 11, the proposed algorithm can track this stiffness drop due to the heavy
crack, as shown in Figure 12. The proposed estimation model could not only estimate the
decrease in stiffness caused by a crack, but also quantitatively evaluate the fatigue crack
growth by directly estimating the shaft torsional stiffness. The robustness of the proposed
estimation model under noise uncertainty was evaluated by introducing the perturbations
in sensor noise. The original sensor signal was filtered by a digital moving average filter (no
phase delay). Two corrupted signals were generated; the low-pass filtering is small (Case
1, less contaminated) and off (Case 2, more contaminated, i.e., raw data). The probability
density distribution of sensor noise extracted from the original sensor signal was similar
to Gaussian distribution, as shown in Figure 13c. The proposed estimation model seemed
to be robust against the Gaussian random noise in all sensor data because the estimation
results appeared to be similar regardless of the degree of contamination, as shown in
Figure 13a,b. In the case of heavy crack (crack depth 11 mm), the proposed estimation
model turned out to be more robust against the Gaussian random noise, as shown in
Figure 13d. The robustness of the proposed estimation model under model uncertainty
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was not investigated in the experiment because it was unlikely to significantly change two
main model parameters (inertia moment of load and driving motor).

Figure 12. Experimental results for different crack scenario: (a) without crack, (b) with crack (crack
depth: 11 mm) [Supplementary Materials].

Figure 13. Estimated torsional stiffness responses under electrical sensor noise uncertainty: (a) crack
depth 5 mm, (b) crack depth 11 mm, (c) probability density distribution of sensor noise extract from
original sensor signal, (d) relative error to nominal.

5. Conclusions

In this study, the torsional crack in the rotating shaft was successfully detected in
real-time by estimating the reduction of torsional stiffness in the rotating shaft using the
AEKF approach with forgetting factor update. The main contributions of this study are
summarized as follows:
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� We concluded that the proposed approach is a promising alternative means for
detecting torsional cracks in rotating shafts despite the difficulty in tuning the Q
and R matrices of the AEKF.

� The proposed estimation model could not only estimate the decrease in stiffness
caused by a crack but also quantitatively evaluate the fatigue crack growth by directly
estimating the shaft torsional stiffness.

� Another advantage of the proposed approach is that it uses only two cost-effective
rotational speed sensors; therefore, it does not require noncontact-type torque sensors,
which are typically expensive and suffer from durability limitations.

With these advantages, the proposed approach can be readily implemented in struc-
tural health monitoring systems of rotating machinery. In future research, we will continue
to address some of the ongoing issues. In particular, the localization of cracks in rotating
shafts should be studied further. In addition, if the input variables cannot be measured,
an advanced algorithm should be applied to simultaneously estimate unknown input and
state variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s23052437/s1, Video S1: Crack Monitoring in Rotating Shaft Using Torsional Stiffness
Estimation with Adaptive Extended Kalman Filters.
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Abstract: Engine fault detection is conducive to improving equipment reliability and reducing
maintenance costs. In practical scenarios, high-quality data is difficult to obtain. Usually, only
single-sensor data is available. This paper proposes a fault detection method combining Variational
Mode Decomposition (VMD) and Random Forest (RF). At first, the spectral energy distribution is
obtained by decomposing and statistic the engine data of multiple working conditions. Based on
the spectral energy distribution, the overall optimal mode number was identified, and the quadratic
penalty term was optimized using SNR. The improved VMD (IVMD) improves mode aliasing and
iterative efficiency and unifies feature dimensions. Decomposition of real signals demonstrates the
effectiveness. The paper designs a feature vector composed of seven types of attributes, including unit
bandwidth energy, center frequency, maximum singular value and so on. The feature vector is then
fed to RF for classification. Features are selected in order of importance to classification to improve
the training efficiency. By comparing with various algorithms, the proposed method has higher
accuracy and faster training efficiency in single-speed, multi-speed and cross-speed single-sensor
data diagnosis. The results show that the method has application prospects with little training data
and low hardware requirements.

Keywords: fault detection; single-sensor data; variational mode decomposition; vibration;
random forest

1. Introduction

As one of the critical power sources, the reliability of engines has received more
attention in recent years. In time, engine fault detection can detect weak faults, which is
conducive to fault prevention and repair. Data-driven approaches usually require large
amounts of high-quality data for training. However, engine labelled-data is challenging to
obtain and mostly comes from a single sensor due to cost constraints. Research on single-
sensor engine fault detection based on small data amounts and low hardware requirements
is necessary [1].

Vibration acceleration signals are widely used in fault detection research because
of their rich component condition information and ease of measurement [2,3]. Ma et al.
proposed a multi-channel Lanczos quaternion singular spectrum analysis to extract fault
characteristic frequencies from multiple vibration sensor signals [4]. Ribeiro et al. proposed
a multi-head one-dimensional convolutional neural network to diagnose six motor faults
using vibration signals from two directions [5]. However, the engine vibration signal has a
wide frequency band (up to about 12,000 Hz), and sensors with high sampling accuracy
and a wide frequency band with good stability are usually costly. Moreover, the hardware
conditions of the engine control system are ordinary, so the research on single-sensor fault
detection under low hardware requirements is gradually gaining attention. Basuraj et al.
proposed a single-sensor online filtering method for recursive singular spectrum analysis
based on the concept of first-order feature perturbation, which proved its effectiveness
in several data sets. [6]. Ayati et al. used KNN for single-sensor fault classification after
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extracting features using fast Fourier transform and wavelet packet transform [7]. In
general, it is challenging to diagnose faults in different cylinders of an engine separately
using a single sensor.

Engine fault detection methods can be roughly divided into three categories: knowledge-
driven, model-driven, and data-driven. Wang et al. proposed an aero-engine dynamic
threshold fault detection based on the isolated forest method, which requires only normal
data for training to achieve high accuracy [8]. Ellefsen et al. proposed an online diagnosis
method for marine diesel engine degradation based on variational autoencoder and expert
knowledge [9]. Knowledge-driven methods usually diagnose a single type of fault and
require solid expert knowledge. Liu et al. proposed a model-based aero-engine soft fault
detection method, which achieved fault diagnosis by comparing smooth residuals and
preset thresholds [10]. Wang et al. established a mapping model between the shaft radial
vibration average and the misalignment value based on shaft shape characteristics. A
new monitoring scheme has been designed and the accuracy of detecting misalignment is
greater than 90% [11]. Model-driven method research can help explore the failure mech-
anism, but it is usually challenging to achieve. Data-driven methods are widely used
due to their ease of implementation and high accuracy [12,13]. Deep learning methods
have been widely used in engine fault detection in recent years due to their powerful
data mining capabilities [14,15]. These methods require less expert knowledge and more
high-quality training data. However, high-dimensional and huge data processing capability
leads to higher hardware requirements for deep learning methods. In practical scenarios,
high-quality training data is difficult to obtain because of the dangers of engine failure
simulation experiments. Under the constraints of low hardware conditions and lack of data,
the combination of signal processing methods and simple pattern classification methods
still has potential to be explored [16,17].

Variational Mode Decomposition (VMD) is an advanced signal processing method ca-
pable of decomposing a signal into several intrinsic mode functions (IMFs) [18]. Compared
with empirical mode decomposition (EMD), VMD effectively suppresses mode aliasing and
improves the quality of decomposition [19]. However, the mode number K and quadratic
penalty term α, predefined in VMD, strongly influence the decomposition and are difficult
to determine [20,21]. For these reasons, scholars have proposed many optimization ideas
for adaptively selecting K and α [21,22]. The adaptive VMD method leads to a varying
number of IMFs, so component screening is usually performed after decomposition [23,24].
The process of screening IMFs requires expert knowledge and is time-consuming and
labor-intensive. In addition, many scholars optimize (K, α) through swarm intelligence
optimization algorithms [25,26]. This method ignores the problem that the VMD efficiency
drops sharply as K increases (as shown in Section 4).

The unsupervised clustering method is ineffective in diagnosing engine faults because
there are many types of failure, complex operating conditions, and large signal noise [27,28].
Supervised pattern classification methods such as deep neural networks (DNN) are more
suitable due to their powerful learning capabilities. Shahid et al. used a one-dimensional
convolutional neural network (1DCNN) to identify the crankshaft angle degree of the
engine and successfully diagnosed the misfire fault [29]. Zhang et al. proposed a long
short-term memory recurrent neural network (LSTM-RNN) for evaluating bearing degra-
dation and proposed waveform entropy to improve the accuracy effectively [30]. Lee et al.
compared the performance of multilayer perception (MLP), residual network (ResNet),
LSTM, and ResNet-LSTM in diagnosing production failure cases and found that ResNet-
LSTM works best [31]. However, the effectiveness of DNN is built on sufficient high-quality
labeled data. Due to the complex calculation of DNN, the training time is long, and it is
challenging to optimize and retrain the model [32]. Li et al. first used a simplified DNN
to extract the fault features of rotating machinery and then combined random forest (RF)
for fault classification, which has higher efficiency and accuracy than advanced DNN
methods [32]. RF has faster training and classification speed than DNN and may be suitable
for engine fault detection.
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The paper aims to propose a single-sensor, cross-speed fault detection method that is
applicable to low hardware requirements and small data amounts. The work has resulted
in the following contributions.

(1) A new overall K and α optimization method based on spectral energy distribution
and SNR is proposed for VMD, avoiding IMF screening and unifying the feature
dimension to prepare for quick diagnosis.

(2) The center frequencies are preset based on spectral energy distribution, which reduces
the number of VMD iterations and mode aliasing.

(3) A feature set was designed for IVMD-RF to achieve single-sensor fault diagnosis. Fur-
ther filtering of features by feature importance ranking improves efficiency. Different
single-sensor datasets demonstrate the effectiveness of the method.

The rest of the article is organized as follows. Section 2 introduces the basic principles
of the methods used in the paper. In Section 3, the fault data collection experiment of
the diesel engine is presented. Section 4 introduces the optimization of the VMD method
and the verification of its decomposition effect. In Section 5, IVMD-RF is presented and
compared with various DNN methods on two diagnostic cases.

2. Theories

2.1. Variational Mode Decomposition

The purpose of VMD is to decompose an actual signal into several ideal narrowband
signals while satisfying the constraint that the sum of their bandwidths is the smallest.
Assume that each IMF closely surrounds its center frequency in the frequency domain. There-
fore, the objective can be summarized as the following constrained variational problem:

⎧⎪⎨
⎪⎩

min
{uk},{ωk}

{∑
k

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2
}

s.t.∑
k

uk = f
, (1)

where {uk(t)} = {u1(t), u1(t), . . . , uk(t)} and {ωk} = {ω1, ω2, . . . , ωk} represent the
decomposed IMFs and the corresponding center frequencies, respectively. δ(t) is the
shock function.

The reconstruction constraint can be addressed by introducing a quadratic penalty
α and Lagrange multipliers λ. The constrained variational problem of (1) is transformed
into an unconstrained one by introducing these two parameters. The obtained augmented
Lagrangian is shown in (2):

L({uk}, {ωk}, λ) := α∑
k

∥∥∥∥∂t[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt
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2

2
+

∥∥∥∥∥ f (t)−∑
k

uk(t)
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2

2

+

〈
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k
uk(t)

〉
, (2)

This problem can be solved by Parseval/Plancherel Fourier isometry under the norm.

The expressions of
�
u

n+1
k (ω) and ωn+1

k are shown in (3) and (4).

�
u

n+1
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�
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, (4)
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where (3) is equivalent to the Wiener filter of the current residual
�
f (ω)− ∑

i<K

�
ui(ω). IMF

can be obtained by inverse Fourier transform of
�
u

n+1
k (ω).The flow of VMD is shown in

Algorithm 1. The default ε value is 1 × 10−7.

Algorithm 1: VMD

Input: A signal f, mode number K and quadratic penalty α.
Output: A set of IMFs

Initialize {�u 1
k}, {�ω1

k}, {
�
λ

1
}, n← 0

repeat

for k← 1 to K do

Update
�
u k for all ω ≥ 0 by (3)

Update ωk by (4)
end for

Dual ascent for all ω ≥ 0:
�
λ

n+1
(ω)←

�
λ

n
(ω) + τ

[
�
f (ω)−∑

k

�
u

n+1
k (ω)

]

until convergence: ∑
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∥∥∥∥�u n+1
k −�

u
n
k

∥∥∥∥2

2
/
∥∥∥�u n

k

∥∥∥2

2
< ε.

2.2. Random Forests

The random forest algorithm was proposed by Breiman [33], which is suitable for
solving data prediction and classification. A random forest is a combination of decision tree
classifiers. Each tree depends on the value of an independently sampled random vector
and has the same distribution for all trees in the forest.

(1) Suppose the original sample is X = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi and yi
represent feature values and labels, respectively. T training samples X1, X2, . . . , XT
are extracted from the original dataset X by bootstrap sampling with return, and
Xi(i = 1, 2, . . . T) and X have the same number of samples.

(2) Build a decision tree hi(Xi, Θk) for each training sample Xi(i = 1, 2, . . . T),
where i =1, 2, . . . T, k =1, 2, . . . . The decision tree model used in the paper is
shown in (5) and (6).

d(x1, x2, . . . , xn, ht) =

{
label(ht) ht is the leaf node
d(x1, x2, . . . , xn, ht) ht is the inner node

(5)

hi(Xi, Θk) = d(x1, x2, . . . , xn, root(ht)) (6)

where root(ht) is the root node of the decision tree. d(x1, x2, . . . , xn, ht) is the division
criterion of the decision tree. The segmentation criterion consists of segmentation variables
and predictions measured by the impurity function.

The Gini coefficient is proportional to the impurity level. The optimal split is to find
the largest split of the Gini coefficient as follows:

Gini(t) = 1−
J

∑
j=1
{p(j|t)}2 (7)

where p(j|t) is the probability of the jth category in node t, that is, the ratio of the jth
category to the total number of sample labels J.

Before selecting attributes for each non-leaf node, randomly select m attributes from
M attributes as the set of categorical attributes for the current node. Take m = int(

√
M),

where int is the rounding function. The nodes are divided according to the optimal division
method of m attributes, and a complete decision tree is established. The growth of each
decision tree is not pruned until the leaf node grows.
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A random forest generated from T decision trees is used to classify the test samples.
Each tree has voting power to decide the classification result. Summarize the output
categories of the decision tree, and the category with the most votes is the final classification
result. The classification decision model H(x) is shown in (8).

H(x) = argmax
γ

T

∑
i=1

I(hi(Xi, Θk) = γ) (8)

where γ is the label variable of the output and I is the indicator function.

3. Diesel Engine Faults Simulation Experiment

To verify the effectiveness of the proposed method, our team conducted a fault sim-
ulation experiment on an in-line 6-cylinder diesel engine. The specific parameters of the
engine are shown in Table 1. The experiment was performed on a bench base supported by
an air spring. The engine and the dynamic dynamometer adopt a flexible connection. The
photoelectric pulse speed sensor is placed at the position of the vertical connecting shaft to
measure the engine speed. The vibration acceleration sensors are arranged on the cylinder
head and block as shown in Figure 1. The data used in this paper are vibration acceleration
signals in the Y-direction in Figure 1. The signal is input to the computer for processing and
recording after passing through the acquisition front end. The models of the instruments
used in the experiment are shown in Table 2.

Table 1. Parameters of diesel engine.

Items Parameters

Displacement 7.14 L
Rated power/Rated speed 220 kW/2300 rpm

Maximum torque/Speed range 1250 Nm/1200–1600 rpm
Intake/Exhaust valve clearance 0.30 m/0.50 m

Figure 1. Sensor positions and coordinate direction.

Table 2. Experimental instrument parameters.

Instruments Parameters

Dynamic dynamometer CAC380, Xiangyi Power
Vibration acceleration sensor 621B40, PCB

Photoelectric pulse speed sensor SPSR-115/230, Monarch
Data acquisition front end SCADAS05, LMS
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Components with the highest failure probability are fuel injection and oil supply
equipment (25.1%), water leakage (13.1%), and valves and sealing (17.4%) [34]. Generally,
leak failure is easy to detect by water temperature sensors. The paper focuses on two other
types of failures. The paper simulates three faults for the fuel supply equipment: abnormal
common rail pressure, abnormal fuel supply, and abnormal injection advance angle. Abnor-
mal rail pressure is set to simulate the fault of the common rail system, and the insufficient
fuel supply is to simulate injector failure. The weak power combustion abnormality is
simulated by slightly changing the injection advance angle. In addition, the abnormal
valve clearance is simulated by adjusting the opening of intake and exhaust valves with
a plug gauge. The abnormal valve clearance conditions all occurred on the first cylinder
only. Experiments were performed at the following rotational speeds: 700 rpm, 1300 rpm,
1600 rpm, 2000 rpm, and 2300 rpm. The parameters of normal working conditions under
each speed condition are shown in Table 3. The fault settings at rated speed (2300 rpm) are
shown in Table 4, where the Roman numerals represent different fault conditions. The fault
conditions of other speeds are also adjusted to the same extent as those in Table 4 on the
basis of the normal parameters in Table 3. The abnormal advance angle failure simulation
is not carried out under 700 rpm idling conditions. The load range of the engine includes
100% and 50%.

Table 3. Normal working conditions under different speeds.

Speed
(rpm)

Valve Clearance-Intake,
Exhaust (mm)

Fuel Supply
(mg/cyc)

Rail Pressure
(bar)

Injection Advance
Angle (◦CA)

700 (0.30, 0.50) 60.0 405 -
1300 (0.30, 0.50) 117.0 1250 9.49
1600 (0.30, 0.50) 117.0 1350 12.98
2000 (0.30, 0.50) 117.0 1500 15.00
2300 (0.30, 0.50) 112.5 1550 18.45

Table 4. Fault type and degree parameter setting (2300 rpm).

Mark
Valve Clearance

(Intake, Exhaust)/mm
Fuel Supply

Rail
Pressure/bar

Injection Advance
Angle/◦CA

I (0.30, 0.50) 100% 1550 18.45
II (0.20, 0.40) 100% 1550 18.45
III (0.35, 0.55) 100% 1550 18.45
IV (0.40, 0.60) 100% 1550 18.45
V (0.30, 0.50) 75% 1550 18.45
VI (0.30, 0.50) 25% 1550 18.45
VII (0.30, 0.50) 100% 1350 18.45
VIII (0.30, 0.50) 100% 1150 18.45
IX (0.30, 0.50) 100% 1550 17.45
X (0.30, 0.50) 100% 1550 16.45
XI (0.30, 0.50) 100% 1550 19.45
XII (0.30, 0.50) 100% 1550 20.45

Note: The shaded green marks the location of the faulty parameter.

4. Optimization of Variational Mode Decomposition

VMD’s denoising ability is better than EMD [35], and the decomposed IMFs have a
better signal-to-noise ratio (SNR). However, the decomposition effect of VMD is greatly
affected by parameter settings, especially the mode number K and the quadratic penalty
term α. Improper K value setting will lead to over-decomposition or under-decomposition.
In addition, as K increases, the efficiency of the original VMD decreases drastically. Figure 2
shows the effect of different K values on the decomposition time of each IMF. The results
show that the efficiency of VMD is much higher when K ≤ 3. From Figure 2, traversing K
to find the optimal value and using various swarm intelligence optimization algorithms
are both inefficient. Therefore, Ref. [36] proposes an adaptive recursive variational mode
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decomposition (ARVMD) that dynamically selects the K in recursive loops. ARVMD
effectively improves efficiency and reduces recursive mode aliasing. The process of ARVMD
is shown in Algorithm 2.

Algorithm 2: ARVMD

Input: A signal f 0, Sampling frequency Fs and quadratic penalty α.
Output: A set of IMFs.
f = f 0; IMFs = []; Eu = []; i = 0;
while Eui > Eth do

i = i + 1;
Pf←Power spectral density (f );
(Pmax, Fmax)←Maximum, corresponding frequency (Pf);
Npeak ←Numbers of maxima points in [Fmax ± 0.027 × Fs];
{F1, F2, . . . , Fn}← Corresponding frequencies of maxima points;

Ki =

⎧⎪⎨
⎪⎩

1, Npeak < 2
2, Npeak = 2
3, Npeak > 2

{u1, u2, . . . , uKi}← VMD (f, Ki, α, {F1, F2, . . . , FKi});
{Eu1, Eu2, . . . , EuKi}← Unit bandwidth energy ({u1, u2, . . . , uKi});
IMFs←IMFs ∪{u1, u2, . . . , uKi};
Eu ←Eu ∪{Eu1, Eu2, . . . , EuKi};
f = f −∑Ki

1 uKi(t);
end while

IMFs←Selection by Eui > Eth (IMFs)
return IMFs

Figure 2. Decomposition time per IMF of VMD. The curve data come from the average of normal
signals of various speeds. The engine data come from the experiment of Section 3. The bearing data
come from the bearing dataset of Case Western Reserve University [37].

Complex types and working conditions characterize engine faults. However, the
component number obtained by ARVMD is variable, resulting in inconsistent feature
vector dimensions, which is not conducive to diagnosing multi-speed engine vibration
data. A K-value optimization method based on the energy distribution in the frequency
domain is proposed to unify the feature dimension. First, ARVMD decomposes the signals
of various engine working conditions and obtains many IMFs. These conditions contain
data for different speeds and faults (I to XII, as shown in Table 4). Then, the unit bandwidth
energy [36] of each IMFs is calculated, and the center frequency of the IMFs is recorded.
The unit bandwidth energy is shown in (9):

Eu =
eIMFi
BIMFi

(9)
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where eIMFi is the energy of IMF and BIMFi is the bandwidth of IMF. The bandwidth is the
width of the spectrum when the amplitude of the power spectral density is reduced by 99%.
The frequency band [0 Hz, 12,800 Hz] is divided into 128 segments, and the width of each
segment is 100 Hz. The unit bandwidth energy of the components located in each segment
is counted and averaged. Figure 3 shows the unit bandwidth energy spectrum displayed on
divided frequency bands. The results show that there are six prominent energy frequencies:
150 Hz, 1450 Hz, 1950 Hz, 2450 Hz, 4950 Hz, and 7050 Hz. Here, each frequency segment
uses the frequency in the middle as the value of the abscissa. Therefore, the engine data will
be uniformly decomposed using K equal to 6. This approach can improve the consistency
of data processing and help reduce the randomness caused by adaptive decomposition. It
also ensures that the dimension of the feature vectors at different speeds is uniform.

Figure 3. Frequency domain distribution of unit bandwidth energy of engine data.

Furthermore, the iterations of the center frequency of the original VMD are zero-based.
It is beneficial for decomposing low-frequency components, but the decomposition time
for high-frequency components is longer. Presetting suitable initial center frequencies
can significantly improve the efficiency of the VMD [18]. Therefore, the six significant
frequencies in Figure 3 are used as the initial center frequencies to iterate.

The quadratic penalty term α is a parameter introduced to improve the convergence
when solving the variational model. The role of α in the decomposition is reflected in
the noise reduction of the signal. The SNR is the best criterion for choosing a suitable α.
However, it is difficult to obtain the SNR of the actual signal after decomposition. Therefore,
a set of simulated signals is constructed according to the spectral energy distribution of
Figure 3. The expression of the simulated signal is as (10). {s1, s2, . . . , s6} are single-
frequency components, which restore the amplitude ratio and frequency of each component
in Figure 3. The amplitude of s3 is set to 100, and the other components are reduced
proportionally. s7 is the noise component with a power of 25 dbW. S1 is decomposed
using VMD, where K is six, and the initial center frequency is preset. Set the variation
range of α to [1000, 20,000], and the step size is 100. Calculate the SNR between IMFs and
{s1, s2, . . . , s6}, and the results are shown in Figure 4. With the increase of α, the SNR has a
trend of increasing first and then decreasing. Summing the SNR of each component, it is
found that the total SNR does not change much when α is 6000 to 8000. The value of α used
in the paper is 6800, and the inset of Figure 4 shows that the SNR reaches the maximum at
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this value. After the optimized α is obtained, it is used in the mode number optimization
for reverse verification, and the results show that it does not affect the results in Figure 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1(t) = 27 sin(2π ∗ 150t), 0 ≤ t ≤ 0.053
s2(t) = 64 sin(2π ∗ 1450t), 0 ≤ t ≤ 0.053
s3(t) = 100 sin(2π ∗ 1950t), 0 ≤ t ≤ 0.053
s4(t) = 57 sin(2π ∗ 2450t), 0 ≤ t ≤ 0.053
s5(t) = 13 sin(2π ∗ 4950t), 0 ≤ t ≤ 0.053
s6(t) = 8 sin(2π ∗ 7050t), 0 ≤ t ≤ 0.053
s7(t) = η
S1 = s1 + s2 + s3 + s4 + s5 + s6+s7

(10)

Figure 4. The effect of α on the decomposition SNR.

The optimization of K, α and the iterative optimization of the center frequency have
been completed. Next, decompose an actual signal using the improved VMD (IVMD) to
verify the effect. A signal of valve clearance increase at 1600 rpm (Condition III in Table 4)
was randomly selected for decomposition. The signal’s time and frequency domain are
shown in Figure 5a,b. Decompose this signal using VMD and IVMD. Figure 6 shows the
frequency domain image of the decomposed IMFs. VMD decomposes four components
in the [2000 Hz, 3000 Hz] while IVMD decomposes three. The results show that using the
same K, VMD focuses on decomposing low-frequency components, while IVMD is more
balanced. The average bandwidth aliasing ratio RABA is introduced to measure the effect of
suppressing mode aliasing [36]. The expression of RABA is shown in (11):

RABA =
K

∑
i=1

1
K

BA
BIMFi

, i = 1, 2, . . . , K. (11)

where K is the mode number, BA is the aliasing bandwidth of the IMFi and other com-
ponents, and BIMFi is the bandwidth of IMFi. The smaller the RABA, the better the effect
of suppressing mode aliasing. The RABA for VMD and IVMD results is 0.13 and 0.05,
respectively. IVMD suppresses mode aliasing better than VMD. In addition, the center fre-
quency iteration curves of IMFs are shown in Figure 7. Figure 7 shows that IVMD performs
87 iterations, less than VMD’s 194 iterations, effectively improving efficiency. The results
show that the presetting center frequency can significantly improve the iteration efficiency.
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Figure 5. A signal of valve clearance increase at 1600 rpm. (a) The signal in time domain. (b) The
signal in frequency domain.

Figure 6. Frequency domain image of the decomposed IMFs. (a) Result of VMD. (b) Result of IVMD.

Figure 7. Center frequency iterative curves for IMFs. (a) Iterative curves of VMD. (b) Iterative curves
of IVMD.

5. VMD-RF Fault Detection Method

After the IVMD decomposition of the engine signal, calculating proper features is
beneficial to improve the diagnostic accuracy. The RF method can automatically select
a subset of features for classification by bootstrap sampling with return. Instead of con-
sidering the feature dimension, features are required to describe the data information as
comprehensively as possible. Therefore, the used features include overall features and local
features. Finally, seven types of local features are selected. Namely, maximum singular
value, energy, unit bandwidth energy, kurtosis, variance, root mean square value (RMS),
and center frequency. The seven types of features are calculated for the six IMFs obtained
by IVMD. In addition, maximum singular value, energy, RMS, and variance are calculated
for the original signal. Feature names and symbols are shown in Table 5.
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Table 5. Attribute names and symbols.

Attribute Name Symbols

Maximum singular value S_1, S_2, S_3, S_4, S_5, S_6
Energy E_1, E_2, E_3, E_4, E_5, E_6

Unit bandwidth energy Eu_1, Eu_2, Eu_3, Eu_4, Eu_5, Eu_6
Kurtosis K_1, K_2, K_3, K_4, K_5, K_6
Variance V_1, V_2, V_3, V_4, V_5, V_6

Root mean square R_1, R_2, R_3, R_4, R_5, R_6
Center frequency C_1, C_2, C_3, C_4, C_5, C_6

Original signal attributes S, E, R, V
Note: The features calculated for IMF1 to IMF6 are denoted by the symbols with suffixes 1 to 6, respectively. The
symbols without suffixes indicate the features calculated for the original signal.

5.1. Case 1: Diesel Engine Fault Diagnosis

Once the complete feature set is obtained, the feature set can be fed into the RF for
classification. The whole flow of fault diagnosis is shown in Figure 8. The data of the first
cylinder head (1H), the third cylinder head (3H), and the first cylinder block (1B) at 2300 rpm
and the data of the first cylinder head at 2000 rpm were selected for preliminary verification
of the algorithm’s validity. Each dataset contains four types of faults in Table 4, with a total
of 12 fault conditions. Each fault condition includes 200 samples, and the training/test
ratio is 4:1. The number of decision trees in RF is 100. The depth of the decision tree is
not limited. Then, the training samples are used to generate a random forest. The results
of the diagnostic accuracy are shown in Table 6. The proposed method is compared with
sequential minimum optimization for support vector machines (SMO-SVM), Multilayer
Perceptron (MLP) [31], one-dimensional convolutional neural networks (1DCNN) [29],
long and short term memory recurrent neural networks (LSTM-RNN) [30], and residual
neural networks (ResNet) [31]. The 1DCNN and LSTM-RNN ran for 200 epochs, while
ResNet ran for 30 epochs. The parameters of each algorithm are as follows:

(1) SVM: The RBF kernel is chosen, and the penalty term C is set to 1. The inverse of the
radius of influence of the support vector gamma is set to 0.1.

(2) MLP: Two hidden layers are used, both with 30 neurons. The momentum is 0.2, and
the learning rate is 0.3.

(3) 1DCNN: The network consists of two convolutional layers (kernel size = 5), two
maximum pooling layers (kernel size = 2), and a linear layer. The activation function
is ReLU, and the optimizer is Adam.

(4) LSTM-RNN: The network contains two LSTM layers with 64 nodes in each layer.
(5) ResNet: The network uses the 18-layer ResNet model, as described in Ref. [38].

SMO-SVM, MLP, 1DCNN, and IVMD-RF achieved high accuracy from the results
of single-speed data. The LSTM-RNN had the lowest accuracy, which shows its poor
classification ability for non-time series. Compared to the 1H data set, the diagnostic
accuracy of the 1B and 3H datasets decreased significantly due to the increased distance of
the sensor location from the combustion chamber and valve. The vibration signal may be
distorted or coupled with other disturbances when it is transmitted.

The next step is to use these methods to diagnose multiple speed conditions. All types
of failure data for the first cylinder head (1H) at 700 rpm, 1300 rpm, 1600 rpm, 2000 rpm,
and 2300 rpm were made into one dataset. Since there are no abnormal injection advance
angle faults in the 700 rpm data, a total of 56 labeled categories of data are included. The
diagnostic results are shown in Table 6. Compared to the single-speed dataset for the
first cylinder head (1H), the accuracy of each method decreases to varying degrees as the
number of failure types increases. The accuracy of SMO-SVM dropped the most. SMO-
SVM method is suitable for single-speed data classification but not as effective as other
methods for multi-speed and multi-class data. The proposed method still maintains high
accuracy. The results show that IVMD-RF has advantages for multi-speed and multi-type
fault diagnosis scenarios.
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Figure 8. IVMD-RF fault detection process.

Table 6. Accuracy comparison of different algorithms (%).

Methods 1H-2000 rpm 1H-2300 rpm 1B-2300 rpm 3H-2300 rpm 1H-Multi-Speed

SMO-SVM 99.06 97.50 93.75 92.91 92.59
MLP 97.81 98.13 92.36 92.71 96.79

1DCNN 94.06 99.06 92.89 94.06 96.56
LSTM-RNN 59.06 75.16 78.12 68.75 56.23

ResNet 91.09 96.88 88.28 86.72 92.19
IVMD-RF 98.75 99.38 92.91 93.54 97.32

Note: “3H” represents the third cylinder head, “1B” represents the first cylinder block.

In addition, the proposed method requires less training time to achieve high accuracy.
For comparison, all algorithms are run in the same environment (Python 3.8, Windows
11, Intel Core i7-10700 CPU @ 2.9 GHz), and the running time is recorded in Table 7 The
results show that SMO-SVM has the highest training efficiency, followed closely by IVMD-
RF. ResNet has the longest training time due to the deep network layers. Therefore, the
proposed method has high efficiency and high accuracy. It is worth noting that deep
learning may provide better diagnostic results for the original raw signal. However,
the significant increase in data dimensionality leads to an increase in computation time
and higher hardware requirements, which deviates from the purpose of this paper. No
diagnostics were performed on the original raw data to keep the variables consistent.

Next, the 1300 rpm, 1600 rpm, 2000 rpm, and 2300 rpm data were mixed into one
dataset. The data were labeled into 12 categories according to Table 4, regardless of the
speed change. The cross-speed datasets include the 1H dataset, 1B dataset, and 3H dataset.
The above methods are still used for classification, and the results are shown in Table 8.
The results show that the accuracy of each algorithm has a certain drop compared to
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Table 6, especially the SMO-SVM. The 1DCNN and IVMD-RF still maintain a relatively
high accuracy rate. The overall accuracy of the 3H dataset is low because the sensor
in the third cylinder head is far from the cylinder where some failures occurred. The
proposed method still has some advantages over other algorithms. Table 8 also shows
the classification precision, recall, and f1-score. These indicators are weighted averages,
where the weights are determined by the proportion of each class sample distribution. The
results show that the proposed method also performs well on these metrics. For the 3H
dataset with relatively poor diagnostic results, Figure 9 shows the comparison of recall and
precision of each algorithm for the 12 classes. The results showed low recall and accuracy
for reduced valve clearance (condition II) and abnormal injection advance angles (condition
IX to XII). The reason for the low precision and recall of Fault II is the slight increase in valve
clearance and the long distance of the sensor from the cylinder where the fault occurred.
Faults IX to XII, on the other hand, are due to small changes in injection advance angle,
causing only minor differences in combustion conditions. The training efficiency of the
proposed method is much higher than that of the deep learning method and slightly lower
than that of SMO-SVM. Figure 10 shows the confusion matrix for the 1H dataset, indicating
that most of the misclassified samples are data of the same type but with different failure
levels, which proves the effectiveness of the proposed method.

Table 7. Comparison of training time of various algorithms (s).

Methods 1H-2000 rpm 1H-2300 rpm 1B-2300 rpm 3H-2300 rpm 1H-Multi-Speed

SMO-SVM 0.05 0.06 0.05 0.07 2.84
MLP 9.60 9.91 9.55 9.53 274.21

1DCNN 13.02 14.10 14.65 14.87 167.38
LSTM-RNN 17.85 18.21 20.26 20.48 224.95

ResNet 49.32 47.66 54.53 51.66 446.92
IVMD-RF 0.26 0.28 0.31 0.29 4.30

Note: “3H” represents the third cylinder head, “1B” represents the first cylinder block.

Table 8. Comparison of fault diagnosis results of each algorithm for cross-speed dataset.

/ Methods SMO-SVM MLP 1DCNN LSTM-RNN ResNet IVMD-RF

First cylinder head
Y-direction (1H)

Accuracy 0.81 0.92 0.93 0.68 0.87 0.97
Precision 0.82 0.92 0.94 0.65 0.89 0.97

Recall 0.81 0.92 0.92 0.63 0.88 0.96
F1-score 0.82 0.92 0.92 0.62 0.88 0.97
Time (s) 0.99 70.19 130.02 189.29 219.77 2.20

First cylinder block
Y-direction (1B)

Accuracy 0.81 0.89 0.93 0.67 0.86 0.92
Precision 0.81 0.89 0.94 0.75 0.87 0.92

Recall 0.80 0.89 0.91 0.72 0.85 0.92
F1-score 0.80 0.89 0.91 0.72 0.86 0.92
Time (s) 1.13 70.69 145.99 192.59 224.21 2.74

Third cylinder head
Y-direction (3H)

Accuracy 0.65 0.75 0.83 0.47 0.78 0.94
Precision 0.66 0.76 0.83 0.42 0.72 0.93

Recall 0.65 0.76 0.80 0.42 0.71 0.94
F1-score 0.65 0.76 0.81 0.40 0.71 0.93
Time (s) 1.03 70.28 143.31 203.47 221.34 2.92

The datasets with different training/testing ratios are set up for classification to verify
the diagnostic effectiveness of various methods for the small sample case. Figure 11 shows
each algorithm’s accuracy and time consumption curves for the 1H dataset at different
training test ratios (0.1 to 4). When the training test ratio <0.25, the accuracy of 1DCNN,
RNN, and MLP significantly decrease, while SMO-SVM and IVMD-RF decrease more
smoothly. When the training test ratio is 0.1, IVMD-RF has the highest accuracy of 88.77%.
Figure 11b shows that the training efficiency of each algorithm increases as the training/test

132



Sensors 2023, 23, 1642

ratio decreases. The efficiency of IVMD-RF and SMO-SVM remains higher than the other
methods. The results illustrate the good diagnostic effect of the proposed method for small
samples of single-sensor data. Figure 12 shows the accuracy and training loss curves when
the three deep learning methods are applied to the 1H dataset. Figure 12 indicates that the
1DCNN has converged while the RNN clearly shows over-fitting, which is the reason for
its low accuracy. Continuing to train ResNet may improve the accuracy, but the training
efficiency is too low compared to other methods. Therefore, IVMD-RF has a high fault
diagnosis accuracy and high efficiency for cross-speed data. It is worth noting that deep
learning methods still have more advantages and potential when the amount of labeled
data and computational resources are sufficient.

Figure 9. Precision and recall results of each algorithm for the 3H dataset. (a) Precision result.
(b) Recall result.

Figure 10. Confusion matrix for 1H dataset of IVMD-RF.
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Figure 11. Comparison of each algorithm with different training/testing ratios (0.1 to 4). (a) Compar-
ison of accuracy. (b) Comparison of the training time.

Figure 12. Accuracy and training loss of deep learning methods for 1H dataset. (a) Accuracy and
training loss of 1DCNN. (b) Accuracy and training loss of LSTM-RNN. (c) Accuracy and training loss
of ResNet.
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The study of feature importance can further improve the performance of the method.
Using the RF to rank the importance of features, the results for the 1H dataset are shown
in Figure 13. Singular values, energy, and center frequency contributed more to the clas-
sification, followed by variance and unit bandwidth energy. However, kurtosis has little
contribution to the classification results. Figure 13 shows that features with suffixes 1 and
4 contribute significantly to the classification, i.e., IMF1 and IMF4 contribute the most
to the classification, followed by IMF5 and IMF6. For different working conditions, the
difference in the body surface vibration is mainly reflected in the low-frequency (IMF1) and
high-frequency components (IMF4~6). IMF2 and IMF3 have high energy but weak contri-
bution. This conclusion is valuable for the study of unsupervised engine fault diagnosis.
Figure 14 shows the impact of using different numbers of features in order of importance
on training time and accuracy. Finally, we found an optimal point. When using fifteen
features, it only takes 1.23 s to train and can achieve 97% diagnostic accuracy as marked
in Figure 14. The selected fifteen categories of features are marked in Figure 13. Feature
selection significantly improves training time with little change in accuracy.

Figure 13. The order of feature importance.

Figure 14. The impact of changing the number of features used.

5.2. Case 2: Gasoline Engine Fault Diagnosis

To verify the effectiveness of the proposed method on different engines, the gasoline
engine fault data will be diagnosed in the following. The fault data came from a two-
cylinder, two-stroke gasoline engine with the specific engine parameters shown in Table 9.
The sensor locations and coordinate system for the engine are shown in Figure 15. The
data used are from the Y-direction of cylinder 1 and the X-direction of cylinder 2 (the two
sensors connected by the white wire in Figure 15). Three common faults were simulated:
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abnormal injection advance angle, abnormal air-fuel ratio, and misfire. Among them, the
abnormal injection advance angle occurs in both cylinders, while the other two failures
occur only in cylinder 1. The specific fault level settings are shown in Table 10. Use Roman
numerals I through VII to indicate individual faults. Signals from 5000 rpm and 7000 rpm
were collected. Each working condition contains 200 samples, each containing data from
one working cycle.

Table 9. Parameters of gasoline engine.

Items Parameters

Displacement 0.294 L
Rated power/Rated speed 35.5 kW/8500 rpm

Maximum torque/Speed range 44.5 Nm/7000 rpm

Figure 15. Sensor positions and coordinate direction of the engine. (a) Position of sensor 1Y.
(b) Position of sensor 2X.

Table 10. Fault type and degree parameter setting.

Mark Injection Advance Angle Air/Fuel Ratio Misfire Rate

I 10 ◦CA 1 0
II 5 ◦CA 1 0
III 15 ◦CA 1 0
IV 10 ◦CA 1.1 0
V 10 ◦CA 1.2 0
VI 10 ◦CA 1 0.05
VII 10 ◦CA 1 0.1

Note: The shaded green marks the location of the faulty parameter.

The 5000 and 7000 rpm data were mixed to form the cross-speed dataset. Various
algorithms diagnose the fault data of 1Y and 2X sensors separately. The settings of each
algorithm are shown in Section 5.1. A comparison of the diagnostic results for each
algorithm is shown in Table 11. The results show an overall decrease in the diagnostic
accuracy of each algorithm due to the increase in signal noise as the two-cylinder, two-
stroke engine vibrates more than the diesel engine. The higher speed is also one of the
reasons. SMO-SVM is still the fastest, but its accuracy is low. The proposed method works
best for fault diagnosis of 1Y data, and 1DCNN works best for 2X data. The difference in
accuracy between the two is not significant. The proposed method is more efficient and
suitable for low hardware conditions. The results show that IVMD-RF can be used for
gasoline engine fault diagnosis.
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Table 11. Comparison of fault diagnosis results of each algorithm for gasoline engine data.

Methods SMO-SVM MLP 1DCNN LSTM-RNN ResNet IVMD-RF

First cylinder head
Y-direction (1Y)

Accuracy 0.67 0.75 0.82 0.52 0.78 0.85
Precision 0.68 0.77 0.81 0.69 0.78 0.85

Recall 0.67 0.75 0.82 0.51 0.79 0.84
F1-score 0.67 0.72 0.82 0.52 0.78 0.84
Time (s) 0.33 15.83 9.45 6.44 11.02 1.16

Second cylinder
head X-direction (2X)

Accuracy 0.72 0.74 0.82 0.59 0.79 0.79
Precision 0.72 0.74 0.82 0.58 0.77 0.78

Recall 0.72 0.74 0.81 0.58 0.76 0.79
F1-score 0.72 0.74 0.82 0.58 0.74 0.79
Time (s) 0.25 15.80 9.61 6.51 11.05 1.12

6. Conclusions and Discussion

This article proposes an IVMD-RF for single-sensor multi-fault detection of the engine.
In IVMD, the engine data spectral energy distribution is obtained through multiple decom-
positions and statistics. The alpha value was chosen based on the spectral distribution and
the SNR. By presetting the center frequency and the optimal K and α values, the efficiency
is improved, the mode aliasing is reduced, and the feature size is unified. The effectiveness
of IVMD is proved by decomposing the engine signals. Seven types of attributes are calcu-
lated to form a feature group for IMFs, which is input into RF for classification. Compared
with various machine learning and deep learning algorithms, it is proved that the proposed
method has advantages in training efficiency and accuracy. Through the feature importance
study, it is found that the high-frequency and low-frequency IMFs contribute more to the
classification. Fifteen optimal features have been selected to improve the efficiency of
RF. The IVMD-RF method has application prospects in engine single-sensor multi-class
fault detection.
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Abstract: Vibration-based damage features are widely adopted in the field of structural health
monitoring (SHM), and particularly in the monitoring of axially loaded beams, due to their high
sensitivity to damage-related changes in structural properties. However, changes in environmental
and operating conditions often cause damage feature variations which can mask any possible change
due to damage, thus strongly affecting the effectiveness of the monitoring strategy. Most of the
approaches proposed to tackle this problem rely on the availability of a wide training dataset,
accounting for the most part of the damage feature variability due to environmental and operating
conditions. These approaches are reliable when a complete training set is available, and this represents
a significant limitation in applications where only a short training set can be used. This often occurs
when SHM systems aim at monitoring the health state of an already existing and possibly already
damaged structure (e.g., tie-rods in historical buildings), or for systems which can undergo rapid
deterioration. To overcome this limit, this work proposes a new damage index not affected by
environmental conditions and able to properly detect system damages, even in case of short training
set. The proposed index is based on the principal component analysis (PCA) of vibration-based
damage features. PCA is shown to allow for a simple filtering procedure of the operating and
environmental effects on the damage feature, thus avoiding any dependence on the extent of the
training set. The proposed index effectiveness is shown through both simulated and experimental
case studies related to an axially loaded beam-like structure, and it is compared with a Mahalanobis
square distance-based index, as a reference. The obtained results highlight the capability of the
proposed index in filtering out the temperature effects on a multivariate damage feature composed
of eigenfrequencies, in case of both short and long training set. Moreover, the proposed PCA-based
strategy is shown to outperform the benchmark one, both in terms of temperature dependency and
damage sensitivity.

Keywords: structural health monitoring; unsupervised learning; environmental variations; principal
component analysis; short baseline; tie-rods; beam-like structures; mahalanobis squared distance

1. Introduction

Structures are naturally subject to deterioration and material degradation, which can
lead to critical damage conditions. When the structural integrity is compromised, system
current or future performances are affected. Thus, being able to detect damage at an early
stage plays a key role in order to carry out prompt maintenance actions, preventing struc-
tural failure. This aspect has a relevant impact, first and foremost in terms of safety for the
users, but also from an economic point of view. Indeed, carrying out effective maintenance
actions, acting only when required, allows a better use of the maintenance resources.

The research area aiming at defining automatic damage detection strategies goes by the
name of structural health monitoring (SHM) [1]. Due to the availability of advanced sensing
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techniques, data acquisition, computing, and information management, these strategies are
mainly data-driven, i.e., they exploit data acquired by sensors on the monitored structure.
Since no device directly measures damage, a crucial point is the extraction of damage
sensitive quantities, or damage features, from the signals acquired by the sensors [2].

Vibration-based approaches are among the most commonly adopted approaches, as
reported by many exhaustive review papers in the literature (e.g., [3–7]). According to
these approaches, damage sensitive features are extracted from the dynamic response of
the monitored structure by adopting, e.g., time series models [8–10] or modal analysis [11],
relying on a simple assumption: damage manifests itself as a change in structural properties
(e.g., a change of mass, stiffness, constraint characteristics or structural connectivity) that
reflects in changes of modal parameters (i.e., eigenfrequencies, mode shapes and damping
coefficients) [12]. Vibration-based approaches are also called global approaches [12], since
the information that can be extracted from the response of a structure is related to the overall
structural condition. This aspect comes with two significant advantages. Firstly, as opposite
to local techniques, vibration-based techniques can be successfully adopted to detect
damage without knowing the expected damage location in advance. Secondly, vibration-
based techniques often use a limited number of sensors and the instrumentation required
can be easily integrated in the monitored structure [5,13]. Vibration-based techniques,
together with their practical advantages, are crucial for all those structures whose dynamic
behaviour is significantly affected by damage, such as tie-rods, which are the main focus of
this study.

Tie-rods are axially-loaded metallic beams used to balance lateral forces in arches
and vaults of civil structures. Due to their characteristics, these slender elements undergo
significant vibration levels under operational conditions, which make the adoption of
vibration-based SHM techniques particularly suitable. Considering real operating tie-
rods, they show a high uncertainty, generally associated to geometrical and material
properties, loading conditions and constraint characteristics. Moreover, many different
damage scenarios are possible and, in most cases, damage-related data are not available at
the beginning of the monitoring phase. These factors make the use of supervised methods
difficult and unreliable. Thus, an unsupervised learning approach becomes interesting,
since damage is assessed when a statistically significant variation of the adopted vibration-
based damage features is observed, with respect to a reference condition [2].

However, the main obstacle to the adoption of unsupervised learning approaches to
real structures is related to the effects of environmental and operational variations [14].
Indeed, changes of environmental variables, e.g., temperature, cause changes to structural
properties that can significantly increase the variability associated to vibration-based dam-
age features [15,16]. For the specific case of tie-rods, it has been observed that this high
variability can mask the effects of damage at an early stage, hampering a prompt damage
detection [17,18].

In the literature of SHM, different approaches have been proposed to face the problems
related to environmental and operational variations. A family of approaches is that of
input-output models, which require measurements of both the environmental variables
(the input) and the structural response (the output) to filter out the environmental effects
through the adoption of, e.g., linear correlation models [19–22], neural networks [23–25] or
support vector machines [26,27]. However, often not all the relevant environmental and
operational variables are measured or known. For this reason, output-only approaches can
be adopted to compensate environmental and operational changes, without relying on any
additional measurement related to these changes.

When output-only techniques are considered, a possible approach to filter out the
temperature effects is to actually include the normal variability of environmental factors
in the training data and to use multivariate data with enough redundancy to remove the
unwanted effects, using the data correlation structure [28]. Some recent examples of such
approach can be found in the literature, based on Kalman filtering [29], Bayesian virtual
sensing [30,31] and principal component analysis (PCA) [32–34]. One of the most popular
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tool is the multivariate metrics known as Mahalanobis squared distance (MSD) [35]. The
MSD is used to assess when a new observation of a multivariate damage feature is an
outlier with respect to a reference data set, called the baseline set. The MSD can naturally
filter out the environmental variability, provided that a proper baseline set, containing the
full range of environmental conditions, is adopted and a high-enough number of variables
is used, to ensure some separability between the damage effects and the environmental
effects [35]. Therefore, a critical aspect for MSD-based damage detection, and in general
for any method relying on an exhaustive baseline, is the amount of time needed to build
such a complete baseline set, representative of most of the natural variability. There are
several cases, indeed, where this aspect prevents a reliable use of monitoring systems, and
where methods not sensitive to changes of operational and environmental conditions are
necessary to properly detect structural damage. This paper aims at solving this problem by
proposing an SHM method able to filter out any change of the considered damage feature
due to environmental effects, and able to work even when short training set, which is
inevitably lacking in information, must be used.

Many different cases fall in this category and would benefit of an SHM method with
these peculiarities; some examples are listed below:

• when a new structure is considered, the reference data acquired at beginning of the
monitoring campaign refers to the healthy condition of the structure. In this case,
damage detection cannot be effectively carried out until all the temperature conditions
are observed, due to long-term seasonal effects. This can imply excessively long time
before being able to start the actual monitoring of the structure, also resulting in the
impossibility of detecting early damages;

• another critical scenario could be that of a case where an already operating structure
shows a suspicious structural behaviour that suggests the installation of an SHM
system, such as in the case of tie-rods of historical buildings. In this case, since damage
can potentially be already ongoing, the goal would be detecting the possible evolution
of the deterioration process. In such a situation, the need for a long training set
represents a clear limit;

• even when a long and exhaustive training set is possible, there could be cases where
the structure finds itself working in rare operating and environmental conditions, not
accounted for in the training set (e.g., extreme meteorological events, different climate
conditions). In these situations, an SHM method unable to filter out the effects of these
changes on the damage feature would detect a structural damage/alteration, leading
to a false positive.

In these scenarios, the SHM approach here proposed has a great impact with implica-
tions in many fields such as safety, maintenance and system reliability.

It is worth mentioning that another possible approach, which can be used as an
alternative to the one proposed here, is that of adopting damage features which are not
sensitive to environmental and operational variations [36,37]. This approach is attractive,
since it directly tackles the cause of the problem. However, it is also challenging and
difficult to apply, since it is hard to find vibration-based damage features showing a high
sensitivity to damage and, at the same time, a low sensitivity to environmental effects.
This is especially true for the structures considered here, i.e., tie-rods. Indeed, during their
normal operational conditions, temperature variations cause changes in the mechanical
and geometrical properties of both the tie-rod and the structure, which reflects into changes
of the axial load and, thus, of the dynamic response properties. However, at the same time,
other tension variations are due to deformation and displacement of the connecting walls,
that may be caused by terrain crawl, subsidence of foundations or seismic events [17,38].

Tie-rods are, thus, challenging structures for SHM procedure. Most of the works in
the literature related to SHM of tie-rods regard the axial-load identification (e.g., [39–48]);
however none of these works considers the presence of damage in the beam. Moreover, as
already mentioned, a change of the axial load cannot be directly related to the presence of
a crack in the tie-rod, due to the axial load sensitivity to physical variables, not correlated
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to the state of health of the tie-rod, and due to environmental effects, e.g., temperature.
Only recently, the problem of detecting damage in tie-rods has been faced, with a focus
on cracks [17] or corrosion [49,50], and this is an important aspect when SHM of larger
structures where tie-rods are in use must be carried out (e.g., [51]). Lucà et al. showed that
tie-rod eigenfrequencies can be used as synthetic damage features that are representative
of all physical variables which affect the system behaviour, included the axial load. At the
same time, they can be used for MSD-based damage detection, when a long-term baseline
set is available [18]. However, as mentioned, there are cases when short time baseline
is needed.

The novel approach presented in this paper represents a solution to this kind of
problems since it adopts a technique allowing for filtering out the temperature effects
from the damage index which thus results effective, even in presence of an incomplete
set of environmental conditions. This is done by relying on the PCA, which is a well
known multivariate analysis technique, often adopted in data representation or data
compression [52]. This tool allows projecting the original data set into a new space, defined
by the principal components (PCs). The PCs are new variables that are sorted such that
the majority of the variability in the original data set is explained by the first few PCs.
Since under normal operational conditions the majority of the variability of a multivariate
damage feature set is due to environmental effects, it is reasonable to expect that the first
few PCs will be representative of these effects [19,34,53]. The idea behind the damage
detection algorithm developed in this work is to exclude these PCs and, then, to use the
remaining ones to define a damage index which is, thus, insensitive to environmental
effects. To show the effectiveness and the reliability of this novel PCA-based procedure, it
will be compared with one of the most used approaches in this field, which is the MSD-
based method presented in [18]. The comparison will be carried out both on simulated and
experimental data of axially-loaded beams.

The article is organized as it follows: in Section 2, both the MSD-based and the PCA-
based damage detection algorithms are explained. Moreover, the simulated data and the
experimental set-up are described. In Section 3, the results of the simulations are showed
and discussed. The experimental results are presented and commented in Section 4. Finally,
the conclusions are drawn in Section 5.

2. The New PCA-Based SHM Approach and the Validation Plan

In this section, the two methods that are compared in this paper are introduced.
Furthermore, a description of the simulated and experimental data is provided.

Before entering into details of the two compared approaches, it is worth mentioning
that the initial damage feature is a collection of eigenfrequencies of the monitored tie-rod.
This starting point comes from previous research works where it has been proved that the
eigenfrequencies of an axially-loaded beam-like structure, used as a multivariate damage
feature, can be effectively adopted to spot damage in operating tie-rods [18,49,50,54].

Indeed, eigenfrequencies can be used to synthetically represent the state of the moni-
tored tie-rod, since they are representative of the physical variables that mostly influence its
dynamic behaviour (e.g., the axial load). Moreover, the effect of environmental changes is
different from that of damage, if multiple eigenfrequencies are considered as a multivariate
damage feature. As an example, the eigenfrequencies of the first four bending vertical
modes of a healthy tie-rod are considered: a decrease of temperature would cause an
increase in the values of all four eigenfrequencies and the lower the vibration mode consid-
ered, the higher the effect [18]. If, instead, the temperature does not change but damage
(e.g., a reduction of flexural stiffness) is present at midspan, only the eigenfrequencies of
the first and third vibration modes would change, since midspan is a vibration node for the
even vibration modes. Furthermore, the higher the vibration mode considered, the higher
the effect [18].

If a number m of vibration modes are considered, the associated eigenfrequency values
are referred to as f1, f2, . . . , fi, . . . , fm, with i = 1, 2, . . . , m (according to this notation, the
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eigenfrequencies are sorted in ascending order and i = 1 simply indicates the lowest
eigenfrequency value among those considered, not necessarily that associated to the first
vibration mode). The eigenfrequency values can be arranged in a column vector f, defined
as it follows:

f = [ f1, f2, . . . , fi, . . . , fm]
T (1)

where the superscript “T” means the transpose.
The vector f constitutes the damage feature and it is used to represent the state of the

structure with few variables, with respect to the raw acceleration data. When the structure
is monitored over time, the feature vector can be estimated several times. In this case, a
generic number r of feature vectors f1, f2, . . . , fj, . . . , fr, with j = 1, 2, . . . , r can be arranged
in a matrix F as it follows:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fT
1

fT
2
...

fT
j
...

fT
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In the following, the symbol F0 will be adopted to indicate the baseline set, i.e., a matrix
containing a number b of observations (i.e., r = b) of the damage feature when the structure
is in the reference initial condition and which will be used for training the methods. The
symbol f∗ will be adopted to indicate a generic new observation of the damage feature
which does not belong to the baseline set, thus, it is associated to an unknown health
condition. Finally, the symbol F∗ will be adopted to indicate a set containing a number n of
observations of the damage feature (i.e., r = n) that do not belong to the baseline set, thus,
F∗ can potentially include damage-related data.

2.1. The Benchmark MSD-Based Approach

In this paper, the benchmark is represented by an MSD-based damage index. The MSD
is a well-known multivariate metrics, often adopted in the field of SHM to define damage
indexes. In the considered case, the MSD between the new vector f∗ and the baseline set F0

can be evaluated according to the following expression:

dMSD =
(

f∗ − μ0
)T(

Σ0
)−1(

f∗ − μ0
)
= MSD(f∗, F0) (3)

where μ0 is a m× 1 vector where every i-th element is the mean of the i-th column of F0,
Σ0 is the covariance matrix of F0 and “−1” means the inverse. The notation MSD(f∗, F0)
is used here to indicate the result of the application of the MSD operator to the vector f∗
with respect to F0. It is also noticed that the equivalent vector operator MSD(F∗, F0) used
further in the paper indicates the MSD operator applied to each observation contained in
F∗ with respect to F0, resulting in a n× 1 vector. The result of Equation (3), the MSD, is
a scalar number and constitutes the damage feature of the benchmark method.

To detect possible structural changes, the scalar value dMSD has to be checked against
a threshold to state whether the vector f∗ can be considered as an outlier with respect to the
set F0. The threshold can be set according to a procedure based on the Monte Carlo method
explained in [2,55], briefly described in the following:

• construct a matrix of size b×m, where every element is a random number generated
from a zero mean and unit standard deviation normal distribution;

• calculate the MSD between the transpose of each row of the matrix and the the
matrix itself;

• store the maximum of the b obtained distances;
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• repeat the operation for a large number of trials, e.g., 1000, and then sort all the
maxima in terms of magnitude;

• the inclusive threshold t is then defined as the 95th percentile of the distribution of the
MSD maxima (the term inclusive refers to a case when the baseline may also contain
damaged or altered data which will be, thus, considered as outliers);

• if the baseline set does not include outliers, the exclusive threshold tMSD must be
adopted. The threshold tMSD can be calculated according to the following equation:

tMSD =
(b− 1)(b + 1)2t
b(b2 − (b + 1)t)

. (4)

Summarizing, the main steps required by the MSD-approach used as a benchmark in this
work are shown in the flowchart reported in Figure 1.

Figure 1. Flowchart of the MSD-based approach.

The MSD is very popular in the field of SHM since this metric naturally filters out
the variability associated with the environmental effects while keeping a high sensitivity
to structural changes [35]. However, it is known that to properly filter out environmental
effects, a full range of environmental conditions must be included in the baseline set
to describe the whole variability of the considered feature in operational conditions. In
real applications, which are usually characterized not only by short-term trends but also
seasonal ones, this aspect translates in the need for long baseline sets. In the following
section, a new approach is proposed to try to overcome this limit.

2.2. The PCA-Based Approach

The new proposed approach is obtained through the adoption of the PCA. The PCA is
a multivariate analysis technique that allows an orthogonal projection of a given data set
onto a different coordinate system, where each of the new coordinates (the PCs) accounts
for a decreasing amount of the variance of the original data set. The PCs are uncorrelated
each other and they are sorted so that the first few components retain most of the variability
present in the original data set.

This new description of the data set is usually adopted when a dimensionality reduc-
tion is needed. Considering just the very first PCs allows, indeed, to retain most part of
the data set variability with a few number of variables. Here, instead, PCA is used for
a different purpose. Its aim will be the removal of the data variability due to operating and
environmental changes, as will be clarified in the following.

In this case, the data set F0 (of size b×m) must be centred by subtracting the mean
of each column from each value in that column, obtaining the matrix C0. Then, the
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PCA transforms the data in C0 into a new set Z0 (the score matrix) through a rotational
transformation according to the following equation:

Z0 = C0R (5)

where R is an m×m matrix (the loading matrix). The matrix Z0 contains the scores in the
principal directions of C0, arranged such as the first column contains the scores related to
the PC accounting for the largest variance, the second column contains the scores related
to the PC accounting for the second largest variance, and so on. The matrix R can be
evaluated, for example, by adopting the singular value decomposition. The reader can
refer to [52] for a complete theory on the topic.

In the proposed framework, the PCA is used to project the centred baseline matrix C0

and obtain the scores associated to the PCs Z0. As it will be shown in the following sections,
in the baseline data set, where no damage occurs (i.e., the baseline data set is considered as
the reference structural condition), the majority of the variance in the eigenfrequencies is
associated with temperature effects. The idea is, then, to remove the first p columns of the
matrix Z0, associated to the first p PCs, to filter out the temperature effect from the baseline
dataset. Once the first p columns of the matrix Z0 are removed, the matrix Ẑ

0 is obtained
(in the following, the hat symbol is used to indicate score matrices after the removal of the
first p columns).

The key idea of the new SHM procedure proposed here is that, when new observations
of the feature vector are available, if they are still referring to the same structural condition
as the baseline, the PCA should project the data in the same principal directions (i.e., the
transformation matrix R is still the same). Let’s consider the matrix F∗, containing n new
feature vectors f∗ which are not included in the baseline. A matrix F0∗ can be assembled as
it follows:

F0∗ =

[
F0

F∗
]

. (6)

Following the same steps previously described for F0, the matrix F0∗ is centred and the
PCA is applied obtaining Z0∗. Then, the first p columns are, again, removed from the score
matrix, obtaining the matrix Ẑ

0∗.
Now, the MSD is calculated between each element of Ẑ

0∗ and Ẑ
0, i.e.,:

d = MSD(Ẑ
0∗, Ẑ

0
) (7)

and the result is a vector d, containing the MSD of the transpose of each row of Ẑ
0∗ with

respect to Ẑ
0.

The vector d is a (b + n)× 1 column vector. The first b distances contained in d are
considered, and the number o of these b distances which exceed a reference value (further
indicated as P0.95, see below) is counted. The new damage index is defined as it follows:

dPCA =
o
b

. (8)

In order to calculate the damage detection threshold tPCA, the procedure described in the
following is adopted:

• Only the baseline is considered and the MSDs are calculated between the transpose of

each row of Ẑ
0 and the matrix Ẑ

0, i.e.,:

d0 = MSD(Ẑ
0, Ẑ

0
). (9)

• A probability density function is estimated, by fitting a Gamma distribution [56] to
the elements in d0.
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• The 95th percentile P0.95 and its lower and upper 95% confidence bounds, P0.95,UB and
P0.95,LB, are extracted.

• The number of the first b elements of d0 exceeding P0.95, P0.95,UB and P0.95,LB are
counted, obtaining respectively c, u and l.

• c, u and l are then normalized with respect to the number b of elements in the baseline,
obtaining the damage threshold tPCA and its 95% confidence bounds, i.e.,:

tPCA = c/b (10)

tPCA,up = u/b (11)

tPCA,lo = l/b. (12)

Finally, the possible presence of a damage is assessed if dPCA exceeds tPCA,up. This indeed
means that more than 5% of the first b elements of d exceed the 95th percentile P0.95
(with a confidence level of 95%), implying that the new d does not belong to the Gamma
distribution fitted on d0, thus suggesting the presence of damage. Finally, the main steps
required by the proposed PCA-based approach are shown in the flowchart reported in
Figure 2.

Figure 2. Flowchart of the PCA-based approach.

A difference between the new PCA-based approach and the MSD-based one is that
dMSD compares a single observation f∗ with the baseline set, while dPCA requires a set of
new samples F∗ to be assembled with the baseline matrix F0. Thus, after the baseline data
set, each time a new observation of the damage feature is available, the matrix F0∗ will
be increased of one row, until the number of new observations is equal to n. From that
moment onward, the matrix F0∗ will always have size b + n, meaning that, every time
a new observation is available, it is included in F∗ and the least recent one is discarded,
proceeding as a travelling window.

The length of the data set F∗ (i.e., n) defines the sensitivity and the readiness of the
method in detecting the damage, as will be mentioned later in the paper. Indeed, if n is
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much lower than b, and F∗ contains data referring to an altered condition, their weight
in the coordinate transformation of F0∗ will be low. If n is much higher than b, when an
alteration occurs the method will show the damage effect only when a certain number of
damaged samples will replace the undamaged ones in F∗. This translates in a transient
effect and the higher n with respect to b is, the slower the transient is. In this application
we, thus, choose to use n = b as a compromise.

Finally, it should be noted that the steps required by the proposed method during the
monitoring phase (see Figure 2) can be carried out through computationally inexpensive
numerical algorithms (e.g., the above mentioned singular value decomposition to carry out
the PCA). This means that the health condition of the considered structure can be evaluated
in near-real time, every time a new observation of the damage feature is available.

2.3. PCA-Based Method Validation: Simulations and Experiments

The two methods presented in Sections 2.1 and 2.2 will be compared using both
simulated and experimental data. Two aspects will be investigated: the effectiveness in
filtering out the effects of environmental variables and in detecting damage of different
severity. To this purpose, different situations were simulated:

1. cases with no damage and with a cyclic (sinusoidal) temperature trend, simulating its
daily or seasonal variations;

2. cases with no damage and two cyclic temperature trends, simulating both daily and
seasonal variations;

3. cases with damage and two cyclic temperature trends;
4. cases with no damage and temperature trends coming from experimental measure-

ments (i.e., real temperature variations);
5. cases with damage and temperature trends coming from experimental data.

Cases 1 and 2 allow comparing the effectiveness of the two methods in filtering out
the temperature effects when considering a whole temperature cycle (i.e., one period of
the main sine) or a fraction of it in the training set. Case 3 allows the assessment of both
the ability of the methods in filtering out the environmental effects and their sensitivity to
damage of different severities. Finally, cases 4 and 5 remove the constraint of pure cyclic
trends using real temperature data, thus allowing for an evaluation of the robustness of the
methods to generic temperature variations.

Furthermore, again with the same aim of validating the proposed method in different
situations and comparing its results with a benchmark SHM method, experimental tests
were then performed. The tests were conducted on a sample structure placed in a room
with monitored but uncontrolled temperature conditions. Data were acquired both without
damage and with a purposely introduced damage with different severity levels, thus
allowing for a validation of the simulation results, in terms of method behaviour.

This section will present in detail the simulations carried out and the experimental
set-up, while the comparison results will be presented in Sections 3 and 4.

2.3.1. The Simulations

The simulations are meant to investigate the sensitivity of the two methods to environ-
mental changes and to estimate their effectiveness in separating temperature and damage
effects. The case of a simply supported axially-loaded beam is considered, for which
the eigenfrequency values for the bending vertical modes can be analytically estimated,
according to the following equation [57–59]:

fi =
i

2L

√√√√S + EJ( i2π2

L2 )

q
. (13)

In Equation (13), L is the tie-rod length, S is the axial load, E is the Young’s modulus, J
is the momentum of inertia of the cross section and q is the mass per unit length. The

148



Sensors 2023, 23, 1154

simulations were carried out on a beam with rectangular cross-section with height h and
width w. Thus, J = (w h3)/12 and q = w h ρ, where ρ is the material density.

Eigenfrequency time-trends are generated by changing the axial load value, with
respect to an initial reference value S0, which corresponds to a generic initial temperature
T0. A linear relationship between the axial load and the temperature T is assumed, i.e.,
S = S0 + k (T − T0), where k is a constant (i.e., the slope of the line that describes the axial
load as a function of the temperature). For this reason, in Section 3, temperature trends
for simulated data will always be represented as the difference with respect to the initial
temperature T0, i.e., T − T0. The reference values adopted for the simulations are reported
in Table 1.

Table 1. Parameters of the simulated tie-rod.

L [m] S0 [N] E [GPa] ρ [kg/m3] w [m] h [m] k [N/◦C]

4 8× 103 69 2.7× 103 1.5× 10−2 2.5× 10−2 −60

Temperature trends, made by either a single sinusoidal trend or two sinusoidal trends,
are simulated. If the latter case is considered, both long-term and short-term cyclic trends
are present, to mimic seasonal and daily temperature fluctuations, respectively. A simple
sine function with amplitude equal to 8 ◦C and mean equal to 0 ◦C is used for the long-term
temperature trend, which represents the seasonal trend of the mean daily temperature.
A series of sinusoidal functions characterized by a shorter period are used to represent the
cyclic daily fluctuations. Each of the short-term sinusoidal functions has mean equal to
0 ◦C and amplitude which is randomly extracted from uniformly distributed numbers in
the interval between 1.5 and 4 ◦C, to simulate that the thermal excursion may change from
day to day. The two trends, i.e., the long-term sine function and the series of short-term
trends, are summed up, to obtain the simulated temperature with two cyclic components.
Conversely, simulated temperature trends with a single cyclic component are pure sines
with amplitude equal to 8 ◦C, as the seasonal trend described above. The temperature
values adopted to define the amplitudes of short-term and long-term trends are similar to
those registered by meteorological outdoor stations, located in the north of Italy. Finally,
the possibility to simulate eigenfrequency trends as function of the temperature allows
also to use real temperature data as an input (see Sections 3.4 and 3.5). Also in this case,
temperature data are represented as variations with respect to a reference mean value.

The effect of damage is, then, introduced as a reduction of Young’s Modulus of
a portion of the tie-rod of extent equal to 1% of L, at midspan. The way to introduce the effect
of damage is by reducing each i-th eigenfrequency value, provided by Equation (13), by
a certain percentage Δ fi. The values for Δ fi are obtained through finite element simulations
carried out considering a three-dimensional axially-loaded beam model. The reader can
refer to [18], where complete details on the finite element simulations are provided. In
this work, two different damage levels are considered, i.e., 10% and 30% of Young’s
modulus reduction (for both damage conditions, the values for Δ fi for the first five tie-rod
eigenfrequencies are reported in Table 2). A summary of all the simulated test cases is
shown in Table 3.

Table 2. List of Δ fi values used to simulate damage.

Young’s Modulus Reduction [%] Δ f1 [%] Δ f2 [%] Δ f3 [%] Δ f4 [%] Δ f5 [%]

10 1.0× 10−2 1.4× 10−4 5.4× 10−2 4.4× 10−4 8.6× 10−2

30 3.9× 10−2 5.6× 10−4 2.0× 10−1 1.7× 10−3 3.2× 10−1
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Table 3. Simulated test cases.

Test Case Damage T Cycle b Total Number of Samples

sim 1 No Long 4320 (b1) 8640
sim 2 No Long 1008 (b2) 8640
sim 3 No Long + short 1008 (b2) 8640
sim 4 Yes Long + short 4320 (b1) 21600
sim 5 No Real 1008 (b2) 12960
sim 6 No Real 4320 (b1) 12960
sim 7 Yes Real 4320 (b1) 12960
sim 8 Yes Real 1008 (b2) 12960

The outcome of the simulations is discussed in Section 3. In the next subsection, the
experimental set-up is described.

2.3.2. The Experiments

The experimental data come from a test bench (see Figure 3) installed in the Mechanical
Engineering laboratory of Politecnico di Milano, in Italy. A full-scale aluminium tie-rod is
considered, characterized by a free length of 4 m and a cross-section equal to 0.015× 0.025 m2.

Figure 3. The experimental set-up.

Clamps made from steel plates are located at the two ends of the beam, to provide
the constraints. The plates are in contact with the upper and lower faces of the tie-rod and
they are held together by bolted joints. During the installation, the bolted joints of one of
the two clamps (clamp 1 in Figure 3) were tightened, while the ones of the other clamp
(clamp 2 in Figure 3) were left loose. In this way, since the beam was not fully constrained
along the axial direction, a tension was applied through a tensioner. When a tension of
8000 N was applied to the tie-rod, also the bolted joints of clamp 2 were tightened up, to
finally obtain a tensioned beam with a clamped-clamped constraint configuration.

Preliminary tests revealed that the broadband excitation provided by the environment,
under normal conditions, significantly decreases for frequencies higher than 200 Hz and
that the vibration modes which are mostly excited by the operational environment are
the first six bending vertical modes (the eigenfrequency values for the first six bending
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vertical modes, identified through an impact hammer test carried out immediately after
the tensioning procedure, are reported in Table 4).

Table 4. Tie-rod eigenfrequencies of the first six bending vertical modes, identified after the tension-
ing procedure.

f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz]

13.89 30.98 53.36 81.82 116.55 157.95

The choices related to the sensor layout were aimed to obtain a sufficient spatial
resolution to distinguish the mode shapes associated with the first six bending vertical
modes, using as few sensors as possible, in order to reduce the load effect and to mimic
real applications. Indeed, the use of as few sensors as possible is often desirable in field
applications, for both practical and economic reasons. Many different layouts were evalu-
ated based on the autoMAC matrix [60], to finally select a layout composed of four uniaxial
accelerometers, fixed on the top face of the tie-rod, at distances of 1

20 L, 1
3 L, 1

2 L and 9
10 L from

clamp 1. However, it should be noted that the choice of considering only bending modes in
the vertical plane is specific of this experimental campaign. Indeed, by using, e.g., triaxial
accelerometers, also other vibration modes, as the bending lateral ones, can be included in
the analysis.

More in detail, the adopted accelerometers are general-purpose industrial piezoelectric
accelerometers, model PCB603C01 (sensitivity of 10.2 mV/(m/s2), full scale of ±490 m/s2).
The choice for general-purpose industrial accelerometers comes from the decision to not
adopt high-end sensors, which are typical of laboratory environments and not representa-
tive of real applications. Moreover, axially-loaded beam-like structures are usually subject
to significant vibration levels in operational conditions, due to their slenderness, making
possible the use of, e.g., industrial piezoelectric accelerometers or accelerometers based on
microelectromechanical systems (MEMS). Regarding the acquisition system, it is composed
by NI 9234 modules with anti-aliasing filter on board and the sampling frequency is set
to 512 Hz, obtaining a bandwidth of approximately 200 Hz that includes the range of
frequency significantly excited by the operational environment.

It must be pointed out that neither the temperature nor the excitation are controlled,
thus, even though it is a laboratory experiment, acquired data are similar to those of real
monitoring applications. The temperature reaches minimum values approximately equal
to 5 ◦C, during winter, and maximum values approximately equal to 30 ◦C during summer.
Daily thermal excursion ranges from ±1.5 ◦C to ±4 ◦C.

The characteristics of the operational environment allow for a stable modal identifi-
cation of the first four bending vertical modes, through the adoption of the polyreference
least-square complex frequency-domain method [61]. Thus, the eigenfrequencies used to
calculate the damage indexes in Section 4 are those of the first four bending vertical modes.
However, the proposed strategy is of general validity and can also be used when other
output-only modal identification algorithms are adopted to extract the required number of
modal parameters. Furthermore, since only the eigenfrequency values are used to calculate
either the MSD-based or the PCA-based damage indexes, also the adoption of a single
accelerometer and simple single-degree-of-freedom output-only techniques is possible [50].

The damage effect has been introduced through the addition of a concentrated mass, to
alter the dynamic properties of the tie-rod with a simple and reversible strategy, often used
in literature (e.g., in [62–65]). Damage is simulated close to the constraints, at a distance
equal to 1

10 L, which represents a challenging scenario for eigenfrequency-based damage
detection [18]. Two different masses are used, equal to 1% and 3% of the total mass of the
beam, to test different damage severity.
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3. Results: Simulations

In this section, the results of the simulations are presented. The different subsections
discuss the results of the simulations 1 and 2, 3, 4, 5 and 6, 7 and 8, respectively, described
in Table 3 and associated to different temperature and damage conditions.

3.1. Long-Term Temperature Trends and No Damage

At first, the temperature profile reported in Figure 4 is considered, which is composed
by 8640 samples. In this set of simulated data, the eigenfrequency changes are only
associated to the temperature change and the tie-rod is always in the same healthy condition.
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Figure 4. Simulated temperature trend: long-term trend only. Vertical dotted and dashed lines
identify the number of samples used as baseline in sim 1 and sim 2, respectively.

The eigenfrequency trends for the first five vertical bending modes of the simulated
tie-rod are reported in Figure 5.
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Figure 5. Simulated eigenfrequency trends due to long-term temperature trend. Vertical dotted and
dashed lines identify the number of samples used as baseline in sim 1 and sim 2, respectively.

The temperature follows a simple sine function and it completes two identical cycles,
covering the range −8 to +8 ◦C with respect to the initial temperature value. As it is
reasonable to expect, also the eigenfrequency trends follow the cyclical trend of temperature.

In order to compare the MSD-based and the PCA-based strategies in their capability
to filter out the environmental effects, first, a number b1 = 4320 of observations of the
damage feature are considered (see Table 3, sim 1), i.e., half of the total number of samples
shown in Figure 5 (the limit of the baseline set is represented as a vertical dotted line
in Figures 4 and 5). In this way, the baseline set F0 includes data referring to an entire
temperature cycle, i.e., all the environmental conditions to which the tie-rod is subject.
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For MSD-based strategy, the damage index dMSD is evaluated by calculating the MSD
of each observation subsequent to the baseline (i.e., samples after b1) and compared with
the threshold tMSD. As for the PCA-based strategy, Figure 6 shows the PC scores for the
baseline set of eigenfrequencies F0, i.e., the columns of matrix Z (see Section 2.2). As it is
possible to see, the scores in the first principal direction show a deterministic trend that
is strictly related to the temperature trend (compare the first plot of Figure 6 with that of
Figure 4). Conversely, the scores in the other principal directions do not show deterministic
trends. Since the first PC seems to be highly correlated with temperature, it is removed
from the damage feature, before the evaluation of dPCA (p = 1, according to Section 2.2).
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Figure 6. PC scores for the baseline set of eigenfrequencies containing a number b = 4320 of
observations, considering a long-term temperature trend.

Figure 7 shows the comparison of the two approaches on the data which are not
included in the baseline (i.e., from sample 4321 to sample number 8640). To allow for
a direct comparison of the two approaches, from now on, the two indexes dMSD (blue
dotted line) and dPCA (red solid line) will always be plotted as normalized on the respective
damage detection threshold (tMSD and tPCA, respectively). For this reason, the damage
detection threshold is represented by a black horizontal dot-dashed line of value 1 (from
now on, referred to as the unitary threshold) for both the methods. In the same way,
the upper and lower bounds for the PCA-based threshold (see Equations (11) and 12),
tPCA,up and tPCA,lo, respectively, will be presented as normalized on the damage detection
threshold tPCA and indicated by black horizontal dashed lines.
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Figure 7. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320,
considering a long-term temperature trend.

As it is possible to see by observing the results presented in Figure 7, both the strategies
are effective in filtering out the temperature effect. Indeed, dMSD is below the damage
detection threshold and dPCA is inside the range defined by tPCA,up and tPCA,lo. Thus, no
false positives are detected due to the environmental effects, which are correctly filtered
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out since all the temperature conditions from sample 4321 to 8640 were included in the
baseline set.

The second case discussed considers a shorter baseline set. In this case, the baseline
includes a number b2 = 1008 of samples (see Table 3, sim 2), which is approximately one
quarter of the entire temperature cycle (see the black vertical dashed lines in Figures 4 and 5,
which indicate the end of the baseline set). In more detail, in this case F0 contains only the
eigenfrequencies associated to temperatures in the range 0 to +8 ◦C.

Figure 8 shows the comparison of the two approaches. In this case, also the tem-
perature is plotted on the right axis of the figure with a black thin line, to facilitate the
interpretation of the results. As it is possible to see, the PCA-based strategy is still filter-
ing out the temperature effect correctly. Indeed, dPCA is always inside the range defined
by tPCA,up and tPCA,lo. This confirms that most of the variability of the data, which is
associated to temperature, is explained by the first PC. Therefore, removing the first PC
from the damage feature allows to filter out any change due to temperature effects. On
the contrary, dMSD clearly shows a deterministic trend, with values that increase when
data outside of the training set are considered. This can be stated by observing that dMSD

increases when the temperature is in the range 0 to −8 ◦C, which is not included in the
baseline (e.g., compare dMSD and the temperature trend from sample 7008 to sample 8008
in Figure 8). The influence of temperature causes the index dMSD to exceed the damage
detection threshold even if no damage is present, thus producing false positives.
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Figure 8. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008,
considering a long-term temperature trend (black thin line).

3.2. Short-Term and Long-Term Temperature Trends with No Damage

The second set of simulations considers a different temperature profile, characterized
by two cyclical trends: a long-term trend (which is the same as the first set of simulations)
and a short-term trend. This data set is meant to mimic the presence of both seasonal and
daily temperature trends. Indeed, the long-term trend again covers a range of temperature
from −8 to +8 ◦C in 4320 samples, and it simulates the seasonal trend of the daily mean
temperature. The short-term trend, instead, completes an entire cycle in 144 samples.
For every daily cycle, the range of temperatures around the daily mean temperature is
generated as described in Section 2.3.1.

The temperature trend shown in Figure 9 is used to simulate the eigenfrequency trends
which are reported in Figure 10. As it is expected, also the eigenfrequency trends show
both daily and long term trends.

Also in this case, the first b2 = 1008 samples are used as a baseline (see Table 3, sim 3),
as indicated by a black vertical dashed line, both in Figures 9 and 10.
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Figure 9. Simulated temperature trend: long-term and short-term trends. The vertical dashed line
identifies the number of samples used as baseline in sim 3.
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Figure 10. Simulated eigenfrequency trends related to long-term and short-term temperature trends.
The vertical dashed line identifies the number of samples used as baseline in sim 3.

As in the case of the first set of simulations, the PCA confirms that the first PC has
a clear deterministic trend which is highly correlated with the temperature (compare the
plot labelled as PC 1 in Figure 11 with the first 1008 samples in Figure 9). Thus, also in this
case, the first PC is removed before calculating dPCA.

The comparison of the two approaches is reported in Figure 12 and it shows results
which are similar to those commented in Figure 8. The PCA-based strategy is able to
filter out the effects of temperature, also in presence of both short-term and long-term
temperature trends. The index dPCA is always in the range defined by tPCA,up and tPCA,lo.
The MSD-based index, instead, shows the same deterministic trend observed in Figure 8,
i.e., it increases when the temperature ranges from 0 ◦C to −8 ◦C, thus exceeding the
damage detection threshold. Moreover, it is possible to notice that also a short-term trend
is present in the damage index, which has the same periodicity of the short-term trends
in temperature (e.g., compare dMSD and the temperature trend between samples 3008 and
4008, in Figure 12).

The outcome of these first simulations (sim 1, 2 and 3 of Table 3), where the effect of
damage is not accounted for, is that both the strategies are potentially able to be insensitive
to temperature effects in the data. However, a strong difference emerged: while the MSD-
based strategy requires a complete set of environmental effects to filter them out, the
PCA-based strategy can provide a temperature-insensitive damage index without needing
for a complete set of environmental conditions. This aspect is relevant in situations where
a short baseline set is available, e.g., at the beginning of a monitoring campaign.
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Figure 11. PC scores for the baseline set of eigenfrequencies containing a number b = 1008 of
observations, considering both long-term and short-term temperature trends.
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Figure 12. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008,
considering both long-term and short-term temperature trends (black thin line).

3.3. Short-Term and Long-Term Temperature Trends with Simulated Damage

This set of simulations aims at answering a central question: are the damage indexes in-
sensitive enough to temperature to allow for damage detection? The simulations discussed
in the following, thus, consider the presence of damage.

As mentioned in Section 2.3.1, damage is simulated as a reduction of Young’s modulus
of a portion of the tie-rod of extent equal to 1% of the free-length. The portion of the
tie-rod which is affected by damage is located at mid-span and two levels of damage are
considered: 10% and 30% of Young’s modulus reduction. In order to simulate damage,
a change of eigenfrequency value is introduced, using the corresponding eigenfrequency
decrease Δ fi (see Section 2.3.1).

In this case, the total number of samples is equal to 21600, which includes five entire
long-term temperature trends (see Figure 13). A number equal to b1 = 4320 samples (see
Table 3, sim 4) is used to define the baseline, in order to include a complete long-term
temperature trend (see the black vertical dotted line in Figure 13).

Damage is introduced after two and a half temperature cycles and the beginning of
the sample set containing damage-related data is indicated by a red vertical dot-dashed
line in Figure 13.

The performances of dMSD and dPCA in presence of damage can be compared, for the
two damage levels 10% and 30%, in Figures 14 and 15, respectively.

In both cases, the two indexes are below the respective threshold, when the samples
before the beginning of damage are considered, thus they are not producing false positives
due to temperature fluctuations (same conclusions of Sections 3.1 and 3.2). However,
the two indexes perform differently when damage occurs: dPCA is always able to detect
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damage, exceeding the upper limit of the range defined by tPCA,up and tPCA,lo, both with
low and high damage severity. Moreover it is sensitive to different levels of damage, as
proved by the higher level reached by dPCA in Figure 15 (around 12) than in Figure 14
(around 1.75). In both cases, a transient can be observed that finishes approximately b1
samples after the beginning of damage. This is because, due to the travelling window used
to calculate dPCA (see Section 2.2), for the first b1 samples after the introduction of damage,
F∗ still contains data referring to the healthy structure.
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Figure 13. Simulated temperature trend: long-term and short-term temperature trends. The vertical
dotted line identifies the number of samples used as baseline in sim 4. The beginning of the damage-
related data is indicated by a red vertical dot-dashed line.
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Figure 14. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering long and short-term temperature trends and damage (10% reduction of Young’s modulus).
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Figure 15. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering long and short-term temperature trends and damage (30% reduction of Young’s modulus).
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As for dMSD, the MSD-based damage index is not able to detect the lowest simulated
damage, as proved by the fact that dMSD stays below the unitary threshold in Figure 14.
Only the most severe simulated damage is detected (dMSD almost always above the unitary
threshold in Figure 15). However, the conclusion is less clear, if compared with the index
dPCA, on the same conditions (compare the blue dotted line with the red-solid line in
Figure 15).

Results proved that, when the PCA-based strategy is used, removing the first principal
component filters out the temperature effect, while preserving sensitivity to damage.
Moreover, dPCA has a higher sensitivity than dMSD.

3.4. Real Temperature Trends without Damage

Before moving to the experimental results, a last set of simulations is discussed. In this
case, temperatures are not numerically defined but real temperature values are used. In
more detail, the temperature trend comes from the experimental data, collected by a thermo-
couple in the laboratory where the experimental set-up, described in Section 2.3.2, is located.
This set of simulations is meant to check the conclusions of previous Sections 3.1–3.3, where
simple temperature trends were adopted, to easily separate the effects.

The temperature trend used is presented in Figure 16 and refers to the acquisition of
the temperature every ten minutes, for a total number of samples equal to 12960 (90 days of
data). Data are presented as the difference with respect to the average temperature value.
The temperature shows both short-term and long-term trends. The short-term trends show
a cyclical behaviour and they are related to the daily temperature trends. Moreover, it is
possible to see that the mean daily temperature drifts during the observation window, from
values approximately around +4 ◦C to values approximately around −4 ◦C.

Two different baselines will be adopted in the following: a short baseline, containing
b2 = 1008 samples, see Table 3, sim 5, (the end of the short baseline is indicated by a black
vertical dashed line in Figure 16), and a long baseline, containing b1 = 4320 samples, see
Table 3, sim 6 (the end of the long baseline is indicated by a black vertical dotted line
in Figure 16). As opposite to the previous simulations, it must be noted that even when
the longest baseline is considered, it is not enough to include all the temperature values
that characterize the remaining part of data. Indeed, the long baseline will include only
temperature higher than, approximately, −2 ◦C, while, in the remaining part of the data,
the temperature reaches lower levels.
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Figure 16. Real temperature trend, including daily trends and long-term drift. Black vertical dotted
and dashed lines identify the number of samples used as baseline in sim 6 and sim 5, respectively.
The beginning of the damage related data of sim 7 and 8 of Table 3 is indicated by a red vertical
dot-dashed line.
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The results of the PCA of the baseline matrix F0 again confirmed that the first PC is
that presenting a deterministic trend which is highly correlated with that of temperature
(see Figure 17). For this reason, again the index dPCA is calculated after removing the first
principal component.
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Figure 17. PC scores for the baseline set of eigenfrequencies containing a number b = 1008 of
observations, considering real temperature trends.

Cases where no damage is present are here discussed. The results are presented in
Figure 18 for sim 5 (short baseline), and in Figure 19 for sim 6 (long baseline).

With respect to the results presented in Sections 3.1 and 3.2, the insensitivity of
dPCA to temperature is confirmed: when either 1008 or 4320 samples are considered,
dPCA never exceeds the range defined by tPCA,up and tPCA,lo, i.e., no false positives are
produced. Furthermore, also the performances of the MSD-based strategy are confirmed.
Indeed, dMSD significantly exceeds the damage threshold with the baseline containing
1008 samples, causing false positives. As an example, when the mean trend of tempera-
ture decreases around sample 9008 (see Figure 18), the mean trend of dMSD increases and
stays constantly above the threshold. In this case, damage would be detected even if the
structure is in healthy condition. Toward the end of the observation window, while tem-
perature increases, dMSD decreases, coming back to threshold level. Moreover, despite
the effect is reduced by adopting a larger baseline (see Figure 19), it is still possible to
notice that dMSD sometimes exceeds the threshold and shows cyclic trends due to daily
temperature variations.
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Figure 18. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, in
case of a real temperature trend (black thin line).
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Figure 19. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, in
case of a real temperature trend (black thin line).

3.5. Real Temperature Trends With Damage

Finally, the performances in presence of damage are discussed. The results are pre-
sented in Figure 20, for the long baseline (see Table 3, sim 7), and in Figure 21, for the
short baseline (see Table 3, sim 8). The damage simulated in this case is a 30% reduction
of Young’s modulus at midspan and it is indicated by the red vertical dot-dashed line, in
Figures 16, 20 and 21.
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Figure 20. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering a real temperature trend (black thin line) and damage (30% reduction of Young’s modulus).
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Figure 21. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, con-
sidering a real temperature trend (black thin line) and damage (30% reduction of Young’s modulus).
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When a baseline of b1 = 4320 samples are adopted (see Figure 20 and Table 3, sim 7),
both strategies are able to detect damage. However, dPCA shows a clear increasing trend
unlike dMSD. The decreasing trend of dMSD due to temperature, previously observed in
Figure 19 (i.e., from about sample 10700 to sample 12960), seems to be mitigated by the
effect of damage; however, this effect is still present.

When 1008 samples are adopted (see Figure 21 and Table 3, sim 8) dPCA is able to
clearly detect damage, exceeding the range defined by tPCA,up and tPCA,lo, confirming that
not only the damage index is insensitive to temperature, but it is sensitive to damage.
Conversely, the trend of dMSD is similar to that of Figure 18, where no damage is present.
Indeed, damage is detected even when the tie-rod is healthy since dMSD is above the
threshold before damage is introduced (i.e., dMSD exceeds the threshold approximately at
sample 9008). Moreover, the trend of dMSD immediately before the introduction of damage
is similar to that after the introduction of damage. This observation confirms that the
increase of dMSD is mainly due to temperature and not to damage.

4. Results: Experiments

In this section, the results obtained by considering real data coming from the exper-
imental set-up (see Section 2.3.2) are presented. Two damage scenarios are considered,
where the effect of damage is obtained through the addition of concentrated masses of 1%
and 3% of the total mass of the tie-rod, close to one of the two fixed ends.

A set of 1008 samples is used to define the baseline matrix F0 (i.e., b = 1008), composed
by the experimentally identified eigenfrequencies for the first four vibration modes (see
Section 2.3.2). Considering that an estimate of the four eigenfrequencies is available every
10 min, the baseline set includes 7 days. The temperature trend related to the baseline set is
reported in Figure 22, and the temperature trends of the validation and damage sets are
reported in the following Figures 23 and 24, together with the damage indexes. It is noticed
that, in all the figures related to the experiments, the temperature T is plotted in place of
T − T0. The gap of temperature data noticeable in Figures 23 and 24 is due to missing data
caused by a malfunctioning of the temperature sensor. As it is possible to observe, the daily
temperature cycles can be clearly noted. Furthermore, a drift in the daily mean temperature
is also present. The available baseline set approximately covers the range of temperatures
10.5 to 17.5 ◦C.
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Figure 22. Temperature trend for the baseline set of real data.

The comparison between the two approaches is presented in Figures 23 and 24, for
an added mass of 1% and 3% of the total mass, respectively. The indexes (blue-dotted
trend for dMSD and red-solid trend for dPCA) are normalized on the respective damage
detection threshold, as done in the simulations. The horizontal dot-dashed line represents
the threshold for dMSD, while the two horizontal dashed lines, below and above the unitary
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threshold, indicate the range defined by tPCA,up and tPCA,lo, for dPCA (see Section 2.2). The
right y-axis is used to represent the temperature (black-thin line).
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Figure 23. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, for
added mass equal to 1% of the total mass. A black thin line identifies the temperature.
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Figure 24. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, for
added mass equal to 3% of the total mass. A black thin line identifies the temperature.

As for the PCA-based strategy, the effects of temperature on the variance of F0 is
retained by the first two PCs. They indeed show deterministic trends and, thus, were
removed from the damage feature. The proposed procedure proved to be able to effectively
filter out the temperature effect, as it can be seen from Figures 23 and 24. Indeed, dPCA does
not show any temperature-correlated trend (compare the red and black curves) and, when
no damage is present, it does not exceed the range limited by tPCA,up and tPCA,lo.

In both cases, dPCA shows a clear growing trend when damage is introduced, thus the
PCA-based damage index is able to promptly detect damage. By comparing the trends of
dPCA in Figures 23 and 24, it is possible to observe that the PCA-based damage index is
sensitive to different magnitudes of damage: indeed, when damage is 3% the index grows
faster than when damage is 1% (compare the values of the red solid trends in Figure 23
with those of Figure 24).

It is worth noticing that only the most severe damage condition (i.e., 3% of added
mass) is clearly detected by dMSD. For the case of 1% of added mass, instead, it remains
below the threshold for most of the samples and just a slight damage index increase can be
deduced, not allowing for a clear damage detection.

The experimental results confirmed what observed on the simulated data: when just
few temperature conditions are available to define the baseline data set, the PCA-based
strategy can provide a damage index which is robust with respect to the environmental
effects, while the MSD-based index is still sensitive to temperature. Moreover, not only
dPCA is less sensitive to temperature than dMSD, but dPCA has a higher sensitivity to damage
than dMSD. Thus, the novel approach, based on the PCA, is expected to outperform
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the traditional approach, based on the MSD, in applications where few baseline data
are available.

5. Conclusions

This paper presented an unsupervised learning vibration-based damage detection
strategy for SHM applications where only few data are available to build the training set.
In these cases, indeed, the whole variability of the damage feature due to operational and
environmental conditions is not described in the training set. This leads to changes of
the damage feature which can possibly either mask a damage or lead to false positives.
The proposed SHM approach is based on the use of a damage index obtained through
the PCA of the selected damage features. Indeed, relying on the assumption that under
healthy reference conditions the variability of the collected damage features is only due
to environmental and operational variations, these variations will affect the first few PCs,
which explain most of the variability in the data. Thus, by discarding these few PCs, the
remaining ones are not correlated to the environmental effects and can be used to define
a temperature-insensitive damage index.

The effectiveness of the proposed approach was proved on both simulated and ex-
perimental data related to an axially loaded beam-like structure and considering the first
bending natural frequencies as a multivariate damage feature. In both the cases, the pro-
posed approach was compared with the MSD-based outlier detection method, widely
adopted in unsupervised learning SHM literature. The simulations allowed highlighting
the behaviour of the method when seasonal temperature trends are present. Both strategies
showed similar performances when a complete temperature cycle is contained in the base-
line set. Conversely, by reducing the baseline, and thus limiting the temperature conditions
included in the training set, the PCA-based damage index outperformed the MSD-based
one. It, indeed, did not produce any false positive and showed a higher sensitivity to
damage, even when only a quarter of the simulated seasonal trend was included in the
training set. Moreover, unlike the MSD-based approach, the PCA-based one successfully
identified the smallest damage which was intentionally introduced in the experimental
set-up. The experimental campaign proved the PCA-based method robustness, sensitivity
and effectiveness in presence of real and uncontrolled temperature conditions.

It is worth mentioning that, when a damage is introduced in the structure, a transient
of the PCA-based damage index is noticed. Although the effect of the damage can be
clearly detected even during the transient, it may represent a limit of the approach. Thus,
future studies will be devoted to the investigation of the effect of some parameters (e.g., the
length of the new data added to the training set and used to calculate the damage index)
on the transient duration and on the method sensitivity. Moreover, also the number of
PCs to discard in the damage index evaluation is worthy of a deeper analysis. Future
studies could, indeed, allow for an automated strategy able to define the PCs which have
to be neglected in the damage index evaluation. The proposed approach, together with
the future studies on its optimisation, will constitute a step forward in the monitoring of
all those structures where long training is not possible and whose most relevant damage
features are also the most sensitive to environmental and operating conditions.
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Abstract: Rolling bearings are important supporting components of large-scale electromechanical
equipment. Once a fault occurs, it will cause economic losses, and serious accidents will affect
personal safety. Therefore, research on rolling bearing fault diagnosis technology has important
engineering practical significance. Feature extraction with high price density and fault identification
are two keys to overcome in the field of fault diagnosis of rolling bearings. This study proposes a
feature extraction method based on variational modal decomposition (VMD) and sample entropy
and also designs an improved sequence minimization algorithm with optimal parameters to identify
the fault. Firstly, a variational modal decomposition system based on vibration signals is designed,
and the sample entropy of the components is extracted as the eigenvalue of the signal. Secondly, in
order to improve the accuracy of fault diagnosis, the sequence minimum optimization algorithm
optimized by the bat algorithm is used as the classifier. Certainly, the traditional bat algorithm (BA)
and the sequence minimum optimization algorithm (SMO) are improved, respectively. Therefore, a
fault diagnosis algorithm based on IBA-ISMO is obtained. Finally, the experimental verification is
designed to prove that the algorithm model has a good state recognition rate for bearings.

Keywords: variational mode decomposition; sample entropy; sequence minimum optimization
algorithm; fault diagnosis

1. Introduction

The common faults of electromechanical equipment can be divided into electrical
faults and mechanical faults. Electrical faults are often caused by circuit aging, component
damage, etc., while mechanical faults refer to the phenomenon that electromechanical
equipment loses or reduces its specified functions and cannot continue to operate due to
some inevitable damage. Mechanical faults have a serious impact on the safety state of
electromechanical equipment [1–3]. On the one hand, the root cause of faults is complex
and the evolution time is long; on the other hand, once the mechanical faults lead to an
accident, the impact and consequences are unpredictable.

Many mechanical faults are reflected in the form of vibration, and the vibration signals
contain rich information, which can quickly and directly reflect the operating status of
critical parts in major equipment such as bearings [4–6]. It is very necessary to carry
out vibration monitoring and fault diagnosis. However, extracting feature information
with high valence density and designing a classification space that is suitable for strong
nonlinear and non-stationary information are urgent problems to be solved in the field
of fault diagnosis, and even in the field of machine learning. Reference [7] proposed
an adaptive boundary determination method based on empirical wavelet transform and
applied it to fault detection of high-speed train wheelset bearings. Park et al. [8] proposed
a minimum variance cepstrum based on cepstral analysis, which avoided the influence of
the system frequency and the selection of the resonance band, and realized the detection of
early faults of the rotating parts. Borghesani proposed a method of whitening the signal
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using cepstrum [9]. [10] proposed an improved empirical mode decomposition method to
effectively extract the fault features of rolling bearings. In view of the nonlinear and non-
stationary characteristics of the vibration signal of planetary gears, [11] proposed a feature
extraction method of initial fault based on ensemble empirical mode decomposition (EEMD)
and adaptive stochastic resonance (ASR), which provided the strong initial fault diagnosis
of planetary gears against noise background. However, in practical application, the wavelet
decomposition method has problems such as difficulty in selecting the wavelet basis
function [12], and the empirical mode method often has the problem of end-point effects
and mode mixing, which presents some challenges regarding the extraction of fault features.
As a time-frequency domain analysis method, variational mode decomposition (VMD)
has better adaptability than other analysis methods. This method combines the classic
Wiener filtering, Hilbert transform and frequency mixing in mathematical theory. Based
on these advantages, the number of self-determined modal components and the lower
time complexity are realized, and the non-stationary original signal can be decomposed
into relatively stationary subsequences containing multiple frequency domains by VMD.
Wang et al. [13] proposed the characteristic parameter of spectral kurtosis entropy (SKE)
and combined it with VMD to realize the feature extraction of the bogie vibration signal
under variable working conditions. [14] proposed a sparse VMD (sparsity-oriented VMD)
method, which effectively extracted encoder information and realized gear fault diagnosis.

Fault identification is also an important step for establishing the correlation between
fault features and class labels. Fan et al. [15] proposed a high-performance SVM multi-
feature fusion and self-tuning particle swarm optimization algorithm. The method ex-
tracted multi-dimensional fault features by EMD. Then, the multi-dimensional parameters
of the high-performance SVM were configured by adjusting the particle swarm optimization
algorithm, which has improved the effectiveness in bearing fault detection and classifica-
tion. David E. Runelhart et al. [16] proposed the back propagation (BP) neural network
algorithm, which constituted a multi-layer feedforward perceptron to solve the problem
of connection weight learning in the hidden layer of the multi-layer neural network. Lu
et al. [17] proposed an improved feature selection and neural network classification algo-
rithm for the problem of rotating machinery fault diagnosis. The study extracted the time
domain and frequency domain features of the whole machine under multiple working
conditions and used an optimized backpropagation neural network algorithm for fault
diagnosis. He et al. [18] proposed a bearing fault diagnosis method based on a Gaussian
constrained Boltzmann machine, which takes the envelope spectrum of the resampled
data directly as a feature vector to represent the bearing fault. Wang et al. [19] proposed
an intelligent bearing fault diagnosis method that combined the symmetric point pattern
representation and the compressed excitation convolutional neural network model for the
problems of fault visualization and automatic feature extraction.

Based on the above analysis, this paper intends to use variational modal decomposition
(VMD) and sample entropy for signal decomposition and feature extraction of vibration
signals. The improved sequence minimum optimization algorithm has been chosen as the
pattern recognition method in this study.

The rest of the article is organized as follows: Section 2 focuses on the feature extrac-
tion method based on VMD-Sample Entropy and the sequence minimum optimization
algorithm after optimizing parameters. Section 3 verifies the validity of the fault diagnosis
model proposed in this study through experiments and conducts necessary analysis on the
experiments. The fourth part summarizes the research of the full study.

2. The Enhanced Fault Diagnosis Method

The study plans to decompose the original signal by VMD to obtain the intrinsic mode
component (IMF) and to extract the sample entropy of each component as the eigenvalue
of the bearing fault. The training set is input into the improved sequence minimum
optimization algorithm (ISMO) model for training. At the same time, the penalty factor
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and Gaussian kernel parameters of the ISMO are optimized by an improved bat algorithm
(IBA). The fault diagnosis model established in this study is shown in Figure 1.

σ γ

Figure 1. The model of fault diagnosis.

2.1. Feature Extraction Method Based on VMD-Sample Entropy

Signal denoise and feature extraction often play a vital role, respectively. In this
study, the variable scale processing method, known as variational mode decomposition
(VMD), is proposed. VMD satisfies the self-adaptability of the decomposition model in a
non-recursive way and transforms the complex signal decomposition problem in the time
domain and frequency domain into a mathematical model for the solution so as to avoid
the end effect and restrain the mode mixing caused by noise, and an ideal optimal result of
signal decomposition is naturally obtained.

After the optimal result of signal decomposition is obtained through the variational
model, in order to better carry out fault diagnosis, it is necessary to extract the most
prominent feature information from the signal decomposition results. In this study, the
sample entropy is selected as the feature of the vibration signal. As a new algorithm
based on approximate entropy algorithm, the physical meaning of sample entropy can be
expressed as calculating the probability of the change of time series caused by the change
of data bits.

2.1.1. Variational Mode Decomposition

1. Constructing a constrained variational model.

Firstly, the analytic signal uk of the original signal is obtained by Hilbert transform of
the real mode function u+

k .

u+
k (t) =

(
δ(t) +

j
πt

)
∗ uk(t) (1)

In Formula (1), t and δ(t) denote time and influence function, respectively.
The analytical signal u+

k is mixed with each estimated center frequency, and the
spectrum of each mode is modulated to the corresponding fundamental frequency band
as follows:

um
k (t) =

(
δ(t) +

j
πt

)
∗ uk(t)e−jwkt (2)
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Finally, by calculating the L2 norm of the time gradient, the effective value of the
modal component bandwidth can be calculated as follows:

Δw = ‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)e−jwkt

]
‖

2

2
(3)

Therefore, the bandwidth of the modal components of each frequency can be expressed
as Formula (4):

min
{uk},{wk}

{
K
∑

K=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)e−jwkt

]
‖2

2

}
K
∑

K=1
uk(t) = f (t)

(4)

In Formula (4), {uk} = {u1, . . . , uk} represents the IMF components obtained by
VMD; {wk} = {w1, . . . , wk} represents the central frequency of IMF, f (t) is the original
input signal.

(2) Solving constrained variational model

Formula (4) is constructed as a Lagrangian expression by adding the quadratic penalty
factor and the Lagrange operator λ(t).

L({uk},{wk},λ) := α
{

∑k ‖∂t[(δ(t) +
j

πt )× uk(t)]e−jwkt‖2
2

}
+ ‖ f (t)−∑

k
uk(t)‖2

2

+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (5)

In Formula (5), the appropriate penalty factor is selected to ensure that the recon-
struction accuracy is high enough under variable working conditions, and the Lagrangian
operator λ(t) is introduced to make the solution of Formula (5) theoretical and rigorous.

The alternating direction multiplier algorithm is introduced to solve the above varia-
tional problems. The main idea is to obtain the saddle point of the extended Lagrangian
expression by alternately updating the parameters uk(t), wk(t) and λk(t). The updated
Formula is as follows (6):

un+1
k (t) = argmin

uk∈X

{
α

K
∑

K=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)e−jwkt

]
‖

2

2

+‖ f (t)−∑
i

ui(t) +
λ(t)

2 ‖
2

2

} (6)

Under the condition of L2 norm, Equation (6) is transformed into the frequency
domain by Fourier isometric transform, and the variable w in the equation is replaced by
the updated w− wk. According to the Hermitain symmetry theorem, the expression of the
k eigenmode function (IMF) is obtained as follows:

∧
u

n+1

k (w) =

∧
f (w)−∑ i<k

∧
un+1

i (w)−∑ i>k
∧
un

i (w) +
∧
λ(w)

2

1 + 2α(w− wn)
2 (7)

The central frequency expression of the updated modal IMF is:

∧
w

n+1

k =

∞∫
0

w
∣∣∣∣∧un+1

k (w)

∣∣∣∣
2

dw

∞∫
0

∣∣∣∣∧un+1

k (w)

∣∣∣∣
2

dw

(8)
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The updated expression of all non-negative center frequencies is w ≥ 0. and the
updated expression of operator λn+1 is:

∧
λ

n+1
(w) =

∧
λ

n
(w) + τ

[
∧
f (w)−∑

k

∧
u

n+1

k (w)

]
(9)

Summing up the above description, the decomposition process of VMD algorithm can
be summarized as follows:

(1) Initialize the value of u1
k(t), w1

k(t) and λ1
k(t), n is 0.

(2) Set the out-of-loop condition: n = n + 1.
(3) Update uk(t) and wk(t) until the number of intrinsic mode decomposition of the

original sample meets the preset number of the decomposition, ending the current
internal cycle.

(4) Get a new λk(t) license.

(5) Give the jump condition ε as the operator precision, and the ∑k ‖un+1
k −un

k ‖
2
2

‖un
k ‖2

2
< ε as the

stop condition, when the condition is satisfied the loop ends. If not, the outer loop
operation is performed again (step 2).

From the solving process of the above VMD algorithm, it can be concluded that the
VMD algorithm adaptively decomposes the characteristic frequency of the original signal
to get its frequency bandwidth. Through the termination condition to control the IMF and
the center frequency to calculate repeatedly in the time-frequency domain of the signal.
The adaptive decomposition process ends when the stop condition is satisfied.

2.1.2. Sample Entropy

Sample entropy, which can better measure the complexity of time series, is widely
used in signal analysis and processing.

Suppose that there are N pieces of data, and the time series of data sampling is defined
as X = [x(n), n = 1, 2, . . . , N]. The theoretical derivation of the definition of sample entropy
is as follows:

(1) According to the sampling time of the signal, a vector sequence based on time series is
constructed, and the dimension of the vector sequence is m, Xm(1), . . . , Xm(N −m + 1).
Each element in the vector sequence can be represented by the following array:
Xm(i) = {x(i), x(i + 1), . . . , x(i + m− 1)}, 1 ≤ i ≤ N −m + 1. The array represents
the continuous x values of the time series from i to m + i;

(2) Define the distance between Xm(i) and Xm(j): d[Xm(i), Xm(j)] is the absolute value
of the difference between Xm(i) and Xm(j).

d[Xm(i), Xm(j)] = maxk=0,...,m−1(| x(i + k)− x(j + k)| ) (10)

(3) For the constructed d[Xm(i), Xm(j)], the number of j (1 ≤ j ≤ N −m, j �= i) is calcu-
lated and marked as Bi, 1 ≤ i ≤ N −m, Bi is defined as follows:

Bm
i (r) =

1
N −m− 1

Bi (11)

(4) Average B(m)(r) as Formula (12):

B(m)(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) (12)
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(5) Update the vector dimension to m + 1, and recalculate the number of distances and
d[Xm(i), Xm(j)]≤ r bands, where (1 ≤ j ≤ N −m, j �= i) benchmark is marked as Ai.
Define Am

i (r) and Am(r) as the following expressions:

Am
i (r) =

1
N −m− 1

Ai (13)

Am(r) =
1

N −m

N−m

∑
i=1

Am
i (r) (14)

From the above steps, B(m)(r) is the probability of two sequences matching m points
under the similar tolerance r, while Am(r) is the probability of two sequences matching
m + 1 points. Therefore, the definition of sample entropy is:

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(15)

When N is a finite value, the following Formula can be used:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(16)

As can be seen from the above description, the sample entropy has the
following characteristics:

(1) This feature quantity can avoid the disadvantage of approximate entropy, prevent the
data length from being compared by itself and can make the operation results more
accurate and consistent.

(2) Comparing the two sequences, no matter what the scale of the two sequences is, if the
m and r values are changed, the calculation results will not change.

(3) In the process of signal acquisition, it is inevitable to lose some frames. For the
sample entropy algorithm, the loss of a small part of data has no great impact on
the overall structure. Sample entropy can restore the operation results of real data to
the maximum.

In any algorithm involving parameter selection, the influence of parameters cannot be
ignored. When calculating the sample entropy of the signal, the value of the parameters
has the same important influence on the result of the sample entropy operation. According
to the theoretical derivation in the previous section, the main parameters of sample entropy
include embedding dimension m, similarity tolerance r and data points N., the indexes of
these parameters are as follows:

(1) The embedded dimension m represents the dimension of the window function in
the sample entropy algorithm, which is similar to the size of the window function
in the Fourier transform. In most cases, m = 1.2. When m > 2, the deviation of the
parameter value will result in the following: first, a large number of original data sets
will be needed to increase the computational complexity of the algorithm; second, a
too large m will affect the value of r, and there is a positive correlation between the
two. When m is larger, r is larger, r will remove too much useful information.

(2) Similarity capacity r is usually obtained based on (0.15 ∼ 0.25)δ(x), where δ(x)
represents the standard deviation of sampling. The r value is too large, resulting
in invalid data redundancy; the r value is too small, resulting in a reduction in the
amount of data in similar patterns.

(3) N indicates the number of sampled data points, which is usually obtained from
100 to 6000.
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2.2. Fault Identification Method Based on IBA-ISMO

The penalty factor ζ in ISMO and the parameter σ of Gaussian kernel function have a
considerable influence on the classification result and running time. In this paper, the neural
network algorithm based on the bat algorithm is selected to optimize the parameters. The
algorithm has a good local search ability. By optimizing the bat algorithm, the shortcomings
of the algorithm in the process of global optimization are improved and the global optimal
solution of the parameters is obtained.

2.2.1. The Improved Bat Algorithm

The bat algorithm is used to solve the optimal solution by simulating the feeding habits
of bats through echolocation. The main idea of the algorithm is that each bat represents
a solution in the feasible region, imitating the method of identifying the direction of bat
sound waves. Bat individuals constantly emit pulses of a fixed range of frequencies and
capture the sound waves reflected after the pulse collides with the target. The distance and
position of the target are obtained according to the difference in pulse frequency and the
time difference of senses to feel the pulse.

Let the dimension of search space be d-dimensional, and the relevant parameters
emitted by bat i in the process of finding the optimal solution are pulse frequency fi,
velocity vi, position xi, transmitted pulse frequency [ fmin, fmax] and the maximum number
of iterations maxT. Therefore, the update Formula for the position of the bat at t moment is
as follows:

fi = fmin + β( fmax − fmin) (17)

vt
i = vt−1

i + (xt
i − x∗) fi (18)

xt
i = xt−1

i + vt
i (19)

where β is a random number in [0, 1], and x∗ is the optimal position of the current population.
In the process of searching for prey, each bat will adjust the loudness and pulse

frequency of its sound wave according to the location of the target to improve the capture
probability. In the process of getting closer to the target, the search area of the bat will
gradually decrease. Therefore, when the loudness decreases below a certain fixed value,
the frequency is rapidly increased to facilitate the faster acquisition of prey, and the changes
of loudness and pulse in the process of catching prey can be obtained, as shown in the
following Formula:

At+1
i = βAt

i (20)

rt+1
i = r0

i [1− exp(−γt)] (21)

where A represents the pulse loudness, γ > 0 pulse represents the pulse frequency en-
hancement coefficient, and r0

i represents the initial pulse frequency.
As can be seen from the above Formula, when there is t → ∞ , there is At

i → 0 . When
At

i → 0 , it means that the bat has found its prey at this time, and the iteration ends and no
longer sends out pulses.

Bat algorithm has obvious advantages over other parameter optimization algorithms
in global search ability and convergence speed, but it also has the disadvantage that
individuals of the population are easy to fall into the local optimal solution. In order
to solve this problem, this paper proposes an improved bat optimization algorithm by
introducing a new variable w; namely, the adaptive weight factor, to measure the difference
between the current position and the global optimal solution. In order to avoid the final
solution vector falling into the local optimal situation to the greatest extent.

The calculation Formula of adaptive weight factor w is as follows:

wi =
(xi − x∗)

t + 1
(22)

173



Sensors 2023, 23, 991

By updating Formula (22) to:

vt
i = vt−1

i wi + (xt
i − x∗) fi (23)

To sum up, the flow of the IBA algorithm is shown in Figure 2.

r

w

 

Figure 2. The flowchart of IBA algorithm.

According to the characteristics of IBA algorithm, it is found that the parameters
will affect the convergence speed of the algorithm itself and the accuracy of the optimal
solution. For example, the parameters of this kind of group optimization algorithm need to
be selected through strong experiment and experience, and either too large or too small
parameters will affect the results, so the selected parameters are as follows:

Pulse enhancement coefficient γ = 0.9, pulse frequency fmax = 2, fmin = 0; loudness
coefficient A0 = 1.5, initial pulse intensity r0 = 0.5, algorithm population size n = 50, di-
mension d = 5, maximum iterations M = 1000, adaptive weight factor
wmax = 0.9,wmin = 0.2.

Because the IBA algorithm avoids the disadvantage of falling into the local optimal
solution compared with the traditional BA algorithm, in order to verify whether the
parameter selection of the IBA algorithm is reasonable, this section selects the Rastrigin
function to test the global optimization performance of the IBA algorithm and selects the
Ackley function to test the global convergence ability of the IBA algorithm.

(1) Rastrigin function

f (x) =
n

∑
i=1

[
x2

i − 10 cos(2πxi) + 10
]

(24)
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Among them, x ∈ [−5.12, 5.12], i = 1, 2, and the overall shape of the function is
similar to that of the hills, which proves that the algorithm has a good ability for global
optimization. The function image is shown in Figure 3:

Figure 3. Rastrigin function.

(2) Ackley function

f (x) = 20 + e− 20 exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
(25)

Among them, x ∈ [−32.768, 32.768], i = 1, 2. The closer f (x) is to 0, the stronger
the global convergence ability of the algorithm is. The image of the IBA algorithm after
applying this function is shown in Figure 4.

Figure 4. Ackley function image.

In order to digitize the image and show the global optimization ability and global
convergence ability of the improved bat algorithm more intuitively, the IBA algorithm after
parameter selection is run 15 times independently, and the test results shown in Table 1
are obtained.

175



Sensors 2023, 23, 991

Table 1. Test function results.

Function Algorithm Optimal Value Average Value Standard Deviation

Rastrigin IBA 0 7.11 × 10−16 1.50 × 10−15

Ackley IBA 4.26 × 10−14 5.97 × 10−13 8.33 × 10−13

As can be seen from the table, the standard deviation and average of the Rastrigin
function and the Ackley function are both close to 0. Therefore, it has been proven that
the IBA algorithm overcomes the disadvantages of the traditional BA algorithm and has a
significant improvement in global convergence and global optimization.

2.2.2. Improved Sequence Minimization Algorithm (ISMO)

As an algorithm in the SVM model, SMO algorithm essentially uses a very important
functional relationship-kernel function. In this study, the Gaussian kernel function is
improved to improve the efficiency of the SMO algorithm.

The accuracy of sample classification predicted by SMO should meet the
following expression:

EN [P(error)] ≤ EN [SV]

N
(26)

where N represents the total number of training set samples and EN represents the expected
value calculated through the training set samples. It can be seen from the Formula that
when the number of samples in the training set is N, we can choose to reduce the number of
support vectors to reduce the probability of operational errors and improve the application
range of support vector machines. The control of the number of support vectors depends
on the mapping relationship of the algorithm and the selection of algorithm parameters.

Based on the type of kernel function determined in the previous section, the Gaussian
kernel function and the coefficient (1 + m)(m > 0) are as follows:

K(x, xi) = (1 + m) ∗ exp
(
−γ ∗ ‖x− xi‖2

)
(27)

According to Formula (27), the Gaussian kernel coefficient is magnified by (1 + m) times,
and the number of support vectors and the number of samples on the boundary are reduced
by increasing the absolute value of the quadratic coefficient in Qv, which can effectively
reduce the classification error rate. By reducing the solution vectors in data samples that
meet the KKT boundary conditions, the time complexity of the algorithm is reduced, and
the SMO classification accuracy and application range are improved. The improved SMO
algorithm is named ISMO.

Based on the application background of the system in engineering practice, the acqui-
sition and analysis system take the vibration signal as the original signal, and the original
signal has the characteristics of small sample and non-linearity. The ISMO model is se-
lected to classify the vibration signal eigenvector obtained in the previous chapter, and the
mapping of eigenvector from linear inseparable to linear separable is completed, which
enhances the classification accuracy and application range of the algorithm.

3. Experiment and Analysis

3.1. Extracted Features of Rolling Bearing Signals

A variational mode decomposition algorithm is an adaptive signal decomposition
algorithm. By using this method, not only can part of the noise signal be removed, but
also the information of the signal will not be lost, and the characteristic components of the
original signal can be preserved as much as possible, so the VMD algorithm is chosen to
preprocess the original signal. Sample entropy is a kind of eigenvalue used to measure the
complexity of time series, which is improved on the basis of other entropy values, so it also
has the characteristics of anti-noise, so sample entropy is chosen as the eigenvalue of the
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IMF signal. Therefore, this paper proposes a method of feature extraction by combining the
VMD algorithm with sample entropy. The detailed flow chart is shown in Figure 5.

 

Figure 5. Flow chart of feature extraction.

In order to verify the effectiveness of the feature extraction algorithm based on VMD
and sample entropy proposed in this study, this section uses the bearing data in the
CRWU database for related experiments [20]. The data set is mainly composed of the
following data: drive acceleration data, fan segment acceleration data, basic acceleration
data and speed data. The experimental system consists of test bearings, torque sensors,
control motors with different functions and programmable controllers. The test bench is
shown in Figure 6.

 

Figure 6. Bearing simulation failure test bench of Western Reserve University.

In the experiments, the sampling frequency is 12 kHz, the motor speed is 1797 r/min,
and the fault state bearing damage diameter is 0.1778 mm. The bearing states selected in
this experiment include normal state, inner ring fault, outer ring fault and roller fault, and
the number of sampling points of each sample is 6000. The original sampling signals of the
four states of the bearing are shown in Figure 7:

From the original vibration signal shown in Figure 7, it can be seen that there are great
differences in the vibration period and amplitude of the bearing in different states. The
vibration signals of the three fault states all confirm the above analysis of the vibration
signal that there is a periodic abnormal signal, and there is little difference in amplitude in
different periods in the same state.

The vibration signals of four states in Figure 7 are decomposed by variational mode
decomposition. Because the variational mode algorithm has the advantage of removing
some redundant component information, as shown in Figure 8, four IMF component
informations are obtained according to different time–frequency domain characteristics.
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(a) (b) 

 
(c) (d) 

Figure 7. Vibration signals of rolling bearings in four states. (a) Normal state. (b) Inner ring fault.
(c) Rolling body fault. (d) Outer ring fault.

The sample entropy of the decomposed components is calculated, and four groups
of data are randomly selected from each state, as shown in Table 2. As can be seen from
Table 2, there are obvious differences in the sample entropy of each modal component
after the VMD decomposition of vibration signals in different states. Therefore, the sample
entropy index based on VMD decomposition can be used as the eigenvalue of the bearing.
The total number of samples obtained according to the above process is 350 × 4 = 1400.

Table 2. Sample entropy of some samples.

Status
Sample Entropy Features

IMF1 IMF2 IMF3 IMF4

Normal

0.270606 0.538289 0.266344 0.756758
0.278523 0.547741 0.261999 0.741383
0.27207 0.556223 0.234584 0.815750
0.271301 0.543783 0.229493 0.520792

Inner ring fault

0.583038 0.507441 0.245161 0.276670
0.592259 0.510691 0.239027 0.287463
0.585477 0.483586 0.304042 0.234883
0.586028 0.487997 0.317364 0.219320

Rolling element fault

0.427306 0.609396 0.267466 0.155322
0.398368 0.512955 0.240769 0.177347
0.589774 0.482116 0.304627 0.163799
0.582455 0.473968 0.281762 0.206347

Outer ring fault

0.427306 0.609396 0.267466 0.155322
0.398368 0.595303 0.228638 0.157244
0.578411 0.495655 0.192259 0.119652
0.579525 0.506227 0.204141 0.142848
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(a) 

 
(b) 

Figure 8. Cont.
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(c) 

 
(d) 

Figure 8. VMD decomposition results of four states. (a) Normal. (b) Inner ring fault. (c) Rolling body
fault. (d) Outer ring fault.

From the characteristic components of sample entropy in Table 2, we can also see that
the sample entropy eigenvalues of the four intrinsic mode functions in different states are
quite different. For example, in the normal state, the eigenvalue of IMF1 is the lowest and
IMF4 is the highest among the four states; the IMF1 component has the highest eigenvalue
in the inner ring fault state; the IMF1 and IMF2 have relatively high eigenvalues in the
rolling body fault state; in the outer ring fault state, the eigenvalue is the lowest among the
four states and the highest in the four states of IMF2. From the above analysis, it can be
concluded that the vibration signal is decomposed into the IMF component by the VMD
algorithm, and the sample entropy characteristic value of the IMF component has a high

180



Sensors 2023, 23, 991

degree of identification and discrimination. Therefore, the sample entropy characteristic
index based on VMD decomposition can be used as the eigenvalue of the bearing.

3.2. Result of Fault Identification Based on IBA-SMO Algorithm

In the experiment, the feature extracted sample set is divided into a training set and
verification set, and the training set is input to the ISMO model for training. According to
the improved bat algorithm (IBA), the optimal penalty factor and “Gaussian kernel function
parameter” of the ISMO model are obtained while training the ISMO model parameters of
the training set samples. The verification set validates the trained model and verifies its
ability to classify fault types. The set parameters of IBA algorithm are shown in Table 3.

Table 3. Parameter setting for IBA.

Population
Size

Population
Dimension

Number of
Iterations

Loudness
Factor

Search Range of σ Search Range of γ

50 5 100 1.5 1~100 1~100

Three hundred sets of samples are selected from each group as the training, and the
rest as the prediction set. Then, all the training sets are input into the IBA-ISMO algorithm,
and the values of the penalty factor ζ and kernel function parameter σ of the best fitness
are obtained by IBA algorithm. The iterative process and the changing process of the
evaluation function are shown in Figure 9. As can be seen from Figure 9, the evaluation
function in IBA algorithm constantly calculates the fitness value produced by the matching
of different penalty factor γ and kernel function parameter σ, and the fitness increases with
the increase of the number of iterations until the optimal fitness value is obtained when the
maximum number of iterations is close to the maximum number of iterations. At this time,
the output fitness σ = 87.63, γ = 5.78.

Figure 9. The optimal fitness curve of the improved bat algorithm.

In order to better prove that the improved sequence minimum optimization algorithm
has a significant improvement in classification accuracy, firstly, the penalty factor and kernel
function parameter obtained by IBA algorithm are input into the ISMO model as input
parameters, and the optimal classification surface of the sample set is obtained. As shown
in Figure 10, the optimal classification plane has completely separated different faults.
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Figure 10. The optimal classification surface of the SMO model.

Figure 11 shows that IBA optimizes the fault identification accuracy of the traditional
SMO model. It can be seen that there are misjudgments in some test sets, although the
overall fault identification rate is 95.5%. Using the IBA-ISMO algorithm introduced in this
study to re-train the training set samples and re-input the test set samples into the model
derived by the IBA-ISMO algorithm, and the verification results are shown in Figure 12.
Among them, class labels from 1 to 4 represent the normal state, inner ring fault, rolling
fault and outer ring fault, respectively.

Figure 11. IBA-SMO Model verification.

The results of the validation set input into the different models are shown in Table 4.
It can be seen from Table 4 that the accuracy of the IBA-ISMO model is significantly higher
than that of other models except PSO-ISMO, so it shows that the IBA-ISMO model can better
identify the faults and can be effectively applied to the fault diagnosis of rolling bearings.
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Figure 12. IBA-ISMO Model verification.

Table 4. Model recognition results.

Model Types
Inner Ring

Fault
Rolling

Fault
Outer Ring

Fault
Normal

State

Overall
Accuracy

Rate

Training
Time (s)

BA-SMO 90% 92% 90% 96% 92% 5.94
GA-SMO 90% 96% 90% 90% 91.5% 6.65
PSO-SMO 96% 98% 96% 94% 96% 8.99
BA-ISMO 94% 100% 96% 98% 96% 3.35
GA-ISMO 92% 98% 94% 98% 95.5% 4.52
PSO-ISMO 100% 98% 96% 100% 98.5% 7.85
IBA-SMO 92% 100% 92% 98% 95.5% 6.36
IBA-ISMO 100% 98% 98% 98% 98.5% 5.58

4. Conclusions

Aiming at the fault characteristics of rolling bearings, a feature extraction algorithm
based on variational modal decomposition and sample entropy has been proposed, and
most importantly, an improved fault identification method, IBA-ISMO, was proposed in
this study. Using the CWRU data set as a sample set to verify the IBA-ISMO, it is confirmed
that the method has a higher fault recognition rate than the comparison method, while
the effectiveness of feature extraction for instability vibration signals has been indirectly
proven. The main work of this research is as follows:

(1) The VMD algorithm is employed to adaptively decompose the characteristic frequency
of the original signal to obtain its specific frequency bandwidth, and the sample
entropy is used to extract the characteristics of the IMF component, highlighting the
fault information.

(2) An improved bat optimization is designed to optimize the classifier’s parameters,
which avoids the disadvantages of falling into local optimal solutions compared with
the traditional BA algorithm.

(3) The research improves the Gaussian kernel function coefficient of the traditional
SMO method, which effectively reduces the classification error rate and optimizes the
algorithm’s time complexity by reducing the solution vectors that meet the boundary
conditions in the data samples.

It should be noted that effective features are very beneficial for fault diagnosis. In this
study, only the variational mode decomposition is performed on the signal, and the sample
entropy of the component is used as the fault feature. The follow-up research will focus on
the fault characteristics and fault phenomena. On this basis, an in-depth analysis of the
interpretability of deep learning methods will be carried out.
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Abstract: Laboratory-scale data on a component level are frequently used for prognostics because
acquiring them is time and cost efficient. However, they do not reflect actual field conditions. As
prognostics is for an in-service system, the developed prognostic methods must be validated using
real operational data obtained from an actual system. Because obtaining real operational data is
much more expensive than obtaining test-level data, studies employing field data are scarce. In this
study, a prognostic method for screws was presented by employing multi-source real operational data
obtained from a micro-extrusion system. The analysis of real operational data is more challenging than
that of test-level data because the mutual effect of each component in the system is chaotically reflected
in the former. This paper presents a degradation feature extraction method for interpreting complex
signals for a real extrusion system based on the physical and mechanical properties of the system
as well as operational data. The data were analyzed based on general physical properties and the
inferred interpretation was verified using the data. The extracted feature exhibits valid degradation
behavior and is used to predict the remaining useful life of the screw in a real extrusion system.

Keywords: degradation feature; data processing; prognostics; screw; extrusion system; real
operational data; multi-source data; structural health monitoring

1. Introduction

Structural health monitoring (SHM) has been employed in various fields as a cost-
effective maintenance strategy based on sensing systems, such as acoustic emission [1,2],
piezoelectric [3,4], vibration [5,6], and multi-source sensors [7–9]. SHM data are utilized
in diagnostics and prognostics. In diagnostics, they detect, isolate, and identify the dam-
age and/or defect of a structure; in prognostics, they predict degradation behavior and
remaining useful life (RUL) of an in-service system. In recent decades, prognostics have
been studied in various engineering applications such as bearings [6], aircraft engines [7],
batteries [8], and fuel cell stacks [9]. Recently, Huang et al. [6] developed novel methods
for bearing prognostics but employed the open-source bearing datasets that are widely
used for bearing prognostics. Studies on RUL prediction of aircraft engines by Liu et al. [7]
used simulation datasets of turbofan engine degradation. This type of dataset is typically
generated using simulation tools such as the commercial modular aero-propulsion sys-
tem Simulation [10]. Zhang and Li [8] recently provided a detailed summary of lab-scale
datasets used in the field of lithium-ion batteries. Marine et al. [9] conducted a prognostic
study of a fuel cell (FC) stack using datasets obtained from aging tests, determining the
effect of high-frequency current ripples on FC stack durability.

As mentioned above, most existing studies used data obtained under laboratory
conditions; the datasets were obtained in an easy, fast, and cost-effective manner using an
accelerated test or a well-organized test plan. Before applying the developed prognostic
method to a real industrial field, it is essential to employ a simple dataset for pilot testing
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purposes. However, the prognostic method has rarely been validated with real operational
data because obtaining field data is time-consuming and expensive. Run-to-failure data
are required to validate the prognostic method; however, the life span of a real operating
system is several years or even decades. Considering the differences in the process and
operating conditions used to obtain laboratory and field data, the importance of employing
real operational data cannot be sufficiently emphasized.

In this study, real operational data were obtained from a micro-extrusion system for
medical tube-grade catheters. To the best of our knowledge, in addition to using real
operational data, no study has addressed the prognosis of the extrusion system or its
components. It is important to maintain the quality of the product, particularly for medical
catheters, as they can be applied to the human body. There have been long-standing efforts
to maintain the extrusion product quality itself [11–15]; however, the maintenance strategy
for the extrusion system is rather simplified, although its health condition influences
the quality of products. Additional extrusion processes are performed as a maintenance
strategy, which is periodically conducted under controlled conditions that restrict the
process variables, raw materials, etc. [16]. Although this method is intuitive, it involves
cumbersome operations that require additional time and money. Therefore, a prognostic
method for an extrusion system is presented based on real operational data to monitor the
health condition of the system without additional tasks.

The extrusion system consists of a variety of components, including the motor, screw,
barrel, and puller, and its health condition is affected by various failure modes of the
components. Among them, screw wear is the most common failure mode of the extrusion
system. Further, it affects the mixing quality and temperature of the molten polymer,
thereby affecting the quality of the products (catheters) [17,18]. The quality of products can
be maintained under moderate wear of the screw by adjusting the process variables but
cannot be maintained under severe wear of the screw. However, it is not easy to distinguish
whether the level of screw wear is moderate or severe because it progresses gradually, and
the quality of products also depends on other factors such as operator and environmental
conditions. Inadequate control of the extrusion process due to wear can cause variations
in product quality [19,20], which can lead to raw material wastage, increased energy
consumption, and environmental pollution [21,22]. Therefore, this study aims to predict
the RUL of the extrusion screw based on real operational data so that a timely replacement
is performed before the screw under inadequate performance deteriorates the quality of
the products.

The analysis of real operational data is more challenging than that of test-level data
because it is obtained at the system level, wherein the mutual effect of each component
on the system is reflected chaotically. Therefore, the main contribution of this study is
the extraction of the degradation feature to monitor the wear of the screw used in a real
extrusion system, which is based on the physical and mechanical properties of the system
as well as the operational data. The extracted feature exhibits valid degradation behavior
and is used to predict the RUL of the extrusion screw during its lifespan.

The remainder of this paper is organized as follows. In Section 2, the medical catheter
extrusion system and the operating data are introduced. In Section 3, the process of
extracting the degradation features of screw wear based on the physical interpretation of
the extrusion system and experimental data is explained, and the features are applied to
real operational data. In Section 4, the application of the extracted degradation features to
predict the RUL of an extrusion screw is described. Finally, a brief conclusion is presented.

2. Extrusion System

An extrusion system is a continuous production system that uses polymer melts
manufactured through frictional heat between a cylinder and a screw to produce a tube
using a mold composed of a tip and die. An extrusion system is composed of several
main components, such as a hopper, screw and barrel, tip and die, quenching system,
vacuum water tank, measurement device, puller, cutter, and conveyor system. The actual
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micro-extrusion system (Davis-Standard Inc., Fulton, NY, USA) is shown in Figure 1. This
provided the operational data used in this study. Detailed information on the extrusion
process and operating data is provided in the following subsections.

Figure 1. Medical multi-lumen tubing extrusion system.

2.1. General Extrusion Process and System Configuration

The extrusion system shown in Figure 1 is illustrated in Figure 2 to introduce the
general extrusion process. After drying and dehumidifying, the polymer is injected into the
barrel equipped with a screw through the hopper of the extruder and melted by frictional
heat between the screw, polymer, and inner wall of the barrel. The initial shape of the tube
is generated as the polymer passes through the tip and dies by adjusting the rotating speed
of the screw, and the pressure of air injected into the lumen controls the ovality and shape
of the tube. The lumen of the tube is stably hardened in a quenching part and vacuum tank
filled with water, and the size of the tube is precisely controlled by adjusting the puller
speed. The final tubes are produced on a conveyor system after the consecutive tubes
are cut.

Figure 2. Illustration of the entire extrusion system.

Many factors affect the quality of products during complex extrusion processes. The
screw wear-related parts are illustrated in Figure 3 with the locations of the on-board
sensors, which are used to monitor the condition of each component. The components
are classified into two large groups: the extruder part, which includes the motor, screw in
the barrel, tip, and die; and the puller part, which includes the puller itself. Four types of
sensing signals (motor load, head pressure, and screw and puller speeds) were selected
from the many on-board sensors attached to the actual extrusion system by considering
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their relationship to screw wear. In Figure 3, the numbers represent the sequence of the
operational flow: 1. The screw speed setting (called S.Spd.Set in diagrams and calculations)
is a control parameter that is adjusted to make the quality of the catheter close to the final
product; 2. The motor operates by following the screw-speed setting. The motor load is
denoted by M.Load; 3. The motor rotates the screw in the barrel, and the actual screw
speed (S.Spd.Act) is monitored; 4. The rotating screw extrudes the polymer melt in the
barrel to the tip and die, and the head pressure (H.Press) at this time is monitored. The
coarsely shaped catheter is then moved to puller: 1*. the puller speed setting (P.Spd.Set),
another control parameter, is precisely adjusted to make the catheter of high quality; 2*. the
puller motor runs the puller following the puller speed setting, and the actual puller speed
(P.Spd.Act) is measured. In this study, the operational data of the system were analyzed
based on the operational mechanism shown in Figure 3.

Figure 3. Screw wear-related parts and sensing location.

2.2. Data Description

The extrusion system shown in Figure 1 has been operational since March 2017, and
no component has been replaced (but minimum maintenance was conducted), except for
screws. Two types of screws were used in the same extrusion system according to the
polymer series. The screws used for the polyurethane/polyester and polyamide series are
called barrier and (spiral) Maddock screws, respectively. The barrier screw has been in use
since it was replaced in July 2020, and the Maddock screw has been in use since the start
of the operation and is now severely worn. The operational data used in this study were
obtained from July 2020 to March 2022. In summary, the barrier screw is likely to have
mild wear, whereas the Maddock screw has reached its end-of-life (EOL). Therefore, the
Maddock screw was considered the target component for prognostics in this study.

The extrusion system was operated for approximately eight hours per day on week-
days. The real operational data for all the measurements are shown in Figure 4a. In the
figure, the bars represent the monitoring data for each day, but these raw data are not easy
to interpret. This is the reason why feature extraction is required. The operational data for
one day (green box) are shown in Figure 4b. In the figure, the extrusion process data can be
categorized into two types, as shown in Figure 3: control (colored red) and measurement
(colored blue) data. As shown in Figure 4b, all measurement values were changed in real
time by following operator-controlled speed settings.

As shown in Figure 4b, the datasets were obtained in two different ways according to
the operational conditions. First, a component-level experiment was conducted to monitor
the effect of screw wear on extrusion data by minimizing other effects, such as motor
degradation and processing variables. Next, real operational data were collected from
an actual extrusion system that produces medical catheters over a long period. A more
detailed explanation of the data is provided in the following subsection.
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Figure 4. Real operational data: (a) All measurements for the Maddock screw; (b) Extrusion data for
the Maddock screw collected on 19 January 2021.
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2.2.1. Screw Experimental Data

Experimental screw wear data were obtained from three screws with different levels
of wear under the same production conditions that were used to produce the same type of
single-lumen catheters with an inner diameter of 2.0 mm and outer diameter of 2.5 mm
using the same polymer (carbothane PC-3595A, Lubrizol, Cleveland, OH, USA) over two
days. It should be noted that screw wear naturally progresses during actual use, as shown
in Figure 5. In the figure, wear levels 1, 2, and 3 correspond to the intact, moderately worn,
and completely worn screws, respectively. The experimental data, which are similar to the
signals in Figure 4, are analyzed in Section 3.

(a)

(b)

(c)

Figure 5. Three screws used in the screw wear experiments: (a) wear level 1: intact; (b) wear level 2:
moderate wear; and (c) wear level 3: severe wear.

2.2.2. Real Operational Data

According to the production schedule, one of the barrier and Maddock screws were
used in the same extrusion system shown in Figure 1, which means that the system and two
screws have different life spans. Even though the operation of the extrusion system and the
use of the Maddock screw started in March 2017, the time when the monitoring started (July
2020) was assumed to be the initial cycle. Consequently, the total operating times of the
extrusion system and Maddock screw were approximately 4000 h and 1200 h, respectively.
The cumulative usage time of the barrier screw was approximately 2800 h (which is the
actual cumulative usage time rather than the assumed life of the system and Maddock
screw), but it was not considered in this study. During the extrusion process, catheters with
various specifications were produced using different polymer materials. These diversities
made it difficult to extract the degradation features of screw wear from monitoring signals.
In the following section, the robust wear feature was extracted regardless of the type of
catheter produced and the material used.

3. Degradation Feature Analysis in the System

To predict the RUL of a screw, the degradation feature must first be extracted in the
form of a monotonic increase or decrease. However, it is challenging to extract degradation
features from raw data, particularly from real operational data, as shown in Figure 4a.
Moreover, it may take several decades to obtain sufficient data from an actual system for
prognostics, including for feature extraction. Therefore, data and physical information
are complementarily used; raw data are analyzed based on physical and mechanical
interpretation, and the inferred interpretation is, in turn, verified by the data.

3.1. Physical and Mechanical Properties of the Extrusion System

Six signals were recorded, including the control and measurement signals, as shown
in Figure 3. Among the six signals, the setting and actual speeds were examined first, as
shown in Figure 6. In the figure, the blue solid and red dashed lines represent the setting
and actual speed, respectively. They were very close to each other during the normal
extrusion process between the two green vertical lines at both screw and puller speeds.
Thus, the health condition of the motor, monitored until the current time, had no valid
effect on the following process (refer to Figure 3). In other words, the head pressure was
not affected by motor degradation because the actual screw speed followed the set value
well, regardless of the motor condition.
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(a) (b)

Figure 6. Difference between setting and actual speeds (Maddock): (a) data monitored on the first
day (6 July 2020); (b) data monitored on the last day (25 March 2022).

However, the effect of motor degradation was reflected in the change in motor load,
which usually increased as the motor degraded [23]. Screw wear was also related to the
motor load, which decreased as the screw wore out because the screw speed increased
owing to the reduced radius of the blade [24]. Note that the motor load decreased with
increasing screw speed caused by wear but increased with an increase in the setting speed
of the screw. Thus, the motor load reflected at least three aspects: the screw speed setting,
screw wear, and motor degradation. This explains why the data analysis at the system level
is complex and difficult.

The motor load was closely related to the mechanical aspect, whereas the head pressure
and puller speed were more closely related to catheter quality. As screw wear progressed,
head pressure typically decreased, and the screw and puller speeds were appropriately
adjusted by the operator to maintain catheter quality. However, as shown in Figures 3 and 4,
screw speed had a greater effect on the overall system control than the quality of catheters.
In general, to maintain catheter quality, puller speed should increase with a decrease in
head pressure, which is based on the law of conservation of energy. Maintaining the same
catheter quality required the same energy; however, energy loss occurred because of a
decrease in head pressure as the screw wore out over time. Thus, the puller speed must be
increased to compensate for lost energy.

To summarize the above two paragraphs, screw wear over time (t) can be expressed
as follows:

d(t) = L(t)A× P(t)
V(t)

(1)

where L, P, V, and d represent the motor load, head pressure, puller speed, and screw
degradation level, respectively. The motor load in Equation (1) reflects the degradation of
both the screw and motor and decreases or increases depending on the predominance of the
two degradations. However, motor degradation was not considered in this study because
it is negligible compared with the wear level of the Maddock screw. The head pressure and
puller speed decreased and increased, respectively, as the screw wore out. In conclusion,
each term on the right side of Equation (1) is an indicator that can be used to monitor
screw deterioration. When screw deterioration is dominant, Equation (1) clearly shows a
gradual decrease. The degradation feature of the screw wear in Equation (1) was verified
and improved using experimental and real operating data in the following subsections.

3.2. Experimental Data Analysis

The most common phenomenon caused by screw wear is a decrease in the head
pressure, which was verified through experiments, as shown in Figure 7a. The black and
red signals were obtained from the screws of wear levels 1 and 3, respectively, as shown in
Figure 5. This result was obtained experimentally by letting the polymer melt flow down at
the tip and die with a fixed screw speed for both the intact and worn screws. As shown in
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Figure 7a, the head pressure of the intact screw (black) is approximately 2 MPa higher than
that of the worn screw (red). Although it was obvious that the head pressure decreases
with screw wear, the data from the real operating process for producing catheters, as shown
in Figure 7b, did not support this conclusion. In the figure, the head pressures of the intact
(black) and worn (red) screws are similar, and it is difficult to distinguish which dataset
corresponds to the worn screw from the signals. This is because the operation settings, such
as the screw and puller speeds, were adjusted to maintain product quality under different
health conditions of the screws.

(a) (b)

Figure 7. Head pressure change according to screw wear: (a) no catheter production; (b) during
catheter production.

The experimental results using the three screws in Figure 5 are shown in Figure 8,
where the black, blue, and red colors represent wear levels 1, 2, and 3, respectively. The
operational data during normal extrusion are shown in Figure 8a, and the corresponding
averages are shown in Figure 8b. The y-axes of the four results in Figure 8b were scaled to
a 20% difference between the maximum and minimum values. In the figure, significant
changes in the motor load and puller speed can be observed, whereas the head pressure
did not show much change (note that the screw speed was fixed at 10.7 rpm).

As mentioned in Section 3.1, the motor load was affected by the screw speed setting
and degradation of both the motor and screw. The screw speed was fixed during the
experiment. In addition, the deterioration in motor performance cannot be reflected because
the experiment was performed for two consecutive days. Therefore, we can conclude that
the reduction in motor load in Figure 8b was caused only by screw degradation. However,
Figure 8b does not show the expected result of the puller speed increasing continuously
as the wear level increases. Despite the obvious screw wear, the puller speed increased at
wear level 2, but decreased at wear level 3. To understand this phenomenon, an unexpected
inflow of energy, such as fluctuation energy, was investigated by considering the severity
of wear level 3.

The production quality of the catheters could not be maintained when a screw with a
wear level of 3 was used. This was demonstrated by a flow-rate test and the quality of the
produced catheter. The flow rate was measured for one minute at a fixed screw speed of
10.7 rpm according to the wear level listed in Table 1. The tests were performed three times
each, and the average and standard deviation were listed with the rate of increase relative
to wear level of 1. The flow rate was expected to increase as the physical space increased
owing to an increase in screw wear; however, the flow rate at wear level 3 was lower than
the flow rate at wear level 2. This is because the melted polymer adheres to the screw
surface and prevents it from falling. The severity of wear level 3 led to a large variation in
not only the standard deviation of the flow rate (a 652% increase over wear level 1), but
also in the quality of the catheter, as shown in Figure 9. In the figure, the yellow circles are
the catheters produced with the three wear levels of the screws, and the red circles that are
the same for each figure represent the ideal shape and size of the catheter. As shown in
the figure, the catheter produced using the screw of wear level 1 was very close to the red
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circle, and the catheter of wear level 2 was slightly distorted in the upper part (between
two green lines). On the other hand, the catheter using the screw with wear level 3 showed
a large discrepancy between the product and the right half of the red circle (between the
two green lines). In conclusion, the wear level 3 screw was not suitable for producing a fair
quality catheter. Therefore, the useful life of the screw should be considered between wear
levels 2 and 3.
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Figure 8. Experimental data according to the level of screw wear, keeping catheter production and
materials the same: (a) operational data; (b) mean of the operational data.

(a) (b) (c)

Figure 9. Quality of catheters according to the level of screw wear: (a) wear level 1; (b) wear level 2;
(c) wear level 3.
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Table 1. Results of the flow rate measurement test according to screw wear level.

Unit: [g/min]

Screw
Wear
Level

Test 1 Test 2 Test 3

Average Standard Deviation

Amount
Ratio to

Wear L. 1
Amount

Ratio to
Wear L. 1

1 13.88 13.85 13.89 13.87 - 0.021 -
2 15.67 15.64 15.66 15.66 12.9% 0.015 −28.6%
3 14.17 14.27 14.48 14.30 3.1% 0.158 652%

Before employing real operational data, an additional aspect should be considered.
To date, experimental data have been obtained under conditions that produce the same
types of catheters at a fixed screw speed using the same polymer. Because various types
of catheters and polymers are used during actual operation, the degradation feature in
Equation (1) must be modified to reflect these variabilities. The simplest method is to
employ the screw speed setting corresponding to the overall system control as a correction
factor as follows:

dM(t) =
1

R(t)
A× L(t) (2)

dE(t) =
1

R(t)
A× P(t)

V(t)
(3)

dT(t) =
L(t)A× P(t)
R(t)A×V(t)

(4)

where dM, dE, dT, and R represent the mechanical, energy, total degradations, and screw
speed, respectively. The degradation feature in Equation (1) is divided into the mechanical
aspect (dM) in Equation (2) and the energy aspect (dE) in Equation (3) because they show
different behaviors at the very late stage of screw life. The total degradation (dT) in
Equation (4), which becomes the final degradation feature, is obtained by multiplying the
two aspects and avoiding the duplication of the screw speed. The denominators (screw and
puller speeds) and numerators (motor load and head pressure) in Equations (2)–(4) increase
and decrease, respectively, as the screw wear progresses. To be precise, the head pressure
can be maintained during the actual operating process but is not expected to increase.

Consequently, all three aspects of the degradation feature in Equations (2)–(4) are ex-
pected to decrease, provided the screw functions properly, even with gradual degradation,
as shown in Figure 10. In the figure, the black, blue, and red markers indicate wear levels 1,
2, and 3, respectively. Note that the x-axis ranges from zero to five years. For these plots,
the average life span of the screws was assumed to be five years. The time index on the
x-axis can vary because the three screws may have different useful lives. The gray curves
in Figure 10 depict the expected behavior based on the analysis thus far. The gray star
marks the EOL of the screws because screws should be replaced before they deteriorate the
catheter quality.

Wear level (yr.) Wear level (yr.)

Wear level 1 Wear level 2 Wear level 3 Behavior expected EOL expected

Wear level (yr.)

Figure 10. Degradation feature analysis; the material and product were kept the same.
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One screw for each wear level was insufficient for validating the degradation feature.
Thus, real operational data were applied to the same feature extraction methods, as detailed
in the following section.

3.3. Real Operational Data Analysis

The corrected degradation features of the screw wear using Equations (2)–(4) are
shown in Figure 11. In the figure, each marker represents the mean of the real operational
data for a day, and the linear fitting results are shown with black lines. The barrier and
Maddock screws represent the control and test groups, respectively. In addition, the
cumulative usage time of the system is used for both the barrier and Maddock screws
to compare the changes in the monitoring signals according to the degree of screw wear
rather than to consider the usage time of screws. The slope values in Figure 11 show that
the amount of variation in the degradation features of the Maddock screw is more than
twice that of the barrier screw. This is because the cumulative usage time of the barrier
screw corresponds to wear level 2 in Figure 10, which shows little degradation of the screw.
In Figure 11a, the positive slope indicates that motor degradation is more dominant than
screw wear. However, the negative slope of the Maddock screw in Figure 11b clearly shows
the screw wear.

(a) (b)

Figure 11. Degradation feature with correction factor using Equations (2)–(4): (a) barrier screw;
(b) Maddock screw.

However, the distribution of the degradation features fluctuated and was scattered,
which was not sufficient to predict the degradation behavior and RUL. Therefore, a
weighted cumulative average (WCA) was applied to the degradation features shown
in Figure 11b to further highlight the degradation characteristics. The weight in the WCA
was defined as the value uniformly divided between 1 and 1/n, where n is the number
of data obtained up to the current time. For example, when the current time was 3000 h,
n = 26 (refer to Figure 11b), and the weights decreased from 1 to 0.0385 (1/n) with a
uniform interval of 0.0385 (1/n). Each value of the degradation features in Figure 11b
was then multiplied by the calculated weight. Finally, the mean of the weighted feature
cumulated from zero to the current time was obtained as the WCA at 3000 h. This process
was repeated each time, and the results are shown in Figure 12. As shown in Figure 12a,
the WCA of the degradation feature over the entire range contained unstable data with
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large fluctuations in the early stages of the lifespan. When the full time was reduced after
1000 h, as shown in Figure 12b, the characteristics of each feature could be observed more
clearly. The WCA of dM did not show a monotonic trend, which is a basic condition for
degradation behavior. However, the WCA of dE and dT decreased continuously, and either
of the two could be considered the final degradation feature for the prediction. However,
whereas the WCA of dE decreased almost linearly after 1500 h, the rate of decrease of the
WCA of dT increased. The behavior of the WCA of dT was an expected characteristic of
the general degradation feature. This demonstrated that the degradation feature proposed
in Equation (4) was reasonable for describing the wear behavior of the extruder screw.
Consequently, the WCA of dT in Figure 12 was extracted from the raw data in Figure 4a
and used as the final degradation feature to predict the RUL of the Maddock screw.

(a) (b)

Figure 12. Degradation feature analysis based on proposed methods: (a) entire time scale; (b) after
1000 h.

4. Prediction Result

The RUL of a component measures the time remaining before repair or replacement.
In this study, the component of interest was the Maddock screw, and thus the time label
in Figure 12 is important. Therefore, the time label of the WCA of dT in Figure 12a was
converted to the time scale of the Maddock screw, as shown in Figure 13a. During 4000 h of
system operation, Maddock screws were used for approximately 1200 h (more accurately,
1128 h). In the figure, only the solid black dots are considered for RUL prediction because
the circle markers up to 400 h indicate the data points where the degradation feature
differed from the expected behavior. The final data are depicted by dotted markers in
Figure 13b.

Once the degradation data are obtained, a degradation model is assumed for the RUL
prediction. Paris and Erdogan [25] proved that crack growth behaves exponentially and
developed the Paris model, which is a physical degradation model that describes crack
growth behavior under different loading conditions. Goebel et al. [26] used the exponential
function as an empirical model to describe battery degradation behavior. Because physical
models such as the Paris model are rare, exponential functions are generally employed as
empirical degradation models in most prognostic studies. Therefore, in this study, it was
assumed that the degradation behavior (z) is described by the following equation:
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z = a + b× exp (
t

1000
) (5)

where a, b, and t are the model parameters and the time, respectively. The model parame-
ters were estimated using the data obtained up to the current time by minimizing the error
between the data and model output, z. There are several methods for parameter estimation,
and the Bayesian method [27] was used in this study. In the Bayesian method, the model
parameters are estimated in the form of a probability density function (PDF). Subsequently,
the Markov chain Monte Carlo sampling method was employed to draw samples from the
PDF of the model parameters. Consequently, the final model output at time t was obtained
by substituting the estimated values (drawn samples) for a and b in Equation (5). For
example, the gray curve in Figure 13b is the model output at EOL obtained using all data
and the Bayesian method. Because all monitoring data were used, the curve was considered
to be the true degradation behavior, excluding the noise in the data. More details on the
Bayesian method and implementation code can be found in the book by Kim et al. [27].
Next, a degradation threshold should be determined by considering the trade-off between
risk and cost. However, determining the threshold is another specialized field; thus, in this
study, the threshold was assumed to be the true wear level at EOL. In Figure 13b, the green
horizontal line represents the threshold of 7.24, where the true model (gray curve) reaches
an EOL of 1128 h (red vertical line).

(a) (b)
Time (h)

Data used
Data discarded

Figure 13. Given information and assumption for prognostics: (a) data for RUL prediction; (b) as-
sumed true model and threshold.

The prognostics can be performed using the above information and assumptions, that
is, the data, degradation model, and threshold. The prediction results of the degradation
behavior at 768 h are shown in Figure 14a. In the figure, the dotted markers represent the
data obtained up to the current 768 h, which were used to estimate the model parameters
in Equation (5). The dashed and dotted red curves represent the median and 90% interval
of the degradation prediction results, respectively, with the estimated model parameters.
The EOL prediction is distributed between 1050 h and 1200 h, which is when the red
curves reach the threshold (green horizontal line). The RUL was predicted by subtracting
the current time from the predicted EOL, as indicated by the magenta vertical line in
Figure 14b. The RUL prediction results were obtained by repeating the process for the
degradation prediction in Figure 14a every time data was obtained. The results in Figure 14b
show that the RUL prediction results (red lines) are very close to the true results (gray
diagonal line) with narrow distributions after approximately 750 h. In other words, an
accurate prediction is possible approximately 380 h before the EOL. The extrusion system is
operated for approximately eight hours a day on weekdays; thus, the maintenance and/or
replacement of Maddock screws can be scheduled approximately two months before EOL
(it is a twofold improvement in the prediction of the RUL for the system using both barrier
and Maddock screws).
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Figure 14. Prognostics results for the Maddock screw: (a) degradation prediction at 768 h; (b) RUL
prediction for entire time.

5. Conclusions

In this study, a novel method for degradation feature extraction is proposed to predict
the RUL of an extrusion screw using real operational data. The micro-extrusion system
has been operational for more than five years, and in the last two years real operational
data were obtained while the system produced various specifications of medical catheters.
During this period, the Maddock screw reached its EOL owing to severe wear and was
targeted for RUL prediction based on the proposed degradation feature. The proposed
degradation feature exhibited typical characteristics of degradation behavior, which mono-
tonically decreased with an increase in the degradation rate over time. The degradation
feature was used to predict the RUL of the Maddock screw, and accurate results for the
RUL were obtained approximately 380 h before EOL.

The main objective of this study was to accomplish the prognostics process using real
operational data from a micro-extrusion system in service. First, real operational data are
invaluable compared with test-level data, which are usually obtained at the component
level under severe load conditions and well-planned operation conditions. Next, a valid
degradation feature was extracted from the system-level data based on the fusion of the
physical interpretation by the authors and the data information. Notably, the target object
for prognostics was at the component level; however, the data used in this study were
obtained at the system level, which reflects multiple complex aspects of the system within
one type of signal. Finally, a prognostic study for the extrusion system was addressed, not
by common objects such as bearings and batteries.

This study had some limitations. First, the proposed method for degradation feature
extraction has not been fully validated owing to a lack of operational data. However, real
operational data are still being collected and will be used in further studies. Next, the
degradation of other components, including the motor, was ignored because screw wear
is currently predominant. The degradation features of other components will become
distinct over time, and they will be applied to improve the degradation feature of the
screw. Lastly, the prognostics study for other components will be conducted aiming for
system-level prognostics.
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Abstract: The attitude sensor of the aircraft can give feedback on the perceived flight attitude
information to the input of the flight controller to realize the closed-loop control of the flight attitude.
Therefore, the fault diagnosis of attitude sensors is crucial for the flight safety of aircraft, in view of
the situation that the existing diagnosis methods fail to give consideration to both the diagnosis rate
and the diagnosis accuracy. In this paper, a fast and high-precision fault diagnosis strategy for aircraft
sensor is proposed. Specifically, the aircraft’s dynamics model and the attitude sensor’s fault model
are built. The SENet attention mechanism is used to allocate weights for the collected time-domain
fault signals and transformed time-frequency signals, and then inject the fused feature signals with
weights into the RepVGG based on the convolutional neural network structure for deep feature
mining and classification. Experimental results show that the proposed method can achieve good
precision speed tradeoff.

Keywords: attitude sensor; fault diagnosis; attention mechanism; time-frequency signal; RepVGG

1. Introduction

The complex structure, numerous equipment, system cross-linking and diverse flight
environment of aircraft make it easy to have faults. The flight control system is the core
system of the aircraft, in which the sensor is used to transmit the real-time measured aircraft
flight state parameters to the flight control system. Therefore, the state of the sensor will
directly affect the flight state [1,2]. Once a fault occurs, it will cause the sensor to transmit
the wrong information to the flight control system, which may cause greater economic
losses and even endanger people’s lives. Therefore, the diagnosis of aircraft sensors is
essential to ensure aircraft flight safety [3,4].

The traditional fault diagnosis methods consist of mainly two types, one is based on
signal analysis or artificial feature extraction [5,6], and the other is based on models [7,8].
Among them, a common application of the first method is to determine whether a fault
occurs by designing a threshold value and comparing whether the signal reaches the thresh-
old value [9]. Other methods based on manual feature extraction have also been widely
studied. A fault diagnosis method based on signal decomposition and two-dimensional
feature clustering is designed to diagnose battery status [10]. The data processing method
of high-speed railway fault signal diagnosis based on MapReduce algorithm was de-
signed [11]. Statistical method and wavelet packet decomposition method are used for
feature extraction of vibration signal to identify the fault type of rotor [12].

The model-based method refers to establishing the model of the object to be diagnosed,
and analyzing the situation when various faults occur by setting different types of faults
in the model. Fault diagnosis is realized through the corresponding relationship between
the output difference of the model in different faults and the fault type. A review of
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model-based fault diagnosis methods was published, focusing on fault detection and
fault estimation [13]. N. Valceschini et al. proposed a model-based fault detection and
isolation scheme for the transmission components of electro-mechanical actuators, which
was applied to the drive of sliding doors [14]. In addition, a model-based battery fault
diagnosis method is proposed, which is based on multiple equivalent circuit models [15].
In addition, Wang et al. established the equivalent circuit model of battery pack insulation
fault diagnosis using the high fidelity unit model [16].

However, the two traditional methods mentioned above have some limitations, specif-
ically , the method based on signal analysis diagnoses by manually selecting feature types,
which is difficult to avoid the problem of insufficient representation of selected features [17].
The main problem of model-based method is that it requires high accuracy of the model,
and it is no longer applicable when the object changes a little. With the development of
machine learning and artificial intelligence technology, data-driven fault diagnosis method
is very popular in recent years because of its advantages of automatically exploring the
characteristics of signals and high applicability. More and more data driven diagnostic
methods with higher accuracy have emerged [18–23]. A data driven method based on
improved Elman neural network was proposed to realize the fast diagnosis of open circuit
fault of IGBT [18]. Nicholas et al. [19] proposed a general robust data-driven scheme for
fault detection, isolation and estimation of multiple sensor faults, and verified it with
multiple flight data records. A fault diagnosis method based on Deep belief network (DBN)
to generate local random graph to intuitively explain the fault action mechanism was pro-
posed, which realized the diagnosis of different faults of air conditioner [20] Guo et al. [21]
established a predictive model for photovoltaic power generation under normal conditions
through clustering algorithm and long short-term memory neural network (LSTM), and
used the predictive model to conduct quantitative fault diagnosis through transfer learning.
In addition, some work related to fault diagnosis combines signal based and data-driven, or
uses the transfer learning strategy [24–27] to achieve high-precision fault diagnosis results.

Different types of machine learning models have been targeted for development and
used in data-driven diagnosis. However, there are still two problems in the processing of
input data: the type of input signal data is single, which has no advantage in ensuring
the integrity of data information; in a small amount of work considering multiple input
signals, the importance of different signals is rarely considered, which is not conducive to
subsequent feature extraction and fault classification. In addition, in view of the fact that
most of the deep learning diagnosis models cannot give consideration to both time cost
and computational efficiency, this paper also proposes a targeted scheme.

Specifically, the innovation points of this paper are as follows:

(i) The time sequence signal of aircraft attitude sensor is transformed into time-frequency
domain, and the time-domain signal and time-frequency domain signal are taken as
the feature mining object.

(ii) A signal representation weight analysis and allocation strategy is designed, and the
representativeness of each channel of time-domain signal and time-frequency signal
is analyzed by using Squeeze-and-excitation networks (SENet) attention mechanism.

(iii) A fast and high-precision diagnostic technology based on Re-parameterization visual
geometry group (RepVGG) is proposed, which achieves a good diagnostic accuracy
speed tradeoff.

The following text is arranged as follows: the relevant theories and methods are given
in Section 2. Section 3 describes the experimental setup and the preparation process of the
fault data set, including fault model building and data collection, experimental parameter
settings, etc. The Section 4 presents the experimental results and discussions. Section 5
summarizes the full text.
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2. Relevant Theories and Proposed Methods

2.1. RepVGG

The maturity of the “convolutional” neural network has made it a solution to many
mainstream tasks. The commonly used convolutional neural network models in image
classification include VGG-16 and ResNet. The performance of VGG network model will
increase with its depth, which may lead to over fitting and gradient disappearance, and
the accuracy will decline. ResNet model’s residual element can solve the gradient disap-
pearance phenomenon well, but it is powerless for the common over fitting phenomenon
of deep network. The multi-level branches in the residual structure in ResNet make the
model difficult to implement. RepVGG network is a single path convolutional network
architecture, which integrates the ideas of VGG and ResNet, and only adds 3 times. The
3-volume integration layer can also achieve simple and more efficient performance [28].

2.1.1. RepVGG Block

As shown in Figure 1, RepVGG uses a multi branch model similar to ResNet style
during training, and converts it into a single path model of VGG style during reasoning.
Figure 1a shows the network structure used in RepVGG training, while Figure 1b is used
in reasoning. Figure 1b shows the RepVGG network in the reasoning stage. The structure
of the network is very simple. The whole network is composed of convolution with kernel
size 3× 3 and ReLu activation function, which is easy for model reasoning and acceleration.

Figure 1. Schematic diagram of partial structure of RepVGG. (a) RepVGG training. (b) RepVGG
inference.

RepVGG is formed by continuously stacking RepVGG Blocks. During the training,
RepVGG Block paralleled three branches: a main branch with a convolution core size of
3 × 3, a shortcut branch with a convolution core size of 1 × 1, and a shortcut branch with
only BN connected. Since the residual structure has multiple branches, it is equivalent to
adding multiple gradient flow paths to the network. Such a network is trained, which is
similar to training multiple networks and integrating multiple networks into one network.
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It is similar to the idea of model integration, which can improve the training effect of
the network.

2.1.2. Structural Reparameterization

RepVGG reparameterization transforms the multi branch structure in the training
process into 3 × 3 convolution with deviation, which improves the reasoning speed of the
network, reduces the network parameters and reduces the memory occupation. The process
of reparameterization is shown in Figure 2, which includes four processes: merging Conv2d
and BN; Convert 1 × 1 convolution to 3 × 3 convolution and BN to 3 × 3 convolution, and
fuse multiple branches.

Figure 2. Schematic Diagram of Reparameterization.

At the stage of merging 3 × 3 convolution layer and BN layer, the formula of convolu-
tion layer and BN layer is as follows:

Conv(x) = W(x)
BN(x) = γ× (x−μ)√

σ2
i +ε

+ β (1)

where the input is x, the fusion of Conv into BN can be expressed as:

BN(conv(x)) = γ× W(x)− μ√
σ2

i + ε
+ β = (

γ×W(x)√
σ2

i + ε
) + (

γ×W(x)√
σ2

i + ε
+ β) (2)

The above formula can be regarded as the convolution layer incorporating BN opera-

tion, where
√

σ2
i is the variance of BN layer, γ Is the scale factor of BN layer, β Indicates the

offset factor of BN layer. If the content in the first bracket of the above formula is regarded
as W ′, and the content in the second bracket is regarded as B′, then:

W ′ = γ×W
σi

(3)

B′ = β− γ× μ

σi
(4)

Finally, it can be rewritten as:

BN(Conv(x)) = W ′(x) + B′(x) (5)

When converting 1 × 1 convolution to 3 × 3 convolution form, take a convolution
core in 1 × 1 convolution layer as an example, just add a circle of zeros around the original
convolution core weight, which becomes a 3 × 3 convolution layer. Note that in order to
ensure that the height and width of the input/output feature map remain unchanged, the
padding is usually set to 1. Finally, the above convolution layer and BN layer can be fused.

When converting BN to 3× 3 convolution, as there is no convolution layer for branches
with only BN, a 3 × 3 convolution layer needs to be constructed first, and the convolu-
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tion layer only carries out identity mapping, that is, the input and output characteristic
maps remain unchanged. With this convolution layer, BN layer can be converted into
3 × 3 convolution.

Finally, multi branch fusion is carried out. The process of merging is relatively simple.
The parameters of the three convolution layers are added together. In this step, the weight
W and offset B of all branches are superposed to obtain a fused 3 × 3 Convolutional
network layer.

2.2. SENet Attention Mechanism

Convolution often focuses on the fusion of scale information in space. Through the
introduction of an attention mechanism, SENet focuses on the connection between different
channels, so that it can learn the importance of each channel feature [29]. For the fault
classification task in this paper, an attention mechanism is introduced to improve the
attention of different characteristic channels of input signals. The SE module contains two
operations: Squeeze and Exception; the global characteristics of each trace in the feature
map can be obtained by the Squeeze operation. The relationship between channels can be
learned through the Exception, and the weights between different channels can be obtained.

Its implementation is shown in Figure 3. The input feature layer is pooled globally.
Then two full connections are made. The number of fully connected neurons in the first
time is less, and the number of fully connected neurons in the second time is the same as
the input feature layer. A ReLU layer is set between two full connections. Then, another
sigmoid is performed to fix the value between 0–1. At this time, the weight value of each
channel of the input feature layer is obtained. Finally, the weighted feature layer can be
obtained by multiplying this weight value by the original input feature layer.

X

C

C

X

Figure 3. Structure of SENet.

2.3. The Proposed Strategy

In order to fully exploit the characteristics of sensor fault signals, the fault diagnosis
strategy shown in Figure 4 is proposed in this paper. First, different faults are injected
into the flight control system model of the aircraft, and then the signals under the fault
state are collected. The time-frequency characteristic diagram is obtained by processing
one-dimensional time-domain residual signal through S-transform. The one-dimensional
time-domain residual signal is sliced and stacked into a 50 × 50 × 1 format. As the first
channel data, the data size of the RGB three channels of time-frequency characteristic map
is 50 × 50 × 3. The data of these four channels 50 × 50 × 4 are used as the processing
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data of the subsequent SENet attention mechanism and RepVGG. Because RepVGG only
obtains features in spatial dimension, SENet module is integrated into RepVGG to obtain
feature association between different channels. The proposed diagnostic algorithm consists
of two parts: training and testing. The training part is to learn the model’s parameters by
using the training data set, and the testing part is to test the effect of the proposed model
by using the testing data set.

 

Figure 4. Flowchart of the algorithm proposed in this paper.

Add SE attention module to the 3 × 3 channel of RepVGG, and the feature map with
size H ×W × C is obtained after the convolution kernel operation (in the fault diagnosis
task of this paper, the value of parameter C is 4). At this time, the convolution is only the
characteristic diagram obtained by spatial operation, and there is no relationship between
each channel; The 2D feature pc of each channel is mapped to the global feature fc through
a global average pooling, and the formula is as follows:

fc = Fsq(pc) =
1

h× h

h

∑
i=1

h

∑
j=1

pc(i, j), f ∈ RC (6)

Then, two Fully connected (FC) layers are used, one to reduce the dimension charac-
teristics, and the other to upgrade back to the original dimension. Finally, the normalized
weight is obtained through Sigmoid, and the formula is as follows:

s = Fex( f , W) = σ(g( f , W)) = σ(W2ReLU(W1z)) (7)

W1 ∈ R
c
r×C, W2 ∈ R

c
r×C (8)

Finally, the weight s obtained is weighted to each characteristic channel fc. This allows
important channels to gain greater attention and ensure the accuracy of classification.

3. Experiment Setup and Data Set Preparation

3.1. Establishment of Fault Model

Navion aircraft model is built in this paper, and different fault types of its attitude
sensor are set. Navion aircraft model is a navigation aircraft model. By the end of 1947,
more than 1100 aircraft of this type had been produced in the United States. The aircraft
has a total length of 8.38 m, a wingspan of 10.19 m, a height of 2.65 m, a maximum takeoff
weight of 1338 kg, a maximum flight speed of 260 km per hour, and a maximum range of
1120 km. The aircraft was once designated as a training aircraft of the US Air Force. Today,
there are still a large number of such aircraft in civilian use. In this paper, according to
the published aerodynamic parameters of Navion aircraft, the first order Taylor expansion
method is used to linearize the small disturbance equation of fixed wing aircraft at a certain
equilibrium point, and the linearized model of Navion aircraft is obtained. As shown in

207



Sensors 2022, 22, 9662

Figure 5, a fault signal generation model is designed, including the normal sensor sensing
part and the fault sensor sensing part. The input control signal is input into the control
model of the aircraft. The attitude sensor in the normal attitude frame can correctly perceive
the attitude information of the Unmanned aerial vehicles (UAV), while the attitude sensor
in the fault attitude frame cannot correctly perceive the attitude information.

Figure 5. Simulation diagram of attitude sensor fault.

Among them, the attitude sensor in the normal attitude frame can correctly perceive
the attitude information of the UAV, while the attitude sensor in the fault attitude frame can-
not correctly perceive the attitude information. After the sensor fault model is established,
the attitude information is measured and the fault output is obtained. Then calculate the
residual of normal sensor data and fault sensor data, and use the residual time series signal
as the data processed by the subsequent fault diagnosis model. The fault type settings are
shown in Table 1, which contains the fault manifestations and corresponding labels. Taking
the pitch angle sensor of an aircraft as an example, four common faults are set, including
jamming, lateral gain, lateral deviation and excessive noise. In addition, if the fault free
state is regarded as a special fault state, there are five fault types in total.

Table 1. Setting of fault types.

Fault Type Fault Manifestation Fault Label

No fault The fault free state represents the health state and is regarded
as a special fault F0

Stuck The measured value of the sensor output deviates from the
normal value and reaches a stuck position F1

Constant gain The measured value of the sensor output maintains a
constant proportion to the normal output value F2

Constant
deviation

The measured value of the sensor output deviates from the
normal value and keeps the deviation constant F3

Excessive noise The measured value of the sensor output contains large noise F4

3.2. Acquisition of Fault Data

Set the corresponding input control signal to change within a certain angle range,
collect the residual signals of various faults, the length of each residual signal is 2500, and
rearrange them into a 50 × 50 format. In addition, the time-frequency diagram obtained by
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S-transform is also cut to 50 × 50 size, and 50 × 50 × 3 data obtained by extracting RGB
three channels of color time-frequency diagram is used as the input of SENet attention
mechanism model. Figure 6 shows the time-frequency diagram of different fault types after
S transformation.

Figure 6. Signal diagrams for five different types of faults. (a) F0. (b) F1. (c) F2. (d) F3. (e) F4.

In order to explore the influence of different data sets on the fault diagnosis accuracy
of the algorithm proposed in this paper, five data sets with different sizes are set. Table 2
lists the size information of training set, verification set and test set for each fault type.

Table 2. Different data set size for each fault.

Data Set Number of Training Sets Number of Validation Sets Number of Test Sets

1 140 20 40
2 280 40 80
3 420 60 120
4 700 100 200
5 980 140 280

3.3. Basic Parameter Settings of the Proposed Method

The parameters of the proposed method are shown in Table 3, where the kernel size
is the size of the convolution kernel; Padding is the matrix filling value, that is, the filling
is added to all four sides input, and the default value is 0; padding_ Mode is the matrix
filling mode, and the default value is ‘zero’; num_ Blocks is the number of modules, that
is, the number of sub modules in different stages; num_ Classes is the number of fault
classifications, which is set as five fault states; width_ Multiplier is the stage multiplication
coefficient, that is, the different coefficients multiplied at different stages; Groups is the
number of input channel groups, that is, the number of blocked connections from the input
channel to the output channel. The default value is 1; Street is the convolution step, and
the default value is 1; The division is the expansion flag bit, that is, the spacing between
kernel elements. The default value is 1; Bias adds a learnable deviation to the output. This
parameter is a Boolean value. If it is true, a learnable deviation is added to the output,
indicating that the parameters learned in the backward feedback are applied.

Table 3. Size of the dataset.

Parameter Value

kernel size 3
padding 0

padding_mode ‘zeros’
num_blocks [2, 4, 14, 1]
num_classes 5

width_multiplier [0.75, 0.75, 0.75, 2.5]
groups 1
stride 1

dilation 1
bias True
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4. Experimental Results and Discussion

The experiments are conducted with Python 3.9, CUDA 11.6 and Pytorch 1.12.1
libraries on Windows11 operation system. The key experimental hardware configurations
are NVIDIA GeForce RTX 3060 Laptop GPU with 6 GB memory and 12th Gen Intel(R)
Core(TM) i9-12900H 2.50 GHz CPU with 16GB memory.

Accuracy is used to evaluate the diagnostic performance. Two indexes are as follows.

Accuracy =
Ncp

Ncp + Nwp
(9)

where Ncp represents the number of cases whose label is correctly predicted, Nwp refers the
number of cases whose label is wrongly predicted.

4.1. Effect of Data Set on Diagnosis Results

The average precision and average training time are selected as the evaluation indica-
tors of this paper to study the fault diagnosis performance of the method proposed in this
paper under different data sets. The results are shown in Table 4.

Table 4. Diagnostic performance of the proposed method under different data sets.

Different Datasets Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Average accuracy (%) 93.45% 96.10% 99.28% 99.37% 99.42%
Average training time (s) 356.08 693.76 1019.73 1754.73 2390.49

Table 4 shows that: (i) As the size of the dataset increases (from dataset 1 to dataset 5),
the model training time of the proposed algorithm becomes longer and longer. (ii) As far as
the average precision is concerned, the precision has reached more than 99% in the case of
data volume shown in dataset 3. Later, as the dataset continues to grow, for example, when
it changes to dataset 5, compared with dataset 3, the average accuracy of the algorithm is
only improved by 0.14%. According to Table 4, for the smallest dataset 1, its accuracy is
the lowest, while for the medium dataset 3, the proposed algorithm has reached a satisfied
accuracy. Therefore, we have added a Table 5 to list the accuracy of each fault type of a test
in detail under the conditions of datasets 1 and 3.

Table 5. Accuracy detail presentation of data sets 1 and 3 in a test.

Dataset 1 Dataset 3

Fault code Accuracy (%) Fault code Accuracy (%)
F0 92.50 F0 98.33
F1 100.00 F1 99.17
F2 90.00 F2 100.00
F3 85.00 F3 98.33
F4 90.00 F4 99.17

Average accuracy 91.50 Average accuracy 99.00

As can be seen from Table 5, the corresponding classification accuracy of each fault
label in dataset 3 is generally higher than that in dataset 1. In addition, in dataset 3, the
number of tests for each fault type is 120, and the number of the wrong classification is less
than 2.

In order to better show the classification of the algorithm proposed in this paper under
different data. The confusion matrix of dataset 1 and dataset 3 in an experiment is shown
in Figure 7.
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(a) Dataset 1 (b) Dataset 3 

Figure 7. Confusion matrix under different data sets.

It can be seen from Figure 7 that the misclassification of the proposed algorithm in
dataset 3 is obviously better than that in dataset 1. Further, the model training process in
the case of dataset 3 is shown in Figure 8.

Figure 8. Iteration diagram of the accuracy of the algorithm proposed in this paper in the case of
dataset 3.

It can be seen from Figure 8 that the training and verification stages of the model of
the proposed diagnostic algorithm achieve the best accuracy at the 7th Epoch. In addition,
the convergence speed of the model is relatively fast.

4.2. Ablation Experiment

In order to explore the role of each module of the method proposed in this paper.
Ablation experiment was set up to conduct ablation research by deleting each module from
the proposed method. (we conduct ablation studies by removing the identity and/or 1 × 1
branch from every block of RepVGG-B0.) Specifically, as shown in Table 6, respectively
cancel the S transform module to use only the time domain signal (No. 1), cancel the time
domain signal to use only the time-frequency domain signal (No. 2), cancel the SENet
module (No. 3), and simultaneously cancel the S transform module and the SENet module
(No. 4). The fault diagnosis accuracy under each condition is listed in this table.
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Table 6. Fault diagnosis accuracy is tested in ablation study.

No. Time Domain Signal S-Transform SENet Average Accuracy

1
√ √

80.68%
2

√ √
86.35%

3
√ √

92.37%
4

√
62.75%

Note: The modules marked with
√

in the table are reserved in the model.

Table 6 shows that the performance is the best when the SENet module is canceled,
reaching 92.37%. Secondly, the performance is the second best when only time-frequency
signals are used, reaching 86.35%. When the S-transform module is cancelled and only the
time-domain signal is used, the corresponding diagnostic accuracy ranks third, only 80.68%.
The performance is the worst when S-transform module and SENet module are canceled at
the same time, which is only 62.75%. It can be seen from the results that the signal processed
by the diagnosis strategy has the greatest impact on the diagnosis performance, and it is
very important to obtain time-frequency diagram signal through S-transform. Secondly,
the SENet module shows some advantages in data preprocessing, which provides a better
basis for RepVGG to mine effective features. In addition, by comparing No. 1 and No. 2,
it can be seen that compared with the timing signal, the time-frequency map obtained by
using S-transform can better reflect the characteristics of the object.

5. Conclusions

In this paper, a fault diagnosis method for aircraft attitude sensor is proposed. Research
shows that sensor residual signals can reflect the difference of various faults and can be
used as a diagnostic signal. One dimension time-domain signals and two-dimensional
time-frequency domain features are processed by SENet attention mechanism, and key
feature categories are enhanced by high weight. Subsequently, the depth RepVGG is
used to conduct in-depth feature mining and achieve a fast and high accuracy diagnosis
effect. Therefore, the SENet attention mechanism is an effective feature importance ranking
scheme, which realizes the weight division of signal categories while ensuring the integrity
of diagnostic signals. In addition, RepVGG has also been proven to be a potential fault
diagnosis algorithm, with obvious advantages in diagnosis speed while ensuring accuracy.
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Abstract: The transmission of satellite payload data is critical for services provided by aerospace
ground networks. To ensure the correctness of data transmission, the TCP data transmission protocol
has been used typically. However, the standard TCP congestion control algorithm is incompatible with
networks with a long time delay and a large bandwidth, resulting in low throughput and resource
waste. This article compares recent studies on TCP-based acceleration algorithms and proposes an
acceleration algorithm based on the learning of historical characteristics, such as end-to-end delay and
its variation characteristics, the arrival interval of feedback packets (ACK) at the receiving end and its
variation characteristics, the degree of data packet reversal and its variation characteristics, delay
and jitter caused by the security equipment’s deep data inspection, and random packet loss caused
by various factors. The proposed algorithm is evaluated and compared with the TCP congestion
control algorithms under both laboratory and ground network conditions. Experimental results
indicate that the proposed acceleration algorithm is efficient and can significantly increase throughput.
Therefore, it has a promising application prospect in high-speed data transmission in aerospace-
ground service networks.

Keywords: network delay; packet loss rate; aerospace-ground service network; BoostTCP acceleration
algorithm; bottleneck bandwidth and round-trip propagation time congestion control algorithm;
cubic congestion control algorithm

1. Introduction

The distance between the sending and receiving ends of an aerospace-ground service
network can exceed several thousand kilometers. Therefore, data transmission between
the sending and receiving ends represents ultra-long-distance optical fiber transmission
through a special line. It should be noted that without using a relay, the maximum effective
transmission distance of an optical fiber is tens of kilometers, as optical signals attenuate to
a certain extent to meet transmission bandwidth requirements. Accordingly, relay stations
must be added to the transmission route to compensate for optical signal attenuation to
realize ultra-long-distance transmission. However, the bit error rate (BER) increases with
the number of used relay stations, which can result in packet loss and cause a packet error
during data transmission. Namely, in ultra-long-distance optical fiber transmission over a
special line, packet loss and an error in data transmission are caused by the attenuation of
optical signals and BER, not by congestion on a physical link. However, in the standard
TCP protocol, packet loss is treated as link congestion, thus reducing the transmission
rate. Furthermore, this processing mechanism contradicts the reality of ultra-long-distance
optical fiber transmission through a dedicated line, which results in bandwidth waste.
The TCP protocol ensures data flow reliability using sequence confirmation and packet
retransmission mechanisms. In addition, it achieves excellent adaptability under various
network conditions and, thus, has significantly contributed to the rapid development and
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popularization of the Internet. However, the TCP protocol was designed more than two
decades ago; consequently, it is unsuitable to model high-bandwidth, long-delay services
in current ground networks. When packets are lost or delayed along the network path,
the throughput of a TCP connection is significantly reduced. As a result, bandwidth is fre-
quently underutilized, causing idle and unexploited bandwidth. Therefore, using the TCP
will significantly increase long-distance data transmission and slow application response
time, and it can even cause failure in data transmission. The literature [1,2] proposed
some quantum logic gates and proved the success of the operations in implementing these
gates. The literature [3–6] proposed a multi-qubit system consisting of two trapped ions
coupled in a laser field. These devices may provide the next-generation design for quantum
computers. To adapt to the current network characteristics of wide bandwidth and long
delay, it is necessary to modify the TCP design to increase the transmission rate.

This article discusses the application of lightweight learning-based congestion control.
The term “lightweight” refers to a type of congestion control algorithm that does not
include deep learning, such as heuristic algorithms, utility functions, or gradient descent.
A lightweight algorithm requires short training time and has a low cost, which makes it
“light.” In addition, it accelerates TCP transmission and improves TCP connection stability
by improving the standard TCP protocol and its handling of congestion, and the algorithm
can detect and compensate for packet loss accurately and in a timely manner.

2. Materials and Methods

The TCP protocol was developed based on the RFC793 standard document published
by the Internet Engineering Task Force (IETF) in 1981. The early development of the TCP
protocol considered the effects of a transmission environment on the transmission rate,
and both sender and receiver employed a sliding window strategy to control the data flow
dynamically. However, as network services became more complex, it has been found that a
simple flow control considers only the receiver’s accepting capacity. Nevertheless, from a
macro perspective, the entire network contains a large number of routers and other network
devices, and their storage and forwarding functions can affect the network’s congestion.
Still, relying only on the receiver’s information cannot mitigate the effect of congestion
by other network devices. This shortcoming caused a TCP collapse in 1986, resulting in a
reduced link throughput between the LBL and UC Berkeley from 32 kbps to 40 kbps. Since
then, researchers have recognized the critical nature of congestion control protocols, and
pertinent research results have rapidly emerged [7,8].

The first congestion control algorithm was proposed by Van Jacobson et al. [9,10],
which introduced mechanisms, such as slow start and congestion avoidance, for the first
time. However, this type of algorithm immediately executes the slow-start strategy after
judging the link as congested. This is because the link frequently reduces the size of the
windows sent, impacting bandwidth utilization. In [11,12], a TCP-Reno algorithm was
proposed to solve the bandwidth utilization problem by adding a fast recovery mechanism
based on TCP Tahoe. Since the Reno algorithm can ensure network stability but not optimal
resource utilization [13], in [14], a BIC algorithm, which consists of the binary searching
and linear growth stages, was proposed. The Reno algorithm was modified in [15], and a
modified TCP-Reno algorithm was developed. Further, in [16], the TCP-BIC algorithm was
enhanced, and the TCP cubic algorithm, which improves the TCP-BIC algorithm’s window
adjustment method, was developed. The TCP cubic algorithm is a default congestion
control algorithm of the current Linux and Android kernels.

The conventional TCP protocol is incapable of correctly distinguishing the causes of
packet loss, and it performs only indiscriminate window-reduction operations, thus limiting
future network transmission efficiency enhancements [17–19]. In [20], a performance-
based congestion control (PCC) protocol and a rate control mechanism were proposed to
address the two mentioned issues. The proposed algorithm could increase the network’s
transmission bandwidth, but the convergence rate was extremely slow. However, research
on the PCC algorithm provided a large amount of information for subsequent analyses.
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Further, Google proposed an innovative congestion control scheme in 2016 named the
dubbed BBR (Bottleneck Bandwidth and Round-trip propagation time) [21,22]. Certain
concepts in the BBR are consistent with the PCC algorithm. Nonetheless, in [21,22], it was
demonstrated that the BBR algorithm performed excellently in environments with a high
bandwidth, long delay, and high packet loss rate.

Unlike traditional congestion control algorithms, the BBR algorithm uses the bandwidth-
delay product (BDP) [12] as an identification indicator rather than the packet loss or
long transmission delay to identify network congestion. When the total number of data
packets in the network exceeds the BDP value, the BBR algorithm considers the network
congested. Therefore, the BBR algorithm can be referred to as a congestion-based control
algorithm. It should be noted that it is impossible for network data flow to achieve both an
enormous link bandwidth and a very small network delay simultaneously. Accordingly,
the BBR algorithm detects network capacity regularly, measures maximum link bandwidth
and minimum network delay alternately, and then uses their product to determine the
congestion window size. The congestion window can be used to characterize network
capacity, providing a more accurate identification of congestion. Because of the BBR
algorithm’s unique mechanism for measuring congestion window size, it neither increases
the number of congestion windows indefinitely like ordinary congestion control algorithms
nor uses the buffer of the switch node, thus avoiding the emergence of buffer bloat (buffer
overflow) [13], which shortens the transmission delay significantly. Another advantage of
the BBR algorithm is that it measures network capacity actively, adjusting the congestion
window. In addition, the autonomous adjustment mechanism enables the BBR algorithm to
control the data flow sending rate independently. In contrast, ordinary congestion control
algorithms only calculate the congestion window, whereas the TCP protocol completely
determines the data flow sending rate. As a result, when the data flow sending rate is close
to the link’s bottleneck bandwidth, there is data packet queuing or data packet loss due to
the rapid increase in the sending rate.

Initially, the BBR drew great attention from researchers and was considered a paradigm-
shifting achievement in the field of congestion control. However, with research progress,
it has been discovered that the BBR protocol has several shortcomings, including a slow
convergence speed in the bandwidth detection stage, a low sensitivity, and a lack of consid-
eration for delay and jitter.

3. Transmission Acceleration Using BoostTCP

This paper proposes the BoostTCP, which represents a learning-based TCP trans-
mission acceleration method based on transmission history learning. By improving the
judgment and handling of congestion, the BoostTCP can judge and recover packet loss
more accurately and rapidly, thus accelerating TCP transmission and increasing TCP
connection stability.

3.1. Improved Congestion Judging and Handling Mechanism

Many congestion estimation and recovery strategies were developed for standard
TCP over the last two decades to meet network requirements under different conditions.
The fundamental premise was that a packet loss represented a result of congestion. How-
ever, this assumption does not hold for a transmission network with ultra-long-distance
special-line optical fiber. In such a network, packet loss is typically caused by the BER of
long-distance transmission, not by congestion-related factors. Therefore, standard TCP
can frequently enter an excessively conservative transmission state. Meanwhile, when
a network path contains deep-queue network devices, packet loss does not occur for a
long period after the congestion occurs. The standard TCP is insensitive to congestion,
resulting in excessive transmission, which not only affects network congestion but can
also cause significant packet losses. As a result, the TCP enters a lengthy recovery phase
for packet loss, resulting in transmission stagnation. All of these factors contribute to the
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poor performance of the standard TCP protocol for an ultra-long-distance optical fiber
transmission network with a special line.

Considering both packet loss and delay variation, the proposed BoostTCP algorithm
can dynamically learn the network path characteristics of each specific connection during
data transmission, including end-to-end delay and its variation characteristics, the arrival
interval of feedback packets (ACK) at the receiving end and its variation characteristics, the
degree of data packet reversal and its variation characteristics, delay and jitter caused by
the security equipment’s deep data inspection, and random packet loss caused by various
factors. These characteristics are monitored in real time and analyzed holistically to derive
precursor signals and available bandwidth that reflect congestion and packet loss along
the TCP connection network path. They also determine the degree of congestion and the
transmission rate, and show whether the congestion recovery mechanism is compatible
with the available bandwidth on the current path and can achieve accurate and timely
packet loss judgment and recovery.

Based on network characteristics, the congestion degree and available bandwidth can
be estimated accurately and in a timely manner. When congestion occurs, the transmission
is realized based on the mentioned result. The unnecessarily slow data transmission rates
caused by BER-induced packets can be avoided in an ultra-long-distance optical fiber
transmission network with a special line. Specifically, the advanced congestion judgment
and control algorithm of BoostTCP mainly uses the two following mechanisms: Prevent
excessive conservative transmission and Prevent congestion deterioration.

3.1.1. Prevent Excessive Conservative Transmission

Because the current TCP protocol stack has difficulty determining the cause of a packet
loss (caused by network congestion) and the actual bandwidth available on the connection
path following the packet loss, restoration has been typically performed to reduce the
transmission rate significantly. This mechanism results in an idle path bandwidth, which is
one of the primary reasons for TCP’s inefficient transmission performance.

The ultra-long-distance optical fiber transmission network with a special line often
has sufficient bandwidth but a relatively long delay. In such a case, both the initial sending
window and the current TCP protocol stack’s sending window increase at a relatively
conservative rate. BoostTCP begins sending data with a large initial sending window and
rapidly increases the sending window size to reach the upper limit of available bandwidth
in the shortest time.

In an ultra-long-distance optical fiber transmission network with a special line, the
BoostTCP congestion judge algorithm considers network characteristics, determining
whether packet loss results from network congestion or not. As packet loss occurs as a
result of random errors in an optical fiber network, and the transmission rate increases
and is maintained at a higher rate, the rate is adjusted instantly when real congestion
occurs. Namely, the bandwidth closest to the available bandwidth on the current path is
used to perform transmission, and a slightly lower transmission rate is used to clear the
queue on the path, which contributes to the recovery of nodes in a congested network.
Moreover, transmission behavior is maintained to be consistent with and related to the
network state. The judge algorithm eliminates idle bandwidth, resulting in a faster, more
consistent transmission rate.

3.1.2. Prevent Congestion Deterioration

Congestion may also occur in an ultra-long-distance special-line optical fiber trans-
mission network due to a large number of networks and relays. In addition, congestion
may worsen if not handled properly, causing two problems. First, the time required for
retransmission and hole filling will be extremely long due to the high packet loss rate, and
as a result, the TCP transmission window will become stuck for an extended period, and
transmission will become slower or even fail. Second, retransmission is required due to
increased packet loss; the retransmission rate increases while the effective data rate declines.
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Therefore, users will notice that although online traffic increases, the actual application rate
does not change.

BoostTCP determines the congestion degree in real time and slows it down to prevent
congestion from deterioration and reduce the number of lost packets, resulting in faster
and smoother transmissions with an effective data rate.

In summary, the BoostTCP congestion judgment algorithm is an automatic state
machine that considers various network characteristics along the transmission path. Its
function is to learn and improve congestion judgment skills intelligently in a connection-by-
connection manner. Since learning the network characteristics requires data accumulation,
and the BoostTCP algorithm allocates resources to each TCP connection, the optimal
application scenario for the BoostTCP algorithm is a long-connection scenario rather than a
high-concurrency scenario, which is satellite payload data in this article.

3.2. Fast Prediction-Based Packet Loss Judgment and Recovery Mechanism

The standard TCP protocol stack determines packet loss in two ways, based on the
number of Dup-ACKs received at the receiving end and based on the ACK timeout. When
a large number of packets are lost, the ACK timeout has been frequently used to determine
the timeout condition and initiate a retransmission. It should be noted that packet loss is
frequently sporadic in modern networks, and it is not uncommon for multiple data packets
to be lost concurrently on a connection. As a result, the standard TCP protocol frequently
relies on timeouts to retransmit data to fill gaps, resulting in a waiting state of several
seconds, which can even last up to ten seconds. As a result, the transmission may pause
for an extended period or even disconnect entirely, which can affect the standard TCP
efficiency significantly.

In addition to the two methods used by standard TCP, the BoostTCP’s packet loss
judgment mechanism uses a dynamic self-learning algorithm to predict packet loss based on
the network characteristics of the TCP connection path. The prediction algorithm considers
network characteristic factors similar to those considered by the self-learning algorithm for
BoostTCP congestion detection. The BoostTCP packet loss detection algorithm calculates a
probability of loss for each packet sent but not confirmed by the other party’s ACK. The
probability changes as the transmission process continues. When the probability reaches
a certain value, the algorithm considers the data packet lost and initiates retransmission
immediately. This mechanism significantly reduces the likelihood of the TCP transmission
relying on timeout and determining the packet loss, allowing it to fill holes faster, transmit
data more smoothly, and achieve a higher average transmission rate. This packet loss-
to-retransmission mechanism, which is faster than the standard TCP, is beneficial for
maintaining faster and smoother data transmission in ultra-long-distance special-line
optical fiber transmission networks.

Due to the untimely packet loss detection of standard TCP, its transmission efficiency
is frequently very low, and transmission quality is unstable, which is difficult to predict
and impacts user experience. BoostTCP acceleration can predict packet loss in real time
and recover the lost packets on time. The transmission is smoother and faster, significantly
improving the user experience.

3.3. Congestion Control Algorithm

The flowchart of the BoostTCP congestion control algorithm is presented in Figure 1.
It defines the smoothed throughput rate, which can reflect the actual throughput rate and
roundtrip time, and controls the growth mode of the congestion window (CWND) based
on different factors, such as the actual throughput rate and roundtrip time. The smoothed
throughput rate variation is used to determine the most suitable CWND growth mode,
which follows the principle of maximum throughput rate. As long as increasing the CWND
value improves the smoothed throughput rate, the CWND value will be continuously
increased. However, BoostTCP does not use the smoothed throughput rate to determine
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the necessary CWND reduction, and the CWND value to reduce is determined based on
packet loss.

Step 1 set initial smooth 
throughout rate and growth mode 
(GM) of CWND

Step 2 record Ts and Fs when 
sending data message

Step 3 Targeting at the ACK received, 
compute the instant and smooth 
throughout rates

Step 5 enter into Recovery, shrink 
CWND and set GM of CWND

Step 6 recover from Recovery and set 
GM of CWND

Step 4 Judge the variation state of 
smoothed throughout rate and control 
GM of CWND correspondingly

packet loss 
occurs

packet loss 
occurs

packet loss 
occurs

packet loss 
occurs

Figure 1. Flowchart of the BoostTCP congestion control algorithm.

CWND growth can be classified into three types: exponential growth, linear growth,
and termination. The exponential growth mode assumes that the current CWND value is
one. After the first, second, and third increases, the CWND value is two, four, and eight,
and further changes follow the exponential trend. Each time the CWND value increases
linearly, it is increased by a fixed value. It should be noted that the CWND value does not
increase during the termination stage and remains constant.

The specific steps of the BoostTCP congestion control algorithm are as follows:
Step 1. In the initial state, set the smoothed throughput rate to B = 0 and the growth

mode (GM) of CWND to exponential growth;
Step 2. Every time a new data package is sent, record the sending time TS of the

package and the total amount of data FS that has been sent and has not been acknowledged
(ACKed) yet;

Step 3. When the ACK response is received, if the ACK corresponds to one or more
data packages that have been sent and there are no retransmitted data packages, the data
package in the acknowledged messages with the highest sequence number (SEQ) is selected,
and the following parameters called instant throughput rate and smoothed throughput
rate are calculated:

The instant throughput rate is calculated according to BC = FS/(T − TS), where T
denotes the current time; TS denotes the sending time of the data package with the highest
SEQ; and FS denotes the total data amount that has been sent at the time TS but has not been
subject to ACK yet. As mentioned above, TS and FS are recorded when the data package
with the highest SEQ is sent.

The smoothed throughput rate is obtained by B = (1 − α)B’ +αBC, where α denotes
a constant parameter and B’ denotes the previous smoothed throughput rate set in the
initial state or obtained in the previous calculation iteration. BoostTCP uses a first-order
exponential smoothing formula to compute the smoothed throughput rate. This is because
network delay often fluctuates constantly due to various reasons, causing the real-time
throughput rate to fluctuate accordingly. After smoothing, some high-frequency noise can
be eliminated, and the network throughput can be estimated more accurately;

Step 4. Determine the variation state of the smoothed throughput rate B and control
the CWND growth mode GM accordingly. Particularly, the two following situations
are possible:

� If B is higher than the previous smoothed throughput rate set in the initial state
or obtained in the last calculation and exceeds the set value γ, then the GM is an
exponential GM;

� If B decreases three times in a row and the total amount of the three reductions is not
less than the preset value of Δ, then judge the SRTT value: if SRTT ≤ η · RTTMIN,
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then the GM is a linear GM; otherwise, the GM is a termination GM. SRTT denotes
the smooth roundtrip time, and RTTMIN denotes the minimum roundtrip time.

Step 5. If packet loss occurs at any time, set CWND = β · CWND and the GM to a
termination GM when entering the recovery mode.

Step 6. Set GM to the exponential GM when exiting the recovery state as being recov-
ered from the congestion state and perform operations similar to the above initial state.
After exiting from the recovery mode, the smoothed throughput rate B is not cleared but per-
forms operations similar to the initial state based on the original smoothed throughput rate.

The definitions and values of the above α, β, γ and other parameters are shown in
Appendix A.

3.4. Implementation Architecture

The BoostTCP consists of several modules, as shown in Figure 2. The modules are
explained in the following:

� Learning state machine: This is an information and control hub of BoostTCP, which
accumulates knowledge about network paths and makes real-time decisions about
the transmission of specific connections, such as the rate at which data are transmitted
and the timing of data retransmission;

� Traffic monitor: This module extracts and learns the external features of each TCP
flow and records and maintains the learning state machine;

� Packet loss monitor: This module monitors packet loss and determines the most
probable cause of data loss using a learning state machine, for instance, whether the
loss is caused by simple random packet drops or network congestion;

� Congestion controller: This controller executes the core congestion control logic based
on a learning state machine;

� Exception handler: This module leverages knowledge of the learning state machines
to identify flaws in peer TCP stacks or certain devices along the data transmission path,
such as security detection devices. This module is used to detect specific characteristics
of TCP to ensure maximum acceleration. Exception handlers also contribute to the
knowledge accumulation of learning state machines;

� Window controller: This controller calculates the size of the TCP broadcast window
and balances incoming packets from the LAN and WAN sides;

� Resource manager: This module tracks and controls system resources, including mem-
ory and computing power, and dynamically balances system resource consumption
across all active TCP flows. The knowledge of learning state machines is the input to
resource management.

TCP In

TCP Out TCP In

LAN WAN
Learning 

state 
machines

Traffic Analyzer

Packet loss monitor

Congestion controller

Exception handler

Window controller

Explorer

TCP Out

Figure 2. Schematic diagram of the BoostTCP modules.
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3.5. Deployment Location

As an acceleration engine, BoostTCP follows the network driver interface specification
and is located between the protocol stack and the hardware network interface card (NIC).
It is fully compatible with the standard TCP protocol and does not attempt to replace
the original TCP protocol stack in the operating system. When an application continues
to interact with the TCP stack of the operating system in which it resides, BoostTCP is
completely transparent to the application. When traffic is routed through the BoostTCP
module, BoostTCP accelerates it by changing the timing of data packet transmission and
retransmission without changing the data content or TCP encapsulation format. The
position of BoostTCP in a multi-layer network architecture is presented in Figure 3.

Figure 3. Illustration of the BoostTCP position in the multi-layer network transmission architecture.

4. Experimental Results

4.1. Experimental Environment

The study simulated the network environment with the TC and used the Reno, BBR,
BoostTCP, and standard TCP algorithm in the simulation tests. The performance indica-
tors of throughput, fairness, and preemption were compared for scenarios with varying
bandwidth, delay, and random packet loss rate. The experiment was conducted on five
Inspur NF5280M5 servers equipped with two Intel Xeon-GoXD 6136 (3.0 GHz/12-core)
processors and 64 GB memory. The simulation network structure is presented in Figure 4.
In the presented structure, Server 1 acted as a sender, employing the Cubic and Reno con-
gestion control algorithms; Server 2 acted as a sender, employing the BoostTCP algorithm;
Server 3 acted as a sender, employing the BBR algorithm; Server 4 acted as a receiver;
and, lastly, Server 5 acted as a simulated controller for the designed network environment.
The two network ports on Server 5 were connected to the switch and Server 4, forming a
network bridge. TC managed the delay and packet loss and simulated the environment of
a wide-area network.

Server 1
Cubic and Reno

Server 2
BoostTCP

Gigabit 
switch
HUAWEI 
-S5720S

Server 5
TC network environment 

simulation

Server 4
data receiving

Server 3
BBR

Network Port 1

Network 
bridge

Network Port 2

Figure 4. The experimental network structure.
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The experimental topology was an end-to-end configuration with 1 Gbps network
bandwidth. Multi data flows were sent from the sender to the receiver at the specified
network delay and packet loss rate, with a default data packet size of 500 MB.

Four well-known congestion control methods were used in the experiment: three
lightweight learning-based methods (Reno, BBR, and BoostTCP) and the conventional
Cubic algorithm as a contrast method. To simulate the characteristics of a long-distance,
long-delay, and low-packet-loss-rate data transmission in a real aerospace business network,
the network delay in the experiment was set to 5 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms,
80 ms, and 100 ms, and five different random packet loss rates were used: zero, 0.01%,
0.05%, 0.1%, and 0.5%.

4.2. Results Analysis

To analyze the performance of the proposed method, it was tested and compared with
the other algorithms regarding throughput, fairness, and preemptibility.

4.2.1. Average Throughput

The average throughput curves of the four congestion control algorithms at a band-
width of 1 Gbps and network delays of 20 ms, 30 ms, 50 ms, and 80 ms are presented in
Figures 5–8, respectively. The throughput was tested three times and averaged at each
packet loss rate. The average throughput rate of BoostTCP was always the highest among
all algorithms, and its predominant position became more apparent with packet loss,
achieving a 26–41% enhancement over the BBR. The average throughput rate of the Reno
algorithm was always the lowest among all algorithms. The average throughput rate of the
Cubic algorithm decreased the most rapidly with the packet loss rate among all algorithms.

 
Figure 5. The throughput curves of the four congestion control algorithms as a function of the packet
loss rate at a network delay of 20 ms.
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Figure 6. The throughput curves of the four congestion control algorithms as a function of the packet
loss rate at a network delay of 30 ms.

 
Figure 7. The throughput curves of the four congestion control algorithms as a function of the packet
loss rate at a network delay of 50 ms.

The average throughput results of the four congestion control algorithms at a packet
loss rate of 0.05% and a bandwidth of 1 Gbps is shown in Figure 9. The results presented in
Figure 9 were averaged for each time delay. The average throughput rate of the BoostTCP
algorithm was always the highest among all algorithms, and its advantage over the other
algorithms became even more obvious at a longer time delay. Compared to the BBR
algorithm, the average throughput of the BoostTCP algorithm was nearly identical in the
early stages and increased to 2.3 times that of the BBR algorithm at a network delay of
100 ms. Among all algorithms, the Reno algorithm had the lowest average throughput. The
average throughput rates of the Cubic and BBR algorithms decreased more rapidly than
that of the BoostTCP algorithm with a time delay.
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Figure 8. The throughput curves of the four congestion control algorithms as a function of the packet
loss rate at a network delay of 80 ms.

 
Figure 9. The throughput curves of the four congestion control algorithms versus the network delay
at a packet loss rate of 0.05%.

According to the experimental results, BoostTCP had the highest average throughput
under most conditions among all algorithms. This was because BoostTCP’s bandwidth
detection mechanism was based on learning transmission history and considered actual
throughput and roundtrip time factors, which could fully use the link’s excess bandwidth.
Compared to the BoostTCP algorithm, the BBR algorithm’s throughput was less, and the
rate dropped more rapidly with a longer time delay. The reasons for this were that the
convergence speed of the BBR algorithm was too slow, the sensitivity of the bandwidth
detection stage was insufficient, and issues, such as delay and jitter, were ignored. The
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Reno algorithm had the lowest average throughput for various random packet loss rates
among all algorithms. Further, the Cubic algorithm had a higher throughput than the Reno
algorithm, but the throughput rapidly decreased as the rate of random packet loss increased.
Since the Cubic congestion control was based on packet loss, this was necessary. Random
packet loss could significantly impact its judgment of network conditions, resulting in
performance degradation.

The main idea of the BBR algorithm is to detect the maximum bandwidth and min-
imum roundtrip time continuously and alternately and then estimate overall network
congestion using the two extreme values. Thus, the minimum roundtrip time accuracy is
critical in determining the BBR algorithm’s impact on network congestion. The ground
network environment’s primary characteristics are a high delay and sufficient bandwidth.
In this case, the minimum roundtrip time is no longer capable of responding to network
congestion accurately. Therefore, if the BBR algorithm continues to estimate the congestion
window using the detected minimum roundtrip time, the estimated CWND value of the
congestion window will be less than the link’s actual ideal capacity. Further, reduced
CWND limits the sender’s sending rate, causing the bandwidth value measured by the
BBR algorithm in detecting the link’s maximum bandwidth to be less than the link’s best
achievable bandwidth. For instance, a lower maximum bandwidth results in a lower
CWND value. As a result, the BBR algorithm can operate only at a reduced rate, thus
causing significant network resource waste.

BoostTCP dynamically learns the network path characteristics of each TCP connection
during transmissions, such as the end-to-end delay and its variation characteristics, the
arrival interval and variation characteristics of the receiver’s feedback data packet (ACK),
the degree of data packet reversal and its variation characteristics, delay and jitter caused
by deep data inspection by security equipment, and random packet loss caused by various
factors. While tracking these characteristics in real time, BoostTCP analyzes them holisti-
cally and derives precursor signals that reflect congestion and packet loss along the TCP
connection network path. Further, it determines the congestion degree based on the results
of the dynamic, intelligent learning processes; determines the transmission rate and the
congestion recovery mechanism that are compatible with the available bandwidth on the
current path; and then performs the packet loss judgment and recovery accurately and in a
timely manner. The BoostTCP algorithm can detect congestion in real time, automatically
slow down, avoid mechanism congestion caused by excessively aggressive transmission,
and accurately identify packet loss caused by random error codes. Thus, high-speed trans-
mission is maintained and transmission behavior is smoother, which indirectly increases
the effective data transmission rate.

4.2.2. The Fairness of Single Algorithm for Multiple Flows

To investigate the fairness of sharing link bandwidth when multiple flows coexist in
the same scheme, this study sent one data flow at 0 s, 10 s, and 20 s in the test to determine
whether three data flows can finally share the link bandwidth evenly, as well as the time
required to evenly share bandwidth and reach convergence. Using a 1 Gbps link bandwidth,
100 ms network delay, and zero random packet loss rate as an example, the tested fairness
of each scheme is summarized as follows.

The fairness results of the algorithms are presented in Figure 10, where it can be
seen that the BBR had a higher throughput rate than the other algorithms when only
one data flow was used. However, when two data flows of 10 s and 20 s are added, the
throughput rates of the two data flows significantly differed. After 30 s, the throughput
rates of the three data flows fluctuated, indicating that the BBR algorithm was unable to
achieve an effective link bandwidth share. The results of the Cubic congestion algorithm
for a network delay of 100 ms and a packet loss rate of zero are presented in Figure 11.
After adding data flows at 10 s and 20 s intervals, the Cubic algorithm could average the
throughput of three flows and ensure efficient link bandwidth sharing. The results of the
BoostTCP congestion algorithm at a network delay of 100 ms and a packet loss rate of
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zero are presented in Figure 12. As demonstrated in Figure 12, the BoostTCP algorithm
could maintain fairness between three data flows in a steady-state. However, the BoostTCP
algorithm had a larger bandwidth-sharing fluctuation range than the Cubic algorithm,
achieving an average value of 6.6 Mbps. BoostTCP could achieve a transmission rate of
320 Mbps after stabilization, which was faster than those of BBR and Cubic, indicating a
more efficient use of network resources.

 
Figure 10. The fairness curves of the BBR congestion control algorithm at a network delay of 100 ms
and a packet loss rate of zero.

.
Figure 11. The fairness test curves of the Cubic congestion control algorithm at a network delay of
100 ms and a packet loss rate of zero.

226



Sensors 2022, 22, 9187

Figure 12. The fairness test curves of the BoostTCP congestion control algorithm at a network delay
of 100 ms and a packet loss rate of zero.

4.2.3. Analysis Results of Preemption Ability

Different TCP connections have different bandwidth preemption levels in a real-world
transmission network because they use different congestion control protocols. The band-
width preemption level shows the ability to preempt bandwidth in terms of transmission
performance. The greater the preemption capability is, the more efficiently network re-
sources are used. The preemptive results of the BBR, Cubic, and BoostTCP algorithms are
presented in the following figures.

Figures 13 and 14 illustrate the preemptive test curves of the congestion algorithms for
the zero network delay and packet loss rate. The first test was conducted with the Cubic
algorithm, followed by the BBR algorithm 10 s later. At the moment, the Cubic and BBR
algorithms coexisted, and the Cubic algorithm severely preempted the BBR’s bandwidth,
resulting in no significant increase in the BBR algorithm’s throughput. BoostTCP was
restarted after 20 s, after which congestion occurred. The BoostTCP algorithm’s throughput
rate reached a stable value quickly, within 3 s, while the BBR algorithm’s throughput rate
gradually increased. After 35 s, the three algorithms’ throughput rates converged to a
steady-state. The BoostTCP algorithm had a higher throughput rate than the Cubic and
BBR algorithms. The second test started with the BBR algorithm, and was followed by
the Cubic algorithm 10 s later. Thus, the Cubic and BBR algorithms coexisted 10 s after
the test began. The Cubic algorithm severely restricted the BBR’s bandwidth, resulting
in a throughput rate of nearly zero. After 20 s, the BoostTCP algorithm was invoked and
congestion occurred. The BoostTCP algorithm’s throughput rate reached a stable value
quickly, within 3 s, while the BBR algorithm’s throughput rate gradually increased. After
35 s, the three algorithms’ throughput rates stabilized. The BoostTCP algorithm had a
higher throughput rate than the Cubic and BBR algorithms.
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Figure 13. The preemptive test curves of the three congestion control algorithms at the zero network
delay and packet loss rate.

 
Figure 14. The preemptive test curves of the three congestion control algorithms at a network delay
of zero and a packet loss rate of zero.

The preemptive test curves of the congestion algorithm for a network delay of 80
ms and a packet loss rate of zero are shown in Figure 15. The third test began with the
Cubic algorithm, and the BBR algorithm was run after a 10 s delay. After that moment,
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the Cubic and BBR algorithms coexisted, and their throughput rates were essentially
identical. After 20 s, the BoostTCP algorithm was started. Congestion occurred during this
period. The BoostTCP algorithm’s throughput rate rapidly stabilized after 3 s, whereas
the BBR and Cubic algorithms’ throughput rates decreased slightly. Finally, the three
algorithms’ throughput rates reached their steady states. The BoostTCP algorithm had a
higher smoothed throughput rate than the Cubic and BBR algorithms.

 
Figure 15. The preemptive test curves of the three congestion control algorithms at a network delay
of 80 ms and a packet loss rate of zero.

The results of the three tests indicated that the BoostTCP algorithm had a better ability
to preempt bandwidth than the BBR and Cubic algorithms under different delay conditions.
Additionally, the results demonstrated that the BoostTCP algorithm was beneficial to the
BBR and Cubic algorithms by assisting suppressed algorithms in resuming their normal
throughput rates, demonstrating the BoostTCP algorithm’s correctness.

4.3. Test in Actual Environment

To validate the BoostTCP algorithm’s performance in real-world network transmission,
a real-world network test was conducted analyzing the data transmission throughput rate
between ground stations and satellite user centers. The real-world network test results
of BoostTCP and standard TCP are presented in Figure 16, where the data transmission
performances of the two algorithms were compared for a network consisting of seven
ground stations and a satellite user center. The relationship between the increase in data
transmission throughput rate and the network’s maximum bandwidth is depicted in
Figure 17. The relationship between the speed-up ratio of data transmission throughput
rate and network delay is shown in Figure 18.
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Figure 16. The actual network test results of the BoostTCP and ordinary TCP.

 
Figure 17. The throughout enhancement versus the maximum network bandwidth.

 
Figure 18. The speed-up ratio of data transmission versus the network delay.
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As presented in Figure 16, the BoostTCP algorithm performed significantly better
than the standard TCP algorithm. Data transmission rates between the satellite user center
and seven ground stations were significantly increased. For instance, the speed-up ratio
was typically tenfold and could reach seventyfold. The result indicates that the BoostTCP
algorithm significantly increased data transmission throughput and effectively increased
network resource utilization.

The relationship between the increase in data transmission throughput and the max-
imum network bandwidth is presented in Figure 17. As shown in Figure 17, when the
network bandwidth increased from 300 MB to 2300 MB, the data transmission throughput
rate increased significantly. The relationship between the speed-up ratio of the data trans-
mission throughput rate and the network delay is displayed in Figure 18. When the network
delay increased from 1 ms to 70 ms, the data transmission throughput rate’s speed-up ratio
increased proportionately. As a result, the greater the network bandwidth and delay were,
the greater the performance advantage of the BoostTCP algorithm was. The measured data
have conclusively demonstrated that the BoostTCP algorithm is more suitable for networks
with high bandwidth and a long delay than the conventional TCP algorithm.

5. Conclusions

Due to the high precision requirements for satellite payload data transmission via a
ground network, the TCP protocol can be considered competitive. However, the limitations
of the standard TCP protocol on bandwidth utilization for networks with a long delay
and large bandwidth reduce data transmission efficiency. This article uses TC to design a
WAN simulation environment. Four congestion control algorithms—Reno, BBR, BoostTCP,
and Cubic—are tested and compared in terms of throughput, fairness, and preemptibility.
The results indicate that BoostTCP is more adaptable to network conditions and has a
significantly higher throughput than the other three algorithms. In addition, it is fairly
distributed across multiple data flows and has relatively strong preemption capability when
multiple protocols are used. Finally, the throughput of BoostTCP is verified and tested in a
real-world environment, and the results indicate that the real-world performance is identical
to that in a simulated environment. Therefore, the proposed TCP acceleration algorithm
can be used to improve the performance of ground networks when transmitting satellite
payload data. In recent years, as a new field of quantum technology, the implementation
of a quantum algorithm and quantum network has received increasing attention from
scholars. In the next step, we will discuss the application of quantum algorithms and
quantum networks in aerospace-ground service networks.
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Appendix A

Algorithm A1. Pseudo-Code of Congestion Control Algorithm.

While(1)
{
Recv ACK //Compute window’s smoothing rate

BC = Fs / (T − Ts);
B = (1 − α) ∗ B’ + α ∗ BC

If(B > B’) //window’s smoothing rate increases
{

If((B − B’) > γ)
CWND = CWND’ + εj

Else
CWND = CWND’ + ζ

j++
}

Else //window’s smoothing rate decreases
{

i++
if(i ≥ 3)

If((∑3
k = 1(B

′ − B)) < δ)
{
If(SRTT ≤ η ∗ RTTMIN)
CWND = CWND’ + ζ

Else
CWND = CWND’
}

Else
CWND = β ∗ CWND’

else
CWND = CWND’ + ζ

}
Recv NACK //packet loss occurs

CWND = β ∗ CWND’
}

The meaning of the parameters in the preceding pseudo-code are as follows:

α: The value range is from zero to one, where the value of one refers to the computed
throughput of the standard TCP; the closer the value is to zero, the longer the history
tracking will be, which is actually a fixed constant that has been tuned and optimized;
β: The value range is from 0.5 to one, where the value of 0.5 indicates standard TCP
congestion flow control. The closer the value is to one, the more aggressive it is. Three
critical values have been tuned for the acceleration engine: maximum mode (β = 0.9),
normal mode (β = 0.8), and conservative mode (β = 0.6). The conservative mode is nearly
identical to the congestion control provided by standard TCP;
γ: A constant calculated based on the bandwidth of the acceleration engine, and it has
basically the same meaning as the threshold parameter in the standard TCP. This thresh-
old prevents congestion. If the increase in throughput exceeds the threshold value, the
throughput increases rapidly. If the throughput continues to increase but remains be-
low the threshold, the bandwidth threshold is reached and the throughput continues to
increase linearly;
δ: A dynamically computed value based on the bandwidth setting in the acceleration
engine. This value is used to judge whether the congestion is avoided or the bandwidth
threshold is exceeded;
ε: A constant larger than two. The value for the standard TCP is two, and a larger value
indicates stronger aggressiveness. The ε value of the current BoostTCP has a value of three.
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ζ: An integer with a value range greater than one; one represents the constant value after
tuning and fixing in the linear increase of standard TCP.
η: A constant that indicates the network’s jitter tolerance and has a value range from one
to two. The larger the constant value is, the less perceptible the response to the network
jitter will be, which means that the occurrence of jitter cannot be easily detected. If η
equals one, the constant has been tuned out and fixed when the network jitter is judged to
be congested.
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Abstract: To implement Prognostics Health Management (PHM) for hydraulic pumps, it is very
important to study the faults of hydraulic pumps to ensure the stability and reliability of the whole
life cycle. The research on fault diagnosis has been very active, but there is a lack of systematic
analysis and summary of the developed methods. To make up for this gap, this paper systematically
summarizes the relevant methods from the two aspects of fault diagnosis and health management.
In addition, in order to further facilitate researchers and practitioners, statistical and comparative
analysis of the reviewed methods is carried out, and a future development direction is prospected.

Keywords: hydraulic pump; fault diagnosis; fault prediction; remaining service life prediction; health
status monitoring

1. Introduction

Hydraulic systems are applied to all crucial mechanical equipment and play an irre-
placeable role in the field of industrial production and manufacturing [1]. As the “heart” of
the hydraulic system, the hydraulic pump is responsible for converting mechanical energy
into hydraulic energy and providing pressure oil for the system [2]. With the develop-
ment of the hydraulic industry, the structure of hydraulic pumps becomes more and more
complex, and the probability of failure also increases; When it breaks down, it may cause
the equipment controlled by the system to shut down for a long time, thus reducing the
efficiency of the production process, bringing economic and safety problems, and even
causing casualties in serious cases [3]. Therefore, it is of great practical significance to make
reasonable and accurate fault diagnoses for hydraulic pumps; Under the premise of fault
diagnosis, fault prediction, remaining service life prediction and health state detection can
further master the safety of the hydraulic pump in operation, which is more conducive to
improving the flexibility of the system, so as to prevent the occurrence and development of
catastrophic faults in industrial systems, resulting in major losses.

The fault diagnosis method of hydraulic pumps mainly uses different sensors to collect
different kinds of state monitoring signals of the hydraulic pump to analyze and reflect
the change in the operating state of a hydraulic pump [4]. These state monitoring signals
mainly include vibration signals [5], temperature signals [6], flow signals [7], and pressure
signals [8], but other signals that can characterize the change of the operating state of the
hydraulic pump also belong to the state monitoring signals [9]. Hydraulic pump fault
diagnosis methods mainly include signal processing methods [10] and artificial intelligence
methods [11], as well as mechanism analysis-based diagnosis methods [12]. The structural
composition and operation mechanism of the hydraulic pump is complex, so it is difficult
to quantitatively diagnose the fault under the mechanism analysis method. In different
operating states of the hydraulic pump, the state monitoring signals present different
information, and it is feasible to diagnose faults according to the information presented by
the monitoring signals. With the development of artificial intelligence, fault diagnosis can
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be carried out by analyzing the signal data information when the operating mechanism
of the hydraulic pump is fuzzy. In the process of fault diagnosis, there are two crucial
problems: one is which state monitoring signals are selected as characteristic signals. The
second is how to build a fault diagnosis model. On the premise of fault diagnosis, the “fault
threshold” of various faults is extracted, and early fault prediction, remaining service life
prediction, and health state detection can be carried out for the hydraulic pump. In view
of the above problems, more and more research and investigations have been conducted
in recent years, but there is a lack of a timely summary of the developed methods. The
purpose of this paper is to provide the latest research progress and application.

This paper takes the hydraulic pump as the research object and analyzes the appli-
cation and development of hydraulic pump fault diagnoses in recent years. Collate the
articles on fault diagnosis and health management of various hydraulic pumps, and ana-
lyze and summarize the articles; Summarize the main causes of hydraulic pump failure;
The methods used for fault diagnosis of hydraulic pumps are classified, and the paper
evaluation index is proposed to evaluate the selected articles; The methods used for fault
prediction, remaining service life prediction and health state detection of hydraulic pumps
are described; Finally, the selected articles are statistically analyzed, and the research
prospect of hydraulic pump fault diagnosis is given. The research flow of this paper is
shown in Figure 1.

Figure 1. The research process of the paper.

This paper is structured as follows. Section 1 explains the importance and challenges
of hydraulic pump fault diagnosis for application. Section 2 introduces the research on
hydraulic pump faults in published papers and summarizes the fault types. Section 3
proposes the classification scheme of hydraulic pump diagnosis methods and summarizes
the application of these methods. Section 4 briefly mentions the research and application
of health management of hydraulic pumps. Section 5 makes a statistical analysis of the
published papers and outlines future research trends. Section 6 gives a summary of
this paper.

2. Fault Analysis of Hydraulic Pump

According to the different structures, hydraulic pumps can be divided into gear-type
hydraulic pumps, vane-type hydraulic pumps, plunger-type hydraulic pumps, and screw-
type hydraulic pumps. Although the components of various hydraulic pumps are different,
their oil supply principle is the same, and they all belong to positive displacement hydraulic
pumps. Its working principle is essentially the change of the sealing volume, that is, the oil
is sucked by the local vacuum formed by the gradual increase of the sealing volume on
the side of the oil inlet of the hydraulic pump, and the oil is squeezed into the hydraulic
system by the gradual decrease of the sealing volume on the side of the oil outlet.

After a certain period of normal operation of the hydraulic pump, its parts and
components will be gradually worn and damaged, or when the hydraulic pump operates
under abnormal conditions, various fault phenomena such as increased noise, increased
vibration, and decreased flow will occur. The failure of the hydraulic pump may be caused
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by excessive wear or damage to certain parts in the structure of the hydraulic pump, so the
failure of the whole hydraulic pump can be studied from the study of certain parts.

In the hydraulic pump, the rotation of the shaft drives the operation of the whole
medium, so the shaft of the hydraulic pump is one of the research contents. Xu et al. [13]
analyzed the cause of the driving shaft fracture by calculating the radial force of the driving
shaft of the hydraulic gear pump and used the finite element analysis software Ansys
to simulate and verify the correctness of the fault cause. Xiao et al. [14] used the life
acceleration experiment to analyze the deterioration and failure of the shaft of the hydraulic
gear pump, checked the static strength of the broken part, and analyzed the main reasons
for the failure of the shaft. Shawkis et al. [15] analyzed the annular crack on the drive shaft
of the high-pressure hydraulic screw pump and concluded that one of the reasons for the
shaft fracture was fatigue caused by misalignment during the rotation bending process.
Xu et al. [16] believed that the main reason for the fracture was the increase of rotation and
bending load caused by low viscosity medium through the analysis of macro morphology
and microstructure, chemical composition, fracture metallography, and pump operation.
Through the metallographic and fracture analysis of different parts of the hydraulic pump
shaft, Yordanov B. et al. [17] can see the mixed characteristics in the morphology of the
damaged surface, and conclude that the oxidation of the shaft surface and the intergranular
corrosion at the grain boundary are one of the reasons for the crack generation and fracture
propagation.

In the hydraulic pump, there are faults caused by other parts and hydraulic oil.
Li et al. [18] analyzed the mechanics and microstructure of the broken pump housing of the
hydraulic gear and found the main reason for the failure of the pump housing. Sekercioglu
T. et al. [19] used hardness, chemical analysis, and metallographic examination to analyze
the broken gear of the hydraulic gear pump, carried out geometric analysis of the gear of the
hydraulic gear pump, and obtained the reason for the fracture of the gear of the hydraulic
gear pump. Pflum et al. [20] used the pressure sensor to detect the detection signal in the
narrow band frequency domain to analyze the spalling of the mechanical bearing of the
hydraulic pump and the failure of the hydraulic gear pump. Hemati et al. [21] used signal
processing technologies such as mechanical spectrum, envelope spectrum, and acceleration
spectrum to conduct vibration analysis and signal processing of the hydraulic gear pump,
and studied the failure of the hydraulic gear pump caused by the looseness of the bearing
bush. Lee et al. [22] analyzed the characteristics of hydraulic oil, calculated the friction
heat value, and analyzed the phenomenon that caused the failure to study the cause of the
failure of the pilot check valve of the hydraulic pump caused by hydraulic oil pollution and
leakage. Wang et al. [23] conducted the vibration fatigue test of the flameproof housing of
the hydraulic pump regulator and analyzed the factors that caused the housing failure.

In addition to single-component failures, there are also some combined failures. By
analyzing the structure and working principle of the external gear hydraulic pump, Zhang
et al. [24] analyzed the failure of the external gear pump and proposed corresponding
failure solutions. Das et al. [25] analyzed the microscopic cause of rapid wear of hydraulic
pumps from the influence of the microstructure of hydraulic gear pump on the corrosion
wear behavior of materials. Jiang et al. [26] carried out detailed statistics on various
failures of screw pumps to analyze the failure modes of hydraulic screw pumps. Milović
et al. [27] took the damage of the high-pressure three-screw oil pump in the regulating
oil of the hydropower station as an example to analyze the failure of screw pump wear,
thread tear, and filter blockage. Shang et al. [28] analyzed the failure and main causes
of hydraulic pump damage and proposed corresponding effective solutions. Hidayath
et al. [29] comprehensively considered the hydraulic pump failure caused by hardware
and hydraulic oil. UłAnowicz et al. [30] established a simplified three-dimensional solid
model of the cylinder piston assembly and gave the piston cylinder block, the inclination
adjustment mechanism of the axial-flow hydraulic pump, and the fracture load model
of the selected components of the pump, and discussed the actual damage of the axial
piston pump.
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When studying hydraulic pump faults, there are methods based on mechanism anal-
ysis and modeling, software simulation, signal fusion, and artificial intelligence. Fabiś-
Domagała et al. [31] proposed the method of combining FMEA matrix analysis and Error
Diagram to analyze the fault of the hydraulic gear pump and find out the factors causing
the fault. Major et al. [32] proposed the fatigue failure finite element model of screw pump
for the most serious fatigue fracture failure of a reciprocating screw of screw pump and
carried out model simulation in Ansys. Ma et al. [33] established a simulation model of the
hydraulic system by using AMESim software and analyzed the failure modes and mecha-
nisms of key components in the system and their failure effects. Lee et al. [34] proposed to
use FMECA to carry out extensive fault analysis of hydraulic gear pumps and proposed to
use MFCC combined with a random forest classifier (RFC) to extract features and identify
faults of vibration signals.

For the hydraulic pump failures studied in the above literature, it is concluded that
the main reason for the failure of the hydraulic pump is the wear of the hydraulic pump.
The wear of the hydraulic pump is divided into the situations shown in Table 1.

Table 1. Wear classification.

Wear Type Form Factor

Friction wear

The surface of the parts after manufacturing is always
uneven when carefully observed with a magnifying glass.
After the operation wear of the hydraulic pump, the metal

particles fall off from the surface of the parts, and the
uneven parts on the surface of the parts are relatively
smoothed. If friction is continued later, deep marks or
small-size wear will be produced. This kind of wear is

normal natural friction wear.

Abrasive wear

According to the analysis of oil pollutants used in hydraulic
pumps, more than 20% of the pollution particles are silica

and metal oxides. These abrasive particles are the most
serious components of pump parts wear. They are

sandwiched between the surfaces of moving pair parts.
When moving, they act as grinding sand, resulting in severe

abrasive wear.

Pit wear

This is a kind of fatigue damage to hydraulic components.
Under the action of alternating load, due to periodic

compression and deformation, residual stress and metal
fatigue will occur, resulting in tiny cracks on the parts,

which will gradually cause small pieces of parts to peel off.

Corrosive wear
The surface of the hydraulic pump components is subjected
to corrosive substances such as acids and moisture in the oil,

and the metal surface is gradually damaged.

3. Failure Diagnosis Method

The idea of hydraulic pump fault diagnosis based on condition monitoring signals is
to collect the condition monitoring signals by sensors, then use signal processing methods
to pre-process the collected status monitoring parameters, and then combine the fault
diagnosis model to diagnose faults. In this investigation, based on the correct signal
acquisition process, the hydraulic pump fault diagnosis methods are divided into the
following three categories:

(1) Fault diagnosis based on a single signal;
(2) Fault diagnosis based on multi-signal;
(3) Other diagnostic methods.
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3.1. Fault Diagnosis Based on Single Signal

At present, among the fault diagnosis methods based on a single signal, the vibration
signal is the most widely used condition monitoring signal as the feature input of the
fault diagnosis model. This is because once the internal parts of the pump fail, it usually
causes changes in the characteristics of the load state structure and other characteristics, so
the vibration response of the pump structure will change. Through the measurement of
structural vibration signals, and relying on the principle of signal analysis, specific fault
information is extracted, and the fault diagnosis is realized by artificial intelligence or signal
analysis. Additionally, a few are based on other types of state monitoring signals such
as sound signals. In the methods of hydraulic pump fault diagnosis, there are two main
categories: the method of hydraulic pump fault diagnosis based on signal processing and
the method of hydraulic pump fault diagnosis based on artificial intelligence.

3.1.1. Fault Diagnosis Based on Vibration Signal

(1) Method based on signal processing

The vibration signal has been proven to be useful for fault diagnosis of hydraulic
pumps, but it contains noise, interference, and other information without fault characteris-
tics. Therefore, it is necessary to use effective signal processing methods to extract available
fault information from vibration signals. The following article has conducted some research
on noise removal of vibration signals.

Yu et al. [35] proposed an EWT-VCR fusion method based on EWT and VCR to deal
with the nonlinear, multi-frequency, and noise data of vibration signals. Jiang et al. [36]
used the method of combining EEMD and PCC to denoise the collected hydraulic pump vi-
bration signals, converted the denoised data into snowflake images by using the symmetric
polar coordinate method, and converted the obtained images into gray level co-occurrence
matrix, and used the fuzzy c-means algorithm for fault diagnosis. In view of the problem
that the vibration signal of the hydraulic pump will be polluted by stronger Gaussian and
non-Gaussian noise, Zheng et al. [37] proposed using PSE to extract fault information,
effectively highlighting fault features and suppressing noise pollution. Wang et al. [38]
studied the DCT denoising method and the CNC denoising method in view of the serious
noise problem in the vibration signal of the hydraulic pump. Finally, CNC denoising was
adopted, and then HHT was used to extract the fault information of the signal. In order to
reduce noise and other interference, Sun et al. [39] carried out local feature scale decompo-
sition for high-frequency harmonic correction of vibration signals and proposed discrete
cosine transform high-order spectrum analysis algorithm to extract singular entropy as the
degradation feature of hydraulic pumps. Liu et al. [40]. proposed a new rough set fault
diagnosis algorithm for hydraulic pumps guided by PCA, aiming at the characteristics of
fuzzy fault features and low signal-to-noise ratio of hydraulic pumps, using WA for noise
reduction processing, extracting effective fault features, using PCA method for dimension-
ality reduction and decoupling correlation analysis of these features, using rough set theory
to establish a knowledge base of diagnosis rules. Hou et al. [41] proposed a WPD-based
denoising method for hydraulic pump fault feature extraction to solve the problem that
the feature signal is weak and covered by noise. Wang et al. [42] introduced the idea of
WNC denoising in view of the problems of the DCT denoising method, proposed a CNC
denoising method, and extracted fault features from the output signal by HHT, effectively
solving the problem of missing vibration signal components.

Under the actual conditions, the fault information of hydraulic pumps is still relatively
poor, so it is necessary to solve the problem of fault diagnosis under the condition of
poor information. Jia et al. [43] proposed a fault diagnosis method based on SPIP and
HMM in order to realize fault diagnosis in the case of poor information. This method
converts vibration signals into symbol sequences as feature sequences of hidden Markov
models, uses genetic algorithms to optimize the symbol space division scheme, and then
uses hidden Markov models for fault diagnosis. In view of the shortage of single-scale
arrangement entropy when measuring the complexity of vibration signals on a single scale,
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Wang et al. [44] proposed an MPE entropy value and MMPE. The analysis results of the
measured vibration signals of hydraulic pumps verified the effectiveness and superiority of
this index as a fault feature of hydraulic pumps. Aiming at the problem of poor detection
of fault signals of the hydraulic pump in the early stage, Yu et al. [45] proposed a method
of using EWT to decompose the vibration signals of three channels, then defining VCR
to divide the weights of components to form a single signal, and using HT to demodu-
late the characteristic frequency to achieve fault detection of the hydraulic pump. Deng
et al. [46] proposed a fault diagnosis method based on EMMD and Teager energy operator
demodulation to solve the problem of weak early fault vibration signals of the hydraulic
piston pump.

In the process of feature extraction of vibration signal, the original primary method
has some limitations, so it needs to be improved. Zheng et al. [47] proposed an IEWT-based
signal processing method for hydraulic pump fault diagnosis in view of the serious over-
decomposition problem of EWT. Jiang et al. [48] proposed a method of hydraulic pump
fault signal demodulation based on LMD and IAMMA. Li et al. [49] proposed a hydraulic
pump fault feature extraction method based on MCS and RE. According to the maximum
relational entropy criterion and the progressive fusion strategy, a relative entropy algorithm
was established to fuse the initial features into new degraded features.

Some comparison methods and processing of vibration signals from different angles
can still play a role in fault diagnosis of hydraulic pumps. Gao et al. [50] compared and
analyzed the two fault diagnosis methods of WT and spectrum analysis, and concluded
that when analyzing the same vibration signal dataset, the diagnosis ability of the method
based on WT was more accurate. Sun et al. [51] proposed a fault diagnosis method for
hydraulic pumps based on a fusion algorithm that processes vibration signals successively
through LCD and DCS to improve the characteristic performance of signals. Siyuan
et al. [52] proposed a hydraulic pump fault diagnosis method based on PCA of Q statistics,
which uses normal vibration signals to establish a principal component model and then
compares it with the test samples obtained by Q statistics to diagnose faults. Wang et al. [53]
proposed a fault diagnosis method based on WP and MTS. This method performs WPT
on the collected vibration signals, removes redundant features by the Taguchi method,
extracts principal components, and then uses an MD-based calculation method to diagnose
hydraulic pump faults. Chen et al. [54] proposed a hydraulic pump fault diagnosis method
based on compression sensing theory, which uses the original vibration signal of the
hydraulic pump to construct a compression dictionary matrix, uses the Gaussian random
matrix to compress the vibration monitoring data of the hydraulic pump and uses a SOMP
algorithm to reconstruct the test data. Tang et al. [55] proposed a fault diagnosis method
for hydraulic pump fault under variable load in order to solve the problem of dynamic
characteristic analysis of hydraulic pumps, which collects vibration signals and uses the
axial RMS trend gradient for fault diagnosis.

The fault diagnosis methods of hydraulic pumps based on signal processing have
their own limitations, such as time domain analysis, which is easy to cause misjudgment
when the fault is serious, has large randomness, and is not suitable for non-stationary
signals; Frequency domain analysis cannot reflect time characteristics and is not sensitive to
early faults; The multi-sensor information fusion method has some limitations, such as the
difficulty of sensor configuration and management, and the complexity of fault information
fusion algorithm design.

(2) Methods based on artificial intelligence

Although the signal processing method of vibration signal can effectively extract and
express the fault information of hydraulic pumps, the speed and accuracy of its method to
diagnose the fault of hydraulic pumps are not ideal. However, with the rapid development
of artificial intelligence, more and more intelligent algorithms and models can quickly
diagnose faults, and the self-learning ability of artificial intelligence makes the accuracy of
diagnosis algorithms and models a high level. Therefore, the artificial intelligence method
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combining the signal processing method based on vibration signal feature extraction with
the artificial intelligence diagnosis algorithm and model is more effective.

1© Artificial intelligence method based on neural network

With the generalization ability of a neural network, more and more neural network
models are applied to fault diagnosis of hydraulic pumps. The fully connected neural
network has the ability of self-learning and searching for optimal solutions at high speed.
It has the advantages of high accuracy and rapidity in the fault diagnosis of hydraulic
pumps. Gao et al. [56] proposed a fault diagnosis method based on EMD and NN. Sun
et al. [57] proposed a hydraulic pump fault diagnosis method based on ITD and softmax
regression, which uses ITD to process the vibration signal of the hydraulic pump and
trains the softmax regression model to diagnose possible fault modes. Ding et al. [58] used
LMD to process the collected vibration signal data of the hydraulic pump to form a feature
vector, trained the Softmax regression model with the reduced features, and obtained the
fault diagnosis model of the hydraulic pump. Jikun et al. [59] proposed a fault diagnosis
method for hydraulic pumps based on WPT and SOM-NN. This method uses WPT to
extract features from vibration signals, and SOM-NN trains through normal samples and
fault samples to diagnose faults when they occur.

Although a fully connected neural network has high accuracy, it needs a lot of train-
able variables, which is prone to model overfitting, and model convergence speed needs
to be improved. The convolutional neural network can further extract the features of
the input through the convolution kernel, and the trainable parameters of the model are
greatly reduced by sharing the convolution kernel. Tang et al. [60] proposed an intelligent
fault diagnosis method for hydraulic pumps based on CNN and CWT, which uses CWT
to convert the original vibration signal into image features, and establishes a new deep
convolutional neural network framework that combines feature extraction and classifi-
cation, and can further improve the convergence speed of the model by optimizing the
CNN’s hyperparameters. Zhu et al. [61] proposed an improved AlexNet intelligent fault
diagnosis method based on WPA combined with changing the network structure, reducing
the number of parameters and computational complexity. Tang et al. [62] proposed a nor-
malized convolutional neural network (NCNN) framework based on a batch normalization
strategy for feature extraction, and then used a Bayesian algorithm to automatically adjust
the model hyperparameters. BP neural network was used for fault diagnosis based on
synchronous noise wavelet transform of vibration signals. Yan et al. [63] proposed a simple
7-layer CNN network setting method based on a base-period to realize fault diagnosis
of hydraulic pumps. Zhu et al. [64] improved the core size and number based on the
standard LENet-5 model, added a batch normalization layer to the network architecture,
and built a PSO-Improve-CNN fault diagnosis model based on vibration signals by auto-
matically optimizing the model’s hyperparameters through PSO. Tang et al. [65] established
an adaptive CNN hydraulic pump fault diagnosis model using Bayesian Optimization
hyperparameters based on the Gaussian process by taking the time-frequency image of the
vibration signal after CWT as input data. Tang et al. [66] converted the vibration signal
into an image through CWT, preliminarily extracted effective features from the converted
time-frequency image, built a CNN model to achieve fault diagnosis, and realized the
visualization of simplified features by using T-DSNE.

In addition, there is also a new neural network model based on the improved functions
in the neural network. Luc et al. [67] proposed a CPRBF-NN composed of multiple
parallel-connected RBF subnets in combination with chaos theory and applied the proposed
method in combination with vibration signals to fault diagnosis of hydraulic pumps. Huijie
et al. [68] proposed to integrate the RELU activation function and Dropout strategy into SAE
to directly train and identify vibration signals, forming a SAE-based fault diagnosis method
for hydraulic pumps. Du et al. [69] proposed a method to extract 17 time-domain features
of vibration signals, analyzed the sensitivity of features to the failure to select sensitive
feature parameters, built a neural network diagnosis model, and formed a hydraulic pump
fault diagnosis method based on sensitivity analysis and PNN. Dongmei et al. [70] took
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the vibration data as the input and the failure mode matrix as the target output to obtain a
PARD-BP-based fault diagnosis method.

2© Artificial intelligence method based on a support vector machine

Support vector machine (SVM), which originates from statistical learning theory, can
be used for supervised learning, unsupervised learning, and semi-supervised learning, and
it has an outstanding ability for both linear and nonlinear signals. Casoli et al. [71] collected
vibration signals and used them to extract features for fault diagnosis, reduced the obtained
features to reduce the amount of calculation, and used them to train different types of
support vector mechanisms to build hydraulic pump fault diagnosis models. Tian et al. [72]
proposed a fault diagnosis method based on WPT, SVD, and SVM. Lu et al. [73] proposed a
new method for hydraulic pump fault diagnosis that combines EEMD and SVR models.
This method uses a combination of GA and grid search to optimize the parameters of SVM.
Fei et al. [74] proposed a fault extraction method combining WPA, FE, and LLTSA, and
then proposed a hydraulic pump fault diagnosis method combining SVM. Niu et al. [75]
proposed a hybrid fault diagnosis method for hydraulic pumps that combines the RNS
algorithm and SVM. Zhao et al. [76] proposed that CEEMD is used to decompose the signal,
then STFT and TFE are used to extract the fault features, and multi-class SVM is used
to diagnose the fault of the hydraulic pump. Hu et al. [77] proposed the SS-SVM fault
diagnosis algorithm, which constitutes a multi-fault classifier for hydraulic pump fault
diagnosis. This method requires only a few fault data samples for training the classifier
and has strong fault diagnosis ability in the case of small samples. Tian et al. [78] proposed
a degradation feature extraction method for hydraulic pumps based on ILCD and MF, and
input the degradation feature into BT-SVM for fault diagnosis of hydraulic pumps.

3© Artificial intelligence method based on a limit learning machine

In essence, the limit learning machine maps the input feature data to the random space
and then uses the least square linear regression. Its advantages are that the hidden layer
does not need iteration, the learning speed is fast, and the generalization performance
is good. Li et al. [79] proposed a comprehensive fault diagnosis method for hydraulic
pumps based on MEEMD, AR spectral energy, and WKELM method. Ding et al. [80]
proposed a fault diagnosis method combining EWT, PCA signal processing method, and
ELM. Liu et al. [81] proposed a time series dynamic feature extraction method based on
CEEMDAN and CMBSE, based on a hydraulic pump fault diagnosis method combining t-
SNE and WOA-KELM was proposed. Lan et al. [82] proposed an intelligent fault diagnosis
method for hydraulic pumps based on WPT, LTSA, EMD, LMD multiple signal processing
technology, and ELM identification technology.

4© Artificial intelligence method based on fuzzy theory

The structure of the hydraulic pump is complex, and the causes of the failure of the
hydraulic pump cannot be completely divided, which has certain fuzziness. Therefore, the
fuzzy set and membership function of the hydraulic pump can be constructed, and the
fault of the hydraulic pump can be diagnosed using the method of fuzzy theory. Wang
et al. [83] proposed a method to capture the degraded characteristic signal of SIE and then
used the vibration signal combined with the FCM algorithm to build a hydraulic pump
fault diagnosis method. Wang et al. [84] proposed a rough set method for mechanical
fault diagnosis, which extracts the spectral features of vibration signals as the attributes
of learning samples, and uses a set of decision rules obtained from the upper and lower
approximation of decision classes as a rough classifier. Wang et al. [85] extracted diagnostic
features from the spectrum of vibration signals, processed the spectrum representing a
variety of different fault states using fuzzy membership function, and made fuzzy com-
prehensive discrimination according to anti-fuzzy diagnostic rules, thus realizing correct
diagnosis of different fault spectra. Mollazade et al. [86] studied a new method of hydraulic
pump fault diagnosis based on vibration signal PSD combined with DT and FIS.
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The method based on a neural network is to extract fault features by signal processing,
then use a neural network as the fault diagnosis model, that is, the fault mode analysis
after fault signal processing, so as to realize the nonlinear mapping from fault symptoms to
fault causes. The diagnosis reasoning process of this method is not clear and the diagnosis
explanation is not intuitive. The fuzzy reasoning method is suitable for dealing with
uncertain and incomplete information in pump fault diagnosis. Its disadvantage is that it
is difficult to establish complete rules and membership functions, and its learning ability
is poor.

3.1.2. Fault Diagnosis Based on Other Signals

In addition to the frequent vibration signals, some other condition monitoring signals
also contain fault information about the hydraulic pump, and the new monitoring signals
are accompanied by new analysis methods, which makes the fault diagnosis methods
of the hydraulic pump more diversified. Shengqiang et al. [87] proposed a KPCA fault
diagnosis method based on the sound signal, described the feature extraction of the acoustic
signal, and used the KPCA method to diagnose the hydraulic pump fault in view of the
unsuitable use of the hydraulic pump vibration sensor and the limitations of the fault
diagnosis method based on vibration signal processing. Jiang et al. [88] proposed a fault
diagnosis method for an axial piston hydraulic pump based on the combination of the
MFCC feature extraction method and ELM. The MFCC voiceprint feature of the processed
sound signal is extracted from the acoustic signal, and the ELM model is established for
fault diagnosis. Based on the standard LeNet, Zhu et al. [89] used PSO to automatically
select the hyperparameters of the diagnosis model and built a PSO-CNN hydraulic pump
fault diagnosis model with acoustic signals as input.

Tang et al. [90] used CWT to obtain the time-frequency characteristics of the pressure
signal, set the initial hyperparameters to establish a deep CNN, and then used the Bayesian
optimization method to realize automatic learning of the main important hyperparameters
to build an adaptive CNN-based hydraulic pump fault diagnosis method. Wang et al. [91]
used FEMD to decompose the pressure signal and then extracted useful fault informa-
tion from the signal through RE. This method also has a good ability to suppress noise.
Liu et al. [92] proposed to use the instantaneous angular speed (IAS) signal obtained by the
equal angle method to diagnose the hydraulic pump fault under non-stationary conditions.

The four major wear faults of hydraulic pumps summarized in the literature research
are classified as Fault I: friction wear faults; Fault II: abrasive wear fault; Fault III: pit wear
fault; Fault IV: corrosive wear fault. In addition, it further evaluates the paper from the
following points:

Index I: enhance fault characteristics;
Index II: optimization of fault diagnosis algorithm;
Index III: adapt to strong noise environment;
Index IV: high diagnostic accuracy.

The above four types of faults and four types of evaluation indicators are applicable to
this chapter. The application of fault diagnosis based on a single signal is shown in Table 2.

3.2. Fault Diagnosis Based on Multiple Signals

The fault information contained in the current single signal processing is limited. In
order to increase the collection of fault information, the characteristic signals of multiple
signals can contain more and higher dimensional fault information, which is conducive
to improving the accuracy of fault diagnosis of hydraulic pumps and introducing more
innovative ways for fault diagnosis of hydraulic pumps.
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(1) Method based on signal processing

The essence of the multi-signal hydraulic pump fault diagnosis method is to process
each input signal separately, and then use a certain fusion method to fuse the feature
information contained in the multi signals, so that the extracted fault information is enough
to diagnose the fault state. Liu et al. [93] proposed a fault diagnosis method for hydraulic
gear pumps based on EEMD and the Bayesian network. This scheme is a method based on
multi-source information fusion. Compared with the traditional fault diagnosis method
using only EEMD, this method can comprehensively utilize all useful information other
than sensor signals. Lu et al. [94] proposed a multi-source information fusion fault diagnosis
method based on D-S evidence theory, which uses a fuzzy membership function to construct
the basic probability assignment of three evidence bodies. Based on the acceleration,
power consumption, flow, and pressure signals under different states, Buiges et al. [95]
used the collected signals to compare with the normal state signals for fault diagnosis.
Przystupa et al. [96] considered displaying the changes of pressure and flow on FFT and
STFT spectrum to realize the application of short-time Fourier transform to fault diagnosis
of hydraulic pumps under different operating conditions. Ma Z. et al. [97] established
a variable rate inverse gaussian process model to describe the deterioration behavior
of the pump, and proposed a Bayesian statistical fault diagnosis method for pressure
and flow degradation data analysis. Ruixiang et al. [98] used pressure spectrum signal,
temperature signal, and motion signal as diagnostic features, and then used information
fusion technology to diagnose hydraulic pump faults. Du et al. [99] proposed a hierarchical
clustering fault diagnosis scheme that distinguishes obvious faults through single signal
processing of vibration and flow and uses data fusion technology to find fuzzy information.
Zengshou et al. [100] proposed an information fusion diagnosis method based on improved
D-S evidence theory and space-time domain. Du et al. [101] proposed a clustering diagnosis
algorithm based on statistical ARPD in the diagnosis method based on vibration, flow, and
pressure signals. Fu et al. [102] studied the relationship between the Bayesian network
algorithm and the fault components of the hydraulic pump and then used the Bayesian
network algorithm to diagnose the fault when the simulation data of vibration, pressure,
temperature, and flow are incomplete.

(2) Methods based on artificial intelligence

Similar to intelligent methods in Section 3.1, the multi-signal hydraulic pump fault
diagnosis method is divided into neural network-based method, classifier-based method,
and migration learning-based method.

1© Artificial intelligence method based on neural network

In the structure of neural networks, the number of neurons in the input layer often
exceeds one, so the multi-signal input is compatible with the multi-input characteristics of
the input layer of the neural network structure.

The convolutional neural network has exceeded the discrimination ability of human
eyes in the accuracy of image recognition, so the digital signal of the hydraulic pump can be
converted into an image signal for the convolutional neural network to diagnose the fault
of the hydraulic pump. Tang et al. [103] proposed an intelligent fault diagnosis method
based on the adaptive learning rate of a neural network to diagnose different fault types by
using CWT to convert the three original signals of vibration signal, pressure signal, and
sound signal into two-dimensional time-frequency images, and using adaptive learning
rate strategy to establish an improved deep CNN model. Taking the vibration signals and
pressure signals of hydraulic pumps as the analysis objects. Jiang et al. [104] proposed a
fault diagnosis algorithm for hydraulic pumps based on EWT and one-dimensional CNN
and deployed the one-dimensional CNN model to the cloud platform to achieve real-
time fault diagnosis based on the cloud platform. When based on one-dimensional input
signals, there is also a high-precision neural network structure to improve the accuracy
of hydraulic pump fault diagnosis. An RBF neural network adopts a linear optimization
strategy and has fast learning speed and can approach any nonlinear function with arbitrary
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accuracy. Zuo et al. [105] built a hydraulic pump fault diagnosis method based on RBF
neural network, which takes the pump shell vibration signal and pumps outlet pressure
pulse signal as input characteristics.

There is also PNN with RBF neural network function, which is a neural network
based on Bayesian decision rules. Zuo et al. [106] built a hydraulic pump fault diagnosis
method based on PNN, which takes the pump casing vibration signal and pump outlet
pressure pulse signal as input characteristics. Dong et al. [107] used WPT to extract the
main fault information contained in the power signal in the historical data, combined
with the parameters such as force, oil pressure, casing pressure, and dynamic liquid
level to build the fault feature vector, established the PNN model, obtained the mapping
relationship between the fault feature vector and the fault form through training the model,
and diagnosed the fault form to be entered according to the fault feature vector to be
entered. Jiao et al. [108] collected vibration signals and pressure signals to establish a fault
diagnosis model based on EMD and PNN. Li et al. [109] proposed a hydraulic pump fault
diagnosis method based on the combination of kernel principal components and PNN.
This method uses KPCA to reduce the dimension of multi-source data and then diagnoses
the fault mode through the PNN network.

2© Classifier based approach

The function of a classifier is to classify chaotic targets into different categories ac-
cording to different input signals. In the fault diagnosis of hydraulic pumps, the input
signal mapped faults can be classified by the classifier to diagnose the faults. Lakshmanan
et al. [110] proposed a hydraulic pump fault diagnosis method that takes the pressure
signal, flow signal, and torque signal of the pump as original real-time data for feature
extraction, and inputs them into SVM after CWT. Jiang et al. [111] used the decision tree to
build a random forest model, trained six continuous variables of the hydraulic screw pump
system as input characteristics, and built a hydraulic pump fault diagnosis method based
on the random forest model. Hu et al. [112] built a multi-fault diagnosis system based on
data fusion according to the D-S evidence theory and used DMM to build a fault diagnosis
feature with a basic probability assignment function, ensuring the objectivity of reliability
distribution evaluation.

3© Methods based on Transfer Learning

In order to generalize the ability of the model, the trained model parameters can be
migrated to the new model to help train, which can make the initialization performance of
the model higher, the promotion rate faster, and the convergence better. Miao et al. [113]
used CEEMD and SVD to decompose pressure signal, vibration signal, and flow signal to
construct feature vectors and built a hydraulic pump fault diagnosis method through a
TrAdaBoost migration learning algorithm. He et al. [114] proposed a migration learning
algorithm based on deep MFAM and designed a multi-signal fusion module that assigns
weights to vibration signals and acoustic signals, improving the dynamic adjustment ability
of the method.

The application of multi-signal-based fault diagnosis is shown in Table 3.

3.3. Other Fault Diagnosis Methods

Whether it is based on signal processing or artificial intelligence, it is based on the data-
driven fault diagnosis method of hydraulic pumps. This method realizes fault diagnosis
of a hydraulic pump by using the mapping relationship between digital signal and fault
and does not describe the mechanism function of fault in detail. Some studies have
proposed new knowledge or concepts based on the relationship between non digital signal
information and hydraulic pump fault mapping [115–119].
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On the basis of an accelerated life test, Guo et al. [120] proposed a dynamic grid
technology to simulate the internal flow field of hydraulic pumps in detail. On the basis of
film thickness analysis, Ma et al. [121] put forward a hydraulic pump diagnosis method
based on elastohydrodynamic lubrication model analysis by comprehensively considering
structural parameters, working condition parameters, and material performance param-
eters. In view of the multi-crack fault of the hydraulic gear pump gear, Zhao et al. [122]
established the vibration wavelet finite element calculation formula of complete gear and
cracked gear, studied the fault diagnosis of blind source separation and particle swarm
optimization algorithm, and correctly diagnosed the location of multiple cracks of the gear.

3.4. Centrifugal Pump Fault Diagnosis Method

The above content is mainly a detailed analysis of the fault diagnosis method of
the hydraulic pump, and as a centrifugal pump that also transports liquid, it is also of
comparative significance to analyze it. In centrifugal pumps, it is necessary not only to
identify the fault but also to discover the severity of the failure and classify it.

Muralidharan et al. [123] used the DWT to calculate the wavelet characteristics of
the vibration signal, used rough sets to generate rules, and used fuzzy logic to classify.
Sakthivel et al. [124] used the C4.5 decision tree algorithm to extract statistical features
from vibration signals in good and fault states for fault diagnosis. Muralidharan et al. [125]
studied the vibration-based fault diagnosis method of a monoblock centrifugal pump
and found the best wavelet suitable for single-block centrifugal pump fault diagnosis by
calculating and comparing. Nagendra et al. [126] used two different machine learning
techniques, SVM and ANN, for centrifugal pump fault diagnosis. It was found that the
machine learning method based on ANN combined with chi-square and XGBoost feature
ranking techniques is superior to the SVM. Wang et al. [127] proposed a centrifugal pump
fault diagnosis method based on CEEMD-sample entropy (SampEn) combined with RF.
Based on the characteristic evaluation of the information ratio combined with principal
component analysis, Ahmad et al. [128] proposed a new Ir-PCA method. The comparison
results found the method was superior to existing advanced methods in terms of fault
classification accuracy. ALTobi et al. [129] used MLP and SVM to classify the six fault
states and normal states of the centrifugal pump. Therefore, an MLP hybrid training
method based on the combination of Back Propagation (BP) and Genetic Algorithm (GA)
was proposed.

3.5. Fault Diagnosis Block Diagram

Based on the fault diagnosis methods proposed in the above literature, I have summa-
rized the following fault diagnosis block diagram, as shown in Figure 2. Since there are
many types of diagnosis methods and many expand on the basic methods, I just list the
basic methods for reference.

Figure 2. Fault diagnosis block diagram.
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4. Fault Prediction and Health Management

On the basis of fault diagnosis, appropriate prediction and analysis methods can be
used to achieve fault prediction. Furthermore, for the health management of the whole
life cycle of the hydraulic pump, the remaining service life of the hydraulic pump can be
predicted and the whole process of health status monitoring of the hydraulic pump can
be studied.

4.1. Fault Prediction

To maintain the stable operation of the hydraulic pump in its whole life cycle, the
failure prediction of the hydraulic pump can predict the failure that will occur in the early
stage of the failure, so as to timely repair the failure in the early stage of low cost and reduce
the expansion of loss. The methods of hydraulic pump fault prediction can be roughly
divided into two parts, intelligent prediction, and non-intelligent prediction.

The non-intelligent prediction method refers to that the prediction method has no
self-learning ability. In short, the non-intelligent prediction method does not use me-
chanical learning or neural network, which makes the usability of this method relatively
weak. Gomes et al. [130] used the empirical model of degradation evolution combined
with Kalman filter technology to predict the failure of hydraulic pumps, and successfully
predicted two-time series from actual operation to failure data. Amin et al. [131] developed
an online health monitoring system for hydraulic pumps by using feature extraction, a
fuzzy reasoning system, and knowledge fusion technology. Bykov et al. [132] described
the analysis of the state data set of the hydraulic system and tried to diagnose the failure
in the valve switching mode, so as to further study the possibility of predicting the fail-
ure. Ma et al. [133] analyzed the key failure modes of aircraft hydraulic pumps based on
operation and maintenance statistics and proposed a failure prediction method based on
multi-source information fusion. Lisowski et al. [134] constructed a function-component
matrix (EC) and a component-failure matrix (CF) by using the quality method and then
multiplied the two matrices to obtain a function-failure EF matrix containing potential
failure information, thus realizing the failure prediction of hydraulic pumps.

Intelligent prediction methods mainly include prediction methods with self-learning
ability using neural networks or machine learning. To improve the accuracy of fault
prediction, Li et al. [135] proposed a hydraulic pump fault prediction method based on
BE and DBN, which is based on the DBN model of constraint limit RBM as a prediction
model and introduces QPSO to search the optimal value of the initial parameters of the
network. Xu et al. [136] analyzed the cause and mechanism of hydraulic pump degrada-
tion due to wear, established a degradation model through joint simulation of Simulink
and AMESim, and predicted the failure of the hydraulic pump using a multi-step SVM
algorithm. Ding et al. [137] proposed a fault prediction method based on logistic regression
that obtains a hydraulic pump fault prediction model by LMD processing of the pump
vibration signal, feature reduction using PCA, and training the LR model with the reduced
features. Tian [138] used the method of combining EEMD and SEOS to envelope demod-
ulate the vibration signal of the hydraulic pump, and then used WPA to extract the fault
features, to establish a hydraulic pump fault prediction model combining WPA and SVM.
Sun et al. [139] proposed a multi-channel vibration signal fusion method based on DCS.
This method takes the synthetic spectral entropy as the feature and uses the extracted
feature to establish an ESN model for prediction, which can be used for fault prediction of
hydraulic pumps.

4.2. Prediction of Remaining Useful Life

During the normal use of the hydraulic pump, the remaining useful life of the current
hydraulic pump can be predicted in time, and the working condition of the hydraulic pump
can be adjusted in time through the working time, which is conducive to extending the
normal useful life of the hydraulic pump. The remaining useful life prediction methods of
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hydraulic pumps can be roughly divided into two categories, data-driven methods and
model-driven methods.

1© Data-driven approach

The data-driven methods can be divided into neural network methods and non-neural
network methods. Lee et al. [140] constructed HI through vibration signal and pressure
signal, and trained a Bi-LSTM neural network using different performance indicators for
RUL prediction of hydraulic pumps. Wang et al. [141] used DCAE to characterize the
vibration data of hydraulic pumps, constructed HI to determine the degradation state,
and input the health index as a tag into the RUL prediction model based on the Bi-LSTM
network. Guo et al. [142] used VMD, Hilbert, and FA to process the vibration data of the
hydraulic pump, established the degradation evaluation index, trained the Trainbr-RBFNN
model with the degradation evaluation index, and obtained the RUL prediction model for
the hydraulic pump.

The non-neural network method can still achieve the RUL prediction of hydraulic
pumps. Yu et al. [143] proposed a MAAKR method for information fusion, using 3B-Spline
with monotonic constraints to build Hi, and using the MCPF method to monotonically
update the random coefficients of the model to achieve RUL prediction of hydraulic pumps.
Tongyang et al. [144] proposed an AOPF prediction method to improve the long-term
prediction accuracy of RUL and used the MCS method to estimate the posterior probability
density function of the future state of the hydraulic pump. Li et al. [145] proposed a new
method for RUL prediction of hydraulic pumps based on KPCA and JITL. This method
uses WT to extract features, KPCA to fuse features, and constructs an RUL prediction
method based on k-VNN and JITL methods.

2© Model-driven methods

The data-driven method is to use the data information to map the tag of the target
fault of the hydraulic pump through the processing and analysis of the data. This method
completely bypasses the professional knowledge of the hydraulic pump and only has
the mapping relationship from input to output. Based on the model-driven approach,
starting from the expertise of hydraulic pumps, mathematical explicit relationships are
constructed. Geng et al. [146] proposed a life assessment method that combines SMOTE
algorithm, KS test, and cumulative damage theory. The SMOTE algorithm is used to solve
the imbalance problem between sample groups, and KS is the classic method for evaluating
the goodness of fit. Zhonghaim et al. [147] obtained the fatigue life of the piston by using
DLDR through the analysis of the actual load spectrum of the hydraulic piston pump
and simulated the fatigue life of the piston by using the finite element analysis software.
Wang et al. [148] described the performance degradation model with the Wiener process,
predicted the remaining useful life (RUL) of the pump, estimated the initial parameters
of the wiener process by MLE using the EM algorithm, estimated the drift coefficient of
the wiener process by recursive estimation using Kalman filter method and calculated
the RUL of the pump according to the performance degradation model based on wiener
process. Wang et al. [149] used the contaminant sensitivity theory of the hydraulic system
to derive the mathematical explicit relationship between oil pollution and the useful life of
the piston pump and predicted the useful life of the piston pump under certain pollution
conditions using a group of experimental data. Sun et al. [150] proposed an improved IG
process model to describe the wear degradation of hydraulic pumps and used Monte Carlo
integration and EM algorithm to estimate the model parameters.

4.3. Health Status Detection

The real-time health monitoring of the hydraulic pump can diagnose whether the
operating state of the hydraulic pump is healthy at each time, which is conducive to the
timely adjustment of the hydraulic pump in response to emergencies and the management
and use of the hydraulic pump.
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The detection of the health state of the hydraulic pump is not limited to the detection
of the fault state, so the amount of data required is very large. A neural network can achieve
considerable effect in processing large sample data. According to different health states of
hydraulic pumps, Shaowu et al. [151] proposed that after collecting vibration signal data of
hydraulic pumps, STFT, WT, and Wigner-Will distributions are used to form time-frequency
maps, and then CNN is used to classify and identify time-frequency images of different
volumetric efficiencies of hydraulic pumps, so as to monitor the health status of hydraulic
pumps. Lin et al. [152] proposed that according to the distribution of the information
entropy of the characteristic parameters of the hydraulic pump, various state characteristic
parameters can be obtained to characterize the contribution of the hydraulic pump in
health, so as to realize the fusion of various characteristic parameters, and then use the grey
theory to detect the health state of the hydraulic pump. Hancock et al. [153] researched
and developed a method to decompose the vibration signal of vertical hydraulic pumps
using WPA, and input the characteristic signal into the adaptive neuro-fuzzy inference fault
detection system for pump health state detection. Succi et al. [154] take the fundamental
pumping frequency and its harmonics as the input features of the neural network model
and use the multilayer neural network model of back propagation and Kohonen feature
map to detect the health state of the hydraulic pump.

There are also some studies that use non-neural network methods, which can also
achieve the purpose of detecting the health state of hydraulic pumps. Zhouf et al. [155]
proposed a WOA-based RSDD method to extract feature parameters, which combined with
the modified hierarchical amplitude aware displacement entropy MHAPE to form a health
state detection method for hydraulic pumps. Gao et al. [156] proposed a health diagnosis
method for hydraulic pumps based on WPD and WCRA and developed a health detection
system based on WPD residual analysis. Shapping et al. [157] used the method of combining
WPD and Hilbert envelope demodulation to eliminate the interference effect of radial and
axial acceleration signals, replaced Shannon entropy with NE for state identification, and
proposed a WPNE-based method for identifying the health state of hydraulic pumps.

5. Analysis of the Summary Paper

5.1. Statistical Analysis

Figure 3 shows the statistics of different research directions of hydraulic pump faults
in recent years in the literature listed in this paper, and it can be seen that the mainstream
research direction is still a fault diagnosis. Equipment fault diagnosis technology has
developed to today and has become an independent interdisciplinary comprehensive
information processing technology, it is based on reliability theory, cybernetics, information
theory, and system theory as the theoretical basis, modern test instruments and computers
as a means, combined with the special laws of various diagnostic objects and gradually
formed a new discipline, so it is loved by many scholars for research.

 

Figure 3. Different research directions of hydraulic pump faults.
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Figure 4 shows that among the fault diagnosis methods of hydraulic pumps based on
single signals, the fault diagnosis method uses vibration signals to diagnose the faults of
hydraulic pumps, which is the first choice for most studies at present. More than 90% of
scholars in the selected articles use vibration signals.

Figure 4. Single signal scale.

With the development of fault diagnosis algorithms in recent years, more and more
research on hydraulic pump fault diagnosis has been carried out, which is almost a straight-
line trend. As shown in Figures 5 and 6, it can be concluded from the analysis of the two
figures that the research on fault diagnosis of hydraulic pumps will continue to increase in
the future. With the development of detection signals from simplicity to complexity, it can
be seen that the research of single signal fault diagnosis is more than that of multi-signal
methods. However, with the development of signal fusion technology, the research of
multi-signal fault diagnosis is also increasing year by year.

 
Figure 5. Development trend of single signal articles.

Figure 7 shows the proportion of signal processing and artificial intelligence, which
shows that diagnosis methods based on artificial intelligence are more and more popu-
lar. Although the signal processing methods are developing year by year, most of the
research focuses on the composite method of signal processing methods to deal with fault
characteristics and human intelligent algorithms to build diagnosis models.
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Figure 6. Development trend of multi-signal articles.

Figure 7. The ratio of signal processing to artificial intelligence.

5.2. Discussion on Future Development

This paper summarizes the application of hydraulic pump fault research, but there
are some inevitable omissions. To sum up, through the statistical analysis of the selected
documents, it can be concluded that in the actual environment, it is difficult to obtain
high-quality fault data from a single signal and extract the fault information contained.
On the contrary, the multi-signal method is useful because it contains more information.
The artificial intelligence method is useful because it has high feasibility in dealing with
complex situations (such as compound faults). In order to better promote the development
of hydraulic pump fault diagnosis, the following aspects can be carried out in the future:

(1) Because of the weak signal features in the early stage of fault, it is difficult to extract
fault features, so fault feature extraction is still a direction that needs further explo-
ration. Because of the powerful function of the deep learning method, fault feature
extraction based on the deep learning method will be an important research direction.

(2) Although multi-data signals contain more information, the efficient information fusion
methods for multi-data signals are still insufficient, so more efficient information
fusion methods are also the direction to be further explored.

(3) From the statistical analysis of the review papers, it can be concluded that the di-
agnosis method of artificial intelligence will become mainstream. However, each
intelligent method also has defects, and the combination of multiple intelligent meth-
ods can be used to fill the defects, such as reverse neural networks combined with
multilayer perceptrons.

6. Conclusions

Fault diagnosis is the key to the health management of hydraulic pumps. It can
improve the reliability of the hydraulic pump from the aspect of the data signal, and
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significantly reduce the risk of operation collapse and catastrophic failure. In recent years,
the research on hydraulic pump fault diagnosis has been very active, but there is a lack
of systematic analysis and summary of the developed methods. In order to make up
for this gap, this paper systematically summarizes the relevant methods from the two
aspects of fault diagnosis and health management. Finally, through the statistical analysis
of the literature, some development prospects in this field are pointed out, which provides
reference and guidance for researchers and practitioners to further carry out and apply
relevant research. Nowadays, with the rapid development of machine learning algorithms
and deep learning, data and signal-based methods are becoming the main direction in the
future. The same trend applies to feature extraction methods. Therefore, the powerful
ability of machine learning algorithms, especially deep learning algorithms, obviously has
great potential in the future.
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Nomenclature

AOPF Adaptive-Order Particle Filter
AR Autoregressive
BE Bispectrum Entropy
BI-LSTM Bi-Directional Long-Short Term Memory
BT-SVM Binary Tree Support Vector Machine
CEEMD Complementary Ensemble Empirical Mode Decomposition
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CMBSE Composite Multi-Scale Basic Scale Entropy
CNC Cosine Neighboring Coefficients
CNN Convolutional Neural Network
CPRBF-NN Radial Basis Function Network In Conjunction With Chaos Theory
CWT Continuous Wavelet Transform
DBN Deep Belief Network
DCAE Deep Convolutional Autoencoder
DCS Discrete Cosine Transform–Composite Spectrum
DCT Discrete Cosine Transform
DLDR Double Linear Damage Rule
DT Decision Trees
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine
EM Expectation Maximization
EMD Empirical Mode Decomposition
EMMD Extremum Field Mean Mode Decomposition
ESN Modified Echo State Networks
EWT Empirical Wavelet Transform
FA Factor Analysis
FCM Fuzzy C-Means
FE Fuzzy Entropy
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FEMD Fast Empirical Mode Decomposition
FFT Fast Fourier Transform
FIS Fuzzy Inference System
FMEA Failure Mode And Effects Analysis
FMECA Modes, Effects, And Criticality Analysis
GA Genetic Algorithm
HHT Hilbert–Huang Transform
HMM Hidden Markov Model
HT Hilbert Transform
IAMMA Improved Adaptive Multiscale Morphology Analysis
Ir-PCA Informative ratio-Principal component analysis
IEWT Improved Empirical Wavelet Transform
IG Inverse Gaussian
ILCD Improved Local Characteristic-Scale Decomposition
ITD Intrinsic Time-Scale Decomposition
JITL Just In Time Learning
KPCA Kernel Principal Component Analysis
KS Kolmogorov-Smirnov
K-VNN K-Vector Nearest Neighbor
LCD Local Characteristic-Scale Decomposition
LLTSA Liner Local Tangent Space Alignment
LMD Local Mean Decomposition
LR Logistic Regression
LTSA Local Tangent Space Alignment
MAAKR Modified Auto-Associative Kernel Regression
MCPF Monotonicity-Constrained Particle Filtering
MCS Monte Carlo Simulation
MD Mahalanobis Distance
MEEMD Modified Ensemble Empirical Mode Decomposition
MF Multi-Fractal Spectrum
MFAM Multi-Signal Fusion Adversarial Model
MFCC Mel-Frequency Cepstral Coefficient
MHAPE Modified Hierarchical Amplitude-Aware Permutation Entropy
MLE Maximum Likelihood Estimation
MLP Multilayer Perceptron
MMPE Mean Of Multi-Scale Permutation Entropy
MPE Multi-Scale Permutation Entropy
MTS Mahalanobis–Taguchi System
NCNN Normalized Convolutional Neural Network
NE Norm Entropy
NN Neural Network
PARD Pruning Algorithm Based Random Degree
PCA Principal Component Analysis
PCC Pearson Correlation Coefficient
PHM Prognostics And Health Management
PNN Probabilistic Neural Network
PSD Power Spectral Density
PSE Power Spectral Entropy
PSO Particle Swarm Optimization
QPSO Quantum Particle Swarm Optimization
RBF Radial Basis Function
RBM Boltzmann Machine
RE Relative Entropy
RFC The Random Forest Classifier
RMS Root Mean Square
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RNS Real-Valued Negative Selection
RSDD Resonance-Based Sparse Signal Decomposition
RUL Remaining Useful Life
SAE Stacked Autoencoders
SEOS Smoothed Energy Operation Separation
SIE Spatial Information Entropy
SMOTE Synthetic Minority Over-Sampling Technique
SOM-NN Self-Organizing Mapping Neural Network
SOMP Stagewise Orthogonal Matching Pursuit
SPIP Symbolic Perceptually Important Point
SS-SVM Sphere-Structured Support Vector Machines
STFT Short Time Fourier Transform
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
T-DSNE T-Distributed Stochastic Neighbor Embedding
TFE Time-Frequency Entropy
T-SNE T-Distributed Stochastic Neighbor Embedding
VCR Variance Contribution Rate
VMD Variation Mode Decomposition
WA Wavelet Analysis
WCRA Wavelet Coefficient Residual Analysis
WKELM Wavelet Kernel Extreme Learning Machine
WNC Wavelet Neighboring Coefficients
WOA Whale Optimization Algorithm
WOA-KELM Whale Optimization Algorithm Kernel Extreme Learning Machine
WP Wavelet Packet
WPA Wavelet Packet Analysis
WPD Wavelet Packet Decomposition
WPNE Wavelet Packet Norm Entropy
WPT Wavelet Packet Transform
WT Wavelet Transform
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