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1. Introduction
Ice and snow are essential components of the Earth’s cryosphere, contributing signifi-

cantly to the global climate system and human civilization [1]. While seawater constitutes
96.5% of the Earth’s hydrosphere, freshwater accounts for just 3.5%, with the majority of
this freshwater stored as ice or snow in polar regions, predominantly in glaciers, ice caps,
and snow cover. Throughout history, ice and snow have shaped human development,
influencing migration, agriculture, transportation, and even the rise and fall of civiliza-
tions [2]. The melting of glaciers and the retreat of polar ice caps are becoming increasingly
prominent, which highlights the ongoing importance of understanding the properties and
behaviors of ice and snow, particularly in light of the challenges posed by global warming.

The transformation of ice and snow due to climate change is having a profound
impact on water resources, ecosystems, and infrastructure [3]. Rising temperatures are
causing glaciers to diminish, sea ice to shrink, and snow cover to recede. These shifts are
not only altering landscapes but also influencing critical functions such as water storage,
hydrological cycles, and the stability of ecosystems. In the polar regions, for instance,
the dynamics of ice and snow play a crucial role in freshwater storage and ecosystem
health [4]. The retreat of glaciers and the shrinking of ice sheets are contributing to rising
sea levels, while changes in sea ice affect marine life and species migration [5]. Furthermore,
the reduction in snow cover alters seasonal freshwater flow, impacting hydrology in
affected areas. These changes present challenges in managing water resources, preserving
ecosystems, and maintaining infrastructure in cold regions, making the study of ice and
snow properties ever more important.

In addition to their environmental significance, ice and snow play a vital role in
engineering, especially in regions where human activities are becoming more widespread.
The physical, mechanical properties of ice are key to designing structures such as roads,
buildings, and power lines in ice-prone areas [6]. For example, in Arctic and Antarctic
regions, the design of infrastructure such as ice roads, ports, and even airports require an
in-depth understanding of ice behavior under different temperatures and mechanical stress.
As climate change affects ice stability, engineering solutions must adapt to the changing
conditions. Ice-related challenges, such as the increasing risk of ice-jam flooding, require
innovative strategies in water management and flood prevention. Moreover, engineers are
exploring new opportunities for renewable energy, such as offshore wind and solar power
in ice-covered areas, further underscoring the importance of understanding ice dynamics
in engineering applications.

Water 2025, 17, 954 https://doi.org/10.3390/w17070954
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Ecologically, the melting of ice and snow is reshaping ecosystems, particularly in
polar and subpolar regions [7]. Ice serves as a platform for marine life, from algae growth
to fish breeding, while also regulating species migration. The loss of ice cover threatens
these ecosystems by disrupting the food chain and altering habitats. As sea ice declines,
ecosystems are becoming increasingly vulnerable, affecting biodiversity and food security.
Snowmelt also influences freshwater ecosystems, as it determines the timing and volume of
water flow into rivers and lakes [8]. The ecological consequences of these changes extend
beyond the immediate loss of habitat; they also affect migration patterns, breeding cycles,
and overall ecosystem health. The research presented in this Special Issue delves into how
changes in snow and ice properties are affecting ecosystems and explores ways to mitigate
these impacts through the better understanding and management of frozen landscapes.

This Special Issue, “Ice and Snow Properties and Their Applications”, aims to advance
knowledge in the areas of hydrology, ecology, and engineering by focusing on the changing
physical, thermal, and mechanical properties of ice and snow. With climate change rapidly
altering the cryosphere, it is crucial to employ interdisciplinary approaches to study these
changes. The research collated in this Special Issue utilizes a range of methods, including
remote sensing, numerical modeling, and experimental studies, to improve our under-
standing of ice and snow behavior. These studies will help provide the data necessary for
developing strategies to mitigate the risks associated with ice dynamics, such as flooding
and ice-related disasters, and to support the sustainable development of infrastructure
and ecosystems in cold regions. By bringing together research from diverse fields, this
Special Issue fosters collaboration that will help inform future scientific advancements and
practical solutions in the face of a rapidly changing cryosphere.

2. List and Summaries of the Contributions
This Special Issue received 14 manuscript submissions, all of which were subject to the

rigorous review process of Water. In total, 12 papers were finally accepted for publication and
included in this Special Issue. The contributions are listed in the List of Contributions section.

As shown in Table 1, the published papers cover broad topics such as ecology in cold re-
gions, environmental science concerning meteorology and hydrology, ice engineering (includ-
ing multiphase components), grain structure, mechanical property, and resistance to ships.

Table 1. Analysis of the contributions published in this Special Issue.

Number of
Contribution Research Area Focus Research Methods Potential Applications

1 Ecology
Impact of freeze–thaw
processes on spring
algal blooms

Literature survey Algal bloom prevention
and lake management

2 Environmental
science

Meteorological changes
and water resources

Data analysis
and modeling

Water resource
management and
climate change research

3 Ice engineering Ship resistance in rafted
ice regions Numerical modeling Ice resistance prediction

for ship design

4 Environmental
science

Sea surface
temperature prediction

Data analysis
and modeling

Improved SST
forecasting and
resource efficiency

2
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Table 1. Cont.

Number of
Contribution Research Area Focus Research Methods Potential Applications

5 Environmental
science

Lake ice formation and
breakup prediction

Remote sensing and
statistical modeling

Lake ice prediction and
climate impact
assessment

6 Ice engineering
Ice formation and
mechanical properties of
columnar ice

Experiment Ice property research
and polar engineering

7 Ice engineering
Accurate segmentation
of ice multiphase
components

Experiment Ice engineering and
disaster prevention

8 Ice engineering
Flexural strength and
fracture toughness of
snow ice

Experiment Ice engineering

9 Environmental
science

Solar radiation transfer
through ice and lake
water
temperature changes

Experiment
Climate modeling,
environmental
monitoring

10 Environmental
science Thickness of lake ice Data analysis and

modeling Temporary ice runway

11 Environmental
science

Snow and ice surface
albedo scheme for lake

Data analysis
and modeling

Climate impact
assessment,
environmental
monitoring

12 Ice engineering
Simulation of an
ice-class propeller in
ice blockage

Numerical modeling

Anti-cavitation design
and excitation force
suppression
of propellers

3. An Overview of Published Articles
As reviewed above, the published articles are mostly derived from the field of envi-

ronmental science and ice engineering. An overview of these articles is provided here.
Lakes, as critical freshwater resources, are influenced by both natural processes and

anthropogenic factors. At mid-to-high latitudes, the freeze—thaw cycles of lakes play
a unique role in nutrient migration, water temperature changes, and algal physiology,
which differ significantly from processes in low-latitude lakes [9]. The phenomenon of
spring algal blooms has become more frequent and intense in these regions, demanding an
understanding of its driving factors for effective prevention and management strategies [10].
Zhao et al. (Contribution 1) conducted a literature survey of publications from 2007 to
2023, identifying research trends and hotspots in the study of freeze–thaw processes and
their impact on algal blooms. They identified nutrient dynamics, water temperature
changes, and algal physiology during freeze–thaw periods as key factors influencing bloom
formation. The study highlights phosphorus transformation during frozen periods as a
critical driver and emphasizes the dual pressure of climate change and human activity in
increasing bloom frequency and intensity. An integrated framework for understanding
and managing algal blooms was introduced, combining principle analysis, modeling, and
basin-scale management strategies. This research provides valuable insights for mitigating
the ecological and water security challenges posed by algal blooms in sensitive lake regions.
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The study of surface temperature changes, particularly in natural environments such
as lakes, rivers, and coastal regions, is crucial for understanding climate dynamics and
their impacts on ecosystems and water resources [11,12]. Traditional modeling approaches,
such as physical or statistical models, often simplify real-world conditions to idealized
representations, which can lead to inaccuracies when applied to complex, heterogeneous
environments. However, with the rapid advancement of imaging technologies and remote
sensing techniques, it is now possible to capture more detailed and accurate surface tem-
perature variations under natural conditions. AI and ML techniques allow researchers
to process vast amounts of data from various sensors and sources, uncovering intricate
relationships between surface temperature and the multiple environmental factors that
influence it, such as atmospheric conditions, solar radiation, and water interactions. Three
papers were published on the topic of measuring sea/lake surface temperature changes
using machine learning and experimental methods. Yue et al. (Contribution 2) examined
the impact of climate change on water resources in the Heilongjiang (Amur) River Basin,
which spans four countries and serves as an important international boundary river. Using
daily temperature and precipitation data from 282 meteorological stations over a period
from 1980 to 2022, their study analyzes spatial and temporal trends in temperature and
precipitation changes. The results show a significant increasing trend in both temperature
and precipitation within the basin. Spatially, the annual warming rate increases from the
southeastern coastal regions to the northwestern plateau, while precipitation increases
more significantly in the central and southern plains. Temperature and precipitation change
points were identified in 2001 and 2012, respectively. The study further employs the long
short-term memory (LSTM) model to predict precipitation, showing high accuracy with im-
proved performance compared to traditional models. Jiao et al. (Contribution 4) addressed
the challenge of large errors in SST predictions along the coast, focusing on improving fore-
cast accuracy using deep learning techniques. Specifically, the study develops an optimal
SST prediction model based on LSTM, using Xiaomaidao Station as a case study, and then
extends it to 14 coastal stations along the Bohai Sea and Yellow Sea. The results demonstrate
that the LSTM-based SST model significantly reduces forecast errors, with a 78% reduction
in the mean absolute error for 1–3 day forecasts at Xiaomaidao Station and a 61% average re-
duction for other stations. The model not only improves forecast accuracy but also enhances
computational efficiency, saving resources while increasing the reliability of short-term SST
predictions. Niu et al. (Contribution 9) investigated the warming mechanisms of lake water
under the ice during the frozen period in the Tibetan Plateau (TP), focusing on Qinghai
Lake, the largest lake in China. This study conducted a field experiment to examine thermal
conditions and radiation transfer across air–ice–water interfaces. Using high-resolution
remote sensing technologies, the study identifies three stages of lake surface conditions:
snow stage, sand stage, and bare ice stage. During the snow and sand stages, reduced solar
radiation penetration leads to lower water temperatures. However, during the bare ice
stage, increased solar radiation penetration significantly warms the water beneath the ice.
The study also highlights how surface coverings (snow, sand, and ice) influence ice and
water temperatures, with the bare ice stage exhibiting the greatest diurnal temperature
variations. The findings enhance understanding of solar radiation transfer and temperature
changes in ice-covered lakes and provide key parameters for improving models of lake
dynamics in high-altitude regions. Wang et al. (Contribution 11) investigated the feasibility
and safety of ice runway construction on Huhenuoer Lake, located in Chen Barag Banner,
northeastern China. The study focused on the ice formation period from 2023 to 2024, uti-
lizing field measurements and modeling approaches. Ice thickness data, collected through
drilling, revealed that thickness exceeded 100 cm by 29 February 2024, with a record high of
139 cm recorded at site #2 on 14 March 2024. The Stefan equation was employed to model
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ice growth processes, yielding a fitted Stefan coefficient of 2.202, while a safety-adjusted
coefficient of 1.870 was recommended for runway construction. Spatial analysis indicated
that the northern part of the lake is most suitable for runway construction. By integrating
the Stefan model with fitting techniques, the study established relationships between ice
thickness, cumulative snowfall, and negative accumulated temperature. Using the P-III
method, the 50-year return period values for maximum negative accumulated temperature
and cumulative snowfall were determined as 2092.46 ◦C·d and 58.4 mm, respectively. These
values were applied to predict ice thickness patterns for varying return periods. The study
concludes with practical recommendations for ice runway construction on Huhenuoer
Lake, introducing ice field research and growth modeling to support operational planning
and safety. This work provides technical insights for the development of ice runways in
similar environments. Cao et al. (Contribution 12) conducted surface albedo measure-
ments of snow and ice on Lake Ulansu in the Central Asian arid climate zone during the
winter of 2016–2017. The study categorized observations into three stages based on ice
growth and surface conditions: bare ice, snow cover, and melting. During the bare ice
stage, the mean surface albedo was 0.35, with a decreasing trend attributed to wind-blown
sediment accumulation (range: 0.99–1.87 g/m2). Snowfall events during the snow cover
stage significantly increased albedo to 0.91, while the melting stage saw albedo decrease at
a decay rate of 0.20–0.30 per day. Four existing albedo schemes were evaluated but deemed
unsuitable for Lake Ulansu. A new surface albedo scheme was proposed by integrating
existing models with measured data, incorporating the effect of sediment content on bare
ice albedo for the first time. This scheme demonstrated a modeling efficiency of 0.933 over
the three-month period, with validation against observations from other winters achieving
an efficiency of 0.940. The closer the value is to 1, the higher the model’s predictive accuracy
and reliability. The proposed scheme shows potential applicability to other lakes in the
Central Asian arid climate zone, characterized by low precipitation, frequent sandstorms,
and intense solar radiation. This work provides a robust framework for improving albedo
modeling in similar environments.

The seasonal dynamics of lake ice in cold-region ecosystems plays a crucial role in
regulating ecosystem functions [13,14]. It affects various physical, chemical, and biolog-
ical processes within lakes by altering temperature and light conditions, dissolved gas
levels, and biological productivity. These changes, in turn, influence both the health of
aquatic ecosystems and the livelihoods of human communities dependent on these water
bodies. Kirchner et al. (Contribution 5) introduced a novel approach for predicting lake
ice formation and breakup in Southwest Alaska, a region vital for both biodiversity and
local communities. Due to the limited availability of consistent data for large lakes in
this sparsely populated area, the study utilized optical remote sensing data from MODIS
(2002–2016) to establish a phenology record for key lakes. Additionally, the researchers
developed a survival model using temperature and solar radiation-based predictors to
model ice formation and breakup from 1982 to 2022, including years when lakes did not
freeze. The model was validated using observational data from two lakes and temperature
profiles from three others. The results indicate that cumulative freeze-degree days and
thaw-degree days were the strongest predictors of ice formation and breakup. The study
also found that lake volume influenced ice phenology, with smaller lakes exhibiting longer
and more consistent ice-cover durations. The research provides valuable insights into the
future behavior of lake ice in the Boreal region, highlighting the potential for shorter ice
seasons in smaller lakes and increased variability in larger ones. This study presents an
innovative methodology for lake ice prediction in data-scarce regions and contributes to
understanding the future of lake ice dynamics under climate change.
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Ice plays a critical role in the design and construction of infrastructure in cold regions,
such as ice roads, buildings, and artificial ice rinks [15,16]. Understanding the physical
characteristics and mechanical properties of ice, including its formation, structure, and
response to stress, is essential for improving engineering applications and mitigating ice-
related hazards. Recent advancements in experimental methods and technologies, such
as wind tunnels, X-ray computed tomography (CT), and three-point bending tests, have
facilitated more accurate and detailed analyses of ice properties, contributing to a deeper
understanding of its behavior under various environmental conditions [17]. Three papers
were published on the topic of ice formation and mechanical properties using experimental
ways. Zhang et al. (Contribution 6) presented the design and use of a small open-circuit
wind tunnel to simulate and analyze the formation of columnar ice in laboratory conditions.
The study focuses on the effects of environmental temperature and wind speed on the
ice formation process. It was found that increasing wind speed led to a decrease in grain
size of the columnar ice. Key findings include the validation of wind tunnel contraction
sections, real-time temperature monitoring during ice formation, and a positive correlation
between wind speed and grain size. The method provides a controlled environment to
study the mechanical properties of polar columnar ice and offers a foundation for future
research on ice behavior under windy polar conditions. This technique also facilitates the
study of ice’s mechanical properties in polar environments, offering valuable insights for
ice engineering and structural designs in cold climates. Hu et al. (Contribution 7) explored
the use of X-ray computed tomography (CT) to analyze the multiphase components of
natural ice, which include gas, ice, unfrozen water, sediment, and brine. The study applies
a watershed algorithm for the multi-threshold segmentation of CT images to improve the
accuracy of the segmentation process and create high-precision three-dimensional models
of ice. By analyzing Yellow River ice, Wuliangsuhai lake ice, and Arctic sea ice, the study
demonstrates that the combined use of CT and the watershed algorithm can efficiently
and non-destructively segment ice into its multiphase components. The results provide a
detailed microscopic understanding of the ice’s composition, with implications for ice engi-
neering, ice remote sensing, and disaster prevention in ice-related infrastructure. The study
contributes to the field by offering an advanced methodology for analyzing ice structure
and composition at a microscopic level, enhancing the accuracy of ice models for scientific
and engineering applications. Han et al. (Contribution 8) investigates the mechanical
properties of granular snow ice, focusing on its flexural strength and fracture toughness
under varying strain rates and temperatures. Through a series of three-point bending tests,
the study finds that flexural strength increases at low strain rates but decreases at higher
strain rates. The study also observes that temperature significantly influences the flexural
strength and brittleness of granular snow ice. At colder temperatures, the ice becomes
more brittle, and the strain rate at which maximum strength occurs decreases. Additionally,
the study explores fracture toughness, noting that it decreases as strain rate increases
and that fracture patterns remain consistent across various temperatures and strain rates,
with cracks predominantly developing along prefabricated lines. These findings provide
crucial insights into the mechanical behavior of granular snow ice, which is important for
designing and maintaining structures in cold regions, such as ice rinks and cold-climate
construction projects. The results contribute to the understanding of the tough–brittle
transition in ice and its mechanical response to environmental conditions.

In ship–ice interaction studies, most existing research has primarily focused on the
resistance faced by ships navigating through level ice conditions [18–20], with less atten-
tion given to the more complex conditions, such as rafted ice. Rafted ice is common in
polar regions or areas with high ice concentrations, where vessels may encounter higher
resistance than under typical level ice conditions. Accurately predicting ship resistance in
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these challenging conditions is essential for optimizing ship design, operational strategies,
and ensuring the safety and efficiency of maritime activities in icy waters. Huang et al.
(Contribution 3) developed a numerical model designed to predict ship resistance in areas
with rafted ice, addressing a significant gap in previous research. The study used preset
grid cells to simulate rafted ice conditions and validates the model’s accuracy and reliability
through comparisons with test results. How factors such as ice thickness, ship speed, and
the bending and crushing strengths of ice affect the ice resistance encountered by ships
under both level and rafted ice conditions was investigated. The results show that while
ship resistance is generally higher in rafted ice than in level ice, the patterns of resistance
differ between the two conditions. Specifically, ships navigating through rafted ice face
more concentrated ice resistance compared to the more distributed resistance experienced
under level ice conditions. Huang et al. (Contribution 10) investigated the hydrodynamics
and cavitation behavior of ice-class propellers operating in ice-covered environments. The
study focused on the non-uniform inflow conditions caused by ice blocks sliding along the
ship hull in front of the propeller blades, which lead to increased excitation forces and signif-
icant cavitation. Using a hybrid Reynolds-averaged Navier–Stokes/large eddy simulation
(RANS/LES) method combined with the Schnerr–Sauer cavitation model, the researchers
analyzed hydrodynamic performance, excitation forces, cavitation evolution, and flow field
characteristics under ice blockage conditions. The numerical method demonstrated a high
accuracy, with hydrodynamic errors controlled within 3.0%. The results revealed that at
low cavitation numbers, cavitation remains severe even with reduced blockage distance,
and hydrodynamic coefficients do not increase significantly. When the blockage distance is
0.15 times the propeller diameter, the cavitation area covers 20% of the propeller blades.
As the advance coefficient increases, the total cavitation area decreases, but the cavitation
area behind the ice blockage persists, leading to a rise in excitation force. Ice blockage also
induces backflow in the wake, with the most significant backflow occurring at the tip of the
blade behind the ice. Higher advance coefficients amplify the high-pressure area on the
pressure side and increase pressure differences, causing a sharp rise in excitation forces.
This study provides a theoretical foundation for the anti-cavitation design and excitation
force suppression of propellers operating in ice-covered regions, offering valuable insights
for improving propeller performance and durability in such environments.
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Abstract: Spring algal blooms in mid–high-latitude lakes are facing serious challenges such as earlier
outbreaks, longer duration, and increasing frequency under the dual pressure of climate warming and
human activities, which threaten the health of freshwater ecosystems and water security. At present,
the freeze-thaw processes is the key to distinguishing spring algal blooms in mid- to high-latitude
lakes from low-latitude lakes. Based on the visualization and an analysis of the literature in the
WOS database during 2007–2023, we clarified the driving mechanism of the freeze-thaw process
(freeze-thaw, freeze-up, and thawing) on spring algal bloom in lakes by describing the evolution of
the freeze-thaw processes on the nutrient migration and transformation, water temperature, lake
transparency and dissolved oxygen, and physiological characteristics of algae between shallow lakes
and deep lakes. We found that the complex phosphorus transformation process during the frozen
period can better explain the spring-algal-bloom phenomenon compared to nitrogen. The dominant
species of lake algae also undergo transformation during the freeze-thaw process. On this basis,
the response mechanism of spring algal blooms in lakes to future climate change has been sorted
out. The general framework of “principles analysis, model construction, simulation and prediction,
assessment and management” and the prevention strategy for dealing with spring algal bloom in
lakes have been proposed, for which we would like to provide scientific support and reference for
the comprehensive prevention and control of spring algal bloom in lakes under the freezing and
thawing processes.

Keywords: freezing and thawing processes; spring algal bloom; climate change; driving mechanism;
prevention and control strategies

1. Introduction

Lakes are important carriers of surface water resources, playing a role in protecting
biodiversity, maintaining ecological balance within the watershed, and supplying fresh
water [1–4]. The migration pathways and rates of nitrogen and phosphorus nutrients to
lakes have exhibited diversity and variability under the dual pressure of global warming
and human activities [2,5]. The algal blooms in mid- to high-latitude lakes are facing
challenges such as earlier outbreak times, longer duration, and increased frequency of
occurrence [3,6]. Previous studies have found that the presence of freeze-thaw processes is
the key to promoting the mechanism of algal blooms in mid- to high-latitude lakes, which is
different from that in low-latitude lakes [4–6]. Hence, how to reveal the impact mechanism
of freeze-thaw processes on the occurrence and development of spring algal blooms is
crucial for water-environment management.

Compared to low-latitude lakes, the growth and melting of lakes’ ice would change
the living environment of algae in mid–high-latitude lakes [5,6]. The water temperature
structure, hydrodynamic conditions, sunshine conditions, and eutrophication degree will
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change with the freeze-thaw process. These factors will promote changes in the growth
mechanism of the plankton and microbial communities in the lake [6,7]. Among them, the
freeze-thaw process affects the migration and transformation of nutrients in the lake, and
the competition for algae growth is more complex and variable. Taking Lake Washington
in the United States as a typical seasonally covered shallow lake, the concentration of
nutrients is actually the highest in winter. This situation encourages algae to receive a lot
of light and nutrients after the lake’s ice melts in the spring [7–9]. Subglacial water not
only increases nutrients through concentration, it also increases the conductivity of the
water by a factor of 1.7–2.7 compared to summer. This phenomenon increases the risk of
spring algal blooms. [10,11]. However, there was insufficient research on the competitive
living environment and self characteristics of algae growth during different periods such
as freeze-thaw, freeze-up, and thawing [11]. Therefore, it is urgent to propose future
mechanisms and prevention and control strategies for spring algal blooms by reviewing
existing research on the impact of freeze-thaw processes on spring algal blooms. In the
current study, the survival of plankton and nitrogen and phosphorus substances in lakes
during the ice-covered period has been richly researched, but the changes in these substances
during the whole process from freeze-thaw to thawing of lakes have not been sufficiently
researched [5,8,9]. Meanwhile, a set of effective preventive measures for spring algal bloom
in lakes has not been proposed. This paper proposed some theories and strategies to
address these shortcomings.

In order to sort out the driving mechanism of the spring algal bloom in lakes with
freezing and thawing processes, the literature during 2007–2023 in the Web of Science (WoS)
database were summarized and analyzed. The objectives of this study are (i) to summarize
the hotspots and difficulties of the freeze-thaw process on the driving mechanism of spring
algal blooms through visual analysis of the number of publications and hot vocabulary;
(ii) to sort out the response mechanism of spring algal blooms in lakes to the freeze-thaw
process’ effects using the migration and transformation of nutrient, the transparency and
dissolved oxygen, and the succession and renewal of the algal community structure; (iii) to
provide the strategies for prevention and control of spring algal bloom in lakes.

2. Data and Methods

CiteSpace was used to analyze the historical literature from 2007 to 2023 on the effect
of freeze-thaw processes on spring algal bloom in lakes. Research hotspots and future
research trends will be further revealed in our study. The advantage of CiteSpace is it
uses mathematical and statistical methods to conduct in-depth literature mining, through
visualizing the structural and hot-topic relationships between massive amounts of data,
clarifying the development process of the field [12–16]. This study mainly utilized time-
slicing technology to construct a time-varying model of time series, integrating a single
network into an overview network. In addition, this study achieved the visualization effect
of the literature through dynamic time-series mapping, including keyword recognition,
extraction of research hotspots, and correlation between publishing units.

2.1. Data Sources

The literature was obtained from the Web of Science’s (WoS’s) core-collection database
in the Clarivate Analytics website and was citation indexed from SCI-E (Science Citation
Index Extend). The search date was 28 November 2023, and the search time was 2007–2023.
The search keywords were “eutrophication”, “eutrophication Lakes”, “algal bloom”, “water
bloom”, “phytoplankton”, “spring algal blooms”, “spring bloom”, “lake bloom” and
“freeze”, “freeze thawing”, “seasonal freeze-thaw” and “freezing and thawing”. In order to
accurately discover the relevant literature in this field, the retrieved studies were further
screened and eliminated in terms of title, abstract and keywords.
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2.2. Methods of Analysis

The study information such as year of publication, number of documents, keywords
and other information were screened and extracted. The trend and keyword maps of the
effect of freeze-thaw processes on spring algal blooms in lakes in various countries over the
years have been drawn using a bibliometric functional analysis method. The hotspot and
tendencies were analyzed using visualization software based on the year of publication,
the number of papers, and keywords.

3. Hotspots Revisited
3.1. Statistical Analysis of the Volume of Publications

The number of publications on the impact of freeze-thaw processes on spring algal
blooms in lakes has been increasing since 2007 based on WoS database. Especially after
2014, the number of publications has sharply increased. An analysis was conducted
based on 519 papers from 2007 to 2023 on the mechanisms of the influence of freeze-thaw
processes on spring algal blooms in lakes. The top 5 countries (The United States of America
(USA), China, Canada, the United Kingdom (UK), Germany) with the highest number of
publications and the greatest extent of impacts from spring algal blooms were extracted
for statistical analysis (Figure 1) [7,12,15]. At the same time, these countries are located at
high latitudes, where lake freeze-thaw phenomena and spring algal blooms are common.
The results showed that the average annual publication volume in the United States was
the highest in the world regarding the impact of freeze-thaw processes on spring algal
blooms. The average annual publication volume of China had the highest growth rate
compared to other countries. The tendency of publication numbers in Germany and the
United Kingdom were relatively stable.
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3.2. Statistical Analysis of Keywords

The study on the impact of freeze-thaw processes on spring algal bloom in lakes has
broad and focal differences based on keywords. There were 298 keywords that appeared
during 2007–2023 in the WoS database. Among these keywords, there were nine keywords
that appear at least 15 times. The top five keywords with the highest frequency of oc-
currence were phytoplankton (77 times), climate change (38 times), nitrogen (27 times),
water (19 times), and sea ice (19 times) (Table 1). The top five keywords for centrality were
phytoplankton, climate change, water, nitrogen, and temperature. The research hotspots
also began to shift from the earlier hydrodynamic characteristics, and there were changes
in nitrogen and phosphorus levels and phytoplankton growth mechanisms. The research
hotspots gradually migrated to mechanisms affecting water-quality changes, aquatic-plant
tolerance, and the phytoplankton-growth processes. Based on the keyword co-occurrence
map, studies on the effects of freeze-thaw processes on spring algal blooms mainly focus
on two aspects: exploring the hydrodynamic characteristics under climate change and
studying the growth mechanism of phytoplankton. (Figure 2). In summary, international
research on the effects of freeze-thaw processes on spring algal blooms has focused on
the physicochemical properties of ice-water bodies (nutrients, light, dissolved oxygen
(DO), etc.). Research is also directed at the effects of their changes for phytoplankton
growth mechanisms.

Table 1. Mapping of keyword frequency, centrality, and high-frequency burst analysis in the WoS
database (top9).

No.
Order of Occurrence Order of Centrality Sudden-Appearance Analysis

Keywords Frequency Keywords Centrality Keywords Strength Begin End 2007–2023

1 phytoplankton 77 phytoplankton 0.67 dynamics 4.62 2009 2010
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4. Results of Driving Mechanism Analysis
4.1. Effects of Freeze-Thaw Processes on Nutrient Migration and Transformation

Nitrogen and phosphorus were the major drivers of phytoplankton growth, competi-
tion, and succession, and directly affect primary productivity in lakes [17]. Excess nutrients
could contribute to lake algal blooms [18]. Lakes’ spring algal bloom has been expanding to
the middle and high latitudes, and the scale, frequency, and intensity of its occurrence are all
increasing under the dual pressures of climate change and human activities [19]. The algal
blooms in lakes at mid to high latitudes arounds the world are also showing an increasing
trend. Most of the studies focused on the mechanism of algal blooms in low-latitude lakes,
with a lack of studies on the driving mechanism of algal blooms in mid–high-latitude lakes,
especially those with seasonal ice and freeze-thaw phenomena. Therefore, it was important
to analyze the mechanism of nutrient transport and transformation during freeze-thaw
processes on spring algal bloom in lakes [20]. The freeze-thaw processes of lakes include
freeze-thaw, freeze-up, and thawing [21]. During this period, the physical (water temper-
ature, solar radiation, gas release, etc.), chemical (dissolved oxygen, CO2 concentration,
etc.), and hydrology factors (hydrodynamic conditions, water velocities, water circulation,
etc.) of the lakes would change significantly, which will directly or indirectly drive the
migration and transformation of nutrients [22]. The freeze-thaw effect on the migration and
transformation of nutrients in lakes will affect the stability and development of the entire
lake ecosystem [23]. During the freezing period of the Ulansuhai Lake in Inner Mongolia,
due to the thickness of the snow cover and the shallow depth of the lake, the organisms at
the bottom of the water body are able to carry out photosynthesis to promote the migration
and transformation of nutrients; as represented by Woods Lake, the nutrient concentration
replaces the temperature of the water body as an important controlling factor affecting
the stability of the lake ecosystem (Table 2) [24,25]. The growth and melting of ice sheets
altered the growth of phytoplankton by affecting physical and biogeochemical processes
in the water beneath the ice [26]. The study of Norfolk Lake in the UK and Rappbode
Reservoir in Germany found that the increase of nutrient concentration caused by ice sheet
freezing led to the decrease of plant abundance and biomass in the water [27,28]. Therefore,
the effects of the freeze-thaw processes on the nutrient-transport mechanism, transparency,
and dissolved oxygen, and the physiological and ecological characteristics of algae in the
water column should be considered [29].

Table 2. Eutrophication in selected high-latitude lakes.

No. Country Lake Algae Bloom State References

1 USA Great-salt-sea Escalation [30,31]
2 China Hulun Sharply escalate [32,33]
3 Canada Winnipeg Escalation [34,35]
4 UK Lough Neagh In grave difficulty [36,37]

4.1.1. Effects of Freeze-Thaw Processes on Nutrient Transport in Lakes

Nutrients were mainly distributed on the surface and bottom sediment layers of the
water during the non-freezing period of lakes, which was an obvious vertical stratification
phenomenon [38]. The dissolved oxygen concentration at the bottom of the water column
was relatively low, while the content of organic matter and particulate matter was higher
than that at the top of the water column [39]. The formation of ice sheets promoted the
transportation of nutrients in ice concentration into the water, resulting in higher nutrient
concentrations in the water than during the non-freezing period [40]. Of particular note
is the formation of thermocline in deep-water lakes located in cold or temperate regions
during freezing and thawing. It is difficult to exchange material between the upper mixed
layer (epilimnion) and the lower stagnant layer (hypolimnion) within the lake. Large
quantities of particulate organic matter and nutrients are difficult to resuspend into the
upper layers of the water column through re-suspension after settling to the bottom of
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the lake. On the other hand, in shallow lakes, wind, waves, and turbulence can reach the
bottom of the lake directly before the ice cap forms. There is an impact on organic matter
and nutrients deposited on the lake bottom. These substances can enter the overlying
water column through re-suspension, creating a nutrient cycle on the sediment–water inner
surface (Figure 3) [41].
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When the lake was in the frozen period, the presence of ice sheets and snow promoted
significant differences in the physical and chemical environment compared to other peri-
ods [42]. The water flow rate was slow, while the nutrient concentration varied greatly in
multiple media. Nutrient concentration showed a “C-shaped” distribution in sub glacial
water bodies [43]. The concentration of ammonia nitrogen and nitrate nitrogen in water
was higher than those in sediment, while the tendency of available phosphorus was oppo-
site [42]. The distribution characteristics of nitrogen and phosphorus at the sediment water
interface were relatively different [44]. The concentration of ammonia nitrogen and nitrate
nitrogen decreased with the increase of sedimentation depth. However, the concentration
of effective phosphorus showed a tendency to increase and then decrease with the increase
of sedimentation depth [45]. The presence of lake ice promotes the slowed rheological
behavior of ice water, changing disturbance between sediment, and promoting a different
distribution of nutrients between ice, water, and sediment compared to other periods [46].
There was a critical value for external factors such as flow velocity and disturbance in water
bodies under ice caps, and both above and below this threshold will have different effects
on nitrogen and phosphorus releasing [47].

During the thawing period, nutrients in snow quickly entered the water body, which
resulted in a sudden increasing of nutrient concentration in the water body [17]. The in-
creasing of water temperature accelerated the metabolism of algae [21]. During the thawing
period, the water flow rate increased, and the nutrient cycling rate and biogeochemical
reaction rate both accelerated [48]. In addition, studies had shown that the comprehensive
eutrophication index of water during the freezing and thawing periods was higher than that
during non-freezing period [40]. These variations will lead to the spring algal blooms [49].

4.1.2. Effects of Freeze-Thaw Processes on Nutrient Transformation

Nitrogen and phosphorus, as important components of biogeochemical cycles in lakes,
are the material basis for the growth and reproduction of phytoplankton and microor-
ganisms [50]. At present, studies showed that a variety of factors such as temperature,
dissolved oxygen content, acidity, alkalinity, and solar radiation were subject to change.
Regrettably, there were fewer studies on the polymorphic transformation of nitrogen and
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phosphorus in lakes with the freezing and thawing process. The response of each sub-
stance was difficult to quantify, which greatly restricted an in-depth understanding of the
mechanism of spring algal bloom in mid–high latitude lakes [51].

The main chemical reaction mechanisms of nitrogenous nutrients in lakes included
anaerobic denitrification, anaerobic ammonium oxidation, aerobic denitrification, and
anaerobic methane oxidation [52]. The transformation of nitrogen forms in water mainly
includes processes of ammonification, nitrification, and denitrification [53]. The existence
of freeze-thaw processes in lakes led to lower water temperature and dissolved oxygen con-
centration in the lake [5]. Anaerobic and low-temperature environments led to a decrease
in microbial activity, promoting a decrease in the rates of nitrification, denitrification, and
ammonification reactions [54]. Anaerobic environment also promoted further reduction
of nitrate into nitrogen and nitrous oxide [55]. However, the contribution of freezing and
thawing processes to ammonification and nitrification can not be specifically quantified.

Phosphorus is an essential macronutrient for phytoplankton growth, which plays a
more important role in phytoplankton succession than nitrogen in lakes. The occurrence
forms of phosphorus included orthophosphates (H2PO−

4 , HPO2−
4 , PO+

4 ), polymerized
phosphates (P2O4−

7 , P3O5−
10 ), and organophosphates (phosphatidylinositol) [56,57]. The rate

phosphorus migration and its transformation in lakes was higher than that of nitrogen
and silicon [58]. The phosphorus content decreased below the critical value required for
algae growth (2 µg/L) due to the long-term low-temperature and hypoxic environment
during the frozen period [57]. The process of converting organic phosphorus into inorganic
phosphorus and orthophosphate into adenosine triphosphate (ATP) was greatly inhibited
due to the decrease in microbial activity during the frozen period [58]. Phosphate can form
insoluble precipitates with metal cations Fe+3 , Al+3 , Ca+2 , Mg+2 , and the reaction speed was
also affected by the temperature and oxygen content (Figure 4). Phosphate exhibited verti-
cal stratification due to the decomposition of dead vegetation residues by microorganisms
during the frozen period [59]. The anaerobic environment promoted the transformation of
insoluble Fe(ON)3 into soluble Fe(ON)2, providing a material-source basis for the improve-
ment of primary productivity in spring [60]. Some anaerobic microorganisms in the frozen
sediments accelerated the conversion of organic to inorganic phosphorus in the sediments.
This phenomenon also increases phosphorus levels in the overlying water column [61].
Hence, the complex phosphorus transformation process during the frozen period can better
explain the spring-algal-bloom phenomenon compared to nitrogen.
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4.2. Effect of Freeze-Thaw Processes on Transparency and Dissolved Oxygen

The presence of snow and ice layers weakened the intensity of solar radiation entering
sub-glacial water bodies, promoting a decrease in sub-glacial light intensity to inhibit algal
photosynthesis [62,63]. The lake ice also temporarily buffered atmospheric sedimentation
and reduced wind disturbance, suppressing the resuspension of sediment [64].

Ice caps are influenced by a number of factors during their formation. The freezing
temperature of the ice, the rate of ice growth, and the salinity of the water together deter-
mine the density, crystal structure, and internal microstructure of the ice. They lead to a
decrease in the transparency of the ice, making less light receivable under the ice [65]. The
weakening of photosynthesis led to a further decrease in dissolved-oxygen content [66].
In addition, the nutrient concentration in the ice and the freezing separation coefficient
also increased with the decreasing of freezing temperature, promoting the release of nu-
trients from the ice into the water body [67]. Ice caps redistributed nutrients between
water bodies and ice layers through freezing, salt discharge, and melting dilution [68]. The
research found that the formation of ice sheets redistributed nutrients among ice, water,
and sediment [69]. The ice sheet weakened the disturbance of wind, blocks the exchange
of substances between the atmosphere and water, and reduced the re-suspension of parti-
cles caused by wind [68,69]. The pollutants in the overlying water became more uniform
during the frozen period, which promoted the increasing of transparency [69–71]. Hence,
transparency of different lakes reacts differently during freeze-thaw processes, while it all
led to a decreasing of dissolved oxygen due to the ice sheets.

4.3. Effect of Freeze-Thaw Processes on Algae Physiology

Phytoplankton, as the basis of material circulation and energy flow in lake ecosystems,
plays an important role in maintaining the balance of the entire ecosystem [72]. Freezing
and thawing had direct or indirect effects on the physiological and ecological characteristics
of planktonic algae from physical (temperature, light intensity, dissolved sample content),
chemical (nutrient salt concentration, metabolic rate) and hydrological (hydrodynamic
conditions, water circulation) [71].

According to the previous research, the freeze-thaw process greatly limited the activity
of underwater organisms [73]. However, scholars found that the diversity of benthic phy-
toplankton species during the frozen period was still relatively high in recent years [74–76].
Currently, the research has found that the freezing period promoted a decreasing of phy-
toplankton diversity over time [77]. However, the driving mechanism of phytoplankton
population succession during the freezing period was not clear (Figure 5). Cyanobacteria
had the greatest dominance during the freeze-up period; with the further reduction in
temperature and the extension of the freeze-up time, the cyanobacteria entered into a
dormant period [78]. Diatoms had a clear dominance during the freeze-up period, which
had a direct relationship to their physiological characteristics of regulating the water, sugar,
and fat in the cells to increase the ability of drought resistance [79]. During the thawing
period, cyanobacteria and green algae dominate, due to maximal photosynthesis [80].
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5. Response Mechanism of Lake Algal Bloom to Climate Warming and
Prevention Strategies
5.1. Response Mechanisms of Lake Algal Blooms to Climate Warming

The response mechanism to climate change mainly manifested in the study of the effect
of warming and increasing CO2 concentration on algal blooms. Rising temperatures directly
affected lake-water temperature, vertical mixing between suspended and insoluble particles,
thermal stratification of water bodies, and biological-community structure [80,81]. Rising
air temperature increased the concentration of nutrients and the absorption efficiency of
algae by increasing water temperature and reducing the concentration of dissolved oxygen
near sediments, thereby exacerbating the scale, frequency, and intensity of algal blooms [82].
The increase in the duration of thermal stratification in deep-water lakes exacerbated the
phenomenon of hypoxia [83], and reducing the thickness of the mixed layer in water further
promoted the expansion of cyanobacteria blooms [84]. The shortening of freezing period
led to the advancement of spring-algal-bloom phenology [78]. All studies confirm that
warmer temperatures lead to higher water temperatures, longer vertical stratification of
the water column, thinner mixed layers, and earlier melting of the ice cap. Together, these
phenomena led to earlier spring algal blooms and longer bloom durations. In addition,
higher CO2 concentrations also increased algal photosynthesis to increase phytoplankton
biomass accumulation [85–87]. A portion of the carbon dioxide present in the lake was
dissolved in the water, changing the pH of the water and having an effect on the nutrient-
cycling process, with the water becoming less hard and the concentration of calcium ions
decreasing [88]. The growth of some acid-loving cyanobacteria in this environment was
promoted [89]. Furthermore, CO2 can also improve the absorption and utilization efficiency
of Microcystis for nutrients rather than other algae [90]. In summary, cyanobacteria had a
more positive response to climate change.

5.2. Prevention and Control Strategies

Based on the driving factors, of occurrence principles and response mechanisms to
climate change, we proposed the prevention and control strategies for lake spring cyanobac-
teria blooms in response to future climate change in terms of (i) improving the predictive
ability of spring algal blooms in lakes, and (ii) strengthening spring-algal-bloom prevention
and control in river basin lakes. Traditional ecological prediction models focus on calculat-
ing probability distributions between phytoplankton and nitrogen, and phosphorus and
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water-quality factors. However, this model lacks the mechanistic analysis of cyanobacterial
blooms under the synergistic effect of multiple environmental factors. It also generates
large errors in simulation prediction under long-term series and multi-temporal dynamic
changes [84,91]. In the future, it will be necessary to establish a cyanobacterial-bloom-
prediction and -warning model dominated by meteorological factors, the synergistic effects
of multiple environmental factors, and the integrated effects of biochemical reaction pro-
cesses. We hope to improve the ability of predicting the risk of spring algal blooms in lakes
in this way [92]. The quantification of endogenous pollution in the watershed pollution
load should be further strengthened, in order to develop more scientific thresholds and
strategies for reducing pollutants in watershed [93,94].

5.3. A New Comprehensive Framework

Based on the comprehensive research on the effect of freeze-thaw processes on lake
algal blooms, an overall framework was constructed with “principles analysis-model
construction-simulation prediction-evaluation management” (Figure 6). At present, most
of the existing studies used the control variable method to quantify the contribution of a
single environmental factor, which made it difficult to effectively predict the evolution of
algal blooms in complex scenarios in the future. There was a lack of climate-change-driven
ecological and environmental risk assessment and socio-economic impact analysis of algal
blooms in lakes, which restricted the prevention, control, and management of the hazards
of algal blooms in lakes. Therefore, it is of great significance to construct an integrated
lake-climate hydrodynamics–water-quality algal-bloom model to simulate and predict the
development trend of algal bloom in lakes.
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by affecting biogeochemical process. Phosphorus conversion in lakes during freeze-thaw 
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In order to construct a comprehensive model of lake-climate hydrodynamics–water-
quality algal blooms, it is necessary to first clarify the driving mechanism of freeze-thaw
processes on spring algal blooms under historical conditions. Secondly, coupled with cli-
mate models, potential risks of spring algal blooms under future climate scenarios should
be predicted. The key to this framework is to clarify the mechanisms of functional and
representational levels of spring algal blooms in lakes, with the biomass and density of
the main algal communities that trigger algal blooms as constraint indicators, effectively
simulating the development and evolution process of the scale, frequency, and duration of
algal blooms driven by climate conditions. The evaluation indicators for health-risk assess-
ment are algal biomass and the accumulative-risk index. Algal toxin content takes tourism
revenue, causes fishery-resource loss, requires algal-bloom-control cost, and impacts urban
gross domestic product which are evaluation indicators for socio-economic development.
We must minimize the disaster-risk levels caused by spring algal blooms in lakes, improve
public awareness and understanding of the disaster problem, and effectively promote the
synergistic effect of pollution reduction and carbon reduction.

6. Conclusions and Outlook

Based on 16 years of analysis of the literature, hot topics of research have shifted
from the impact of freeze-thaw processes on lake nutrients, physicochemical properties,
and hydrodynamic characteristics to the competitive driving mechanism of freeze-thaw
processes on spring phytoplankton growth. The freeze-thaw process (freeze-thaw, freeze-
up, thawing) directly or indirectly affects the occurrence of spring algal blooms by affecting
biogeochemical process. Phosphorus conversion in lakes during freeze-thaw processes
explains spring algal blooms better than nitrogen. Therefore, monitoring and controlling of
phosphorus-containing substances needs to be strengthened throughout the freeze-thaw
and thawing processes in lakes. It is pointed out that spring algal blooms in lakes will
face problems such as expanding their scope, increasing their intensity, advancing their
occurrence time, and prolonging their duration under climate change and human activities.
We propose prevention and control strategies for spring algal blooms in lakes under future
changing environments.

(1) Strengthening the monitoring of high-frequency lake-water-quality and -plankton
data, which is necessary in order to accurately determine the limiting nutrient thresh-
old for spring algal blooms.

(2) It is recommended to remove the snow on the surface of the ice sheet during the
freeze-up period to reduce the input of external pollutants in spring.

(3) During the thawing period, attention should be paid to the release of nutrients,
especially phosphorus, caused by sediment re-suspension.

(4) Installing circulating pumps in areas with high concentrations of lake pollutants
during the thawing period to increase the hydrodynamic circulation in local areas.
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Abstract: Located in the Heilongjiang (Amur) River in north-east Asia, spanning four countries, plays
a crucial role as an international border river, and its meteorological changes significantly impact
the variation in water resources in the basin. This study utilizes daily average temperature and
precipitation data from 282 meteorological stations in the Heilongjiang (Amur) River Basin and its
surrounding areas for the period 1980–2022. The analysis employs spatial interpolation, change point
testing, and model construction prediction methods. The results indicate a significant increasing
trend in both overall temperature and precipitation changes within the Heilongjiang (Amur) River
Basin. At the spatial scale, the annual warming rate increases gradually from the southeastern
coastal region to the northwestern plateau region, while the rate of precipitation increase decreases
from the southern area towards its surroundings. Temporally, the warming amplitude during the
growing season decreases gradually from east to west, and the trend in precipitation changes during
the growing season aligns with the overall annual precipitation trend. During the non-growing
season, the warming trend shows a decrease in the plains and an increase in the plateau, while
precipitation increase concentrates in the central and southern plains, and precipitation decrease
predominantly occurs in the northwestern plateau region. Temperature and precipitation change
points occurred in the years 2001 and 2012, respectively. In precipitation prediction, the Long Short-
Term Memory (LSTM) model exhibits higher accuracy, with R (Pearson correlation coefficient) and
NSE (Nash-Sutcliffe efficiency coefficient) values approaching 1 and lower NRSME values. This
study provides a research foundation for the rational development and utilization of water resources
in the Heilongjiang (Amur) River Basin and offers valuable insights for research on climate change
characteristics in large transboundary river systems.

Keywords: Heilongjiang (Amur) River; temperature; precipitation; spatiotemporal distribution
characteristics; abrupt change analysis; precipitation value prediction

1. Introduction

Under global warming conditions, the accelerated melting of glaciers and snow has
serious consequences for large rivers in mid-to-high latitudes, leading to increased occur-
rences of floods and river interruptions, as well as higher frequencies of water and drought
disasters, wetland degradation, water resource depletion, and elevated basin ecosystem
issues. As early as 2014, the IPCC’s (The Intergovernmental Panel on Climate Change) Fifth
Assessment Report pointed out that surface temperatures are continuously rising due to
increased greenhouse gas concentrations, leading to changes in precipitation amount, inten-
sity, and spatiotemporal distribution, consequently resulting in corresponding alterations
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in river water resource distribution and the water cycle [1]. In 2018, the IPCC released a spe-
cial report on “Global Warming of 1.5 ◦C,” indicating that the world could reach the 1.5 ◦C
threshold at some point between 2030 and 2052 [2]. Climate change increases the frequency
and intensity of extreme weather events such as extreme temperatures, heavy precipitation,
and droughts, leading to different effects on the spatiotemporal characteristics of basin
runoff [3]. Transboundary water resources constitute over half of the world’s available
freshwater resources, affecting the sustainable development of more than 148 countries and
over 90% of the global population [4]. With the intensification of the global water crisis,
transboundary river management issues are gradually attracting widespread attention from
the international community [5,6]. Particularly for the densely populated Asian region,
transboundary rivers in mid-to-high latitudes, influenced by changes in climate conditions,
river supply intensity, and the constraints of water rights management across multiple
countries and regions, are more prone to causing significant economic losses and adversely
affecting basin water ecological security, lowering basin water resource utilization efficiency,
and hindering political, economic, social, and environmental development among countries
and regions within the basin [7].

The Amur River, spanning China, Russia, Mongolia, and North Korea, is one of the
world’s top ten longest rivers, and it is also a significant transboundary river. Its unique
geopolitical features make its status and role significant, with it serving as a crucial shipping
route between China and Russia and a natural resource reservoir passing through various
countries. Among those factors consistently emphasized in recent World Water Develop-
ment Reports by the United Nations Educational, Scientific and Cultural Organization
(UNESCO), the ongoing reduction in permafrost in cold regions, particularly amid global
warming and the broader context of climate change, stands out. Concomitantly, there is
an accelerating trend in the rates of snow and glacier melt. Even in regions endowed with
ample water resources, the intensification of seasonal water shortages is notable. This
unfolding scenario magnifies the impact on water resources across diverse nations globally,
presenting an urgent predicament. Consequently, there is an escalating risk to water security
in transboundary water resources, posing a formidable challenge in water diplomacy and
creating a complex situation for sustaining collaborative governance of water environments
among nations [8]. In modern society, the impact of a series of human activities, including
population growth, increasing demands for food and energy, urbanization, and industrial
development, has led to an increased pressure on the development and utilization of scarce
freshwater resources. Climate change further exacerbates water-related issues [9]. Changes
in meteorological factors manifest in variations in temperature, precipitation patterns, and
evapotranspiration, influencing the distribution of regional water resources. Large rivers
in cold regions at middle and high latitudes exhibit higher sensitivity to climate change.
Changes in the quantity of water resources within the basin are closely linked to water use
for the production and daily living of residents in the four countries through which the
river flows. Moreover, alterations in water ecology within the basin are associated with the
potential degradation of wetlands and grasslands, contributing to ecological issues in the
basin [10]. Therefore, conducting research on the spatiotemporal distribution characteristics
of climate change in the Heilongjiang (Amur) River Basin and its meteorological abrupt
change features is beneficial for coordinating the rational utilization of water resources in
the Heilongjiang (Amur) River Basin and promoting collaborative development among the
countries involved.

While the countries and regions through which the Heilongjiang (Amur) River Basin
flows have a significant population density difference compared to more developed re-
gions in the mid-to-low latitudes, the distribution of towns, villages, and rivers is closely
related [11]. In some areas of Mongolia, Russia, and Northeast China, animal husbandry
remains a predominant activity, and the livelihoods of residents in these regions are closely
tied to the river [12]. The meteorological characteristics of the Heilongjiang (Amur) River
differ from well-known large rivers in China, such as the Yellow River and the Yangtze
River, in terms of meteorological variations, particularly in the mid-to-low latitudes [13].
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In the summer of 2013, the Songhua River Basin experienced the most extreme precip-
itation in the region since 1984, leading to a dramatic increase in river flow and causing
an unprecedented large-scale flood in the Amur River Basin. Yan Bo et al. [14] used the
extreme precipitation-induced flood event in the Amur River Basin in 2013 as a research
background. They analyzed nearly 60 years of precipitation data from 25 meteorological
stations in the basin, calculated the trends of extreme indices using the Mann–Kendall test,
and explored the spatiotemporal characteristics of extreme precipitation events through
wavelet transform analysis of extreme indices. Semenov E. K. et al. [15] utilized data on
basin runoff, air temperature, atmospheric pressure, and precipitation to create maps of air
cyclones and pressure trends in the basin. They analyzed the causes of the 2013 flood in the
Amur River Basin. Kalugin A. S. et al. [16] used ECOMAG (Ecological Model for Applied
Geophysics) model to establish a model of Amur River runoff. They simulated the spatial
distribution of certain features of basin hydrological cycles, such as snow accumulation, soil
moisture, and evaporation, based on meteorological and water management monitoring
standard data. Scholars like Li Mingliang [17] established a spatial information database
for the Heilongjiang River Basin and developed the GBHM-HLJ (Geomorphology-based
Hydrological Model—Heilongjiang Basin), a distributed hydrological model based on
physical mechanisms. They introduced a generalized model with temperature-indexed
changes in frozen soil hydraulic conductivity to simulate the impact of soil freeze–thaw
cycles on water movement. Gelfan A. N. et al. [18] employed both computation and data
transformation methods to build a climate prediction model, analyzing the sensitivity of
temperature and precipitation changes to Amur River runoff variations in the 21st century.
Zhang Wenxuan et al. [19] utilized Sentinel-1 synthetic aperture radar, conducting time
series monitoring of the spatial extent of floods using Gamma and Gaussian distributions.
The results indicated that cities along the middle and lower reaches of the Amur River,
such as Khabarovsk and Amur, are prone to frequent flooding, and the overall flood area is
increasing. Jia Lin [20] established a research framework for the basin’s joint development
mechanism concerning international rivers in the northeast region. It indicates that the
international river development mechanism in the northeast is an integral part of regional
economic cooperation in Northeast Asia. Lessons should be drawn from the development
strategies in the Lancang–Mekong River Basin to encourage coordinated development of
resources, economic growth, and environmental protection among basin countries. He
Daming [21] and other researchers indicated that China’s northeast and southwest regions
are major source areas for international rivers in Asia. They proposed the development
direction of comprehensive cross-border resources and environmental cooperation between
land and sea. This involves leading international river development and geopolitical coop-
eration to advance and maintain political, economic, and technological cooperation among
countries. Panova (Πaнoвa A. A.) [22] believes that governance of the ecological environ-
ment of the Amur River requires the joint formulation of relevant laws and regulations
by the countries through which the basin flows. She cited cooperation agreements in the
field of environmental protection jointly formulated by Russia and China. She suggested
that all countries collaborate to conduct a comprehensive investigation and assessment of
the Amur River Basin and, based on the findings, formulate more practical and applicable
protective measures for the basin.

Due to the geopolitical characteristics of transnational basins and diverse development
needs of different countries, current research has predominantly focused on analyzing
specific basin segments within the countries through which the Amur River flows. This
approach reflects the research characteristics of different countries involved in the basin.
However, there is a lack of comprehensive analysis of meteorological elements across the
entire basin. Analyzing the basin as a whole can better integrate the characteristics of
meteorological factors across the basin. This study aims to analyze the climate change in
both the overall basin and its sub-basins, as well as the meteorological anomalies in the
entire basin and its tributaries. By elucidating the annual and seasonal climate change
characteristics of the entire Amur River Basin, as well as the impact of climate change in
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different sub-basins on the overall basin, this research provides a basis for the development
and utilization of water resources, rational allocation of basin water resources, ecological
protection, and coordinated development of economic water demand and serves as a
reference for the study of similar international rivers. The findings contribute to the
promotion of harmonious coexistence and comprehensive sustainable development among
basin countries.

Based on past research on the meteorological characteristics of the Heilongjiang (Amur)
River Basin, evaluations of meteorological features have employed different methods
from various perspectives. On one hand, in terms of data selection, the time series is
relatively short, and the number of stations is limited, failing to comprehensively cover
the meteorological characteristics of the entire Heilongjiang (Amur) River Basin [23–25].
On the other hand, many studies use meteorological elements as influencing factors,
combined with multiple factors such as land use, vegetation cover, and ecosystems, to
comprehensively explore the evolution patterns of basin runoff, hydrological processes,
or hydrological responses under the influence of multiple factors. However, there has
been no specialized investigation into the characteristics of basin meteorological elements
under the background of long-term meteorological data sequences [26,27]. This study
spatially divides the Heilongjiang (Amur) River Basin into eight sub-basins and seasonally
divides it into the growing season and non-growing season based on the number of days
with temperatures greater than or equal to 0 ◦C. It conducts comparative analyses of
the spatiotemporal distribution characteristics and mutation features of climatic changes
between the overall Heilongjiang (Amur) River Basin and its eight sub-basins. The study
analyzes the climatic characteristics and change patterns of the main basin and each sub-
basin, providing a research foundation for understanding the impact of the overall climate
on water resource changes and the rational development and utilization of water resources
in the basin. Simultaneously, it offers references for the study of climatic changes in similar
large-scale transboundary river basins.

2. Materials and Methods
2.1. Study Area Profile

The Heilongjiang (Amur) River Basin is located in the northeastern part of Asia,
serving as a significant boundary river between Northeast China and the Russian Far
East. It is one of the world’s ten major rivers alongside the Amazon River and the Yangtze
River, with a basin area of 184.3 × 104 km2, even larger than that of the Yangtze River
(Figure 1) [28]. The entire basin and surrounding areas encompass 15 provincial-level
administrative regions in four countries, including Heilongjiang Province, Jilin Province,
the Inner Mongolia Autonomous Region, and parts of Liaoning Province in China, the
Russian Far East, the eastern region of Mongolia, and parts of the two Koreas. In the
northern part of the Heilongjiang (Amur) River Basin, it is separated by the Stanovoy
Mountains (Outer Khingan Mountains) from the Lena River Basin. The western side runs
along the Kent Mountains, and it extends eastward along the southern branch of the Greater
Khingan Range, and the southern side is separated from the Yellow Sea and the Sea of Japan
Basin by the Changbai Mountains and the Laoye Mountains. The basin’s boundary follows
the Sikhote-Alin Mountains northward until the mouth of the Heilongjiang River. These
mountainous areas are the headwaters of the main and tributary rivers of the Heilongjiang
(Amur) River Basin [29]. The basin is mainly characterized by mountainous and hilly
terrain, with plains mainly distributed in the central and eastern regions of the basin,
including the Jebusan Plain, Songnen Plain, and the plain in the middle and lower reaches
of the Heilongjiang River. The Songnen Plain and the middle and lower reaches of the
Heilongjiang River Plain in China have fertile soils, widely distributed black soil and
black calcareous soil, and a deep history of cultivation and are important commodity grain
bases for Heilongjiang Province and the country. They primarily cultivate crops such
as soybeans, wheat, and sugar beets. The region is also concentrated with grasslands,
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supporting a developed livestock industry. Additionally, it hosts the well-known Zhalong
Nature Reserve, an internationally important wetland conservation area.

The Heilongjiang (Amur) River has two sources, with the southern source being the
Ergun River and the northern source being the Shilka River. The convergence of the two
sources occurs near the village of Logu River, west of Mohe City in the Daxing’anling area
of Heilongjiang Province, China, forming the main stream of the Heilongjiang (Amur) River,
which eventually flows into the Strait of Tartary in Nikolaevsk (Temple Street), Russia. The
basin is characterized by numerous rivers and a dense network of waterways, featuring
seven major tributaries in addition to the main Heilongjiang River, forming a system of
seven branches and one main stem. Notable lakes in the basin include the cross-border
Hulun Lake on the Sino–Mongolian border and the transboundary Xingkai Lake on the
Sino–Russian border. The major tributaries include the Shilka River and Ergun River in the
river source area, the Zeya River (Jiqili River), Bureya River (Niuman River), and Amgun
River (Xinggun River) on the Russian side, and the Songhua River on the Chinese side.
Additionally, the Ussuri River, Ergun River, and the main stem of the Heilongjiang River
are all international boundary rivers, constituting the world’s longest boundary river at
nearly 4000 km [30].

The Heilongjiang (Amur) River, as an important transboundary river spanning China,
Russia, Mongolia, and North Korea, exhibits distinctive population compositions, economic
structures, and development levels among the four countries. Additionally, the water use
patterns, water demand, and the extent of water resource development and utilization
vary [31]. The impact of meteorological element changes in this basin on the variation
in water resources within the basin cannot be ignored. This information is instrumental
in helping each country formulate development policies that are more tailored to the
sustainable development of the local region. Using the river system as a link, it contributes
to the collective maintenance of water resources, ecological environment, and the political
and economic health and peaceful development among the countries within the basin.
Simultaneously, it can serve as a reference for meteorological element changes in similar
cold regions with large rivers, such as the Yenisei River Basin and the Ob River.

2.2. Materials

The elevation data of the Heilongjiang (Amur) River Basin in this study were derived
from the Digital Elevation Model (DEM) provided by the Geospatial Information Authority
of Japan, based on a spatial resolution of 30 m [32]. The boundary data for national borders
were sourced from the Global Administrative District Boundaries data provided by the
National Earth System Science Data Centre (http://www.geodata.cn/, accessed on 26 July
2022) [33]. The river network and lake data within the basin were obtained from the A
Big Earth Data Platform for Three Poles (https://poles.tpdc.ac.cn/zh-hans/, accessed
on 5 August 2022) which provides the Global River and Lake Vector Dataset (2010) [34].
Meteorological data were sourced from the National Centers for Environmental Information
(NCEI), a division of the National Oceanic and Atmospheric Administration (NOAA)
(https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/, accessed on
1 July 2022), specifically the daily precipitation and temperature data [35]. Based on the
acquired data, temperature and precipitation data from 282 meteorological stations within
the basin and surrounding areas were selected, covering a time series of daily observations
ranging from 1980 to 2022.
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Figure 1. Geographic characteristics of the Heilongjiang (Amur) River Basin and distribution of
meteorological stations.

2.3. Methodology
2.3.1. Data Preprocessing

To investigate the characteristics of meteorological element changes in the Heilongjiang
(Amur) River Basin, meteorological data from 282 meteorological stations within and near
the basin were selected. Due to the wide range of basin area and uneven distribution of
meteorological stations within the basin, as well as the possibility of missing or omitting
meteorological data in time due to various factors affecting the monitoring equipment at
observation stations, there may be some interference in the analysis of later meteorological
characteristics. To ensure the accuracy of meteorological feature analysis, the double
mass curve method was employed to preprocess the original meteorological data from
meteorological stations. The double mass curve method is a common approach for studying
the consistency and variation between two parameters. It involves plotting a relationship
line in a rectangular coordinate system between the continuous cumulative values of one
variable and another variable over the same period. It can be used to check the consistency
of hydro-meteorological elements, interpolate missing values or calibrate data, and analyze
the trends and intensities of hydro-meteorological elements [36].

After calibration using the double mass curve method, we conducted a preliminary
trend analysis of meteorological data using the linear trend regression test. The linear
regression test is a common mathematical statistical method that can intuitively reflect the
changing trend of a sequence and is widely used in the time series analysis of meteoro-
logical elements such as precipitation and temperature [37]. When analyzing the spatial
distribution of meteorological elements in the basin, considering the interlaced distribution
of mountains and plains in the basin and the large differences in elevation, the influence of
elevation on meteorological elements should be fully taken into account, using elevation
as a covariate to improve the accuracy of interpolation [38]. Combined with the local
thin-plate smoothing spline function interpolation method, spatial interpolation analysis
of the temporal and spatial variations in temperature and precipitation in the basin was
conducted. The statistical model expression for the local thin-plate smoothing spline theory
is as follows:

Zj = f
(
mj
)
+ bTyj + ej(j = 1, 2, ···, N) (1)

where Zj represents the dependent variable at spatial point j; mj represents the d-dimensional
spline independent variable (d = 2 in this study, representing longitude and latitude); f (mj)
represents the unknown smooth function to be estimated regarding mj; yj represents the p-
dimensional independent covariate (p = 1 in this study, representing elevation); b represents
the p-dimensional coefficient vector for yj; and ej represents the error term.

30



Water 2024, 16, 521

2.3.2. Mann–Kendall Trend Test

The Mann–Kendall trend test is a common method in meteorology used to determine
whether meteorological elements exhibit a certain trend of change. The advantage of this
method is that sample data do not need to follow a certain distribution and are not affected
by a few outliers. It has been widely used to analyze trends and step changes in the time
series of elements such as precipitation, water level, and runoff [39,40]. The Mann–Kendall
non-parametric test method still works well for non-normally distributed meteorological
and hydrological data. In the Mann–Kendall method, when the statistic sequence curve
(UF) is greater than 0, it indicates an upward trend in the time series; conversely, the
opposite indicates a downward trend. If the UF is outside the significant level range, it
indicates a significant change trend in the time series. If the UF and the statistic sequence
reverse curve (UB) have intersections within the significant level range, the intersection is
the change point [41]. The characteristics of different study areas in different time periods
are different, and when it was not possible to be completely certain, further combination
with other methods was needed to seek more accurate change years.

2.3.3. Pettitt Test

The Pettitt test is a non-parametric test method. It is efficient in testing continuous
sequences and can identify change points in hydrological time series well. It is widely used
in change point testing and has clear physical significance [42]. This test is based on the
statistical function of Mann–Whitney, which assumes that two sequences ((X1, X2, . . ., Xt)
and (Xt + 1, Xt + 2, . . ., XT)) are from the same sequence. For continuous sequences, Ut,T and
Vt,T are calculated as follows:

Ut,T = Ut−1,T + Vt,T tϵ[2, T] (2)

U1,T = U1,T (3)

Vt,T = ∑T
j=1 sgn

(
Xt − Xj

)
(4)

where Ut,T and Vt,T are the statistic values for different time periods. When |Ut,T| is at
its maximum, the corresponding Xt is a possible change point. When the change point
Ut,T > 0, the sequence has a downward change trend; otherwise, it has an upward change
trend. The significance level of the potential change point is calculated as follows:

POA(t) = 2exp
[
−6U2

t,T/
(

T3 + T2
)]

(5)

A point is considered an effective change point when POA(t) ≤ 0.5.
To improve the accuracy of detecting breakpoints in temperature and precipitation in

the basin, the cumulative anomaly method was used in conjunction with MK and Pettitt
tests to analyze the meteorological data for breakpoints. Cumulative anomaly represents
the sum of all anomalies and can intuitively determine the trend of change. A larger
cumulative anomaly indicates that the discrete data are greater than the mean, and the
curve shows an upward trend; conversely, a smaller cumulative anomaly indicates that
the discrete data are less than the mean, and the curve shows a downward trend [43]. In
this study, based on the fluctuations in the cumulative anomaly curve, we judged whether
there are breakpoints in the trend of meteorological elements [44]. The results obtained
from the cumulative anomaly method can determine the approximate range, facilitating
further accurate judgment using the M–K (Mann–Kendall) method and Pettitt test.

2.3.4. Precipitation Value Prediction

For large-scale basins in mid–high latitudes, precipitation exhibits strong non-linear
characteristics in its spatiotemporal distribution. Exploring the overall patterns and trends
of precipitation time series data is beneficial for precipitation forecasting, hydrological fore-
casting, and water resource management [45]. Commonly used methods in precipitation
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forecasting include physically based dynamic models and statistically based prediction
models based on historical observational data [46]. Statistical prediction models, which
are based on historical observational data, model long-term hydrological time series data,
allowing exploration of the relationship between predictive factors and predicted precip-
itation [47]. In statistically based prediction models, there are single-model predictions
and ensemble predictions using multiple models. With the advent and application of
deep learning methods such as Artificial Neural Networks (ANNs) in recent years, these
methods are gradually being applied in the field of hydro-meteorological forecasting due
to their non-linear and flexible modeling characteristics.

This study compared and analyzed the prediction of precipitation in the Heilongjiang
(Amur) River Basin using three models: the RNN (Recurrent Neural Networks) algo-
rithm, STL Decomposition (Seasonal-Trend decomposition using LOESS), and the LSTM
(Long Short-Term Memory) model. To compare the prediction results of different models,
normalized root mean square error (NRMSE), Pearson correlation coefficient R, and the
Nash–Sutcliffe efficiency coefficient (NSE) were selected as indicators to evaluate the accu-
racy of precipitation prediction models. Through comparative analysis of the performance
of different prediction models in simulating precipitation values, the optimal model was
selected to predict the main influencing factor of precipitation, namely the value of precipi-
tation. This provides a simulated reference for predicting the occurrence of flood disasters
in the areas through which the Heilongjiang (Amur) River Basin flows.

Recurrent Neural Network

An Recurrent Neural Network (RNN) is an important component of deep learning
algorithms. The most significant difference differentiating it from fully connected neural
networks is that the hidden layer units are not mutually independent. Hidden layer neurons
are not only interrelated; the current state of the hidden layer cells is also influenced by
the historical input data. This characteristic makes it very effective in extracting temporal
relationships in time series data structures. An RNN is a type of neural network used for
processing sequence data. At different time steps, an RNN cycles weights and connects
across time steps [48].

STL Decomposition

Seasonal-Trend decomposition using LOESS (STL) is a time series decomposition
algorithm based on Loess smoothing. This algorithm can decompose a time series into
three components: trend component, seasonal component, and residual component.

Yt = Tt + St + Rt (6)

In this decomposition, Yt represents the observed value at time t, and Tt, St, and Rt
represent the trend component, seasonal component, and residual component at time t,
respectively. The trend component describes a series of data points where the variable
changes continuously over time. The seasonal component is a continuous regular pattern
that repeats at fixed time intervals. The residual component represents noise or randomness,
describing random fluctuations or unpredictable changes [49].

Long Short-Term Memory

A Long Short-Term Memory (LSTM) neural network is a deep neural network algo-
rithm that transforms the hidden layer nodes into memory cells based on the Recurrent
Neural Network (RNN) architecture [50]. To avoid the information loss caused by sepa-
rating the input sequence variables in traditional Artificial Neural Networks (ANNs) and
RNN models without considering the relationships between preceding and subsequent in-
puts, LSTM uses memory cells to coordinate and propagate the previous input information,
continuously increasing the vector transmission process while retaining the state of the
input vectors, thus providing the network with “memory function”. The core functionality
of LSTM lies in using finite-state storage to store and propagate neuron information [51].
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Based on this, it introduces input gates, output gates, and forget gates on top of the memory
cells, which are used to selectively remember and feedback the error function through
the gradient descent optimization. During the forward propagation, the input gate and
output gate control the activation flow into and out of the memory cells at each time step,
respectively. During the backward propagation, the output gate and input gate control the
error flow into and out of the memory cells at each time step, respectively. The forget gate
is responsible for discarding information during the propagation process.

3. Results and Analysis
3.1. Spatial Trends of Meteorological Elements in the Heilongjiang (Amur) River Basin
3.1.1. The Spatial Characteristics of Overall Climate Change in the Heilongjiang (Amur)
River Basin

Spatial interpolation analysis of temperature and precipitation data for the main body
of the Heilongjiang (Amur) River Basin was conducted using the Anusplin interpolation
method and linear trend analysis. The spatial distribution of annual average temperature
and precipitation in the Heilongjiang (Amur) River Basin is shown in Figure 2a,b. As
indicated by Figure 2a,b, the spatial distribution characteristics of the annual average tem-
perature and precipitation in the main body of the Heilongjiang (Amur) River Basin exhibit
significant spatial heterogeneity. From the southeast to the northwest of the basin, with the
increase in latitude and elevation, as well as the distribution of mountainous terrain within
the basin, the annual average temperature gradually decreases, and the annual average
precipitation gradually decreases. The annual average temperature in the basin varies
within the range of −14.37 to 6.75 ◦C, and the annual average precipitation varies within
the range of 207.97 to 1115.05 mm. In the past 43 years, the annual average temperature in
the Heilongjiang (Amur) River Basin was 0.79 ◦C, and the annual average precipitation
was 459.98 mm. Under the combined influence of climate change and geographical factors,
the meteorological characteristics of the Heilongjiang (Amur) River Basin exhibit a spatial
pattern of relatively warm and humid conditions in the southeast and drier and colder
conditions in the northwest of the basin.

The spatial distribution of the annual average temperature change rate in the Hei-
longjiang (Amur) River Basin over the past 43 years, as shown in Figure 2c, reveals a
decreasing trend in temperature in the southeastern part of the basin, while the north-
western part of the basin shows a warming trend. The overall temperature change rate in
the basin is 0.50 ◦C/10a (significant at the α = 0.01 level). Spatially, the temperature de-
crease rate in the southeastern part of the basin ranges from −11.50 to −3.91◦C/10a, while
the temperature increase rate in the northwestern part ranges from −3.9 to 3.68◦C/10a.
The high-altitude areas in the northwestern part of the basin exhibit smaller temperature
changes compared to the coastal areas in the northeastern part, showing a warming trend.
The influence of moist and cold air from the Pacific Ocean invades the southeastern part of
the basin, but the presence of mountain ranges such as the Sikhote-Alin and the Greater
Khingan weakens the impact of coastal monsoons. The spatial distribution of the annual
average precipitation change rate, shown in Figure 2d, indicates a decreasing trend on
both the eastern and western sides of the basin, with an increasing trend in the central
part. In the past 43 years, the overall annual average precipitation change rate in the basin
was 15.18 mm/10a. Being spatially influenced by latitude and elevation, the precipitation
change rate in the basin gradually decreases from the southern part towards the surround-
ing areas. Considering the combined trends of temperature and precipitation changes in
the basin, there is an overall trend of “warming and humidification,” but there are spatial
variations within the basin due to the influence of terrain and elevation factors. Therefore,
the basin as a whole was divided into eight sub-basins to further analyze the characteristics
of meteorological changes in each of its sub-basins.
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Figure 2. Characteristics of spatial distribution of temperature and precipitation changes in the
Heilongjiang (Amur) River Basin, 1980–2022. (a) spatial distribution of mean annual temperature (in
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3.1.2. Spatial Characteristics of Climate Change in the Sub-Watersheds of the Heilongjiang
(Amur) River Basin

The spatial distribution of annual average temperature and precipitation in the sub-
watersheds of the Heilongjiang (Amur) River Watershed can be seen in Figure 3a,b. The
mean values and trends of annual average temperature and precipitation in each sub-
watershed are shown in Table 1. From Figure 3a,b and Table 1, it can be observed that there
are significant differences in the annual average temperature and precipitation among the
sub-watersheds of the Heilongjiang (Amur) River Watershed. Specifically, the temperature
displays a distribution pattern of decreasing from the southeastern to the northwestern
part of the watershed, with the lowest temperature centered in the northern part of the
Shilka River, Zeya River, and Bureya River. For example, the annual average temperature
in the Songhua River sub-watershed in the southeastern part is 3.54 ◦C, while it decreases
to −3.73 ◦C in the Bureya River sub-watershed in the northern part, resulting in a temper-
ature difference of 7.27 ◦C between the two sub-watersheds. The spatial distribution of
precipitation among the sub-watersheds within the watershed is uneven, with a gradual
decrease from the southeastern coastal regions to the northwestern plateau areas. The
peak of precipitation is located in the southeastern coastal sub-watersheds, including the
Songhua River, Wusuli River, and the main stream of the Heilongjiang River. Among
them, the Songhua River sub-watershed in the southeastern part has an annual average
precipitation of 641.79 mm, which is nearly twice the annual average precipitation in the
Shilka River sub-watershed (339.8 mm) in the northwestern plateau region.

The spatial distribution of the annual average temperature change rates in various sub-
basins of the Heilongjiang (Amur) River Basin, as shown in Figure 3c, indicates that all sub-
basins are experiencing a significant warming trend (with all passing the significance level
test of α = 0.01). However, there are differences in the warming rates among the sub-basins,
showing an increasing trend from the southeastern coastal basins to the northwestern
plateau basins. For example, the warming rates in the Bureya River Basin, Shilka River
Basin, and Jeya River Basin are all greater than 0.5 ◦C/10a. The Bureya River Basin has
a warming rate nearly 4.5 times that of the Ussuri River Basin, which has the smallest
warming rate. The spatial distribution of the annual average precipitation change rates
in various sub-basins of the Heilongjiang (Amur) River Basin, as shown in Figure 3d,
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indicates that the precipitation change rates in the basin exhibit an increasing trend in the
southern and central basins and a decreasing trend in the eastern and western basins. For
instance, the Songhua River and Zeya River Basins show a significant increasing trend in
precipitation, with change rates of 91.57 mm/10a and 38.52 mm/10a, respectively (both
passing the significance level test of α = 0.01). In contrast, the Wusuli River, Amgun
River, and Bureya River Basins, located in the eastern part, exhibit a decreasing trend in
precipitation, with change rates of −11.15 mm/10a, −26.04 mm/10a, and −8.10 mm/10a,
respectively. In analyzing the spatial distribution and change rate distribution of the annual
average temperature and precipitation in various sub-basins, it can be observed that the
warming trend in temperature is more significant than the increasing trend in precipitation
across the sub-basins.
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Figure 3. Characteristics of spatial distribution of temperature and precipitation changes in each
sub-basin of the Heilongjiang (Amur) River Basin, 1980–2022. (a) Spatial distribution of mean annual
temperature (◦C) in each basin; (b) spatial distribution of mean annual precipitation (mm) in each
basin; (c) spatial distribution of the rate of change in mean annual temperature in each basin (◦C/10a);
(d) spatial distribution of the rate of change in mean annual precipitation in each basin (mm/10a).

Table 1. Mean values and trends of mean annual temperature and precipitation in the basins of the
Heilongjiang (Amur) River Basin.

Watershed Mean Annual
Temperature/◦C

Mean Annual
Precipita-
tion/mm

Temperature
Change Rate
/(◦C·(10a)−1)

Temperature
Change M-K
Statistic Value Z

Precipitation
Change Rate
/(mm·(10a)−1)

Precipitation
Change M-K
Statistic Value Z

Erguna River −1.39 397.13 0.37 ** 3.06 28.06 1.09
Shilka River −1.66 339.80 0.66 ** 4.33 4.33 0.15
Songhua River 3.54 641.79 0.28 ** 3.20 91.57 ** 2.70
Wusuli River 2.62 492.46 0.20 ** 2.89 −11.15 * −0.57
Amgun River 1.29 424.79 0.31 ** 3.04 −26.04 −0.08
Bureya River −3.73 465.09 0.89 ** 4.11 −8.10 −0.21
Zeya River −2.37 552.56 0.66 ** 3.30 38.52 ** 3.47
Heilongjiang River −0.04 501.51 0.54 ** 4.69 1.22 0.50
Heilongjiang
(Amur) River 0.79 459.98 0.50 ** 4.75 15.18 1.32

Note: * denotes passing the α = 0.05 significance level test and ** denotes passing the α = 0.01 significance
level test.
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3.2. Seasonal Characteristics of Meteorological Element Variation in the Heilongjiang (Amur)
River Watershed
3.2.1. Seasonal Division of Sub-Watersheds

In previous studies on the seasonal characteristics of meteorological elements in
regions, the seasons were often divided into spring, summer, autumn, and winter, and
the characteristics of meteorological elements in each season were discussed separately.
However, for the Heilongjiang (Amur) River Basin, in the middle and high latitudes, most
areas within the basin experience a long and cold winter with stronger seasonality in
precipitation. Taking Harbin, China, as an example, the winter season can last for more
than half a year, and summer precipitation accounts for more than half of the annual
total. In common seasonal divisions in high latitudes, the winter season only includes
December and the following January and February, which may not adequately represent
the winter conditions in the regions through which the basin flows. Additionally, most
vegetation and crops require environments with temperatures above 0 ◦C for growth. To
highlight the variations in meteorological elements in different seasons, the seasons were
divided into growing seasons and non-growing seasons. Using daily temperature data
from 223 meteorological stations near the Heilongjiang (Amur) River Basin from 1980 to
2022, with 0 ◦C as a threshold, the inflection points where the daily average temperature
is continuously higher (or lower) than 0 ◦C were identified as the start (end) time of the
growing season. The length of the growing season (from start to end) was then subjected
to spatial interpolation analysis. Based on this, the annual variations in meteorological
elements in the Heilongjiang (Amur) River Basin and its sub-basins were classified into
growing seasons and non-growing seasons. The seasonal characteristics of meteorological
elements in the basin as a whole and in each sub-basin were analyzed. The specific
classification results are shown in Table 2.

Table 2. Division of growing and non-growing seasons in the watersheds of the Heilongjiang (Amur)
River Basin.

Length of
Growing Season

Characteristics of Changes
during the Year

Season
Corresponding Watershed

Growing Season Non-Growing Season

≥180 days Temperature above 0 ◦C
for more than 6 months March–October November–February

Songhua River Basin, Wusuli
River Basin, Heilongjiang
River Basin

120~180 days Temperature above 0 ◦C
for 4~6 months or above April–September October–March

Erguna River Basin, Zeya
River Basin, Shilka
River Basin

≤120 days Temperature above 0 ◦C
for more than 3 months May–August September–April Amgun River Basin, Bureya

River Basin

3.2.2. Characteristics of Meteorological Element Changes during the Growing Season in
Sub-Watersheds

The length of the growing season in the Heilongjiang (Amur) River Basin is influ-
enced by latitude, altitude, and the distribution of temperature and precipitation. The
length of the growing season gradually shortens from the southeastern coastal basin to
the northwestern plateau basin. The southeastern basin has a growing season length of
≥180 days, while the northwestern basin has a growing season length of ≤120 days. The
remaining basins have a growing season length between 120 and 180 days (see Figure 4).
The spatial distribution of the average temperature and precipitation during the growing
season in the sub-watersheds of the Heilongjiang (Amur) River Watershed can be seen in
Figure 4a,b. From Figure 4a,b, it can be observed that the spatial distribution of the average
temperature and precipitation during the growing season is generally consistent with the
spatial distribution characteristics of the annual average temperature and precipitation,
with higher temperatures in the southeastern areas compared to the northwestern regions.
The Songhua River sub-watershed in the central and southern part of the watershed has the
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highest average temperature during the growing season, reaching 14.62 ◦C. It is located in
the Songnen Plain region with a higher vegetation coverage, which has better temperature
regulation capabilities and a lower occurrence of extreme weather events compared to the
Wusuli River sub-watershed, which is located at the same latitude, resulting in slightly
higher temperatures during the growing season. The Amgun River and Bureya River
sub-watersheds in the northern part have relatively higher temperatures during the grow-
ing season, reaching 12.11 ◦C. Considering the geographical features of the watersheds,
these two sub-watersheds are located in the Bureya mountain range, which to some extent
isolates the cold air from the Siberian Plain and the cold and wet monsoon from the Pacific,
resulting in slightly higher temperatures during the growing season compared to the Shilka
River sub-watershed, which is located at the same latitude and elevation. The center of
precipitation during the growing season is located in the Songhua River sub-watershed,
with an average precipitation of 505.45 mm. The precipitation during the growing season
decreases gradually from the center to the surrounding areas within the watershed.
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Figure 4. Characteristics of spatial distribution of temperature and precipitation changes during
the growing season in sub-basins of the Heilongjiang (Amur) River Basin, 1980–2022. (a) Mean
temperature (◦C); (b) mean precipitation (mm); (c) mean rate of change in temperature (◦C/10a);
(d) mean rate of change in precipitation (mm/10a). (* denotes passing the α = 0.05 significance level
test and ** denotes passing the α = 0.01 significance level test).

Figure 4c shows the spatial distribution of the average temperature change rate during
the growing season in the sub-watersheds of the Heilongjiang (Amur) River Watershed. It
indicates a significant warming trend in the average temperature during the growing season
in each sub-watershed, with the warming amplitude decreasing gradually from east to west
within the watershed. Specifically, the areas with relatively large warming rates are the main
stream of the Heilongjiang River, Wusuli River, and the Erguna River, with warming rates of
2.787, 0.241, and 0.128 ◦C/10a, respectively (all passing the significance level test of α = 0.05).
The Bureya River, Amgun River, and Zeya River sub-watersheds in the northern part of the
watershed have smaller warming amplitudes, with rates of 0.094, 0.086, and 0.07 ◦C/10a,
respectively. The spatial distribution of the growth season average precipitation change
rate in various sub-basins of the Heilongjiang (Amur) River Basin, as depicted in Figure 4d,
reveals that the growth season precipitation in the central and western sub-basins of the
basin shows varying degrees of increasing trends. Among them, the Zeya River Basin
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exhibits the most significant increase at a rate of 36.87 mm/10a (passing the significance
level test of α = 0.01). The observed increase in the growth season precipitation in this basin
may be associated with the global climate warming, leading to an augmentation of growth
season precipitation. Conversely, the sub-basins located in the eastern part of the basin,
including the Wusuli River Basin, Bureya River Basin, and Amgun River Basin, exhibit
a decreasing trend in growth season precipitation. The reduction magnitude spatially
decreases from the coastal to the inland areas. When comparing the spatial trends in the
annual average precipitation and growth season precipitation in various sub-basins of
the Heilongjiang (Amur) River Basin, it is evident that there is a high degree of similarity
between the changes in growth season precipitation and annual precipitation in the basin.
This further confirms that the variation in growth season precipitation in the Heilongjiang
(Amur) River Basin plays a dominant role in its interannual precipitation changes.

3.2.3. Characteristics of Meteorological Element Changes during the Non-Growing Season
in Sub-Watersheds

The spatial distribution of average temperature and precipitation during the non-
growing season in the sub-watersheds of the Heilongjiang (Amur) River Watershed can
be seen in Figure 5a,b. From Figure 5a,b, it can be observed that the average temperature
during the non-growing season gradually decreases from the southeastern coastal regions
to the northwestern sub-watersheds. The center of low temperatures is located in the Bureya
River sub-watershed in the northern part, while the center of high temperatures is in the
Wusuli River sub-watershed, with a temperature difference of 5.76 ◦C between the two.
Comparing the spatial distribution characteristics of annual average precipitation and non-
growing season precipitation, the spatial distribution characteristics of non-growing season
precipitation are generally consistent with the distribution of annual average precipitation.
The main pattern is a decrease in precipitation from the southeastern to the northwestern
sub-watersheds, with the peak of precipitation located in the Songhua River sub-watershed
and the center of low values in the Shilka River sub-watershed, with a difference of 72.3 mm
in non-growing season average precipitation between the two.
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Figure 5c shows the spatial distribution of the average temperature change rate during
the non-growing season in the sub-watersheds of the Heilongjiang (Amur) River Water-
shed. Unlike the Songhua River and Erguna River sub-watersheds, which show a weak
decreasing trend, the other six sub-watersheds all exhibit a warming trend during the
non-growing season, with higher warming rates in the coastal regions compared to the
northwestern regions of the watershed. The Amgun River sub-watershed has the highest
warming rate during the non-growing season, reaching 0.38 ◦C/10a, while the Bureya
River sub-watershed has a relatively smaller warming rate of only 0.05 ◦C/10a. When
considering variations in latitude and distance from the ocean, the impact of elevation on
the rate of temperature changes should also be considered. When comparing the temper-
ature changes during the growing and non-growing seasons in the sub-watersheds, it is
evident that the contribution of the temperature increase during the non-growing season
to interannual warming variation in the watershed is greater than that of the temperature
increase during the growing season. Figure 5d illustrates the spatial distribution of the
average precipitation change rate during the non-growing season in the sub-watersheds
of the Heilongjiang (Amur) River Watershed. There are diverse characteristics of precip-
itation changes during the non-growing season in each sub-watershed. Specifically, the
Songhua River sub-watershed in the southern part shows the most significant increase in
precipitation, reaching 72.95 mm/10a. The Erguna River, Wusuli River, and Zeya River
sub-watersheds also exhibit varying degrees of increasing trends in precipitation. On the
other hand, the non-growing season precipitation in the Shilka River, Amgun River, and
Bureya River sub-watersheds, which are located at higher elevations, shows a decreasing
trend. In analyzing the factors influencing the increase in non-growing season precipitation
in the sub-watersheds, apart from the usual monsoon effects, the significant agricultural
areas in the Songhua River, Wusuli River, and Erguna River sub-watersheds should also be
considered. Artificial snowfall is often used during spring planting to increase precipitation
in the non-growing season.

3.3. Analysis of Abrupt Changes in Meteorological Elements in the Heilongjiang (Amur)
River Watershed
3.3.1. Analysis of Overall Climate Change in the Heilongjiang (Amur) River Watershed

The Mann–Kendall test, cumulative departure method, and Pettitt test were used
to analyze the abrupt changes in average temperature and precipitation data in the Hei-
longjiang (Amur) River Watershed. The results of temperature and precipitation changes
in the Heilongjiang (Amur) River Watershed can be seen in Figures 6 and 7 and Table 3,
with a significance level of 0.01 chosen for the Mann–Kendall test. From Figure 6a, it can be
observed that the UF statistic was negative from 1983 to 1985, but there was no significant
cooling trend. Since 1992 especially, the UF statistic has increased rapidly (significant at the
0.01 significance level), indicating a significant increase in the overall temperature of the
watershed during this period. The UF and UB statistics intersected in 1992. It can be seen
that the different methods of abrupt change analysis yielded different years of change. In
the analysis of overall temperature changes, the cumulative departure method indicated
an abrupt temperature change in 2001. The UF and UB curves in the Mann–Kendall test
intersected in 1992. The Pettitt test identified the largest |U| value at time T0, indicating an
abrupt temperature change in 2001 (significant at the p ≤ 0.5 level). Considering the results
of the three methods, it can be concluded that the year with the most abrupt temperature
change in the Heilongjiang (Amur) River Watershed was 2001. Analyzing Figure 7a, it can
be observed that except for 1981, the UF statistic was negative from 1982 to 2018, indicating
significant precipitation reductions during two periods: 1985–1990 and 2004–2012. Since
2018, the UF statistic has been positive, indicating an increasing trend in precipitation dur-
ing this period. In the analysis of overall precipitation changes, the cumulative departure
method indicated an abrupt change in precipitation in 2011. The UF and UB curves in the
Mann–Kendall test intersected in 2018. The Pettitt test identified the largest |U| value in
2011, indicating an abrupt change in precipitation in 2011 (significant at the p ≤ 0.5 level).
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Table 3. Results of sudden change analysis of mean temperature and precipitation in the Heilongjiang
(Amur) River Basin, 1980–2022.

Year of Change Determination of the
Year of ChangeMann–Kendall Test Cumulative Anomaly Method Pettitt Test

Average temperature 1992 2001 2001 2001
Average precipitation 2018 2012 2012 2012

3.3.2. Analysis of Climate Change in Sub-Watersheds of the Heilongjiang (Amur)
River Watershed

Regarding the analysis process of abrupt changes in the overall average temperature
and precipitation in the watershed, the results obtained from the three methods are shown in
Tables 4 and 5. From Table 4, it can be observed that the years of abrupt temperature changes
in the southern sub-watersheds were slightly earlier than those in the northwestern plateau
region. The Wusuli River sub-watershed experienced the earliest abrupt temperature
change in 1988, while the Amgun River sub-watershed experienced the latest abrupt
temperature change in 2007, likely due to topographical factors. Considering the years
of abrupt temperature changes in the overall watershed, it can be seen that the larger
sub-watersheds had a greater impact on the overall abrupt temperature change in the
watershed. From Table 5, it can be observed that except for the Shilka River sub-watershed
located in the Mongolian Plateau, the other sub-watersheds experienced an abrupt change
in precipitation in 2013, leading to a large-scale flood event in the Heilongjiang (Amur)
River Watershed. Specifically, the downstream area experienced a rare flood event that
occurs once every 100 years. The early northward movement of the subtropical high, the
eastward position and strong intensity of the East Asian trough, and frequent activity of
the Northeast Cold Vortex contributed to a significant increase in precipitation during the
growing season of 2013.

Table 4. Results of sudden change analysis of mean air temperature in sub-basins of Heilongjiang
(Amur) River, 1980–2022.

Watershed
Year of Change Determination of the Year

of ChangeMann–Kendall Test Cumulative Anomaly Method Pettitt Test

Shilka River 1994, 2001 2001 2001 2001
Erguna River 1999 1999 2000 1999
Songhua River 1989, 2013 1989 1989 1989
Wusuli River 1988 1988 1989 1988
Amgun River 2007 2006 2007 2007
Bureya River 2004 2004 2005 2004
Zeya River 1994 1994 1995 1994
Heilongjiang River 2002, 2009 2002 2003 2002

Table 5. Results of sudden change analysis of mean precipitation in sub-basins of Heilongjiang
(Amur) River, 1980–2022.

Watershed
Year of Change Determination of the Year

of ChangeMann–Kendall Test Cumulative Anomaly Method Pettitt Test

Shilka River 2013, 2018 2018 2018 2018
Erguna River 2013, 2021 2013 2013 2013
Songhua River 2013 2013 2013 2013
Wusuli River 2013 2013 2012 2013
Amgun River 2013 2013 2013 2013
Bureya River 2013, 2019 2013 2013 2013
Zeya River 2012, 2021 2013 2013 2013
Heilongjiang River 2013 2013 2013 2013
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3.4. Precipitation Value Prediction for the Heilongjiang (Amur) River Basin

Using the RNN algorithm model, STL Decomposition model, and LSTM model,
precipitation prediction models were established for the Heilongjiang (Amur) River Basin.
A monthly precipitation dataset from 1980 to 2022, consisting of 516 months, was selected
for the analysis. The precipitation amounts for the last 50 months of the dataset were
predicted. The fitting and prediction results for the 50-month period are shown in Figure 8.
The simulation results of the RNN model show that the predicted values exhibit a similar
trend to the observed values. While most of the predicted points coincide with the observed
values, there are significant errors and displacement in predicting the peaks and valleys
compared to the actual situation. Regarding the simulation results of the STL model,
the predicted values generally have a small deviation from the observed values. There
is a slight displacement in the periods where precipitation increases or decreases. The
predicted precipitation shows a gradual decrease during the growing season, and the
increase in precipitation is more concentrated during the non-growing period, with the
peak precipitation point being relatively stable. The LSTM model accurately predicted
the periodic variations in monthly precipitation, with a trend that matches the actual
data and no significant displacement. The predicted values have small errors compared
to the observed values, and the peaks and valleys were accurately predicted without
overestimating or underestimating. Figure 9 shows the scatter plots of the prediction
results from different models. When comparing the scatter distributions of the prediction
results from the three models, it can be observed that the LSTM model’s predicted values
are closer to the true values, indicating higher prediction accuracy. The R and NSE values
of the LSTM model are 0.9734 and 0.9449, respectively. The RNN and STL models generally
underestimate the precipitation compared to the observed values, with R values above 0.9
but NSE values of 0.8939 and 0.9445, respectively. The fit is slightly inferior to that of the
LSTM model. The order of prediction accuracy, from high to low, is LSTM, STL, and RNN.
The LSTM model has the lowest NRMSE value of 0.0628 and the highest R and NSE values
among the three models. Based on these results, it can be concluded that the LSTM model
offers the best prediction performance for the Heilongjiang (Amur) River Basin.
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4. Discussion

(1) Over the past 43 years, the Heilongjiang (Amur) River Basin has exhibited a significant
warming trend, with a warming rate of 0.50 ◦C/10a, surpassing the global average
temperature increase rate of 0.12 ◦C/10a [52]. The primary factors contributing to
global warming include increased population density, soil desertification, and the
substantial use of carbon dioxide-producing fuels in human production and daily
life, leading to elevated concentrations of greenhouse gases in the atmosphere. The
retreat of glaciers and the thawing of permafrost in mid–high latitude regions fur-
ther exacerbate the warming trend, creating an irreversible cycle of warming. In the
Heilongjiang (Amur) River Basin, the spatial distribution of temperatures exhibits
a pattern of decreasing temperatures from the southeastern to the northwestern re-
gions. The warming amplitude gradually increases from the southeastern coastal
region towards the northwestern plateau region, with higher elevations experiencing
greater warming than lower elevations. During the non-growing season, the warming
amplitude in the Heilongjiang (Amur) River Basin is higher than that of the growing
season, indicating that the non-growing season temperature increase contributes more
significantly to the interannual warming variability in the basin.

(2) Over the past 43 years, the overall annual average precipitation in the Heilongjiang
(Amur) River Basin has exhibited a significant increasing trend, with an increase rate
of 15.18 mm/10a. Compared to temperature changes, the causes of precipitation
variations are more complex and diverse. They are influenced not only by monsoon
variations but also by atmospheric circulation anomalies such as the West Pacific
Subtropical High and the Northeast Cold Vortex [53]. Precipitation in the Heilongjiang
(Amur) River Basin decreases sequentially from the southeastern coastal area towards
the northwestern plateau region. The precipitation change rate on the higher-altitude
eastern and western sides of the basin shows a decreasing trend, while it increases in
the central region. Influenced by latitude and altitude, the precipitation change rate in
the basin gradually decreases from the southern region towards the surrounding areas.
The increase in precipitation during the growing season is greater than that during the
non-growing season. This is closely related to the annual distribution and seasonal
variation in precipitation in mid–high latitude regions, where the growing season
(April to September) contributes to 85% of the annual precipitation. Concurrently,
precipitation changes are also influenced by global temperature variations. Global
warming leads to increased precipitation in continental areas, especially in mid–high
latitude regions, resulting in imbalanced precipitation distribution and an increased
risk of extreme weather events such as floods and droughts.

(3) Due to climate variations influenced by monsoon factors, anomalies in high-pressure
systems, changes in solar radiation, and other factors, the Heilongjiang (Amur) River
Basin experiences different years of abrupt changes in temperature and precipitation.
The overall temperature in the basin underwent an abrupt change in 2001, while
precipitation exhibited an abrupt change in 2012. The years of abrupt temperature
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changes in the southern sub-basins are slightly earlier than those in the northern
plateau region. Except for the Shilka River Basin located on the Mongolian Plateau,
all other sub-basins experienced an abrupt change in precipitation in 2013. The
different years of abrupt precipitation changes in the Shilka River Basin to some extent
influence the most significant abrupt precipitation change year in the basin, leading to
inconsistencies with the precipitation abrupt change years in other sub-basins.

(4) The RNN algorithm model and STL Decomposition simulation exhibited prediction
trends that are generally consistent with the observed values, but they still suffered
from significant simulation defects characterized by substantial displacement biases.
In contrast, the LSTM model’s predicted trend aligns well with the actual trend, show-
ing no significant displacement biases. The errors between its predicted values and
observed values are relatively small, and it accurately predicted peaks and troughs
without overestimating peaks or underestimating troughs. The LSTM model’s pre-
dicted values are closer to the true values, indicating higher prediction accuracy, with
R and NSE values trending towards 1. For the Heilongjiang (Amur) River Basin,
the LSTM model demonstrated the optimal predictive performance. Its predicted
precipitation values can serve as crucial indicators of flood prevention, and when
combined with other factors influencing flood occurrence, it can effectively provide a
scientific basis for local flood control and disaster reduction efforts.

(5) In the management of the Heilongjiang (Amur) River Basin, the countries through
which the basin flows should collaborate, relying on the hydrological, economic,
and social links established by the basin. This collaboration should be based on a
comprehensive consideration of geographical, hydrological, demographic, climatic,
and climate change factors, as well as economic and social needs and other available
water resources among the countries. Together, they should formulate corresponding
water resource management treaties [54]. The content of such treaties should cover
aspects such as transboundary water resource protection, management, and equitable
utilization, ensuring the sustainable development of the basin’s ecological environ-
ment, rational distribution, and utilization of water resources within the basin, and the
balance of human survival and social development needs among the countries in the
basin. For example, the climate in the southeastern part of the basin is characterized by
a warm and humid trend. Although the climatic conditions are favorable, this region
also has a relatively high population density, leading to substantial water demand.
Therefore, the allocation of water resources within the basin should consider multiple
factors comprehensively.

In the management of the Heilongjiang (Amur) River Basin, the countries running
through the basin should join hands to formulate a water resources management treaty
based on the hydrological, economic, and social ties established in the basin, taking into
account the geography and hydrology, population, climate and climate change, economic
and social needs, and other available water sources of the countries, and analyzing the
weight of each factor [55]. The content of the treaty should cover the protection, manage-
ment, and rational use and allocation of transboundary water resources in the basin, so
as to ensure the sustainable development of the ecological environment in the basin, the
rational allocation and use of water resources in the basin, and the balance between the
needs of human survival and social development among the countries in the basin [56].

We believe that the water resources of the basin can be rationally developed and
utilized while ensuring its sustainable development and ecological balance. Water resources
should be proportionally allocated according to the total water resources of the basin in
the four countries, taking into account the regional population density, the degree of
industrialization, and the degree of agricultural agglomeration, to form a water sharing
model [57]. For the Nile Basin, which is also an international river with a basin spanning
11 countries, water problems, water diplomacy challenges, and other water conflicts are
more prominent [58]. With regard to the rational allocation of water resources in the basin,
there are years of research results that can be used to provide a case study for the equitable
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allocation of water resources in the Heilongjiang (Amur) River Basin [59]. Through the
development of an inclusive water sharing agreement, multiple transboundary water
resource challenges, such as water security, food security, ecological security, etc., can be
addressed, and joint co-operation and efforts can be promoted among the countries through
which the river flows. In particular, in the management of water resources in the basin,
a basin think-tank should be formed, and hydrological results should be exchanged on
a regular basis, so as to make due efforts and responsibilities for the protection of water
resources in the basin [60]. Last but not least, the development and protection of water
resources in the basin is reflected in the surface runoff, and groundwater resources are
also an important part of water resources in the basin [61]. The development, use, and
protection of groundwater resources in the basin should be given the same importance
as surface water. All countries should pay attention to it and share the responsibility of
protecting water resources in the basin.

5. Conclusions

This study was based on daily temperature and precipitation data from 1980 to
2022 collected from 282 meteorological stations in and around the Heilongjiang (Amur)
River Basin. The spatial distribution characteristics of meteorological elements for the
overall basin and each sub-basin’s interannual and seasonal variations were analyzed.
Additionally, the meteorological variability features of the entire basin and its sub-basins
were investigated. Furthermore, a predictive analysis was conducted on the precipitation
for the next 50 months in the time series. The following conclusions were drawn:

(1) The southeastern part of the Heilongjiang (Amur) River Basin is relatively warm and
humid, while the northwestern region is characterized by dry and cold conditions. The
annual warming rate increases gradually from the southeastern coastal area towards
the northwestern plateau region. Conversely, the annual increase rate of precipitation
decreases from the southern region towards the surrounding areas. Over the period
from 1980 to 2022, the overall trend in the Heilongjiang (Amur) River Basin indicated
a “warm and humid” development pattern.

(2) There is a spatial distribution pattern in the Heilongjiang (Amur) River Basin where the
annual average temperature decreases from the southeastern part to the northwestern
part, while the annual average precipitation gradually decreases in the same direction.
The annual warming rate increases gradually from the southeastern coastal area
towards the northwestern plateau region. The rate of precipitation increase is larger in
the central and southern regions, while the eastern and western regions of the basin
show a decreasing trend in precipitation.

(3) The length of the growing season gradually shortens from the southeastern part to
the northwestern part of the Heilongjiang (Amur) River Basin. The growing season
in the northwestern part of the basin is ≤120 days, while in the southeastern part, it
is ≥180 days. The remaining sub-basins have growing season lengths ranging from
120 to 180 days.

(4) The distribution of average temperature and precipitation during the growing season
in each sub-basin is generally consistent with the distribution of the average annual
temperature and precipitation. The rate of warming decreases gradually from east to
west, and the trend of precipitation change during the growing season is consistent
with the trend of precipitation change throughout the year. The average temperature
during the non-growing season in each sub-basin gradually decreases from the south-
eastern coastal basin to the plateau basin in the northwest. The center of non-growing
season precipitation remains in the central area of the Songhua River Basin, and the
trend of non-growing season warming shows a decrease in the plain area and an
increase in the plateau area. The increase in non-growing season precipitation is con-
centrated in the central and southern plain areas, while the decrease in precipitation is
mainly concentrated in the northwest plateau area.
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(5) Due to the influence of exceptional weather factors and the scope of the basin, different
breakpoints are observed in the changes in meteorological elements. The overall
temperature in the Heilongjiang (Amur) River Basin experienced a breakpoint in 2001,
while precipitation underwent a breakpoint in 2012. In the southern sub-basins, the
year of temperature breakpoint is slightly earlier than that in the northern plateau
region, and the precipitation breakpoint is concentrated in the year 2013.

(6) The LSTM model performed better in simulating and predicting the phase changes of
precipitation peaks and valleys in the basin. It has a higher prediction accuracy, with
R and NSE values closer to 1. Therefore, for the Heilongjiang (Amur) River Basin, the
LSTM model is considered the optimal model for precipitation prediction.
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Abstract: In previous studies of ship–ice interactions, most studies focused on ship–level ice inter-
actions, overlooking potential rafted ice conditions in extreme ice conditions. The purpose of this
study is to develop a numerical model for predicting ship resistance in rafted ice regions. Numerical
modeling of rafted ice was carried out using preset grid cells. By comparing the model test results,
the accuracy and reliability of the numerical model are verified. On this basis, we undertook the
analysis of the impacts of different ice thicknesses, ship speeds, bending strengths, and crushing
strengths on the ice resistance of ships under level and rafted ice conditions. The results show that
the ice resistance of ships is significantly higher than that of rafted ice under the condition of level ice;
however, level ice and rafted ice have different effects on ship ice resistance. Compared with level ice,
the ice resistance of ships navigating in rafted ice is more concentrated. The findings of the present
research can serve as a technical reference for studies focused on predicting ship resistance in rafted
ice regions.

Keywords: polar ship; rafted ice; numerical simulation; ice resistance; circumferential crack method

1. Introduction

Typical features of sea ice in the polar regions include brash ice, floating ice, layered ice,
and rafted ice. Rafted ice is one of the specific ice formations in the polar regions, especially
during the initial and final sea ice periods. The dynamic effects of the fractures, extrusion,
and accumulation of sea ice cause an increase in sea ice thickness. During navigation, a
ship is subjected to non-linear solid ice resistance, which significantly challenges a ship’s
safe navigation.

For the navigation safety design of polar ships, researchers have proposed various
ship performance prediction methods under sea ice conditions, which can be divided into
experimental [1–5], analytical [6–10], and numerical methods [11–15]. Experimental meth-
ods include full-scale measurements and model tests. Full-scale ship trials are challenging
to replicate and involve high costs, while model tests impose strict requirements on the
experimental equipment and methodology. Empirical formula methods involve theoretical
analyses of ship–ice interaction processes but often simplify the ship and sea ice models,
which has particular limitations for complex sea ice and ship models. In recent years,
with the rapid improvement of computer performance, numerical methods have been
effectively applied. Numerical methods have significant development potential compared
to experimental and empirical analytical methods. Numerical methods applied to ship–ice
interactions mainly include the finite element method (FEM), the discrete element method
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(DEM), and the circumferential crack method (CCM). The FEM has been widely applied in
the context of ship–ice interaction problems over the years.

Yu et al. [16] employed the finite element method to numerically simulate periodic
ice loads in the interaction between sea ice and conical structures, and the calculated sea
ice bending damage process was similar to that of the results of full-scale measurements.
Feng et al. [17] used the cohesive element method to simulate the interaction between
ice and structures and conducted with an analysis of parameter sensitivity. It was found
that the structural response was very sensitive to changes in the fracture energy, and
the stress–strain curve of the body unit had a significant effect on the simulation. This
method was also used by Wang et al. [18] to simulate the continuous icebreaking process of
ships at different heeling angles, and they analyzed the continuous icebreaking process of
different ships with different transverse inclinations, with the results showing that the ice
resistance capacity of the ship and the extension length of the sea ice crevasse increased
with the increase in the ship’s transverse inclination angle. Lee et al. [19] proposed a
method to analyze the ice load in the frequency domain, and the trend of the overall power
spectral density with the bow angle was analyzed using different regression methods
(linear interpolation, support vector machine, random forest, and deep neural network),
and it was found that the deep neural network method performed the best. Shi et al. [20]
proposed an elastic-plastic iceberg material model with temperature gradient effect to study
the dynamic collision process between a floating production storage and offloading vessel
(FPSO) and an iceberg. The simulation results are compared with the design specification
to verify the validity of the iceberg model, and the effects of different iceberg shapes and
temperatures on the collision process are analyzed. The results show that the structural
damage of a floating production storage and offloading vessel (FPSO) is affected by the
structural strength, the iceberg strength, and the localized shape of the iceberg.Based on
the interaction process between ships and ice as well as the theory of sea ice fracturing,
Lu et al. [21] proposed an edge-crack theory model. Using the extended finite element
method, the mechanism of long crack propagation between parallel ice-breaking channels
was studied. The maximum distance between parallel channels without sea ice fracturing
was investigated and validated against experimental results.

In the discrete element method (DEM) realm, Hanse et al. [22] employed a two-
dimensional discrete circular-disc viscoelastic model to simulate broken ice and adjusted
numerical model calculation parameters according to ice tank experiments. Lau et al. [23]
conducted a series of numerical simulations on the interaction between ice offshore struc-
tures and ice ships using the three-dimensional block discrete element model. Liu et al. [24]
calculated the impact of factors such as ship speed, ice thickness, and ship width on the
ice resistance of ships using the DEM. Dong et al. [25] established an ice channel model
based on the discrete features of broken ice. Using image segmentation methods to extract
ice channel regions and introducing intelligent corner regression networks to accurately
delineate ice channel boundaries, this method has shown good accuracy in real ice channel
recognition. Xie et al. [26] simulated the ship–water interaction using a coupled CFD-DEM
method and established a discretized propeller model (DPM) and a body force model
(BFM). The results indicate that the BFM method can be used effectively for the assessment
of the main engine power and hull profile optimization during the ship development and
design stages. Regarding the circumferential crack method, Zhou et al. [27] proposed
a method based on the circumferential crack approach to distinguish the forms of sea
ice damage according to the ship’s heel angle, and they compared the numerical simu-
lation results with the model test results, which achieved a good consistency. Moreover,
Gu et al. [28] predicted the slewing motion of a polar ship in horizontal ice, considered
the effect of hull camber on different damage modes of sea ice, and analyzed the results
in comparison with the results of real ruler measurements, and the two results are in
good agreement.

Several scholars have also worked on rafted ice material modeling. Hopkins et al. [29]
utilized the discrete element approach using circular-disk and block models to validate
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that the relative motion of two flat ice blocks can result in either overlapping or crushing
and breaking. The former leads to rafted ice, and the latter is the initial process of ice
ridge formation. After observing the natural appearance of rafted ice through experiments,
Leppäranta et al. [30] found that the ice crystals at the contact point between the two layers
of level ice in the rafted ice formed a granular structure, and the shear strength of rafted
ice was thus lower than that of level ice. Bailey et al. [31] found that the shear force at
the adhesive interface of artificially created rafted ice was approximately 30% lower than
that of level ice through experiments. Parmerter et al. [32] established a numerical sea ice
rafting model capable of calculating the bending stress during the ice rafting process. The
results showed that the increase in the bending stress of sea ice is proportional to the square
of the ice thickness.

Although these methods have been applied to study ship interactions with level ice,
ice floes, broken ice, ice ridges, etc., most of the research on rafted ice has focused on its
mechanical properties and physical models. There has been relatively less exploration
on ship collisions with rafted ice. This paper combines a preset grid method with the
circumferential crack icebreaking assumption to establish a numerical model for rafted
ice. The model will be used to predict the resistance of ships in the rafted ice region and
compare the numerical simulation results with the model test results. On this premise,
the effects of different ice thicknesses, ship speeds, and sea ice characteristics on the level
of ship ice resistance and rafted ice are studied. This study supports subsequent ship
resistance predictions in rafted ice regions more effectively and holds a specific engineering
application value.

2. Numerical Model
2.1. Circumferential Crack Method

When ships navigate in polar regions, the interaction between the ship and the sea
ice leads to localized compression and fragmentation of the free edge of the ice when the
ship’s bow comes into contact with the ice. With the increase in the contact area between
the ship and the sea ice, there is a corresponding increase in crushing force, resulting in
circumferential cracks parallel to the contact area or radial cracks perpendicular to the
contact area. Based on the physical phenomena observed in full-scale measurements and
model tests, the hypothesis of circumferential crack occurrence is adopted in this study.
The geometric shape of the fractured floating ice is assumed to be wedge-shaped, with the
ice wedge angle denoted as θ. The icebreaking radius of the shape of the ice wedge is R, as
expressed in the literature [33].

R = Cl × l(1.0 + Cv × vn,2) (1)

where Cl and Cv represent empirical parameters, vn,2 denotes the relative normal velocity
between the ship and the sea ice, l refers to the characteristic length of the ice, which can be
expressed as follows:

l =

[
Eih3

i
12(1 − v2)ρwg

]1/4

(2)

where Ei signifies the elastic modulus, hi represents the ice thickness, v represents the
poisson ratio, ρw signifies the density of water, and g denotes the acceleration in gravity.

This paper converts the fan-shaped ice wedge to a square through area-equivalent
treatment, as shown in Figure 1. Assuming that the icebreaking radius of the ice wedge
is equal to that of the side length of the square grid cell and that the areas are equal, the
icebreaking angle θ of the two satisfy the following:

R2 =
θ

2
R2 → θ = 2rad (3)
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2.2. Icebreaking Force

During polar ship icebreaking navigation, the compressive force gradually increases
as the contact area between sea ice and the ship’s hull increases. Before bending failure,
the icebreaking force Fcr generated by the compression between the ship’s hull and sea ice,
with the force being perpendicular to the contact area, can be expressed as follows [34]:

Fcr = σc · Ac (4)

where Ac is the contact area and σc is the crushing strength of the ice.

2.3. Contact Area

When Ld · tan(φ) ≤ hi, the contact area between the ship and the sea ice has not
reached the bottom of the sea ice at this point, resulting in a triangular contact area
as follows:

Ac =
1
2

Lh
Ld

cos(φ)
(5)

When Ld · tan(φ) ≥ hi, the contact area between the ship and the sea ice reaches the
bottom, resulting in a quadrilateral contact as follows:

Ac =
1
2

(
Lh + Lh

Ld − hi/ tan(φ)

Ld

)
hi

sin(φ)
(6)

where Ac represents the contact area, Lh denotes the contact length, Ld refers to the contact
length, hi represents the ice thickness, and φ signifies the outward tilt angle at different
ship nodes.

2.4. Ice Failure Model

During the interaction between ships and sea ice, the failure mode of sea ice is in-
fluenced by various factors, including ship angle, ice thickness, and the relative velocity
between the ice and the ship. The ice failure model includes both bending failure and
crushing failure in the present study. According to the research by Zhou et al. [27], different
sea ice damage modes were used to distinguish the relationship between bending and
crushing damage, and they found that the hull camber angle produces different sea ice
damage modes and that the ship–ice friction coefficient affects the ultimate hull camber
angle of the sea ice failure mode. On this basis, Gu et al. [28] assumed that the friction
coefficient between the ship and the sea ice was 0.1 and calculated that the limiting angle of
the ship–ice failure mode was 84.2894◦, which means that, during the icebreaking voyage,
if the angle between the ship and the ice is more than 84.2894◦, this will lead to crushing
damage, whereas if it is less than 84.2894◦, this will lead to bending damage.

According to Kerr [35], the expression for the ultimate load of ice bending failure is
given as follows:

Pf = C f

(
θ

π

)2
σf h2

i (7)

where C f signifies the empirical parameter, θ signifies the idealized ice fracturing angle, σf
denotes the bending strength of ice, and hi represents the ice thickness.
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When ice experiences crushing failure, the localized icebreaking force acting on the
hull, according to ISO/FDIS 19906-2019 [36], can be expressed as follows:

Fcr = PG·Ac (8)

PG = CR

[(
h
h1

)n( L
h

)m
+ fAR

]
(9)

where CR represents the ice strength coefficient, h signifies the ice thickness, h1 signifies the
reference ice thickness of 1 m, m and n are the empirical coefficients, and fAR represents
the ice strength coefficient.

2.5. Rafted Ice Model

Currently, there are two main types of rafted ice. One type is that of finger-rafted
ice, where the ice body does not move as a rigid body, accumulating internal stresses that
are then released a shear force, thereby forming finger-rafted ice. Another type is that of
layered rafted ice, where one ice layer fractures and climbs onto another under external
dynamic forces, becoming rafted and forming a layered structure [37]. Figure 2 illustrates
the phenomenon of vertical layering in the material thickness direction of consolidated
ice, including the smooth level ice layer, the consolidation layer, and the submerged layer.
The submerged layer is formed by immersion in water, interacts with the level of ice
under the action of buoyancy, and ultimately forms the intermediate consolidation layer.
Shafrova et al. [38] conducted experiments on the freezing process of first-year ice ridges
and noted that various factors, such as seawater infiltration, temperature, salinity, and
pressure, affect the strength of the frozen bond between ice bodies during the formation
process. While studying the material properties of consolidated ice, Chen et al. [39] obtained
a fragment function relationship between its compressive strength and the strain rate. The
calculation formula is as follows:

σ′
c =

{
0.37

.
ε

0.2 .
ε > 4.6 × 10−4

53
.
ε

0.2 .
ε ≤ 4.6 × 10−4

}
(10)

where σ′
c is the revised compressive strength.

Water 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

where 𝐶 signifies the empirical parameter, 𝜃 signifies the idealized ice fracturing angle, 𝜎 denotes the bending strength of ice, and ℎ   represents the ice thickness. 
When ice experiences crushing failure, the localized icebreaking force acting on the 

hull, according to ISO/FDIS 19906-2019 [36], can be expressed as follows: 𝐹 = 𝑃 ∙ 𝐴 (8)

𝑃 = 𝐶ோ ቈ൬ ℎℎଵ൰ ൬𝐿ℎ൰ + 𝑓ோ (9)

where 𝐶ோ represents the ice strength coefficient, ℎ signifies the ice thickness, ℎଵ signifies 
the reference ice thickness of 1 m, 𝑚 and 𝑛 are the empirical coefficients, and 𝑓ோ repre-
sents the ice strength coefficient. 

2.5. Rafted Ice Model 
Currently, there are two main types of rafted ice. One type is that of finger-rafted ice, 

where the ice body does not move as a rigid body, accumulating internal stresses that are 
then released a shear force, thereby forming finger-rafted ice. Another type is that of lay-
ered rafted ice, where one ice layer fractures and climbs onto another under external dy-
namic forces, becoming rafted and forming a layered structure [37]. Figure 2 illustrates 
the phenomenon of vertical layering in the material thickness direction of consolidated 
ice, including the smooth level ice layer, the consolidation layer, and the submerged layer. 
The submerged layer is formed by immersion in water, interacts with the level of ice under 
the action of buoyancy, and ultimately forms the intermediate consolidation layer. 
Shafrova et al. [38] conducted experiments on the freezing process of first-year ice ridges 
and noted that various factors, such as seawater infiltration, temperature, salinity, and 
pressure, affect the strength of the frozen bond between ice bodies during the formation 
process. While studying the material properties of consolidated ice, Chen et al. [39] ob-
tained a fragment function relationship between its compressive strength and the strain 
rate. The calculation formula is as follows: 𝜎ᇱ = ൜0.37𝜀ሶ.ଶ  𝜀ሶ  4.6 × 10ିସ53 𝜀ሶ.ଶ  𝜀ሶ  4.6 × 10ିସൠ (10)

where 𝜎ᇱ is the revised compressive strength. 

 
Figure 2. Rafted ice model specimen. 

This study focuses on layered rafted ice, which belongs to composite ice formations. 
The stacking of two level ice layers primarily develops it. Currently, numerous scholars 
have proposed corresponding numerical models based on the characteristics exhibited by 
ice. Ni et al. [40] introduce cohesive elements to numerically model the intra- and 

Figure 2. Rafted ice model specimen.

This study focuses on layered rafted ice, which belongs to composite ice formations.
The stacking of two level ice layers primarily develops it. Currently, numerous scholars
have proposed corresponding numerical models based on the characteristics exhibited by
ice. Ni et al. [40] introduce cohesive elements to numerically model the intra- and interlayer
structures of the rafted ice layers, respectively. By randomly deleting the cohesive elements
within the model, the porosity of the natural rafted ice was successfully simulated, and
numerical calculations of the collision between a ship and rafted ice were carried out, and
it was found that the method was excellent in simulating the crack extension of rafted
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ice. In this study, based on the significant vertical layered structure of rafted ice, the
solidified and submerged layers are collectively referred to as the second layer of rafted
ice in the numerical model. And a correction factor is introduced to define the constitutive
parameters of the ice layer, which can include the mechanical properties of the low sea
ice in the condensation layer, reasonably expressing the differences between the rafted ice
layers, with the formula provided below.

σ =

{
Cσ1 n = 1
Cσ2 n = 2

}
(11)

where σ is the ice strength, C is the correction factor, and n is the number of layers of
rafted ice.

In the process of ship–ice interactions, the action of icebreaking forces causes the
formation of ice cracks. As these cracks spread, the ice gradually breaks and destroys. The
formation of rafted ice crevasses is simulated using grid cells, and the sea ice failure model
is introduced. The rafted ice is separated into isolated grid cells. The side length of the grid
cell is related to the icebreaking radius R, as shown in Figure 3. In the numerical model,
when the icebreaking force reaches the load-bearing limit of the grid cells, the rafted ice
is destroyed. Introducing this failure model allows for a more detailed consideration of
the rafted ice layer’s destruction process and simulates the ice layer’s fracture behavior
in numerical simulations. Each grid cell represents a discrete unit of the ice layer, and by
monitoring the impact of icebreaking forces on these units, it is possible to track the real-time
generation and propagation of cracks, ultimately simulating the complex failure process of
the rafted ice under the action of icebreaking forces. Figure 4 illustrates the computational
flow of the ship icebreaking simulation, which mainly includes the numerical model and
numerical process.
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3. Model Test in Rafted Ice
3.1. Experimental Description

A relevant model test of a ship model sailing in rafted ice was performed in an outdoor
ice tank of Harbin Engineering University [41]. The ice water tank is 20 m in length, 2 m
in width, and 1.5 m deep, and it can naturally make different ice features in winter. The
purpose of this is to conduct a towing test on a ship operating in rafted ice, and the test
follows Froude similarity and Cauchy similarity using a polar ship with a model scale of
1:60. The main particulars of the full-scale and model-scale ships are listed in Table 1.

Table 1. Main particulars of the ship.

Principal Hull Data Full-Scale Model-Scale

Length between perpendiculars/m 122.5 2.04
Beam/m 23.32 0.38

Draught/m 7.8 0.13
Stem angle/◦ 20 20

Waterline angle/◦ 34 34

Xu et al. [41] selected three different speeds, 0.17, 0.27, and 0.37 m/s, for the ship
model towing tests in the rafted ice region, and two tests were conducted for each speed,
and the settings of these six ship model tests are listed in Table 2.

Table 2. Parameters of rafted ice.

Case Towing Speed/m/s Bending Strength/MPa Crushing Strength/MPa

1
0.17

0.85 1.73
2 0.91 1.40
3

0.27
0.84 1.76

4 0.97 1.86
5

0.37
0.72 1.14

6 0.74 1.06

In the numerical simulation, as shown in Figure 5, the rafted ice is divided into upper
and lower layers, with each being composed of numerous square ice grids. Each ice grid’s
length can be taken as the ship’s icebreaking radius during navigation. The model is
divided into upper and lower layers that accurately reproduce the construction of rafted
ice, with each layer consisting of several square grids. Fine discretization of the waterline
at the ship’s draft ensures a reasonable simulation of the rafted ice damage and a precise
description of the location of the ship–ice grid contact points. Figure 6 provides the initial
top view of the ice–ship interaction.
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Figure 6. Initial state of the rafted ice and the polar ship.

3.2. Comparison of Model Tests

In the numerical simulation, each grid cell size represents the icebreaking radius.
White grids indicate no contact between the ship and these grid cells. Red grids indicate
interaction between the ship and the grid cells, while blue grids indicate grid cells that have
failed. Figure 7 illustrates the interaction process between the ship and the rafted ice in the
numerical simulation. With the continuous progress of the ship, the contact area between
the hull and the grid cells gradually increases. When the icebreaking force exceeds the
load-bearing limit of the grid cells, the grid cells fail, indicating the occurrence of fractures
and a failure in the rafted ice.
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In this paper, the test conditions of Case 5 are selected to analyze the numerically
simulated time history curves of total resistance, as shown in Figure 8. The simulation
results show obvious periodic characteristics with relatively stable peaks. This is due to
the fact that the grid cell parameters of the rafted ice are fixed in the numerical simulation,
and the ice resistance value oscillates and changes within a certain amplitude when the
ship reaches the icebreaking stabilization stage. The comparison between the numerical
simulation results and the experimental results is presented in Table 3. It can be observed
that with increasing ship speed, the resistance in the rafted ice also increases. By comparing
six different experimental conditions, the error between the two ice resistance values is
within 10%, indicating a good consistency and verifying the accuracy of the numerical
model to some extent.

Table 3. Comparison between model test results and numerical results.

Case Average in Experiment/N Average in Simulation/N Error/%

1 25.45 24.69 2.9
2 28.13 30.91 9.8
3 34.61 31.83 8.0
4 29.14 27.39 5.9
5 42.52 43.10 1.3
6 35.78 37.80 5.6
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Figure 8. Time history curve of total resistance in numerical simulation.

4. Sensitivity Analysis of Parameters

The numerical model simulating the ship’s motion in rafted ice established in this
paper has been well validated through comparisons with previous experiments and numer-
ical results. Additionally, this study focuses on the ice resistance characteristics of ships in
the level and rafted ice regions. The model test study from the ice tank of Aalto University
in Finland was chosen [42]. The model ship of MT Uikku had a scale of 1:31.6. The key
parameters of both the full-scale and model-scale platforms are presented in Table 4. The
ship model was towed by a trailer at a constant speed on level ice, and various experimen-
tal data were obtained by changing the ice thickness and velocity. Three test conditions
were selected from this model test for comparisons, which were Case1, 2, and 3, with the
parameters of the level ice being listed in Table 5.

Table 4. Main particulars of MT Uikku.

Principal Hull Data Full-Scale Model-Scale

Length between perpendiculars/m 150 4.75
Beam/m 21.3 0.67
Draught/m 9.5 0.3
Stem angle/◦ 30 30
Waterline angle/◦ 21 21

Table 5. Settings of level ice in model tests.

Case Towing
Speed/m/s

Towing
Speed/kn

Ice
Thickness/m

Bending
Strength/MPa

Crushing
Strength/MPa

1 0.09 0.97 0.76 0.844 2.192
2 0.09 0.97 1.03 0.669 2.485
3 0.09 0.97 0.63 1.029 5.389

Sequential ice resistance results through Case1, 2, and 3 were analyzed, as shown in
Figure 9. The squares and triangles are the average and maximum ice resistance observed
for Case1, 2, and 3, respectively, and the dots and pentagrams are the average and maximum
ice resistance for Case1, 2, and 3 in the numerical simulation. In Case1, the numerical
simulation’s average value is 598.59 kN, which closely matches the measurement of 560 kN
from the ice tank experiment, with an error of approximately 6.8%. In Case2, the numerical
simulation’s average value is 759.9 kN, while the measured value in the ice tank experiment
is 830 kN, with an error of approximately 8%. In Case3, the average error between the two
is 10%. By comparing the maximum ice resistance values under the three test conditions,
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it can be observed that only in Case2 is there a significant error between the numerical
simulation and the ice tank test in the peak ice resistance. The main reason for this error
is the inherent variability in ice parameters in different regions of level ice during the
model test preparation process. However, the numerical simulation discretizes the ice field
using grids coupled with predetermined ice parameters, which, to some extent, affects the
peak ice resistance. Based on the above analysis, the numerical results are qualitatively
and quantitatively consistent with the experimental data. The numerical method can also
predict ice resistance for ships in level ice.
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Figure 9. The numerical simulation and model test results for level ice.

Numerical simulations were conducted under Case1, 2, and 3 to compare the average
ice resistance of level and rafted ice of the same ice thicknesses for the three conditions, as
shown in Figure 10. The ice resistance of rafted ice is significantly lower than that of level ice
at the same speed, and the difference in ice resistance gradually increases as the ice thickness
increases from 0.63 m to 1.03 m. Since the structure of rafted ice is composed of two thin
layers of level ice that undergo secondary freezing, its overall strength is lower than that of
level ice; therefore, rafted ice is more prone to damage during ship–ice interactions.
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Figure 10. Comparison of level ice and rafted ice resistance under the same conditions.

Due to the different formation mechanisms and internal structures of level ice and
rafted ice, there are specific differences in their resistance characteristics. As shown in
Figure 11, in Case1, for example, the time history curves of ice resistance for both the
level ice and the rafted ice were analyzed. It can be observed that within the first 25 s,
the two trends are similar, but the resistance is lower than that of the level ice during the
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same period. As the icebreaker keeps moving forward, both show an increasing trend
in resistance. The ice resistance exhibits periodic fluctuations once the ship enters the
stable icebreaking stage. The ice resistance fluctuates with more prominent peaks when
interacting with level ice. However, due to the differences in the mechanical properties
of the rafted ice layers in the numerical simulation, the ultimate loads on the ice grids are
inconsistent. In Figure 12a, the first rafted ice layer where the ship’s bow is first contacted
by the two grid cells has already failed, while in Figure 12b, the two grid cells of the second
rafted ice layer at the same position are in action, and the forces generated by the different
layers of ice cause the ship’s ice resistance to fluctuate more significantly. The peaks of the
fluctuations are more significant.
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Figure 11. Time histories of ice resistance. (a) Time history of level ice in Case1; (b) time history of
level rafted ice in Case1.
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Figure 12. Interaction process of ship and rafted ice. (a) First layer of rafted ice (t = 110 s); (b) second
layer of rafted ice (t = 110 s).

4.1. Influence of Ice Thickness

The ice thickness is a crucial component influencing crushed ice. Diverse ice thick-
nesses of 0.6 m, 0.8 m, 1.0 m, and 1.2 m were selected to simulate the icebreaking of ships in
the level and rafted ice regions, and the sailing speed was 1 kn, and the sea ice parameters
were referred to in Tables 5 and 6. Figure 13 compares the mean ice resistance of ships in
level and rafted ice regions under varying ice thicknesses. As the ice thickness rises from
0.6 m to 1.0 m, the ship ice resistance of level ice increases from 558.02 kN to 1386.8 kN,
while the ship ice resistance of the rafted ice increases from 335.20 kN to 819.14 kN. The ice
resistance of ships in both the level and rafted ice regions increases with the growing ice
thickness. Under the same ice thickness circumstances, the resistance of ships in the rafted
ice region is relatively close to that of the level ice region at 0.6 m ice thickness, but at 1.2 m
ice thickness, there is a significant difference between the two. It can be found that the ship
ice resistance in level ice is more sensitive to the change in ice thickness compared to the
ship ice resistance in the rafted ice area.

Figure 14 illustrates the distribution of ship ice resistance in level and rafted ice
conditions under four different ice thicknesses at a certain ship speed. It can be observed
that the center of distribution of ship ice resistance in both level and rafted ice increases
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with the growth of ice thickness. In level ice, the distribution of ship ice resistance gradually
transitions from a left-skewed distribution to a right-skewed distribution, indicating that
increasing ice thickness increases the probability of encountering peak values in ship ice
resistance. In addition, the distribution of ship ice resistance for rafted ice increases with the
increase in ice thickness, especially in the conditions of 1 m and 2 m ice thickness, but the
distribution of ship ice resistance is lower compared with that of level ice under the same
ice thickness conditions. Notably, under different thickness conditions, the distribution
of ship ice resistance in rafted ice is more concentrated compared to that of level ice. This
suggests that the internal structure of level and rafted ice has distinct influences on the
distribution of ice resistance. The structure of rafted ice, being more intricate, results in a
more concentrated distribution of ice resistance, potentially leading to increased fatigue
effects on the ship’s structure.

Table 6. The mechanical parameters for numerical simulation of rafted ice.

Case Velocity/kn Bending
Strength/MPa

Crushing
Strength/MPa Number of Layers Correction Factor

1 0.97
0.844 2.192 1 1.0
0.759 1.972 2 0.9

2 0.97
0.669 2.485 1 1.0
0.602 2.236 2 0.9

3 0.97
1.029 5.389 1 1.0
0.926 4.850 2 0.9
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Figure 14. Comparison of ship ice resistance distribution in level and rafted ice under different ice
thicknesses. (a) Level ice; (b) rafted ice.
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4.2. Influence of Ship Speed

This article selects speeds of 2 kn, 3 kn, 4 kn, and 5 kn to simulate ship icebreaking
in the level ice and rafted ice regions. The sea ice parameters are shown in Tables 5 and 6,
with an ice thickness of 0.76 m. Figure 15 illustrates the variation in ship ice resistance
trends for level and rafted ice at different ship speeds. With an almost linearly increasing
relationship, ship speed highly influences the ship’s ice resistance in different ice conditions.
A comparison between ship speeds of 2 kn and 5 kn shows that the ship ice resistance of
level ice rises by 39.2%, while that of rafted ice increases by 38.4%. It can be observed that
the resistance of level ice is more sensitive than that of rafted ice under the influence of
ship speed.
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Figure 15. Mean ice resistance of the level and rafted ice under different ship speeds.

The results in Figure 16 show that the median line of ship ice resistance increases with
speed in all cases except for that of the case of a speed of 4 kn in level ice. The variation in
ship speed directly influences the size of the grid cells. Figure 17 illustrates the icebreaking
state of vessels in level ice simultaneously under four different ship speeds. It is observed
that, under the condition of a 4 kn speed in level ice, continuous crushing occurs between
the ship’s side and the grid cells. This leads to a more drastic variation in ship ice resistance,
significantly increasing the probability of peak values and causing a more dispersed overall
distribution of ice resistance. Therefore, speed not only impacts the peak magnitude of
ice resistance but also significantly influences the distribution of ship ice resistance. This
indicates that the change in speed may induce alterations in the interaction state between
the vessel and ice, consequently affecting the overall characteristics of ice resistance.
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Figure 16. Comparison of ship ice resistance distribution in level and rafted ice under different ship
speeds. (a) Level ice; (b) rafted ice.
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Figure 17. The icebreaking status of the ship at different speeds in a level ice scenario. (a) v = 2 kn
(t = 250 s); (b) v = 3 kn (t = 250 s); (c) v = 4 kn (t = 250 s); (d) v = 5 kn (t = 250 s).

4.3. Influence of Bending Strength

In the numerical simulations, bending strength is a crucial parameter directly influenc-
ing the load-bearing capacity of each ice grid. To analyze the impact of bending strength
on ship ice resistance, especially considering the environmental differences in the growth
of rafted ice, which are primarily reflected in the parameter variations of the lower sea ice
layer, this paper selected the correction factors of 0.6, 0.7, 0.8, and 0.9 to set the bending
strength for both the overall level ice and the lower layer of the rafted ice. Figure 18
illustrates the linearly increasing trend of ship ice resistance for the level and rafted ice as
the correction factor for the bending strength rise from 0.6 to 0.9. The ship ice resistance
for level ice increases from 539.15 kN to 701.42 kN, while for rafted ice, it increases from
373.14 kN to 431.87 kN. It is worth noting that the ice resistance generated by the ship in
level ice remains higher than that in rafted ice under the influence of bending strength.
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Figure 18. Mean ice resistance of the level and rafted ice regions at different bending strengths.

As shown in Figure 19, it can be observed that the median line of the ship ice resistance
in level and rafted ice increases with the increasing bending strength, which implies that a
higher peak in the ship ice resistance has an effect on the central tendency. Bending strength
directly influences the load-bearing capacity of the ice layer, and with an increase in bending
strength, the magnitude of ice resistance experienced by the vessel markedly rises. From
the analysis of the overall distribution of ship ice resistance, it can be seen that the larger
distance between the minima of the median line makes the ship ice resistance in level ice
have a right-skewed distribution, while in the rafted ice, the median line and the minima are
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equally distant from each other, thereby showing a normal distribution. Despite an increase
in bending strength, the overall trend changes relatively insignificantly. This suggests that
bending strength does not significantly impact the distribution of ice resistance.
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Figure 19. Comparison of ship ice resistance distribution in level and rafted ice under different
bending strength. (a) Level ice; (b) rafted ice.

4.4. Influence of Crushing Strength

Crushing strength is a crucial parameter in the interaction between ships and ice. In
numerical simulations, correction factors of 0.6, 0.7, 0.8, and 0.9 were selected to set the
compression strength for level ice and the lower layer of rafted ice. The sailing speed is
0.97 kn, and the ice thickness is 0.76 m. Figure 20 shows that with the increase of crushing
strength, the average and maximum ship ice resistance tend to decline. The icebreaking
force between the ship and the ice is affected by the crushing strength of the sea ice. Analysis
of individual interactions between the ship and ice grids reveals that enhancing crushing
strength shortens the time required for the breaking force to reach the ice’s load-bearing
limit. The force remains zero until colliding with the next ice grid, leading to a decreasing
trend in the mean ice resistance.
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Figure 20. Mean ice resistance of the level and rafted ice regions at different crushing strengths.
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As shown in Figure 21, it can be observed that the median line of ship ice resistance
decreases gradually with the increase in breaking strength in both the level and rafted ice.
In the level ice, the median line of ship ice resistance is further away from the end of the
minima, which makes the overall left-skewed distribution. In the rafted ice, the median
line of ship ice resistance is further away from the extreme value end, and the overall
distribution is right-skewed. This is due to the crushing strength directly affecting the
icebreaking force between the ship and the ice. The icebreaking force between the ship and
the ice increases with the increase in crushing strength. This means that the time of grid
cell failure is accelerated under the condition of the same carrying capacity of the grid cells
in the level ice. In the process of making contact with the next grid cell, no ice resistance
is generated, which leads to a decrease in the trend of the ice resistance of the ship in the
level ice. However, the process of collision between the ship and the rafted ice results in
the failure of the upper grid cell, which does not mean that the lower grid cell will also fail
due to differences in the mechanical properties of the layers of rafted ice. This alternating
action leads to a significant difference in the distribution of the overall ice resistance from
that in the level ice.
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Figure 21. Comparison of ship ice resistance distribution in level and rafted ice under different
crushing strengths. (a) Level ice; (b) rafted ice.

5. Conclusions

Based on the assumption of circumferential crack icebreaking, this paper employed
a predefined grid method to numerically simulate the icebreaking navigation of ships in
the rafted ice region. The numerical simulation results were compared with experimental
data, demonstrating a good consistency. On this basis, the paper further investigates
the influence of some key parameters on ship ice resistance and analyzes the resistance
distribution characteristics of the level ice and rafted ice areas using probability density
functions. The following conclusions are made:

1. According to the structural characteristics and mechanical properties of rafted ice, this
paper adopts a new numerical method to establish a numerical model and to simulate
the icebreaking process of ships in the rafted ice area, which are the keys to success.

2. Moreover, this paper utilizes the established numerical model for ship icebreaking in
rafted ice areas to conduct numerical simulations and validate it against six operational
conditions in an ice tank model experiment. The results demonstrate that this method
can accurately predict the ice resistance experienced by ships in rafted ice areas, with
the error between the simulated resistance value and the experimental value being
within 10%.

3. Therefore, the model accurately predicts ship ice resistance in level ice regions through
numerical case analysis. It can compare the effects of ice thickness, ship speed, bending
strength, and crushing strength on ship ice resistance in both the level and rafted ice
areas. Simulation results indicate that the ship ice resistance in the level and rafted ice
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regions linearly increases with ice thickness, ship speed, and bending strength while
linearly decreasing with crushing force. Comparing ship ice resistance in the level
and rafted ice regions, the influences of ice thickness, ship speed, bending strength,
and crushing strength on ship ice resistance are more sensitive in level ice than in
rafted ice.

4. Numerical simulations of ships operating in level and rafted ice show that the ice
resistance generated in level ice is more significant than that in rafted ice. However,
this does not imply that the potential damage to the vessel caused by rafted ice can be
easily overlooked. In reality, the ice resistance from the interaction between the ship
and the rafted ice is more concentrated than that in the level ice. This concentration can
make the ship’s structure more susceptible to fatigue, increasing the risks associated
with polar navigation.

The present method should be further verified with more measured data in the
future. Moreover, variations in ship speed can impact the size of grid cells in the ice field,
consequently influencing the distribution of ice resistance experienced by the ship, which
could be studied further.
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Abstract: In order to address the issue of large errors in predicting SST along the coast using numerical
models, this study adopts LSTM, a deep learning method, to develop optimal SST prediction models.
The Xiaomaidao Station is selected as an example, and then the method is then extended to 14 coastal
stations along the Bohai Sea and the Yellow Sea. The results show that the SST prediction model
based on LSTM effectively improves forecast accuracy. The mean absolute errors for 1–3-day SST
forecasts of the optimal model at Xiaomaidao Station are 0.20 ◦C, 0.27 ◦C, and 0.31 ◦C, and the root
mean square errors are 0.28 ◦C, 0.36 ◦C, and 0.41 ◦C, respectively, representing an average reduction
of 78% compared to those of the numerical model. Extending this approach to other forecasting sites
along the Bohai Sea and the Yellow Sea results in an average 61% reduction in forecast error when
compared with the numerical model. Furthermore, it is found that utilizing an LSTM model can
significantly save computational resources and improve the forecasting efficiency.

Keywords: SST; LSTM; optimal forecast model; the Bohai Sea and the Yellow Sea

1. Introduction

The Bohai Sea and the Yellow Sea, located along the northern coastline of China, are
abundant in marine resources such as fisheries, harbors, petroleum, and tourism. They
have been one of the earliest areas in China to be developed and utilized for their marine
resources, playing a crucial role in local economic development [1–4]. However, changes
in the marine environment can significantly impact the sustainable development of the
marine economy through alterations in ocean heat conditions, dynamic processes, and
ecological environments [5–8]. Therefore, it is of great significance to study changes in the
offshore marine environment.

Sea surface temperature (SST) is a fundamental and crucial element of the ocean.
Abnormal changes in SST can result in variations in ocean circulation patterns, fluctuations
in sea levels, and changes in the ecological environment [9–14], and even lead to extreme
climate events such as extensive sea ice generation or marine heat waves [15–17]. For
instance, at the beginning of 2010, SST in the Bohai Sea was unusually low, leading to
early and rapid development of sea ice, causing significant impact on the region. The
sea ice affected 61,000 people along the Bohai coast, damaged 7157 ships, froze 296 ports
and docks along the coast, and damaged 20,787,000 hectares of aquaculture. Additionally,
sea ice blocked 13 offshore islands, leaving residents unable to secure daily necessities
and emergency supplies. According to statistics, the direct economic loss caused by sea
ice in that year reached CNY 6.318 billion [15–17]. Another instance is an unprecedented
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marine heat wave event in August 2016 in the East China Sea where average SST exceeded
28.7 ◦C—significantly higher than the climate average by 1.8 ◦C. The heat wave had
a significant impact on marine fisheries and aquaculture. For example, approximately
950,000 mu of sea cucumber aquaculture areas along Liaoning’s coast suffered economic
losses totaling CNY 6.87 billion. Furthermore, the increased SST led to delayed seeding
of wakame in Dalian and other coastal areas as well as dislodging a large number of
seedlings from culture ropes, resulting in significant economic losses [18–20]. Therefore,
understanding SST development trends and making timely accurate forecasts can provide
necessary information for relevant departments to perform disaster prevention work, in
order to reduce impacts caused by marine disasters effectively [18–20].

Currently, the operational prediction of SST mainly relies on two methods: numerical
models and manual experience. Numerical model prediction has the advantage of including
physical processes in the model, allowing for the simultaneous calculation of prediction
results across the entire spatial field using large computers. The accuracy of numerical
simulation prediction results is high in the vast sea area, but it is lower in coastal sea area
due to factors such as local topography, boundary conditions, initial fields, and ocean
currents. In contrast to numerical models, manual experience is more effective for coastal
forecasting but requires more time and may result in subjective differences depending
on forecasters.

In recent years, with the emergence of artificial intelligence (AI), deep learning has
once again garnered attention. AI research fields primarily include intelligent robots,
machine vision, image recognition, language recognition, natural language processing,
and expert systems. The concept of deep learning was first proposed by Hinton et al.
from the University of Toronto in 2006 [21], referring to the process of obtaining a deep
network structure containing multiple levels based on sample data through specific training
methods. Typical network structures used in deep learning include convolutional neural
networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks
(GANs), and deep belief networks (DBNs). Among these structures, RNN is particularly
useful for modeling sequence data where current output depends on previous outputs,
which is mainly used for dealing with time series structures.

Long short-time memory (LSTM) is further developed on the basis of RNN by not
only retaining its advantages but also addressing issues such as gradient disappearance or
the explosion and lack of long-term memory. LSTM’s ability for long-term learning makes
it suitable for solving predictive problems [22]. Currently, the LSTM method has been
preliminarily applied in ocean forecasting [23–25]. For instance, Gao Libin et al. established
a wave height prediction model using the LSTM method [26]. The MAE reached a minimum
of 0.008 m, the RMSE reached a minimum of 0.012 m, and the correlation coefficient R
reached a maximum of 0.999, indicating that LSTM has a good effect in wave height
prediction. Gao Song et al. utilized LSTM to forecast ocean waves and compared them
with numerical model results [27], and the RMSE and MAE decreased by 18% and 22%,
respectively. Zhu Guizhong et al. adopt the LSTM-RNN method to predict the monthly
mean SST of the following month in the Western Pacific Ocean, achieving an MAE of 0.15 ◦C
and RMSE of 0.19 ◦C, significantly improving the accuracy of existing SST prediction
models [28].

In this paper, the LSTM method is utilized to replace the numerical forecast model to
build the SST intelligent forecast model in the coast of the Bohai Sea and the Yellow Sea,
based on the operational SST forecast requirements. The goal is to enhance the prediction
accuracy of numerical models and achieve a level comparable to manual empirical predic-
tion. Firstly, an intelligent forecasting model is constructed using the Xiaomaidao Ocean
Station as a case study, with the evaluation of forecasting error for the optimal intelligent
model. Subsequently, this method is extended to 14 ocean stations along the Bohai Sea and
Yellow Sea to construct forecasting models and evaluate their forecasting effects. Finally,
limitations of current methods are discussed, and future work prospects are considered.
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2. Data and Methods
2.1. SST Observation Data

The SST data use hour-by-hour observations from 14 ocean stations along the coast of
Bohai Sea and Yellow Sea from 1 August 2018 to 31 July 2021. The observational data are
mainly used for constructing and testing intelligent forecasting models of SST.

In this paper, Xiaomaidao Ocean Station is taken as an example to demonstrate the
building process of the intelligent SST prediction model. Built in July 1959, the Xiaomaidao
Ocean Station is situated in Xiaomaidao, Laoshan District, Qingdao, China (Figure 1). It
stands out as one of the few marine environmental monitoring stations with comprehensive
observation and monitoring projects in China. Additionally, it is among the earliest national
demonstration stations to implement automated ocean observation, and the location of the
measuring point has remained unchanged since the station was built, and the surrounding
environment has not changed significantly. Surrounded by the sea and connected to the
land by a seawall, Xiaomaidao has a park on the island but no permanent residents. There-
fore, the observation and monitoring data collected at this station are very representative
and can effectively reflect the fundamental characteristics and changing patterns of the
marine environment off Qingdao.
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2.2. Meteorological Forecast Data

The meteorological forecast data are sourced from the operational weather forecast
system of North China Sea Marian Forecast and Hazard Mitigation Service. The system
is based on the mesoscale meteorological model WRF, incorporating advanced three-
dimensional variable data assimilation technology to form an atmospheric initial field to
drive the regional atmospheric model. The data utilized for assimilation include conven-
tional meteorological observation data such as GTS, buoys, and ocean stations, as well as
non-conventional observation data such as satellites and aircraft. Then, combined with the
parameterization scheme for weather forecasting in the Bohai Sea and the Yellow Sea, the
operational model of a meteorological numerical forecast is formed, and refined numerical
forecast products of meteorological elements for these regions are provided. The model has
a maximum horizontal spatial resolution of 3 km, a time resolution of 1 h, and a running
time of about 2 h. It can provide hourly weather forecast data for the next 7 days.

From the results of this model, hourly meteorological element data at ocean station
locations were extracted including air temperature at 2 m above sea level, relative humidity
at 2 m above sea level, wind speed at 10 m above sea level, wind direction at 10 m above
sea level, surface heat flux, latent heat flux, etc. The data period is consistent with SST
observations and covers 1 August 2018 to 31 July 2021.
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2.3. SST Forecast Data

The results of SST numerical prediction are utilized to compare and verify the effect of
the intelligent SST model. These predictions come from a three-dimensional temperature–
salt–flow regional ocean modeling system (ROMS) operated by North China Sea Marian
Forecast and Hazard Mitigation Service.

Three regional ocean models are established using multiple nesting techniques. The
large area covers the entire Northwest Pacific Ocean (99◦–148◦ E, 9◦ S–44◦ N), with a
horizontal resolution of 0.1◦ and 25 vertical layers. The central area is the East China Sea
(117◦30′–135◦ E, 24◦–41◦ N), with a horizontal resolution of 1/30◦ and 16 vertical layers.
The small area covers the Yellow and Bohai Sea area (117◦30′–128◦ E, 32◦–41◦ N), with a
horizontal resolution of 1/60◦ and 16 vertical layers. The output results from the Global
ocean model (HYCOM + NCODA Global Analysis) are used as initial and boundary value
fields for the large-area model. The simulated values from the upper-level region are
used as initial and boundary value fields for both medium- and small-region models. The
operation time of the models is about 0.5 h, which can provide hourly SST forecast data
for the next 7 days. The construction and operation process of the model, as well as the
stability test, are detailed in references [9,29–31]. The data used spans from 1 August 2020
to 31 July 2021.

2.4. Data Quality Control

In dealing with missing values and outliers in observed data, as well as default values
in the numerical model, we adopt the difference method to fill gaps when there are less than
or equal to 3 occurrences within 24 consecutive times. If there are more than 3 occurrences,
the data for that day are not used.

2.5. LSTM Neural Network
2.5.1. Model Introduction

LSTM is a special type of RNN that is well suited for learning long time series infor-
mation. Figure 2 illustrates the structural comparison between RNN and LSTM. It can be
seen that, in an RNN structure, xt represents the input information and ht represents the
output information. The traditional RNN network structure already has the capability to
process time series data by transmitting processing information from previous moments
to current moments and then on to subsequent moments. However, a limitation of RNN
networks is that they can only receive information from adjacent sequence points, which
may lead to issues such as gradient disappearing or gradient explosion when processing
long sequence data.

To address this issue, LSTM replaces neural units in RNN with memory cells contain-
ing three “gates”—namely “input gates”, “output gates”, and “forgetting gates”. The key
component of LSTM is its cell state represented by a horizontal line above each memory
cell—similar to a conveyor belt running through the entire chain, allowing for downward
flow of information. The “input gate”, “output gate”, and “forget gate” play crucial roles
in selectively letting information through to protect and control the state of neural units by
removing or adding output information from previous moments and input information
from current moments into unit states.

The formulas involved in this structural diagram are as follows:

it = σ(Wi·[ht−1, xt] + bi) (1)

ft = σ
(

W f ·[ht−1, xt] + b f

)
(2)

ot = σ(Wo·[ht−1, xt] + bo) (3)

c̃t = tanh(Wc·[ht−1, xt] + bc) (4)

ct = ft × ct−1 + it × c̃t (5)
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ht = ot × tan h(ct) (6)

In the formula, it, ft, and ot represent the “input gate”, “forgetting gate”, and “output
gate” at time t, respectively; xt represents the input information at time t; ht−1 represents
the output of the previous time; W and b are the corresponding weight coefficient matrix
and offset top, respectively; σ and tanh denote the Sigmoid activation coefficient and
hyperbolic tangent activation function, respectively; c̃t represents the temporary cell status;
ct represents the cell status update value at time t; and ht is the output at time t.

After calculating the forgetting gate, input gate, and temporary cell status, the cell
unit will update the cell status of the current moment. Finally, the output gate determines
the output value ht of the current moment. More detailed information about LSTM can be
found in reference [32].

Figure 2. Structure comparison of RNN (a) and LSTM (b).

2.5.2. Model Settings

After quality control, there are 1034 days of valid data from 1 August 2018 to 31 July
2021. The data are divided into two periods: 70% (725 days) for the training model
and 30% (309 days) for the testing model. The objective of this paper is to solve the
problem of short-term forecasting of SST for 3 days; therefore, we set the prediction
length to 72 h in order to obtain time-by-time forecasting results for SST. To achieve better
training results, the parameters of the LSTM model are set as follows through control
experiments: numHiddenUnits are set to 200, MaxEpochs to 50, InitialLearnRate to 0.005 s,
and LearnRateDropFactor to 0.2. Finally, in order to improve the stability and accuracy of
the forecast, the ensemble forecast results of 10 members are used as the final SST forecast
results (Table 1).
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Table 1. Parameter settings of LSTM model.

Parameters Value

training set/% 70
test set/% 30

forecast time/hour 72
historical time/hour 72

numHiddenUnits 200
MaxEpochs 50

InitialLearnRate 0.005
LearnRateDropFactor 0.2

ensemble members 10

2.6. Test Indicators

Two indices, MAE and RMSE, were selected as indicators to measure the forecasting
effect of the model using the following formula:

MAE =
1
m

m

∑
i=1

|YPREDi − YTESTi| (7)

RMSE =

√
1
m

m

∑
i=1

(YPREDi − YTESTi)
2 (8)

where YPREDi represents the model’s prediction result for the ith sample, YTESTi repre-
sents the observed result for that sample, and m represents the number of samples used
for testing.

3. Experimental Design
3.1. Experimental Scheme Setting

In this experiment, our focus is on predicting hourly changes in SST over a three-
day period (represented as “Y”) at Xiaomaidao Ocean Station. We will be considering
factors such as hourly observation values of SST over the past three days as well as future
meteorological elements potentially related to SST changes at this station (represented as
“X”). It includes air temperature at 2 m above sea level, relative humidity at 2 m above sea
level, wind speed at 10 m above sea level, wind direction at 10 m above sea level, surface
heat flux, latent heat flux, and air–sea temperature difference [33–36]. The basic information
regarding these predictive factors is shown in Table 2.

Table 2. Predictive factors for LSTM model.

ID Variable Abbreviation Time Series Data Source

1⃝ Sea surface temperature SST (t − 71)~t 1 observation
2⃝ Air temperature AT

(t + 1)~(t + 72) numerical model

3⃝ Relative humidity RH
4⃝ Wind speed WS
5⃝ Wind direction WD
6⃝ Surface heat flux HFx
7⃝ Latent heat flux LH

8⃝ Air–sea temperature
difference AT-SST observation and

numerical mode

Note: 1 t is the running time of the model, and t + 1 is the first time of the forecast.

In this experiment, SST is the forecast target, and the observation data before its start
time are the basic information for training; therefore, SST is a mandatory factor for each
group of experiments. When designing the experiments, EXP-1 is trained with SST as
the only factor, meaning that only observed values of SST in the past are used to predict
future SST changes. EXP-2 to EXP-7, respectively, added one meteorological factor such
as air temperature, relative humidity, wind, etc., to SST observations. Based on tests on

77



Water 2024, 16, 2307

EXP-2 to EXP-7, the impacts of different meteorological factors on SST are discriminated.
It should be noted that the wind vector consists of wind speed and direction, and the
sea–air temperature difference refers to the difference between air temperature and the last
observed SST. EXP-8 serves as a reserved experiment, which combines two meteorological
factors that have had the greatest influence on SST selected from EXP-2 to EXP-7. In
conclusion, a total of 8 groups of experiments are designed and each group undergoes
10 rounds of training, resulting in a total of 80 experiments (refer to Table 3). If it turns
out that minimal error occurs in EXP-8, then more diverse combinations of factors will be
adopted for further experiments.

Table 3. Experimental scheme settings.

ID Variable Combination Training Times

EXP-1 SST 10
EXP-2 SST, AT 10
EXP-3 SST, RH 10
EXP-4 SST, WS, WD 10
EXP-5 SST, HFx 10
EXP-6 SST, LH 10
EXP-7 SST, (AT-SST) 10
EXP-8 optimal combination of EXP-2 to EXP-7 10

3.2. Experimental Process

Figure 3 illustrates the flowchart depicting the establishment process for the LSTM
method prediction model. The specific steps include (1) reading quality controlled data
from the file and standardizing it; (2) training the prediction factor (XTRAIN) based on
LSTM in the training set to predict the target (YTRAIN), storing the trained neural network
as “NET”; (3) calling “NET”, inputting the testing set’s prediction factor (XTEST), and
calculating the prediction target (YPRED); (4) testing YPRED against YTEST in the testing
set; (5) selecting the experiment with the smallest error across all experiments as the optimal
prediction model (OPM). In the daily operational forecasting, the forecast value can be
obtained by simply calling NET and inputting the value of the prediction factors.
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4. Results and Tests

Based on Table 3′s experimental scheme settings, the model is trained and tested
using an LSTM neural network. Figure 4 displays EXP-1′s daily and hourly test results. In
Figure 4a,c, blue columns represent daily MAE and RMSE of ensemble member forecasts,
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while red columns represent ensemble forecasts of 10 members. It is evident that ensemble
prediction errors are smaller than those of individual members, indicating that ensemble
prediction based on LSTM models can enhance stability and accuracy compared to single
models. In Figure 4b,d, black lines depict hourly MAE and RMSE of ensemble member
forecasts, with red lines representing those of ensemble forecasts—further demonstrating
improved stability and accuracy.
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Figure 4. Results of daily and hourly forecast tests for EXP-1 with blue columns and black lines
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The same method was used to train EXP-2 through EXP-7 models; however, due to
space constraints, only the best results after comparison are shown instead of listing each
experiment’s test results like EXP-1. Table 4 lists ensemble forecast test results for EXP-2
through EXP-7 as well as EXP-1. It is apparent that the overall effect is best for EXP-5 with
errors on the second and third days smaller than those in EXP-1. The results of individual
member forecasts versus ensemble forecasts of EXP-5 are depicted in Figure 5.

Based on the experimental scheme outlined above, we select the two experiments with
the smallest experimental error from EXP-2 to EXP-7, combine their factors to form EXP-8,
train the model, and compare its prediction effect.

Table 4. Test errors for EXP-1 to EXP-7.

MAE RMSE

ID Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

EXP-1 0.20 0.28 0.34 0.28 0.38 0.46
EXP-2 0.32 0.32 0.33 0.45 0.45 0.47
EXP-3 0.46 0.49 0.53 0.62 0.66 0.72
EXP-4 0.58 0.59 0.63 0.81 0.82 0.85
EXP-5 0.24 0.27 0.31 0.32 0.36 0.41
EXP-6 0.34 0.37 0.40 0.50 0.55 0.61
EXP-7 0.29 0.31 0.33 0.46 0.49 0.53
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Figure 6 illustrates the prediction errors of eight LSTM models (green columns) along-
side those of a numerical model (yellow columns). The figure indicates that EXP-1 to
EXP-8 yield much smaller prediction errors compared to those of the numerical model,
demonstrating clear advantages of deep learning models in coastal ocean prediction. Specif-
ically, for 1-day SST predictions, EXP-1 performs best followed by EXP-5; for 2-day SST
predictions, EXP-5 excels followed by EXP-1; meanwhile, for 3-day SST predictions, EXP-5
demonstrates superior performance followed by EXP-2. Based on these findings, the OPM
of SST for Xiaomaidao Ocean Station is constructed by combining the 1-day forecast from
EXP-1 with the 2–3-day forecast from EXP-5. The forecast effect is depicted in Figure 7. The
MAE values for 1–3 days using the OPM are 0.20 ◦C, 0.27 ◦C, and 0.31 ◦C, respectively,
while the RMSE values are 0.28 ◦C, 0.36 ◦C, and 0.41 ◦C (Figure 7a,c). In terms of hourly
forecast errors, the MAEs range between 0.10 ◦C and 0.40 ◦C for forecasts from the 1st
hour to the 72nd hour, with RMSEs ranging between 0.20 ◦C and 0.50 ◦C (Figure 7b,d).
On average, the OPM reduces forecast errors by as much as 78% compared to those of the
numerical model.
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5. Model Promotion

The method used to construct the OPM of SST at Xiaomaidao Ocean Station has
been extended to 14 stations along the Bohai Sea and the Yellow Sea in order to improve
forecasting accuracy across a wider area.

Another example, the Xiaoshidao Ocean Station, is used to demonstrate the forecasting
performance of this method. Situated in the northeast of the Shandong Peninsula and
facing the Yellow Sea to the north, the Xiaoshidao Ocean Station is approximately 220 km
away from Xiaomaidao. As depicted in Figure 8, the forecasting errors of eight LSTM
models are significantly smaller than that of the numerical model. Among them, Exp-5 has
the smallest forecast error across 1–3 days, leading us to adopt the LSTM model trained
by EXP-5 as the OPM for Xiaoshidao station. The MAEs for OPM range from 0.21 ◦C to
0.28 ◦C over a span of 1–3 days, while RMSEs range from 0.30 ◦C to 0.40 ◦C, decreasing by
76% compared with those produced by the numerical model.

Figure 9 illustrates the percentage improvement/reduction of the forecast effect at
14 stations in the Bohai Sea and the Yellow Sea. The results show that the coastal SST
forecast error, when utilizing the LSTM method, is reduced by an average of 61% compared
to the numerical model. Despite variations in the geographical location, surrounding envi-
ronment, and different impact factors, it is evident that this method can enhance prediction
accuracy to a certain degree when compared with the numerical model. Furthermore, it
should be noted that the OPM running time obtained through the test is less than one
minute, which significantly saves computing resources and obviously improves the forecast
efficiency compared with the numerical model.
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6. Summary and Discussion

In order to address large errors in predicting SST along coastlines using numerical
models, this paper constructed SST prediction models for coastal stations in the Bohai Sea
and the Yellow Sea based on LSTM—a type of deep learning network.

Firstly, Xiaomaidao Ocean Station was selected as an example to design an SST fore-
casting experiment. Factors related to SST changes—such as air temperature, wind vector,
and heat flux—were extracted from the meteorological numerical model and combined
with observed SST data to design different experimental schemes for LSTM model training.
After testing forecast errors for each scheme, a combination yielding minimal error was
selected as OPM. The 1–3-day MAEs of the OPM are 0.20 ◦C, 0.27 ◦C, and 0.31 ◦C, while the
RMSEs are 0.28 ◦C, 0.36 ◦C, and 0.41 ◦C, respectively. In terms of hourly forecast errors, the
MAEs range between 0.10 ◦C and 0.40 ◦C for forecasts from the 1st hour to the 72nd hour,
with RMSEs ranging between 0.20 ◦C and 0.50 ◦C. When compared with the prediction
results of the numerical model at the same time, it is found that the error of the OPM is
reduced by an average of 78%.

The OPM construction method used for Xiaomaidao Ocean Station is extended to
include 14 ocean stations along the Bohai Sea and the Yellow Sea. OPMs are constructed
for each station and when compared with results from a numerical SST model for the same
period, it is observed that on average, errors in predictions made by LSTM optimal models
are 61% lower than those made by numerical models. This indicates that this method is
universally applicable and can effectively improve coastal SST forecast accuracy. Similar
studies have also been consulted. For instance, Zhang et al. developed an LSTM daily
forecast model for SST in the equatorial Pacific (10◦ S–10◦ N, 120.0◦–280◦ E) for the next
10 days, with an RMSE of 0.6 ◦C for the eastern equatorial Pacific and less than 0.3 ◦C
for both central and western regions [37]. Han et al. utilized the LSTM model to predict
daily SST at five buoy points in the East China Sea, with an MAE and RMSE of 0.25 ◦C
and 0.28 ◦C for a one-day forecast, respectively [38]. The prediction errors of SST in these
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studies are similar to those found in this study, indicating that our constructed model is
reasonable, reliable, and effective, especially considering the difficulty of predicting coastal
SST compared to open sea SST. Furthermore, it is noted that the run time for all 14 stations
using OPMs is less than one minute in total, which significantly saved computing resources
and improved forecasting efficiency. Currently, this method has become a crucial reference
for predicting SST in the Bohai Sea and the Yellow Sea. After an initial period of operation,
it will be extended to a wider range of ocean stations in the future.

According to the OPM constructed at Xiaomaidao and Xiaoshidao ocean stations,
as well as other stations, it is evident that the sea surface heat flux is the most signifi-
cant factor influencing the change in SST. Following this, in terms of influence, are the
sea–air temperature difference, latent heat flux, air temperature, relative humidity, and
wind speed and direction. However, these factors are not orthogonal; that is, the factors
affect each other. In our next step, we will consider performing the orthogonal decomposi-
tion of the influencing factors before screening them and then proceed to build a prediction
model for the time series of each mode. Additionally, this study did not take into account
oceanic factors such as tidal currents. Future research will consider these oceanic factors
to enhance the accuracy of SST prediction. In terms of model building, we plan to inte-
grate convolutional neural networks (CNNs) and LSTM to develop a hybrid model. The
hybrid model could not only forecast the time series of SST but also incorporate linkage
information between different sites.
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Abstract: Lakes in Southwest Alaska are a critical habitat to many species and provide livelihoods
to many communities through subsistence fishing, transportation, and recreation. Consistent and
reliable data are rarely available for even the largest lakes in this sparsely populated region, so data-
intensive methods utilizing long-term observations and physical data are not possible. To address
this, we used optical remote sensing (MODIS 2002–2016) to establish a phenology record for key lakes
in the region, and we modeled lake-ice formation and breakup for the years 1982–2022 using readily
available temperature and solar radiation-based predictors in a survival modeling framework that
accounted for years when lakes did not freeze. Results were validated with observations recorded at
two lakes, and stratification measured by temperature arrays in three others. Our model provided
good predictions (mean absolute error, freeze-over = 11 days, breakup = 16 days). Cumulative
freeze-degree days and cumulative thaw-degree days were the strongest predictors of freeze-over and
breakup, respectively. Lake volume appeared to mediate lake-ice phenology, as ice-cover duration
tended to be longer and less variable in lower-volume lakes. Furthermore, most lakes < 10 km3

showed a trend toward shorter ice seasons of −1 to −6 days/decade, while most higher-volume
lakes showed undiscernible or positive trends of up to 2 days/decade. Lakes > 20 km3 also showed a
greater number of years when freeze-over was neither predicted by our model (37 times, n = 200) nor
observed in the MODIS record (19 times, n = 60). While three lakes in our study did not commonly
freeze throughout our study period, four additional high-volume lakes began experiencing years in
which they did not freeze, starting in the late 1990s. Our study provides a novel approach to lake-ice
prediction and an insight into the future of lake ice in the Boreal region.

Keywords: Southwest Alaska; lake ice; survival model; remote sensing; freeze-degree days; thaw-degree
days; phenology; boreal region

1. Introduction

The seasonality of lake ice in cold region ecosystems is a key modulator of ecosys-
tem function because it influences the physical, chemical, and biological systems of lakes
through temperature and light profiles, dissolved gas concentrations, biological productiv-
ity, and human livelihoods. Studies of the Northern Hemisphere demonstrate that lake-ice
cover in the past century has decreased in the order of 0.5–1 day per decade [1–4], and
projections of continued warming at high latitudes indicate trends of delayed ice-cover
formation and earlier breakup will continue [5–9]. Lakes are critical components of high-
latitude ecosystems because they support foundational species, such as salmon, and the
regional biodiversity that local populations depend on. The presence or absence of lake
ice is also important to high-latitude rural communities that depend on its formation for
winter travel to surrounding communities and subsistence activities such as ice fishing,
hunting, trapping, and firewood or water collection [10–12].

With detailed physical data it is possible to produce models and lake-specific indices
that robustly describe and predict multiple physical processes including the timing of lake
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stratification, and ice formation, thickening, and breakup [13–15]. Some of the most robust
methods of estimating lake-ice formation rely upon quantifying the energy balance and
include variables such as air and water temperatures, vapor pressure deficit, and snow
properties [16–19]. Unfortunately, comprehensive observations of lake ice, or even the most
rudimentary physical measurements such as local air temperature, lake-water temperature,
or mean depth and volume are rarely available in the sparsely populated Arctic boreal
regions. In this study, only a very limited set of measurements and observations were
available for a few of the many large and biologically important lakes in Southwest Alaska.
Thus, there is a need for a method to estimate historic lake ice phenology and predict how
these systems might respond to a warming climate.

Because we are unable to parameterize physical models of lake ice phenology, we
might look to statistical approaches for prediction. While several studies have successfully
used traditional statistical approaches to evaluate lake ice phenology [20], traditional
statistical methods such as multiple regression are not well-suited to time-to-event data
such as lake-ice formation or breakup because years in which freeze-over does not occur are
very informative but cannot be easily encoded as a date [21]. Linear mixed-effects models
have been successfully used to study ice-off dates in alpine lakes [22] where non-freezing
years are not a concern, and circular regression has shown promise in addressing the
cyclical nature of lake-ice dynamics [23], but neither of these approaches effectively deals
with non-freezing years. Alternatively, survival models which were originally developed
through medical research for understanding the effects of interventions on patient survival
were created specifically for analyzing time-to-events that sometimes do not occur. They
have found increasing use in vegetation phenology research and provide an effective
method for modeling phenology [24–26]. Furthermore, these recent implementations allow
for the incorporation of daily meteorological data rather than being limited to seasonal
climate summaries as predictors.

In this manuscript we (i) establish a 16-year satellite observation record of lake-ice
phenology for 15 large freshwater lakes and two clusters of smaller lakes in Southwest
Alaska for the water years 2002–2016, (ii) develop a daily survival model to predict lake-
ice phenology using spatially-interpolated observations of antecedent thaw-degree days,
cumulative thaw-degree days, cumulative freeze-degree days, and downwelling shortwave
radiation, (iii) use this model to hindcast and forecast results for the water years 1981–2022,
(iv) validate the model with in situ observations from five lakes, and (iv.) evaluate these
results using a local 75-year fall–winter temperature record to gain a long term perspective.

2. Methods
2.1. Study Area

The seventeen lakes and lake clusters we studied were located in Southwest Alaska
between 57–61◦ N latitude and 149–156◦ W longitude and range in surface area from Lake
Iliamna at 2637 km2 to two clusters of smaller lakes, each typically ≤5 km2 (Figure 1).
Several of these lakes are important spawning habitats for the world’s largest sockeye
salmon fishery, and most are within the boundaries of two US National Parks (Lake
Clark National Park and Preserve, and Katmai National Park and Preserve), and two
National Wildlife Refuges (NWRs) (Kenai NWR and Becharof NWR). The lake settings
and morphology vary in elevation, size, surface, orientation, and surrounding terrain,
which affect the solar influx, wind, and meso-climate that influence lake-ice formation and
phenology (Table 1). In general, the largest lakes were formed by retreating ice sheets and
debris damming, the medium-sized lakes were formed by mountain glaciers, whereas, the
small-clustered lakes were formed by thermokarst activity and high latitude (freeze–thaw)
hydrology, and soil formation processes on a glaciated landscape. Some of the lakes (e.g.,
Lake Clark, Chakachamna, Telaquana, and Twin) are located in faulted mountain valleys
where glaciers follow natural weakness and are consequently long and narrow. Others (e.g.,
Illiamna, Naknek, and Becharof) are found in flatter terrain and are formed by retreating
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ice fields or piedmont glaciers with morainal damming, resulting in broader, more rounded
shapes (Figure 1).
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To evaluate the impact of lake volume on lake-ice phenology, we established a relative
volume ranking. While only five of the study lakes had bathymetric data, 12 of the
15 lakes (excluding clusters) had a common metric of maximum depth available (Table 1).
To harmonize these data, we calculated surface areas using USGS digital raster graphics [27],
and obtained the maximum depth data from NPS measurements, or the most up-to-date
source available [28–30]. We then used a simple cone-volume derivation that has been
shown to perform reasonably well for small-to-medium-sized lakes to establish a volume
ranking [31].

2.2. Ice Phenology Observations

Lake-ice phenology was estimated through supervised classification using the MODIS
Rapid Response System Land Surface Reflectance composites of true color (bands 1-4-
3), corrected near-infrared (NIR, Bands 7-2-1), and corrected shortwave infrared (SWIR,
Bands 3-6-7) at an image resolution of 250 m with a temporal frequency of up to 1-day
(Figure 2) [32]. The presence of snow-covered ice and clear water on lake surfaces of daily
MODIS data was interpreted, and the percentage of ice cover was estimated using a 1 km2

grid, where the percentage of lake ice equaled the percentage of visually counted grid cells
with ≥50% ice cover. At the time of our analysis, MODIS Rapid Response System data were
not available for 2009, and these images were evaluated using previous ocular estimates
of the percentage of frozen surface area; a subset comparison of the two methods showed
<10% error between them.
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Table 1. Lake Characteristics. 

Lake A 
Area 

km2 

Lake 

Elev. m 

Max. 

Depth m B 

Conical 

Volume 

est. km3 

Known 

Volumes      

km3 

No-Freeze 

years n = 15 

MODIS C 

No-Freeze        

years n = 40 

Model D 

Duration Trend 

Days/year E 

MAD 

Days F  
RMAD G 

1  Iliamna Lake 2637 11 301 264.58 115.3 3 6 −0.5 * [−0.8,−0.2] 40 0.43 

2  Becharof Lake 1195 4 92 36.65 44.0 5 11 0.2 * [0.0,0.6] 31 0.57 

3  Lake Clark 336 75 266 29.79 32.3 3 3 0.2 [−0.8,0.8] 46 0.63 

4  Tustumena Lake 298 34 290 28.81 - 4 11 0.2 [−0.4,0.9] 80 1.35 

5  Naknek Lake 458 13 160 24.43 - 4 6 0.2 [−0.1,0.5] 33 0.44 

6  Skilak Lake 99 58 174 5.74 7.2 2 2 −0.1 [−0.1,−0.4] 53 0.69 

7  Lake Grosvenor 73 35 112 2.73 - 3 3 −0.2 [−0.2,−0.4] 30 0.40 

8  Telaquana Lake 48 376 132 2.11 2.9 0 0 −0.5 * [−0.7,−0.1] 23 0.21 

9  Lake Brooks 75 20 82 2.05 - 1 2 0.0 [−0.3,0.4] 25 0.28 

10 Chakachamna 74 346 80 1.97 - 1 0 −0.1 [−0.8,0.4] 15 0.11 

11 Twin Lakes 27 601 103 0.93 - 0 0 −0.5 * [−0.8,−0.2] 33 0.20 

12 Lake Coville 33 35 62 0.68 - 0 0 −0.6 * [−0.7,−0.3] 31 0.23 

13 Kukaklek Lake 173 247 - - - 0 0 −0.6 * [−0.7,−0.4] 20 0.23 

14 Nonvianuk Lake 133 191 - - - 0 0 −0.6 * [−0.7,−0.4] 34 0.24 

15 Beluga Lake 44 75 - - - 0 0 −0.3 * [−0.5,−0.2] 10 0.06 

16 Northern Kenai 88 60 - - - 0 0 −0.3 * [−0.5,−0.1] 16 0.10 

17 Lower Susitna 61 39 - - - 0 0 −0.6 * [−0.9,−0.3] 15 0.09 

Notes: A Lake number corresponds with Figure 1 ordered by relative volume, where max depth was 

available; B maximum lake-depth estimates, lakes in cryptodepressions; C number of no-freeze ob-

servations in 15-year MODIS record; D number of years of <50% probability of freeze in 40-year 

model run; E positive and negative trends in duration of freeze (* credibly different from 0) [with 

upper and lower terciles]; F MAD (variation) of MODIS-observed duration of ice cover; G RMAD 

(relative variation) of MODIS-observed duration of ice cover. 

2.2. Ice Phenology Observations 

Lake-ice phenology was estimated through supervised classification using the 

MODIS Rapid Response System Land Surface Reflectance composites of true color (bands 

1-4-3), corrected near-infrared (NIR, Bands 7-2-1), and corrected shortwave infrared 

(SWIR, Bands 3-6-7) at an image resolution of 250 m with a temporal frequency of up to 

1-day (Figure 2) [32]. The presence of snow-covered ice and clear water on lake surfaces 

of daily MODIS data was interpreted, and the percentage of ice cover was estimated using 

a 1 km2 grid, where the percentage of lake ice equaled the percentage of visually counted 

grid cells with ≥ 50% ice cover. At the time of our analysis, MODIS Rapid Response System 

data were not available for 2009, and these images were evaluated using previous ocular 

estimates of the percentage of frozen surface area; a subset comparison of the two methods 

showed <%10 error between them.  

   

Figure 2. MODIS image classification for Lake Iliamna 25 February 2015. True color (bands 1, 4, 3) 

(left), NIR and SWIR (bands 7, 2, 1) (middle), and estimation of percentage of ice cover using grid 

mask (right). 

The metrics used in this analysis were freeze-over (>90%), breakup (<90%), and du-

ration (days between freeze-over and breakup) (Figure 3). If the scene was not interpreta-

ble due to cloud cover or a missing image, the metric was reported as the median day 

between the first and last interpretable images, and the number of days between inter-

pretable images was reported as uncertainty [33]. Data are reported in day of water year 

Figure 2. MODIS image classification for Lake Iliamna 25 February 2015. True color (bands 1, 4, 3)
(left), NIR and SWIR (bands 7, 2, 1) (middle), and estimation of percentage of ice cover using grid
mask (right).

The metrics used in this analysis were freeze-over (>90%), breakup (<90%), and dura-
tion (days between freeze-over and breakup) (Figure 3). If the scene was not interpretable
due to cloud cover or a missing image, the metric was reported as the median day between
the first and last interpretable images, and the number of days between interpretable
images was reported as uncertainty [33]. Data are reported in day of water year (DWY)
and labeled for the year in which it ends (e.g., water year 2016 is from 1 October 2015 to
30 September 2016). To summarize the variability in observations, we report the mean
absolute deviation (MAD = n−1 ∑n

i |x − xi|) or, when more informative, we present the
relative mean absolute deviation (RMAD = MAD/x) (Table 1).
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where 𝑅𝑎𝑑 is the incident solar radiation.  
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of 17 lakes accumulated no FDD before October 1st during the satellite observation period. 

For the five lakes where FDD did accumulate before October 1st, the accumulated FDD 

Figure 3. Examples of metric thresholds from Lake Becharof. MODIS true color images with no ice
cover on October 11, 14% on December 23, and 92% (freeze-over) on February 15.

2.3. Meteorologic Data

The meteorologic data used for modeling were extracted from the gridded daily
weather and climatology variables of Daymet [34], available from the Oak Ridge National
Laboratory Distributed Active Archive Center. We extracted data at each lake and lake
cluster centroid for the water years of 1981–2022. The variables were daily minimum and
maximum air temperature, and incident shortwave radiation; mean temperatures were
considered the mean of the daily minimum and maximum temperatures.

(
TDWY,y,i = 0.5

(
Tmax

DWY,i,y + Tmin
DWY,i,y

)
(1)

Antecedent thaw degree days for water year y at each lake i were calculated as the
sum of the daily mean temperature if greater than 0 ◦C for an accumulation period of June
1st (DWY = 245) through September 30th (DWY = 365) of the previous water year.

antTDDy,i =
365

∑
DWY=245

max
(
0, TDWY,y−1,i

)
(2)

Accumulated climate variables were calculated at daily time steps for each day d of
water year y and lake i as the sum of the daily climate value over each day from the first day
(s) of the accumulation period to day d. For modeling freeze-over, the accumulation period
began on October 1st, and for modelling breakup the accumulation period began on the
date of freeze-over. In this way, accumulated freeze-degree days (FDD) were calculated:

FDDd,w,i =
d

∑
DWY=s

min
(
0, TDWY,y,i

)
(3)
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accumulated thaw-degree days TDD were calculated:

TDDd,y,i =
d

∑
DWY=s

max
(
0, TDWY,y,i

)
(4)

and accumulated solar radiation SWR was calculated:

SWRd,y,i =
d

∑
DWY=s

RadDWY,y,i (5)

where Rad is the incident solar radiation.
For Southwest Alaska, 1 October was chosen for accumulating FDD because little or

no accumulation of FDD occurred before that date in the lakes studied. Specifically, 12
of 17 lakes accumulated no FDD before 1 October during the satellite observation period.
For the five lakes where FDD did accumulate before 1 October, the accumulated FDD was
less than 6% of those accumulated by the date of freeze-over, and we did not expect this
minimal FDD accumulation to be influential (Appendix C). The accumulation period for
antTDD captured >90% of the interannual variability (Figure A5), suggesting this approach
will adequately capture the influence of seasonally accumulated heat content.

2.4. Survival Model

Survival models have been used to represent time-to-event data, allowing for events
that never happen. Thus, survival models are well suited to modeling lake-ice processes,
where ice formation (in this case >90% ice cover) may not always occur. Our model
uses a daily, discrete-time, survival modelling approach, borrowing from work in plant
phenology [24–26]. By modelling the state of lake ice at a daily time step, we were able
to use daily weather data to predict freeze-over and breakup, and generate more precise
predictions.

The daily ice-cover state F{d,y,i} for day d of water year y at lake i was encoded as a
Bernoulli variable, where ice cover < 90%: 0 and ice cover > 90%: 1. We modeled the daily
probability of a state change, given the previous day’s state, as a linear function with a logit
link.

Pr
(

F{d,y,i} = 1
∣∣∣F{d−1,y,i} = 0

)
= logit−1

(
β{0,i} + β{1,i} · FDD{d,y,i} + . . .

)
(6)

Pr
(

F{d,y,i} = 0
∣∣∣F{d−1,y,i} = 1

)
= logit−1

(
γ{0,i} + γ{1,i} · TDD{d,y,i} + . . .

)
(7)

Our model allowed for lakes to have differing baseline probabilities of a state-change,
and differing sensitivities to meteorologic covariates by incorporating random effects for
intercepts and covariate coefficients at the individual lake level. We made inferences using
a Bayesian framework with JAGS version 4.3.1 [35], and the jagsui [36], and tidybayes [37]
packages in R version 4.2.3 [38]. Models were fit using Markov Chain Monte Carlo (MCMC).
Three MCMC chains were burned in until the Gelman–Rubin statistic [39] was less than
1.1, before sampling the posterior. We present posterior medians and credible intervals
(0.95 and 0.66) for meteorologic sensitivity estimates and model predictions. Meteorologic
sensitivity is presented as the change in the log of the odds ratio of the hazard resulting
from a 1-sd change in the meteorologic variable. As such, positive estimates indicate an
increased probability of a state change with an increase in the meteorologic variable. Note
that cumulative freeze-degree days become more negative as they accumulate, so a negative
effect of freeze-degree days indicates an increase in the probability of a state change with
colder temperatures. For the predicted date of freeze-over and breakup, we present the
median of the survival distribution function, which is the first day that the cumulative
probability of a state change exceeds 0.5 (i.e., the first day on which the lake is more likely
to have frozen than not).
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We assessed model fit using the r2 metric recommended by Gellman et al., 2019 [40]:

r2 = var
(

F̂
)
/
(
var
(

F̂
)
+ var(E)

)
(8)

where F̂ is a vector of model predictions and E is a vector of model residuals. This
formulation corresponds to the marginal r2 presented by Nakagawa et al., 2012 [41] because
random effects are included in the explained variance. To understand overall model fit, we
present an omnibus r2 calculated from the full dataset. Because we are primarily interested
in how our models captured the year-to-year variation rather than lake-to-lake variation, we
also calculated and reported r2 separately for each lake using lake-specific predictions and
residuals from the full model. To further describe model fit we present the mean absolute
error (MAE = n−1Σn

i

∣∣∣ f̂ − fi

∣∣∣). A detailed model description is presented in Appendix A.

3. Results
3.1. Satellite Observations

Over the 15 years of MODIS satellite observations used to calibrate our model, freeze-
over (>90% ice cover) typically occurred the earliest (mid-November) in the Northern
Kenai, Lower Susitna, and Beluga lakes, and the latest (late January to early February) in
Becharof, Lake Clark, and Tustumena. Across all lakes, the median observed start date of
freeze-over was December 20, with a MAD of 33 days. Breakup (<90% ice cover) typically
occurred the earliest (late April to early May) in Becharof, Lake Clark, and Tustumena, and
the latest (early June) in the highest elevation lakes—Twin Lakes and Telaquana (Figure 4).
Breakup generally occurred more rapidly and the timing of breakup did not vary as greatly;
the median start date of breakup was May 4, with a MAD of 19 days. The median duration
of MODIS-observed ice cover > 90% was 131 days, with a MAD of 53 days. Several lakes
experienced years in which >90% ice cover was not observed (Table 1).

Year-to-year variation within a given lake ranged from 7 to 27 days MAD for lake-ice
formation, 10 to 80 days MAD for duration, and 4 to 22 days MAD for breakup. Scaling
variation by ice-season duration revealed even greater differences. The most variable lake
by this measure (Tustumena Lake) had an expected year-to-year difference in ice-season
duration that exceeded its average ice-season duration by 140% (RMAD = 1.4), whereas
the most consistent lake (Beluga Lake) could be expected to vary by only 6% of its average
duration (RMAD = 0.06, Table 1).

In some years, multiple lakes did not freeze-over, most notably eight lakes did not
freeze-over in 2003 and 2016: Iliamna, Becharof, Lake Clark, Tustumena, Naknek, Skilak,
Grosvenor, and Chakachamna in 2003, and Brooks in 2016. In 2015, four lakes did not freeze-
over: Iliamna, Becharof, Naknek, and Grosvenor. In 2014, two did not freeze-over: Becharof
and Tustumena. In 2013, a year with sustained wind events, two did not freeze-over: Lake
Clark and Tustumena (Table 1 and Figure 4). The lack of freeze-over in some years, and the
interannual variability in freeze-over, duration, and breakup reflect the dynamic climate of
the Southwest Alaska region during fall and early winter, which oscillates between warm
and cold temperatures over several weeks and, since the 1980s, has experienced warm
fall/winter temperature anomalies. The long-term variability of this cold accumulation
period can be seen in the record of in situ observations from King Salmon (Figure 5) [42].

3.2. Survival Model

Our survival model for freeze-over generally fit better than our model for breakup
(Figures A1 and A2). Our model described 87% of the variation in freeze-over and 52% of
the variation in breakup across all lakes and years. The year-to-year variance explained
by the model varied substantially among lakes: from highs of 97% and 85% to lows of
47% and 24% for freeze-over and breakup, respectively. Mean absolute error varied greatly
among lakes, from 5 days to 36 days with an average of 11 days for freeze-over, from 4 to
46 days with an average of 16 days for breakup, and from 6 to 41 days with an average of
19 days for duration of ice cover (Table 1, and Figures 6, A1 and A2).
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Figure 4. Modeled and observed ice cover. Modeled probability of ice cover > 90% by lake, for period
of study, with observed MODIS dates of 90% freeze-up (black circles) and breakup (black triangles).
The period of interpreted satellite observation is spanned by the light grey background, and years in
which the lakes did not freeze are marked by dark grey vertical background bars. The highest-volume
lakes are at the top of the figure.

Chilling, as measured by FDD, generally increased the freeze hazard (probability
of freeze-over happening today if it has not happened already), but sensitivity to chill-
ing varied greatly among lakes (Figure 7). We found evidence that greater antecedent
summer heat loading (antTDD) decreased the freeze hazard for some lakes, but the effect
was small, uncertain, and not consistently important across all lakes. Breakup hazard
(probability of breakup happening today if it has not happened already) was increased
at all lakes by warming (TDD) and cumulative ice-season solar radiation (SWR). Contin-
ued chilling during the ice season (FDD) decreased the breakup hazard for some lakes.
Sensitivity to continued chilling was generally more pronounced in larger-volume lakes
(Figures 7 and 8).
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Figure 5. 1949 to 2022 regional record of King Salmon airport daily mean air temperatures during the
fall/winter cold-accumulation period. Lower panel shows the 15 warmest periods (red), where 4
show a mean above or near 0 ◦C (dotted blue line) since the early 2000s (2019 had insufficient data,
and the diamond represents nearby station). Upper panels’ vertical bars show the number of lakes
observed by MODIS (black) and modeled (grey) for each year that lakes did not fully freeze-over; the
horizontal bars show the years of observation and modeling in this study. The boxplot on the left
shows the high variance of data and predominance of years during the observation and modeling
periods relative to all years.

The RMAD of the model-predicted ice-season duration for each lake agreed well with
the RMAD of MODIS observations (Spearman rank correlation, ρ = 0.92), suggesting that
the meteorologic variables that drove our model predictions could account for the observed
patterns of lake variability. Our model correctly predicted 14 of 25 events when the lakes
did not freeze, with one falsely predicted event. Years in which lakes did not freeze were
also predicted in the anomalously warm years of the 1980s for the Becharof Lake (2), Lake
Clark (2), and Tustumena Lake (6), but no non-freeze years for any other lake before 2000
(Figure 4).
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Figure 6. Model performance at each study lake. Observed versus predicted values (posterior
median +/− 95% credible intervals) for the duration of ice cover, 1:1 line in black. Mean Absolute
Error and r2 of model predictions are shown for each lake. Higher-volume lakes are at the top of
figure.

We estimated decreasing trends in ice-cover duration in most, but not all, study lakes,
ranging from −6 to + 2 days per decade. Over the 40 years represented in our model,
nine lakes had a credibly negative trend, one lake had a credibly positive trend, and five
lakes had no discernable trend. All but one lake showing a decreasing trend were <20 km3,
whereas all but one lake with a positive or undiscernible trend were >20 km3 (Table 1).

3.3. Lake Volumes

Estimated lake volumes spanned four orders of magnitude, from 0.68 to >264 km3,
where five of the lakes were >24 km3 (three with known volumes) and the remainder were
under 7 km3. When compared to the five known volumes calculated using bathymetric
measurements, we underestimated volumes in four of the lakes by 8 to 37%, and overesti-
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mated the largest lake (Lake Iliamna) by 56% (Table 1). While the volume calculations were
not as precise as those made using bathymetry, considering the large differences in lake
volume, this did provide a basis for an ordinal comparison that would otherwise not have
been possible.

Water 2024, 16, x FOR PEER REVIEW 10 of 28 
 

 

(probability of breakup happening today if it has not happened already) was increased at 

all lakes by warming (TDD) and cumulative ice-season solar radiation (SWR). Continued 

chilling during the ice season (FDD) decreased the breakup hazard for some lakes. Sensi-

tivity to continued chilling was generally more pronounced in larger-volume lakes (Fig-

ures 7 and 8).  

 

Figure 7. Meteorologic variables’ effects on freeze-start (circles, left 3 panels) and breakup (triangles, 

right 3 panels). Each panel shows the effect of a 1-sd change in the predictor variable on the log of 

the odds-ratio of the hazard, where the freeze hazard is the probability of 90% or more ice cover 

occurring today, given less than 90% ice cover yesterday, and the breakup hazard is the probability 

of less than 90% ice cover today, given greater than 90% ice cover yesterday. Model coefficients are 

estimated by their posterior medians (points) +/− 95% credible intervals (thin bars) and 66% credible 

intervals (thick bars). Greater magnitude coefficients indicate a stronger relationship or greater ap-

parent sensitivity to a meteorologic variable. Higher-volume lakes are at the top. 

Figure 7. Meteorologic variables’ effects on freeze-start (circles, left 3 panels) and breakup (triangles,
right 3 panels). Each panel shows the effect of a 1-sd change in the predictor variable on the log of
the odds-ratio of the hazard, where the freeze hazard is the probability of 90% or more ice cover
occurring today, given less than 90% ice cover yesterday, and the breakup hazard is the probability
of less than 90% ice cover today, given greater than 90% ice cover yesterday. Model coefficients
are estimated by their posterior medians (points) +/− 95% credible intervals (thin bars) and 66%
credible intervals (thick bars). Greater magnitude coefficients indicate a stronger relationship or
greater apparent sensitivity to a meteorologic variable. Higher-volume lakes are at the top.

Lakes with larger estimated volumes were later to freeze-over (Spearman’s rank
correlation, ρ = −0.82), had a shorter duration of ice cover (ρ = 0.82), and were less likely
to freeze in years with fewer FDDs (Table 1, and Figures 4 and 8). Relative variability
in ice-season duration was greater in larger-volume lakes (ρ = 0.84), driven both by the
tendency for large-volume lakes to be more variable in absolute terms (ρ = 0.59) and for
larger-volume lakes to have shorter ice-season durations. Model-estimated sensitivity to
chilling decreased with lake volume (ρ = −0.80).
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Figure 8. Freeze degree day (FDD) accumulation. Cumulative FDD before freeze-over shown in blue,
after freeze-over shown in grey, date of freeze-over indicated by dot. The years in which our model
indicated that lakes did not freeze by March-30 are shown in red. Higher volume lakes are at the top
of figure.

3.4. Validation against In Situ Observations

Because previous studies have found good agreement between in situ observations
of lake-ice formation and melt with optical (MODIS and Sentinel) satellite remote-sensing
observations, we do not present a separate validation of the satellite-observed ice season
dates. Zhang et al. [43] found a MAE of 6–8 days in over 400 observations of lake-ice
formation and breakup in the state of Maine in lakes that varied in size, depth, latitude,
and elevation, whereas Tuttle et al. [44] found MAE of approximately 2–5 days for the ice
breakup dates of a lake in Svalbard, Greenland, over a 15-year observation period.

To validate our model-predicted lake-ice seasons, we looked to available in situ
observations. While there were no formal systematic observations of the percentage of ice
cover for our study lakes, such as regular air photos or observers following a consistent
protocol, there were three independent data sets for five lakes that were available to validate
our results with. These were: (i) continuous observations of water temperature from sensor
arrays deployed in three lakes, and (ii) two different long-term visual observations of ice
cover for the purposes of navigating boats, snowmachines, or aircraft on two lakes.
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We estimated winter stratification over sensor arrays deployed in the deepest parts
of three lakes. Winter stratification can be a good indicator of ice formation in lakes that
are dimictic (i.e., mix twice a year by turning over the higher-density water to depth as
it heats or cools to approximately 4 ◦C). However, these are not always representative of
ice >90% cover because the relatively small area of water directly over these locations may
not be ice-covered, and the deepest parts of lakes tend to be the last to freeze. The arrays
deployed in Lake Clark (100 m), Naknek (70 m), and Brooks Lake (50 m) were used to
collect temperature profiles at 10 m increments over the years of 2006–2022 [45]. To estimate
the duration of winter stratification, we measured the duration of time that shallow waters
were cooler than deep waters by more than a mean daily temperature difference of 0.5
and 1.5 ◦C for the shallower (50 m) and deeper (70 and 100 m) lakes, respectively [8]. All
three lakes failed to stratify in the winter of 2016, corresponding to the failure to achieve
freeze-over as seen in the MODIS observations and indicated by our model results. For
other years, the durations of ice cover were highly correlated (Pearson’s product moment
correlation, r = 0.83–0.89, (Table 2)). Furthermore, for the years in which lake ice did not
form—2013 on Lake Clark and 2015 on Naknek Lake—the overlapping temperature array
data showed very short periods of stratification, which were likely not long enough for ice
to form at >90% over the larger lake surface or be observed in the MODIS record.

Table 2. Model compared to in situ observations.

Lake Validation
Data A Years B Model

Correlation
Mean

Duration
Obs.

Mean
Duration

Model
SD

Obs.
SD

Model
n

Years
Conical
Volume
Estimate

Ranking
by Proxy
Volume

Lake Clark T, Array, 100 m 2006–2022 0.84 60 60 47 27 16 29.79 3
Naknek Lake T, Array, 70 m 2008–2022 0.89 87 74 45 47 14 24.43 5

Telaquana Lake Ice obs. 2002–2020 * 0.85 150 157 21 21 12 2.73 7
Lake Brooks T, Array, 50 m 2010–2022 0.83 73 77 46 44 12 2.05 9
Twin Lakes Ice obs. 1982–1996 * 0.95 177 172 17 12 14 0.93 11

Notes: A Type of in-situ observations (and array depth) used for validation. B Asterisk indicates data had a gap in
one or more years of ice observation.

The second set of validation data were in situ ice-cover observations for two lakes:
Twin Lakes from 1982 to 1996, and Telaquana Lake from 2002 to 2020. These data were
from historical observations used to record the approximate dates when the lakes would
safely support foot traffic and aircraft, or were no longer navigable by boat. We again found
strong correlations between the ice-cover duration derived from these observations and
our modeled ice-cover duration (Twin Lakes: r = 0.95, Telaquana: r = 0.85) (Table 2).

3.5. Long-Term Climate Record

Cumulative FDD in the late fall through early winter was the strongest predictor of
freeze-over, and subsequently ice-cover duration, in our model (Figure 7). To consider this
in the context of the regional climate record, we used the most regionally representative
long-term (74 years) record of the mean daily temperatures available. We evaluated mean
daily air temperatures from October 1 through February 7, with fewer than seven missing
days per period, which represent the beginning and midpoint of our seasonal modeling
period (Figure 5). One of the warmer years on record, 2019, was excluded due to a lack of
daily observations. These data show that the 14 warmest periods between 1 October and 7
February from 1949 to 2023 have occurred since 1977. The water years of 2014, 2015, 2016,
and 2018 were the 4th, 6th, 2nd, and 9th hottest years, respectively.

4. Discussion

The ecological and economic importance of lake-ice cover is widely acknowledged, but
the increasing temperatures of Earth’s boreal regions have changed, and will continue to
change, the patterns of lake-ice formation, duration, and breakup. However, data-intensive
methods that require long-term observations and physical data are possible for only a small
fraction of lakes globally. To address this, we developed a survival model to predict the
historic timing and duration (phenology) of lake ice using readily accessible meteorological

97



Water 2024, 16, 2309

data and satellite-observed lake-ice cover, and hindcast predictions to explore changes over
a 40-year period and evaluate them in a historic 74-year regional context.

The role of cumulative cold content through water and air temperatures has been
successfully used to predict thermal stratification, mixing, and ultimately lake-ice formation
by Ashton [46,47]. Likewise, cumulative heat content and “lake heatwaves” have been
shown to impede the formation of lake ice [14,15,48]. Furthermore, geographic location,
depth, and volume have been found to be important indicators of lake-ice dynamics [49].
Our model was developed to capture these dynamics over relevant time periods in the
simplest manner possible by using geographically located predictor variables of antecedent
thaw-degree days (antTDD), cumulative freezing-degree days (FDD), cumulative thaw-
degree days (TDD), and cumulative downwelling shortwave radiation (SWR). The survival
model and data we used revealed three broad patterns of variability, threshold response,
and trend in the phenology of lake ice.

4.1. Variability

The lakes in this study vary considerably in their ice phenology, where lower-volume
lakes (<20 km3) freeze-over consistently and for longer durations, and higher-volume
lakes (>20 km3) freeze-over less consistently for shorter and more variable durations. The
consequences of such interannual variability are best expressed when scaled by the average
duration of ice cover. This relative variability revealed even more profound variation: the
most variable lake (Tustumena Lake) had an expected year-to-year difference in ice-season
duration that exceeded its average ice season by 140%, whereas the most consistent lake
(Beluga Lake) could be expected to vary by only 6% of its average duration. Relative
variability in ice-season duration was greater in larger-volume lakes, driven both by the
tendency for large-volume lakes to be more variable in absolute terms and for larger-volume
lakes to have shorter ice-season durations.

Interannual variation in duration of ice cover was driven more by variation in freeze-
over than breakup, where freeze-over was driven primarily by chilling (accumulated FDD).
Sensitivity to chilling decreased with lake volume, therefore large-volume lakes require a
greater accumulation of FDD before freeze-over occurs, explaining their shorter ice-season
durations (Figures 4 and 8). More stable, lower-volume lakes required substantially less
chilling, and reliably accumulated enough FDD to freeze early in the fall–winter season.
These patterns were further affected by the lake’s location, (e.g., higher elevation and
shading by surrounding terrain). Lastly, while the highest-elevation lakes (e.g., Twin,
Telaquana, Chackachamna, Kukaklik, and Nonvianuk) reliably froze from year to year,
there were also differences among them due to the climactic influence of the warmer Gulf
of Alaska (Chackachamna) and colder interior (Telaquana) regions (Figure 1).

4.2. Threshold Response

While Lake Clark, Becharof Lake, and Tustumena Lake demonstrated non-freezing
years over the duration of our study, this appears to be a new phenomenon for the other
large lakes. Illiamna Lake, Nakenek Lake, Skilak Lake, Lake Grosvenor, and Brooks Lake
showed little appreciable probability of a non-freezing winter in any year before 2000, but
all were predicted and/or observed to not freeze in multiple winters post-2000 (Figure 9).
This, coupled with fact that 12 of the 15 warmest October–February cold accumulation
periods since 1949 occurred during our modeled period (1981–2021) suggests that we
have reached a threshold where the expectation of several of the larger lakes freezing is
substantially diminished (Figures 5 and 9).

Model estimates and MODIS observations agreed on multiple years that several lakes
did not freeze. Of these years, 2016 is most notable, when eight of the nine largest lakes
failed to freeze-over and the mean daily temperatures were above 0 ◦C (Figure 4). Notably,
the only large lake that did freeze in 2016 (Telaquana Lake) is the highest-elevation large lake
(376 m) located in a shaded mountain valley. The 2001 and 2003 water years were also above
0 ◦C, with multiple lakes neither observed nor modelled to freeze-over (Figures 5 and 9).
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The past 45 years have shown the greatest climate variability in fall/winter temperatures,
with 15 of the warmest and some of the coldest years occurring since 1977 (Figure 5). These
warm periods also corresponded with other climate indicators in the region, including
the highest summer sea-surface temperatures of the century in the Bering Sea (2003–2005
and 2014–2020) [50], warmer waters in the Gulf of Alaska starting in 1976 [51,52], and
anomalously warm waters in the Gulf for the years 2003, 2005, and 2014–2016 [53]. Benson
et al. [54] and Robertson et al. [55] also recognized that large-scale atmospheric and oceanic
conditions like the El Niño Southern Oscillation and the Pacific Decadal Oscillation are
associated with higher winter and spring temperatures since the late 1980s, and suggest
these regional climate drivers are no longer stationary [56] (Benson et al., 2011). Lastly,
Dauginis [57] found consistency between declining sea ice, lake ice, and snow-on trends in
Southwest Alaska.
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Figure 9. Modeled probability of ice cover exceeding 90%. Vertical red lines show the 0.5 probability
of each lake reaching the 90% ice cover by March 30, (DWY 18). Black points and error bars show
the posterior median (+/− 95% credible intervals) and the grey rectangles show the years of MODIS
observations. Higher-volume lakes are at the top of figure.

There have only been a few detailed studies that have predicted future changes in
the phenology of lake-ice cover. Dibke et al. [58] simulated lake-ice response to future
climate in 2040–2079 using the CGCM3 Global Climate Model and the upper-level emission
scenario (SRES A2). Their results propose that freeze-over will be later by 5–20 days, and
breakup will be earlier by 10–30 days by the mid-to-late century. Lakes in Pacific coastal
areas of North America saw the largest projected changes, while lakes in the Alaskan
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interior were less affected. More recently, Sharma et al. [9] suggested that, with continued
climate warming, lakes in Southwest Alaska will experience an exponential decrease in
reliable ice cover under a variety of climate scenarios.

4.3. Trend

The majority of lower-volume lakes (<10 km3) show negative trends in their period
of seasonal ice cover in the order of 1–6 days per decade over our modeled period. In
contrast, all but one of the lakes > 20 km3, show undiscernable or positive trends in ice-cover
duration of up to two days per decade over our modeled period (Table 1).

Studies of phenology trends in northern-hemisphere lake-ice phenology have found a
wide range of temporal trends that are generally negative but vary widely [9,56,57,59,60].
Our study estimated both positive and negative trends and may further explain the broad
range of observed and modeled trends. The estimated trend directions were a function
of (i.) the time window that we analyzed as there was a warm period near the start of
our study period, and (ii.) lakes were differentially impacted by the early warm period
depending on their individual characteristics. The non-negative trends were associated
with a shorter duration of ice cover and a higher mean absolute error in the model fit. The
trend in duration of ice cover in lakes with shorter periods of ice cover were impacted by
the warm fall/winters of 85 and 87, resulting in years with short or no ice cover at the
beginning of our study period, and thus a non-negative trend (Figures 4 and 9). The years
1977 and 1979 were also anomalously warm, but were not covered by our modeling period.
The lakes < 20 km3 in volume did not show modeled years with a short duration of ice
cover in the 1980s, thus showed negative trends in duration of ice cover (Table 1).

4.4. Future Efforts

While our model accurately predicts many of the years and dates in which freeze-over
and breakup occur, there are several instances where it does not. In 2013, Tustumena and
Lake Clark did not freeze-over, but our model predicted they would (Figure 9). Temperature
profile data available for Lake Clark in 2013 showed only eight days of winter stratification.
This suggests in some years, especially on high-volume lakes with greater heat-storage
capacities, other processes such as wind, seiche, and (temperature) profile mixing inhibit
ice formation and exacerbate the ice breakup process due to open water and thinner ice
cover.

Data collected from a meterology station near Tustumena suggest wind processes
affected the ice-formation processes in 2013 when the mean October wind speed was 23%
higher than the mean wind speed for October in 2001–2016 (Figure 10). Antecdotal evidence
also suggests wind and waves on Lake Becharof may be a factor as well. Parts of Southwest
Alaska can see particularly large atmospheric pressure gradients due to their position
between the relatively shallow and cold waters of the Bristol Bay (Bering Sea) and the
warmer waters of the Gulf of Alaska (Pacific Ocean). Local winds are frequently observed
>30 mps (58 knots) for extended periods of time and, because Becharof has relatively flat
surrounding terrain and a prevailing wind orientation, this can result in significant wave
action, with wave heights of several meters on larger lakes [61]. A sustained wind can also
create a seiche (water piling up downwind and later rebounding), which inhibits seasonal
temperature stratification in addition to sustaining mixing on larger lakes. With sufficient
data it is possible to calculate and model wind (and temperature stratification) effects on
lakes of various sizes. However, given the limited availability of bathymetric profiles and
local observations of wind direction and velocity, in addition to the complex topography
surrounding these lakes, it is presently not possible for us to include wind in our model.
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Figure 10. Wind rose comparisons. In 2013, lake ice was prevented from forming on Lake Clark
and nearby Tustumena Lake. Winds observed from Soldotna, close to Lake Tustemena, demonstrate
the average annual wind direction and intensity for October 2002–2016 water years (left) and the
2013 water year (right) when the average wind speed was 29% higher. (Data from Western Regional
Climate Center).

Other important variables known to affect the formation of lake-ice cover are snow
cover and water chemistry. While it is possible to estimate presence or absence of snow
cover using satellite data [62], we found negligeable improvement when including these
data in earlier versions of our model. This suggests snowpack properties such as depth,
density, and cold content, in addition to the interaction with atmospheric boundary layer
conditions (e.g., vapor pressure gradients), are more important than just the presence or
absence of snow [18]. Water turbidity and chemistry can also affect the process of heating,
cooling, and stratification in lakes, which also affects turnover and the formation of lake
ice. While several of the lakes in our study are crypto depressions (depths below sea level)
(Table 1), none of them has tidal influx or evidence of seawater intrusion. Some lakes have
a significant influx of glacial sediment impacting light absorption and solar heating (e.g.,
Lake Clark, Tustumena, Skilak, Telaquana, Chakachamna, and Twin Lakes), and others
have water chemistries impacted by volcanism (Becharof) [63], but we do not suspect the
addition of water quality or chemistry variables would have significantly changed our
modeling results.

Because this simple model does not use difficult-to-obtain forcing variables to predict
forcing variables such as wind, snow, or water quality, it should be possible to generally
predict future conditions with a limited set of variables. For example, multiple Global
Climate Models (GCM) that have shown good capability in predicting temperature and
the first-order influences on downwelling shortwave can be statically applied. There are
also efficient machine learning approaches to evaluate remote sensing data at scale that
could be used for calibration [43]. This approach would be particularly useful for larger-
volume lakes at lower elevations that appear to be most susceptible to small changes in
accumulated FDD. However, there are tradeoffs to using this simple approach as it may
miss delays in ice formation or years in which lakes do not freeze-over, as seen in our
hindcast predictions when compared to MODIS observations. In cases where capturing
this variability is important, additional input variables for wind and snow depth would
likely improve the model skill in predicting years with intermittent forcing events of high
wind, as seen for some lakes in 2013 or years when snow cover departs from the mean.
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5. Conclusions

While some communities, villages, and individuals have observations of lake-ice
formation and breakup at specific locations, there are very few observational datasets that
describe the phenology of an entire lake, much less a robust method of predicting when
ice-free conditions may occur. The types of in situ observations required for building
physically based models are neither available nor financially feasible for most Alaskan
stakeholders. Our open-source model addresses this by demonstrating the potential to
obtain accurate probabilities of past lake-ice phenology using readily available satellite data
and a few meteorologic parameters that are publicly available. Further improvements to
this model could be made at a regional and local level by (i) adding wind data as a variable
to the model, (ii) introducing computationally derived lake-volume estimates as a variable,
and (iii) incorporating additional satellite observations and uncertainties into the modeling
process. This model could also be adapted as a short- or long-term predictive tool using
input variables derived from near-real time data of local weather conditions or GCMs.
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Appendix A

Detailed Model Description

We modeled lake-ice processes using a daily, discrete-time, survival modelling ap-
proach, borrowing from recent work in plant phenology. Survival models have a long
history in medical research. They represent time-to-event data, allowing for events that
never happen, making them well suited to modelling a process like lake-ice formation. By
modelling the state of lake ice at a daily time step, we can use daily-resolved weather data
to predict freeze-over and thaw-start and generate more precise predictions.

We modeled the state of lake-ice cover ( fd,y,i) at each lake (i in 1. . .17) and lake clusters
on each day d of each water year y as a Bernoulli distributed random variable, with 0
representing ice cover < 90% and 1 representing ice cover > 90%:

fd,y,i ∼ Bernoulli
(

pd,y,i

)
(A1)

where pd,y,i is the probability of ice cover exceeding 90%. We decompose this probability
into the sum of two conditional probabilities, the freeze-over hazard (hfr

d,y,i) and the breakup

hazard (hbr
d,y,i). The freeze-over hazard is the probability of ice cover exceeding 90% on day

d, given that it did not by day d − 1, and the breakup hazard is the probability of ice cover
dropping below 90% on day d, given that it exceeded 90% on day d − 1.
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hfr
d,y,i = Pr

(
Fd,y,i = 1

∣∣∣Fd−1,y,i = 0
)

hbr
d,y,i = Pr

(
Fd,y,i = 0

∣∣∣Fd−1,y,i = 1
) (A2)

pd,y,i = hfr
d,y,i

(
1 − yd−1,y,i

)
+
(

1 − hbr
d,y,i

)
yd−1,y,i (A3)

We modeled the freeze-over hazard (hfr
d,y,i) with a logistic regression: the log of the

odds ratio of the hazard for lake i on day of water year d in water year y was modeled as a
linear function of lake- and day-varying covariates (FDDd,y,i, ASWRd,y,i), and a lake- and
year-varying covariate (antTDDy,i). Our model allowed for random lake-varying intercepts
and regression coefficients (βi).

ln
(

hfr
d,y,i/

(
1 − hfr

d,y,i

))
= β1,i + β2,i · FDDd,y,i + β3,i · SWRd,y,i + β4,i · antTDDy,i (A4)

Lake-varying intercept and slope random effects were modeled as draws from a
multivariate normal distribution with a mean vector µ and covariance matrix ∑.




β1
β2
β3
β4




i

∼ MVN




µ
β
1

µ
β
2

µ
β
3

µ
β
4

, Σβ


 (A5)

We modeled the breakup hazard (hbr
d,y,i) analogously as a logit-linear function of

lake- and day-varying covariates (TDDd,y,i, FDDd,y,i, SWRd,y,i). For modelling the breakup
hazard, d indexes days since 90% freeze-over, rather than days since start of water year.

ln
(

hbr
d,y,i/

(
1 − hbr

d,y,i

))
= γ1,i + γ2,i · TDDd,y,i + γ3,i · SWRd,y,i + γ4,i · FDDd,y,i (A6)




γ1
γ2
γ3
γ4




i

∼ MVN




µ
γ
1

µ
γ
2

µ
γ
3

µ
γ
4

, Σγ


 (A7)

We used weakly informative priors for all model parameters (Table A1), including a
scaled Wishart distribution [31] on the covariance matrices of multivariate distributions.
Priors on µβ and µγ were chosen to aid model convergence while permitting the data
to dominate the posterior distribution [64]. To assess the influence of prior probability
distributions on the regression parameters, we performed a sensitivity analysis, comparing
regression estimates from models where the prior variance on µβ and µγ were 1 and
2 orders of magnitude larger. We saw only minimal differences in parameter estimates
(Appendix C).

Table A1. Prior distributions for parameters in lake-ice survival models.

Parameter Prior Distribution Characteristics

µβ
1 , µγ

1 N (0, 2.5) Weakly informative on logit scale
µβ

2:4, µγ
2:4 N (0, 2.5) Weakly informative on logit scale

Σβ, Σγ scaled Wishart (s1:4 = 10, d f = 2) Uniform for correlation, half − t2(0, 10) for sd

From the modeled freeze-over and breakup hazards, we calculated the variables of
interest in our study. “Survival”, in the case of freeze-over being the probability that
lake i remained unfrozen until day d in water year w, is calculated as the product of the
complement of the freeze-over hazard over all days up to and including day d:
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Sfr
d,y,i =

d

∏
j=1

(
1 − Hfr

j,y,i

)
(A8)

The complement of survival is the probability that freeze-over had occurred by day d
in water year y:

Pfr
d,y,i = 1 − Sfr

d,y,i (A9)

Similarly, the probability that lake i remained frozen d days after the date of 90%
freeze-over in water year w was calculated as the product of the complement of the breakup
hazard over all days from the date of freeze-over until d days after the date of freeze-over:

Sbr
d,y,i =

d

∏
j=1

(
1 − Hbr

j,y,i

)
(A10)

and the probability that breakup had occurred by day d in water year y:

Pbr
d,y,i = 1 − Sbr

d,y,i (A11)

The date of freeze-over and the date of breakup were estimated as the day that the
probability of freeze-over and probability of breakup exceeded 0.5, respectively. Years
when the probability of freeze-over did not exceed 0.5 by day 180 of the water year were
classified as no-freeze years.

Appendix B

Observed versus Predicted Figures for Freeze-Over and Breakup
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Figure A1. Model performance at each study lake. Observed versus predicted values (posterior me-

dian +/− 95% credible intervals) for freeze-over, 1:1 line in black. Mean absolute error and r2 of model 

predictions are shown for each lake. Higher-volume lakes are at the top of figure. 

Figure A1. Model performance at each study lake. Observed versus predicted values (posterior
median +/− 95% credible intervals) for freeze-over, 1:1 line in black. Mean absolute error and r2 of
model predictions are shown for each lake. Higher-volume lakes are at the top of figure.
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Appendix C 

Appendix C.1. Bayesian Prior Sensitivity Analysis 

To understand the influence that model priors might have on our inferences, we 

tested our prior specification against two alternate prior specifications. For the mean cli-

mate effects (𝜇2:4
β

 and 𝜇2:4
γ

), we fit models with our chosen prior, Normal (mean = 0, sd = 

2.5), as well as more diffuse priors with variances covering a range of two orders of mag-

nitude: Normal (mean = 0, sd = 10), Normal (mean = 0, sd = 31.7) (Figure A3).  

Figure A2. Model performance at each study lake. Observed versus predicted values (posterior
median +/− 95% credible intervals) for breakup, 1:1 line in black. Mean absolute error and r2 of
model predictions are shown for each lake. Higher-volume lakes are at the top of figure.

Appendix C

Appendix C.1. Bayesian Prior Sensitivity Analysis

To understand the influence that model priors might have on our inferences, we tested
our prior specification against two alternate prior specifications. For the mean climate
effects (µβ

2:4 and µγ
2:4), we fit models with our chosen prior, Normal (mean = 0, sd = 2.5), as

well as more diffuse priors with variances covering a range of two orders of magnitude:
Normal (mean = 0, sd = 10), Normal (mean = 0, sd = 31.7) (Figure A3).

A comparison of estimated parameter values from these three models revealed mini-
mal sensitivity of the posterior to our prior specification (Figure A4). Generally, parameter
estimates in our model were constrained to be slightly smaller than in models with more
diffuse priors, but the effects were small, relative to the uncertainty.

105



Water 2024, 16, 2309Water 2024, 16, x FOR PEER REVIEW 23 of 28 
 

 

 

Figure A3. Prior probability distributions on regression coefficients, showing the prior used in anal-

ysis, N(0, 2.5) in grey, a N(0, 10) in red, and N(0, 31.7) in blue. 

A comparison of estimated parameter values from these three models revealed min-

imal sensitivity of the posterior to our prior specification (Figure A4). Generally, parame-

ter estimates in our model were constrained to be slightly smaller than in models with 

more diffuse priors, but the effects were small, relative to the uncertainty. 

Figure A3. Prior probability distributions on regression coefficients, showing the prior used in
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variability in antTDD, we compared these values to antTDD accumulated from January 1 

to September 30, predicting the latter with the former in a linear regression. This revealed 
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Figure A4. Model effects for model used in analysis (black) and models with alternate prior specifica-
tions, N(0, 10) in red, N(0, 31.7) in blue.
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Appendix C.2. Climate Accumulation Periods

Our accumulation period for antecedent thaw-degree days (antTDD) was between
June 1 and September 30. To confirm that this adequately represented the interannual
variability in antTDD, we compared these values to antTDD accumulated from January 1 to
September 30, predicting the latter with the former in a linear regression. This revealed that
our chosen accumulation period accounted for 91% of the variability in the antTDD since
the start of the calendar year (Figure A5). Furthermore, our chosen accumulation period
largely avoids considering heat loading during times when the lakes may still be snow-
and ice-covered, and insulated from air temperatures.

Our accumulation period for freeze-degree days (FDD) began on October 1, which
accounts for most of the FDD at our study lakes. We calculated the FDD accumulated
before October 1 for each lake and year of the satellite observation period. At 12 of the
17 lakes, no FDD accumulated before October 1 in any year of the satellite observation
period. For the lakes that accumulated any FDD before October 1, we compared the amount
accumulated by October 1 to the amount accumulated at the day of 90% freeze-over. FDD
accumulated before October 1 accounted for 0–5.4% of the FDD accumulated on the day of
90% freeze-over.
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period of accumulation. 
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Abstract: This study presents the design of a small open-circuit wind tunnel for laboratory use
and a method for preparing columnar ice. The ice formation process was analyzed in terms of
temperature and ice thickness variations under varying environmental temperatures and wind
speeds. Observations revealed that as wind speed increased, the grain size of the columnar ice
decreased. Key findings include the following: (1) the selection and validation of two cubic arcs
for the wind tunnel contraction section, achieving an acceleration ratio of 6.7–6.8 and stable wind
speeds of 1–10 m/s; (2) real-time temperature monitoring indicated rapid cooling before freezing and
slower cooling post-freezing, with lower ambient temperatures and higher wind speeds accelerating
the icing process; (3) the −1/2 power of grain size was found to be positively correlated with wind
speed; and (4) the method’s feasibility for studying mechanical properties of polar columnar ice was
confirmed. This technique offers a controlled approach for producing columnar ice in the laboratory,
facilitating comprehensive research on ice properties and providing a foundation for future studies
on the mechanical behavior of ice under windy polar conditions.

Keywords: columnar ice; wind tunnel; ice formation; grain size

1. Introduction

Ice plays a significant role in cold regions, affecting human activities and infrastruc-
ture. The internal structure of ice is quite complex and can be classified into granular
ice and columnar ice based on crystal structure types [1]. Columnar ice is composed of
vertically aligned ice crystal columns exhibiting distinct crystallographic orientation. In
contrast, granular ice consists of randomly oriented small ice crystals lacking any regular
crystallographic alignment. Granular ice forms in the early stages of freezing, influenced
by wave agitation. When the water surface is calm or when a surface ice layer has already
formed, ice crystals elongate vertically to form columnar ice. Granular ice is isotropic,
while columnar ice exhibits significant anisotropy [2]. Ice formed in rivers, lakes, and
oceans is generally predominantly columnar ice. In the Arctic and high-latitude inland
waterways, the presence of ice is seasonal—water surfaces begin to freeze in winter and
melt in summer [3,4]. The harsh winter environment results in complex ice conditions on
the water surface. Issues such as ice-bound waterways and vessel damage not only affect
shipping efficiency but also pose safety risks. When navigating during the ice season, ships
need to select appropriate routes and icebreaking strategies [5–7]. Therefore, studying the
mechanical properties and formation process of columnar ice is crucial for guiding the
selection of navigation strategies for ships.

Ice strength is often a primary focus in the study of its mechanical properties, as it is a
critical parameter for designing ships and offshore structures in icy regions. The failure
modes of ice include compression, tension, and flexure, corresponding to compressive
strength, tensile strength, and flexural strength, respectively [8–10]. Moslet [11] studied the
uniaxial compressive strength of columnar sea ice in Svalbard, Norway, and found that
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sea ice exhibits brittle and ductile behavior under different loading rates. Tests on both
horizontal and vertical samples concluded that strength mainly depends on temperature
and also summarized the relationship between Young’s modulus and porosity. Li [12],
addressing the abnormal ice conditions in the Bohai Sea during the winter of 2009–2010,
collected columnar sea ice samples from Liaodong Bay and conducted loading tests par-
allel to the ice surface. The uniaxial compressive strength of sea ice was measured, and
the surface relationship between uniaxial compressive strength and porosity within the
selected strain rate range was summarized, quantitatively describing the transition point of
mechanical behavior with changes in porosity. Bonath [13] conducted uniaxial tensile tests
on first-year ice ridges in the Svalbard region, finding that brine volume is a significant
parameter affecting the tensile strength of columnar ice. Menge [14] conducted tensile tests
on columnar ice perpendicular to the growth direction, showing that maximum tensile
stress is most influenced by temperature, while failure strain and modulus are affected
by loading rate. Han [15] studied the flexural properties of large columnar freshwater
ice, revealing that flexural strength is not affected by loading direction but shows a clear
correlation with temperature and strain rate. As test temperature decreases, ice strength
increases; as strain rate increases, strength first increases and then decreases. Karulina [16]
conducted full-scale flexural strength tests on sea ice and freshwater ice beams from the
Svalbard region. The results indicated that sea ice has lower flexural strength than freshwa-
ter ice and that flexural strength is independent of the direction of the flexural force applied
to the free end of the beam.

For studying the ice formation process, the most direct approach is to use specialized
tools for real-time measurement of ice thickness. Common methods include drilling, echo
sounding, electromagnetic (EM) sounding, visual ship-based observations, and video
observations [17]. Worby [18] evaluated the applicability of using portable electromagnetic
induction (EMI) devices for determining sea ice thickness under Antarctic winter and spring
conditions. Uto [19] used ship-based electromagnetic induction devices to detect sea ice
thickness in the southern Sea of Okhotsk, with results closely matching those obtained from
drilling measurements. Upward-looking sonar is another classic method for monitoring sea
ice thickness, typically mounted on submarines. This method was first used in Arctic sea
ice surveys [20], providing technical support for Arctic exploration and yielding accurate
data on Arctic sea ice thickness [21]. With technological advancements, radar has also
been employed for ice thickness detection. Initially, it was primarily used in the polar
regions [22,23], but it has since been used for ice thickness observations in high-latitude
inland rivers [24].

During in situ measurements, the climate and environmental conditions at measure-
ment locations are generally harsh, often leading to negative factors such as installation
difficulties, instrument damage, and challenges in equipment retrieval due to external
causes [25]. Additionally, the relatively high time and economic costs associated with
field measurements result in certain limitations. Consequently, scholars are choosing to
conduct studies on mechanical properties and the ice formation process in laboratory
settings. Cole [26] prepared polycrystalline ice samples in the laboratory and reviewed
several ice-making methods. Deng [27] conducted a series of uniaxial compression tests on
laboratory-made ice, investigating the strain rate range during the transition from ductile to
brittle behavior and the dispersion of compressive strength measurement data. Zhang [28]
used a low-temperature laboratory to prepare distilled water ice at different temperatures,
studying the relationship between uniaxial compressive strength, strain rate, and ice crystal
grain size. Rosa [29] equipped a laboratory tank with wave conditions and thermal effects
to observe the process of frazil ice crystals gradually accumulating to form a grease ice
layer. Roscoe [30] studied the growth and composition of frost flowers in the laboratory,
comparing laboratory results with field observations and finding consistency between
the two.

Cultivating sea ice and freshwater ice in the laboratory provides a method for ob-
serving the physical properties of ice. Researchers can control the growth of ice through
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stringent variable control by adjusting environmental conditions [31]. Environmental
temperature and wind speed are significant factors influencing the ice formation process.
Generally, a temperature-controlled room can achieve the desired atmospheric temperature
to control temperature effectively [32–34]. In some studies, fans are used to blow cold air
over the water surface to increase the heat transfer rate and ensure the uniform distribution
of cold air [35,36]. However, this method neither provides a stable wind speed nor allows
precise wind speed adjustment. In the study of atmospheric ice, wind tunnel devices
are used to provide stable and adjustable wind speeds for the icing process [37,38] and
thus can be utilized in low-temperature laboratories to simulate cold region environments.
This study proposed a method for preparing columnar ice in the laboratory, combining
low-temperature laboratory and wind tunnel to simulate the cold and windy conditions of
polar regions in a laboratory setting. This approach will facilitate future testing of columnar
ice in the laboratory, thereby supplementing and improving the study of ice properties.

2. Methods
2.1. Design of Wind Tunnel

To ensure stable wind speed during the process of freezing, it is necessary to control
the wind speed using a wind tunnel. In conventional air mediums, the maximum speed in
a typical low-speed wind tunnel does not exceed 130 m/s [39]. In this research, the wind
tunnel is housed within a low-temperature laboratory. Considering manufacturing costs
and spatial constraints, the wind tunnel is designed as an open-circuit low-speed wind
tunnel, with its structural schematic shown in Figure 1.

Water 2024, 16, x FOR PEER REVIEW 3 of 19 
 

 

stringent variable control by adjusting environmental conditions [31]. Environmental tem-
perature and wind speed are significant factors influencing the ice formation process. 
Generally, a temperature-controlled room can achieve the desired atmospheric tempera-
ture to control temperature effectively [32–34]. In some studies, fans are used to blow cold 
air over the water surface to increase the heat transfer rate and ensure the uniform distri-
bution of cold air [35,36]. However, this method neither provides a stable wind speed nor 
allows precise wind speed adjustment. In the study of atmospheric ice, wind tunnel de-
vices are used to provide stable and adjustable wind speeds for the icing process [37,38] 
and thus can be utilized in low-temperature laboratories to simulate cold region environ-
ments. This study proposed a method for preparing columnar ice in the laboratory, com-
bining low-temperature laboratory and wind tunnel to simulate the cold and windy con-
ditions of polar regions in a laboratory setting. This approach will facilitate future testing 
of columnar ice in the laboratory, thereby supplementing and improving the study of ice 
properties. 

2. Methods 
2.1. Design of Wind Tunnel 

To ensure stable wind speed during the process of freezing, it is necessary to control 
the wind speed using a wind tunnel. In conventional air mediums, the maximum speed 
in a typical low-speed wind tunnel does not exceed 130 m/s [39]. In this research, the wind 
tunnel is housed within a low-temperature laboratory. Considering manufacturing costs 
and spatial constraints, the wind tunnel is designed as an open-circuit low-speed wind 
tunnel, with its structural schematic shown in Figure 1. 

 
Figure 1. Structure of a typical open-circuit low-speed wind tunnel. 

The wind tunnel should be designed as a whole for the purpose of sealing. As the 
settling chamber necessitates an internal flow rectification device while the contraction 
section does not, both sections are fabricated as a single unit. The remaining sections are 
individually processed and interconnected via flanges, supplemented with 2 mm thick 
rubber for damping and sealing purposes. For observational requirements, the test section 
is constructed using acrylic material with a thickness of 4 mm, while the remaining com-
ponents are fabricated from stainless steel plates. 

2.1.1. Design of Test Section and Settling Chamber 
Based on the practical usage of the wind tunnel, the cross-sectional shape of the test 

section is designed to be square, and the dimensions are 150 mm × 150 mm. For low-speed 
wind tunnels, the length of the test section is typically 1.75 to 2.5 times the hydraulic di-
ameter of the inlet cross-section [40]. Considering the size of the icing pool, the length of 
the test section is set at 285 mm. Thus, the final dimensions of the test section are deter-
mined to be 285 mm × 150 mm × 150 mm (length × width × height). 

The size of the cross-sectional area of the settling chamber depends on the contraction 
ratio of the wind tunnel’s contraction section. The contraction ratio is the ratio of the cross-
sectional area between the settling chamber and the test section. For small-scale, low-
speed open-circuit wind tunnels, the contraction ratio typically ranges from 6 to 9 [40]. In 

Figure 1. Structure of a typical open-circuit low-speed wind tunnel.

The wind tunnel should be designed as a whole for the purpose of sealing. As the
settling chamber necessitates an internal flow rectification device while the contraction
section does not, both sections are fabricated as a single unit. The remaining sections
are individually processed and interconnected via flanges, supplemented with 2 mm
thick rubber for damping and sealing purposes. For observational requirements, the test
section is constructed using acrylic material with a thickness of 4 mm, while the remaining
components are fabricated from stainless steel plates.

2.1.1. Design of Test Section and Settling Chamber

Based on the practical usage of the wind tunnel, the cross-sectional shape of the test
section is designed to be square, and the dimensions are 150 mm × 150 mm. For low-speed
wind tunnels, the length of the test section is typically 1.75 to 2.5 times the hydraulic
diameter of the inlet cross-section [40]. Considering the size of the icing pool, the length
of the test section is set at 285 mm. Thus, the final dimensions of the test section are
determined to be 285 mm × 150 mm × 150 mm (length × width × height).

The size of the cross-sectional area of the settling chamber depends on the contraction
ratio of the wind tunnel’s contraction section. The contraction ratio is the ratio of the
cross-sectional area between the settling chamber and the test section. For small-scale,
low-speed open-circuit wind tunnels, the contraction ratio typically ranges from 6 to 9 [40].
In this study, the contraction ratio of the wind tunnel is set to 7. Calculations yield a settling
chamber cross-sectional area of 1.6 × 105 mm2, resulting in a square cross-section size of
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400 mm × 400 mm. When the contraction ratio exceeds 5, the settling section’s length is
generally 0.5 to 1.0 times the diameter [40]. Therefore, the length of the settling chamber is
determined to be 300 mm. To enhance the quality of the airflow field, a flow rectification
device should be installed within the settling chamber to rectify and stabilize the flow field.
The honeycomb structure was selected as the flow rectification device, as shown in Figure 2.
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2.1.2. Design of the Contraction

The contraction section is the core functional structure of the wind tunnel. The
design of the contraction section mainly focuses on the axial length, contraction curve, and
contraction ratio. Generally, the axial length of the contraction section is 0.5–1 times its inlet
hydraulic diameter (the side length of the settling chamber) [40], so the length range of
the contraction section is 200–400 mm. Selecting a longer length of the contraction section
can make the contraction curve smooth, which is conducive to no separation of airflow.
Therefore, the length of the contraction section was taken as 400 mm. The contraction curves
commonly used for wind tunnel equipment with better performance are the Witosznski
curve and the two cubic arcs [41]. Witosznski curve was defined by a 2nd-order polynomial
as follows:

R =
R2√√√√
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where R1, R2 are the section radius at the inlet and outlet of the contraction section (mm),
R is the section radius at the axial distance x (mm), and a is the length (mm) of

√
3 times

the contraction section.
The formula of the two cubic arcs is given as follows:
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where x/L is a dimensionless local-contraction length, Xm = xm/L is the dimensionless
contraction length where the matching of the two cubic arcs occurs, and R1, R2 are the
section radius at the inlet and outlet of the contraction section (mm). The flow characteristics
of the contraction section based on two kinds of curve modeling were analyzed by the
computational fluid dynamics (CFD) method. It was determined that the contraction section
should be modeled using the two cubic arcs. The computational results are elaborated
in Section 3.

2.1.3. Design of Exit Diffuser and Wide-Angle Diffuser

The exit diffuser is located behind the test section and is directly connected to the
atmosphere. The area ratio of the sections at both ends of the diffuser is generally designed
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to be about 2. The calculated outlet section size of the diffuser was 210 mm × 210 mm.
The diffusion angle was taken as 10◦, and the length of the diffuser was 140 mm. The
wide-angle diffuser is located between the fan and the settling chamber. The diameter of
the axial flow fan is 310 mm, so the inlet size of the diffusion section is set at 300 mm ×
300 mm to ensure a good fit with the fan and reduce the airflow loss. The length of the
wide-angle diffuser was determined to be 300 mm.

According to the above design of each part of the open-circuit low-speed wind tunnel,
the wind tunnel device with a total length of 1425 mm was finally obtained. The structures
of each part were connected by flanges and nuts, as shown in Figure 3. Wind tunnel
performance testing has determined that the maximum wind speed achievable by the wind
tunnel is 10 m/s. The results of the performance testing are discussed in Section 3.
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2.2. Ice Formation Test
2.2.1. Test Devices

Regarding the selection of materials for the ice formation tank, while acrylic glass
offers the advantage of transparency, facilitating direct observation of the ice formation
process, its relatively high thermal conductivity causes heat exchange between the tank
walls and the cold air. This exchange can affect the ice growth direction and observation
accuracy. The objective of the experiment is to produce columnar ice, and to ensure that the
ice grows naturally from top to bottom, a foam box is chosen as the ice formation tank. The
reasons for this choice include the following: foam material has a low thermal conductivity,
excellent sealing properties, resistance to water leakage, ease of repair in case of leaks, and
stability in low-temperature environments. Additionally, the foam box’s elasticity allows it
to conform tightly to the test section and prevent air leakage. It is also lightweight, which
facilitates handling during experiments and is cost-effective, thus reducing overall costs.

The ice formation tests were conducted in a low-temperature laboratory, where the
environmental temperature could be lowered to a minimum of −40 ◦C, with a temperature
control precision of 0.1 ◦C. To ensure that the initial water temperature in the ice formation
tank of each test remains consistent, the foam ice pools were placed in a high–low tempera-
ture test chamber for temperature stabilization before the tests. The specific parameters
of the low-temperature laboratory and the high–low temperature test chamber have been
described in a previous study [42]. The required wind speed for the tests was provided by
the wind tunnel. The test section of the wind tunnel was modified, with holes opened at the
upper part of the test section to facilitate the insertion of temperature and wind measuring
instruments; the lower part of the test section was not sealed, allowing the water to be in
direct contact with the airflow, as shown in Figure 4.

115



Water 2024, 16, 2558

Water 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

provided by the wind tunnel. The test section of the wind tunnel was modified, with holes 
opened at the upper part of the test section to facilitate the insertion of temperature and 
wind measuring instruments; the lower part of the test section was not sealed, allowing 
the water to be in direct contact with the airflow, as shown in Figure 4. 

 
Figure 4. Ice formation tank and test section. 

To measure temperature using a PT100 temperature sensor (Sigma-Aldrich, St. Louis, 
MA, USA), the sensor probe is welded onto a stainless-steel tube, forming a temperature 
chain. The high thermal conductivity of stainless steel may affect the heat transfer between 
air, ice, and water during the freezing process. To minimize this impact, the thickness of 
the stainless-steel tube is set at 1 mm. After welding the probe, the tube was vacuum-
sealed. Temperature probes are placed at intervals of 2 cm along the temperature chain. 
The temperature sensor has a measurement range of −50 °C to 450 °C and an accuracy of 
0.1 °C. The measurement data from the sensors are recorded using a paperless recorder, 
which has a reading accuracy of 0.1 °C. Wind speed is measured using the Testo 425 hot-
wire anemometer (Testo SE, Titisee-Neustadt, Germany), with a resolution of 0.01 m/s and 
an accuracy of ±(0.03 m/s + 4.0% of the measured value). The arrangement of the temper-
ature chain and the anemometer is illustrated in Figure 5. 

  
(a) (b) 

Figure 5. Temperature and wind speed measurement device. (a) Temperature chain and paperless 
recorder. (b) Hot-wire anemometer. 

2.2.2. Test Procedure 
Before the test, the ice formation tank filled with water is placed in the high–low tem-

perature test chamber until thermal equilibrium is reached. Once the low-temperature la-
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Figure 4. Ice formation tank and test section.

To measure temperature using a PT100 temperature sensor (Sigma-Aldrich, St. Louis,
MA, USA), the sensor probe is welded onto a stainless-steel tube, forming a temperature
chain. The high thermal conductivity of stainless steel may affect the heat transfer between
air, ice, and water during the freezing process. To minimize this impact, the thickness of the
stainless-steel tube is set at 1 mm. After welding the probe, the tube was vacuum-sealed.
Temperature probes are placed at intervals of 2 cm along the temperature chain. The
temperature sensor has a measurement range of −50 ◦C to 450 ◦C and an accuracy of 0.1 ◦C.
The measurement data from the sensors are recorded using a paperless recorder, which
has a reading accuracy of 0.1 ◦C. Wind speed is measured using the Testo 425 hot-wire
anemometer (Testo SE, Titisee-Neustadt, Germany), with a resolution of 0.01 m/s and an
accuracy of ±(0.03 m/s + 4.0% of the measured value). The arrangement of the temperature
chain and the anemometer is illustrated in Figure 5.

Water 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

provided by the wind tunnel. The test section of the wind tunnel was modified, with holes 
opened at the upper part of the test section to facilitate the insertion of temperature and 
wind measuring instruments; the lower part of the test section was not sealed, allowing 
the water to be in direct contact with the airflow, as shown in Figure 4. 

 
Figure 4. Ice formation tank and test section. 

To measure temperature using a PT100 temperature sensor (Sigma-Aldrich, St. Louis, 
MA, USA), the sensor probe is welded onto a stainless-steel tube, forming a temperature 
chain. The high thermal conductivity of stainless steel may affect the heat transfer between 
air, ice, and water during the freezing process. To minimize this impact, the thickness of 
the stainless-steel tube is set at 1 mm. After welding the probe, the tube was vacuum-
sealed. Temperature probes are placed at intervals of 2 cm along the temperature chain. 
The temperature sensor has a measurement range of −50 °C to 450 °C and an accuracy of 
0.1 °C. The measurement data from the sensors are recorded using a paperless recorder, 
which has a reading accuracy of 0.1 °C. Wind speed is measured using the Testo 425 hot-
wire anemometer (Testo SE, Titisee-Neustadt, Germany), with a resolution of 0.01 m/s and 
an accuracy of ±(0.03 m/s + 4.0% of the measured value). The arrangement of the temper-
ature chain and the anemometer is illustrated in Figure 5. 

  
(a) (b) 

Figure 5. Temperature and wind speed measurement device. (a) Temperature chain and paperless 
recorder. (b) Hot-wire anemometer. 

2.2.2. Test Procedure 
Before the test, the ice formation tank filled with water is placed in the high–low tem-

perature test chamber until thermal equilibrium is reached. Once the low-temperature la-
boratory reaches the desired test temperature and thermal equilibrium is maintained, the 

Figure 5. Temperature and wind speed measurement device. (a) Temperature chain and paperless
recorder. (b) Hot-wire anemometer.

2.2.2. Test Procedure

Before the test, the ice formation tank filled with water is placed in the high–low
temperature test chamber until thermal equilibrium is reached. Once the low-temperature
laboratory reaches the desired test temperature and thermal equilibrium is maintained,
the tank is positioned below the test section. The temperature chain is arranged vertically
downward in the center of the foam ice pool, with five probes submerged in the water, the
uppermost probe being at the water surface. Ambient temperatures in the low-temperature
laboratory were set to −10 ◦C, −15 ◦C, −20 ◦C, −25 ◦C, and −30 ◦C, with wind speeds of
1 m/s, 2 m/s, 4 m/s, 6 m/s, and 8 m/s for each temperature. Ice thickness is measured
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hourly. At the same depth, three positions are selected to insert a fine iron pin horizontally
into the ice pool’s side. If the pin cannot be inserted, the depth is frozen; if it inserts
smoothly, the depth contains water. The pin is then withdrawn, and waterproof tape is
used to seal the hole. After the final measurement, the foam box is destroyed to drain
the remaining water. The ice sample is photographed, its thickness measured, and its
shape recorded.

3. Results and Discussion
3.1. Selection of the Wind Tunnel Contraction Section
3.1.1. The Distribution of Pressure and Velocity

In Section 2, it was mentioned that the contraction section is the core structure of the
wind tunnel design, and two common contraction section curves were proposed. This
section introduces the selection of the contraction section for the experimental wind tunnel.
Finite element models of the two contraction sections were established, as shown in Figure 6.
Computational fluid dynamics (CFD) methods were used to analyze the flow fields inside
the two contraction sections and the test section, with inlet velocities set at 0.1 m/s, 1 m/s,
3 m/s, and 10 m/s, respectively. The CFD simulations were conducted using FLUENT
2020 R2.
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Figure 6. The finite element models of the contraction sections and the test section with different
contraction curve profiles. (a) The contraction section constructed using two cubic arcs. (b) The
contraction section constructed using the Witosznski curve.

Under the same inlet velocity conditions, comparing the static pressure (gauge pres-
sure) contour maps of the two types of contraction sections shown in Figure 7, taking
10 m/s as an example, it can be observed that the static pressure decreases along the flow
direction from the entrance of the contraction section and tends to zero at the exit of the
test section. In the contraction section constructed using two cubic arcs, the static pressure
distribution is relatively uniform, with the maximum pressure evenly distributed at the
entrance of the contraction section, and the rate of static pressure decrease is relatively
gentle. In contrast, in the contraction section constructed using the Witosznski curve, it
can be clearly observed that the static pressure distribution at the entrance is not uniform,
with the maximum pressure concentrated at the corners of the entrance of the contraction
section. This may lead to adverse pressure gradients causing gas recirculation, which could
affect the overall quality of the flow field.

As shown in Figure 8, it can be found that at each inlet wind speed, the ratio of the
velocity at the end of the contraction section to the inlet velocity is approximately 7, which
matches the contraction ratio C = 7 designed for the wind tunnel model. Taking 10 m/s as
an example, velocity streamlines in the test section in both types of models are relatively
straight, indicating that both can provide a stable flow field. However, it was observed
that the Witosznski curve contraction section exhibits more drastic changes in inlet velocity,
while the two-cubic arcs contraction section experiences minimal variation in inlet velocity,
primarily concentrated in the middle section for acceleration, and the velocity gradient at
the exit returns to be gentle. A qualitative analysis of pressure and velocity distributions
suggests that the flow characteristics of the two-cubic arcs contraction section are favorable.
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3.1.2. Comparison of Dynamic Pressure Coefficient and Velocity Non-Uniformity

The dynamic pressure coefficient and velocity non-uniformity are crucial parameters
for evaluating the uniformity of airflow in the test section. By comparing their magnitudes,
the performance of the contraction curves can be quantitatively assessed, with smaller
values indicating better flow uniformity. The formulas for calculating the dynamic pressure
coefficient αi and velocity non-uniformity η are given as follows [43]:

αi =

∣∣∣∣
qi
q
− 1
∣∣∣∣ (3)

η =
∣∣∣vi

v
− 1
∣∣∣ (4)

where qi is the dynamic pressure at point i, q is the average dynamic pressure measured
at different points, vi is the velocity at point i, and v is the average velocity measured at
different points.

The maximum dynamic pressure coefficient and maximum velocity non-uniformity in
the central region of the test section for both wind tunnel models are calculated at different
wind speeds (Tables 1 and 2). As the wind speed increases, both parameters decrease,
indicating a more uniform flow field within the test section. When the wind speed is
0.1 m/s, the velocity non-uniformity of the Witosznski curve model is slightly better than
that of the two-cubic arcs model. However, at inlet wind speeds of 1 m/s, 3 m/s, and
10 m/s, the maximum dynamic pressure coefficient and velocity non-uniformity for the
model with the two-cubic arcs contraction section are smaller. Therefore, the model with
the two-cubic arcs contraction section exhibits better flow characteristics than the one with
the Witosznski curve contraction section and is chosen for use in this study.

Table 1. Maximum dynamic pressure coefficient in the middle of the test section of two wind tunnel
models under different wind speeds.

Wind Speed (m/s) 0.1 1 3 10

Two cubic arcs 0.071 0.025 0.022 0.019
Witosznski curve 0.061 0.046 0.036 0.032

Table 2. Maximum velocity non-uniformity in the middle of the test section of two wind tunnel
models under different wind speeds.

Wind Speed (m/s) 0.1 1 3 10

Two cubic arcs 0.035 0.012 0.011 0.009
Witosznski curve 0.030 0.023 0.018 0.016

3.2. Wind Tunnel Test Section Velocity Verification

After the completion of the wind tunnel construction, performance testing is required.
In this study, the primary purpose of the wind tunnel is to provide stable wind speeds
during the ice formation process. Therefore, the wind speed within the test section has
been selected as the subject for performance verification. The contraction ratio was defined
in Section 2. According to the law of mass conservation, the numerical ratio of the wind
speed within the test section to the wind speed at the entrance of the contraction section
should equal the contraction ratio. Therefore, measuring the wind speed can also verify
whether the acceleration effect matches the design expectations. The wind speed within
the wind tunnel is provided by an axial flow fan equipped with a variable transformer.
The rotational speed of the fan blades can be continuously adjusted by varying the output
voltage of the transformer. The transformer is adjusted to a specific output voltage until
the fan speed remains constant. Then, the anemometer probe is positioned at the midpoint
of the contraction section entrance cross-section, and the test section midpoint and the
wind speeds are recorded, respectively. The output voltage is gradually adjusted from
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low to high, and the wind speed is measured at the midpoint of the test section. This
process will determine the minimum and maximum stable wind speeds that the wind
tunnel can provide under operational conditions. At each output voltage, the wind speed
measurements are repeated three times, and the average is taken to minimize errors. The
results of the wind speed measurements are shown in Table 3.

Table 3. Output voltages and results of wind speed measurements.

Output
Voltages (V)

Average Wind Speed at the
Midpoint of the Test Section (m/s)

Average Wind Speed at the
Contraction Section Entrance (m/s)

Speed
Ratio

90 1.08 0.16 6.75
105 1.97 0.29 6.79
120 3.04 0.45 6.76
130 4.12 0.61 6.75
150 6.23 0.92 6.77
180 8.13 1.21 6.72
220 10.56 1.57 6.73

The calculated ratio of the wind speed at the midpoint of the test section to the wind
speed at the entrance of the contraction section ranges from 6.7 to 6.8, which is marginally
less than the designed contraction ratio of 7. This deviation can be attributed to the fact
that theoretical calculations typically assume idealized conditions, such as smooth wall
surfaces and negligible flow losses. In contrast, practical implementations involve pressure
gradients and energy dissipation within the wind tunnel, which reduce the kinetic energy
of the airflow. Additionally, the formation of a boundary layer due to viscous effects
between the airflow and the walls reduces the effective cross-sectional area, leading to a
contraction ratio that is slightly lower than the design value. The results indicate that the
wind tunnel in this study can provide a stable wind speed range from 1 m/s to 10 m/s
under operational conditions. Integrating the midpoint wind speed of the test section with
the output voltage into Figure 9 reveals a linear positive correlation between the output
voltage and the midpoint wind speed of the test section. The relationship is expressed by
the following equation:

v
v0

= 0.076
U
U0

− 5.759 (5)

where U is output voltage and v is wind speed of test section. v0 and U0 are used for
non-dimensionalization.
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3.3. Results and Discussion of Ice Formation Test

In the initial stages of the ice formation observed according to the experimental
methods in Section 2, five temperature sensor probes were arranged every 2 cm along
the water surface, with Probe 1 located at the water surface. The temperature data were
collected at a frequency of once per minute, resulting in temperature variation curves
during the experiment, as partially shown in Figures 10 and 11.
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Figure 11. Temperature variation curves in the condensation tank at a wind speed of 8 m/s at different
ambient temperatures. The temperatures for (a–c) are −10 ◦C, −20 ◦C, and −30 ◦C, respectively.

It can be observed that, under all conditions, the temperature variation in the con-
densation tank can be divided into two stages. The first stage is characterized by a rapid
overall decline in water temperature, with the slopes of the temperature curves obtained
by each probe being largely consistent. This slope can be used to calculate the cooling rate
of the water before icing, with the calculated results shown in Table 4. By comparing the
temperature curves at the same temperature but different wind speeds (Figure 10) and at
the same wind speed but different temperatures (Figure 11), it is found that higher wind
speeds and lower temperatures lead to faster cooling rates. Furthermore, it is evident that
wind speed has a more significant impact on the cooling rate than ambient temperature at
this stage. This is because the heat transfer modes in this study include both convective
heat transfer and conduction. At this stage, the water surface has not yet frozen, and the
convective heat transfer between water and air dominates. In the second stage, the cooling
rate of the temperature at each measuring point in the condensation tank slows down, and
the temperature differences between measuring points gradually increase. The closer to the
air, the lower the temperature and the faster the cooling rate. The reason for the slowdown
in cooling is that the water starts to freeze during this period, releasing heat during the
phase transition. Additionally, the thermal conductivity of ice is lower than that of water.
Once the water surface freezes, the ice layer acts as a thermal resistance, providing some
insulation and affecting the heat exchange process between the underlying water and the
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cold air. This is reflected in the graphs, showing that the deeper the water, the slower the
temperature drops.

Table 4. Calculation results of cooling rate at different wind speeds and temperatures (unit: ◦C/h).

Wind Speed/Temperature −10 ◦C −15 ◦C −20 ◦C −25 ◦C −30 ◦C

1 m/s 3.15 3.56 3.81 4.37 4.71
2 m/s 3.94 5.13 6.06 7.72 8.05
4 m/s 5.56 7.20 7.91 8.98 9.35
6 m/s 6.97 8.20 9.73 10.23 11.40
8 m/s 9.13 13.09 14.71 16.88 19.63

After each test, the condensation tank was destroyed, and the remaining water was
drained to reveal the final ice formation, with some results shown in Figure 12. It can be
observed that despite the low thermal conductivity of the foam box, which minimizes
boundary effects, there are still some protrusions around the edges of the ice. Additionally,
the thickness in the middle of the ice layer is slightly greater due to the influence of the
temperature chain. The thickness of the ice was measured after removing the protruding
parts. The condensation tank is 280 mm long, and measurements were taken at 10 mm,
75 mm, 140 mm, 205 mm, and 270 mm from the end near the fan. The average value of
these measurements was then calculated. Combined with the duration of test, the average
icing rate was recorded in Table 5.
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Figure 12. The results of ice shapes after the formation test at −10 ◦C. The wind speeds for (a–c) are
1 m/s, 4 m/s, and 8 m/s, respectively.

Table 5. Calculation results of icing rate at different wind speeds and temperatures (unit: mm/h).

Wind Speed/Temperature −10 ◦C −15 ◦C −20 ◦C −25 ◦C −30 ◦C

1 m/s 3.31 4.19 4.54 5.39 5.54
2 m/s 3.88 5.41 5.49 5.57 6.36
4 m/s 4.67 6.00 6.01 6.80 7.53
6 m/s 4.92 6.29 6.63 7.08 7.99
8 m/s 5.09 6.57 7.03 7.57 8.26

The results indicate that both the cooling rate of the water body before the onset
of freezing and the initial icing rate are influenced by the combined effects of ambient
temperature and wind speed. By plotting the data in Figure 13 and applying surface fitting,
the relationships between the cooling rate, the icing rate, and the temperature and wind
speed can be expressed by Equations (6) and (7):

uc = 2.051 − 0.183T − 0.581v − 0.003T2 + 0.115v2 − 0.046Tv (6)

ui = 0.092 − 0.022T + 0.061v − 2.95 × 10−4T2 − 0.005v2 − 5.94 × 10−4Tv (7)
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where uc is the cooling rate of the water body, ui is icing rate, T is ambient temperature,
and v is wind speed.
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3.4. Results and Discussion of Ice Crystal Measurement

The objective of this study is to simulate the low-temperature, windy conditions of
polar regions in a laboratory setting to produce columnar ice. Consequently, it is necessary
to measure the crystal structure of the ice fabricated using the techniques in this study. To
ensure the integrity of the ice and facilitate its smooth extraction, temperature chains were
not inserted for temperature monitoring during the freezing process of the ice used for
crystal structure observation. The methods for observing ice crystal structures are well
established and have been utilized in previous studies [28,42]. Thin ice sections attached
to glass slides are observed under polarized light, with sections categorized as either
horizontal or vertical based on their orientation relative to the ice growth direction. The
method for preparing sections for observing the ice crystal structure is as follows: after
extracting the ice sample, sections of appropriate size and smooth cross-sections are cut
from different positions, oriented either vertically (parallel to the ice growth direction) or
horizontally (perpendicular to the ice growth direction), with a thickness of approximately
1–2 cm. A planer is used to gradually flatten one side of the section to ensure it can adhere
seamlessly to a clean glass slide. The preheated glass slide, maintained in a water bath
slightly above 0 ◦C, is then used to bond the flattened surface of the ice section. After a few
minutes, the ice section is firmly frozen to the glass slide. The section is then thinned to a
thickness of less than 1 mm using a planer to facilitate the distinction of crystal boundaries.
Vertical sections are used to observe the crystal type, while the results of horizontal sections
are analyzed using the equivalent circular diameter method to calculate the grain size. The
equivalent circle diameter method involves counting the number of complete grains on a
known cross-sectional area and treating each grain as a circle to calculate its diameter. The
calculation formula is as follows:

Dg = 2

√
S

nπ
(8)

where Dg is the average grain diameter (mm); S is the area of ice section (mm2); and n is
number of grains on the section.

The temperature of the low-temperature laboratory was set to −30 ◦C, and ice samples
were prepared at different wind speeds. As shown in Figure 14, the ice samples grown
under various wind speed conditions all exhibited columnar ice structures.
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Figure 14. Ice crystal morphologies at varying wind speeds. Wind speeds of (a–f) are 0 m/s, 1 m/s,
2 m/s, 4 m/s, 6 m/s, and 8 m/s.

During the entire freezing process, ambient temperature remained almost constant,
and wind speed only caused some disturbance to the water surface at the initial stage
of freezing. Once the surface was frozen, the heat exchange between the stagnant ice
and the underlying water and air diminished. This is reflected in the slower temperature
fluctuations observed in Section 3.3. Consequently, the ice crystals had sufficient time and
space to grow. Each crystal’s growth was constrained by surrounding crystals, resulting in
downward growth only, ultimately leading to the formation of columnar ice structures. The
data for grain size calculations are presented in Figure 15. It is evident that the grain size
increases with depth and decreases with increasing wind speed. The reason for this trend
is that slower crystallization rates result in larger grain sizes, while higher wind speeds
accelerate the icing rate, leading to smaller grain sizes. As the ice thickness gradually
increases, the thermal resistance between the water and the cold air also increases, causing
the icing rate to slow down and the grain size to increase.

From the results of ice grain size, it typically ranges from millimeters and does not
easily achieve micron-scale sizes like other materials primarily due to its formation mecha-
nisms, thermodynamic properties, and growth environment. The growth of ice grains is
closely related to the cooling rate; in slower cooling conditions, ice crystals have more time
to grow, leading to the formation of larger grains. Consequently, both experimental and
natural environments with slow cooling rates typically result in millimeter-scale ice grains.
In contrast, the formation of micron-scale grains theoretically requires extremely rapid
cooling rates, which are often not achievable in ice formation processes. Additionally, the
low thermal conductivity of ice leads to a slower heat dissipation during freezing, further
limiting the reduction in grain size. The hexagonal crystal structure of ice, along with its
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unique intermolecular hydrogen bonding, also contributes to the tendency for ice to form
larger crystal clusters during growth, making it challenging to achieve micron-scale grains
under natural or conventional experimental conditions.
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Figure 15. Grain size vs. depth curves of distilled water ice grown at different wind speeds.

Previous studies have indicated that the strength of ice is linearly related to −1/2 power
of grain size [44–46]. The analysis above reveals that wind speed is one of the factors in-
fluencing grain size. As summarized, there is a linear relationship between wind speed
and −1/2 power of average grain size, as shown in Figure 16. This implies that, under
constant temperature conditions, the desired grain size can be achieved by controlling the
wind speed, thereby facilitating further research into the physical properties of ice. Future
research could further investigate the combined effects of temperature and wind speed on
grain size.
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3.5. Application Discussion

This study integrates a low-temperature laboratory with a custom-made wind tunnel
apparatus to develop a technique for producing columnar ice under laboratory conditions.
This method allows for the simulation of the microstructure of ice formed under cold
and windy conditions. In previous research [42], it was applied to study the uniaxial
compressive strength of ice, investigating the strain rate sensitivity of columnar ice’s uniax-
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ial compressive strength. The results elucidated the relationship between grain size and
compressive strength, explaining the physical mechanism behind the higher ice strength
observed in polar regions under low temperature and high wind speed conditions. This
technique provides the means for comprehensive research into the mechanical properties
of polar ice formed under windy conditions. It allows for better control of environmental
variables during the freezing process, laying the foundation for studying the effects of
various factors on the physical properties of columnar ice.

In future work, this ice production method can be used to provide test samples
for mechanical property testing of columnar ice formed under windy polar conditions.
Zhang [47] utilized confined single-sided shear tests and Brazilian disc splitting tests to
study the shear and tensile strengths of freshwater and seawater, examining the impact of
temperature on both strengths. The ice samples were formed by freezing water collected
from different bodies of water in molds within the laboratory. Wang [48] collected sea ice
samples from Prydz Bay and, after transporting them back to the laboratory, investigated
the bending and compressive strengths of the sea ice using three-point bending tests and
uniaxial compression tests, respectively, studying the effects of strain rate and porosity
on strength. Ji [49], based on field observations, studied the impact of loading direction
on the uniaxial compressive strength of sea ice. The columnar sea ice was subjected to
uniaxial compression tests at different loading rates in both horizontal (parallel to the grain
columns) and vertical (across the grain columns) directions, exploring the anisotropy of
the compressive properties of columnar sea ice. The columnar ice production method
developed in this study can also be applied to the aforementioned research to supply test
samples. This method allows for more precise control of variables and can be completed
under laboratory conditions, addressing the challenges and costs associated with field
sample collection. This technique facilitates supplementary and comprehensive studies on
ice properties and can be utilized in numerous experimental investigations.

4. Conclusions

This study designed a small open-circuit wind tunnel for laboratory use and proposed
a method for the preparation of columnar ice. Using this method, columnar ice was pro-
duced, and the freezing process was observed under different environmental temperatures
and wind speeds. Temperature changes and ice thickness variations during the freezing
process were analyzed. The shape and grain size of the columnar ice were observed, and
the relationship between grain size and wind speed was investigated. The application
prospects of this method were discussed, leading to the following conclusions:

1. The contraction section of the wind tunnel was selected. Through qualitative and
quantitative analyses, it was found that using two cubic arcs for the contraction section
was more appropriate based on the flow field characteristics of models established with
different curves. Wind speed verification tests were conducted on the processed wind
tunnel, showing that the actual acceleration ratio of the wind tunnel contraction section
was 6.7–6.8, providing a stable wind speed range of 1 m/s to 10 m/s.

2. The temperature chain was used for real-time monitoring of the temperature at
different depths in the condensation tank during the freezing process. It was observed that
the water temperature experienced two stages: a rapid overall decline before freezing and
a slow decline after freezing began. The relationships between water cooling rate, icing
rate, ambient temperature, and wind speed were analyzed. Lower ambient temperatures
and higher wind speeds resulted in faster cooling and icing rates. These relationships were
summarized through surface fitting.

3. The crystal structure of ice samples produced using this method was observed, re-
vealing that all samples were columnar ice. The grain size of the ice crystals was calculated,
showing that under the same temperature, higher wind speeds resulted in smaller grain
sizes. It was concluded that −1/2 power of the grain size was positively linearly correlated
with wind speed.
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4. The feasibility of this method was discussed in conjunction with previous research
on the mechanical properties of ice. This method can be used in the future to test various
mechanical properties of columnar ice formed under windy polar conditions, providing
supplementary and refined methods for ice property research.

These conclusions highlight the effectiveness and potential applications of the colum-
nar ice production method developed in this study, offering a controlled laboratory tech-
nique to study the physical and mechanical properties of ice.
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Abstract: The multiphase components of natural ice contain gas, ice, unfrozen water, sediment and
brine. X-ray computed tomography (CT) analysis of ice multiphase components has the advantage
of high precision, non-destructiveness and visualization; however, it is limited by the segmentation
thresholds. Due to the proximity of the CT value ranges of gas, ice, unfrozen water, sediment
and brine within the samples, there is uncertainty in the artificial determination of the CT image
segmentation thresholds, as well as unsuitability of the global threshold segmentation methods. In
order to improve the accuracy of multi-threshold segmentation in CT images, a CT system was used
to scan the Yellow River ice, the Wuliangsuhai lake ice and the Arctic sea ice. The threshold ranges
of multiphase components within the ice were determined by watershed algorithm to construct a
high-precision three-dimensional ice model. The results indicated that CT combined with watershed
algorithm was an efficient and non-destructive method for obtaining microscopic information within
ice, which accurately segmented the ice into multiphase components such as gas, ice, unfrozen water,
sediment, and brine. The gas CT values of the Yellow River ice, the Wuliangsuhai lake ice and the
Arctic sea ice ranged from −1024 Hu~−107 Hu, −1024 Hu~−103 Hu, and −1024 Hu~−160 Hu,
respectively. The ice CT values of the Yellow River ice, the Wuliangsuhai lake ice and the Arctic
sea ice ranged from −103 Hu~−50 Hu, −100 Hu~−38 Hu, −153 Hu~−51 Hu. The unfrozen
water CT values of the Yellow River ice and the Wuliangsuhai lake ice ranged from −8 Hu~18 Hu,
−8 Hu~13 Hu. The sediment CT values of the Yellow River ice and the Wuliangsuhai lake ice ranged
from 20 Hu~3071 Hu, 20 Hu~3071 Hu, and the brine CT values of the Arctic sea ice ranged from
−6 Hu~3071 Hu. The errors between the three-dimensional ice model divided by threshold ranges
and measured sediment content were less than 0.003 g/cm3, which verified the high accuracy of the
established microscopic model. It provided a scientific basis for ice engineering, ice remote sensing,
and ice disaster prevention.

Keywords: threshold ranges; natural ice; multiphase components; CT images; watershed algorithm

1. Introduction

Ice is a prevalent molecular crystal in nature, which inevitably contains gas, unfrozen
water and sediment due to complex natural conditions [1]. The microstructure of ice
reflects its internal “skeleton” characteristics. The non-uniform distribution of components
within ice alters its internal structure, which directly impacts its physical properties [2]. For
instance, the interaction between ice and structures forms the foundation of ice engineering
research, while the mechanical properties of ice are determined by its microstructure [3].
The microstructure of ice also leads to variability in the thermal, optical and electrical
properties, which further influences subglacial water ecosystems and forms the basis for
ice thermodynamics and ice remote sensing research [4]. Information on the ice growth
process is stored in the ice microstructure. Analyzing the microstructure can facilitate the
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study of ice growth and melting, thereby improving the accuracy of predictions related to
ice sheet breakup, ice jamming, and ice damming [5]. Consequently, obtaining information
on the ice microstructure is the key to research on ice engineering, ice remote sensing and
ice disaster prevention.

The microstructure of ice has its fundamental physical properties, which mainly
includes stratification, crystal structure, and impurities. Currently, common instruments
for obtaining ice microstructural information are a Federov rotary stage [6], a scanning
electron microscope [7], a nuclear magnetic resonance instrument [8], and an X-ray scanning
system [9]. Among the various microanalysis tools, X-ray scanning systems are widely
used for analyzing the internal microstructures of samples due to the unique advantages of
non-destructiveness and visualization [9]. Researchers have conducted numerous studies to
characterize the ice pore structure. Michel et al. [10] qualitatively classified the ice structure
by in situ observations and examinations of ice crystals. Shokr et al. [11] conducted
field experiments in Resolute Bay to characterize the microstructure characteristics of
one-year and multi-year ice based on crystal observations. Cole et al. [12] analyzed the
main microstructural types of ice and their origins and discussed the microstructural
changes that occurred during deformation. Li et al. [13] performed uniaxial compression
experiments on 117 columnar-grained sea ice specimens along the direction parallel to
ice surface under different test temperatures and strain rates. The results supported
the curved-surface relationship between the uniaxial compressive strength and porosity
within a wide range of strain rate. Sammonds et al. [14] considered that ice occurred as
polycrystalline aggregates in which the bulk behavior was the result of the behavior of
the ensemble of individual grains; therefore, it was dependent on the microstructure, that
was to say, the whole arrangement of grains, their internal substructure, impurities, and
second phases. Hammonds et al. [15] conducted uniaxial compression experiments on
polycrystalline ice samples at different strain rates and temperatures. The extent of cracking
from each test is characterized via micro-CT imaging and is quantified via a newly proposed
variant of the crack density tensor. Salomon et al. [16] analyzed the three-dimensional
microstructure of sea ice by means of X-ray computed tomography. Microscopic (brine
and air pore sizes, numbers and connectivity) and macroscopic (salinity, density, porosity)
properties of young Arctic sea ice were analyzed. The current research mainly focuses on
the relationship between microstructural information obtained through CT systems and
macroscopic physical properties. Thus, accurately determining the threshold range of ice
components is essential for advancing the study of ice mechanics, thermodynamics and
optics, which is also crucial for improving the accuracy of ice numerical modeling.

Recently, X-ray computed tomography (CT) has been increasingly applied to micro-
scale studies of materials, including non-destructive testing [17], pore structure analysis [18],
compositional delineation [19], and numerical simulation based on CT images [20]. This
rise in application is attributed to its advantages of non-destructiveness, dynamic imaging,
and continuity [21]. However, compared to common rock microstructures, the CT value
ranges of ice, gas, unfrozen water, and sediment within ice microstructures are close to
each other, complicating threshold segmentation. Additionally, recent research indicates
that there is significant uncertainty in the manual determination of CT image segmentation
thresholds, which can lead to errors in analysis [22].

The major objectives of the study included (a) the CT value ranges of different compo-
nents in the Yellow River ice, Wuliangsuhai Lake ice and Arctic sea ice were summarized,
by which the pore morphology was explored. Moreover, the study compared the two-
dimensional CT image threshold segmentation results with the field observation; (b) based
on the reconstructed three-dimensional ice model, the morphology, distribution of intra-ice
sediment and intra-ice pore were extracted, and the reasons for the formation of different
morphological bubbles in different types of ice were discussed; (c) the three-dimensional
model of the Yellow River ice was reconstructed using CT and digital image processing
techniques. The feasibility of the watershed algorithm for ice image threshold segmentation
was validated through actual measurements of sediment content at different depths. The
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study improved the segmentation accuracy of CT images, which provided an essential
foundation for accurate extraction of ice microstructure information.

2. Materials and Methods
2.1. Material

The ice samples for CT analysis were collected from the Yellow River ice, Wuliangsuhai
lake ice and Arctic sea ice. The Yellow River ice samples were obtained from Baotou to
Toketo County. River ice typically contains not only air bubbles but also impurities such as
sediment, which is introduced during the flow of river. Seven ice samples were collected in
the Yellow River, which were named in order, such as the Yellow River No. 1 ice sample.
Wuliangsuhai, situated in Ulatqian Banner, Bayannur City, Inner Mongolia Autonomous
Region, experiences a freeze period from November to March each year. During frozen
period, water flows slowly, and the microstructure of lake ice is primarily influenced by
localized air bubbles [23]. Two ice samples were collected according to ice surface in the
Wuliangsuhai, named the Wuliangsuhai No. 1 ice sample and the Wuliangsuhai No. 2
ice sample. Arctic sea ice samples were collected from field stations during China’s ninth
scientific expedition, located at 79◦13′ N, 168◦49′ W and 84◦24′ N, 156◦08′ E, respectively.
The growth of sea ice is influenced by seawater salinity, which leads to widely distributed
brine bubbles and channels. Two ice samples were collected in the Arctic, named the
Arctic No. 1 ice sample and the Arctic No. 2 ice sample. Field-collected ice samples
were placed in ice core bags, which were stored in a cooler covered with crushed ice and
snow (temperature −5 ◦C). A total of 2987 ice CT images were obtained by scanning the
ice samples layer by layer, which were used to statistically analyze threshold range of
multiphase components of natural ice. The flow of experimental processing is shown in
Figure 1.
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2.2. Experimental Equipment and Scanning Principle

The CT scanning test was performed by a Philips Brilliance 16 CT scanning experimen-
tal machine in Cold and Arid Regions Environmental and Engineering Research Institute,
Chinese Academy of Sciences, Lanzhou. The instrument’s main technical parameters are
shown in Table 1.

Table 1. Main technical parameters of CT instrument.

Scan Cross
Section
(mm2)

Scan Layer
Thickness

(mm)

Scan Voltage
(kV)

Scan Current
(mA)

Reconstruction
Matrix

Technical
parameters 200 × 200 3 120 313 1024 × 1024
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The CT scan system typically comprises an X-ray source, a sample platform, a detector,
and a computer system for data analysis. As X-ray penetrates the sample, the X-ray energy
decreases due to photoelectric absorption, Compton effect, and electron pair effect [24].
The intensity decay law of X-ray is shown in Equation (1) [25]:

I = I0 exp[−µx] (1)

where I is the X-ray transmission intensity, I0 is the X-ray incident intensity, µ is the linear
attenuation coefficient of the material, x is the path length of the X-rays through the material.

The CT system operates by determining the attenuation coefficient of X-rays within
the scanned object, and the attenuation coefficient distribution matrix on the scanning
cross section is established by computer system. In practical applications, the differences in
attenuation coefficients between materials are minimal, so the CT values (Hounsfield unit,
Hu) are introduced to amplify this difference, and the CT value of water is set to 0 Hu [26],
as shown in Equation (2):

CTnumber =
µ − µw

µw
× 1000 (2)

where CTnumber is the CT value, µw is the attenuation coefficient of water.
The CT value increases with the material’s density, which can provide information

about the density of the scanning section. In the experiment, seven samples of the Yellow
River ice, two samples of Wuliangsuhai lake ice and two samples of Arctic sea ice were
scanned by CT, yielding microstructural images of these three different types of ice. The
scanning section was parallel to the ice core profile, then, the ice samples were scanned
layer by layer along the depth direction with a scanning section of 200 mm × 200 mm, a
layer spacing of 3 mm, and a CT image reconstruction matrix size of 1024 × 1024 pixels.

2.3. CT Image Preprocessing

During the acquisition of CT images, inherent electronic device perturbations and
environmental influences result in the production of noise and distortion, which negatively
impact the segmentation and extraction of components [27]. To mitigate image noise, the
Median filtering algorithm was employed. Additionally, manual cutting of the ice samples
resulted in surface imperfections, such as breakages and protrusions. Moreover, the outer
air portion of the CT image was not the test subject. To eliminate the potential interference
from these parts, the images were cropped, as shown in Figure 2, with the research area
highlighted in the red frame.
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2.4. Watershed Algorithm

Natural ice contains a significant number of impurities that vary in composition,
leading to complex and heterogeneous structures. The CT value denotes the attenuation
coefficient of X-rays reaching the detection point, which is related to the density of each
component within the ice sample. The range of machine detection is from −1024 Hu to
3071 Hu. However, the CT values displayed in the images correspond only to a grayscale
range of 0 to 255. As shown in Figure 3, the CT value ranges of gas, ice, unfrozen water, and
sediment within the samples are similar without significant intervals. This proximity leads
to uncertainty in artificially determining the segmentation thresholds and unsuitability
of the global threshold segmentation methods. The boundary between the multiphase
components within ice is indistinct. To extract the distribution, morphology, and spatial lo-
cation of the multiphase components within ice, the generation of closed region boundaries
is necessary.
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Figure 3. Histogram of ice sample CT values. There are no peaks and valleys in the CT value
histograms, which proves that the CT values range of gas, unfrozen water, ice, and sediment within
the samples are similar without significant intervals.

The watershed algorithm simulates the process of water immersion, which is suitable
for processing multiple objects and complex edge structures in images to form closed
boundaries. The algorithm treats the image as a topographical surface, with the gray value
of each pixel representing the terrain elevation [28]. Local minima in the image serve
as the points from which water continuously immerses, and the water gradually floods
the corresponding basin of image. As the water levels in two different regions rise and
converge, a dam is formed at their junction. Upon completion of the overflow process, each
local minimum is encircled by the dam corresponding to its water accumulation basin, and
each dam serves as the watershed. Consequently, the boundary of multiphase components
within ice is clearly extracted [29], as shown in Figure 4. Different water accumulation
basins represent different partitions of the image, thereby achieving image segmentation.

The CT values of gas, ice and unfrozen water are all less than or equal to zero. In
contrast, high CT values in freshwater ice are indicative of sediment, while high CT values
in sea ice are indicative of brine. The ice sample is considered to be composed of gas, ice,
water, and sediment (brine). The CT value ranges of gas, ice, water, and sediment (brine)
within the ice samples are determined by combining with the watershed algorithm, which
offers a novel technical method for the segmentation of ice CT images.
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Figure 4. Schematic diagram of watershed algorithm model.

The watershed algorithm first defines the two-dimensional image I as a grayscale
image set to discrete values of [0, N], where N is the positive integer, D is the set of positive
integers, and p is the pixel of the image. The set of pixels Th with height less than h is
filtered in the two-dimensional image I, where h is the threshold value [30], as shown in
Equation (3).

Th = {p ∈ D| I(p) ≤ h} (3)

For the set A and B, dA (a, b) denotes the shortest distance between two points a, b in
the set A. If B⊆A is satisfied, then B is randomly divided into k mutually interconnected
parts, which is denoted as Bi (i = 1, 2, . . ., k), and Bi corresponds to the geodesic influence
zone solution formula is defined as Equation (4) [30].

izA(Bi) = {p ∈ A|dA(p, B) < dA(p, B/Bi)} (4)

The set IZA(B) is the union of B’s geodetic influence zone defined as Equation (5) [30].

IZA(B) =
k∪

i=1
izA(Bi) (5)

In A, the complementary set of IZA(B) is called SKIZA(B) (Skeleton of Geodetic Influ-
ence Zone) as in Equation (6) [30].

SKIZA(B) = A/IZA(B) (6)

The pixels in the foreground area are aggregated to obtain the SKIZ, as shown in
iterative Equation (7) [30].

{
Xhmin = {p ∈ D|I(p) ≤ hmin } = Thmin

Xh+1 = MINh+1 ∪ IZh+1(Xh), h ∈ [hmin, hmax]
(7)

where h is the range of gray value, Xhmin is the pixel point with the smallest gray value in
image I, hmin is the smallest gray value, hmax is the largest gray value, Thmin is the set of
pixels with minimum value points in each basin, Xh+1 is all pixels with gray value less than
h + 1, MINh+1 is the set of pixel points with minimum gray value regenerated at the h + 1,
IZh+1(Xh) denotes the set of individual regions divided on the basis of the shortest distance
within all Th+1 connected regions.

In D, the complementary set of Xhmin is watershed region XWshed, as shown in
Equation (8) [30].

XWshed = D/Xhmin (8)
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2.5. Sediment Content

Due to the proximity of the CT value ranges of gas, ice, unfrozen water and sediment
within the samples, which makes it impossible to validate the accuracy of segmentation
results through subjective awareness. Furthermore, there is no precise and effective method
to obtain the content of each component in the ice samples except sediment. In order to
quantitatively validate the accuracy of the segmentation results, this study measured the
sediment content per unit volume of ice sample by melting a certain volume of the Yellow
River ice samples into a bottle, followed by filtering, drying, and weighing the sediment in
the ice sample, as shown in Equation (9).

Sm = m/Vi (9)

where Sm is the measured sediment content, m is the dried sediment mass in the ice sample,
Vi is the volume of corresponding ice sample.

Moreover, the sediment content was extracted from the reconstructed three-dimensional
model. This study compared the error between the measured sediment content and the CT
extracted sediment content, as shown in Equation (10).

SCT = (ρs × Vs)/Vi (10)

where SCT is the sediment content extracted from the CT three-dimensional model, ρs
is the density of dried sand, Vs is the volume of sediment extracted from the CT three-
dimensional model.

3. Results
3.1. Threshold Range and Two-Dimensional Image Segmentation Results

According to the multi-threshold segmentation results, the CT values of various
components within the ice were statistically summarized. The lower limit of gas CT values
fluctuated widely. For example, the Yellow River No.2 ice sample was dominated by
trapped bubbles (The CT values of No.2 ice sample’s gas ranged from −212 Hu~−107 Hu).
Bubbles were small and hermetic, which contained high water vapor. Strip shaped pores
were present in the Yellow River No.3 ice sample (The CT values of No.3 ice sample’s
gas ranged from −269 Hu~−115 Hu), but the pore structure was elongated and hermetic,
restricting air circulation. However, open and flaky cracks were present in the ice samples
of the Yellow River No. 1, 4, 5, 6 and 7, resulting in the lower limit values being close to
air’s CT value (−1000 Hu). To ensure the universal applicability of the CT value ranges,
the minimum and maximum values of various components in multiple ice samples were,
respectively, used as the lower and upper limits for CT values, as shown in Table 2. The CT
values of gas ranged from −1024 Hu~−107 Hu. The CT values of ice ranged from −103 Hu
to −50 Hu. The CT values of unfrozen water ranged from −8 Hu to 18 Hu. Due to the
differing mineral compositions in the sediment, the upper limit of sediment CT values
fluctuated widely, and this value did not have an effect on the image segmentation. In this
paper, the CT maximum value of the instrument’s technical parameters was taken as the
upper limit value of sediment, the CT values of sediment ranged from 20 Hu~3071 Hu.

Table 2. Statistical results of various components’ CT values in the Yellow River ice.

The Yellow River Ice
Lower Limit Value (Hu) Upper Limit Value (Hu)

gas - −107
ice −103 −50

unfrozen water −8 18
sediment 20 -

135



Water 2024, 16, 3330

In the case of the Yellow River ice, the field sample exhibited a white and transparent
appearance, as shown in Figure 5a. The sediment content was particularly high in the
middle portion of the ice sample (17 cm~30 cm from the bottom of the ice sample), with
a greater number of spherical bubbles in the upper portion of the sediment layer. Deng
et al. found that the bubbles in the Yellow River ice during the freezing period were mainly
spherical using the Federov rotary stage. Moreover, there is no significant correlation
between the equivalent diameter of bubbles in ice and depth [31]. The CT image was
segmented into four regions based on the CT value ranges, where gray represented gas, dark
blue represented unfrozen water, orange represented sediment, and light blue represented
ice, as shown in Figure 5b–j. Figure 5h showed the top of the ice sample, which exhibited
an abundance of gasses and lacked both sediment and unfrozen water. Figure 5i showed
the layer at 25 cm from the bottom of ice sample, containing sediment, unfrozen water,
gas, and ice. The sediment within the ice sample was randomly distributed on the plane,
with some sediment adhering to the edges of irregularly shaped bubbles. Unfrozen water
occurred with the sediment as well as in small, isolated bubbles. The shapes of bubbles
were predominantly single spheres or combinations of multiple spheres. Figure 5j showed
the bottom of the ice sample, which contained a little sediment and unfrozen water. It
matched the visual observation of samples collected in the field.
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Figure 5. Schematic of sample collection and two-dimensional image threshold segmentation. (a) The
Yellow River ice sample. Original two-dimensional CT images of (b) top layer, (c) 25 cm from the
bottom layer, (d) bottom layer. Histograms of CT values for (e) top layer, (f) 25 cm from the bottom
layer, (g) bottom layer. Two-dimensional image multi-threshold segmentation results of (h) top layer,
(i) 25 cm from the bottom layer, (j) bottom layer.
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The bubbles in the Wuliangsuhai lake ice were small and sealed, as shown in Table 3.
The CT values of Wuliangsuhai No. 1 ice sample’s gas ranged from −186 Hu~−103 Hu,
which were comparable to the CT values of the Yellow River No. 2 ice sample’s gas
(−212 Hu~−107 Hu). Notably, the CT lower limit value of Wuliangsuhai lake ice’s gas
was slightly larger than that of the Yellow River ice’s gas. It could be inferred that the
bubbles in the Wuliangsuhai lake ice may contain higher concentrations of gasses, such as
oxygen and carbon dioxide produced by biological communities, as well as water vapor.
Consequently, the density inside the Wuliangsuhai lake ice’s bubbles was slightly higher
than the density inside the Yellow River ice’s bubbles. The CT values of Wuliangsuhai
lake ice’s gas ranged from −1024 Hu~−103 Hu. The CT values of Wuliangsuhai lake ice
ranged from −100 Hu~−38 Hu. The lower limit was close to that of the Yellow River ice,
while the upper limit was slightly higher. This difference can be attributed to the reduced
hydrodynamic influence during the freezing process in Wuliangsuhai lake, leading to a
more compact and stable ice structure. The CT values of unfrozen water ranged from
−8 Hu~13 Hu. Additionally, the stable hydrodynamic environment also contributed to low
sediment content in the Wuliangsuhai lake ice, with only tiny amounts of sediment found
in the Wuliangsuhai No. 1 ice sample.

Table 3. Statistical results of various components’ CT values in the Wuliangsuhai lake ice.

Wuliangsuhai Lake Ice
Lower Limit Value (Hu) Upper Limit Value (Hu)

Gas - −103
Ice −100 −38

Unfrozen Water −8 13
Sediment 20 -

The pore structures in the Arctic sea ice were dominated by strip-shaped brine chan-
nels, egg-shaped trapped bubbles, and irregular-shaped extruded bubbles, which were
large and interconnected. The CT lower limit value of gas in sea ice was close to that of air,
indicating that the pores were connected to the outside. As shown in Table 4, the CT values
of gas ranged from −1024 Hu~−160 Hu. The CT values of Arctic sea ice ranged from
−153 Hu~−51 Hu. Ji et al. reviewed sea ice density measurement data during 2000–2015
and found Arctic sea ice density ranged from 675 kg/m3 to 954 kg/m3 [32]. Zhang et al.
measured the densities of the Yellow River ice and Wuliangsuhai lake ice during 2017–2020.
The Yellow River ice density ranged from 703 kg/m3 to 965 kg/m3 and Wuliangsuhai lake
ice density ranged from 883 kg/m3 to 907 kg/m3 [2]. Since the density of sea ice was lower
than the density of freshwater ice, the CT lower limit value of Arctic sea ice was also lower
than that of the Yellow River ice and the Wuliangsuhai lake ice. The CT values of brine
ranged from −6 Hu~3071 Hu, with the upper limit being determined by salinity, which
increases with increasing salinity.

Table 4. Statistical results of various components’ CT values in the Arctic sea ice.

Arctic Sea Ice
Lower Limit Value (Hu) Upper Limit Value (Hu)

Gas - −160
Ice −153 −51

Brine −6 -

3.2. Three-Dimensional Reconstructed Images of Ice

Common bubbles in ice can be categorized into three types: trapped bubbles, closed
bubbles, and extruded bubbles. These bubbles differ significantly in their formation pro-
cesses and physical properties [33]. Trapped bubbles form due to the lower solubility of
air in ice compared to its solubility in water. During the freezing process, air is expelled

137



Water 2024, 16, 3330

from the ice to the freezing front. When the gas concentration at the freezing front reaches a
supersaturation level, bubble nucleation occurs. As the freezing front moves, the high gas
concentration surrounding the bubble diffuses into it, facilitating its growth. If the gas es-
cape rate is slower than the freezing rate, the freezing front gradually covers the air bubbles,
ultimately resulting in the formation of trapped bubbles, which typically exhibit egg-like or
needle-like shapes. Closed bubbles are commonly found in high-latitude alpine lakes, and
the formation process involves the freezing of methane and other gasses produced by mi-
crobial fermentation on the lakebed, resulting in primarily disk-shaped bubbles. Extruded
bubbles are found in the deep ice cores of polar ice sheets. The formation process involves
the gradual transformation of fluffy polar snow into ice through gravitational extrusion,
resulting in the entrapment of irregularly shaped bubbles within the ice. Two-dimensional
CT images can only provide localized information. To comprehensively represent the
segmentation effect of ice samples, a three-dimensional model of the ice is reconstructed
intuitively and stereoscopically by stacking multiple layers of two-dimensional images.
According to model data, the surface of the Yellow River ice had begun to melt and formed
vertical ice, which was dominated by strip-shaped pores, as shown in Figure 6a,b, and
trapped bubbles, as shown in Figure 6c,d. The high sediment content (20 to 400 g/L) of
the Yellow River significantly impacted the generation and elimination process of river ice,
with sediment randomly frozen within the ice [34], as shown in Figure 6c.
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Figure 6. Three-dimensional reconstructed images of the Yellow River ice samples. Global three-
dimensional image of (a) the Yellow River No. 3 ice sample, and (c) the Yellow River No. 4 ice sample.
Local three-dimensional images of (b) the Yellow River No. 3 ice sample, and (d) the Yellow River
No. 4 ice sample.

In contrast to the complex hydrodynamic conditions of the Yellow River, the Wuliang-
suhai lake ice experienced stable hydrodynamic conditions during its freezing process. As a
result, the lake ice had a complete structure, devoid of open cracks or flaky bubbles, whose
porosity was significantly lower than that of the Yellow River. The collection zone of the
Wuliangsuhai No. 1 ice sample appeared white with distinct boundary lines, as shown in
Figure 7a. The air bubbles within the Wuliangsuhai No. 1 ice sample were predominantly
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closed bubbles, which were disk-shaped and in bunches, as shown in Figure 7b,c. These
closed bubbles formed when gasses produced by aquatic organisms’ respiration could not
be discharged in time and were frozen within the ice, suggesting the presence of substantial,
stable plant or microbial communities beneath the area where the Wuliangsuhai No. 1 ice
sample was collected. Zhang et al. simulated and analyzed changes in dissolved oxygen
during growth and stability period of ice. The Wuliangsuhai’s maximum daily average oxy-
gen production rate was 7.19 mg/(L·d) [35]. The low porosity and small-volume bubbles of
Wuliangsuhai No. 2 ice sample, as shown in Figure 7d,e, proved that Wuliangsuhai No. 2
ice sample was less affected by the external environment during the process of generation.
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Figure 7. Study area and local three-dimensional reconstructed images of the Wuliangsuhai lake
ice. (a) the Wuliangsuhai No. 1 and No. 2 ice samples collection areas. Global three-dimensional
images of (b) the Wuliangsuhai No. 1 ice sample, and (d) the Wuliangsuhai No. 2 ice sample. Local
three-dimensional images of (c) the Wuliangsuhai No. 1 ice sample, and (e) the Wuliangsuhai No. 2
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In contrast to the Yellow River ice and Wuliangsuhai lake ice, Arctic sea ice was not
affected by sediment during its generation and elimination process, but rather by seawater
salinity. Although, more than 80% of the salt was expelled during freezing, but salt still
remained in the form of brine cells within the sea ice. Under constant low-temperature
conditions (0 ◦C~−30 ◦C), the high concentration brine within the sea ice always remained
in the liquid state. Due to the higher specific gravity of brine compared to that of ice
crystals, it was influenced by gravity to move down along the ice crystal gaps, resulting in
the formation of brine channels. As shown in Figure 8a,b, the spherical or strip-shaped brine
cells were mainly attached to the pore structures, while the pores were mainly downward
strip-shaped brine channels.
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3.3. Comparison of CT Extracted Sediment Content with Measured Sediment Content

The CT value range is −1024 Hu~3071 Hu, which corresponds to 0~255 levels of
gray value on the CT image, with each gray level representing 16 Hu. Furthermore, the
proximity of the CT value ranges of gas, ice, and unfrozen water within the samples, as
well as the large amount of image data, makes it impossible to validate the accuracy of
segmentation results through subjective awareness. In order to quantitatively validate the
accuracy of the segmentation results, this study measured the sediment content per unit
volume of ice sample by melting a certain volume of the Yellow River ice samples into a
bottle, followed by filtering, drying, and weighing the ice sample. Meanwhile, the volume
of sediment within the ice sample was obtained based on the CT three-dimensional model.
The dry density of sediment was set to 1.4 g/cm3 to calculate the sediment content in the CT
data [36], as shown in Figure 9. The errors between the measured data and the CT extracted
data were less than 0.003 g/cm3. The results showed that the ice three-dimensional model
based on the watershed algorithm aligned well with the measured data, demonstrating
consistent trends in both sets of results.
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4. Conclusions

Ice multiphase components not only reflected the ice growth process, but also signifi-
cantly influenced the mechanical, thermal, optical, and electrical properties of ice. However,
the CT value ranges of gas, ice, unfrozen water, and sediment were close to each other, mak-
ing it challenging to determine segmentation thresholds artificially. This study determined
the threshold ranges for multiphase components of the Yellow River ice, Wuliangsuhai
lake ice and Arctic sea ice based on X-ray computed tomography and watershed algo-
rithm, which provided a reference for the threshold ranges of ice experiments. The main
conclusions were as follows.

1. X-ray computed tomography combined with the watershed algorithm was an efficient
and reliable method for obtaining internal microstructural information of ice without
destruction. This approach could determine the multi-threshold value of CT image to
segment the ice samples into various components, such as gas, ice, unfrozen water,
and sediment (brine). According to the multi-threshold segmentation results, the
three-dimensional ice model was constructed to obtain the morphology and spatial
distribution of various components within the ice samples, which provided a scientific
basis for ice engineering, ice remote sensing, and ice disaster prevention.

2. The gas CT values of the Yellow River ice, the Wuliangsuhai lake ice, and the Arctic
sea ice ranged from −1024 Hu~−107 Hu, −1024 Hu~−103 Hu, −1024 Hu~−160 Hu,
respectively. The Yellow River ice and the Wuliangsuhai lake ice were dominated by
egg-shaped trapped bubbles and disk-shaped closed bubbles. The Arctic sea ice was
dominated by strip-shaped brine channels and irregular-shaped extruded bubbles.
The ice CT values of the Yellow River ice, the Wuliangsuhai lake ice and the Arctic
sea ice ranged from −103 Hu~−50 Hu, −100 Hu~−38 Hu, −153 Hu~−51 Hu. In
contrast to the Yellow River ice and the Arctic sea ice, the Wuliangsuhai lake ice
had a more compact structure. The unfrozen water CT values of the Yellow River
ice and the Wuliangsuhai lake ice ranged from −8 Hu~18 Hu, −8 Hu~13 Hu. The
sediment CT values of the Yellow River ice and the Wuliangsuhai lake ice ranged
from 20 Hu~3071 Hu, 20 Hu~3071 Hu, and the brine CT values of the Arctic sea ice
ranged from −6 Hu~3071 Hu.

3. High sediment content of the Yellow River significantly impacted the generation and
elimination process of river ice, with sediment randomly frozen within the ice. At
the same time, the sediment was surrounded by a lot of unfrozen water, which was
significantly higher than the unfrozen water content in the sediment-free zone.

4. The three-dimensional ice model based on X-ray computed tomography and water-
shed algorithm was in good agreement with the measured data, exhibiting errors
of less than 0.003 g/cm3. It could provide a new idea for quantitative study of ice
microstructure information. This study only verified the accuracy of sediment content.
In further research, we need to use nuclear magnetic resonance instruments to verify
the accuracy of gas and liquid phases in ice samples.
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Abstract: Ice is a common natural phenomenon in cold areas, which plays an important role in the
construction of cold areas and the design of artificial ice rinks. To supplement our knowledge of
ice mechanics, this paper investigates the mechanical properties of granular snow ice. The factors
influencing the flexural strength of granular snow ice are analyzed through a three-point bending
test. It is found that flexural strength is affected by strain rate. At low strain rates, flexural strength
increases with increasing strain rate, whereas at high strain rates, flexural strength decreases with
increasing strain rate. As temperature decreases, the flexural strength value of ice increases, but its
brittleness becomes more pronounced, indicating that the strain rate corresponding to the maximum
flexural strength is lower. Within the test temperature range, the tough-brittle transition range is
from 6.67 × 10−5 s−1 to 3.11 × 10−4 s−1. At −5 ◦C, the strain rate corresponding to the maximum
bending strength is 3.11 × 10−4 s−1, while at −10 ◦C, it is only 6.67 × 10−5 s−1. Flexural strength
is influenced by crystal structure. At −20 ◦C, the average flexural strength of granular snow ice is
2.85 MPa, compared to 1.93 MPa for columnar ice at the same temperature. Through observation,
we found that there are straight cracks and oblique cracks. The fracture toughness of granular snow
ice was investigated by cutting prefabricated cracks at the bottom of the ice beam and employing
a three-point bending device. It is found that fracture toughness decreases with increasing strain
rate. Temperature also affects granular snow ice. At −15 ◦C, fracture toughness is 181.60 kPa·m1/2,
but at −6 ◦C, it decreases to 147.28 kPa·m1/2. However, at varying temperatures and strain rates,
there is no significant difference in the fracture patterns of ice samples, which predominantly develop
upward along the prefabricated cracks.

Keywords: granular snow ice; ice temperature; strain rate; flexural strength; fracture toughness

1. Introduction

Ice is a non-homogeneous composite material consisting of grains, grain boundaries,
and initial defects [1,2], with types including sea ice, river ice, lake ice, reservoir ice, icebergs,
permafrost, atmospheric ice, and polar glaciers in cold regions [3]. Ice, as a widespread
natural phenomenon in cold regions, has beneficial aspects for human life, such as enabling
the development of oil resources in the polar seas [4]. Moreover, ice itself serves as a load-
bearing platform, capable of supporting and transporting both mobile and stationary heavy
loads [5]. Ice on rivers and lakes has long been utilized for ice tourism, recreation, and
ice transportation [6]. However, ice-related disasters, including river ice floods, reservoir
ice impacts on gates, slope protection, and winter operations of power plants, as well as
the effects of sea ice on offshore structures and navigation, pose significant threats to life
and property [7]. In the design, construction, and operation of hydroelectric equipment,
as well as in the design of structures such as icebreakers, special consideration must be
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given to ice loads to ensure operational safety in cold regions [8,9]. When ice interacts
with inclined or conical structures, bending failure typically occurs [10]. It is not only an
important mechanical property for assessing the climbing and impact strength of ice on
inclined hydraulic structures [11], but also a key parameter for calculating ice loads [8]. Ice
fracture destruction is also common. It is an important parameter in the design of hydraulic
structures and the analysis of river ice dynamics. Following the formation of the ice layer,
the force generated by its heating and expansion is the primary load that leads to the failure
of reservoir slope protection [12]. Extreme ice pressure is related to the deformation and
fracture behavior of the ice sheet under compression. To develop an extreme ice pressure
model based on fracture mechanics theory, it is particularly necessary to understand the
fracture toughness of ice [13].

In 1968, Weeks and Assur demonstrated that sea ice exhibits viscoelastic mechanical
properties [14]. Sinha [15] argued that the viscoelastic–plastic constitutive relationship
of sea ice allows it to exhibit a wide range of mechanical behaviors at different loading
rates. Previous research has found that ice shows brittleness at higher strain rates, while
lower rates lead to ductile behavior [16–19]. Specifically, the low-strain-rate region exhibits
ductile failure, the high-strain-rate region is characterized by brittle failure, and there is a
ductile-to-brittle transition stage in between. Zhang et al. [20] discovered that the transition
range for ice from ductile to brittle is between 1.46 × 10−6 s−1 and 3.54 × 10−5 s−1 on
freshwater ice. Schulson [21,22] first proposed the critical grain size of ice in analyzing the
transition from brittle to ductile behavior, concluding that this transition in the properties
of ice materials is related to grain size. Additionally, many scholars use theoretical or
experimental methods to describe the transition of ice from exhibiting ductile behavior to
brittle behavior [23,24].

Currently, experimental studies on ice bending mainly include three-point bending,
four-point bending, and cantilever beam tests. Of these, three-point bending tests involve
retrieving ice samples and preparing them indoors, while cantilever beam tests are predom-
inantly conducted in the field [25]. In 1943, the Brazilian engineer Carneiro [26] proposed
the famous Brazilian disk indirect tensile test method, which is now widely used to test the
tensile strength of rocks, concrete, and other brittle materials [27]. There are a number of
methods to test brittle materials for mixed-mode (I + II) or pure-mode II fracture toughness,
such as using straight-notched Brazilian disks, V-notched Brazilian disks, and compression
short-core tests [28–30]. Xiao et al. [31] concluded that under the premise of ensuring that
ice is a brittle material, it can be tested as a rock and the fracture toughness and tensile
strength can be measured by applying Brazilian disk splitting.

The mechanical properties of ice may depend on a combination of factors, such as
crystal structure, temperature, porosity, grain size, and strain rate [32,33]. In general, the
fracture toughness of ice is in the range of 50–150 kPa·m1/2 [34], increasing slightly with
decreasing temperature [35] and decreasing with increasing grain size [36] and porosity [37].
Wang [38] conducted a three-point bending test on artificial columnar ice and found that
the flexural strength increased and then decreased with an increase in the strain rate, and a
fitting relationship between flexural strength, elastic modulus, and strain rate was obtained.
Gagnon [39] and Ji et al. [40] conducted bending tests on glacier ice and sea ice, respectively,
and found that the flexural strength increased with an increase in strain rate and a decrease
in temperature. Zhang et al. [41] studied freshwater granular ice and found that the flexural
strength initially decreases, then increases, and then decreases again with increasing stress
rate. Zhang [42] found that the variation in flexural strength with strain rate is similar to
an inverted “W” shape. Xu et al. [43] conducted three-point bending tests with notches
on pure polycrystalline ice at different temperatures (−20 ◦C, −30 ◦C, and −40 ◦C) and
loading rates (1 to 100 mm/min). They found that when the strain rate at the crack tip
was less than the critical value of 6 × 10−3 s−1, the fracture toughness decreased with the
increasing crack tip strain rate. Beyond this critical value, the fracture toughness remained
constant. Litwin et al. [44] studied the tensile strength and fracture toughness within the
temperature range of 260 K to 110 K and found that fracture toughness is not sensitive to
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temperature. Mulmule et al. [45] and Dempsey et al. [46] conducted fracture toughness
tests on sea ice of different sizes and found a significant size effect. Dempsey et al. [46]
suggested that the results of fracture tests can be characterized by tensile strength, which
decreases with increasing specimen size.

Ice plays a role in transportation, the military, and other fields, and has also led to the
development of numerous ice sports [47]. Some countries use refrigeration technology to
manufacture artificial ice rinks, in which the artificial ice surfaces must meet the require-
ments of stiffness and bearing capacity, as well as ensure the normal requirements of ice
sports. However, when moving on the ice surface, it may crack or be locally damaged,
causing harm. Therefore, investigating the mechanical properties of artificial ice is essential.
Due to variations in growth environments, different types of ice crystals form, including
snow ice, granular ice, and columnar ice [48]. However, previous studies have provided
relatively little research on the mechanics of granular ice. In field experiments, the relatively
low content of granular ice and uneven thickness in the ice layer sometimes hinder the
extraction of a sufficient number of samples, making it difficult to stably test its mechanical
properties. Studies [8] also indicate that the bending strength of granular ice is higher than
that of columnar ice, necessitating a serious consideration of its mechanical properties.
Schwarz et al. [49] provided recommendations for the dimensions of ice specimens in
bending tests. The focus of this study is to prepare artificial granular ice in the laboratory,
cut a small ice sample measuring 35 mm × 35 mm × 180 mm, and investigate the influence
of temperature and strain rate on the bending strength and fracture toughness of granular
ice through three-point bending and fracture toughness tests, aiming to further supplement
the mechanical properties of ice.

2. Method
2.1. Ice Sample Preparation

As a result of changes in climate and temperature, the three states of water are con-
stantly shifting. As temperatures continue to drop to freezing point, bodies of water
develop ice. During crystallization, water forms different crystal structures due to various
external conditions such as temperature and pressure, and crystals with the same structure
are affected by the environment, resulting in different grain sizes [32]. In rivers, for example,
granular snow ice crystals may form during the early stages of freezing when the ice grows
too fast or when snow falls before cooling, after which the vertical growth rate dominates
and columnar ice crystals are formed [50].

The granular ice and columnar ice samples used in this study were prepared at
Northeast Agricultural University in Harbin, Heilongjiang Province, China. The specific
steps for the preparation of granular ice are as follows: add about one-third of tap water
into a container wrapped with foam board, place it in a sub-zero environment and cool it
down to 0 ◦C, then add slush and stir it to form an ice–water mixture, and finally invert
the container to remove the ice after it is completely frozen. Columnar ice was prepared in
the low-temperature laboratory, with a temperature control range of room temperature to
−40 ◦C and a temperature fluctuation value of ±0.5 ◦C. Due to the addition of snow mud
during the preparation process to form an ice–water mixture, we will use “granular snow
ice” to describe the experimental object in the following description.

Cracks and large fractures in the middle of the ice body significantly impact test
results, so any specimen exhibiting these conditions should be promptly discarded [2].
To prevent weathering and adhesion, the specimens were wrapped in cling film and
transported in a foam box. The entire process of ice mechanics testing requires temperature
control. Temperature control includes sample storage, keeping a constant temperature, and
loading processes. After sample preparation is complete, the ice sample should be stored
in a −15 ◦C freezer to ensure the long-term preservation and stability of the ice crystal
structure. Before starting the experiment, the time required for the ice sample to reach
thermal equilibrium should be calculated using the heat conduction equation, based on
the sample size and temperature difference. Then, place the ice sample in the freezer for a

146



Water 2024, 16, 3358

duration exceeding the calculated time to ensure thermal equilibrium. After 48 h, the ice
sample will achieve full thermal equilibrium [50].

2.2. Ice Crystal Structure Measurement

In general, the internal organization of ice reflects its growth history and determines
its fundamental physical properties; thus, observing the structural characteristics of ice’s
internal organization is an essential task. Based on prior research [32], ice flakes were
prepared in a low-temperature laboratory and observed using a Rigsby universal stage. The
Rigsby universal stage employs a polarizing microscope to measure the spatial orientation
of linear and planar elements within the flakes, enabling the direct visualization of the
particle size and shape of the observed samples. The specific steps include the following:
Select a vertical and intact ice sample, and use a planer to flatten the protruding defects
on the observed surface. Secondly, place the ice sample in contact with a glass sheet at a
temperature slightly above 0 ◦C, moving the sample left and right on the glass to expel air
bubbles. And then, freeze the glass sheet with the ice sample at a low temperature, then
use a planer to thin the ice sample to about a 1 mm thickness after it is solidly frozen, and
mark it clearly. To avoid weathering, place the completed ice slices in a sealed plastic bag
and store them at a low temperature and then observe the ice slices in a dark room using a
Rigsby universal stage.

2.3. Three-Point Bending Test
2.3.1. Test Devices

This test uses the WDW-100 electronic universal testing machine, with a maximum
test force of 100 kN, displacement measurement resolution of 0.01 mm, and a loading rate
range of 0.005 to 1000 mm/min. It comes from Changchun Kexin Testing Instrument Co.,
Ltd. located in Changchun city, China. The test machine can perform tensile, bending,
shear, and other tests in conventional and low-temperature environments [49]. In order to
maintain a low temperature environment during the test, a low-temperature test chamber
with a temperature accuracy of ±1 ◦C is used [38]. Additionally, to adjust the distance
between the specimen and the indenter and effectively observe the fracture pattern of the
specimen during the loading process, etc., the lighting switch can be turned on. Figure 1
shows the WDW-100 electronic universal testing machine and the testing zone.
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2.3.2. Test Principles and Procedures

Ice exhibits viscoelastic properties and is not entirely elastic. Gold demonstrated that
between −40 ◦C and −3 ◦C, ice approximates to a purely elastic material, permitting the
application of elastic theory to analyze its failure and determine effective flexural strength
values [51].

Ice is a viscoelastic plastic material. Han et al. [32] utilized linear elasticity theory to
estimate the bending strength of columnar granular freshwater ice subjected to three-point
bending beam tests. This study also fulfills the application conditions of linear elasticity
theory, that is, takes place under the action of midspan loads, whereby the bending strength
formula for a rectangular cross-section of a linear elastic, uniformly simply supported beam
is as follows:

σf =
3PL
2bh2 (1)

where P is the load at which a three-point simply supported beam fails, b is the width of
the beam, h is the height of the beam, and L is the span of the ice beam which is 150 mm.

Due to the existence of dimensional differences between the specimens, the specimen
size data need to be measured again before each test, and the displacement loading rate is
converted into the strain rate to unify the independent variable. According to the method
proposed by Han et al. [32], the strain and strain rate at the bottom of the span of an ice
beam are estimated according to the relationship between the strain and the deflection of a
three-point simply supported beam:

ε =
6hδ

L2 (2)

•
ε =

6h
•
δ

L2 (3)

where ε is the strain at the load application point,
•
ε is the strain rate at the bottom of the

load application point, δ is the deflection, which refers to the displacement of the point of

action, and
•
δ is the displacement loading rate. When the ice sample fractures during the

bending test, the test is immediately terminated and data are recorded.
Before the test, adjust the temperature of the environmental test chamber. and pre-cool

for 30 min. Before the experiment, observe whether there are bubbles, impurities, and
cracks in the sample and record them, and measure the size of the sample [38]. After
everything is ready, place the specimen into the environmental test chamber on the fixed
three-point bending fixture, aligning the indenter with the center of the specimen. And
then, set the loading rate within the test machine program, number the specimen, and start
loading. Before the sample is destroyed, the testing machine program continuously collects
data and automatically saves the data information. After the experiment is completed,
record the form of sample damage and clean the testing machine.

In this study, three-point bending tests of simply supported beams are performed on
granular snow ice at −5 ◦C, −8 ◦C, −10 ◦C, −15 ◦C, −18 ◦C, −20 ◦C, −25 ◦C, −30 ◦C, and
−35 ◦C, for a total of nine working conditions, and on columnar ice at −20 ◦C.

2.4. Fracture Toughness Test
2.4.1. Test Principles

According to fracture mechanics, crack growth occurs when the incremental energy
available from the release of stored potential energy is equal to, or exceeds, that required to
create new fracture surfaces. Resistance to crack growth is defined by fracture toughness,
which is the amount of work required to propagate a crack by unit area [43]. Wei et al. [52]
believe that fracture toughness KIC is the stress intensity factor corresponding to unstable
fracture of materials. In a three-point bending test, the specimen does not undergo simple
stretching, and, thus, KIC lacks an analytical solution. Concerning the measurement
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of fracture toughness, there is no uniform standard, and various research results have
a high degree of dispersion. Huang [53] calculated the fracture toughness of granular
and columnar Yellow River ice. Based on the method given by Huang [53], the fracture
toughness of granular ice was calculated in this paper:

KIC =
PL

BW3/2 P
( a

W

)
(4)

P
( a

W

)
= 3(a/W)1/2 ×

1.99 − (a/W)(1 − a/W)
[
2.15 − 3.93(a/W) + 2.70(a/W)2

]

2(1 + 2a/W)(1 − a/W)3/2 (5)

where KIC is the fracture toughness of the specimen, kPa·m1/2.

2.4.2. Test Procedures

Unlike the bending test, the three-point bending fracture test requires pre-fabricated
cracks to be machined in the center of the specimen to ensure that failure occurs at the
loading point. The ratio of the length of the pre-fabricated crack to the height W of the
specimen should be between 0.2 and 1 [2], while in this study, it is between 0.28 and 0.36.
When using a saw bone machine for ice cutting, it is essential to ensure that the saw blade
is perpendicular to the ice surface during processing and to apply even force throughout
the process [2]. The loading method and structural dimensions of the specimens are shown
in Figure 2.
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Figure 2. A schematic diagram of ice-sample loading (here, L, S, W, and B represent the ice beam’s
span, length, height, and thickness, respectively; a is the initial crack length, and P is the applied load).

The effects of temperature and loading rate on the ice beam were considered. Four
temperatures were tested: −6 ◦C, −8 ◦C, −10 ◦C, and −15 ◦C. The displacement load-
ing rates included eight types: 0.05 mm/min, 0.1 mm/min, 0.3 mm/min, 0.5 mm/min,
1 mm/min, 3 mm/min, 5 mm/min, and 10 mm/min.

For the preparation work before the experiment, refer to Section 2.3.2. After pre-
cooling is completed, remove the ice sample from the freezer. Prefabricated cracks may
remain filled with foam or frost and should be cleaned with a planer to ensure they run
through from top to bottom. Measure the width, height, and crack length of the ice sample
and input these dimensions into the tester program.

3. Results and Analysis
3.1. Crystal Structure of Granular Snow Ice

Figure 3 shows a horizontal sheet of granular snow ice. As can be seen from the figure,
the artificial ice prepared in the laboratory is a typical granular ice structure [32]. Slush is
added in the icing process to form a mixture of ice water, and the growth rate of ice crystals
is relatively high, resulting in the formation of granular ice crystals.
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Figure 3. Horizontal slice of granular snow ice.

3.2. Three-Point Bending Test
3.2.1. Fracture Process Curve

Figure 4 presents a typical curve of flexural stress over time in a three-point bending
test, which was conducted at −5 ◦C with a loading rate of 5 mm/min and a duration of
7.64 s. The ice beam undergoes three stages from loading to failure. At the beginning of
loading, the load is small, the stress on the cross-section of the ice beam is also minimal, and
microcracks produced at the edges of bubbles and impurities are negligible. The ice beam
undergoes elastic deformation, with stress and strain maintaining a linear relationship; this
is the first stage. As the load increases, because the tensile strength of ice is lower than its
compressive strength, the tensile zone on the lower surface of the ice beam reaches its tensile
strength, resulting in plastic deformation and crack formation, while the compressive zone
remains in elastic deformation. This is the second stage. The load continues to increase
until the strain at the lower surface of the ice beam exceeds the tensile limit strain, causing
the original microcracks to develop into macrocracks. At this point, the ice near the neutral
axis remains uncracked. With the increasing load, the cracks rapidly extend upward until
the ice beam completely fractures. At this stage, the applied load exceeds the bending
capacity of the ice, marking the third stage of ice beam failure [41].
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Taking into account the uncontrollability of errors, four to six repeated tests were
conducted for each loading rate and temperature, followed by the calculation of the average
bending strength. The bending strength of granular snow ice ranged from 1.68 to 3.65 MPa,
with an average of 2.89 ± 0.27 MPa; for columnar ice, it ranged from 1.50 to 2.36 MPa,
averaging 1.69 MPa.

150



Water 2024, 16, 3358

3.2.2. The Relationship Between Flexural Strength and Strain Rate

As shown in Figure 5, the relationship between the flexural strength of granular snow
ice at different temperatures and loading rates is presented. The flexural properties of ice
are influenced by the strain rate, showing a trend where flexural strength initially increases
and then decreases with strain rate at each temperature. Previous research results have
suggested that ice demonstrates toughness at low strain rates and brittleness at high strain
rates [16–19]. Our results show that the ultimate flexural strength of ice occurs within the
ductile–brittle transition interval, which ranges from 6.67 × 10−5 s−1 to 3.11 × 10−4 s−1 at
the tested temperatures.
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−20 ◦C, −25 ◦C and −30 ◦C and −35 ◦C, respectively.

151



Water 2024, 16, 3358

Gagnon et al. [39] conducted bending tests on glacier ice at strain rates ranging from
10−5 s−1 to 10−3 s−1 and temperatures from −16 ◦C to −1 ◦C. They found that at −11 ◦C,
the bending strength at a strain rate of 10−3 s−1 was approximately 26% higher than at
10−5 s−1. The results of this paper align well with Gagnon’s findings. For granular snow
ice at −5 ◦C, the average flexural strength at a strain rate of 10−3 s−1 is 17% higher than
at 10−5 s−1. And when the strain rate is less than 3.11 × 10−4 s−1, the flexural strength of
ice increases with the increase in strain rate, and the maximum value of flexural strength
is 3.19 MPa. Above this strain rate, the flexural strength decreases with the increase in
strain rate, and the minimum value of flexural strength is 1.68 MPa when the strain rate is
6.89 × 10−3 s−1.

3.2.3. The Relationship Between Flexural Strength and Temperature

At 0 ◦C, the flexural strength of ice is close to 0 MPa, and the linear model cannot
accurately predict the mechanical properties of ice at this temperature. Wang et al. [38] used
logarithmic fitting to obtain the relationship between the bending strength and temperature
of artificial ice:

σf= A + B ln(|T/T0|) (6)

in the formula, to coordinate units, the independent variable is adjusted to T/T0, where T0
is the temperature of 1 ◦C.

Temperature affects the mechanical properties of ice. In this experiment, three-point
bending tests were conducted on granular snow ice from −35 ◦C to −5 ◦C. Figure 6 shows
the logarithmic fitting effect between the average flexural strength and ice temperature. It
was found that the flexural strength increased as the temperature decreased. This occurs
because lower ice temperatures increase the intermolecular linkage force, requiring more
energy to produce cracks, thereby increasing ice strength and flexural strength.
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Figure 6. Logarithmic simulation of average flexural strength and ice temperature of granular
snow ice.

Han et al. [54] concluded that the lower the temperature of the ice beam, the more
pronounced the brittleness characteristics, which is manifested by the lower strain rate
corresponding to the maximum ultimate flexural strength. The ductile–brittle transition
range of granular snow ice at the test temperature is 6.67 × 10−5 s−1 to 3.11 × 10−4 s−1.
The maximum ultimate flexural strength and the corresponding strain rate at each test tem-
perature are summarized in Table 1, which shows that the strain rate corresponding to the
maximum ultimate flexural strength value tends to decrease as the temperature decreases.
For example, at −5 ◦C, −8 ◦C, and −10 ◦C, the maximum ultimate flexural strengths are
3.19 MPa, 3.29 MPa, and 3.41 MPa, with corresponding strain rates of 3.11 × 10−4 s−1,
1.51 × 10−4 s−1, and 9.78 × 10−5 s−1, respectively, showing a clear reduction with decreas-
ing temperature.
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Table 1. Maximum ultimate flexural strength and corresponding strain rate of granular snow ice at
different temperatures.

Temperature (◦C) Maximum Ultimate
Flexural Strength (MPa) Strain Rate (s−1)

−5 3.19 3.11 × 10−4

−8 3.29 1.51 × 10−4

−10 3.41 9.78 × 10−5

−15 3.45 8.44 × 10−5

−18 3.48 7.78 × 10−5

−20 3.50 7.89 × 10−5

−25 3.53 8.22 × 10−5

−30 3.56 6.67 × 10−5

−35 3.57 7.50 × 10−5

3.2.4. The Relationship Between Flexural Strength and Ice Structure

In this study, three-point bending tests on columnar ice were conducted at −20 ◦C,
with loading rates ranging from 0.1 mm/min to 30 mm/min. Figure 7 shows the variation
in the flexural strength of columnar ice with strain rate at −20 ◦C. It reveals that the
flexural strength of columnar ice first increases and then decreases with strain rate, but it is
lower than that of granular snow ice. The average flexural strength of columnar ice at this
temperature is 1.93 MPa, compared to 2.85 MPa for granular snow ice. This is consistent
with the results of Timco et al. [37], and Blanchet et al. [55] attributed this phenomenon
to the fact that granular ice has a smaller grain size than columnar ice. Cole et al. [56]
concluded that stress of ice decreases with increasing grain size. For the same material, a
smaller grain diameter results in larger grain boundaries, greater barriers to dislocation
motion, higher resistance to deformation and macroscopic strength.
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Figure 7. Relationship between flexural strength and strain rate of columnar ice at −20 ◦C.

Wang [38] conducted three-point bending tests on ice and obtained a fitting equation
between flexural strength and temperature. By substituting it, the bending strength at
−20 ◦C was found to be 1.91 MPa. In contrast, this study measures the flexural strength of
columnar ice under the same conditions to be 1.70 MPa.

3.2.5. Flexural Failure Mode

Ice cracks can be roughly categorized into two types: one is straight cracks (Figure 8a),
where, starting at the lower surface of the ice beam, because of the tension effect of cracks,
with the increase in load, the cracks continue to develop upward until they exist throughout
the entire specimen, and the destruction of the cross-section is relatively flat. These are
type-I tension cracks. The second type is the oblique crack (Figure 8b), where the ice beam
is mainly subjected to shear force, and the crack and the direction of tensile stress presents
an angle of 30◦~45◦. This is a type-II shear crack [38].
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As shown in Figure 11, at −10 °C, the fracture toughness peaks at 269.93 kPa·m1/2 
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Figure 8. The forms of ice failure under different conditions.

3.3. Fracture Toughness Test
3.3.1. Fracture Process Curve

The fracture toughness was calculated using Formulas (4) and (5), obtaining the
fracture toughness values of ice beams at different temperatures and strain rates. A typical
granular snow ice-fracture curve is shown in Figure 9. The ice specimen exhibits brittle
failure, and after the load reaches its peak, the test shows direct fracturing, with a decrease
in bearing capacity to zero. The temperature of the ice specimen is −6 ◦C, and the loading
rate is 0.1 mm/min.
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3.3.2. The Relationship Between Fracture Toughness and Strain Rate

The relationship between ice mechanical properties and loading rate has always been
a research focus of engineering ice. Fracture toughness decreases with increasing strain
rate due to stress relaxation at the crack tip and material creep [33]. Figure 10 shows the
fracture toughness versus strain rate for granular snow ice in the temperature range of
−15 ◦C to −6 ◦C. At all four temperatures, the fracture toughness tends to decrease with
increasing strain rate.

Observation of Figure 10 shows that the fracture toughness has a relatively obvious
linear relationship with multiples of strain rate. According to Huang’s research [53], this
article performs logarithmic fitting on strain rate and fracture toughness:

KIC = A ln
(•

ε/
•
ε0

)
+ B (7)

In the formula, KIC represents the fracture toughness of granular snow ice, while A
and B are parameters that are temperature-dependent parameters.

As shown in Figure 11, at −10 ◦C, the fracture toughness peaks at 269.93 kPa·m1/2

when the strain rate is 8.0 × 10−6 s−1, and decreases to 98.99 kPa·m1/2 when the strain rate
increases to 1.53 × 10−3 s−1, representing a 63.33% decrease in fracture toughness.
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Figure 11. (a–d) Fit the fracture toughness and strain rate of granular snow ice at −6 ◦C, −8 ◦C,
−10 ◦C, and −15 ◦C, respectively.

Xu et al. [43] conducted three-point bending tests on pure polycrystalline ice with
notch at under high loading rates (1 mm/min to 100 mm/min) from −40 ◦C to −20 ◦C. They
concluded that the fracture toughness of pure polycrystalline ice decreases with increasing
strain rate, showing a strong power law relationship between the two. Ji et al. [40] studied
the fracture toughness of sea ice and found that the loading rate significantly affects fracture
toughness, with the KIC value increasing as the loading rate decreases.
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3.3.3. The Relationship Between Fracture Toughness and Temperature

Temperature affects the fracture toughness of ice. By analyzing and organizing data
from the three-point flexural fracture test on granular snow ice, changes in fracture tough-
ness at various temperatures were plotted. The average fracture toughness values were
181.60 kPa·m1/2, 175.53 kPa·m1/2, 167.50 kPa·m1/2, and 147.28 kPa·m1/2 at temperatures of
−15 ◦C, −10 ◦C, −8 ◦C, and −6 ◦C, respectively. It can be observed that fracture toughness
does not differ significantly from −15 ◦C to −8 ◦C but decreases at −6 ◦C.

Ji et al. [40] conducted fracture tests on sea ice in the Bohai Sea at temperatures ranging
from −18 ◦C to −3 ◦C and analyzed the relationship between sea ice temperature and
fracture toughness. Liu et al. [35] studied artificial columnar ice and found that fracture
toughness decreased with increasing temperature in the range of −30 ◦C to −1 ◦C under
a loading rate of 10 mm·s−1. Table 2 presents the average fracture toughness values for
the three tests at different temperatures. The fracture toughness values obtained by Liu
et al. [35] are slightly lower than those reported in this study due to the lower loading rate.
In contrast, the results of Ji et al. [40] are more consistent with the present study. For exam-
ple, the average fracture toughness in this study at −10 ◦C is 175.53 kPa·m1/2, compared to
169.0 kPa·m1/2 reported by Ji et al. [40]. Although the test conditions resulted in differing
fracture toughness values, all three tests concluded that the higher the temperature, the
lower the fracture toughness.

Table 2. Average values of fracture toughness in different temperature ranges.

Temperatures (◦C) Ji [40] Fracture
Toughness (kPa·m1/2)

Liu [35] Fracture
Toughness (kPa·m1/2)

Fracture Toughness
of This Test
(kPa·m1/2)

−6 131.94 109.74 147.28
−10 169.00 115.18 175.53
−15 215.31 121.97 181.60

Fracture toughness approaches 0 kPa·m1/2 as temperature approaches 0 ◦C. According
to Huang’s research [53], logarithmic fitting was performed on the relationship between
statistical data and fracture toughness with temperature:

KIC = C + D ln(|T/T0|) (8)

In the formula, to coordinate units, adjust the independent variable to T/T0, where T0
is a temperature of 1 ◦C, and C and D are parameters that are temperature-dependent.

Fit the average fracture toughness to the ice temperature. Figure 12 shows the fitting
relationship between fracture toughness values and average values of granular snow ice
at different temperatures. It is evident that fracture toughness decreases with increasing
temperature.
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3.3.4. Fracture Toughness Failure Mode

In this test, the ice temperature is at −15 to −6 ◦C, and the displacement loading rate
is between 0.05 mm/min and 10 mm/min. In accordance with Formula (3), the strain rate
can be calculated. The granular snow ice exhibited brittle failure even at the lowest strain
rate. When granular snow ice breaks, a slight sound is produced, and the specimen breaks
into two halves. During the test, peeling may sometimes occur near the indenter and at
the edge of the granular snow ice. The fracture patterns of the specimens were recorded
in this test. Figure 13 shows the fracture morphology of granular snow ice at different
temperatures. In the granular snow ice fracture toughness test, 102 ice samples were
examined, and we found that 96 samples exhibited straight cracks that progressed upwards
from the tip of the prefabricated cracks, with a relatively flat cross-section. Huang [53]
conducted three-point flexural fracture tests on Yellow River ice to investigate its fracture
failure modes. The results indicated that cracks predominantly developed upward along
the tips of pre-existing fractures, and the crack traces were not clearly defined, which aligns
with the findings of this study.
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4. Conclusions and Future Prospective

To investigate the relationship between bending strength, the fracture toughness of
granular ice, temperature, and strain rate, a three-point bending device was employed
for both the three-point bending test and the fracture toughness test. Since the fracture
toughness cannot be determined directly from the bending test, this study cut prefabricated
cracks and then determined the fracture toughness by calculating the critical stress intensity
factor. This study supplemented the mechanical properties of granular ice and provided
valuable insights for engineering design, construction, and ice sports in cold regions.
Specifically, the key findings of this study are as follows:

1. The flexural strength of granular snow ice is influenced by the strain rate and tem-
perature. The bending performance of ice is affected by the strain rate; within the
temperature range of −35 to −5 ◦C, the flexural strength exhibits a trend of first
increasing and then decreasing with increasing strain rate. Ice exhibits ductility at low
strain rates and brittleness at high strain rates. There exists a ductile–brittle transition
interval for ice, ranging from 6.67 × 10−5 s−1 to 3.11 × 10−4 s−1. The lower the tem-
perature, the higher the flexural strength of ice, but the more pronounced its brittle
characteristics, manifesting as a lower strain rate corresponding to the maximum flex-
ural strength. For example, at −5 ◦C, the strain rate corresponding to the maximum
flexural value is 3.11 × 10−4 s−1, while at −10 ◦C, the strain rate corresponding to the
maximum flexural strength is only 6.67 × 10−5 s−1. The flexural strength is influenced
by the crystal structure: at −20 ◦C, the average flexural strength of granular snow
ice is 2.85 MPa, while under the same temperature, the average flexural strength of
columnar ice is 1.93 MPa.

2. The fracture toughness of granular snow ice is influenced by strain rate and tempera-
ture. Within the range of −15 to −6 ◦C, fracture toughness decreases as the strain rate
increases. Temperature similarly affects fracture toughness, with higher temperatures
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resulting in lower values. At −15 ◦C, the fracture toughness is 181.60 kPa·m1/2, but it
decreases to 147.28 kPa·m1/2 at −6 ◦C.

3. In the three-point bending test, the crystal structure, temperature, and strain rate of
ice do not significantly influence the fracture mode. Ice cracks can be categorized into
two types: straight cracks that develop along grain boundaries and oblique cracks that
form at a specific angle to the direction of tensile stress. In the three-point bending
test of granular snow ice with a notch, 102 ice samples were analyzed, 96 of which
exhibited vertical fractures.

In addition, there are still some limitations in this study that need to be addressed and
explored in future research:

1. In practical applications, the temperature of the ice layer varies with depth. The exper-
iment controls the sample temperature to be uniform, but the influence of temperature
non-uniformity on ice mechanics parameters has not been explored. In subsequent
research, theory should be combined with practice, and the bending strength and
fracture toughness obtained from experiments should be used to provide support for
the design and construction of ice sports projects and cold-region engineering.

2. In the fracture toughness test, we only analyzed the fracture toughness of granular
ice at −15 ◦C to −6 ◦C. In the future, fracture toughness tests can be conducted on
granular ice at different temperatures, and better analytical methods can be found to
analyze its fracture toughness.

Author Contributions: Conceptualization, H.H. and Y.L.; methodology, H.H., W.L. and X.L.; formal
analysis, Y.L. and Z.L.; investigation, H.H., W.L., Y.L., Z.L. and X.L.; data curation, H.H. and W.L.;
writing—original draft preparation, H.H. and W.L.; writing—review and editing, Y.L. and X.L.;
funding acquisition, H.H. and X.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Major Scientific and Technological Projects of the
Ministry of Water Resources of China (No. SKS-2022017) and the Project to Support the Development
of Young Talent by Northeast Agricultural University.

Data Availability Statement: The data are available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mironov, E.U.; Egorova, E.S. Seasonal and interannual variations in the Greenland Sea ice age composition in the winter period.

Russ. Meteorol. Hydrol. 2024, 49, 221–229. [CrossRef]
2. Zhang, Y.X.; Qiu, Y.B.; Li, Y.; Leppäranta, M.; Jia, G.; Jiang, Z.X.; Liang, W.S. Spatial-temporal variation of river ice coverage in the

Yenisei river from 2002 to 2021. J. Hydrol. 2024, 637, 131440. [CrossRef]
3. Zhang, L. A Study on the Brazilian Disk Splitting Test of Antarctic Ice and Liaohe Ice. Master’s Thesis, Dalian University of

Technology, Dalian, China, 2022. (In Chinese)
4. Zhang, Y. Study on the Internal Structure and Surface Crack Characteristics of River Ice. Master’s Thesis, Shenyang Agricultural

University, Shenyang, China, 2019. (In Chinese)
5. Makkonen, L.; Tikanmäki, M.; Sainio, P. Friction in sliding heavy objects on ice. J. Glaciol. 2016, 62, 1186. [CrossRef]
6. Cheng, P.; Li, J.; Li, X. Analysis of carrying capacity of ice cover based on Winkler Model. Yangtze River 2017, 48, 64–68. (In Chinese)

[CrossRef]
7. Yan, Y.; Zhang, J.; Wang, Y.; Tao, Y.; Xu, Y.; Gu, W. Spatiotemporal distribution characteristics of sea ice disasters in the Northern

China Sea from 2001 to 2020. Ocean Coast. Manag. 2023, 246, 106889. [CrossRef]
8. Xiu, Y.R.; Li, Z.J.; Wang, Q.K.; Han, H.W. Experimental study on the bending mechanical behavior of granular sea ice in Liaodong

Bay. Mar. Sci. Bull. 2023, 42, 667–676. (In Chinese)
9. Zhang, Y.; Qian, Z.; Lv, S.; Huang, W.; Ren, J.; Fang, Z.; Chen, X. Experimental investigation of uniaxial compressive strength

of distilled water ice at different growth temperatures. Water 2022, 14, 4079. [CrossRef]
10. Long, X.; Liu, S.; Ji, S. Discrete element modelling of relationship between ice breaking length and ice load on conical structure.

Ocean Eng. 2020, 201, 107152. [CrossRef]
11. Yu, J. Experimental Study on Physical and Mechanical Properties of Artificially Frozen Ice Considering Irradiation Effects.

Master’s Thesis, Northeast Agricultural University, Harbin, China, 2021. (In Chinese)

158



Water 2024, 16, 3358

12. Zhang, H.B. Experimental Study on Tensile Strength and Fracture Toughness of Yellow River Ice by Using Split Test. Master’s
Thesis, Dalian University of Technology, Dalian, China, 2016. (In Chinese)

13. Zhang, X.P.; Chen, K.; Li, F.; Xing, H.N. Experimental study of the fracture toughness of natural freshwater ice. J. Glaciol. Geocryol.
2010, 32, 960–963. (In Chinese)

14. Weeks, W.F.; Assur, A. The mechanical properties of sea ice. In US Army Cold Regions Research and Engineering Laboratory (CRREL)
Monograph II-C3; Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1967.

15. Sinha, N.K. Short-term rheology of polycrystalline ice. J. Glaciol. 1978, 21, 457–474. [CrossRef]
16. Lee, R.W.; Schulson, E.M. The strength and ductility of ice under tension. J. Offshore Mech. Arct. Eng. 1988, 110, 187–191.

[CrossRef]
17. Schulson, E.M.; Renshaw, C.E. Fracture, friction, and permeability of ice. Annu. Rev. Earth Planet. Sci. 2022, 50, 323–343. [CrossRef]
18. Wang, C.; Han, D.; Wang, Q.; Wang, Y.; Zhang, Y.; Jing, C. Study of elastoplastic deformation and crack evolution mechanism of

single-crystal ice during uniaxial compression using 3D digital image correlation. Eng. Fract. Mech. 2023, 293, 109712. [CrossRef]
19. Chen, X.D.; Wang, A.L.; Ji, S.Y. The study on brittle-ductile transition mechanism and failure mode of sea ice under uniaxial

compression. Sci. Sin.-Phys. Mech. Astron. 2018, 48, 124601. [CrossRef]
20. Zhang, Y.; Li, Z.; Guo, W.; Yu, H.; Liang, W. Method and equipment for three-pint flexural strength test of ice. Hydro Sci. Cold

Zone Eng. 2018, 1, 63–68. (In Chinese)
21. Schulson, E.M. Brittle failure of ice. Eng. Fract. Mech. 2001, 68, 1839–1887. [CrossRef]
22. Schulson, E.M. An analysis of the brittle to ductile transition in polycrystalline ice under tension. Cold Reg. Sci. Technol. 1979, 1,

87–91. [CrossRef]
23. Yasui, M.; Schulson, E.M.; Renshaw, C.E. Experimental studies on mechanical properties and ductile-to-brittle transition of

ice-silica mixtures: Young’s modulus, compressive strength, and fracture toughness. J. Geophys. Res. Solid Earth 2017, 122,
6014–6030. [CrossRef]

24. Kellner, L.; Stender, M.; Herrnring, H.; Ehlers, S.; Hoffmann, N.; Høyland, K.V. Establishing a common database of ice experiments
and using machine learning to understand and predict ice behavior. Cold Reg. Sci. Technol. 2019, 162, 56–73. [CrossRef]

25. Meng, D.; Chen, X.; Ji, S. Experimental study on the flexural strength and failure process of sea ice. Mar. Sci. Bull. 2021, 40,
609–620. (In Chinese) [CrossRef]

26. Zhang, J.; Mou, J.; Pan, Z.; Li, Y. Discussion and prospects of the development on measurement while drilling technology in oil
and gas wells. Petrol. Sci. Bull. 2024, 9, 240–259. (In Chinese) [CrossRef]

27. Efimov, V.P. Experimental study on loading rate effects on the tensile strength and fracture toughness of rocks. Geotech. Geol. Eng.
2020, 38, 1–8. [CrossRef]

28. Yin, T.; Wu, Y.; Wang, C.; Zhuang, D.; Wu, B. Mixed-mode I+II tensile fracture analysis of thermally treated granite using
straight-through notch Brazilian disc specimens. Eng. Fract. Mech. 2020, 234, 107111. [CrossRef]

29. Abdolghanizadeh, K.; Hosseini, M.; Saghafiyazdi, M. Effect of freezing temperature and number of freeze–thaw cycles on mode I
and mode II fracture toughness of sandstone. Theor. Appl. Fract. Mech. 2020, 105, 102428. [CrossRef]

30. Xu, Y.; Yao, W.; Zhao, G.; Xia, K. Evaluation of the short core in compression (SCC) method for measuring mode II fracture
toughness of rocks. Eng. Fract. Mech. 2020, 224, 106747. [CrossRef]

31. Xiao, Z. Reliability Study on the Brazilian Test Method for Determining the Mechanical Properties of Ice. Master’s Thesis, Dalian
University of Technology, Dalian, China, 2017. (In Chinese).

32. Han, H.W.; Jia, Q.; Huang, W.F.; Li, Z.J. Flexural strength and effective modulus of large columnar-grained freshwater ice. J. Cold
Reg. Eng. 2016, 30, 04015005. [CrossRef]

33. Timco, G.W. Flexural strength and fracture toughness of urea model ice. J. Energy Resour. Technol. 1985, 107, 498–505. [CrossRef]
34. Petrovic, J.J. Review mechanical properties of ice and snow. J. Mater. Sci. 2003, 38, 1–6. [CrossRef]
35. Liu, H.W.; Miller, K.J. Fracture toughness of fresh-water ice. J. Glaciol. 1979, 22, 135–143. [CrossRef]
36. Nixon, W.A.; Schulson, E.M. The fracture toughness of ice over a range of grain sizes. J. Offshore Mech. Arct. Eng. 1988, 110,

192–196. [CrossRef]
37. Timco, G.W.; Frederking, R.M.W. Flexural strength and fracture toughness of sea ice. Cold Reg. Sci. Technol. 1983, 8, 35–41.

[CrossRef]
38. Wang, L. Experimental Study on the Bending Resistance of Artificial Ice and Numerical Simulation Analysis of Artificial Ice

Rinks. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2021. (In Chinese).
39. Gagnon, R.E.; Gammon, P.H. Characterization and flexural strength of iceberg and glacier ice. J. Glaciol. 1995, 41, 103–111.

[CrossRef]
40. Ji, S.; Liu, H.; Xu, N.; Ma, H. Experiments on sea ice fracture toughness in the Bohai Sea. Adv. Water Sci. 2013, 24, 386–391.

(In Chinese) [CrossRef]
41. Zhang, A.D.; Ji, H.L.; Li, Z.J.; Zhang, B.S.; Xu, J. Experimental research on flexural strength of fresh water ice in Hongqipao

Reservoir in Da-qing. Chin. Rural Water Hydropower 2011, 3, 70–72. (In Chinese)
42. Zhang, L.Z. Flexural strength and effective modules of Songhua River ice. Adv. Mater. Res. 2013, 2569, 783–793. [CrossRef]
43. Xu, X.; Jeronimidis, G.; Atkins, A.G.; Trusty, P.A. Rate-dependent fracture toughness of pure polycrystalline ice. J. Mater. Sci. 2004,

39, 225–233. [CrossRef]

159



Water 2024, 16, 3358

44. Litwin, K.L.; Zygielbaum, B.R.; Polito, P.J.; Sklar, L.S.; Collins, G.C. Influence of temperature, composition, and grain size on the
tensile failure of water ice: Implications for erosion on Titan. J. Geophys. Res. 2012, 117, E08013. [CrossRef]

45. Mulmule, S.V.; Dempsey, J.P. Scale effects on sea ice fracture. Mech. Cohesive-Frict. Mater. 1999, 4, 505–524. [CrossRef]
46. Dempsey, J.P.; Adamson, R.M.; Mulmule, S.V. Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea

ice at Resolute, NWT. Int. J. Fract. 1999, 95, 347–366. [CrossRef]
47. Yuan, B.J. Research and Application of Artificial Ice Failure Criteria in Ice Rink. Master’s Thesis, Harbin Institute of Technology,

Harbin, China, 2021. (In Chinese)
48. Huang, W.F.; Li, Z.J.; Han, H.W.; Jia, Q. Seasonal evolution of static freshwater lake ice microstructures and the effects of growth

processes. J. Glaciol. Geocryol. 2016, 38, 699–707. (In Chinese)
49. Schwarz, J.; Frederking, R.; Gavrillo, V.; Petrov, I.G.; Hirayama, K.I.; Mellor, M.; Tryde, P.; Vaudrey, K.D. Standardized testing

methods for measuring mechanical properties of ice. Cold Reg. Sci. Technol. 1981, 4, 245–253. [CrossRef]
50. Han, H.W. Study on the Spatial and Temporal Distribution of Sea Ice and the Physical, Mechanical Properties of Sea Ice in Polar

Routes. Doctoral Thesis, Dalian University of Technology, Dalian, China, 2016. (In Chinese)
51. Gold, L.W. Some observations on the dependence of strain on stress for ice. Can. J. Phys. 1958, 36, 1265–1275. [CrossRef]
52. Wei, J.; Zhu, W.C.; Li, R.F.; Niu, L.L.; Wang, Q.Y. Experiment of the tensile strength and fracture toughness of rock using notched

three point bending test. J. Water Resour. Archit. Eng. 2016, 14, 128–142. (In Chinese)
53. Huang, Y. Experimental Study on the Fracture Performance of the Yellow River Ice During Freezing Period. Master’s Thesis,

Zhengzhou University, Zhengzhou, China, 2021. (In Chinese)
54. Han, H.W.; Li, Z.J.; Zhang, L.M.; Qing, X.X.; Zhou, Q. Experimental Study on Three Point Bending Mechanical Properties of Sea

Ice in Taiping Bay, Bohai Sea. In Proceedings of the National Conference on Hydraulic and Hydraulic Informatics, Tianjin, China,
13 October 2011. (In Chinese)

55. Blanchet, D.; Abdelnour, R.; Comfort, G. Mechanical properties of first-year sea ice at Tarsiut Island. J. Cold Reg. Eng. 1997, 11,
59–83. [CrossRef]

56. Cole, D.M. The microstructure of ice and its influence on mechanical properties. Eng. Fract. Mech. 2001, 68, 1797–1822. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

160



Academic Editor: Hung Tao Shen

Received: 25 November 2024

Revised: 28 December 2024

Accepted: 6 January 2025

Published: 8 January 2025

Citation: Niu, R.; Wen, L.; Wang, C.;

Tang, H.; Leppäranta, M.

Air–Ice–Water Temperature and

Radiation Transfer via Different

Surface Coverings in Ice-Covered

Qinghai Lake of the Tibetan Plateau.

Water 2025, 17, 142. https://doi.org/

10.3390/w17020142

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Air–Ice–Water Temperature and Radiation Transfer via Different
Surface Coverings in Ice-Covered Qinghai Lake of the
Tibetan Plateau
Ruijia Niu 1,2,3, Lijuan Wen 1,2,*, Chan Wang 1, Hong Tang 1,2,3 and Matti Leppäranta 4

1 Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment
and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2 Qinghai Lake Comprehensive Observation and Research Station, Chinese Academy of Sciences,
Gangcha 812300, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Atmospheric and Earth Sciences, University of Helsinki, 00014 Helsinki, Finland
* Correspondence: wlj@lzb.ac.cn

Abstract: There are numerous lakes in the Tibetan Plateau (TP) that significantly impact
regional climate and aquatic ecosystems, which often freeze seasonally owing to the high
altitude. However, the special warming mechanisms of lake water under ice during the
frozen period are poorly understood, particularly in terms of solar radiation penetration
through lake ice. The limited understanding of these processes has posed challenges to
advancing lake models and improving the understanding of air–lake energy exchange
during the ice-covered period. To address this, a field experiment was conducted at
Qinghai Lake, the largest lake in China, in February 2022 to systematically examine thermal
conditions and radiation transfer across air–ice–water interfaces. High-resolution remote
sensing technologies (ultrasonic instrument and acoustic Doppler devices) were used to
observe the lake surface changes, and MODIS imagery was also used to validate differences
in lake surface conditions. Results showed that the water temperature under the ice
warmed steadily before the ice melted. The observation period was divided into three
stages based on surface condition: snow stage, sand stage, and bare ice stage. In the snow
and sand stages, the lake water temperature was lower due to reduced solar radiation
penetration caused by high surface reflectance (61% for 2 cm of snow) and strong absorption
by 8 cm of sand (absorption-to-transmission ratio of 0.96). In contrast, during the bare
ice stage, a low reflectance rate (17%) and medium absorption-to-transmission ratio (0.86)
allowed 11% of solar radiation to penetrate the ice, reaching 11.70 W·m−2, which increased
the water temperature across the under-ice layer, with an extinction coefficient for lake
water of 0.39 (±0.03) m−1. Surface coverings also significantly influenced ice temperature.
During the bare ice stage, the ice exhibited the lowest average temperature and the greatest
diurnal variations. This was attributed to the highest daytime radiation absorption, as
indicated by a light extinction coefficient of 5.36 (±0.17) m−1, combined with the absence of
insulation properties at night. This study enhances understanding of the characteristics of
water/ice temperature and air–ice–water solar radiation transfer through effects of different
ice coverings (snow, sand, and ice) in Qinghai Lake and provides key optical radiation
parameters and in situ observations for the refinement of TP lake models, especially in the
ice-covered period.

Keywords: Qinghai lake; lake ice; snow cover; sand cover; attenuation coefficient
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1. Introduction
The Tibetan Plateau (TP), often referred to as the “Asian Water Tower”, is home to a

vast expanse of high-altitude lakes, collectively covering over 50,000 km2, constituting more
than half of China’s total lacustrine area [1–3]. These lakes, perched at elevated altitudes,
are prone to seasonal freezing, with ice periods lasting from several months to as long as
half a year and maximum ice thicknesses ranging from 0.58 to 0.83 m [4–11]. The formation
of lake ice is not merely a natural phenomenon; it significantly influences the local climate
by altering the radiation transfer from the air to the water, which in turn affects the thermal
dynamics of the lakes [12,13].

The ice cover acts as a barrier to heat exchange, curtailing heat loss and evaporation,
and acts as a pivotal component of the climate system on the Tibetan Plateau [14,15]. How-
ever, our current understanding of the physical processes and parameters governing lake ice
formation is limited, leading to considerable uncertainty in the simulation of the plateau’s
lake ice period by current climate models. The complexity of these processes, which include
heat transfer, the evaporation of moisture, and changes in ice thickness, is compounded by
the scarcity of direct observational data due to the challenging observational conditions in
the region [15,16]. Uncertainties in parameters such as the optical properties and thermal
conductivity of lake ice further increase the complexity of model simulations.

Existing models face challenges in estimating key parameters such as ice thickness,
sub-ice water temperatures, and the ice surface albedo, which directly affect the simulation
accuracy of the lake’s energy balance and the hydrological cycle process [4,15,16]. For
instance, the increase in water temperature during the ice period and the rapid rise in
water temperature near the ice layer towards the end of the ice melting are phenomena
that current models struggle to simulate accurately [15]. Weather phenomena, including
strong winds and precipitation, can significantly alter the internal radiation and thermal
conditions within frozen lakes by influencing the ice cover’s composition and surface
properties, such as albedo and light transmittance [17,18]. The reflection of solar radiation
by snowfall, in particular, can lead to a decrease in lake temperature [19].

The thermal dynamics of fully ice-covered lakes are predominantly influenced by solar
radiation, which can induce melting at various levels of the ice and create heat convection
cells beneath the ice [4,20]. Observations indicate that, during the ice-covered period, lake
water beneath the ice undergoes a gradual warming process attributed to the penetration of
solar radiation through the ice layer [21,22]. Despite the presence of ice cover, a measurable
fraction of solar radiation is transmitted, directly contributing to the incremental increase
in water temperature throughout the freezing season [22–24]. In contrast, widely applied
lake models for Tibetan Plateau (TP) lakes, such as the Freshwater Lake Model (FLake)
and Community Land Model (CLM) coupled with lake schemes in the Weather Research
and Forecasting Model (WRF), generally incorporate assumptions of negligible or non-
existent solar radiation penetration through lake ice after freezing [15,21]. As a result, these
models are unable to accurately represent the observed thermal dynamics, particularly
the sustained warming of sub-ice water during the ice-covered period. This limitation
underscores the need for incorporating more realistic representations of radiation transfer
processes into lake models to enhance their capability in simulating energy balance and
thermal dynamics under ice-covered conditions.

Field observations on the Tibetan Plateau are challenging due to the harsh climatic
conditions, which has led to a focus on lake studies during the ice-free period. The scarcity
of observational data during the freezing season, especially in the remote and sparsely
populated Qinghai–Tibet Plateau, limits our understanding of the complex interactions
between lake water, ice, and the atmosphere. The optical characteristics of lakes, including
absorptivity and attenuation coefficients during the freezing period, remain elusive, hin-

162



Water 2025, 17, 142

dering the advancement of lake modeling in the region [3,7,25,26]. Current models, such
as the WRF-Flake [27], Flake [28], and LAKE2.0 [29], tend to overestimate the albedo of
lake ice on the Tibetan Plateau, resulting in unsatisfactory simulations of energy balance
and ice phenology during the ice-covered period [30]. To further refine global circulation
models, regional climate models, and numerical weather forecasting models, it is essential
to improve the representation of lake features within these models [31,32]. This highlights
the urgent need for a better understanding of lake ice physics and the physical principles
governing the seasonal evolution of ice.

This study sought to contribute to the understanding of atmosphere–ice–water in-
teractions in Qinghai Lake through systematic multi-layer observations. Utilizing field
observations and meteorological data, the impact of different weather processes on the lake
surface and the effects of different ice coverings on radiation and temperature within the
system were analyzed. This study represents one of the first attempts to conduct stratified
observations of lake ice energy, analyzing how different ice cover materials influence tem-
peratures across various ice layers. The findings contribute to a deeper understanding of
how ice cover affects the lake’s energy balance and thermodynamic properties, offering
valuable insights for refining TP lake model parameters and improving knowledge of the
Qinghai Lake basin and the regional aquatic environment.

2. Materials and Methods
2.1. Study Area

The Qinghai Lake (36.53~37.25◦ N, 99.60~100.78◦ E), situated at the northeastern
edge of the TP with an elevation of 3195 m, is the largest lake in China, which stretches
approximately 106 km from east to west and 63 km from north to south (Figure 1a). The
lake surface area is 4486.1 km2, and the average depth is 21 m [33]. The average winter air
temperature in the Qinghai Lake Basin ranges from −13.8 to −10.8 ◦C, with an extreme
minimum temperature of approximately −33.4 ◦C. The lake water, with a salinity of
12.50~12.96 g·L−1, is a weak alkaline solution with a pH ranging from 8.95 to 9.03. The
lake’s drainage basin, with topography at higher elevations and an area of 2.97 × 104 km2,
forms a closed inland basin [34].
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Figure 1. (a) Overview of Qinghai Lake, with the observation location marked by a red pentagram.
(b) Layout of the observational instrumentation. (c–f) Instrument setup, manual snow thickness
measurements, and lake ice thickness measurements via drilling.
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Qinghai Lake undergoes a significant seasonal ice cover, with freezing typically com-
mencing in December and culminating in substantial ice layers by January. These ice layers,
averaging several tens of centimeters in thickness, gradually melt by March with the lake ice
completely thawing by April [7]. Accompanying the ice cover, Qinghai Lake receives winter
snowfall predominantly between November and February [35]. The annual precipitation in
this period is variable yet generally ranges from low to moderate, influenced by the lake’s
geographic setting and interannual climatic variability. Surrounding the lake, the dry and
semi-arid zones are occasionally subject to dust and sand events. While infrequent, these
dust storms, driven by strong winds carrying sand particles over the lake, are indicative of
the region’s distinctive climatic characteristics, particularly during the winter months [36].

To comprehensively understand the various factors affecting the thermal balance of
Qinghai Lake, we have conducted a study examining the optical properties of the lake
water and ice, as well as the propagation of solar radiation through the ice layer.

2.2. In Situ Observation

To comprehensively understand the various factors affecting the thermal balance of
Qinghai Lake, we conducted a field study examining the optical properties of the lake
water and ice, as well as the propagation of solar radiation through the ice layer. An
atmosphere–ice–water trinity observation program was conducted in Qinghai Lake in
6–24 February 2022. The observation site (Figure 1b) was located close to the shore in the
Erlangjian Scenic Area of Qinghai Lake (36.59◦ N, 100.50◦ E), where the water depth is
18.5 meters. Observation data were collected with temporal resolutions of 1 minute for air
temperature, wind, and radiation; 10 minutes for the ultrasonic distance meter system; and
30 minutes for underwater irradiance, as detailed in Table 1. The underwater irradiance
was measured in lux but converted to W·m−2 here. The local noon at the site is within
±15 min of 13:30 h CST (China Standard Time; CST = UTC + 8 h). The solar radiation data
with a solar elevation angle less than 15◦ were eliminated due to the weak solar radiation
at sunrise and sunset. A practical problem in our setup was that snow accumulated around
the instrument platform because of the winds. In the analysis, the lake water temperature
data observed from February to April 2023 were also utilized to analyze the long-term
characteristics of the water temperature during the ice cover period of Qinghai Lake.

Table 1. Introduction of observation instrument.

Observation Item Sensor (Manufacturer) Accuracy Range Height (Depth)

Temperature PTWD (JST, Jinzhou, China) 0.2 ◦C −40~80 ◦C 1.5 m

Wind speed
MaxiMet GMX 501 (Gill

Instruments Ltd., Lymington,
Hampshire, UK)

0.1 m·s−1 0.1~60 m·s−1 1.5 m

Global radiation TBQ-2 (JST, Jinzhou, China) <5% 300−3000 nm 1.5 m
Snow/sand depth

(ice surface)
SR50A (Campbell Scientific,

Logan, UT, USA) 0.01 cm 0.5~10 m −0.6 m

Ice thickness (ice
bottom)

Tritech PA500/6 (Tritech
International Ltd., Westhill,

Aberdeenshire, UK)
0.1 cm 0.1~10 m −0.4 m

Ice temperature PTWD (JST, Jinzhou,
Liaoning, China) <5% −40~150 ◦C −0.05, −0.10, −0.15,

−0.20 m

Water temperature PTWD (JST, Jinzhou, China) <5% −40~150 ◦C −0.4, −0.5, −2.1,
−6.7, −8.7, −12.7 m
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Table 1. Cont.

Observation Item Sensor (Manufacturer) Accuracy Range Height (Depth)

Underwater
irradiance

HOBO Pendant
Temperature/Light 64K Data

Logger-UA-002-64 (Onset
Computer Corporation,

Bourne, MA, USA)

175–1200 nm −0.7, −2.1 m

The precipitation data were obtained from the National Meteorological Science Data
Center (http://data.cma.cn/) (accessed on 10 May 2024). The dataset used was the China
Surface Climate Data Daily (V3.0), which includes precipitation data from the Qinghai
Lake 151 station with a temporal resolution of 1 hour. This station, the nearest ground
meteorological station to the lake, is located in the southern side of the lake (36.58◦ N,
100.48◦ E) at an elevation of 3200.8 m. According to field observation, there was a thin layer
of sand on ice, and the video surveillance shows a clear sand blowing.

2.3. Remote Sensing Instrumentation for Lake Surface and Ice Bottom Monitoring

In this study, two remote sensing instruments were utilized to monitor changes at
the upper lake interface (covering or ice) and the ice bottom during the freezing period
at Qinghai Lake. The SR50A, manufactured by Campbell Scientific (Logan, UT, USA), is
an ultrasonic sensor that measures changes at the upper lake surface, which may include
transitions between snow, sand, and ice. It operates by emitting high-frequency sound
pulses and measuring the time it takes for the echo to return, achieving an accuracy of
±0.01 cm over a range of 0.5 to 10 m, with a deployment height of −0.6 m. This instrument’s
quick response time and high resolution make it particularly effective for continuous
monitoring in challenging environments where traditional measurement methods may be
impractical or hazardous [37,38].

In parallel, the Tritech PA500/6 (Tritech, UK) measures changes at the underwater
ice bottom using acoustic Doppler technology. This instrument provides distance mea-
surements with an accuracy of ± 0.1 cm and operates over a range of 10 to 1000 cm, with
a deployment depth of −0.4 m. By analyzing the frequency shifts in the reflected sound
waves from particles within the water, the PA500/6 offers detailed insights into the growth
and decay of the ice bottom [39,40].

Together, these instruments measure the dynamic changes at the lake surface and the
ice bottom to assess the total thickness of the lake cover and ice, contributing to a better
understanding of the effects of different surface covers on ice melt.

2.4. Terra/MODIS Remote Sensing Imagery

The Moderate Resolution Imaging Spectroradiometer (MODIS), developed by NASA,
was used alongside automatic weather station monitoring images to comprehensively
assess the weather conditions and lake surface processes of Qinghai Lake in 6–24 February
2022. The MODIS instrument on the Terra satellite, using corrected reflectance and the
Band 3-6-7 combination, provided false-color images that are particularly effective for snow
and ice mapping due to the distinct reflective and absorptive properties of these features in
different parts of the electromagnetic spectrum. The images, available from NASA’s Earth
Data site (https://wvs.earthdata.nasa.gov/) (accessed on 10 May 2024), have a spatial
resolution of 250 meters and a temporal resolution of 1 day.

165



Water 2025, 17, 142

2.5. Methodology
2.5.1. Albedo α

The surface albedo is the ratio of the upward solar irradiance Eu (unit: W·m−2) to the
downward solar irradiance Ed just above the surface:

α =
Eu

Ed
(1)

It is an important parameter for the surface energy balance.

2.5.2. Lake Water Body Attenuation Coefficient Kdw and Lake Ice and Covering
Attenuation Coefficient Kdi

Infrared radiation is absorbed in a thin near-surface layer, and only photosynthetically
active radiation (PAR) wavelengths (400–700 nm) are present in radiation that travels
through ice [41]. Two radiation sensors were used to measure the downward radiation in
the under-ice water body: sensor 1 at a depth of 0.7 m and sensor 2 at a depth of 2.1 m.
By utilizing these PAR measurements, the attenuation coefficient Kdw (unit: m−1) can be
calculated using Equation (2). For a vertically optically homogeneous water body, the
attenuation of radiation follows the exponential decay law [42]:

Kdw = − 1
∆z

ln
Ed(z0.7)

Ed(z2.1)
(2)

Here, ∆z = z2.1 − z0.7, Ed(z0.7) and Ed(z2.1) (unit: W m−2) represent the downward
radiation at depths z0.7 and z2.1, respectively.

The coefficient Kdi is determined by utilizing the radiation at the ice bottom
Ed(zice−water) and the incident PAR on the lake surface. Based on previous research con-
ducted at Xiaopo Lake at the eastern shore of Qinghai Lake, the average value of the PAR
coefficient (ηPAR) in February in the Qinghai Lake basin is 0.42 [43]. Combining this with
the thickness of the lake ice, Kdi can be calculated.

2.5.3. Ice–Water Interface PAR zi(PAR), Euphotic Zone Depth Zeu, and Lake
Ice Transmittance

By utilizing the PAR from Sensor 1, the distance between the ice bottom and sensor 1,
and Kdw, one can estimate the PAR at the ice bottom during the observation period using
Equation (3), where zair−ice represents the depth at the air–ice interface, zair−ice represents
the depth at the ice–water interface, Ed(zair−ice) represents the irradiance at the air–ice
interface, and Ed(zice−water) represents the irradiance at the ice–water interface.

Ed(zice−water) = Ed(zair−ice)eKdw(zair−ice−zice−water) (3)

The euphotic zone depth is defined as the depth at which the net primary production
becomes zero, coincident with the depth of the layer of photosynthetic activity. The euphotic
zone depth Zeu is usually defined as the depth at which the irradiance is 1% of the PAR
irradiance at the surface.

It can be calculated by incorporating hi, the ice thickness, and hw, the depth in water
where irradiance reaches 1% of the surface PAR irradiance.

Zeu = hi + hw (4)

0.01 = ηPAR ∗ (1 − α)e−(hwKdw+hiKdi) (5)
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The transmittance refers to the ratio of downward radiation at the ice layer depth
to the PAR on the lake surface. By using the radiation reaching the ice bottom, one can
calculate the ice layer transmittance:

τ =
Ed(zice−water)

ηPAR ∗ Ed
(6)

3. Results
3.1. Background Field

Taking into account the prevailing meteorological conditions and the variability in
surface coverage, the study period was delineated into three distinct stages represented by
different shades in Figure 2: the snow stage, encompassing 6–11 February; the sand stage,
occurring in 13–14 February; and the bare ice stage, observed in 19–24 February. Table 2
provides a summary of major weather phenomena and lake surface features during the
study period. For reference, the MODIS remote sensing images and snapshots from the
automatic weather station during the observation period are shown in Figure 3.
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Figure 3. Terra/MODIS images during the stable freezing period of Qinghai Lake in 6–24 February 

2022, along with snapshots from the automatic weather station during the snow, sand, and bare ice 

stages. Two images from the automatic weather station are provided for each stage. The MODIS 

images are shown daily, except for 20 February, which has been removed due to distortion. Red 
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corresponds to Band 7 (2105–2155 nm). Red areas represent ice and snow, cyan represents exposed 

Figure 2. (a,c) Daily and (b,d) diurnal variations in (a,b) temperature and (c,d) wind speed at Qinghai
Lake in 6–24 February 2022. The shaded areas in (a,c) correspond to the standard stages of lake cover:
blue for snow, green for sand, and yellow for bare ice. Panels (b,d) display stage-averaged data for
each variable. Note: Consistent with this article’s approach, the color coding in panels (a,c) is applied
across all figures to represent the three distinct stages of the lake’s cover.

Table 2. Major weather phenomena and lake surface features.

Date Weather Phenomena Lake Surface Features

February 5–6, 10 Snow Snow cover
February 12–14 Sand blowing Sand cover

February 18 Strong wind Bare ice

During the snow stage, the daily mean air temperatures dropped to about −15.23 ◦C
on 7 February and then increased to −8.42 ◦C in the next stage. The meteorological
observatory recorded the weather as snowfall on 5 February, with a total of 3.5 mm of
snow falling during two periods: 02:00–03:00 and 23:00–06:00 in 5–6 February. A thin layer
of snow forming on the ice surface was observed, with a thickness of about 2.03 cm on
5 February.
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Figure 3. Terra/MODIS images during the stable freezing period of Qinghai Lake in 6–24 February
2022, along with snapshots from the automatic weather station during the snow, sand, and bare ice
stages. Two images from the automatic weather station are provided for each stage. The MODIS
images are shown daily, except for 20 February, which has been removed due to distortion. Red
corresponds to Band 3 (459–479 nm), green corresponds to Band 6 (1628–1652 nm), and blue corre-
sponds to Band 7 (2105–2155 nm). Red areas represent ice and snow, cyan represents exposed soil,
and white indicates small liquid water droplets in clouds. The lake surface is covered by a stable
frozen ice layer.

The average wind speed was 3.18 m·s−1 during the observation period. There were
four days experiencing speeds exceeding 6.00 m·s−1 accompanying two significant wind
events. The first wind event spanned in 12-14 February, with daily average wind speeds
ranging from 6.07 to 6.69 m·s−1. The intensity of these winds resulted in the deposition of
fine sand particles onto the ice surface and started the sand stage. Subsequently, the second
significant wind event was recorded on 18 February, characterized by a daily average wind
speed of 6.09 m·s−1 and instantaneous winds of up to 17.7 m·s−1. This event led to the
dispersion of sand particles, thereby exposing the underlying ice surface. The bare ice
period began, which is a common characteristic of TP lakes due to less snow than the
low-altitude lakes with high latitudes.

3.2. Lake Surface-Covering Transformation and Ice Thickness

As seen in Figure 4, the distance between the underwater ultrasonic device and the ice
base did not change much during the entire observation period, decreasing by only 1.95 cm
in 6–24 February. This suggests that the sinking of the lake ice bottom was slow, at a rate of
about 0.11 cm·d−1.

The lake boundary comprises the coverings of snow or sand on the top and ice on
the bottom. During the snow stage, the ultrasonic device was positioned 60.37~61.15 cm
from the surface. The average thickness of ice and snow layers remained constant at
34.30~35.85 cm. The snow cover was relatively thin, around 2 cm.

In the sand stage, with sand covering the surface, the distance of the ultrasonic device
from the ice to the sand surface rapidly decreased from 60.59 cm to the minimum value of
50.32 cm. There was a significant increase in the thickness of the ice and sand layer from
35.85 cm to the maximum of 47.53 cm. Wind activity resulted in a measured sand and snow
layer thickness of approximately 8 cm in the observation area, where accumulation was
notable due to observation structure effects causing substantial deposition. The spatial
distribution of sand in the Qinghai Lake is heterogeneous due to its considerable size,
leading to thin sand layers in other regions.
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Figure 4. High-precision ultrasonic measurements of lake ice surface distances and thicknesses. The
(top) graph depicts the distance from the sub-ice ultrasonic sensor to the underside of the ice, referred
to as ’Under-ice’. The (middle) graph illustrates the distance from the ice surface ultrasonic sensor
to the ice surface (or covering surface, if present), referred to as ’Surface-ice’. The (bottom) graph
presents the combined thickness of the ice and any covering, measured from the top to the bottom
surface, referred to as ’Ice and covering’.

In the bare ice stage, only with the bare ice, the daily average lake ice thickness
decreased and stabilized at 36.36~36.89 cm. The daily fluctuation in ice thickness ranged
from 2.20 cm to 2.70 cm, exhibiting the most significant diurnal variation observed during
the study period. This could possibly be attributed to increased ice sublimation and
deposition during the daytime and nighttime.

Based on the analysis above, the ice bottom had a minimal variation, and the ice
thickness maintained about 36.6 cm during the whole observation period that happened
to be the stable ice period. The thickness between the lake surface and ice bottom varied
mostly because of the changed coverings.

3.3. Lake Water and Ice Temperature
3.3.1. Lake Water Temperature Under Ice

The lake water hovered around 0 ◦C with fluctuations not exceeding 0.54 ◦C (Figure 5a)
during the whole observation period. The temperature of the lake water near the bottom
of the ice (0.4 m or 0.5 m below the surface of lake ice) was lower than 0 ◦C, which was
because Qinghai Lake is a saline lake (12.50 g·L−1), which has about a −0.69 ◦C negative
freezing point [44]. The deep lake water (12.7 m) temperature remained below 0 ◦C until
18 February, after which it exceeded 0 ◦C.

The water in all layers with snow and sand coverages was colder than that with only
bare ice. The mean temperature at the water depth of 0.4 m (12.7 m) below the ice surface
was −0.24, −0.29, and −0.10 ◦C (−0.18, −0.17, and 0.15 ◦C) during snow, sand, and ice
stages, respectively (Table 3).
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Figure 5. Temporal profiles of water temperature at various depths: (a) 12-hourly smoothed tem-
peratures at 0.4 m, 0.5 m, 6.7 m, 8.7 m, and 12.7 m depths in February 2022; (b) 12-hourly smoothed
temperatures at a depth of 2.1 m from February to April 2023, with the shaded area indicating the
ice-covered period.

Table 3. Maximum, minimum, and mean of lake water temperature at different depths below the ice
surface in three stages.

Depth Max (◦C) Min (◦C) Mean (◦C)
Snow Sand Ice Snow Sand Ice Snow Sand Ice

0.4 m −0.11 −0.22 0.05 −0.33 −0.36 −0.22 −0.24 −0.29 −0.10
0.5 m −0.11 −0.22 0.06 −0.32 −0.35 −0.20 −0.24 −0.29 −0.10
6.7 m −0.12 −0.17 0.11 −0.31 −0.34 −0.23 −0.23 −0.27 −0.07
8.7 m −0.12 −0.17 0.11 −0.31 −0.33 −0.23 −0.24 −0.27 −0.08

12.7 m 0.01 −0.14 0.36 −0.31 −0.28 −0.06 −0.18 −0.17 0.15

The water temperature was almost uniformly mixed throughout the water column
in the snow and sand stages, with the vertical gradient within 0.1 ◦C between the shallow
and deep layer. During the bare ice stage, the vertical temperature difference gradually
increased to 0.37 ◦C.

The short duration limited the visibility of this subtle warming trend in Qinghai Lake
in the February 2022 observation period (Figure 5a), but the extended observations in 2023
confirmed a gentle warming tendency throughout the ice period and a notable temperature
rise of 3.87 ◦C before ice melting from late March to early April (Figure 5b). Qinghai Lake,
characterized as a brackish body and the biggest lake in the TP and China, also exhibited
similar typical characteristics with increasing seasonal under-ice water temperatures of the
Tibetan Plateau’s lakes. The phenomenon had been observed in TP lakes including Ngoring
Lake Bangong Co, Zhari Namco, and Dagze Co, etc. [15], but the related conditions of
lake ice and air–ice–water radiation transfer have not been studied or supported by the in
situ observations.

3.3.2. Ice Temperature

Significant disparities in ice temperature in the three distinct stages were observed
(Figure 6). The ice located 5 cm beneath the ice surface had the smallest daily minimum
temperature and biggest daily maximum temperature (−10.50 and −0.40 ◦C) during the
bare ice stage compared to that covered with snow (−5.46 and −3.00 ◦C) and sand (−4.41
and −2.99 ◦C). Thus, its mean temperature (−5.29 ◦C) was lower in the bare ice stage than
in the other stages (−4.02, and −3.68 ◦C), while the diurnal ice temperature fluctuations
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in the bare ice stage (8.52 ◦C) is 5~8 times higher than the daily temperature fluctuation
observed in the snow (1.58 ◦C) and sand (1.04 ◦C) stages. The deeper ice layers (10 cm,
15 cm, and 20 cm below the ice surface) shared similar stage temperature characteristics,
and they were generally warmer and exhibited smaller temperature ranges (Table 4).
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Table 4. Maximum, minimum, and mean of lake ice temperature at different depths below the ice
surface in three stages.

Depth Max (◦C) Min (◦C) Mean (◦C)
Snow Sand Ice Snow Sand Ice Snow Sand Ice

5 cm −3.00 −2.99 −0.40 −5.46 −4.41 −10.50 −4.02 −3.68 −5.29
10 cm −1.70 −2.60 −1.51 −4.03 −3.41 −7.90 −3.00 −2.98 −4.39
15 cm −0.42 −2.30 −1.90 −3.00 −2.80 −6.10 −2.14 −2.52 −3.69
20 cm −0.32 −1.77 −1.90 −1.90 −2.00 −4.50 −1.25 −1.88 −2.93

During the snow, sand, and bare ice stages, the minimum values of the daily average
temperatures recorded beneath the ice surface at 5 cm (−4.76, −4.16 and −9.71 ◦C) and
20 cm (−1.34, −1.95, and −4.05 ◦C) were all documented between 07:30 and 08:30. The
maximum values of the daily average temperatures at these depths (5 cm: −3.26, −3.11,
and −1.19 ◦C; 20 cm: −1.09, −1.79, and −2.16 ◦C) were observed between 17:00 and
18:00 during the three stages. The vertical temperature difference between the surface and
deeper layers of ice was greater in the morning (−3.41, −2.20, and −5.66 ◦C) than in the
afternoon (−2.17, −1.33, and 0.97 ◦C). There was a negative vertical temperature difference
throughout the observation period, except during the bare ice stage in the afternoon, when
a positive vertical temperature difference was observed. The vertical temperature gradient
was steeper during the morning of the bare ice stage than during the other two stages.

Observational findings have unveiled the impact of lake ice and its coverings on the
temperature variations across different layers of lake water and ice. However, the intrinsic
physical mechanism of increasing in water temperature during the freezing period in
plateau lakes remains inadequately explained. Subsequently, we will elucidate the causes
of these temperature discrepancies by analyzing variations in radiation and the optical
properties of both the lake water and ice.
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3.3.3. Correlation Between Air Temperature and Ice/Water Temperature at
Different Depths

The correlation between air temperature and ice/water temperature at various depths
shows significant inconsistency (Table 5). The surface ice temperature almost immediately
reflects changes in air temperature. Correlation analysis reveals a high correlation between
air temperature and surface ice temperature at depths of 0.05 m and 0.10 m, with values
of 0.76 and 0.74, respectively. This suggests that variations in air temperature have a
significant impact on surface ice temperature, indicating the sensitivity of surface ice to
environmental climate changes.

Table 5. Correlation between air temperature and ice and water temperature at different depths.

Ice Water

Depth (m) 0.05 m 0.10 m 0.15 m 0.20 m 0.4 m 0.5 m 6.7 m 8.7 m 12.7 m

Correlation 0.76 * 0.74 * 0.66 * 0.5 * 0.13 0.14 * 0.21 * 0.16 * 0.11 *
Note: * denotes correlation is significant at the 0.001 level.

As depth increases, the correlation between ice temperature and air temperature
decreases significantly. At depths of 0.15 m and 0.20 m, the correlations are 0.66 and
0.50, respectively, indicating that the effect of air temperature on deeper ice temperatures
gradually diminishes. At depths of 6.7 m, 8.7 m, and 12.7 m, the correlation with water
temperature further decreases to 0.21, 0.16, and 0.11, respectively. This suggests that deeper
water temperatures are less influenced by air temperature due to the insulating effect, and
the variations in air temperature, unlike solar radiation, are difficult to penetrate and affect
a deeper water body.

3.4. Radiation and Optical Parameters
3.4.1. Downward Shortwave Radiation

Throughout the entire observation period (6–24 February 2022), as shown in Figure 7,
the downward shortwave radiation reaching the lake surface exhibits a weak upward
trend with no significant changes, averaging 235.82 W·m−2. The exceptions occurred with
a decrease during the day in 10, 18 and 20 February, attributed to cloudy weather (with
daily means of 191.97, 209.75, and 210.49 W·m−2, respectively), and sand blowing on the
12 February (daily mean of 193.72 W·m−2). However, the radiation level remained high
during the remaining, mostly sunny observation period. It is worth noting that the snowfall
on the 5-6 February occurred at night and did not impact the radiation during the daytime.

3.4.2. Upward Shortwave Radiation and Albedo

In the snow stage, the albedo of the freshly snow-covered surface was 0.68 at maximum,
and the upward shortwave radiation was 159.56 W·m−2 on 6 February. In the case of a thin
snow cover here, the underlying medium influences the albedo, resulting in the present
value lower than reported for optically thick, new snow (around 0.9) [45,46]. Subsequently,
due to snow metamorphosis, the albedo decreased to 0.57. Snowfall occurred on the
morning of the 10 February, blanketing the lake surface with fresh snow, which possesses
a higher albedo than old snow. This maintained the albedo approximately at 0.55, with
the upward shortwave radiation of 124.21 W·m−2 on 11 February. Throughout the snow
stage, the lake surface maintained high reflectivity (albedo ranging from 0.55 to 0.68) and
exhibited strong upward shortwave radiation (from 110.58 to 159.56 W·m−2).
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Figure 7. (a,c) Long-term trends and (b,d) daily variations in (a,b) solar shortwave radiation and
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radiation The shaded areas in (b,d) correspond to the snow (blue), sand (green), and bare ice
(yellow) periods.

In the sand stage, the albedo of the sand-covered ice was low, leading to a sudden
decrease from 0.49 to 0.37 in 12–13 February, while the corresponding upward shortwave
radiation decreased from 93.94 to 53.54 W·m−2. By the 16 February, the sand cover remained
on the ice surface, and the albedo continued to decrease, stabilizing at 0.15 due to the
melting and deterioration of the snow present in the sand. The daily mean upwelling
shortwave radiation further declined, reaching a minimum of 32.90 W·m−2 on 18 February
in the sand stage. The average daily upward shortwave radiation in the sand stage varied
greatly (32.90~93.94 W·m−2), and the albedo remained low (0.15~0.49).

During the bare ice stage, much of the particles (snow and sand) on the lake sur-
face were dispersed by strong winds, leaving the ice surface bare. The albedo during
19–24 February at noon remains stable, with a consistent range of 0.15 to 0.18 without any
notable fluctuations. The upward shortwave radiation increased slightly during the bare
ice stage but still maintained a low level (32.72 to 50.78 W·m−2).

3.4.3. Net Solar Shortwave Radiation

During the snow stage, the net shortwave radiation incident on the lake surface was
relatively small (89.46 W·m−2), due to the high reflectivity of the snow. In the sand stage,
the sand absorbed a large quantity of radiation (174.00 W·m−2). As the wind blew the sand
and snow away, the net shortwave radiation rose quickly and eventually stabilized. Higher
net radiation (209.39 W·m−2) was absorbed by the ice and the under-ice water column
during the bare ice stage due to the increased solar radiation intensity and decreased albedo.
The net shortwave radiation incident on the lake surface during the bare ice stage was
larger than that during the snow and sand stages due to the higher reflectance of snow and
the snow–sand mixture compared to bare ice. The snow stage and the sand stage accounted
for only 43% and 62%, respectively, of the net radiation in the bare ice stage.

3.4.4. Underwater Radiation of 0.7 m

Underwater radiation refers to solar shortwave radiation that penetrates to liquid
water through the ice cover. During the snow stage, there was an increasing trend of
underwater radiation at 0.7 m depth, rising from 4.94 W·m−2 to 7.89 W·m−2 during
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6–9 February (Figure 8). This corresponds to the decreased surface albedo due to the aging
of snow and to the increased incident radiation. The high albedo of new snow in the early
morning of the 10 February resulted in a reduction in underwater radiation to 6.41 W·m−2

on the 10 February. Subsequently, with the aging of snow, the radiation increased to
8.10 W·m−2 on the 11 February.
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2.1 m, and the ice bottom.

The radiation level at the depth of 0.7 m substantially reduced during the sand blowing
on the 12 February, reaching a minimum of 2.22 W·m−2 on the 13 February. The reduction
in radiation was attributed to the surface coverage around the site by an approximately
8 cm thick layer of sand, decreasing the penetration of radiation through the sand layer.
Thus, the sand largely changed the solar forcing of ice into a surface boundary condition
rather than a distributed source term. As the wind dispersed the sand particles over the
lake, the thickness of the sand layer gradually decreased. This gave rise to a continuous
increase in the underwater radiation, which reached 8.62 W·m−2 at 0.7 m depth on the
16 February, exceeding the maximum of the snow stage. During the bare ice stage, the
radiation at the depth of 0.7 m showed a gradual increase from 9.39 W·m−2 to 12.97 W·m−2

during the 20–24 February. Without the absorption of a deposited covering, the shortwave
solar radiation penetrates the ice surface in large quantities.

Comparatively, the mean radiation at 0.7 m depth was significantly higher in the
bare ice stage (11.70 W·m−2) than during the snow cover stage (7.44 W·m−2), with the
sand stage recording the lowest values (3.42 W·m−2). The diurnal variation in underwater
radiation peaked just after local noon (12:30–13:30), with maxima recorded at 27.71, 13.91,
and 44.33 W·m−2 for each stage, respectively. The radiation reaching the water is influenced
by the thickness and optical properties of snow, sand, and ice. The underwater radiation is
significantly affected by the thickness and optical attributes of the overlying snow, sand, and
ice. Snow, even when thin, provides exceptional reflection, while sand absorbs considerable
incoming solar radiation. The variation in underwater radiation is primarily driven by
snow’s high albedo and sand’s absorptivity of solar shortwave radiation.

3.4.5. Underwater Radiation of 2.1 m

The mean underwater radiation at 2.1 m depth during the bare ice stage (6.63 W·m−2;
range: 5.58~7.71 W·m−2) was higher compared to that covered with snow (aver-
age: 1.39 W·m−2; range: 1.10~1.66 W·m−2) and sand (average: 2.25 W·m−2; range:
1.75~2.74 W·m−2). The diurnal variation in underwater radiation at 2.1 m depth peaked
just after local noon (12:30–14:00), with maxima recorded at 5.97, 9.33, and 27.14 W·m−2

for each stage, respectively (Figure 8c). During the snow stage, the radiation exhibited
stable fluctuations (0.56 W·m−2), while, in the sand and bare ice stages, it showed a clear
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increasing trend, with rates of 2.03 W·m−2·d−1 and 0.34 W·m−2·d−1, respectively. The
increase during the bare ice stage was due to the gradual rise in solar radiation and thinning
ice, leading to more incoming radiation, whereas the rapid rise during the sand stage was
primarily caused by wind thinning the surface sand, allowing quicker radiation penetra-
tion. Additionally, radiation at 2.1 m was consistently lower than that at 0.7 m in all three
stages, which can be attributable to the substantial absorption of radiation by the water
layer, with the respective differences of 5.27, 0.99, and 4.56 W·m−2. The disparity in the
magnitude underscores impacts of surface conditions on the penetration of solar radiation
in the deeper water.

3.4.6. Kdw and Ice Bottom Radiation

The diurnal variation of Kd for both the lake water body and ice was computed using
Equation (2) (Figure 9). Throughout the snow stage, the average Kdw was 1.17 (±0.06) m−1,
decreasing sharply to a minimum of 0.27 (±0.05) m−1 during the sand stage. In the bare
ice stage, Kdw was a consistent average value of 0.39 (±0.03) m−1 for an extended period,
which was lower than during the snow stage but higher than during the sand stage. There
are no data of the water quality in the three stages; however, the differences in Kdw may
be due to variations in the spectral distribution of underwater radiation. The attenuation
coefficient of snow, ice, and water, along with the albedo, shows diurnal cycles from dawn
to sunset, particularly under clear skies. Generally, both Kdw and albedo are higher in
the morning and afternoon compared to the solar noon largely due to the solar elevation
angle. This fluctuation is most prominent during the bare ice stage, while the snow and
sand stages tend to exhibit milder variations, as the covering materials (snow and sand)
block solar radiation, allowing it to penetrate into the ice layer only when the radiation is
sufficiently strong. Another potential factor behind the daily variation is the melting and
the consequent presence of liquid water, even in small amounts.

Water 2025, 17, x FOR PEER REVIEW 16 of 23 
 

 

block solar radiation, allowing it to penetrate into the ice layer only when the radiation is 

sufficiently strong. Another potential factor behind the daily variation is the melting and 

the consequent presence of liquid water, even in small amounts. 

 

Figure 9. Temporal variation in the a�enuation coefficients of the lake water (blue) and lake ice 

(yellow). Dots represent values at 10-minute intervals, and lines represent the daily average. 

Equation (2) was utilized to calculate the radiation at the ice bo�om considering the 

underwater radiation at 0.7 m depth, ���, and the distance from the ice bo�om. The results 

show changes consistent with the underwater radiation level. The daily peak values of the 

radiation at the ice bo�om are 30.01, 14.77, and 46.24 W·m−2 in the three stages (Figure 8d). 

The mean radiation is higher in the bare ice stage (11.70 W·m−2) than in the snow cover 

(7.44 W·m−2) and sand (3.42 W·m−2) stages. The determined a�enuation coefficient of the 

ice is greater than that often predicted for bare ice due to the small quantity of sand present 

on the ice; the analysis is unable to differentiate between the a�enuation in ice and sand 

due to the lack of data. 

3.4.7. ��� and Lake Ice Transmi�ance 

Equation (3) was employed to calculate the �� of lake ice with its coverings, 

considering the radiation at the ice bo�om, the radiation entering the lake surface, and the 

thickness of the ice. In the snow stage, the ��� of the snow-covered ice layer is 4.63 (±0.25) 

m−1, while the ��� of bare ice is 5.36 (±0.17) m−1, which is higher than that of the ice–snow 

layer but lower than the sand-covered ice layer, which is 6.78 (±0.47) m−1. Even a small 

amount of sand on ice will increase the ���, reflecting the strong absorption characteristics 

of sand. This is also one reason why the ��� of the bare ice stage is larger than that of the 

snow stage. 

Figure 10 illustrates the evolution of light transmi�ance in February together with 

the daily variation described by Equation (5). The total transmi�ance in the snow, sand, 

and bare ice stages are 8%, 3%, and 11%, respectively. Combined with the reflectance 

values of each stage, the absorption rates of the ice with the different coverings are 31%, 

65%, and 72%, respectively. In terms of the daily variation, light transmission first appears 

at 07:00 (08:00) CST during the sand and bare ice stages (but was delayed by one hour in 

the snow stage). Thus, not only do the coverings influence the intensity of light 

transmission but also the period with underwater light is shorter, thereby reducing the 

heating impact of radiation. All physical property parameters of lake ice and coverings 

mentioned in this chapter are shown in Table 6. 

Figure 9. Temporal variation in the attenuation coefficients of the lake water (blue) and lake ice
(yellow). Dots represent values at 10-minute intervals, and lines represent the daily average.

Equation (2) was utilized to calculate the radiation at the ice bottom considering the
underwater radiation at 0.7 m depth, Kdw, and the distance from the ice bottom. The results
show changes consistent with the underwater radiation level. The daily peak values of the
radiation at the ice bottom are 30.01, 14.77, and 46.24 W·m−2 in the three stages (Figure 8d).
The mean radiation is higher in the bare ice stage (11.70 W·m−2) than in the snow cover
(7.44 W·m−2) and sand (3.42 W·m−2) stages. The determined attenuation coefficient of the
ice is greater than that often predicted for bare ice due to the small quantity of sand present

175



Water 2025, 17, 142

on the ice; the analysis is unable to differentiate between the attenuation in ice and sand
due to the lack of data.

3.4.7. Kdi and Lake Ice Transmittance

Equation (3) was employed to calculate the Kd of lake ice with its coverings, consider-
ing the radiation at the ice bottom, the radiation entering the lake surface, and the thickness
of the ice. In the snow stage, the Kdi of the snow-covered ice layer is 4.63 (±0.25) m−1,
while the Kdi of bare ice is 5.36 (±0.17) m−1, which is higher than that of the ice–snow layer
but lower than the sand-covered ice layer, which is 6.78 (±0.47) m−1. Even a small amount
of sand on ice will increase the Kdi, reflecting the strong absorption characteristics of sand.
This is also one reason why the Kdi of the bare ice stage is larger than that of the snow stage.

Figure 10 illustrates the evolution of light transmittance in February together with the
daily variation described by Equation (5). The total transmittance in the snow, sand, and
bare ice stages are 8%, 3%, and 11%, respectively. Combined with the reflectance values of
each stage, the absorption rates of the ice with the different coverings are 31%, 65%, and
72%, respectively. In terms of the daily variation, light transmission first appears at 07:00
(08:00) CST during the sand and bare ice stages (but was delayed by one hour in the snow
stage). Thus, not only do the coverings influence the intensity of light transmission but
also the period with underwater light is shorter, thereby reducing the heating impact of
radiation. All physical property parameters of lake ice and coverings mentioned in this
chapter are shown in Table 6.
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Table 6. Daily average of main physical parameters in each stage.

Snow Sand Bare Ice

Albedo of coverings or ice 61% 32% 17%
Absorptivity of coverings and ice 31% 65% 72%

Transmittance of coverings and ice 8% 3% 11%
Absorption-to-transmission ratio (β) 0.79 0.96 0.86

Kdw of lake water (m−1) 1.17 0.27 0.39
Ice bottom radiation (W·m−2) 7.44 3.42 11.70
Kdi of coverings and ice (m−1) 4.63 6.78 5.36

Zeu(PAR) (m) - - 11.50

4. Discussion
4.1. Mechanism of Lake Ice Temperature Variations Across Three Stages

Lake water temperature remained near the freezing point during the period of this
experiment and hardly changed, indicating that heat transfer from the water body to ice
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was small and the lake ice heat content is not much controlled by the water layer below
the ice. Meanwhile, the growth of ice at the bottom was small (1.95 cm) over the 19-day
study period; thus, the latent heat released by the stage transitions was small. The transfer
of strong solar radiation on the TP can be taken as the foremost factor to explain the lake
ice temperature differences in the three stages (−4.02, −3.68, and −5.29 ◦C at a depth of
0.05 m in snow, sand, and bare ice stages, respectively).

The net solar radiation over the lake surface during the snow stage was much lower
than in sand and bare ice stages (89.46, 174.00, and 209.39 W·m−2, respectively) due to the
higher reflectance of snow (61%) to that of sand and bare ice (32%, 17%). Furthermore, the
net solar radiation was lessened more by the higher absorptivity of sand (the absorption-
to-transmission ratio: 0.96) during the sand stage than in snow and bare ice stages (0.79,
0.86). Thus, as depicted in Figure 11, the net radiation penetrating from surface into water
during the snow and sand stages was much lower than in the bare ice stage (7.44, 3.42,
and 11.70 W·m−2, respectively) owing to the strong absorptivity of sand and the strong
reflectivity of snow, which was consistent with the lake ice temperature.
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Figure 11. Schematic diagram depicting radiation transfer within the air–ice–water system of Qinghai
Lake. The blue dashed box shows the absorption-to-transmission ratio.

Another noteworthy point is the diurnal variation in the three stages. The snow layer
that contained air served as a blanket due to the very low thermal conductivity. Therefore,
the diurnal range of ice temperature was only −5.46~−3.00 ◦C in the snow stage, much
less compared with the bare ice stage (−10.50~−0.40 ◦C). The thick and high-density sand
layer almost totally blocked the ice from radiation and made the ice temperature diurnal
range (−4.41~−2.99 ◦C) even less than in the snow stage.

In the bare ice stage, the incoming solar radiation could directly reach the ice without
any loss, and, at night, due to the lack of covering, the long-wave radiation loss was
enhanced. This caused dramatic fluctuations of lake ice temperature and the lowest average
temperature, unlike in the surface-covering stages.

4.2. Mechanism of Lake Water Temperature Variations Across Three Stages

The ice cover acts as a barrier to wind-driven momentum and prevents the wind-
induced vertical mixing within the lake [17], which would be contributed by the density-
driven mixing owing to the gradient of salinity and temperature of lake water. Observations
showed that the salinity gradient was only 0.33 g·L−1·m−1 and had a small influence on
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vertical density difference. All the observed water temperatures were below the maximum
density temperature (274.43 K) [47,48]. Thus, the density would always increase with the
increasing temperature warming due to solar heating and daytime convection events in
interaction with the evolution of the vertical temperature–salinity distribution. Throughout
the observation period, the lake’s water body persistently conveyed heat to the ice at
the ice/water interface, driven by the ice’s lower temperature. The water maintained a
relatively stable temperature, which can be partially credited to the solar radiation that
compensated for the heat absorbed by the ice, sustaining the water’s temperature around
0 ◦C, with only subtle variations observed across three distinct stages. Specifically, at a
depth of 0.4 meters, the water temperature registered at −0.24, −0.29, and −0.10 ◦C during
the snow-covered, sand-covered, and bare ice stages, respectively (Table 3). In these stages,
underwater radiation predominantly dictated the thermal exchange within the lake. To
elucidate these temperature discrepancies, an analysis of the ice bottom radiation was
conducted to ascertain the phenomenon of energy penetration into the aqueous medium.

During the sand stage, the sand and superficial snow layer significantly reflected the
incident solar radiation (32%), with the residual radiation absorbed by the intervening snow,
sand, and ice layers (65%), resulting in minimal energy (3%, equivalent to 3.42 W·m−2)
permeating the water body, aligning with the lowest observed lake water temperatures. In
the snow-covered stage, the high reflectance of the snow (61%) led to a substantial reflection
of downward radiation, coupled with absorption by the snow and ice layers (31%), thereby
reducing the radiation reaching the water. Consequently, the underwater radiation during
this stage was relatively diminutive, amounting to 7.44 W·m−2 (8%), which sustained
the lake’s lower water temperature. In contrast, during the bare ice stage, the absence of
coverings allowed solar radiation to be minimally reflected by the ice surface (17%) before
being substantially absorbed by the ice layer (72%), thereby heating the shallow water
adjacent to the underside of the ice. Ultimately, the incident radiation penetrated the water
layer with the greatest intensity (11%, equivalent to 11.70 W·m−2), with this direct heating
effect and enhanced radiation absorption contributing to a comparatively elevated lake
water temperature, marking the highest temperatures during the bare ice stage.

The transmittance of solar radiation through the ice layer and coverings plays a
decisive role in determining the lake’s water temperature. Given that the ice during the
bare ice stage is not entirely transparent, it exhibits a strong absorptive capacity for solar
radiation, particularly in the long-wave spectrum, with this capacity intensifying as the
ice thickness increases [42]. In Qinghai Lake, with an ice thickness of approximately 36.6
cm, the transmittance rates for solar radiation are as follows: 11% for the bare ice stage,
8% for the snow-covered ice stage, and 3% for the sand-covered ice stage. These data
underscore the significant impact of the ice layer and coverings’ characteristics on the lake’s
water temperature, with the ice layer’s absorptive and transmittance capabilities of solar
radiation as pivotal factors influencing the lake’s thermal regime.

4.3. Kdi, Kdw, and Euphotic Zone Depth in the Qinghai Lake

The mean (±standard deviation) Kdi in Qinghai Lake is 5.36 (±0.17) m−1 calculated
with the observation data, which is higher than that in nine Estonian and Finnish boreal
lakes and the brackish Santala Bay of the Baltic Sea (0.51~3.54 m−1) and in the central Asian
arid climate zone of the Wuliangsuhai (0.21 m−1) [49–51]. Higher Kdi in Qinghai Lake could
be explained from three aspects. Lake ice contains impurities that consist of gas bubbles,
liquid inclusions, and particles, which originate from the water body, bottom sediments, or
atmospheric deposition [52]. The gas bubbles in the ice have a great impact on the scattering
of light and in the liquid inclusions of brackish ice eventual CDOM (chromogenic dissolved
organic matter), and algae can absorb light [53]. Additionally, sand particles brought by
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strong winds would thinly cover the wrinkled lake ice surface in the TP [27], and sand
particles would be stuck in the ice by the freeze–thaw process, forming sand layers that
absorb much light. Although the Kdi in Qinghai Lake is quite big, the incident radiation is
large due to its high altitude and low latitude, and sunlight does have an important role in
heating the water and in providing photons for primary production beneath the ice. During
the ice stable stage, with only bare ice that is the normal status for the TP lakes, there are
11.70 W·m−2 of photosynthetically active radiation penetrating into the water in Qinghai
Lake, much higher than that in northern lakes with high latitude. With the consideration of
penetrated solar radiation from the lake ice bottom in lake models, the originally simulated
flat under-ice water temperature in TP lakes will be improved.

Compared to the rather clustered Kdi, the Kdw ranges widely from 3% to 15 m−1.
Also, water bodies could lead to disparate levels of attenuation of solar radiation, and
the euphotic zone depth varies (0.3 to 60 m), with significant discrepancies in deep water
temperatures [38,49,54]. It is very necessary to have the accurate Kdw in lake models.
According to the observed PAR during the freezing period in the Qinghai Lake, the average
Kdw is 0.39 (±0.03) m−1, and the euphotic zone depth is estimated to be 11.50 m, which is
smaller than the average water depth (21 m). In fact, many lakes on the TP have a low Kdw

of 0.10~1.17 m−1 (the mean is 0.26 m−1) [55]. For example, the Kdw of Namco Lake in the
northwestern region of the TP is only 0.14 m−1 [51]. Meanwhile, many lakes in Eastern
China exhibit a relatively high Kdw, such as Chaohu Lake (1.56~18.01 m−1 in winter), West
Lake (0.49~2.25 m−1), Taihu Lake (2.45~10.42 m−1), and Longgan Lake (0.71~3.72 m−1).
That is because these lakes are more eutrophic and shallower than the TP lakes. The
dynamic effect of wind-induced turbulent eddies gives rise to the resuspension of inorganic
particles from the sediment in shallow lakes of Eastern China, while the ice cover and large
depth damp the resuspension in the Qinghai Lake, even under strong wind conditions.

5. Conclusions and Future Works
Based on the systematic field experiment on air–ice–water temperature and radiation

transfer conducted during the ice-covered period of Qinghai Lake in February 2022, com-
bined with high-resolution remote sensing technology (ultrasonic instruments, acoustic
Doppler devices) and MODIS imagery to analyze changes in ice thickness and surface
conditions, this study examined characteristics of water and ice temperatures, air–ice–water
radiation transfer, and corresponding optical properties, as well as the effects of different
coverings (snow, sand, and ice) on temperature and radiation transfer.

Common weather processes (e.g., snowfall, sand blowing, and strong winds) on
the Tibetan Plateau can significantly alter the surface conditions of the ice cover. These
coverings play an important role in the variations in ice and water temperatures. The
mean ice temperature at 0.05 m beneath the ice surface for the three stages—snow cover,
sand cover, and bare ice—was found to be −4.02, −3.68, and −5.29 ◦C, respectively. The
daily ice temperature variation ranges were smaller in the snow and sand stages (1.58 and
1.04 ◦C) compared to the bare ice stage (8.52 ◦C). In contrast, the water temperature
slightly increased around 0 ◦C (the water depth of 12.7 m: −0.18, −0.17, and 0.15 ◦C) with
fluctuations not exceeding 0.54 ◦C during the entire observed ice-stable period. The lake
water temperature at the depth of 2.1 m in ice-covered Qinghai Lake continued to increase
to 3.87 ◦C before ice melted and was similar to most Tibetan Plateau lakes.

The different coverings (snow layer and sand layer) on ice exhibit distinct properties,
dividing the incident radiation into reflected, absorbed, and transmitted components. For
bare ice, the contributions of these three components were 17%, 72%, and 11%, respectively.
In contrast, a thin 2 cm snow cover resulted in corresponding values of 61%, 31%, and 8%,
while an 8 cm sand cover yielded values of 32%, 65%, and 3%. These differences explain
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why the ice (water) temperatures in the snow and sand stages were similar but influenced
by different mechanisms: the high reflectivity of snow (61%) and strong absorption-to-
transmission ratio of sand (0.96). During these stages, less solar radiation penetrated
into the water (8% for snow and 3% for sand), resulting in lower water temperatures
(−0.18, −0.17 ◦C). Additionally, the reduced absorbed solar radiation by ice (31% for
snow and 65% for sand) limited diurnal temperature variations (1.58, 1.04 ◦C) due to the
insulation of snow and sand. In contrast, during the bare ice stage, lake ice had the lowest
temperature (−5.29 ◦C) and the greatest diurnal variations (8.52 ◦C). This was attributed to
the absorption of 72% of solar radiation (171 W·m−2) by 37 cm of ice, which had a light
attenuation coefficient of 5.36 (±0.17) m−1.

Percentages of 8%, 3% and 11% of solar radiation penetrated into the lake water in
snow, sand, and bare ice stages, respectively, which resulted in colder lake water in the first
two stages. The averaged radiation of approximately 11.70 W·m−2 penetrating through
the ice layer during the bare ice stage primarily contributed to the warming of lake water
during this specific period. The averaged light attenuation coefficient of water Kdw was
0.39 (±0.03) m−1, which corresponded to a euphotic zone depth of 11.50 m and influenced
the special thermal conditions of water temperature.
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Abstract: When an ice-class propeller is operating in an ice-covered environment, as some
ice blocks slide along the ship hull in front of the propeller blades, the inflow ahead
of the propeller will become non-uniform. Consequently, the excitation force applied
to the blades will increase and massive cavitation bubbles will be generated. In this
paper, a hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation method and
Schnerr–Sauer cavitation model are used to investigate the hydrodynamics, excitation
force, cavitation evolution and flow field characteristics of the propeller in ice blockage
conditions. The results show that the numerical method adopted has a relatively high
accuracy and the hydrodynamic error is controlled within 3.0%. At low cavitation numbers,
although the blockage distance decreases, the cavitation phenomenon is still severe and the
hydrodynamic coefficients hardly increase accordingly. Ice blockage causes a sharp increase
in cavitation. When the distance is 0.15 times the diameter, the cavitation area amounts
to 20% of the propeller blades. As the advance coefficient grows, the total cavitation area
diminishes, while the cavitation area of the blade behind ice does not decrease, resulting
in an increment in excitation force. Ice blockage also causes backflow in the wake. At this
time, the largest backflow appears at the tip of the blade behind the ice. The higher the
advance coefficient, the more significant the high-pressure area of the pressure side and the
greater the pressure difference, causing the excitation force to rise sharply. This work offers
a positive theoretical basis for the anti-cavitation design and excitation force suppression of
propellers operating in icy regions.

Keywords: propeller; ice blockage; excitation force; cavitation evolution

1. Introduction
The opening and utilization of Arctic Sea routes have shortened the voyage of merchant

ships and promoted the development and utilization of Arctic resources. Whether a vessel
is an icebreaker for opening a route or an ice-strengthened ship in the route, in an ice-
covered environment, it will be affected by ice resistance [1]. However, the proportion of
ice resistance is often more than half of the total resistance [2]. It is necessary for an ice-class
propeller to raise its rotational speed, aiming to obtain greater thrust and maintain its ship’s
navigating efficiency [3]. However, since the rotational speed rises and the navigating
speed maintains, the ice-class propeller will undergo heavy loads. Meanwhile, the pressure
on the propeller blade drops to the saturated vapor pressure, leading to the appearance of
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cavitation. In particular, when an ice-blockage phenomenon occurs, the ice-blockage will
intensify the cavitation phenomenon [4,5].

Due to the complexity and importance of the hydrodynamic and cavitation evolution
of propellers in ice blockage and cavitation environments, some scholars carry out research
in terms of experiments, theories and numerical simulations. Sampson et al. carried out
model tests in ice blockage and milling environments in the Emerson cavitation tunnel,
and it was confirmed that as ice and propeller collided, accompanied by an increment in
cavitation bubbles, it not only hindered propulsion but also caused structure damage [6,7].
In an environment without cavitation bubbles, the ice block was close to the propeller,
causing its thrust to grow by 40%. However, in an environment with serious cavitation, the
change in propulsion performance was not significant when the ice–propeller distance was
reduced [8]. Since the ice block moved closer to the suction surface of the blade, an induced
conjoined vortex was observed, along with vortex cavitation [9,10]. Simultaneously, this
led to a significant increase in the excitation force, especially as the blade behind the
blockage was subjected to a heavy load and the low cavitation number brought a drastic
growth in the amplitude of the pressure fluctuation in some high-order frequencies [10].
We measured the propulsion performance of an ice-class propeller, considering the effect
of different ice–propeller distances, advance coefficients and cavitation numbers in the
cavitation tunnel, which indicated that ice blockage intensified the cavitation phenomenon
and severe cavitation will reduce the growth in thrust caused by the ice block [5].

Benefiting from the development of theoretical methods and computer technology,
the assessment of the hydrodynamics and cavitation evolution of propellers according to
viscous flow theories has achieved a swift development. Under an ice blockage condition
with no cavitation bubbles, Wang adopted the panel method, Reynolds-Averaged Navier–
Stokes equations (RANS) and model tests to research the load on the propeller surface
and its hydrodynamic performance in icy conditions [11]. Moreover, the RANS numerical
method and overset grid were also applied to simulate the hydrodynamics as the ice block
neared the propeller and the hydrodynamics of a single blade with the circumferential
position and the pressure distribution were obtained [12]. Ice blockage induced great
oscillations in the thrust and torque by obstructing the incoming flow of the propeller,
thereby increasing the loads on the propeller [13]. Particularly when cavitation occurred,
its excitation force increased rapidly. For this reason, Sun et al. used the RANS method
in order to analysis the excitation force caused by ice–propeller interaction and mainly
analyzed the cavitation effect on the propeller’s excitation force and its evolution process
when the ice block approached the propeller [14]. The ice–propeller distance affected the
propeller’s propulsion and cavitation performance; this numerical method was able to
effectively predict the hydrodynamics as the blockage and cavitation appeared simultane-
ously [15]. We also adopted the RANS method to carry out a numerical simulation study.
The hydrodynamic coefficients and the cavitation phenomena were in accordance with
the experimental results in the cavitation tunnel. The flow characteristics showed that
the ice blockage resulted in the turning of the direction of the propeller wake, cavitation
appeared for the low pressure area on the blade’s suction surface, and cavitation decreased
the vorticity on the suction surface of the propeller blade. Further, a hybrid method com-
bining Reynolds-Averaged Navier–Stokes equations and Large Eddy Simulation (LES)
methods was adopted to obtain detailed flow field information. The findings revealed that
the ice blockage gave rise to a significant excitation force and delayed the excitation force
occurrence at closer distances [16].

The model tests and theoretical and numerical studies carried out by previous scholars
are all of great guiding significance for the improvement of the propulsion performance of
ice-class propellers and the design of anti-cavitation performance. However, there are still

184



Water 2025, 17, 295

deficiencies in the research on the evolution process of cavitation in an ice-blockage envi-
ronment. In this work, the hybrid RANS/LES method combined with the Schnerr–Sauer
cavitation model is used to explore the excitation force characteristics and the evolution
process of cavitation in an ice blockage. First, the precision of the numerical method is vali-
dated through comparing numerical and experimental hydrodynamic coefficients; then, the
hydrodynamic, excitation force, cavitation performance and flow field are analyzed; finally,
the influencing mechanisms of the ice–propeller distance and advance coefficient on the
excitation force and cavitation evolution are summarized, as well as their internal relations.

2. Numerical Theory
2.1. Governing Equations

In fluid dynamics, even in the case of multiphase flow with cavitation, the continuum
hypothesis is still employed to simplify the problem, enabling the equations of continuum
mechanics to be utilized for describing the fluid behavior. Under the continuum hypothesis,
the physical properties of the fluid are considered as quantities that vary continuously in
space, which allows for the use of partial differential equations to depict the flow motion.
The Navier–Stokes equations are the fundamental sets of equations for describing fluid
motion and the governing equations are presented as follows:
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where ui and uj represent velocity vectors, p stands for static pressure, µt denotes turbulent
viscosity and δij means the Kronecker function. ρm and µm represent the density and
viscosity coefficients and ρm = ρlαl + ρvαv, µm = µlαl + µvαv and αl + αv = 1. m, l and v stand
for the mixture flow, water and cavitation, respectively.

2.2. Turbulence Model

In this paper, the hybrid RANS/LES method is employed, aiming to solve the Navier–
Stokes equations. This method combines the high precision of the LES method and the
high efficiency of the RANS method and realizes the transformation between the LES and
RANS methods by controlling the physical quantities. The Improved Delayed DES method
(IDDES) on the basis of the hybrid RANS/LES concept is widely used in the calculations
of traditional propellers [17], podded propellers [18], pump-jet propulsors [19,20] and
shaftless rim-driven propulsors [21]. The IDDES expression is as follows:
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where k represents turbulent kinetic energy, ω stands for turbulent dissipation rate, σk and
σω donate the turbulent Prandtl numbers, Pk represents the productions of k and ω, F1

185



Water 2025, 17, 295

and F2 stand for the SST blending functions and lIDDES donates the length scale for the
transition from RANS to LES, which is as follows:

lIDDES = f̃d · (1 + fe) · lRANS + (1 − f̃d)lLES

lRANS =
√

k/(Cµω), lLES = CDES∆
CDES = CDES1 · F1 + CDES2 · (1 − F1)

(6)

where f̃d represents the empiric blending function and fe stands for the elevating function.
CDES1, CDES2 and Cµ are the constants, which are 0.78, 0.61 and 0.09, respectively.

2.3. Cavitation Model

In this paper, the cavitation phenomenon is described by the Schnerr–Sauer cavitation
model. The relational formula between the cavitation mass conversion rate and volume
fraction is

.
m =

ρvρl
ρm

dα

dt
, α =

4
3 πR3

Bn0

1 + 4
3 πR3

B
n0 (7)

where RB represents the radius of the cavitation bubble and n0 stands for its number. The
cavitation mass change rate can be expressed as

.
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where sign represents the sign function and Pv stands for the saturated vapor pressure.

2.4. Hydrodynamic Coefficients

For hydrodynamic performance tests of model-scale propellers, it is required to meet
the similarity criteria of dimensionless coefficients stipulated by the International Towing
Tank Conference (ITTC), which include

J =
V

nD
, KT =

T
ρn2D4 , KQ =

Q
ρn2D5 , η0 =

JKT
2πKQ

(9)

where V represents inflow velocity, n donates rotational speed, D stands for the diameter, T
represents thrust, Q donates torque, J stands for the advance coefficient, KT represents the
thrust coefficient, KQ stands for the torque coefficient and η0 donates the open-water efficiency.

In addition, the similarity of the cavitation numbers also needs to be satisfied. Since
the method of changing the inflow velocity at a fixed rotational speed is used to adjust the
advance coefficient, a rotational-speed cavitation number σn is defined and the expression
is presented as follows:

σn =
P − Pv

1
2 ρ(nD)2 (10)

3. Numerical Strategy
3.1. Models

The research object is an ice-class propeller with 4 blades. In order to study the
performance of the propeller with an ice blockage and cavitation, a model test is conducted
in the cavitation tunnel of China Ship Scientific Research Center. The scale ratio of the
model is 1:28 and the scaled-down model diameter D is 0.25 m. The geometric model of
the propeller is depicted in Figure 1 and its main parameters are presented in Table 1. To
simulate the ice-blockage environment, a block is installed in front of the propeller. The ice
block has a length of 1.72D, a width of D and a height of 0.5D and the distance between it
and the propeller is L. The propeller model is fixed inside the cavitation tunnel through the
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central propeller shaft, while the ice block is suspended and fixed through the upper fixing
bracket. The change in the distance between the ice block and the propeller can be achieved
by adjusting the fixing bracket. The experiment of the hydrodynamic performance is
carried out by the method of fixed rotating speed and variable inflow velocity. The rotating
speed of the propeller n = 35 rps. The inflow velocity and the pressure are adjusted to
the advance coefficient and cavitation number. This ice-class propeller is a right-hand
propeller and the definitions of the propeller rotation direction and the coordinate system
are presented in Figure 1.
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Table 1. The main parameters of the propeller.

Blade Number Scale Ratio Diameter Pitch Ratio Disc Ratio Hub Diameter
Ratio

Z Λ D/m (P/D)0.7R AE/A0 dh/D
4 1:28 0.25 0.84 0.75 0.21

3.2. Computational Domain

Figure 2 illustrates the computational domain and its boundary condition settings.
The dimensions of the computational domain are identical to that of the cavitation tunnel,
having a length of 12.8D and a diameter of 3.2D. On its left side is set the velocity inlet,
while on the right side is set the pressure outlet. The distance from both sides to the center
of the propeller is 6.4D and the cylindrical side is a slip wall. The boundary conditions
of both the propeller and ice are non-slip walls. Given that the propeller needs to rotate
within the computational domain, the computational domain is therefore divided into a
stationary domain and a rotating domain and the interface between them is an internal
interface. The rotating domain encloses the propeller blades and has a diameter of 1.2D.

The grid generation of the computational domain model is displayed in Figure 3. For
the intricate geometry of this propeller, a cut-body grid with high stability is utilized to
achieve the spatial discretization of the computational domain. In order to ensure the
calculation accuracy, a greater grid concentration is provided for the propeller, the ice
blockage and the wake of the propeller. The basic grid size of the propeller blade is 0.001 m
and further refinement is carried out at the blade edges. The basic grid size of the ice
blockage is 0.002 m and its edges are also refined. Because of the high-speed rotation of
the propeller, a high-gradient boundary layer is formed around it. To ensure the accuracy
of the flow calculation within the boundary layer, a prismatic layer grid is used on the
propeller and the ice blockage. The height of first prismatic layer of the ice-class propeller is
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2.8 × 10−5 m, the extension ratio of the prismatic layer is 1.2 and there are 16 layers in total.
The height of the first prismatic layer of the ice blockage is 4.48 × 10−5 m, its extension
ratio is 1.2 and there are 16 layers in total. There are a total of 1.26 × 107 element grids in
the computational domain.
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3.3. Settings

Based on the previous work on the hydrodynamics and cavitation of the propeller
within the ice-blockage environment, we further investigate the excitation force, cavitation
evolution and flow field characteristics of the propeller when σn = 1.5, J = 0.35, 0.45 and
0.55 and L/D = 0.15 and 0.5. The Reynolds number is 2.46 × 106. The calculation is carried
out on a 48 core workstation using STAR-CCM+ software version 2302 and a calculation
duration of 120 h. The calculation is divided into two steps. Firstly, the steady-state flow
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field is solved based on the RANS method. The SST k-ω turbulence model is employed
to close the N-S equations and the SIMPLEC numerical algorithm is utilized to solve the
discrete difference equations of the velocity and pressure terms. At this moment, the
moving reference frame (MRF) method is adopted to simulate the rotation of the propeller.
After 1000 iteration steps, a stable flow field in a steady state is obtained. Then, the hybrid
RANS/LES method is used to precisely solve the unsteady turbulent flow field, with the
IDDES as the turbulence model. The Schnerr–Sauer cavitation model is introduced to
simulate the cavitation. In this working condition, the propeller rotates at a constant speed
of 35 rps, the rotation period Tn is 1/35 s and the inflow velocity is determined by the
advance coefficient. The rotational movement of the rotor is achieved by the sliding grid.
The time step is 6.25 × 10−5 s, which is equivalent to 0.7875◦ per time step, and the total
calculation is 35 Tn.

4. Validation
Grid uncertainty validation is the evaluation and quantification of errors caused by

grid division and numerical methods. This paper uses three sets of grids with different
sizes; the total grid quantities are 6.8 million, 12.6 million and 22.5 million, respectively.
The grid convergence index (GCI) is introduced to analyze grid errors, as shown in Table 2.
ϕ represents the hydrodynamic parameter and φ1, φ2 and φ3 represent the hydrodynamic
values under the grid of 22.5 million, 12.6 million and 6.8 million, respectively. e21

a , e21
ext

and GCI21
f ine stand for the relative error, extrapolation error and grid convergence indicator,

respectively. Table 2 reveals that the values of e21
a , e21

ext and GCI21
f ine are less than 0.8%,

indicating that the grid is converged and can be used for numerical calculations.

Table 2. Grid convergence validation (σn = 1.5, J = 0.35 and L/D = 0.15).

ϕ φ1 φ2 φ3 e21
a e21

ext GCI21
fine

KT 0.2755 0.2751 0.2746 0.145% 0.009% 0.011%
10KQ 0.3732 0.3729 0.3725 0.080% 0.601% 0.756%

η0 0.4112 0.4109 0.4106 0.073% 0.028% 0.036%

Aiming to validate the accuracy of the simulation results, a validation is made between
the computational fluid dynamics (CFD) and experimental fluid dynamics (EFD) when
σn = 1.5 and J = 0.35, as illustrated in Figure 4. It can be observed that the trends of the
hydrodynamic coefficients KT, KQ and η0 in CFD and EFD are in agreement and the errors
are within 3.0%. As L/D rises from 0.15 to 0.5, KT drops from 0.2744 to 0.2726 and 10KQ

declines from 0.3723 to 0.3654, while η0 ascends from 0.4108 to 0.4173. The variation of the
hydrodynamic coefficients does not exceed 2.0% and is relatively steady. When σn = 4.0, KT

and KQ decrease rapidly as L/D increases from 0.15 to 0.25; when L/D is within the range
of 0.25~0.5, KT and KQ gradually decrease but are always larger than the hydrodynamic
coefficients as σn = 1.5 [5]. This indicates that a decrease in the ice–propeller distance under
a higher cavitation number will lead to an increase in KT and KQ, while a low cavitation
number will raise the cavitation on the suction surface, thereby leading to a reduction in the
hydrodynamic coefficients. Particularly when L/D = 0.15, the hydrodynamic coefficients
are more markedly affected by the ice blockage and cavitation performance.
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5. Results and Analyses
5.1. Hydrodynamics

Figure 5 presents the comparison of the hydrodynamic coefficients KT, KQ and η0 of
the ice-class propeller under the ice-blockage condition at σn = 1.5. It can be observed
that the CFD results are in line with the EFD results, having the same trends and keeping
the error within 3.0%. As J rises from 0.35 to 0.55, both KT and KQ for L/D = 0.15 and
0.50 decrease accordingly, while η0 increases. The rotational speed of the propeller is fixed.
The increase in the advance coefficient causes the inflow velocity to increase. The increase
in the inflow velocity adds the angle of attack between the propeller blade and the inflow,
which in turn results in the decrease of KT and KQ. For L/D = 0.15, KT drops from 0.2751
to 0.2076 and 10KQ drops from 0.3729 to 0.3004; for L/D = 0.50, KT drops from 0.2736
to 0.2078 and 10KQ drops from 0.3654 to 0.2948. Because of the severe cavitation when
σn = 1.5, the differences in KT, KQ and η0 for L/D = 0.15 and 0.50 are very small and the
hydrodynamic coefficients scarcely increase as the blockage distance decreases.
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Figure 5. Comparison of hydrodynamic coefficients: (a) KT; (b) 10KQ; (c) η0.
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5.2. Excitation Force

Figure 6 displays the time history curves of four blades’ excitation force superposition
within the last 7 Tn. The area below the line represents the excitation force of each blade.
It can be found that the KT exhibits periodic excitation. In each rotation period, a single
propeller blade undergoes one excitation behind the ice blockage. Before entering the ice
blockage’s wake, the blade’s excitation force rises abruptly, reaches its maximum behind the
ice blockage and then decreases gradually. Owing to the effect of the distance between the
ice blockage and propeller, the excitation force with L/D = 0.15 occurs later than that with
L/D = 0.50 and its excitation force is more prominent. During this, the advance coefficient
climbs from 0.35 to 0.55 and the average value of the KT for a single blade decreases, while
the peak value of the excitation force increases. When J = 0.35 and L/D = 0.15 and 0.5, the
maximum excitation force is around 0.3. As J increases, the mean KT decreases but its
excitation force increases. When J = 0.55 and L/D = 0.15, the excitation force even reaches
0.43, as shown in Figure 6e. The excitation force at J = 0.55 and L/D = 0.50 does not exceed
0.25, as presented in Figure 6f. The propeller blade generates excitation behind the ice block
and there is a phase difference in the occurrence of the excitation forces among different
blades. The superposition of the excitation forces of the four blades leads to four excitations
of the total excitation force within one rotation period. The greater the excitation force
exerted by a single propeller blade, the larger the total excitation force.
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Figure 6. Time history curves of excitation force superposition: (a,c,e) L/D = 0.15 and J = 0.35, 0.45 and
0.55, respectively; (b,d,f) L/D = 0.50 and J = 0.35, 0.45 and 0.55, respectively.
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5.3. Cavitation Evolution

Figure 7 presents the evolution of cavitation shapes, indicating that the cavitation on
blade “1” is the most prominent. Moreover, the cavitation on blade “4”, blade “3” and blade
“2” decreases successively and gradually collapses. The ice blockage causes a growth in the
cavitation on the blade. The smaller the L/D, the larger the cavitation coverage area will be.
The evolution of the cavitation pattern in one rotation period accounts for the change in
excitation force. Differing from the cavitation patterns at other propeller blades, multiple
protrusions appear at the lower edge of the cavitation on blade “1”, which indicates that
cavitation occurs in the vortex, as showed in black circle. Owing to the blockage effect,
an induced vortex is formed in its wake. When the induced vortex approaches the blade
surface, the pressure in the vortex tube decreases and cavitation occurs when it is lower
than the saturated vapor pressure. As the J increases, the cavitation patterns on blade “1”
vary from each other, but its volume change is minimal. Meanwhile, the cavitation on
blade “4”, blade “3” and blade “2” decreases significantly, which reveals the mechanism of
the more significant excitation forces caused by the growth of J. As the L/D increases, the
blockage effect decreases, resulting in a reduction in cavitation. The decrease in cavitation
at blade “1” is more evident and the reduction in cavitation volume brings about a decline
in the excitation forces.
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To explore the trend of the cavitation coverage area on the propeller blades, the fraction
Cs is defined as Cs = Sc/S, where Sc stands for the cavitation coverage area and S is the total
area of the blades. The time-history curves of the cavitation coverage areas superposition
is presented in Figure 8. The area below the line represents the Cs of each blade. It can
be discovered that the trends of the cavitation coverage area on the propeller blades are
nearly identical to that of the excitation force. Both reach their maximum values behind
the ice blockage, but the peak value of the cavitation coverage area is relatively stable.
When L/D = 0.15 and J = 0.35, the Cs peak value of a single blade reaches 8.0% and the
total Cs is approximately 20%. While the advance coefficient rises, the total Cs decreases.
However, the Cs peak value of the blade behind the ice block remains almost the same
and the change amount of the cavitation coverage area increases, which leads to a growth
in the excitation force. When the distance between the ice block and propeller rises, the
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change in the amount of the cavitation coverage area decreases and the excitation force
decreases to a certain extent. When L/D = 0.50 and J = 0.35, the total cavitation coverage
area fraction fluctuates around 20.0%. When the advance coefficient grows, the larger the
distance between the ice block and propeller is, the smaller the total cavitation coverage
area will be, yet the peak of the cavitation coverage area of a single propeller blade is
always around 7.5%.
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Figure 8. Time history curves of cavitation areas’ superposition: (a,c,e) L/D = 0.15 and J = 0.35,
0.45 and 0.55, respectively; (b,d,f) L/D = 0.50 and J = 0.35, 0.45 and 0.55, respectively.

5.4. Flow Field Characteristics

Figure 9 illustrates the axial velocity Vx/nD in the flow field surrounding the ice-class
propeller. It is obvious that the suction effect of the propeller makes the velocity of the
surrounding flow increase. However, the ice blockage hinders the incoming flow, reduces
the wake velocity of the ice block and gives rise to backflow, which enhances the chaos
of the incoming flow to the propeller blades. When L/D = 0.15, the maximum backflow
takes place at the blade tip behind the ice blockage and has an impact on the velocity field
behind the propeller. The greater the advance coefficient is, the stronger the backflow will
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be and the greater the influence on the velocity field is, thereby leading to more significant
excitation forces. As the distance of the ice blockage increases, the obstruction effect of the
ice block on the propeller diminishes, the backflow behind the blockage weakens and the
effect of the backflow on the velocity field of the ice-class propeller reduces.
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Figure 10 presents the pressure Cp distribution in the ice-class propeller flow field,
with Cp = (P − P0)/0.5ρn2D2. It can be found that the suction effect of the ice-class propeller
on the flow creates a pressure difference on the propeller blades and then generates thrust.
In comparison with the pressure of the unblocked propeller blade, the obstruction effect of
the ice block on the incoming flow leads to an increase in both the low-pressure area and
the high-pressure area on the suction surface behind the ice blockage. When L/D = 0.15, the
low-pressure area of suction surface lies within the low-pressure area behind the blockage,
which makes the low-pressure even lower and the coverage area larger; the high-pressure
area on the pressure surface is influenced by the dynamic pressure of the backflow, which
causes the pressure to increase further, and the larger the advance coefficient is, the greater
the increase in pressure will be. As shown in Figure 10c, the pressure difference on the
propeller blades is the largest, which causes the excitation force to rise sharply.
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Figure 11 presents the Cp on the suction and pressure sides of the blade, which discloses
the mechanism of cavitation evolution on the blade. The suction effect of the blade results
in a low-pressure area on its suction side and a high-pressure area on its pressure side, and
thrust is generated under the pressure difference. When the pressure on the suction side is
lower than the saturation vapor pressure, water vaporizes to form cavitation. Under the
influence of ice blockage, the low-pressure area on the suction side of blade “1” becomes
even lower and the distribution range of this low-pressure area is broader. At the same
time, the leading edge pressure on the pressure side of blade “1” rises and a low-pressure
area emerges at the top of the trailing edge due to the impact of the suction side. When J
increases, the low-pressure ranges on the suction sides of blades “2”, “3” and “4” decrease,
thereby reducing the cavitation area. However, the low-pressure range on the suction side
of blade 1 scarcely changes, leading to a rapid development of cavitation here. The increase
in J makes the blade subject to a spatially non-uniformly distributed pressure load, which
gives rise to severe cavitation evolution and thus generates an excitation force. Moreover,
the increase in J also causes a sharp rise in the leading-edge pressure on the pressure side of
blade “1”, as shown in Figure 11e. Additionally, when L/D = 0.15, the low-pressure area on
the suction side also extends to the pressure side, making the blade load more complicated.
As L/D increases, the influence of the ice blockage decreases accordingly.
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6. Conclusions
In this work, the hybrid RANS/LES method combined with the Schnerr–Sauer cavita-

tion model is adopted to study the hydrodynamics, excitation force, cavitation evolution
and the flow field characteristics in an ice blockage environment with a low cavitation
number. The conclusions are listed as follows:

(1) The hybrid RANS/LES method and Schnerr–Sauer cavitation model possess good
numerical accuracy, with the error between the numerical value and the experimental
result being within 3.0%. When the advance coefficient rises, the angle of attack
between the propeller blade and the incoming flow also increases, which leads to a
reduction in thrust and torque. In the case of a low cavitation number, severe cavitation
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makes the hydrodynamic coefficient scarcely increase as the distance between the ice
and propeller decreases.

(2) The obstruction effect of the ice block on the incoming flow leads to a great increase
in cavitation on the blade behind it. Especially when L/D = 0.15, the total cavitation
coverage area reaches 20% and the cavitation-covered area of a single blade reaches
8.0%. As the advance coefficient increases, the total cavitation coverage area decreases,
but as the blade locates behind the ice blockage its cavitation coverage area hardly
reduces, causing rapid cavitation evolution and an increase in the excitation force.
Especially when J = 0.55, the excitation force is twice its average value.

(3) The ice block gives rise to a backflow behind it. When L/D = 0.15, the maximum
backflow takes place at the blade tip behind the ice blockage, which results in an
increase in the low-pressure zone on the suction surface and the high-pressure zone on
the pressure surface. The greater the advance coefficient is, the more the high pressure
rises and the larger the pressure difference is, thereby causing the excitation force to
increase sharply. The increase in J makes the blade subject to a spatially non-uniformly
distributed pressure load, which gives rise to severe cavitation evolution and thus
generates an excitation force.
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Nomenclature

D Diameter of the propeller L Ice–propeller distance
V Inflow velocity n Rotating speed
T Thrust Q Torque
J Advance coefficient KT Thrust coefficient
η0 Open-water efficiency KQ Torque coefficient
σn Cavitation number Cp Pressure coefficient
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Abstract: The study of ice runways has significant practical importance. Regarding inland
lake ice, while little of the practicality of ice runways during the ice formation period was
explored in the published articles, the analysis of the time period and suitable locations
may be used. This study focused on Huhenuoer Lake, located in Chen Barag Banner in
northeastern China. The time-dependent law of ice growth in this lake has been investigated
over a study period from 2023 to 2024. Utilizing the drilling approach, the ice thickness,
recorded at each site on 29 February 2024, has surpassed 100 cm. On 14 March 2024,
the recorded ice thickness at site #2 reached a record high of 139 cm. Second, to assess
the project’s ease of use and safety, we used the Stefan equation to model the lake’s ice
growth processes, resulting in a fitted Stefan coefficient of 2.202. For safety considerations,
the Stefan coefficient used for the construction of the ice runway was set at 1.870. We
investigated the distribution of lake ice and concluded that the lake ice runway should be
established in the north. We established the relationship between ice thickness, cumulative
snowfall, and negative accumulated temperature by integrating the fitting technique with
the Stefan model. Utilizing the P-III method, the minimum value of the maximum negative
accumulated temperature for the 50-year return period is 2092.46 ◦C·d, while the maximum
cumulative snowfall for the 50-year period is 58.4 mm. We can apply these values to
the aforementioned relationship to derive the ice thickness patterns across varying return
periods. Finally, the study provides recommendations for the construction of the ice runway
at Huhenuoer Lake. This study introduces ice field research and an ice growth model into
the analysis of lake ice runway operations to provide technical assistance for ice runways.

Keywords: ice field investigation; ice thickness; ice runway; Huhenuoer Lake; wind rose;
negative accumulated temperature; cumulative precipitation; feasibility analysis

1. Introduction
Recent trends in cold places and polar scientific research development have led to

a proliferation of studies that focus on ice runways. In polar regions, scientific research
heavily relies on air transportation for both personnel and equipment. The presence of
polar conditions limits conventional runway construction [1]. The ice runway is crucial
infrastructure for supporting polar research [2].

For airplanes to take off and land on ice, the runway must be considered a kind of
ice engineering. The evaluation of the ice’s carrying capability is important, primarily

Water 2025, 17, 400 https://doi.org/10.3390/w17030400
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determined by its thickness and strength [3,4]. Although there have been successful
instances of ice takeoff and landing airplanes overseas, the runway requirements for
various aircraft types are different. Sharp proposed the thickness of ice required for aircraft
landings on skis, with the assumption Sharp assumed that the plane will land on lake ice,
river ice, and sea ice. These calculations are suitable for frozen ice at temperatures below
−9 ◦C. If the temperature of the frozen ice exceeds −9 ◦C, it is necessary to increase the
required thickness by 25%. Wheeled aircraft require 20% more ice thickness than aircraft
landing on skis [5]. Blaisdell et al. indicated that the compressive strength of ice must
be evaluated, with the strength required to exceed the maximum contact stress produced
by the target aircraft by at least 25% [4]. Under external force, the floating ice has great
deformation and cross-section flexural stress. Due to ice’s weak tensile strength, the critical
stress represents the peak tensile stress at the bottom of the ice under the load [3]. This
resembles the conventional rigid pavement design methodology. Consequently, when
the bending strength of ice improves, the load-bearing capacity of the ice track will be
enhanced. Given that a layer of compacted snow is often placed over the ice runway, which
has a low coefficient of friction, the landing distance on compacted snow is 1.6 times the
required length of the land runway [6]. Swithinbank presented the results of the Antarctic
ice runway experiment [7]. The ice runways at two Antarctic sites accommodate various
wheeled aircraft, enabling the takeoff and landing of C-130, C-141, and C-5B aircraft. Squire
et al. [8] performed studies on the sea ice next to Tent Island in McMurdo Strait. In the
experiment, the sea ice thickness measured 1.60 m and remained consistent throughout.
The experiment used a pickup vehicle with a mass of 2100 kg and an LC-130 aircraft with
a mass of about 50,000 kg, measuring the strain rate that airplane landings and vehicular
activity impose on the ice. McCallum [9] utilized the Casey ice runway constructed by the
Antarctic Division in Australia as a case study, clarifying the impact of glacier movement,
including movement and rotation, on the positioning and deformation of the ice runway
and subsequently analyzing the implications of glacial dynamics on the long-term viability
of the ice runway.

Ice runways promote the advancement of transportation and tourism in colder places;
however, there are currently few actual uses of ice runways in northeast China. This paper
selects Huhenuoer Lake for an ice field investigation to assess the feasibility of lake ice
runways. This article aims to investigate the feasibility of using Huhenuoer Lake ice as a
winter ice runway, particularly focusing on the optimal position and period for its operation.
To accomplish the study objectives mentioned above, this article includes the following
work: Utilizing historical meteorological data and ice field research methodologies, we
opted to perform an analysis of the Huhenuoer Lake ice from 5 December 2023 to 21 March
2024. We used the ice drilling technique to assess the variation in thickness at each location.
This research presents our findings on the ice formation in Huhenuoer Lake and examines
the orientation, location, and operational periods of several aircraft types used on the tem-
porary runway. The research methods and concepts presented in this paper are applicable
to the design of many different lake ice runways, beyond just Huhenuoer Lake.

2. Basic Natural Conditions at Huhenuoer Lake
Lake ice formation is influenced by cold air, making local temperature and precipita-

tion the primary factors. As for temporary ice runways, the orientation ofthe runway is
related to wind speed and direction during the winter, while the runway length is related
to the lake’s boundaries. Huhenuoer Lake (49◦15′~49◦20′ N, 119◦11′~119◦17′ E) lies in
the western plain of the Greater Hinggan Mountains, approximately 14 km west of Chen
Barag Banner district, Hulun Buir City, and close to the confluence of the Hailar River and
Morigele River [10]. The length is 7.6 km from north to south, the max width is 3.8 km from
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east to west, and the area covers approximately 21 km2. The lake’s height is 587 m. Refer to
Figure 1 for the schematic geographical position of Huhenuoer Lake.

Water 2025, 17, x FOR PEER REVIEW 3 of 21 
 

 

Barag Banner district, Hulun Buir City, and close to the confluence of the Hailar River and 

Morigele River [10]. The length is 7.6 km from north to south, the max width is 3.8 km 

from east to west, and the area covers approximately 21 km2. The lake’s height is 587 m. 

Refer to Figure 1 for the schematic geographical position of Huhenuoer Lake. 

 

Figure 1. Schematic diagram of the geographical position of Huhenuoer Lake. China is shown in 

blue on the left, whereas Chen Barag Banner is shown in red. The image on the right displays a high-

definition map of Huhenuoer Lake. 

3. Wind Rose Analysis and Assessment of the Ice Thickness Research 

Site 

Lake ice formation is influenced by cold air, making local temperature and precipi-

tation the primary factors. As for temporary ice runways, the orientation of the runway is 

related to wind speed and direction during the winter, while the runway length is related 

to the lake’s boundaries. 

From the above, the runway orientation is directly linked to the local wind data. Next, 

we must ascertain the period of time for gathering wind data. The winter ice season in 

eastern Inner Mongolia typically spans from late October to late April of the following 

year [11]. The ice-freezing process starts when the temperature falls below 0 °C [12]. This 

study defines the research period from one year to the next as the time period during 

which the daily average temperature remains below 0 °C, based on an examination of the 

winter icetime from 1993 to 2023. The peak wind speed and direction for all study periods 

from 1993 to 2023 are summarized in Appendix A, with the wind rose diagram shown in 

Figure 2. 

The prevailing wind enables the aircraft to take off and land safely. The International 

Civil Aviation Organization (ICAO) mandates that the airport aligns the runway to guar-

antee a usability factor of 95%, meaning that an excessive crosswind component restricts 

use of the runway system to no more than 5% of the time. The orientation of the airport 

runway is determined by visual vector analysis known as the wind rose technique. The 

typical wind rose comprises a series of concentric circles divided by radial lines on polar 

coordinate paper. The components of wind data include wind speed, wind direction, and 

frequency of occurrence. The wind rose displays the percentage and wind speed range in 

this orientation. The typical wind rose described earlier can offer detailed wind data; how-

ever, a specialized template described as follows is required to ascertain the runway ori-

entation. 

Figure 1. Schematic diagram of the geographical position of Huhenuoer Lake. China is shown in
blue on the left, whereas Chen Barag Banner is shown in red. The image on the right displays a
high-definition map of Huhenuoer Lake.

3. Wind Rose Analysis and Assessment of the Ice Thickness Research Site
Lake ice formation is influenced by cold air, making local temperature and precipita-

tion the primary factors. As for temporary ice runways, the orientation of the runway is
related to wind speed and direction during the winter, while the runway length is related
to the lake’s boundaries.

From the above, the runway orientation is directly linked to the local wind data. Next,
we must ascertain the period of time for gathering wind data. The winter ice season in
eastern Inner Mongolia typically spans from late October to late April of the following
year [11]. The ice-freezing process starts when the temperature falls below 0 ◦C [12]. This
study defines the research period from one year to the next as the time period during
which the daily average temperature remains below 0 ◦C, based on an examination of the
winter icetime from 1993 to 2023. The peak wind speed and direction for all study periods
from 1993 to 2023 are summarized in Appendix A, with the wind rose diagram shown in
Figure 2.

The prevailing wind enables the aircraft to take off and land safely. The International
Civil Aviation Organization (ICAO) mandates that the airport aligns the runway to guaran-
tee a usability factor of 95%, meaning that an excessive crosswind component restricts use
of the runway system to no more than 5% of the time. The orientation of the airport runway
is determined by visual vector analysis known as the wind rose technique. The typical
wind rose comprises a series of concentric circles divided by radial lines on polar coordinate
paper. The components of wind data include wind speed, wind direction, and frequency of
occurrence. The wind rose displays the percentage and wind speed range in this orientation.
The typical wind rose described earlier can offer detailed wind data; however, a specialized
template described as follows is required to ascertain the runway orientation.
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Figure 2. Wind roses for the 2023–2024 research period at Chen Barag Banner.

Three parallel, equally spaced lines were employed with the wind rose. The center line
signifies the runway’s midpoint, while the span between the center line and each outside
line represents the allowable crosswind threshold, often 15 mph, about 7 m/s [13,14].

We have reassessed the data shown in Figure 2 based on the criteria for determining
runway direction [15] and generated Table 1.

Table 1. Wind frequency (%) of wind roses used to determine runway orientation in all research
periods of Huhenuoer Lake in the past 30 years.

Orientation 0~7 m/s 7~14 m/s 14~21 m/s Orientation 0~7 m/s 7~14 m/s 14~21 m/s

N 2.09 0.87 S 2.61 0.15
NNE 4.11 0.46 SSW 3.28 0.13
NE 4.87 0.11 SW 8.63 0.57

ENE 6.33 0.13 WSW 15.31 1.24
E 4.33 0.39 W 15.50 1.72 0.02

ESE 3.59 0.17 WNW 9.26 2.17 0.04
SE 1.72 0.24 NW 4.81 1.61 0.06

SSE 0.76 0.09 NNW 1.61 1.02

Table 1 suggests creating a wind rose chart to determine the runway orientation, as
shown in Figure 3. Afterwards, the maximum permissible crosswind of 7 m/s for manual
testing must be employed to maintain the runway’s usability factor at or above 95%. The
optimal runway orientations for Huhenuoer Lake are 90–270◦, with a usabil-ity factor of
95.6%, and 130–310◦, with a usability factor of 95.6%.

There are often at least two runways (the primary runway and the secondary runway)
at locations where the wind direction varies frequently, making it difficult to choose only
one runway if the runway is being utilized to its fullest potential [16]. Given that Huhenuoer
Lake is remote from towns and lacks large mountains, these two directions, 90–270◦ and
130–310◦, are appropriate. Simultaneously, these two directions are integer multiples of 10◦,
facilitating positioning during construction. In general, the ice in the lake’s center is not
very thick, so we choose the directions of 90–270◦ and 130–310◦. The lakeshore distances of
these two plans are 3400 m (solid line) and 4100 m (dashed line), respectively.
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Table 2 displays the ice thickness investigation sites for Huhenuoer Lake during the
study period of 2023–2024, taking into account the thin ice conditions in the lake’s center
and the goal of maximizing coverage throughout the entire lake. Figure 4 also displays the
specified sites.

Table 2. The latitude and longitude of Huhenuoer Lake ice survey sites.

Site Number Longitude Latitude

#1 119◦12′30′′ E 49◦18′30′′ N
#2 119◦13′30′′ E 49◦18′30′′ N
#3 119◦14′30′′ E 49◦18′30′′ N
#4 119◦13′30′′ E 49◦19′00′′ N
#5 119◦13′30′′ E 49◦17′30′′ N
#6 119◦13′30′′ E 49◦16′30′′ N
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Figure 4. The high-definition map of the proposed route for the optional ice runway and the
ice research sites. The solid line represents the 3400 m scheme oriented from 90–270◦, and the
starting point on the western side is marked with a green pentagon. The dashed line indicates the
4100 m scheme oriented from 130–310◦, and the starting point on the western side is marked with a
green triangle.
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4. Measurement of Ice Thickness Distribution and Its Relationship with
Negative Accumulated Temperature

The growth and melting of lake ice mostly rely on temperature and the accumulation
of snow on the ice surface. Winter snowfall in Chen Barag Banner affects the processes of
lake ice growth and melting. One of the simplest evaluation methods is the mathematical
model that relates ice thickness with negative accumulated temperature throughout the ice
growth period, known as the degree-day model [17–20]. The statistical coefficient indicates
the influence of snow cover, local hydrology, geographical information, and other factors.
The Chen Barag Banner meteorological station recorded a daily mean temperature below
0 ◦C on 30 October 2023, which began to rise above 0 ◦C on 27 March 2024. Thus, the
negative accumulated temperature at the Chen Barag Banner meteorological station over
the study period from 2023 to 2024 may be calculated. Huhenuoer Lake ice is mainly
constituted of a columnar-grained ice layer. The wetness of the snow is not significant, and
the impact of wind erosion on the snow is limited. We performed six measurements of ice
thickness between 5 December 2023 and 21 March 2024. We collected ice thickness data
from six sites (#1–#6), as depicted in Figure 4. Table 3 displays the measurements of ice
thickness and snow depth collected by drilling holes in Huhenuoer Lake during the study
period from 2023 to 2024. The data in Table 3 are stored as integers. We use them to analyze
the ice-growing process at each site.

Table 3. Ice thickness and snow depth measured by hole-drilling in Huhenuoer Lake during the
study period from 2023 to 2024.

Date of
Measurement

Snow Depth (cm)
Ice Thickness (cm)

#1 #2 #3 #4 #5 #6 Average Value

5 December 2023 13 48 46 42 51 50 48 48
15 December 2023 15 55 55
29 December 2023 19 70 71 71

2 January 2024 18 95 103 107 109 72 117 101
18 January 2024 20 85 98 89 89 84 99 91
26 January 2024 19 89 99 96 97 86 100 95
2 February 2024 20 96 105 102 102 87 105 100

29 February 2024 22 116 112 108 121 107 103 111
7 March 2024 21 119 132 108 119 105 103 114
14 March 2024 19 121 139 108 127 105 103 117
21 March 2024 16 131 139 108 129 125 103 123

This section provides further analysis using a model for ice growth. In the end, we
decided to use the Stefan model.

The reason for selecting this approach is to achieve an acceptable compromise between
technical ease of use and safety. The Stefan model expression is simple to understand and
user-friendly. There is limited literature regarding the application of this strategy to ice
runway design, but the subsequent analytical method employs various levels of safety
factors to ensure safety.

Stefan developed an analytical formula for calculating ice thickness in 1891 [21]. The
surface temperature of the ice corresponds to the air temperature, while the temperature at
the ice bottom aligns with the freezing point. Heat transmission within the ice only aligns
with its growth direction and spreads linearly throughout. As a result, the ice thickness
varies throughout time.

The Stefan model can be shown as follows:

Hi = a
√

FDD (1)
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where Hi is the ice thickness, and FDD is cumulative freezing degree days. The FDD, also
known as the sum of negative degree days, provides the cumulative total of below-zero
temperatures for each day that follows, making the calculation for determining ice thickness
simpler [22]. a represents Stefan’s coefficient in the degree-day approach. It relates not only
to the physical characteristics of ice but also to the average depth of snow above the ice.

Ice analysis extensively uses the previously mentioned Stefan equation. Subsequently,
we plan to describe the application of the Stefan equation within this investigation. For
the fitting operation, we exclude the measurements of ice thickness (H) values from the
six sites (i.e., #1–#6) where ice growth has reached the lake bottom. Then, the measured
ice thickness and negative accumulated temperature by the freezing degree day (FDD) are
fitted using the Stefan curve, resulting in the respective statistical coefficients for the six
sites. Figure 5 displays the Stefan fitting results for the six sites.
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Figure 5. Stefan fitting curves and parameters of negative accumulated temperature and ice thickness
of sites #1–#6.

Figure 5 illustrates variations of ice thickness at various places throughout the lake.
To describe the findings about the ice thickness at different times more clearly, we created
an ice thickness diagram indicating the relative distance from sites #1 (the route oriented
towards #1–#2–#3) and #4 (the route oriented towards #4–#2–#5–#6), with the findings
shown in Figure 6.
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Table 3 indicates that during the initial phase (2 January 2024), ice formations devel-
oped more quickly in the southern region than in the northern region, with a small area of
thin ice present in the lake’s center. During the subsequent period (21 March 2024), the ice
in the southern region of the lake grew slowly and even touched the lake bottom due to
the shallow water conditions. Conversely, the ice in the northern section of the lake was
comparatively thick.

5. Feasibility Analysis of Huhenuoer Lake Ice as a Temporary Runway
5.1. The Runway Position and Ice Thickness Distribution

Analysis of wind speed and direction data at the Chen Barag Banner meteorological
station from 1993 to 2023 indicates that the optimal runway orientations for the Huhenuoer
Lake temporary airport are 90–270◦ and 130–310◦. Given that the water in the southern
region of Huhenuoer Lake is shallow and the ice in the central area is thin, we utilize the
90–270◦ line and the 130–310◦ line to identify the broadest location in the northern section
of the lake as the proposed runway position. The distances between the two lakesides
measured in this way are 3400 m and 4100 m, respectively.

Due to the low friction coefficient of the ice runway, it is necessary to maximize
its length. Additionally, the surface of the ice runway may be covered with a layer of
compacted snow, as in the case of the Pegasus runway [4], to mitigate melting caused by
solar radiation and other factors. Consequently, based on the assumption that the landing
distance of a compacted snow runway requires not less than 1.6 times the length of a land
runway [6], the 3400 m length of Huhenuoer Lake ice is comparable to approximately
2000 m of a land runway, which is suitable for the takeoff and landing of lightweight
aircraft. The C130 requires a land runway length of 1830 m for ground operations. Without
a complete examination of the ice thickness, the ice of the northern part of Huhenuoer Lake
is capable of supporting the takeoff and landing of aircraft weighing less than the C130,
ensuring safety.

Figure 7 identifies two envelope lines, showing the upper- and lower-limit envelopes
of ice thickness throughout the study period of 2023–2024 at Huhenuoer Lake. Different
research backgrounds, including purposes and locations, require the adoption of different
envelopes. Previous research has applied similar concepts across different fields [23]. This
study indicates that adopting the lower envelope (i.e., a = 1.870) implies the presence of
some safety redundancy. This is safe for the design of ice runways.

Figure 7 illustrates that the Stefan coefficient of Huhenuoer Lake ice is 2.202. The
coefficient for the upper envelope is 2.400, while that for the lower envelope is 1.870. For
the design of anti-ice structures, such as the anti-ice design of a bridge pier over a reservoir
in cold regions studied in reference [24], the upper-bound envelope considered safe for the
project should be used. We construct the airport runway on ice to support the aircraft’s
weight and withstand the dynamic loads during takeoff and landing. The lower-limit
envelope, whose fitting coefficient of ice thickness–negative accumulated temperature is
1.870, should be chosen in accordance with the engineering safety criteria.

The survey on ice surface variation has not been carried out, and theoretically, it will
not exceed the magnitude of ice thickness variation.

Based on our newly established route, the thickness variation can be assessed as
follows:

1. The non-uniformity should be minimized, where non-uniformity = (maximum ice
thickness along the route − minimum ice thickness along the route)/maximum ice
thickness along the route.

2. The maximum change rate should be minimized, where the maximum change rate
refers to the highest value of non-uniformity per unit length over the entire route.
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Figure 7. The average Stefan curve (solid line) representing all the ice thickness data from Huhenuoer
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anti-ice structure design and the lower-limit envelope (dotted line) for ice runway design.

Table 4 presents the ice thickness values for the 90–270◦ and 130–310◦ routes, calculated
using interpolation, allowing for the assessment of non-uniformity and the maximum
change rate of ice thickness for both routes.

Table 4. The maximum value of the ice thickness, non-uniformity, and change rate of ice thickness for
runway routes 90–270◦ and 130–310◦ at different times.

Date of
Measurement

Runway
Orientation

Ice Thickness
on The Route (cm) Non-Uniformity

(%)
Maximum

Change Rate (‰)
Min Value Max Value

5 December 2023
90–270◦ 39 48 18.2 −0.1

130–310◦ 45 50 8.5 −0.0

2 January 2024 90–270◦ 92 109 15.4 0.1
130–310◦ 72 120 39.7 0.7

18 January 2024 90–270◦ 81 98 16.9 0.1
130–310◦ 78 96 19.1 0.2

26 January 2024 90–270◦ 85 99 13.6 0.1
130–310◦ 83 101 18.2 0.2

2 February 2024 90–270◦ 92 105 12.0 0.1
130–310◦ 87 106 18.4 0.3

29 February 2024 90–270◦ 106 117 9.1 −0.0
130–310◦ 101 117 13.4 −0.1

7 March 2024
90–270◦ 98 132 25.4 −0.2

130–310◦ 105 114 8.0 −0.3

14 March 2024
90–270◦ 94 139 32.4 −0.3

130–310◦ 105 119 11.8 −0.6

21 March 2024
90–270◦ 96 139 31.0 −0.3

130–310◦ 90 127 28.9 −0.3

We show the variation in ice thickness for the two routes at each ice measuring time
using an interpolation method. The results are shown in Figure 8.

Under adverse conditions, assuming that the ice temperature is higher than −9 ◦C and
that all of the aircraft are wheeled, the necessary lake ice thickness may be determined by
calculating for the various aircraft types [5,25–30]. Next, we can determine the beginning
of the fundamental time using the negative accumulated temperature associated with the
lake ice thickness and designate 26 March 2024 as the end of the fundamental period.
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Figure 8. Ice thickness of 90–270◦ and 130–310◦ runway routes at different measured times:
(a) 90–270◦; (b) 130–310◦.

From a safety point of view, the ice thickness may change before and after the op-
erational period. This means that dividing the length of the fundamental period by the
safety factor (set at 1.5 in this study) gives us the conservative operational period for the
aircraft during the winter, assuming that the middle time point of both the fundamental
and conservative periods is the same. Blaisdell et al. indicate that the safety factor for ice
runways should be a minimum of 1.25 and a maximum of 1.5 [4]. A safety factor beyond
1.5 diminishes confidence in the runway’s capacity to support aircraft. This section estab-
lishes the safety factor at 1.5. At the same time, we also observe that in [4], tire pressure has
a safety factor of 1.6 for a specific configuration. The Stefan coefficient has been established
as 1.870 in this section. The fitted Stefan coefficient is 2.202, resulting in a calculation of
1.5 × 2.202/1.870 = 1.77, which exceeds 1.6.

We can mitigate the inaccurate prediction of the ice formation and melting process
to the greatest extent feasible regarding operational duration, thereby addressing the
deficiency in ice thickness. Using the study period from 2023 to 2024 as an example,
Figure 9 can be developed by displaying the data of different aircraft.
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the relationship between ice thickness and negative cumulated temperature for Huhenuoer Lake,
together with the operating conservative period for each aircraft.
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Table 5 presents the above findings in more detail.

Table 5. Using the research period from 2023 to 2024 as an example, the conservative operational
period of different aircraft types and the necessary length of the ice runway are assessed. The needed
length of the ice runway is 1.6 times the greater of the aircraft’s take-off distance and landing distance.

Aircraft Type Maximum
Landing Weight (t)

Start of the
Conservative Period

End of the
Conservative Period

Conservative
Period (d)

Needed
Length (m)

An-2 7 10 December 2023 4 March 2024 85 400
Bombardier Q400 29 17 January 2024 12 March 2024 55 2240

Gulfstream
G650ER 38 31 January 2024 15 March 2024 44 3070

C-130J 59 5 March 2024 23 March 2024 18 2520
C-17 203 — — — 3780

Table 5 indicates that small aircraft like the An-2 will have approximately 85 conserva-
tive days during the study period of 2023–2024. However, as aircraft weight increases, the
conservative operational period will progressively diminish, making it unsuitable for large
transport aircraft such as the C-17. Appendix B [31–34] shows the required ice thickness
and runway length associated with the maximum landing weight of other aircraft.

5.2. Feasibility of Using Huhenuoer Lake Ice as the Temporary Runway Every Winter in the Future

In the research period of 2023–2024, a fitting Stefan coefficient of 1.870 may be used
to assess the relationship between ice thickness and negative accumulated temperature,
supporting the evaluation of ice thickness on various days for the takeoff and landing of
different aircraft types. Will we be able to use this coefficient for assessment in future study
periods? The assumption is impractical theoretically. The variation of snow depth on the
ice surface of Huhenuoer Lake each year affects ice formation differently. This impact is
seen in the magnitude of the Stefan coefficient in the relationship between ice thickness
and negative accumulated temperature. Generally, a thinner layer of snow corresponds to
a higher Stefan coefficient, and vice versa.

Given the above-mentioned impact of snow on the Stefan coefficient, the following
will go over how to ascertain the scientific relationship between the two variables. If
the snow depth varies, we must use statistics to determine the value of coefficient A.
Given that the latitude of Hongqi Pao Reservoir closely resembles that of Huhenuoer Lake
(Hongqi Pao Reservoir at 46◦36′ N and Huhenuoer Lake at 49◦18′ N) [35,36], we refer to
Wang’s study of Hongqi Pao Reservoir to determine the Stefan coefficient under conditions
of maximum snow depth. Wang investigated the empirical formula that identifies the
correlation between the thickness of the ice sheet and the negative accumulated temperature
beneath the snow cover in Hongqi Pao Reservoir [37]. We note that the average snow
depth at Huhenuoer Lake during the 2011–2012 study period reached 24.1 cm, the highest
recorded in the past three decades. Through a fitting procedure, we obtain a Stefan
coefficient of 1.842 from the Zubov model data [37], which corresponds to a snow depth
of 24.1 cm. Using the logistic fitting method, we can find the link between the depth of
the snow and the Stefan coefficient at Huhenuoer Lake by combining data from all study
sites during the study periods of 2022–2023 and 2023–2024, along with data from other
sources [38] that show the Stefan coefficient of windy lake ice with no snow to be 2.700. The
primary advantage of this statistical formula is its ability to show that the Stefan coefficient
corresponds to the values reported in the literature under bare ice conditions while also
indicating that it diminishes as snow depth increases, up to a certain limit. The results are
shown in Figure 10.
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Figure 10. Logistic fitting relationship between snow depth and Stefan coefficient of Huhenuoer
Lake ice.

The Chen Barag Banner meteorological station has historically recorded winter snow-
fall, but it does not record the depth of the snow on the ice surface. How do we measure the
depth of snow? This research employs a statistical analysis of the cumulative snowfall and
snow depth during the negative accumulated temperature statistical period recorded by
the Chen Barag Banner meteorological station. The low temperature and high humidity in
Chen Barag Banner, Inner Mongolia, lead to the conclusion that snow undergoes a natural
metamorphism process without sublimation. Figure 11 shows a fitting method that can
only be used to model the relationship between cumulative snowfall and average snow
depth over the study period of the last 30 years in Chen Barag Banner. With an R2 value of
0.832, this method is good for modeling this relationship.
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Figure 11. The relationship between cumulative snowfall and average snow depth over the study
period of the last 30 years in Chen Barag Banner.

Following these operations, the correlation among ice thickness, negative accumulated
temperature, and cumulative snowfall for the temporary runway at Huhenuoer Lake can
be expressed as indicated in Equation (2):
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Hi =


1.819 +

2.700 − 1.819

1 +
(

0.527•CS0.944

11.782

)3.826



√

FDD =

[
1.819 +

0.881

1 + CS3.612

145491.141

]√
FDD (2)

where CS is the cumulative snowfall. Can the findings obtained during the study period
of 2023–2024 be applicable in the winter of the following 10, 15, 20, 25, or even 50 years?
How should we assess the return period? In the return period analysis, although global
warming cannot be included, the existing meteorological data already contain information
from the time of climatic warming. Moreover, the ice thickness, influenced by harmful
climatic circumstances, with a return period of 50 years, could serve as a criterion for other
winters that do not exceed 50 years.

The Pearson type three (P-III) distribution curve technique [39–46], often used in
hydrometeorological studies, is utilized to derive the P-III distribution curve of cumulative
snowfall during the study periods of the last 30 years in Chen Barag Banner, shown as
Figure 12. Please refer to Appendix C for details of the P-III method.
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Figure 12. P-III curve representing cumulative snowfall over the study periods of the last 30 years.
The blue dots denote the actual data, while the red line illustrates the fitting cumulative snowfall
P-III curve for the study period.

A similar P-III distribution analyzes the negative accumulated temperature at the
Chen Barag Banner meteorological station during winter for the same time, as shown in
Figure 13.

Equation (2) indicates that increased cumulative snowfall results in impacts on the
ice becoming thinner, with the 2% frequency in Figure 12 denoting an occurrence once
every 50 years. As for FDD, a frequency of 98% in Figure 13 is used to denote the 50-year
return period, while Table 6 is designed based on the combination of the thick snow layer
on the ice surface and the low negative accumulated temperature throughout various
return periods.
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Figure 13. P-III curve representing negative accumulated temperature over the study periods of the
last 30 years. The blue dots denote the actual data, while the red line illustrates the fitting negative
accumulated temperature P-III curve for the study period.

Table 6. The values of cumulative snowfall and negative accumulated temperature from the P-III
curve, together with the corresponding ice thickness over various return periods.

Return Periods (Years) Value of the Corresponding Return Period
by Cumulative Snowfall P-III Curve (mm)

Value of the Corresponding Return Period by
Negative Accumulated Temperature P-III Curve

(◦C·d)

50 58.4 2092.5
45 57.5 2105.5
30 53.7 2158.7
25 52.0 2184.3
20 49.9 2217.0
15 47.0 2262.1
10 43.0 3577.4

We insert the input values into Equation (2), which establishes a relationship between
cumulative snowfall, negative accumulated temperature, and ice thickness. This connection
allows us to calculate the ice thickness throughout various return periods. We can determine
the take-off and landing periods for different aircraft types during different return periods
by combining the ice thickness calculated by Equation (2) with the minimum ice thickness
required for different aircraft types, taking into account the longest temporary runway
length. The most adverse effect of combination might serve as the minimal use period
during the planning stage of a temporary airport runway.

6. Conclusions and Suggestions
This paper develops six fixed ice thickness monitoring sites based on limited measure-

ments of ice thickness during the study period of 2022–2023, considering the meteorological
data near Huhenuoer Lake and the feasibility of utilizing it as a temporary take-off and
landing runway, in accordance with the general characteristics of lake ice thickness distri-
bution. The ice thickness was measured at different times throughout the study period of
2023–2024 at the six sites. The actual requirements of the runway, along with the measured
data regarding length, ice thickness, and service period of the temporary runway, as well
as the analysis of various return periods, demonstrate the feasibility of the Huhenuoer
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Lake ice supporting a temporary runway during different winter periods. The specific
conclusions are as follows:

1. Investigations have shown that the ice in the lake’s center is thin, particularly in
the southwest of Huhenuoer Lake. Furthermore, the southern region of Huhenuoer
Lake is shallow, and in this region, the lake ice can reach the bottom of the lake. The
northern section of Huhenuoer Lake may serve as the temporary take-off and landing
runway for aircraft on the lake ice during winter.

2. The 30-year historical data on wind speed and direction from the Chen Barag Banner
meteorological station near Huhenuoer Lake indicate the predominant wind direction
and frequency throughout the winter ice season in this region. The criteria requires a
95% usability factor for aircraft takeoffs and landings in wind conditions, unaffected
by crosswinds. The aircraft’s runway orientations on the Huhenuoer Lake ice are
90–270◦ and 130–310◦.

3. In the northern section of the lake, the straight-line distances of 90–270◦ and 130–310◦

indicate that the greatest lengths are 3400 m and 4100 m, respectively. Due to the low
friction coefficient of an ice surface, the recommended length of an ice runway with a
compacted snow layer is 1.6 times that of land. The minimum operational runway
length for Huhenuoer Lake is established at 3100 m. Considering the requirements of
maximum ice thickness and irregular ice distribution, it is capable of facilitating the
takeoff and landing of aircraft such as the C130.

4. We establish the fitting relationship between ice thickness, negative accumulated
temperature, and cumulative snowfall at Huhenuoer Lake, using the safety of aircraft
takeoff and landing as an engineering design requirement. We provide the designated
service period for takeoff and landing for several aircraft types. An analysis of the
shortest application period for the next 50 years is conducted.

This workprovides a comprehensive examination of aircraft takeoffs and landings at
Huhenuoer Lake. However, there are parts that require enhancement and supplementation.
We recommend that future field investigations and studies incorporate the following
components:

1. The findings of this article provide support for the design of ice aircraft takeoff
and landing at Huhenuoer Lake; nonetheless, a comprehensive survey is necessary
for practical implementation. This research suggests that the northern region of
Huhenuoer Lake should be the primary location for a limited number of ice thickness
monitoring sites, due to the thick ice, low temperatures, and challenges associated
with field operations.

2. For the potential runway ice and compacted snow layer, it is crucial to evaluate not
only the variability in ice thickness on the proposed runway but also the undulations
of the ice surface. Additionally, it is crucial to conduct research aimed at enhancing
the friction coefficient and minimizing surface undulation of the compacted snow.

3. The investigation assessing the bearing capability of the temporary ice runway at
Huhenuoer Lake will be integrated into the field of ice engineering. The effective
maintenance of the ice runway is in the construction and application stages. It requires
measurement of not only ice thickness but also mechanical characteristics, including
ice bending strength, elastic modulus, Poisson’s ratio, and compressive strength.
Therefore, in order to implement the ice runway, it is crucial to conduct experimental
research on the physical characteristics of the ice layer during future investigations of
Huhenuoer Lake.

4. The Stefan model employed in this research is user-friendly, and various ice thick-
ness models, such as the Ashton model [47,48], are also appropriate for ice runway
construction. This represents a significant area for future investigation.
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Appendix A. Beginning Time, Ending Time, Days, Negative
Accumulated Temperature, and Cumulative Snowfall for Each Research
Period from 1993 to 2023

Number Beginning Time Ending Time Days Negative Accumulated
Temperature (◦C·d)

Cumulative
Snowfall (mm)

1993–1994 28 October 1993 29 March 1994 152 2749.2 29.5
1994–1995 6 November 1994 27 March 1995 141 2211.2 13.6
1995–1996 29 October 1995 5 April 1996 159 2511.2 19.7
1996–1997 23 October 1996 25 March 1997 153 3009.9 30.6
1997–1998 20 October 1997 25 March 1998 156 2509.2 17.7
1998–1999 30 October 1998 5 April 1999 157 2746.4 21.6
1999–2000 20 October 1999 6 April 2000 169 3228.8 47.9
2000–2001 2 November 2000 3 April 2001 152 3150.8 15.7
2001–2002 30 October 2001 10 March 2002 131 2367.5 22.6
2002–2003 17 October 2002 29 March 2003 163 3076.2 24.2
2003–2004 1 November 2003 25 March 2004 145 2811.3 28.2
2004–2005 4 November 2004 1 April 2005 148 2869.3 22.1
2005–2006 6 November 2005 31 March 2006 145 2811.2 28.9
2006–2007 4 November 2006 6 April 2007 153 2770.8 33.1
2007–2008 25 October 2007 7 March 2008 134 2524.6 13.1
2008–2009 23 October 2008 1 April 2009 160 2858.5 41.1
2009–2010 6 November 2009 17 April 2010 162 3249.3 35.2
2010–2011 6 November 2010 2 April 2011 147 3016.1 40.2
2011–2012 2 November 2011 27 March 2012 146 3433.6 46.9
2012–2013 27 October 2012 19 April 2013 174 3490.7 59.1
2013–2014 5 November 2013 22 March 2014 137 2519.5 33.4
2014–2015 30 October 2014 24 March 2015 145 2474.3 25.7
2015–2016 14 November 2015 19 March 2016 126 2636.3 18.6
2016–2017 17 October 2016 27 March 2017 161 2837.5 21.5
2017–2018 28 October 2017 23 March 2018 146 3072.4 18.4
2018–2019 3 November 2018 16 March 2019 133 2135.0 4.4
2019–2020 1 November 2019 23 March 2020 143 2739.9 19.7
2020–2021 12 November 2020 12 March 2021 120 2263.0 4.6
2021–2022 4 November 2021 8 March 2022 124 2344.9 9.8
2022–2023 31 October 2022 27 March 2023 147 2766.3 22.9
2023–2024 30 October 2023 26 March 2024 148 3135.0 34.9
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Appendix B. The Maximum Landing Weight (MLW) for Some Aircraft
Types, the Needed Ice Thickness, and the Needed Length on an Ice
Runway (Covered with Compacted Snow)

Aircraft Types The MLW (t) Needed Ice Thickness (cm) Needed Length on Ice Runway
Covered with Compacted Snow (m)

CZAW SportCruiser LSA 0.6 10 200
Cessna 172N 1 13 470

Cessna Caravan 4 24 1000
Cessna Citation CJ4 Gen2 7 34 1660

Saab 340 13 46 2060
Bombardier CRJ700 30 71 2500

Embraer 170 33 74 2630
Bombardier Global Express 36 77 2700

ARJ21-700 38 79 2720
ERJ 190 43 84 3290

Airbus A220-100 51 92 2340
Boeing 737-700 58 98 2930

Airbus A319neo 63 102 2960

Appendix C. The Details of P-III Analysis
The probability density function of P-III distribution is:

f (x) =
βα

Γ(α)
(x − x0)

α−1exp[−β(x − x0)] (3)

where Γ(α) is the gamma function, and α, β, and x0 are the shape, scale, and position
coefficients, respectively. Refer to the below for details.





α = 4/Cs
2

β = 2/xCvCs

x0 = x(1 − 2Cv/Cs)

(4)

where Cs is skewness coefficient, Cv is variation coefficient, and x is the average.
With a 50-year return period—that is, a frequency of 2%—Figure 12 illustrates the

upper-limit cumulative snowfall throughout winter: 58.4 mm. This number represents
the maximum snowfall that occurs once every 50 years, with the associated snow cover
serving as the greatest limit. Snowfall can negatively impact the minimum ice thickness
and limit aircraft operations on ice surfaces. Figure 12 delineates the cumulative snowfall
in the study period over return periods of 45 years, 30 years, 25 years, 20 years, 15 years,
and 10 years.
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Abstract: Surface albedo measurements of snow and ice on Lake Ulansu in the Central
Asian arid climate zone were conducted during the winter of 2016–2017. Observations were
categorized into three stages based on the ice growth and surface condition: bare ice, snow
cover, and melting. During the bare ice stage, the mean surface albedo was 0.35 with a
decreasing trend due to the accumulation of wind-blown sediment on the ice surface (range:
0.99–1.87 g m−2). Two snowfall events occurred during the snow cover stage, significantly
increasing the surface albedo to 0.91. During the melting stage, the albedo decreased at
a decay rate of 0.20–0.30/day. Four existing albedo schemes were evaluated but found
unsuitable for Lake Ulansu. A new surface albedo scheme was proposed by incorporating
the existing albedo schemes with the measured data. This scheme incorporated the effect
of sediment content on bare ice albedo for the first time. It demonstrated a modelling
efficiency of 0.933 over the entire 3-month period, which was used to evaluate the fit
between the predicted and observed values. When validated with albedo observations
from other winters, it achieved a modelling efficiency of 0.940. The closer the value is to
1, the better the model’s predictive accuracy, indicating a higher level of reliability in the
model’s performance. This scheme has potential applicability to other lakes in the Central
Asian arid climate zone, which is characterized by low precipitation, frequent sandstorms,
and intense solar radiation.

Keywords: albedo scheme; lake ice; snow; sediment content; optimization

1. Introduction
Lake ice and snow albedo, which refers to the fraction of solar energy reflected by these

surfaces, have a substantial impact on the energy balance of lakes and their surrounding
environments [1–6]. Seasonal ice-covered lakes are a key component of the terrestrial land-
scape in the Northern Hemisphere [7,8]. Due to rising global air temperatures, numerous
studies have reported a significant reduction in the annual freezing period of lakes [7,9–11].
Predictive studies on Northern Hemisphere temperatures indicate that the duration of
seasonal ice cover will continue to decrease in the future [12–14]. This reduction in lake ice
during winter can significantly impact water resources, ecological stability, transportation,
fisheries, and human activities [15]. The Central Asian arid climate zone plays a critical
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role in the global climate system [16], with warming rates in this region occurring at a pace
faster than the global average [17]. This has further exacerbated the reduction of seasonal
lake ice in the zone [18]. When studying lake ice and snow in this area, it is essential
to consider its unique climatic characteristics, such as low precipitation (approximately
8 mm during the winter), frequent sandstorms (approximately 15 days per year), and
intense solar radiation (approximately 200 W/m2 during the freezing period) [3,19–21].
For winter lake ice surfaces, two main conditions exist: with snow cover and without. Key
factors affecting snow cover albedo include snow water content, impurity level [22], grain
size [23], snow density, and surface roughness [24,25]. Dry snow has an albedo as high as
0.9 that decreases with increasing liquid water, while for wet snow, it is typically around
0.5 [26–28]. Factors affecting the albedo of lake ice include the presence of air bubbles
within the ice, ice crystal structure, ice thickness, and surface roughness [29]. Dry ice has
an albedo of approximately 0.5, decreasing to 0.2–0.3 during the melting season [3,8]. Many
existing snow and ice albedo schemes are empirical and rely on easily obtainable climatic
data [30–33]. These schemes typically estimate snow albedo using parameters such as
snow depth and the number of days since snowfall [30,34] and estimate lake ice albedo
using ice thickness and surface temperature [35–37]. While these parameterizations offer
reasonable approximations of snow and ice albedo, their applicability is limited. They
rely on the statistical fitting of albedo measurements that reflect specific snow, ice, and
atmospheric conditions at particular times and locations [38]. These parameterization
schemes are primarily applied to high-latitude lakes and do not take into account the
climatic characteristics of the Central Asian arid climate zone. Additionally, these schemes
have not been validated for lake ice and snow in this particular region.

In summary, although lake ice albedo in the Central Asian arid climate zone plays
an important role in climate system studies, a snow and ice albedo scheme for its entire
ice period is lacking. In this study, a field investigation was conducted to measure the
snow and ice cover albedo of a typical lake (Lake Ulansu [3,18,39]) in the Central Asian
arid climate zone and to validate existing snow and ice albedo schemes. Additionally, a
new snow and ice albedo scheme was optimized by refining the existing schemes and
incorporating climatic characteristics and the measured data. The accuracy of the new
scheme was further validated using 3 years of winter surface albedo measurements.

2. Materials and Methods
2.1. Study Area

Lake Ulansu is located in Inner Mongolia, China at coordinates 40◦36′–41◦30′ N,
108◦43′–108◦70′ E. It covers an area of 306 km2, with maximum length and width of 35.4 km
and 12.7 km, respectively. The water volume of the lake can reach 2.5–3 × 10 m3 [40],
and the maximum and mean water depths are 2.5–3.0 and 1.0–1.5 m [18], respectively.
Existing survey results show that the maximum ice thickness in winter ranges from 0.3 to
0.6 m [17,40,41]. This field study was conducted from 1 January to 9 March in 2017 in the
eastern part of the lake (40.9◦ N, 108.9◦ E), approximately 200 m from the shore (Figure 1).
The water depth at the observation point was 1.7 m, and the maximum ice thickness was
0.57 m, both of which fall within the average range for the Lake Ulansu during the winter
and are representative.
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Figure 1. Location of Lake Ulansu (a) [18], measurement site (Universal Transverse Mercato projection
and plotted using QGIS (Quantum GIS 3.34)) (b), ice cover on the lake (c), and solar radiation
measurement (d).

2.2. Data Collection

In situ measurements of solar radiation, atmospheric surface layer conditions (tempera-
ture, humidity, and wind speed and direction), and snow and ice thickness were conducted.
Figure 2 illustrates the equipment used to measure solar radiation and atmospheric condi-
tions, with further details provided in a previous study [39]. Solar radiation was measured
using two pyranometers (TBQ-2, Jinzhou Sunshine Meteorological Technology Co., Ltd.,
Jinzhou, China, http://pvsb.china-nengyuan.com/member_product/78658.html, accessed
on 1 January 2017.): one for incoming radiation and one for reflected radiation. The TBQ-2
measurement range was 300–3000 nm, with a sensor accuracy of 5%, and its manufacturing
and calibration standards followed the guidelines specified in QX/T 55-2007.

Water 2025, 17, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 2. Meteorological tower measurements at the site, and the pyranometers used, in winter 

2016–2017. 

 

Figure 3. Sediment collection area: pre- (a) and post-collection (b). 

2.3. Existing Surface Albedo Schemes 

Albedo schemes previously applied to predict lake ice and snow albedo were 

selected. These included those proposed by Gabison [36], Shine and Henderson-Sellers 
(SH), Flato and Brown (FB) [35], and Henneman and Stefan (HS) [30]. 

2.3.1. Gabison Scheme 

The Gabison scheme, developed based on the method suggested by Maykut [35] and 

combined with field measurement data, requires parameters such as ice and snow 

thickness and surface temperature. Albedo calculations are divided into two stages based 

on ice surface temperature: freezing (𝑇𝑇𝑠𝑠 ≤ −3 °C) and melting (𝑇𝑇𝑠𝑠 ≥ −3 °C) stages. During 

the freezing stage, the albedo of the ice surface (𝛼𝛼𝑖𝑖) is derived using quadratic regression 
with respect to ice thickness (ℎ𝑖𝑖), and is within the range 0.05 m ≤ ℎ𝑖𝑖 ≤ 1 m. 

𝛼𝛼𝑖𝑖 = 0.21 + 1.026ℎ𝑖𝑖 − 0.561ℎ𝑖𝑖2, (1) 

The albedo of snow (𝛼𝛼𝑠𝑠) is calculated based on the ice albedo and snow thickness: 

𝛼𝛼𝑠𝑠 = 𝛼𝛼𝑖𝑖 + (0.8 − 𝛼𝛼𝑖𝑖)
ℎ𝑠𝑠
0.05

, (2) 

where ℎ𝑠𝑠 is the depth of the snow cover. 
During the melting stage, the albedo of ice with a thickness of 1 m or more decreases 

linearly from 0.72 to 0.47. A similar linear decrease is applied to thinner ice (0.05 m ≤ℎ𝑖𝑖 ≤ 

1 m) during the melting stage (Figure 4). 

 

Air temperature

6.0 m

1.5 m

Radiative surface 
temperature

Solar radiation

Pyranometer

Wind direction

Wind speed

(a) (b)

50 cm 50 cm

Figure 2. Meteorological tower measurements at the site, and the pyranometers used, in
winter 2016–2017.

In arid and semi-arid regions, environmental conditions often result in the adherent of
a layer of sediment to the lake ice surface. To quantify the sediment content, the sediment
per unit area was measured. A 0.5 × 0.5 m area was delineated on the ice surface (Figure 3),
and surface sediment was collected from this area. The sediment was then dried and
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weighed to calculate its content per unit area (g m−2), following the procedures outlined in
the GB11901–1989 standard [42]. The detailed steps are as follows:

1. Place the filter membrane in a drying oven and dry it at a temperature of 103–105 ◦C
for 2 h. Remove it and place it in a desiccator to cool to room temperature, then weigh
it to obtain the net weight of the filter membrane.

2. Press the filter membrane tightly against the inner wall of the funnel. Using a vacuum
filtration method, filter the water sample containing surface sediment.

3. After filtration, the sediment will adhere to the filter membrane. Place the filter
membrane back into the drying oven and dry it again at the same temperature for 2 h.
Remove it and place it in a desiccator to cool to room temperature, then weigh it to
obtain the total weight of the filter membrane and the sediment.

4. Subtract the net weight of the filter membrane from the total weight to obtain the
weight of the sediment.
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Figure 3. Sediment collection area: pre- (a) and post-collection (b).

Sediment content measurements were taken daily during the snow-free observation
stage, with each day’s sampling location adjacent to the previous day’s location.

2.3. Existing Surface Albedo Schemes

Albedo schemes previously applied to predict lake ice and snow albedo were selected.
These included those proposed by Gabison [36], Shine and Henderson-Sellers (SH), Flato
and Brown (FB) [35], and Henneman and Stefan (HS) [30].

2.3.1. Gabison Scheme

The Gabison scheme, developed based on the method suggested by Maykut [35] and
combined with field measurement data, requires parameters such as ice and snow thickness
and surface temperature. Albedo calculations are divided into two stages based on ice
surface temperature: freezing (Ts ≤ −3 ◦C) and melting (Ts ≥ −3 ◦C) stages. During the
freezing stage, the albedo of the ice surface (αi) is derived using quadratic regression with
respect to ice thickness (hi), and is within the range 0.05 m ≤ hi ≤ 1 m.

αi = 0.21 + 1.026hi − 0.561h2
i , (1)

The albedo of snow (αs) is calculated based on the ice albedo and snow thickness:

αs = αi + (0.8 − αi)
hs

0.05
, (2)

where hs is the depth of the snow cover.
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During the melting stage, the albedo of ice with a thickness of 1 m or more decreases lin-
early from 0.72 to 0.47. A similar linear decrease is applied to thinner ice (0.05 m ≤ hi ≤ 1 m)
during the melting stage (Figure 4).
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Figure 4. Dependence of ice albedo on ice thickness and melting temperature deficit [36].

2.3.2. Shine and Henderson-Sellers (SH) Scheme

Shine and Henderson-Sellers summarized previous albedo schemes and proposed
new schemes for different ice surface types. These schemes require parameters such as
snow depth and ice thickness. The specific classifications and calculation formulas are
presented in Table 1.

Table 1. Shine and Henderson-Sellers scheme.

Albedo Class Value

Dry snow αs = 0.8
Melting snow αs = 0.65

Thin melting snow on bare ice (hs ≤ 0.1 m) αs = 0.53 + 1.2hs
Bare ice (hi ≥ 1.5 m) αi = 0.53

Thin melting ice (1.5 ≥ hi ≥ 0 m)
αi = 0.47 + 0.21(hi − 1.0), 1.5 ≥ hi ≥ 1.0 m

αi = 0.25 + 0.70hi − 0.86h2
i + 0.38h3

i , 1.0 ≥ hi ≥ 0.05 m
αi = 0.1 + 3.6hi, hi ≤ 0.05 m

Thin forming ice (1.5 ≥ hi ≥ 1.0 m)
αi = 0.47 + 0.50(hi − 1.0), 1.0 ≥ hi ≥ 0.05 m

αi = 0.25 + 0.70hi − 0.86h2
i + 0.38h3

i , 1.0 ≥ hi ≥ 0.05 m
αi = 0.1 + 3.6hi, hi ≤ 0.05 m

Bare frozen ice (hi ≥ 1.5 m) αi = 0.72

Snow on frozen ice
αs = 0.8, hs ≥ 0.5 m

αs = αi +
hs(0.8−αi)

0.05 , hs ≤ 0.5 m; hi ≤ 1.5 m

2.3.3. Flato and Brown (FB) Scheme

In the FB scheme, the freezing ice albedo is derived from Maykut [43], while the
melting ice albedo is based on Heron and Woo [44]. Surface temperature (Ts) is incorpo-
rated, and ice and snow are classified into two types (freezing and melting) based on the
surface temperature.

Albedo =





min[αs, αi + hs(αs − αi)/0.1] hi > 0.001 m hs < 0.1 m

αs hi > 0.001 m hs > 0.1 m
, (3)
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{
αi = max (0.15, 0.44h0.28

i + 0.08)
αs = 0.75

, Ts < 0 ◦C,
{

αi = min (0.55, 0.075h2
i + 0.15)

αs = 0.65
, Ts = 0 ◦C,

(4)

2.3.4. Henneman and Stefan (HS) Scheme

The HS scheme improves upon the FB snow albedo scheme by calculating snow
albedo based on accumulated solar radiation and air temperature. It introduces parameters
such as accumulated solar radiation, air temperature, and the number of days since the last
snowfall. The accumulation of solar radiation and air temperature is reset with each new
snowfall day, which is defined as a day on which snowfall exceeds 2.5 mm (i.e., a snowfall
greater than a trace amount).

Accumulated solar radiation is the sum of daily radiation received from the time of
a new snowfall until the next snowfall day. Accumulated air temperature is calculated
using a degree–day method with a calibrated base temperature, Tbase. A temperature index,
Tindex, for each day is computed as:

Tindex = Ta − Tbase, (5)

where Ta is the average daily air temperature (◦C) and Tbase = −18◦C.
Scheme I:
This requires inputs such as average daily air temperature, accumulated solar radiation,

accumulated air temperature, and daily snowfall data.
For the freezing stage, the αs is given by:

αs = −0.0015R + 0.83, (6)

For the melting stage, the αs is given by:

αs =

{
0.0029R − 0.009T + 0.95, Ta ≥ 0 ◦C
αs−1 − 0.00036T + 0.95, Ta < 0 ◦C

, (7)

where R is accumulated incoming daily solar radiation since the last snowfall (MJ m−2),
αs−1 is the albedo on the previous day, and T is the accumulated daily air temperature
index since the last snowfall (◦C).

Scheme II:
This requires only snowfall and average air temperature data to predict the albedo.
For the freezing stage, the αs is calculated as:

αs = −0.011d + 0.83, (8)

For the melting stage, the αs is given by:

Melting stage: αs =

{
αs−1 − 0.17, Ta ≥ 0 ◦C
αs−1 − 0.013, Ta < 0 ◦C

, (9)

where d is the number of days since the last snowfall.
The input parameters, output albedo, and a brief analysis of each scheme are presented

in Table 2. From the table, it is evident that none of these schemes consider the effect of
sediment content on the albedo of the ice surface. Therefore, the accuracy of their albedo
calculations for the ice and snow on Lake Ulansu remains to be validated.
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Table 2. Summary of existing albedo schemes.

Albedo Scheme Input Parameters Output Albedo Analysis

Gabison
Ice surface temperature;

Ice thickness;
Snow thickness

Ice and snow
Does not provide a calculation
formula for snow albedo
during the melting period.

SH Ice thickness;
Snow thickness Ice and snow

For snow albedo greater than
0.5 m, only reference values are
provided, without considering
variations in snow properties.

FB
Ice surface temperature;

Ice thickness;
Snow thickness

Ice and snow

Similar to the SH scheme, the
snow albedo is provided only
as a reference, without
accounting for variations in
snow properties.

HS I

Accumulated solar
radiation;

Accumulated air
temperature

Snow
The acquisition of cumulative
temperature and radiation
is challenging.

HS II Days since last snowfall;
Average air temperature Snow

The calculation is relatively
simple, but it can only
calculate the snow albedo.

3. Results of Existing Schemes
3.1. General Ice Conditions

Figure 5 presents the observed data on incident and reflected solar radiation, average
albedo, ice and snow thickness, and daily average air temperature from 1 January to
6 March 2017 on Lake Ulansu. The average daily albedo was calculated by dividing the
total daily reflected solar radiation by the total daily incoming solar radiation [30]. The
total daily solar radiation was obtained by integrating 10-minute radiation measurements
over daylight hours.

Based on the ice and snow thickness data shown in Figure 5a, the observation stage
was divided into three distinct phases:

1. Bare ice stage (1 January to 6 February):

During this phase, the ice thickness increased from 33.2 to 50.9 cm, with an average
growth rate of 0.49 cm/day. Sediment content on the lake ice surface was measured
throughout this stage.

2. Snow cover stage (7 February to 3 March):

During this stage, the ice thickness increased from 50.9 cm to its maximum thickness
of 56.9 cm. Two snowfall events occurred in this stage: on 7 February and 21 February.
Following the first snowfall, snow thickness decreased from 13 cm to <1 cm within a week.
The second snowfall was limited to 2.3 cm and had melted completely by 3 March.

3. Melting stage (4 March to 9 March):

In this stage, the ice thickness decreased from 56.9 to 54.2 cm, with a melting rate of
0.4 cm/day.

Throughout the observation stage, the average sediment content was 1.39 ± 0.21 g m−2,
exhibiting a clear increasing trend, with a regression coefficient of 0.02. The average incident
and reflected solar radiation were 91.75 and 49.89 W m−2, respectively. During the snow-
free freezing stage, the average reflected solar radiation was approximately 58.3 W m−2.
Following the snowfalls on 7 February and 21 February, the average reflected irradiance
exceeded 200 W m−2, subsequently decreasing as the snow melted. The albedo changes
followed the same trend as the reflected solar radiation.
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Figure 5. (a) Snow and ice thickness, (b) sediment content before snowfall, (c) incident and
reflected solar radiation, (d) average albedo, and (e) daily average air temperature between
1 January and 6 March 2017.

In the freezing stage, the average albedo was 0.35 ± 0.02. After each snowfall, the
albedo increased to approximately 0.91, then gradually decreased as the snow melted.
During the melting stage, the average albedo was 0.55 ± 0.07. The average daily air
temperature during the observation stage was −6.74 ± 3.95 ◦C, with the daily average
temperature ranging from a maximum of 0.44 ◦C to a minimum of −14.73 ◦C.

3.2. Prediction Results for Different Stages

Using the albedo schemes described in Section 2.3, the observational data from Figure 5
were applied to predict the albedo. To assess the accuracy of the predictions, several error
analysis metrics were used, including the mean absolute error (MAE), root mean square
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error (RMSE), mean absolute percentage error (MAPE), and modeling efficiency (EF). These
coefficients provide a comprehensive evaluation of scheme performance. The EF serves
as an overall indicator of the goodness of fit, with values closer to 1 indicating a better fit
between the predicted and observed results. The specific calculation formulas for these
metrics are provided in Appendix A.

3.2.1. Bare Ice Stage

The predicted albedo values for the bare ice stage are shown in Figure 6. The SH
and FB schemes provided predictions closer to the observed values, while the Gabison
scheme predictions exhibited a larger deviation, mainly due to a higher initial albedo
value. All three schemes predicted a gradual increase in albedo, in contrast to the observed
trend. Table 3 presents the error analysis of the scheme predictions relative to the observed
data. According to this analysis, the SH scheme yielded the most accurate results, with
MAE, RMSE, MAPE, and EF values of 0.073, 0.078, 21.471%, and −14.574, respectively.
Although this scheme provided the closest fit, it still did not meet the required error analysis
standards. Specifically, an EF value less than zero indicates that the scheme is not suitable
for simulation. All EF values were negative because all predicted values were higher than
the observed values. This discrepancy is attributed to the presence of sediment on the ice
surface of Lake Ulansu, which reduces albedo compared to that on typical high-latitude
lakes [3]. Therefore, none of these three schemes were appropriate for predicting albedo
during the bare ice stage at Lake Ulansu.
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Figure 6. Albedo values observed and predicted by the Gabison, Shine and Henderson-Sellers (SH),
and Flato and Brown (FB) schemes during the bare ice stage (a), with 95% confidence intervals in
brackets, and the comparison between predicted and observed albedo (b).

Table 3. Mean absolute error (MAE), root mean square error (RMSE), mean absolute percent error
(MAPE), and modeling efficiency (EF) for the Gabison, SH, and FB schemes during the bare ice stage.

Statistical Parameter Gabison SH FB

MAE 0.273 0.073 0.080
RMSE 0.281 0.078 0.085
MAPE 79.866% 21.471% 23.506%

EF −203.179 −14.574 −17.662

3.2.2. Snow Cover Stage

During the snow cover stage, the HS scheme (Equations (6) and (7)) was also incorpo-
rated. As shown in Figure 7, all schemes captured the general increasing and decreasing
albedo trends following snowfall. However, the albedo predictions from the FB and
Gabison schemes exhibited larger deviations, primarily due to unrealistic initial value
settings. The SH scheme predicted a decline in albedo that was too rapid, with both the
minimum and maximum values deviating to some extent from the observed data. Among
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the two HS scheme variants, scheme II provided predictions that aligned more closely with
the observed data than those of scheme I. However, the minimum albedo value predicted
by scheme II approached 0, which is significantly lower than the observed minimum
value of 0.26.
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Figure 7. Albedo values observed and predicted by the Gabison, SH, FB, and Hennemen and Stefan
(HS) I and II schemes during the snow cover stage (a), with 95% confidence intervals in brackets, and
the comparison between predicted and observed albedo (b).

The error analysis results in Table 4 show that SH scheme II produced the smallest
deviation from the observed values. The EF values for SH, FB, and HS I were all less than 0,
indicating that they were unsuitable for predicting snow albedo on Lake Ulansu during
winter. Although the EF value for the Gabison scheme was greater than 0, it remained lower
than that of HS II. From the observation results, it can be seen that the albedo increased to
0.91 after snowfall and then gradually decreased as the snow melted. Notably, the second
snowfall was about 8 cm less than the first, which indicates a low correlation between snow
depth variation and albedo reduction in Lake Ulansu. Consequently, the prediction results
from the Gabison, SH, and FB schemes, which rely on snow depth to calculate albedo, are
less accurate. On the other hand, the HS I scheme relies on cumulative temperature and
radiation for its calculations. However, the temperature and cumulative radiation in Lake
Ulansu differ significantly from those in high-latitude lakes, making the HS I scheme less
accurate than the HS II scheme.

Table 4. MAE, RMSE, MAPE, and EF for the Gabison, SH, FB, and HS schemes during the snow
cover stage.

Statistical Parameter Gabison SH FB HS I HS II

MAE 0.180 0.271 0.244 0.281 0.137
RMSE 0.220 0.303 0.279 0.314 0.155
MAPE 39.040% 38.600% 33.682% 43.583% 23.620%

EF 0.108 −0.740 −0.478 −0.874 0.546

3.2.3. Melting Stage

For the melting stage, the albedo results (Figure 8) indicated that the FB and SH
schemes were numerically closer to the measured values than the Gabison scheme. How-
ever, all three schemes significantly diverged from the observed trend. This was confirmed
by the error analysis in Table 5, which shows that the EF values for all schemes were below
0, indicating that none of these were suitable for simulating ice albedo on Lake Ulansu
during the melting stage.
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Figure 8. Albedo values observed and predicted by the Gabison, SH, and FB schemes during the
snow melting stage (a), with 95% confidence intervals in brackets, and the comparison between
predicted and observed albedo (b).

Table 5. MAE, RMSE, MAPE, and EF for the Gabison, SH, and FB schemes during the melting stage.

Statistical Parameter Gabison SH FB

MAE 0.144 0.160 0.144
RMSE 0.167 0.191 0.178
MAPE 27.111% 24.635% 22.001%

EF −1.515 −2.276 −1.839

4. A New Albedo Scheme Based on Observations
4.1. New Albedo Scheme Development

Based on the results from Section 3.2, a new albedo scheme for lake ice and snow was
optimized for the bare ice, snow cover, and melting stages.

4.1.1. Bare Ice Stage

As shown in Figure 5, while the scheme predictions were relatively close to the
measured values, they exhibited an opposite trend compared to the observed data. This
discrepancy was primarily due to the sediment layer on the ice surface, which showed a
clear increasing trend (Figure 5). To address this, the effect of surface sediment content on
albedo was incorporated into the parameterization for the bare ice stage. Based on the error
analysis in Table 2, the SH scheme was selected for optimization during this stage. In the
SH scheme, albedo is calculated using ice thickness as the primary parameter. Given that
changes in ice thickness closely align with variations in surface sediment content, a linear
fit of ice thickness (hi) and surface sediment content (Gs) was performed using the least
squares method. The resulting formula is shown in Equation (10), with the fitting results
presented in Figure 9.

Gs = −0.13 + 3.56hi, (10)
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Figure 9. Fitting result of the ice thickness and sediment content before snowfall, with 95% confidence
intervals in brackets.

227



Water 2025, 17, 523

Figure 9 shows the linear fit between ice thickness and sediment content prior to
snowfall. The fit was highly accurate, with an EF value of 0.778. Using the sediment content
and ice thickness data, a least squares method was applied to develop the albedo scheme,
resulting in a best-fitting equation of (11):

αi = −0.10 − 0.18 × hi + 0.49 × Gs − 0.18 × G2
s , (11)

By combining Equations (10) and (11), the albedo scheme for the bare ice stage of Lake
Ulansu was derived as:

αi = max
(

0.2, 0.03 + 1.74 × hi − 2.29 × h2
i

)
, 0 < hi ≤ 0.60 m, (12)

The predicted albedo results, shown in Figure 10, demonstrated that after adjusting
the formula coefficients to incorporate surface sediment content, the calculated albedo
trend aligned well with the observed data, and the values also closely matched. The error
analysis further revealed that the adjusted scheme provided satisfactory results, with an
MAE of 0.009, RMSE of 0.012, MAPE of 2.748%, and EF of 0.695.
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Figure 10. Observation and fitting results of the albedo during the bare ice stage (a), with 95%
confidence intervals in brackets, and the predicted vs. observed albedo (b).

4.1.2. Snow Cover Stage

The main factors influencing snow albedo are snow thickness and its physical proper-
ties. As shown in Figure 5a,d, although the snow thickness varied by 8 cm between the
two snowfall events, the albedo consistently increased to 0.91 after each snowfall. This
suggests that the impact of snow thickness on snow cover albedo at Lake Ulansu is rela-
tively small. Based on the error analysis in Figure 7 and Table 3, the HS II scheme, using
the number of days since snowfall as a key parameter, showed the best performance in
terms of both trend accuracy and error metrics. Therefore, the HS II scheme was selected
for optimization, and the number of days since snowfall was used for parabolic fitting, as
shown in Equation (13):

αs = max
(

0.4, 0.884 + 0.025 × d − 0.004 × d2
)

, hs > 0 m, (13)

The albedo prediction results are shown in Figure 11. The optimized albedo scheme for
the snow cover stage accurately captured the trend of albedo changes following snowfall
and was numerically close to the observed values, with an EF of 0.796.

228



Water 2025, 17, 523Water 2025, 17, x FOR PEER REVIEW 13 of 19 
 

 

 

Figure 11. Observation and fitting results of the albedo during the snow cover stage (a), with 95% 

confidence intervals in brackets, and the predicted vs. observed albedo (b). 

4.1.3. Melting Stage 

As discussed in Section 3.2.3, the existing albedo schemes produced unsatisfactory 

results for calculating albedo during the ice melting stage on Lake Ulansu. Based on the 

bare ice stage, the albedo during the melting stage was re-fitted as a function of ice 
thickness, as shown in Equation (14): 

𝛼𝛼𝑖𝑖 = max (0.1,−0.25 + 1.40ℎ𝑖𝑖), 0 m < ℎ𝑖𝑖 ≤ 0.60 m, (14) 

The results, shown in Figure 12, demonstrated that the re-fitted scheme yielded 

satisfactory calculation results in both trend and numerical values. The error analysis also 

showed positive results, with a MAE of 0.012, RMSE of 0.018, MAPE of 2.402%, and EF of 
0.531. 

 

Figure 12. Observation and fitting results of the albedo during the melting stage (a), with 95% 

confidence intervals in brackets, and the predicted vs. observed albedo (b). 

4.1.4. Whole Observation Stage 

By integrating the scheme optimization results from the three stages with the field 

measurement data, the lake ice albedo scheme for Lake Ulansu was summarized, as 

shown in Equation (14). 
Bare ice stage: 

𝛼𝛼𝑖𝑖 = max(0.2, 0.03 + 1.74 × ℎ𝑖𝑖 − 2.29 × ℎ𝑖𝑖2) , 0 < ℎ𝑖𝑖 ≤ 0.60 m,  

Snow cover stage: 

𝛼𝛼𝑠𝑠 = max(0.4, 0.884 + 0.025 × 𝑑𝑑 − 0.004 × 𝑑𝑑2) ,  ℎ𝑠𝑠 > 0 m,  

Melting stage: 

𝛼𝛼𝑖𝑖 = max(0.1,−0.25 + 1.40ℎ𝑖𝑖) , 0 < ℎ𝑖𝑖 ≤ 0.60 m,  

0.0

0.2

0.4

0.6

0.8

1.0

4-Feb 14-Feb 24-Feb 6-Mar
A

lb
ed

o

Date

Fitting formula [0.831, 0.895]
Obeserved [0.793, 0.869] 0.40

0.60

0.80

1.00

0.40 0.60 0.80 1.00

Pr
ed

ic
te

d 
al

be
do

Observed albedo

(a) (b)

MAE: 0.063
RMSE: 0.101
MAPE: 10.668%
EF: 0.796 

0.0

0.2

0.4

0.6

0.8

1.0

2-Mar 4-Mar 6-Mar 8-Mar 10-Mar

A
lb

ed
o

Date

Fitting formula [0.514, 0.531]
Observed [0.502. 0.550]

0.40

0.45

0.50

0.55

0.60

0.40 0.45 0.50 0.55 0.60

Pr
ed

ic
te

d 
al

be
do

Observed albedo

MAE: 0.012         RMSE: 0.018
MAPE: 2.402%    EF: 0.531 

(a) (b)

Figure 11. Observation and fitting results of the albedo during the snow cover stage (a), with 95%
confidence intervals in brackets, and the predicted vs. observed albedo (b).

4.1.3. Melting Stage

As discussed in Section 3.2.3, the existing albedo schemes produced unsatisfactory
results for calculating albedo during the ice melting stage on Lake Ulansu. Based on
the bare ice stage, the albedo during the melting stage was re-fitted as a function of ice
thickness, as shown in Equation (14):

αi = max (0.1,−0.25 + 1.40hi), 0 m < hi ≤ 0.60 m, (14)

The results, shown in Figure 12, demonstrated that the re-fitted scheme yielded
satisfactory calculation results in both trend and numerical values. The error analysis also
showed positive results, with a MAE of 0.012, RMSE of 0.018, MAPE of 2.402%, and EF
of 0.531.
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Figure 12. Observation and fitting results of the albedo during the melting stage (a), with 95%
confidence intervals in brackets, and the predicted vs. observed albedo (b).

4.1.4. Whole Observation Stage

By integrating the scheme optimization results from the three stages with the field
measurement data, the lake ice albedo scheme for Lake Ulansu was summarized, as shown
in Equation (14).

Bare ice stage:

αi = max
(

0.2, 0.03 + 1.74 × hi − 2.29 × h2
i

)
, 0 < hi ≤ 0.60 m,

Snow cover stage:

αs = max
(

0.4, 0.884 + 0.025 × d − 0.004 × d2
)

, hs > 0 m,

Melting stage:
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αi = max(0.1,−0.25 + 1.40hi), 0 < hi ≤ 0.60 m,

Figure 13 shows the results of the albedo scheme for the winter of 2016–2017 compared
to the observed data. The simulated values closely matched the observed values, showing
a generally consistent trend. Error analysis indicated an improvement over the separate
calculations for each phase, with a MAE of 0.028, RMSE of 0.059, MAPE of 5.561%, and a
notable increase in EF to 0.933.
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4.2. Albedo Scheme Validation

To further validate the applicability of the albedo scheme (Equation (14)) for Lake
Ulansu, portions of the albedo observation data from the winters of 2015–2016, 2017–2018,
and 2022–2023 were used. For the bare ice and snow cover stage data, in contrast to the
winter of 2016–2017, the snow on the ice surface was unevenly distributed due to wind
effects, as shown in Figure 14. Among the three winters, only the winter of 2017–2018
had snow distribution data for beneath the sensors, recorded using drones. Therefore,
for the winters of 2015–2016 and 2022–2023, only the observation data from the bare ice
stages were used for validation, while the bare ice and snow cover stages were uniformly
classified as the freezing stage.
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Figure 14. Uneven snow distribution on the lake ice surface during the winter 2015–2016 (a) and
2017–2018 (b).

When the snow within the effective observation radius of the pyranometer is unevenly
distributed, both the snow and the bare ice contribute to the albedo [3]. To assess the impact
of this composite surface morphology on albedo, the snow cover proportion beneath the
pyranometer was extracted from drone-recorded images of snow cover, as illustrated in
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Figure 15. Based on the proportions of snow and bare ice, the albedo was calculated using
Equation (15):

Albedo = Ss × αs + Si × αi, (15)

where Ss is the snow cover proportion, and Si is the bare ice proportion.
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Figure 15. Snow cover area within the effective radius (3 m) of the pyranometer on 16 January,
26 January, and 6 February 2018.

The albedo predicted by Equations (12)–(14), compared to the observed values, is
shown in Figure 16, and the error analysis is presented in Table 6. For the predicted data
from the freezing, melting, and entire stages, the MAE value was less than 0.05, with
an average RMSE of 0.048 and MAPE of 10.793%. The EF for the freezing stage was
0.890, higher than the 0.826 for the melting stage. This difference was primarily due to
observational limitations, because the data for the melting stage are mostly concentrated
in the early stages of melting, which limits its ability to validate predictions for the later
melting stages. After analyzing the data from both the freezing and melting stages, the
overall EF reached 0.940, consistent with the results from the winter of 2016–2017.
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Figure 16. Observation and predicted results of the lake ice albedo.
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Table 6. MAE, RMSE, MAPE, and EF for the scheme validation.

MAE RMSE MAPE EF

Freezing 0.041 0.062 8.607% 0.890
Melting 0.022 0.028 13.812% 0.826
All data 0.036 0.055 9.962% 0.940

5. Conclusions
Snow and ice albedos were measured on Lake Ulansu over a 68-day period during

the winter of 2016–2017, alongside simultaneous atmospheric data observations. The
observations were categorized into three distinct stages: bare ice, snow cover, and melting.
The average albedo during the bare ice stage was 0.35, increasing to 0.91 following snowfall.
The maximum ice thickness reached 46.4 cm, with two snowfall events occurring during
the observation stage. The daily average temperature was −6.74 ◦C, with maximum and
minimum temperatures of 0.44 and −14.73 ◦C, respectively. Due to the environmental
conditions in arid and semi-arid regions, a sediment layer adhered to the ice surface, with
an average sediment content of 1.39 g m−2, showing a clear increasing trend.

Four existing albedo schemes (Gabison, SH, FB, and HS) were selected to predict the
ice and snow albedo on Lake Ulansu during the winter of 2016–2017. During the bare ice
stage, the predicted albedo trend showed the opposite to the observed trend, primarily due
to the increasing sediment content on the ice surface. The HS II scheme performed the best
for predicting snow cover albedo, achieving an EF of 0.55. For the melting stage, none of
the existing schemes were suitable for accurately predicting albedo.

A new albedo scheme for ice and snow was developed based on the observed data
and existing schemes. For the bare ice stage, the parameter of sediment content on the
lake ice surface, which had not been considered in the previous surface albedo schemes,
was incorporated into the new scheme. To enhance its applicability, the sediment content
was integrated into the new scheme in the form of a function of ice thickness. This albedo
scheme was derived from the SH scheme and had an EF of 0.695. The HS II scheme was
adapted to develop the snow cover albedo scheme, with an EF of 0.796. The albedo scheme
for the melting stage was based on the ice thickness and observed albedo data, with an EF
of 0.531. Integration of the schemes for all three stages produced a comprehensive albedo
scheme for Lake Ulansu, with an overall EF of 0.933. The albedo scheme was validated
using albedo observation data from the winters of 2015–2016, 2017–2018, and 2022–2023,
achieving an EF of 0.940 when comparing predicted and observed values. Validation
analysis showed that the new albedo scheme closely matched the observed lake ice and
snow albedo on Lake Ulansu. During the validation process, it was found that when snow
is unevenly distributed, the contribution of bare ice to the albedo should also be considered
alongside the snow. Therefore, more wind and snow cover data are needed to establish
general patterns of blowing snow cover on Lake Ulansu, which would further improve the
applicability of the new scheme.

The new albedo scheme has potential applicability for snow and ice that encounter
surface sediment during winter in the Central Asian arid climate zone. However, additional
field observation data are required to develop a more generalized parameterization formula
for sediment content on the ice surface, such as examining its potential relationship with
wind, and the contribution of sediment content in snow to albedo changes. Moreover, fur-
ther field data are needed to validate the applicability of this albedo scheme for other lakes
in the Central Asian arid climate zone. Additionally, we will include a comparative study
of the measured and predicted albedo with satellite-derived data to enhance the accuracy
and robustness of the scheme. These aspects should be key focuses of future research.
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Appendix A
Error calculation formulas:
Mean absolute error (MAE):

MAE =
(∑|yi − ŷi|)

n
,

Root mean square error (RMSE):

RMSE =

√
∑(yi − ŷi)

2

n
,

Mean absolute percent error (MAPE):

MAPE =
1
n∑

∣∣∣∣
yi − ŷi

yi

∣∣∣∣,

Modeling efficiency (EF):

EF = 1 − ∑(yi − ŷi)
2

∑(yi − y)2 ,

where yi is the observed value, ŷi is the simulated value, and n is the number of data points.
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