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Abstract: Tree crown width relates directly to wood quality and tree growth. The traditional method
used to measure crown width is labor-intensive and time-consuming. Pairing imagery taken by
an unmanned aerial vehicle (UAV) with a deep learning algorithm such as a faster region-based
convolutional neural network (Faster-RCNN) has the potential to be an alternative to the traditional
method. In this study, Faster-RCNN outperformed single-shot multibox detector (SSD) for crown
detection in a young loblolly pine stand but performed poorly in a dense, mature loblolly pine
stand. This paper proposes a novel Faster-RCNN algorithm for tree crown identification and crown
width extraction in a forest stand environment with high-density loblolly pine forests. The new
algorithm uses Residual Network 101 (ResNet101) and a feature pyramid network (FPN) to build
an FPN_ResNet101 structure, improving the capability to model shallow location feature extraction.
The algorithm was applied to images from a mature loblolly pine plot in eastern Texas, USA. The
results show that the accuracy of crown recognition and crown width measurement using the
FPN_ResNet101 structure as the backbone network in Faster-RCNN (FPN_Faster-RCNN_ResNet101)
was high, being 95.26% and 0.95, respectively, which was 4.90% and 0.27 higher than when using
Faster-RCNN with ResNet101 as the backbone network (Faster-RCNN_ResNet101). The results fully
confirm the effectiveness of the proposed algorithm.

Keywords: ResNet101; FPN; UAV; deep learning; loblolly pine

1. Introduction

A tree crown comprises the part of the tree bearing live branches and foliage. Photo-
synthesis occurs in leaves, and its resulting products are translocated to other tree parts
via branches. Therefore, foresters always use the tree crown’s characteristics, particularly
the crown width, to describe a tree’s growth potential. Previous studies have confirmed
strong, positive relationships between crown width, tree growth, and carbon sequestra-
tion [1]. Hao et al. studied the relationship between teak growth factor and crown width,
and established a crown growth prediction model, providing theoretical support for the
management of teak plantations [2]. In a 10-year comparative study, Jones et al. demon-
strated relationships between crown damage and survival, diameter growth, and tree
height growth in Douglas firs [3]. Putney and Maguire studied nitrogen use efficiency in
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Douglas fir plantations in western Oregon, where tree growth was measured by changes in
crown shape and vertical leaf distribution [4]. Feng et al. argued that the vertical functional
variation in leaf traits might indicate niche partitioning within forests [5]. It has been noted
that crown width information is also vital in forest modeling, especially for models that
include competition indices [6–8]. Therefore, it is of great interest to foresters to develop
methods that can accurately measure crown characteristics such as crown width and height.

Tree crown width is often defined as the average width of a tree crown in the north–
south and east–west directions [9]. Despite the wide use of tree crown width data in
managing forests, accurately measuring crown width is always challenging. Conventional
crown width measurement methods include the vertical sighting method [10] and the
projection method [11]. The vertical sighting method is quick but less accurate than the
projection method. The projection method takes a long time and has low measurement
efficiency [12]. However, trees often grow in rows, with tree crowns of varying shapes
overlapping, and there is also incompleteness caused by occlusion, making individual
tree crown extraction a challenging problem [13]. The use of new techniques to measure
crown width has become a hot topic in recent years. With the popularity of smart mobile
devices, some scholars have used smartphones to identify and measure tree crowns. For
example, Xinmei et al. proposed a passive method for the measurement of tree height and
crown diameter based on a smartphone monocular camera [14]. With the development
of artificial intelligence and unmanned aerial vehicle (UAV) technology, interest in using
UAVs equipped with laser radar and high-definition cameras to measure the crown width
of trees is increasing. For example, Ahmadi et al. proposed segmenting early Ganoderma-
infected oil palms based on UAV images and artificial neural networks [15]. Safonova et al.
proposed a method for extracting tree crowns from UAV images for species classification
and stand assessment [16]. Kolanuvada et al. used a UAV paired with a multispectral
camera to obtain photos of multiple frequency bands of a forest, employed a simple deep
learning convolutional neural network (CNN) to train the images, and developed a linear
clustering algorithm to optimize the crown extraction and obtain the crown measure-
ments [17]. Guerra-Hernández et al. used a UAV equipped with an aerial camera and a
laser scanner to obtain the high-density 3D point cloud of a eucalyptus plantation, and
then conducted 3D modeling to obtain the 3D canopy structure of the eucalyptus forest,
which was then incorporated into a prediction of the volume of eucalyptus plantations [18].
Gurumurthy et al. proposed a method for the semantic segmentation of mango trees in
high-resolution aerial images and a new method for single crown detection using the
segmentation output [19]. To mitigate the impacts of the great homogeneity of neighbor-
ing trees and the interlaced crown, Li et al. proposed a crown width estimation method
based on an adaptive neuro-fuzzy inference system to improve the intelligence level of
crown width estimation [20]. Ritter and Nothdurft proposed a multi-layer seeded region
growing-based approach for automatically assessing crown projection areas (CPAs) based
on 3D point clouds derived from terrestrial laser scanning (TLS) [21]. In a study based on
larch plantations with different stem densities, a two-stage individual tree crown (ITC)
segmentation method using airborne light detection and ranging (LiDAR) point clouds
was presented [22]. Quan et al. (2019, 2020) evaluated the ability of a UAV laser scanning
(UAVLS) system to extract crown structure information from larch plantations [23,24]. They
also compared the accuracy of the UAVLS system and airborne laser scanning (ALS) in
extracting crown feature attributes. Currently, most crown extraction methods are based
on laser scanning and semantic segmentation techniques. Laser scanning technology and
segmentation technology can extract more information about the crown, but laser scanning
equipment is expensive, and segmentation technology is complicated to use in terms of
dataset establishment and it requires outlining along the crown edge. Therefore, it is
necessary to find a low-cost, hardware-intensive crown extraction method. The dataset
construction of the object-detection model is highly convenient for rapid crown detection
and crown width measurement.
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Loblolly pine is the second most widely distributed tree species in the United States,
and it is the most important commercially in the southeastern United States. Therefore,
monitoring the growth of these loblolly pine stands is vital to efficiently manage the stands.
In 2021, Lou et al. applied object-detection technology to the measurement of loblolly
pine crowns [25]. A UAV was used to obtain the orthophoto images of young and mature
stands of Pinus taeda in eastern Texas, USA, and three advanced object-detection methods
were used to identify the crown and extract the crown width. The faster region-based
convolutional neural network (Faster-RCNN) method performed significantly better than
the single-shot multibox detector (SSD) on sparse young loblolly pine forests, but on the
mature loblolly pine stand, the Faster-RCNN model performed poorly in recognizing the
crown and measuring the crown width. The poor performance of Faster-RCNN in the
mature stand was unexpected since, in theory, Faster-RCNN is a second-order detector,
while you-only-look-once (YOLO) and SSD are single-order detectors. Compared with
single-order networks, second-order networks are often more accurate with advantages in
multi-scale, high-precision, and small-object detection [26]. Faster-RCNN also outperforms
the other two methods in handling the spatial constraints of the algorithm. The main Faster-
RCNN improvement is to enhance the adaptability of Faster-RCNN for the crown detection
and measurement of both sparse young stands and dense mature stands of loblolly pine.
In order to enhance the performance of Faster-RCNN in dense loblolly pine forest sample
sites, this study proposes two new Faster-RCNN algorithms, which are then applied to
a mature stand to evaluate their accuracy in recognizing tree crowns and measuring tree
crown widths.

2. Materials and Methods

2.1. Materials
2.1.1. Image Acquisition

Dataset creation is a critical step in object detection using deep learning models. The
study area was located in east Texas, which has a subtropical climate, with heavy rain
during the summer.

The study area was located in Rusk, Cherokee County (31◦45′31.3′′ N, 95◦02′318′′ W).
The site was originally an old field on flat terrain. The site was planted with loblolly pine
seedlings in 2001, and in September 2019, when the photos were taken, it had become a
mature pine stand with a closed canopy and a high density. The trees averaged 22.2 cm in
diameter at breast height (DBH), 16.9 m in total height, and the stand had 35.2 m2 in basal
area per hectare. Figure 1 shows a global orthophoto image of the study area.

 
Figure 1. Orthophoto image of loblolly pine plot.
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The UAV model used in this study was the DJI Phantom 4 Pro, manufactured by
Shenzhen DJI Technology Co., Ltd. This UAV is equipped with a 1-inch 20-million-pixel
image sensor with a maximum ascent speed of 6 m/s, a maximum descent speed of 4 m/s,
and a maximum horizontal flight speed of 58 km/h in attitude mode. We used Pix4Dcapture
(PIX4D) software to control the flight and PhotoScan (v1.2.5) to generate the orthophoto
images. Pix4D capture is a mobile flight planning app that allowed us to set flight heights,
camera angles, image overlaps, and flight speeds. PhotoScan is an excellent real-world
modeling software that automatically generates high-quality 3D models based on images
without setting initial values or camera-check calibration. It can process photos according
to multi-view 3D reconstruction technology and generate 3D models with real coordinates
through control points. In order to maintain sufficient light and to reduce the influence of
clouds and ground shadows, the photos were taken during calm periods with stable light
intensity. In Pix4Dcapture, we selected the rectangular simple grid route planning mode to
instruct the UAV to collect images automatically. The UAV flight parameters were set as
follows: an altitude of 46 m, a camera angle of 90◦ vertically downward, an overlap rate
of 90%, and a flight speed of 27 km/h. The original image was in the JPEG format, and
the image data included position and orientation system (POS) data, along with precise
GPS coordinates. The main orthophoto production steps were as follows: (1) PhotoScan
quickly found matching points between all overlapping images, estimated the camera
position for each image, and built a sparse point cloud (the processing time depends on the
number of photos and the image resolution). (2) A dense point cloud was built. Based on
the estimated camera position, the software calculated its depth information and merged
it into a dense point cloud model. (3) A grid was generated. After the dense point cloud
was reconstructed, a polygon network model was generated based on the dense point
cloud data. (4) The DEM model was constructed based on the grid model, and then the
high-resolution orthophoto image was generated according to the DEM model. Figure 2
shows the UAV flight routes and the real-time images taken in the study area.

  
(a) (b) 

Figure 2. (a) UAV (unmanned aerial vehicle) flight path planning; (b) UAV real-time image.

2.1.2. Image Annotation and Development of the Dataset

In this study, the orthographic images were cut into several 500 × 500-pixel images,
each of which contained several loblolly pine tree crowns. LabelImg is a commonly used
dataset annotation tool for deep neural network training that is written in Python and uses
Qt (a cross-platform C++ graphical-user-interface application-development framework)
as its graphical interface. It was used to manually annotate the obtained samples, and the
rectangular boxes marked with this tool are shown in Figure 3.

A total of 207 samples were randomly selected from the whole orthoimage as datasets,
and the 207 samples were also cut into 500× 500-pixel datasets. During the training process,
the datasets were further divided into training sets and validation sets according to a 9:1
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ratio. In the model test section, 185 trees were selected as the test set independent of the
training samples. Figure 3 shows the annotated crowns.

 

Figure 3. The crowns of each image in the training set were labeled using LabelImg software. The
red box is the location of the crown marked by LabelImg.

Each annotated image was saved in PASCAL VOC format as XML files [27]. The file
content included the image’s path, name, size, and annotated border coordinate.

2.1.3. Image Augmentation

The deep convolution neural network is ideal for many tasks in the field of computer
vision. However, using a neural network for object detection generally relies on thousands of
pictures for training. Therefore, it is necessary to fine-tune and optimize the model parameters
for distinct objects to facilitate the convergence of the model’s loss function to its global
minimum and enhance its efficacy in detecting diverse objects. However, in the process of real
data collection, it is not easy to collect such a huge amount of data; for the model to achieve a
better detection result in practical scenarios, and to improve the robustness and generalization
ability of the model, data augmentation on the existing dataset is needed [28].

Common augmentation techniques include flipping the image, moving the object
position in the image, adding Gaussian noise, improving image contrast, and exposing the
image. The crowns in this study exhibited similarities in spectral features. To capitalize
on these features, we augmented the dataset by applying operations that manipulate the
brightness levels and add Gaussian noise, enhancing the crown’s color characteristics.
Figure 4 shows a set of data enhancement samples.

    
(a) (b) (c) (d) 

Figure 4. (a) Original sample; (b) darkened sample; (c) variable sample; (d) added Gaussian noise
sample.
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2.2. Methods

To improve the crown recognition and crown width extraction results of different
models, the orthophoto map of the whole sample plot was first input into the model for
recognition and extraction. However, the orthophoto map was too large so it was cut into
several small images using the cropped part of the picture in the crown width extraction
program. The size of each small graph was 900 × 900 pixels. To avoid missed detection in
the process of object detection, the two connected images maintained a 50% coincidence
degree for traversal identification. The prediction box was then scaled and offset. Finally,
the crown coordinates were identified. A red detection box was used to mark each identified
crown position, and the model could automatically extract the position coordinates of the
detection box, such as (990, 1245, 560, 962). Using the position coordinates of the detection
box, we computed the number of pixels corresponding to the length and width of the
detection box. We then computed the predicted length and width according to the actual
length corresponding to a single pixel. Finally, the predicted crown width was calculated
by averaging. To measure the actual size of the crown width, we used LabelImg to frame
the border of the tree crown, resulting in an XML file with generated position coordinates.
The program was then used to extract the coordinates of the framed border to compute the
number of pixels, along with the length and width. After extracting the number of pixels
for length and width, the real length and width were calculated according to the actual
length corresponding to a single pixel. The real crown width was obtained by averaging.

2.2.1. Crown Detection Using Faster-RCNN

As mentioned earlier, object detection in complex environments remains a challenge in
machine vision and deep learning. In the field of object detection, RCNN is a classic method.
Compared with the traditional method of extracting the target position by traversing images
with candidate boxes of different sizes, RCNN introduces the convolutional neural network
to extract the depth features, and then maps the extracted features to the classifier, which
determines whether the target is contained in the search area and calculates its confidence,
obtaining more accurate results.

Ren et al. proposed Faster-RCNN [29], which is based on RCNN and Fast-RCNN [30].
Compared with RCNN and Fast-RCNN, Faster-RCNN has dramatically improved detection
accuracy and efficiency. The notable improvement of Faster-RCNN over Fast-RCNN is that
it does not use a selective search to create region proposals. However, it introduces a region
proposal network (RPN) to extract candidate regions to realize the sharing of convolution
features between region proposal and object detection. It can conduct end-to-end training
for generating candidate regions, which saves training time.

Faster-RCNN is composed of two parts: Fast-RCNN and RPN. The primary function
of RPN is to filter out the high-quality regional proposal boxes in the feature map. Then,
the sliding window traverses each point in the feature map and configures k anchor boxes
of different sizes on each point. The anchor box is used to extract features, and the softmax
is used to determine whether the anchors extract objects that are positive or negative. The
bounding box regression is then used to correct them to obtain a more accurate regional
proposal. Subsequently, the proposal is input into the region of interest (ROI) pooling layer.
This layer mainly transforms the features corresponding to the candidate regions in feature
maps and proposals to a fixed size. It inputs the next whole connection layer (classifier) for
category judgment and object localization. Figure 5 shows the structure of Faster-RCNN.

6
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Figure 5. Flow chart of the Faster-RCNN algorithm based on VGG16 backbone network.

2.2.2. Proposed Algorithm: Faster-RCNN with ResNet101

The backbone network of Faster-RCNN is visual geometry group 16 (VGG16) [31],
composed of thirteen 3 × 3 convolution layers, three fully connected layers, and several
pooling layers. This improves the accuracy of classification results by increasing the
number of small convolution kernels and increasing the depth of the network. The network
structure is simple and uses the superposition of small convolution kernels instead of large
ones, with more nonlinear transformations than a single convolution layer. To further
optimize the model recognition effect, this study first adopted the method of deepening
the backbone network depth. However, with the deepening of the network, the model may
produce gradient disappearance in the training process.

Based on the above premise, this study used ResNet101 [32] to replace VGG16 as the
backbone network for feature extraction. Based on the ConvNet model, ResNet introduces
numerous identical mappings of y = x across the convolutional layers. Here, x and y
represent tensors within the input and output feature maps, respectively. Its main function
is to increase the network with depth change without producing the phenomenon of
gradient disappearance or weight attenuation. The residual block structure is shown in
Figure 6. F(x) and G(x) represent residuals, and G(x) + x is the mapping output; thus, the
final network output is H(x) = G(x) + x. Since there are three relu functions and three
convolution layers in the residual block of the instance, the final framework output results
can be expressed as follows:

F(x) = relu1(w1 × x) (1)

G(x) = relu2(w2 × F(x)) (2)

H(x) = G(x) + x (3)

Figure 6 shows the specific structure of the residual block.
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Figure 6. ResNet101 second-layer residual block structure.

The specific network structure of ResNet101 used in this experiment is shown in
Figure 7.

 
Figure 7. ResNet101 structure chart.

2.2.3. Proposed Algorithm: Faster-RCNN with ResNet101 and FPN

To solve the problem of deep information loss that may occur when ResNet101 replaces
VGG16 as the backbone network, this study proposed a combination of ResNet101 and
a feature pyramid network to create the FPN_ResNet101 structure. The feature pyramid
network (FPN), proposed by Lin et al. [33], is a top-down feature fusion method with
horizontal connection. Common object-detection algorithms only use top-level features to
predict, while shallow location information is lost. Figure 8 shows the structure of FPN
fusing high-level and shallow features for prediction.

8
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Figure 8. FPN structure.

Finally, the Faster-RCNN model based on FPN and ResNet101 was improved in this
study. Since the canopy occupies most of the area of each image in the dataset, while the
background area occupies only a tiny portion, to output the canopy color features with
greater weight during the training process, the RGB averaging module was added before
the base FPN_ResNet1010 structure. An image-averaging operation was performed before
inputting each dataset into the model. The resulting values were input to the model as part
of the parameters to facilitate more targeted canopy color features trained in the model.
The FPN_ResNet101 structure replaced the VGG16, and the Region Proposal Network
(RPN) in the Faster-RCNN was scale-separated. The FPN can fuse different scales for
detection, and it comprises a three-stage architecture that involves bottom-up feature map
generation at multiple scales, top-down feature enhancement, and lateral connections.
Given the convolutional outputs at different levels, denoted by Cx, the intermediate feature
maps represented by Mx, and the ultimately fused feature map illustrated by Px, the three
components are mutually aligned. In the five feature layers of FPN, anchors with different
sizes were defined, which were 32 × 32, 128 × 128, 256 × 256, and 512 × 512. There were
three ratios of 1:1, 1:2, and 2:1. Therefore, there were 15 anchors. The improved model
structure of FPN_Faster-RCNN_ResNet101 is shown in Figure 9.

Figure 9. Structure diagram of FPN_Faster-RCNN_ResNet101, where C represents convolutional
outputs, M denotes features maps, and P is fused feature maps.
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3. Results and Discussion

3.1. Experimental Procedures and Metrics
3.1.1. Experimental Configuration and Dataset

The network training configuration environment was Windows 11, Intel(R) CoreTM

i7-10750H CPU@2.60 GHz processor, 16 GB memory, and NVIDIA GeForce GTX 1650Ti
with 4 GB of video memory as the GPU. Microsoft headquarters in Redmond, Washington,
USA. Intel’s headquarters and NVIDIA’s headquarters are both located in Santa Clara,
California, USA. The experimental environment was Python 3.6, TensorFlow-GPU1.12,
CUDA9.0, and CUDNN7.3.

Since the Faster-RCNN model requires a large amount of data training to improve
its robustness, but the number of existing datasets is limited, migration learning helps to
improve this situation. Specifically, it trains on a large dataset and then takes the obtained
weight as the training initialization parameter. This study used the initial weights of
ResNet101 network model weights from pre-training on the ImageNet dataset. The total
number of iterations was 20,000, and the model was saved every 5000 times. The learning
rate was set to 0.001, and the batch_size was set to 256. The FPN_Faster-RCNN_ResNet101
model selected the ResNet101 network model, which was pre-trained on the ImageNet
dataset for initialization training. The format of the dataset was VOC, and the input image
size was set to 512 × 512.

3.1.2. Evaluation Index

For the model evaluation, it is necessary to evaluate the crown recognition and crown
width extraction of the model, respectively.

The crown recognition was evaluated by calculating the accuracy, precision, recall,
and F1-score:

Accuracy =
TP

TP + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1-Score = 2× Precision× Recall
Precision + Recall

(7)

where TP is the number of correctly divided positive cases (i.e., the number of correctly
identified crowns); FP represents the number of incorrectly divided positive cases (i.e.,
the number of incorrectly identified crowns); and FN denotes the number of incorrectly
divided negative cases (in this paper, the number of unidentified crowns).

Among the four indexes of crown recognition (Equations (4)–(7)), the accuracy is used
to reflect the ability of the model to predict the whole sample, the precision is used to reflect
the proportion of the real target in the model prediction, the recall rate is used to reflect
the proportion of the model prediction positive cases to the number of real positive cases,
and the F1-score, also called the balanced F score, is defined as the harmonic average of the
precision and the recall rate.

In the crown width extraction part, the following three indicators were calculated to
evaluate the accuracy of the crown width model (Equations (8)–(10)). Bias represents the
deviation between the estimated value and the actual value. The accuracy of the crown
width model is demonstrated by calculating the root mean square error (RMSE) and the
coefficient of determination (R2):

Bias =
1
N ∑N

i=1|ŷi − yi| (8)
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RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(9)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (10)

where ŷi represents the estimated value; yi denotes the actual value; N is the number of
samples; and y = 1

N ∑N
i=1 yi.

3.2. Results and Discussion
3.2.1. Identify Impressions

In our previous study, the Faster-RCNN, YOLO, and SSD models achieved good
results in young forests, for which Faster-RCNN had the highest recognition accuracy.
Figure 10 shows the crown-detection effect of the three models on young forests, and
Table 1 presents their respective detection results. The data comes from “Measuring loblolly
pine crowns with drone imagery through deep learning” [25]. Faster-RCNN outperformed
the other two methods in young forest detection.

   
(a) (b) (c) 

Figure 10. (a) Faster-RCNN detection effect image; (b) YOLO detection effect image; (c) SSD detection
effect image. The red square is the crown detected by the model.

Table 1. Classification detection results of Faster-RCNN, YOLO, and SSD [25].

Index Faster-RCNN YOLO SSD

TP 128 126 125
FP 1 6 1
FN 0 2 3

Precision (%) 99.22 95.45 99.21
Recall (%) 100.00 98.44 97.66

Accuracy (%) 99.22 94.03 96.90
F1-score (%) 99.61 96.92 98.43

However, in the mature forest, the original Faster-RCNN model performed poorly.
The objective of this research was to enhance the performance of Faster-RCNN and enhance
its versatility when operating in mature forest environments. Figure 11 shows the crown-
detection effect of the two models in orthophoto images.

11
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(a) (b) 

Figure 11. (a) The Faster-RCNN_ResNet101 model with ResNet101 as the backbone network; (b) the
FPN_Faster-RCNN_ResNet101 model with FPN_ResNet101 as the backbone network. The red square
is the crown detected by the model.

3.2.2. Crown Identification

We use Method 1 to represent YOLO, Method 2 to represent SSD, Method 3 to represent
Faster-RCNN_ResNet101, and Method 4 to represent FPN_Faster-RCNN_ResNet101.

Due to the slow growth of trees, in crown identification, the accurate detection of
each canopy is more critical than rapid crown detection, so models with higher accuracy
are more suitable for this task. In this experiment, we used the computer mentioned in
Section 3.1.1 as the experimental equipment, and we selected the single crown recognition
time to measure the model detection speed. Two-stage detector recognition speed is slower
than a one-stage detector, but the accuracy is higher. It can be seen from Table 2 that
Method 1 and Method 2 were faster than Method 3 and Method 4. However, in this task,
FPN_Faster-RCNN_ResNet101 (Method 4) was better than SSD in recall, accuracy, and
F1-score, but slightly worse than SSD in precision. The two-stage detector, FPN_Faster-
RCNN_ResNet101 (Method 4), gave the best overall results, achieving better accuracy than
Method 2, even at a similar speed.

Moreover, Method 4 improved the accuracy by 4.9% over Method 3, which also proved
the feasibility of the improved method.

12
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Table 2. Classification detection results of YOLO, SSD [25], and two improved Faster-RCNN algo-
rithms.

Index (1) YOLO (2) SSD
(3) Faster-

RCNN_ResNet101
(4) FPN_Faster-

RCNN_ResNet101

Time (ms) 55 57 72 69
TP 175 180 170 181
FP 3 4 13 5
FN 10 5 6 4

Precision (%) 98.31 97.83 93.19 97.31
Recall (%) 94.59 97.30 96.74 97.84

Accuracy (%) 93.09 95.24 90.36 95.26
F1-Score (%) 96.42 97.56 94.93 97.58

In the actual training process, with the deepening of the network depth, the gradient
is backward propagation. After increasing the network depth, the forward gradient will
be minimal, while the model also has problems such as learning stagnation and gradient
disappearance. Table 1 presents the models’ performance in crown recognition based on
the independent test dataset. After replacing VGG16 with ResNet101, Method 3 improved
the efficiency of crown recognition, with the precision, recall, accuracy, and F1-score
reaching 93.19%, 96.74%, 90.36%, and 94.93%, respectively. The accuracy and precision
were comparable, although slightly weaker, than those for Method 1 and Method 2. After
fusing FPN and ResNet101, VGG16 was replaced by the FPN_ResNet101 structure. In
crown recognition, the four indexes of Method 4 were improved to varying degrees, of
which accuracy was the most improved, reaching 95.26%. Compared with Method 3, the
four indexes increased by 4.12%, 1.10%, 4.90%, and 2.65%, respectively. Using the FPN to
help detect objects at different scales can theoretically improve the small-target-detection
effect of the model. The experimental results in Table 1 also prove this. It was verified that
the improved method helps to enhance the canopy detection performance of Faster-RCNN
in dense loblolly pine forests, and the feasibility of the improved means was well illustrated.

3.2.3. Extraction of Crown Width

Table 3 and Figure 12 present the results of the models estimating crown width using
the independent test dataset. Overall, the application of Method 3 did not achieve the same
accuracy and precision as Method 1 and Method 2. Through the study of the residual block
structure, it was found that the ResNet101 network has a deep information loss problem.
In ResNet101, identity mapping must be used when the size of the building block does
not match the size of the next building block. According to Figure 7, in the four mapping
stages of ResNet101, there are only four continuous 1 × 1 convolutions, but there is no
linear relationship between the two, which limits its learning ability and eventually leads
to the loss of deep information.

Table 3. The mature loblolly pine crown-width-measurement effect index of YOLO, SSD [25], and
two improved Faster-RCNN algorithms.

Index (1) YOLO (2) SSD
(3) Faster-

RCNN_ResNet101
(4) FPN_Faster-

RCNN_ResNet101

Bias (m) 0.92 0.99 1.15 0.98
RMSE (m) 0.66 0.31 1.06 0.45

R2 0.69 0.94 0.68 0.95
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(a) (b) 

 
(c) (d) 

Figure 12. (a) Linear regression graphs of (1) the YOLO model; (b) linear regression graphs of (2)
the SSD model; (c) linear regression graphs of (3) the Faster-RCNN_ResNet101 model; (d) linear
regression graphs of (4) the FPN_Faster-RCNN_ResNet101 model.

The FPN is a way to fuse low-level and high-level features. The shallow feature
map has a small receptive field and less semantic information, but the spatial location
information is accurate. After the fusion of ResNet101 using the FPN, we created a new
network structure, named FPN_ResNet101, and applied this structure to Faster-RCNN.
Method 4 measured crown width very accurately and precisely, resulting in a bias of 0.98,
an RMSE of 0.45, and an R2 of 0.95. These estimates were comparable to those of Method 2,
but more improved than those of Method 1. Compared with Method 3, the RMSE decreased
by 0.61 and the R2 increased by 0.27.

FPN_Faster-RCNN_ResNet101 offers a huge improvement in crown width measure-
ment, with a higher R2 than all the other methods. The feasibility of using FPN and
ResNet101 to improve the original model is illustrated.

4. Conclusions

In this study, high-resolution orthophotos, obtained by UAVs shooting a mature
loblolly pine forest in eastern Texas, were used as the data source. ResNet101 and
FPN_ResNet101 replaced the backbone network VGG16 of the original Faster-RCNN
model. Using FPN_ResNet101, the crown recognition accuracy rate of Method 4 reached
95.26%, and the crown width extraction R2 reached 0.95. Compared with Method 3, the
two indexes had increased by 4.90% and 0.27, respectively, which proves the feasibility
of improving the original model using FPN_ResNet101 network architecture and the su-
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periority of the improved model in this research field. At the same time, with regard
to recognition speed, the improved Method 4 (FPN_Faster-RCNN_ResNet101) was also
enhanced to a certain extent in comparison with Method 3 (Faster-RCNN_ResNet101). The
speed of the two-stage detector was improved to a level similar to that of the single-stage
detector, and some progress was made in comparison with Method 2 (SSD) in terms of
crown detection and crown width extraction. However, due to the similarity of trees, the
accurate identification and classification of tree crowns in mixed forests remains a signifi-
cant challenge. In terrain such as hills, accurate canopy width measurement is impossible
due to the change in relative distance between the UAV and the ground, which is a crucial
direction for future research. Nonetheless, the excellent accuracy of Faster-RCNN suggests
the model’s applicability in dense loblolly pine forests, providing an alternative for forestry
practitioners in tree mensuration.
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Abstract: A reliable estimate of the gross primary productivity (GPP) is crucial for understanding
the global carbon balance and accurately assessing the ability of terrestrial ecosystems to support
the sustainable development of human society. However, there are inconsistencies in variations
and trends in current GPP products. To improve the estimation accuracy of GPP, a deep learning
method has been adopted to merge 23 CMIP6 data to generate a monthly GPP merged product
with high precision and a spatial resolution of 0.25◦, covering a time range of 1850–2100 under four
climate scenarios. Multi-model ensemble mean and the merged GPP (CMIP6DL GPP) have been
compared, taking GLASS GPP as the benchmark. Compared with the multi-model ensemble mean,
the coefficient of determination between CMIP6DL GPP and GLASS GPP was increased from 0.66
to 0.86, with the RMSD being reduced from 1.77 gCm−2d−1 to 0.77 gCm−2d−1, which significantly
reduced the random error. Merged GPP can better capture long-term trends, especially in regions
with dense vegetation along the southeast coast. Under the climate change scenarios, the regional
average annual GPP shows an upward trend over China, and the variation trend intensifies with
the increase in radiation forcing levels. The results contribute to a scientific understanding of the
potential impact of climate change on GPP in China.

Keywords: GPP; deep learning; data merging; image super resolution

1. Introduction

Global climate change, especially the impact of climate warming on the human living
environment, has attracted more and more attention [1]. With the continuous development
of the global industry, the use of fossil fuels is increasing. This process releases large
amounts of carbon dioxide and changes the proportions of greenhouse gases, causing
global climate problems such as the intensification of the greenhouse effect. The gross
primary productivity (GPP), formed by terrestrial vegetation through photosynthesis to fix
CO2 and energy in the biosphere, is the initial stage of entering the carbon cycle process
and the basis of the ecosystem carbon cycle [2]. Terrestrial ecosystems can influence global
climate change through the carbon cycle [3]. Therefore, the research on the carbon cycle of
global terrestrial ecosystems has received widespread attention and has become a hot spot
in global change research [4].

An essential indicator of terrestrial ecosystem carbon cycle research is GPP. The gross
primary productivity, that is, the total photosynthetic uptake or carbon assimilation by
plants, is a key component of terrestrial carbon balance [5]. It is the main driving factor of
the terrestrial carbon sink, which is responsible for absorbing about 30% of anthropogenic
carbon dioxide emissions [6]. In general, it can be said that GPP plays a vital role in the
global carbon cycle [7–10]. Characterizing the spatiotemporal changes and trends of GPP is
essential for a deeper understanding of the carbon cycle between terrestrial ecosystems and
the atmosphere [11]. Therefore, quantifying the GPP is crucial to understand the impact of
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climate change and atmospheric carbon dioxide concentration changes on the terrestrial
carbon cycle [12,13]. The accurate estimation of GPP at regional and even global scales
contributes to a more comprehensive and in-depth understanding of ecosystem functions
and the global carbon cycle [14]. However, with the intensification of climate change, there
is significant uncertainty in estimating GPP [15].

In recent decades, significant progress has been made in estimating GPP, and many
global GPP datasets have been published [16]. These products differ in GPP estimates in
different ecosystems and external environments, with advantages and disadvantages in
various studies [17–19]. Data-driven GPP estimation is the primary tool for GPP research
and model evaluation. It mainly includes the following three types. The first type uses
eddy covariance (EC) technology to obtain flux tower observation and upscaling [20].
Process-based models such as the Community Land Model (CLM) are commonly con-
sidered in the revision of GPP products [21]. However, the distribution of flux towers is
sparse and uneven, and the coverage period is different and limited [22], which makes
the derivation of global GPP complicated. When estimating GPP products by scaling up,
there will be a more significant deviation near the sparse flux tower [22]. The second type
is the machine learning (ML) method that uses satellites and other meteorological data
as input [23–28]. ML products are widely used for benchmarking and depend more on
the spatial representation of flux sites [15,24]. The third type is based on the principle of
light use efficiency (LUE), which is used to derive the GPP based on optical remote sensing
variables [22,27,29–31]. LUE products are good at detecting the spatial distribution pattern
of GPP; however, they usually perform poorly in seasonal estimation and overestimate GPP
under dry and cold conditions [28,32–35]. At the regional and even global scale, the land
surface model (LSM) and ecosystem model [36–38] are also effective methods to simulate
GPP. The process models consider plant physiological and ecological processes, which have
solid theoretical significance and can simulate future productivity changes. LSM products
are more consistent in spatiotemporal distribution and better in response to climate change,
but various model parameters, input data, and model structures cause more significant
uncertainty [15,39,40]. Especially in large-scale applications, the accuracy of the model is
affected to some extent [41].

However, the current GPP products rely on assumptions. They are based on different
estimation models so that no GPP product group can perform consistently better in diverse
ecosystems and external conditions [42]. In particular, there is significant uncertainty in
CMIP6 datasets under future climate change scenarios. The uncertainties in climate prediction
are relevant to the modelling of GPP, although they are independent of the estimation method
of GPP. As a result, the changes and trends obtained from different GPP products are often
various [43], leading to unconvincing research results of a single GPP product [44]. Therefore,
to overcome the limitations of a single dataset of GPP products, the question of how to
effectively merge multiple datasets has been raised. Studies have shown that the multi-model
ensemble mean is better than the single model in estimating GPP [17,45]. Traditionally, the
IPCC report shows that the average value of multiple models is the best. Empirical evidence
from various modelling fields indicates that the multi-model ensemble mean eliminates at
least some deviations from the single model, which can produce better predictions or values
closer to observation [46–49]. However, the simple multi-model ensemble mean depends
on the assumption that the uncertainty of each dataset is the same [50]. However, this
assumption is not reasonable from the differences between datasets.

On the other hand, the spatial resolutions between prediction CMIP6 GPP datasets
are generally low and mismatched. At present, bilinear interpolation is widely used for
downscaling. Super-Resolution Convolution Neural Network [51] is a pioneering work of
image super-resolution reconstruction. It makes people pay attention to the deep learning
convolution neural network, the performance of which is superior to the traditional super-
resolution. A neural network called Ynet [52] combines image super-resolution and data
merging technology, which has been further used for soil moisture data merging with
excellent results [53]. It establishes the relationship between reference data and multi-model
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datasets in the historical period to generate a merged GPP product with the distribution
characteristics of reference data. Furthermore, GPP-merged data in the projection period
under multiple climate scenarios can be obtained based on 23 CMIP6 model projections if
the relationship built during the historical period is applied to the projection period. The
evaluation in the historical period shows that the quality of the merged data is significantly
improved compared with the multi-model ensemble mean, indicating that the merged data
are reliable. Therefore, the variation trends in GPP under multiple climate scenarios in the
future were further analyzed based on the merged data.

This study aims to produce an improved high-resolution merged GPP dataset by
adopting a new method to combine the advantages of 23 CMIP6 GPP datasets, without
relying on any prior knowledge, to analyze the long-term variation trends in GPP under
multiple climate scenarios in the future based on the improved merged data. Based on
the historical CMIP6 GPP data, the deep learning method called Ynet [52] neural network
is used to train the deep learning model with merging and downscaling functions. The
23 groups of monthly GPP datasets are integrated into this high-resolution long-series
dataset called CMIP6DL GPP. The period and the spatial resolution are 1850–2100 and
0.25 degrees. The future projection period includes four climate change scenarios, such as
SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The performance of the merged product has
been evaluated based on eddy covariance tower GPP data, and the effectiveness of the
merging method has been discussed. Finally, the variation trends of GPP over China under
future climate change scenarios have been analyzed based on CMIP6DL GPP.

2. Materials and Methods

2.1. Study Area

This study takes China as the research region. The climate characteristics of China are
complex and various, with a monsoon climate in the east, a temperate continental climate in
the northwest, and an alpine climate in the Qinghai–Tibet Plateau. In general, the climate in
China is characterized by a monsoon climate with a high temperature, a rainy summer and
cold winter with little rain. The high-temperature period is consistent with the rainy period
in the study region. There is apparent spatial heterogeneity in GPP due to the differences
in topography, vegetation types, and hydrothermal conditions in the different areas [54].
The growth of vegetation is closely related to the climate of the region where it is located.
Therefore, according to the Coben climate division and the classic climate division of
China, China is divided into four climatic parts for regional analysis: the arid, semi-arid,
semi-humid, humid, and Qinghai–Tibet Plateau regions.

2.2. GLASS GPP Data

Global Land Surface Satellite (GLASS) gross primary production (GPP) is a global
surface remote sensing product with a long time series and high precision based on multi-
source remote sensing data and ground observation [45]. The Bayesian multi-algorithm
integration method integrates eight widely used light use efficiency (LUE) models, includ-
ing CASA, CFix, CFlux, EC-LUE, MODIS, VPM, VPRM, and two-leaf. The spatial and
temporal resolution of GLASS GPP are 5 km and eight days, from 1982 to 2018. The unit
of the data is gCm−2d−1. The development and validation of the algorithm are based on
the data from global fluxnet, which contains nine types of terrestrial ecosystems, such as
evergreen broad-leaved forest, evergreen coniferous forest, deciduous broad-leaved forest,
mixed forest, temperate grassland, tropical savanna, shrub, farmland, and tundra. GLASS
GPP can be downloaded from http://www.geodata.cn (accessed on 23 April 2023).

2.3. CMIP6 GPP Data

The monthly GPP data from 23 available CMIP6 models are used in the study, with
the unit of kgCm−2s−1. The period is over 1850–2100, including the historical and future
projection period. More specifically, the projection period of 2015–2100 contains the four most
interesting scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The model and GLASS
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GPP data are first uniformly interpolated to 2◦ due to the inconsistent spatial resolution.
Meanwhile, it is necessary to unify the unit of model simulation data and GLASS GPP to
gCm−2d−1. The first member, r1i1p1f1, is selected if possible (r1i1p1f2 is used if unavailable).
CMIP6 GPP can be downloaded from https://esgf-node.llnl.gov/projects/cmip6/ (accessed
on 9 June 2023). The information on the 23 models used is listed in the Table 1 below.

Table 1. Detailed information on 23 models used in this study.

Model Name Institution Variant Label Resolution (Longitude × Latitude)

ACCESS-ESM1-5 CSIRO, Australia r1i1p1f1 1.875◦ × 1.25◦
BCC-CSM2-MR BCC, China r1i1p1f1 1.125◦ × 1.125◦

CAS-ESM2-0 CAS, China r1i1p1f1 1.4062◦ × 1.4062◦
CESM2 NCAR, USA r1i1p1f1 1.25◦ × 0.9424◦

CESM2-WACCM NCAR, USA r1i1p1f1 1.25◦ × 0.9424◦
CMCC-CM2-SR5 CMCC, Italy r1i1p1f1 1.25◦ × 0.9424◦

CMCC-ESM2 CMCC, Italy r1i1p1f1 1.25◦ × 0.9424◦
CNRM-CM6-1 CNRM, France r1i1p1f2 1.4◦ × 1.4◦

CNRM-CM6-1-HR CNRM, France r1i1p1f2 1.4◦ × 1.4◦
CNRM-ESM2-1 CNRM, France r1i1p1f1 0.5◦ × 0.5◦

CanESM5-CanOE CCCMA, Canada r1i1p2f1 2.8125◦ × 2.8125◦
CanESM5 CCCMA, Canada r1i1p1f1 2.8125◦ × 2.8125◦

EC-Earth3-Veg-LR EC-Earth-Consortium, EU r1i1p1f1 0.7031◦ × 0.7031◦
EC-Earth3-Veg EC-Earth-Consortium, EU r1i1p1f1 0.7031◦ × 0.7031◦

GISS-E2-1-G NASA, USA r1i1p1f2 2.5◦ × 2◦
GISS-E2-1-H NASA, USA r1i1p1f2 2.5◦ × 2◦
INM-CM4-8 INM, Russia r1i1p1f1 2◦ × 1.5◦
INM-CM5-0 INM, Russia r1i1p1f1 2◦ × 1.5◦

IPSL-CM6A-LR IPSL, France r1i1p1f1 2.5◦ × 1.2676◦
MIROC-ES2L MIROC, Japan r1i1p1f2 2.8125◦ × 2.8125◦

MPI-ESM1-2-HR MPI-M, Germany r1i1p1f1 0.9375◦ × 0.9375◦
MPI-ESM1-2-LR MPI-M, Germany r1i1p1f1 1.875◦ × 1.875◦
UKESM1-0-LL MOHC, UK r1i1p1f2 1.875◦ × 1.25◦

2.4. Deep Learning Network

In this study, a GPP-merged product conforming to the distribution characteristics
of the GLASS GPP dataset is developed by merging the simulated data of CMIP6 models.
A neural network named Ynet [51] is adopted in the data merging part, which combines
data merging and image super-resolution technology. The deep learning model establishes
relationships between the reference and the CMIP6 GPP data in the historical period and
is then applied in future projections. Compared with the multi-model ensemble mean,
the merged data have higher accuracy and spatial resolution over 1850–2100 in China.
The multi-model ensemble mean is a simple average of the simulation results of the
23 CMIP6 models. It uses the simplest strategy of assuming that all 23 model data have the
same uncertainty; thus, the multi-model ensemble mean is a simple average of each model.
The merged data in this study are generated based on the deep learning method, which
compensates for this deficiency. The novelty of the deep learning method used in this study
is that it combines data merging and image super-resolution technology, which combines
the advantages of 23 CMIP6 GPP datasets without relying on any prior knowledge.

The model architecture is shown in Figure 1. This structure consists of three parts.
The first part is a symmetric encoder-decoder structure with a skip connection. Similar
to the residual encoder-decoder network, this structure solves the problem of gradient
disappearance when the error calculated by the loss function in the model training process
is propagated back. This structure captures the abstract features of low-resolution images
with noise and outputs a “cleaner” image, which can be regarded as a feature extractor.
In addition to the 30 convolutional layers, this part also contains 15 deconvolution layers.
It may introduce “checkerboard artefacts”, resulting in lower image output quality [55].
Therefore, to reduce the problem, a convolutional layer is added after each deconvolution
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layer to compensate for upsampling. Specifically, this part’s input to the model is low-
resolution CMIP6 GPP. The second part of the model is upsampling, which is mainly used
for downscaling. It consists of one upper sampling layer using bilinear interpolation and
two convolution layers with the same feature depth as the input channel. As in the first
part, the last two convolution layers were added to eliminate the checkerboard effect.

The third part is data merging, which consists of three input datasets, including up-
sampling output, auxiliary data, and unsampled CMIP6 GPP. The three datasets calculated
by the two convolution layers are joined to obtain high-resolution data. Among them,
auxiliary data are used to help improve the results, which remained constant throughout
different months over the training and testing periods. The loss function can be calculated
according to the following formula:

L(θ) =
1
N ∑N

i=1

∣∣| f (Xi, θ)−Yi|
∣∣2, (1)

Among them, θ is the network parameter that needs to be optimized. f (Xi, θ) represents
the learned function. In addition, n is the total number of training samples. X and Y
represent the input data and the target at position i.

Figure 1. Deep-learning model structure [52].

2.5. Evaluation Indicators

The evaluation indicators, including mean absolute error (MAE), root mean square
deviation (RMSD), unbiased root mean square deviation (ubRMSD), and coefficient of
determination (r2), have been used to assess the performance of the merged data objec-
tively and find out if it captures the distribution characteristics of the reference data. The
calculation formulae are as follows:

MAE =
1
n ∑n

i=1|Ri −Mi|, (2)

RMSD =

√
1
n ∑n

i=1(Ri −Mi)
2, (3)

ubRMSD =

√
1
n ∑n

i=1

[(
Ri − R

)− (
Mi −M

)]2, (4)

r2 = 1− ∑n
i=1(Mi − Ri)

2

∑n
i=1

(
R− Ri

)2 , (5)
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where n represents the total number of samples. Mi and Ri represent the merged and reference
data at i, respectively. M and R represent the average of the merged and reference data.

2.6. Deep Learning Merging Model Training

Statistical analysis (Figure S1) shows that GPP data belong to heavy-tail distribution.
The characteristic of the skewed distribution data is that there are more samples with little
influence and fewer samples with substantial impact. The concrete manifestation in GPP
data is that the number of pixels near the value of 0 is far more than that of other values. In
addition, the larger the value, the smaller the number of pixels. Such datasets will make
the deep learning network perform well in the low-value range, while the efficiency is
relatively low in the high-value range, resulting in overall reduced accuracy. Therefore,
the log1p function converts GPP data to make it more obedient to Gaussian distribution
during data preprocessing.

The period from 1982 to 2014, when CMIP6 GPP data and GLASS GPP data coincide,
was selected to establish the relationship between input data and reference data using the
deep learning network. The GPP data simulated by 23 CMIP6 models and the reference
data in the same month were matched as a group, totaling 396 samples. All samples were
divided into three datasets according to time: training (1982–2010), validation (2011–2012),
and test dataset (2013–2014). The number of iterations and the initial learning rate were
150 times and 1 × 10−4 during the training stage, respectively.

Figure 2 shows loss function curves for training and validation datasets. As shown
in the figure, the loss reduced sharply in the first ten iterations of the training process.
Subsequently, it shows a fluctuant reduction. The model is stable after 77 iterations, with a
decreased loss. Loss no longer changes after 112 iterations, indicating that the model has
been trained.

Figure 2. Loss function curves for the training and the validation dataset.

3. Results

3.1. Quality Evaluation of Merging Results

The trained merging model has been tested. The results of comparing GLASS GPP,
CMIP6DL GPP, and multi-model ensemble mean with fluxnet data in China are shown in
Figure 3. However, the results only represent the accuracy of the ten sites, as there are
only ten unevenly distributed flux towers in China. As can be seen from the figure, all
three datasets have a wide distribution range in the four indicators. The distribution range
in MAE, RMSD and r2 of the multi-model ensemble mean is wider than that of the other
two datasets, indicating that it has a higher uncertainty. Although the distribution range is
relatively small on ubRMSD, many outliers exist in the multi-model ensemble mean. The
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uncertainty of CMIP6DL GPP is lower compared with the multi-model ensemble mean,
while the median performs the best in MAE, RMSD, and ubRMSD. The merged data have
improved overall (Figure 3a–c), indicating that data are closer to the actual value than the
multi-model ensemble mean.

Figure 3. (a) MAE (b) RMSD (c) ubRMSD (d) r2 between GLASS GPP, CMIP6DL GPP, the multi-model
ensemble mean, and observations over China. Blue “+” represents outlier of CMIP6DL, orange “+”
represents outlier of Ensemble Mean.

Table 2 shows the model’s performance on the test dataset taking GLASS GPP as the
benchmark, with the results showing that the merged GPP has improved in the aspect
of the four indices and has a higher accuracy in China as a whole compared with the
multi-model ensemble mean.

Table 2. Mean absolute error (MAE), root mean square deviation (RMSD), unbiased root mean square
difference (ubRMSD), and coefficient of determination (r2) between merged GPP, the multi-model
ensemble mean, and GLASS GPP.

MAE RMSD ubRMSD r2

CMIP6DL GPP 0.3575 0.7691 0.7668 0.8556
Ensemble mean 1.2378 1.7664 1.5137 0.6632

The normalized Taylor diagram obtained by calculating correlation coefficients, ubRMSD,
and standard deviation ratios is used to evaluate further the CMIP6DL GPP, CMIP6 GPP,
and muti-model ensemble mean. GLASS GPP has been used as the reference due to its
relatively low uncertainties. Figure 4 shows the distribution of correlation coefficient,
ubRMSD, and standard deviation ratio between 25 datasets (including CMIP6DL GPP, the
multi-model ensemble mean, and 23 CMIP6 datasets) and the reference data in 2013–2014.
As shown in Figure 4, the red dot represents GLASS GPP. Since it is used as reference data,
the correlation coefficient and standard deviation ratio are equal to 1, and ubRMSD is 0.
The black dot represents CMIP6DL GPP data, which is the closest to the red dot in the
figure, indicating that the overall performance of CMIP6DL GPP data is better than that
of all datasets simulated by other models. The correlation coefficient of all CMIP6 GPP is
less than 0.82, and ubRMSD is greater than 0.5. There are significant differences among the
23 model data, of which CAS-ESM2-0 performs the best, even better than the multi-model
ensemble mean. The multi-model ensemble mean is still superior to most single CMIP6
data, though it is affected by the high error of model data. In general, CMIP6DL GPP data
perform the best in all aspects.
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Figure 4. Normalized Taylor plots of CMIP6DL GPP, GLASS GPP, the multi-model ensemble mean,
and 23 CMIP6 models for the test dataset.

To evaluate the spatial accuracy of the merged data, the spatial absolute error distri-
butions of CMIP6DL GPP, the multi-model ensemble mean, and GLASS GPP are plotted,
respectively. Figure 5a shows the MAE between CMIP6DL GPP and GLASS GPP in the
test dataset, with the results showing that the regions with MAE less than 0.5 account for
73.91%. The errors in Northwest, Northeast, and North China are generally minor, less than
0.21 gCm−2d−1. However, the effects of CMIP6DL GPP in Central China and the eastern
part of Southwest China are not ideal, with the error ranging from 0.5 to 1.5 gCm−2d−1,
with a total of 7.4% of the regional errors being even more significant than 1 gCm−2d−1.
Relatively large errors mainly occur in Yunnan Province, with two-thirds of the regional
errors being more significant than 0.5 gCm−2d−1. Figure 5b shows MAE between the
multi-model ensemble mean and GLASS GPP. Except for Northwest China, the error in
most regions is beyond 1 gCm−2d−1. Specifically, the regions with an error greater than
1 gCm−2d−1 account for 45.17%, even more significant than 2 gCm−2d−1 in Central, East,
and South China. In summary, CMIP6DL GPP generated by merging the model Ynet is
highly reliable.

Figure 5. (a) MAE between GLASS GPP and CMIP6DL GPP, (b) MAE between GLASS GPP and
multi-model ensemble mean in the test dataset (2013–2014).
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3.2. Assessment of the Variations in the Merged GPP

GLASS GPP is a dataset generated by the light use efficiency model integrating CO2,
radiation, and vapor pressure deficit (VPD), providing a reliable long-term GPP estimation.
Figure 6 shows the long-term changes in GLASS GPP, CMIP6DL GPP, and multi-model
ensemble mean from 1982 to 2014. As shown in Figure 6a, the variations in GLASS GPP
are not apparent and almost remain unchanged in the northwest arid regions. There is an
increasing trend in Central China and a significant decrease in the eastern part of Inner
Mongolia, the southern part of East China, and South China. The long-term changes in
the multi-model ensemble mean are shown in Figure 6c. There is a sharp increasing trend
throughout China, except for the western regions. The characteristics of the decrease in the
southern coastal areas and Inner Mongolia are not captured, which is inconsistent with the
spatial characteristics of the variations in GPP over China. Figure 6b describes the spatial
distribution of the long-term variations of the merged GPP data, similar to GLASS GPP.
However, the variations are gentler than the reference data since the deep learning merging
model is built using a convolution neural network with a “smoothing” effect. That is, it
is impossible for the deep learning merging model to learn the extreme value. Compared
with the multi-model ensemble mean, the data quality has been significantly improved
in eastern Inner Mongolia and South China, dramatically increasing the merged dataset’s
reliability in the projection period.

Figure 6. Long-term variation trends of (a) GLASS GPP, (b) CMIP6DL GPP, and (c) multi-model
ensemble mean from 1982 to 2014, with the dot indicating passing significance test at 5% level.

To evaluate the differences in the merged results in the time dimension, the grids
are randomly selected in four climatic regions over China (arid, semi-arid and semi-humid,
humid region, and Qinghai–Tibet Plateau) to test the time series. As can be seen from Figure 7,
there are similar seasonal fluctuations in the three datasets. The fluctuation range of the test
dataset is highly consistent in the CMIP6DL GPP and the reference data, while it is more
significant in the multi-model ensemble mean. GPP has consistently been overestimated
throughout the period in the multi-model ensemble mean. As the GPP increases, the error of
the multi-model ensemble mean increases. Specifically, the high value of GPP is concentrated
in June and July, when the error of the multi-model ensemble mean is the largest. The impacts
of temperature, water, solar radiation, and vegetation growth are the main causes of seasonal
variation. The temperature, precipitation, vegetation leaf area, and solar radiation of each
region reach the highest values during in the year in summer, and then gradually decrease.
The comprehensive impact of these factors ultimately leads to an inverted U-shaped change
in the average monthly GPP of each vegetation coverage area.
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Figure 7. Time series of GPP of test dataset in (a) arid region, (b) semi-arid and semi-humid region,
(c) Qinghai–Tibet Plateau, and (d) humid region.

3.3. Temporal and Spatial Distribution of Merged GPP in Historical Period

The GPP data over the historical period (1850–2014) and the four climate scenarios
(SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) are merged using the trained deep learning merging
model based on the data simulated by 23 CMIP6 models. The spatial distribution of GPP
in different seasons is shown in Figure 8 to study the seasonal variation characteristics
during the historical period (1850–2014). There is a significant spatial distribution gradient
of GPP in various seasons in China, mainly due to land use and cover conditions and
temperature and water environmental factors. In southern China, the climate is warm and
humid, with the best hydrothermal conditions, sufficient sunlight and high light utilization
efficiency, high vegetation coverage, and the highest GPP in the growing season. GPP
is high in northeast forest regions in summer. However, photosynthesis is inhibited by
low temperature in other seasons, resulting in relatively low GPP. In the deserts of the
northwest, most areas of the Qinghai–Tibet Plateau, and the grasslands in central and
western Inner Mongolia, the plant growing season is relatively short due to water stress
and low-temperature constraints, which leads to low productivity and even the lowest
GPP. Overall, GPP decreases from southeast to northwest and coastal to inland, consistent
with current research results [56–59]. The spatial distribution of GPP is highly compatible
with precipitation in summer, indicating that precipitation is an important factor affecting
the distribution of GPP in China. In addition, the GPP near the Tianshan Mountains in
Xinjiang is relatively high in summer. The prevailing westerly winds from the Atlantic
Ocean and the airflow from the Arctic Ocean encounter the uplift of mountain slopes and
generate intense precipitation, which promotes a high vegetation coverage in the west and
northwest of the Tianshan Mountains [60]. At the same time, the high mountain snowmelt
in the Tianshan Mountains also plays a promoting role.

The spatial distribution of GPP during the four seasons is significantly different,
mainly due to the comprehensive influences of the monsoon climate and vegetation type.
Throughout the whole year, GPP is the highest in summer (June to August), followed
by spring (March to May), autumn (September to November), and the lowest in winter,
which entirely fits within the ecological definition of the GPP itself. In spring, the high
value of GPP is concentrated in the area south of 28◦ N. As the summer monsoon moves
northward, the temperature in most parts increases, with the average GPP in the historical
period reaching 13.6 gCm−2d−1. The spatial distribution of GPP is highly affected by
hydrothermal conditions. Thus, the high value is mainly distributed in Yunnan and
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Guizhou. In autumn, the spatial distribution is similar to that in spring due to the decrease
in temperature in northern China. GPP is mostly lower than 1 gCm−2d−1 in winter, and
even 0 in some regions. Due to the minimum precipitation and temperature in winter, most
of the vegetation is in the non-growing season, which makes the vegetation coverage the
lowest, resulting in the lowest GPP throughout the year. Although crops are sown in the
north, they grow slowly due to the low temperature. On the contrary, the GPP in southern
Yunnan remains high even in winter (Figure 8d).

Figure 8. Spatial distribution characteristics of GPP in (a) MAM, (b) JJA, (c) SON, (d) DJF over China
in the historical period (1850–2014).

The global climate has undergone significant changes in the past few decades, includ-
ing frequent extreme climate disasters and sustained warming. Ecosystems and terrestrial
carbon sinks will be significantly affected by climate change. On the other hand, GPP is
greatly influenced by human activity [61]. Although large-scale afforestation benefits vege-
tation restoration and increases GPP, population growth and rapid economic development
have exacerbated urbanization and disrupted the balance of terrestrial ecosystems. These
human interventions significantly impact the formation of GPP dynamics [62,63]. Figure 9
shows the spatial distribution of variation trends in GPP in all seasons over China during
the historical period (1850–2014). There are increasing trends in most regions; however,
changes in these trends exhibit significant heterogeneity in space and time. The trend is the
strongest in summer, followed by spring and autumn, and the most gentle in winter. In
summer, the variation trend of GPP in more than one-third of the regions is relatively large,
concentrated in Northeast China, the south of North China, and the southwest regions.
The annual mean value of GPP in these regions is significant, with the variation trends also
being substantial. It is mainly related to the superior local water and heat conditions and the
suitable climate environment, which results in the overall growth of vegetation. The GPP
in the south of Central China and East China shows a weak decreasing trend. It is mainly
due to the increase in temperature in the southern region since the 1990s, which increases
the frequency of heat waves and drought events [64,65]. There is a negative impact on the
terrestrial carbon cycle, resulting in a decline in GPP. Compared with summer, the regions
with a substantial increase in autumn tend to reduce; meanwhile, the trend is gentler. In
spring, the increasing trends concentrate in Anhui and Guizhou. In winter, there is a trend
of widespread decline in Inner Mongolia, Jilin, and Liaoning, accounting for 31.57% of the
whole region, while there is an increasing trend in some regions in the south.
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Figure 9. Spatial distribution of GPP variation trends in (a) MAM, (b) JJA, (c) SON, and (d) DJF over
China during the historical period (1850–2014), with the dot indicating passing significance test at
5% level.

3.4. Long-Term Changes in Merged GPP in Projection Period under Multiple Climate Scenarios

To explore the difference between the changes in GPP in the near future (2021–2040)
and the far future (2071–2100), the spatial distribution of the multi-year mean of GPP in
each season under different climate scenarios in historical baseline, near, and far future is
described in Figure 10 and Figure S2, respectively. Among them, the distributions under
different scenarios in the future describe the change in the multi-year mean compared with
that during baseline. The positive value represents the increase in GPP, while the negative
one represents the decrease. Figure 10a1–a4 shows that the spatial distribution of the mean
annual GPP in each season of the baseline GPP increased significantly in the four seasons
compared with the seasonal average over the period 1850–2014 (Figure 8). In spring, the
average annual GPP greater than 2 gCm−2d−1 occupied 22.93% of the region, concentrated
in the south of 30◦ N. In summer, the area with an annual average GPP of more than
2 gCm−2d−1 doubled compared with spring, reaching 48.97%, with the maximum yearly
peak at 14.19 gCm−2d−1. There are similar peaks and spatial distribution in autumn and
spring, while it remains almost the same in winter.

There are significant seasonal differences in the variations in GPP based on the historical
baseline under multiple scenarios in the near future. In spring, GPP increases in most eastern
regions, and rises more with the enhancement of radiation forcing levels. However, GPP
decreased significantly in the east of the plain of Henan Province under the high emission
scenario. In summer, GPP increased substantially in nearly half of the regions of the country,
including the Northeast, North, Southwest, and south of Northwest China. GPP accelerated
with the increase in radiation forcing levels, with more than 20% of the regions having
values greater than 0.4 gCm−2d−1 under SSP5-8.5. In autumn, it increased significantly
in Yunnan, while there was a slight weakening trend in the north of Henan. The spatial
characteristics distribution maintains consistency under multiple climate scenarios. Winter
is the only season when GPP decreases in a large area. Under the four scenarios, the GPP in
21% of regions is lower than the baseline, mainly distributed in the west, Inner Mongolia,
and Heilongjiang. The reduction in GPP is the same under different scenarios. Except for
the decrease in GPP in Fujian, it generally increases in the south.
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Figure 10. Spatial distribution of the multi-annual mean CMIP6DL GPP in (a1–a4) baseline (1995–
2014) and near future (2021–2040) under (b1–b4) SSP1-2.6, (c1–c4) SSP2-4.5, (d1–d4) SSP3-7.0, and
(e1–e4) SSP5-8.5 relative to baseline in (a1–e1) MAM, (a2–e2) JJA, (a3–e3) SON, and (a4–e4) DJF.

The change in GPP becomes increasingly intense with the enhancement of radiative
forcing levels in the far future, as seen from Figure S2. The variations in GPP are studied
with the Heihe–Tengchong line as the boundary. In spring, it can be found that GPP
increases more as radiative forcing levels are enhanced in the eastern part of the dividing
line. The area with an increase of more than 0.8 gCm−2d−1 rises from 0.62% to 23.99%.
The change in the west of the boundary is gentle, with an average rise of 0.09 gCm−2d−1.
The area of GPP increasing by more than 0.8 gCm−2d−1 expands from 0.62% to 23.99% of
the regions. The change in the western part of the dividing line is relatively gentle, with
an average increase of 0.09 gCm−2d−1. Summer is the peak photosynthesis season for
plants in northern ecosystems compared to other seasons, leading to a more extensive range
and broader areas of increase. GPP increases in about 94% of the regions under SSP1-2.6
relative to the baseline. With the enhancement of radiation forcing levels, the rise of GPP
in Northeast, North, and the east of Southwest China becomes more and more intense,
while that in Henan is turning from decrease to increase. The magnitude of the increase
is further accelerated under SSP5-8.5. The reduction in GPP in Henan in autumn only
occurs in the low-emission scenario, which differs from spring. In winter, GPP reduces in
parts of the west and northeast regions, roughly similar to the scenario in the near future
(Figure 10b1–e4). There is a considerable area reduction in GPP in the eastern part of the
Qinghai–Tibet Plateau under the SSP1-2.6 scenario. With the increase in radiation forcing
levels, the area of GPP reduction gradually decreases. GPP increased south of 30◦ N, with
the maximum increase reaching 2.48 gCm−2d−1 in Yunnan under the SSP5-8.5 scenario.
Compared with the near future, GPP growth will be more dramatic in the far future.

The multi-year variations in GPP in each pixel can better reflect the characteristics
of spatial changes in addition to the regional average. Figure 11 describes the spatial
distribution of GPP variation trends in China under four scenarios from 2015 to 2100. GPP
generally shows an increasing trend in the projection period, with the trend becoming more
and more intense as the radiation forcing levels increase. There is no significant change
in GPP in the northwest arid regions under different scenarios, which maintains a low
growth. A slight decreasing trend can be observed visually at the junction of Shandong,
Henan, Jiangsu, and Anhui provinces under the SSP1-2.6 scenario, which is related to
the environmental effects of aerosols [66]. The spatial pattern of GPP variations under
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the medium and high emission scenario is similar, with GPP increasing in each pixel.
Likewise, the variation trends become more intense as radiative forcing levels increase. The
most significant increase in GPP occurs in Yunnan and Guizhou under SSP2-4.5, SSP3-7.0,
and SSP5-8.5. The regions where GPP is more sensitive to radiation forcing levels are
concentrated in the southwest, the east of the northwest, and the northeast. GPP increases
rapidly as radiative forcing levels increase. It is found that the increase in the high-emission
scenario is even four times that of the low-emission scenario.

Figure 11. Spatial distribution of the variation trends of annual average CMIP6DL GPP under (a) SSP1-2.6,
(b) SSP2-4.5, (c) SSP3-7.0, and (d) SSP5-8.5 from 2015 to 2100. Shaded values have passed the
significance test at the 5% level.

Considering the characteristics of the future variations in GPP, it is divided into
three periods for analysis, including 2021–2040 (near future), 2041–2070 (medium future),
and 2071–2100 (far future) due to the long projection period of the merged data. As can
be seen from Figure S3, the increasing trend of GPP turns into a decreasing trend as time
goes on under the SSP1-2.6 scenario. In the near future, GPP shows a significant increasing
trend except for the junction of Shandong, Jiangsu, Henan, and Anhui provinces. In the
medium future, the changes in average regional GPP are relatively stable, though there are
scattered pixels with increasing and decreasing trends of GPP across the country. In the
far future, the regions with reduced trends of GPP nationwide account for about 93% of
the country. Under the low emission scenario, the air temperature rises first and remains
stable in the far future, while the carbon dioxide emissions begin to decrease in 2020 [67].
This shows that GPP is greatly affected by air temperature. The amount of carbon dioxide
directly affects vegetation’s carbon sequestration when the temperature is stable, leading
to GPP decline. GPP increases in the near future under the SSP2-4.5 scenario; however,
the variation trends slow down over time. Under SSP3-7.0 and SSP5-8.5 scenarios, GPP
increased over time in all regions, with the trends strengthening gradually.

4. Discussion

It can be seen from Figure 10 and Figure S2 that the variations in GPP in the north and
south of China are opposite in winter while increasing in all regions in spring, summer,
and autumn. However, this cannot reflect the impact of the reduction in winter on the
change in the average GPP across the country. Therefore, Figure 12 shows the inter-annual
changes in GPP in China under the historical baseline and different scenarios in the future.
The thick grey line represents the line between the baseline and the future. GPP shows an
increasing trend from 1.76 gCm−2d−1 to 1.84 gCm−2d−1 from 1995 to 2014. It may result
from a combination of factors such as appropriate climate change, the fertilization effect
of CO2, nitrogen deposition, and human activities such as afforestation and agricultural
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irrigation [68–71]. From 2015 to 2035, GPP increases steadily yearly with similar increasing
trends under the four scenarios. From 2036, the difference in the variations in GPP in
the four scenarios is noticeable. Among them, the variation speed of GPP is the fastest
under SSP5-8.5, with the average reaching 2.49 gCm−2d−1 at the end of the 21st century.
The second fastest occurs under SSP3-7.0, which is slightly slower than that of the high-
emission scenario. The annual average is roughly the same before 2055 as under SSP2-4.5.
However, the gap between the two scenarios gradually increases from 2067, when the
growth rate under SSP2-4.5 slows down. From 2081 to 2100, it is almost stable and begins
declining slowly in 2097. Among the four scenarios, GPP decreases significantly only in
the SSP1-2.6 scenario. Although there is a decreasing trend at the end of the century under
the SSP2-4.5 scenario (Figure 12), GPP shows an overall increasing trend in each pixel over
the period 2015–2100 (Figure 11b). More specifically, it keeps increasing, as do the other
three scenarios in the near future, followed by a slight fluctuation around 1.96 gCm−2d−1

for a long time in the medium term. It is worth noting that GPP declines significantly in the
far future, especially from 2075 onwards. Meteorological factors are the dominant factors
in the interannual variation in global GPP. In the context of climate warming, the frequent
occurrence of extreme events such as high temperatures and droughts is expected to impact
vegetation growth, leading to fluctuations in ecosystem GPP. According to the definition
of severe climate, the Intergovernmental Panel on Climate Change [72] pointed out that
climate change has led to changes in the frequency, intensity, spatial scope, duration, and
time of extreme climate, which may have an unprecedented impact on the terrestrial
carbon cycle. In addition, due to global warming, climate change is expected to further
increase the frequency, persistence, and intensity of extreme weather in the mid to late 21st
century [73–75], making the impact of future climate change on terrestrial ecosystems even
more uncertain [76,77].

Figure 12. Inter-annual variations in CMIP6DL GPP at baseline (1995–2014) and in the future
(2015–2100) under climate scenarios over China.

Large-scale studies using merged GPP can reduce the uncertainty of terrestrial ecosystem
carbon cycle research. However, the merging process will also introduce certain uncertainties,
mainly affected by input errors, scale effects, and merging algorithms. Input errors are
caused by the CMIP6 datasets, GLASS GPP, and flux tower observation GPP. Although model
simulation provides an essential research tool for the carbon cycle of large-scale terrestrial
ecosystems, there are still significant differences in the simulation results of the models at
regional and global scales due to the differences in the structure, parameter settings, input
data, and spatial resolution of each CMIP6 model. Schaefer et al. [5] compared GPP simulation
differences in North America across 26 models to explore the responses of different model
structures and environmental factors to simulations based on data from 39 flux stations.
Zhang et al. [78] studied the impact of different parameter settings and meteorological data
in the CEVSA2 model on the GPP simulation results in the Changbai Mountain region of
China from 2003 to 2005, indicating that the GPP difference caused by parameter setting in
the model is 5% to 8%. The reference data GLASS GPP is generated by integrating multiple
algorithms using the Bayesian integration method, reducing the uncertainty of a single
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algorithm. However, there are differences in spatial scales between ground and satellite data,
and the algorithm fails to distinguish potential differences in photosynthesis between C3 and
C4 crops. In addition, the problem of mixed pixels can also affect the accuracy of GLASS GPP
estimation [79]. The GPP observed by the flux tower is considered the benchmark, while the
high heterogeneity of the ground can also make the representativeness of the flux station data
poor. Therefore, significant uncertainties in the GPP benchmark lead to a lack of consensus on
the global GPP distribution [15,80]. Chen et al. [81] showed that the flux-tower-estimated GPP
represents 50% to 60% of the actual situation in the case of surface heterogeneity. There is still
a problem of insufficient spatial representation compared to the range of flux contribution
areas assumed by eddy covariance.

The mismatch between the spatial resolution of the model and the floor area of the flux
tower causes the uncertainty imposed by scale effects. Even with the same model and source
of input data, the simulation results may still be different due to spatial heterogeneity caused
by different spatial resolutions [1]. At the regional scale, improving spatial resolution can
reduce the uncertainty of GPP simulation [82]. However, in practical applications, models
often need to simulate large-scale and long-time series data. When considering factors such as
simulation time, data storage capacity, and analysis difficulty, they often reduce the spatial
resolution to improve simulation efficiency. In GPP estimation at different spatial scales,
there will be different judgments on the coverage type, leading to incorrect maximum light
energy utilization, further resulting in errors. In mid- and low-resolution GPP remote sensing
products, most of the pixels under heterogeneous ground surfaces are mixed. For example,
there is a significant difference between MODIS surface coverage with 1 km and global
30 m resolution. At different scales, heterogeneity characteristics have an important impact
on surface vegetation parameter characteristics [83]. Taking the mixed pixel of forest and
grassland as an example, there is a significant difference in the a priori maximum light energy
utilization rate between the two types. It may bring about significant errors using a single type
of maximum weak energy utilization rate to replace pixel values. Wang et al. [1] discussed the
impact of two spatial resolutions of 1 km and 8 km input data on GPP simulation, with the
results showing that the difference was mainly due to the difference in LAI caused by mixed
pixels within the range of 8km. The difference in simulation results with different spatial
resolutions at forest stations was more significant than that at grassland stations. Therefore,
it is feasible to appropriately reduce spatial resolution to improve the model’s simulation
efficiency. However, it is necessary to minimize the error of low spatial resolution in the GPP
simulation of forest ecosystems and growing seasons.

In the long sequence data merging, considering time information can effectively en-
hance model learning capabilities and improve the quality of merged data, which helps
to reduce the data uncertainty in the projection period. Since the deep learning merging
model focuses more on spatial features and no individual modules can capture temporal
characteristics, the temporal information is not fully utilized. In addition, there are other
factors contributing to uncertainties. For example, complex vegetation structures, signif-
icant dry and wet seasons, and cloud cover can also bring uncertainties [84]. In highly
productive regions, methods based on optical remote sensing often underestimate GPP
due to the saturation of reflectance measurements in high-density canopy [85]. In addition,
optical remote sensing is strongly affected by cloud cover, resulting in data gaps and high
uncertainty in areas with frequent cloud cover and high GPP, such as tropical forests [16].

5. Conclusions

In this study, a GPP-merged dataset with high resolution in China has been developed
using the deep learning method. It combines the advantages of 23 CMIP6 GPP datasets
without relying on any prior knowledge. The lower resolution of the multi-model data has
been improved to 0.25◦ of the merged GPP. From the perspective of evaluation indicators,
the performance of merged data is superior to the others in all aspects. In China, the error
has been kept at a low level. The merged dataset has significantly improved in temporal
and spatial dimensions compared with every single model and the multi-model mean. The
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merged data are closer to the actual value than the multi-model mean according to the
fluxnet data. The merged data greatly reduce the uncertainties and improve the reliability
of GPP estimation in the projection period. A further analysis of the spatiotemporal change
pattern of GPP in China has resulted in the following findings.

During the baseline, GPP is the highest in summer, followed by spring and autumn,
and the lowest in winter due to the combined effects of factors such as the monsoon climate
and vegetation types. GPP exhibits significant spatial heterogeneity due to differences in
topography, vegetation types, and hydrothermal conditions in different regions. Generally,
GPP increases gradually from the northwest inland to the southeast coast. GPP in the
southern part of Yunnan remains high in winter. According to the long-term variation
trends, GPP is increasing in most regions of China. It is worth noting that the characteristics
of the decrease in the southern coastal areas and Inner Mongolia are not captured by
the multi-model ensemble mean; however, they are captured by the merged GPP. There
are seasonal differences in the variations in GPP relative to the baseline under different
scenarios in the future projection period, while the variations are almost the same across
different scenarios in the near future. In summer, GPP increased rapidly with the increase
in radiation forcing levels. In winter, GPP decreases in a large region mainly distributed
in the west, Inner Mongolia, and Heilongjiang. The long-term variation trends of GPP
in China under different scenarios are significantly different. The growth rate of GPP
has reached the maximum under the SSP5-8.5 scenario since 2036. The increasing trend
becomes slightly slower under the SSP3-7.0 scenario than under the high-emission scenario.
Furthermore, GPP decreased significantly under the SSP1-2.6 scenario. The annual GPP
in each pixel in China shows an increasing trend, which is more intense with the increase
in radiation forcing levels. GPP changes from increasing to decreasing over time, since
GPP is affected by temperature and carbon dioxide under the SSP1-2.6 scenario. Under the
SSP2-4.5 scenario, GPP will increase in the near future; however, the trend will slow down
as time goes by. Under the SSP3-7.0 and SSP5-8.5 scenarios, GPP increases with time; the
increasing trend rises gradually.
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mdpi.com/article/10.3390/f14061201/s1, Figure S1: The probability density distribution of GLASS
GPP during 1982–2014, Figure S2: Spatial distribution of the multi-annual mean GPP in far future
(2071–2100) relative to baseline under (a1–a4) SSP 1-2.6, (b1–b4) SSP2-4.5, (c1–c4) SSP 3-7.0, (d1–d4),
and SSP 5-8.5 in (a1–d1) spring, (a2–d2) summer, (a3–d3) autumn, and (a4–d4) winter, Figure S3: Spatial
distribution of the variation trends of annual average GPP under four climate scenarios in the near,
middle, and far future, with the dot indicating passing significance test at 5% level.
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Abstract: As a current research hotspot, graph convolution networks (GCNs) have provided new
opportunities for tree species classification in multi-source remote sensing images. To solve the
challenge of limited label information, a new tree species classification model was proposed by
using the semi-supervised graph convolution fusion method for hyperspectral images (HSIs) and
multispectral images (MSIs). In the model, the graph-based attribute features and pixel-based features
are fused to deepen the correlation of multi-source images to improve accuracy. Firstly, the model
employs the canonical correlation analysis (CCA) method to maximize the correlation of multi-source
images, which explores the relationship between information from various sources further and offers
more valuable insights. Secondly, convolution calculations were made to extract features and then
map graph node fusion, which not only reduces redundancy features but also enhances compelling
features. Finally, the relationship between representative descriptors is captured through the use
of hyperedge convolution in the training process, and the dominant features on the graph are fully
mined. The tree species are classified through two fusion feature operations, leading to improved
classification performance compared to state-of-the-art methods. The fusion strategy can produce a
complete classification map of the study areas.

Keywords: hypergraph convolution; data fusion; classification of tree species

1. Introduction

Recently, achieving accurate and reliable tree species classification from a large number
of trees has gained more attention. Multi-source products typically provide more trust-
worthy information than a single product of ground surface covering [1,2]. Hyperspectral
images (HSIs) are an essential part of multi-source data learning and can reflect the spec-
tral characteristics of forest mapping, which is crucial for understanding forest cover [3].
Multispectral data images (MSIs) contain high-resolution spatial information, which is
also helpful when analyzing forest tree species. By integrating multi-source data, data
fusion can overcome the limitations of a single data source [4]. Current fusion methods
for HSIs and MSIs rely on feature extraction and feature fusion, respectively, to leverage
the correlation between the two data sources [5]. To leverage diverse information from
multiple sources of data, it is necessary to implement strategies that enable the effective
extraction, integration, and analysis of data [6–8].

Deep learning has been applied to feature fusion to improve its performance in terms
of feature fusion and has achieved satisfactory results [9–11]. Li et al. proposed an effective
CNN (PPF-CNN) based on pixel features [12] in combination with a small number of
existing samples, which enabled data enhancement to optimize the classification results. A
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multi-region CNN (MRCNN) [13] algorithm is proposed to mine spectral–spatial informa-
tion, which improves the mining performance. However, with the further development of
the network, limited labeled samples may lead to overfitting or performance degradation.
Fortunately, a semi-supervised approach can be used to mitigate this shortcoming. The
insufficiency of labels in remote sensing image classification can now be addressed with
the recent emergence of graph convolution networks. The recent advancement of GCNs
has provided a promising solution to the insufficient label problem in hyperspectral or
multispectral image (HSI/MSI) classification. Unlike traditional methods, GCNs operate
on a graph and require only a small amount of labeled data to establish the relationships
between multi-source nodes. By effectively aggregating and transforming features from a
node’s neighborhood, GCNs provide an efficient pathway for multi-source image classifi-
cation [14]. GCNs are particularly suitable for handling non-Euclidean data, which refers
to datasets that do not adhere to the principles and assumptions of Euclidean geometry,
and by learning node features through hidden layers, they better capture the local features,
resolving the issue of missing class boundary information. The Chebyshev polynomial [15]
parameterized differentiable graph convolution algorithm is used by GCNs to transport the
node information after using the feature construction of all samples to create the topological
structure (G-Conv). The whole learning process of this method does not need manual inter-
vention. By excavating the structural information of many unlabeled samples in the feature
space, the deviation of learning trained with labeled samples is corrected. The potential
value of unlabeled samples is fully utilized, and the ‘small sample’ problem in terms of
classification is effectively solved. Not only is this approach applicable to non-Euclidean
statistics, but it also has broad applicability to standard domains [16]. In reality, there is
much research on the use of GCNs in relation to remote sensing images. For example,
Qin developed a spectral–spatial GCN (S2GCN) by employing current pixel spatial in-
formation [17], which has made significant improvement to the original GCN. However,
at the end of the above network, the SoftMax function is usually used to analyze the ex-
tracted features, which generates a probability vector that reflects the category of the pixel.
This method lacks intraclass compactness, which reduces classification performance [18].
Spectral and spatial information were extracted to construct adjacent matrices, and an
innovative prototype layer was designed. This prototype layer contains distance-based
cross-entropy loss function and novel temporal entropy-based regularization, which can
not only generate more low-level features, such as separable between species and compact
within species, but also represent the prototypes belonging to each species [19].

Most methods extract features and then combine them using various techniques.
Additionally, low-rank model methods are used to convert multiple sources of features
into a common space through low-rank sparse representation. Feature fusion strategies
are used to convert multi-source features into a unified fused feature, but the process of
feature extraction and fusion are separate, which may result in changes to the original
information contained in the features. In graph representation learning, taking into account
both the global and local structure of the data can make the graph representation model
more robust against the effects of noisy and sparse data. However, there have been only a
limited number of GCN models that have prioritized preserving both the local and global
structures of the data concurrently.

Existing graph/hypergraph-based neural networks suffer from a significant limitation
in that they only make use of the initial graph/hypergraph structures and do not account
for dynamic modifications that may occur in the feature embedding process. This limitation
hinders the network’s ability to adapt to changing input data.

To address this issue, it is crucial to develop approaches that can account for the
modifications of graph/hypergraph structures and ensure that the original information
in the features remains intact throughout the fusion process. A semi-supervised graph
model is proposed based on an extraction fusion network for HSIs and MSIs, to fully use
the correlation of multi-source data. The feature extraction method is directed by the model
via feature fusion. The model directly outputs unified fusion features from multi-source
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data as input. For feature fusion, a multimodal graph is built, and feature extraction is
constrained using the graph-based loss function. The innovation points of the paper are
as follows:

(1) To extract the discriminative features, a common subspace is explored and found by
CCA operations on HSI and MSI, and the correlation is maximized between HSI and
MSI inputs.

(2) For the information fusion between HSI and MSI, both the node features and hyper-
graph features are integrated to improve the ability of global information extraction,
and the ability to express the relationship between all vertices becomes more robust.
During the initialization of hypergraph convolution, feature fusion is performed
on the nodes, and the hyperedge features are fused in the process of hypergraph
convolution learning.

(3) Compared with other state-of-the-art converged networks, it is more efficient and
achieves better classification results.

2. Materials and Methods

2.1. Study Area

The areas were studied in the Tahe Forestry Bureau (Figure 1), which is located in the
Daxing’an Mountains, northwest of Heilongjiang Province, China (123◦ to 125◦ E and 52◦
to 53◦ N). The studied areas have a borderline of 173 km and a total area of 14,420 km2.
The climate of the studied areas is a cold–temperate continental climate and experiences
severe climatic changes, with short hot, humid summers and long, dry, cold winters. The
annual average temperature of the area is −2.4 ◦C, and the average yearly precipitation
is 463.2 mm, occurring mainly in July and August. The forest, with a storage capacity of
53.4 million m3, covers 81% of the total area. Dominant tree species include Birch, Larch,
Spruce, Mongolica Pine, Willow, and Poplar [20].

Figure 1. Map of the study area.

2.2. Data

To classify the tree species, we used data taken from HJ-1A and Sentinel-2. Figure 1
displays the HSI data for HJ-1A and the MSI data for Sentinel-2A, collected from the
China Center for Resources Satellite Data and Application and the USGS, respectively. The
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HJ-1A satellite has a high-speed imaging system with 115 bands and a spatial resolution
of 100 m [13], while Sentinel-2A offers 13 spectral bands with a spatial resolution of 10 m,
providing rich data for coastal and land remote sensing [20]. We used ENVI 5.1 software to
enhance the resolution of the HJ-1A/HSI images (collected on 20 August 2016) to match
the MSI spatial resolution and fill the gap concerning the relatively low HSI resolution. The
interpolation method was used to resample the experimental HSI data. The Tahe Forestry
Bureau conducted a survey in 2018 and used the results to classify major forest species in the
research region. The study areas were 500 × 500 × 115 pixels and 500 × 500 × 13 pixels for
HSI and MSI data, respectively. We selected the area with the most species as the research
object, which included Birch, Larch, Spruce, Mongolia, Willow, and Poplar. Table 1 lists the
three study areas used in this work, where the training samples comprise approximately
one-third of the total samples.

Table 1. List of 6 tree species samples of the three study areas.

Birch Larch Mongolia Poplar Spruce Willow

First area 130,124 39,216 57,620 3019 15,330 3492
Second area 150,771 58,829 11,412 2175 17,048 1067
Third area 99,082 82,746 38,114 1013 13,460 1,515,486

2.3. Classification Method
2.3.1. Hypergraph

The Hypergraph Neural Network, which is commonly referred to as HGNN [21],
has been visually depicted in Figure 2. Each dataset in the multimodal dataset contains
numerous nodes with features. Then, using the complex correlation of multimodal data
sets, several parts of hyperedge features are constructed. The hypergraph adjacency matrix
and node features are input into HGNN to output the pixel features classification map [22].
Hyperedge convolution is computed as follows:

Xk+1 = σ

(
D−

1
2

v HWD−1
e HTD−

1
2

v XkΘk
)

(1)

where Xk ∈ RN×C is the feature of the l th layer. X0 = X, and σ is the nonlinear activation
function. The initial node features Xk are learned through filtering matrix Θk to extract the
dimensional feature C2. Then, according to the node features of the hyperedge RE×C2 , the
hyperedge feature is realized via HT ∈ RE×N. The output node feature is then produced by
multiplying the hyperedge features that are associated with it, and the hyperedge feature
is produced from the matrix H. Dv and De in the Hyperedge convolution play the role
of normalization [21]. Therefore, through hyperedge convolution, the HGNN layer can
successfully extract the high-order correlation of the hypergraph.

Figure 2. Hypergraph neural network (HGNN).
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2.3.2. Overall Architecture

The graph neural network employs an undirected graph to model the data and utilizes
graph convolution for feature extraction by calculating various data relationships. Building
on this method, we propose a tree species classification model that leverages the distinct
framework of hyperspectral and multispectral data modules for feature fusion. The model
takes in a multi-source remote sensing image as input and produces unified fusion features
as output, as illustrated in Figure 3. The framework encompasses association feature
extraction, hypergraph convolution learning, and classifier classification.

Figure 3. Flowchart of multi-source fusion hypergraph convolution network.

The fusion module is designed to extract and merge features from both HSI and MSI
data. The weight matrices of HSI and MSI are merged to generate the incidence matrix of
the multimodal graph, which accounts for complementary information and correlations
between the two data sources. The feature extraction and fusion network is trained using
a loss function that incorporates graph embedding, enabling the network to effectively
capture the features of interest. Finally, the SoftMax classifier is used to categorize the tree
species map at the pixel level.

To lower the dimensionality of the HSI data from 115 to 12, we first employ the KPCA
approach. This generates a vector that represents each pixel in the data collection. The
complete image’s vector is then fed as input to the network. In this setup, XH and XL

correspond to the HSI and MSI data, respectively,

XH =
{

XH
1 , XH

2 , . . . , XH
n

}
, XH

i ∈ R
h (2)

XL =
{

XL
1 , XL

2 , . . . , XL
n

}
, XL

i ∈ R
m (3)

where h and m are the numbers of spectral channels for the HSI and MSI, respectively, and
X is the vector representing the i-th pixel. Therefore, the input of the network is as follows:

X = {X1, X2, . . . , Xn}, Xi ∈ R
h+m (4)

where Xi = CAT
(

XH
i , XL

i

)
, and CAT() represents concatenate operation. Next, we feed

X into the network for feature extraction and fusion. Although the network structure is
not the primary focus of our research, the multimodal graph and graph loss are crucial
for feature extraction and fusion. We employ the Smish method [23] as the activation
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function in this study. In practice, the foundation of the feature extraction network can be
substituted with other networks, such as a convolution layer, because the network’s input
consists of multimodal images. The network outputs unified fused features using the loss
function based on the multimodal graph, which are then provided to the classifier for pixel
recognition. We adopt the FC layer and Softmax layer as the output layer of the proposed
network to demonstrate the potential of multimodal and loss-based graphs function.

2.3.3. Associated Feature Module

The primary objective of multi-source learning is to establish the connection between
various data, which is crucial for comprehending the relationship depicted in multi-source
remote sensing images. By exploiting the relationship between different viewpoints, we
can improve the final interpretation performance [24,25]. This research area has received
increasing attention in the field of data mining over the past decade [26,27]. In this part, we
focus on multi-perspective learning from the perspective of feature fusion and classification
methods. We use the common subspace approach, which maximizes the correlation
between two inputs, as explored via the CCA method. This standard two-view subspace
learning approach is employed to achieve our research objectives.

For a multi-source learning problem, hyperspectral and multispectral images are
represented as α ∈ RL × W ×H, β ∈ RL × W ×M, respectively, where L represents the
length, W represents the width, and H and M represent the number of bands in the two data
sources, respectively. Then, α and β are transformed into V v×H and V v×M, respectively,
v = L × W. We assume that the linear representation of α and β are represented as follows,

UH = r1(α) (5)

UM = r2(β) (6)

r1, r2 represent the projection directions of HSI and MSI, respectively. CCA is obtained
by maximizing the correlation between α and β. The first projection direction can be
obtained by optimizing the following equation, and r1, r2 represent the HSI and MSI
projection axes, respectively. By maximizing the correlation between α and β with the
vector generated by CCA, the following equation can be optimized to yield the initial
projection direction,

maxρ(r1, r2) = r1sHMr2
s.t.r1sHHr1 = 1, r2sMMr2 = 1

(7)

SHM is the covariance matrix of the HSI and MSI among them. The Lagrangian
multiplier operator can be used to maximize the objective function and find the optimal
solution sum of r∗1 and r∗2 for the problem.

U∗H = r∗1(α) (8)

U∗M = r∗2(β) (9)

Multi-source image categorization involves assigning the same space to data from
various sources, as based on Equations (8) and (9). The use of a sum representation
enhances the relevance of the data and features, which is highly beneficial for the multi-
source classification of tree species. This approach not only processes the initial input but
also reduces its redundancy and complexity. However, the rate of convergence for deep
learning is slow [28]. By providing HSI- and MSI-related features, this approach enables the
development of the depth model, which can lead to further improvements in classification
performance.
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2.3.4. Multi-Source Hypergraph Fusion

To efficiently integrate information across multimodal images, input pixels are repre-
sented using a graph structure. Compared to CNNs, the graph structure offers a higher
capacity to capture the relationship between all of the vertices, as the size of the convolution
kernel in a CNN limits the extraction of global information.

Both the association features of HSIs and MSIs processed by the CCA algorithm are
QL × W ×H

h = U∗H, QL × W ×M
m = U∗M, respectively. Each pixel was represented as a vertex

of the hypergraph, and their dimensions are transformed into Xn×H and Yn×M, where
n = L × W = |V| is the number of hypergraph vertices, and H and M represent the
spectral dimensions of the HSIs and MSIs, respectively. Their features are extracted as

X
n×Hj
i and Y

n×Hj
i . For each vertex ν ∈ V and the hyperedge e ∈ E, the incidence matrix

generated from the selected k nearest neighbors is H|V|×|E|, where, |V| = |E| = n.

h(i, j) =

⎧⎨
⎩e

− nσ||xi−xj ||2
∑n

j=1 d(xi ,xj) , xi ∈ Nk
(
xj
)

0
(10)

where σ is an adjustable hyper-parameter, d
(
Xi, Xj

)
is the Euclidean distance between the

two vertices Xi and Xj. The mean value is used to regulate the multimodal distance and
simplify the process of adjusting the hyperparameters.

It was assumed that [f1, f2, . . . , fn] is a multimodal feature vector. According to Equation
(10), the incidence matrix [Hh

1, Hh
2, . . . , Hh

n] and [Hm
1 , Hm

2 , . . . , Hm
n ] of HSIs and MSIs are

calculated, respectively. Then, the fused features are obtained as Hh
f = CAT

(
Hh

1, Hh
2, . . . , Hh

n

)
,

Hm
f = CAT(Hm

1 , Hm
2 , . . . , Hm

n ), where CAT() represents the multi vector connection operation.
Then, the obtained hyperedge features are further studied.

2.3.5. Hyperedge Learning

To obtain fused hyperedges from multimodal features, we connect their incidence
matrices. This process enables the hypergraph convolution in Equation (1) to be applied,
which becomes

Xl+1 = σ

(
D−

1
2

v HfWfD
−1
e HT

f D−
1
2

v XlΘl
)

(11)

In the case of without considering regularization [29], the equation is simplified as
follows:

Xl+1 = σ
(

HfWfH
T
f XlΘl

)
(12)

Since H and W are diagonal matrices, the equation becomes

Xl+1 = σ
((

H1W1HT
1 + . . . HnWnHT

n

)
XlΘl

)
(13)

For multi-source remote sensing images, each node has many characteristics [30]. The
hyperedges of its hypergraph are first learned, respectively, then they are integrated. The
objective function in backpropagation is calculated via cross-entropy loss function and the
final feature map outputs with pixel-level SoftMax function. The Algorithm 1 is presented
as follows:
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Algorithm 1 Pseudo code of hypergraph feature fusion for HSI and MSI

Input: HSI associated feature XH, MSI associated feature XM, neighbor node number k, iteration
number of layer n, number of graph convolution layer g.
1: Generate X′H and X′M by flatting XH and XM, respectively
2: Generate X by connecting X′H and X′M horizontally
3: Generate the fusion incidence matrix of HSI and MSI as H, according to Equations (8) and (9)
4: Calculate the degree diagonal matrix De of the hyperedge and the degree diagonal matrix Dv of
the vertex
5: Initialization parameters W and Θ
6: for i = 1 to n
7: for j = 1 to g
8: Calculate characteristic X according to Equation (10)
9: Xpre = SoftMax(BN(FC(Hconv(X))))
10: Calculate losses L, update W and Θ
11: Gradient back propagation
12: end for
13: end for
14: Output tree species classification map based pixel node

2.3.6. Evaluation Indicators

To test the tree species classification accuracy of the proposed method, the OA, average
accuracy (AA), and Kappa coefficient (kappa), were determined using Equations (14)–(16),
respectively.

OA =
∑k

i=1 C(i, i)
M

, (14)

AA =
∑k

i=1 OA
K

, (15)

kappa =
M ∑k

i=1 C(i, i)−∑k
i=1(C(i,+)C(+, i))

M2 −∑k
i=1(C(i,+)C(+, i))

, (16)

where i and k represent i-th tree species and the size, respectively. OA represents the
proportion of correctly classified samples in the whole test sample, AA denotes the average
accuracy of every tree species, and kappa is a statistical measure that reflects the consistency
between the ground truth and classified ground maps.

3. Results

3.1. Experimental Setup

The experiment uses HJ-1A and Sentinel2A images as datasets, which were introduced
in Section 2.2. Several compared models are as follows:

SpectralNET [31]: A deep learning method for spectral clustering by embedding input
data points into the eigenspace of their associated graph Laplacian matrix and subsequently
clusters them.

FuNet [32]: A new minibatch GCN was proposed by training large-scale GCNs in a
mini-batch mode. The method has the ability to predict data that is not part of the training
set without the need to retrain the networks.

MFDF [33]: A classification model based on decision fusion between multiple features
and super-pixel segmentation, which integrated 2D and 3D Gabor features of multi-source
datasets.

DMULN [6]: end-to-end pattern model which integrates the multi-view features, and
the view union pool was proposed by associating with the feature extractor, and the fused
features are input into the classifier.

The proposed model and other compared methods were evaluated using 10%, 20%,
and 30% of the samples as randomly chosen training sets. For the other samples, we
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allocated 30% of the samples as validation sets and the rest as test sets randomly. Parameter
settings have a great impact on performance. Although the resolution of the datasets is
different, the resolution of the geomap is fixed. The experiment is implemented in Python
3. The parameters of graph convolution are set in Table 2, where ‘Hconv’ refers to the
hypergraph convolution layer.

Table 2. Detailed layers and shape in multi-source fusion hypergraph convolution model.

Layer Shape Layer Shape

Input (500 × 500 × 115) Input (500 × 500 × 12)

CCA (500 × 500 × 17) (500 × 500 × 12)

Calculate Wh Calculate Wm

Normalization Normalization

Hconv 128 Hconv 128

Smish Smish

Fusion hypergraph
Hconv

FC Layer
BN Layer
Softmax

After hypergraph fusion, the proposed model consisted of two FC-BN layers and two
active layers. The patch size was set to 7, and we set both the learning rate and weight
decay to 0.005. We used the KNN method (k = 10) to construct the initial graph for the
datasets, with k values set to [5,10,15,20] and the number of convolution layers set to 15.
We initialized the weights of all methods using the Glorot method. Adam was utilized as
an optimizer, with a maximum of 1000 epochs. To ensure the optimal performance of other
comparative models, we consulted the relevant literature. The method was repeated 100
times, with the average outcome for 10 iterations and the corresponding standard deviation
used as the result. The training procedure was terminated if the loss did not decrease for
100 consecutive epochs.

3.2. Classification Performance Comparison

The average accuracy (AA) of tree species classification in terms of the three multi-
source datasets is shown in Figure 4. The proposed method achieves the highest perfor-
mance, followed by MFDF, FuNet, DMULN, and SpectralNet, as shown. The proposed
model outperforms MFDF, FuNet, DMULN, and SpectralNet by 0.67, 0.46, 0.3, and 0.7,
respectively, in terms of OA, as shown in Figure 5. Figure 6 shows the KAPPA values of the
proposed model are 0.38, 0.23, 0.16, and 0.69 higher than those of MFDF, FuNet, DMULN,
and SpectralNET, respectively. These results indicate that the proposed method is superior
to the other methods. The performance of the proposed model is further demonstrated in
the three figures.
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Figure 4. AA of all methods across the tree species dataset.

 
Figure 5. OA of all methods across three datasets.

 
Figure 6. Kappa of all methods across three datasets.

Tables 3–6 illustrate the confusion matrix of five models used for tree species clas-
sification, and MFDF, FuNet, DMULN, and SpectralNET are unsatisfactory compared
to the proposed model. Spruce is particularly challenging to classify, but the proposed
model has a higher recognition rate for Spruce than that in the other models, leading to an
overall increase in OA. The classification effect of the SpectralNET model is inadequate,
as it identifies almost no other tree species except for Larch and Birch. Other models also
lack the advanced ability to identify multiple tree species. The DMULN model mistakenly
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classified almost 30% of Spruce trees as Larch, while the recognition rate of Poplar was
0. The OA of MFDF for Poplar is 0.61, which is better than DMULN. The classification
performance of FuNet for other tree species is slightly better than DMULN, except for
Spruce. As shown in Figure 5 and Table 7, the recognition rate of the proposed model for
Spruce, Mongolian, and Willow is better than that of MFDF, but the recognition rate for
Spruce is not significantly improved.

Table 3. Confusion matrix of tree species classification using the SpectralNet method. Tree species
code, column (ground truth code), and row (prediction code).

Tree Species Code 0 1 2 3 4 5

Birch 0 462 513 101 99 2 0
Larch 1 428 2535 701 311 0 0

Spruce 2 433 1411 525 103 0 0
Mongolica 3 81 153 52 49 0 0

Willow 4 4 100 0 0 0 0
Poplar 5 2 88 0 0 0 0

Precision 32.76 52.81 38.07 8.71 0 0

Table 4. Confusion matrix of tree species classification when using the DMULN method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 805 342 4 25 0 0
Larch 1 297 3600 16 51 1 0

Spruce 2 186 11.21 507 44 0 0
Mongolica 3 70 103 14 146 0 0

Willow 4 1 68 0 1 32 0
Poplar 5 15 67 1 5 0 0

Precision 68.30 90.01 27.29 43.30 31.69 0

Table 5. Confusion matrix of tree species classification when using the FuNet method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 859 240 42 34 0 1
Larch 1 314 35.66 31 47 0 3

Spruce 2 63 850 930 14 0 1
Mongolica 3 56 126 0 151 0 0

Willow 4 0 70 1 2 30 0
Poplar 5 1 33 0 0 0 55

Precision 73.03 89.98 50.0 45.19 29.29 61.14

Table 6. Confusion matrix of tree species classification when using the MFDF method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 10.81 71 1 21 0 1
Larch 1 390 35.25 7 35 2 3

Spruce 2 39 496 13.00 24 0 0
Mongolica 3 39 32 1 261 0 0

Willow 4 0 13 1 7 82 0
Poplar 5 3 5 0 0 0 81

Precision 91.90 88.95 69.85 78.13 78.72 90.28
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Table 7. Confusion matrix of tree species classification when using the proposed method.

Tree Species Tree Species Code 0 1 2 3 4 5

Birch 0 10.82 71 1 21 0 1
Larch 1 286 3601 74 2 1 0

Spruce 2 48 79 1714 6 5 5
Mongolica 3 12 13 14 290 2 2

Willow 4 7 2 5 0 90 0
Poplar 5 1 3 4 1 0 80

Precision 92.07 90.82 92.14 86.78 85.87 91.05

The results of the various methods used to generate tree species classification maps
in three regions are presented in Figure 7. The proposed method employs the fusion map
convolution method using HJ-1A and Sentinel-2 data, achieving an OA of 0.88, an AA of
0.85, and a Kappa of 0.82 in the consistent areas. The proposed model outperforms other
methods in identifying Spruce and Larch, which have commercial value due to their rarity.
The SpectralNet method performs poorly, followed by DMULN, FuNet, and MFDF. Other
methods have blurred edges, low recognition rates, and a high rate of misclassification and
fragmentation. Overall, the proposed method accurately identifies all of the tree species
and yields favorable results, surpassing the compared methods. The superior performance
is attributed to the proposed strategy based on depth hypergraph convolution fusion and
hyperedge convolution fusion.

 

Figure 7. Tree species classification map of multi-source datasets in three datasets. (1) SpectralNet, (2)
DMULN, (3) FuNet.

3.3. Parameter Analysis

In this section, we utilize three tree species datasets from Section 2.2 to analyze the key
parameters that affect classification performance. These parameters include the labeling
ratio (partial labeling of the total datasets), K value, and depth. We conduct tests and
analyses to examine the impact of these parameters on classification performance. Figure 8
displays the tree species classification accuracy of the five models with varying label
rates. The classification accuracy of all five models increases as the label rates increase.
However, the proposed model achieves desirable accuracy and outperforms the other
methods significantly.
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Figure 8. The accuracy of tree species classification with different label rates.

To verify the robustness of the method, it is advisable to strive for consistency in
the selection of k across different modal features while minimizing any potential impact
on accuracy. This approach allows for a thorough assessment of the method’s resilience,
particularly in terms of its ability to handle variations across modalities. By maintaining
a consistent value of K, the performance of the method can be effectively evaluated, and
the robustness can be determined in terms of achieving accurate results while considering
the unique characteristics of each modality. Figure 9 illustrates the classification accuracy
of three models for different K values (K ∈ {5, 10, 15, 20, 25, 30}). As only three of the
compared models have a K value parameter, the results show that the accuracy of the three
methods varies with K. The accuracy tends to increase as the K value is set between 5 and
15. However, when K is set between 15 and 30, the accuracy starts to decrease.

 
Figure 9. The accuracy of tree species classification with k Values (k value in KNN).

The experimental results demonstrate that the proposed method achieves the best
performance when K is set to 15. These findings lead to two main conclusions: (1) A small
K value may fail to capture the neighborhood of the data, while an increasing K value could
result in incorrect neighborhood samples that render the relationship between samples less
discriminative. (2) The proposed fusion learning method is sensitive to the choice of the
K value.

To investigate the influence of the depth of the proposed model, we set the range of
the DHCN layers to {5, 10, 15, 20, 25}. Figure 10 demonstrates that the accuracy of the
classification result with DHCN is highest when the K value is set to 15, and the method is
not extremely sensitive to the number of layers. However, as the number of layers increases
beyond 15, performance slightly degrades with excessive smooth curve.
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Figure 10. The accuracy of tree species classification with different depths of the proposed model.

As shown in Figures 9 and 10, the main factors that affect the computation time are the
complexity of the datasets, the number of categories, the number of spectral channels, and
the image size. The computation time is influenced by various factors, including image size,
data complexity, and the model parameters. Figures 11 and 12 illustrate the RAM usage and
running time of different models in the classification experiments. Larger images and more
complex datasets necessitate increased memory and computation time. Comparatively, the
GCN-based methods require more memory and time compared to the CNN-based method,
primarily due to the time-consuming computation of the adjacency matrix. However, the
proposed model, with its fusion graph structure, outperforms other GCN methods in terms
of speed. This is achieved by eliminating the utilization of ineffective features, resulting in
improved overall system efficiency. By removing irrelevant or redundant features from the
data, the model can concentrate on the most informative aspects of the input, leading to
enhanced performance and faster computation times.

Figure 11. RAM usage of different models.
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Figure 12. Running time of different models.

4. Discussion

The proposed model first performs typical association analysis on the two data sources
used as the input, maximizes the correlation of multi-source data, performs convolution
calculation on the generated vector to extract features, and then fuses the nodes of its graph
structure. This process not only reduces redundant information but also strengthens the
effective features. Finally, hyperedge convolution is introduced into the graph convolution
training process to adaptively mine the relationship between the representative descriptors
and fully integrate the node and attribute features.

The SpectralNet model exhibits significant statistical advantages when using the
spectral clustering method as it overcomes the scalability and generalization of the spec-
tral embedding. However, in our experiment, the SpectralNet method displayed severe
shortcomings in terms of coniferous forest species classification, with almost no Willow
identified and other tree species misrecognized as Larch. The DMULN method [32] utilizes
an encoder–decoder network to input the features related to the two data sources separately.
Its recognition ability in terms of Mongolian, Poplar, and Willow is better than the other
three methods, owing to the benefits of deep multi-view learning and view pooling. The
DMULN method proved to be superior to SpectralNet in terms of tree species classification
performance as it can learn both spectral and spatial modal features simultaneously during
the experiment. However, it is inferior to FuNet and MFDF. FuNet utilizes mini batches of
non-European features in graph convolution processing as well as European features CNN
processing, which are then fused together. This approach has demonstrated impressive
performance in a single hyperspectral data source. However, in the present experiment, Fu-
Net did not perform as well when using multi-source tree species datasets. MFDF, which is
based on Gabor wavelet feature representation, utilizes a two-dimensional Gabor filter [31],
making it more suitable for feature extraction when using multi-source datasets. As we use
Sentinel-2 data as the multispectral data, which is more effective when extracting spatial
features, the Gabor extraction of spatial features is slightly worse, resulting in a lower OA
in terms of tree species classification compared to the proposed method [34]. However,
its recognition rate for Spruce is significantly lower than the proposed method, which
uses a graph structure to represent the higher-order features. Hyperedge learning also
integrates the features of the graph structure from the two data sources, thus improving the
recognition of Spruce and the overall recognition rate more accurately [33]. The proposed
hypergraph fusion structure can transfer the complex high-order correlation between HSIs
and MSIs, and better represent the underlying data interrelation between them than the
basic graph structure. Additionally, the proposed method has the advantage of fusing
multimodal information into the same data structure with flexible hyperedges, owing to
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the existence of multimodal features. Through hypergraph fusion and hyperedge convo-
lution fusion, the multi-source graph convolution model proposed significantly reduces
computation time while improving learning efficiency.

Our model outperforms the compared models in the classification of six tree species,
yielding a higher AA. The proposed model has several advantages:

(1) The model utilizes multiple graph learning and multi-source fusion, where each
graph provides complementary information that is unique from the other graphs.
By removing the noise hyperedges present in tiny graphs, the model improves tree
species classification performance.

(2) Multi-graph learning is proven to be feasible in tree species classification, and our
model considers both the global and local features of multi-source data simultaneously
with regularization.

(3) Compared to other models, our proposed method is more effective in classifying tree
species by using the fusion of multi-source data. The utilization of multimodal graph
learning enhances the effectiveness of the classification process.

5. Conclusions

In this paper, we proposed a novel model for tree species classification by designing a
multi-source fusion graph neural network. The proposed model first calculates the pixel-
based correlation between HSIs and MSIs, generating two types of hypergraph structures.
Both the HSI graph structure and MSI graph structure are saved in each initial graph
and fused with each other in the hyperedge learning process. The proposed model fuses
the two data sources twice, capturing the global graph from the low-dimensional space
of the original high-dimensional data. We propose a new fusion method that combines
complementary and common information to correctly capture the graph structure inherent
in the data. We evaluated our method using a tree species dataset and compared it with
state-of-the-art approaches. The experimental results show that the proposed method is
effective in improving the accuracy of tree species classification.

In the future, our research aims to investigate multi-source feature fusion algorithms
based on self-supervised learning methods. Additionally, we intend to explore tree species
classification in higher-resolution remote sensing images. These endeavors will further
enhance the accuracy and capabilities of our classification models, enabling us to tackle
more complex and detailed datasets in the field of tree species classification.
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Abstract: Efficient tree species identification is of great importance in forest inventory and manage-
ment. As the textural properties of tree barks vary less notably as a result of seasonal change than
other tree organs, they are more suitable for the identification of tree species using deep learning
models. In this study, we adopted the ConvNeXt convolutional neural network to identify 33 tree
species using the BarkNetV2 dataset, compared the classification accuracy values of different tree
species, and performed visual analysis of the network’s visual features. The results show the fol-
lowing trends: (1) the pre-trained network weights exhibit up to 97.61% classification accuracy for
the test set, indicating that the network has high accuracy; (2) the classification accuracy values of
more than half of the tree species can reach 98%, while the confidence level of correct identification
(probability ratio of true labels) of tree species images is relatively high; and (3) there is a strong
correlation between the network’s visual attractiveness and the tree bark’s biological characteristics,
which share similarities with humans’ organization of tree species. The method suggested in this
study has the potential to increase the efficiency of tree species identification in forest resources
surveys and is of considerable value in forest management.

Keywords: tree species identification; convolutional neural network; bark image; visual attractiveness

1. Introduction

Forest resource inventory is an essential component of forestry, reflecting the quantity,
quality, and dynamic changes of forest resources. Identifying tree species in the survey
area is a primary goal of forest resource inventory. To identify tree species in survey
areas, surveyors typically rely on visual methods based on external characteristics, such
as roots, stems, leaves, flowers, and fruits. For trees that cannot be visually identified,
surveyors usually need to collect specimens and consult reference materials. This manual
identification process requires solid expertise in dendrology and is often time consuming,
costly, and inefficient. Machine learning can be applied to identify tree species and improve
the efficiency of forest resource inventory. In machine learning and cognitive science,
neural networks are models that simulate the structures and functions of biological neural
networks [1,2]. After training, deep neural networks can automatically learn to extract
features from large-scale, diverse, high-dimensional complex data and perform efficient
classification, prediction, and pattern recognition [3].

Early studies of tree species identification usually used artificial neural networks or
support vector machines to analyze the hyper-spectral features of trees, and there were
also multiple methods that used texture feature extraction and descriptors to assist in tree
classification [4–13]. Although these methods reduced some manual costs of classification,
traditional machine learning methods usually required human design or selection of
texture features and descriptors, which were subjective and often could not fully express
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the complexity and diversity of textures, and lost some information during post-processing
operations, such as dimensionality reduction [14–16]. Therefore, the efficiency of traditional
machine learning methods needs to be improved.

Deep learning is a machine learning method that uses deep neural networks to extract
features and automatically learn data representations. Compared to traditional machine
learning methods, deep learning can better discover and extract the feature information in
datasets, thus having a higher generalization ability. The development of deep learning
algorithms led to the increase in network layers, which makes convolutional neural net-
works or multi-feature recognition networks ever-more applicable in species classification
and identification based on forest images [17–20]. For tree species identification, scholars
who use deep learning models usually focus on leaves, flowers, fruits, or tree shapes.
The classifier of the network usually recognizes the entire image as a whole [21], and the
mixed background value can easily confuse the original representation of the network. Tree
organs, such as leaves and flowers, are usually difficult to distinguish from the background
(noise) during image acquisition, making it challenging to obtain precise image informa-
tion for leaves and flowers found on tall trees. In addition, flowers and fruits are only
present at certain times of the year, while leaf information is unavailable during defoliation.
Consequently, there are many challenges involved in species identification using images
of tree organs in forest resource inventory. The morphological characteristics of the bark,
which is the outermost layer of the stems and roots of woody plants, are important features
involved in distinguishing tree species. Employing tree bark as an identifier has several
advantages compared to leaves. Most tree bark shapes are stable, unless subjected to
irreversible disasters (e.g., forest fires), and tree bark textures do not change or change little
with seasonal change [11].

There are few existing studies of tree species identification based on bark texture
features that used deep learning algorithms. Most of these studies used ResNet [22]
network as the basis for analysis and adopted deeper convolutional layers to achieve higher
accuracy when performing bark texture recognition. Carpentier, M. et al. publicized a
bark dataset called BarkNet 1.0, which is also the largest publicly available dataset, and
a high tree species classification accuracy of 93.88% using ResNet18 and ResNet34 [23]
was achieved. Misra et al. implemented an alternative classification method using patch-
based convolutional neural networks that fine-tuned the network’s patch predictions and
determined the image category via majority voting with an ensemble-based classifier [24].
Robert et al. developed DeepBark, which is a model capable of detecting bark surfaces
under high background brightness [25]. Faizal achieved promising results on BarkVN-50
using a deeper network called ResNet101 [26]. Kim et al. trained VGG-16 and EfficientNet,
obtained an identification accuracy value above 90%, and applied class activation mapping
(CAM) aggregation to identify the critical classification features for each tree species [27].
Therefore, the image recognition technology of the convolutional neural network has great
practical value for bark identification, which can quickly and accurately identify tree species,
making forest resource surveys more intelligent and efficient. Using this technique, forestry
workers can collect tree bark images on-site and upload them to the server for identification.
By optimizing data collection and image processing, this identification technique can meet
the needs of forest survey fieldwork teams in terms of efficiency and accuracy.

Most existing studies on tree species identification use pre-trained weights of networks that
were trained on ImageNet, rather than using bark images as the pre-training data [22–27]. This
method could lead to some misclassification and performance degradation. Many researchers
use relatively backward networks to work on image classification of tree species [22–26] (like
ResNet). Compared to some algorithms developed in recent years, the performance of traditional
convolutional neural networks is inferior. Furthermore, due to the difficulty in demonstrating
the identification processes of deep convolutional neural networks on images, only a few studies
combine network vision with the biological features of tree species, thus failing to reveal the
effectiveness of network classification results.
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In this paper, we pre-train three ConvNeXt networks using different depths on the bark
dataset. The three research objectives are as follows: (1) to compare the performances of
these ConvNeXt networks; (2) to analyze the biological features that led to the discrepancies
in classification accuracy values between different tree species; and (3) to explore the
relationships between the visual attractiveness and biological features of bark images of
different tree species.

2. Materials and Methods

2.1. Datasets

Most existing bark datasets for tree species identification based on deep learning
experience categorization problems, such as insufficient data, blurred images, or limited
species diversity. Collecting and producing high-quality bark datasets for deep learning
is time consuming and labor intensive, which impedes academic research in this field.
Therefore, we use a dataset combining previous bark image datasets with new bark images
that we collected in Nanjing, China (Table 1).

Table 1. Partially available public bark image datasets.

Collaborators
Dataset
Name

Species
Number of

Images
Dataset

Size
Creation

Year

Truong Hoang BarkVN 50 50 5578 185 MB 2020
Rémi Ratajczak Bark 101 101 2592 317 MB 2019

Matic Švab TRUNK 12 12 360 1.1 GB 2014
Tae Kyung BARK-KR 54 6918 9.77 GB 2021
Carpentier BarkNet 1.0 23 23616 30.1 GB 2017

Cui BarkNJ 10 7671 21.4 GB 2023

We selected the BarkNet 1.0 dataset (hereafter referred to as BarkNet) as our research
data for the following reasons: (1) BarkNet contains the largest data in terms of the number
of tree species and images, with a total of 23 tree species and 23,616 images. Other datasets,
such as BarkVN50, although covering a relatively larger number of tree species, had a
relatively smaller number of images per tree species. (2) Regarding image quality, most of
the images in the BarkNet dataset were manually cropped to remove noise and irrelevant
background values and only contained clear bark images. Most image backgrounds in
other datasets were not cropped, and some bark images had noisy data, such as shadows,
lighting changes, and halos. Thus, the BarkNet dataset was more suitable for pre-training
the network.

To further expand the dataset used to pre-train the network, we collected some com-
mon tree species in Nanjing using mobile devices, such as mobile phones. The image data
we collected contained 7671 images of 10 tree species found at Nanjing Forestry University,
and we named it BarkNJ. We used a pre-processing method similar to BarkNet to optimize
the images in the dataset, retaining only the clear bark images after noise removal, and
named the combined dataset BarkNetV2. Table 2 shows some details of the dataset used in
this paper. We sorted the Latin names of each tree species and then selected a clear bark
image of each tree species as an example image of that species, as shown in Figure 1.
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Table 2. Basic information of BarkNetV2 used in study. For convenience of training, we named each
tree species in form of a species index, which is index list of tree species.

ID Species Common Name Species Index Number of Trees
Number of

Images

1 Abies balsamea Balsam fir SAB 41 922
2 Acer platanoides Norway maple ERB 1 70
3 Acer rubrum Red maple ERR 64 1676
4 Acer saccharum Sugar maple ERS 81 1911
5 Betula alleghaniensis Yellow birch BOJ 43 1255
6 Betula papyrifera White birch BOP 32 1285
7 Camptotheca acuminata Campo tree CAAA 28 620
8 Cedrus deodara Deodar cedar CSDA 43 874
9 Cinnamomum camphora Camphor wood CMCA 49 947

10 Cupressus funebris Cypress wood CSFS 38 710
11 Fagus grandifolia American beech HEG 41 840
12 Fraxinus americana White ash FRA 61 1472
13 Juniperus chinensis Round cypress JSCS 52 927
14 Koelreuteria paniculata Golden rain tree KAPA 35 627
15 Larix laricina Tamarack MEL 77 1874
16 Liriodendron chinense Liriodendron LNCE 33 562
17 Metasequoia glyptostroboides Redwood MAGS 50 743
18 Ostrya virginiana American hophornbeam OSV 29 612
19 Picea abies Norway spruce EPO 72 1324
20 Picea glauca White spruce PIR 44 596
21 Picea mariana Black spruce EPN 44 885
22 Picea rubens Red spruce EPR 27 740
23 Pinus rigida Pitch pine PID 4 123
24 Pinus resinosa Red pine EPB 29 596
25 Pinus strobus Eastern white pine PIB 39 1023
26 Platanus acerifolia Plane tree PSAA 47 705
27 Populus canadensis Canadian poplar PSCS 69 1044
28 Populus grandidentata Big-tooth aspen PEG 3 64
29 Populus tremuloides Quaking aspen PET 58 1037
30 Quercus rubra Northern red oak CHR 109 2724
31 Thuja occidentalis Northern white cedar THO 38 746
32 Tsuga canadensis Eastern hemlock PRU 45 986
33 Ulmus americana American elm ORA 24 767

Total NA NA NA 1398 31,287

Note: For convenience of distinction, images named with three capital letters are images located in BarkNet
dataset. Images named with four capital letters are located in BarkNJ dataset that we collected. Tree species
mentioned in BarkNet are typical of eastern coastal forests of Canada (sub-boreal coniferous forest climate and
humid continental climate), whereas species mentioned in BarkNJ are common in eastern China (subtropical
monsoon climate).
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Figure 1. Bark sample images and index of different tree species in BarkNet dataset.

2.2. Methodology
2.2.1. Selection of the Networks

Facebook AI Research and UC Berkeley jointly proposed a pure convolutional neu-
ral network called ConvNeXt [28], which achieved the highest classification accuracy on
ImageNet with convolutional structure alone, surpassing the accuracy of the Swin Trans-
former tool proposed during the same period [29]. To optimize the network performance,
the architecture of ConvNeXt uses a series of Vit strategies, which is similar to the Swin
Transformer architecture. The ConvNeXt architecture is shown in Figure 2.

The modifications in the ConvNeXt architecture can be specified as follows: (1) the
ratio of stacked block layers is adjusted to 1:1:9:1, with block 3 containing the highest
percentage of stacked blocks. This modification is made to balance the computational
requirements with performance. (2) The ResNet stem is modified to adopt the Patchify
backbone used in Transformer to improve the network’s performance. (3) Grouped con-
volution in ResNet is replaced with depth-wise convolution, with the number of groups
being the same as the number of channels. (4) The Bottleneck module of ResNet is substi-
tuted for a modified version of the MobileNetV2 Inverted Bottleneck module to optimize
network performance. (5) The depth-wise convolutional layers are moved up to match the
placement of the MHA (Multi-Headed Attention) module before the MLP (Multiple Layer
Perceptron) layers in the Swin Transformer architecture. Additionally, the size of the convo-
lutional kernel is changed from 3 × 3 to 7 × 7 to align with the Swin Transformer. (6) The
activation function of ConvNeXt is replaced with Gelu, which is the same as the Swin
Transformer. Additionally, the number of normalization layers and activation functions in
a block is reduced, with only normalization layers retained after a depth-wise convolution
operation. (7) The down-sampling layer is created by combining a layer normalization and
a convolutional layer with a kernel size of 2 and a stride size of 2.
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Figure 2. ConvNeXt network architecture (ConvNeXt-B as an example). (a) shows network workflow,
while (b) depicts architecture of each block in a stage of network.

By adjusting the feature dimensions and the number of individual blocks, ConvNeXt
can be divided into four networks of different depths, which correspond to the compu-
tational complexity of different Swin Transformer versions. The network parameters for
each type are given in Table 3. It should be noted that the smaller networks of ConvNeXt-T
and ConvNeXt-S have the same feature dimensions, though the ratio for the number of
each block in the stage is different. Liu et al. believe that retaining the same number of
stacked layers as in the Swin Transformer can achieve a better effect; thus, the results of
ConvNeXt-T, in our experiments, are only used for reference [28,29]. Using a network
with high computational complexity on a small dataset may lead to the network becoming
overfitted. The number of images used in our dataset is considerably smaller than that of
ImageNet, and the computational complexity of ConvNeXt-L is excessive for this amount
of data. Furthermore, as Table 3 shows, despite having more than double the parameters,
ConvNeXt-L provides only a 0.4% accuracy gain over ConvNeXt-B. Therefore, we omitted
ConvNeXt-L from our experiments.

Table 3. Main parameters of four ConvNeXt networks.

Network
Parameters

(M)
Channels Stage Flops (G)

Accuracy
(ImageNet-1k)

ConvNeXt-T(tiny) 28.59 (96, 192, 384, 768) (3, 3, 9, 3) 4.46 82.1%
ConvNeXt-S(small) 50.22 (96, 192, 384, 768) (3, 3, 27, 3) 8.69 83.1%
ConvNeXt-B(base) 88.59 (128, 256, 512, 1024) (3, 3, 27, 3) 15.36 85.1%
ConvNeXt-L(large) 197.77 (192, 384, 768, 1536) (3, 3, 27, 3) 34.37 85.5%

Note: Parameters denotes number of network parameters, Channels denote number of channel dimensions,
Stage denotes proportion of blocks per stage in network structure, and Flops denotes floating-point operations
per second.

2.2.2. Setting of the Network Parameters

All training of ConvNeXt was performed via a PyTorch 1.11.0+cu113 with Python
version 3.9.9. In contrast to Carpentier et al.’s study, we did not download pre-trained
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weights from ImageNet for transfer learning [23]. Instead, we selected the ConvNeXt
network, which was a superior-performing convolutional neural network used for pre-
training of the bark dataset.

Due to the significant differences between the ImageNet and BarkNetV2 networks, we
recalculated the channel means and variances of all images and randomly split the training,
validation, and test sets by 70%, 20%, and 10%, respectively, using the random seed setting.
As the resolution of bark images in our datasets is high, training directly with bark images
may degrade the network’s performance. Thus, the images of the training and validation
sets were randomly cropped and centered, respectively, and the processed images were
horizontally randomly rotated. The size of the images sent to the network for training was
uniformly set to 224 × 224 pixels to maximize the capability of the graphics card.

Paszke and Sebastian used theoretical deduction and experimental verification to
prove that choosing a multiple of two or eight as a batch size made no significant difference
in practice [30,31]. Therefore, to maximize the efficiency of the graphics card while keeping
the variables consistent, we set the batch size to 32, and the total number of training cycles
was set to 50 epochs. Weight decay is a form of regularization that can effectively reduce
the overfitting of deep networks; thus, we chose AdamW to be the optimizer and set the
weight decay rate to 0.05. As the network needs to use the bark dataset for pre-training,
we chose an appropriate learning rate of 0.001, which meant that the weights changed less
with each iteration. The network took more time to reach its optimal value while finding
the optimal value of the loss function. We set the first 10 epochs of the total training period
as warm-up learning, during which stage the learning rate gradually increased with the
pre-set value to stabilize the network. After the network was relatively stable, training
was conducted according to the pre-set learning rate, which could make the network more
quickly converge and have a better training effect. The main parameters for pre-training
three ConvNeXt networks with different depths are listed in Table 4.

Table 4. Pre-training parameters for three ConvNeXt networks.

Network Batch Size Image Size
Learning

Rate
Learning Rate

Schedule
Training
Epochs

Warm-Up
Epochs

ConvNeXt-T 32 224 × 224 1 × 10−3 Cosine decay 50 10
ConvNeXt-S 32 224 × 224 1 × 10−3 Cosine decay 50 10
ConvNeXt-B 32 224 × 224 1 × 10−3 Cosine decay 50 10

2.2.3. Visualization of the Network Workflow

Despite the excellent performance of convolutional neural networks in various types
of image identification tasks, the process of network recognition is often considered a
black box, preventing the observation of the internal working mechanism. Therefore, we
tried to use some visualization methods to reveal the correlation between the biological
characteristics of different tree species and the visual mechanisms of deep convolutional
neural networks. The following three methods were used in this study to visualize the
network workflow: (1) Integrated Gradients, which attributed the projection of a deep
network to its input, rather than a particular layer, by invoking the gradient operator [32].
There are several methods for visualizing the internal components of deep neural networks.
Integrated Gradients is a widely applicable approach with a robust theoretical foundation.
(2) Smooth Grad CAM++ combined with Grad-CAM and Smooth Grad, which is a tech-
nique that can model and visualize a subset of feature maps or neurons at each neural
network level [33–35], was also used. The output visualization presented a hierarchical fea-
ture that effectively incorporated the elements of visual appeal, localization, and object-like
capture. (3) Deep Feature Decomposition, which provides insight into clustering patterns
in feature space and presents results as heat maps, was also used. The maps used different
colors to differentiate between concepts and adjusted the intensity to highlight semantically
similar image regions [36].
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3. Results and Analysis

3.1. Comparison of Identification Results

Figure 3 demonstrates the identification accuracy and loss value of three ConvNeXt
networks with varying depths during training. Figure 3a shows that the identification
accuracy of ConvNeXt-S on the 22nd epoch validation set exceeded 90%, indicating that
the network achieved a high accuracy rate. In contrast to the rapid improvement in
identification accuracy during initial training, the identification accuracy of the network on
the validation set increased from 90 to 97% between the 22nd and 40th epochs. After about
20 epochs of training, the accuracy only increased by about 7%. The network gradually
stabilized after the 40th epoch, with minimal change in accuracy. At the 50th epoch, the
network’s Top-1 accuracy on the validation set reached 97.71%. It is worth noting that
the lightweight network of ConvNeXt-S increased the Top-1 accuracy on the test set to
97.61%, surpassing that of ConvNeXt-B (97.58%). In Figure 3b, the training process of
ConvNeXt-B and ConvNeXt-S was similar. However, due to the more significant number of
parameters, the training curve of ConvNeXt-B was relatively more stable than ConvNeXt-S.
The identification accuracy of ConvNeXt-B first exceeded 90% at the 24th epoch. The
network gradually stabilized after training reached 40 epochs, reaching the maximum
Top-1 accuracy on the validation and test sets at the 50th epoch, with 97.79% and 97.58%,
respectively. In Figure 3c, the shallower depth of ConvNeXt-T resulted in a more extended
period in which the identification accuracy of the validation set first reached 90% (26th
epoch) and more fluctuations occurred compared to other networks. After 50 epochs of
training, the Top-1 accuracy of ConvNeXt-T on the validation and test sets reached 97.49%
and 97.29%, respectively.

Figure 3. Training process of ConvNeXt network. In (a–c), vaild_acc1 and vaild_acc5 represent
Top-1 and Top-5 accuracies on validation set, respectively, and value in parentheses in subheadings
indicates highest Top-1 accuracy of network on test set. In (d–f), train_loss and test_loss indicate loss
function values of network on training and validation sets, respectively. A reference line is added to
indicate moment when Top-1 accuracy of pre-training network initially reaches 90%.
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Figure 3d shows that the ConvNeXt-S loss function values changed during training.
Due to the small initial learning rate of the warm-up phase, the curve decreased rapidly
during the first 10 epochs. When the network first achieved 90% identification accuracy
on the validation set, the corresponding loss value was 0.494. It should be noted that the
curve did not fluctuate much over a long period after reaching 90% identification accuracy,
and the curve eventually stabilized at the 40th epoch. Subsequently, the fluctuation of the
loss value curve was almost negligible. Figure 3e,f show that the training processes for the
ConvNeXt-B and ConvNeXt-T were, in principle, very similar to those of the ConvNeXt-S.
The loss values of the three networks of different depths decreased at basically the same
downward trend. However, the deeper network of ConvNeXt-B could fit earlier, and its
training process was more stable than those of the other two networks. When the training
reached about 40 epochs, the loss function curves of the three networks stabilized and
experienced no significant fluctuations.

In general, deeper networks are typically associated with superior non-linear rep-
resentation capabilities, enabling the learning of more complex transformations and ac-
commodating more complicated feature inputs. However, our experiments demonstrate
the opposite results: deeper networks exhibit a slightly lower degree of classification ac-
curacy compared to shallower networks. This result probably occurs because the bark
images, which mainly consist of texture and color, are much simpler than images in multi-
classification datasets, such as CIFAR and ImageNet, and shallow learners can effectively
distinguish these bark features. Therefore, using deep networks can result in gradient
instability and network degradation, which inevitably reduces the learning capacity of
specific deep layers of uncomplicated datasets. Consequently, this issue leads to a reduction
in identification performance on a new dataset.

3.2. Identification Precision by Species

A confusion matrix is a table that shows the extent to which a model predicted the
correct class for each test datum, as well as the extent to which it made mistakes. The
confusion matrix in Figure 4 shows the average identification accuracy of different tree
species on the test set using the pre-trained weights obtained by pre-training the ConvNeXt-
S network (without finetune) on the BarkNetV2 dataset. The results demonstrate that
ConvNeXt-S achieved high identification accuracy (above 98%) for about half of the tree
species. However, the identification accuracy of some tree species was relatively low,
with an average accuracy rate of approximately 95%. The tree species with relatively low
identification accuracy for ConvNeXt-S were EPR (Acer rubrum), ORA (Ulmus americana),
OSV (Ostrya virginiana), and SAB (Abies balsamea). It should be noted that due to the limited
number of bark images available for ERB (Acer platanoides), PEG (Populus grandidentata),
and PID (Pinus rigida), the pre-trained weights obtained may not apply to the practical
classification tasks for these tree species, despite there being no misidentifications of these
species in the experiment.

When performing an identification task, a network typically uses a classical voting
method to select the label that corresponds to the highest value of category probability
as the predicted class output, as with ConvNeXt. The confusion matrix can indicate
the identification accuracy of the network for each tree species, but it cannot effectively
express the prediction correctness (i.e., the proportion of the tree species with the highest
probability value). To address this issue, we loaded the pre-trained optimal weights for
multi-label prediction onto the BarkNetV2 test set. Next, we obtained the predicted labels
and corresponding category probabilities of 33 tree species found on the network (Table 5).
In Table 5, the category probabilities indicate the confidence level of the network for accurate
identification, while the mean and standard deviation of category probabilities indicate the
average categorical confidence and the dispersion of the category probabilities, respectively.
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Figure 4. ConvNeXt-S confusion matrix on test set. True Class and Prediction Class represent tree
species index and the network prediction, respectively. Average classification accuracy of each tree
species is shown in parentheses next to Prediction Class.

Table 5. Identification confidence of ConvNeXt-S.

Species Index Scientific Name Test Image Mean Std Accuracy

BOJ Betula alleghaniensis 126 0.7952 0.1451 97.62%
BOP Betula papyrifera 129 0.7899 0.1701 96.12%

CAAA Camptotheca acuminata 62 0.8049 0.1104 98.39%
CHR Quercus rubra 273 0.7528 0.1713 95.97%

CMCA Cinnamomum camphora 95 0.8344 0.0354 100.00%
CSDA Cedrus deodara 88 0.8262 0.0328 100.00%
CSFS Cupressus funebris 71 0.7988 0.0697 100.00%
EPB Pinus resinosa 60 0.7465 0.2051 95.00%
EPN Picea mariana 89 0.8049 0.0794 100.00%
EPO Picea abies 133 0.7760 0.1517 96.99%
EPR Picea rubens 74 0.7925 0.1594 93.24%
ERB Acer platanoides 7 0.7662 0.1027 100.00%
ERR Acer rubrum 168 0.7654 0.1646 95.24%
ERS Acer saccharum 192 0.7215 0.2241 95.31%
FRA Fraxinus americana 148 0.8041 0.0846 98.65%
HEG Fagus grandifolia 84 0.7993 0.1348 98.81%
JSCS Juniperus chinensis 93 0.8190 0.0936 100.00%

KAPA Koelreuteria paniculata 63 0.8299 0.0307 100.00%
LNCE Liriodendron chinense 57 0.7917 0.0907 98.25%
MAGS Metasequoia glyptostroboides 75 0.7926 0.1030 98.67%
MEL Larix laricina 188 0.8451 0.0323 100.00%
ORA Ulmus americana 77 0.7246 0.1991 94.81%
OSV Ostrya virginiana 62 0.7519 0.1867 88.71%
PEG Populus grandidentata 7 0.9040 0.0805 100.00%
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Table 5. Cont.

Species Index Scientific Name Test Image Mean Std Accuracy

PET Populus tremuloides 104 0.8061 0.0889 99.04%
PIB Pinus strobus 103 0.7855 0.1454 100.00%
PID Pinus rigida 13 0.7917 0.1131 100.00%
PIR Picea glauca 60 0.7904 0.1546 98.33%
PRU Tsuga canadensis 99 0.8027 0.1131 98.99%

PSAA Platanus acerifolia 71 0.8106 0.0573 98.59%
PSCS Populus canadensis 105 0.8280 0.0295 100.00%
SAB Abies balsamea 93 0.7572 0.1913 93.55%
THO Thuja occidentalis 75 0.8108 0.0501 100.00%

Note: Test image indicates number of images in test set for each category. Mean and Std indicate mean and
standard deviation of category probability, respectively. When top-1 category is true label, we record its probability.
Otherwise, its probability is recorded as zero. Means and variances in category probabilities are obtained via
statistics on classification results of all images in test set. Accuracy indicates identification accuracy of each
tree species.

A higher degree of variability in the category probabilities implies a lower level of
confidence in the network’s ability to generate valid predictions. Moreover, the identifi-
cation accuracy of a tree species on the network would be adversely affected by the high
degree of fluctuation in its category probabilities. The pre-trained weights of ConvNeXt-S
achieved excellent identification results for PEG (Populus grandidentata), MEL (Larix laric-
ina), and CMCA (Cinnamomum camphora), with high confidence probabilities noted for the
categories, as well as an overall identification accuracy of almost 100%. In contrast, for
ERS (Acer saccharum), SAB (Abies balsamea), ORA (Ulmus americana), and others, the pre-
trained weights were significantly less confident than the average figure, and the overall
recognition accuracy for these species was generally in the range of 90% to 95%. It is worth
mentioning that ConvNeXt-S achieved higher identification accuracy on the species in our
BarkNJ dataset than in BarkNet, and the confidence probabilities of the categories are also
higher than in BarkNet, thus showing the advantages of our dataset.

3.3. Visualization of Network Identification Process
3.3.1. Selection of Sample Images

All three networks showed some misidentified images, although their overall iden-
tification accuracies were slightly different. Tree species from the same family or genus
are often difficult to distinguish in terms of morphological features; even deep learning
networks may confuse these species. Many closely taxonomically related tree species
mentioned in BarkNetV2 were used in this study, such as Betula alleghaniensis (yellow birch)
and Betula papyrifera (white birch) in the genus Birch of the family Betulaceae; Pinus resinosa
(red pine) and Picea rubens (red spruce), which are both in the family Pinaceae; and Pinus
strobus (eastern white pine) and Tsuga canadensis (eastern hemlock) in the family Pinaceae.
Furthermore, sun illumination, bark occlusion, or camera shaking during image acquisition
may cause noises in the images. These noises may cause the network to misidentify features
of the tree species during the identification process.

The workflow of neural networks is widely considered to be a black box, making
it difficult to observe the identification process in detail. To further investigate how the
ConvNeXt network identifies bark images, eight photos were selected as sample images for
the visualization of the network workflow, and the details of the sample images are shown
in Table 6. To ensure the effectiveness of the visualization work, we followed the below
procedures to select sample images: four images with high classification accuracy (high
overall accuracy for the category and high confidence for a single prediction) and four
images with poor classification accuracy (i.e., each of the three networks misidentified the
image as another tree species) were selected. The visualization section utilizes the optimal
weights of the ConvNeXt-S network. The four selected high-identification precision images
were sourced from the following tree species: MEL (Larix laricina), EPO (Picea abies), LCNE
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(Liriodendron chinense), and MAGS (Metasequoia glyptostroboides). In contrast, the four
selected low-identification precision images were sourced from the following tree species:
SAB (Abies balsamea), ERS (Acer saccharum), OSV (Ostrya virginiana), and CAAA (Camptotheca
acuminata). The details of the selected eight images are shown in Table 6, which shows the
Top-4 prediction categories with the highest probabilities and the species identified by the
network (the classes corresponding to Top-1 Accuracy).

Table 6. Details of sample image.

True Class
Prediction Top-K Accuracy

1 2 3 4
Sum

of
Top-n

MEL (Larix laricina) 0.865 (MEL) 0.007 (ERR) 0.007 (ERS) 0.007 (ERR) 0.133
EPO (Picea abies) 0.830 (EPO) 0.014 (MEL) 0.012 (EPR) 0.009 (ERR) 0.117

LNCE (Liriodendron chinense) 0.834 (LNCE) 0.012 (ERR) 0.011 (CHR) 0.008 (PET) 0.136
MAGS (Metasequoia

glyptostroboides) 0.856 (MAGS) 0.007 (MEL) 0.007 (FRA) 0.006 (SAB) 0.123

SAB (Abies balsamea) 0.569 (EPN) 0.272 (SAB) 0.020 (EPO) 0.011 (PIR) 0.128
ERS (Acer saccharum) 0.644 (FRA) 0.131 (CHR) 0.080 (ERS) 0.018 (ERR) 0.127

OSV (Ostrya virginiana) 0.853 (ERR) 0.012 (PIB) 0.011 (FRA) 0.010 (LNCE) 0.114
CAAA (Camptotheca

acuminata) 0.770 (PSCS) 0.028 (FRA) 0.020 (ERR) 0.013 (THO) 0.169

Note: Prediction Top-K Accuracy denotes prediction probability of top-k items of network weights on image, and
Sum of Top-n denotes sum of probabilities of categories other than top-4 items.

3.3.2. Integrated Gradient Visualization

The results of integrated gradient visualization in the format of dotted raster images
can be seen in Figure 5, in which the original image and the bark outline predicted via
network vision can roughly be seen. By applying this method to a neural network, it is
possible to generate saliency maps that highlight the regions of an image that are most
relevant for identification.

Figure 5. Integrated gradient visualization for network prediction. Left image presents original
image, right image is visualization of deep network visual attractiveness captured after adding
Gaussian noise smoothing, green color is location of high attractiveness, and deeper color indicates
region’s importance within network vision.

The bark image of Larix laricina has a network visual distribution that is mainly on
brick-red bark under the thin scales, while the bark image of Picea abies is mainly composed
of rough paper-like scales, which are deep red–brown in color and accompanied by cracks
and trim pieces that partially stem from the lenticel. The visual distribution of the network
is more concentrated at the joints between thick scales and the location where the lenticel
grow. The bark image of Liriodendron chinense is dominated by vertical texture, which
mainly highlights vertical stripes and slab exfoliation. Similarly, the visual distribution
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of the network of this bark image is more concentrated at the joints between thick scales.
The bark image of Metasequoia glyptostroboides is dark brown, cracked, and flaked, and the
texture of the bark image shows tapered branching and ascending branches, with evident
visual attraction at cracks and spalls. In the four bark images with lower identification
accuracy rates, the network visualizations are roughly concentrated on the scale cracks
and the visually prominent exposed bark. However, the location of the concentrated
visual attraction of the biological characteristics of identified tree species slightly deviates
from the correct tree species. Therefore, the visualization shows that pre-trained weights
derived from our experiments enable a human-like approach to bark perception by focusing
attention on regions exhibiting distinct biological features.

3.3.3. Class Activation Mapping Hot Spots

Smooth Grad-CAM++ was utilized to produce heat maps that corresponded to three
neural network stages (excluding stage one due to its limited representational capacity).
This approach allowed us to visualize the spatial distribution and importance of visual
features in each network layer. The heat map was obtained by weighting the feature maps
with the corresponding convolutional weights and computing the average across entire
feature maps. The resulting heat map visualizes the regions on the image that most strongly
influence the final identification decision. The overlay of the original image with the heat
map allows us to observe the change in the network’s visual recognition of the actual image
(Figure 6).

Figure 6. Class activation mapping generated via Smooth Grad CAM++. Visual appeal is positioned
to simulate three stages of ConvNeXt-S network, representing high and low visual attractiveness on
a heat map. Distribution map of cold spots on bark image is made by superimposing original image
to heat map.
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For the four images with high recognition accuracy, we found that the network visual
attractiveness heat map produced via Class activation mapping was basically located at
some positions with distinct tree species features. For example, the exposed brick-red
bark of Larix laricina and Picea abies, as well as the vertical spalls and cracks of Lirioden-
dron chinense, were similar to the results produced via Integrated Gradient visualization.
However, the heat maps exhibited imprecise positioning in the four images with lower
classification accuracy rates. For instance, the extraction algorithm failed to effectively
capture the texture features within the seams of Acer saccharum and Ostrya virginiana bark
images. Additionally, the network generated for Abies balsamea and Camptotheca acuminata
displayed incorrect visual locations, resulting in inaccurate coverage.

3.3.4. Image Depth Feature Decomposition

Using deep feature decomposition to perform visualization of category probabilities
on four misidentified images, we obtained visualization results similar to those obtained
via semantic segmentation (Figure 7). Based on this result, we know which bark image
that blocks the network identifies as which tree species. On the bark image of Larix laricina,
most areas are identified with the correct label, though there are still a few areas with
potential identification errors, i.e., misidentified as CHR (Quercus rubra). The identification
precision of Picea abies is relatively higher, with only a tiny portion (one of the lenticel) being
misidentified as FRA (Fraxinus americana). Both bark images of Liriodendron chinense and
Metasequoia glyptostroboides have relatively noticeable vertical peeling and cracks. Therefore,
the decomposition results of these two bark images show a vertical distribution, with
only a few misidentification errors appearing on the edge of the bark images, which are
misidentified as ERS (Acer saccharum) and CHR (Quercus rubra), respectively. On the bark
image of Abies balsamea, only the area in the lower part of the image was correctly identified
as SAB, while other areas were identified as EPN (Picea mariana) and CHR (Quercus rubra).
The identification results of Acer saccharum are even worse, and the feature decomposition
identifies all areas of the image as FRA (Fraxinus americana), indicating that the network’s
feature extractor failed to obtain adequate classification information. On the bark image of
Ostrya virginiana, there is a large misidentified area in which the tree species is mislabeled
as FRA (Fraxinus americana) and ERR (Acer rubrum), in different places. In contrast to the
above cases, the mislabeled places on the bark image of Camptotheca acuminata exhibit an
extensive vertical distribution, in which the tree species is primarily mislabeled as PSCS
(Populus canadensis).

Figure 7. Visualization of network depth feature decomposition. Original image is shown on
left. Right image is semantically segmented via deep feature decomposition into regions reflecting
different category features, using different colors to mark feature regions. Title contains tree species
IDs and corresponding predicted category probabilities.
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4. Discussion

Our experiments show that the ConvNeXt network can accurately identify 33 tree
species, with an average accuracy rate of 97.61% on the test set, using bark images in the
BarkNetV2 dataset. Compared to the identification results obtained using other models on
the BarkNet dataset, the ConvNeXt network used in our experiments outperformed the
identification results of previous studies.

Transfer learning is a technique where a model trained to perform one task is adapted
for another related task. The advantage of transfer learning is that it can save time and
computational resources by leveraging the knowledge contained within a large dataset
(such as ImageNet) for use in a smaller dataset (such as CIFAR-10). Despite the fact
that the network weights obtained via ImageNet are generally applicable, there may be
cases where the network performance was not as expected for specific identification tasks.
Taxonomically similar trees often show a high degree of similarity in appearance; thus,
it is difficult to identify species with very similar taxonomic attributes based on bark
images, as demonstrated by our experimental results. The network frequently fails to
accurately distinguish tree species with similar identification features or low identification
confidence. It is worth mentioning that the same tree species often undergo several phases
of changes during the growth process. Although the bark changes much less than other
tree organs, some morphological changes may also occur, such as plate shedding, groove
deepening, and plate scale thickening. Therefore, if the network pays too much attention
to local features on bark images, instead of capturing the common biological patterns at
the species level, the network may experience overfitting, and the overall identification
performance of the network will be reduced. For these identification tasks, network pre-
training can incorporate similar features from different categories more effectively than
transfer learning. Compared to the results obtained in the study by Carpentier and Kim,
who utilized ImageNet pre-trained weights, the network pre-trained weights obtained
through our training on BarkNetV2 have better identification capabilities [23,27].

During the training process, the accuracy and loss function curves of the three types of
networks were generally similar. Although ConvNeXt-B has more parameters, ConvNeXt-
S performed better on the test set, possibly because having too many parameters may
decrease the network’s generalization ability, impairing its predictive performance. The
reason for this issue lies in the fact that increasing the number of parameters in the net-
work may cause it to experience overfitting of the noise in the training data, instead of
capturing the potential signal, leading to a model that is highly accurate on the training
set but performs poorly on a new dataset. Although the overall identification accuracy is
considerably high, the confusion matrix results show that it is often difficult to distinguish
some taxonomically similar tree species. Pre-trained weights of the network often produce
misidentification among tree species in the same family or genus. For example, BOJ (Betula
alleghaniensis) is often confused with BOP (Betula papyrifera), while EPR (Acer platanoides),
ERS (Acer saccharum), and ERR (Acer rubrum) are misidentified many times. Moreover, EPO
(Picea abies) and EPR (Picea rubens) are often difficult to distinguish. The identification of
taxonomically similar trees is a challenging task for convolutional neural networks (CNNs).
The high degree of similarity between such tree species often leads to misidentifications,
which is a critical issue in image recognition and identification tasks. When the CNNs
are pre-trained for one category and tested via another closely related category, such as
different species of plants or animals, misidentifications are likely to occur due to the
inherent variations in features and patterns. It is also worth mentioning that the result of
the confusion matrix in our experiment shows that the network pre-trained weights rarely
show misidentifications for the tree species in BarkNJ, and the overall identification accu-
racy is greater than that of the tree species in BarkNet with higher identification confidence.
This result occurs because the bark images collected in this paper exclude the effects of
lighting and shadows, and the subsequent processing also removes the images containing
noise, which makes our BarkNJ dataset superior to BarkNet in terms of quality.

70



Forests 2023, 14, 1292

Tree bark provides essential information about tree species and their environmental
conditions. Different kinds of trees possess unique bark properties, such as smooth or
rough textures, that can be used to differentiate them. In the case of tree identification, the
network would be fed with data about different tree species, including information about
their taxonomic attributes and bark characteristics. These data would be used to train the
network to recognize patterns unique to each species, as well as to use those patterns to
identify new samples of trees. Feature extraction is an essential technique in CNNs that
allows the network to focus on the most critical aspects of the image and ignore irrelevant
or redundant features. For example, the network architecture can be designed to extract
bark-related features, such as texture, pattern, or thickness, to distinguish different tree
species based on their bark characteristics. However, the neural network feature extraction
process is often called a black box. The network learns to identify and extract features
from the input data most relevant to the task, and these features can be highly abstract and
difficult to interpret or visualize. During our visualization, we found that the pre-trained
neural network weights selectively focused on regions of the image that exhibited distinct
features, including grooves, cracks, and lenticels, which strongly resemble the ways in
which humans recognize tree species based on bark image. Our findings suggest that the
network’s identification mechanism is closely linked to tree species’ taxonomic attributes
and their bark’s unique biological features, as indicated based on the patterns revealed
during our visualization experiment.

Integrated Gradients, Grad CAM, and Deep Feature Decomposition are three visual-
ization methods that aim to explain the predictions of deep convolutional neural networks
by highlighting the regions or features that contribute to the output. However, these meth-
ods also have some limitations [37–39]. For example, Integrated Gradients may not be able
to capture certain types of relationships between the input and output of a model. When
applied to some models, Grad CAM may produce noisy or blurry heat maps. Deep Feature
Decomposition requires a pre-trained autoencoder to reconstruct the input image from the
decomposed features, which may introduce reconstruction errors or artifacts. Therefore, in
our future research, deep network visualization techniques must be further improved to
better reveal the principles and characteristics of the network workflow.

The image recognition technology that uses convolutional neural network has signifi-
cant practical value in identifying tree species based on bark images, which can improve the
intelligence and efficiency of forest resource surveys through fast and precise identification
of tree species. The traditional methods of tree species identification in the field are less
efficient, especially for tall trees, whose leaves are visually difficult to differentiate. For
deciduous tree species, it requires significant effort to collect samples of leaves or flowers for
identification during the fall or winter. The application of handheld mobile devices makes
tree species identification in the field based on bark images more convenient and simplifies
the sampling process. Combined with lightweight convolutional neural networks, the
efficiency of field identification of tree species can be greatly improved. The technology
proposed in our study enables forest workers to collect bark images in the field and upload
them to a back-end server for identification. Through the optimization of data collection
and image processing, the tree species identification technology proposed in our study
can meet the needs of field workers in terms of identification efficiency and accuracy. In
addition, through both the accumulation of a large number of bark images and network
optimization, the accuracy and generalization performance of the neural network can be
continuously improved, further improving the predictability of the model in different
environmental settings.

In traditional deep learning processes, it is often necessary to use large amounts of
data to train a model to achieve good performance, which usually entails high costs and
complicated data acquisition processes. In contrast, few-shot learning techniques are able
to use the prior experiences as input data, thus significantly reducing data requirements
and providing a more cost-effective solution. In addition, few-shot learning techniques can
also improve the robustness of models, allowing machine learning algorithms to maintain
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a high level of accuracy in the face of more complex scenarios. In future research, we will
explore the application of few-shot learning to tree species identification to obtain a model
with better generalization ability, while reducing the amount of data required for training.
In addition, we will continue to collect bark images to build a large-scale bark dataset for
deep learning.

5. Conclusions

Based on the BarkNetV2 bark dataset, we used three ConvNeXt networks with dif-
ferent depths for tree species identification through bark images. In our experiments, the
networks could identify 33 different tree species with an identification accuracy of 97.62%,
exceeding the performances reported in previous works. Confusion matrices and category
probability tables showed that more than half of the tree species could be accurately distin-
guished with high identification confidence. We described the workflow of network feature
extraction by integrating gradients and other visualization methods, and we analyzed the
correlation between the visual attractions of the network and the biological features of the
tree bark. The results show that the location and importance of the visual attractions of the
network are closely related to the biological characteristics of the tree bark. Additionally,
we created a new dataset called BarkNJ, which consisted of images of a higher quality than
those located in BarkNet. During the experiments, the tree species in the BarkNJ dataset
achieved almost complete correct identification. Based on these results, transfer learning
and fine-tuning of neural networks can further expand their application scenarios and
create considerable potential application value in forest resource surveys both in China
and abroad.
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Abstract: Green plums have produced significant economic benefits because of their nutritional and
medicinal value. However, green plums are affected by factors such as plant diseases and insect
pests during their growth, picking, transportation, and storage, which seriously affect the quality
of green plums and their products, reducing their economic and nutritional value. At present, in the
detection of green plum defects, some researchers have applied deep learning to identify their surface
defects. However, the recognition rate is not high, the types of defects identified are singular, and
the classification of green plum defects is not detailed enough. In the actual production process, green
plums often have more than one defect, and the existing detection methods ignore minor defects.
Therefore, this study used the vision transformer network model to identify all defects on the surfaces
of green plums. The dataset was classified into multiple defects based on the four types of defects in
green plums (scars, flaws, rain spots, and rot) and one type of feature (stem). After the permutation and
combination of these defects, a total of 18 categories were obtained after the screening, combined with
the actual situation. Based on the VIT model, a fine-grained defect detection link was added to the
network for the analysis layer of the major defect hazard level and the detection of secondary defects.
The improved network model has an average recognition accuracy rate of 96.21% for multiple defect
detection of green plums, which is better than that of the VGG16 network, the Desnet121 network, the
Resnet18 network, and the WideResNet50 network.

Keywords: vision transformer; green plums; deep learning; multiple defect detection

1. Introduction

Green plums are widely distributed in hills and sloping forests all over the world.
They are rich in a large number of amino acids, vitamins, lipids, trace elements, and other
nutrients, of which a variety of natural acids are important for human metabolism and
have a rich nutritional and economic value [1]. Green plum sarcocarp is crisp and tender;
it is thick, the core is small, and the taste is sweet and sour, so it is very popular among
people. Not only is it unique in flavor, healthy, and appetizing, but it is also beneficial to
human health.

With the improvement in people’s living standards, their demand for high-quality
fruits is also increasing. Consumers are more inclined to buy fruits without defects, and
fruit product manufacturers are more inclined to choose high-quality fruits as raw materials.
However, green plums are susceptible to diseases, insect pests, and knocks during their
growth and production [2], resulting in different defects. Damage to the nutritional content
and appearance of the product caused by defects will affect the market and price of
the product. After picking, green plums are not easy to preserve, and they need to be
sorted and selected as soon as possible. However, in China, the sorting of green plums
is mainly carried out manually. The efficiency of manual sorting is low and the cost
is high, which makes it impossible to sort a large amount of greengage in a short time.
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Moreover, the sorting experience requirements for people are very high, and the sorting
accuracy cannot be guaranteed. In addition, the efficiency and accuracy of manual detection
are affected by human fatigue. These are the factors that cause quality problems in the
secondary processing of green plums. To improve the economic value and nutritional value
of green plums and their products, it is of great significance to carry out a variety of defect
detection and classification processes on green plums that utilize high-level automation and
intelligence. The main defects of green plums are divided into four categories: scars, rot,
flaws, and rain spots. These defects will lead to quality and nutritional problems for green
plums and their products. Therefore, before their sale and further processing, it is necessary
to carry out defect detection on green plums, reject unqualified green plums, and classify
green plums. This research focuses on the detection of the above four types of defects in
order to achieve accurate identification of the main defects and other defects.

Computer vision technology is equivalent to the role of human vision in fruit and
vegetable quality inspection. It perceives images, interprets and recognizes characters
electronically, and provides information for quality grading and sorting machines. By
combining machine vision and image processing with the advancement of computer
technology, such systems have been applied in different fields of food engineering to
accurately identify product characteristic defects in real time [3]. With the development of
machine learning [4–7], researchers have applied machine vision [8] and deep learning to
defect detection, making the non-destructive testing of fruit processing technology more
efficient and accurate. The efficiency and accuracy of defect detection have been greatly
improved through machine vision and deep learning. Yao et al. [9] developed a defect
detection model based on You Only Look Once (YOLOv5) and optimized the network
aiming at kiwifruit defects. This model can accurately and quickly detect defects in kiwifruit.
The detection accuracy rate reached 94.7%, nearly 9% higher than the original algorithm.
It only takes 0.1 s to process a single image, realizing real-time high-precision detection
of kiwifruit defects. R. Nithya et al. [10] developed a computer-aided grading system for
mango defect detection to classify high-quality mangoes. After training and testing the
system using the publicly available Mango database, an accuracy rate of 98 percent was
obtained. Huang et al. [11] used a multichannel hyperspectral imaging system for non-
destructive testing of apple varieties. They achieved the best overall classification accuracy
of 99.4% in the near-infrared and full-region spectral ranges, whose wavelengths range
from 550–1650 nm. The multichannel hyperspectral imaging system provides more spatial–
spectral information, and the non-destructive testing effect is excellent. In their research
on green plum surface defect detection, Zhou et al. [12] and Zhou et al. [13] proposed a
computer vision system for green plum surface defect detection based on the convolutional
neural networks VGG16 and WideResNet50, respectively, which can detect the main defects
of green plums. The average accuracy rates were 93.8% and 98.95%, respectively. Although
the main defects of green plums can be accurately identified, each green plum may have
more than one defect. The previous detection methods for green plum defects could only
identify and output the main defects of the recognized green plums but couldn’t identify
other defects. According to the degree of impact of defects on production, from large to
small, the defects of green plums are characterized by rot, flaws, scars, and rain spots. The
production of different green plum products has different requirements regarding the defects
of green plums. For example, green plums should have no rot or flaw defects to produce green
plum wine. These defects indicate that the green plums have become moldy and contain a
large number of microorganisms in their bodies. Such defective green plums damage the
quality of green plum wine and pose a risk to human health. However, these defective
green plums can be used as fertilizer after fermentation [14]. Green plums with only small
scar defects can also be used to produce green plum wine to improve production efficiency.
However, for green plums whose main defect is the scar, it is impossible to know whether
it has other defects if there are small-scale rot defects on the surface. Additionally, this
type of green plum still has food safety problems and cannot be used to produce green plum
products. Green plums with milder scars and rain spots only have surface problems and no
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internal necrosis, so they can still be used as raw materials for green plum wine, candied
fruit, and plum powder; green plums without defects can be further sold or processed in
the market. Therefore, it is necessary to carry out multi-defect detection on green plums,
which can improve secondary production efficiency and the utilization rate of defective
green plums.

Rain spot defects are the most common among the four types of defects in green plums.
Although green plums with rain spot defects will not cause food safety problems, these
affect the quality classification of green plums. The previous defect detection methods
could only identify the main defects but could not judge whether other defects threatened
food production safety in green plums. This makes it impossible to ensure that such green
plums identified as having rain spot defects will not have safety problems and thus cannot
be used as the raw material for producing green plum products in the next step. They
can only be completely discarded due to food safety issues, which greatly reduces the
economic value of green plums. This study used a deep learning method based on the vision
transformer (VIT). Compared with the WideResNet50, Resnet18, and VGG16 models, the
vision transformer network model has higher accuracy, added hazard degree analysis,
and fine-grained detection abilities. Using a multi-defect detection scheme, it can identify
all of the surface defects of green plums. This system can accurately detect major and
minor defects in the output, enabling a more meticulous classification of defective green
plums. Therefore, the precision and accuracy in identifying defects of green plums can
be improved.

This study has the following innovations: (a) Aiming at the multi-defect identification
problem of green plums, a defect identification network model based on the VIT network
was proposed. (b) Compared with the single-defect classification processing of traditional
data sets, this study’s data set was processed using multi-defect classification. (c) After
the MLP layer, the green plum defect risk level analysis layer and fine-grained detection
link were added. The contribution of this study lies in the realization of a more detailed
classification of green plum defect levels, the ability to accurately identify major defects
and the remaining minor defects, and the output of the results of multiple defects. A new
method for identifying multiple defects on a surface is proposed.

2. Materials and Methods

2.1. Data Collection and Processing

The dataset used in this study was a batch of green plums from Zhangzhou, Fujian, and
2799 RGB images of green plums were collected through visible light images. To simulate
the real scene of actual production and inspection, this research transported green plums on
a conveyor belt and collected images, as shown in Figure 1. A light gate from Yue Jiang
Company (Hong Kong, China) was installed on the conveyor belt, and when the green
plums were transported to the light gate, the conveyor belt stopped, and the acquisition
device located above collected images. The acquisition system is shown in Figure 1. Viewed
from the top down, the acquisition system’s first equipment is the camera holder, the
second equipment is the camera, the third equipment is the light source holder, the fourth
equipment is the light source, the fifth equipment is the light gate, the sixth equipment is
the green plum to be photographed, and the seventh is the conveyor belt. The entire image
acquisition stage is in a closed lighting environment, and the material of the conveyor
belt has a light-absorbing effect. The defective green plum is located on the conveyor belt,
and the LED ring light source is used for supplementary light. The camera bracket can
be adjusted to keep the camera at a fixed height, and the green plum should be rotated at
random angles during the shooting process to obtain multi-angle green plum defect pictures.
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Figure 1. Collection equipment diagram: 1. camera holder; 2. camera; 3. light source holder; 4. light
source; 5. light gate; 6. green plum sample; 7. conveyer belt.

The camera lens adopted is the M1620-MP2 industrial camera lens from Computer
Company (Tokyo, Japan), whose focal length is 16 mm and minimum object distance is
20 cm. The industrial camera adopted the MER-531-20GC-P industrial camera of Beijing
Daheng Image Technology Co., Ltd. (Beijing, China). A PYTHON 5000 frames exposure
CMOS sensor chip was adopted. The light source used for the collection was an LED ring
light source. The image collection stage was carried out in a closed lighting environment.
During the shooting process, the green plum rotated to obtain multi-angle images of the
surface defects of green plums.

In this study, 2799 pictures of various green plum defects and intact pictures were
taken with a dot matrix camera, and the original pictures collected by the camera were
2592 × 2048 pixels. Due to the large size of the original image, in order to ensure the
efficiency of image processing, the original images were preprocessed, and the noise in
the image was removed at the same time [15]. The final image obtained had a size of
224 × 224 pixels. The defects of green plums were divided into four categories according
to the degree of damage, from heavy to shallow: rot, flaws, scars, and rain spots. Among
them, the rain spot defect had the characteristics of smallness, light color, and dispersion
and occupied a small number of pixels in the image; thus, it is not easy to identify or
misidentify [16]. At the same time, some plum pictures contained fruit stems from green
plums. Although the feature of fruit stems is not a defect, it is affected by factors such
as image acquisition angle, light changes, and lens distortion [17], resulting in the color
and shape of fruit stems and rain spots. Consequently, the recognition of rain spots was
disturbed. In Zhou H. Y.’s [12] previous green plum defect detection method, the algorithm
(an improved VGG network model) did not yet solve the problem of misjudging fruit stems
as defective rain spots. Traditional visual detection algorithms still have poor accuracy
and limitations with fruit stems and rain spots [18], resulting in misjudgments of defects.
Moreover, in the VIT model used by Zhang Xiao [19], compared to the recognition accuracy
of other defects, the recognition error rate of rain spots was the highest, reaching 2.62%,
which lowered the overall recognition accuracy. In order to avoid the misjudgment of rain
spots and fruit stems and achieve higher recognition accuracy, the characteristic fruit stems
were divided into one category for training. To sum up, green plums could be classified into
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the following six categories: scars, rain spots, flaws, rot, intact, and fruit stems, as shown in
Figure 2.

(a) (b) (c) (d) (e) (f)

Figure 2. Green plum surface defect classification chart: (a) rot; (b) flaw; (c) scar; (d) spot; (e) intact;
(f) stem.

2.2. Dataset Processing Methods

In terms of the classification method of the data set, the previous green plum defect
research team chose to divide the green plum defects into four categories: rot, flaws, scars,
and rain spots. When faced with green plums with multiple defects, they did not use the
hazards of the defects as the classification standard. They chose the defect with the largest
area as the defect class for the green plums. However, if a more harmful defect appeared in
a small area, the final output could still be the defect in a larger area, ignoring the harm
of other defects to the green plums. Moreover, small-area defects occupy fewer pixels, and
training features may be lost after repeated convolution and pooling operations during
training. This is also one of the reasons for the poor recognition effect of previous rain
spot training. In contrast to the above classification methods, it was considered that in
the actual detection process, multiple defects might appear on a green plum, as shown in
Figure 3. In order to express and output the multiple defects of green plums more clearly,
the dataset was divided more carefully. The sum of defects on each green plum picture
was used as its defect category, as shown in Figure 3, which contains flaws, stems, and
rain spots; then, this picture was used as the flaw + stem + spot category. In the actual
detection, there were very few green plums with more than three kinds of defects, and some
plum categories had only a few pictures or even none. In order to ensure the quality of
the dataset, according to the hazard based on a combination of harmfulness and quantity,
the following 18 theoretical types of combination classes were finally obtained: scar—1,
scar + rot—2, scar + stem—3, scar + stem + spot—4, scar + spot—5, rot—6, rot + flaw—7,
rot + stem—8, rot + stem + spot—9, rot + spot—10, intact—11, flaw—12, flaw + stem—13,
flaw + stem + spot—14, flaw + spot—15, stem—16, stem + spot—17, spot—18, carried
out with these types using order numbers 1–18 (Note: for concise expression, the category
names and numbers in the following diagrams, such as the confusion matrix, correspond
one-to-one). The combined images of 18 types of green plum defects are shown in Figure 4.
They were divided into a training set, a test set, and a validation set. The images in the test
set and validation set do not intersect. In addition, in order to ensure the quality of the
dataset, data enhancement was performed on it, and operations such as mirroring, rotating,
and adjusting the brightness and contrast of the original picture were performed. Finally,
a total of 27,990 green plum sample pictures were obtained. The dataset was divided into
a training set, a test set, and a validation set in the ratio of 8:1:1 and then enhanced. The
category distribution of the dataset after image enhancement is shown in Table 1. Putting it
into the VIT model, the VIT model could effectively learn various types of defect features
and finally output all the defects of green plums. It only needed to classify them to meet the
needs of improving the productivity of green plums. According to the degree of harmfulness
of the defect, as long as the green plums with rot and flaws were listed as a hazard, as this
type of green plum seriously affects food safety and the manufacturer can use it as fertilizer
after fermentation, the green plums with scars and rain spots were listed as defective. Plums
can be used as raw materials for secondary production. Fruit stems and perfect green plums
are listed as normal plums, which can be further processed or sold directly.
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Figure 3. Green plum map with multiple defects (flaw + stem + spot—13).

      
(a) (b) (c) (d) (e) (f) 

      
(g) (h) (i) (j) (k) (l) 

(m) (n) (o) (p) (q) (r) 

Figure 4. Shown are the 18 categories of green plum multi-defect classification: (a) scar; (b) scar + rot;
(c) scar + stem; (d) scar + stem + spot; (e) scar + spot; (f) rot; (g) rot + flaw; (h) rot + stem;
(i) rot + stem + spot; (j) rot + spot; (k) intact; (l) flaw; (m) flaw + stem; (n) flaw + stem + spot;
(o) flaw + spot; (p) stem; (q) stem + spot; (r) spot.

2.3. Multiple Defect Detection Model of Green Plum Based on Vision Transformer

The vision transformer network [20] adopts self-attention and multi-head attention
mechanisms, using residual connection and layer normalization techniques to accelerate
training. The self-attention mechanism obtains information for each position in the input
sequence. Among them, self-supervised learning reduces VIT’s dependence on large-scale
training [21]. Therefore, this study chose to use this network model to identify the green
plum defects. In the field of image classification, the common convolutional neural network
(CNN) [22,23] uses continuous stacking convolution layer operations to extract local fea-
tures, which has certain limitations in extracting global features. As an encoder–decoder
architecture based on the self-attention mechanism [24,25], the vision transformer model
does not use RNN (cyclic neural network) sequential structure parallel training and can
reflect complex spatial transformations and long-distance feature dependencies. Through
the softmax function, the gradient is reduced. With the multiple sets of independent
weights and parameter quantities added to the multi-head attention mechanism [26], the
information obtained by different learning methods is combined, improving the expression
ability of the network. Its global feature representation ability is stronger, and the migration
effect is better.
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Table 1. Distribution of dataset.

Number Class
Original
Data Set

Data Aug-
mentation

Validation Set Training Set Test Set

1 scar 168 1680 168 1344 168
2 scar + rot 34 340 34 272 34
3 scar + stem 312 3120 312 2496 312
4 scar + stem + spot 37 370 37 296 37
5 scar + spot 18 180 18 144 18
6 rot 546 5460 546 4368 546
7 rot + flaw 62 620 62 496 62
8 rot + stem 130 1300 130 1040 130
9 rot + stem + spot 67 670 67 536 34

10 rot + spot 178 1780 178 1424 178
11 intact 616 6160 616 4928 616
12 flaw 114 1140 114 912 114
13 flaw + stem 62 620 62 496 62
14 flaw + stem + spot 30 300 30 240 30
15 flaw + spot 23 230 23 184 23
16 stem 54 540 54 432 54
17 stem + spot 60 600 60 480 60
18 spot 288 2880 288 2304 288

The VIT model consists of three modules: the linear projection of flattened patches
(embedding layer), the transformer encoder, and the multilayer perceptron (MLP) head.
The input image (224 pixels × 224 pixels) first passes through the embedding layer and
is divided into 196 patches according to the size of 16 × 16. This step is realized by a
convolution operation with a convolution kernel size of 16 × 16, a step size of 16, and a
number of 768. The methods of adding position embedding and patch embedding can
better reflect the information of the whole image. Secondly, the data enters the transformer
encoder layer. The encoder contains a multi-head attention mechanism, which can represent
the global features more accurately and repeatedly stack the encoder block L times. The
output shape after the transformer encoder is consistent with the input shape. Finally, the
defect classification result for green plums is obtained through the linear output in the MLP
head [27]. Among them, the calculation formula for multi-head self-attention is as follows:

MultiHead(Q, K, V) = Concat(head1,· · · ,headh)W
O (1)

where Q, K, V, H, and WO represent the query vector, key vector, value vector, number of
heads, and output transformation matrix, respectively.

In Formula (1), the output headi of each head can be expressed as follows:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(2)

In Formula (2), WQ
i , WK

i , and WV
i represent the query, key, and value transformation

matrix of the headi, respectively. The self-attention calculation formula is as follows:

Attention (Q, K, V) = Softmax (
QKT
√

dk
)V (3)

Although the classification method in this study could facilitate the network to learn
various defects and output all the defects of green plums, it was also necessary to output
the main defects according to the degree of defect damage. This study proposed primary
defect detection based on previous research, enabling the new VIT network to output the
first hazard defect of the green plum as the major defect based on the defect area size and
hazard level. A hazard level analysis layer was added after the MLP output layer to obtain
the main defects more accurately. In this layer, a convolutional neural network was inserted
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into the network. It was used for training in the identification of the hazards of each defect.
Different degrees and different types of defects have different effects on green plums. The
network layer obtains the defect hazard factors of green plums and judges the degree of
influence of the hazard on green plums through factor size analysis in order to determine
the main defects of green plums. After analyzing the degree of harm, the entire network
outputs the main defects of green plums more precisely. The main defect detection structure
diagram is shown in Figure 5.

Figure 5. Major defect detection structure diagram.

The improved network could identify the most harmful defect features, but there may
be multiple defects on the surface of green plum, causing the network to ignore the remaining
defects and the harm they bring. In order to solve the multi-defect detection problem of
green plums, the network structure was improved, and a fine-grained multi-defect detection
link was added after the MLP. This link existed in parallel with the risk level analysis to
identify all the defects for green plums and output them. In this link, multiple defects on
green plums are first identified, the confidence of the corresponding defects in the graph is
calculated, the confidence threshold is set to 0.6, and the confidence of defects higher than
the threshold is output as secondary defects. If there are multiple secondary defects, the
output sequence is in order of the degree of harm; finally, the network model can output
all the defects in green plums, major defects + minor defects. The structure diagram of the
whole network is shown in Figure 6.

Figure 6. Network flowchart.
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3. Results

The green plum defect classification network built in this research used the deep
learning framework PyTorch to define the network calculation graph. The hardware,
software, and compilation environment configurations used in this study are shown in
Table 2.

Table 2. Software and hardware environment configuration.

Software and Hardware Name

System Windows 10 × 64
CPU Inter I7 11700K@3.6 GHz
GPU Nvidia GeForce RTX 3080Ti(12G)

Environment configuration PyCharm 2022.3.3 + Pytorch 1.7.1 + Python 3.7.7
Cuda 10.2 + cudnn 7.6.5 + tensorboardX 2.1

Before training, the green plum defect classification network was parameterized. Batch_size
was set to 64, Heads (the number of “heads” in the multi-head attention) was 2, Mlp_dim (the
number of neurons in the hidden layer in the multilayer perceptron) was 64, and the learning
rate parameter in the Adam optimizer was set to 0.01. After the parameters were set, the
dataset was input into the model for training until the loss reached the minimum value and
remained stable for 30 epochs. At this stage, the training of the green plum defect classification
network model was completed. The green plum data from the test set were imported into the
trained green plum defect classification network model. The model generated the test results
for the main defects through the risk level analysis layer. As shown in Table 3, the accuracy
rate of the VIT network for the classification of the main defects on the green plum surface
reached 96.21%.

Table 3. Results of green plum defect classification.

Methods Vision Transformer

Major Defect Classification Accuracy

Scar 94.02%
Rot 98.62%

Intact 93.89%
Flaw 96.42%
Spot 93.68%

Accuracy 96.21%
Loss 0.078

Inputting 2799 test set pictures into the fine-grained defect detection link for testing,
the confusion matrix of multi-defect detection on the green plum surface obtained by the VIT
network is shown in Figure 7. The VIT model had the best detection effect on scar + spot
and rot + stem + spot, with an accuracy of 100%. The effects of the intact category, the
scar + stem + spot category, and the stem + spot category were poor. Among the 616 intact
pictures, 1 was misjudged as the scar category, 4 were misjudged as the scar + stem category,
and 15 were misjudged for rain spots. Among the 37 pictures in the scar + stem + spot
category, 1 was identified as a spot, 1 was misjudged as a rot + stem, 1 was misjudged
as a flaw + spot, and 6 were identified as a stem + spot kind. Among the 60 pictures
of stem + spot, 4 were misjudged as scar + stem + spot, 1 was misjudged as a flaw, and
7 pictures were misjudged as spot without the characteristics of the stem.

Figure 8 is a test result diagram of a part of the test set, and the colored boxes in the
figure show some misjudged plum cases. Picture (11 -> 18) in the green box in the figure
misjudged the intact class as a spot. This may have occurred because the fruit tip of the
intact green plum turned yellow, the rain spot was a small target defect, and its shape and
color were similar to the fruit tip, resulting in misjudgment. The pictures in the purple
frame (12 -> 13) identified the flaw as a flaw + stem category, which may have been caused
by the fact that the pulp at the flaw was oxidized by air and was similar in color to the fruit
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stems. The rain spot fruit stems in the yellow and red boxes are, respectively, identified as a
rain spot and a flaw. The comprehensive analysis showed that because the rain spot defect
was too dense, small, and round in shape, resulting in a misjudgment of the fruit stem, the
rain spot defect was similar to a flaw when it was distributed laterally. The pictures in the
blue box (1 -> 18) classified the scars as rain spots because the small scars were similar to
rain spots, which led to their misjudgment.

Figure 7. Confusion matrix. Type correspondence: scar—1, scar + rot—2, scar + stem—3,
scar + stem + spot—4, scar + spot—5, rot—6, rot + flaw—7, rot + stem—8, rot + stem + spot—9, rot
+ spot—10, intact—11, flaw—12, flaw + stem—13, flaw + stem + spot—14, flaw + spot—15, stem—16,
stem + spot—17, spot—18.

Figure 8. Results of the test.

84



Forests 2023, 14, 1323

4. Discussion

In this study, the multi-defect detection of green plums was a classification task. Com-
pared with the target detection algorithm, the VIT model did not need to label each defect
in each picture in the dataset. It only needed to classify different green plum defect pictures
in the dataset. The target detection algorithm, such as the YOLO series model, needed
to use labeling software to frame the defect area in each picture. Multiple defects often
overlapped when labeling, resulting in repeated labeling of the frame, as shown in Figure 9.
The yellow box in Figure 9 shows the stem, the blue box shows the scar, and the red box
shows the rain spot. The rain spot feature and the rot feature overlapped. Furthermore, the
process of manual labeling is a subjective job, after all, so there is also a certain error rate
that will interfere with subsequent training. This not only consumes a lot of time but also
leads to a decrease in recognition accuracy. Moreover, the purpose of this defect detection
process was not to determine the exact position of the green plum [28], but only to identify
the defect type of the green plum. Therefore, there was no need to label and locate defects in
the dataset. Regardless of the perspective of dataset production or the final research goal,
the target detection algorithm was unsuitable for this research.

 

Figure 9. Green plum defect picture.

This study compared the performance of the green plum multi-defect classification
network with that of other networks such as ResNet18, WideResNet50, Desnet121, and
VGG16. This was conducted to validate the performance of the green plum network further.
After the above models were fully trained, the accuracy rate of the main defect classification
and the average test time were used as performance index comparisons. The test results
are shown in Table 4.

Table 4. Accuracy of surface main defect classification for green plum.

Accuracy of Surface Defect Classification
Accuracy Average Test

TimeNetwork Name Scar Rot Intact Flaw Spot

ResNet18 86.54% 90.95% 79.04% 94.18% 93.10% 89.92% 0.88 ms
WideResNet50 89.53% 89.68% 94.48% 86.03% 88.51% 91.39% 1.05 ms

Desnet121 93.83% 92.63% 96.57% 89.52% 97.70% 94.14% 1.39 ms
VGG16 92.34% 95.18% 98.06% 90.83% 97.17% 95.42% 0.96 ms

Vision Transformer 94.02% 98.62% 93.89% 96.42% 93.68% 96.21% 1.43 ms

In Table 4, in the classification of main surface defects of green plums, the accuracies of
the VIT model for the main defects of scars, rot, intact, flaws, and rain-spotted green plum
images reached 94.02%, 98.62%, 93.89%, 96.42%, and 93.68%, respectively. The average
discrimination accuracy rate of the network was 96.21%, and the processing time of a
single image was 1.43 ms. The accuracy rate of all kinds of main defect discrimination was
significantly better than other models, such as WideResNet50. The VIT model could also
identify other defects in green plums.
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In terms of model accuracy, compared with ResNet18 [29] and WideResNet50, the
vision transformer had a larger lead in the accuracy of the green plum multi-defect detection
task. The vision transformer was higher than ResNet18 and WideResNet50 by 6.29% and
4.82%, respectively, and slightly ahead of the Desnet121 and VGG16 models [30] (2.07%
and 0.79%). The detection accuracy for scars, rot, and flaws was higher than that of other
models, and the accuracy regarding intact and rain spots was slightly lower than that of
Desnet121 and VGG16 [31]. The overall effect of VIT was better. However, in terms of
image processing time, since a hazard level analysis layer and a fine-grained detection link
were added to the model, the VIT model took 0.55 ms longer to process a single image than
the fastest ResNet18 but could obtain a high recognition rate of detection of main defects
and multiple defects.

The loss curves of the vision transformer, ResNet18, WideResNet50, Desnet121, and
VGG16 networks are shown in Figure 10. Although the VIT model outperformed other
models’ accuracy, its convergence speed during training was obviously not as good as
other models. It may be that the effect of the optimizer in the VIT model was not as good
as that of other models. In subsequent studies, we may consider replacing the optimizer
with one that is more suitable for the VIT model in order to promote earlier convergence of
the model and improve the efficiency of training.

  

 
Figure 10. Loss curves of the four models.

Comprehensive analysis shows that the VIT network demonstrated excellent classi-
fication performance. To sort the quality of green plums based on the VIT network model
and classify green plums with multiple flaws, the softmax function was used to reduce the
gradient, and the multi-head attention mechanism was added. The overall feature repre-
sentation ability is stronger, resulting in improved feature learning and migration effects.
As a result, the network learns more features of defects, increasing the feature recognition
rate. Consequently, the network performs better in the multi-defect classification of green
plums. The average discrimination accuracy of the final model was 96.21%. This method
not only accurately identifies the main defects of green plums but also classifies and outputs
the defects in a more detailed manner and completes the multi-defect detection task of
green plums. Manufacturers can consider the rational use of defective green plums that
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can ensure food safety according to the defect situation of green plums. They can further
classify multi-category green plums according to their own needs, which greatly improves
the utilization rate of green plums and can increase the profit margins of enterprises.

5. Conclusions

Some researchers have previously conducted research on the defects of green plums and
were able to identify the main defects. However, each green plum may have more than one
defect. Their methods could only identify a single type of defect due to the lack of a detailed
classification of green plum defects. The previous green plum defect detection methods could
not detect other defects in green plums. This study proposed a model for the detection and
classification of green plum multi-defects based on the vision transformer, aiming at the
problem of multiple defects on the surfaces of green plums. This vision transformer was
based on the four main defects of green plums (scars, rot, flaws, and spots) and a class of
features (stems). There were 2799 green plum pictures classified with multiple defects to
obtain a more detailed dataset, divided into 18 categories according to the actual situation.
Moreover, the training set, validation set, and test set were allocated according to a ratio
of 8:1:1. Then the dataset was expanded by changing parameters such as image angle,
contrast, brightness, etc. to ensure the quality of the dataset and adding a risk level analysis
layer and fine-grained detection links. The model was trained with the improved network.
The network realized the effective classification of the main defects and multiple defects
on the green plum surface, and the average recognition accuracy rate reached 96.21%. The
single test image processing time was 1.43 ms.

This study also compared the established network with the accuracy of various ma-
jor defects and the training loss curves of the ResNet18, Desnet121, WideResNet50, and
VGG16 networks. The superiority of the vision transformer network was verified in defect
classification performance compared to other network methods. It completed the automatic
detection of multiple types of defects on the surfaces of green plums and classified the defect
levels of green plums more carefully. However, there is still room for optimization in the train-
ing speed of the model. In addition, the more detailed classification method for green plum
surface defects used in this study can also be applied to the defect detection of other fruits.
This can help manufacturers further classify defective fruits and improve the utilization of
non-hazardous and minimally hazardous fruits, thereby increasing production profit.

This research was based on static green plum surface images, and a static green plum
surface multi-defect classification model was constructed based on the vision transformer
model, achieving good surface multi-defect classification results. However, the training
efficiency of the model was not high enough. This can be improved by changing the
optimizer to accelerate the convergence speed of the model. The surface defect detection
method used in this study could not understand the chemical composition of green plums,
such as sugar content, pH, soluble solids, etc. It could not identify whether there were
internal defects in the green plums. Moreover, under static conditions, only one side of the
green plums’ defects could be identified. In actual testing, the conveyor belt can be improved
to make the green plum rotate continuously during transportation, allowing the camera to
recognize all defects on the plum. In subsequent research, we should study how to identify
internal defects in green plums in order to achieve higher food safety rates. Additionally,
high-spectral imaging technology can be used to obtain the internal chemical components
of green plums to select high-quality green plums.
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Abstract: Forest ecological function is one of the key indicators reflecting the quality of forest
resources. The traditional weighting method to assess forest ecological function is based on a large
amount of ground survey data; it is accurate but costly and time-consuming. This study utilized
three machine learning algorithms to estimate forest ecological function levels based on multi-source
data, including Sentinel-2 optical remote sensing images and digital elevation model (DEM) and
forest resource planning and design survey data. The experimental results showed that Random
Forest (RF) was the optimal model, with overall accuracy of 0.82, recall of 0.66, and F1 of 0.62, followed
by CatBoost (overall accuracy = 0.82, recall = 0.62, F1 = 0.58) and LightGBM (overall accuracy = 0.76,
recall = 0.61, F1 = 0.58). Except for the indicators from remote sensing images and DEM data, the five
ground survey indicators of forest origin (QI_YUAN), tree age group (LING_ZU), forest category
(LIN_ZHONG), dominant species (YOU_SHI_SZ), and tree age (NL) were used in the modeling
and prediction. Compared to the traditional methods, the proposed algorithm has lower cost and
stronger timeliness.

Keywords: multi-source data; machine learning; forest ecological function level; forest ecological
function index

1. Introduction

As one of the most important components of the ecosystem, forests provide the basic
natural resource foundation for the sustainable development of human beings [1]. The
forest ecological function index can comprehensively reflect the structure and ecological
benefits of forests. Therefore, establishing a scientific and dynamic comprehensive system
to evaluate forest ecological functions plays an important role in accurately addressing
ecological and economic development [2]. As research progresses, a single analysis of a
particular forest characteristic no longer meets the current requirements. Therefore, it is
important to assess forests’ ecological functions by integrating the synergistic effects of
multiple factors [3,4]. Many scholars have attempted to present concepts or tools for forest
ecological function analysis [5–7], greatly helping to measure and quantify species’ actions.

Currently, some progress in the quantitative estimation of forest ecological functions
has been made in China. In terms of research methods, Li Ma et al. established the
Beijing Forest Ecosystem Health Evaluation Index System (EIS-BFEH) to evaluate the
health function of forest ecosystems and used the hierarchical analysis process (AHP) to
obtain a comprehensive index (CI) representing the health status of forest ecosystems [8].
Fang Xiaomin et al. used a comprehensive index method and a statistical grouping method
to evaluate forest functions and calculated the forest ecological function index to compare
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forest ecological functions for different age groups, species structure, and origin [9]. Du
Qun et al. proposed that the three factors of forest quantity, quality, and spatial distribution
should be used for forest ecological function evaluation [10]. Although there has been some
progress in research on computational methods and evaluation factors, the current studies
are mainly focused on simple statistical methods, and there is a lack of attempts of using
machine learning methods; this procedure cannot meet the requirements of accurately
evaluating and monitoring forest ecological functions based on multi-data [11].

Among machine learning algorithms, ensemble learning algorithms can combine
multiple classifiers together to improve the accuracy and generalization ability of classi-
fiers. Overall, based on the presence or absence of dependencies between base classifiers,
ensemble learning algorithms are divided into two types: boosting and bagging. Boosting
algorithms have a strong dependency between base classifiers, and a series of base clas-
sifiers needs to be generated serially, represented by AdaBoost and GBDT. In fact, GBDT
is more suitable for multi-category classification, and LightGBM and CatBoost are two
important improved algorithms based on GBDT. In contrast, bagging algorithms do not
have a strong dependency between base classifiers, and a series of base classifiers can be
generated in parallel, represented by Random Forest. Regarding the research data, Wang
Daling et al. evaluated the forest ecological function of arboreal forests based on the data
of subcompartments from the 2018 forest resources planning and design survey of the
Sanchazi Forestry Bureau [12]. Jun Yang et al. conducted a qualitative analysis of the health
and ecological status of Chinese forests in 2009 based on the data of the seventh national
forest resource inventory [13]. Liu Lixia et al. evaluated the ecological functions of forests
based on the data of the forest resources planning and design survey [14]. Zhang Xianwu
et al. used the results of the three continuous forest inventories from 2004, 2009, and 2014 to
analyze the current situation, changes, and reasons of changes in the comprehensive index
of forest ecological functions in Shanghai using nine indicators including forest stock, forest
naturalness, and proportion of forest land area to national land area [15]. Even though
forest resource inventory data has high accuracy, there are still issues of high cost and
difficulty in data acquisition. Forest managers, decision makers, and politicians need to
be able to make data-driven rapid decisions based on short-term and long-term monitor-
ing information, complex modeling, and analysis approaches [11]. Thus, researchers are
increasingly considering incorporating lower-cost data such as remote-sensing images and
lower-cost strategies into our study.

It is necessary to attempt to integrate multi-source data to evaluate the forest ecological
function. In recent years, the application of multi-source data fusion in the forestry field
has become increasingly common, indicating that multi-source data have broad application
prospects. For instance, Wang et al. used multi-source remote sensing data (Gaofen 1,
Sentinel-2, Landsat 9, and Gaofen 3) to classify mangrove species in urban areas of Leizhou
City, Guangdong Province [16]; Abd Rahman Kassim et al. used hyperspectral images
and airborne LiDAR data to evaluate the ecological status of the FRIM campus forest
ecosystem [17]. Some of the studies on multi-source data fusion in the field of forestry
have achieved good results, but there is still more room to explore its application in forest
ecological function level assessment.

This paper aimed to combine multi-source data with machine learning algorithms
to assess the forest ecological function levels based on the unit of forest subcompartment.
Spectral features and topographic features of the study area were collected from remotely
sensed images and DEM. Some ground data with low acquisition cost, such as forest origin,
tree age group, forest category, dominant species, and tree age, were provided by the forest
resource planning and design survey. Based on the multi-source data scheme, three classic
machine learning algorithms, I.e., Random Forest, LightGBM, and CatBoost, were involved
in the study.
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2. Materials and Methods

2.1. Schematic Framework of Materials and Methods

The schematic framework of the Materials and Methods of this study is shown in
Figure 1, including multi-source data, preprocessing methods, models to predict forest
ecological function levels.

 

Figure 1. Schematic framework of Materials and Methods.

2.2. Overview of the Study Area

Lin’an District (118◦51′~119◦52′ E, 29◦56′~30◦23′ N) is located in the northwest of
Zhejiang Province, with a total area of 3126.8 square kilometers, shown in Figure 2. It is in
the central subtropical monsoon climate zone, rich in plant resources. As a typical southern
forest city, the forestry land area of Lin’an is up to 263,868.79 hm2, with 1603.88 hm3 of
forest standing stock and 81.99% of forest canopy density.

 

Figure 2. Location map of Lin’an District.

2.3. Processing of Label Dataset

According to the Technical Operation Rules for forest resources planning and design
survey of Zhejiang Province of 2014 [18] and the Technical Regulations for the Continuous
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Inventory of Forest Resources of 2020 (GB/T 38590-2020) [19], there are eight investiga-
tion factors (Table 1), i.e., forest biomass, forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree height, and
thickness of dead leaves, involved into the traditional algorithm to evaluate a forest ecolog-
ical function levels. Their weights were determined according to their importance to the
evaluation of forest ecological functions (Table 1).

Table 1. Factors to evaluate forest ecological function levels.

Code Factors
Classification Standards

Weight References
I II III

1 Forest biomass (t/hm2) ≥150 50~149 <50 0.20

[19]

2 Forest naturalness 1, 2 3, 4 5 0.15
3 Forest community structure 1 2 3 0.15
4 Tree species structure 6, 7 3, 4, 5 1, 2 0.15
5 Vegetation coverage (%) ≥70 50~69 <50 0.10
6 Canopy density ≥0.70 0.40~0.69 0.20~0.39 0.10
7 Mean tree height/m ≥15.0 5.0~14.9 <5.0 0.10
8 Thickness of dead leaves 1 2 3 0.05

To facilitate the data standardization, the values of the above eight evaluation factors
were uniformly classified into three classes, I.e., I, II, and III. According to the data type and
the distribution of the values, the above eight evaluation factors were divided into three
categories. The first category, including vegetation coverage, canopy density, mean tree
height, forest community structure, and thickness of dead leaves, was directly classified
into types I, II, and III (as shown in Table 1). The second category. consisting of forest
naturalness and tree species structure, was classified first by the division standards of
Table 2 for naturalness and Table 3 for tree species structure, and then into types of I, II,
and III. The third category merely included forest biomass, which was firstly calculated
according to the amount of forest volume for various dominant species by equations (shown
in Table 4) and then classified into types I, II, and III.

Table 2. Criteria and codes for the classification of naturalness in the continuous inventory of
forest resources.

Naturalness Division Standard Code References

I Forest types are pristine or in a largely untouched
state, with little human influence. 1

[19]
II

Natural forest types with obvious human
interference or secondary forest types in the later

stage of succession, mainly consisting of tree species
with high adaptability at the top level of zonality.

2

III

A secondary forest type with great human
disturbance, in the late stage of secondary

succession. In addition to pioneer species, top-level
species can also be seen.

3

IV Highly disturbed by humans, succession retrograde,
is in an extremely fragile secondary forest stage. 4

V

Highly and continuously disturbed by humans, with
the destruction of almost all zonal forest types, in the

late stage of difficult-to-recover
retrograde succession.

5
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Table 3. Criteria and codes for the classification of forest species structure.

Tree Species
Structure Type

Division Standard Code References

I
Pure coniferous forests, where the volume of

individual coniferous species is greater than or equal
to 90% of the total volume.

1

[19]II
Pure broadleaved forests, where the volume of

individual broadleaved species is greater than or
equal to 90% of the total volume.

2

III
Relatively pure coniferous forest, where the volume

of individual coniferous species is greater than or
equal to 65% and less than 90% of the total volume.

3

IV

Relatively pure broad-leaved forests, where the
volume of individual broad-leaved species is greater

than or equal to 65% and less than 90% of the
total volume.

4

V
Mixed coniferous forests, where the volume of total
coniferous species is greater than or equal to 65% of

the total volume.
5

VI

Mixed coniferous and broad-leaved forests, where
the volume of total coniferous species or total

broad-leaved species is greater than or equal to 35%
and less than 65% of the total volume.

6

VII
Broad-leaved mixed forests, where the volume of

total broad-leaved species is greater than or equal to
65% of the total volume.

7

Table 4. Biomass models of major tree species and vegetation types.

Code Tree Species/Vegetation Type Biomass Model References

1 Cunninghamia lanceolata W = 0.3999 V + 22.5410

[20]

2 P. massoniana W = 0.5101 V + 1.0451

3
Other pine and conifer tree species (besides P.

massoniana, Tsuga, Cryptomeria, and Keteleeria),
coniferous mixed forest

W = 0.5168 V + 33.2378

4 Cypress W = 0.6129 V + 46.1451
5 Mixed conifer and deciduous forests W = 0.8019 V + 12.2799
6 Betula W = 0.9644 V + 0.8485
7 Deciduous oaks W = 1.3288 V – 3.8999
8 Eucalyptus W = 1.0357 V + 8.0591
9 Mixed deciduous and Sassafras W = 0.6255 V + 91.0013
10 Tsuga, Cryptomeria, Keteleeria W = 0.4158 V + 41.3318

Note: W is the biomass of forest stand measured in t/hm2, V is the forest volume per hectare measured in
m3/hm2.

2.4. Data Sources and Pre-Processing
2.4.1. Data Sources

The data sources mainly included remote sensing images and Digital Elevation Model
and ground survey data. The remote sensing images from the satellite Sentinel-2 (with
13 Bands, a spatial resolution of 10 m, 20 m, and 60 m) and DEM (with a spatial resolution
of 30 m) with a format of ASTER GDEM, were all downloaded from the International
Science and Technology Data Mirror of the Computer Network Information Centre of the
Chinese Academy of Sciences (www.gscloud.cn) on 27 September 2021. The ground data
were obtained from the forest resources planning and design survey provided by the Lin’an
District Forestry Bureau in 2019.
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2.4.2. Data Pre-Processing

(1) Forest Resources Planning and Design Survey Data

The original data of forest resource planning and design survey consist of 119,792 sub-
compartments. To eliminate erroneous data, two steps were taken. Firstly, the data
with non-forest, zero volume, and null value of forest ecological function level were
removed. Secondly, according to the Pauta criterion [21], the abnormal data exceeding
the mean (u) ± three times the standard deviation (3σ) were also removed. Consequently,
47,596 valid samples were retained (Table 5), consisting of 26 dominant tree species, that is,
broad-leaved mixed forest, horsetail pine, fir, coniferous mixed forest, coniferous mixed
forest, oak, other hard broad-leaved forest, maple, camphor, yellow pine, etc.

Table 5. Number of experimental samples.

Number of Original Samples Number of Valid Samples Number of Tree Species

119,792 47,596 26

(2) Extraction and processing of characteristic factors based on images from remote
sensing and DEM

For the Sentinel-2 remote sensing images, Sen2Cor® (v2.8, European Space Agency,
Paris, France) was used for atmospheric correction, and SNAP® (v6.0, European Space
Agency, Paris, France) was exploited to resample the bands (band1, band5, band6, band7,
band8A, band9, band10, band11, and band12) to fuse the lower-resolution images of 20 m
and 60 m with higher-resolution images of 10 m by the nearest neighbor method. After
that, by the operations of image mosaic and clipping in ArcGIS® (v10.8, Environmental
Systems Research Institute, Inc., Redlands, CA, USA), a valid and complete remote sensing
image of the Lin’an District (Figure 3) was produced.

Figure 3. Remote sensing image from Sentinel-2 of Lin’an District.

The characteristic factors extracted from the Sentinel-2 optical remote sensing images
consisted of two main types: original factors and derived factors. The former consisted
of 13 bands [22–24]. There were three bands, namely, Band1 for the coastal band, Band9
for the water vapor band, and Band10 for the cirrus band, which were not relevant to the
experiment and were removed. Therefore, the remaining ten original bands (as shown in
Table 6) and eleven vegetation indices-derived factors (as shown in Table 7), that is, a total
of 21 spectral feature factors, were used as independent variables.
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Table 6. Vegetation index formula.

Code Vegetation Index Formula

1 Atmospherically resistant vegetation index (ARVI) ARVI = (NIR – (2 * R) + B)/(NIR + (2 * R) + B)
2 Enhanced vegetation index (EVI) EVI = 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1)
3 Differential environmental vegetation index (DVI) DVI = NIR − R
4 Normalized vegetation index (NDVI) NDVI = (NIR − R)/(NIR + R)
5 Ratio red-edge vegetation index (RVIre) RVIre = NIR/Re
6 Inverted red-edge chlorophyll index (IRECI) IRECI = (Re3 − R)/(Re1 − Re2)
7 Normalized red-edge vegetation index1 (NDVIre1) NDVIre1 = (NIR − Re1)/(NIR + Re1)
8 Normalized red-edge vegetation index2 (NDVIre2) NDVIre2 = (NIR − Re2)/(NIR + Re2)
9 Non-linear red-edge index (NLIre) NLIre = ((NIR * NIR) − Re1)/((NIR * NIR) + Re1)

10 Improved normalized red-edge vegetation
index (mNDVIre) mNDVIre = (NIR − Re1)/(NIR + Re1 − 2 * B)

11 Red-edge chlorophyll index (CIre) CIre = (NIR/Re1) − 1

Note: R represents the red band, B represents the blue band, NIR represents the near-infrared band, and Re
represents the red-edge band.

Table 7. Evaluation factors.

No. Factor Name Explanation Source of Data

1 Band 2 Bule

Sentinel-2

2 Band 3 Green
3 Band 4 Red
4 Band 5 VNIR1
5 Band 6 VNIR2
6 Band 7 VNIR3
7 Band 8 NIR
8 Band 8A Narrow NIR
9 Band 11 SWIR 1

10 Band 12 SWIR 2
11 HAI_BA Elevation

DEM12 PO_DU Slope
13 PO_XIANG Aspect
14 LIN_ZHONG Forest category

Forest Resources Planning
and Design Survey Data

15 QI_YUAN Forest origin
16 YOU_SHI_SZ Dominant species
17 NL Tree age
18 LING_ZU Tree age group

19–29 Refer to Table 6
Vegetation indices generated

from optical remote
sensing images

In this study, the remote sensing images and DEM were preprocessed by converting,
stitching, and cropping in ArcGIS. The three topographic factors—elevation, slope, and
aspect—were obtained from DEM images (Figure 4), with a spatial resolution of 30 m.

2.5. Extraction of Feature Factors from Ground Survey Data

Even if the forest Resources Planning and Design Survey data have authenticity and
reliability, many factors, such as forest biomass, vegetation coverage, forest canopy density,
and mean tree height, with very high investigation costs, are not suitable for evaluating
forest ecological function levels. Therefore, the eight factors (shown in Table 1) which were
traditionally used to compute forest ecological function levels were removed, and unrelated
factors such as county code and county name were also removed. After that, 36 variables
remained. To further reduce the dimensionality of the features and improve the efficiency
of the model, the feature importance was ranked (as shown in Figure 5). Furthermore, five
feature factors, that is, QI_YUAN, LING_ZU, NL, YOU_SHI_SZ, and LIN_ZHON, were
selected as independent variables of the model from top to bottom.
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Figure 4. DEM images of Lin’an District.

Figure 5. Ranking the feature importance of 36 variables.

2.6. Multi-Source Data Integration

A total of 29 evaluation factors (as shown in Table 7) were involved in the study, in-
cluding 10 spectral bands, 11 vegetation indices, 5 ground survey factors, and 3 topographic
factors. The integration of the multi-source data was implemented according to the FID.

Finally, the dataset was randomly divided into a training set with 80% of the samples
for modeling and a test set with 20% of the samples for testing.

2.7. Methods
2.7.1. Grid SearchCV

To prevent overfitting and underfitting, a hyper-parameter optimization method—
grid search (Grid SearchCV [25])—was used to select the optimal hyper-parameter values
for the three models. Grid SearchCV allows performing hyperparameter tuning in order to
determine the optimal values for a given model. Specifically, based on a specified parameter
range and a validation dataset, the parameters are gradually adjusted based on a pre-set
step size, and finally the optimal parameter value was selected with the highest accuracy.

2.7.2. Random Forest (RF)

Random forest [26,27] is a collection of multiple decision tree algorithms with random
sampling, which is a combination of Breiman’s “bagging” idea and a random selection of
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features. The procedure consists in making a precise prediction by taking the average or
mode of the output of multiple decision trees (shown in Figure 6). Typically, the greater
the decision trees’ number, the more precise the output and the greater the overhead. In
our study, to balance accuracy and overhead, the default number of decision trees was set
to 100, and the parameter range of the grid search was set to 100–500 with a step size of
5. The final experimental results showed that when the number of subtrees reached 200,
the increase in the number of subtrees had a minimal effect on the model enhancement.
Therefore, the optimal parameter value was finally set to 200. Also, the maximum number
of features was set to 195, which was the square root of the number of training samples
(47,596 * 0.8).

Figure 6. Random forest schematic.

2.7.3. Light Gradient Boosting Machine (LightGBM)

The Light Gradient Boosting Machine, XGBoost, and Catboost are lifting algorithms [28].
For the LightGBM, during the training process, the decision tree algorithm of Histogram
was adopted, which greatly reduced the calculation amount of the model. Meanwhile, the
leaf-wise growth strategy (shown in Figure 7) was introduced into the growth process of
the subtree, which reduced the splitting of invalid nodes.

Figure 7. Leaf-wise growth strategy.

There are three hyperparameters in LightGBM that need to be determined through
the grid search method, namely, n_estimators, max_depth, and learning_rate. Here,
n_estimators is the maximum number of base learners, max_depth is the maximum depth
of the tree, and learning_rate indicates the magnitude of each parameter update. Corre-
spondingly, the parameter ranges were set to [100, 300], [2, 10], and [0.05, 0.2], with step
sizes of 5, 1, and 0.01, respectively. Finally, the optimal values of the three parameters were
200 for n_estimators, 3 for max_depth, and 0.1 for learning_rate, respectively.

2.7.4. CatBoost

CatBoost [29,30] is a GBDT algorithm based on a symmetric binary tree, which can
automatically process category-based features and effectively solve gradient bias and
prediction shift problems and has excellent accuracy and generalization capabilities. In
addition, CatBoost combines multiple categorical features by adding a priori distributed
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modified Greedy TS approach to reduce the effect of noise and low-frequency categorical
data on the data distribution (as calculated in Equation (1)).

Xσp ,k =
∑

j=1
p−1

[
Xσj ,k = Xσp ,k

]
Yσj + a× p

∑
j=1
p−1

[
Xσj ,k = Xσp ,k

]
+ a

(1)

where a is a weighting factor greater than 0; p is the priori.
The default value of n_estimators in CatBoost package we used was 500, which

was already large enough. For the other two parameters, tree depth and learning rate,
their ranges were set to [5, 12] and [0.05, 0.2], with step sizes of 1 and 0.01, respectively.
Consequently, the optimal tree depth was 11, and the learning rate was 0.05.

2.7.5. Performance Metrics

The performance metrics of the model are generally calculated based on a confusion
matrix [31], as shown in Table 8. Here, aij denotes the number of samples, the measured
value is denoted by I, and the predicted value is denoted by j, N is the total number of
samples, k is the number of target categories, and aI+ = ∑j aij, a+j = ∑I aij.

Table 8. Confusion matrix for multi-classification models.

Confusion Matrix
Predicted Value

Category 1 Category 2 Category k Total

Measured
value

Category 1 a11 a21 a1k a1+
Category 2 a21 a22 a1k a2+
Category k ak1 ak2 akk a3+

Total a+1 a+2 a+3 N

Furthermore, the performance of the predicted results was evaluated by accuracy
(Formulas (3)), recall (Formulas (5)), and F1_score (Formulas (8)).

accuracyI =
aII
N

(2)

accuracy =
k

∑
I=1

accuracyI (3)

recallI =
aII
a+I

(4)

recall =
k

∑
I=1

recallI (5)

precisionI =
aII
aI+

(6)

F1_scoreI = 2 ∗ precisionI ∗ recallI
precisionI + recallI

(7)

F1_score =
k

∑
I=1

F1_scoreI (8)
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3. Results

3.1. Labeling of the Data

The quantification scores for Type I, II, and III in Table 1 were assigned to 1, 2, and
3, respectively [32], and the composite score of forest ecological functions were calculated
according to Formula (9) [19]

Y =
8

∑
I=1

WI XI (9)

where Y is the composite score of the forest, XI is the standardized score of the I-th
evaluation factor, and WI is the weight of the I-th evaluation factor.

Hence, the ecological function index was calculated according to the composite score
and is represented by Equation (10)

K =
1
Y

(10)

where K is the the ecological function index with a value less than or equal to 1. The larger
the value of K, the better the forest’s ecological function.

Further, according to the values of K, the ecological function levels were divided into
three groups, I.e., Good, Medium, and Poor (as shown in Table 9).

Table 9. Criteria and codes for rating forest ecological functions.

Ecological
Function Level

Comprehensive Score
Value (Y)

Forest Ecological
Function Index (K)

Code References

Good <1.5 >0.6667 1
[19]Medium 1.5~2.4 0.6667~0.4167 2

Poor ≥2.5 ≤0.4 3

Consequently, the classification results based on Equation (10) acted as the labeled
data and were plotted in Figure 8. As shown, 10,844 forest subcompartments were graded
as “good”, 36,365 forest subcompartments were graded as “medium”, and 386 forest
subcompartments were graded as “poor”. In terms of area, the ecological function levels of
“good”, “medium”, and “poor” were 59,094.3 hectares, 92,011.9 hectares, and 487.6 hectares,
respectively, accounting for 38.98%, 60.70%, and 0.32% of the total area of forest land,
respectively. The average forest ecological function index of forested land in Lin’an was
0.63, which was only 0.04 lower than the good ecological function index of 0.67, and the
overall ecological function was at a medium, tending to good, level.

Figure 8. Distribution of forest ecological function levels in Lin’an.
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There was an upward tendency for forest ecological function levels from east to west,
which was consistent with the zoning of construction land in Lin’an District, with more
urban construction land to the east and more ecological forest areas to the west. The extent
to which the experimental results were consistent with the actual situation from the cross-
reference map of the focus areas (Figure 9) was determined. For example, the two national
nature reserves in Figure 9a,b corresponded to areas where the ecological function of the
forest was rated as “good” on a large scale and, partly, as “medium”, with no areas rated
as “poor”. Closer to urban areas, there was a greater chance of a “poor” forest ecological
function level (as shown in Figure 9c). To some extent, this reflected the impact of human
activities on the levels of forest ecological function. The regions with lower human activity
often had higher levels of forest ecological function, while the regions with higher human
activity had lower levels of forest ecological function.

Figure 9. Cross-reference map of the focus areas. (a) Qingliang Peak National Nature Reserve;
(b) Tianmu Mountain National Nature Reserve; (c) Lin’an urban area.

3.2. Design of the Data Scheme

Four data combination schemes (as shown in Table 10)—A, B, C, and D—were de-
signed according to the three data sources.

Table 10. Data combination schemes.

Data Combination Scheme Data Source

A Sentinel-2
B Sentinel-2, DEM

C Sentinel-2, forest resource planning and design
survey data

D Sentinel-2, DEM, forest resource planning and
design survey data

3.3. Testing Results

The results of the optimal hyperparameters for three models were obtained by grid
search (Section 2.7 for details), as shown in Table 11. Furthermore, the four different data
combination schemes (shown in Table 10) were modeled and analyzed using the random
forest, LightGBM, and CatBoost algorithms, and the experimental results are shown in
Table 12.
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Table 11. Combinations of optimal hyperparameters for three models.

Model Optimal Values of Hyperparameters

RF n_estimators = 200, max_features = 195
LightGBM n_estimators = 200, max_depth = 3, learning_rate = 0.1
CatBoost n_estimators = 500, depth = 11, learning_rate = 0.05

Table 12. Performance of the three models based on the four data combination schemes.

Program
Overall

Accuracy Rate

Category Accuracy Rate
Recall F1 Score

Good Medium Poor

RF-A 0.46 0.57 0.80 0.35 0.39 0.39
RF-B 0.47 0.62 0.80 0.40 0.40 0.41
RF-C 0.82 0.73 0.89 0.80 0.54 0.57
RF-D 0.82 0.76 0.89 0.83 0.66 0.62

LightGBM-A 0.47 0.61 0.80 0.32 0.41 0.40
LightGBM-B 0.47 0.62 0.80 0.33 0.40 0.41
LightGBM-C 0.73 0.71 0.90 0.58 0.52 0.55
LightGBM-D 0.76 0.73 0.90 0.64 0.61 0.58
CatBoost-A 0.46 0.59 0.80 0.35 0.42 0.41
CatBoost-B 0.48 0.62 0.81 0.42 0.42 0.43
CatBoost-C 0.73 0.73 0.90 0.57 0.55 0.56
CatBoost-D 0.82 0.75 0.90 0.80 0.63 0.58

Comparing the performance metrics of the four data schemes in the three models in
Table 12, the data scheme A (single-data combination scheme) had the worst performance,
with an overall accuracy rate of only 0.46~0.47 and a classification accuracy of 0.32~0.35 for
the “poor” category samples. However, the data scheme D (multi-source-data combination
scheme) performed the best, with an overall accuracy rate of 0.76~0.82. The accuracy of
the “good”, “medium”, and “poor” categories reached 0.73~0.76, 0.89~0.90, and 0.64~0.80,
respectively, and the F1 score was 0.58~0.62. When comparing the data scheme B (after
adding the DEM data to scheme A) with A, it was found that the DEM had an insignificant
contribution to the model, with an overall accuracy improvement of only 0.01~0.02, and
the accuracy of the “good”, “medium”, and “poor” categories, respectively, improved
by 0.01~0.16, 0~0.01, and 0.01~0.07. However, when comparing the data scheme C (after
adding the ground survey data to scheme A) with A, it was found that the addition of the
forest resource planning and design survey data made a significant positive contribution to
the model, with an overall accuracy improvement of 0.26~0.36, significantly improving the
performance metrics of “good”, “medium”, and “poor” categories, respectively.

Ultimately, the RF-D executed the optimal program with overall accuracy of 0.82, recall
of 0.66, and F1 score of 0.62, and the classification accuracy was significantly improved,
especially for the small sample category of “poor”.

3.4. Ranking of Features’ Importance

Based on the optimal data scheme D, the performance metrics (as shown in Table 12)
were calculated by the three machine learning algorithms of RF, LightGBM, and CatBoost,
and the ranking of the feature importance was obtained and shown in Figure 10.

As shown in Figure 10, there were five factors from the ground survey data that led
to a higher ranking of feature importance and played an important role in the model.
Nevertheless, there were three factors from the DEM data with a lower ranking of feature
importance that played an unimportant role in the model, which is consistent with the
results in Table 11. In the optical remote sensing data, the factors of b12, NDVIre2, EVI,
IRECI, b2, b11, and b4 ranked relatively high in the model.
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(a) RF (b) LightGBM 

 
(c) CatBoost 

Figure 10. Ranking the importance of the features based on the multi-source data scheme D. (a) Rank-
ing the importance of the features by RF; (b) ranking the importance of the features by LightGBM;
(c) ranking the importance of the features by CatBoost.

4. Discussion

4.1. Performance Metrics

Even if many studies have been aimed to the forest ecological function rating method-
ology, some deficiencies still exist, as reported below.

(1) The evaluation indicators are heavily influenced by foresters’ experience

In the evaluation of forest ecological functions, due to many qualitative indicators such
as forest naturalness, tree species structure, and thickness of dead leaves, the original way
of obtaining data is heavily influenced by foresters’ experience, which makes it difficult
to establish an objective indicator system and may lead to inconsistent forest ecological
function levels evaluated by different foresters for the same forest stand [33,34].

(2) High cost of data acquisition for evaluation indicators

The data of the eight evaluation factors (forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree height, and
thickness of dead leaves) used to calculate the forest ecological function levels are obtained
from ground surveys, which leads to high acquisition costs and time consumption [35].

The proposed evaluation method combined the advantages of multiple sources of
data and machine learning algorithms to effectively reduce the human influence on the
evaluation system and save data acquisition expenses and time. Specifically, the addition
of remote sensing data effectively reduced the influence of human subjective experiences
and increased the frequency of data acquisition. The costs of acquiring remote sensing data
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are also much lower than that of ground surveys [36], especially in areas that are difficult
to access by humans, such as deep forests and cliffs.

4.2. Complementarity of Multi-Source Data

As machine learning algorithms are data-driven, variations in the data could greatly
affect the accuracy of a classification [37]. When providing insufficient data, such as for
data scheme A (merely optical remote sensing data from Sentinel-2), poor results were
obtained (overall accuracy of 0.46~0.47 for scheme A in Table 11). Due to influences by
environmental conditions such as different angles and intensities of sunlight, topography,
water content, and other factors, it is possible that the same object may have different
spectrums, and different objects may have the same spectrum [38,39]. For instance, the
spectral information for the same vegetation on sunny and shady slopes could be different,
and the height of lower vegetation is easily obscured by shadows. This tends to increase
the errors during training. Complementarity of multiple sources of data is generally used
to address this problem.

Compared to the data scheme A, the data scheme D (addition of DEM data and some
ground survey data) significantly increased the overall accuracy by 0.29~0.36, with the
accuracy rates for the “good”, “medium”, and “poor” categories increasing by 0.12~0.19,
0.09~0.1, and 0.32~0.48, respectively. The addition of DEM data complements vertical
structure parameters which are lacking in optical remote sensing data [40], allowing areas
of deciduous trees to be distinguished from areas of vegetation with similar spectral
characteristics (e.g., high-density grassland) [41], which in turn has an impact on the
accuracy of the results. The addition of ground survey data further complements the
growth status information for the vegetation—such as the age of trees that can lead to
changes in their growth rate—thereby improving the accuracy of the model.

4.3. The Feasibility of Machine Learning

Different from the traditional statistical methods used by Huafu Liu et al. [42], Hailong
Yin et al. [43], and Kassim et al. [17], this paper exploited a machine learning algorithm to
develop a comprehensive model to evaluate forest ecological function levels, which has a
higher flexibility and faster processing speed for high-dimensional data with more complex
relationships among feature factors. Most indicators are non-linearly related to forest
ecological function levels, including ground survey factors and spectral characteristics. For
instance, with the increasing NL, the forest ecological function levels increase first and
then decrease. Machine learning algorithms are non-linear approximations to an objective
function, different from than the traditional comprehensive evaluation methods bound to a
linear function, such as the scoring method, principal component analysis, etc. Therefore,
their powerful fitting ability could make the predicted results closer to the reality and
improve the evaluation accuracy of the model.

The Random Forest showed the best performance among the above three models,
with an overall accuracy of 0.82 and an F1 score of 0.62. As a non-linear, parametric classifier,
Random Forest is robust with non-equilibrium data and can randomly generate multiple
decision trees to form a forest, effectively avoiding overfitting [44,45]. It allows the fusion
of high-dimensional data from multiple sources [46] and has a high tolerance for missing
values and outliers, so that it can effectively reduce the interference of noise in the data.
In addition, it can automatically determine the importance of variables, which in turn
improves its accuracy and usability.

4.4. Limitations of this Study

This study, based on the multi-source data of Sentinel-2 remote sensing images and
DEM and partial data from the forest resource planning and design survey, as well as
the three machine learning algorithms RF, LightGBM, and CatBoost, evaluated the forest
ecological function levels. Overall, our results may promote research on the evaluation of
forest ecological function levels. However, the 10 m resolution of the Sentinel-2 images may
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limit a further improvement of the performance metrics. If higher-resolution images can
be acquired in the future, such as remote sensing images from Gaofen series satellites or
UAV images, it will be possible to further increase the performance of our model and even
further reduce the participation of ground survey indicators. On the other hand, from the
perspective of research methods, deep learning algorithms such as YOLO are also worth a
try in the future.

5. Conclusions

Optical remote sensing data, DEM data, and forest resource planning and design
survey data were used in this study to evaluate the forest ecological function levels of
Lin’an District using three machine learning algorithms, I.e., RF, LightGBM, and CatBoost.

In the three models, Random Forest was the best-performing model, with an overall
accuracy rate of 0.82 (the accuracy rates for the “good”, “medium”, and “poor” categories
being 0.76, 0.89, and 0.83, respectively) and with an F1 score of 0.62.

The multi-source data significantly improved the performance metrics. Further-
more, the acquisition of ground survey data such as QI_YUAN, LING_ZU, LIN_ZHONG,
YOU_SHI_SZ, and NL, was achieved at lower costs than those required for the tradi-
tional eight indicators of forest biomass, forest naturalness, forest community structure,
tree species structure, vegetation coverage, forest canopy density, mean tree-height, and
thickness of dead leaves.

If more data sources are used, such as higher-resolution remote sensing images,
LiDAR remote sensing images, etc., the estimation performance might further improve in
the future.
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Abstract: China’s forest ecosystem plays a crucial role in carbon sequestration, serving as a cor-
nerstone in China’s journey toward achieving carbon neutrality by 2060. Yet, previous research
primarily emphasized climate change’s influence on forest carbon sequestration, neglecting tree
species’ suitable area changes. This study combinates the Lund–Potsdam–Jena model (LPJ) and
the maximum entropy model (MaxENT) to reveal the coupling impacts of climate and tree species’
suitable area changes on forest aboveground biomass carbon (ABC) in China. Key findings include
the following: (1) China’s forests are distributed unevenly, with the northeastern (temperate conif-
erous broad-leaved mixed forest, TCBMF), southwestern, and southeastern regions (subtropical
evergreen broad-leaved forest, SEBF) as primary hubs. Notably, forest ABC rates in TCBMF exhibited
a worrisome decline, whereas those in SEBF showed an increasing trend from 1993 to 2012 based
on satellite observation and LPJ simulation. (2) Under different future scenarios, the forest ABC in
TCBMF is projected to decline steadily from 2015 to 2060, with the SSP5-8.5 scenario recording the
greatest decline (−4.6 Mg/ha/10a). Conversely, the forest ABC in SEBF is expected to increase under
all scenarios (2015–2060), peaking at 1.3 Mg/ha/10a in SSP5-8.5. (3) Changes in forest ABC are highly
attributed to climate and changes in tree species’ highly suitable area. By 2060, the suitable area
for Larix gmelinii in TCBMF will significantly reduce to a peak of 65.71 × 104 km2 under SSP5-8.5,
while Schima superba Gardner & Champ and Camphora officinarum in SEBF will expand to peaks of
94.07 × 104 km2 and 104.22 × 104 km2, respectively. The geographic detector’s results indicated that
the climate and tree species’ suitable area changes showed bi-variate and nonlinear enhanced effects
on forest ABC change. These findings would offer effective strategies for achieving carbon neutrality.

Keywords: forest aboveground biomass carbon; climate change; tree species’ suitable area; Lund–
Potsdam–Jena model; maximum entropy model; China

1. Introduction

Forests play a pivotal role in global carbon sequestration, significantly contributing
to climate change mitigation and sustainability efforts [1,2]. It is noteworthy that forest
biomass carbon stock alone constitutes more than 90% of the global vegetation biomass
carbon reservoir [3,4]. However, the accurate estimation of forest carbon sequestration
remains a challenging scientific issue. Considerable debate persists concerning whether
forthcoming forest ecosystems will enhance carbon sequestration within the context of
climate variation [5]. Consequently, precise evaluations of forest carbon sequestration
hold great importance in appraising strategies for ecosystem management and mitigation
policies [6,7].

Forests 2023, 14, 2053. https://doi.org/10.3390/f14102053 https://www.mdpi.com/journal/forests108



Forests 2023, 14, 2053

Estimating China’s forest carbon sequestration potential has remained a focal point
of research, given that forest coverage in China reaches 22.96% [8,9]. However, preceding
studies have focused on forecasting carbon sink trends and examining the correlation with
climate alterations, often lacking in-depth mechanistic investigations [8]. For example, Tong
et al. (2018) [10] explored the trend of vegetation aboveground biomass carbon (ABC) and
its response to natural drivers in China’s karst region from 1982 to 2015 through integrating
satellite data with the Lund–Potsdam–Jena model (LPJ). Meanwhile, leveraging the LPJ
model and datasets of global climate models (GCMs), Kong et al. (2022) [2] demonstrated
that China’s vegetation ABC is projected to experience an upward trajectory from 2041 to
2060 under the SSP1-2.6 and SSP2-4.5 scenarios, with temperature and precipitation identi-
fied as primary influencing factors. While the LPJ model comprehensively considers the
dynamic characteristics of the carbon cycle using the theory of vegetation physiology and
ecology [2,11], its applicability is limited in explaining key ecological functional outcomes
at the species level due to its typical focus on temporal and spatial variations of general
vegetation functional types [12].

Climate change drives changes in forest vegetation growth and suitable zones, thereby
influencing the spatial pattern of forest carbon sequestration capacity. Nevertheless, current
research generally lacks an in-depth understanding of the connection between shifts in
tree species’ suitable areas and forest carbon sequestration under changing conditions. For
instance, under the background of climate warming, the distribution patterns of the domi-
nant conifer tree species may exhibit a shift towards higher latitudes and altitudes [13–15].
Li et al. (2011) and Yu et al. (2011) [16,17] demonstrated that rising temperatures would
lead to a decline in spruce growth within the Changbai Mountain Natural Reserve, while
other prevalent tree species would experience benefits from the warming climate. Although
recent studies have started to consider the impacts of forest type and age on carbon seques-
tration capacity [18], such investigations are often constrained by experimental scales and
data collection limitations. Presently, statistical models rooted in the maximum entropy
theory (MaxENT) have gained prominence due to their small sample requirements. These
models accurately project species point data to suitable distribution regions on a regional
scale through establishing relationships between species data and environmental variables.
For instance, Wang and Guan (2023) [19] employed the MaxENT model to investigate
the impact of climate change on the suitability of conformation trees. Nevertheless, these
studies fall short of delving into the underlying variations in forest carbon sequestration
resulting from changes in tree species’ suitable areas. Consequently, the mechanism of
climate variation’s effects on species migration and forest carbon sequestration potential
remains unclear.

This study aims to bridge the gap in understanding the combined impacts of climate
variation and changes in species’ suitable areas on forest carbon sequestration capacity.
Through integrating the LPJ model and the MaxEnt model, our research seeks to (1) inves-
tigate the temporal and spatial variations in forest ABC across China and (2) explore the
coupling effects of climate and tree species’ suitable area changes on forest carbon seques-
tration potential in China. Through conducting case studies in different forest regions of
China, this research aims to provide empirical evidence and enhance our understanding
of the complex interplay between climate variation, tree species’ suitable area changes,
and the carbon sequestration potential of forests. Ultimately, this study will contribute
to the development of targeted strategies for sustainable forest management and carbon
neutrality in China.

2. Materials and Methods

2.1. Study Area and Data Sources

China’s complex topography, coupled with variations in temperature, precipitation,
and vegetation types, creates a rich tapestry of ecosystems that respond differently to
climate drivers. Figure 1 illustrates that China is divided into seven distinct geographical
zones. The response of terrestrial ecosystems to climate change varies across these regions.
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China’s diverse ecology, ranging from the tropical forests in the south to the alpine meadows
in the north, offer an ideal setting for investigating the impacts of climate change on ABC [2].
Forests in China occupy approximately 23.57% of the total land area, mainly distributed
across the eastern, central, southern, southwestern, and northeastern regions. The typical
natural vegetation zone in the northeastern region is temperate coniferous broad-leaved
mixed forest (TCBMF), while the southern region is characterized as subtropical evergreen
broad-leaved forest (SEBF).

Figure 1. The land use, and land cover, and distribution points of L. gmelinii, S. superba, and
C. officinarum in China. EC: East China; NEC: Northeast China; NC: North China; CC: Central
China; SC: Southern China; NWC: Northwest China; SWC: Southwest China.

The forest ABC dataset was obtained from a VOD dataset collected by global satellites
monthly, with a resolution of 0.25◦, covering the years 1993–2012 (http://www.wenfo.org/
wald/globalbiomass, accessed on 22 August 2019). The meteorological observation data
were collected from 2472 stations with a spatial resolution of 0.5◦ × 0.5◦ in China from
1982 to 2014 (https://data.cma.cn/site/index.html, accessed on 31 January 2020). The
data on wet days and cloud cover were obtained from the Climate Research Unit (CRU)
version TS4.04 datasets spanning the period between 1982 and 2014. These datasets were all
provided at a resolution of 0.5◦ × 0.5◦ and can be accessed at (https://sites.uea.ac.uk/cru/,
accessed on 2 April 2022). The carbon dioxide (CO2) data were sourced from the CO2
Program of the Scripps Institution of Oceanography (SIO), accessible through (https://
scrippsco2.ucsd.edu/, accessed on 2 April 2022).

Larix gmelinii (L. gmelinii) is one of the commonly encountered species in the boreal
forests of TCBMF in Northeast China, playing a significant role in the high carbon storage
capacity of the forest [20,21]. In addition, L. gmelinii habitats provide a diverse range of
support for various organisms, including endemic species, and any alterations to the habitat
would impact their distribution [22]. Similarly, Schima superba Gardner & Champ (S. superba)
and Camphora officinarum (C. officinarum) are dominant evergreen broad-leaved tree species
widely distributed in China’s SEBF, with a high capacity for CO2 absorption [23–25].
Therefore, L. gmelinii serve as the typical tree species of TCBMF, while S. superba and
C. officinarum represent typical tree species for SEBF in this study. The initial geographic
points of L. gmelinii, S. superba, and C. officinarum within China were acquired from the
Global Biodiversity Information Facility (GBIF, https//www.gbif.org, accessed on 12 May
2023). These data primarily originated from field observations and preserved specimens.
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Duplicate entries and original records lacking geographic coordinates (longitude or latitude)
were excluded. Additionally, only one occurrence point per 1 km × 1 km grid cell was
retained. This selection was primarily due to the spatial resolution of bioclimatic variables
being 30 arcseconds (equivalent to approximately 1 km), which aimed to mitigate potential
clustering effects predicted using the model [19]. Adhering to the input data format of the
MaxEnt model, the distribution data for the target species were organized into CSV files,
ordered by species name, longitude, and latitude (refer to Figure 1).

The environmental information considered in this research encompassed 19 bioclimatic
datasets, elevation data, and 34 soil-related variables. The bioclimatic data, spanning
the years 1970–2000, were computed as averages and possessed a spatial resolution of
30 arcseconds. These bioclimatic data and elevation information were sourced from the
dataset provided by WorldClim (http://www.worldclim.org, accessed on 28 May 2021).
This study took into account the impact of soil attributes on species distribution modeling
(SDM) predictions, where a comprehensive set of 34 soil variables was procured from the
Harmonized World Soil Database (HWSD v. 1.21). All data were clipped to China for
model simulation.

In this study, forthcoming climate datasets (precipitation and temperature) of China
were extracted from the BCC-CSM2-MR, MRI-ESM2-0, and CanESM5 global climate mod-
els, considering three shared socio-economic pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5).
These three sets of GCMs data, bias-corrected through the Equidistant Cumulative Dis-
tribution Functions (EDCDF) [2,26], accurately captured the spatial-temporal variation
characteristics of temperature and precipitation in China (Figures S1 and S2). All the data
points were averaged over 20-year intervals (from 2041 to 2060). The anticipated future
distribution for each species was determined based on the average results generated by the
MaxEnt model, utilizing inputs from the three specified GCMs.

To establish an efficient model using a reduced set of variables, all the variables were
initially fed into the model for a preliminary run. Variables that collectively contributed to
over 90% of the model’s simulation were then retained. Subsequently, a Pearson correlation
analysis was conducted on the retained variables. If the correlation between the two
variables exceeded 0.8, the variable with a greater contribution rate during the preliminary
model run was preserved [27]. The variable selection results of L. gmelinii, S. superba, and
C. officinarum are presented in Table 1.

Table 1. Variable selection results of L. gmelinii, S. superba, and C. officinarum.

Variable Variable Description L. gmelinii S. superba C. officinarum

Bio2 Mean diurnal range (mean of monthly
(max temp–min temp))

√ √

Bio3 Isothermality (bio2/bio7) (×100)
√

Bio4 Temperature seasonality (standard deviation × 100)
√ √

Bio5 Max temperature of the warmest month
√ √

Bio6 Temperature annual range (bio5–bio6)
√

Bio8 Mean temperature of wettest quarter
√

Bio12 Annual precipitation
√

Bio13 Precipitation of the wettest month
√

Bio14 Precipitation of the driest month
√ √

Bio15 Precipitation seasonality (coefficient of variation)
√

Bio17 Precipitation of the driest quarter
√

elev Elevation
√

t_ph_h2o Topsoil pH (H2O)
√

t_bs Topsoil Base Saturation
√

s_ece Subsoil Salinity (Elco)
√

s_cec_soil Subsoil CEC (soil)
√

s_teb Subsoil TEB (Total exchangeable bases)
√
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2.2. Methods
2.2.1. LPJ-DGVM

The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ-DGVM) serves as
a widely utilized computational tool devised for simulating the intricate dynamics of
global vegetation under the influence of environmental factors and climate shifts. This
model, at the forefront of technology, amalgamates insights from ecology, biogeography,
and climatology to replicate the intricate interplays among the atmosphere, land surface,
and terrestrial ecosystems [11]. The LPJ-DGVM relied on a process-driven methodology,
embodying essential ecological mechanisms like photosynthesis, respiration, carbon alloca-
tion, and vegetation evolution. The model effectively captures the multifaceted feedback
loops between vegetation and the natural environment through encompassing meticulous
depictions of plant physiology, the carbon cycle, and land surface procedures [12]. The
embedded physical mechanisms and causalities allow LPJ to provide valuable insights
into the potential future trajectories of global vegetation and the associated feedback with
climate change.

In the LPJ model, ten distinct plant functional types (PFTs) are featured, each governed
by constraining factors that regulate the effective influences of light, temperature, and
moisture [28]. Every simulated PFT represents the collective characteristics of the entire
population (e.g., tree height and vegetation carbon pools; population-based method) [29].
The simulation process for the LPJ model involves employing climate data spanning 1981 to
2010, allowing for 1000 model years spin-up to establish ecosystem equilibrium. Following
the attainment of equilibrium, a dynamic simulation was executed, employing climate data
from both 1981 to 2014 and 1981 to 2060 [2]. To support the LPJ model simulations from
1981 to 2014, observed meteorological data such as temperature and precipitation, along
with the CRUTS 4.04 climate dataset containing wet days and cloud cover information,
were incorporated. Furthermore, the annual average atmospheric CO2 concentration was
integrated.

2.2.2. MaxEnt Model

Using MaxEnt (version 3.4), the training dataset encompassed 75% of the occurrence
data, while the remaining 25% was allocated for testing purposes [19,30]. The algorithm
underwent 1000 iterations of these steps. This process was iterated 10 times to yield the
mean simulation outcomes of tree species’ geographical distributions [31]. Subsequently,
these results were consolidated within ArcGIS 10.5 and transformed into a raster format
for subsequent analysis.

Model performance was assessed through the utilization of the receiver operating
characteristic (ROC) curve and the corresponding area under the ROC curve (AUC), a
metric that varied from 0 to 1 [27,31]. Evaluation of the model’s performance was typically
categorized into five grades as follows: failure (0.5–0.6), moderately accurate (0.6–0.7), rea-
sonably accurate (0.7–0.8), highly accurate (0.8–0.9), and exceptionally accurate (0.9–1) [32].
According to the AUC results generated from the MaxEnt model, the average AUC values
of 10 repetitions for L. gmelinii, S. superba, and C. officinarum were 0.819, 0.928, and 0.914,
respectively, indicating that the model yielded highly reliable results in predicting the
potential distribution (Figure S3).

The MaxEnt model’s output for species distribution was presented in ASCII format,
with values ranging from 0 to 1 [27]. Employing the natural breaks (Jenks) methodology
within ArcGIS, the suitability levels for L. gmelinii, S. superba, and C. officinarum were
divided into five categories: unsuitable habitat (<0.10; <0.08; <0.10), poorly suitable habitat
(0.10–0.28; 0.08–0.27; 0.10–0.27), moderately suitable habitat (0.28–0.50; 0.27–0.48; 0.27–0.48),
and highly suitable habitat (0.50–1.00; 0.48–1.00; 0.48–1.00), respectively.

2.2.3. Statistical Methods

The Theil–Sen trend analysis approach was applied to compute long-term trends on
a pixel-by-pixel basis. The Theil–Sen trend analysis method is a robust non-parametric
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estimation algorithm that effectively mitigates the impact of outliers in extended time-series
analyses, representing an enhancement over the least squares linear regression method [33].
The calculation formula is provided below:

slope = median
( xj − xi

j− i

)
, i < j ≤ n (1)

where “slope” signifies the rate of change for the particular factor; i and j denote the
respective years; n refers to the length of the time series; and xi and xj represent the values
associated with the corresponding years. Ordinarily, a slope of 0 indicates the absence of
change in the variable. However, in practice, instances of a slope precisely equaling 0 may
be rare. Consequently, to account for this, a very small slope value is considered, implying
negligible change. Thus, we establish a threshold interval of [−0.0005–0.0005] to signify no
change. An affirmative slope value (>0.0005) signifies an ascending trend, while a negative
value (<−0.0005) signifies a descending trend.

The Theil–Sen trend analysis is frequently paired with the Mann–Kendall test, a
nonparametric statistical method, to evaluate long-term data trends. This approach was
initially introduced by Mann in 1945 and subsequently improved by Kendall and Sneyers.
This method does not require normal distribution or a linear trend and is not affected by
missing values or outliers. This approach had found broad application in assessing trends
in extended time-series data [33,34]. The test statistic S was computed using the following
formula:

S = ∑n−1
i=1 ∑n

j=i+1 sign(xj − xi) (2)

sign(v) =

⎧⎨
⎩

1 f or v > 0
0 f or v = 0
−1 f or v < 0

(3)

The variance of S was:

var(S) =
n(n− 1)(2n + 5)

18
(4)

Statistic Z was defined as:

Z =

⎧⎪⎨
⎪⎩

S−1√
var f or S > 0

0 f or S = 0
S+1√

var f or S < 0
(5)

where |Z| ≥ 1.96 signifies that the trend has achieved statistical significance at the 95%
confidence level.

Geodetector has proven to be an effective technique for the comprehensive analysis
of the interplay between independent and cooperative variables concerning dependent
variables [35,36]. The Geodetector model encompasses components such as the factor
detector, interaction detector, risk detector, and ecological detector. In this study, we
employed the factor detector and interaction detector to investigate the impact of climate
factors and tree species’ suitable area changes on forest ABC changes in China.

(1) The factor detector systematically measures the degree to which driving factor “X”
elucidates the spatial disparities in forest ABC via the q-statistic value:

q = 1− ∑L
h=1 Nhδ2

h

Nδ2 (6)

where q symbolizes the explanatory potency of the influencing factor concerning the
temporal and spatial shifts in ABC, h signifies the categorization levels of a driving factor,
L represents the sample size of the impact factor, Nh and N stand for the counts of units
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within layer h and the entire region, respectively, and δ2
h and δ2 denote the variances of h

and the overall region, respectively.
(2) The interaction detector was designed to identify the way two driving factors

interact and affect the ABC. Firstly, we calculated the q values of two driving factors
that affect ABC, namely q(X1) and q(X2). Subsequently, we calculated the q values of
the interactive effect (q(X1∩X2)) and compared them with q(X1) and q(X2) to identify the
interaction type between the two driving factors (Table 2).

Table 2. Definition of the different interaction types in the Geodetector model.

Interaction Relationship Interaction Types

q(Xi∩Xj) < Min(q(Xi), q(Xj)) Nonlinear-weaken
Min(q(Xi), q(Xj)) < q(Xi∩Xj) < Max(q(Xi), q(Xj)) Uni-variable weaken

q(Xi∩Xj) = q(Xi) + q(Xj) Independent
Max(q(Xi), q(Xj)) < q(Xi∩Xj) < q(Xi) + q(Xj) Bi-variable enhanced

q(Xi∩Xj) > q(Xi) + q(Xj) Nonlinear-enhanced

3. Results

3.1. Satellite-Observed and Simulated Forest ABC in China

Satellite observations of the spatial distribution of aboveground biomass carbon in
Chinese forests reveal that from 1993 to 2012, regions with high carbon density were
located in the SEBF and TCBMF. Among these regions, North, Northeast, and the southern
part of Southwest China exhibited carbon densities exceeding 70 Mg/ha. The LPJ model
driven by observed data, including temperature and precipitation, successfully captured
the spatial distribution of aboveground carbon stocks in forests. However, overestimation
was observed in the Northeast region, as well as in Central, South, East, and West China.
The forest carbon stocks simulated using CMIP6-driven models showed good consistency
with those driven by observed data, but underestimated carbon stocks were observed in
North China and the southeastern coastal areas (Figure 2).

Figure 2. Spatial distribution of the annual mean forest ABC during 1993–2012 and the percentage
change in the annual average forest ABC from 2001 to 2012 compared with 1993–2000 in China: (a,d)
satellite-observed; (b,e) simulated, driven by observed meteorological data; (c,f) simulated, driven by
CMIP6 data.
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The LPJ model simulation results showed that the areas with high forest ABC in China
from 1982 to 2014 were mainly distributed in the SEBFs and TCBMFs of China (Figure 3a).
However, these forest areas with high ABC experienced a decreasing trend, and the area
with a significant decreasing trend accounted for 11.56%, mainly distributed in Northeast
China and Southwest China. Approximately 40.15% of the forest ABC showed a significant
increasing trend, mainly in southwest, central, east, and northern China (Figure 3b). The
results of the average annual forest ABC in China clearly show that the overall ABC in the
study area increased at a growth rate of 0.19 Mg/ha/a before 1992 and then changed to a
decreasing trend (−0.03 Mg/ha/a). The overall trend in TCBMF was similar to that in the
study area, and the decline rate is more obvious (−0.17 Mg/ha/a) after 1992. Meanwhile,
the forest ABC in SEBF showed a slower growth rate (before 2000: 0.12 Mg/ha/a; after
2000: 0.01 Mg/ha/a).

Figure 3. Spatial distribution of carbon density (a), changing trends (b), and (c) the annual mean
forest ABC during 1982–2014.

The results of simulations using three different models and a multiple-model ensemble
(MME) to drive the LPJ model to calculate the ABC trends in China from 2015 to 2060 under
different SSP scenarios are shown in Figure 4. These simulations consistently indicate
an overall increasing trend in forest ABC from 2015 to 2060. Especially in the SSP5-8.5
scenario, all models and the MME predicted a higher proportion of pixels with significantly
increased forest ABC compared to other scenarios. The forest ABC of the TCBMF will
significantly decrease in all scenarios, while forest ABC of the SEBF generally exhibit
a significant increasing trend, except in the SSP1-2.6 scenario. The MME results show
that under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the proportion of pixels with a
significantly increasing trend in forest ABC will be 46.16%, 67.18%, and 75.53%, respectively.
Conversely, the proportion of pixels with a significantly decreasing trend will be 10.49%,
12.93%, and 16.09%, respectively. Under the SSP5-8.5 scenario, the BCC model results
exhibit the highest proportion of pixels with a significantly increasing trend in forest ABC
at 80.34%, while the proportion with a significantly decreasing trend will be lowest at 5.90%.
The Can model results show that under the SSP1-2.6 scenario, the smallest proportion of
forest ABC significantly increasing will be 29.53%, whereas, under the SSP5-8.5 scenario,
the largest proportion of significantly decreasing forest ABC will be 19.63%. Overall, from
2015 to 2060, the forest ABC trajectory in TCBMF is expected to experience a continuous
decrease, in stark contrast to SEBF, which is projected to undergo a significant increase.

Under different scenarios, the statistical results of annual forest ABC in different
regions of China from 2015 to 2060 are shown in Figure 5. Overall, the rates of change
in forest ABC in China are expected to remain stable. However, there will be notable
differences in various regions across the country. In the TCBMF area, the forest ABC change
rate will be consistently declining across various scenarios. The most significant rate of
decreae is projected to be −0.46 Mg/ha/a under the SSP5-8.5 scenario. In contrast, the rate
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of change in forest ABC in the SEBF region is expected to increase in all scenarios. The
maximum change rate will be 0.13 Mg/ha/year in the SSP5-8.5 scenario (Figure 5).

 

Figure 4. Changing trends of the annual mean forest ABC from 2015 to 2060 in China under scenarios
of SSP1-2.6, SSP2-4.5, and SSP5-8.5.

Figure 5. The annual mean forest ABC from 2015 to 2060 in China under scenarios of SSP1-2.6,
SSP2-4.5, and SSP5-8.5.
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3.2. Potential Suitable Area Shifts of Typical Tree Species in Response to Climate Change

Figure 6 illustrates the current potential geographic distribution of the three typical
species. The statistical results showed that the high-, moderate-, and low-suitability areas
for L. gmelinii are currently estimated to cover an area of 133.47× 104 km2, 145.31 × 104 km2,
and 223.58 × 104 km2, respectively. The high-suitability areas for L. gmelinii are mainly
distributed in the northern part of North China and the Northeast region. Under different
scenarios, the highly suitable area of L. gmelinii is projected to decrease, with a reduction to
50.56 × 104 km2 by 2060 under the SSP5-8.5 scenario. The total suitable area is expected to
decrease from 475.25 × 104 km2 in the current period to 375.29 × 104 km2 in 2060 under
the SSP5-8.5 scenario (Figure 6a–d, Table 3).

Figure 6. Distribution of current and future potential suitable areas of three typical tree species: (a–d)
L. gmelinii; (e–h) S. superba; (i–l) C. officinarum.

Table 3. Statistical results of potentially suitable area (unit: 104 km2).

Species Periods Scenarios Low Moderate High Total

L. gmelinii

Current 223.58 145.31 133.47 475.25

2041–2060
SSP1-2.6 246.86 102.60 67.81 417.27
SSP2-4.5 241.41 96.62 58.45 396.48
SSP5-8.5 234.24 90.49 50.56 375.29

S. superba

Current 98.20 63.55 49.96 211.71

2041–2060
SSP1-2.6 81.85 62.68 114.47 259.00
SSP2-4.5 88.57 66.48 113.25 268.30
SSP5-8.5 79.09 59.57 136.97 275.63

C. officinarum

Current 93.37 76.79 60.41 230.57

2041–2060
SSP1-2.6 84.85 55.75 141.78 282.38
SSP2-4.5 91.86 56.63 140.98 289.47
SSP5-8.5 92.86 52.13 157.90 302.89

In the current period, it was estimated that the high-, moderate-, and low-suitability
areas for S. superba are 49.96 × 104 km2, 63.55 × 104 km2, and 98.20 × 104 km2, respectively.
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The high-suitability area is primarily located in the southern region, with expansions
expected in the future to cover all of Central China, East China, and the eastern part
of Southwest China. Under the scenarios of SSP1-2.6, SSP2-4.5, and SSP5-8.5, the high-
suitability area for S. superba will expand in 2060. Under the scenario of SSP5-8.5, the
expansion of the high-suitability area will be the largest, with an expected expansion of
136.97 × 104 km2 in 2060 (Figure 6e–h, Table 3).

For C. officinarum, the currently suitable areas were estimated to be 60.41 × 104 km2,
76.79 × 104 km2, and 93.37 × 104 km2 for the high-, moderate-, and low-suitability areas,
respectively. The high- and medium-potential suitable zones for C. officinarum are mainly
distributed in Northeast China and North China. The high- and moderate-suitability areas
for C. officinarum are primarily distributed in Central China, East China, and South China.
By 2060, the area of highly suitable areas for C. officinarum in the SSP1-2.6 and SSP2-4.5
scenarios will increase to 141.78 × 104 km2 and 140.98 × 104 km2, respectively, with a
maximum of 157.90 × 104 km2 in the SSP5-8.5 scenario (Figure 6i–l, Table 3).

We further examined the potential changes in the distribution of suitable areas for
different tree species based on the distribution of high-suitability areas in both current
and future scenarios. (Figure 7). The results indicate that the future distribution of the
high-suitability zone for L. gmelinii is projected to shrink primarily in North China and
the Northeast region, with the greatest reduction in area under the SSP5-8.5 scenario in
2060, reaching up to 65.71 × 104 km2. As for S. superba and C. officinarum, they will both
tend to expand towards the central regions of Central China and East China, as well as
the eastern part of Southwest China, under all future scenarios. The expansion is most
significant under the SSP5-8.5 scenario, with an increase in area of 94.07 × 104 km2 for S.
superba and 104.22 × 104 km2 for C. officinarum (Figure 7, Table 4).

Figure 7. Future changes in the potential geographical distribution of three typical tree species: (a–c)
L. gmelinii; (d–f) S. superba; (g–i) C. officinarum.
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Table 4. Statistical results of area change of potential highly suitable areas (unit: 104 km2).

Species Scenarios
Range

Expansion
No

Occupancy
No Change

Range
Contraction

L. gmelinii
SSP1-2.6 3.97 823.86 68.86 49.05
SSP2-4.5 2.80 825.03 60.29 57.61
SSP5-8.5 2.28 825.54 52.20 65.71

S. superba
SSP1-2.6 70.12 819.28 55.42 0.18
SSP2-4.5 68.67 820.73 55.44 0.16
SSP5-8.5 94.07 795.33 55.46 0.14

C. officinarum
SSP1-2.6 87.00 793.95 66.65 0.03
SSP2-4.5 86.04 794.91 66.60 0.09
SSP5-8.5 104.22 776.73 66.66 0.02

3.3. Coupling Impacts of Climate and Species’ Suitable Area Change on Forest ABC

The results of the superposition of the ABC changes simulated using the LPJ model
and the changes in the suitable areas of dominant tree species simulated using the Maxent
model from 2015 to 2060 are shown in Figure 8. Under SSP1-2.6 scenario, high-suitability
areas of L. gmelinii will decrease in some TCBMF areas in Northeast China, but forest
ABC will still increase, accounting for 20.46% of the total area. Meanwhile, the increase
in forest ABC in most SEBF areas will be consistent with the single or co-increase in the
high-suitability areas of S. superba and C. officinarum, which account for 12.66%, 13.54%,
and 24.55%, respectively (Figure 8a,d). Under the scenarios of SSP2-4.5 and SSP5-8.5, the
main theme in the TCBMF region will be more evident in the reduction in forest ABC and
the shrinking of highly suitable areas for dominant tree species, with an area proportion
of 18.23% and 21.96%, respectively. The synergistic trend between the increase in forest
ABC and the expansion of highly suitable habitat for dominant tree species in the southern
SEBF region will be even more pronounced, with the proportion of this trending area
accounting for 63.24% and 65.10% under the SSP2-4.5 and SSP5-8.5 scenarios, respectively
(Figure 8b–d).

 

Figure 8. Relationship between ABC and tree species’ suitable area changes under SSP1-2.6 (a),
SSP2-4.5 (b), SSP5-8.5 (c), and their area proportion statistics (d); L.: L. gmelinii; S.: S. superba; C.:
C. officinarum.
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The individual effects of the driving factors behind forest ABC variations were ana-
lyzed using factor detectors (Figure 9). For Northeast China, climate factors have a relatively
strong ability to explain forest ABC, especially temperature, followed by precipitation and
the distribution of L. gmelinii. The q value of temperature interpretation will reach 0.224 in
the scenario of SSP1-2.6. For the southern parts of China, the temperature will still be the
driving factor with the highest explanatory power (0.094) for forest ABC in the SSP1-2.6
scenario, while in the SSP2-4.5 scenario, the q value of the explanatory power for forest ABC
shows the order of C. officinarum, precipitation, S. superba, and temperature (Figure 9b).

Figure 9. The q values of driving factors for forest ABC variations: (a) TCBMF; (b) SEBF. X1:
precipitation; X2: temperature; X3: L. gmelinii; X4: S. superba; X5: C. officinarum.

The results of synergistic detection among the factors showed that the effects of the
interaction between temperature and precipitation and L. gmelinii on forest ABC in northeast
China will be bi-enhanced and nonlinear enhanced in the SSP1-2.6 and SSP2-4.5 scenarios,
respectively (Figure 10a,b). In the SSP5-8.5 scenario, precipitation has an effect on the
ABC of northeastern forests through the interaction of bi-enhanced, with temperature, and
nonlinear enhanced interaction with L. gmelinii, respectively. Temperature and L. gmelinii
also showed a bi-enhanced interaction affecting the northeastern forest ABC (Figure 10c).

 

Figure 10. The q values of interaction between factors. Note: * and ** represent the interaction
types of bi-variable enhanced and nonlinear-enhanced, respectively. (a–c) TCBMF; (d–f) SEBF. X1:
precipitation; X2: temperature; X3: L. gmelinii; X4: S. superba; X5: C. officinarum.

In the SSP1-2.6 and SSP5-8.5 scenarios, temperature, precipitation, S. superba, and
C. officinarum will affect the forest ABC in southern China through the synergistic effect
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of nonlinear enhancement between each two (Figure 10d,f). In the SSP2-4.5 scenario, the
bi-enhanced synergistic effect between pairwise factors will have a stronger effect on forest
ABC (Figure 10e).

4. Discussion

The satellite dataset showed that high values of forest ABC in China from 1993 to
2012 were mainly distributed in North China, Northeast China, and Southwest China,
especially in northeastern and southwestern China (>70 Mg/ha), and forest ABC increased
at a rate of approximately 0.37%yr−1, which is aligned with the results of Chen et al. [6]
and Tang et al. [1], who integrated various types of remote sensing observations and field
measurements to analyze the spatial distribution and temporal trends of forest ABC using
regression analysis and machine learning methods. The mean value of satellite observation
of forest ABC (37.58 Mg/ha) was lower than Masson pine with 18-year-old stands (86.0
Mg/ha of total biomass carbon) [37]. Meanwhile, simulated forest ABC (62.87 Mg/ha)
was greater than Masson pine with 28-year-old stands (112.70 Mg/ha of total biomass
carbon). The main reasons for the differences in results are primarily attributed to variations
in carbon sequestration capabilities among different species, disparities within the same
species at different ages, and human-induced factors of interference [37]. To enhance the
accuracy of remote sensing retrieval or model simulation of forest biomass carbon, it is
essential to incorporate considerations for vegetation species diversity, stand age, and
human-induced disturbances.

The forest ABC of TCBMF in Northeast China showed a significant downward trend
from 1993 to 2012, while the ABC of SEBF in South China showed a continuous upward
trend. Combining the LPJ model and GCM data, the future forest ABC indicated a signif-
icant overall increase in ABC in SEBF regions under all SSP1-2.6, SSP2-4.5, and SSP5-8.5
conditions from 2015 to 2060, which was consistent with the results obtained by Kong
et al. (2022) [2]. This phenomenon would be attributed to the higher precipitation and
temperature conditions in SEBF regions, which can meet the requirements for vegetation
growth [2]. Liu et al. (2015) [38] believed that tropical deforestation declines in China
had also contributed to the increase in forest ABC in the region. Furthermore, the forest
ABC in TCBMF of China will experience a continuing significant downward trend from
2015 to 2060. Sun et al. (2022) [39] also obtained similar results regarding the changes in
forest carbon stocks in the Northeast region of China using the INVEST model based on
land use and land cover changes. The main reasons for these changes are associated with
the conversion of forest land to agricultural land and fluctuations in the economic timber
forests of the Lesser Khingan Mountains. In addition, common forest pests and diseases in
temperate forests, wildfires, and the degradation of old-growth forests may also lead to a
decline in the forest’s carbon sequestration potential in this region [38].

Understanding the impact of climate change on forests’ carbon sequestration potential
needs to be linked to changes in areas suitable for tree species. Our results showed that
the future distribution of the highly suitable area for coniferous species (L. gmelinii) is
projected to shrink primarily in Northeast China, while evergreen broad-leaved tree species
(S. superba and C. officinarum) will tend to expand towards the central regions of China from
2015 to 2060 based on the MaxEnt model. Similar conclusions have also been reported, for
example, by Bai et al. (2016) and Chen et al. (2022) [40,41], who found, through research on
the relationship between tree rings and temperature changes, that rapid warming will lead
to the gradual decline of L. gmelinii in Northeast China. Du et al. (2022) [42] found that the
future suitable habitat area of eight species of tree species in the Northeast region, including
L. gmelinii, will decrease by 10%–30%. Wu et al. (2012) [43] found that climate warming
caused a significant decrease in the growth of L. gmelinii in semi-northern coniferous forests
during the last two decades. These findings are consistent with ours, but such studies
rarely explore the impact of changes in species’ suitable areas on forest ABC. Combining
climate change, species’ suitable area changes and forest ABC changes can enhance our
understanding of the carbon sequestration potential of forests.
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Previous research has primarily revealed changes in the carbon sequestration potential
of China, and emphasized climate change’s influence on them, but ignored the effects of
changes in tree species’ suitable area [43–45]. Overlay analysis of the LPJ and MaxENT
models showed that the future trends of forest ABC reduction in TCBMF and increase
in the SEBF region of China are spatially consistent with the shrinking of highly suitable
areas for L. gmelinii in TCBMF and the expansion of highly suitable areas for S. superba
and C. officinarum in the SEBF region. The outcomes of the Geodetector model found that
climate and tree species’ highly suitable area changes showed a bi-variable and nonlinear
synergistic enhancement of forest ABC change [46]. Generally, warming and humidification
of the climate are conducive to the growth of vegetation, but this has species and space
differences [47]. Larch pollen is negatively correlated with temperature [48]. For the
Northeast region, which is dominated by coniferous species such as Larch, a reduction in
Larch pollen leads to an insufficient supply of young species under warming conditions,
coupled with the degradation of old-aged coniferous forests in the region, resulting in a
decline in forest ABC. In addition, the thawing of permafrost in Northeast China due to
climate warming may provide more water and space for plants in the short term [40,49],
but as warming intensifies in the upcoming decades (0.36 ◦C per decade), the thawing
of permafrost will lead to a long-term reduction in the coniferous forest ecosystem [50],
leading to forest fragmentation and forest loss and reducing the potential of forests to
sequester carbon [51]. Notably, the reduction in the carbon sequestration potential of
forests in the Northeast may be short-term. Temperate broad-leaved species are expanding
into northern forest patches, causing the Northeastern coniferous forest to retreat and
be replaced by deciduous broad-leaved forests [40,48,52,53]. The carbon sequestration
potential of forests in the Northeast remains uncertain in the long term, as some relatively
uncommon species will become more common under climate change. Therefore, the long-
term carbon sequestration potential of forests in the Northeast would depend on newly
established tree species.

Despite this study innovatively combines embedded physics-based models with
statistical models, revealing changes in China’s future forest carbon sequestration potential
and its relationship with climate change and tree species’ suitable area shifts, limitations
still exist within this study. Firstly, while this study considered the impact of climate and
vegetation on carbon sequestration potential, it did not account for factors like forest fires,
pests, diseases, stand age, and the effects of carbon dioxide fertilization [54]. Secondly, due
to model limitations, this research did not include forest belowground biomass carbon,
a crucial component of the forest ecosystem’s carbon composition [4,55]. Additionally,
apart from the inherent uncertainties of the LPJ and MaxEnt models, the accuracy of future
meteorological data, which served as input for both models, as well as the correction of
biases, requires further improvement. Despite these limitations, this study introduces a
novel approach to assessing the relationship between forest carbon sequestration potential,
climate change, and shifts in tree species’ suitable distribution areas.

5. Conclusions

Based on GCM model data coupled with the LPJ model and MaxENT model, this
study predicted the distribution of forest ABC and suitable areas for typical tree species in
China and explored the impact of climate variations and changes in the suitable area for
tree species on forest ABC in China from 2015 to 2060. The main results are as follows:

(1) The geographical distribution of forests in China has spatial differences, with
the northeast (TCBMF), southwest, and southeast (SEBF) being the predominant hubs
of distribution. However, the forest ABC generated from the LPJ model clearly showed
that the overall ABC in the study area increased at a growth rate of 0.19 Mg/ha/a before
1992, and then changed to a decreasing trend (−0.03 Mg/ha/a). Meanwhile, a clear and
concerning downward trajectory was noticeable in the forest ABC in TCBMF (before 2000:
0.38 Mg/ha/a, after 2000: −0.17 Mg/ha/a), while that of SEBF showed an increasing
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trend (before 2000: 0.12 Mg/ha/a, after 2000: 0.01 Mg/ha/a) after 2000 based on satellite
observation and LPJ simulation.

(2) The trajectory of forest ABC in TCBMF is set to undergo a sustained decline with a
maximum decline rate of−0.46 Mg/ha/a under the SSP5-8.5 scenario. In stark contrast, the
forest ABC in SEBF is anticipated to experience a notable upswing at a rate of 0.13 Mg/ha/a
under SSP5-8.5. Under the SSP5-8.5 scenario, the proportion of pixels with significantly
increased or decreased forest ABC is higher compared to other scenarios. Among them,
the BCC model results will have the highest proportion of pixels with a significantly
increasing trend in forest ABC at 80.34%, whereas the Can will have the largest proportion
of significantly decreasing forest ABC at 19.63%.

(3) The variations in forest ABC are highly attributed to climate and changes in tree
species’ highly suitable area. By 2060, the suitable area for L. gmelinii in TCBMF will be
significantly reduced to a maximum of 65.71 × 104 km2 under SSP5-8.5, while S. superba
and C. officinarum in SEBF will expand to peaks of 94.07 × 104 km2 and 104.22 × 104 km2,
respectively. Spatially, the decrease in forest ABC in TCBMF will be consistent with the
reduction in highly suitable areas of L. gmelinii, while the increase in forest ABC in SEBF
regions will be consistent with the expansion of S. superba and C. officinarum. Climate and
tree species’ suitable area changes showed bi-variable and nonlinear synergistic enhance-
ment of forest ABC change based on the geographic detector’s results. The findings of this
work can provide valuable insights for developing effective sustainability management
strategies under a carbon neutrality context.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14102053/s1, Figure S1: Spatial distribution map and Taylor
chart of observed annual mean temperature/precipitation and simulated values (MME) in China
during 1982–2014; Figure S2. Annual mean temperature and precipitation anomalies in China from
1982 to 2060. Shaded areas and grey bars represent the mean ± 1 standard deviation ranges for the
three CMIP6 models; Figure S3. Reliability test of the MaxEnt model created for: (a) Larix gmelinii;
Schima superba Gardner & Champ and (c) Camphora officinarum.

Author Contributions: B.Z.: data curation, methodology, and writing—original draft preparation.
R.K.: data curation and methodology. M.W.: writing—review and editing. G.L. and X.S.: data
curation and software. H.T.: investigation. Z.Z.: validation and supervision. All authors have read
and agreed to the published version of the manuscript.

Funding: This paper is financially supported by the Key Research and Development Program of
Xinjiang Uygur Autonomous Region, China (grant number 2022B03030), National Natural Science
Foundation of China (grant number 41971025), West Light Foundation of the Chinese Academy of
Sciences (grant numbers 2019-XBYJRC001, 2019-XBQNXZ-B-004). The project is supported by the
Flexible Talent Introduction Project of Xinjiang Uygur Autonomous Region and the Priority Academic
Program Development of Jiangsu Higher Education Institutions (PAPD).

Data Availability Statement: Data will be made available on request.

Acknowledgments: Acknowledgement for the data support from China Meteorological Data Service
Centre (http://data.cma.cn/en, accessed on 31 January 2020). In addition, we sincerely thank the
editor and anonymous reviewers for their valuable comments and suggestions to improve the quality
of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon Pools in China’s Terrestrial
Ecosystems: New Estimates Based on an Intensive Field Survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [CrossRef]
[PubMed]

2. Kong, R.; Zhang, Z.; Huang, R.; Tian, J.; Feng, R.; Chen, X. Projected Global Warming-Induced Terrestrial Ecosystem Carbon
across China under SSP Scenarios. Ecol. Indic. 2022, 139, 108963. [CrossRef]

3. Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root Biomass Allocation in the World’s Upland Forests. Oecologia 1997,
111, 1–11. [CrossRef] [PubMed]

123



Forests 2023, 14, 2053

4. Ma, H.; Mo, L.; Crowther, T.W.; Maynard, D.S.; Van Den Hoogen, J.; Stocker, B.D.; Terrer, C.; Zohner, C.M. The Global Distribution
and Environmental Drivers of Aboveground versus Belowground Plant Biomass. Nat. Ecol. Evol. 2021, 5, 1110–1122. [CrossRef]

5. Green, J.K.; Keenan, T.F. The Limits of Forest Carbon Sequestration. Science 2022, 376, 692–693. [CrossRef]
6. Chen, Y.; Feng, X.; Fu, B.; Ma, H.; Zohner, C.M.; Crowther, T.W.; Huang, Y.; Wu, X.; Wei, F. Maps with 1km Resolution Reveal

Increases in Above- and Belowground Forest Biomass Carbon Pools in China over the Past 20 Years. Earth Syst. Sci. Data 2023, 15,
897–910. [CrossRef]

7. Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [CrossRef]
8. He, H.; Wang, S.; Zhang, L.; Wang, J.; Ren, X.; Zhou, L.; Piao, S.; Yan, H.; Ju, W.; Gu, F.; et al. Altered Trends in Carbon Uptake in

China’s Terrestrial Ecosystems under the Enhanced Summer Monsoon and Warming Hiatus. Natl. Sci. Rev. 2019, 6, 505–514.
[CrossRef]

9. Zhang, D.; Zhao, Y.; Wu, J. Assessment of Carbon Balance Attribution and Carbon Storage Potential in China’s Terrestrial
Ecosystem. Resour. Conserv. Recycl. 2023, 189, 106748. [CrossRef]

10. Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased
Vegetation Growth and Carbon Stock in China Karst via Ecological Engineering. Nat. Sustain. 2018, 1, 44–50. [CrossRef]

11. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al.
Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation
Model: Lpj Dynamic Global Vegetation Model. Glob. Change Biol. 2003, 9, 161–185. [CrossRef]

12. Bondeau, A.; Smith, P.C.; Zaehle, S.; Schaphoff, S.; Lucht, W.; Cramer, W.; Gerten, D.; Lotze-Campen, H.; Mueller, C.; Reichstein,
M.; et al. Modelling the Role of Agriculture for the 20th Century Global Terrestrial Carbon Balance. Glob. Change Biol. 2007, 13,
679–706. [CrossRef]

13. Zhao, S.; Yan, X.; Yang, S.; Tao, D.; Dai, L. Simulating Responses of Northeastern China Forests to Potential Climate Change. J. For.
Res. 1998, 9, 166–172. [CrossRef]

14. Shao, G. Sensitivities of Species Compositions of the Mixed Forest in Eastern Eurasian Continent to Climate Change. Glob. Planet.
Chang. 2003, 37, 307–313. [CrossRef]

15. He, H.S.; Hao, Z.; Mladenoff, D.J.; Shao, G.; Hu, Y.; Chang, Y. Simulating Forest Ecosystem Response to Climate Warming
Incorporating Spatial Effects in North-Eastern China. J. Biogeogr. 2005, 32, 2043–2056. [CrossRef]

16. Li, G.-Q.; Fan, B.A.I.; Wei-Guo, S. Different Responses of Radial Growth to Climate Warming in Pinus Koraiensis and Picea Jezoensis
Var. Komarovii at Their Upper Elevational Limits in Changbai Mountain, China. Chin. J. Plant Ecol. 2011, 35, 500. [CrossRef]

17. Yu, D.; Wang, Q.; Wang, Y.; Zhou, W.; Ding, H.; Fang, X.; Jiang, S.; Dai, L. Climatic Effects on Radial Growth of Major Tree Species
on Changbai Mountain. Ann. For. Sci. 2011, 68, 921. [CrossRef]

18. Dai, L.; Jia, J.; Yu, D.; Lewis, B.J.; Zhou, L.; Zhou, W.; Zhao, W.; Jiang, L. Effects of Climate Change on Biomass Carbon
Sequestration in Old-Growth Forest Ecosystems on Changbai Mountain in Northeast China. For. Ecol. Manag. 2013, 300, 106–116.
[CrossRef]

19. Wang, M.; Guan, Q. Prediction of Potential Suitable Areas for Broussonetia Papyrifera in China Using the MaxEnt Model and
CIMP6 Data. J. Plant Ecol. 2023, 16, rtad006. [CrossRef]

20. Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science
2001, 292, 2320–2322. [CrossRef]

21. He, X.; Burgess, K.S.; Gao, L.-M.; Li, D.-Z. Distributional Responses to Climate Change for Alpine Species of Cyananthus and
Primula Endemic to the Himalaya-Hengduan Mountains. Plant Divers. 2019, 41, 26–32. [CrossRef]

22. Rivas, C.A.; Navarro-Cerillo, R.M.; Johnston, J.C.; Guerrero-Casado, J. Dry Forest Is More Threatened but Less Protected than
Evergreen Forest in Ecuador’s Coastal Region. Environ. Conserv. 2020, 47, 79–83. [CrossRef]

23. Zhang, H.; Xiao, Y.; Huang, F. Estimated Carbon Storage and Economic Value on the Mostly Forest Ecosystem in Hunan Province.
In The Dynamics of Urban Agglomeration in China: Preferences of Energy-Saving and Environment-Friendly Society; Zhang, H., Zhang,
H., Eds.; Aussino Academic Publishing House: Marrickville, Australia, 2009; p. 137.

24. Zhang, K.; Gong, Y.; Fa, H.; Zhao, M. CO2 Flux Characteristics of Different Plant Communities in a Subtropical Urban Ecosystem.
Sustainability 2019, 11, 4879. [CrossRef]

25. Jiang, S.; Guo, X.; Zhao, P.; Liang, H. Radial Growth–Climate Relationship Varies with Spatial Distribution of Schima Superba
Stands in Southeast China’s Subtropical Forests. Forests 2023, 14, 1291. [CrossRef]

26. Tian, J.; Zhang, Z.; Ahmed, Z.; Zhang, L.; Su, B.; Tao, H.; Jiang, T. Projections of Precipitation over China Based on CMIP6 Models.
Stoch. Environ. Res. Risk Assess. 2021, 35, 831–848. [CrossRef]

27. Merow, C.; Smith, M.J.; Silander Jr, J.A. A Practical Guide to MaxEnt for Modeling Species’ Distributions: What It Does, and Why
Inputs and Settings Matter. Ecography 2013, 36, 1058–1069. [CrossRef]

28. Zaehle, S.; Sitch, S.; Prentice, I.C.; Liski, J.; Cramer, W.; Erhard, M.; Hickler, T.; Smith, B. The Importance of Age-Related Decline in
Forest NPP for Modeling Regional Carbon Balances. Ecol. Appl. 2006, 16, 1555–1574. [CrossRef]

29. Pappas, C.; Fatichi, S.; Rimkus, S.; Burlando, P.; Huber, M.O. The Role of Local-Scale Heterogeneities in Terrestrial Ecosystem
Modeling. J. Geophys. Res. Biogeosci. 2015, 120, 341–360. [CrossRef]

30. Phillips, S.J.; Dudik, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation.
Ecography 2008, 31, 161–175. [CrossRef]

124



Forests 2023, 14, 2053

31. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006,
190, 231–259. [CrossRef]

32. Zhou, Y.; Zhang, Z.; Zhu, B.; Cheng, X.; Yang, L.; Gao, M.; Kong, R. MaxEnt Modeling Based on CMIP6 Models to Project Potential
Suitable Zones for Cunninghamia Lanceolata in China. Forests 2021, 12, 752. [CrossRef]

33. Fernandes, R.G.; Leblanc, S. Parametric (Modified Least Squares) and Non-Parametric (Theil–Sen) Linear Regressions for
Predicting Biophysical Parameters in the Presence of Measurement Errors. Remote Sens. Environ. 2005, 95, 303–316. [CrossRef]

34. Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [CrossRef]
35. Kong, R.; Zhang, Z.; Zhang, Y.; Wang, Y.; Peng, Z.; Chen, X.; Xu, C.-Y. Detection and Attribution of Changes in Terrestrial Water

Storage across China: Climate Change versus Vegetation Greening. Remote Sens. 2023, 15, 3104. [CrossRef]
36. Zhang, J.; Chu, L.; Zhang, Z.; Zhu, B.; Liu, X.; Yang, Q. Evolution of Small and Micro Wetlands and Their Driving Factors in the

Yangtze River Delta—A Case Study of Wuxi Area. Remote Sens. 2023, 15, 1152. [CrossRef]
37. Ali, A.; Ahmad, A.; Akhtar, K.; Teng, M.; Zeng, W.; Yan, Z.; Zhou, Z. Patterns of Biomass, Carbon, and Soil Properties in Masson

Pine (Pinus Massoniana Lamb) Plantations with Different Stand Ages and Management Practices. Forests 2019, 10, 645. [CrossRef]
38. Liu, Y.Y.; Dijk, A.I.J.M.V.; Jeu, R.A.M.D.; Canadell, J.G.; McCabe, M.F.; Evans, J.P.; Wang, G. Recent Reversal in Loss of Global

Terrestrial Biomass. Nat. Clim. Chang. 2015, 5, 470–474. [CrossRef]
39. Sun, J.; Zhang, Y.; Qin, W.; Chai, G. Estimation and Simulation of Forest Carbon Stock in Northeast China Forestry Based on

Future Climate Change and LUCC. Remote Sens. 2022, 14, 3653. [CrossRef]
40. Bai, X.; Chang, Y.; Zhang, X.; Yan-jun, M.A.; Tao, W.U.; Jun-xia, L.I.; Zhen-ju, C. Impacts of Rapid Warming on Radial Growth of

Larix Gmelinii on Two Typical Micro-Topographies in the Recent 30 Years. J. Appl. Ecol. 2016, 27, 3853. [CrossRef]
41. Chen, C.; Zhang, X.; Wan, J.; Gao, F.; Yuan, S.; Sun, T.; Ni, Z.; Yu, J. Predicting the Distribution of Plant Associations under Climate

Change: A Case Study on Larix Gmelinii in China. Ecol. Evol. 2022, 12, e9374. [CrossRef]
42. Du, Q.; Wei, C.; Liang, C.; Yu, C.; Wang, H.; Wang, W. Future climatic adaption of 12 dominant tree species in Northeast China

under 3 climatic scenarios by using MaxEnt modeling. Acta Ecol. Sin. 2022, 42, 9712–9725.
43. Wu, X.; Liu, H.; Guo, D.; Anenkhonov, O.A.; Badmaeva, N.K.; Sandanov, D.V. Growth Decline Linked to Warming-Induced Water

Limitation in Hemi-Boreal Forests. PLoS ONE 2012, 7, e42619. [CrossRef]
44. Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and Monitoring

Carbon Stocks with Satellite Observations: A Comparison of Methods. Carbon. Balance Manag. 2009, 4, 2. [CrossRef] [PubMed]
45. Xu, W.; Jin, X.; Liu, J.; Yang, X.; Ren, J.; Zhou, Y. Analysis of Spatio-Temporal Changes in Forest Biomass in China. J. For. Res. 2022,

33, 261–278. [CrossRef]
46. Strassburg, B.B.N.; Kelly, A.; Balmford, A.; Davies, R.G.; Gibbs, H.K.; Lovett, A.; Miles, L.; Orme, C.D.L.; Price, J.; Turner, R.K.;

et al. Global Congruence of Carbon Storage and Biodiversity in Terrestrial Ecosystems. Conserv. Lett. 2010, 3, 98–105. [CrossRef]
47. Wen, R.; Xiao, J.; Chang, Z.; Zhai, D.; Xu, Q.; Li, Y.; Itoh, S.; Lomtatidze, Z. Holocene Climate Changes in the Mid-High-Latitude-

Monsoon Margin Reflected by the Pollen Record from Hulun Lake, Northeastern Inner Mongolia. Quat. Res. 2010, 73, 293–303.
[CrossRef]

48. Zhu, C.; Liu, H.; Wang, H.; Feng, S.; Han, Y. Vegetation Change at the Southern Boreal Forest Margin in Northeast China over the
Last Millennium: The Role of Permafrost Dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 558, 109959. [CrossRef]

49. Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The Impacts of Climate Change on
Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [CrossRef]

50. Jones, M.C.; Booth, R.K.; Yu, Z.; Ferry, P. A 2200-Year Record of Permafrost Dynamics and Carbon Cycling in a Collapse-Scar Bog,
Interior Alaska. Ecosystems 2013, 16, 1–19. [CrossRef]

51. Baltzer, J.L.; Veness, T.; Chasmer, L.E.; Sniderhan, A.E.; Quinton, W.L. Forests on Thawing Permafrost: Fragmentation, Edge
Effects, and Net Forest Loss. Glob. Chang. Biol. 2014, 20, 824–834. [CrossRef]

52. Fisichelli, N.A.; Frelich, L.E.; Reich, P.B. Temperate Tree Expansion into Adjacent Boreal Forest Patches Facilitated by Warmer
Temperatures. Ecography 2014, 37, 152–161. [CrossRef]

53. Li, F.; Zhou, G.; Cao, M. Responses of Larix Gmelinii Geographical Distribution to Future Climate Change: A Simulation Study. J.
Appl. Ecol. 2006, 17, 2255–2260.

54. Wang, Y.; Zhang, Z.; Chen, X. The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation
or Anthropogenic Activities? Forests 2022, 13, 82. [CrossRef]

55. Huang, Y.; Ciais, P.; Santoro, M.; Makowski, D.; Chave, J.; Schepaschenko, D.; Abramoff, R.Z.; Goll, D.S.; Yang, H.; Chen, Y.; et al.
A Global Map of Root Biomass across the World’s Forests. Earth Syst. Sci. Data 2021, 13, 4263–4274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

125



Citation: Shen, P.; Sun, N.; Hu, K.;

Ye, X.; Wang, P.; Xia, Q.; Wei, C.

FireViT: An Adaptive Lightweight

Backbone Network for Fire Detection.

Forests 2023, 14, 2158. https://

doi.org/10.3390/f14112158

Academic Editor: José Aranha

Received: 29 September 2023

Revised: 25 October 2023

Accepted: 27 October 2023

Published: 30 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

FireViT: An Adaptive Lightweight Backbone Network for Fire
Detection

Pengfei Shen 1, Ning Sun 1,2,*, Kai Hu 1, Xiaoling Ye 1, Pingping Wang 3, Qingfeng Xia 2 and Chen Wei 1

1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,
Information and Systems Science Institute, Nanjing University of Information Science and Technology,
Nanjing 210044, China; 20211249578@nuist.edu.cn (P.S.); 001600@nuist.edu.cn (K.H.);
000510@nuist.edu.cn (X.Y.); 202312490377@nuist.edu.cn (C.W.)

2 School of Automation, Wuxi University, Wuxi 214105, China; xqf@cwxu.edu.cn
3 Fire Research Institute, Shanghai 200030, China; wangpingping@shfri.cn
* Correspondence: 001764@cwxu.edu.cn

Abstract: Fire incidents pose a significant threat to human life and property security. Accurate fire
detection plays a crucial role in promptly responding to fire outbreaks and ensuring the smooth
execution of subsequent firefighting efforts. Fixed-size convolutions struggle to capture the irregular
variations in smoke and flames that occur during fire incidents. In this paper, we introduce FireViT,
an adaptive lightweight backbone network that combines a convolutional neural network (CNN)
and transformer for fire detection. The FireViT we propose is an improved backbone network
based on MobileViT. We name the lightweight module that combines deformable convolution with
a transformer as th DeformViT block and compare multiple builds of this module. We introduce
deformable convolution in order to better adapt to the irregularly varying smoke and flame in fire
scenarios. In addition, we introduce an improved adaptive GELU activation function, AdaptGELU,
to further enhance the performance of the network model. FireViT is compared with mainstream
lightweight backbone networks in fire detection experiments on our self-made labeled fire natural
light dataset and fire infrared dataset, and the experimental results show the advantages of FireViT as
a backbone network for fire detection. On the fire natural light dataset, FireViT outperforms the PP-
LCNet lightweight network backbone for fire target detection, with a 1.85% increase in mean Average
Precision (mAP) and a 0.9 M reduction in the number of parameters. Additionally, compared to the
lightweight network backbone MobileViT-XS, which similarly combines a CNN and transformer,
FireViT achieves a 1.2% higher mAP while reducing the Giga-Floating Point Operations (GFLOPs) by
1.3. FireViT additionally demonstrates strong detection performance on the fire infrared dataset.

Keywords: CNN and transformer; lightweight; fire detection

1. Introduction

Hazards caused by fire are a serious threat to human life and property. According to
data from the Global Disaster Database, from 2013 to 2022 the average number of deaths
and missing persons due to forest and grassland fires alone reached 904,000 people. Data
released by Global Forest Watch (GFW) and the World Resources Institute (WRI) indicate
that on a global scale the forest area destroyed by wildfires is now double what it was at
the beginning of this century. According to satellite data, the annual forest area destroyed
by wildfires has increased by approximately 3 million hectares compared to the year 2001.
In addition to forest fires, the increasing impact of other types of fires, such as electrical
fires, is becoming more severe as society continues to progress and develop. The frequency
of these incidents is on the rise. Real-time monitoring of fire-prone areas, timely fire alarms,
and rapid localization of fire incidents are of paramount importance for safeguarding
human life, property, and industrial safety.
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Traditional fire detection methods primarily involve contact-based fire detectors,
such as carbon monoxide sensors, temperature sensors, smoke detectors, etc. Rachman,
F. et al. [1] proposed a fuzzy logic-based early fire detection system using KY-026 (fire
detection), MQ-9 (smoke detection), and DS18b20 (temperature detection) sensors. Huang
Ye et al. [2] proposed a wireless fire detection node design method based on multi-source
sensor data fusion and provided a complete hardware selection and software data fusion
processing method. Solorzano Soria, A.M. et al. [3] proposed a gas sensor-based array
to speed up fire alarm response. Li Yafei et al. [4] developed a mid-infrared carbon
monoxide (CO) and carbon dioxide (CO2) dual gas sensor system for early fire detection.
Liu Xiaojiang et al. [5] proposed a sensor optimization strategy and an intelligent fire
detection method based on the combination of particle swarm optimization algorithm.
Although contact fire detectors are commonly used in various public scenes, their detection
range is limited to small indoor spaces, and it is difficult to apply them to large indoor
spaces and outdoor open spaces where open flames are strictly prohibited. Moreover,
traditional contact fire detectors are prone to age-related failures and require a lot of
manpower and resources for maintenance and management.

Compared to contact fire detection using sensors, non-contact video fire detection
technology has the advantages of no additional hardware, intuitive and comprehensive
fire information, and large detection range. While real-time monitoring of fire appears
to be a binary classification problem for images, in practice it requires further detection
of fire images based on the classification. The use of fire image detection is justified due
to the extensive coverage of video surveillance systems. Early fire incidents are often
challenging to detect, and sometimes fires can escalate to an uncontrollable stage within
a short timeframe. Therefore, relying solely on image classification is insufficient for
accurately pinpointing the actual location of a fire. This limitation could undoubtedly
hinder the timely response and effective management of fire incidents. Traditional fire
target detection algorithms include region selection, feature extraction, and classifier design.
Qiu, T. et al. [6] proposed an adaptive canny edge detection algorithm for fire image
processing. Ji-neng, O. et al. [7] proposed an early flame detection method based on
edge gradient features. Khalil, A. et al. [8] proposed a fire detection method based on
multi-color space and background modeling. However, in traditional fire target detection
algorithms, manually designed features lack strong generalization and exhibit limited
robustness. The emergence of CNNs has gradually replaced traditional handcrafted feature
methods, offering superior generalization and robustness compared to traditional fire
detection approaches. Majid, S. et al. [9] proposed an attention-based CNN model for the
detection and localization of fires. Chen, G. et al. [10] proposed a lightweight model for
forest fire smoke detection based on YOLOv7. Dogan, S. et al. [11] proposed an automated
accurate fire detection system using ensemble pretrained residual network. In recent years,
a new generation of transformer-based deep learning network architectures has gradually
started to shine. Li, A. et al. [12] proposed a combination of BiFPN and Swin transformer
for the detection of smoke from forest fires. Huang, J. et al. [13] proposed a small target
smoke detection method based on a deformable transformer. Although these transformer-
based network architectures have achieved good results in fire detection, they tend to
be more complex (i.e., the number of parameters reaches about 20 M or 30 M) and not
very lightweight. In order to ensure a lightweight transformer architecture-based model,
scholars have started to research solutions such as EfficientViT [14], EfficientFormerV2 [15],
MobileViT [16], etc., although these network models have not become widely used in fire
detection to date.

Most of the methods that utilize deep learning for fire target detection use rectangular
convolution of fixed shapes for feature extraction of smoke and flame in fires; however,
it is well known that smoke and flame features in a fire situation are scattered and ir-
regular, which is undoubtedly a very challenging task in fire target detection. Therefore,
in this paper we propose a lightweight adaptive backbone network called FireViT using
deformable convolution [17] combined with transformer for fire detection to better adapt
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to the irregularly varying smoke and flames in fire scenarios. The adaptive lightweight
backbone network, FireViT that we propose here is capable of meeting the requirements of
various other application scenarios.

The contributions of our paper are as follows:

• An adaptive lightweight backbone network consisting of deformable convolution
combined with a transformer, which we name FireViT, is proposed for smoke and
flame detection in fire. Our proposed DeformViT block is the main module in FireViT.

• An improved adaptive activation function, AdaptGELU, is proposed to increase the
nonlinear representation of the model and further enhance the accuracy of the network.

• Considering the relatively small number of publicly available labeled fire datasets, we
collected and built one of the richest labeled fire datasets with the largest number of
fire scenes and fire images to evaluate our model. Our labeled fire dataset contains a
fire natural light dataset and fire infrared dataset.

The rest of this paper is organized as follows. Section 2 presents previous works on the
backbone network and the target detection header in the target detection algorithm that are
related to this paper. Section 3 presents FireViT, a lightweight backbone network consisting
of deformable convolution combined with a transformer that can be used for fire detection,
along with AdaptGELU, an improved adaptive activation function. Section 4 discusses the
process of determining the FireViT backbone network using the AdaptGELU activation
function proposed in Section 3 and verifies the validity of the model by comparing it
to other mainstream lightweight backbone networks for fire detection experiments on
self-made labeled fire datasets. Finally, in Section 5, we summarize and conclude the paper.

2. Related Work

In this section, we present previous research work related to this paper on lightweight
backbone networks and target detection headers in target detection algorithms.

2.1. MobileViT

The emergence of ViT [18] has led people to realize the tremendous potential of
transformers in the field of computer vision. The transformer architecture has become a new
neural network paradigm in the field of computer vision, following the advent of CNNs,
with and more researchers starting to use networks with the transformer architecture.
However, although transformers are powerful, they have a number of problems; the pure
transformer model structures are usually bulky and not very lightweight; furthermore,
inductive bias is a form of prior knowledge, and unlike CNNs, transformers do not have
the same kind of induction bias, meaning that transformers require a substantial amount of
data to learn such prior information.

The inductive bias of CNNs can generally be categorized into two types. The first
is locality; CNNs convolve input feature maps using a sliding window approach, which
means that objects that are closer together exhibit stronger correlations. Locality helps
to control the complexity of the model. The second type is translation equivariance;
regardless of whether object features in an image are first convolved and then translated,
or first translated and then convolved, the resulting features are the same. Translation
equivariance enhances the model’s generalization capabilities.

However, CNNs are not without imperfections. The spatial features they extract are
inherently local in nature, which to a certain extent constrains the model’s performance,
whereas transformers can obtain global information through their self-attention mechanism.

MobileViT is a lightweight network that combines the strengths of both CNN and ViT.
MobileViT is available in three versions depending on model size: MobileViT-S, MobileViT-
XS, and MobileViT-XXS. MobileViT primarily consists of standard convolutions, inverted
residual blocks from MobileNetV2 (MV2), MobileViT blocks, global pooling, and fully
connected layers. The network architecture is illustrated in Figure 1. In this paper, we have
replaced the MobileViT block in the MobileViT-XS network with our proposed DeformViT
block. Additionally, we have removed the Conv(1 × 1), global pooling, and fully connected
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layers at the bottom of MobileViT-XS to create the FireViT network, which serves as the
network backbone in our fire detection approach.

Figure 1. Structure of the MobileViT network; “(3×3)” and “(1×1)” denote the size of the convolution
kernel, “MV2” denotes the inverted residual block in MobileNetV2, “↓2” denotes the downsampling
operation, and “L” denotes the number of layers in the transformer block.

2.2. Prediction Head

Target detection is the ability to accurately localize objects of interest in an image; the
prediction head (prediction part or output part) is required to perform classification and
regression tasks. There are two types of detection heads, namely, coupled detection heads
and decoupled detection heads. A coupled detection head means that the classification and
regression tasks share a significant portion of their input parameters. In [19], the authors
pointed out that the features of interest for classification and regression tasks during the
learning of input parameters are different. These two subtasks are coupled, leading to
spatial misalignment issues that can significantly impact network convergence speed.
Decoupled detection heads address this issue. A decoupled detection head separately
processes the input parameters for the classification and regression tasks, which enhances
the detection accuracy and convergence speed of the detection network. The YOLOX [20]
network uses decoupled heads for target detection, showing a 1.1% improvement in terms
of mAP compared to YOLOv3 [21]. As a result, most target detection networks including
PPYOLO-E [22], YOLOv6 [23], and YOLOv8 [24], have begun to adopt this paradigm.
To ensure the fairness of our designed adaptive lightweight FireViT backbone feature
extraction network in comparison with other backbone network models for fire target
detection, all the models studied in this paper use three YOLOv8 decoupled heads at the
bottom of their respective networks for fire target detection.

The prediction head of YOLOv8 uses decoupled classification and regression branches;
the detailed structure is shown in Figure 2. The classification branch uses the Binary
Cross-Entropy (BCE) loss. The regression branch employs the Complete Intersection over
Union (CIoU) loss [25], and utilizes a novel loss function called the Distribution Focal
Loss (DFL) [26]. The DFL is designed to optimize the probabilities of the left (yi) and right
(yi+1) positions that are closest to the label y in a manner similar to cross-entropy. This
allows the network to quickly focus on the distribution in the vicinity of the target location.
The formula is represented as Equation (1):

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y− yi) log(Si+1)). (1)

Figure 2. Structure of the prediction head of YOLOv8; CIOU is the complete intersection over union
loss, DFL is the distribution focal loss, and BCE is the binary cross-entropy loss.

3. Methods

In this section, we discuss an adaptive lightweight backbone network called FireViT,
which is an improvement based on the MobileViT-XS network. FireViT is designed for the
detection of smoke and flame targets in fire scenarios; the overall structure is illustrated in
Figure 3. The Deformable Vision Transformer (DeformViT) block is an adaptive lightweight
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CNN combined with a transformer module, which plays a major role in FireViT for feature
extraction. The DeformViT block is able to better extract the irregularly varying smoke and
flame features in a fire situation, and can capture the flame and smoke in a fire situation
locally and holistically better than the traditional convolutional module, thereby improving
the accuracy of fire detection. The improved adaptive activation function proposed in
our model, called AdaptGELU, can increase the model’s nonlinear expressive power and
further enhance the accuracy of fire detection.

Figure 3. Detailed structure of the fire detection network using FireViT as the backbone network; C
represents the number of channels of the feature map, H represents the height of the feature map,
W represents the width of the feature map, DWConv stands for depthwise separable convolution,
DeformConv stands for Deformable Convolution, (1× 1) and (3× 3) are the convolutional kernel
sizes, BN stands for batch normalization, “↓2” indicates the downsampling operation, and “L” stands
for the number of layers in the transformer block.

3.1. Adaptive Lightweight Backbone Network Module: DeformViT Block

The DeformViT block aims to combine the advantages of deformable convolutions
for local feature extraction with those of transformers for global feature extraction and to
perform feature extraction on the input tensor with fewer parameters. In [27], the authors
proposed a Deformable Attention Transformer; however, the number of parameters in its
minimal model reached 29 M. In addition to MobileViT, there are a number of network
models [14,15] that attempt to combine the benefits of convolution and transformers;
however, these use fixed-shaped convolutional modules, limiting feature extraction to
the irregularly varying smoke and flames of a fire. Our proposed DeformViT block uses
deformable convolution in combination with a transformer to enable better and more
fine-grained extraction of the ever-changing features of flame and smoke in fire scenes.

Deformable convolution for capturing better local features. It is obvious that the standard
fixed-size convolution kernel is not well suited for this task of adapting to irregular smoke
and flames at a fire scene; thus, we use deformable convolution, which adapts the structure
of the convolution kernel by learning the offsets, as shown in Figure 4.
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Figure 4. Illustration of sampling for the 3 × 3 standard fixed-size convolution kernel and the
deformable convolution kernel. The (left) side of Figure 4 shows the sampling points and grid for the
3 × 3 fixed convolution kernel (blue dots and boxes), while the (right) side of Figure 4 shows the
sampling points and grid for the deformable convolution with positional offset (red dots and boxes).

A standard fixed-size convolution can be divided into the following two-step opera-
tion.

Step 1: Sample the pixel point gridding from the input feature map X ∈ RC×H×W

(where C is the number of feature map channels, H is the feature map height, and W is
the feature map width). Assuming that a 2D K × K convolution is used for sampling,
the position of the pixel point in the sensory field can be denoted as Pn, as shown in
Equation (2):

Pn = {Pij} (0 � i, j � K− 1; 0 � n � K2 − 1; i, j, n ∈ N). (2)

Step 2: Output each position Pout on the feature map Y after the convolution operation,
as shown in Equation (3):

Y(Pout) =
Pn

∑
n=0

ω(Pn) · x(Pout + Pn), (3)

where ω(·) denotes the value learned by the network in the convolution and x(·) denotes
the value after grid sampling on the input feature map.

The essence of deformable convolution lies in the modification of the sampling results
to achieve a variation in the convolutional effect, as illustrated in Figure 5. The right side
of Figure 5 shows the value of the convolution kernel offset predicted by the convolution.
In deformable convolution, ΔPn is used to offset the position of the point Pn on the feature
map, the weight coefficients Δγ are added at each sampling point to reduce the interference
of irrelevant information on the feature map; at this point, deformable convolution is
computed as in Equation (4):

Y(Pout) =
Pn

∑
n=0

ω(Pn) · x(Pout + Pn + ΔPn) · Δγn. (4)

The offset value predicted by the convolution operation is often a small number
that cannot be sampled directly from the feature map X. Here, bilinear interpolation
(Equation (5)) is used to ensure that the feature map can be sampled after the offset:

x(P) = ∑
Ps

B(Ps, P) · x(Ps), (5)
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where P is the position after offset; P = Pout + Pn + ΔPn; Ps is the site on the space of all
integrals of the feature map X; and B(·, ·) is a 2D bilinear interpolation kernel, as shown in
Equation (6):

B(Ps, P) = b(Psx, Px) · b(Psy, Py), (6)

where b(e, f ) = max(0, 1− |e− f |).

Figure 5. Diagram of the 3× 3 deformable convolution structure; N is the number of pixels in the
convolution kernel, and the figure shows a 3× 3 convolution with N = 9.

Unfold–Transformer–Fold operation focusing on global features. The emergence of DETR [28]
has opened the door to the use of transformers for computer vision target detection. After
the emergence of ViT, transformers were identified as a neural network architecture that
performs very well in the field of computer vision. While ViT requires attention for each
token (high computational cost), our network uses deformable convolution prior to the
transformer block to better grasp the local features; in this way, the computational cost can
be reduced by dividing the feature map into multiple patches during global modeling of
the feature map X ∈ RC×H×W (where C is the number of feature map channels, H is the
feature map height, and W is the feature map width), then self-attention can be performed
for the pixels in the same position in each patch. We call this the Unfold–Transformer–Fold
operation. The patch has dimensions of (h, w) (ignoring the number of channels C), where
h is the height of the patch and w is its width. The unfold operation spreads the pixels at the
same position in each patch in a sequence, then the attention of each sequence is calculated
in parallel by the transformer and finally collapsed back to the size of the original feature
map by the fold operation, as shown in Figure 6.

Figure 6. Schematic diagram of the Unfold–Transformer–Fold operation. The dimension (h, w) of
each patch in the figure is (2, 2), i.e., each patch consists of four pixels (shown in the figure in red,
yellow, blue, and green). The token (pixel) in each patch only calculates attention with its own token
of the same position (the color block of the same color in the figure), as indicated by the dark blue
arrow. The feature map X dimensions are (C, H, W) and the cost according to self-attention alone is
O(CHW). According to the Unfold–Transformer–Fold calculation, at this time, Patch = 2× 2 = 4
and the calculation cost is O(CHW

4 ), amounting to 1
4 of the original calculation cost. The unfold and

fold operations reshape the data to satisfy the self-attention computation.
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In the fire occurrence scenario, we use deformable convolution to better capture the
local features and the Unfold–Transformer–Fold operation to capture the global features;
we propose an adaptive lightweighting module called DeformViT that combines them
to improve the accuracy of fire detection. We conducted a comparative experiment on the
eight forms of DeformViT modules designed in Section 4.4, finally choosing scheme VIII,
which is shown in Figure 7.

Figure 7. Structure of the DeformViT module, where L denotes the number of layers in the transformer
block, C denotes the number of channels in the feature map, H denotes the height of the feature map,
and W denotes its width.

3.2. Adaptive Activation Function: Adaptive GELU (AdaptGELU)

Activation functions are of paramount importance in deep learning, as they enhance
the neural network’s capacity for nonlinear expression. Gaussian Error Linear Units
(GELUs) [29] are beginning to attract attention in applications such as Google’s BERT [30]
and OpenAI’s GPT-2 [31]. A graphical representation of the GELU function is provided in
Figure 8, while its mathematical expression is provided in Equation (7):

GELU(G) = x · PR(G � x) = x ·Φ(x), x(0, 1), (7)

where x is the input, G is a Gaussian random variable with zero mean and unit vari-
ance, PR(G � x) is the probability of G being less than or equal to a given value of
x, and Φ(x) = 1

2

[
1 + er f

(
x√
2

)]
is the cumulative distribution function of the standard

normal distribution.
The approximate solution of Equation (7) is calculated as shown in Equation (8):

GELU(G) = 0.5x
(

1 + tanh
[√

π

2

(
x + 0.044715x3

)])
. (8)

Figure 8. GELU activation function.

GELU is smoother compared to ReLU [32], and is better at mitigating vanishing
gradients and supporting network training and optimization in deep neural network
models. However, as GELU is not optimal in certain cases, we propose Adaptive GELU
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(AdaptGELU) by introducing a trainable parameter a (with the initial value of a set to 1.0)
to further improve the performance of the network. AdaptGELU replaces the original
activation function in the feedforward network in the transformer. We propose two versions
of AdaptGELU, which we respectively name AdaptGELUv1 and AdaptGELUv2. The
morphology of the two versions of AdaptGELU with different values of a is shown in
Figure 9.

Figure 9. Morphological maps of the two versions of AdaptGELU with different values for the a
parameter.

AdaptGELUv1 is represented by Equation (9):

AdaptGELUv1(G) =
1
2

x
[

1 + er f
(

ax√
2

)]
. (9)

AdaptGELUv2 is represented by Equation (10):

AdapeGELUv2(G) =
1
2

ax
[

1 + er f
(

ax√
2

)]
. (10)

Section 4.4 describes our comparative fire detection experiments, where we replaced
the original SiLU [33] activation function in the transformer’s feedforward network with
Sigmoid, ReLU, GELU, AdaptGELUv1, and AdaptGELUv2 functions. Our comparative
analysis of reveals that the network with AdaptGELUv2 achieves better accuracy; thus,
we ultimately selected AdaptGELUv2 as the activation function for our model in the
feedforward network of the transformer. Detailed experimental results and analysis are
presented in Section 4.4.
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4. Experiments and Results

This section first describes the labeled fire dataset we collected and produced, along
with details of the implementation and evaluation metrics. Then, we describe the validation
of our proposed model components through a series of comparative experiments. Finally,
the effectiveness of our model is further demonstrated by comparing the experimental
results and visualizations of different lightweight backbone networks used in fire detection
experiments on the fire natural light and the fire infrared datasets.

4.1. Dataset

The FireViT backbone network we designed is used in this paper to study supervised
fire detection. The overall fire detection model using FireViT as the backbone network is
able to identify and localize smoke and flame in a fire. Therefore, preparing labeled public
datasets of fires or constructing a self-made labeled fire dataset is an essential step. Due to
the severe shortage of publicly available labeled fire datasets at present, we constructed a
self-made labeled fire dataset by extensively reviewing the relevant literature and collecting
fire-related data from various sources. The labeled fire dataset we collected and constructed
is currently the richest labeled fire dataset containing fire occurrence scenarios, as well as
the dataset containing the largest number of fire images. The fire dataset we collected and
constructed is divided into a fire natural light dataset and fire infrared dataset.

The data in the fire natural light dataset come from: (A) the fire image and PNG
still image dataset from the 2018 study of Dunnings and Breckton [34]; (B) VisiFire [35];
(C) the KMU fire and smoke database [36]; (D) video smoke detection [37]; (E) the flame
dataset: aerial imagery pile burn detection using drones dataset [38]; and (F) the fire public
welfare web platform. All of these data were unlabeled for fires, as shown in the top half
of Figure 10, which depicts a partial demonstration of the collected fire natural light data.
These data consist of both image format and video format data; as our focusing here is
on fire detection from images, the collected video data were processed into images by
exporting frames at 0.05 s intervals. In order to improve the robustness of the fire detection
models and further enrich the fire data, we randomly selected three fire data sources from A,
B, C, D, E, and F. Next, we randomly decided whether or not to carry out the corresponding
operation with 50% probability through Rotate–Flip–Affine transformation (as shown in
Figure 11) one by one for each of the three fire images in order to expand the dataset.

The data in the fire infrared dataset mainly consist of data captured by the infrared
thermal imager in E and simulated fire data captured by an infrared structured light depth
camera. The first three rows of the fire infrared data section shown in Figure 10, from
top to bottom, show portions of the Fusion, GreenHot, and WhiteHot data captured by
an infrared thermal imager, while the last row shows portions of the simulated fire data
captured by an infrared structured light depth camera. We similarly first cut the frames of
the captured video data at 0.05 s intervals in order to process them into images. Next, we
randomly selected two fire data sources from Fusion, GreenHot, WhiteHot, and infrared
structured light data, and finally selected each fire image from these two fire data sources
one by one in all the modes of operation of the Rotate–Flip–Affine transformation with 50%
probability to perform the corresponding operation to expand the dataset.

All of the above data were labeled using the LabelImage data labeling tool. We
constructed datasets containing both fire natural light data (121,339 images) and fire infrared
data (96,112 images) to fulfill different application requirements. Detailed information is
presented in Table 1. The dataset was divided into training, validation, and test sets in
a ratio of 8:1:1 to constructed the final labeled fire dataset in VOC data format. The fire
natural light dataset contains the labels “fire” and “smoke”, while the fire infrared dataset
uses only the “fire” label, as smoke is much harder to capture at night. All of the fire natural
light data were used in the experiments, while only the Fusion data were used in the fire
infrared data (all of the following are expressed as fire infrared data).

135



Forests 2023, 14, 2158

Figure 10. Partial presentation of the collected fire data.

Figure 11. Rotate–Flip–Affine transformation.
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Table 1. Fire dataset details: (a) fire natural light dataset information and (b) fire infrared dataset
information. Here, “

√
” indicates that the Rotate-Flip-Affine transformation was used, while “×”

indicates that it was not used. Data sources: (A) PNG still image fire image dataset from Dunnings
and Breckton, 2018; (B) VisiFire; (C) KMU fire and smoke database; (D) video smoke detection; (E)
the flame dataset: aerial imagery pile burn detection using drones; and (F) the fire public welfare
web platform.

(a) Fire natural light dataset

Data Sources Rotate-Flip-Affine
Transformation

Total
Number

Number of
“smoke” labels

Number of
“fire” labels

A × 10,048 27,221 19,103
B

√
54,968 61,324 20,297

C
√

29,222 25,345 17,711
D

√
6488 12,124 5453

E × 12,201 23,615 72,660
F × 8412 6064 34,159

(b) Fire infrared dataset

Infrared data Rotate-Flip-Affine
Transformation

Total
Number

Number of
“fire” labels

Fusion
√

75,219 214,005
GreenHot × 5011 26,386
WhiteHot × 5891 22,590
Structured

Infrared Light
√

9991 10,198

4.2. Implementation Details

All models were trained and experimented with on a system running Ubuntu 20.04,
Python 3.8, CUDA 11.3, PyTorch1.11.0, and an NVIDIA RTX4090 GPU. The models were
trained with fixed random number seeds and without pretraining weights. The parameter
settings used for model training are shown in Table 2.

Table 2. Parameter settings during model training.

Training Parameter Settings Particulars

Initialization MSRA initialization [39]
Input image dimensions (640, 640, 3)

Optimizer SGD
Momentum 0.937

Initial learning rate 0.01
Weight Decay 0.0005

Number of images per batch 8
Epochs 50

4.3. Evaluation Metrics

To evaluate the effectiveness of FireViT as a backbone network for fire detection, we
used the following metrics: Precision, Recall, Parameters, Average Precision (AP), mAP,
and Floating Point Operations (FLOPs). AP is the area under the Precision–Recall (PR)
curve, where we used a value of 0.5 for the Intersection over Union (IoU = 0.5). mAP is
the mean of AP calculated for each individual class. Higher AP and mAP values indicate
better performance.

Precision is shown in Equation (11):

Precision =
TP

TP + FP
. (11)
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Recall is shown in Equation (12):

Recall =
TP

TP + FN
. (12)

Above, TP (True Positive) represents the number of correctly identified positive
samples, FP (False Positive) represents the number of samples that are actually negative
and predicted as positive, and FN (False Negative) represents the number of samples that
are actually positive and predicted as negative.

FLOPs are used to measure the complexity of the algorithm, as shown in Equation (13):

FLOPs = (2× Cin × K2 − 1)× H ×W × Cout, (13)

where Cin represents the number of input channels, Cout represents the number of output
channels, K represents the size of the convolutional kernel, and H and W respectively
denote the height and width of the feature map.

4.4. Ablation Experiments on the Fire Natural Light Dataset

We designed eight build scenarios for the DeformViT module, as shown in Figure 12.
We replaced the DeformViT block with the MobileViT block in the MobileViT network and
used the SiLU activation function in the network. In addition, we replaced the MobileViT
block in the MobileViT network with the DeformViT block and used the SiLU activation
function in the network, at which point, forming a backbone network that we name FireViT-
SiLU. Fire detection was performed on the bottom layer of the FireViT-SiLU network using
the three decoupled detection heads mentioned in Section 2.2 The results of the ablation
experiments are shown in Table 3.

Table 3. Comparative experimental results for fire detection using the FireViT-SiLU backbone feature
extraction network composed of DeformViT blocks with different architectural configurations.

Options mAP Params GFLOPs

MobileViT block 90.9% 1.9M 13.8
I 91.7% 2.1M 12.5
II 91.6% 1.8M 12.2
III 91.5% 1.8M 12.2
IV 91.1% 1.6M 11.9
V 91.2% 1.6M 11.9
VI 91.5% 1.8M 12.2
VII 91.5% 1.8M 12.2
VIII 91.8% 2.1M 12.5

From Figure 12 and Table 3, it can be seen that the fire detection network formed by
our proposed building scheme on the Type I DeformViT block has an overall advantage
over the fire detection network with MobileViT as the backbone network; the number of
parameters improves by only 0.2 M, GFLOPs decrease by 1.3, and mAP improves by 0.8%.
The comparison of the fire detection backbone network scheme consisting of the Type II
DeformViT block to the construction scheme of the Type VII DeformViT block provided us
with further ideas. Therefore, we replaced the copy operation in the construction scheme of
the type I DeformViT block with deformable convolution to form the type VIII construction
scheme of the DeformViT block. The mAP of the fire detection network formed using the
type VIII building scheme for the DeformViT block was further improved with respect to
the fire detection network based on the type I building scheme of the DeformViT block.
Based on these results, we selected the construction scheme using the type VIII DeformViT
block as the final build scheme in our network.
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Figure 12. Different architectural configurations used for the DeformViT block.

FireViT-SiLU uses the SiLU global activation function. In this section, we used the
Sigmoid, ReLU, GELU, and our improved adaptive AdaptGELUv1 and AdaptGELUv2
activation functions to replace the SiLU activation function in the feedforward network
of FireViT-SiLU’s transformer block. The three decoupled detection heads mentioned in
Section 2.2 were used for fire detection at the bottom layer of the overall network. The
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comparative results of the detection experiments are shown in Table 4. Because only the acti-
vation function in the transformer’s feedforward network was replaced, the amount of vari-
ation in the number of parameters and GFLOPs in the overall network is almost negligible.

Table 4. Comparative experimental results of different activation functions replacing the SiLU activa-
tion function of the transformer’s feedforward network in FireViT-SiLU for fire detection. Because
only the activation function in the transformer’s feedforward network was replaced, the amount of
variation in the number of parameters and GFLOPs in the overall network is almost negligible.

Model mAP Params GFLOPs

FireViT-SiLU 91.82% 2.1 M 12.5
FireViT-Sigmoid 91.38% 2.1 M 12.5

FireViT-ReLU 91.89% 2.1 M 12.5
FireViT-GELU 91.88% 2.1 M 12.5

FireViT-AdaptGELUv1 92.09% 2.1 M 12.5
FireViT-AdaptGELUv2 92.14% 2.1 M 12.5

From Table 4, it can be seen that our proposed improved GELU activation functions,
AdaptGELUv1 and AdaptGELUv2, have advantages over other activation functions in the
fire detection context of this paper. When FireViT-SiLU, FireViT-Sigmoid, FireViT-ReLU,
and FireViT-GELU were applied to fire detection, FireViT-ReLU achieved the highest mAP
at 91.89%, FireViT-AdaptGELUv1 a 0.2% higher mAP than FireViT-ReLU, and FireViT-
AdaptGELUv2 a 0.25% higher mAP than FireViT-ReLU. After comparing the experimental
results, we chose AdaptGELUv2 as the activation function for use in the transformer’s
feedforward networkm, and used FireViT-AdaptGELUv2 as the backbone network for the
final FireViT fire detection model.

We conducted fire detection comparison experiments by comparing our proposed ap-
proach with several mainstream lightweight convolutional backbone network algorithms:
GhostNetV2 [40], PP-LCNet [41], ShuffleNetV2 [42], MobileNetV3 [43], and Efficient-
Net [44]. The results of our experiments are shown in Table 5. The best fire detection
among GhostNetV2, PP-LCNet, ShuffleNetV2, MobileNetV3, and EfficientNet as backbone
networks was PP-LCNet, with an mAP of 90.25%. Although the GFLOPs of our pro-
posed FireViT backbone network for fire target detection were 1.7 higher than PP-LCNet,
FireViT had a 1.85% higher mAP and 0.9 M fewer parameters than PP-LCNet. Our pro-
posed FireViT network backbone achieves a good balance between model complexity and
detection accuracy for fire target detection.

Table 5. Experimental results comparing FireViT to mainstream lightweight convolutional backbone
networks for fire target detection on our fire natural light dataset.

Model APf ire APsmoke mAP Params GFLOPs

GhostNetV2 89.2% 91.0% 90.1% 3.8 M 6.3
PP-LCNet 89.6% 90.9% 90.25% 3.0 M 10.8

ShuffleNetV2 89.4% 90.1% 89.75% 3.0 M 10.7
MobileNetV3 89.0% 90.2% 89.6% 3.1 M 5.5
EfficientNet 89.0% 91.0% 90.0% 3.4 M 8.4

FireViT(ours) 91.3% 92.9% 92.1% 2.1 M 12.5

We next analyzed and compared FireViT with mainstream lightweight backbone
network algorithms based on the transformer architecture: EfficientViT-M0 [14], SwinTrans-
former [45] (the model underwent depth compression of 0.33 and width compression of
0.25), EfficientFormerV2-S0 [15], and MobileViT-XS [16]. The results of these experiments
are shown in Table 6. The results show that our proposed FireViT network backbone for
fire target detection can improve detection accuracy while reducing the computational
complexity of the model. In the case where the models have roughly the same number of
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parameters, MobileViT-XS has the highest mAP among EfficientViT-M0, EfficientFormerV2-
S0, SwinTransformer and MobileViT-XS when used as the backbone network for fire target
detection. Our proposed FireViT network backbone has a 1.2% higher mAP and 1.3 fewer
GFLOPs relative to MobileViT-XS.

In order to obtain a more intuitive understanding of the features learned by various
networks for detecting smoke and flames in fire incidents, we conducted heatmap visu-
alization for the following backbone networks: GhostNetV2, PP-LCNet, ShuffleNetV2,
MobileNetV3, EfficientNet, EfficientViT-M0, SwinTransformer (the model underwent depth
compression of 0.33 and width compression of 0.25), EfficientFormerV2-S0, MobileViT-XS,
and our proposed FireViT. The visualization results are depicted in Figure 13. From the
heatmap visualization results of each network model, it is clear that our proposed FireViT
is better able to capture the characteristics of smoke and flame in fire detection scenarios.

Figure 13. Heat map visualization results of each lightweight backbone network model for fire target
detection.

The fire detection performance of FireViT as the network backbone is illustrated in
Figure 14. From the first detection picture from top to bottom in the second column and
the third picture from top to bottom in the fourth column of Figure 14, it can be seen that
FireViT is able to achieve good detection and recognition performance even for smaller fire
targets. In the third column of Figure 14, from top to bottom, the first fire picture contains
an obvious “smoke” target, an obvious “fire” target, and another fuzzy “fire” target; FireViT
can easily detect the two obvious targets, and is able to detect the fuzzy “fire” target as
well. Overall, it can be seen from the figure that FireViT used as a network backbone for
fire target detection is well suited for detection tasks in fire scenarios.

141



Forests 2023, 14, 2158

Table 6. Experimental results of comparison between FireViT and mainstream lightweight backbone
networks based on the transformer architecture for fire target detection on our fire natural light
dataset; the SwinTransformer model underwent depth and width compression, with 0.33 for depth
and 0.25 for width.

Model APf ire APsmoke mAP Params GFLOPs

EfficientViT-M0 89.0% 90.7% 89.85% 2.8 M 7.4
SwinTransformer 88.9% 90.1% 89.5% 2.2 M 6.9

EfficientFormerV2-S0 89.4% 91.2% 90.3% 3.8 M 9.0
MobileViT-XS 91.0% 90.8% 90.9% 1.9 M 13.8
FireViT(ours) 91.3% 92.9% 92.1% 2.1 M 12.5

Figure 14. Detection results of FireViT used as the backbone network for fire detection.

4.5. Comparison Experiments on Fire Infrared Datasets

Our previous fire detection comparison experiments used the fire natural light dataset.
In order to further validate the generalization performance of FireViT, we used Ghost-
NetV2, PP-LCNet, ShuffleNetV2, MobileNetV3, EfficientNet, EfficientViT-M0, SwinTrans-
former (the model underwent depth compression of 0.33 and width compression of 0.25),
EfficientFormerV2-S0, MobileViT-XS, and FireViT as network backbones for fire detec-
tion on our fire infrared dataset. The results of these comparison experiments are shown
in Table 7.

On the fire infrared dataset, other than our proposed FireViT lightweight network back-
bone model, MobileViT-XS was the most effective for fire detection, with its fire detection
accuracy reaching 94.3%; PP-LCNet was second to MobileViT-XS, with a detection accuracy
of 94.1%. Our proposed FireViT model for fire detection achieved 0.8% better detection
accuracy on the infrared dataset than MobileViT-XS and 1% better detection accuracy than
PP-LCNet. Overall, our proposed FireViT showed good generalization performance on the
infrared fire dataset when used as the network backbone for fire detection.
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Table 7. Comparison results of FireViT and mainstream lightweight backbone networks for fire
detection on our fire infrared dataset.

Model APf ire Params GFLOPs

GhostNetV2-Infrared 93.7% 3.8 M 6.3
PP-LCNet-Infrared 94.1% 3.0 M 10.8

ShuffleNetV2-Infrared 94.0% 3.0 M 10.7
MobileNetV3-Infrared 93.5% 3.1 M 5.5
EfficientNet-Infrared 93.9% 3.4 M 8.4

EfficientViT-M0-Infrared 93.8% 2.8 M 7.4
SwinTransformer-Infrared 93.3% 2.2 M 6.9

EfficientFormerV2-S0-Infrared 93.9% 3.8 M 9.0
MobileViT-XS-Infrared 94.3% 1.9 M 13.8
FireViT-Infrared (ours) 95.1% 2.1 M 12.5

5. Conclusions

In this study, we have proposed an adaptive lightweight network backbone that can
be used for fire detection, along with presentation of an improved adaptive activation
function and a collection of labeled fire datasets containing the richest fire scenarios and
the largest number of fire images built to date. First, in order to address the relatively small
number of publicly available labeled fire datasets, as part of this research we collected and
established a fire dataset that contains the richest fire scenes and the largest number of
fire images currently available, for which we used the Rotate–Flip–Affine transformation
operation. Our full fire dataset consists of a fire natural light dataset and fire infrared dataset,
thereby meeting different application requirements. Second, in order to solve the problem
of insufficient extraction of smoke and flame features that change irregularly in the fire
scene, we propose the DeformViT block, a lightweight module that combines deformable
convolution and a transformer to better grasp the features of smoke and flame in fire scenes
both locally and holistically. Finally, we propose an improved adaptive activation function
to further enhance the detection accuracy and nonlinear representation of the network.
Our experimental results indicate that the FireViT adaptive lightweight network backbone
proposed in this paper has high accuracy in fire detection scenarios. When used as the
network backbone for fire detection, FireViT achieved an mAP of 92.1% on the fire natural
light dataset and 95.1% on the fire infrared dataset with a model computational complexity
of 12.5 GFLOPs. Based on these results, FireViT has important application value for fire
warning, and can provide an effective solution for early warning in intelligent firefighting.
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Abstract: As remote sensing transforms forest and urban tree management, automating tree species
classification is now a major challenge to harness these advances for forestry and urban management.
This study investigated the use of structural bark features from terrestrial laser scanner point cloud
data for tree species identification. It presents a novel mathematical approach for describing bark
characteristics, which have traditionally been used by experts for the visual identification of tree
species. These features were used to train four machine learning algorithms (decision trees, ran-
dom forests, XGBoost, and support vector machines). These methods achieved high classification
accuracies between 83% (decision tree) and 96% (XGBoost) with a data set of 85 trees of four species
collected near Krakow, Poland. The results suggest that bark features from point cloud data could
significantly aid species identification, potentially reducing the amount of training data required by
leveraging centuries of botanical knowledge. This computationally efficient approach might allow
for real-time species classification.

Keywords: urban forest inventory; tree species classification; bark features; machine learning; point
cloud data; LiDAR scanning

1. Introduction

The identification of tree species is a fundamental aspect of measuring and monitoring
forests and urban trees, providing critical insights into ecosystem dynamics, species-specific
ecosystem services, and economic considerations such as timber values. Accurately identi-
fying tree species is crucial for making informed decisions, ecological conservation, and
sustainable resource management in urban and rural environments. With the growing
adoption of remote sensing technologies in the fields of forestry and urban forestry, the
task of automatic species classification has gained paramount importance.

Traditionally, species identification for inventories has relied on labor-intensive field
surveys and manual observations by trained foresters or botanists. However, the emergence
of remote sensing technologies has revolutionized this process by enabling large-scale non-
invasive data collection. In this context, the automatic classification of tree species has
become a critical challenge and a focus of extensive research efforts.

To date, several methods have been successfully employed for tree species classifica-
tion, with many of them primarily relying on RGB images as the primary data source. While
these methods have yielded promising results, they often overlook valuable information
contained within the point cloud structure of a tree’s stem. Point clouds, generated through
LiDAR (Light Detection and Ranging) or photogrammetry, offer a three-dimensional repre-
sentation of the forest environment, including the stems of individual trees, when using a
terrestrial platform [1].
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Laser scanning is used in forestry and urban forestry for various applications, in-
cluding forest inventory, tree mapping, and monitoring of individual tree characteristics.
In forestry, laser scanning techniques, such as Airborne Laser Scanning (ALS), Terres-
trial Laser Scanning (TLS), including mobile LiDAR systems such as handheld systems,
and Mobile Laser Scanning (MLS), have been widely investigated for applications in
forest inventory [2,3]. These techniques provide efficient means for acquiring detailed
three-dimensional (3D) data from vegetation, enabling the extraction of tree and forest
parameters such as tree height, crown dimensions, and biomass [4–16].

In urban forestry, laser scanning is used for mapping and monitoring single tree
characteristics, providing a convenient tool for measuring tree attributes in cities and urban
forests [12,17–20]. ALS can be used to generate high-resolution spatially explicit maps of
urban forest structure, including the detection, mapping, and characterization of individual
trees [21]. TLS has also been applied in urban forestry for capturing detailed 3D tree
structures and monitoring tree growth and health [22,23].

Tree species classification using LiDAR data is typically based on extracting specific
features from the point cloud data, such as geometric, radiometric, and full-waveform
features [24]. These features can be used to differentiate between tree species based on their
unique structural and reflectance properties. Researchers have developed various methods
for tree species classification using LiDAR data, including deep learning models [25–29],
individual tree segmentation and shape fitting [30], and also combined LiDAR with data
from other sensor types like hyper- or multispectral data [31].

For example, a study using a 3D deep learning approach achieved an overall accu-
racy of 92.5% in tree species classification directly using ALS point clouds to derive the
structural features of trees [27]. Another study proposed a method based on the crown
shape of segmented individual trees extracted from ALS point clouds to identify tree
species [30]. These and other studies, e.g., [24–26,28,31–58], demonstrate the potential of
LiDAR technology in providing accurate and efficient species classification in forestry and
ecological applications.

However, individual tree segmentation and shape fitting methods using LiDAR data
for species classification can face challenges in dense forests [32], be sensitive to data qual-
ity [59], have limitations in capturing species-specific features [47], and require significant
computational resources [60]. Integrating additional data sources and developing algo-
rithms that are more advanced can help address these drawbacks and improve the accuracy
and efficiency of tree species classification using LiDAR data.

While textural features of tree organs like leaves or flowers vary notably because
of seasonal change, the morphology of tree bark remains constant across seasons. Most
previous work has been based on RGB images of tree stems. While this approach has been
very successful, reaching accuracies well above 90% [61,62], the quality of such images
can vary with contrasting or insufficient lighting conditions of the trunk, and such images
can only be acquired during daylight hours. Although LiDAR point clouds should not
be affected by lighting as much as RGB images are and can be collected even at night, the
potential of utilizing structural bark characteristics derived from LiDAR point cloud data
for tree species identification remains largely untapped.

While [44,63] have already used structural bark features, this paper tries to address
this critical gap by exploring the utility of structural features traditionally used by experts
to identify tree species based on their bark and stem characteristics. Apart from bark
color, botanists use structural features like ridges, fissures, peeling, or scales, which have
been described, amongst others, in [64]. To our knowledge, this is the first attempt to
describe these structures mathematically and to derive features for machine learning from
this description.

We test whether machine learning models can differentiate between various common
Central European tree species (Acer platanoides L., Fraxinus excelsior L., Robinia pseudoacacia
L., Larix decidua Mill., Fagus sylvatica L.). Our study goes beyond the conventional reliance
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on RGB images and demonstrates the potential of adding LiDAR point cloud information
to enhance the automatic classification of tree species.

If successful, this approach has the potential to make a significant contribution to the
field of remote sensing applications in forestry and urban forestry. Providing an additional
tool for accurate tree species identification will have implications for improved forest
management, conservation efforts, and sustainable urban planning.

2. Materials and Methods

2.1. Trees and Scanning

LiDAR point clouds of 85 trees (Table 1) were acquired from mature trees in forests
around Krakow by the company ProGea 4D, Poland, using a Faro laser scanner.

Table 1. Number of individuals sampled per species.

Species n Mean Diameter, m

Acer platanoides 18 0.29 ± 0.06
Fraxinus excelsior 14 0.22 ± 0.05

Robinia pseudoacacia 17 0.59 ± 0.15
Larix decidua 17 0.30 ± 0.05

Fagus sylvatica 19 0.72 ± 0.29

TLS point clouds were not very noisy. There were no moving objects in the scans (e.g.,
people or animals), and the scanning was performed on a windless day. The only noise
that was created was probably in the tree canopy, at the edges of the leaves. Filter tools
available in the Faro Scene 2023 software were completely sufficient to avoid processing
the TLS cloud in external software (e.g., SOR filter in Cloud Compare 2.12.4).

All trees had fully developed mature bark features.

2.2. Feature Creation

The bark analysis method for tree species identification that is presented here is based
on set theory and algebraic mathematical methods. The bark is characterized by several
parameters. These parameters form a model of the bark. More precisely, it is a vector space
that is provided with a distance measure, a metric space (X, d) [65–67].

Each tree and its associated bark structure are represented as a vector in a vector space.
The elements of a vector are the parameters listed in Table 2.

Further information exists for each point, which is determined using LiDAR scanning.
This includes, for example, time stamps and color values. However, these are of secondary
importance for the bark analysis. The tree species therefore form a real subset of X. Each
tree species has a number of comparable elements per vector. The metric d of the vector
space is required to enable the tree species sets to be separated by a distance value.

To analyze tree bark surfaces using digital point clouds, they must be described and
quantified through standardized methods. This project aims to propose a method for
standardization that evaluates the parameters of rib structure, spacing, spatial orientation,
and appearance.

Definition 1. Ribs are elevations that differ from a “smooth” bark surface by an additive positive
value ε as the difference value.

The clusters represent open subsets. This is the case because a cluster does not contain
all accumulation points. The general concept of a vector space can therefore be made more
precise. It is a topological space M in which the separation axiom T2 [68], the Hausdorff
separation axiom, applies. This means that no cluster exists that is identical to either its
predecessor or its successor. Mathematically speaking, a point cloud in which only disjoint
clusters exist is a Hausdorff space.
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Table 2. Features derived from point clouds.

Parameter Acronym Explanation

Geometric description

Follow cluster left/right CL-LR The subsequent cluster of the rib is oriented to the right or left.

Follow clusters form diagonal left/right CL-D The sum of the subsequent clusters of a rib form diagonals that run to
the right or left.

Follow clusters vertical CL-V The subsequent cluster of a rib is located vertically below
its predecessor.

Follow clusters horizontal CL-H The subsequent cluster of a rib is located horizontally next to
its predecessor.

Follow clusters branched CL-B The subsequent clusters of a rib form a branch.

Follow clusters in right angle left CL-AL The angle formed between a subsequent cluster (to the left of the
perpendicular) and a perpendicular that intersects the predecessor.

Follow clusters in right angle right CL-AR The angle formed between a subsequent cluster (to the right of the
perpendicular) and a perpendicular that intersects the predecessor.

Rib characteristics

Horizontal behavior The horizontal proportion of gradients, slopes, and horizontal
components in a bark grid.

Rib spacing The distance between two rib clusters.

Roughness The roughness is defined by the sum of all cluster points with a higher
or lower ε value of a rib.

Proportion of smooth surface Proportion of smooth to rough (ribbed) surface.

These clusters must be adjacent, i.e., they must be spatially close to each other and
parallel to the trunk diameter, the abscissa axis. A point, as defined in this model, is a 15-
dimensional vector. An important element is the cluster size CSize. This specification makes
it possible to form clusters with similar properties that satisfy the following conditions:

CSize ≔ (
n

∑
i=1

xi|z(xi) > z(xi−1) ∧ y(xi) > y(ymin)

)
(1)

with x ∈ trunk diameter, y ∈ bark depth, z ∈ trunk length, and

ymin ≔ ∑n
i=1(yi − yi−1) > 0

n
(2)

The direction of x, y, and z coordinates is illustrated in Figure 1. By using clusters
with similar sizes and properties, it is possible to trace structures along z. All clusters with
similar structures represent elements of a meta-cluster, which in turn represents the bark
rib. The clustering of the meta-cluster and the analysis of the bark structure is carried out
using the AI software Dylogos 2.0. With the help of the software, it is possible to analyze
the individual data of a point cloud.

For the study of the similarity of ribs, the following properties are considered:

• Rib width;
• Depth between two adjacent ribs;
• Distance between the ribs;
• Shape of the ribs, fissures, roughness, etc.

In the model described here, 11 evaluation criteria are defined which serve to classify
the species (see Table 2).

These 11 evaluation criteria plus the three spatial axes and the cluster size form the
15 elements of the vector and thus of the cluster.
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The following cluster axioms constitute the model:

• Axiom 1: Each model has at least one cluster.
• Axiom 2: Every model has no zero cluster.
• Axiom 3: More than one successor cluster can exist.
• Axiom 4: Each cluster contains information about its predecessors.
• Axiom 5: If no subsequent cluster exists, the number of predecessors defines the length

of the ridge. This forms the 15th element of the cluster vector.
• Axiom 6: All clusters with similar properties and a spatial proximity form elements of

a bark rib.

 

Figure 1. Illustration of the orientation of x, y, and z coordinates.

Figure 2 (Figures 2 and 3 are visualizations of the clusters identified by Dylogos) of
Robinia bark will explain this in more detail. It shows the bark structure as a cluster cloud.
Based on this, axioms 1–6 will be shown in the following. Axioms 1 and 2 are fulfilled. The
first cluster in the red circle has several successors (axiom 3 and 4).

The cluster A is the last cluster of the row (axiom 5) and is the end element of the rib
(axiom 6). The elements of the green circle form a meta-cluster structure. By this structure,
we can also recognize the spatial orientation. In this case, it is diagonal. The clusters in the
yellow circle are examples of horizontal as well as vertical structures. The middle cluster
in the second row of the red circle is an example of branching. Structures that are more
complex may have a combination of features. Each bark is individual, like a fingerprint,
but shows characteristic relationships per species. These are shown in the figure below
as an example for a Robinia pseudoacacia. The data shown therein are an excerpt from the
training data.
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Figure 2. Robinia pseudoacacia bark as cluster representation.

 

Figure 3. Robinia pseudoacacia bark with diagonal, vertical, and branching alignments.

In Figure 3, which is based on Figure 2, the diagonal and vertical alignments as well
as the branching have been highlighted.
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Areas without cluster points are areas that lie below the average bark surface. These
points are suppressed in the display but are taken into account for the evaluation of
roughness. The average bark surface is determined using average values from the decision
grid and forms a meta-level for the entire trunk.

Figure 3 shows all clusters that have a positive distance from the average bark surface,
the ε value. Figure 4 shows a section of Figure 2, in which the meta-plane, the average bark
surface, and an example of ε are plotted.

 

Figure 4. Robinia pseudoacacia bark with the mean value (ochre color).

Figure 4 can be generated from Figure 3, using the mapping ruleMCluster ≔ Point− α > 0
with α = mean value andMCluster ⊆ Point The mean value represents the average roughness
of the meta-cluster, i.e., the reference bark. The circle is the graphical representation of the
mean value of the meta-cluster. The blue bark curve, which is shown as a deviation from
the mean value of the meta-cluster, is not formed by individual points but by clusters. The
clusters represent a large number of points. All cluster elements that lie above the meta
level are considered for the analysis; these are the elements of the setMCluster. All cluster
elements are determining elements of the evaluation and recognition of the bark using this
method. The only value that has no reference to the meta-level is that of the gradient. This
value is an evaluation of the surface of each individual ridge. The evaluation consists of
looking at each rib cluster and its orientation in space in comparison to its predecessor and
successor. The number of successor clusters that show positive, negative, or no change
along the Y-axis is decisive for the evaluation.

The LiDAR data were available as LAS files. For the bark analysis, a trunk section
of 2 m was used, which was divided into 40 × 40 cm grids. These grids were used to
determine an average bark grid and thus an average bark pattern. All parameter values
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were determined from this grid. If the bark is evenly comparable over large parts or the
entire trunk, all grids are combined into one grid.

The evaluation was carried out using the AI software Dylogos 2.0. The Dylogos soft-
ware transforms the LAS data into XYZ data. These are then clustered into the two groups:

1. Geometric description of the bark;
2. Rib characteristics.

The features created in this way were further analyzed with R.

2.3. Machine Learning

For the quality of the decision making, the clustering of the training data is of particular
importance. In the following, the four methods applied in this study and their structural
differences will be applied to the bark model. These are as follows:

• Decision trees;
• Random forests;
• XGBoost;
• Support vector machines.

Their results can be characterized by two parameters. These are the accuracy and the
predictive power of the trained system. The way of calculating the accuracy by means of
the confusion matrix is identical for all four methods. A confusion matrix is a 2 × 2 matrix
scheme. The elements of the matrix are as follows:

• True Positive (TP);
• False Positive (FP);
• True Negative (RN);
• False Negative (FN).

All four elements are taken into account in the machine learning process.
Here, the evaluation of a condition and its future development is judged. The as-

sessment can be true or false, and the respective expression can turn out to be positive
or negative for the assessment model in the future. The rows are filled with the actual
condition and the columns with the predicted condition.

Each data set is now classified into one of the four elements (classes) of the matrix
according to the model generated using the training data. The accuracy value is determined
as follows:

Accuracy =
TP− TN

TP + TN + FP + FN
(3)

The accuracy value is between 0 and 1. A value > 0.9 is a good value. A value > 0.7 is
good, and 0.7 is a fair result.

The four methods differ in the prediction condition. The decision tree and random
forests methods use the roc auc value (Compute Area Under the Receiver Operating
Characteristic Curve) to parameterize the prediction. The roc auc value is between 0 and 1.
A value of 0.5 represents a random estimate.

The XGBoost and the support vector machine methods use κ (kappa) for the quality
of the prediction. κ or Cohen’s kappa is a measure of interrater reliability and thus a
parameter that reflects the agreement or disagreement between two observers on a de-
cision. The authors of [69] suggest that κ < 0 = “poor agreement”, 0 < κ < 0.2 = “slight
agreement”, 0.21 < κ < 0.40 = “fair agreement”, 0.41 < κ < 0.60 = “moderate agreement”,
0.61 < κ < 0.80 = “substantial agreement”, and κ > 0.81 = “almost perfect agreement”.

Table 2 shows the parameters used. This structure corresponds to the generated
evaluation database. They are divided into two blocks:

• Geometric description of the bark;
• Rib characteristics.

These give the geometry of the bark, a description of the bark’s appearance, and the
description of the individual ribs.
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The machine learning methods we investigated differ not only in their functionalities,
which will be discussed in more detail, but also in the different weighting and therefore
relevance of the various parameters. The type and number of parameters taken into account
vary from method to method.

2.3.1. Decision Trees

The decision tree method is based on the assumption that all information important
for a decision is available in the training data sets. The trees have a uniform structure in
the form that the leaves of the tree describe classes and the branches form conjunctions of
features that then lead to a class.

Decisions are thus better structured. The path of a decision is not a linear path but
has nodes with branches. The choice of which branch to select is made by means of a
decision function that is derived from the training data. In most cases, the decision function
separates within a cluster whether values are larger or smaller than a target value.

2.3.2. Random Forests

In the random forest method, the samples used to determine the tree structure are
randomly selected from the training data. After a new node is created, the samples are
added back to the training set. At each node, a randomly selected subset of criteria from
the entire set of criteria is used to make a decision (branch). The selection of features is
performed to minimize the impurity of the overall model. Due to the randomness, multiple
decision trees are created per training set, forming a decision forest. The predictions of the
individual trees are then aggregated to produce an overall prediction.

2.3.3. XGBoost

In the XGBoost model, the fitting of a tree structure is performed using a loss function.
The tree structure is generated, starting from a starting point, by means of the Newton
method. Each new node is considered as a new model and optimized by a loss function.

2.3.4. Support Vector Machines

A support vector machine (SVM) is a discriminative machine learning model that uses
a hyperplane to separate training data into two classes. Unlike the DBSCAN clustering
method, which searches for the elements with the smallest distance to the hyperplane,
SVMs search for the elements with the widest distance to the hyperplane. This results in
data clusters with sharp boundaries.

The analyses were implemented in R [70]. Models were fitted with 10-fold cross-
validation on a training data set of 75% of the samples and tested on the remaining
25%. Features with near-zero variation and closely correlated features were removed
prior to analysis. When necessary, features were Yeo-Johnson transformed. All features
were normalized.

Finally, Figure 5 illustrates the entire process as a workflow for greater clarity.
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Figure 5. Scheme of the workflow used in this study.

3. Results

3.1. Features

The calculation of the features was computationally very efficient and was conducted
on a recent desktop PC (DELL Latitude, CPU Intel Core i5-6300, 8,00 GB Ram).

Some of the proposed features were correlated, e.g., roughness and smoothness
(r = 0.81), behavior and smoothness (r = 0.91), or behavior and CL-LR (r = 0.85). Only
one of each pair was used for further analyses. Before transformation, the distributions of
most features were highly skewed.

Fagus sylvatica had the most distinctive set of bark features. It was the species with the
smoothest bark (Figure 6a) and the lowest spacing between ribs (Figure 6b).

3.2. Machine Learning

The decision tree (Figure 7) performed less well than the other approaches and reached
an accuracy of 83% and a roc auc score of 94%. R. pseudoacacia with its very distinctive bark
was the first species that was split from the others in this model.

The remaining three methods performed equally well, with accuracies between 92%
and 96% even for this small data set of 85 trees (Table 3 and Figure 8).
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Figure 6. Distribution of four selected features ((a): smoothness, (b): spacing, (c): branching, and
(d): vertical alignment of clusters) of all species in the sample. They illustrate how the features
differentiate between species.

Table 3. Performance of the machine learning methods used in this study.

Accuracy Roc Auc κ

Decision tree 0.83 0.943

Random forests 0.916 0.985

XGBoost 0.96 0.95
Support vector

machines 0.92 0.9
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Figure 7. Result of the classification based on a decision tree, illustrating the subset of features used
by this model. AP: Acer pseudoplatanus, FE: Fraxinus excelsior, FS: Fagus sylvatica, LD: Larix decidua, RP:
Robinia pseudoacacia.

 
Figure 8. Confusion matrices of (a) decision tree, (b) random forest, (c) SVM, and (d) XGBoost. AP:
Acer pseudoplatanus, FE: Fraxinus excelsior, FS: Fagus sylvatica, LD: Larix decidua, RP: Robinia pseudoacacia.
The green area represents the proportion of members of the test sample set (not used in the training
of the models) classified correctly, while red represents false classifications.

The other more complex methods achieved 96% accuracy in predicting the species of
the test population. However, the predictions of the random forest model were compar-
atively poor for F. excelsior (Figure 8b). Overall, the XGBoost model had the best results
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(Table 3 and Figure 8d). The difference between the accuracy value and κ, the value of the
prediction, is the smallest of all the presented models.

The ranking of feature importance was not similar for all models. The most important
feature for the XGBoost model was “Cluster cluster left/right” (CL-RL), followed by
“clusters vertical” (CL-V) and bark roughness (Figure 9). The decision tree, on the other
hand, used only the features “CL-V”, “CL-B”, and “Spacing” to classify species (Figure 7).

 

Figure 9. Feature importance of the XGBoost model. Note that compared to the decision tree (Figure 7)
a different subset of features was selected by this algorithm.

4. Discussion

Trees provide a wide range of ecosystem services in urban areas, including air and
water purification, noise reduction, and temperature regulation [71]. Up-to-date tree
inventories are essential for effective tree management and monitoring of their ecosystem
services [72]. Terrestrial Laser scanning (TLS) can make tree inventory data collection
much more efficient than traditional methods [73], but species identification from TLS point
clouds is still challenging.

In this study, we hypothesized that bark features traditionally used by botanists, like
ridges, crevices, and smoothness, could be described mathematically and applied to species
identification from TLS point clouds. The approach we presented differs from the very few
other recently published approaches, such as that of [44], in the kind and number of bark
features considered.

Since different machine learning methods are structurally different, we tested the
performance of several approaches. The accuracy of all methods was high, despite the
rather small data set used. Our results suggest that the mathematical description of bark
features used by botanists could be used to complement, or even provide advantages over,
the black-box approaches used so far.

Correct species identification is essential for tree inventories, as it is the basis for,
amongst other things, ecosystem services calculations, tree maintenance, and tree risk
management. Our method will complement other approaches to identify tree species
based on remote sensing data, will help to increase overall accuracy, and thus, will support
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the more efficient creation of tree inventories. This assumption is based on a timesaving
potential as well as the future possibility of the partial automation of this process.

However, our study has some limitations. First, the number of trees and tree species in
our data set was relatively small. Secondly, we only used trees with fully developed mature
bark characteristics. This means that the trees examined had diameters corresponding
to the age class. Future research should focus on increasing the size and diversity of the
training data set to improve the accuracy and robustness of the machine learning models.
Additionally, the models should be tested on younger trees because the bark structure can
change significantly during the lifetime of a tree [74]. Although present on some trees,
we did not study the effects of epiphytes growing on the bark on the accuracy of species
identification. Furthermore, the models should be integrated into existing tree inventory
workflows to assess their feasibility for practical use.

5. Conclusions

This study provides promising evidence that explainable bark features can be used
to identify species from TLS point clouds. A model of bark features based on expert
knowledge could potentially reduce the number of required samples in comparison to
black-box approaches. This could result in more efficient and accurate collection of tree
inventory data, which is crucial for the effective management and monitoring of their
ecosystem services in urban areas. This computationally efficient approach might allow for
real-time species classification.
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Abstract: Pine wilt disease (PWD) is a forest disease characterized by rapid spread and extremely high
lethality, posing a serious threat to the ecological security of China’s forests and causing significant
economic losses in forestry. Given the extensive forestry area, limited personnel for inspection
and monitoring, and high costs, utilizing UAV-based remote sensing monitoring for diseased trees
represents an effective approach for controlling the spread of PWD. However, due to the small
target size and uneven scale of pine wilt disease, as well as the limitations of real-time detection
by drones, traditional disease tree detection algorithms based on RGB remote sensing images do
not achieve an optimal balance among accuracy, detection speed, and model complexity due to
real-time detection limitations. Consequently, this paper proposes Light-ViTeYOLO, a lightweight
pine wilt disease detection method based on Vision Transformer-enhanced YOLO (You Only Look
Once). A novel lightweight multi-scale attention module is introduced to construct an EfficientViT
feature extraction network for global receptive field and multi-scale learning. A novel neck network,
CACSNet(Content-Aware Cross-Scale bidirectional fusion neck network), is designed to enhance
the detection of diseased trees at single granularity, and the loss function is optimized to improve
localization accuracy. The algorithm effectively reduces the number of parameters and giga floating-
point operations per second (GFLOPs) of the detection model while enhancing overall detection
performance. Experimental results demonstrate that compared with other baseline algorithms, Light-
ViTeYOLO proposed in this paper has the least parameter and computational complexity among
related algorithms, with 3.89 MFLOPs and 7.4 GFLOPs, respectively. The FPS rate is 57.9 (frames/s),
which is better than the original YOLOv5. Meanwhile, its mAP@0.5:0.95 is the best among the
baseline algorithms, and the recall and mAP@0.5 slightly decrease. Our Light-ViTeYOLO is the
first lightweight method specifically designed for detecting pine wilt disease. It not only meets the
requirements for real-time detection of pine wilt disease outbreaks but also provides strong technical
support for automated forestry work.
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1. Introduction

Pine wilt disease (PWD), caused by the pine wood nematode, is a forest disease char-
acterized by high pathogenicity, rapid spread, and a wide transmission pathway, resulting
in severe damage to pine forest resources in China [1]. This disease has been classified
as a quarantine pest in more than 40 countries, with China experiencing substantial di-
rect economic losses and ecological service value depletion [2]. Owing to the extensive
forested area and the high costs and limited scope of manual inspection and monitoring,
there is a need for efficient, cost-effective, and accurate monitoring techniques. In recent
years, the advancement of UAV (Unmanned Aerial Vehicle) remote sensing technology
has demonstrated significant potential for application in the monitoring of pine wood
nematode disease, leveraging its operational ease, adaptability, extensive coverage, and
real-time capabilities [3].
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The use of UAV remote sensing for monitoring pine blight outbreaks has undergone
significant evolution over the past few decades. Traditional machine learning algorithms,
such as SVM (Support Vector Machine), RF (Random Forest), and ANNs (Artificial Neural
Networks), have been developed and optimized by integrating spectral and spatial features.
These methods have been successfully employed for identifying pine blight tree damage
in Multi-Spectral Imagery (MSI) and Hyper-Spectral Imagery (HSI) datasets. However,
classical machine learning necessitates intricate feature selection and combination work,
posing challenges for leveraging in-depth image information [4].

In recent years, with the development of deep learning object classification and de-
tection technology, researchers have gradually applied it to PWD detection [5,6]. For
instance, Qin et al. [7] utilized a proposed SCANet (spatial-context-attention network) to
diagnose pine nematode disease in UAV-based MSI datasets, achieving an average overall
accuracy of 79.33%. Wu et al. [8] used Faster R-CNN (Region-CNN) and YOLOv3 for
early diagnosis of infected trees, demonstrating that YOLOv3 is more suitable for PWD
detection. Gong et al. [9] identified pine blight spots affected by pine wilt using YOLOv5,
achieving a mean Average Precision (mAP) of 84.5%. Similarly, Sun et al. [10] utilized
the improved MobileNetv2-YOLOv4 algorithm to identify abnormal discoloration blight
caused by pine wilt nematode disease, and the improved model achieved higher detection
accuracy of 86.85%.

Although current deep learning methods have achieved some results in disease detec-
tion, realizing real-time detection on UAV platforms still faces great challenges. Changes
in UAV flight altitude and speed lead to too small and different scales of disease and
pest targets in trees, making detection difficult. In addition, limited by the computational
resources, storage, and communication capabilities of the UAV platform, it is difficult for
the existing deep learning-based methods to achieve a balance between detection accuracy
and speed due to the complexity of their models.

Aiming at the above problems and difficulties, this paper takes the YOLOv5 model
as the baseline network, redesigns and optimizes the feature extraction network, neck
network, and loss function, and proposes ViTeYOLO, a lightweight pine wilt detection
method based on Vision Transformer-enhanced YOLO, to improve its detection accuracy
for PWD and achieve light weight. The main contributions of this paper are as follows:

1. A lightweight Multi-Scale Attention module (MSA) is introduced to construct an
EfficientViT feature extraction network, which achieves efficient global information
extraction and multi-scale learning through efficient hardware operations, reducing
network computational complexity;

2. A Content-Aware Cross-Scale bidirectional fusion neck network (CACSNet) is pro-
posed, which uses the Content-Aware Reassembly Feature Enhancement (CARAFE)
operator to replace the bilinear difference in PANET (Path Aggregation Network) for
upsampling, and uses cross-scale weighting for feature fusion to improve the expres-
sion ability of fine-grained features of diseased trees, prevent small target feature loss,
and improve detection accuracy;

3. Optimization of the loss function and introduction of EIOU (Efficient Intersection
over Union) loss to help the model better balance the size and shape information of
the target, improving the accuracy and robustness of PWD detection.

2. Related Works

2.1. Visual Transformer in Remote Sensing

Transformer [11] employs an attention-based architecture that first demonstrated its
great impact on sequence modeling and machine translation tasks, and has evolved to
become the primary deep learning model for many natural language processing (NLP)
tasks. Inspired by these significant achievements, Transformer has been applied to the field
of computer vision (CV) and has led to some groundbreaking work, giving rise to Visual
Transformer (ViT) [12].
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ViT has shown exceptional performance in various computer vision tasks. ViT relies
on a self-attention mechanism to skillfully capture global interactions by utilizing the
connections between elements in the input sequence. According to studies [13,14], the
results demonstrate the ability to model content-dependent remote interactions. It possesses
the property of being able to flexibly adjust the sensory field so as to be able to adapt
to multiple complexities in the data and learn effective feature representations. As a
result, ViT and its variants have been successfully applied to several computer vision
tasks such as classification, detection, and segmentation. With the success of ViT in the
field of computer vision, the remote sensing community has also observed a significant
growth in the application of transformer-based frameworks for multiple tasks. This has
triggered a promising wave of research in remote sensing, where researchers have adopted
a variety of approaches [15,16] to train and analyze remote sensing data using visual
transformers. Hong et al. [17] developed SpectralFormer based on ViT to obtain advanced
classification results for hyperspectral images. Liu et al. [18] introduced a Deep Spatial
Spectral Transformer (DSS-TRM) for end-to-end hyperspectral image classification. In
addition, a hybrid approach based on a combination of transformers and cellular neural
networks was used to detect changes in dual-time images [17] as well as to detect small
objects in remotely sensed images in complex backgrounds [19]. The above ViT-based
methods, while achieving advanced performance in remote sensing, also bring a greater
number of parameters and computational effort.

2.2. Lightweight Multi-Scale Attention

Multiscale learning and global receptive fields during feature extraction can effectively
improve the performance of tasks such as semantic segmentation and target detection, but
their computation is quadratic in the resolution of the input image, and sometimes requires
special support for hardware to achieve good efficiency [18]. Cai et al. [20] proposed a
lightweight MSA module for semantic segmentation that requires only hardware operation
for global sense field and multi-scale learning, and shows significant speedup on edge
devices. As shown in Figure 1, the lightweight MSA uses ReLU-based lightweight attention
for global receptive fields, and the feature map, after obtaining Q/K/V tokens through a
linear projection layer, is aggregated with nearby tokens through lightweight convolution
of a small kernel to generate multiscale tokens.

 

Figure 1. Lightweight multi-scale attention.

ReLU-based global attention (Equation (1)) is applied to the multiscale token and
connects and inputs the output to the final linear projection layer for feature fusion.

Wi = ∑N
j=1

Relu(Qi)Relu
(
Kj
)T

∑N
j=1 Relu(Qi)Relu

(
Kj
)T Vj (1)

Here, Q = xWQ, K = xWK, and V = xWV, where WQ, WK, and WV are learnable
linear projection matrices. Wi represents the i-th row of the matrix W. By leveraging the
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associativity property of matrix multiplication, it is possible to reduce the computational
complexity and memory usage from quadratic to linear without altering the functionality.
As a result, Equation (1) can be expressed as:

Wi =
Relu(Qi)

(
∑N

j=1 Relu
(
Kj
)TVj

)
Relu(Qi)

(
∑N

j=1 Relu
(
Kj
)T
) (2)

This module leverages lightweight ReLU-based attention [21] as an alternative to the
more complex self-attention [11], facilitating the establishment of a global receptive field
with linear computational complexity. This approach notably enhances the speed of model
inference on mobile devices compared to softmax attention, leading to a considerable
reduction in model latency and consequently faster detection. Incorporating this module
into the existing ViT model proves to be an effective strategy for accelerating model
inference without sacrificing accuracy.

3. Materials and Methods

In this paper, we redesigned the feature extraction network based on the baseline
network YOLOv5 and proposed a lightweight pine wilt detection method based on ViT-
enhanced YOLO. Firstly, we constructed a lightweight EfficientViT feature extraction net-
work with lightweight MSA as the core to replace YOLOv5’s CSPDarkNet53(DarkNet53 with
Cross-stage Partial Connections). Secondly, a cross-scale feature fusion neck network (CAC-
SNET) was designed, which uses the CARAFE operator to replace the bilinear difference in
the original model for upsampling, and then performs cross scale feature fusion. Finally,
EIOU was introduced to optimize the loss function. The comprehensive architecture of the
proposed Light-ViTeYOLO is shown in Figure 2.

Figure 2. Overall architecture of the lightweight PWD model based on YOLOv5.

Below, we will analyze YOLOv5 and provide a detailed explanation of the proposed
Light-ViTeYOLO.

3.1. Baseline Network YOLOv5

The network structure of YOLOv5 can be divided into the following three parts: the
backbone, the neck segment, and the head output segment, with the specific structure
depicted in Figure 3.
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Figure 3. Network architecture of YOLOv5.

After the input image undergoes preprocessing, it is fed into the backbone feature
extraction network, CSPDarkNet53, associated with multiple convolutional operations.
This process transforms the image into a feature map and facilitates the extraction of
semantic and structural information from the input image. Subsequently, at the neck
layer, a feature pyramid PANet is established at varying scales, with each feature map
comprising different resolutions corresponding to receptive fields of different scales. Finally,
YOLOv5 utilizes the output of detection frame processed by the NMS (Non-maximum
Suppression)- as the ultimate target detection result.

However, YOLOv5’s use of a series of convolutional modules for feature extraction
results in a complex network and the inability to effectively capture global information.
Consequently, the bilinear interpolation used in the neck network cannot utilize the seman-
tic information of the feature maps, and the perception domain is limited to the sub-pixel
domain. The above design cannot be suitable for the real-time detection requirements
of multi-scale and small targets in PWD detection tasks. In light of this, the following
improvements will be carried out.

3.2. Redesign of Backbone Feature Extraction Network

In this paper, an examination of the structure of the visual transformer (ViT) has
revealed that the main computational bottleneck is the softmax attention module, which
exhibits quadratic computational complexity with respect to the input resolution. To
address this issue, the lightweight Multi-Scale Attention (MSA) module introduced in
Section 2.2 is specifically designed to enhance execution speed, delivering a substantial
inference speedup while maintaining accuracy.

Based on this, we construct the EfficientViT module with lightweight MSA as the core,
which is used for the design of the feature extraction network in this paper. The redesigned
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EfficientViT feature extraction model is shown in Figure 4 (left), with the EfficientViT
module shown in Figure 4 (right).

Figure 4. Macro architecture of EfficientViT (left) and illustration of EfficientViT’s building
blocks (right).

The EfficientViT module comprises the lightweight MSA module and the MBConv
module [22]. The lightweight MSA module is employed for contextual information extrac-
tion, while the MBConv module facilitates local information extraction. Notably, the linear
attention utilized by the lightweight MSA module has limitations in capturing localized
details, potentially leading to a notable loss in accuracy. To mitigate this shortcoming,
a deep convolutional MBConv module is integrated behind the MSA to enhance linear
attention. This strategy incurs low computational overhead while significantly augmenting
the capability of linear attention in local feature extraction.

The EfficientViT model adheres to the standard backbone head/decoder architecture,
reflecting the following design features:

(1) The backbone network incorporates an input backbone and four stages, characterized
by diminishing feature map size and escalating channel numbers;

(2) Lightweight MSAs are integrated into stages 3 and 4;
(3) For downsampling, the model employs MBConv with a step size of 2.

The outputs of Stage 2, Stage 3, and Stage 4 collectively generate a feature map pyra-
mid, serving as the input for feature fusion in the neck network. The detailed architecture
configurations of EfficientViT variants is shown in the following Table 1.

Table 1. Detailed architecture configurations of different EfficientViT variants.

Variants Input Stem Stage 1 Stage 2 Stage 3 Stage 4

C C0 = 8 C1 = 16 C2 = 32 C3 = 64 C4 = 128
L L0 = 1 L1 = 2 L2 = 2 L3 = 2 L4 = 2
H 640 640 640 640 640
W 640 640 640 640 640

Here, C denotes the number of channels, L denotes the number of blocks, H denotes
the feature map height, and W denotes the feature map width.

In this paper, the above-designed EfficientViT model replaces the feature extraction net-
work CSPDarkNet53 of YOLOv5, aiming to achieve efficient hardware operation through a
lightweight MSA design to improve the accelerated inference performance of the model,
to achieve global awareness and multi-scale learning to ensure that performance is not
sacrificed, and ultimately, to enable the proposed model to realize the real-time PWD
detecting task.

3.3. Design of CACSNet Neck Networks

YOLOv5 uses PANET as a neck network for feature extraction and fusion, and as
a key operation of the feature pyramid, the feature upsampling method uses bilinear
interpolation. This method is unable to utilize the semantic information of the feature map
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and the perceptual domain is limited to the sub-pixel domain. In order to further optimize
the performance, in this paper, PANET is improved and a content-aware cross-scale bi-
directional fusion network (CACSNet) is designed as a new neck network. The specific
improvements are described as follows.

Firstly, we use the CARAFE [23] operator as the new up-sampling kernel to complete
the up-sampling operation of the neck network (P7_u,P6_u,P5_u,P4_u in Figure 5b) to
realize the up-sampling based on the input content. The implementation specifically
consists of two steps: the first step is to predict the reorganization kernel of each target
location based on its content, and the second step is to restructure the features with the
predicted kernel.

 
Figure 5. Illustrating the design of the feature network. (a) PANet adds an extra bottom-up path atop
FPN. (b) CACSNet utilizes feature graph semantic information to implement a top-down process
based on input content.

Given a feature map X of size C × H ×W and an up-sampling rate α (α is an integer),
CARAFE will generate a new feature map X′ of size C × αH × αW and, for any target
location l′ =

(
i′, j′

)
of X′, its corresponding original location is l = (i, j), where i =

⌊
i′
σ

⌋
and

j =
⌊

j′
σ

⌋
. Here, we denote N(Xl, k) as the k × k subregion of X centered at location l, i.e.,

the neighbors of Xl.
In the first step, the kernel prediction module ψ predicts the spatially variant kernels

Wl′ for each position l′ based on the neighborhoods of Xl, as shown in Equation (3). The
second step is the restructuring step shown in Equation (4), where φ is the content-aware
reassembly module, which reassembles the neighborhoods of Xl with the kernel Wl′.

Wl′ = ψ(N(Xl, kencoder)) (3)

X′l′ = φ
(
N
(
Xl, kup

)
, Wl′

)
(4)

where weights are generated in a content-aware manner. In addition, for each location
there exists multiple sets of such up-sampling weights, and then feature up-sampling is
accomplished by generating features rearranged into spatial blocks. CARAFE up-sampling
can aggregate and reorganize the contextual information around the target within a large
perceptual field, which improves the ability to express feature details and introduces little
computational overhead.

Furthermore, to prevent the loss of feature information related to small targets during
the feature extraction process, the paper incorporates cross-scale weighting for feature
fusion in the neck layer (see Figure 5). This is achieved by introducing additional con-
nections (depicted as curved edges in Figure 5) between the feature input nodes from
the backbone network and the output nodes of the neck network at the same level. This
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approach facilitates the fusion of more original image features to maximize the retention of
features related to individual diseased trees.

3.4. Optimization of Loss Function

In target detection, the loss function is critical in quantifying the disparity between
the model’s predicted output and the actual target, driving continual learning during
training to enhance the performance of the detection task. Typically, loss functions in
object detection encompass bounding box regression loss, classification loss, and object
presence loss. While YOLOv5 employs the CIOU (complete concatenated intersection) loss
function for bounding box regression, this approach has limitations in handling variations
in object location and size. As the CIOU loss function does not directly consider target
location information, the model may prioritize the wrong bounding box location during
optimization, leading to mismatches between the detected and actual disease areas and
affecting detection accuracy. Moreover, the CIOU loss function exhibits reduced sensitivity
to the degree of deformation in small targets, resulting in suboptimal model performance
for detecting small targets.

To address these limitations, this paper adopts the EIOU loss function as an alternative.
EIOU loss better balances detection accuracy by integrating position and size information
of the target frame. By combining width and height information of the target frame and
considering the intersection region-to-minimum closure region ratio, the EIOU loss function
effectively addresses target size changes and deformation issues, enhancing detection
accuracy and robustness. The EIOU loss function is calculated as follows:

LEIOU = LIOU + Ldis + Lasp = 1− IOU +
ρ2(b, bgt)

(wc)2 + (hc)2 +
ρ2(w, wgt)

(wc)2 +
ρ2(h, hgt)
(hc)2 (5)

The loss function comprises three components: the overlap loss (LIOU), the center
distance loss (Ldis), and the width-height loss (Lasp). The first two components follow the
approach used in CIOU. However, the width-height loss directly minimizes the disparity
between the widths and heights of the target box and the predicted box, thereby accelerating
convergence. Here, wc and hc are the width and height of the minimum enclosing box
covering both boxes. ρ2(b, bgt) represents the Euclidean distance between the center points
of the anchor box and the ground truth box, ρ2(w, wgt) represents the Euclidean distance
between the width of the anchor box and the ground truth box, and ρ2(h, hgt) represents
the Euclidean distance between the height of the anchor box and the ground truth box.

4. Experiment and Performance Analysis

4.1. Research Area and Data Acquisition

The image data for this study were obtained from the forest field of Zhuanshanzi,
Tai’an City, Shandong Province, China (latitude 31◦14′ N, longitude 117◦01′ E, altitude
40 m). Figure 6 illustrates a schematic of the data acquisition site. In order to mitigate
the effects of wind, shadows, strong light, weak light, and reflections on image quality,
we selected the time frame from 2 PM to 5 PM on 3 May and 4 May 2022 for image
data collection. This specific time period was chosen due to its favorable meteorological
conditions.

We utilized a DJI Mavic Air 2 drone, which is outfitted with a 48-megapixel visible
light camera, to capture the image data. The camera of this drone boasts a maximum
flight time of 34 min, a maximum flight range of 18.5 km, and a maximum flight speed of
19 m per second. The resulting images were stored in JPEG format with a resolution of
6000 × 4000 pixels. Throughout the flights, the drone’s speed and direction were manually
controlled, while the camera remained fixed perpendicular to the ground at a 90-degree
angle. The drone was equipped with precise GPS and GLONASS positioning capabilities,
enabling accurate recording of the location and altitude of each image. The flight altitude
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of the drone was maintained at approximately 300 m. Figure 7 shows examples of forestry
images captured by the drone, showcasing a resolution of 6000 × 4000 pixels.

 

Figure 6. Data acquisition area.

 

Figure 7. Examples of UAV tree images.

To enhance the usability of the collected drone images, we adhered to the steps
outlined below. Firstly, due to the images’ high resolution and extensive spatial coverage, it
would necessitate significant computational resources to directly use all images for training
a network model, given the limited number of sample images. Consequently, we opted to
extract image patches of 640 × 640 pixels from 300 drone forestry images gathered in the
study area. Subsequently, 10,000 image patches were randomly selected for the training set,
while 1200 image patches were utilized for the validation set. In order to perform image
analysis and applications, we use the image annotation tool LabelImg and annotate the
diseased trees in the images under the guidance of forestry experts. A segmented tree
image is shown in Figure 8.
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Figure 8. Illustrations of cropping tree images.

4.2. Experimental Configuration

We implemented and trained the neural network model using the PyTorch deep
learning framework on the Linux operating system. Table 2 presents the exhaustive
hardware and software environment arrangement for the experiments.

Table 2. Hardware and software environment arrangement.

Platform Configuration

Operating system Linux 3.10.0
CPU Intel(R) Xeon(R) Gold 6138 CPU @ 2.00 GHz
GPU Tesla V100-PCIE-32GB

GPU accelerator CUDA 10.2
Deep learning frame PyTorch 1.10.1

Compilers PyCharm and Anaconda
Scripting language Python 3.7

4.3. Experimental Indicators

To ensure a precise assessment of the new model’s performance, we utilized several
performance evaluation metrics: Average Precision (AP), recall, model parameters, Giga
Floating-point Operations Per second (GFLOPs), and Frames Per Second (FPS).

AP represents the average precision of a single target class, providing an overall measure
of the model’s detection performance. The AP is calculated using the following formula:

AP =
∫ 1

0
Precision(Recall)d(Recall) (6)

Here, Precision denotes the proportion of correctly predicted boxes to the total pre-
dicted boxes, while Recall represents the proportion of predicted boxes to all actual boxes.
To further assess the accuracy of the detector, we employed two metrics: Average Precision
at an IOU threshold of 0.5 (AP@0.5) and Average Precision with IOU thresholds ranging
from 0.5 to 0.95 (AP@0.5:0.95).

We use the model parameters and GFLOPs to measure the model complexity and size,
while FPS is used to measure the running speed of algorithms, representing the number of
images that can be processed per second. The smaller the number of model parameters
and GFLOPs, the lower the model complexity and size. The larger the FPS, the faster the
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algorithm processing speed, which is more conducive to the deployment of the model on
edge devices.

Assuming a convolutional layer with a size of h×w× ci × co (ci is the number of input
channels, co is the number of output channels) and an output feature map size of H′ ×W ′,
the formula for calculating the parameters of the convolutional layer is as follows:

Params = co × (h× w× ci + 1) (7)

The formula for calculating the FLOPs of the convolutional layer is as follows:

FLOPs = H′ ×W ′ × co × (h× w× ci + 1) (8)

While GFLOPs = FLOPs × 109.

4.4. Performance Comparison of Different Methods
4.4.1. Performance Comparison of Different Methods

In order to evaluate the effectiveness of our proposed model, this paper lists several
representative methods and compares them with the algorithm proposed in this paper in
terms of model detection performance and model complexity. The specific results can be
seen in Tables 3 and 4. Tables 3 and 4 show the comparison results with YOLOv5 [9], Faster
R-CNN [24], RetinaNet [25], YOLOv5, YOLOv6 [26], YOLOv7 [27], and YOLOx [28] on the
test set in terms of recall, mAP, Parameter, GFLOPs, and FPS.

Table 3. The comparison of the detection accuracy between Light-ViTeYOLO and existing methods.

Method Recall (%) mAP@0.5(%) mAP@0.5:0.95(%)

Faster-RCNN 75.4 75.2 66.2
RetinaNET 96.6 95.9 92.5
YOLOV6 96.7 95.9 80.8
YOLOv7 93.9 82.5 55.9
YOLOX 96.9 96.0 84.3
YOLOv5 96.1 97.6 90.8

Light-ViTeYOLO 95.7 97.2 94.3

Table 4. Comparison of calculation quantity and parameter quantity between Light-ViTeYOLO and
existing models.

Method Parameters (M) GFLOPs FPS (Frames/s)

Faster-RCNN 41.1 78.1 15.5
RetinaNET 36.1 81.6 12.3
YOLOV6 17.1 21.8 26.3
YOLOv7 6.5 13.9 39.5
YOLOX 8.9 13.3 46.5
YOLOv5 7.1 15.8 67.0

Light-ViTeYOLO 3.89 7.4 57.9

From Table 3, it can be seen that the proposed algorithm exhibits a significant improve-
ment in mAP@0.5:0.95 compared to other algorithms, with slightly lower recall rates than
RetinaNET, YOLOv6, YOLOX, and only slightly lower mAP@0.5 compared to YOLOv5.
In the task of pine wilt disease (PWD) detection, accurate detection of diseased areas is a
prerequisite for subsequent disease control, and a higher mAP@0.5:0.95 demonstrates that
the proposed algorithm achieves good detection results in the PWD task.

From Table 4, it is evident that the proposed algorithm significantly reduces parameter
number and computational complexity compared to other algorithms. The YOLOv7 and
YOLOX, which are the most lightweight, have reduced by more than 40%. At the same time,
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the algorithm’s inference speed is superior to all other models except YOLOv5, meeting the
real-time requirements of drone scenarios.

Based on Tables 3 and 4, compared with other algorithms, Light-ViTeYOLO proposed
in this paper achieves the minimum number of parameters and computational complexity,
with suboptimal inference speed. While achieving a lightweight model, mAP@0.5 0.95
(%) reaches its maximum, mAP@0.5 (%) reached the second highest. Although the recall
and mAP@0.5 (%) of Light-ViTeYOLO did not reach the optimal level, it is only slightly
lower than the optimal algorithm. Light-ViTeYOLO has obvious advantages in lightweight
level. The FPS of Light-ViTeYOLO is lower than that of YOLOv5. However, the number of
parameters and computation is nearly 50% less than that of YOLOv5, and mAP@0.5:0.95(%)
is almost 4% higher than that of YOLOv5.

The impact of lightweight networks on the detection performance of powdery mildew
was also compared. The experimental results are shown in Section 4.4.3.

Based on the above analysis, the proposed algorithm ensures detection accuracy,
has high detection precision, and simultaneously significantly reduces model complexity
and inference speed. Light-ViTeYOLO is more suitable for PWD detection tasks than
other algorithms.

4.4.2. Ablation Experiment

Light-ViTeYOLO proposed in this paper redesigned the feature extraction network of
YOLOv5, proposed a neck network, and optimized the loss function. In order to evaluate
the effectiveness of each module of our method, comparative experiments were conducted
on the PWD dataset, and the improvement scheme was incrementally added. The specific
experimental results are shown in Table 5.

Table 5. Detection effects of different modules on the model.

Model Parameters (M) GFLOPs mAP@0.5(%) mAP@0.5:0.95(%)

baseline 7.02 15.8 97.6 90.8
+EfficientViT 3.74 6.8 97.22 93.6
+CACSNet 3.89 7.4 97.20 94.0

+EIOU 3.89 7.4 97.27 94.3

From Table 5, it can be observed that after using EfficientViT for global feature extrac-
tion, the parameter count and GFLOPs were effectively reduced. While mAP@0.5 showed
a slight decrease, there was a significant improvement in mAP@0.5:0.95, indicating that
EfficientViT significantly improved efficiency in feature extraction without sacrificing per-
formance. After optimizing the neck network and loss function, there was no change in the
parameter count and GFLOPs, while mAP@0.5 and mAP@0.5:0.95 were further improved.
This indicates that the new neck network and optimization of the loss function have im-
proved the performance of object detection without increasing the number of parameters
and calculations, and does not affect the operational efficiency of the model. Compared
to the original YOLOv5 model, mAP@0.5:0.95 of proposed Light-ViTeYOLO increased by
more than 3 percentage points, while the model’s parameter count reduced by 44.6%, and
computational complexity reduced by 53.2%.

4.4.3. Feature Extraction Performance Analysis of EfficientViT

We integrate multiple typical visual Transformer models and lightweight networks
on the core architecture of the YOLOv5 network for experimental comparison in order to
analyze object detection performance and model complexity of the EfficientViT in pine wilt
disease detection. As shown in Table 6, ViT [12], BoTNet [29], and CoNet [30] are typical
ViT models, while Shufflenetv2 [31], Mobilenetv3 [32], RepVGG [33], and GhostNet [34]
are classic lightweight feature extraction networks. It can be seen from the experimental
results that the AP@0.5 0.95(%) of three ViT models is about 7.5 percent higher than the four
classic lightweight networks, but the ViT parameter count and computational complexity
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are significantly higher than those of lightweight networks. After integrating EfficientViT,
the model has almost the same number of parameters and computational complexity
as the lightweight network, which is about 50% lower than the ViT model. However,
its detection performance is improved by nearly 6 percentage points compared to the
lightweight network, slightly lower than ViT. Overall, the improved EfficientViT method,
combined with the optimization of the neck network and loss function, achieves the best
performance in terms of model accuracy and complexity.

Table 6. Comparison of pine wilt detection performance between EfficientViT and other feature
extraction networks.

Model Parameters (M) GFLOPs AP@0.5(%) AP@0.5:0.95(%)

YOLOv5 +ViT 7.02 15.6 97.2 95.8
YOLOv5 +BoTNet 6.69 15.5 97.2 95.9
YOLOv5 +CoNet 8.19 16.8 97.2 95.4

YOLOv5 +Shufflenetv2 3.79 7.9 96.07 87.87
YOLOv5 +Mobilenetv3 3.19 5.9 94.19 86.83

YOLOv5 +RepVGG 7.19 16.3 97.13 85.93
YOLOv5 +GhostNet 3.68 8.1 96.49 86.06

YOLOv5 +EfficientViT 3.74 6.8 97.22 93.6

4.4.4. Performance Analysis of the Training Process

We compared the changes in mAP@0.5 and mAP@0.5:0.95 during the training process
of the original YOLOv5 model and its iterations with the inclusion of EfficientViT, opti-
mization of the CACSNET neck network, and EIOU loss function, as shown in Figure 9; the
left graph reflects that the mAP@0.5 of the four models sharply increases at the beginning
of training, then tends to plateau around 10 iterations. The mAP@0.5 of the improved
models remains similar to that of the original model in the final iterations, indicating that
the improved models start to change faster than the original model.

Figure 9. The detection performance change of the algorithm during training after the improved
scheme superposition.

In the right graph, the mAP@0.5:0.95 of the improved models quickly surpasses the
original model, after which the values of all four models gradually increase and plateau
around 60 iterations. Ultimately, the mAP@0.5:0.95 of the improved models is significantly
better than that of the original model, with the proposed model achieving the highest
mAP@0.5:0.95. From the above analysis, it is evident that the models exhibit faster training
accuracy after the improvements compared to the original model. This demonstrates that
the various optimizations proposed in this article have a promoting effect on the model’s
performance, and the reduction in model parameters and computational complexity has not
had a major impact on the model’s performance. This highlights the strong generalization
ability of the lightweight model.

We compared the loss values, precision, recall, and AP@0.5:0.95 of the proposed model
with YOLOv5 by plotting curves during the training process. As depicted in Figure 10,
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it is observed that during the initial training phase, the values of each model metric
undergo rapid changes, and after approximately 100 iterations, the loss function values
exhibit less fluctuation, signifying a relatively stable state. Concurrently, the model’s
precision and recall also reach a relatively balanced state. Although the mAP continues to
increase gradually, the rate of change is minimal, suggesting that the model has essentially
converged at this juncture. The trends of the various metrics in the graph reveal that the
proposed model matches or surpasses YOLOv5 in all metrics, underscoring the robustness
of the proposed model’s object representation.

Figure 10. Curves of the loss values, precision, recall, and AP@0.5:0.95 for Light-ViTeYOLO during
the training process.

5. Conclusions

In current methods for pine wilt disease detection, convolutional neural networks
(CNNs) are commonly utilized for network architecture, leveraging their strong perfor-
mance in feature extraction. However, the sensory field of CNNs is constrained by kernel
size and network depth, limiting their capacity to effectively model long-term dependen-
cies. On the other hand, Transformers are adept at capturing global and rich contextual
information, but their high computational demands hinder their practicality for real-time
monitoring scenarios, such as UAV-based applications. To address these challenges, this
paper introduces Light-ViTeYOLO, a lightweight PWD detection method based on Vision
Transformer-enhanced YOLOv5. By incorporating a lightweight Multi-Scale Attention
(MSA) to redesign the backbone network process and enhancing the neck and head, the
proposed method achieves impressive performance in terms of detection accuracy, model
complexity, and inference speed. Notably, this approach manages to exceed the detection
accuracy of many target detectors even with significantly reduced parameters. This achieve-
ment marks a successful balance between model accuracy and efficiency, underscoring its
strong robustness. The use of drones carrying our detection method for real-time detec-
tion of pine wilt disease-discolored wood may lead to higher economic results, including
benefits in terms of improved detection efficiency, reduced costs, reduced risk of disease
transmission, and optimized decision support. However, the specific economic effects still
need to be professionally assessed based on actual applications and relevant cost data.
Therefore, we have the following outlook for future work:
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1. The method proposed in this paper has been experimentally verified on a standard
platform. The next step is to deploy the application on a drone hardware platform
through algorithms to further verify its feasibility and potential economic benefits;

2. Combining the method proposed in this paper with satellite-based forest monitoring
to further strengthen the monitoring of pine tree discoloration caused by pine wilt dis-
ease. Integrating drone images with satellite images for multi-scale analysis from both
macroscopic and local perspectives, comprehensively monitoring diseases through
data fusion and analysis;

3. Applying the method proposed in this paper to the detection of other forest diseases,
such as bark beetle damage.
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Abstract: This study aims to investigate the potential and advantages of multi-agent reinforcement learning
(MARL) in forest management, offering innovative insights and methodologies for achieving sustainable
management of forest ecosystems. Focusing on the Pinus yunnanensis secondary forests in Southwest China,
we formulated the objective function and constraints based on both spatial and non-spatial structural indices
of the forest stand structure (FSS). The value of the objective function (VOF) served as an indicator for
assessing FSS. Leveraging the random selection method (RSM) to select harvested trees, we propose the
replanting foreground index (RFI) to enhance replanting optimization. The decision-making processes
involved in selection harvest optimization and replanting were modeled as actions within MARL. Through
iterative trial-and-error and collaborative strategies, MARL optimized agent actions and collaboration to
address the collaborative optimization problem of FSS. We conducted optimization experiments for selection
felling and replanting across four circular sample plots, comparing MARL with traditional combinatorial
optimization (TCO) and single-agent reinforcement learning (SARL). The findings illustrate the superior
practical efficacy of MARL in collaborative optimization of FSS. Specifically, replanting optimization based
on RFI outperformed the classical maximum Delaunay generator area method (MDGAM). Across different
plots (P1, P2, P3, and P4), MARL consistently improved the maximum VOFs by 54.87%, 88.86%, 41.34%,
and 22.55%, respectively, surpassing those of the TCO (38.81%, 70.04%, 41.23%, and 18.73%) and SARL
(54.38%, 70.04%, 41.23%, and 18.73%) schemes. The RFI demonstrated superior performance in replanting
optimization experiments, emphasizing the importance of considering neighboring trees’ influence on
growth space and replanting potential. Following selective logging and replanting adjustments, the FSS
of each sample site exhibited varying degrees of improvement. MARL consistently achieved maximum
VOFs across different sites, underscoring its superior performance in collaborative optimization of logging
and replanting within FSS. This study presents a novel approach to optimizing FSS, contributing to the
sustainable management of Pinus yunnanensis secondary forests in southwestern China.

Keywords: stand structure optimization; selective cutting; replanting; multi-agent reinforcement
learning; co-optimization

1. Introduction

Secondary forests generally exhibit issues such as unsustainable forest stand structures
(FSSs), diminished biodiversity, heightened vulnerability to forest fires, and susceptibility to
natural calamities such as pest infestations, diseases, and wildfires [1–3]. The optimization
and adjustment of FSS represent pivotal technical interventions in forest management and
planning, offering indispensable strategies for managing secondary forests effectively [4,5].
Central to this endeavor is the meticulous determination of FSS indices, the formulation of
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optimization models, and the design of solution algorithms. Initially, the optimization model
is crafted through the judicious selection of FSS indexes, informed by the unique characteristics
of FSS. Subsequently, relevant algorithms are deployed to resolve the optimization model,
thereby facilitating management optimization through a spectrum of adjustment measures
including selective cutting, replanting, tending, and pruning. FSS indices encompass both
spatial and non-spatial dimensions, encompassing non-spatial metrics such as diameter scales
counts [6], species counts, and plant density [7], alongside spatial indices including the
mingling index (M) [8,9], canopy competition index (CI) [10,11], angle index (W) [12,13], story
index (S) [14], open comparison (OP) [15], and neighborhood comparison (U) [16].

Selective cutting emerges as a pivotal strategy in the optimization of FSS. This approach
entails the targeted removal of trees with limited growth potential, thereby orchestrating a
more conducive distribution pattern of trees, enhancing understory light conditions, and
alleviating competitive pressures within the forest milieu, ultimately culminating in FSS
optimization. However, the efficacy of singular selective cutting endeavors often falls short
in achieving the desired optimization outcomes. Complementarily, replanting constitutes
another indispensable mechanism for optimization and regulation, endeavoring to bolster
the stability and biodiversity of forest ecosystems through the strategic introduction of
young trees of indigenous species in judiciously chosen spatial domains. The crux of
replanting optimization resides in the discernment of pivotal indicators such as location
and species.

Conventional replanting methodologies typically rely on techniques like the Voronoi
diagram [17] or Delaunay triangulation [18], Kriging interpolation [19], among others,
for determining replanting locations. However, these methodologies often overlook the
intricate interplay between replanted trees and their neighboring counterparts, resulting
in rigid replanting locations and potentially exacerbating inter-tree competitive pressures.
Moreover, the scholarly discourse surrounding the optimization of stand structure based
on replanting strategies remains relatively sparse. Existing studies predominantly rely on
statistical analyses to ascertain replanting positions and pertinent information pertaining to
the replanted flora [17–19], with scant attention devoted to replanting research underpinned
by intelligent algorithms.

Numerous scholars have devised optimization and adjustment models, such as multi-
objective operation and spatial structure, building upon the aforementioned optimization
and adjustment strategies [17,20–22]. These models typically serve to simulate and opti-
mize individual interventions, such as selective cutting or replanting, or iteratively refine
stand structure through a sequence of actions, notably selective cutting followed by re-
planting (note: specific references are provided for sequential adjustments). However, none
of the aforementioned optimization frameworks have comprehensively considered the
collaborative synergies among multiple adjustment measures during model formulation
and solution. Particularly within the realm of replanting adjustments, addressing complex
multidimensional information encompassing spatial coordinates of replanted trees, tree
species, age, height, and related parameters poses a significant challenge. Integrating these
multidimensional attributes within the model and devising solution algorithms to capture
their nuances are essential for leveraging the synergistic effects of multiple measures in op-
timizing and controlling forest stand structure. Notably, in scenarios typified by secondary
forests dominated by a single species and characterized by extensive forest cover, a holistic
approach encompassing replanting, tending, and additional measures becomes imperative
to enhance spatial segregation within the forest stand and optimize pertinent indices.

The optimization of FSS is a nonlinear multi-objective optimization problem [23–25].
Existing literature predominantly explores algorithms for solving FSS optimization models
grounded in single measures. These encompass heuristic methodologies like Monte Carlo
(MC) [26–29] and bionic algorithms such as genetic algorithms (GAs) [30–32], simulated
annealing (SA) [33–35], and particle swarm optimization (PSO) [17,36]. While MC offers
simplicity and strong programmability, its outcomes often lack precision due to inherent
algorithmic limitations. Conversely, bionic algorithms like GAs and PSO frequently en-
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counter challenges such as local optimization pitfalls and volatility in the values of the
objective function (VOFs) during solution processes.

Reinforcement learning (RL), characterized by trial-and-error strategies, emerges as
a promising intelligent algorithm owing to its conceptual simplicity, absence of a model,
dynamic decision-making, and robust adaptability [37]. In a previous study, we addressed
the multi-objective logging optimization problem for FSS using single-agent reinforcement
learning (SARL), which excelled in single-measure multi-objective optimization. However,
FSS optimization necessitates the integration of multiple measures beyond selective logging
alone. Moreover, SARL is constrained by individual knowledge and experience, often
requiring prolonged training periods to adapt to environments and learned strategies, thus
posing challenges in balancing exploration and exploitation.

Multi-agent reinforcement learning (MARL) presents a novel approach by leveraging
multiple agents to collaboratively address complex optimization problems. Each agent
interacts with the environment, receiving rewards and adapting in response to the behaviors
of other agents. However, practical applications of MARL encounter challenges concerning
the balance between collaboration and competition among agents, as well as the intricate
design of reward functions. Despite its prominence in fields like autonomous driving and
smart grids, MARL remains largely unexplored in collaborative optimization of FSS.

Overall, the construction and design of FSS optimization models and algorithms neces-
sitate a comprehensive consideration of measures such as selective cutting and replanting,
effective representation of multidimensional tree characteristics during replanting regula-
tion, and a thorough integration of neighboring tree influences on replanted tree growth.
Synchronized optimization and adjustment simulations are imperative for solving the
optimal configuration of FSS. While SARL offers advantages over traditional heuristic and
bionic algorithms in addressing single-measure optimization models, it proves inadequate
for addressing synergistic optimization models involving multiple measures. Hence, this
study introduces the replanting foreground index (RFI), a logging and replanting collabora-
tive optimization model, and a MARL to address the collaborative optimization problem
of FSS based on Pinus yunnanensis secondary forest data in Yunnan Province, China. This
elucidates the potential and advantages of the multi-agent approach in forest management,
providing novel insights and methodologies for sustainable forest ecosystem management.

2. Materials and Methods

2.1. Study Areas

The forest inventories were undertaken within the geographical vicinity of Cangshan
Mountain, located between longitude 99◦55′–100◦12′ E and latitude 25◦34′–26◦00′ N, situ-
ated in Yunnan Province, China (Figure 1). The surveyed regions predominantly situated
on the eastern slope of Cangshan Mountain, include prominent features such as Lan Peak,
Malong Peak, Foding Peak, and Zhonghe Peak. This geographical area lies within the
subtropical climate belt, with an average annual temperature of around 15 °C, influenced
by prevailing southwest monsoon winds [38,39]. Notably, the region experiences abundant
annual precipitation exceeding 1000 mm, with distinct seasonal variations marked by
pronounced dry spells interspersed with heavy rainfall. The wet season predominantly
spans from May to October, accounting for approximately 84% of the total annual precipi-
tation [40]. Predominantly, the area is characterized by red soil, contributing to its unique
ecological landscape.
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Figure 1. Description of Study Sites: Cangshan Mountain, Yunnan Province, China. P1–P4 Designated
as Plot Locations.

2.2. Study Site and Data Collection

Table 1 presents key statistical data pertaining to the sample plots utilized in this
study. The primary focus of the investigation centered on the dominant tree species, Pinus
yunnanensis, spanning four circular sample plots, each strategically positioned atop distinct
peaks. These circular sample plots boasted radii measuring 19 m (Lan Peak), 20 m (Malong
Peak), 32 m (Foding Peak), and 35 m (Zhonghe Peak).

Between July and December 2022, comprehensive forestry operations were executed
within the delineated sample plots. This phase involved meticulous measurements and
recording of geographical coordinates, elevation, slope, slope direction, and plot radii.
Furthermore, a systematic survey was conducted encompassing live standing trees with
a diameter at breast height (DBH) equal to or exceeding 5 cm (DBH ≥ 5 cm) within the
sample plots. Each tree underwent a thorough assessment, documenting essential forestry
attributes including species, DBH, tree height (TH), crown width (CW), and crown length
(CL), facilitated by specialized altimeters and distance measurer. Using a Topcon GTS-
2002 autofocus total station (Topcon, Tokyo, Japan), we precisely determined the relative
coordinates of each tree’s base with respect to the center of the sample plots.

Table 1. Essential Details of Sample Plot Characteristics.

Sample
Plots

East Long. North Lat. Elevation
(m)

Slope
(◦)

Slope
Dir.

Sample Plot
Radius (m)

Tree Species
Composition

Stand Density
(trees/ha)

P1 100°08.2149′′ 25°41.5280′′ 2254 13.45 East 35 8 PY-2 PA-BA-TG 1481
P2 100°10.9639′′ 25°38.1518′′ 2271 16.15 South 32 7 PY-3 PA 1822

P3 100°09.3947′′ 25°39.9506′′ 2195 17.70 NE 20 7 PY-3
PA-QAC-VBT-GGW-BA 1830

P4 100°07.1906′′ 25°43.5923′′ 2138 5.10 NE 19 10 PY-QAC 1975

Note: NE, North-East; PY, Pinus yunnanensis; PA, Pinus armandii; QAC, Quercus acutissima Carrut; VBT, Vaccinium
bracteatum Thunb; GGW, Gaultheria griffithiana Wight; BA, Betula alnoide; TG, Ternstroemia gymnanthera. The column
‘Tree Species Composition’ delineates the distribution of tree species within each plot. The numerical values
preceding each species denote the relative abundance of that particular species for every 10 trees sampled within
the plot.
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2.3. Determination of Spatial Structure Units and Edge Correction

The Voronoi method was used to delineate spatial structure units within the forest
stands [17]. This method constructs Voronoi diagrams based on the measured relative
positions of individual trees, creating polygons that represent spatial structure units for
each tree and its neighboring trees [41,42].

However, the spatial structure units at the edges of stands may be affected by sample
boundaries, potentially leading to errors in calculating spatial structure indices. To address
this issue, the study utilized the buffer zone method [21,43]. For example, for a circular plot
with a diameter of a meters, the buffer zone is created by extending b meters inward from
the edge of the plot towards the center. In other words, a m ring area is used as the buffer
zone [44]. When calculating the spatial structure index for a unit composed of a central tree
and its adjacent trees, the trees within the buffer area are only considered as adjacent trees
in forming the spatial structure unit.

The determination of the buffer zone width depends on several factors, including plot
size, methods for analyzing stand structure indices, and geographical location. This study
carefully considered these factors and, based on existing research and experience [45], set
the buffer zone width at 2 m.

2.4. Stand Structure Indexes

Quantifying stand structure is essential for optimizing FSS. In this study, the number
of tree diameter classes, the diversity of tree species, cutting intensity and plant density
were selected as indicators to quantify the non-spatial structure of the stand. To assess the
spatial structure of the forest stand, indicators such as uniform angle index, mingling index,
crown competition index, story index, and open comparison were utilized.

2.4.1. Non-Spatial Structural Indexes

(1) Tree Diameter Classes [6]

Categorizing trees into diameter classes is crucial for our analysis, as it correlates
directly with stand growth. In this study, we categorized trees based on their DBH, starting
from 6 cm and increasing in 2 cm increments. This systematic approach ensured consistency
in the number of diameter classes throughout FSS optimization:

D = D0 (1)

D0 denotes the count of diameter classes before selection cutting, and D signifies the
count post-selection cutting.

(2) Diversity of Tree Species

During the selection cutting process, it is crucial to preserve tree species diversity
to prevent unintentional extinction. We diligently ensured that the count of tree species
remained unchanged throughout the process:

T = T0 (2)

T0 signifies the initial count of tree species, and T denotes the count post-selection
cutting.

(3) Cutting Intensity

The vigor of the stand after optimization relies on the cutting intensity. Ideally, the
annual cutting volume should not exceed the annual growth rate of the stand. Previous
research [46,47] has indicated that the ideal cutting intensity for secondary forests of Pinus
yunnanensis should be limited to a maximum of 35%:

N ≥ N0(1− 35%) (3)
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N0 signifies the total count of trees before selection cutting, and N represents the count
after selection cutting.

(4) Plant Density (PD) [7]

PD is the key factor influencing the replanting effect. Previous studies [48] showed that
the reasonable range of PD of Pinus yunnanensis is 1667∼3333 trees/hm2. After replanting
optimization, the PD of the sample plots should be within the range of [1667, 3333]:

1667 ≤ PD ≤ 3333 (4)

2.4.2. Spatial Structural Indexes

(1) M

The spatial segregation of tree species, represented by M, is calculated as the ratio of
neighboring tree j stem count, excluding the same species as the object tree i, to the total
neighboring tree stem count. It is mathematically expressed as [8,9]:

Mi =
1
n

n

∑
j=1

vij (5)

Mi symbolizes the mingling index of the object tree i, and vij is a discrete variable.
When the neighboring tree j is not of the same species as tree i, vij = 1; otherwise, vij = 0.

(2) CI

To measure the competitive pressures among trees, we designed a CI that employs
the overlap area of canopies. The index is calculated as follows [10,11,44]:

CIi =
1
Zi
×

n

∑
j=1

AOij ×
Lj

Li
(6)

CIi represents the canopy competition index for object tree i, Zi denotes the projected
canopy area of object tree i. Li = Hi × CWi × CLi, where Hi, CWi and CLi represent the
height, canopy width, and canopy length of the object tree i, respectively. Lj = Hj × CWj
× CLj, where Hj, CWj and CLj denote the height, canopy width, and canopy length of
the competing tree i, respectively. AOij indicates the overlap area between the canopies of
object tree i and competitor tree j, with AOij = 1 when there is no overlap.

(3) W

The characterization of the stand’s horizontal distribution pattern is represented by the
index W. This index measures the proportion of angles α between the object tree i and its
nearest neighbors that are smaller than a predefined standard angle α0.It is mathematically
expressed as [12,13]:

Wi =
1
n

n

∑
j=1

zij (7)

Wi denotes the angle index of tree i, and zij is a discrete variable. If the angle α between
trees i and j is less than α0, zij = 1; otherwise, zij = 0.

(4) S

The vertical diversity and complexity within a stand are encapsulated by the index
denoted as S, which quantifies the proportion of neighboring trees j at the same height
level as the object tree i. It is calculated as follows [14]:

Si =
1
n

n

∑
j=1

vij (8)
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Si represents the story index of tree i, and vij is a binary variable. If tree i shares the
same height level as tree j, vij = 0; otherwise, vij = 1.

(5) OP

The open comparison represents the light environment and available growing space
for tall trees within the stand. This index measures the degree to which the object tree i
within a spatial structure unit is overshadowed by its neighboring tree j. This index is
represented as follows [15]:

OPi =
1
n

n

∑
j=1

tij (9)

OPi is the open comparison corresponding to object tree i, tij is a discrete variable. If
the horizontal distance between object tree i and neighboring tree j exceeds their height
difference, tij = 1; contrarily, tij = 0.

(6) U

The size differentiation in the diameter of individual forest trees is described by the
proportion of neighboring trees j nearest to object tree i that are larger than object tree i
among the n neighboring trees. This comparison was calculated using the formula [16]:

Ui =
1
n

n

∑
j=1

kij (10)

Ui is neighborhood comparison of object tree i, kij is characterized as a discrete variable.
When the DBH of neighboring tree j is larger than that of object tree i, kij = 1; otherwise, kij =
0.

The aforementioned indices were calculated and analyzed using data from the stand
survey with R version 4.2.0.

2.5. Methods for Selecting Trees for Cutting

The RSM (random selection method) [24,44], QVM (Q-value method) [49], and VMM
(V-map method) [50] are widely employed techniques for selecting trees for cutting. RSM
identifies trees for removal through rapid random sampling from the initial pool of retained
trees (comprising all trees within the original stand), and ensuring selection intensity
remains within bounds. QVM constructs a single-tree composite index Qi using five
spatial structural parameters (W, M, CI, OP, and S), then ranks these Qi values within the
harvesting limit to determine the trees to be harvested. Previous research [49] suggests that
the probability of FSS achieving optimization is higher when trees corresponding to the top
Qi values are felled. Under ideal conditions, the average angle index of the stand (W) falls
within the range [0.475, 0.517], with a central value of 0.496. In VMM, the initial selection of
structural units for harvesting prioritizes the nearest neighboring trees of the reference tree
with the highest W value (0.496). These neighboring trees are then used to identify trees
for felling, with particular focus on those exhibiting weak mixing, moderate mixing, and
suppressed competition based on their M values.

In our prior study, we conducted experimental comparisons among these three se-
lection methods, revealing the RSM as the optimal choice for optimizing stand structure
when integrated with RL algorithm [44]. Consequently, the RSM has been selected as the
preferred method for tree selection in the cutting optimization segment of this research.

2.6. RFI
2.6.1. Number of Replanting Trees and Species Configuration

The literature suggests that the optimal planting density for Pinus yunnanensis ranges
from 1667 to 3333 trees per hectare. In the study, we set the upper limit of planting density
for the sample plots after replanting to 3333 trees/hm2. Considering various sample plot
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sizes, we rounded down to determine the upper limit of tree numbers in P1, P2, P3, and P4,
resulting in 1282, 1072, 418, and 378 trees, respectively.

In mixed forests, different proportions of replanting species may lead to varying
degrees of species segregation, while differences in DBH, H (tree height), CW (crown width),
and CL (crown length) of replanted trees may affect the competitive relationships among
neighboring trees post-replanting. The four sample plots in this study were secondary
forests dominated by Pinus yunnanensis, with other native or companion species present,
including Pinus armandii, Vaccinium bracteatum, Quercus acutissima, Betula alnoides, Gaultheria
griffithiana, and Ternstroemia gymnanthera. We set the average DBH of replanted trees at
5 cm, and trees within the [5, 6) cm DBH interval were used to calculate an average H of
4.79 m, an average CW of 6.05 m, and an average CL of 1.71 m, which determined the size
of replanted trees.

2.6.2. Maximum Delaunay Generator Area Method (MDGAM)

Ideal replanting locations are usually in relatively wide “forest gaps”. Traditional
methods for pinpointing these sites include the MDGAM [18], maximum null circle method
(MNCM) [17], and Kriging method [19]. These methods assess various areas to determine
the optimal replanting location rooted in maximal area calculation. The MDGAM, based
on Delaunay triangulation, represents each tree as a node and the distances between
neighboring trees as side lengths. This approach effectively captures both the “forest gaps”
and the forest stand’s distribution pattern [51]. In contrast, the MNCM and Kriging method
lack the Delaunay triangulation’s characteristics and cannot adequately consider the forest
stand’s distribution pattern, thereby presenting significant limitations in determining the
replanting location. Consequently, this study relied on the generating element area of
Delaunay triangulation as the primary criterion for determining replanting locations.

2.6.3. RFI

Replanted trees establish a new spatial structure within the stand alongside their
neighboring trees. While the basic MDGAM primarily considers growth space and stand
distribution patterns, merely positioning replanting sites within the maximal “forest gaps”
overlooks the impact of neighboring trees on the growth of newly planted ones. This oversight
may exacerbate competitive relationships within the stand. It becomes imperative to factor in
spatial relative coordinates, tree species, tree age, tree height, and articulate these multidimen-
sional characteristics within the replanting optimization model and solution algorithm.

Therefore, this study introduces a novel RFI to tackle these issues. Leveraging Delau-
nay triangulation, the RFI characterizes the relative coordinates of replanted trees and their
neighbors, the mingling index, the impact of replanting species on replanting efficacy, DBH
in neighborhood comparison to denote age, and the crown competition index to consider
tree crown and height influences. The specific formula for the RFI is outlined as follows:

RFIi =

1+DAAi
δDAA

· 1+Mi
δM

· 1+Ui
δU

1+CIi
δCI

(11)

RFIi represents the replanting prospect index of the tree to be replanted i, DAAi
denotes the area of the Delaunay triangulation generation element where tree i is situated,
Mi signifies the mingling index of tree i, Ui denotes the neighborhood comparison of tree i,
and CIi represents the canopy competition index of tree i. Additionally, δDAA, δM, δU , and
δCI denote the standard deviation of each structural parameter.

By introducing the RFI, we comprehensively consider the impacts of various factors
on the growth of replant trees, including growth space, mingling index, neighborhood
comparison, and canopy competition index. This integrated index enhances the accuracy
and effectiveness of determining replanting locations. During replanting operations, pri-
ority is assigned to locations with higher RFIs, thereby enhancing the efficiency of stand
adjustment and optimization.
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2.7. Forest Stand Structure Optimization Model

FSS optimization represents a multi-objective optimization challenge [17,24,44], where
the optimization model aligns with predefined objectives and constraints. This model
entails selective logging and replanting strategies to enhance the overall FSS. Construct-
ing an objective function in accordance with optimization goals is pivotal for effective
FSS optimization.

2.7.1. Objective Function

Solving a multi-objective optimization problem involves finding the optimal solution
considering multiple objectives while adhering to constraints [52,53]. Typically, these
objectives are interconnected and constrained, making it challenging to achieve optimal
solutions for each individual objective. Therefore, it’s crucial to integrate and synthesize
multiple sub-objectives into an overall objective function to find the optimal solution.

When optimizing FSS, a higher VOF signifies a better spatial structure for the forest
stand. This study employed the concept of “multiplication and division” [54] to select and
combine five spatial structure indices: angle index, mingling index, crown competition
index, story index, and open comparison into the objective function for the multi-objective
optimization model of FSS. This objective function was calculated using the formula:

max OF =
1
N

N

∑
i=1

1+Mi
δM

· 1+OPi
δOP

· 1+Si
δS

1+CIi
δCI

· 1+|Wi−0.496|
δ|W−0.496|

(12)

Mi, OPi, Si, CIi, and Wi denote the mingling index, open comparison, story index,
canopy competition, and uniform angle index of the central tree i, respectively. Additionally,
δM, δOP, δS, δCI , and δW represent the standard deviations of their respective structural
parameters. The midpoint of the range [0.475, 0.517] is 0.496, where a smaller value
of |Wi − 0.496| indicates that the forest stand’s horizontal distribution pattern is closer
to randomness.

To ensure consistency in model evaluation and comparison, and effectively explore
performance differences among different methods under optimization objectives, the same
objective function was employed for all optimization models in this study.

2.7.2. Traditional Combinatorial Optimization (TCO) Model

Achieving effective optimization of FSS often requires the collaboration of multiple
optimization measures, such as selective cutting and replanting strategies. The traditional
logging and replanting combinatorial optimization model serves as a common approach
for optimizing FSS, involving a dual optimization process. Initially, a portion of the trees
within the sample plot is selectively cut according to a predefined harvesting strategy to
attain a relatively optimal FSS. Subsequently, native tree species are replanted at suitable
locations within the plot post-harvesting, aiming for a double optimization of the FSS.

In a previous study [44], simulated selective logging experiments on four sample
plots yielded relatively optimal FSS outcomes. Building upon these findings, replanting
optimization experiments were conducted, based on the improved FSS after selective
cutting in each sample plot, to assess the practical application of the logging-first-then-
replanting optimization concept.

The optimization model is pivotal for FSS optimization, encompassing the objective
function, constraints, and other factors. The constraints of the TCO model are outlined
as follows:

(1) Constraints

Following optimization and adjustments, the quality of each sub-objective should
not deteriorate compared to its pre-optimization state, ensuring that the spatial structure
diversity of the forest stand remains intact. This necessitates a closer-to-random horizon-
tal distribution pattern and an enhanced mixing degree. During replanting, the plant
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density within the sample plot must be maintained within a reasonable range. Research
findings [48,55,56] suggest that the suitable planting density for Pinus yunnanensis ranges
between 1667∼3333 trees/hm2. The constraints of the TCO model are formulated as follows:

s.t.

⎧⎨
⎩
∣∣W2 − 0.496

∣∣ ≤ ∣∣W1 − 0.496
∣∣

M2 ≥ M1
1667 ≤ PD ≤ 3333

(13)

W1 and M1 represent the average values of the angle index and mingling index of the
stand after selective logging, respectively. W2 and M2 denote the average values of each
parameter after replanting, and PD indicates the plant density of the stand in the sample
plot after replanting optimization.

(2) Solving Algorithm

Based on the findings of prior research [44], this study derived the FSS of each sample
plot following selection cutting optimization via RL. Then, the RFI was employed to
designate the replanting locations. Considering the predetermined upper limit for the
number of replanting trees in each plot, tree species for replanting were allocated in equal
proportions, and the dimensions of individual replanted trees were determined accordingly.
This process culminated in the compilation of the replanting tree set. Various quantities of
trees, ranging from 0 to the predefined upper limit, were selected for replanting from this set.
Consequently, their corresponding structural indices for each forest stand were calculated.
Figure 2 depicts the flowchart of the TCO process, while the algorithmic pseudocode is
elaborated in Appendix A.1.

Calculate the initial value of 

objective function, ƒ(g*)

Calculate the n e w  value  o f  objective 

function, ƒ(g), and constraints n=n+1

Retain the current feasible 

solution: g*=g ƒ(g*)=ƒ(g)

Select the first  n trees from the supplementary 

tree set to create a new set of retained trees, g

ƒ(g)>ƒ(g*) and 

satisfy all constraints
PD>3333

Output the optimal 

solution: g Q

End

Begin

Identify the set of trees after selective logging 

optimization to be retained, g*. Set the initial 

number of replanting trees as n=1.

Yes Yes

No

No

Plot boundary was corrected, and replanting positions 

were determined using the RFI index, sorted in 

descending order to create the replanting tree set.

Figure 2. Flowchart of TCO algorithm.
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2.7.3. Collaborative Optimization Model

The collaborative optimization model for logging and replanting aims to optimize the
FSS through replanting while adhering to the objectives and constraints of selection cutting,
thereby achieving dual optimization of the FSS. This model emphasizes real-time collabora-
tion between logging and replanting, enhancing flexibility and adaptability to varying site
conditions. RL presents advantages in addressing dynamic optimization problems like this,
yet the performance of SARL and MARL differs significantly in collaborative optimization
scenarios. SARL, constrained by individual knowledge and experience, necessitates exten-
sive training time for complex problems, whereas MARL, leveraging collaboration among
agents, encounters challenges in balancing cooperation and competition and designing
intricate reward functions. In this study, the objective function of the collaborative opti-
mization model aligns with that of the TCO model, facilitating effective comparison across
different optimization approaches. The constraints of the collaborative optimization model
are detailed as follows:

(1) Constraints

During the selection cutting process, it is imperative to ensure that the horizontal
distribution pattern of the forest stand approaches random distribution, enhancing the
mingling index, reducing stand competition, promoting vertical diversity, and increasing
openness and light penetration. Regarding non-spatial structure constraints, it is essential
to maintain the number of diameter classes and tree species in the stand during selective
logging optimization, with the cutting intensity not exceeding 35%. Replanting optimiza-
tion constraints are the same as those of the TCO model’s replanting optimization segment.
In the collaborative optimization model, the VOF post-selective logging F1 must exceed the
initial VOF F0, while the VOF post-replanting F2 must surpass F1. A higher F2 indicates
superior structure in the cooperative optimization. In summary, the constraints of the
collaborative optimization model are expressed as follows:

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣W1 − 0.496 < W0 − 0.496
∣∣

M1 > M0
CI1 < CI0

S1 > S0
OP1 > OP0

D1 = D0
T1 = T0

N1 ≥ N0(1− 35%)∣∣W2 − 0.496 < W1 − 0.496
∣∣

M2 > M1
1667 ≤ PD ≤ 3333

F1 > F0
F2 > F1

(14)

W0, M0, CI0, S0, OP0 represent the average values of the uniform angle index, mingling
index, canopy competition index, story index, and open comparison, respectively, in the
forest stand before the selective felling; W1, M1, CI1, S1, OP1 denote the average values of
each parameter after selective cutting; D0, T0, N0 indicate the number of diameter classes,
tree species, and the total number of trees in the stand before selective logging, while D1, T1,
and N1 represent the values of each parameter after selective cutting; W2, M2 represent the
values of the angle index, crown competition index, story index, and open comparison of
the forest stand after replanting; PD denotes the density of forest stand plants after logging
and replanting collaborative optimization.

(2) Solving Algorithm Based on SARL

This study employs the RSM (random selection method) to determine the logging
trees and assesses the replanting potential using the RFI in solving the collaborative opti-
mization problem of selective cutting and replanting of FSS using SARL. The actions of
selecting logging trees and determining the number of replanting trees are translated into
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agent actions in RL. Agents can choose between selective and non-selective logging in the
logging optimization phase, and between replanting and non-replanting in the replanting
optimization phase. Four joint optimization actions are generated, including 1© selective
cutting and replanting, 2© no selective cutting and no replanting, 3© selective cutting but
no replanting, and 4© no selective cutting but replanting. Actions 3© and 4© are equivalent
to single optimization actions and have been extensively discussed in previous research.
This study focuses on actions 1© and 2©, selective logging and replanting, and non-selective
logging and no replanting, as the co-optimization actions of SARL. Agents select actions
successively to maximize the reward value. Figure 3 illustrates the flowchart of SARL
for addressing the co-optimization problem of FSS logging and replanting, with detailed
algorithmic pseudocode provided in Appendix A.2.

Agent

Output the details of cutting trees and replanting 
trees meeting constraints and optimization 
objectives, including their objective function 
values and structural indexes

Give the agent 
Reward

Give the agent 
punishment

Agent moves one 
step toward the end

Cutting and 
replanting

No cutting and no 
replanting

STATE

ENVIRONMENT

ACTIONS

REWARD

ƒ*>ƒ 
and satisfy all constraints 

after optimization

Agent takes one 
step back from the 

starting point

Agent takes one 
step back from 

the starting point

Give the agent 
punishment

Begin

End

Save the current stand structure data, 
including cutting trees and replanting trees 
set, along with their objective function 
values and structural indicators

No
Yes

No

No

Yes

Yes

Calculate the value of objective function (ƒ*) and 
the corresponding structural indices of the initial 
retained trees . Initialize the control parameters.

Agent at 
"starting point"

Agent remains 
motionless

Reach the 
maximum number 

of iterations

Figure 3. Flowchart of SARL algorithm.

(3) Solving Algorithm Based on MARL

Figure 4 illustrates the flowchart of MARL for addressing the collaborative optimiza-
tion problem of FSS logging and replanting, while detailed algorithmic pseudocode is
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provided in Appendix A.3. At each iteration, Agent1 and Agent2 are positioned at the
“start point” and “end point” respectively. Agent1 is responsible for logging optimization,
while Agent2 achieves replanting optimization. Using trial-and-error strategy, Agent1 is
trained to find the set of selective logging trees satisfying the constraints, and Agent2 is
trained to determine the replanting points and the optimal number of replanting plants. The
collaborative optimization strategy motivates Agent1 and Agent2 to collaborate effectively
through cross-collaboration actions and ultimately obtain the optimal spatial structure of
the forest stand.

Designing an effective reward function is crucial in RL to find better results efficiently.
In this solving algorithm, the reward function in the selective harvesting optimization
part follows the result of previous study. For replanting optimization, a method based on
curve trend for sample point selection is designed, rewarding or penalizing based on the
presence of extreme points. Agent2 receives rewards and penalties in the replanting process
based on the rewards and penalties obtained in the first and second rounds, with specific
rules outlined in Table 2. Agent1 and Agent2 collaborate to move towards each other by
efficiently identifying the FSS that maximizes the objective function. The earlier meet of
Agent1 and Agent2 signifies the higher efficiency of MARL in solving multi-objective forest
stand structure (MOFSS) optimization.

Table 2. Reward and punishment rules in MCO.

Initial Rewards/Penalties Subsequent Rewards/Penalties Final Rewards/Penalties

(x+2b,ƒx+2b)

(x+4b,ƒx+4b)

(x,ƒx)

Increase Little reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Little reward + Little reward

Otherwise Little reward Little reward + Little reward

(x,ƒx)

(x+4b,ƒx+4b

(x+2b,ƒx+2b) Decrease Little reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Little reward + Little reward

Otherwise Little reward Little reward + Little reward

(x+2b,ƒx+2b)

(x+4b,ƒx+4b)(x,ƒx)

Convex Large reward
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Large reward + Little reward

Otherwise Large reward Large reward + Large reward

(x,ƒx) (x+4b,ƒx+4b)

(x+2b,ƒx+2b)

Concave Penalty
max( fx+b, fx+3b) >

max( fx , fx+2b, fx+4b)
Little reward Penalty + Little reward

Otherwise Large penalty Penalty + Large penalty

2.7.4. Experimental Scheme

Firstly, this study utilized an iterative algorithm to simulate replanting optimization
based on the initial and optimal stands after cutting in four sample plots. The effectiveness
of the RFI was compared with the MDGAM (maximum Delaunay generator area method)
to validate the efficacy of RFI.

Next, to assess the applicability and effectiveness of the TCO scheme employing
RFI, the stands of the four sample plots were subjected to logging optimization. The top
three ranked stand structures, determined by the VOF, were selected and further optimized
through replanting according to RFI. This aimed to validate the generalizability and efficacy
of the TCO model.

Finally, to evaluate the performance of SARL and MARL in solving the multi-objective
collaborative optimization model of FSS, SARL and MARL were employed. SARL and
MARL utilized RSM for selective logging determination, while RFI guided replanting
location determination, achieving collaborative optimization of forest stand structure
(COFSS) (Table 3).
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Figure 4. Flowchart of MARL algorithm.
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2.7.5. Parameter Settings

The parameter settings of each solution algorithm in the experiment are shown in
Table 4. The main experimental program was developed in Python version 3.10, with
all algorithms implemented manually. This approach allowed for precise control and
customization of the algorithmic processes without relying on pre-built libraries.

Table 4. Optimizing algorithm parameter configuration.

Algorithms
Parameters and

Parameter Values
Value Meaning

Iterate

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

U = 0 Initial count of successive iterations without OF
improvement

Umax = 500 Upper limit of successive iterations without OF
improvement

SARL

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

state = 1 Starting position of the agent
statemax = 100 Farthest position of the agent

r1 = 150, r2 = 10, r3 = −1,
r4 = −1, r5 = 1 Reward and penalty values

RL

I = 0 The initial iteration count
Imax = 10,000 Upper limit of iterations

state1 = 1 Starting position of the agent1
state2 = 100 Starting position of the agent2

statemax1 = 100 Farthest position of the agent1
statemax2 = 1 Farthest position of the agent2

r1 = 200, r2 = 20, r3 = 10,
r4 = 1, r5 = −1, r6 = −50 Reward and penalty values

3. Results

3.1. RFI

To ascertain the effectiveness of RFI, replanting optimization experiments were con-
ducted on eight distinct FSSs. These FSSs encompassed both the optimal stands following
selective logging and the initial stands. The study compared the effects of different methods
for determining replanting locations in terms of the objective function and the number of
iterations. The findings are summarized in Figure 5.

Regarding the VOF, the RFI-based replanting location determination method (RBRLDM)
outperformed the basic MDGAM in achieving higher maximum VOFs across five FSSs
(P1 initial, P2 initial, P2 optimal, P3 optimal, and P4 initial). For one FSS (P4 optimal),
the maximum VOF was equal to that of MDGAM, while for two FSSs (P1 optimal and P3
initial), the maximum VOF equaled that achieved by MDGAM. Overall, RBRLDM yielded
superior VOFs compared to basic MDGAM.

As to the number of iterations, RBRLDM demonstrated significantly faster conver-
gence compared to basic MDGAM. Basic MDGAM was prone to “local optimization”
pitfalls. Notably, in the replanting optimization experiments of the P3 initial stand, ba-
sic MDGAM outperformed RBRLDM in terms of both the number of iterations and the
objective function.
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(a) P1 initial stand (b) P1 optimal stand after cutting

(c) P1 initial stand

(e) P1 initial stand

(g) P1 initial stand

(d) P1 optimal stand after cutting

(f) P1 optimal stand after cutting

(h) P1 optimal stand after cutting

Figure 5. Results of two replanting methods.

3.2. TCO

The TCO model achieves dual optimization of cutting and replanting by optimizing
replanting on the optimal FSS after selective logging. To validate its effectiveness, this study
initially optimized the FSS of four sample plots through selective logging. Subsequently, the
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top three FSS sets were ranked in descending order according to the VOF, and replanting
optimization was conducted on these sets based on RFIs.

Table 5 illustrates the results of TCO. In sample plot P1, the best replanting outcome
of FSSACA1st (the best FSS after cutting adjustment) was inferior to FSSACA2nd and
FSSACA3rd (second and third best FSS after cutting adjustment). Similar trends were
observed in P2. However, in P3, replanting optimization yielded the best outcome on
FSSACA1st, achieving optimal harvesting and replanting simultaneously, thereby fulfilling
the TCO model’s ultimate objective. The optimization result in P4 was sub-optimal, with
replanting optimization failing to achieve the best outcome on FSSACA1st and FSSACA2nd,
while FSSACA3rd achieved the desired result.

Overall, experimental results suggest that the TCO model, based on optimal FSS after
selective logging, may not always attain optimal results and exhibits certain limitations.

Table 5. The results of TCO.

P1

Initial VOF 0.3515 0.3515 0.3515
VOF

after Cutting
0.41211st 0.40092nd 0.39753rd

VOF
after Replanting

0.47373rd 0.48791st 0.48292nd

P2

Initial VOF 0.2814 0.2814 0.2814
VOF

after Cutting
0.40781st 0.39832nd 0.38773rd

VOF
after Replanting

0.47182nd 0.43483rd 0.47851st

P3

Initial VOF 0.3748 0.3748 0.3748
VOF

after Cutting
0.50471st 0.48872nd 0.47293rd

VOF
after Replanting

0.52931st 0.51862nd 0.49083rd

P4

Initial VOF 0.4812 0.4812 0.4812
VOF

after Cutting
0.56351st 0.55932nd 0.55373rd

VOF
after Replanting

0.48523rd 0.51572nd 0.57131st

3.3. Collaborative Optimization (CO)

This study conducted experiments on selective cutting and replanting collaborative
optimization (SCRCO) using SARL and MARL on four sample plots to compare the practi-
cal application of the CO and TCO models. As shown in Figure 6 and Table 6, both SARL
and MARL under the SCRCO model can solve the multi-objective SCRCO problem of FSS,
similar to the TCO model. Except for P3, SARL achieved better VOFs than TCO, with SARL
improving the FSS of all four sample plots more than TCO on average. The optimization
results of MARL in the four sample plots were better than those of TCO and SARL, with
MARL achieving a higher average improvement in FSS than the other two methods.

Table 6. Specific VOFs for each solution algorithm.

P1 P2 P3 P4 Average Lifting
Amplitude

Average
Lifting

Amplitude

Initial 0.3515 0.2814 0.3748 0.4812 0.3722
TCO 0.4879 0.4785 0.5293 0.5713 0.5168 38.83%

43.88%SCO 0.5426 0.5273 0.5196 0.5751 0.5412 45.38%
MCO 0.5444 0.5315 0.5297 0.5897 0.5488 47.44%
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Figure 6. Best optimization results for three optimization models.

3.4. Changes in Stand Structure Parameters

A single VOF cannot comprehensively assess the actual effect of the optimization
scheme. This study compared in detail the changes in stand structure indices for each
sample plot under each optimization scheme to obtain a more accurate and comprehensive
assessment of the optimization effect.

Figure 7 shows the optimization results of different FSS optimization schemes. The
spatial structure indicators of each stand were improved to varying degrees after the
combination of selective harvesting and replanting in different schemes. Overall, the gap
between the average angle index of the stand and the randomly distributed angle index
of 0.496 was slightly reduced, indicating a closer alignment with random distribution.
The canopy competition index of the stands was reduced, suggesting alleviated pressure
among trees. The mingling index of each sample site improved, particularly in P4, which
likely benefited from its initially weak mixing state. Additionally, the story index and open
comparison of each sample site increased, indicating an enriched vertical structure and
improved light transmittance. Overall, the optimization schemes effectively improved the
structure of all sample sites.

3.5. Algorithm Performance

This research compares the performance of each algorithm in terms of FSS optimization
degree and convergence speed. The FSS’s superiority or inferiority is measured by the VOF.
As shown in Table 6, the maximum VOF of MARL (0.5444, 0.5315, 0.5297, 0.5897, respec-
tively) was generally better than that of SARL (0.5426, 0.5273, 0.5196, 0.5751, respectively)
in the cutting-replanting combination experiments in the four sample plots.

Regarding the convergence speed, MARL outperformed SARL and the TCO scheme.
SARL is prone to “local optimization”, and the TCO scheme requires numerous iterations in
harvesting optimization, resulting in slower convergence. Overall, MARL exhibits superior
convergence speed and achieves better VOFs compared to SARL and the TCO scheme.
(Figures 8 and 9).
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Parameter changes.
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(a) P1 (b) P2

(c) P3 (d) P4

Figure 8. Number of iterations for the optimization algorithm.

(a) P1 (b) P2

(c) P3 (d) P4

Figure 9. Running time of the optimization algorithm.
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4. Discussion

Optimizing FSS is crucial for sustainable forest management, and developing a sci-
entific and efficient quantitative model for FSS and enhancing model-solving efficiency
are urgent challenges. Selective cutting and replanting are common measures for FSS
optimization. However, the TCO model faces limitations such as not flexible replanting
positions and difficulty in simultaneously optimizing selective cutting and replanting. To
address these issues, this study proposes a new optimization scheme, aiming to introduce a
multi-agent co-optimization strategy in RL to achieve the collaborative optimization of se-
lective cutting and replanting for FSS. Simulated optimization experiments were conducted
using data from four circular sample plots of Pinus yunnanensis plantation secondary forest
on the eastern slope of Cangshan Mountain in Dali City, Yunnan Province, China, to verify
the effectiveness and feasibility of this new scheme.

4.1. Superiority of RFI

The results of simulation optimization using different replanting location determina-
tion methods demonstrate that the RFI-based method can achieve better VOFs with fewer
replanting iterations. This highlights the practical superiority of the RFI-based method in
application schemes.

The basic MDGAM only considers the growth space of replanted trees in replanting
optimization, selecting the maximum “forest gap” as the optimal location for replanting
without considering other FSS indicators. In contrast, the RFI-based replanting optimiza-
tion comprehensively considers various factors affecting the growth of replanted trees,
including the relative coordinates of replanted trees and their neighbors, mingling de-
gree, effects of replanting species, and tree age represented by DBH size ratio, as well as
canopy competition index to account for tree crown and height effects. By incorporating
multiple stand structure indices into the objective function, the RFI-based method aims to
maximize VOF by improving the quality of as many stand structure indices as possible.
Therefore, the RFI offers a significant advantage in replanting optimization for enhancing
FSS optimization.

4.2. TCO and CO

In both P1 and P2, despite utilizing the optimal FSS adjusted after harvesting for
replanting optimization experiments, the best replanting outcomes were not achieved.
However, the FSSACA2nd and FSSACA3rd led to more substantial improvements in re-
planting optimization. This indicates that relying solely on the results from FSSACA1st
may not always yield the best overall optimization outcomes, suggesting the need for more
comprehensive optimization schemes. Conversely, in P3, replanting based on FSSACA1st
achieved double optimization by combining selective cutting and replanting, resulting in
the most optimal effect. This aligns with findings from other studies [17], emphasizing
the collaborative synergy between selective logging and replanting. In P4, replanting
optimization experiments based on FSS after FSSACA1st and FSSACA2nd did not yield
expected results, whereas FSSACA3rd achieved the best replanting optimization effect.
This further highlights the potential limitations of relying solely on FSSACA1st results,
emphasizing the need for more flexible consideration of alternative optimization paths.

In simulated co-optimization experiments across the four sample plots, SARL out-
performed the TCO model in terms of VOFs in all plots except P3. Moreover, the average
enhancement of FSS achieved by SARL was higher than that of the TCO model. Notably, the
optimization results of MARL across the sample plots were significantly superior to those of
TCO and SARL. MARL exhibited a greater enhancement of FSS compared to the other meth-
ods. This underscores the exceptional performance of MARL in cooperative optimization,
offering an effective approach for tackling complex FSS optimization problems.

Overall, relying solely on FSSACA1st results for replanting optimization may not
always lead to the best outcomes in FSS cutting and replanting optimization. The TCO
model may exhibit limitations in certain scenarios, necessitating the adoption of more
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comprehensive and flexible optimization schemes tailored to specific circumstances. SARL
and MARL demonstrate significant advantages over the TCO model in solving collaborative
FSS optimization problems, providing novel insights and methodologies for addressing
such challenges.

4.3. Changes in Stand Structure Parameters and Algorithm Performance

After the dual optimization of selective logging and replanting, several improve-
ments in the FSS were observed. These include the maintenance of tree diameter classes,
an increase in tree species diversity, closer adherence to a random distribution pattern,
improved spatial segregation of tree species, reduced competitive pressure among trees,
enriched vertical structure, and enhanced understory light conditions. Overall, under
the applied constraints, the FSS showed improvements compared to its pre-optimization
state, validating the efficacy of RL in addressing the multi-objective logging and replanting
co-optimization problem for FSS. Additionally, the study confirmed that the optimization
approach of selective logging followed by replanting, as seen in the TCO model, effectively
addresses such challenges, consistent with findings from previous research [17].

In terms of algorithm performance, the MARL optimization scheme consistently
yielded higher maximum VOFs compared to the TCO and SARL schemes, indicating
superior FSS optimization outcomes with the multi-agent approach. Furthermore, the
MARL algorithm required significantly fewer iterations to converge to the optimal solution
compared to SARL and TCO schemes, underscoring its faster convergence speed and
enhanced efficiency. SARL exhibited a tendency towards local optima, necessitating a
higher number of iterations to achieve desired results. Conversely, the TCO scheme demon-
strated a slower convergence speed overall, requiring more iterations to reach the optimal
solution. Regarding algorithmic time consumption, MARL performed comparably to SARL
and outperformed the TCO scheme, suggesting its ability to maintain high efficiency and
computational performance.

Overall, the MARL approach exhibits clear advantages over the TCO and SARL
schemes in solving the optimization problem of forest stand structure through cutting and
replanting combinations. Its faster convergence speed, superior FSS optimization outcomes,
and competitive computational efficiency highlight its effectiveness in addressing complex
optimization challenges in forestry management.

5. Conclusions

Although our previous study successfully applied SARL to the multi-objective op-
timization of FSS, it only considered single cutting measures and did not integrate the
synergistic effects of multiple regulatory measures in the model construction and solution
process. While SARL has advantages in solving single cutting optimization models, it is
less effective in addressing models that require the coordination of multiple measures.

This study introduces the RFI, which comprehensively considers various factors influ-
encing the growth of replanted trees, enhancing the accuracy and effectiveness of replanting
location determination. The RFI-based method demonstrates superior performance in op-
timizing FSS. Moreover, this research pioneers the application of MARL to collaborative
optimization of FSS cutting and replanting. By leveraging the collaborative strategy of
MARL, the study successfully achieves collaborative optimization of logging and replanting
in FSS. In comparison to TCO and SARL, MARL exhibits significant advantages in solving
this problem. The detailed comparison of experimental results quantitatively verifies the
superiority of MARL in collaborative optimization of stand structure cutting and replanting,
providing strong theoretical support for addressing stand structure optimization challenges
in actual forest management scenarios.

While this study successfully applied MARL to the multi-objective optimization of
stand structure, the experimental results may not fully reflect real-world forest conditions
due to the specific sample data and simulation settings used. Additionally, although
the optimization scheme based on MARL showed better results, there is still room for
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performance improvement. Based on the above research results and shortcomings, future
research can focus on the following aspects:

(1) To enhance the accuracy and efficiency of MARL decisions, it is essential to inte-
grate GIS (Geographic Information System) data and tools to obtain more detailed three-
dimensional spatial information and accurate canopy calculations. By combining GIS with
MARL, it is possible to construct constraints or objective functions that incorporate spatial
three-dimensional features. This integration ensures that MARL makes more informed and
precise decisions.

(2) Improving and optimizing the algorithms and techniques used in the stand struc-
ture optimization scheme based on MARL. Enhancing its performance and efficiency in
processing large-scale data and complex environments will improve its generalization
ability and practical applicability.

(3) Explore and design more flexible and integrated multi-dimensional optimization
strategies to balance various objectives and interests in forest management, achieving a
more comprehensive and sustainable optimization of stand structure. For instance, design
more efficient and appropriate methods for determining the felling and replanting trees.
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Appendix A

Appendix A.1. Algorithmic Pseudocode of TCO

The Algorithm A1 as follows:

Algorithm A1: TCO for MOFSS
Input : Set of retained trees after cutting g∗
Output : The optimal solution g and the corresponding value of objective function f (g)

1 Read the set of retained trees after cutting optimization g∗ ;
2 Set the initial number of replanting trees n = 1 ;
3 Construct spatial structure units and correct edges of sample plots ;
4 Obtain replanting locations based on RFI and construct the set of replanted trees replant_set ;
5 Calculate the initial value of objective function f (g∗) ;
6 while TRUE do
7 Select the first n replanting trees from the replanting set and construct a new set of retained trees g ;
8 Calculate the new value of objective function f (g) and judge whether it meets the constraints ;
9 if f (g) > f (g∗) and meet all constraints then

10 Save the current feasible solution g∗ = g, f (g∗) = f (g) ;
11 end if
12 else
13 if Current plant density > 3333 then
14 Output the optimal solution g and the corresponding value of objective function f (g)
15 end if
16 end if
17 Increase the number of replanting plants n
18 end while
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Appendix A.2. Algorithmic Pseudocode of SARL

The Algorithm A2 as follows:

Algorithm A2: SARL for MOFSS

1 Initialize states S, actions A, ε-greedy policy EPSILON, learning rate α, discount factor γ,
maximum episodes MAXEPISODES, and Q(s, a), where s ∈ S and a ∈ A. Set initial s
and a to 0.;

2 for episode = 1 to MAXEPISODES do

3 Initialize s;
4 if ACTION is cutting and replanting then

5 Choose a from s using policy derived from Q (ε-greedy);
6 Take action a, observe reward r, and next state s′;
7 end if

8 if S = NSTATES− 2 then

9 Set S1 to ’terminal’;
10 Set reward R to d;
11 end if

12 else Selective Cutting and Replanting;
13 Use R program to partition Voronoi diagram, calculate structural parameters, and

objective values of FSS after selective cutting and replanting;
14 if VOF > VOF* then

15 Set S1 to S + 1;
16 Set reward R to a;
17 Document selective cutting tree number and values of OF after selective cutting and

replanting;
18 end if

19 else if VOF = VOF* then

20 Set S1 to S;
21 Set reward R to b;
22 end if

23 else

24 Set reward R to c;
25 if S = 0 then

26 Set S1 to S;
27 end if

28 else Set S1 to S− 1;
29 ;
30 end if

31 ;
32 end for

33 else if S = NSTATES− 2 then

34 Set S1 to ’terminal’;
35 Set reward R to d;
36 end if

37 else Set S1 to S + 1;
38 Set reward R to c;
39 ;
40 ;
41 Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)];
42 s ← s′;
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Appendix A.3. Algorithmic Pseudocode of MARL

The Algorithm A3 as follows:

Algorithm A3: MARL for MOFSS
1 Initialize states S1, S2, actions A1, A2, ε-greedy policy EPSILON, learning rate α, discount factor γ, maximum

episodes MAXEPISODES, and Q1(s1, a1), Q2(s2, a2), where s1 ∈ S1, a1 ∈ A1, s2 ∈ S2 and a2 ∈ A2. Set initial
s1, a1, s2 and a2 to 0.;

2 for episode = 1 to MAXEPISODES do
3 Initialize s1 for Agent1 and initialize s2 for Agent2;
4 for Agent1 do
5 if ACTION1 is cutting then
6 Choose a1 from s1 using policy derived from Q1 (ε-greedy);
7 Take action a1, observe reward r1, and next state s1′ ;
8 end if
9 if S1 >= S2 then

10 Set S1 to ’terminal’;
11 Set reward R1 to d;
12 end if
13 else Selective Cutting;
14 Use R program to partition Voronoi diagram, calculate structural parameters, and objective values of

FSS after selective cutting;
15 if VOF1 > VOF* then
16 Set S1 to S + 1;
17 Set reward R1 to a;
18 Document selective cutting tree number and values of OF after selective cutting;
19 end if
20 else if VOF1 = VOF* then
21 Set S1 to S;
22 Set reward R1 to b;
23 end if
24 ;
25 Q1(s1, a1)← Q1(s1, a1) + α[r + γ maxa1′ Q1(s1′ , a1′)−Q1(s1, a1)];
26 s1 ← s1′ ;
27 end for
28 for Agent2 do
29 if ACTION2 is planting then
30 Choose a2 from s2 using policy derived from Q2 (ε-greedy);
31 Take action a2, observe reward r2, and next state s2′ ;
32 end if
33 if S1 >= S2 then
34 Set S2 to ’terminal’;
35 Set reward R2 to d2;
36 end if
37 else Replanting;
38 Use R program to partition Voronoi diagram, calculate structural parameters, and objective values of

FSS after replanting;
39 if VOFl<VOFm<VOFr or VOFl>VOFm>VOFr then
40 if max(VOFml, VOFmr) > max(VOFl , VOFm, VOFr) then
41 Set S2 to S2− 1;
42 Set reward SmallR21 to a2;
43 end if
44 else
45 Set S2 to S2− 1;
46 Set reward SmallR22 to a2;
47 end if
48 end if
49 else if VOFl<VOFm and VOFm>VOFr then
50 if max(VOFml, VOFmr) > max(VOFl , VOFm, VOFr) then
51 Set S2 to S2− 1;
52 Set reward SmallR21 to a2;
53 end if
54 else
55 Set S2 to S2− 2;
56 Set reward LargeR22 to a2;
57 end if
58 end if
59 else if VOFl>VOFm and VOFm<VOFr then
60 if max(VOFml, VOFmr) > max(VOFl , VOFm, VOFr) then
61 Set S2 to S2 + 1;
62 Set reward SmallP2 to a2;
63 end if
64 else
65 Set S2 to S2 + 1;
66 Set reward LargeP2 to a2;
67 end if
68 end if
69 Document selective cutting tree number and values of OF after replanting;
70 ;
71 Q2(s2, a2)← Q2(s2, a2) + α[r + γ maxa2′ Q(s2′ , a2′)−Q2(s2, a2)];
72 s2 ← s2′ ;
73 end for
74 end for
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Abstract: The causal relationship between vegetation and temperature serves as a driving factor for
global warming in the climate system. However, causal relationships are typically characterized by
complex facets, particularly within natural systems, necessitating the ongoing development of robust
approaches capable of addressing the challenges inherent in causality analysis. Various causality
approaches offer distinct perspectives on understanding causal structures, even when experiments
are meticulously designed with a specific target. Here, we use the complex vegetation–climate
interaction to demonstrate some of the many facets of causality analysis by applying three different
causality frameworks including (i) the kernel Granger causality (KGC), a nonlinear extension of the
Granger causality (GC), to understand the nonlinearity in the vegetation–climate causal relationship;
(ii) the Peter and Clark momentary conditional independence (PCMCI), which combines the Peter and
Clark (PC) algorithm with the momentary conditional independence (MCI) approach to distinguish
the feedback and coupling signs in vegetation–climate interaction; and (iii) the Liang–Kleeman
information flow (L-K IF), a rigorously formulated causality formalism based on the Liang–Kleeman
information flow theory, to reveal the causal influence of vegetation on the evolution of temperature
variability. The results attempt to capture a fuller understanding of the causal interaction of leaf area
index (LAI) on air temperature (T) during 1981–2018, revealing the characteristics and differences in
distinct climatic tipping point regions, particularly in terms of nonlinearity, feedback signals, and
variability sources. This study demonstrates that realizing a more holistic causal structure of complex
problems like the vegetation–climate interaction benefits from the combined use of multiple models
that shed light on different aspects of its causal structure, thus revealing novel insights that are
missing when we rely on one single approach. This prompts the need to move toward a multimodel
causality analysis that could reduce biases and limitations in causal interpretations.

Keywords: vegetation–atmosphere interactions; kernel Granger causality; Peter and Clark momentary
conditional independence; Liang–Kleeman information flow; nonlinear land–atmosphere coupling;
positive and negative feedback

1. Introduction

Vegetation serves as a vital life support system for human societies, interconnecting
soil, atmosphere, and water; however, its interactions within the climate system are very
complex [1]. On one hand, global warming profoundly impacts vegetation ecosystems
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through temporal and spatial changes in climate elements such as water and energy, along-
side the CO2 fertilization effect [2], which contains interactions and potential processes
among various influencing factors, contributing to the complexity of the mechanisms by
which climate affects vegetation. On the other hand, vegetation ecosystems modulate
the climate system through biophysical and chemical processes such as growth, greening,
senescence, transpiration, and photosynthesis, thereby amplifying or mitigating signals of
climate [3], where the response of vegetation to the climate system is relatively weak and
difficult to capture. The interaction between vegetation and climate is thus marked by a
complex, bidirectional feedback, with a notable emphasis on the influence of vegetation on
temperature dynamics [4]. The predominant effect of climate change on vegetation ecosys-
tems is well documented [5], whereas the reciprocal influence of vegetation on climate
change remains underexplored and presents analytical challenges [6]. Methodologically,
correlation and regression analysis methods are commonly employed within ecology and
geographical sciences to assess the impacts of climate change on vegetation [7–10], but these
methods often falter in clarifying the bidirectional “driving-response” relationship between
vegetation and climate, leading to debates and controversies [11]. Climate research, on the
other hand, leans toward numerical simulations to decipher vegetation’s feedback to the
climate system [12,13], which depend heavily on model parameterization schemes, creating
variability in analytical outcomes and obstructing consensus [14].

In light of the aforementioned challenges, causality inferences can either quantitatively
and/or qualitatively through interventions unravel cause–effect relationships between
various subsystems of the climate [15–17]. However, a faithful causal inference is hindered
by the complexity of cause–effect relationships, which are characterized by linear and non-
linear relationships, different feedback forms, time- and frequency-dependent components,
and sufficient asymmetry needed to untangle the causes from the effects [18]. A good
overview of these challenges is presented in [19]. Different causal frameworks have been
developed over the years to tackle the different challenges mentioned above and beyond,
and while most of them have seen successful applications, each approach is often blind to
its limitations. This may indicate the need to move toward a multimodel approach where
different approaches with different strengths and limitations are used in tandem to unravel
a more comprehensive causal structure.

A classical qualitative causality test approach is the Granger causality (GC) [20],
which is a statistical hypothesis test for determining whether one time series is useful in
forecasting another. By definition, a variable x (Granger) causes another variable y if the
knowledge of y improves the autoregressive forecast of x. Since its development, GC has
found a wide application in the fields of finance [21–24], brain science [25–27], and climate
science [28–30]. For instance, Friston et al. [31] pioneered the detection and estimation
of directed connections in neural networks through GC. Kovács et al. [32] employed
GC to reveal the underlying causal relationships between environmental drivers and
global vegetation attributes, highlighting soil moisture and the availability of accumulated
precipitation as critical drivers of vegetation dynamics. Attanasio et al. [33] utilized GC to
investigate the relationship between anthropogenic CO2 emissions and global temperature,
uncovering statistical evidence that the increase in CO2 content leads to a rise in global
temperature. Dhamala et al. [34] proposed a time-frequency-based GC to explore multiscale
relationship between various variables. However, the assumption of linearity in these
earlier forms restricts the scope of Granger causality applications to linear cases. Yet,
complex nonlinear feedback relationships often exist in the climate datasets including
the vegetation–temperature interaction, prompting the need to develop new methods for
inferring nonlinear causal relationships. In that endeavor, Marinazzo et al. [35] applied the
theory of reproducing kernel Hilbert spaces to Granger causality analysis to generalize a
nonlinear form of GC. This approach was applied to understand the linear and nonlinear
characteristics between different variables. Bueso et al. [36] extended kernel Granger
causality (KGC) to include timescale applications and applied it to the interactions between
El Niño–Southern Oscillation and soil moisture (ENSO-SM).
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Land–atmosphere interactions are also characterized by positive and negative feedback
signs, which are important for trend analysis in climate signs [37,38]. In general, statistical
correlations are often used to represent positive and negative feedback [8]. However, al-
though correlation is a necessary prerequisite for causality, it does not imply causation [39].
Thus, a causal inference model based on a Bayesian network was proposed, by first estab-
lishing a Markov graph with correlation to determine the links between network nodes and
then through a series of intervention and statistical tests, extract the causal structure from
full-time graph, realizing the leap from correlation to causal inference [16]. On this basis, the
Peter and Clark momentary conditional independence (PCMCI) method combines the Peter
and Clark (PC) algorithm [40] with the momentary conditional independence (MCI) ap-
proach to obtain causal graphs [19,41–43]. PCMCI has been widely used in many geological
and climatological studies [44,45]. For example, Krich et al. [46] utilized PCMCI methods
to estimate causal networks in biosphere–atmosphere interactions. Capua et al. [47] used
PCMCI to study tropical and mid-latitude teleconnections interacting with Indian sum-
mer monsoon rainfall. Qu et al. [48] also employed PCMCI methods to detect the lagged
and contingent relationships between wildfire burn area and drought patterns alongside
vegetation conditions.

Beyond the above methods, information theoretic (IT) approaches also provide ways
to assess causality between time series quantitatively [49]. Schreiber [50] derived an IT
measure, the transfer entropy (TE), an asymetric conditional variation of the entropy–based
statistics known as mutual information, which has been applied to distinguish drivers from
responses within interactions [51,52]. Additionally, IT methods based on entropy, in the
Shannon sense [53], provide a way to assess causal histories in systems [54]. Ruddell used
mutual information the transfer entropy to assess the cause–effect relationships within a
network of ecohydrological variables.

Liang et al. [49] proposed a rigorously formulated causality formalism, from first
principles, based on the Liang–Kleeman information flow theory (L-K IF) where causality
is quantitatively realized. This has been verified in well-known theoretical models such as
the Rossler and Lorenz systems [55], as well its maiden real-world application to reveal
the causal relationship between El Nino phenomenon and the Indian Ocean dipole (IOD).
Since then, the L-K IF causality has been applied to several areas of research interest in
climate science [56], finance [57], and psychology [58], among others, to unravel cause–
effect relationships. For instance, Stips et al. [59] used this method to study the causal
relationship between greenhouse gas emissions and global warming and found that the
increase in the CO2 concentration in the past 150 years led to the rise of global surface
temperature. Hagan et al. [18] applied Kalman filtering and wavelet analysis techniques
to extend the Liang–Kleeman information flow method to the time-frequency domain
and analyzed the bidirectional mutual feed mechanism between soil moisture and air
temperature. Tao et al. [60] used the information flow method to quantitatively assess
the effects of climate warming and Atlantic and Pacific decadal oscillations on global
precipitation and their regional differences. Docquier et al. [61] applied the Liang–Kleeman
information flow method to identify the potential causal drivers of the Arctic sea ice. They
found that recent and future changes in Arctic sea ice are primarily driven by air and sea
surface temperatures, as well as ocean heat transport, which in turn significantly influence
temperature and ocean heat transport dynamics. More recently, Zhou et al. [62] proposed
a time-dependent form of the formalism to the multivariate form of the LK causality and
applied it to reveal novel findings of time-varying causal structures between soil moisture,
vapor pressure deficit, and gross primary productivity.

Understanding natural systems, particularly the climate, is challenging due to the com-
plexity of the systems and the limitations in causal inquiry methods and observations [1].
In scientific research, identifying reliable and relatively certain patterns often relies on
extracting and summarizing objective facts [19]. Furthermore, historical observational
data provide authentic information and evidence, while causality analysis methods offer
rigorous and reliable data analysis and exploration tools [19]. Like many complex natural
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interactions, the holistic causal structure of the vegetation–climate interaction may not be
sufficiently realized with only one approach, since each method comes with its unique
strengths and limitations as shown in Figure 1.

Figure 1. The many shades of the vegetation–climate causality. That is, the vegetation–temperature
interaction mechanism will be revealed from different causal aspects, where LAI is the leaf area index;
T is the temperature; and KGC (kernel Granger causality), PCMCI (Peter and Clark momentary
conditional independence), and L-K IF (Liang–Kleeman information flow) are three different causal
analysis methods.

In conducting our exploration of the causal relationships between vegetation and
climate, we recognize that different causal analysis methods illuminate these causal rela-
tionships from varied aspects [63], as shown in Figure 1. This is because causality analysis
of natural systems is a very complex problem that has many facets to it. As a result, different
causality methods may only provide skewed perspectives of the full causal structure such
as the nature of the temporal delays [64,65], degrees of nonlinearity [29], and feedback
signs [4,46], among others. Consequently, relying on a single approach limits interpretation
of the cause–effect relationship to a specific framework, making it blind to other potentially
useful interpretations. This limitation stems from the fact that each method offers a unique
lens, focusing on specific aspects of the causal relationship, and thus provides a partial view
that falls short of encapsulating the entire complexity of the vegetation–temperature cou-
pling (Figure 1). This study provides a blue–print on how to capture a fuller interpretation
of the vegetation–climate coupling by harnessing a multimethod analysis approach.

Nonlinearity is a critical characteristic of the climate system. Therefore, we first
conducted a causal analysis of the vegetation–climate system coupling based on the degree
of nonlinearity as a function of location. Using the KGC, we aimed to understand global
regions of nonlinearity in their causal relationship where knowledge of vegetation improves
air temperature prediction. Next, the PCMCI was used to investigate the coupling signs,
alongside providing potential temporal delays between the driver and response. Finally,
Liang–Kleeman information flow (L-K IF) was applied to highlight regions of uncertainty
and predictability in air temperature due to information flow from vegetation changes.

The remaining sections are structured as follows: Section 2 introduces the data and
methods applied in this study. Section 3 presents the experimental results. Section 4 discusses
and analyzes the experimental findings. Section 5 presents the conclusions.
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2. Data and Methods

2.1. Data
2.1.1. CRU TS

For the temperature variable, datasets of global mean air temperature (T) monthly
observations at meteorological stations across the world’s land areas, acquired from the
Climatic Research Unit (CRU), version TS v4.2.0 [66], were used. CRU TS v4.2.0 Mean
Temperature is a high-resolution monthly grid dataset interpolated from 5583 observation
stations. It covers the average temperature station data over the last 35 years and was
interpolated into 0.5◦ × 0.5◦ (longitude × latitude) covering the global land surface. We
took the monthly mean temperature from 1981 to 2018 as the temperature variable.

2.1.2. GLASS LAI

For vegetation variables, we utilized LAI data from the Global Land Surface Satellite
(GLASS) dataset [67,68]. GLASS LAI employs a generalized regression neural network to train
LAI data from satellite observations and AVHRR band data from high-resolution radiometers.
The trained model was then applied to estimate the LAI on a global scale. The product closely
aligns with mainstream leaf area products, has a spatial resolution of 0.05 degrees and a
temporal resolution of 8 days, and spanned the period from 1981 to 2018. In this study, we
resampled the spatial resolution of these data to 0.5◦ × 0.5◦ (longitude × latitude) to ensure
consistency in spatiotemporal resolution with CRU data.

2.1.3. GLEAM ET

Evapotranspiration is very important in land-atmosphere interactions [69]. GLEAM
(Global Land Evaporation Amsterdam Model) is a suit of specially designed algorithms aimed
at accurately estimating global land evaporation by assimilating soil moisture and vegeta-
tion optical depth observations [70,71]. The model divides land evaporation into several
key components including transpiration, canopy interception evaporation, bare soil evap-
oration, ice and snow sublimation and open water evaporation. Here, we employed the
transpiration from GLEAM V3.6a to represent evapotranspiration from 1981 to 2018, with a
monthly temporal resolution, resampled from a spatial resolution of 0.25◦ × 0.25◦ to 0.5◦ ×
0.5◦ (longitude × latitude), consistent with the vegetation and temperature data specifications.

2.2. Methods

We utilized a series of causality-based analysis methods to construct the global vegetation–
temperature causal structure as comprehensively as possible, including KGC, PCMCI, and L-K
IF. The main features and differences of these methods are presented in Table 1.

Table 1. Description of the causal methods used in this paper.

Methods Kernel Granger Causality
Peter and Clark Momentary
Conditional Independence

Liang–Kleeman
Information Flow

Abbreviation KGC PCMCI L-K IF
Type of method Qualitative causality Qualitative causality Quantitative causality

Theoretical basis Granger Causality, spectral
representation, kernel function

Conditional independence test,
structure causality graph Liang–Kleeman information flow

Use of time delays Not by default Always Not by default
Use of iterative
conditioning No Yes No

Sign meaning 1 No negative value

Positive value: Increases in drivers
result in an increase in the target.
Negative value: Increases in drivers
result in an increase in the target.

Positive value: The driver functions to
increase the variability of the target,
thereby making it more uncertain.
Negative value: The driver functions
to reduce variability in the target.

Key references Marinazzo et al. (2007) [35] Runge et al. (2019) [19] Liang (2014) [49]
1 The sign meaning property of PCMCI and L-K IF is reproduced from [72], with permission from Nonlinear
Processes in Geophysics, 2024.
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The methodological workflow (Figure 2) comprised three steps and is described in the
following subsections.

Figure 2. The research outline of this study, where the GLASS LAI is the leaf area index from the
Global Land Surface Satellite (GLASS) dataset; CRU TS represents the temperature data from the
Climatic Research Unit (CRU) dataset; ET represents the evapotranspiration data from the Global
Land Evaporation Amsterdam Model (GLEAM) dataset; and KGC (kernel Granger causality), PCMCI
(Peter and Clark momentary conditional independence), and L-K IF (Liang–Kleeman information
flow) are three different causality analysis methods.

2.2.1. Kernel Granger Causality (KGC)

In GC, a set of stationary time series {x(t)}t=1,.,N+m can be commonly modeled as [20]

Xn =
m

∑
i=1

A′iXn−i +
m

∑
i=1

BiYn−i + E′n (1)

where Y represents another time series that can be similarly defined as X. The matrices
A′i and Bi represent the autoregression coefficients, while E′n denotes white noise [73]. The
parameter m corresponds to the order of the autoregressive model, typically determined
through selection criteria such as the Bayesian information criterion (BIC) [74]. A standard
least squares optimization method was utilized for estimating model coefficients. Instead
of measuring the strength of the causal interaction based on the basic concept of GC, kernel
Granger causality (KGC) employs kernel function to project the original linear indivisible
time series to reproducing Hilbert spaces (H). For each α ∈ {1, . . . , m}, the samples of the
αth component of X form a vector uα ∈ RN . Calling X the m× N matrix having vectors uα

as rows, H coincides with the range of the N × N matrix K = XTX, redefining the Granger
causality index as

δGC =
‖ P⊥u ‖2

1− ∼
x

T∼
x

(2)

where
∼
x is the projection of an organized vector θ = (x1+m, . . . , xN+m)

T on Hilbert space
H ⊆ RN . P represents the projector on the space H. Observing H⊥ as the range of the

matrix
∼
K = K′ − PK′ −K′P + PK′P, the natural choice of the orthonormal basis in H⊥

is the set of the eigenvectors of
∼
K. Hence, ‖ P⊥x ‖2

= ∑m
i=1 c2

i , where ci is the Pearson’s
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coefficient of x and eigenvectors ti. With a hand of Bonferroni test, a filtered linear Granger
causality index can be drawn as

δF(Y → X) =
∑i′ c2

i′

1− ∼
x

T∼
x

(3)

Through spectral representation K(X, X′) = ∑
a

λaφa(X)φa(X′), where φa are eigen-

functions of the kernel k, it is observed that
∼
x, in the feature space spanned by

√
λaΨa,

coincides with the nonlinear regression of x in the original variables. Consider the space H
spanned by zero-mean vectors uϕ, where ϕ represents eigenvectors of the Gram matrix [70],
with elements Kij = k

(
Xi, Xj

)
. The Gram matrix K′ is evaluated using both X and Y to pre-

dict α, where elements of K are defined as K′ij = k
(
Zi, Zj

)
. The regression values now form a

vector that is equal to the projection of α, representing the range of K′. In subsequent analy-
sis, we consider the inhomogeneous polynomial (IP) of integer order P as our choice to meet
our task. The IP kernel [23,24] of integer order p is defined as Kp(X, X′) =

(
1 + XTX′

)P.
Along similar lines as described for the linear case, we constructed the kernel Granger
causality, taking into account only eigenvectors that passed the Bonferroni test:

δK
F = ∑

i′
c2

i′ (4)

The IP kernel of integer order p is expressed as X′ = X ⊗ XT , and XT is orthonormal
to X (orthogonal unit vectors to X ⊗ XT) up to order p and p = 1; consider only the linear
regression, where p ≥ 2 suggests that the information transfer mechanism is nonlinear.
The corresponding KGC formula can be expressed as

KGCx→y = ∑
t

(
P⊥y(t)

)2
/ ∑

t
(y(t)− y(t))2 (5)

2.2.2. Peter and Clark Momentary Conditional Independence (PCMCI)

PCMCI combines the Peter and Clark (PC) [40] algorithm momentary conditional indepen-
dence (MCI) approach. Consider an underlying time-dependent system Xt =

(
X1

t , . . . , XN
t
)

with

Xj
t = f j

(
P
(

Xj
t

)
, η

j
t

)
(6)

where fi signifies a potential nonlinear functional dependency, and η
j
t denotes the mutually

independent dynamic noise components; the nodes within a time series graph symbolize
the variables Xj

t at various time lags. Here, P
(

Xj
t

)
⊂ X−t = (Xt−1, Xt−2, . . .) is defined

to represent the causal progenitors, or “parents”, of the variable Xj
t, identified from the

historical data across all N variables.
For each variable Xj

t , the PC algorithm begins with the establishment of initial parent

candidates P
(

Xj
t

)
⊂ X−t = (Xt−1, Xt−2, . . .). Subsequently, the PC algorithm undertakes

nonconditional independence evaluations, excising Xi
t−τ if the null hypothesis Xi

t−τ ⊥⊥ Xj
t

stands unrefuted at the significance threshold αPC. By means of an a-value assessment,
causal links in PC algorithms can be defined as

p
(

Xi
t−τ → Xj

t

)
= max

{S}
p
(

Xi
t−τ ⊥⊥ Xj

t | S
)

(7)

The aggregated p-value of a causal link is determined as the maximum of all values
resulting from conditional independence tests conducted on various condition sets S , as
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illustrated in Equation (4). Then, the momentary conditional independence (MCI) test is
used to test whether Xi

t−τ → Xj
t with

Xi
t−τ ⊥⊥ /Xj

t | P̂
(

Xj
t

)
�

{
Xi

t−τ

}
, P̂

(
Xi

t−τ

)
(8)

There are various MCI methods provided by PCMCI, including partial correlation
(ParCorr), a nonlinear two-step conditional independence test, and two fully nonparametric
tests: (i) a test based on Gaussian process regression and a distance correlation (GPDC)
for the detection of additive nonlinear causality and (ii) another test based on conditional
mutual information (CMI) for the detection of multiplicative nonlinear causality.

To study the positive and negative feedback relationship between LAI and T, we
specifically focused on the linear independence test known as ParCorr.

The ParCorr conditional independence test relies on partial correlations and a t-test,
assuming the following model:

Xi = SβXi + εXi , Xj = SβXj + εXj (9)

where β represents coefficients and ε denotes Gaussian noise. This model leads to the
subsequent residuals

rXi
= Xi − S β̂Xi , rXj

= Xj − S β̂Xj , (10)

with Xi being the estimated value. ParCorr eliminates the influence of S on Xi and Xj

through ordinary least-squares regression, then testing the independence of the residuals
by the Pearson correlation with a t-test. The independence test yields a p-value and a test
statistic value I, which represents the correlation coefficient in the case of ParCorr.

2.2.3. Liang–Kleeman Information Flow (L-K IF)

The causality in Liang–Kleeman Information Flow is defined as the time rate of the flow of
information transferred from variable X2 (e.g., leaf area index (LAI)) to X1 (e.g., temperature (T))
when the system guides a state forward, which can be formulated as:

dX1

dt
= F(x, t) =

dX∗1
dt

+ T2→1 (11)

where X1 and X∗1 are n-dimensional vectors, F = (F1, F2, . . . , Fn)
T is the vector field. T2→1

is the information flow (IF) rate from X2 to X1 demonstrated by Liang in [75]. The time rate
of change in X1 is precisely equivalent to the mathematical expectation of the divergence
of the vector field. Specifically, for the case of bivariate analysis in this study (n = 2), the
information flow (IF) rate is:

T2→1 = dX1
dt −

dX∗1
dt

= −E
(

F1
σ1

∂ρ1
∂x1

)
− E

(
∂F1
∂x1

)
= E

[
1
σ1

∂(F1ρ1)
∂x1

] (12)

where E denotes the mathematical expectation and σ1 the marginal probability density of
X1. It is important to note that the IF rate is asymmetric (T2→1 �= T1→2), distinguishing it
from correlation.

In the real cases where the underlying system dynamics are unknown, Equation (2) is
estimated using maximum likelihood estimation (MLE). Given two time series X1 and X2,
the MLE of T2→1 = 0, as described by Liang in [49], is:

T̂2→1 =
C11C12C2,d1 −C2

12C1,d1

C22Co11 −C2
12

, (13)
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where Cij represents the sample covariance between Xi an Xj, and Ci,dj is the covariance be-

tween Xi and a forward differenced series derived from Xj, i.e.,
.

Xj,n =
(

Xj,n+k − Xj,n

)
/(kΔt),

with k ≥ 1 as an integer and Δt as the time step. Although the Euler forward difference
method has lower accuracy, it is often indispensable because it inherently assumes that
present conditions can affect future outcomes, but not vice versa.

A nonzero T2→1 indicates that X2 causes X1. Conversely, X2 is not causal if T2→1 = 0,
aligning with the principle of nil causality, which is a core theorem in the IF theory, has been
empirically tested and verified [55]. As shown in equation (13), if C12=0, then T2→1 = 0,
but the reverse is not true. This highlights the concept that, in a linear sense, causation
implies correlation, but correlation does not imply causation [49]. This holds even when
the total information flow is zero [76], conclusively addressing the long-standing debate on
causation versus correlation. The Fisher information matrix was utilized for significance
testing. Its inverse provides a covariance matrix, establishing a significance level at 5%. A
significant result indicates that X2 exerts a causal influence on X1 [49].

3. Results

3.1. Nonlinearity of the Causal Relationship between Vegetation and Temperature

The global distribution of the KGC results from LAI to T (LAI→T) from 1981 to
2018 in Figure 3 shows the spatial pattern of vegetation–temperature coupling, presenting
differences at various degrees of nonlinearity ((a) P = 1, linear, (b) P = 3, nonlinear, (c) P = 5,
strong nonlinear; the rest of the results are provided in Figure S1). Generally, the KGC
result of LAI→T is stronger in the mid and low latitudes (intertropical regions) and weaker
in the high latitudes. However, stronger signals appear in the high latitudes with increasing
nonlinearity (p value). For example, relatively strong KGC values also occur in Eurasia and
northern North America as shown in Figure 3b,c.

The linear KGC (P = 1) of the LAI→T distribution shown in Figure 3a predominantly
highlights high-value regions in intertropical regions which coincide regions of strong
land–atmosphere coupling. These areas were characterized by moderate vegetation cover
where changes in LAI could impact changes in T.

In Figure 3b,c, the nonlinear KGC from LAI to T presents a more extensive range of
regions with strong LAI responses to temperature, encompassing the intertropical regions,
temperate grasslands and parts of high-latitude regions. Notable examples include the
central grasslands of North America, temperate forests and grasslands in the Eurasian
continent, the Sahel; and southern Africa and southeastern Australia in the Southern
Hemisphere. Conversely, regions with weak nonlinear responses of LAI to temperature
included extreme arid or cold regions, such as the deserts of Central Asia, and polar regions
like Antarctica and Greenland. In these areas, the response of LAI to temperature was
minimal, reflected in lower nonlinear GC values. Comparing Figure 3a,c into comparison,
it is apparent that the regions of strong LAI→T are characterized by nonlinear processes,
which reflects the complexity of the coupling.

For the boreal forest in northern Eurasia, linear KGC analysis at P = 1 (Figure 3a)
revealed that the causality strength from LAI to T was comparatively weak. This potentially
indicates that changes in T are not directly linked to changes in LAI, and is modulated by
other mediating factors which may include precipitation, soil moisture and VPD variability.
As a result, P = 5 (Figure 3c) shows stronger signals in the region indicating that the
coupling is a potentially complex relationship, and hence, a lower predictive power of
T anomalies with LAI.

The box plots in Figure 3d generally show increasing KGC values with increasing
P values for LAI→T considering both median and mean distributions. Similar results are
also obtained for T→LAI (Figure S1f). These results highlight the need to move beyond
linear methods to adequately analyse this interaction. While linear methods may provide
some useful information for the nature of the global distribution of the coupling, it may
miss out on other key regions which limits their use for regional studies. Fundamentally,
these KGC results indicates that accurately predicting T in almost all global regions would
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require considering more climate factors and processes beyond vegetation since they are
mostly nonlinearly linked.

(a) (b)

(c) (d)

Figure 3. The kernel Granger causality (KGC) results from leaf area index (LAI) to temperature (T),
indicated as LAI→T, are shown in (a–c), representing P equal to (a) 1, (b) 3, and (c) 5. Spatial results
for P equal to 4, 5 are shown in the Supplementary Materials Figure S1. The statistical boxplots of
KGC results for LAI→T across different degrees of nonlinearity are shown in (d), indicated by the
parameter P, which ranges from 1 to 5. In (d), the star symbol in the middle of each boxplot represents
the median value, the dashed line indicates the mean value, and outliers are not displayed. Results
are computed at a 5% statistical significance.

3.2. Feedback/Coupling Signs and Timescales between Vegetation and Temperature

In this section, we compute both the Pearson correlation and PCMCI to represent
the linear and nonlinear correlation-based forms respectively. Figure 4 presents the linear
Pearson correlation results for the interaction (Figure 4a) and PCMCI results (Figure 4b)
for LAI→T globally from 1981 to 2018. We note that Figure 4a, may more rightly represent
the feedback relationship while Figure 4b would represent the coupling of LAI to T. Fur-
thermore, the analysis in Figure 4b considered evapotranspiration (ET) as a conditional
variable. Positive and negative signals are distinguished by warm red and cool blue colors
respectively. White regions are statistically insignificant locations. As shown in Figure 4a,
positive feedback signals were predominantly observed in the northern high latitudes, such
as Siberia and northern Canada, and the mid-latitude regions, including parts of Europe
and North America. Conversely, negative feedback was primarily seen in tropical regions
like parts of Brazil, the Sahel and India.

In Figure 4a, in the northern high latitudes and mid-latitude regions, the positive influ-
ence of LAI on T suggests that increased vegetation cover led to increases in temperatures,
which could be attributed to processes such as reduced albedo, where dense vegetation
absorbed more sunlight, leading to increased surface temperatures. Additionally, evapo-
transpiration from vegetation can contribute to local humidity. During the growing season,
increased LAI enhanced photosynthetic activity, leading to higher carbon sequestration
and surface cooling through evapotranspiration. This cooling effect can further enhance
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vegetation growth, creating positive feedback. The coupling observed in these regions, as
shown in Figure 4b, may indicate reinforcement of this mechanism, where the delay in
response highlighted the time taken for vegetation to significantly influence the local cli-
mate. These above potentially illustrate that in the northern high latitudes and mid-latitude
regions, energy control was the dominant factor, while water control was relatively weaker.
Therefore, the strength of the causal relationship reflected in the water cycle was not as
strong as that in the energy cycle. We also note that the spatial distribution of the PCMCI
results in agree more with that of the KGC results for P = 5, indicating that the PCMCI does
capture the nonlinearity within the interaction.

(a) (b)

Figure 4. The global distribution of the Pearson correlation between LAI and T is shown in (a), while
the influence of LAI on T with a one-month time lag considering the influence of ET, is shown in (b),
both of which are computed at a statistical significance level of 1%, where warm colors (red-orange)
indicate positive values, while cool colors (blue) indicate negative values.

Conversely, in tropical regions such as Brazil and the Sahelian region, the negative
influence of LAI on T was observed. In these areas, increased vegetation cover was
associated with lower temperatures. This negative relationship could be explained by the
cooling effects of evapotranspiration, where the process of water vapor release from plants
led to heat absorption from the surrounding air, thus cooling the surface. Furthermore,
dense vegetation could enhance cloud formation, which in turn reflected solar radiation
and reduced surface temperatures. These results add a layer of helpful interpretation to the
KGC results in Figure 3 which only shows more of a binary causal–noncausal result.

To further analyse the coupling in detail, we selected the northern forest, Central Asian
monsoon zone, Sahel region, and Amazon tropical rainforest as representative areas for
further analysis. The analysis of four distinct regions—boreal forest (60–65◦ N, 90–95◦ E),
East Asian monsoon region (26–31◦ N, 110–115◦ E), Sahel (5–10◦ N, 30–35◦ E), and Amazon
rainforest (0–10◦ S, 55–65◦ W)—revealed significant insights into the relationship between
LAI and temperature T. Across these regions, scatter plots, joint probability density func-
tions (PDFs), and causal structure consistently showed a positive correlation between LAI
and T, although with varying degrees of strength and temporal dynamics influenced by
regional climatic conditions.

Overall, the plots demonstrate that the interaction is nonlinear, although the degree of
nonlinearity varies from region to region. These validate the KGC results. In the boreal
forest, Figure 5a shows a robust correlation of 0.88 between LAI and T at a lag of 1 month
for LAI→T. Both Figure 5a,b suggest that LAI→T in the region is not a direct or strictly
linear relationship. The causal structure (Figure 5c) emphasized a bidirectional causality
portrayed as a positive feedback between vegetation and climate in the region.
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60° N–65° N,
90° E–95° E

(a) (b) (c)

26° N–31° N,
110° E–115° E

(d) (e) (f)

5° N–10° N,
30° E–35° E

(g) (h) (i)

0° S–10° S,
55° W–65° W

(j) (k) (l)

Figure 5. Time series statistics and causal analysis results for selected typical regions. The first column
represents the scatter plot between LAI (x-axis) and T (y-axis) of each region, and the second column
represents contour plots of the kernel densities of the scatter plot for (a–c) the boreal forest (60–65◦ N,
90–95◦ E), (d–f) East Asian monsoon region (26–31◦ N, 110–115◦ E), (g–i) Sahel (5–10◦ N, 30–35◦ E),
and (j–l) Amazon rainforest (0–10◦ S, 55–65◦ W). The third column, (c,f,i,l) shows the causal structure
of LAI and T in these regions. The unidirectional curved arrows represent the causal relationship
with a delay of 1 calculated with PCMCI, and the bidirectional straight arrows represent the results
calculated by PCMCI Plus with no time delay. The colors of the arrows are blue for negative causality
and red for positive causality.

Similarly, in the East Asian monsoon region, the scatter plots (Figure 5d,e) show a
clear positive trend, indicating an even more direct LAI→T relationship at a 1 month lag.
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Figure 5e shows that this more direct relationship (correlation = 0.96) is likely at all vegetation
and temperature scenarios in the region. The causal structure (Figure 5f) here also shows a
positive vegetation–climate feedback. In the Sahel, the scatter plots from Figure 5g,h the lagged
correlation between LAI and T is−0.69, and the joint PDFs (Figure 5h) demonstrate a multi-
modal distribution, suggesting complex interactions indicating that multiple environmental
factors influences the interaction. The causal structure (Figure 5i) indicated a positive cou-
pling of from T to LAI, and a negative coupling of LAI on regional temperature patterns.

Over the selected Amazon rainforest region, the scatter plots (Figure 5j,k) also highlighted
the complexity of vegetation–climate interactions in this region (correlation = −0.43). The
PDFs (Figure 5k) also showed a multimodal distribution between vegetation and climate in
the region. Like the Sahel, the causal structure (Figure 5l) here also shows positive T→LAI and
negative LAI→T. These plots provide a detailed view of the statistical relationship between
vegetation and climate which shows the complex relationship between them.

3.3. Information Flow between Vegetation and Temperature

The Liang–Kleeman information flow here was to measure the information flow
between LAI and T. Notably, similar to the PCMCI results, the Liang–Kleeman information
flow (L-K IF) exhibited both positive and negative values, although their interpretations
differ, as indicated in Table 1. L–K IF entropy values qualitative, measured in nats per
unit time. As noted in Table 1, for PCMCI, a positive value means that the increasing
or decreasing changes in the cause variable results in increases or decreases in the effect,
while a negative values denote the contrary. However, in L-K IF, a positive IF indicates
that one variable is a source of uncertainty for the other, such that, changes in the causal
variable results in increased amplitude or variability of the other variable. Negative IF,
on the other hand, suggests that changes in the causal variable reduces the amplitude of
the other variable, making the causal variable a source of equilibrium and consequently,
predictability. Figure 6 shows the L-K IF from LAI to T from 1981 to 2018 across the globe.
As noted above, that the signs of L-K IF, based on entropy, should not be interpreted
exactly as that of PCMCI, which is fundamentally based on correlation analysis. Positive
values in Figure 6 suggest that vegetation was a source of uncertainty for temperature.
Thus, changes in vegetation could result in anomalous temperature events such as heat
waves or significant cooling of the temperature in the region. In other words, changes in
vegetation could amplify temperature variability in the positive IF regions [77]. Negative
L-K IF values suggested that vegetation functions to reduce the variability of temperature,
keeping it within a range of equilibrium and predictability as “surprises” or anomalous
events in the temperature variability would be less probable (henceforth referred to as
the stabilizing effect). Overall, positive values were found in regions of strong land–
atmosphere coupling [78,79]. Furthermore, these are also water–limiting regions where
changes in soil moisture could potentially drive atmospheric conditions. On the other
hand, the blue regions were found in energy-limiting regions across the globe where net
radiation drives atmospheric conditions like temperature and precipitation by its control on
evaporation [80–82]. In Figure 6, northern Eurasia depicts a stabilizing effect of LAI on T,
as evidenced by the prevalence of negative L-K IF from LAI to T. This suggests that changes
in vegetation in this region contributed to the stabilization of the temperature regime, a
phenomenon potentially modulated by evapotranspiration mechanisms (see Figure S4). In
northern North America, the L-K IF maps similarly denoted a modest stabilizing role of
vegetation on the thermal environment, as indicated by softer blue shades in the LAI→T
visual representation. In the Amazon basin, the LAI→T map presented a notably dynamic
interaction, with pronounced red-orange gradients which showed that LAI is a source of
uncertainty for regional climate system.
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Figure 6. The global Information flow from LAI to T. Red colours indicate positive IF rates and blue
colours indicate negative IF rates. All results are computed at a 5% statistical significance. White
regions are statistically insignificant regions or masked out due to the absence of vegetation.

4. Discussion

In this study, we used three different causality frameworks to study complex vegetation–
climate interactions, demonstrating some of the many facets of causality analysis. Previous
studies were based on correlation and regression analysis methods [7–9], which remain
inherently uncertain. In fact, Li et al. [3] cautioned that it was difficult to conclude that
“vegetation greening in northern Eurasia will lead to temperature increase” based on re-
mote sensing data and regression statistical methods. Thus, this study attempts to look into
this problem by utilizing causality analysis methods to capture the essential characteristics
potentially eliminating spurious causalities based from observational records.

In our study, we took advantage of KGC, which can derive the degree of nonlinearity
within an interaction reflecting the different degrees of the vegetation-temperature coupling
complexity as a function of location across the globe. The increasing nonlinearity with
higher degrees of the polynomial kernel (P, see Figure 3) indicated that the influence of
LAI on T involved multifaceted interactions, possibly including other ecological factors
and feedback processes. Additionally, our study identified regions of strong nonlinear
causal signals consistent with earlier studies like Schwingshackl et al. [83], who found these
areas to be characterized by strong soil moisture–evapotranspiration coupling. Combining
these findings, we concluded that the hydrological cycle and processes in transitional zones
significantly influenced the causal relationship between vegetation and climate, often in a
complex, nonlinear manner. The subtleties of these interactions challenge the notion of a
straightforward, predictive relationship between vegetation and climate, pointing instead
to a system characterized by complex, emergent properties.

Meanwhile, we focused on elucidating the positive and negative feedback and cou-
pling features of the interaction PCMCI, finding that vegetation’s impact on climate exhib-
ited positive feedback and coupling in mainly in the mid- to high-latitude regions, while
showing negative feedback in lower mid-to low latitude tropical regions. These results
are consistent with recognized global patterns of the feedback between vegetation and
air temperature found by Forzieri et al. in [4]. Furthermore, our results showed different
feedback signals of vegetation on climate under energy and moisture controls, which is
very important in global warming discussions. These findings are also consistent with
Krich et al. [46] who also relied on PCMCI. In this study, the combined use of PCMCI
and KGC results, provide a detailed analysis of climate transition zones, offering insights
into climate change and associated critical scenarios. In regions with strong nonlinearity
in land–atmosphere interactions, PCMCI methods extract information on positive and
negative feedbacks, along with corresponding time delays, addressing limitations of linear
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theories and methods that neglect time delays. This detailed analysis, particularly in critical
ecological–climatic transition zones globally, enhances our understanding and provides a
basis for studying climate change and associated critical scenarios. The L-K IF approach
complemented these findings by capturing the dynamics of information flow within the
LAI–T coupling. By examining the information flow, this method provided insight into
how changes in LAI might induce variability in T, thus indicating regions where changes
in LAI could lead to extreme temperature events across the globe, which we find are
predominantly in water–limited regions.

In addition to natural factors, human activities also significantly impacted vegetation–
climate interactions. However, we note that our study did not take anthropogenic factors
into account for the purposes of simplifying the problem. This will be for future studies.
The human factor has a great impact on the vegetation on the globe. Real-world scenarios
involve complex indirect effects, such as global warming leading to human or animal
migration and changes in water use and subsequently affecting urbanization, forest frag-
mentation, and thus vegetation and ecology [84]. These processes contain important causal
information to more adequately understand the causal structure between vegetation and
climate. For example, in Figure 4a,b of the study results, there were a few causal signals
in the Amazon region that were contrary to the overall regional situation, such as in the
southeast of the Amazon in Figure 4a and the scattered positive and negative signals in
Figure 4b. These atypical opposite signals may be influenced by human activities, such as
the severe human-induced deforestation in the southeastern Amazon found by Ometto
et al. in [85] and the impact of road construction on forest fragmentation mentioned by das
Neves et al. in [86]. The indirect effects or subprocesses caused by these human factors
may be inferred in this paper, but ought to be done with caution.

5. Conclusions

This study systematically studied the causality between vegetation and climate from
1981 to 2018 from observations through different causal characterstics that stem from the
added value of different approaches. From these various perspectives, we elucidated
the complex impact of vegetation on temperature across the globe. We advocate for an
integrated approach to address the climatic and ecological challenges of our time, attaching
importance to vegetation dynamics in the climate system. Integrating multiple causality
methods, we observed that while KGC highlighted the complexity and nonlinearity in
the LAI–T relationship, PCMCI provided a nuanced understanding of the positive or
negative feedback, as well as the coupling with time lag, and L-K IF shed light on the
system’s equilibrium. The divergence in the conclusions drawn by each method illuminates
the multifaceted nature of the LAI–T interaction. The KGC results suggested that the
relationship between observed LAI and T is far more complex than a simple cause–effect,
depending on the location over the globe. The PCMCI analysis, indicated that the LAI–T
relationship was characterized by positive or negative influences. Finally, the L-K IF results
on system equilibrium implied that vegetation could be both an agent of uncertainty or
equilibrium depending on the location under consideration.

Overall, this study highlights the need to go beyond the absolute conclusions of a
single method since each method has its strengths and limitations in providing a targeted
perspective on the nature of the causal structure of any system under investigation. Thus,
there is the need to employ a multimodel analysis that could bring us closer to obtaining
more holistic views of the causal structure of natural systems.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/f15081430/s1: Figure S1: The kernel Granger causality (KGC)
results between LAI and T, showing KGC results from T to LAI in panels (a) to (e) and from LAI to T
in panels (g) to (k), corresponding to parameter p values of 1 to 5. Panel (f) and (l) display statistical
boxplots of KGC results for T→LAI and LAI→T relationships across different degrees of nonlinearity
indicated by parameter P ranging from 1 to 5. Figure S2: The global distribution of the causal effects
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from LAI to T based on the PCMCI method, which shows the influence of LAI to T with a time lag of
one month. Figure S3. The global Liang–Kleeman Information flow (L-K IF) from T to LAI.
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